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Foreword

This IPCC Special Report on Global Warming of 1.5°C was formally approved by the world’s governments in 2018 
– the year of IPCC’s 30th anniversary celebrations. 

During its three decades of existence, the IPCC has shed light on climate change, contributing to the understanding 
of its causes and consequences and the options for risk management through adaptation and mitigation. In 
these three decades, global warming has continued unabated and we have witnessed an acceleration in sea-
level rise. Emissions of greenhouse gases due to human activities, the root cause of global warming, continue 
to increase, year after year. 

Five years ago, the IPCC’s Fifth Assessment Report provided the scientific input into the Paris Agreement, which 
aims to strengthen the global response to the threat of climate change by holding the increase in the global 
average temperature to well below 2ºC above pre-industrial levels and to pursue efforts to limit the temperature 
increase to 1.5ºC above pre-industrial levels. 

Many countries considered that a level of global warming close to 2°C would not be safe and, at that time, there 
was only limited knowledge about the implications of a level of 1.5°C of warming for climate-related risks and 
in terms of the scale of mitigation ambition and its feasibility. Parties to the Paris Agreement therefore invited 
the IPCC to assess the impacts of global warming of 1.5°C above pre-industrial levels and the related emissions 
pathways that would achieve this enhanced global ambition. 

At the start of the Sixth Assessment cycle, governments, in a plenary IPCC session, decided to prepare three 
special reports, including this one, and expanded the scope of this special report by framing the assessment in 
the context of sustainable development and efforts to eradicate poverty. 

Sustainable development goals provide a new framework to consider climate action within the multiple 
dimensions of sustainability. This report is innovative in multiple ways. It shows the importance of integration 
across the traditional IPCC working groups and across disciplines within each chapter. Transitions, integrating 
adaptation and mitigation for each sector, are explored within six dimensions of feasibility, showing both low 
hanging fruits and barriers to overcome. It also provides scientific guidance on strategies to embed climate action 
within development strategies, and how to optimize choices that maximize benefits for multiple sustainable 
development dimensions and implement ethical and just transitions. 

In his address to the UN General Assembly in 2018, Secretary-General António Guterres quoted World 
Meteorological Organization (WMO) data showing that the past two decades have included eighteen of the 
twenty warmest years since record-keeping began in 1850. 

“Climate change is moving faster than we are,” said Secretary-General Guterres. “We must listen to the Earth’s 
best scientists,” he added. 

One month later the IPCC presented the Special Report on Global Warming of 1.5ºC, based on the assessment 
of around 6,000 peer-review publications, most of them published in the last few years. This Special Report 
confirms that climate change is already affecting people, ecosystems and livelihoods all around the world. It 
shows that limiting warming to 1.5ºC is possible within the laws of chemistry and physics but would require 
unprecedented transitions in all aspects of society. It finds that there are clear benefits to keeping warming to 
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1.5ºC rather than 2ºC or higher. Every bit of warming matters. And it shows that limiting warming to 1.5ºC can 
go hand in hand with achieving other global goals such as the Sustainable Development Agenda. Every year 
matters and every choice matters.  

This Special Report also shows that recent trends in emissions and the level of international ambition indicated 
by nationally determined contributions, within the Paris Agreement, deviate from a track consistent with limiting 
warming to well below 2°C. Without increased and urgent mitigation ambition in the coming years, leading to a 
sharp decline in greenhouse gas emissions by 2030, global warming will surpass 1.5°C in the following decades, 
leading to irreversible loss of the most fragile ecosystems, and crisis after crisis for the most vulnerable people 
and societies. 

The Special Report on Global Warming of 1.5°C supports efforts by the WMO and United Nations Environment 
Programme for a comprehensive assessment of our understanding of climate change to help step up action to 
respond to climate change, achieve climate-resilient development and foster an integrated approach to the 
provision of climate services at all scales of governance.  

The IPCC worked in record time to deliver this report for the 24th Conference of Parties (COP24) to the United 
Nations Framework Convention on Climate Change (UNFCCC) and the Talanoa Dialogue. We would like to thank 
Hoesung Lee, Chair of the IPCC, for his leadership and guidance in the preparation of this Special Report. We 
commend the work undertaken by the authors of this Special Report and the many contributing authors and 
reviewers within a timeline of unprecedented severity; the leadership of the Co-Chairs of Working Groups I, II 
and III: Valérie Masson-Delmotte, Panmao Zhai, Hans-Otto Pörtner, Debra Roberts, Jim Skea and Priyadarshi R. 
Shukla; the oversight by the Bureau members of Working Groups I, II and III; and the implementation by the 
Technical Support Unit of Working Group I, supported by the Technical Support Units of Working Groups II and 
III. We are also grateful for the responsiveness of the international research community, who produced the 
knowledge assessed in the report, and thank the reviewers of the report for the thousands of comments that 
helped the authors strengthen the assessment.

Every bit of warming matters, every year matters, every choice matters

Petteri Taalas
Secretary-General
World Meteorological Organization

Joyce Msuya
Acting Executive Director
United Nations Environment Programme
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Preface

This Special Report on Global Warming of 1.5°C, an IPCC Special 
Report on the impacts of global warming of 1.5°C above pre-
industrial levels and related global greenhouse gas emission 
pathways, in the context of strengthening the global response 
to the threat of climate change, sustainable development, 
and efforts to eradicate poverty, is the first publication in 
the Intergovernmental Panel on Climate Change (IPCC) Sixth 
Assessment Report (AR6). The Report was jointly prepared by 
Working Groups I, II and III. It is the first IPCC Report to be 
collectively produced by all three Working Groups, symbolizing 
the new level of integration sought between Working Groups 
during AR6. The Working Group I Technical Support Unit has 
been responsible for the logistical and technical support for 
the preparation of the Special Report. The Special Report 
builds upon the IPCC’s Fifth Assessment Report (AR5) 
released in 2013–2014 and on relevant research subsequently 
published in the scientific, technical and socio-economic 
literature. It has been prepared following IPCC principles and 
procedures, following AR5 guidance on calibrated language 
for communicating the degree of certainty in key findings. 
This Special Report is the first of three cross-Working Group 
Special Reports to be published in AR6, accompanying the 
three main Working Group Reports, the Synthesis Report 
and a Refinement to the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories.

 
Scope of the Report

In its decision on the adoption of the Paris Agreement, the 
Conference of Parties (COP) to the United Nations Framework 
Convention on Climate Change (UNFCCC) at its 21st Session 
in Paris, France (30 November to 11 December 2015), invited 
the IPCC to provide a special report in 2018 on the impacts 
of global warming of 1.5°C above pre-industrial levels and 
related global greenhouse gas emission pathways. The Panel 
accepted the invitation and placed the Report in the context 
of strengthening the global response to the threat of climate 
change, sustainable development, and efforts to eradicate 
poverty. 

The broad scientific community has also responded to the 
UNFCCC invitation. New knowledge and literature relevant to 
the topics of this report have been produced and published 
worldwide. The Special Report is an assessment of the relevant 
state of knowledge, based on the scientific and technical 
literature available and accepted for publication up to 
15 May 2018. The Report draws on the findings of more than 
6,000 published articles.

Structure of the Report

This report consists of a short Summary for Policymakers, a 
Technical Summary, five Chapters, and Annexes, as well as 
online chapter Supplementary Material.

Chapter 1 frames the context, knowledge base and assessment 
approaches used to understand the impacts of 1.5°C global 
warming above pre-industrial levels and related global 
greenhouse gas emission pathways, building on AR5, in the 
context of strengthening the global response to the threat 
of climate change, sustainable development, and efforts to 
eradicate poverty. The chapter provides an update on the 
current state of the climate system including the current level 
of warming.

Chapter 2 assesses the literature on mitigation pathways 
that limit or return global mean warming to 1.5°C (relative 
to the pre-industrial base period 1850–1900). Key questions 
addressed are: What types of mitigation pathways have been 
developed that could be consistent with 1.5°C? What changes 
in emissions, energy and land use do they entail? What do 
they imply for climate policy and implementation, and what 
impacts do they have on sustainable development? This 
chapter focuses on geophysical dimensions of feasibility and 
the technological and economic enabling conditions.

Chapter 3 builds on findings of AR5 and assesses new scientific 
evidence of changes in the climate system and the associated 
impacts on natural and human systems, with a specific focus 
on the magnitude and pattern of risks for global warming 
of 1.5°C above the pre-industrial period. It explores impacts 
and risks for a range of natural and human systems, including 
adaptation options, with a focus on how risk levels change 
between today and worlds where global mean temperature 
increases by 1.5°C and 2°C above pre-industrial levels. The 
chapter also revisits major categories of risk (Reasons for 
Concern) based on the assessment of the new knowledge 
available since AR5.

Chapter 4 discusses how the global economy and socio-
technical and socio-ecological systems can transition to 
1.5°C-consistent pathways and adapt to global warming of 
1.5°C. In the context of systemic transitions across energy, 
land, urban and industrial systems, the chapter assesses 
adaptation and mitigation options, including carbon dioxide 
removal (CDR) measures, as well as the enabling conditions 
that would facilitate implementing the rapid and far-reaching 
global response. 

Finally, Chapter 5 takes sustainable development, poverty 
eradication and reducing inequalities as the starting point and 
focus for analysis. It considers the complex interplay between 
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sustainable development, including Sustainable Development 
Goals (SDGs) and climate actions related to a 1.5°C warmer 
world. The chapter also examines synergies and trade-
offs of adaptation and mitigation options with sustainable 
development and the SDGs and offers insights into possible 
pathways, especially climate-resilient development pathways 
toward a 1.5°C warmer world.

The Process

The Special Report on 1.5°C of the IPCC AR6 has been prepared 
in accordance with the principles and procedures established 
by the IPCC and represents the combined efforts of leading 
experts in the field of climate change. A scoping meeting for 
the SR1.5°C was held in Geneva, Switzerland, in August 2016, 
and the final outline was approved by the Panel at its 44th 
Session in October 2016 in Bangkok, Thailand. Governments 
and IPCC observer organizations nominated 541 experts for 
the author team. The team of 74 Coordinating Lead Authors 
and Lead Authors plus 17 Review Editors were selected 
by the Working Group I, II and III Bureaux. In addition, 133 
Contributing Authors were invited by chapter teams to provide 
technical information in the form of text, graphs or data for 
assessment. Report drafts prepared by the authors were 
subject to two rounds of formal review and revision followed 
by a final round of government comments on the Summary for 
Policymakers. The enthusiastic participation of the scientific 
community and governments to the review process resulted in 
42,001 written review comments submitted by 796 individual 
expert reviewers and 65 governments.

The 17 Review Editors monitored the review process to ensure 
that all substantive review comments received appropriate 
consideration. The Summary for Policymakers was approved 
line-by-line at the joint meeting of Working Groups I, II and 
III; it and the underlying chapters were then accepted at the 
48th Session of the IPCC from 01–06 October 2018 in Incheon, 
Republic of Korea.
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Introduction

This Report responds to the invitation for IPCC ‘... to provide a Special Report in 2018 on the impacts of global warming of 1.5°C 
above pre-industrial levels and related global greenhouse gas emission pathways’ contained in the Decision of the 21st Conference 
of Parties of the United Nations Framework Convention on Climate Change to adopt the Paris Agreement.1

The IPCC accepted the invitation in April 2016, deciding to prepare this Special Report on the impacts of global warming of 
1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global 
response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

This Summary for Policymakers (SPM) presents the key findings of the Special Report, based on the assessment of the available 
scientific, technical and socio-economic literature2 relevant to global warming of 1.5°C and for the comparison between global 
warming of 1.5°C and 2°C above pre-industrial levels. The level of confidence associated with each key finding is reported using 
the IPCC calibrated language.3 The underlying scientific basis of each key finding is indicated by references provided to chapter 
elements. In the SPM, knowledge gaps are identified associated with the underlying chapters of the Report.

A.	 Understanding Global Warming of 1.5°C4

A.1	 Human activities are estimated to have caused approximately 1.0°C of global warming5 above 
pre-industrial levels, with a likely range of 0.8°C to 1.2°C. Global warming is likely to reach 1.5°C 
between 2030 and 2052 if it continues to increase at the current rate. (high confidence) (Figure 
SPM.1) {1.2}

A.1.1	 Reflecting the long-term warming trend since pre-industrial times, observed global mean surface temperature (GMST) for 
the decade 2006–2015 was 0.87°C (likely between 0.75°C and 0.99°C)6 higher than the average over the 1850–1900 
period (very high confidence). Estimated anthropogenic global warming matches the level of observed warming to within 
±20% (likely range). Estimated anthropogenic global warming is currently increasing at 0.2°C (likely between 0.1°C and 
0.3°C) per decade due to past and ongoing emissions (high confidence). {1.2.1, Table 1.1, 1.2.4}

A.1.2	 Warming greater than the global annual average is being experienced in many land regions and seasons, including two to 
three times higher in the Arctic. Warming is generally higher over land than over the ocean. (high confidence) {1.2.1, 1.2.2, 
Figure 1.1, Figure 1.3, 3.3.1, 3.3.2}

A.1.3	 Trends in intensity and frequency of some climate and weather extremes have been detected over time spans during which 
about 0.5°C of global warming occurred (medium confidence). This assessment is based on several lines of evidence, 
including attribution studies for changes in extremes since 1950. {3.3.1, 3.3.2, 3.3.3} 

1	 Decision 1/CP.21, paragraph 21.

2	 The assessment covers literature accepted for publication by 15 May 2018.

3	 Each finding is grounded in an evaluation of underlying evidence and agreement. A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and  
	 typeset in italics, for example, medium confidence. The following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100%  
	 probability, very likely 90–100%, likely 66–100%, about as likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%, exceptionally unlikely 0–1%. Additional terms (extremely likely  
	 95–100%, more likely than not >50–100%, more unlikely than likely 0–<50%, extremely unlikely 0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics,  
	 for example, very likely. This is consistent with AR5. 

4	 See also Box SPM.1: Core Concepts Central to this Special Report.

5	 Present level of global warming is defined as the average of a 30-year period centred on 2017 assuming the recent rate of warming continues.

6	 This range spans the four available peer-reviewed estimates of the observed GMST change and also accounts for additional uncertainty due to possible short-term natural variability.  
	 {1.2.1, Table 1.1}
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A.2	 Warming from anthropogenic emissions from the pre-industrial period to the present will persist for 
centuries to millennia and will continue to cause further long-term changes in the climate system, 
such as sea level rise, with associated impacts (high confidence), but these emissions alone are 
unlikely to cause global warming of 1.5°C (medium confidence). (Figure SPM.1) {1.2, 3.3, Figure 1.5}

A.2.1	 Anthropogenic emissions (including greenhouse gases, aerosols and their precursors) up to the present are unlikely to 
cause further warming of more than 0.5°C over the next two to three decades (high confidence) or on a century time scale 
(medium confidence). {1.2.4, Figure 1.5}

A.2.2	 Reaching and sustaining net zero global anthropogenic CO2 emissions and declining net non-CO2 radiative forcing would 
halt anthropogenic global warming on multi-decadal time scales (high confidence). The maximum temperature reached is 
then determined by cumulative net global anthropogenic CO2 emissions up to the time of net zero CO2 emissions (high 
confidence) and the level of non-CO2 radiative forcing in the decades prior to the time that maximum temperatures are 
reached (medium confidence). On longer time scales, sustained net negative global anthropogenic CO2 emissions and/
or further reductions in non-CO2 radiative forcing may still be required to prevent further warming due to Earth system 
feedbacks and to reverse ocean acidification (medium confidence) and will be required to minimize sea level rise (high 
confidence). {Cross-Chapter Box 2 in Chapter 1, 1.2.3, 1.2.4, Figure 1.4, 2.2.1, 2.2.2, 3.4.4.8, 3.4.5.1, 3.6.3.2}

A.3	 Climate-related risks for natural and human systems are higher for global warming of 1.5°C than 
at present, but lower than at 2°C (high confidence). These risks depend on the magnitude and rate 
of warming, geographic location, levels of development and vulnerability, and on the choices and 
implementation of adaptation and mitigation options (high confidence). (Figure SPM.2) {1.3, 3.3, 
3.4, 5.6}

A.3.1	 Impacts on natural and human systems from global warming have already been observed (high confidence). Many land and 
ocean ecosystems and some of the services they provide have already changed due to global warming (high confidence). 
(Figure SPM.2) {1.4, 3.4, 3.5}

A.3.2	 Future climate-related risks depend on the rate, peak and duration of warming. In the aggregate, they are larger if global 
warming exceeds 1.5°C before returning to that level by 2100 than if global warming gradually stabilizes at 1.5°C, especially 
if the peak temperature is high (e.g., about 2°C) (high confidence). Some impacts may be long-lasting or irreversible, such 
as the loss of some ecosystems (high confidence). {3.2, 3.4.4, 3.6.3, Cross-Chapter Box 8 in Chapter 3}

A.3.3	 Adaptation and mitigation are already occurring (high confidence). Future climate-related risks would be reduced by the 
upscaling and acceleration of far-reaching, multilevel and cross-sectoral climate mitigation and by both incremental and 
transformational adaptation (high confidence). {1.2, 1.3, Table 3.5, 4.2.2, Cross-Chapter Box 9 in Chapter 4, Box 4.2, Box 
4.3, Box 4.6, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5, 4.4.1, 4.4.4, 4.4.5, 4.5.3}  
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Cumulative emissions of CO2 and future non-CO2 radiative forcing determine 
the probability of limiting warming to 1.5°C
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b) Stylized net global CO2 emission pathways d) Non-CO2 radiative forcing pathwaysc) Cumulative net CO2 emissions

a) Observed global temperature change and modeled 
responses to stylized anthropogenic emission and forcing pathways

Observed monthly global 
mean surface temperature

Estimated anthropogenic 
warming to date and 
likely range

Faster immediate CO2 emission reductions 
limit cumulative CO2 emissions shown in 
panel (c).

Maximum temperature rise is determined by cumulative net CO2 emissions and net non-CO2 
radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

Global warming relative to 1850-1900 (°C)

CO2 emissions 
decline from 2020 
to reach net zero in 
2055 or 2040

Cumulative CO2 
emissions in pathways 
reaching net zero in 
2055 and 2040

Non-CO2 radiative forcing 
reduced a�er 2030 or 
not reduced a�er 2030
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1980 2020 2060 2100 1980 2020 2060 2100 1980 2020 2060 2100
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2.0

1.5

1.0

0.5

0

Likely range of modeled responses to stylized pathways

      Faster CO2 reductions (blue in b & c) result in a higher 
probability of limiting warming to 1.5°C 

      No reduction of net non-CO2 radiative forcing (purple in d) 
results in a lower probability of limiting warming to 1.5°C 

      Global CO2 emissions reach net zero in 2055 while net 
non-CO2 radiative forcing is reduced a�er 2030 (grey in b, c & d)

Figure SPM.1 |	 Panel a: Observed monthly global mean surface temperature (GMST, grey line up to 2017, from the HadCRUT4, GISTEMP, Cowtan–Way, and 
NOAA datasets) change and estimated anthropogenic global warming (solid orange line up to 2017, with orange shading indicating assessed likely range). Orange 
dashed arrow and horizontal orange error bar show respectively the central estimate and likely range of the time at which 1.5°C is reached if the current rate 
of warming continues. The grey plume on the right of panel a shows the likely range of warming responses, computed with a simple climate model, to a stylized 
pathway (hypothetical future) in which net CO2 emissions (grey line in panels b and c) decline in a straight line from 2020 to reach net zero in 2055 and net non-
CO2 radiative forcing (grey line in panel d) increases to 2030 and then declines. The blue plume in panel a) shows the response to faster CO2 emissions reductions 
(blue line in panel b), reaching net zero in 2040, reducing cumulative CO2 emissions (panel c). The purple plume shows the response to net CO2 emissions declining 
to zero in 2055, with net non-CO2 forcing remaining constant after 2030. The vertical error bars on right of panel a) show the likely ranges (thin lines) and central 
terciles (33rd – 66th percentiles, thick lines) of the estimated distribution of warming in 2100 under these three stylized pathways. Vertical dotted error bars in 
panels b, c and d show the likely range of historical annual and cumulative global net CO2 emissions in 2017 (data from the Global Carbon Project) and of net 
non-CO2 radiative forcing in 2011 from AR5, respectively. Vertical axes in panels c and d are scaled to represent approximately equal effects on GMST. {1.2.1, 1.2.3, 
1.2.4, 2.3, Figure 1.2 and Chapter 1 Supplementary Material, Cross-Chapter Box 2 in Chapter 1}
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B.	 Projected Climate Change, Potential Impacts and Associated Risks

B.1	 Climate models project robust7 differences in regional climate characteristics between present-day 
and global warming of 1.5°C,8 and between 1.5°C and 2°C.8 These differences include increases 
in: mean temperature in most land and ocean regions (high confidence), hot extremes in most 
inhabited regions (high confidence), heavy precipitation in several regions (medium confidence), 
and the probability of drought and precipitation deficits in some regions (medium confidence). 
{3.3}

B.1.1	 Evidence from attributed changes in some climate and weather extremes for a global warming of about 0.5°C supports 
the assessment that an additional 0.5°C of warming compared to present is associated with further detectable changes in 
these extremes (medium confidence). Several regional changes in climate are assessed to occur with global warming up 
to 1.5°C compared to pre-industrial levels, including warming of extreme temperatures in many regions (high confidence), 
increases in frequency, intensity, and/or amount of heavy precipitation in several regions (high confidence), and an increase 
in intensity or frequency of droughts in some regions (medium confidence). {3.2, 3.3.1, 3.3.2, 3.3.3, 3.3.4, Table 3.2}

B.1.2	 Temperature extremes on land are projected to warm more than GMST (high confidence): extreme hot days in mid-latitudes 
warm by up to about 3°C at global warming of 1.5°C and about 4°C at 2°C, and extreme cold nights in high latitudes warm 
by up to about 4.5°C at 1.5°C and about 6°C at 2°C (high confidence). The number of hot days is projected to increase in 
most land regions, with highest increases in the tropics (high confidence). {3.3.1, 3.3.2, Cross-Chapter Box 8 in Chapter 3}

B.1.3	 Risks from droughts and precipitation deficits are projected to be higher at 2°C compared to 1.5°C of global warming in 
some regions (medium confidence). Risks from heavy precipitation events are projected to be higher at 2°C compared to 
1.5°C of global warming in several northern hemisphere high-latitude and/or high-elevation regions, eastern Asia and 
eastern North America (medium confidence). Heavy precipitation associated with tropical cyclones is projected to be 
higher at 2°C compared to 1.5°C global warming (medium confidence). There is generally low confidence in projected 
changes in heavy precipitation at 2°C compared to 1.5°C in other regions. Heavy precipitation when aggregated at global 
scale is projected to be higher at 2°C than at 1.5°C of global warming (medium confidence). As a consequence of heavy 
precipitation, the fraction of the global land area affected by flood hazards is projected to be larger at 2°C compared to 
1.5°C of global warming (medium confidence). {3.3.1, 3.3.3, 3.3.4, 3.3.5, 3.3.6}

B.2	 By 2100, global mean sea level rise is projected to be around 0.1 metre lower with global warming 
of 1.5°C compared to 2°C (medium confidence). Sea level will continue to rise well beyond 2100 
(high confidence), and the magnitude and rate of this rise depend on future emission pathways. 
A slower rate of sea level rise enables greater opportunities for adaptation in the human and 
ecological systems of small islands, low-lying coastal areas and deltas (medium confidence). 
{3.3, 3.4, 3.6}

B.2.1	 Model-based projections of global mean sea level rise (relative to 1986–2005) suggest an indicative range of 0.26 to 0.77 
m by 2100 for 1.5°C of global warming, 0.1 m (0.04–0.16 m) less than for a global warming of 2°C (medium confidence). 
A reduction of 0.1 m in global sea level rise implies that up to 10 million fewer people would be exposed to related risks, 
based on population in the year 2010 and assuming no adaptation (medium confidence). {3.4.4, 3.4.5, 4.3.2}

B.2.2	 Sea level rise will continue beyond 2100 even if global warming is limited to 1.5°C in the 21st century (high confidence). 
Marine ice sheet instability in Antarctica and/or irreversible loss of the Greenland ice sheet could result in multi-metre rise 
in sea level over hundreds to thousands of years. These instabilities could be triggered at around 1.5°C to 2°C of global 
warming (medium confidence). (Figure SPM.2) {3.3.9, 3.4.5, 3.5.2, 3.6.3, Box 3.3}

7	 Robust is here used to mean that at least two thirds of climate models show the same sign of changes at the grid point scale, and that differences in large regions are statistically  
	 significant.

8	 Projected changes in impacts between different levels of global warming are determined with respect to changes in global mean surface air temperature.
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B.2.3	 Increasing warming amplifies the exposure of small islands, low-lying coastal areas and deltas to the risks associated with 
sea level rise for many human and ecological systems, including increased saltwater intrusion, flooding and damage to 
infrastructure (high confidence). Risks associated with sea level rise are higher at 2°C compared to 1.5°C. The slower rate 
of sea level rise at global warming of 1.5°C reduces these risks, enabling greater opportunities for adaptation including 
managing and restoring natural coastal ecosystems and infrastructure reinforcement (medium confidence). (Figure SPM.2) 
{3.4.5, Box 3.5}

B.3	 On land, impacts on biodiversity and ecosystems, including species loss and extinction, are 
projected to be lower at 1.5°C of global warming compared to 2°C. Limiting global warming to 
1.5°C compared to 2°C is projected to lower the impacts on terrestrial, freshwater and coastal 
ecosystems and to retain more of their services to humans (high confidence). (Figure SPM.2) 
{3.4, 3.5, Box 3.4, Box 4.2, Cross-Chapter Box 8 in Chapter 3} 

B.3.1	 Of 105,000 species studied,9 6% of insects, 8% of plants and 4% of vertebrates are projected to lose over half of their 
climatically determined geographic range for global warming of 1.5°C, compared with 18% of insects, 16% of plants and 
8% of vertebrates for global warming of 2°C (medium confidence). Impacts associated with other biodiversity-related 
risks such as forest fires and the spread of invasive species are lower at 1.5°C compared to 2°C of global warming (high 
confidence). {3.4.3, 3.5.2}

B.3.2	 Approximately 4% (interquartile range 2–7%) of the global terrestrial land area is projected to undergo a transformation 
of ecosystems from one type to another at 1°C of global warming, compared with 13% (interquartile range 8–20%) at 2°C 
(medium confidence). This indicates that the area at risk is projected to be approximately 50% lower at 1.5°C compared to 
2°C (medium confidence). {3.4.3.1, 3.4.3.5}

B.3.3	 High-latitude tundra and boreal forests are particularly at risk of climate change-induced degradation and loss, with woody 
shrubs already encroaching into the tundra (high confidence) and this will proceed with further warming. Limiting global 
warming to 1.5°C rather than 2°C is projected to prevent the thawing over centuries of a permafrost area in the range of 
1.5 to 2.5 million km2 (medium confidence). {3.3.2, 3.4.3, 3.5.5} 

B.4	 Limiting global warming to 1.5°C compared to 2°C is projected to reduce increases in ocean 
temperature as well as associated increases in ocean acidity and decreases in ocean oxygen levels 
(high confidence). Consequently, limiting global warming to 1.5°C is projected to reduce risks 
to marine biodiversity, fisheries, and ecosystems, and their functions and services to humans, 
as illustrated by recent changes to Arctic sea ice and warm-water coral reef ecosystems (high 
confidence). {3.3, 3.4, 3.5, Box 3.4, Box 3.5}

B.4.1	 There is high confidence that the probability of a sea ice-free Arctic Ocean during summer is substantially lower at global 
warming of 1.5°C when compared to 2°C. With 1.5°C of global warming, one sea ice-free Arctic summer is projected per 
century. This likelihood is increased to at least one per decade with 2°C global warming. Effects of a temperature overshoot 
are reversible for Arctic sea ice cover on decadal time scales (high confidence). {3.3.8, 3.4.4.7}

B.4.2	 Global warming of 1.5°C is projected to shift the ranges of many marine species to higher latitudes as well as increase the 
amount of damage to many ecosystems. It is also expected to drive the loss of coastal resources and reduce the productivity of 
fisheries and aquaculture (especially at low latitudes). The risks of climate-induced impacts are projected to be higher at 2°C 
than those at global warming of 1.5°C (high confidence). Coral reefs, for example, are projected to decline by a further 70–90% 
at 1.5°C (high confidence) with larger losses (>99%) at 2°C (very high confidence). The risk of irreversible loss of many marine 
and coastal ecosystems increases with global warming, especially at 2°C or more (high confidence). {3.4.4, Box 3.4}

9	 Consistent with earlier studies, illustrative numbers were adopted from one recent meta-study.
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10	Here, impacts on economic growth refer to changes in gross domestic product (GDP). Many impacts, such as loss of human lives, cultural heritage and ecosystem services, are difficult 
to value and monetize.

B.4.3	 The level of ocean acidification due to increasing CO2 concentrations associated with global warming of 1.5°C is projected to 
amplify the adverse effects of warming, and even further at 2°C, impacting the growth, development, calcification, survival, 
and thus abundance of a broad range of species, for example, from algae to fish (high confidence). {3.3.10, 3.4.4}

B.4.4	 Impacts of climate change in the ocean are increasing risks to fisheries and aquaculture via impacts on the physiology, 
survivorship, habitat, reproduction, disease incidence, and risk of invasive species (medium confidence) but are projected to 
be less at 1.5°C of global warming than at 2°C. One global fishery model, for example, projected a decrease in global annual 
catch for marine fisheries of about 1.5 million tonnes for 1.5°C of global warming compared to a loss of more than 3 million 
tonnes for 2°C of global warming (medium confidence). {3.4.4, Box 3.4}

B.5	 Climate-related risks to health, livelihoods, food security, water supply, human security, and 
economic growth are projected to increase with global warming of 1.5°C and increase further with 
2°C. (Figure SPM.2) {3.4, 3.5, 5.2, Box 3.2, Box 3.3, Box 3.5, Box 3.6, Cross-Chapter Box 6 in Chapter 
3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5, 5.2} 

B.5.1	 Populations at disproportionately higher risk of adverse consequences with global warming of 1.5°C and beyond include 
disadvantaged and vulnerable populations, some indigenous peoples, and local communities dependent on agricultural or 
coastal livelihoods (high confidence). Regions at disproportionately higher risk include Arctic ecosystems, dryland regions, 
small island developing states, and Least Developed Countries (high confidence). Poverty and disadvantage are expected 
to increase in some populations as global warming increases; limiting global warming to 1.5°C, compared with 2°C, could 
reduce the number of people both exposed to climate-related risks and susceptible to poverty by up to several hundred 
million by 2050 (medium confidence). {3.4.10, 3.4.11, Box 3.5, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in 
Chapter 4, Cross-Chapter Box 12 in Chapter 5, 4.2.2.2, 5.2.1, 5.2.2, 5.2.3, 5.6.3}

B.5.2	 Any increase in global warming is projected to affect human health, with primarily negative consequences (high confidence). 
Lower risks are projected at 1.5°C than at 2°C for heat-related morbidity and mortality (very high confidence) and for 
ozone-related mortality if emissions needed for ozone formation remain high (high confidence). Urban heat islands often 
amplify the impacts of heatwaves in cities (high confidence). Risks from some vector-borne diseases, such as malaria and 
dengue fever, are projected to increase with warming from 1.5°C to 2°C, including potential shifts in their geographic range 
(high confidence). {3.4.7, 3.4.8, 3.5.5.8}

B.5.3	 Limiting warming to 1.5°C compared with 2°C is projected to result in smaller net reductions in yields of maize, rice, wheat, 
and potentially other cereal crops, particularly in sub-Saharan Africa, Southeast Asia, and Central and South America, and 
in the CO2-dependent nutritional quality of rice and wheat (high confidence). Reductions in projected food availability are 
larger at 2°C than at 1.5°C of global warming in the Sahel, southern Africa, the Mediterranean, central Europe, and the 
Amazon (medium confidence). Livestock are projected to be adversely affected with rising temperatures, depending on the 
extent of changes in feed quality, spread of diseases, and water resource availability (high confidence). {3.4.6, 3.5.4, 3.5.5, 
Box 3.1, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in Chapter 4}

B.5.4	 Depending on future socio-economic conditions, limiting global warming to 1.5°C compared to 2°C may reduce the 
proportion of the world population exposed to a climate change-induced increase in water stress by up to 50%, although 
there is considerable variability between regions (medium confidence). Many small island developing states could  
experience lower water stress as a result of projected changes in aridity when global warming is limited to 1.5°C, as 
compared to 2°C (medium confidence). {3.3.5, 3.4.2, 3.4.8, 3.5.5, Box 3.2, Box 3.5, Cross-Chapter Box 9 in Chapter 4}

B.5.5	 Risks to global aggregated economic growth due to climate change impacts are projected to be lower at 1.5°C than at 
2°C by the end of this century10 (medium confidence). This excludes the costs of mitigation, adaptation investments and 
the benefits of adaptation. Countries in the tropics and Southern Hemisphere subtropics are projected to experience the 
largest impacts on economic growth due to climate change should global warming increase from 1.5°C to 2°C (medium 
confidence). {3.5.2, 3.5.3} 
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B.5.6	 Exposure to multiple and compound climate-related risks increases between 1.5°C and 2°C of global warming, with greater 
proportions of people both so exposed and susceptible to poverty in Africa and Asia (high confidence). For global warming 
from 1.5°C to 2°C, risks across energy, food, and water sectors could overlap spatially and temporally, creating new and 
exacerbating current hazards, exposures, and vulnerabilities that could affect increasing numbers of people and regions 
(medium confidence). {Box 3.5, 3.3.1, 3.4.5.3, 3.4.5.6, 3.4.11, 3.5.4.9}

B.5.7	 There are multiple lines of evidence that since AR5 the assessed levels of risk increased for four of the five Reasons for 
Concern (RFCs) for global warming to 2°C (high confidence). The risk transitions by degrees of global warming are now: 
from high to very high risk between 1.5°C and 2°C for RFC1 (Unique and threatened systems) (high confidence); from 
moderate to high risk between 1°C and 1.5°C for RFC2 (Extreme weather events) (medium confidence); from moderate to 
high risk between 1.5°C and 2°C for RFC3 (Distribution of impacts) (high confidence); from moderate to high risk between 
1.5°C and 2.5°C for RFC4 (Global aggregate impacts) (medium confidence); and from moderate to high risk between 1°C 
and 2.5°C for RFC5 (Large-scale singular events) (medium confidence). (Figure SPM.2) {3.4.13; 3.5, 3.5.2}

B.6 	 Most adaptation needs will be lower for global warming of 1.5°C compared to 2°C (high confidence). 
There are a wide range of adaptation options that can reduce the risks of climate change (high 
confidence). There are limits to adaptation and adaptive capacity for some human and natural 
systems at global warming of 1.5°C, with associated losses (medium confidence). The number and 
availability of adaptation options vary by sector (medium confidence). {Table 3.5, 4.3, 4.5, Cross-
Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5} 

B.6.1	 A wide range of adaptation options are available to reduce the risks to natural and managed ecosystems (e.g., ecosystem-
based adaptation, ecosystem restoration and avoided degradation and deforestation, biodiversity management, 
sustainable aquaculture, and local knowledge and indigenous knowledge), the risks of sea level rise (e.g., coastal defence 
and hardening), and the risks to health, livelihoods, food, water, and economic growth, especially in rural landscapes 
(e.g., efficient irrigation, social safety nets, disaster risk management, risk spreading and sharing, and community-
based adaptation) and urban areas (e.g., green infrastructure, sustainable land use and planning, and sustainable water 
management) (medium confidence). {4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.5.3, 4.5.4, 5.3.2, Box 4.2, Box 4.3, Box 4.6, Cross-Chapter 
Box 9 in Chapter 4}.

B.6.2	 Adaptation is expected to be more challenging for ecosystems, food and health systems at 2°C of global warming than for 
1.5°C (medium confidence). Some vulnerable regions, including small islands and Least Developed Countries, are projected 
to experience high multiple interrelated climate risks even at global warming of 1.5°C (high confidence). {3.3.1, 3.4.5, 
Box 3.5, Table 3.5, Cross-Chapter Box 9 in Chapter 4, 5.6, Cross-Chapter Box 12 in Chapter 5, Box 5.3}

B.6.3	 Limits to adaptive capacity exist at 1.5°C of global warming, become more pronounced at higher levels of warming and 
vary by sector, with site-specific implications for vulnerable regions, ecosystems and human health (medium confidence). 
{Cross-Chapter Box 12 in Chapter 5, Box 3.5, Table 3.5} 
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10	Here, impacts on economic growth refer to changes in gross domestic product (GDP). Many impacts, such as loss of human lives, cultural heritage and ecosystem services, are difficult  
	 to value and monetize.
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How the level of global warming affects impacts and/or risks associated with 
the Reasons for Concern (RFCs) and selected natural, managed and human 
systems

Impacts and risks associated with the Reasons for Concern (RFCs)

Purple indicates very high 

risks of severe impacts/risks 

and the presence of 

significant irreversibility or 

the persistence of 

climate-related hazards, 

combined with limited 

ability to adapt due to the 

nature of the hazard or 

impacts/risks. 

Red indicates severe and 

widespread impacts/risks. 

Yellow indicates that 

impacts/risks are detectable 

and attributable to climate 

change with at least medium 

confidence. 

White indicates that no 

impacts are detectable and 

attributable to climate 

change.

Five Reasons For Concern (RFCs) illustrate the impacts and risks of 

different levels of global warming for people, economies and ecosystems 

across sectors and regions.
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Figure SPM.2 |	 Five integrative reasons for concern (RFCs) provide a framework for summarizing key impacts and risks across sectors and regions, and were 
introduced in the IPCC Third Assessment Report. RFCs illustrate the implications of global warming for people, economies and ecosystems. Impacts and/or risks 
for each RFC are based on assessment of the new literature that has appeared. As in AR5, this literature was used to make expert judgments to assess the levels 
of global warming at which levels of impact and/or risk are undetectable, moderate, high or very high. The selection of impacts and risks to natural, managed and 
human systems in the lower panel is illustrative and is not intended to be fully comprehensive. {3.4, 3.5, 3.5.2.1, 3.5.2.2, 3.5.2.3, 3.5.2.4, 3.5.2.5, 5.4.1, 5.5.3, 
5.6.1, Box 3.4}
RFC1 Unique and threatened systems: ecological and human systems that have restricted geographic ranges constrained by climate-related conditions and 
have high endemism or other distinctive properties. Examples include coral reefs, the Arctic and its indigenous people, mountain glaciers and biodiversity hotspots. 
RFC2 Extreme weather events: risks/impacts to human health, livelihoods, assets and ecosystems from extreme weather events such as heat waves, heavy rain, 
drought and associated wildfires, and coastal flooding. 
RFC3 Distribution of impacts: risks/impacts that disproportionately affect particular groups due to uneven distribution of physical climate change hazards, 
exposure or vulnerability. 
RFC4 Global aggregate impacts: global monetary damage, global-scale degradation and loss of ecosystems and biodiversity. 
RFC5 Large-scale singular events: are relatively large, abrupt and sometimes irreversible changes in systems that are caused by global warming. Examples 
include disintegration of the Greenland and Antarctic ice sheets.
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11	References to pathways limiting global warming to 2°C are based on a 66% probability of staying below 2°C.

12	Non-CO2 emissions included in this Report are all anthropogenic emissions other than CO2 that result in radiative forcing. These include short-lived climate forcers, such as methane,  
	 some fluorinated gases, ozone precursors, aerosols or aerosol precursors, such as black carbon and sulphur dioxide, respectively, as well as long-lived greenhouse gases, such as nitrous  
	 oxide or some fluorinated gases. The radiative forcing associated with non-CO2 emissions and changes in surface albedo is referred to as non-CO2 radiative forcing. {2.2.1}

13	There is a clear scientific basis for a total carbon budget consistent with limiting global warming to 1.5°C. However, neither this total carbon budget nor the fraction of this budget  
	 taken up by past emissions were assessed in this Report.

14	Irrespective of the measure of global temperature used, updated understanding and further advances in methods have led to an increase in the estimated remaining carbon budget of  
	 about 300 GtCO2 compared to AR5. (medium confidence) {2.2.2}

15	These estimates use observed GMST to 2006–2015 and estimate future temperature changes using near surface air temperatures. 

C.	 Emission Pathways and System Transitions Consistent with 1.5°C 
Global Warming

C.1 	 In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO2 emissions 
decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero 
around 2050 (2045–2055 interquartile range). For limiting global warming to below 2°C11 CO2 

emissions are projected to decline by about 25% by 2030 in most pathways (10–30% interquartile 
range) and reach net zero around 2070 (2065–2080 interquartile range). Non-CO2 emissions in 
pathways that limit global warming to 1.5°C show deep reductions that are similar to those in 
pathways limiting warming to 2°C. (high confidence) (Figure SPM.3a) {2.1, 2.3, Table 2.4} 

C.1.1	 CO2 emissions reductions that limit global warming to 1.5°C with no or limited overshoot can involve different portfolios of 
mitigation measures, striking different balances between lowering energy and resource intensity, rate of decarbonization, 
and the reliance on carbon dioxide removal. Different portfolios face different implementation challenges and potential 
synergies and trade-offs with sustainable development. (high confidence) (Figure SPM.3b) {2.3.2, 2.3.4, 2.4, 2.5.3}  

C.1.2	 Modelled pathways that limit global warming to 1.5°C with no or limited overshoot involve deep reductions in emissions 
of methane and black carbon (35% or more of both by 2050 relative to 2010). These pathways also reduce most of the 
cooling aerosols, which partially offsets mitigation effects for two to three decades. Non-CO2 emissions12 can be reduced 
as a result of broad mitigation measures in the energy sector. In addition, targeted non-CO2 mitigation measures can 
reduce nitrous oxide and methane from agriculture, methane from the waste sector, some sources of black carbon, and 
hydrofluorocarbons. High bioenergy demand can increase emissions of nitrous oxide in some 1.5°C pathways, highlighting 
the importance of appropriate management approaches. Improved air quality resulting from projected reductions in many 
non-CO2 emissions provide direct and immediate population health benefits in all 1.5°C model pathways. (high confidence) 
(Figure SPM.3a) {2.2.1, 2.3.3, 2.4.4, 2.5.3, 4.3.6, 5.4.2} 

C.1.3	 Limiting global warming requires limiting the total cumulative global anthropogenic emissions of CO2 since the pre-
industrial period, that is, staying within a total carbon budget (high confidence).13 By the end of 2017, anthropogenic CO2 
emissions since the pre-industrial period are estimated to have reduced the total carbon budget for 1.5°C by approximately 
2200 ± 320 GtCO2 (medium confidence). The associated remaining budget is being depleted by current emissions of 
42 ± 3 GtCO2 per year (high confidence). The choice of the measure of global temperature affects the estimated remaining 
carbon budget. Using global mean surface air temperature, as in AR5, gives an estimate of the remaining carbon budget of 
580 GtCO2 for a 50% probability of limiting warming to 1.5°C, and 420 GtCO2 for a 66% probability (medium confidence).14 

Alternatively, using GMST gives estimates of 770 and 570 GtCO2, for 50% and 66% probabilities,15 respectively (medium 
confidence). Uncertainties in the size of these estimated remaining carbon budgets are substantial and depend on several 
factors. Uncertainties in the climate response to CO2 and non-CO2 emissions contribute ±400 GtCO2 and the level of historic 
warming contributes ±250 GtCO2 (medium confidence). Potential additional carbon release from future permafrost thawing 
and methane release from wetlands would reduce budgets by up to 100 GtCO2 over the course of this century and more 
thereafter (medium confidence). In addition, the level of non-CO2 mitigation in the future could alter the remaining carbon 
budget by 250 GtCO2 in either direction (medium confidence). {1.2.4, 2.2.2, 2.6.1, Table 2.2, Chapter 2 Supplementary 
Material}

C.1.4	 Solar radiation modification (SRM) measures are not included in any of the available assessed pathways. Although some 
SRM measures may be theoretically effective in reducing an overshoot, they face large uncertainties and knowledge gaps 
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as well as substantial risks and institutional and social constraints to deployment related to governance, ethics, and impacts 
on sustainable development. They also do not mitigate ocean acidification. (medium confidence) {4.3.8, Cross-Chapter 
Box 10 in Chapter 4}
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Emissions of non-CO2 forcers are also reduced 
or limited in pathways limiting global warming 
to 1.5°C with no or limited overshoot, but 
they do not reach zero globally. 
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Global emissions pathway characteristics

General characteristics of the evolution of anthropogenic net emissions of CO2, and total emissions of 

methane, black carbon, and nitrous oxide in model pathways that limit global warming to 1.5°C with no or 

limited overshoot. Net emissions are defined as anthropogenic emissions reduced by anthropogenic 

removals. Reductions in net emissions can be achieved through di�erent portfolios of mitigation measures 

illustrated in Figure SPM.3b.
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Four illustrative model pathways

no or limited overshoot,

In pathways limiting global warming to 1.5°C 
with no or limited overshoot as well as in 
pathways with a higher overshoot, CO2 emissions 
are reduced to net zero globally around 2050.
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Pathways with higher overshoot

Pathways limiting global warming below 2°C
(Not shown above) 
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Figure SPM.3a |	 Global emissions pathway characteristics. The main panel shows global net anthropogenic CO2 emissions in pathways limiting global warming 
to 1.5°C with no or limited (less than 0.1°C) overshoot and pathways with higher overshoot. The shaded area shows the full range for pathways analysed in this 
Report. The panels on the right show non-CO2 emissions ranges for three compounds with large historical forcing and a substantial portion of emissions coming 
from sources distinct from those central to CO2 mitigation. Shaded areas in these panels show the 5–95% (light shading) and interquartile (dark shading) ranges 
of pathways limiting global warming to 1.5°C with no or limited overshoot. Box and whiskers at the bottom of the figure show the timing of pathways reaching 
global net zero CO2 emission levels, and a comparison with pathways limiting global warming to 2°C with at least 66% probability. Four illustrative model pathways 
are highlighted in the main panel and are labelled P1, P2, P3 and P4, corresponding to the LED, S1, S2, and S5 pathways assessed in Chapter 2. Descriptions and 
characteristics of these pathways are available in Figure SPM.3b. {2.1, 2.2, 2.3, Figure 2.5, Figure 2.10, Figure 2.11}
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Breakdown of contributions to global net CO2 emissions in four illustrative model pathways 

P1:  A scenario in which social, 

business and technological innovations 

result in lower energy demand up to 

2050 while living standards rise, 

especially in the global South. A 

downsized energy system enables 

rapid decarbonization of energy supply. 

Afforestation is the only CDR option 

considered; neither fossil fuels with CCS 

nor BECCS are used.

P2:  A scenario with a broad focus on 

sustainability including energy 

intensity, human development, 

economic convergence and 

international cooperation, as well as 

shi�s towards sustainable and healthy 

consumption patterns, low-carbon 

technology innovation, and 

well-managed land systems with 

limited societal acceptability for BECCS.

P3:  A middle-of-the-road scenario in

which societal as well as technological 

development follows historical 

patterns. Emissions reductions are 

mainly achieved by changing the way in 

which energy and products are 

produced, and to a lesser degree by 

reductions in demand.

P4:  A resource- and energy-intensive 

scenario in which economic growth and 

globalization lead to widespread 

adoption of greenhouse-gas-intensive 

lifestyles, including high demand for 

transportation fuels and livestock 

products. Emissions reductions are 

mainly achieved through technological 

means, making strong use of CDR 

through the deployment of BECCS.
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Characteristics of four illustrative model pathways

Different mitigation strategies can achieve the net emissions reductions that would be required to follow a 

pathway that limits global warming to 1.5°C with no or limited overshoot. All pathways use Carbon Dioxide 

Removal (CDR), but the amount varies across pathways, as do the relative contributions of Bioenergy with 

Carbon Capture and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use (AFOLU) 

sector. This has implications for emissions and several other pathway characteristics.

P1 P2 P3 P4

P1 P2 P3 P4 Interquartile range

Billion tonnes CO₂ per year (GtCO2/yr)

Global indicators

Billion tonnes CO₂ per year (GtCO2/yr) Billion tonnes CO₂ per year (GtCO2/yr) Billion tonnes CO₂ per year (GtCO2/yr)

NOTE: Indicators have been selected to show global trends identified by the Chapter 2 assessment. 
National and sectoral characteristics can differ substantially from the global trends shown above.

* Kyoto-gas emissions are based on IPCC Second Assessment Report GWP-100
** Changes in energy demand are associated with improvements in energy 
efficiency and behaviour change
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Figure SPM.3b |	 Characteristics of four illustrative model pathways in relation to global warming of 1.5°C introduced in Figure SPM.3a. These pathways were 
selected to show a range of potential mitigation approaches and vary widely in their projected energy and land use, as well as their assumptions about future 
socio-economic developments, including economic and population growth, equity and sustainability. A breakdown of the global net anthropogenic CO2 emissions 
into the contributions in terms of CO2 emissions from fossil fuel and industry; agriculture, forestry and other land use (AFOLU); and bioenergy with carbon capture 
and storage (BECCS) is shown. AFOLU estimates reported here are not necessarily comparable with countries’ estimates. Further characteristics for each of these 
pathways are listed below each pathway. These pathways illustrate relative global differences in mitigation strategies, but do not represent central estimates, 
national strategies, and do not indicate requirements. For comparison, the right-most column shows the interquartile ranges across pathways with no or limited 
overshoot of 1.5°C. Pathways P1, P2, P3 and P4 correspond to the LED, S1, S2 and S5 pathways assessed in Chapter 2 (Figure SPM.3a). {2.2.1, 2.3.1, 2.3.2, 
2.3.3, 2.3.4, 2.4.1, 2.4.2, 2.4.4, 2.5.3, Figure 2.5, Figure 2.6, Figure 2.9, Figure 2.10, Figure 2.11, Figure 2.14, Figure 2.15, Figure 2.16, Figure 2.17, Figure 2.24, 
Figure 2.25, Table 2.4, Table 2.6, Table 2.7, Table 2.9, Table 4.1} 

C.2 	 Pathways limiting global warming to 1.5°C with no or limited overshoot would require rapid 
and far-reaching transitions in energy, land, urban and infrastructure (including transport and 
buildings), and industrial systems (high confidence). These systems transitions are unprecedented 
in terms of scale, but not necessarily in terms of speed, and imply deep emissions reductions in all 
sectors, a wide portfolio of mitigation options and a significant upscaling of investments in those 
options (medium confidence). {2.3, 2.4, 2.5, 4.2, 4.3, 4.4, 4.5}

C.2.1	 Pathways that limit global warming to 1.5°C with no or limited overshoot show system changes that are more rapid and 
pronounced over the next two decades than in 2°C pathways (high confidence). The rates of system changes associated 
with limiting global warming to 1.5°C with no or limited overshoot have occurred in the past within specific sectors, 
technologies and spatial contexts, but there is no documented historic precedent for their scale (medium confidence). 
{2.3.3, 2.3.4, 2.4, 2.5, 4.2.1, 4.2.2, Cross-Chapter Box 11 in Chapter 4} 

C.2.2	 In energy systems, modelled global pathways (considered in the literature) limiting global warming to 1.5°C with no or 
limited overshoot (for more details see Figure SPM.3b) generally meet energy service demand with lower energy use, 
including through enhanced energy efficiency, and show faster electrification of energy end use compared to 2°C (high 
confidence). In 1.5°C pathways with no or limited overshoot, low-emission energy sources are projected to have a higher 
share, compared with 2°C pathways, particularly before 2050 (high confidence). In 1.5°C pathways with no or limited 
overshoot, renewables are projected to supply 70–85% (interquartile range) of electricity in 2050 (high confidence). In 
electricity generation, shares of nuclear and fossil fuels with carbon dioxide capture and storage (CCS) are modelled to 
increase in most 1.5°C pathways with no or limited overshoot. In modelled 1.5°C pathways with limited or no overshoot, 
the use of CCS would allow the electricity generation share of gas to be approximately 8% (3–11% interquartile range) 
of global electricity in 2050, while the use of coal shows a steep reduction in all pathways and would be reduced to close 
to 0% (0–2% interquartile range) of electricity (high confidence). While acknowledging the challenges, and differences 
between the options and national circumstances, political, economic, social and technical feasibility of solar energy, wind 
energy and electricity storage technologies have substantially improved over the past few years (high confidence). These 
improvements signal a potential system transition in electricity generation. (Figure SPM.3b) {2.4.1, 2.4.2, Figure 2.1, Table 
2.6, Table 2.7, Cross-Chapter Box 6 in Chapter 3, 4.2.1, 4.3.1, 4.3.3, 4.5.2}

C.2.3	 CO2 emissions from industry in pathways limiting global warming to 1.5°C with no or limited overshoot are projected to 
be about 65–90% (interquartile range) lower in 2050 relative to 2010, as compared to 50–80% for global warming of 
2°C (medium confidence). Such reductions can be achieved through combinations of new and existing technologies and 
practices, including electrification, hydrogen, sustainable bio-based feedstocks, product substitution, and carbon capture, 
utilization and storage (CCUS). These options are technically proven at various scales but their large-scale deployment 
may be limited by economic, financial, human capacity and institutional constraints in specific contexts, and specific 
characteristics of large-scale industrial installations. In industry, emissions reductions by energy and process efficiency 
by themselves are insufficient for limiting warming to 1.5°C with no or limited overshoot (high confidence). {2.4.3, 4.2.1, 
Table 4.1, Table 4.3, 4.3.3, 4.3.4, 4.5.2}

C.2.4	 The urban and infrastructure system transition consistent with limiting global warming to 1.5°C with no or limited overshoot 
would imply, for example, changes in land and urban planning practices, as well as deeper emissions reductions in transport 
and buildings compared to pathways that limit global warming below 2°C (medium confidence). Technical measures 
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and practices enabling deep emissions reductions include various energy efficiency options. In pathways limiting global 
warming to 1.5°C with no or limited overshoot, the electricity share of energy demand in buildings would be about 55–75% 
in 2050 compared to 50–70% in 2050 for 2°C global warming (medium confidence). In the transport sector, the share of 
low-emission final energy would rise from less than 5% in 2020 to about 35–65% in 2050 compared to 25–45% for 2°C 
of global warming (medium confidence). Economic, institutional and socio-cultural barriers may inhibit these urban and 
infrastructure system transitions, depending on national, regional and local circumstances, capabilities and the availability 
of capital (high confidence). {2.3.4, 2.4.3, 4.2.1, Table 4.1, 4.3.3, 4.5.2}

C.2.5	 Transitions in global and regional land use are found in all pathways limiting global warming to 1.5°C with no or limited 
overshoot, but their scale depends on the pursued mitigation portfolio. Model pathways that limit global warming to 1.5°C 
with no or limited overshoot project a 4 million km2 reduction to a 2.5 million km2 increase of non-pasture agricultural land 
for food and feed crops and a 0.5–11 million km2 reduction of pasture land, to be converted into a 0–6 million km2 increase 
of agricultural land for energy crops and a 2 million km2 reduction to 9.5 million km2 increase in forests by 2050 relative 
to 2010 (medium confidence).16 Land-use transitions of similar magnitude can be observed in modelled 2°C pathways 
(medium confidence). Such large transitions pose profound challenges for sustainable management of the various demands 
on land for human settlements, food, livestock feed, fibre, bioenergy, carbon storage, biodiversity and other ecosystem 
services (high confidence). Mitigation options limiting the demand for land include sustainable intensification of land-use 
practices, ecosystem restoration and changes towards less resource-intensive diets (high confidence). The implementation 
of land-based mitigation options would require overcoming socio-economic, institutional, technological, financing and 
environmental barriers that differ across regions (high confidence). {2.4.4, Figure 2.24, 4.3.2, 4.3.7, 4.5.2, Cross-Chapter 
Box 7 in Chapter 3}

C.2.6	 Additional annual average energy-related investments for the period 2016 to 2050 in pathways limiting warming to 
1.5°C compared to pathways without new climate policies beyond those in place today are estimated to be around 830 
billion USD2010 (range of 150 billion to 1700 billion USD2010 across six models17). This compares to total annual average 
energy supply investments in 1.5°C pathways of 1460 to 3510 billion USD2010 and total annual average energy demand 
investments of 640 to 910 billion USD2010 for the period 2016 to 2050. Total energy-related investments increase by 
about 12% (range of 3% to 24%) in 1.5°C pathways relative to 2°C pathways. Annual investments in low-carbon energy 
technologies and energy efficiency are upscaled by roughly a factor of six (range of factor of 4 to 10) by 2050 compared to 
2015 (medium confidence). {2.5.2, Box 4.8, Figure 2.27}

C.2.7	 Modelled pathways limiting global warming to 1.5°C with no or limited overshoot project a wide range of global average 
discounted marginal abatement costs over the 21st century. They are roughly 3-4 times higher than in pathways limiting 
global warming to below 2°C (high confidence). The economic literature distinguishes marginal abatement costs from total 
mitigation costs in the economy. The literature on total mitigation costs of 1.5°C mitigation pathways is limited and was 
not assessed in this Report. Knowledge gaps remain in the integrated assessment of the economy-wide costs and benefits 
of mitigation in line with pathways limiting warming to 1.5°C. {2.5.2; 2.6; Figure 2.26}

16	The projected land-use changes presented are not deployed to their upper limits simultaneously in a single pathway.

17	Including two pathways limiting warming to 1.5°C with no or limited overshoot and four pathways with higher overshoot.
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C.3 	 All pathways that limit global warming to 1.5°C with limited or no overshoot project the use of 
carbon dioxide removal (CDR) on the order of 100–1000 GtCO2 over the 21st century. CDR would 
be used to compensate for residual emissions and, in most cases, achieve net negative emissions 
to return global warming to 1.5°C following a peak (high confidence). CDR deployment of several 
hundreds of GtCO2 is subject to multiple feasibility and sustainability constraints (high confidence). 
Significant near-term emissions reductions and measures to lower energy and land demand can 
limit CDR deployment to a few hundred GtCO2 without reliance on bioenergy with carbon capture 
and storage (BECCS) (high confidence). {2.3, 2.4, 3.6.2, 4.3, 5.4}  

C.3.1	 Existing and potential CDR measures include afforestation and reforestation, land restoration and soil carbon sequestration, 
BECCS, direct air carbon capture and storage (DACCS), enhanced weathering and ocean alkalinization. These differ widely 
in terms of maturity, potentials, costs, risks, co-benefits and trade-offs (high confidence). To date, only a few published 
pathways include CDR measures other than afforestation and BECCS. {2.3.4, 3.6.2, 4.3.2, 4.3.7}

C.3.2	 In pathways limiting global warming to 1.5°C with limited or no overshoot, BECCS deployment is projected to range from 
0–1, 0–8, and 0–16 GtCO2 yr−1 in 2030, 2050, and 2100, respectively, while agriculture, forestry and land-use (AFOLU) 
related CDR measures are projected to remove 0–5, 1–11, and 1–5 GtCO2 yr−1 in these years (medium confidence). The 
upper end of these deployment ranges by mid-century exceeds the BECCS potential of up to 5 GtCO2 yr−1 and afforestation 
potential of up to 3.6 GtCO2 yr−1 assessed based on recent literature (medium confidence). Some pathways avoid BECCS 
deployment completely through demand-side measures and greater reliance on AFOLU-related CDR measures (medium 
confidence). The use of bioenergy can be as high or even higher when BECCS is excluded compared to when it is included 
due to its potential for replacing fossil fuels across sectors (high confidence). (Figure SPM.3b) {2.3.3, 2.3.4, 2.4.2, 3.6.2, 
4.3.1, 4.2.3, 4.3.2, 4.3.7, 4.4.3, Table 2.4}

C.3.3	 Pathways that overshoot 1.5°C of global warming rely on CDR exceeding residual CO2 emissions later in the century to 
return to below 1.5°C by 2100, with larger overshoots requiring greater amounts of CDR (Figure SPM.3b) (high confidence). 
Limitations on the speed, scale, and societal acceptability of CDR deployment hence determine the ability to return global 
warming to below 1.5°C following an overshoot. Carbon cycle and climate system understanding is still limited about the 
effectiveness of net negative emissions to reduce temperatures after they peak (high confidence). {2.2, 2.3.4, 2.3.5, 2.6, 
4.3.7, 4.5.2, Table 4.11}

C.3.4	 Most current and potential CDR measures could have significant impacts on land, energy, water or nutrients if deployed 
at large scale (high confidence). Afforestation and bioenergy may compete with other land uses and may have significant 
impacts on agricultural and food systems, biodiversity, and other ecosystem functions and services (high confidence). 
Effective governance is needed to limit such trade-offs and ensure permanence of carbon removal in terrestrial, geological 
and ocean reservoirs (high confidence). Feasibility and sustainability of CDR use could be enhanced by a portfolio of options 
deployed at substantial, but lesser scales, rather than a single option at very large scale (high confidence). (Figure SPM.3b) 
{2.3.4, 2.4.4, 2.5.3, 2.6, 3.6.2, 4.3.2, 4.3.7, 4.5.2, 5.4.1, 5.4.2; Cross-Chapter Boxes 7 and 8 in Chapter 3, Table 4.11, Table 
5.3, Figure 5.3}

C.3.5	 Some AFOLU-related CDR measures such as restoration of natural ecosystems and soil carbon sequestration could provide 
co-benefits such as improved biodiversity, soil quality, and local food security. If deployed at large scale, they would 
require governance systems enabling sustainable land management to conserve and protect land carbon stocks and other 
ecosystem functions and services (medium confidence). (Figure SPM.4) {2.3.3, 2.3.4, 2.4.2, 2.4.4, 3.6.2, 5.4.1, Cross-Chapter 
Boxes 3 in Chapter 1 and 7 in Chapter 3, 4.3.2, 4.3.7, 4.4.1, 4.5.2, Table 2.4}
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D.	 Strengthening the Global Response in the Context of Sustainable 
Development and Efforts to Eradicate Poverty

D.1	 Estimates of the global emissions outcome of current nationally stated mitigation ambitions as 
submitted under the Paris Agreement would lead to global greenhouse gas emissions18 in 2030 
of 52–58 GtCO2eq yr−1 (medium confidence). Pathways reflecting these ambitions would not limit 
global warming to 1.5°C, even if supplemented by very challenging increases in the scale and 
ambition of emissions reductions after 2030 (high confidence). Avoiding overshoot and reliance 
on future large-scale deployment of carbon dioxide removal (CDR) can only be achieved if global 
CO2 emissions start to decline well before 2030 (high confidence). {1.2, 2.3, 3.3, 3.4, 4.2, 4.4, Cross-
Chapter Box 11 in Chapter 4} 

D.1.1	 Pathways that limit global warming to 1.5°C with no or limited overshoot show clear emission reductions by 2030 (high 
confidence). All but one show a decline in global greenhouse gas emissions to below 35 GtCO2eq yr−1 in 2030, and half of 
available pathways fall within the 25–30 GtCO2eq yr−1 range (interquartile range), a 40–50% reduction from 2010 levels 
(high confidence). Pathways reflecting current nationally stated mitigation ambition until 2030 are broadly consistent 
with cost-effective pathways that result in a global warming of about 3°C by 2100, with warming continuing afterwards 
(medium confidence). {2.3.3, 2.3.5, Cross-Chapter Box 11 in Chapter 4, 5.5.3.2}

D.1.2	 Overshoot trajectories result in higher impacts and associated challenges compared to pathways that limit global warming 
to 1.5°C with no or limited overshoot (high confidence). Reversing warming after an overshoot of 0.2°C or larger during 
this century would require upscaling and deployment of CDR at rates and volumes that might not be achievable given 
considerable implementation challenges (medium confidence). {1.3.3, 2.3.4, 2.3.5, 2.5.1, 3.3, 4.3.7, Cross-Chapter Box 8 in 
Chapter 3, Cross-Chapter Box 11 in Chapter 4}

D.1.3	 The lower the emissions in 2030, the lower the challenge in limiting global warming to 1.5°C after 2030 with no or limited 
overshoot (high confidence). The challenges from delayed actions to reduce greenhouse gas emissions include the risk of 
cost escalation, lock-in in carbon-emitting infrastructure, stranded assets, and reduced flexibility in future response options 
in the medium to long term (high confidence). These may increase uneven distributional impacts between countries at 
different stages of development (medium confidence). {2.3.5, 4.4.5, 5.4.2}

D.2	 The avoided climate change impacts on sustainable development, eradication of poverty and reducing 
inequalities would be greater if global warming were limited to 1.5°C rather than 2°C, if mitigation 
and adaptation synergies are maximized while trade-offs are minimized (high confidence). {1.1, 1.4, 
2.5, 3.3, 3.4, 5.2, Table 5.1}

D.2.1	 Climate change impacts and responses are closely linked to sustainable development which balances social well-being, 
economic prosperity and environmental protection. The United Nations Sustainable Development Goals (SDGs), adopted in 
2015, provide an established framework for assessing the links between global warming of 1.5°C or 2°C and development 
goals that include poverty eradication, reducing inequalities, and climate action. (high confidence) {Cross-Chapter Box 4 in 
Chapter 1, 1.4, 5.1}

D.2.2	 The consideration of ethics and equity can help address the uneven distribution of adverse impacts associated with 
1.5°C and higher levels of global warming, as well as those from mitigation and adaptation, particularly for poor and 
disadvantaged populations, in all societies (high confidence). {1.1.1, 1.1.2, 1.4.3, 2.5.3, 3.4.10, 5.1, 5.2, 5.3. 5.4, Cross-
Chapter Box 4 in Chapter 1, Cross-Chapter Boxes 6 and 8 in Chapter 3, and Cross-Chapter Box 12 in Chapter 5}

D.2.3	 Mitigation and adaptation consistent with limiting global warming to 1.5°C are underpinned by enabling conditions, assessed 
in this Report across the geophysical, environmental-ecological, technological, economic, socio-cultural and institutional 

18	GHG emissions have been aggregated with 100-year GWP values as introduced in the IPCC Second Assessment Report.
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dimensions of feasibility. Strengthened multilevel governance, institutional capacity, policy instruments, technological 
innovation and transfer and mobilization of finance, and changes in human behaviour and lifestyles are enabling conditions 
that enhance the feasibility of mitigation and adaptation options for 1.5°C-consistent systems transitions. (high confidence) 
{1.4, Cross-Chapter Box 3 in Chapter 1, 2.5.1, 4.4, 4.5, 5.6}

D.3	 Adaptation options specific to national contexts, if carefully selected together with enabling 
conditions, will have benefits for sustainable development and poverty reduction with global 
warming of 1.5°C, although trade-offs are possible (high confidence). {1.4, 4.3, 4.5}

D.3.1	 Adaptation options that reduce the vulnerability of human and natural systems have many synergies with sustainable 
development, if well managed, such as ensuring food and water security, reducing disaster risks, improving health 
conditions, maintaining ecosystem services and reducing poverty and inequality (high confidence). Increasing investment 
in physical and social infrastructure is a key enabling condition to enhance the resilience and the adaptive capacities 
of societies. These benefits can occur in most regions with adaptation to 1.5°C of global warming (high confidence). 
{1.4.3, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.4.1, 4.4.3, 4.5.3, 5.3.1, 5.3.2}

D.3.2	 Adaptation to 1.5°C global warming can also result in trade-offs or maladaptations with adverse impacts for sustainable 
development. For example, if poorly designed or implemented, adaptation projects in a range of sectors can increase 
greenhouse gas emissions and water use, increase gender and social inequality, undermine health conditions, and encroach 
on natural ecosystems (high confidence). These trade-offs can be reduced by adaptations that include attention to poverty 
and sustainable development (high confidence). {4.3.2, 4.3.3, 4.5.4, 5.3.2; Cross-Chapter Boxes 6 and 7 in Chapter 3} 

D.3.3	 A mix of adaptation and mitigation options to limit global warming to 1.5°C, implemented in a participatory and integrated 
manner, can enable rapid, systemic transitions in urban and rural areas (high confidence). These are most effective when 
aligned with economic and sustainable development, and when local and regional governments and decision makers are 
supported by national governments (medium confidence). {4.3.2, 4.3.3, 4.4.1, 4.4.2}

D.3.4	 Adaptation options that also mitigate emissions can provide synergies and cost savings in most sectors and system 
transitions, such as when land management reduces emissions and disaster risk, or when low-carbon buildings are also 
designed for efficient cooling. Trade-offs between mitigation and adaptation, when limiting global warming to 1.5°C, 
such as when bioenergy crops, reforestation or afforestation encroach on land needed for agricultural adaptation, can 
undermine food security, livelihoods, ecosystem functions and services and other aspects of sustainable development. (high 
confidence) {3.4.3, 4.3.2, 4.3.4, 4.4.1, 4.5.2, 4.5.3, 4.5.4}

D.4	 Mitigation options consistent with 1.5°C pathways are associated with multiple synergies and trade-
offs across the Sustainable Development Goals (SDGs). While the total number of possible synergies 
exceeds the number of trade-offs, their net effect will depend on the pace and magnitude of changes, 
the composition of the mitigation portfolio and the management of the transition. (high confidence) 
(Figure SPM.4) {2.5, 4.5, 5.4} 

D.4.1	 1.5°C pathways have robust synergies particularly for the SDGs 3 (health), 7 (clean energy), 11 (cities and communities), 12 
(responsible consumption and production) and 14 (oceans) (very high confidence). Some 1.5°C pathways show potential 
trade-offs with mitigation for SDGs 1 (poverty), 2 (hunger), 6 (water) and 7 (energy access), if not managed carefully (high 
confidence). (Figure SPM.4) {5.4.2; Figure 5.4, Cross-Chapter Boxes 7 and 8 in Chapter 3}  

D.4.2	 1.5°C pathways that include low energy demand (e.g., see P1 in Figure SPM.3a and SPM.3b), low material consumption, 
and low GHG-intensive food consumption have the most pronounced synergies and the lowest number of trade-offs with 
respect to sustainable development and the SDGs (high confidence). Such pathways would reduce dependence on CDR. In 
modelled pathways, sustainable development, eradicating poverty and reducing inequality can support limiting warming to 
1.5°C (high confidence). (Figure SPM.3b, Figure SPM.4) {2.4.3, 2.5.1, 2.5.3, Figure 2.4, Figure 2.28, 5.4.1, 5.4.2, Figure 5.4} 
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Indicative linkages between mitigation options and sustainable 
development using SDGs (The linkages do not show costs and benefits)

Mitigation options deployed in each sector can be associated with potential positive effects (synergies) or 
negative effects (trade-offs) with the Sustainable Development Goals (SDGs). The degree to which this 
potential is realized will depend on the selected portfolio of mitigation options, mitigation policy design, 
and local circumstances and context. Particularly in the energy-demand sector, the potential for synergies is 
larger than for trade-offs. The bars group individually assessed options by level of confidence and take into 
account the relative strength of the assessed mitigation-SDG connections.

The overall size of the coloured bars depict the relative 

potential for synergies and trade-offs between the sectoral 

mitigation options and the SDGs.

Length shows strength of connection

Energy Supply Land
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D.4.3	 1.5°C and 2°C modelled pathways often rely on the deployment of large-scale land-related measures like afforestation 
and bioenergy supply, which, if poorly managed, can compete with food production and hence raise food security concerns 
(high confidence). The impacts of carbon dioxide removal (CDR) options on SDGs depend on the type of options and the 
scale of deployment (high confidence). If poorly implemented, CDR options such as BECCS and AFOLU options would lead 
to trade-offs. Context-relevant design and implementation requires considering people’s needs, biodiversity, and other 
sustainable development dimensions (very high confidence). (Figure SPM.4) {5.4.1.3, Cross-Chapter Box 7 in Chapter 3} 

D.4.4	 Mitigation consistent with 1.5°C pathways creates risks for sustainable development in regions with high dependency on 
fossil fuels for revenue and employment generation (high confidence). Policies that promote diversification of the economy 
and the energy sector can address the associated challenges (high confidence). {5.4.1.2, Box 5.2} 

D.4.5	 Redistributive policies across sectors and populations that shield the poor and vulnerable can resolve trade-offs for a range 
of SDGs, particularly hunger, poverty and energy access. Investment needs for such complementary policies are only a small 
fraction of the overall mitigation investments in 1.5°C pathways. (high confidence) {2.4.3, 5.4.2, Figure 5.5} 

D.5	 Limiting the risks from global warming of 1.5°C in the context of sustainable development and 
poverty eradication implies system transitions that can be enabled by an increase of adaptation 
and mitigation investments, policy instruments, the acceleration of technological innovation and 
behaviour changes (high confidence). {2.3, 2.4, 2.5, 3.2, 4.2, 4.4, 4.5, 5.2, 5.5, 5.6}

D.5.1	 Directing finance towards investment in infrastructure for mitigation and adaptation could provide additional resources.  
This could involve the mobilization of private funds by institutional investors, asset managers and development or 
investment banks, as well as the provision of public funds. Government policies that lower the risk of low-emission and 
adaptation investments can facilitate the mobilization of private funds and enhance the effectiveness of other public 
policies. Studies indicate a number of challenges, including access to finance and mobilization of funds. (high confidence) 
{2.5.1, 2.5.2, 4.4.5} 

D.5.2	 Adaptation finance consistent with global warming of 1.5°C is difficult to quantify and compare with 2°C. Knowledge 
gaps include insufficient data to calculate specific climate resilience-enhancing investments from the provision of currently 
underinvested basic infrastructure. Estimates of the costs of adaptation might be lower at global warming of 1.5°C than for 
2°C. Adaptation needs have typically been supported by public sector sources such as national and subnational government 
budgets, and in developing countries together with support from development assistance, multilateral development banks, 
and United Nations Framework Convention on Climate Change channels (medium confidence). More recently there is a 

Figure SPM.4 |	 Potential synergies and trade-offs between the sectoral portfolio of climate change mitigation options and the Sustainable Development Goals 
(SDGs). The SDGs serve as an analytical framework for the assessment of the different sustainable development dimensions, which extend beyond the time frame 
of the 2030 SDG targets. The assessment is based on literature on mitigation options that are considered relevant for 1.5°C. The assessed strength of the SDG 
interactions is based on the qualitative and quantitative assessment of individual mitigation options listed in Table 5.2. For each mitigation option, the strength of 
the SDG-connection as well as the associated confidence of the underlying literature (shades of green and red) was assessed. The strength of positive connections 
(synergies) and negative connections (trade-offs) across all individual options within a sector (see Table 5.2) are aggregated into sectoral potentials for the whole 
mitigation portfolio. The (white) areas outside the bars, which indicate no interactions, have low confidence due to the uncertainty and limited number of studies 
exploring indirect effects. The strength of the connection considers only the effect of mitigation and does not include benefits of avoided impacts. SDG 13 (climate 
action) is not listed because mitigation is being considered in terms of interactions with SDGs and not vice versa. The bars denote the strength of the connection, 
and do not consider the strength of the impact on the SDGs. The energy demand sector comprises behavioural responses, fuel switching and efficiency options in 
the transport, industry and building sector as well as carbon capture options in the industry sector. Options assessed in the energy supply sector comprise biomass 
and non-biomass renewables, nuclear, carbon capture and storage (CCS) with bioenergy, and CCS with fossil fuels. Options in the land sector comprise agricultural 
and forest options, sustainable diets and reduced food waste, soil sequestration, livestock and manure management, reduced deforestation, afforestation and 
reforestation, and responsible sourcing. In addition to this figure, options in the ocean sector are discussed in the underlying report. {5.4, Table 5.2, Figure 5.2}

Information about the net impacts of mitigation on sustainable development in 1.5°C pathways is available only for a limited number of SDGs and mitigation 
options. Only a limited number of studies have assessed the benefits of avoided climate change impacts of 1.5°C pathways for the SDGs, and the co-effects 
of adaptation for mitigation and the SDGs. The assessment of the indicative mitigation potentials in Figure SPM.4 is a step further from AR5 towards a more 
comprehensive and integrated assessment in the future.
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growing understanding of the scale and increase in non-governmental organizations and private funding in some regions 
(medium confidence). Barriers include the scale of adaptation financing, limited capacity and access to adaptation finance 
(medium confidence). {4.4.5, 4.6} 

D.5.3	 Global model pathways limiting global warming to 1.5°C are projected to involve the annual average investment needs 
in the energy system of around 2.4 trillion USD2010 between 2016 and 2035, representing about 2.5% of the world GDP 
(medium confidence). {4.4.5, Box 4.8}

D.5.4	 Policy tools can help mobilize incremental resources, including through shifting global investments and savings and 
through market and non-market based instruments as well as accompanying measures to secure the equity of the 
transition, acknowledging the challenges related with implementation, including those of energy costs, depreciation of 
assets and impacts on international competition, and utilizing the opportunities to maximize co-benefits (high confidence). 
{1.3.3, 2.3.4, 2.3.5, 2.5.1, 2.5.2, Cross-Chapter Box 8 in Chapter 3, Cross-Chapter Box 11 in Chapter 4, 4.4.5, 5.5.2}

D.5.5	 The systems transitions consistent with adapting to and limiting global warming to 1.5°C include the widespread adoption 
of new and possibly disruptive technologies and practices and enhanced climate-driven innovation. These imply enhanced 
technological innovation capabilities, including in industry and finance. Both national innovation policies and international 
cooperation can contribute to the development, commercialization and widespread adoption of mitigation and adaptation 
technologies. Innovation policies may be more effective when they combine public support for research and development 
with policy mixes that provide incentives for technology diffusion. (high confidence) {4.4.4, 4.4.5}.  

D.5.6	 Education, information, and community approaches, including those that are informed by indigenous knowledge and local 
knowledge, can accelerate the wide-scale behaviour changes consistent with adapting to and limiting global warming to 
1.5°C. These approaches are more effective when combined with other policies and tailored to the motivations, capabilities 
and resources of specific actors and contexts (high confidence). Public acceptability can enable or inhibit the implementation 
of policies and measures to limit global warming to 1.5°C and to adapt to the consequences. Public acceptability depends 
on the individual’s evaluation of expected policy consequences, the perceived fairness of the distribution of these 
consequences, and perceived fairness of decision procedures (high confidence). {1.1, 1.5, 4.3.5, 4.4.1, 4.4.3, Box 4.3, 5.5.3, 
5.6.5} 

D.6	 Sustainable development supports, and often enables, the fundamental societal and systems 
transitions and transformations that help limit global warming to 1.5°C. Such changes facilitate the 
pursuit of climate-resilient development pathways that achieve ambitious mitigation and adaptation 
in conjunction with poverty eradication and efforts to reduce inequalities (high confidence). {Box 1.1, 
1.4.3, Figure 5.1, 5.5.3, Box 5.3} 

D.6.1	 Social justice and equity are core aspects of climate-resilient development pathways that aim to limit global warming to 
1.5°C as they address challenges and inevitable trade-offs, widen opportunities, and ensure that options, visions, and values 
are deliberated, between and within countries and communities, without making the poor and disadvantaged worse off 
(high confidence). {5.5.2, 5.5.3, Box 5.3, Figure 5.1, Figure 5.6, Cross-Chapter Boxes 12 and 13 in Chapter 5}

D.6.2	 The potential for climate-resilient development pathways differs between and within regions and nations, due to different 
development contexts and systemic vulnerabilities (very high confidence). Efforts along such pathways to date have been 
limited (medium confidence) and enhanced efforts would involve strengthened and timely action from all countries and 
non-state actors (high confidence). {5.5.1, 5.5.3, Figure 5.1}

D.6.3	 Pathways that are consistent with sustainable development show fewer mitigation and adaptation challenges and are 
associated with lower mitigation costs. The large majority of modelling studies could not construct pathways characterized 
by lack of international cooperation, inequality and poverty that were able to limit global warming to 1.5°C. (high 
confidence) {2.3.1, 2.5.1, 2.5.3, 5.5.2}
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D.7	 Strengthening the capacities for climate action of national and sub-national authorities, civil society, 
the private sector, indigenous peoples and local communities can support the implementation of 
ambitious actions implied by limiting global warming to 1.5°C (high confidence). International 
cooperation can provide an enabling environment for this to be achieved in all countries and for all 
people, in the context of sustainable development. International cooperation is a critical enabler for 
developing countries and vulnerable regions (high confidence). {1.4, 2.3, 2.5, 4.2, 4.4, 4.5, 5.3, 5.4, 5.5, 
5.6, 5, Box 4.1, Box 4.2, Box 4.7, Box 5.3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 13 in 
Chapter 5}

D.7.1	 Partnerships involving non-state public and private actors, institutional investors, the banking system, civil society and 
scientific institutions would facilitate actions and responses consistent with limiting global warming to 1.5°C (very high 
confidence). {1.4, 4.4.1, 4.2.2, 4.4.3, 4.4.5, 4.5.3, 5.4.1, 5.6.2, Box 5.3}.

D.7.2	 Cooperation on strengthened accountable multilevel governance that includes non-state actors such as industry, civil 
society and scientific institutions, coordinated sectoral and cross-sectoral policies at various governance levels, gender-
sensitive policies, finance including innovative financing, and cooperation on technology development and transfer can 
ensure participation, transparency, capacity building and learning among different players (high confidence). {2.5.1, 2.5.2, 
4.2.2, 4.4.1, 4.4.2, 4.4.3, 4.4.4, 4.4.5, 4.5.3, Cross-Chapter Box 9 in Chapter 4, 5.3.1, 5.5.3, Cross-Chapter Box 13 in Chapter 
5, 5.6.1, 5.6.3}

D.7.3	 International cooperation is a critical enabler for developing countries and vulnerable regions to strengthen their action for 
the implementation of 1.5°C-consistent climate responses, including through enhancing access to finance and technology 
and enhancing domestic capacities, taking into account national and local circumstances and needs (high confidence). 
{2.3.1, 2.5.1, 4.4.1, 4.4.2, 4.4.4, 4.4.5, 5.4.1 5.5.3, 5.6.1, Box 4.1, Box 4.2, Box 4.7}.

D.7.4	 Collective efforts at all levels, in ways that reflect different circumstances and capabilities, in the pursuit of limiting global 
warming to 1.5°C, taking into account equity as well as effectiveness, can facilitate strengthening the global response to 
climate change, achieving sustainable development and eradicating poverty (high confidence). {1.4.2, 2.3.1, 2.5.1, 2.5.2, 
2.5.3, 4.2.2, 4.4.1, 4.4.2, 4.4.3, 4.4.4, 4.4.5, 4.5.3, 5.3.1, 5.4.1, 5.5.3, 5.6.1, 5.6.2, 5.6.3}
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Box SPM.1: Core Concepts Central to this Special Report 

Global mean surface temperature (GMST): Estimated global average of near-surface air temperatures over land and 
sea ice, and sea surface temperatures over ice-free ocean regions, with changes normally expressed as departures from a 
value over a specified reference period. When estimating changes in GMST, near-surface air temperature over both land 
and oceans are also used.19 {1.2.1.1} 

Pre-industrial: The multi-century period prior to the onset of large-scale industrial activity around 1750. The reference 
period 1850–1900 is used to approximate pre-industrial GMST. {1.2.1.2} 

Global warming: The estimated increase in GMST averaged over a 30-year period, or the 30-year period centred on a 
particular year or decade, expressed relative to pre-industrial levels unless otherwise specified. For 30-year periods that 
span past and future years, the current multi-decadal warming trend is assumed to continue. {1.2.1}

Net zero CO2 emissions: Net zero carbon dioxide (CO2) emissions are achieved when anthropogenic CO2 emissions are 
balanced globally by anthropogenic CO2 removals over a specified period. 

Carbon dioxide removal (CDR): Anthropogenic activities removing CO2 from the atmosphere and durably storing it in 
geological, terrestrial, or ocean reservoirs, or in products. It includes existing and potential anthropogenic enhancement of 
biological or geochemical sinks and direct air capture and storage, but excludes natural CO2 uptake not directly caused by 
human activities.

Total carbon budget: Estimated cumulative net global anthropogenic CO2 emissions from the pre-industrial period 
to the time that anthropogenic CO2 emissions reach net zero that would result, at some probability, in limiting global 
warming to a given level, accounting for the impact of other anthropogenic emissions. {2.2.2} 

Remaining carbon budget: Estimated cumulative net global anthropogenic CO2 emissions from a given start date to the 
time that anthropogenic CO2 emissions reach net zero that would result, at some probability, in limiting global warming 
to a given level, accounting for the impact of other anthropogenic emissions. {2.2.2}

Temperature overshoot: The temporary exceedance of a specified level of global warming. 

Emission pathways: In this Summary for Policymakers, the modelled trajectories of global anthropogenic emissions over 
the 21st century are termed emission pathways. Emission pathways are classified by their temperature trajectory over 
the 21st century: pathways giving at least 50% probability based on current knowledge of limiting global warming to 
below 1.5°C are classified as ‘no overshoot’; those limiting warming to below 1.6°C and returning to 1.5°C by 2100 are 
classified as ‘1.5°C limited-overshoot’; while those exceeding 1.6°C but still returning to 1.5°C by 2100 are classified as 
‘higher-overshoot’.

Impacts: Effects of climate change on human and natural systems. Impacts can have beneficial or adverse outcomes 
for livelihoods, health and well-being, ecosystems and species, services, infrastructure, and economic, social and cultural 
assets.

Risk: The potential for adverse consequences from a climate-related hazard for human and natural systems, resulting 
from the interactions between the hazard and the vulnerability and exposure of the affected system. Risk integrates 
the likelihood of exposure to a hazard and the magnitude of its impact. Risk also can describe the potential for adverse 
consequences of adaptation or mitigation responses to climate change. 

Climate-resilient development pathways (CRDPs): Trajectories that strengthen sustainable development at multiple 
scales and efforts to eradicate poverty through equitable societal and systems transitions and transformations while 
reducing the threat of climate change through ambitious mitigation, adaptation and climate resilience. 

19	Past IPCC reports, reflecting the literature, have used a variety of approximately equivalent metrics of GMST change.
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TS.1	 Framing and Context

This chapter frames the context, knowledge-base and assessment 
approaches used to understand the impacts of 1.5°C global warming 
above pre-industrial levels and related global greenhouse gas 
emission pathways, building on the IPCC Fifth Assessment Report 
(AR5), in the context of strengthening the global response to the 
threat of climate change, sustainable development and efforts to 
eradicate poverty. 

Human-induced warming reached approximately 1°C (likely) 
between 0.8°C and 1.2°C) above pre-industrial levels in 2017, 
increasing at 0.2°C (likely between 0.1°C and 0.3°C) per 
decade (high confidence). Global warming is defined in this report 
as an increase in combined surface air and sea surface temperatures 
averaged over the globe and over a 30-year period. Unless otherwise 
specified, warming is expressed relative to the period 1850–1900, 
used as an approximation of pre-industrial temperatures in AR5. 
For periods shorter than 30 years, warming refers to the estimated 
average temperature over the 30 years centred on that shorter 
period, accounting for the impact of any temperature fluctuations 
or trend within those 30 years. Accordingly, warming from pre-
industrial levels to the decade 2006–2015 is assessed to be 0.87°C 
(likely between 0.75°C and 0.99°C). Since 2000, the estimated level 
of human-induced warming has been equal to the level of observed 
warming with a likely range of ±20% accounting for uncertainty due 
to contributions from solar and volcanic activity over the historical 
period (high confidence). {1.2.1}

Warming greater than the global average has already been 
experienced in many regions and seasons, with higher average 
warming over land than over the ocean (high confidence). Most 
land regions are experiencing greater warming than the global average, 
while most ocean regions are warming at a slower rate. Depending 
on the temperature dataset considered, 20–40% of the global human 
population live in regions that, by the decade 2006–2015, had already 
experienced warming of more than 1.5°C above pre-industrial in at 
least one season (medium confidence). {1.2.1, 1.2.2}

Past emissions alone are unlikely to raise global-mean 
temperature to 1.5°C above pre-industrial levels (medium 
confidence), but past emissions do commit to other changes, 
such as further sea level rise (high confidence). If all 
anthropogenic emissions (including aerosol-related) were reduced 
to zero immediately, any further warming beyond the 1°C already 
experienced would likely be less than 0.5°C over the next two to 
three decades (high confidence), and likely less than 0.5°C on a 
century time scale (medium confidence), due to the opposing effects 
of different climate processes and drivers. A warming greater than 
1.5°C is therefore not geophysically unavoidable: whether it will 
occur depends on future rates of emission reductions. {1.2.3, 1.2.4}

1.5°C emission pathways are defined as those that, given 
current knowledge of the climate response, provide a one-
in-two to two-in-three chance of warming either remaining 
below 1.5°C or returning to 1.5°C by around 2100 following 

an overshoot. Overshoot pathways are characterized by the peak 
magnitude of the overshoot, which may have implications for 
impacts. All 1.5°C pathways involve limiting cumulative emissions 
of long-lived greenhouse gases, including carbon dioxide and nitrous 
oxide, and substantial reductions in other climate forcers (high 
confidence). Limiting cumulative emissions requires either reducing 
net global emissions of long-lived greenhouse gases to zero before 
the cumulative limit is reached, or net negative global emissions 
(anthropogenic removals) after the limit is exceeded. {1.2.3, 1.2.4, 
Cross-Chapter Boxes 1 and 2}

This report assesses projected impacts at a global average 
warming of 1.5°C and higher levels of warming. Global warming 
of 1.5°C is associated with global average surface temperatures 
fluctuating naturally on either side of 1.5°C, together with warming 
substantially greater than 1.5°C in many regions and seasons (high 
confidence), all of which must be considered in the assessment of 
impacts. Impacts at 1.5°C of warming also depend on the emission 
pathway to 1.5°C. Very different impacts result from pathways 
that remain below 1.5°C versus pathways that return to 1.5°C 
after a substantial overshoot, and when temperatures stabilize at 
1.5°C versus a transient warming past 1.5°C (medium confidence). 
{1.2.3, 1.3} 

Ethical considerations, and the principle of equity in particular, 
are central to this report, recognizing that many of the impacts 
of warming up to and beyond 1.5°C, and some potential 
impacts of mitigation actions required to limit warming to 
1.5°C, fall disproportionately on the poor and vulnerable (high 
confidence). Equity has procedural and distributive dimensions and 
requires fairness in burden sharing both between generations and 
between and within nations. In framing the objective of holding the 
increase in the global average temperature rise to well below 2°C 
above pre-industrial levels, and to pursue efforts to limit warming to 
1.5°C, the Paris Agreement associates the principle of equity with the 
broader goals of poverty eradication and sustainable development, 
recognising that effective responses to climate change require a 
global collective effort that may be guided by the 2015 United 
Nations Sustainable Development Goals. {1.1.1}

Climate adaptation refers to the actions taken to manage 
impacts of climate change by reducing vulnerability and 
exposure to its harmful effects and exploiting any potential 
benefits. Adaptation takes place at international, national and 
local levels. Subnational jurisdictions and entities, including urban 
and rural municipalities, are key to developing and reinforcing 
measures for reducing weather- and climate-related risks. Adaptation 
implementation faces several barriers including lack of up-to-date and 
locally relevant information, lack of finance and technology, social 
values and attitudes, and institutional constraints (high confidence). 
Adaptation is more likely to contribute to sustainable development 
when policies align with mitigation and poverty eradication goals 
(medium confidence). {1.1, 1.4} 

Ambitious mitigation actions are indispensable to limit 
warming to 1.5°C while achieving sustainable development 
and poverty eradication (high confidence). Ill-designed responses, 
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however, could pose challenges especially – but not exclusively – for 
countries and regions contending with poverty and those requiring 
significant transformation of their energy systems. This report focuses 
on ‘climate-resilient development pathways’, which aim to meet the 
goals of sustainable development, including climate adaptation and 
mitigation, poverty eradication and reducing inequalities. But any 
feasible pathway that remains within 1.5°C involves synergies and 
trade-offs (high confidence). Significant uncertainty remains as to 
which pathways are more consistent with the principle of equity. 
{1.1.1, 1.4}

Multiple forms of knowledge, including scientific evidence, 
narrative scenarios and prospective pathways, inform the 
understanding of 1.5°C. This report is informed by traditional 
evidence of the physical climate system and associated impacts and 
vulnerabilities of climate change, together with knowledge drawn 
from the perceptions of risk and the experiences of climate impacts 
and governance systems. Scenarios and pathways are used to 
explore conditions enabling goal-oriented futures while recognizing 
the significance of ethical considerations, the principle of equity, and 
the societal transformation needed. {1.2.3, 1.5.2} 

There is no single answer to the question of whether it 
is feasible to limit warming to 1.5°C and adapt to the 
consequences. Feasibility is considered in this report as the 
capacity of a system as a whole to achieve a specific outcome. The 
global transformation that would be needed to limit warming to 
1.5°C requires enabling conditions that reflect the links, synergies 
and trade-offs between mitigation, adaptation and sustainable 
development. These enabling conditions are assessed across many 
dimensions of feasibility – geophysical, environmental-ecological, 
technological, economic, socio-cultural and institutional – that 
may be considered through the unifying lens of the Anthropocene, 
acknowledging profound, differential but increasingly geologically 
significant human influences on the Earth system as a whole. This 
framing also emphasises the global interconnectivity of past, present 
and future human–environment relations, highlighting the need and 
opportunities for integrated responses to achieve the goals of the 
Paris Agreement. {1.1, Cross-Chapter Box 1}

TS.2	 Mitigation Pathways Compatible 
with 1.5°C in the Context of 
Sustainable Development

This chapter assesses mitigation pathways consistent with limiting 
warming to 1.5°C above pre-industrial levels. In doing so, it explores 
the following key questions: What role do CO2 and non-CO2 emissions 
play? {2.2, 2.3, 2.4, 2.6} To what extent do 1.5°C pathways involve 
overshooting and returning below 1.5°C during the 21st century? {2.2, 
2.3} What are the implications for transitions in energy, land use and 
sustainable development? {2.3, 2.4, 2.5} How do policy frameworks 
affect the ability to limit warming to 1.5°C? {2.3, 2.5} What are the 
associated knowledge gaps? {2.6}

The assessed pathways describe integrated, quantitative 
evolutions of all emissions over the 21st century associated 
with global energy and land use and the world economy. The 
assessment is contingent upon available integrated assessment 
literature and model assumptions, and is complemented by other 
studies with different scope, for example, those focusing on individual 
sectors. In recent years, integrated mitigation studies have improved 
the characterizations of mitigation pathways. However, limitations 
remain, as climate damages, avoided impacts, or societal co-benefits 
of the modelled transformations remain largely unaccounted for, while 
concurrent rapid technological changes, behavioural aspects, and 
uncertainties about input data present continuous challenges. (high 
confidence) {2.1.3, 2.3, 2.5.1, 2.6, Technical Annex 2}

The Chances of Limiting Warming to 1.5°C 
and the Requirements for Urgent Action

Pathways consistent with 1.5°C of warming above pre-industrial 
levels can be identified under a range of assumptions about 
economic growth, technology developments and lifestyles.  
However, lack of global cooperation, lack of governance of the required 
energy and land transformation, and increases in resource-intensive 
consumption are key impediments to achieving 1.5°C pathways. 
Governance challenges have been related to scenarios with high 
inequality and high population growth in the 1.5°C pathway literature. 
{2.3.1, 2.3.2, 2.5}

Under emissions in line with current pledges under the Paris 
Agreement (known as Nationally Determined Contributions, 
or NDCs), global warming is expected to surpass 1.5°C above 
pre-industrial levels, even if these pledges are supplemented 
with very challenging increases in the scale and ambition of 
mitigation after 2030 (high confidence). This increased action 
would need to achieve net zero CO2 emissions in less than 15 years. 
Even if this is achieved, temperatures would only be expected to remain 
below the 1.5°C threshold if the actual geophysical response ends up 
being towards the low end of the currently estimated uncertainty range. 
Transition challenges as well as identified trade-offs can be reduced if 
global emissions peak before 2030 and marked emissions reductions 
compared to today are already achieved by 2030. {2.2, 2.3.5, Cross-
Chapter Box 11 in Chapter 4}
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Limiting warming to 1.5°C depends on greenhouse gas (GHG) 
emissions over the next decades, where lower GHG emissions in 
2030 lead to a higher chance of keeping peak warming to 1.5°C 
(high confidence). Available pathways that aim for no or limited (less 
than 0.1°C) overshoot of 1.5°C keep GHG emissions in 2030 to 25–30 
GtCO2e yr−1 in 2030 (interquartile range). This contrasts with median 
estimates for current unconditional NDCs of 52–58 GtCO2e yr−1 in 
2030. Pathways that aim for limiting warming to 1.5°C by 2100 after 
a temporary temperature overshoot rely on large-scale deployment 
of carbon dioxide removal (CDR) measures, which are uncertain and 
entail clear risks. In model pathways with no or limited overshoot of 
1.5°C, global net anthropogenic CO2 emissions decline by about 45% 
from 2010 levels by 2030 (40–60% interquartile range), reaching net 
zero around 2050 (2045–2055 interquartile range). For limiting global 
warming to below 2°C with at least 66% probability CO2 emissions 
are projected to decline by about 25% by 2030 in most pathways (10–
30% interquartile range) and reach net zero around 2070 (2065–2080 
interquartile range).1 {2.2, 2.3.3, 2.3.5, 2.5.3, Cross-Chapter Boxes 6 in 
Chapter 3 and 9 in Chapter 4, 4.3.7}

Limiting warming to 1.5°C implies reaching net zero CO2 
emissions globally around 2050 and concurrent deep reductions 
in emissions of non-CO2 forcers, particularly methane (high 
confidence). Such mitigation pathways are characterized by energy-
demand reductions, decarbonization of electricity and other fuels, 
electrification of energy end use, deep reductions in agricultural 
emissions, and some form of CDR with carbon storage on land or 
sequestration in geological reservoirs. Low energy demand and low 
demand for land- and GHG-intensive consumption goods facilitate 
limiting warming to as close as possible to 1.5°C. {2.2.2, 2.3.1, 2.3.5, 
2.5.1, Cross-Chapter Box 9 in Chapter 4}.

In comparison to a 2°C limit, the transformations required to limit 
warming to 1.5°C are qualitatively similar but more pronounced 
and rapid over the next decades (high confidence). 1.5°C implies 
very ambitious, internationally cooperative policy environments that 
transform both supply and demand (high confidence). {2.3, 2.4, 2.5}

Policies reflecting a high price on emissions are necessary 
in models to achieve cost-effective 1.5°C pathways (high 
confidence). Other things being equal, modelling studies suggest 
the global average discounted marginal abatement costs for limiting 
warming to 1.5°C being about 3–4 times higher compared to 2°C 
over the 21st century, with large variations across models and socio-
economic and policy assumptions. Carbon pricing can be imposed 
directly or implicitly by regulatory policies. Policy instruments, like 
technology policies or performance standards, can complement explicit 
carbon pricing in specific areas. {2.5.1, 2.5.2, 4.4.5}

Limiting warming to 1.5°C requires a marked shift in investment 
patterns (medium confidence). Additional annual average energy-
related investments for the period 2016 to 2050 in pathways limiting 
warming to 1.5°C compared to pathways without new climate policies 
beyond those in place today (i.e., baseline) are estimated to be around 

830 billion USD2010 (range of 150 billion to 1700 billion USD2010 
across six models). Total energy-related investments increase by about 
12% (range of 3% to 24%) in 1.5°C pathways relative to 2°C pathways. 
Average annual investment in low-carbon energy technologies and 
energy efficiency are upscaled by roughly a factor of six (range of factor 
of 4 to 10) by 2050 compared to 2015, overtaking fossil investments 
globally by around 2025 (medium confidence). Uncertainties and 
strategic mitigation portfolio choices affect the magnitude and focus 
of required investments. {2.5.2}

Future Emissions in 1.5°C Pathways 

Mitigation requirements can be quantified using carbon budget 
approaches that relate cumulative CO2 emissions to global mean 
temperature increase. Robust physical understanding underpins 
this relationship, but uncertainties become increasingly relevant as a 
specific temperature limit is approached. These uncertainties relate to 
the transient climate response to cumulative carbon emissions (TCRE), 
non-CO2 emissions, radiative forcing and response, potential additional 
Earth system feedbacks (such as permafrost thawing), and historical 
emissions and temperature. {2.2.2, 2.6.1} 

Cumulative CO2 emissions are kept within a budget by reducing 
global annual CO2 emissions to net zero. This assessment 
suggests a remaining budget of about 420 GtCO2 for a two-
thirds chance of limiting warming to 1.5°C, and of about 580 
GtCO2 for an even chance (medium confidence). The remaining 
carbon budget is defined here as cumulative CO2 emissions from the 
start of 2018 until the time of net zero global emissions for global 
warming defined as a change in global near-surface air temperatures. 
Remaining budgets applicable to 2100 would be approximately 
100 GtCO2 lower than this to account for permafrost thawing and 
potential methane release from wetlands in the future, and more 
thereafter. These estimates come with an additional geophysical 
uncertainty of at least ±400 GtCO2, related to non-CO2 response 
and TCRE distribution. Uncertainties in the level of historic warming 
contribute ±250 GtCO2. In addition, these estimates can vary by 
±250 GtCO2 depending on non-CO2 mitigation strategies as found in 
available pathways. {2.2.2, 2.6.1}

Staying within a remaining carbon budget of 580 GtCO2 implies 
that CO2 emissions reach carbon neutrality in about 30 years, 
reduced to 20 years for a 420 GtCO2 remaining carbon budget  
(high confidence). The ±400 GtCO2 geophysical uncertainty range 
surrounding a carbon budget translates into a variation of this timing 
of carbon neutrality of roughly ±15–20 years. If emissions do not start 
declining in the next decade, the point of carbon neutrality would need 
to be reached at least two decades earlier to remain within the same 
carbon budget. {2.2.2, 2.3.5}

Non-CO2 emissions contribute to peak warming and thus 
affect the remaining carbon budget. The evolution of 
methane and sulphur dioxide emissions strongly influences 
the chances of limiting warming to 1.5°C. In the near-term, a 

1	 Kyoto-GHG emissions in this statement are aggregated with GWP-100 values of the IPCC Second Assessment Report.
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weakening of aerosol cooling would add to future warming, 
but can be tempered by reductions in methane emissions (high 
confidence). Uncertainty in radiative forcing estimates (particularly 
aerosol) affects carbon budgets and the certainty of pathway 
categorizations. Some non-CO2 forcers are emitted alongside CO2, 
particularly in the energy and transport sectors, and can be largely 
addressed through CO2 mitigation. Others require specific measures, 
for example, to target agricultural nitrous oxide (N2O) and methane 
(CH4), some sources of black carbon, or hydrofluorocarbons (high 
confidence). In many cases, non-CO2 emissions reductions are similar 
in 2°C pathways, indicating reductions near their assumed maximum 
potential by integrated assessment models. Emissions of N2O and 
NH3 increase in some pathways with strongly increased bioenergy 
demand. {2.2.2, 2.3.1, 2.4.2, 2.5.3}

The Role of Carbon Dioxide Removal (CDR) 

All analysed pathways limiting warming to 1.5°C with no 
or limited overshoot use CDR to some extent to neutralize 
emissions from sources for which no mitigation measures 
have been identified and, in most cases, also to achieve 
net negative emissions to return global warming to 1.5°C 
following a peak (high confidence). The longer the delay in 
reducing CO2 emissions towards zero, the larger the likelihood 
of exceeding 1.5°C, and the heavier the implied reliance on 
net negative emissions after mid-century to return warming to 
1.5°C (high confidence). The faster reduction of net CO2 emissions 
in 1.5°C compared to 2°C pathways is predominantly achieved by 
measures that result in less CO2 being produced and emitted, and 
only to a smaller degree through additional CDR. Limitations on 
the speed, scale and societal acceptability of CDR deployment also 
limit the conceivable extent of temperature overshoot. Limits to our 
understanding of how the carbon cycle responds to net negative 
emissions increase the uncertainty about the effectiveness of CDR to 
decline temperatures after a peak. {2.2, 2.3, 2.6, 4.3.7}

CDR deployed at scale is unproven, and reliance on such 
technology is a major risk in the ability to limit warming to 
1.5°C. CDR is needed less in pathways with particularly strong 
emphasis on energy efficiency and low demand. The scale and 
type of CDR deployment varies widely across 1.5°C pathways, 
with different consequences for achieving sustainable 
development objectives (high confidence). Some pathways rely 
more on bioenergy with carbon capture and storage (BECCS), while 
others rely more on afforestation, which are the two CDR methods 
most often included in integrated pathways. Trade-offs with other 
sustainability objectives occur predominantly through increased land, 
energy, water and investment demand. Bioenergy use is substantial 
in 1.5°C pathways with or without BECCS due to its multiple roles in 
decarbonizing energy use. {2.3.1, 2.5.3, 2.6.3, 4.3.7}

Properties of Energy and Land Transitions in 1.5°C Pathways 

The share of primary energy from renewables increases while 
coal usage decreases across pathways limiting warming to 
1.5°C with no or limited overshoot (high confidence). By 2050, 
renewables (including bioenergy, hydro, wind, and solar, with direct-

equivalence method) supply a share of 52–67% (interquartile range) 
of primary energy in 1.5°C pathways with no or limited overshoot; 
while the share from coal decreases to 1–7% (interquartile range), 
with a large fraction of this coal use combined with carbon capture 
and storage (CCS). From 2020 to 2050 the primary energy supplied 
by oil declines in most pathways (−39 to −77% interquartile range). 
Natural gas changes by −13% to −62% (interquartile range), but 
some pathways show a marked increase albeit with widespread 
deployment of CCS. The overall deployment of CCS varies widely 
across 1.5°C pathways with no or limited overshoot, with cumulative 
CO2 stored through 2050 ranging from zero up to 300 GtCO2 
(minimum–maximum range), of which zero up to 140 GtCO2 is stored 
from biomass. Primary energy supplied by bioenergy ranges from 
40–310 EJ yr−1 in 2050 (minimum-maximum range), and nuclear from 
3–66 EJ yr−1 (minimum–maximum range). These ranges reflect both 
uncertainties in technological development and strategic mitigation 
portfolio choices. {2.4.2}

1.5°C pathways with no or limited overshoot include a rapid 
decline in the carbon intensity of electricity and an increase 
in electrification of energy end use (high confidence). By 2050, 
the carbon intensity of electricity decreases to −92 to +11 gCO2 MJ−1 
(minimum–maximum range) from about 140 gCO2 MJ−1 in 2020, 
and electricity covers 34–71% (minimum–maximum range) of final 
energy across 1.5°C pathways with no or limited overshoot from 
about 20% in 2020. By 2050, the share of electricity supplied by 
renewables increases to 59–97% (minimum-maximum range) across 
1.5°C pathways with no or limited overshoot. Pathways with higher 
chances of holding warming to below 1.5°C generally show a faster 
decline in the carbon intensity of electricity by 2030 than pathways 
that temporarily overshoot 1.5°C. {2.4.1, 2.4.2, 2.4.3}

Transitions in global and regional land use are found in all 
pathways limiting global warming to 1.5°C with no or limited 
overshoot, but their scale depends on the pursued mitigation 
portfolio (high confidence). Pathways that limit global warming to 
1.5°C with no or limited overshoot project a 4 million km2 reduction 
to a 2.5 million km2 increase of non-pasture agricultural land for food 
and feed crops and a 0.5–11 million km2 reduction of pasture land, 
to be converted into 0-6 million km2 of agricultural land for energy 
crops and a 2 million km2 reduction to 9.5 million km2 increase in 
forests by 2050 relative to 2010 (medium confidence). Land-use 
transitions of similar magnitude can be observed in modelled 2°C 
pathways (medium confidence). Such large transitions pose profound 
challenges for sustainable management of the various demands on 
land for human settlements, food, livestock feed, fibre, bioenergy, 
carbon storage, biodiversity and other ecosystem services (high 
confidence). {2.3.4, 2.4.4}

Demand-Side Mitigation and Behavioural Changes 

Demand-side measures are key elements of 1.5°C pathways. 
Lifestyle choices lowering energy demand and the land- and 
GHG-intensity of food consumption can further support 
achievement of 1.5°C pathways (high confidence). By 2030 and 
2050, all end-use sectors (including building, transport, and industry) 
show marked energy demand reductions in modelled 1.5°C pathways, 
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comparable and beyond those projected in 2°C pathways. Sectoral 
models support the scale of these reductions. {2.3.4, 2.4.3, 2.5.1}

Links between 1.5°C Pathways and Sustainable Development 

Choices about mitigation portfolios for limiting warming to 
1.5°C can positively or negatively impact the achievement of 
other societal objectives, such as sustainable development 
(high confidence). In particular, demand-side and efficiency 
measures, and lifestyle choices that limit energy, resource, and 
GHG-intensive food demand support sustainable development  
(medium confidence). Limiting warming to 1.5°C can be achieved 
synergistically with poverty alleviation and improved energy security 
and can provide large public health benefits through improved air 
quality, preventing millions of premature deaths. However, specific 
mitigation measures, such as bioenergy, may result in trade-offs that 
require consideration. {2.5.1, 2.5.2, 2.5.3}

TS.3	 Impacts of 1.5ºC Global Warming 
on Natural and Human Systems

This chapter builds on findings of AR5 and assesses new scientific 
evidence of changes in the climate system and the associated impacts 
on natural and human systems, with a specific focus on the magnitude 
and pattern of risks linked for global warming of 1.5°C above 
temperatures in the pre-industrial period. Chapter 3 explores observed 
impacts and projected risks to a range of natural and human systems, 
with a focus on how risk levels change from 1.5°C to 2°C of global 
warming. The chapter also revisits major categories of risk (Reasons for 
Concern, RFC) based on the assessment of new knowledge that has 
become available since AR5. 

1.5°C and 2°C Warmer Worlds

The global climate has changed relative to the pre-industrial 
period, and there are multiple lines of evidence that these 
changes have had impacts on organisms and ecosystems, as 
well as on human systems and well-being (high confidence). The 
increase in global mean surface temperature (GMST), which reached 
0.87°C in 2006–2015 relative to 1850–1900, has increased the 
frequency and magnitude of impacts (high confidence), strengthening 
evidence of how an increase in GMST of 1.5°C or more could impact 
natural and human systems (1.5°C versus 2°C). {3.3, 3.4, 3.5, 3.6, 
Cross-Chapter Boxes 6, 7 and 8 in this chapter}

Human-induced global warming has already caused multiple 
observed changes in the climate system (high confidence). 
Changes include increases in both land and ocean temperatures, as well 
as more frequent heatwaves in most land regions (high confidence). 
There is also high confidence that global warming has resulted in an 
increase in the frequency and duration of marine heatwaves. Further, 
there is substantial evidence that human-induced global warming has 
led to an increase in the frequency, intensity and/or amount of heavy 
precipitation events at the global scale (medium confidence), as well 
as an increased risk of drought in the Mediterranean region (medium 
confidence). {3.3.1, 3.3.2, 3.3.3, 3.3.4, Box 3.4}

Trends in intensity and frequency of some climate and weather 
extremes have been detected over time spans during which 
about 0.5°C of global warming occurred (medium confidence). 
This assessment is based on several lines of evidence, including 
attribution studies for changes in extremes since 1950. {3.2, 3.3.1, 
3.3.2, 3.3.3, 3.3.4}

Several regional changes in climate are assessed to occur with 
global warming up to 1.5°C as compared to pre-industrial 
levels, including warming of extreme temperatures in many 
regions (high confidence), increases in frequency, intensity and/or 
amount of heavy precipitation in several regions (high confidence), 
and an increase in intensity or frequency of droughts in some regions 
(medium confidence). {3.3.1, 3.3.2, 3.3.3, 3.3.4, Table 3.2}

There is no single ‘1.5°C warmer world’ (high confidence). In 
addition to the overall increase in GMST, it is important to consider the 
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size and duration of potential overshoots in temperature. Furthermore, 
there are questions on how the stabilization of an increase in GMST of 
1.5°C can be achieved, and how policies might be able to influence the 
resilience of human and natural systems, and the nature of regional 
and subregional risks. Overshooting poses large risks for natural and 
human systems, especially if the temperature at peak warming is 
high, because some risks may be long-lasting and irreversible, such 
as the loss of some ecosystems (high confidence). The rate of change 
for several types of risks may also have relevance, with potentially 
large risks in the case of a rapid rise to overshooting temperatures, 
even if a decrease to 1.5°C can be achieved at the end of the 21st 
century or later (medium confidence). If overshoot is to be minimized, 
the remaining equivalent CO2 budget available for emissions is very 
small, which implies that large, immediate and unprecedented global 
efforts to mitigate greenhouse gases are required (high confidence). 
{3.2, 3.6.2, Cross-Chapter Box 8 in this chapter}

Robust1 global differences in temperature means and extremes 
are expected if global warming reaches 1.5°C versus 2°C above 
the pre-industrial levels (high confidence). For oceans, regional 
surface temperature means and extremes are projected to be higher 
at 2°C compared to 1.5°C of global warming (high confidence). 
Temperature means and extremes are also projected to be higher at 
2°C compared to 1.5°C in most land regions, with increases being 
2–3 times greater than the increase in GMST projected for some 
regions (high confidence). Robust increases in temperature means and 
extremes are also projected at 1.5°C compared to present-day values 
(high confidence) {3.3.1, 3.3.2}. There are decreases in the occurrence 
of cold extremes, but substantial increases in their temperature, in 
particular in regions with snow or ice cover (high confidence) {3.3.1}.

Climate models project robust2 differences in regional climate 
between present-day and global warming up to 1.5°C3, and 
between 1.5°C and 2°C3 (high confidence), depending on the 
variable and region in question (high confidence). Large, robust 
and widespread differences are expected for temperature 
extremes (high confidence). Regarding hot extremes, the strongest 
warming is expected to occur at mid-latitudes in the warm season (with 
increases of up to 3°C for 1.5°C of global warming, i.e., a factor of two) 
and at high latitudes in the cold season (with increases of up to 4.5°C 
at 1.5°C of global warming, i.e., a factor of three) (high confidence). 
The strongest warming of hot extremes is projected to occur in 
central and eastern North America, central and southern Europe, the 
Mediterranean region (including southern Europe, northern Africa and 
the Near East), western and central Asia, and southern Africa (medium 
confidence). The number of exceptionally hot days are expected to 
increase the most in the tropics, where interannual temperature 
variability is lowest; extreme heatwaves are thus projected to emerge 
earliest in these regions, and they are expected to already become 
widespread there at 1.5°C global warming (high confidence). Limiting 
global warming to 1.5°C instead of 2°C could result in around 420 
million fewer people being frequently exposed to extreme heatwaves, 

and about 65 million fewer people being exposed to exceptional 
heatwaves, assuming constant vulnerability (medium confidence). 
{3.3.1, 3.3.2, Cross-Chapter Box 8 in this chapter}

Limiting global warming to 1.5°C would limit risks of increases 
in heavy precipitation events on a global scale and in several 
regions compared to conditions at 2°C global warming  
(medium confidence). The regions with the largest increases in heavy 
precipitation events for 1.5°C to 2°C global warming include: several 
high-latitude regions (e.g. Alaska/western Canada, eastern Canada/
Greenland/Iceland, northern Europe and northern Asia); mountainous 
regions (e.g., Tibetan Plateau); eastern Asia (including China and Japan); 
and eastern North America (medium confidence). Tropical cyclones are 
projected to decrease in frequency but with an increase in the number 
of very intense cyclones (limited evidence, low confidence). Heavy 
precipitation associated with tropical cyclones is projected to be higher 
at 2°C compared to 1.5°C of global warming (medium confidence). 
Heavy precipitation, when aggregated at a global scale, is projected to 
be higher at 2°C than at 1.5°C of global warming (medium confidence) 
{3.3.3, 3.3.6}

Limiting global warming to 1.5°C is expected to substantially 
reduce the probability of extreme drought, precipitation deficits, 
and risks associated with water availability (i.e., water stress) in 
some regions (medium confidence). In particular, risks associated 
with increases in drought frequency and magnitude are projected to be 
substantially larger at 2°C than at 1.5°C in the Mediterranean region 
(including southern Europe, northern Africa and the Near East) and 
southern Africa (medium confidence). {3.3.3, 3.3.4, Box 3.1, Box 3.2} 

Risks to natural and human systems are expected to be lower 
at 1.5°C than at 2°C of global warming (high confidence). This 
difference is due to the smaller rates and magnitudes of climate 
change associated with a 1.5°C temperature increase, including lower 
frequencies and intensities of temperature-related extremes. Lower 
rates of change enhance the ability of natural and human systems 
to adapt, with substantial benefits for a wide range of terrestrial, 
freshwater, wetland, coastal and ocean ecosystems (including coral 
reefs) (high confidence), as well as food production systems, human 
health, and tourism (medium confidence), together with energy 
systems and transportation (low confidence). {3.3.1, 3.4}

Exposure to multiple and compound climate-related risks is 
projected to increase between 1.5°C and 2°C of global warming 
with greater proportions of people both exposed and susceptible to 
poverty in Africa and Asia (high confidence). For global warming from 
1.5°C to 2°C, risks across energy, food, and water sectors could overlap 
spatially and temporally, creating new – and exacerbating current – 
hazards, exposures, and vulnerabilities that could affect increasing 
numbers of people and regions (medium confidence). Small island 
states and economically disadvantaged populations are particularly at 
risk (high confidence). {3.3.1, 3.4.5.3, 3.4.5.6, 3.4.11, 3.5.4.9, Box 3.5}

2	 Robust is used here to mean that at least two thirds of climate models show the same sign of changes at the grid point scale, and that differences in large regions are 
statistically significant.

3	 Projected changes in impacts between different levels of global warming are determined with respect to changes in global mean near-surface air temperature.
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Global warming of 2°C would lead to an expansion of areas with 
significant increases in runoff, as well as those affected by flood 
hazard, compared to conditions at 1.5°C (medium confidence). 
Global warming of 1.5°C would also lead to an expansion of the global 
land area with significant increases in runoff (medium confidence) and 
an increase in flood hazard in some regions (medium confidence) 
compared to present-day conditions. {3.3.5}

The probability of a sea-ice-free Arctic Ocean4 during summer 
is substantially higher at 2°C compared to 1.5°C of global 
warming (medium confidence). Model simulations suggest that 
at least one sea-ice-free Arctic summer is expected every 10 years 
for global warming of 2°C, with the frequency decreasing to one 
sea-ice-free Arctic summer every 100 years under 1.5°C (medium 
confidence). An intermediate temperature overshoot will have no long-
term consequences for Arctic sea ice coverage, and hysteresis is not 
expected (high confidence). {3.3.8, 3.4.4.7}

Global mean sea level rise (GMSLR) is projected to be around 
0.1 m (0.04 – 0.16 m) less by the end of the 21st century in a 
1.5°C warmer world compared to a 2°C warmer world (medium 
confidence). Projected GMSLR for 1.5°C of global warming has an 
indicative range of 0.26 – 0.77m, relative to 1986–2005, (medium 
confidence). A smaller sea level rise could mean that up to 10.4 million 
fewer people (based on the 2010 global population and assuming no 
adaptation) would be exposed to the impacts of sea level rise globally 
in 2100 at 1.5°C compared to at 2°C. A slower rate of sea level rise 
enables greater opportunities for adaptation (medium confidence). 
There is high confidence that sea level rise will continue beyond 2100. 
Instabilities exist for both the Greenland and Antarctic ice sheets, which 
could result in multi-meter rises in sea level on time scales of century 
to millennia. There is medium confidence that these instabilities could 
be triggered at around 1.5°C to 2°C of global warming. {3.3.9, 3.4.5, 
3.6.3}

The ocean has absorbed about 30% of the anthropogenic 
carbon dioxide, resulting in ocean acidification and changes to 
carbonate chemistry that are unprecedented for at least the 
last 65 million years (high confidence). Risks have been identified 
for the survival, calcification, growth, development and abundance of 
a broad range of marine taxonomic groups, ranging from algae to fish, 
with substantial evidence of predictable trait-based sensitivities (high 
confidence). There are multiple lines of evidence that ocean warming 
and acidification corresponding to 1.5°C of global warming would 
impact a wide range of marine organisms and ecosystems, as well as 
sectors such as aquaculture and fisheries (high confidence). {3.3.10, 
3.4.4}

Larger risks are expected for many regions and systems for 
global warming at 1.5°C, as compared to today, with adaptation 
required now and up to 1.5°C. However, risks would be larger at 2°C of 
warming and an even greater effort would be needed for adaptation to 
a temperature increase of that magnitude (high confidence). {3.4, Box 
3.4, Box 3.5, Cross-Chapter Box 6 in this chapter}

Future risks at 1.5°C of global warming will depend on the 
mitigation pathway and on the possible occurrence of a 
transient overshoot (high confidence). The impacts on natural 
and human systems would be greater if mitigation pathways 
temporarily overshoot 1.5°C and return to 1.5°C later in the century, 
as compared to pathways that stabilize at 1.5°C without an overshoot 
(high confidence). The size and duration of an overshoot would also 
affect future impacts (e.g., irreversible loss of some ecosystems) (high 
confidence). Changes in land use resulting from mitigation choices 
could have impacts on food production and ecosystem diversity. {3.6.1, 
3.6.2, Cross-Chapter Boxes 7 and 8 in this chapter}

Climate Change Risks for Natural and Human systems 

Terrestrial and Wetland Ecosystems

Risks of local species losses and, consequently, risks of 
extinction are much less in a 1.5°C versus a 2°C warmer world 
(high confidence). The number of species projected to lose over 
half of their climatically determined geographic range at 2°C global 
warming (18% of insects, 16% of plants, 8% of vertebrates) is 
projected to be reduced to 6% of insects, 8% of plants and 4% of 
vertebrates at 1.5°C warming (medium confidence). Risks associated 
with other biodiversity-related factors, such as forest fires, extreme 
weather events, and the spread of invasive species, pests and 
diseases, would also be lower at 1.5°C than at 2°C of warming (high 
confidence), supporting a greater persistence of ecosystem services. 
{3.4.3, 3.5.2}

Constraining global warming to 1.5°C, rather than to 2°C 
and higher, is projected to have many benefits for terrestrial 
and wetland ecosystems and for the preservation of their 
services to humans (high confidence). Risks for natural and 
managed ecosystems are higher on drylands compared to humid 
lands. The global terrestrial land area projected to be affected by 
ecosystem transformations (13%, interquartile range 8–20%) at 2°C 
is approximately halved at 1.5°C global warming to 4% (interquartile 
range 2–7%) (medium confidence). Above 1.5°C, an expansion of 
desert terrain and vegetation would occur in the Mediterranean 
biome (medium confidence), causing changes unparalleled in the last 
10,000 years (medium confidence). {3.3.2.2, 3.4.3.2, 3.4.3.5, 3.4.6.1, 
3.5.5.10, Box 4.2}

Many impacts are projected to be larger at higher latitudes, 
owing to mean and cold-season warming rates above the 
global average (medium confidence). High-latitude tundra and 
boreal forest are particularly at risk, and woody shrubs are already 
encroaching into tundra (high confidence) and will proceed with 
further warming. Constraining warming to 1.5°C would prevent the 
thawing of an estimated permafrost area of 1.5 to 2.5 million km2 
over centuries compared to thawing under 2°C (medium confidence). 
{3.3.2, 3.4.3, 3.4.4}

4	 Ice free is defined for the Special Report as when the sea ice extent is less than 106 km2. Ice coverage less than this is considered to be equivalent to an ice-free Arctic Ocean 
for practical purposes in all recent studies. 
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Ocean Ecosystems

Ocean ecosystems are already experiencing large-scale 
changes, and critical thresholds are expected to be reached at 
1.5°C and higher levels of global warming (high confidence). 
In the transition to 1.5°C of warming, changes to water temperatures 
are expected to drive some species (e.g., plankton, fish) to relocate 
to higher latitudes and cause novel ecosystems to assemble (high 
confidence). Other ecosystems (e.g., kelp forests, coral reefs) are 
relatively less able to move, however, and are projected to experience 
high rates of mortality and loss (very high confidence). For example, 
multiple lines of evidence indicate that the majority (70–90%) of 
warm water (tropical) coral reefs that exist today will disappear even 
if global warming is constrained to 1.5°C (very high confidence). 
{3.4.4, Box 3.4}

Current ecosystem services from the ocean are expected to be 
reduced at 1.5°C of global warming, with losses being even 
greater at 2°C of global warming (high confidence). The risks 
of declining ocean productivity, shifts of species to higher latitudes, 
damage to ecosystems (e.g., coral reefs, and mangroves, seagrass 
and other wetland ecosystems), loss of fisheries productivity (at 
low latitudes), and changes to ocean chemistry (e.g., acidification, 
hypoxia and dead zones) are projected to be substantially lower 
when global warming is limited to 1.5°C (high confidence). {3.4.4, 
Box 3.4}

Water Resources

The projected frequency and magnitude of floods and droughts 
in some regions are smaller under 1.5°C than under 2°C of 
warming (medium confidence). Human exposure to increased 
flooding is projected to be substantially lower at 1.5°C compared to 
2°C of global warming, although projected changes create regionally 
differentiated risks (medium confidence). The differences in the risks 
among regions are strongly influenced by local socio-economic 
conditions (medium confidence). {3.3.4, 3.3.5, 3.4.2}

Risks of water scarcity are projected to be greater at 2°C than at 
1.5°C of global warming in some regions (medium confidence). 
Depending on future socio-economic conditions, limiting global 
warming to 1.5°C, compared to 2°C, may reduce the proportion of 
the world population exposed to a climate change-induced increase 
in water stress by up to 50%, although there is considerable variability 
between regions (medium confidence). Regions with particularly 
large benefits could include the Mediterranean and the Caribbean 
(medium confidence). Socio-economic drivers, however, are expected 
to have a greater influence on these risks than the changes in climate 
(medium confidence). {3.3.5, 3.4.2, Box 3.5}

Land Use, Food Security and Food Production Systems

Limiting global warming to 1.5°C, compared with 2°C, is 
projected to result in smaller net reductions in yields of maize, 
rice, wheat, and potentially other cereal crops, particularly in 
sub-Saharan Africa, Southeast Asia, and Central and South America; 
and in the CO2-dependent nutritional quality of rice and wheat 

(high confidence). A loss of 7–10% of rangeland livestock globally 
is projected for approximately 2°C of warming, with considerable 
economic consequences for many communities and regions (medium 
confidence). {3.4.6, 3.6, Box 3.1, Cross-Chapter Box 6 in this chapter}

Reductions in projected food availability are larger at 2°C 
than at 1.5°C of global warming in the Sahel, southern Africa, 
the Mediterranean, central Europe and the Amazon (medium 
confidence). This suggests a transition from medium to high risk of 
regionally differentiated impacts on food security between 1.5°C and 
2°C (medium confidence). Future economic and trade environments 
and their response to changing food availability (medium confidence) 
are important potential adaptation options for reducing hunger risk 
in low- and middle-income countries. {Cross-Chapter Box 6 in this 
chapter}

Fisheries and aquaculture are important to global food security 
but are already facing increasing risks from ocean warming 
and acidification (medium confidence). These risks are 
projected to increase at 1.5°C of global warming and impact 
key organisms such as fin fish and bivalves (e.g., oysters), 
especially at low latitudes (medium confidence). Small-scale 
fisheries in tropical regions, which are very dependent on habitat 
provided by coastal ecosystems such as coral reefs, mangroves, 
seagrass and kelp forests, are expected to face growing risks at 1.5°C 
of warming because of loss of habitat (medium confidence). Risks 
of impacts and decreasing food security are projected to become 
greater as global warming reaches beyond 1.5°C and both ocean 
warming and acidification increase, with substantial losses likely for 
coastal livelihoods and industries (e.g., fisheries and aquaculture) 
(medium to high confidence). {3.4.4, 3.4.5, 3.4.6, Box 3.1, Box 3.4, 
Box 3.5, Cross-Chapter Box 6 in this chapter}

Land use and land-use change emerge as critical features of 
virtually all mitigation pathways that seek to limit global 
warming to 1.5°C (high confidence). Most least-cost mitigation 
pathways to limit peak or end-of-century warming to 1.5°C make 
use of carbon dioxide removal (CDR), predominantly employing 
significant levels of bioenergy with carbon capture and storage 
(BECCS) and/or afforestation and reforestation (AR) in their portfolio 
of mitigation measures (high confidence). {Cross-Chapter Box 7 in 
this chapter}

Large-scale deployment of BECCS and/or AR would have 
a far-reaching land and water footprint (high confidence). 
Whether this footprint would result in adverse impacts, for example 
on biodiversity or food production, depends on the existence and 
effectiveness of measures to conserve land carbon stocks, measures 
to limit agricultural expansion in order to protect natural ecosystems, 
and the potential to increase agricultural productivity (medium 
agreement). In addition, BECCS and/or AR would have substantial 
direct effects on regional climate through biophysical feedbacks, 
which are generally not included in Integrated Assessments Models 
(high confidence). {3.6.2, Cross-Chapter Boxes 7 and 8 in this chapter}

The impacts of large-scale CDR deployment could be greatly 
reduced if a wider portfolio of CDR options were deployed, if a 
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holistic policy for sustainable land management were adopted, 
and if increased mitigation efforts were employed to strongly 
limit the demand for land, energy and material resources, 
including through lifestyle and dietary changes (medium 
confidence). In particular, reforestation could be associated with 
significant co-benefits if implemented in a manner than helps restore 
natural ecosystems (high confidence). {Cross-Chapter Box 7 in this 
chapter}

Human Health, Well-Being, Cities and Poverty

Any increase in global temperature (e.g., +0.5°C) is projected 
to affect human health, with primarily negative consequences  
(high confidence). Lower risks are projected at 1.5°C than at 2°C 
for heat-related morbidity and mortality (very high confidence), and 
for ozone-related mortality if emissions needed for ozone formation 
remain high (high confidence). Urban heat islands often amplify the 
impacts of heatwaves in cities (high confidence). Risks for some 
vector-borne diseases, such as malaria and dengue fever are projected 
to increase with warming from 1.5°C to 2°C, including potential 
shifts in their geographic range (high confidence). Overall for vector-
borne diseases, whether projections are positive or negative depends 
on the disease, region and extent of change (high confidence). Lower 
risks of undernutrition are projected at 1.5°C than at 2°C (medium 
confidence). Incorporating estimates of adaptation into projections 
reduces the magnitude of risks (high confidence). {3.4.7, 3.4.7.1, 
3.4.8, 3.5.5.8} 

Global warming of 2°C is expected to pose greater risks to urban 
areas than global warming of 1.5°C (medium confidence). The 
extent of risk depends on human vulnerability and the effectiveness 
of adaptation for regions (coastal and non-coastal), informal 
settlements and infrastructure sectors (such as energy, water and 
transport) (high confidence). {3.4.5, 3.4.8}

Poverty and disadvantage have increased with recent warming 
(about 1°C) and are expected to increase for many populations 
as average global temperatures increase from 1°C to 1.5°C 
and higher (medium confidence). Outmigration in agricultural-
dependent communities is positively and statistically significantly 
associated with global temperature (medium confidence). Our 
understanding of the links of 1.5°C and 2°C of global warming to 
human migration are limited and represent an important knowledge 
gap. {3.4.10, 3.4.11, 5.2.2, Table 3.5}

Key Economic Sectors and Services

Risks to global aggregated economic growth due to climate 
change impacts are projected to be lower at 1.5°C than at 2°C 
by the end of this century (medium confidence). {3.5.2, 3.5.3} 

The largest reductions in economic growth at 2°C compared 
to 1.5°C of warming are projected for low- and middle-income 
countries and regions (the African continent, Southeast Asia, 
India, Brazil and Mexico) (low to medium confidence). Countries 
in the tropics and Southern Hemisphere subtropics are projected to 
experience the largest impacts on economic growth due to climate 

change should global warming increase from 1.5°C to 2°C (medium 
confidence). {3.5}

Global warming has already affected tourism, with increased 
risks projected under 1.5°C of warming in specific geographic 
regions and for seasonal tourism including sun, beach and 
snow sports destinations (very high confidence). Risks will be 
lower for tourism markets that are less climate sensitive, such as 
gaming and large hotel-based activities (high confidence). Risks for 
coastal tourism, particularly in subtropical and tropical regions, will 
increase with temperature-related degradation (e.g., heat extremes, 
storms) or loss of beach and coral reef assets (high confidence). 
{3.3.6, 3.4.4.12, 3.4.9.1, Box 3.4}

Small Islands, and Coastal and Low-lying areas

Small islands are projected to experience multiple inter-
related risks at 1.5°C of global warming that will increase with 
warming of 2°C and higher levels (high confidence). Climate 
hazards at 1.5°C are projected to be lower compared to those at 2°C 
(high confidence). Long-term risks of coastal flooding and impacts on 
populations, infrastructures and assets (high confidence), freshwater 
stress (medium confidence), and risks across marine ecosystems (high 
confidence) and critical sectors (medium confidence) are projected to 
increase at 1.5°C compared to present-day levels and increase further 
at 2°C, limiting adaptation opportunities and increasing loss and 
damage (medium confidence). Migration in small islands (internally 
and internationally) occurs for multiple reasons and purposes, mostly 
for better livelihood opportunities (high confidence) and increasingly 
owing to sea level rise (medium confidence). {3.3.2.2, 3.3.6–9, 
3.4.3.2, 3.4.4.2, 3.4.4.5, 3.4.4.12, 3.4.5.3, 3.4.7.1, 3.4.9.1, 3.5.4.9, 
Box 3.4, Box 3.5}

Impacts associated with sea level rise and changes to the 
salinity of coastal groundwater, increased flooding and damage 
to infrastructure, are projected to be critically important in 
vulnerable environments, such as small islands, low-lying 
coasts and deltas, at global warming of 1.5°C and 2°C (high 
confidence). Localized subsidence and changes to river discharge can 
potentially exacerbate these effects. Adaptation is already happening 
(high confidence) and will remain important over multi-centennial 
time scales. {3.4.5.3, 3.4.5.4, 3.4.5.7, 5.4.5.4, Box 3.5}

Existing and restored natural coastal ecosystems may be 
effective in reducing the adverse impacts of rising sea levels 
and intensifying storms by protecting coastal and deltaic 
regions (medium confidence). Natural sedimentation rates are 
expected to be able to offset the effect of rising sea levels, given 
the slower rates of sea level rise associated with 1.5°C of warming 
(medium confidence). Other feedbacks, such as landward migration 
of wetlands and the adaptation of infrastructure, remain important 
(medium confidence). {3.4.4.12, 3.4.5.4, 3.4.5.7}

Increased Reasons for Concern 

There are multiple lines of evidence that since AR5 the assessed 
levels of risk increased for four of the five Reasons for Concern 
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(RFCs) for global warming levels of up to 2°C (high confidence). 
The risk transitions by degrees of global warming are now: from high 
to very high between 1.5°C and 2°C for RFC1 (Unique and threatened 
systems) (high confidence); from moderate to high risk between 1°C and 
1.5°C for RFC2 (Extreme weather events) (medium confidence); from 
moderate to high risk between 1.5°C and 2°C for RFC3 (Distribution of 
impacts) (high confidence); from moderate to high risk between 1.5°C 
and 2.5°C for RFC4 (Global aggregate impacts) (medium confidence); 
and from moderate to high risk between 1°C and 2.5°C for RFC5 
(Large-scale singular events) (medium confidence). {3.5.2}

1.	 The category ‘Unique and threatened systems’ (RFC1) 
display a transition from high to very high risk which is 
now located between 1.5°C and 2°C of global warming as 
opposed to at 2.6°C of global warming in AR5, owing to new and 
multiple lines of evidence for changing risks for coral reefs, the 
Arctic and biodiversity in general (high confidence). {3.5.2.1}

2.	 In ‘Extreme weather events’ (RFC2), the transition from 
moderate to high risk is now located between 1.0°C and 
1.5°C of global warming, which is very similar to the AR5 
assessment but is projected with greater confidence (medium 
confidence). The impact literature contains little information 
about the potential for human society to adapt to extreme 
weather events, and hence it has not been possible to locate 
the transition from ‘high’ to ‘very high’ risk within the context of 
assessing impacts at 1.5°C versus 2°C of global warming. There 
is thus low confidence in the level at which global warming could 
lead to very high risks associated with extreme weather events in 
the context of this report. {3.5} 

3.	 With respect to the ‘Distribution of impacts’ (RFC3) a 
transition from moderate to high risk is now located 
between 1.5°C and 2°C of global warming, compared with 
between 1.6°C and 2.6°C global warming in AR5, owing to new 
evidence about regionally differentiated risks to food security, 
water resources, drought, heat exposure and coastal submergence 
(high confidence). {3.5}

4.	 In ‘global aggregate impacts’ (RFC4) a transition from 
moderate to high levels of risk is now located between 
1.5°C and 2.5°C of global warming, as opposed to at 3.6°C of 
warming in AR5, owing to new evidence about global aggregate 
economic impacts and risks to Earth’s biodiversity (medium 
confidence). {3.5}

5.	 Finally, ‘large-scale singular events’ (RFC5), moderate risk 
is now located at 1°C of global warming and high risk is 
located at 2.5°C of global warming, as opposed to at 1.6°C 
(moderate risk) and around 4°C (high risk) in AR5, because of new 
observations and models of the West Antarctic ice sheet (medium 
confidence). {3.3.9, 3.5.2, 3.6.3}

TS.4	 Strengthening and Implementing 
the Global Response

Limiting warming to 1.5°C above pre-industrial levels would 
require transformative systemic change, integrated with 
sustainable development. Such change would require the 
upscaling and acceleration of the implementation of far-
reaching, multilevel and cross-sectoral climate mitigation 
and addressing barriers. Such systemic change would need 
to be linked to complementary adaptation actions, including 
transformational adaptation, especially for pathways that 
temporarily overshoot 1.5°C (medium evidence, high agreement) 
{Chapter 2, Chapter 3, 4.2.1, 4.4.5, 4.5}. Current national pledges 
on mitigation and adaptation are not enough to stay below the Paris 
Agreement temperature limits and achieve its adaptation goals. While 
transitions in energy efficiency, carbon intensity of fuels, electrification 
and land-use change are underway in various countries, limiting 
warming to 1.5°C will require a greater scale and pace of change to 
transform energy, land, urban and industrial systems globally. {4.3, 4.4, 
Cross-Chapter Box 9 in this Chapter} 

Although multiple communities around the world are 
demonstrating the possibility of implementation consistent with 
1.5°C pathways {Boxes 4.1-4.10}, very few countries, regions, 
cities, communities or businesses can currently make such 
a claim (high confidence). To strengthen the global response, 
almost all countries would need to significantly raise their level 
of ambition. Implementation of this raised ambition would 
require enhanced institutional capabilities in all countries, 
including building the capability to utilize indigenous and 
local knowledge (medium evidence, high agreement). In developing 
countries and for poor and vulnerable people, implementing the 
response would require financial, technological and other forms of 
support to build capacity, for which additional local, national and 
international resources would need to be mobilized (high confidence). 
However, public, financial, institutional and innovation capabilities 
currently fall short of implementing far-reaching measures at scale in 
all countries (high confidence). Transnational networks that support 
multilevel climate action are growing, but challenges in their scale-up 
remain. {4.4.1, 4.4.2, 4.4.4, 4.4.5, Box 4.1, Box 4.2, Box 4.7}

Adaptation needs will be lower in a 1.5°C world compared to 
a 2°C world (high confidence) {Chapter 3; Cross-Chapter Box 11 
in this chapter}. Learning from current adaptation practices and 
strengthening them through adaptive governance {4.4.1}, lifestyle 
and behavioural change {4.4.3} and innovative financing mechanisms 
{4.4.5} can help their mainstreaming within sustainable development 
practices. Preventing maladaptation, drawing on bottom-up approaches 
{Box 4.6} and using indigenous knowledge {Box 4.3} would effectively 
engage and protect vulnerable people and communities. While 
adaptation finance has increased quantitatively, significant further 
expansion would be needed to adapt to 1.5°C. Qualitative gaps in the 
distribution of adaptation finance, readiness to absorb resources, and 
monitoring mechanisms undermine the potential of adaptation finance 
to reduce impacts. {Chapter 3, 4.4.2, 4.4.5, 4.6}
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System Transitions

The energy system transition that would be required to limit 
global warming to 1.5°C above pre-industrial conditions is 
underway in many sectors and regions around the world  
(medium evidence, high agreement). The political, economic, social 
and technical feasibility of solar energy, wind energy and electricity 
storage technologies has improved dramatically over the past few 
years, while that of nuclear energy and carbon dioxide capture 
and storage (CCS) in the electricity sector have not shown similar 
improvements. {4.3.1}

Electrification, hydrogen, bio-based feedstocks and substitution, 
and, in several cases, carbon dioxide capture, utilization and 
storage (CCUS) would lead to the deep emissions reductions 
required in energy-intensive industries to limit warming to 
1.5°C. However, those options are limited by institutional, economic and 
technical constraints, which increase financial risks to many incumbent 
firms (medium evidence, high agreement). Energy efficiency in industry 
is more economically feasible and helps enable industrial system 
transitions but would have to be complemented with greenhouse gas 
(GHG)-neutral processes or carbon dioxide removal (CDR) to make 
energy-intensive industries consistent with 1.5°C (high confidence). 
{4.3.1, 4.3.4}

Global and regional land-use and ecosystems transitions and 
associated changes in behaviour that would be required to 
limit warming to 1.5°C can enhance future adaptation and 
land-based agricultural and forestry mitigation potential. Such 
transitions could, however, carry consequences for livelihoods 
that depend on agriculture and natural resources {4.3.2, Cross-
Chapter Box 6 in Chapter 3}. Alterations of agriculture and forest 
systems to achieve mitigation goals could affect current ecosystems 
and their services and potentially threaten food, water and livelihood 
security. While this could limit the social and environmental feasibility 
of land-based mitigation options, careful design and implementation 
could enhance their acceptability and support sustainable development 
objectives (medium evidence, medium agreement). {4.3.2, 4.5.3}

Changing agricultural practices can be an effective climate 
adaptation strategy. A diversity of adaptation options exists, 
including mixed crop-livestock production systems which can be a 
cost-effective adaptation strategy in many global agriculture systems 
(robust evidence, medium agreement). Improving irrigation efficiency 
could effectively deal with changing global water endowments, 
especially if achieved via farmers adopting new behaviours and water-
efficient practices rather than through large-scale infrastructural 
interventions (medium evidence, medium agreement). Well-designed 
adaptation processes such as community-based adaptation can be 
effective depending upon context and levels of vulnerability. {4.3.2, 
4.5.3}

Improving the efficiency of food production and closing yield 
gaps have the potential to reduce emissions from agriculture, 
reduce pressure on land, and enhance food security and future 
mitigation potential (high confidence). Improving productivity of 

existing agricultural systems generally reduces the emissions intensity 
of food production and offers strong synergies with rural development, 
poverty reduction and food security objectives, but options to reduce 
absolute emissions are limited unless paired with demand-side 
measures. Technological innovation including biotechnology, with 
adequate safeguards, could contribute to resolving current feasibility 
constraints and expand the future mitigation potential of agriculture. 
{4.3.2, 4.4.4}

Shifts in dietary choices towards foods with lower emissions 
and requirements for land, along with reduced food loss and 
waste, could reduce emissions and increase adaptation options 
(high confidence). Decreasing food loss and waste and changing 
dietary behaviour could result in mitigation and adaptation (high 
confidence) by reducing both emissions and pressure on land, with 
significant co-benefits for food security, human health and sustainable 
development {4.3.2, 4.4.5, 4.5.2, 4.5.3, 5.4.2}, but evidence of 
successful policies to modify dietary choices remains limited. 

Mitigation and Adaptation Options and Other Measures

A mix of mitigation and adaptation options implemented in a 
participatory and integrated manner can enable rapid, systemic 
transitions – in urban and rural areas – that are necessary 
elements of an accelerated transition consistent with limiting 
warming to 1.5°C. Such options and changes are most effective 
when aligned with economic and sustainable development, 
and when local and regional governments are supported by 
national governments {4.3.3, 4.4.1, 4.4.3}. Various mitigation 
options are expanding rapidly across many geographies. Although 
many have development synergies, not all income groups have so 
far benefited from them. Electrification, end-use energy efficiency 
and increased share of renewables, amongst other options, are 
lowering energy use and decarbonizing energy supply in the built 
environment, especially in buildings. Other rapid changes needed in 
urban environments include demotorization and decarbonization of 
transport, including the expansion of electric vehicles, and greater use 
of energy-efficient appliances (medium evidence, high agreement). 
Technological and social innovations can contribute to limiting 
warming to 1.5°C, for example, by enabling the use of smart grids, 
energy storage technologies and general-purpose technologies, such 
as information and communication technology (ICT) that can be 
deployed to help reduce emissions. Feasible adaptation options include 
green infrastructure, resilient water and urban ecosystem services, 
urban and peri-urban agriculture, and adapting buildings and land use 
through regulation and planning (medium evidence, medium to high 
agreement). {4.3.3, 4.4.3, 4.4.4}

Synergies can be achieved across systemic transitions through 
several overarching adaptation options in rural and urban areas. 
Investments in health, social security and risk sharing and spreading 
are cost-effective adaptation measures with high potential for scaling 
up (medium evidence, medium to high agreement). Disaster risk 
management and education-based adaptation have lower prospects of 
scalability and cost-effectiveness (medium evidence, high agreement) 
but are critical for building adaptive capacity. {4.3.5, 4.5.3}



TS

Technical Summary

42

Converging adaptation and mitigation options can lead to 
synergies and potentially increase cost-effectiveness, but 
multiple trade-offs can limit the speed of and potential for 
scaling up. Many examples of synergies and trade-offs exist in 
all sectors and system transitions. For instance, sustainable water 
management (high evidence, medium agreement) and investment in 
green infrastructure (medium evidence, high agreement) to deliver 
sustainable water and environmental services and to support urban 
agriculture are less cost-effective than other adaptation options but 
can help build climate resilience. Achieving the governance, finance 
and social support required to enable these synergies and to avoid 
trade-offs is often challenging, especially when addressing multiple 
objectives, and attempting appropriate sequencing and timing of 
interventions. {4.3.2, 4.3.4, 4.4.1, 4.5.2, 4.5.3, 4.5.4}

Though CO2 dominates long-term warming, the reduction of 
warming short-lived climate forcers (SLCFs), such as methane 
and black carbon, can in the short term contribute significantly to 
limiting warming to 1.5°C above pre-industrial levels. Reductions 
of black carbon and methane would have substantial co-benefits 
(high confidence), including improved health due to reduced air 
pollution. This, in turn, enhances the institutional and socio-
cultural feasibility of such actions. Reductions of several warming 
SLCFs are constrained by economic and social feasibility (low evidence, 
high agreement). As they are often co-emitted with CO2, achieving the 
energy, land and urban transitions necessary to limit warming to 1.5°C 
would see emissions of warming SLCFs greatly reduced. {2.3.3.2, 4.3.6} 

Most CDR options face multiple feasibility constraints, which 
differ between options, limiting the potential for any single 
option to sustainably achieve the large-scale deployment 
required in the 1.5°C-consistent pathways described in 
Chapter 2 (high confidence). Those 1.5°C pathways typically rely 
on bioenergy with carbon capture and storage (BECCS), afforestation 
and reforestation (AR), or both, to neutralize emissions that are 
expensive to avoid, or to draw down CO2 emissions in excess of the 
carbon budget {Chapter 2}. Though BECCS and AR may be technically 
and geophysically feasible, they face partially overlapping yet different 
constraints related to land use. The land footprint per tonne of CO2 

removed is higher for AR than for BECCS, but given the low levels of 
current deployment, the speed and scales required for limiting warming 
to 1.5°C pose a considerable implementation challenge, even if the 
issues of public acceptance and absence of economic incentives were 
to be resolved (high agreement, medium evidence). The large potential 
of afforestation and the co-benefits if implemented appropriately (e.g., 
on biodiversity and soil quality) will diminish over time, as forests 
saturate (high confidence). The energy requirements and economic 
costs of direct air carbon capture and storage (DACCS) and enhanced 
weathering remain high (medium evidence, medium agreement). At the 
local scale, soil carbon sequestration has co-benefits with agriculture 
and is cost-effective even without climate policy (high confidence). Its 
potential feasibility and cost-effectiveness at the global scale appears 
to be more limited. {4.3.7}

Uncertainties surrounding solar radiation modification 
(SRM) measures constrain their potential deployment. These 
uncertainties include: technological immaturity; limited physical 

understanding about their effectiveness to limit global warming; and 
a weak capacity to govern, legitimize, and scale such measures. Some 
recent model-based analysis suggests SRM would be effective but that 
it is too early to evaluate its feasibility. Even in the uncertain case that 
the most adverse side-effects of SRM can be avoided, public resistance, 
ethical concerns and potential impacts on sustainable development 
could render SRM economically, socially and institutionally undesirable 
(low agreement, medium evidence). {4.3.8, Cross-Chapter Box 10 in 
this chapter}

Enabling Rapid and Far-Reaching Change 

The speed of transitions and of technological change required 
to limit warming to 1.5°C above pre-industrial levels has been 
observed in the past within specific sectors and technologies 
{4.2.2.1}. But the geographical and economic scales at which 
the required rates of change in the energy, land, urban, 
infrastructure and industrial systems would need to take place 
are larger and have no documented historic precedent  (limited 
evidence, medium agreement). To reduce inequality and alleviate 
poverty, such transformations would require more planning and 
stronger institutions (including inclusive markets) than observed in the 
past, as well as stronger coordination and disruptive innovation across 
actors and scales of governance. {4.3, 4.4}

Governance consistent with limiting warming to 1.5°C and the 
political economy of adaptation and mitigation can enable and 
accelerate systems transitions, behavioural change, innovation and 
technology deployment (medium evidence, medium agreement). 
For 1.5°C-consistent actions, an effective governance framework 
would include: accountable multilevel governance that includes non-
state actors, such as industry, civil society and scientific institutions; 
coordinated sectoral and cross-sectoral policies that enable collaborative 
multi-stakeholder partnerships; strengthened global-to-local financial 
architecture that enables greater access to finance and technology; 
addressing climate-related trade barriers; improved climate education 
and greater public awareness; arrangements to enable accelerated 
behaviour change; strengthened climate monitoring and evaluation 
systems; and reciprocal international agreements that are sensitive 
to equity and the Sustainable Development Goals (SDGs). System 
transitions can be enabled by enhancing the capacities of public, private 
and financial institutions to accelerate climate change policy planning 
and implementation, along with accelerated technological innovation, 
deployment and upkeep. {4.4.1, 4.4.2, 4.4.3, 4.4.4}

Behaviour change and demand-side management can 
significantly reduce emissions, substantially limiting the 
reliance on CDR to limit warming to 1.5°C {Chapter 2, 4.4.3}.
Political and financial stakeholders may find climate actions more cost-
effective and socially acceptable if multiple factors affecting behaviour 
are considered, including aligning these actions with people’s core 
values (medium evidence, high agreement). Behaviour- and lifestyle-
related measures and demand-side management have already led 
to emission reductions around the world and can enable significant 
future reductions (high confidence). Social innovation through bottom-
up initiatives can result in greater participation in the governance of 
systems transitions and increase support for technologies, practices 
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and policies that are part of the global response to limit warming to 
1.5°C . {Chapter 2, 4.4.1, 4.4.3, Figure 4.3} 

This rapid and far-reaching response required to keep warming 
below 1.5°C and enhance the capacity to adapt to climate risks 
would require large increases of investments in low-emission 
infrastructure and buildings, along with a redirection of financial 
flows towards low-emission investments (robust evidence, high 
agreement). An estimated mean annual incremental investment of 
around 1.5% of global gross fixed capital formation (GFCF) for the 
energy sector is indicated between 2016 and 2035, as well as about 
2.5% of global GFCF for other development infrastructure that could 
also address SDG implementation. Though quality policy design and 
effective implementation may enhance efficiency, they cannot fully 
substitute for these investments. {2.5.2, 4.2.1, 4.4.5}

Enabling this investment requires the mobilization and better 
integration of a range of policy instruments that include the 
reduction of socially inefficient fossil fuel subsidy regimes and innovative 
price and non-price national and international policy instruments. These 
would need to be complemented by de-risking financial instruments 
and the emergence of long-term low-emission assets. These instruments 
would aim to reduce the demand for carbon-intensive services and shift 
market preferences away from fossil fuel-based technology. Evidence 
and theory suggest that carbon pricing alone, in the absence of 
sufficient transfers to compensate their unintended distributional cross-
sector, cross-nation effects, cannot reach the incentive levels needed 
to trigger system transitions (robust evidence, medium agreement). 
But, embedded in consistent policy packages, they can help mobilize 
incremental resources and provide flexible mechanisms that help reduce 
the social and economic costs of the triggering phase of the transition 
(robust evidence, medium agreement). {4.4.3, 4.4.4, 4.4.5}

Increasing evidence suggests that a climate-sensitive 
realignment of savings and expenditure towards low-emission, 
climate-resilient infrastructure and services requires an 
evolution of global and national financial systems. Estimates 
suggest that, in addition to climate-friendly allocation of public 
investments, a potential redirection of 5% to 10% of the annual 
capital revenues5 is necessary for limiting warming to 1.5°C {4.4.5, 
Table 1 in Box 4.8}. This could be facilitated by a change of incentives 
for private day-to-day expenditure and the redirection of savings 
from speculative and precautionary investments towards long-
term productive low-emission assets and services. This implies the 
mobilization of institutional investors and mainstreaming of climate 
finance within financial and banking system regulation. Access by 
developing countries to low-risk and low-interest finance through 
multilateral and national development banks would have to be 
facilitated (medium evidence, high agreement). New forms of public–
private partnerships may be needed with multilateral, sovereign and 
sub-sovereign guarantees to de-risk climate-friendly investments, 
support new business models for small-scale enterprises and help 
households with limited access to capital. Ultimately, the aim is to 
promote a portfolio shift towards long-term low-emission assets that 

would help redirect capital away from potentially stranded assets 
(medium evidence, medium agreement). {4.4.5}

Knowledge Gaps

Knowledge gaps around implementing and strengthening the 
global response to climate change would need to be urgently 
resolved if the transition to a 1.5°C world is to become reality.   
Remaining questions include: how much can be realistically expected 
from innovation and behavioural and systemic political and economic 
changes in improving resilience, enhancing adaptation and reducing 
GHG emissions? How can rates of changes be accelerated and scaled 
up? What is the outcome of realistic assessments of mitigation and 
adaptation land transitions that are compliant with sustainable 
development, poverty eradication and addressing inequality? What are 
life-cycle emissions and prospects of early-stage CDR options? How 
can climate and sustainable development policies converge, and how 
can they be organised within a global governance framework and 
financial system, based on principles of justice and ethics (including 
‘common but differentiated responsibilities and respective capabilities’ 
(CBDR-RC)), reciprocity and partnership? To what extent would 
limiting warming to 1.5°C require a harmonization of macro-financial 
and fiscal policies, which could include financial regulators such as 
central banks? How can different actors and processes in climate 
governance reinforce each other, and hedge against the fragmentation 
of initiatives? {4.1, 4.3.7, 4.4.1, 4.4.5, 4.6}

5	 Annual capital revenues are the paid interests plus the increase of the asset value.



TS

Technical Summary

44

TS.5	 Sustainable Development, Poverty 
Eradication and Reducing Inequalities

This chapter takes sustainable development as the starting point and 
focus for analysis. It considers the broad and multifaceted bi-directional 
interplay between sustainable development, including its focus on 
eradicating poverty and reducing inequality in their multidimensional 
aspects, and climate actions in a 1.5°C warmer world. These fundamental 
connections are embedded in the Sustainable Development Goals 
(SDGs). The chapter also examines synergies and trade-offs of 
adaptation and mitigation options with sustainable development and 
the SDGs and offers insights into possible pathways, especially climate-
resilient development pathways towards a 1.5°C warmer world.

Sustainable Development, Poverty and Inequality 
in a 1.5°C Warmer World

Limiting global warming to 1.5°C rather than 2°C above pre-
industrial levels would make it markedly easier to achieve many 
aspects of sustainable development, with greater potential to 
eradicate poverty and reduce inequalities (medium evidence, 
high agreement). Impacts avoided with the lower temperature 
limit could reduce the number of people exposed to climate risks and 
vulnerable to poverty by 62 to 457 million, and lessen the risks of 
poor people to experience food and water insecurity, adverse health 
impacts, and economic losses, particularly in regions that already face 
development challenges (medium evidence, medium agreement). 
{5.2.2, 5.2.3} Avoided impacts expected to occur between 1.5°C and 
2°C warming would also make it easier to achieve certain SDGs, such as 
those that relate to poverty, hunger, health, water and sanitation, cities 
and ecosystems (SDGs 1, 2, 3, 6, 11, 14 and 15) (medium evidence, 
high agreement). {5.2.3, Table 5.2 available at the end of the chapter}

Compared to current conditions, 1.5°C of global warming would 
nonetheless pose heightened risks to eradicating poverty, 
reducing inequalities and ensuring human and ecosystem well-
being (medium evidence, high agreement). Warming of 1.5°C is 
not considered ‘safe’ for most nations, communities, ecosystems and 
sectors and poses significant risks to natural and human systems as 
compared to the current warming of 1°C (high confidence). {Cross-
Chapter Box 12 in Chapter 5} The impacts of 1.5°C of warming would 
disproportionately affect disadvantaged and vulnerable populations 
through food insecurity, higher food prices, income losses, lost 
livelihood opportunities, adverse health impacts and population 
displacements (medium evidence, high agreement). {5.2.1} Some of 
the worst impacts on sustainable development are expected to be 
felt among agricultural and coastal dependent livelihoods, indigenous 
people, children and the elderly, poor labourers, poor urban dwellers in 
African cities, and people and ecosystems in the Arctic and Small Island 
Developing States (SIDS) (medium evidence, high agreement). {5.2.1, 
Box 5.3, Chapter 3, Box 3.5, Cross-Chapter Box 9 in Chapter 4}

Climate Adaptation and Sustainable Development

Prioritization of sustainable development and meeting the 
SDGs is consistent with efforts to adapt to climate change  (high 

confidence). Many strategies for sustainable development enable 
transformational adaptation for a 1.5°C warmer world, provided 
attention is paid to reducing poverty in all its forms and to promoting 
equity and participation in decision-making (medium evidence, high 
agreement). As such, sustainable development has the potential 
to significantly reduce systemic vulnerability, enhance adaptive 
capacity, and promote livelihood security for poor and disadvantaged 
populations (high confidence). {5.3.1}

Synergies between adaptation strategies and the SDGs are 
expected to hold true in a 1.5°C warmer world, across sectors 
and contexts (medium evidence, medium agreement). Synergies 
between adaptation and sustainable development are significant 
for agriculture and health, advancing SDGs 1 (extreme poverty), 
2 (hunger), 3 (healthy lives and well-being) and 6 (clean water) (robust 
evidence, medium agreement). {5.3.2} Ecosystem- and community-
based adaptation, along with the incorporation of indigenous and 
local knowledge, advances synergies with SDGs 5 (gender equality), 
10 (reducing inequalities) and 16 (inclusive societies), as exemplified 
in drylands and the Arctic (high evidence, medium agreement). {5.3.2, 
Box 5.1, Cross-Chapter Box 10 in Chapter 4}

Adaptation strategies can result in trade-offs with and among 
the SDGs (medium evidence, high agreement). Strategies that 
advance one SDG may create negative consequences for other 
SDGs, for instance SDGs 3 (health) versus 7 (energy consumption) 
and agricultural adaptation and SDG 2 (food security) versus SDGs 3 
(health), 5 (gender equality), 6 (clean water), 10 (reducing inequalities), 
14 (life below water) and 15 (life on the land) (medium evidence, 
medium agreement). {5.3.2}

Pursuing place-specific adaptation pathways towards a 1.5°C 
warmer world has the potential for significant positive outcomes 
for well-being in countries at all levels of development (medium 
evidence, high agreement). Positive outcomes emerge when 
adaptation pathways (i) ensure a diversity of adaptation options based 
on people’s values and the trade-offs they consider acceptable, (ii) 
maximize synergies with sustainable development through inclusive, 
participatory and deliberative processes, and (iii) facilitate equitable 
transformation. Yet such pathways would be difficult to achieve 
without redistributive measures to overcome path dependencies, 
uneven power structures, and entrenched social inequalities (medium 
evidence, high agreement). {5.3.3}

Mitigation and Sustainable Development

The deployment of mitigation options consistent with 1.5°C 
pathways leads to multiple synergies across a range of 
sustainable development dimensions. At the same time, the 
rapid pace and magnitude of change that would be required 
to limit warming to 1.5°C, if not carefully managed, would lead 
to trade-offs with some sustainable development dimensions 
(high confidence). The number of synergies between mitigation 
response options and sustainable development exceeds the number 
of trade-offs in energy demand and supply sectors; agriculture, forestry 
and other land use (AFOLU); and for oceans (very high confidence). 
{Figure 5.2, Table 5.2 available at the end of the chapter} The 1.5°C 
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pathways indicate robust synergies, particularly for the SDGs 3 (health), 
7 (energy), 12 (responsible consumption and production) and 14 
(oceans) (very high confidence). {5.4.2, Figure 5.3} For SDGs 1 (poverty), 
2 (hunger), 6 (water) and 7 (energy), there is a risk of trade-offs or 
negative side effects from stringent mitigation actions compatible with 
1.5°C of warming (medium evidence, high agreement). {5.4.2}

Appropriately designed mitigation actions to reduce energy 
demand can advance multiple SDGs simultaneously. Pathways 
compatible with 1.5°C that feature low energy demand show the 
most pronounced synergies and the lowest number of trade-offs 
with respect to sustainable development and the SDGs (very high 
confidence). Accelerating energy efficiency in all sectors has synergies 
with SDGs 7 (energy), 9 (industry, innovation and infrastructure), 
11 (sustainable cities and communities), 12 (responsible consumption 
and production), 16 (peace, justice and strong institutions), and 
17 (partnerships for the goals) (robust evidence, high agreement). 
{5.4.1, Figure 5.2, Table 5.2} Low-demand pathways, which would 
reduce or completely avoid the reliance on bioenergy with carbon 
capture and storage (BECCS) in 1.5°C pathways, would result in 
significantly reduced pressure on food security, lower food prices and 
fewer people at risk of hunger (medium evidence, high agreement). 
{5.4.2, Figure 5.3}

The impacts of carbon dioxide removal options on SDGs depend 
on the type of options and the scale of deployment (high 
confidence). If poorly implemented, carbon dioxide removal (CDR) 
options such as bioenergy, BECCS and AFOLU would lead to trade-
offs. Appropriate design and implementation requires considering 
local people’s needs, biodiversity and other sustainable development 
dimensions (very high confidence). {5.4.1.3, Cross-Chapter Box 7 in 
Chapter 3}

The design of the mitigation portfolios and policy instruments 
to limit warming to 1.5°C will largely determine the overall 
synergies and trade-offs between mitigation and sustainable 
development (very high confidence). Redistributive policies 
that shield the poor and vulnerable can resolve trade-offs for 
a range of SDGs (medium evidence, high agreement). Individual 
mitigation options are associated with both positive and negative 
interactions with the SDGs (very high confidence). {5.4.1} However, 
appropriate choices across the mitigation portfolio can help to 
maximize positive side effects while minimizing negative side effects 
(high confidence). {5.4.2, 5.5.2} Investment needs for complementary 
policies resolving trade-offs with a range of SDGs are only a small 
fraction of the overall mitigation investments in 1.5°C pathways 
(medium evidence, high agreement). {5.4.2, Figure 5.4} Integration of 
mitigation with adaptation and sustainable development compatible 
with 1.5°C warming requires a systems perspective (high confidence). 
{5.4.2, 5.5.2}

Mitigation consistent with 1.5°C of warming create high risks 
for sustainable development in countries with high dependency 
on fossil fuels for revenue and employment generation (high 
confidence). These risks are caused by the reduction of global demand 
affecting mining activity and export revenues and challenges to rapidly 
decrease high carbon intensity of the domestic economy (robust 

evidence, high agreement). {5.4.1.2, Box 5.2} Targeted policies that 
promote diversification of the economy and the energy sector could 
ease this transition (medium evidence, high agreement). {5.4.1.2, 
Box 5.2}

Sustainable Development Pathways to 1.5°C

Sustainable development broadly supports and often enables 
the fundamental societal and systems transformations that 
would be required for limiting warming to 1.5°C above pre-
industrial levels (high confidence). Simulated pathways that 
feature the most sustainable worlds (e.g., Shared Socio-Economic 
Pathways (SSP) 1) are associated with relatively lower mitigation and 
adaptation challenges and limit warming to 1.5°C at comparatively 
lower mitigation costs. In contrast, development pathways with high 
fragmentation, inequality and poverty (e.g., SSP3) are associated with 
comparatively higher mitigation and adaptation challenges. In such 
pathways, it is not possible to limit warming to 1.5°C for the vast 
majority of the integrated assessment models (medium evidence, 
high agreement). {5.5.2} In all SSPs, mitigation costs substantially 
increase in 1.5°C pathways compared to 2°C pathways. No pathway 
in the literature integrates or achieves all 17 SDGs (high confidence). 
{5.5.2} Real-world experiences at the project level show that the 
actual integration between adaptation, mitigation and sustainable 
development is challenging as it requires reconciling trade-offs across 
sectors and spatial scales (very high confidence). {5.5.1}

Without societal transformation and rapid implementation 
of ambitious greenhouse gas reduction measures, pathways 
to limiting warming to 1.5°C and achieving sustainable 
development will be exceedingly difficult, if not impossible, 
to achieve (high confidence). The potential for pursuing such 
pathways differs between and within nations and regions, due to 
different development trajectories, opportunities and challenges (very 
high confidence). {5.5.3.2, Figure 5.1} Limiting warming to 1.5°C 
would require all countries and non-state actors to strengthen their 
contributions without delay. This could be achieved through sharing 
efforts based on bolder and more committed cooperation, with support 
for those with the least capacity to adapt, mitigate and transform 
(medium evidence, high agreement). {5.5.3.1, 5.5.3.2} Current 
efforts towards reconciling low-carbon trajectories and reducing 
inequalities, including those that avoid difficult trade-offs associated 
with transformation, are partially successful yet demonstrate notable 
obstacles (medium evidence, medium agreement). {5.5.3.3, Box 5.3, 
Cross-Chapter Box 13 in this chapter}

Social justice and equity are core aspects of climate-resilient 
development pathways for transformational social change. 
Addressing challenges and widening opportunities between 
and within countries and communities would be necessary 
to achieve sustainable development and limit warming to 
1.5°C, without making the poor and disadvantaged worse off  
(high confidence). Identifying and navigating inclusive and socially 
acceptable pathways towards low-carbon, climate-resilient futures is a 
challenging yet important endeavour, fraught with moral, practical and 
political difficulties and inevitable trade-offs (very high confidence). 
{5.5.2, 5.5.3.3, Box 5.3} It entails deliberation and problem-solving 
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processes to negotiate societal values, well-being, risks and resilience 
and to determine what is desirable and fair, and to whom (medium 
evidence, high agreement). Pathways that encompass joint, iterative 
planning and transformative visions, for instance in Pacific SIDS 
like Vanuatu and in urban contexts, show potential for liveable and 
sustainable futures (high confidence). {5.5.3.1, 5.5.3.3, Figure 5.5, 
Box 5.3, Cross-Chapter Box 13 in this chapter}

The fundamental societal and systemic changes to achieve 
sustainable development, eradicate poverty and reduce 
inequalities while limiting warming to 1.5°C would require 
meeting a set of institutional, social, cultural, economic and 
technological conditions (high confidence). The coordination 
and monitoring of policy actions across sectors and spatial scales 
is essential to support sustainable development in 1.5°C warmer 
conditions (very high confidence). {5.6.2, Box 5.3} External funding 
and technology transfer better support these efforts when they 
consider recipients’ context-specific needs (medium evidence, high 
agreement). {5.6.1} Inclusive processes can facilitate transformations 
by ensuring participation, transparency, capacity building and iterative 
social learning (high confidence). {5.5.3.3, Cross-Chapter Box 13, 
5.6.3} Attention to power asymmetries and unequal opportunities 
for development, among and within countries, is key to adopting 
1.5°C-compatible development pathways that benefit all populations 
(high confidence). {5.5.3, 5.6.4, Box 5.3} Re-examining individual and 
collective values could help spur urgent, ambitious and cooperative 
change (medium evidence, high agreement). {5.5.3, 5.6.5}
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Executive Summary

This chapter frames the context, knowledge-base and assessment 
approaches used to understand the impacts of 1.5°C global warming 
above pre-industrial levels and related global greenhouse gas 
emission pathways, building on the IPCC Fifth Assessment Report 
(AR5), in the context of strengthening the global response to the 
threat of climate change, sustainable development and efforts to 
eradicate poverty. 

Human-induced warming reached approximately 1°C (likely 
between 0.8°C and 1.2°C) above pre-industrial levels in 2017, 
increasing at 0.2°C (likely between 0.1°C and 0.3°C) per 
decade (high confidence). Global warming is defined in this report 
as an increase in combined surface air and sea surface temperatures 
averaged over the globe and over a 30-year period. Unless otherwise 
specified, warming is expressed relative to the period 1850–1900, 
used as an approximation of pre-industrial temperatures in AR5. 
For periods shorter than 30 years, warming refers to the estimated 
average temperature over the 30 years centred on that shorter 
period, accounting for the impact of any temperature fluctuations 
or trend within those 30 years. Accordingly, warming from pre-
industrial levels to the decade 2006–2015 is assessed to be 0.87°C 
(likely between 0.75°C and 0.99°C). Since 2000, the estimated level 
of human-induced warming has been equal to the level of observed 
warming with a likely range of ±20% accounting for uncertainty due 
to contributions from solar and volcanic activity over the historical 
period (high confidence). {1.2.1}

Warming greater than the global average has already been 
experienced in many regions and seasons, with higher average 
warming over land than over the ocean (high confidence). Most 
land regions are experiencing greater warming than the global average, 
while most ocean regions are warming at a slower rate. Depending 
on the temperature dataset considered, 20–40% of the global human 
population live in regions that, by the decade 2006–2015, had already 
experienced warming of more than 1.5°C above pre-industrial in at 
least one season (medium confidence). {1.2.1, 1.2.2}

Past emissions alone are unlikely to raise global-mean 
temperature to 1.5°C above pre-industrial levels (medium 
confidence), but past emissions do commit to other changes, 
such as further sea level rise (high confidence). If all 
anthropogenic emissions (including aerosol-related) were reduced 
to zero immediately, any further warming beyond the 1°C already 
experienced would likely be less than 0.5°C over the next two to 
three decades (high confidence), and likely less than 0.5°C on a 
century time scale (medium confidence), due to the opposing effects 
of different climate processes and drivers. A warming greater than 
1.5°C is therefore not geophysically unavoidable: whether it will 
occur depends on future rates of emission reductions. {1.2.3, 1.2.4}

1.5°C emission pathways are defined as those that, given 
current knowledge of the climate response, provide a one-
in-two to two-in-three chance of warming either remaining 
below 1.5°C or returning to 1.5°C by around 2100 following 

an overshoot. Overshoot pathways are characterized by the peak 
magnitude of the overshoot, which may have implications for 
impacts. All 1.5°C pathways involve limiting cumulative emissions 
of long-lived greenhouse gases, including carbon dioxide and nitrous 
oxide, and substantial reductions in other climate forcers (high 
confidence). Limiting cumulative emissions requires either reducing 
net global emissions of long-lived greenhouse gases to zero before 
the cumulative limit is reached, or net negative global emissions 
(anthropogenic removals) after the limit is exceeded. {1.2.3, 1.2.4, 
Cross-Chapter Boxes 1 and 2}

This report assesses projected impacts at a global average 
warming of 1.5°C and higher levels of warming. Global warming 
of 1.5°C is associated with global average surface temperatures 
fluctuating naturally on either side of 1.5°C, together with warming 
substantially greater than 1.5°C in many regions and seasons (high 
confidence), all of which must be considered in the assessment of 
impacts. Impacts at 1.5°C of warming also depend on the emission 
pathway to 1.5°C. Very different impacts result from pathways 
that remain below 1.5°C versus pathways that return to 1.5°C 
after a substantial overshoot, and when temperatures stabilize at 
1.5°C versus a transient warming past 1.5°C (medium confidence). 
{1.2.3, 1.3} 

Ethical considerations, and the principle of equity in particular, 
are central to this report, recognizing that many of the impacts 
of warming up to and beyond 1.5°C, and some potential 
impacts of mitigation actions required to limit warming to 
1.5°C, fall disproportionately on the poor and vulnerable (high 
confidence). Equity has procedural and distributive dimensions and 
requires fairness in burden sharing both between generations and 
between and within nations. In framing the objective of holding the 
increase in the global average temperature rise to well below 2°C 
above pre-industrial levels, and to pursue efforts to limit warming to 
1.5°C, the Paris Agreement associates the principle of equity with the 
broader goals of poverty eradication and sustainable development, 
recognising that effective responses to climate change require a 
global collective effort that may be guided by the 2015 United 
Nations Sustainable Development Goals. {1.1.1}

Climate adaptation refers to the actions taken to manage 
impacts of climate change by reducing vulnerability and 
exposure to its harmful effects and exploiting any potential 
benefits. Adaptation takes place at international, national and 
local levels. Subnational jurisdictions and entities, including urban 
and rural municipalities, are key to developing and reinforcing 
measures for reducing weather- and climate-related risks. Adaptation 
implementation faces several barriers including lack of up-to-date and 
locally relevant information, lack of finance and technology, social 
values and attitudes, and institutional constraints (high confidence). 
Adaptation is more likely to contribute to sustainable development 
when policies align with mitigation and poverty eradication goals 
(medium confidence). {1.1, 1.4} 

Ambitious mitigation actions are indispensable to limit 
warming to 1.5°C while achieving sustainable development 
and poverty eradication (high confidence). Ill-designed responses, 
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however, could pose challenges especially – but not exclusively – for 
countries and regions contending with poverty and those requiring 
significant transformation of their energy systems. This report focuses 
on ‘climate-resilient development pathways’, which aim to meet the 
goals of sustainable development, including climate adaptation and 
mitigation, poverty eradication and reducing inequalities. But any 
feasible pathway that remains within 1.5°C involves synergies and 
trade-offs (high confidence). Significant uncertainty remains as to 
which pathways are more consistent with the principle of equity. 
{1.1.1, 1.4}

Multiple forms of knowledge, including scientific evidence, 
narrative scenarios and prospective pathways, inform the 
understanding of 1.5°C. This report is informed by traditional 
evidence of the physical climate system and associated impacts and 
vulnerabilities of climate change, together with knowledge drawn 
from the perceptions of risk and the experiences of climate impacts 
and governance systems. Scenarios and pathways are used to 
explore conditions enabling goal-oriented futures while recognizing 
the significance of ethical considerations, the principle of equity, and 
the societal transformation needed. {1.2.3, 1.5.2} 

There is no single answer to the question of whether it 
is feasible to limit warming to 1.5°C and adapt to the 
consequences. Feasibility is considered in this report as the 
capacity of a system as a whole to achieve a specific outcome. The 
global transformation that would be needed to limit warming to 
1.5°C requires enabling conditions that reflect the links, synergies 
and trade-offs between mitigation, adaptation and sustainable 
development. These enabling conditions are assessed across many 
dimensions of feasibility – geophysical, environmental-ecological, 
technological, economic, socio-cultural and institutional – that 
may be considered through the unifying lens of the Anthropocene, 
acknowledging profound, differential but increasingly geologically 
significant human influences on the Earth system as a whole. This 
framing also emphasises the global interconnectivity of past, present 
and future human–environment relations, highlighting the need and 
opportunities for integrated responses to achieve the goals of the 
Paris Agreement. {1.1, Cross-Chapter Box 1}
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1.1	 Assessing the Knowledge Base 
for a 1.5°C Warmer World 

Human influence on climate has been the dominant cause of observed 
warming since the mid-20th century, while global average surface 
temperature warmed by 0.85°C between 1880 and 2012, as reported 
in the IPCC Fifth Assessment Report, or AR5 (IPCC, 2013b). Many 
regions of the world have already greater regional-scale warming, 
with 20–40% of the global population (depending on the temperature 
dataset used) having experienced over 1.5°C of warming in at least 
one season (Figure 1.1; Chapter 3 Section 3.3.2.1). Temperature rise 
to date has already resulted in profound alterations to human and 
natural systems, including increases in droughts, floods, and some 
other types of extreme weather; sea level rise; and biodiversity loss – 
these changes are causing unprecedented risks to vulnerable persons 
and populations (IPCC, 2012a, 2014a; Mysiak et al., 2016; Chapter 
3 Sections 3.4.5–3.4.13). The most affected people live in low and 
middle income countries, some of which have experienced a decline 
in food security, which in turn is partly linked to rising migration and 
poverty (IPCC, 2012a). Small islands, megacities, coastal regions, and 
high mountain ranges are likewise among the most affected (Albert 
et al., 2017). Worldwide, numerous ecosystems are at risk of severe 
impacts, particularly warm-water tropical reefs and Arctic ecosystems 
(IPCC, 2014a).

This report assesses current knowledge of the environmental, technical, 
economic, financial, socio-cultural, and institutional dimensions of a 
1.5°C warmer world (meaning, unless otherwise specified, a world 
in which warming has been limited to 1.5°C relative to pre-industrial 
levels). Differences in vulnerability and exposure arise from numerous 

non-climatic factors (IPCC, 2014a). Global economic growth has been 
accompanied by increased life expectancy and income in much of 
the world; however, in addition to environmental degradation and 
pollution, many regions remain characterised by significant poverty 
and severe inequality in income distribution and access to resources, 
amplifying vulnerability to climate change (Dryzek, 2016; Pattberg 
and Zelli, 2016; Bäckstrand et al., 2017; Lövbrand et al., 2017). World 
population continues to rise, notably in hazard-prone small and 
medium-sized cities in low- and moderate-income countries (Birkmann 
et al., 2016). The spread of fossil-fuel-based material consumption and 
changing lifestyles is a major driver of global resource use, and the 
main contributor to rising greenhouse gas (GHG) emissions (Fleurbaey 
et al., 2014). 

The overarching context of this report is this: human influence has 
become a principal agent of change on the planet, shifting the world 
out of the relatively stable Holocene period into a new geological 
era, often termed the Anthropocene (Box 1.1). Responding to climate 
change in the Anthropocene will require approaches that integrate 
multiple levels of interconnectivity across the global community. 

This chapter is composed of seven sections linked to the remaining 
four chapters of the report. This introductory Section 1.1 situates the 
basic elements of the assessment within the context of sustainable 
development; considerations of ethics, equity and human rights; and the 
problem of poverty. Section 1.2 focuses on understanding 1.5°C, global 
versus regional warming, 1.5°C pathways, and associated emissions. 
Section 1.3 frames the impacts at 1.5°C and beyond on natural and 
human systems. The section on strengthening the global response (1.4) 
frames responses, governance and implementation, and trade-offs 
and synergies between mitigation, adaptation, and the Sustainable 

Figure 1.1 |  Human experience of present-day warming. Different shades of pink to purple indicated by the inset histogram show estimated warming for the season 
that has warmed the most at a given location between the periods 1850–1900 and 2006–2015, during which global average temperatures rose by 0.91°C in this dataset 
(Cowtan and Way, 2014) and 0.87°C in the multi-dataset average (Table 1.1 and Figure 1.3). The density of dots indicates the population (in 2010) in any 1° × 1° grid box. 
The underlay shows national Sustainable Development Goal (SDG) Global Index Scores indicating performance across the 17 SDGs. Hatching indicates missing SDG index data 
(e.g., Greenland). The histogram shows the population (in 2010) living in regions experiencing different levels of warming (at 0.25°C increments). See Supplementary Material 
1.SM for further details.
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Development Goals (SDGs) under transformation, transformation 
pathways, and transition. Section 1.5 provides assessment frameworks 
and emerging methodologies that integrate climate change mitigation 

and adaptation with sustainable development. Section 1.6 defines 
approaches used to communicate confidence, uncertainty and risk, 
while 1.7 presents the storyline of the whole report.

1.1.1	 Equity and a 1.5°C Warmer World

The AR5 suggested that equity, sustainable development, and 
poverty eradication are best understood as mutually supportive 
and co-achievable within the context of climate action and are 
underpinned by various other international hard and soft law 
instruments (Denton et al., 2014; Fleurbaey et al., 2014; Klein et al., 

2014; Olsson et al., 2014; Porter et al., 2014; Stavins et al., 2014). 
The aim of the Paris Agreement under the UNFCCC to ‘pursue 
efforts to limit’ the rise in global temperatures to 1.5°C above pre-
industrial levels raises ethical concerns that have long been central 
to climate debates (Fleurbaey et al., 2014; Kolstad et al., 2014). 
The Paris Agreement makes particular reference to the principle 
of equity, within the context of broader international goals of 

Box 1.1 |  The Anthropocene: Strengthening the Global Response to 1.5°C Global Warming

Introduction  
The concept of the Anthropocene can be linked to the aspiration of the Paris Agreement. The abundant empirical evidence of the 
unprecedented rate and global scale of impact of human influence on the Earth System (Steffen et al., 2016; Waters et al., 2016) has 
led many scientists to call for an acknowledgement that the Earth has entered a new geological epoch: the Anthropocene (Crutzen 
and Stoermer, 2000; Crutzen, 2002; Gradstein et al., 2012). Although rates of change in the Anthropocene are necessarily assessed 
over much shorter periods than those used to calculate long-term baseline rates of change, and therefore present challenges for direct 
comparison, they are nevertheless striking. The rise in global CO2 concentration since 2000 is about 20 ppm per decade, which is up to 
10 times faster than any sustained rise in CO2 during the past 800,000 years (Lüthi et al., 2008; Bereiter et al., 2015). AR5 found that 
the last geological epoch with similar atmospheric CO2 concentration was the Pliocene, 3.3 to 3.0 Ma (Masson-Delmotte et al., 2013). 
Since 1970 the global average temperature has been rising at a rate of 1.7°C per century, compared to a long-term decline over the 
past 7,000 years at a baseline rate of 0.01°C per century (NOAA, 2016; Marcott et al., 2013). These global-level rates of human-driven 
change far exceed the rates of change driven by geophysical or biosphere forces that have altered the Earth System trajectory in the past 
(e.g., Summerhayes, 2015; Foster et al., 2017); even abrupt geophysical events do not approach current rates of human-driven change. 

The Geological Dimension of the Anthropocene and 1.5°C Global Warming 
The process of formalising the Anthropocene is on-going (Zalasiewicz et al., 2017), but a strong majority of the Anthropocene Working 
Group (AWG) established by the Subcommission on Quaternary Stratigraphy of the International Commission on Stratigraphy have 
agreed that: (i) the Anthropocene has a geological merit; (ii) it should follow the Holocene as a formal epoch in the Geological Time 
Scale; and, (iii) its onset should be defined as the mid-20th century. Potential markers in the stratigraphic record include an array of 
novel manufactured materials of human origin, and “these combined signals render the Anthropocene stratigraphically distinct from 
the Holocene and earlier epochs” (Waters et al., 2016). The Holocene period, which itself was formally adopted in 1885 by geological 
science community, began 11,700 years ago with a more stable warm climate providing for emergence of human civilisation and 
growing human-nature interactions that have expanded to give rise to the Anthropocene (Waters et al., 2016).

The Anthropocene and the Challenge of a 1.5° C Warmer World 
The Anthropocene can be employed as a “boundary concept” (Brondizio et al., 2016) that frames critical insights into understanding the 
drivers, dynamics and specific challenges in responding to the ambition of keeping global temperature well below 2°C while pursuing 
efforts towards and adapting to a 1.5°C warmer world. The United Nations Framework Convention on Climate Change (UNFCCC) and 
its Paris Agreement recognize the ability of humans to influence geophysical planetary processes (Chapter 2, Cross-Chapter Box 1 in this 
chapter). The Anthropocene offers a structured understanding of the culmination of past and present human–environmental relations 
and provides an opportunity to better visualize the future to minimize pitfalls (Pattberg and Zelli, 2016; Delanty and Mota, 2017),  while 
acknowledging the differentiated responsibility and opportunity to limit global warming and invest in prospects for climate-resilient 
sustainable development (Harrington, 2016) (Chapter 5). The Anthropocene also provides an opportunity to raise questions regarding 
the regional differences, social inequities, and uneven capacities and drivers of global social–environmental changes, which in turn 
inform the search for solutions as explored in Chapter 4 of this report (Biermann et al., 2016). It links uneven influences of human 
actions on planetary functions to an uneven distribution of impacts (assessed in Chapter 3) as well as the responsibility and response 
capacity to, for example, limit global warming to no more than a 1.5°C rise above pre-industrial levels. Efforts to curtail greenhouse gas 
emissions without incorporating the intrinsic interconnectivity and disparities associated with the Anthropocene world may themselves 
negatively affect the development ambitions of some regions more than others and negate sustainable development efforts (see 
Chapter 2 and Chapter 5). 
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sustainable development and poverty eradication. Equity is a long-
standing principle within international law and climate change law 
in particular (Shelton, 2008; Bodansky et al., 2017).

The AR5 describes equity as having three dimensions: intergenerational 
(fairness between generations), international (fairness between 
states), and national (fairness between individuals) (Fleurbaey et al., 
2014). The principle is generally agreed to involve both procedural 
justice (i.e., participation in decision making) and distributive justice 
(i.e., how the costs and benefits of climate actions are distributed) 
(Kolstad et al., 2014; Savaresi, 2016; Reckien et al., 2017). Concerns 
regarding equity have frequently been central to debates around 
mitigation, adaptation and climate governance (Caney, 2005; 
Schroeder et al., 2012; Ajibade, 2016; Reckien et al., 2017; Shue, 
2018). Hence, equity provides a framework for understanding the 
asymmetries between the distributions of benefits and costs relevant 
to climate action (Schleussner et al., 2016; Aaheim et al., 2017). 

Four key framing asymmetries associated with the conditions of a 
1.5°C warmer world have been noted (Okereke, 2010; Harlan et al., 
2015; Ajibade, 2016; Savaresi, 2016; Reckien et al., 2017) and are 
reflected in the report’s assessment. The first concerns differential 
contributions to the problem: the observation that the benefits from 
industrialization have been unevenly distributed and those who 
benefited most historically also have contributed most to the current 
climate problem and so bear greater responsibility (Shue, 2013; 
McKinnon, 2015; Otto et al., 2017; Skeie et al., 2017). The second 
asymmetry concerns differential impact: the worst impacts tend to 
fall on those least responsible for the problem, within states, between 
states, and between generations (Fleurbaey et al., 2014; Shue, 2014; 
Ionesco et al., 2016). The third is the asymmetry in capacity to shape 
solutions and response strategies, such that the worst-affected states, 
groups, and individuals are not always well represented (Robinson 
and Shine, 2018). Fourth, there is an asymmetry in future response 
capacity: some states, groups, and places are at risk of being left 
behind as the world progresses to a low-carbon economy (Fleurbaey 
et al., 2014; Shue, 2014; Humphreys, 2017). 

A sizeable and growing literature exists on how best to 
operationalize climate equity considerations, drawing on other 
concepts mentioned in the Paris Agreement, notably its explicit 
reference to human rights (OHCHR, 2009; Caney, 2010; Adger et 
al., 2014; Fleurbaey et al., 2014; IBA, 2014; Knox, 2015; Duyck 
et al., 2018; Robinson and Shine, 2018). Human rights comprise 
internationally agreed norms that align with the Paris ambitions of 
poverty eradication, sustainable development, and the reduction of 
vulnerability (Caney, 2010; Fleurbaey et al., 2014; OHCHR, 2015). 
In addition to defining substantive rights (such as to life, health, 
and shelter) and procedural rights (such as to information and 
participation), human rights instruments prioritise the rights of 
marginalized groups, children, vulnerable and indigenous persons, 
and those discriminated against on grounds such as gender, race, 
age or disability (OHCHR, 2017). Several international human 
rights obligations are relevant to the implementation of climate 
actions and consonant with UNFCCC undertakings in the areas 
of mitigation, adaptation, finance, and technology transfer (Knox, 
2015; OHCHR, 2015; Humphreys, 2017). 

Much of this literature is still new and evolving (Holz et al., 2017; 
Dooley et al., 2018; Klinsky and Winkler, 2018), permitting the 
present report to examine some broader equity concerns raised 
both by possible failure to limit warming to 1.5°C and by the range 
of ambitious mitigation efforts that may be undertaken to achieve 
that limit. Any comparison between 1.5°C and higher levels of 
warming implies risk assessments and value judgements and cannot 
straightforwardly be reduced to a cost-benefit analysis (Kolstad et 
al., 2014). However, different levels of warming can nevertheless be 
understood in terms of their different implications for equity – that 
is, in the comparative distribution of benefits and burdens for specific 
states, persons, or generations, and in terms of their likely impacts 
on sustainable development and poverty (see especially Sections   
2.3.4.2, 2.5, 3.4.5–3.4.13, 3.6, 5.4.1, 5.4.2, 5.6 and Cross-Chapter 
boxes 6 in Chapter 3 and 12 in Chapter 5).

1.1.2	 Eradication of Poverty

This report assesses the role of poverty and its eradication in the 
context of strengthening the global response to the threat of 
climate change and sustainable development. A wide range of 
definitions for poverty exist. The AR5 discussed ‘poverty’ in terms 
of its multidimensionality, referring to ‘material circumstances’ 
(e.g., needs, patterns of deprivation, or limited resources), as well 
as to economic conditions (e.g., standard of living, inequality, or 
economic position), and/or social relationships (e.g., social class, 
dependency, lack of basic security, exclusion, or lack of entitlement; 
Olsson et al., 2014). The UNDP now uses a Multidimensional Poverty 
Index and estimates that about 1.5 billion people globally live in 
multidimensional poverty, especially in rural areas of South Asia and 
Sub-Saharan Africa, with an additional billion at risk of falling into 
poverty (UNDP, 2016). 

A large and rapidly growing body of knowledge explores the 
connections between climate change and poverty. Climatic 
variability and climate change are widely recognized as factors that 
may exacerbate poverty, particularly in countries and regions where 
poverty levels are high (Leichenko and Silva, 2014). The AR5 noted 
that climate change-driven impacts often act as a threat multiplier 
in that the impacts of climate change compound other drivers of 
poverty (Olsson et al., 2014). Many vulnerable and poor people are 
dependent on activities such as agriculture that are highly susceptible 
to temperature increases and variability in precipitation patterns 
(Shiferaw et al., 2014; Miyan, 2015). Even modest changes in rainfall 
and temperature patterns can push marginalized people into poverty 
as they lack the means to recover from associated impacts. Extreme 
events, such as floods, droughts, and heat waves, especially when 
they occur in series, can significantly erode poor people’s assets and 
further undermine their livelihoods in terms of labour productivity, 
housing, infrastructure and social networks (Olsson et al., 2014).

1.1.3	 Sustainable Development and a 1.5°C 
Warmer World

AR5 (IPCC, 2014c) noted with high confidence that ‘equity is an 
integral dimension of sustainable development’ and that ‘mitigation 
and adaptation measures can strongly affect broader sustainable 



56

Chapter 1	 Framing and Context

1

development and equity objectives’ (Fleurbaey et al., 2014). Limiting 
global warming to 1.5°C would require substantial societal and 
technological transformations, dependent in turn on global and 
regional sustainable development pathways. A range of pathways, 
both sustainable and not, are explored in this report, including 
implementation strategies to understand the enabling conditions and 
challenges required for such a transformation. These pathways and 
connected strategies are framed within the context of sustainable 
development, and in particular the United Nations 2030 Agenda for 
Sustainable Development (UN, 2015b) and Cross-Chapter Box 4 on 
SDGs (in this chapter). The feasibility of staying within 1.5°C depends 
upon a range of enabling conditions with geophysical, environmental–
ecological, technological, economic, socio-cultural, and institutional 
dimensions. Limiting warming to 1.5°C also involves identifying 
technology and policy levers to accelerate the pace of transformation 
(see Chapter 4). Some pathways are more consistent than others with 
the requirements for sustainable development (see Chapter 5). Overall, 
the three-pronged emphasis on sustainable development, resilience, 
and transformation provides Chapter 5 an opportunity to assess 
the conditions of simultaneously reducing societal vulnerabilities, 
addressing entrenched inequalities, and breaking the circle of poverty.

The feasibility of any global commitment to a 1.5°C pathway depends, 
in part, on the cumulative influence of the nationally determined 
contributions (NDCs), committing nation states to specific GHG 
emission reductions. The current NDCs, extending only to 2030, do 
not limit warming to 1.5°C. Depending on mitigation decisions after 
2030, they cumulatively track toward a warming of 3°-4°C above 
pre-industrial temperatures by 2100, with the potential for further 
warming thereafter (Rogelj et al., 2016a; UNFCCC, 2016). The analysis 
of pathways in this report reveals opportunities for greater decoupling 
of economic growth from GHG emissions. Progress towards limiting 
warming to 1.5°C requires a significant acceleration of this trend. AR5 
concluded that climate change constrains possible development paths, 
that synergies and trade-offs exist between climate responses and 
socio-economic contexts, and that opportunities for effective climate 
responses overlap with opportunities for sustainable development, 
noting that many existing societal patterns of consumption are 
intrinsically unsustainable (Fleurbaey et al., 2014). 

1.2	 Understanding 1.5°C: Reference 
Levels, Probability, Transience, 
Overshoot, and Stabilization

1.2.1	 Working Definitions of 1.5°C and 2°C 
Warming Relative to Pre-Industrial Levels

What is meant by ‘the increase in global average temperature… above 
pre-industrial levels’ referred to in the Paris Agreement depends on 
the choice of pre-industrial reference period, whether 1.5°C refers to 
total warming or the human-induced component of that warming, 
and which variables and geographical coverage are used to define 
global average temperature change. The cumulative impact of these 
definitional ambiguities (e.g., Hawkins et al., 2017; Pfleiderer et al., 
2018) is comparable to natural multi-decadal temperature variability 

on continental scales (Deser et al., 2012) and primarily affects the 
historical period, particularly that prior to the early 20th century when 
data is sparse and of less certain quality. Most practical mitigation 
and adaptation decisions do not depend on quantifying historical 
warming to this level of precision, but a consistent working definition 
is necessary to ensure consistency across chapters and figures. We 
adopt definitions that are as consistent as possible with key findings 
of AR5 with respect to historical warming. 

This report defines ‘warming’, unless otherwise qualified, as an 
increase in multi-decade global mean surface temperature (GMST) 
above pre-industrial levels. Specifically, warming at a given point 
in time is defined as the global average of combined land surface 
air and sea surface temperatures for a 30-year period centred on 
that time, expressed relative to the reference period 1850–1900 
(adopted for consistency with Box SPM.1 Figure 1 of IPCC (2014a)) 
‘as an approximation of pre-industrial levels’, excluding the impact of 
natural climate fluctuations within that 30-year period and assuming 
any secular trend continues throughout that period, extrapolating 
into the future if necessary. There are multiple ways of accounting 
for natural fluctuations and trends (e.g., Foster and Rahmstorf, 2011; 
Haustein et al., 2017; Medhaug et al., 2017; Folland et al., 2018; 
Visser et al., 2018), but all give similar results. A major volcanic 
eruption might temporarily reduce observed global temperatures, 
but would not reduce warming as defined here (Bethke et al., 2017). 
Likewise, given that the level of warming is currently increasing at 
0.3°C–0.7°C per 30 years (likely range quoted in Kirtman et al., 2013 
and supported by Folland et al., 2018), the level of warming in 2017 
was 0.15°C–0.35°C higher than average warming over the 30-year 
period 1988–2017. 

In summary, this report adopts a working definition of ‘1.5°C relative 
to pre-industrial levels’ that corresponds to global average combined 
land surface air and sea surface temperatures either 1.5°C warmer 
than the average of the 51-year period 1850–1900, 0.87°C warmer 
than the 20-year period 1986–2005, or 0.63°C warmer than the 
decade 2006–2015. These offsets are based on all available published 
global datasets, combined and updated, which show that 1986–
2005 was 0.63°C warmer than 1850–1900 (with a 5–95% range 
of 0.57°C–0.69°C based on observational uncertainties alone), and 
2006–2015 was 0.87°C warmer than 1850–1900 (with a likely range 
of 0.75°C–0.99°C, also accounting for the possible impact of natural 
fluctuations). Where possible, estimates of impacts and mitigation 
pathways are evaluated relative to these more recent periods. Note 
that the 5–95% intervals often quoted in square brackets in AR5 
correspond to very likely ranges, while likely ranges correspond to 
17–83%, or the central two-thirds, of the distribution of uncertainty.  

1.2.1.1	 Definition of global average temperature

The IPCC has traditionally defined changes in observed GMST as a 
weighted average of near-surface air temperature (SAT) changes 
over land and sea surface temperature (SST) changes over the oceans 
(Morice et al., 2012; Hartmann et al., 2013), while modelling studies 
have typically used a simple global average SAT. For ambitious 
mitigation goals, and under conditions of rapid warming or declining 
sea ice (Berger et al., 2017), the difference can be significant. Cowtan 
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et al. (2015) and Richardson et al. (2016) show that the use of 
blended SAT/SST data and incomplete coverage together can give 
approximately 0.2°C less warming from the 19th century to the 
present relative to the use of complete global-average SAT (Stocker 
et al., 2013, Figure TFE8.1 and Figure 1.2). However, Richardson et al. 
(2018) show that this is primarily an issue for the interpretation of 
the historical record to date, with less absolute impact on projections 
of future changes, or estimated emissions budgets, under ambitious 
mitigation scenarios. 

The three GMST reconstructions used in AR5 differ in their treatment 
of missing data. GISTEMP (Hansen et al., 2010) uses interpolation 
to infer trends in poorly observed regions like the Arctic (although 
even this product is spatially incomplete in the early record), while 
NOAAGlobalTemp (Vose et al., 2012) and HadCRUT (Morice et al., 
2012) are progressively closer to a simple average of available 
observations. Since the AR5, considerable effort has been devoted 
to more sophisticated statistical modelling to account for the impact 

of incomplete observation coverage (Rohde et al., 2013; Cowtan and 
Way, 2014; Jones, 2016). The main impact of statistical infilling is to 
increase estimated warming to date by about 0.1°C (Richardson et 
al., 2018 and Table 1.1). 

We adopt a working definition of warming over the historical period 
based on an average of the four available global datasets that are 
supported by peer-reviewed publications: the three datasets used in the 
AR5, updated (Karl et al., 2015), together with the Cowtan-Way infilled 
dataset (Cowtan and Way, 2014). A further two datasets, Berkeley 
Earth (Rohde et al., 2013) and that of the Japan Meteorological Agency 
(JMA), are provided in Table 1.1. This working definition provides an 
updated estimate of 0.86°C for the warming over the period 1880–
2012 based on a linear trend. This quantity was quoted as 0.85°C in 
the AR5. Hence the inclusion of the Cowtan-Way dataset does not 
introduce any inconsistency with the AR5, whereas redefining GMST 
to represent global SAT could increase this figure by up to 20% (Table 
1.1, blue lines in Figure 1.2 and Richardson et al., 2016). 

Figure 1.2 |  Evolution of global mean surface temperature (GMST) over the period of instrumental observations. Grey shaded line shows monthly mean GMST 
in the HadCRUT4, NOAAGlobalTemp, GISTEMP and Cowtan-Way datasets, expressed as departures from 1850–1900, with varying grey line thickness indicating inter-dataset 
range. All observational datasets shown represent GMST as a weighted average of near surface air temperature over land and sea surface temperature over oceans. Human-
induced (yellow) and total (human- and naturally-forced, orange) contributions to these GMST changes are shown calculated following Otto et al. (2015) and Haustein et al. 
(2017). Fractional uncertainty in the level of human-induced warming in 2017 is set equal to ±20% based on multiple lines of evidence. Thin blue lines show the modelled 
global mean surface air temperature (dashed) and blended surface air and sea surface temperature accounting for observational coverage (solid) from the CMIP5 historical 
ensemble average extended with RCP8.5 forcing (Cowtan et al., 2015; Richardson et al., 2018). The pink shading indicates a range for temperature fluctuations over the 
Holocene (Marcott et al., 2013). Light green plume shows the AR5 prediction for average GMST over 2016–2035 (Kirtman et al., 2013). See Supplementary Material 1.SM for 
further details. 

1.2.1.2	 Choice of reference period

Any choice of reference period used to approximate ‘pre-
industrial’ conditions is a compromise between data coverage 
and representativeness of typical pre-industrial solar and volcanic 
forcing conditions. This report adopts the 51-year reference period, 
1850–1900 inclusive, assessed as an approximation of pre-industrial 
levels in AR5 (Box TS.5, Figure 1 of Field et al., 2014). The years 
1880–1900 are subject to strong but uncertain volcanic forcing, but 

in the HadCRUT4 dataset, average temperatures over 1850–1879, 
prior to the largest eruptions, are less than 0.01°C from the average 
for 1850–1900. Temperatures rose by 0.0°C–0.2°C from 1720–
1800 to 1850–1900 (Hawkins et al., 2017), but the anthropogenic 
contribution to this warming is uncertain (Abram et al., 2016; Schurer 
et al., 2017). The 18th century represents a relatively cool period in 
the context of temperatures since the mid-Holocene (Marcott et al., 
2013; Lüning and Vahrenholt, 2017; Marsicek et al., 2018), which is 
indicated by the pink shaded region in Figure 1.2.
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Projections of responses to emission scenarios, and associated 
impacts, may use a more recent reference period, offset by historical 
observations, to avoid conflating uncertainty in past and future 
changes (e.g., Hawkins et al., 2017; Millar et al., 2017b; Simmons 
et al., 2017). Two recent reference periods are used in this report: 
1986–2005 and 2006–2015. In the latter case, when using a single 
decade to represent a 30-year average centred on that decade, it 
is important to consider the potential impact of internal climate 
variability. The years 2008–2013 were characterised by persistent 
cool conditions in the Eastern Pacific (Kosaka and Xie, 2013; Medhaug 
et al., 2017), related to both the El Niño-Southern Oscillation (ENSO) 
and, potentially, multi-decadal Pacific variability (e.g., England et al., 
2014), but these were partially compensated for by El Niño conditions 
in 2006 and 2015. Likewise, volcanic activity depressed temperatures 
in 1986–2005, partly offset by the very strong El Niño event in 1998. 
Figure 1.2 indicates that natural variability (internally generated and 
externally driven) had little net impact on average temperatures 
over 2006–2015, in that the average temperature of the decade 

is similar to the estimated externally driven warming. When solar, 
volcanic and ENSO-related variability is taken into account following 
the procedure of Foster and Rahmstorf (2011), there is no indication 
of average temperatures in either 1986–2005 or 2006–2015 being 
substantially biased by short-term variability (see Supplementary 
Material 1.SM.2). The temperature difference between these two 
reference periods (0.21°C–0.27°C over 15 years across available 
datasets) is also consistent with the AR5 assessment of the current 
warming rate of 0.3°C–0.7°C over 30 years (Kirtman et al., 2013). 

On the definition of warming used here, warming to the decade 
2006–2015 comprises an estimate of the 30-year average centred 
on this decade, or 1996–2025, assuming the current trend continues 
and that any volcanic eruptions that might occur over the final seven 
years are corrected for. Given this element of extrapolation, we use 
the AR5 near-term projection to provide a conservative uncertainty 
range. Combining the uncertainty in observed warming to 1986–
2005 (±0.06°C) with the likely range in the current warming trend as 

Diagnostic 
/ dataset

1850–1900 
to (1)

2006–2015

1850–1900 
to (2)

1986–2005

1986–2005 
to (3)

2006–2015

1850–1900 
to (4)

1981–2010

1850–1900 
to (5)

1998–2017

Trend (6)
1880–2012

Trend (6)
1880–2015

HadCRUT4.6
0.84 

[0.79–0.89]
0.60 

[0.57–0.66]
0.22 

[0.21–0.23]
0.62 

[0.58–0.67]
0.83 

[0.78–0.88]
0.83 

[0.77–0.90]
0.88 

[0.83–0.95]

NOAAGlobalTemp 
(7)

0.86 0.62 0.22 0.63 0.85 0.85 0.91

GISTEMP (7) 0.89 0.65 0.23 0.66 0.88 0.89 0.94

Cowtan-Way
0.91 

[0.85–0.99]
0.65

[0.60–0.72]
0.26 

[0.25–0.27]
0.65 

[0.60–0.72]
0.88 

[0.82–0.96]
0.88 

[0.79–0.98]
0.93 

[0.85–1.03]

Average (8) 0.87 0.63 0.23 0.64 0.86 0.86 0.92

Berkeley (9) 0.98 0.73 0.25 0.73 0.97 0.97 1.02

JMA (9) 0.82 0.59 0.17 0.60 0.81 0.82 0.87

ERA-Interim N/A N/A 0.26 N/A N/A N/A N/A

JRA-55 N/A N/A 0.23 N/A N/A N/A N/A

CMIP5 global 
SAT (10)

0.99 
[0.65–1.37]

0.62 
[0.38–0.94]

0.38
[0.24–0.62]

0.62 
[0.34–0.93]

0.89 
[0.62–1.29]

0.81 
[0.58–1.31]

0.86 
[0.63–1.39]

CMIP5 SAT/SST 
blend-masked

0.86 
[0.54–1.18]

0.50 
[0.31–0.79]

0.34 
[0.19–0.54]

0.48 
[0.26–0.79]

0.75 
[0.52–1.11]

0.68 
[0.45–1.08]

0.74 
[0.51–1.14]

Notes: 
	 1)	 Most recent reference period used in this report.

	 2)	 Most recent reference period used in AR5.

	 3)	 Difference between recent reference periods.

	 4)	 Current WMO standard reference periods.

	 5)	 Most recent 20-year period. 

	 6)	 Linear trends estimated by a straight-line fit, expressed in degrees yr−1 multiplied by 133 or 135 years respectively, with uncertainty ranges incorporating observational uncertainty only.

	 7)	 To estimate changes in the NOAAGlobalTemp and GISTEMP datasets relative to the 1850–1900 reference period, warming is computed relative to 1850–1900 using the HadCRUT4.6  
		  dataset and scaled by the ratio of the linear trend 1880–2015 in the NOAAGlobalTemp or GISTEMP dataset with the corresponding linear trend computed from HadCRUT4. 

	 8)	 Average of diagnostics derived – see (7) – from four peer-reviewed global datasets, HadCRUT4.6, NOAA, GISTEMP & Cowtan-Way. Note that differences between averages may not  
		  coincide with average differences because of rounding.

	 9)	 No peer-reviewed publication available for these global combined land–sea datasets.

	10)	 CMIP5 changes estimated relative to 1861–80 plus 0.02°C for the offset in HadCRUT4.6 from 1850–1900. CMIP5 values are the mean of the RCP8.5 ensemble, with 5–95% ensemble  
		  range. They are included to illustrate the difference between a complete global surface air temperature record (SAT) and a blended surface air and sea surface temperature (SST) record  
		  accounting for incomplete coverage (masked), following Richardson et al. (2016). Note that 1986–2005 temperatures in CMIP5 appear to have been depressed more than observed temperatures 
by the eruption of Mount Pinatubo. 

Table 1.1 |	 Observed increase in global average surface temperature in various datasets. 
	 Numbers in square brackets correspond to 5–95% uncertainty ranges from individual datasets, encompassing known sources of observational uncertainty only.
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for observational and forcing uncertainty and internal variability. 
Applying their method to the average of the four datasets shown in 
Figure 1.2 gives an average level of human-induced warming in 2017 
of 1.04°C. They also estimate a human-induced warming trend over 
the past 20 years of 0.17°C (0.13°C–0.33°C) per decade, consistent 
with estimates of the total observed trend of Foster and Rahmstorf 
(2011) (0.17° ± 0.03°C per decade, uncertainty in linear trend only), 
Folland et al. (2018) and Kirtman et al. (2013) (0.3°C–0.7°C over 30 
years, or 0.1°C–0.23°C per decade, likely range), and a best-estimate 
warming rate over the past five years of 0.215°C/decade (Leach et al., 
2018). Drawing on these multiple lines of evidence, human-induced 
warming is assessed to have reached 1.0°C in 2017, having increased 
by 0.13°C from the mid-point of 2006–2015, with a likely range 
of 0.8°C to 1.2°C (reduced from 5–95% to account for additional 
forcing and model uncertainty), increasing at 0.2°C per decade (with 
a likely range of 0.1°C to 0.3°C per decade: estimates of human-
induced warming given to 0.1°C precision only). 

Since warming is here defined in terms of a 30-year average, corrected 
for short-term natural fluctuations, when warming is considered to be 
at 1.5°C, global temperatures would fluctuate equally on either side 
of 1.5°C in the absence of a large cooling volcanic eruption (Bethke et 
al., 2017). Figure 1.2 indicates there is a substantial chance of GMST in 
a single month fluctuating over 1.5°C between now and 2020 (or, by 
2030, for a longer period: Henley and King, 2017), but this would not 
constitute temperatures ‘reaching 1.5°C’ on our working definition. 
Rogelj et al. (2017) show limiting the probability of annual GMST 
exceeding 1.5°C to less than one-year-in-20 would require limiting 
warming, on the definition used here, to 1.31°C or lower. 

1.2.2	 Global versus Regional and Seasonal Warming

Warming is not observed or expected to be spatially or seasonally 
uniform (Collins et al., 2013). A 1.5°C increase in GMST will be 
associated with warming substantially greater than 1.5°C in many 
land regions, and less than 1.5°C in most ocean regions. This is 
illustrated by Figure 1.3, which shows an estimate of the observed 
change in annual and seasonal average temperatures between 
the 1850–1900 pre-industrial reference period and the decade 
2006–2015 in the Cowtan-Way dataset. These regional changes are 
associated with an observed GMST increase of 0.91°C in the dataset 
shown here, or 0.87°C in the four-dataset average (Table 1.1). This 
observed pattern reflects an on-going transient warming: features 
such as enhanced warming over land may be less pronounced, but still 
present, in equilibrium (Collins et al., 2013). This figure illustrates the 
magnitude of spatial and seasonal differences, with many locations, 
particularly in Northern Hemisphere mid-latitude winter (December–
February), already experiencing regional warming more than double 
the global average. Individual seasons may be substantially warmer, 
or cooler, than these expected changes in the long-term average.

1.2.3	 Definition of 1.5°C Pathways: Probability, 
Transience, Stabilization and Overshoot

Pathways considered in this report, consistent with available literature 
on 1.5°C, primarily focus on the time scale up to 2100, recognising 
that the evolution of GMST after 2100 is also important. Two broad 

assessed by AR5 (±0.2°C/30 years), assuming these are uncorrelated, 
and using observed warming relative to 1850–1900 to provide the 
central estimate (no evidence of bias from short-term variability), 
gives an assessed warming to the decade 2006–2015 of 0.87°C with 
a ±0.12°C likely range. This estimate has the advantage of traceability 
to the AR5, but more formal methods of quantifying externally driven 
warming (e.g., Bindoff et al., 2013; Jones et al., 2016; Haustein et 
al., 2017; Ribes et al., 2017), which typically give smaller ranges of 
uncertainty, may be adopted in the future.

1.2.1.3	 Total versus human-induced warming and 
warming rates 

Total warming refers to the actual temperature change, irrespective 
of cause, while human-induced warming refers to the component 
of that warming that is attributable to human activities. Mitigation 
studies focus on human-induced warming (that is not subject to 
internal climate variability), while studies of climate change impacts 
typically refer to total warming (often with the impact of internal 
variability minimised through the use of multi-decade averages). 

In the absence of strong natural forcing due to changes in solar or 
volcanic activity, the difference between total and human-induced 
warming is small: assessing empirical studies quantifying solar and 
volcanic contributions to GMST from 1890 to 2010, AR5 (Figure 10.6 
of Bindoff et al., 2013) found their net impact on warming over the 
full period to be less than plus or minus 0.1°C. Figure 1.2 shows that 
the level of human-induced warming has been indistinguishable from 
total observed warming since 2000, including over the decade 2006–
2015. Bindoff et al. (2013) assessed the magnitude of human-induced 
warming over the period 1951–2010 to be 0.7°C (likely between 
0.6°C and 0.8°C), which is slightly greater than the 0.65°C observed 
warming over this period (Figures 10.4 and 10.5) with a likely range 
of ±14%. The key surface temperature attribution studies underlying 
this finding (Gillett et al., 2013; Jones et al., 2013; Ribes and Terray, 
2013) used temperatures since the 19th century to constrain human-
induced warming, and so their results are equally applicable to the 
attribution of causes of warming over longer periods. Jones et al. 
(2016) show (Figure 10) human-induced warming trends over the 
period 1905–2005 to be indistinguishable from the corresponding 
total observed warming trend accounting for natural variability using 
spatio-temporal detection patterns from 12 out of 15 CMIP5 models 
and from the multi-model average. Figures from Ribes and Terray 
(2013), show the anthropogenic contribution to the observed linear 
warming trend 1880–2012 in the HadCRUT4 dataset (0.83°C in Table 
1.1) to be 0.86°C using a multi-model average global diagnostic, with 
a 5–95% confidence interval of 0.72°C–1.00°C (see figure 1.SM.6). 
In all cases, since 2000 the estimated combined contribution of solar 
and volcanic activity to warming relative to 1850–1900 is found to be 
less than ±0.1°C (Gillett et al., 2013), while anthropogenic warming 
is indistinguishable from, and if anything slightly greater than, the 
total observed warming, with 5–95% confidence intervals typically 
around ±20%.

Haustein et al. (2017) give a 5–95% confidence interval for 
human-induced warming in 2017 of 0.87°C–1.22°C, with a best 
estimate of 1.02°C, based on the HadCRUT4 dataset accounting 
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categories of 1.5°C pathways can be used to characterise mitigation 
options and impacts: pathways in which warming (defined as 30-year 
averaged GMST relative to pre-industrial levels, see Section 1.2.1) 
remains below 1.5°C throughout the 21st century, and pathways 
in which warming temporarily exceeds (‘overshoots’) 1.5°C and 
returns to 1.5°C either before or soon after 2100. Pathways in which 
warming exceeds 1.5°C before 2100, but might return to that level in 
some future century, are not considered 1.5°C pathways.

Because of uncertainty in the climate response, a ‘prospective’ 
mitigation pathway (see Cross-Chapter Box 1 in this chapter), in which 
emissions are prescribed, can only provide a level of probability of 
warming remaining below a temperature threshold. This probability 
cannot be quantified precisely since estimates depend on the method 
used (Rogelj et al., 2016b; Millar et al., 2017b; Goodwin et al., 2018; 
Tokarska and Gillett, 2018). This report defines a ‘1.5°C pathway’ 
as a pathway of emissions and associated possible temperature 
responses in which the majority of approaches using presently 
available information assign a probability of approximately one-in-
two to two-in-three to warming remaining below 1.5°C or, in the case 
of an overshoot pathway, to warming returning to 1.5°C by around 
2100 or earlier. Recognizing the very different potential impacts and 
risks associated with high-overshoot pathways, this report singles 

Figure 1.3 |  Spatial and seasonal pattern of present-day warming: Regional warming for the 2006–2015 decade relative to 1850–1900 for the annual mean (top), 
the average of December, January, and February (bottom left) and for June, July, and August (bottom right). Warming is evaluated by regressing regional changes in the Cowtan 
and Way (2014) dataset onto the total (combined human and natural) externally forced warming (yellow line in Figure 1.2). See Supplementary Material 1.SM for further details 
and versions using alternative datasets. The definition of regions (green boxes and labels in top panel) is adopted from the AR5 (Christensen et al., 2013).

out 1.5°C pathways with no or limited (<0.1°C) overshoot in many 
instances and pursues efforts to ensure that when the term ‘1.5°C 
pathway’ is used, the associated overshoot is made explicit where 
relevant. In Chapter 2, the classification of pathways is based on one 
modelling approach to avoid ambiguity, but probabilities of exceeding 
1.5°C are checked against other approaches to verify that they lie 
within this approximate range. All these absolute probabilities are 
imprecise, depend on the information used to constrain them, and 
hence are expected to evolve in the future. Imprecise probabilities 
can nevertheless be useful for decision-making, provided the 
imprecision is acknowledged (Hall et al., 2007; Kriegler et al., 2009; 
Simpson et al., 2016). Relative and rank probabilities can be assessed 
much more consistently: approaches may differ on the absolute 
probability assigned to individual outcomes, but typically agree on 
which outcomes are more probable. 

Importantly, 1.5°C pathways allow a substantial (up to one-in-two) 
chance of warming still exceeding 1.5°C. An ‘adaptive’ mitigation 
pathway in which emissions are continuously adjusted to achieve 
a specific temperature outcome (e.g., Millar et al., 2017b) reduces 
uncertainty in the temperature outcome while increasing uncertainty 
in the emissions required to achieve it. It has been argued (Otto et 
al., 2015; Xu and Ramanathan, 2017) that achieving very ambitious 
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temperature goals will require such an adaptive approach to 
mitigation, but very few studies have been performed taking this 
approach (e.g., Jarvis et al., 2012).

Figure 1.4 illustrates categories of (a) 1.5°C pathways and associated 
(b) annual and (c) cumulative emissions of CO2. It also shows (d) 
an example of a ‘time-integrated impact’ that continues to increase 
even after GMST has stabilised, such as sea level rise. This schematic 
assumes for the purposes of illustration that the fractional contribution 
of non-CO2 climate forcers to total anthropogenic forcing (which is 
currently increasing, Myhre et al., 2017) is approximately constant 
from now on. Consequently, total human-induced warming is 
proportional to cumulative CO2 emissions (solid line in c), and GMST 
stabilises when emissions reach zero. This is only the case in the most 
ambitious scenarios for non-CO2 mitigation (Leach et al., 2018). A 
simple way of accounting for varying non-CO2 forcing in Figure 1.4 
would be to note that every 1 W m−2 increase in non-CO2 forcing 
between now and the decade or two immediately prior to the time 
of peak warming reduces cumulative CO2 emissions consistent with 
the same peak warming by approximately 1100 GtCO2, with a range 
of 900-1500 GtCO2 (using values from AR5: Myhre et al., 2013; Allen 
et al., 2018; Jenkins et al., 2018; Cross-Chapter Box 2 in this chapter).

1.2.3.1	 Pathways remaining below 1.5°C

In this category of 1.5°C pathways, human-induced warming either 
rises monotonically to stabilise at 1.5°C (Figure 1.4, brown lines) 
or peaks at or below 1.5°C and then declines (yellow lines). Figure 
1.4b demonstrates that pathways remaining below 1.5°C require net 
annual CO2 emissions to peak and decline to near zero or below, 
depending on the long-term adjustment of the carbon cycle and 
non-CO2 emissions (Bowerman et al., 2013; Wigley, 2018). Reducing 
emissions to zero corresponds to stabilizing cumulative CO2 emissions 
(Figure 1.4c, solid lines) and falling concentrations of CO2 in the 
atmosphere (panel c dashed lines) (Matthews and Caldeira, 2008; 
Solomon et al., 2009), which is required to stabilize GMST if non-CO2 
climate forcings are constant and positive. Stabilizing atmospheric 
greenhouse gas concentrations would result in continued warming 
(see Section 1.2.4). 

If emission reductions do not begin until temperatures are close to 
the proposed limit, pathways remaining below 1.5°C necessarily 
involve much faster rates of net CO2 emission reductions (Figure 1.4, 
green lines), combined with rapid reductions in non-CO2 forcing and 
these pathways also reach 1.5°C earlier. Note that the emissions 
associated with these schematic temperature pathways may not 
correspond to feasible emission scenarios, but they do illustrate the 
fact that the timing of net zero emissions does not in itself determine 
peak warming: what matters is total cumulative emissions up to that 

time. Hence every year’s delay before initiating emission reductions 
decreases by approximately two years the remaining time available 
to reach zero emissions on a pathway still remaining below 1.5°C 
(Allen and Stocker, 2013; Leach et al., 2018). 

1.2.3.2	 Pathways temporarily exceeding 1.5°C

With the pathways in this category, also referred to as overshoot 
pathways, GMST rises above 1.5°C relative to pre-industrial before 
peaking and returning to 1.5°C around or before 2100 (Figure 1.4, 
blue lines), subsequently either stabilising or continuing to fall. This 
allows initially slower or delayed emission reductions, but lowering 
GMST requires net negative global CO2 emissions (net anthropogenic 
removal of CO2; Figure 1.4b). Cooling, or reduced warming, through 
sustained reductions of net non-CO2 climate forcing (Cross-Chapter 
Box 2 in this chapter) is also required, but their role is limited because 
emissions of most non-CO2 forcers cannot be reduced to below zero. 
Hence the feasibility and availability of large-scale CO2 removal 
limits the possible rate and magnitude of temperature decline. In 
this report, overshoot pathways are referred to as 1.5°C pathways, 
but qualified by the amount of the temperature overshoot, which 
can have a substantial impact on irreversible climate change impacts 
(Mathesius et al., 2015; Tokarska and Zickfeld, 2015).

1.2.3.3	 Impacts at 1.5°C warming associated with different 
pathways: transience versus stabilisation

Figure 1.4 also illustrates time scales associated with different 
impacts. While many impacts scale with the change in GMST itself, 
some (such as those associated with ocean acidification) scale with 
the change in atmospheric CO2 concentration, indicated by the 
fraction of cumulative CO2 emissions remaining in the atmosphere 
(dotted lines in Figure 1.4c). Others may depend on the rate of 
change of GMST, while ‘time-integrated impacts’, such as sea level 
rise, shown in Figure 1.4d continue to increase even after GMST has 
stabilised.

Hence impacts that occur when GMST reaches 1.5°C could be very 
different depending on the pathway to 1.5°C. CO2 concentrations will 
be higher as GMST rises past 1.5°C (transient warming) than when 
GMST has stabilized at 1.5°C, while sea level and, potentially, global 
mean precipitation (Pendergrass et al., 2015) would both be lower 
(see Figure 1.4). These differences could lead to very different impacts 
on agriculture, on some forms of extreme weather (e.g., Baker et al., 
2018), and on marine and terrestrial ecosystems (e.g., Mitchell et al., 
2017 and Boxes 3.1 and 3.2). Sea level would be higher still if GMST 
returns to 1.5°C after an overshoot (Figure 1.4 d), with potentially 
significantly different impacts in vulnerable regions. Temperature 
overshoot could also cause irreversible impacts (see Chapter 3). 



62

Chapter 1	 Framing and Context

1

Figure 1.4 |  Different 1.5°C pathways1: Schematic illustration of the relationship between (a) global mean surface temperature (GMST) change; (b) annual rates of CO2 
emissions, assuming constant fractional contribution of non-CO2 forcing to total human-induced warming; (c) total cumulative CO2 emissions (solid lines) and the fraction 
thereof remaining in the atmosphere (dashed lines; these also indicates changes in atmospheric CO2 concentrations); and (d) a time-integrated impact, such as sea level rise, 
that continues to increase even after GMST has stabilized. Colours indicate different 1.5°C pathways. Brown: GMST remaining below and stabilizing at 1.5°C in 2100; Green: a 
delayed start but faster emission reductions pathway with GMST remaining below and reaching 1.5°C earlier; Blue: a pathway temporarily exceeding 1.5°C, with temperatures 
reduced to 1.5°C by net negative CO2 emissions after temperatures peak; and Yellow: a pathway peaking at 1.5°C and subsequently declining. Temperatures are anchored 
to 1°C above pre-industrial in 2017; emissions–temperature relationships are computed using a simple climate model (Myhre et al., 2013; Millar et al., 2017a; Jenkins et al., 
2018) with a lower value of the Transient Climate Response (TCR) than used in the quantitative pathway assessments in Chapter 2 to illustrate qualitative differences between 
pathways: this figure is not intended to provide quantitative information. The time-integrated impact is illustrated by the semi-empirical sea level rise model of Kopp et al. (2016).

1	 An animated version of Figure 1.4 will be embedded in the web-based version of this Special Report

Cross-Chapter Box 1 |  Scenarios and Pathways

Contributing Authors:   
Mikiko Kainuma (Japan), Kristie L. Ebi (USA), Sabine Fuss (Germany), Elmar Kriegler (Germany), Keywan Riahi (Austria), Joeri Rogelj 
(Austria/Belgium), Petra Tschakert (Australia/Austria), Rachel Warren (UK)

Climate change scenarios have been used in IPCC assessments since the First Assessment Report (Leggett et al., 1992). The SRES 
scenarios (named after the IPCC Special Report on Emissions Scenarios published in 2000; IPCC, 2000), consist of four scenarios that 
do not take into account any future measures to limit greenhouse gas (GHG) emissions. Subsequently, many policy scenarios have been 
developed based upon them (Morita et al., 2001). The SRES scenarios are superseded by a set of scenarios based on the Representative 
Concentration Pathways (RCPs) and Shared Socio-Economic Pathways (SSPs) (Riahi et al., 2017). The RCPs comprise a set of four GHG 
concentration trajectories that jointly span a large range of plausible human-caused climate forcing ranging from 2.6 W m−2 (RCP2.6) 
to 8.5 W m−2 (RCP8.5) by the end of the 21st century (van Vuuren et al., 2011). They were used to develop climate projections in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) and were assessed in the IPCC Fifth Assessment Report 
(AR5). Based on the CMIP5 ensemble, RCP2.6, provides a better than two-in-three chance of staying below 2°C and a median warming 
of 1.6°C relative to 1850–1900 in 2100 (Collins et al., 2013). 

The SSPs were developed to complement the RCPs with varying socio-economic challenges to adaptation and mitigation. SSP-based 
scenarios were developed for a range of climate forcing levels, including the end-of-century forcing levels of the RCPs (Riahi et al., 2017) 
and a level below RCP2.6 to explore pathways limiting warming to 1.5°C above pre-industrial levels (Rogelj et al., 2018). The SSP-based 
1.5°C pathways are assessed in Chapter 2 of this report. These scenarios offer an integrated perspective on socio-economic, energy-
system (Bauer et al., 2017), land use (Popp et al., 2017), air pollution (Rao et al., 2017) and, GHG emissions developments (Riahi et al., 
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2017). Because of their harmonised assumptions, scenarios developed with the SSPs facilitate the integrated analysis of future climate 
impacts, vulnerabilities, adaptation and mitigation.

Scenarios and Pathways in this Report
This report focuses on pathways that could limit the increase of global mean surface temperature (GMST) to 1.5°C above pre-industrial 
levels and pathways that align with the goals of sustainable development and poverty eradication. The pace and scale of mitigation 
and adaptation are assessed in the context of historical evidence to determine where unprecedented change is required (see Chapter 
4). Other scenarios are also assessed, primarily as benchmarks for comparison of mitigation, impacts, and/or adaptation requirements. 
These include baseline scenarios that assume no climate policy; scenarios that assume some kind of continuation of current climate 
policy trends and plans, many of which are used to assess the implications of the nationally determined contributions (NDCs); and 
scenarios holding warming below 2°C above pre-industrial levels. This report assesses the spectrum from global mitigation scenarios 
to local adaptation choices – complemented by a bottom-up assessment of individual mitigation and adaptation options, and their 
implementation (policies, finance, institutions, and governance, see Chapter 4). Regional, national, and local scenarios, as well as 
decision-making processes involving values and difficult trade-offs are important for understanding the challenges of limiting GMST 
increase to 1.5°C and are thus indispensable when assessing implementation.

Different climate policies result in different temperature pathways, which result in different levels of climate risks and actual climate 
impacts with associated long-term implications. Temperature pathways are classified into continued warming pathways (in the cases of 
baseline and reference scenarios), pathways that keep the temperature increase below a specific limit (like 1.5°C or 2°C), and pathways 
that temporarily exceed and later fall to a specific limit (overshoot pathways). In the case of a temperature overshoot, net negative CO2 
emissions are required to remove excess CO2 from the atmosphere (Section 1.2.3). 

In a ‘prospective’ mitigation pathway, emissions (or sometimes concentrations) are prescribed, giving a range of GMST outcomes 
because of uncertainty in the climate response. Prospective pathways are considered ‘1.5°C pathways’ in this report if, based on current 
knowledge, the majority of available approaches assign an approximate probability of one-in-two to two-in-three to temperatures 
either remaining below 1.5°C or returning to 1.5°C either before or around 2100. Most pathways assessed in Chapter 2 are prospective 
pathways, and therefore even ‘1.5°C pathways’ are also associated with risks of warming higher than 1.5°C, noting that many risks 
increase non-linearly with increasing GMST. In contrast, the ‘risks of warming of 1.5°C’ assessed in Chapter 3 refer to risks in a 
world in which GMST is either passing through (transient) or stabilized at 1.5°C, without considering probabilities of different GMST 
levels (unless otherwise qualified). To stay below any desired temperature limit, mitigation measures and strategies would need to 
be adjusted as knowledge of the climate response is updated (Millar et al., 2017b; Emori et al., 2018). Such pathways can be called 
‘adaptive’ mitigation pathways. Given there is always a possibility of a greater-than-expected climate response (Xu and Ramanathan, 
2017), adaptive mitigation pathways are important to minimise climate risks, but need also to consider the risks and feasibility (see 
Cross-Chapter Box 3 in this chapter) of faster-than-expected emission reductions. Chapter 5 includes assessments of two related topics: 
aligning mitigation and adaptation pathways with sustainable development pathways, and transformative visions for the future that 
would support avoiding negative impacts on the poorest and most disadvantaged populations and vulnerable sectors.

Definitions of Scenarios and Pathways
Climate scenarios and pathways are terms that are sometimes used interchangeably, with a wide range of overlapping definitions 
(Rosenbloom, 2017).

A ‘scenario’ is an internally consistent, plausible, and integrated description of a possible future of the human–environment system, 
including a narrative with qualitative trends and quantitative projections (IPCC, 2000). Climate change scenarios provide a framework 
for developing and integrating projections of emissions, climate change, and climate impacts, including an assessment of their inherent 
uncertainties. The long-term and multi-faceted nature of climate change requires climate scenarios to describe how socio-economic 
trends in the 21st century could influence future energy and land use, resulting emissions and the evolution of human vulnerability and 
exposure. Such driving forces include population, GDP, technological innovation, governance and lifestyles. Climate change scenarios 
are used for analysing and contrasting climate policy choices.

The notion of a ‘pathway’ can have multiple meanings in the climate literature. It is often used to describe the temporal evolution 
of a set of scenario features, such as GHG emissions and socio-economic development. As such, it can describe individual scenario 
components or sometimes be used interchangeably with the word ‘scenario’. For example, the RCPs describe GHG concentration 
trajectories (van Vuuren et al., 2011) and the SSPs are a set of narratives of societal futures augmented by quantitative projections 
of socio-economic determinants such as population, GDP and urbanization (Kriegler et al., 2012; O’Neill et al., 2014). Socio-economic 

Cross-Chapter Box 1 (continued)
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driving forces consistent with any of the SSPs can be combined with a set of climate policy assumptions (Kriegler et al., 2014) that 
together would lead to emissions and concentration outcomes consistent with the RCPs (Riahi et al., 2017). This is at the core of the 
scenario framework for climate change research that aims to facilitate creating scenarios integrating emissions and development 
pathways dimensions (Ebi et al., 2014; van Vuuren et al., 2014).

In other parts of the literature, ‘pathway’ implies a solution-oriented trajectory describing a pathway from today’s world to achieving a 
set of future goals. Sustainable Development Pathways describe national and global pathways where climate policy becomes part of 
a larger sustainability transformation (Shukla and Chaturvedi, 2013; Fleurbaey et al., 2014; van Vuuren et al., 2015). The AR5 presented 
climate-resilient pathways as sustainable development pathways that combine the goals of adaptation and mitigation (Denton et 
al., 2014), more broadly defined as iterative processes for managing change within complex systems in order to reduce disruptions 
and enhance opportunities associated with climate change (IPCC, 2014a). The AR5 also introduced the notion of climate-resilient 
development pathways, with a more explicit focus on dynamic livelihoods, multi-dimensional poverty, structural inequalities, and 
equity among poor and non-poor people (Olsson et al., 2014). Adaptation pathways are understood as a series of adaptation choices 
involving trade-offs between short-term and long-term goals and values (Reisinger et al., 2014). They are decision-making processes 
sequenced over time with the purpose of deliberating and identifying socially salient solutions in specific places (Barnett et al., 2014; 
Wise et al., 2014; Fazey et al., 2016). There is a range of possible pathways for transformational change, often negotiated through 
iterative and inclusive processes (Harris et al., 2017; Fazey et al., 2018; Tàbara et al., 2018).

Cross-Chapter Box 1 (continued)

1.2.4	 Geophysical Warming Commitment

It is frequently asked whether limiting warming to 1.5°C is ‘feasible’ 
(Cross-Chapter Box 3 in this chapter). There are many dimensions to 
this question, including the warming ‘commitment’ from past emissions 
of greenhouse gases and aerosol precursors. Quantifying commitment 
from past emissions is complicated by the very different behaviour of 
different climate forcers affected by human activity: emissions of long-
lived greenhouse gases such as CO2 and nitrous oxide (N2O) have a 
very persistent impact on radiative forcing (Myhre et al., 2013), lasting 
from over a century (in the case of N2O) to hundreds of thousands 
of years (for CO2). The radiative forcing impact of short-lived climate 
forcers (SLCFs) such as methane (CH4) and aerosols, in contrast, 
persists for at most about a decade (in the case of methane) down to 
only a few days. These different behaviours must be taken into account 
in assessing the implications of any approach to calculating aggregate 
emissions (Cross-Chapter Box 2 in this chapter).

Geophysical warming commitment is defined as the unavoidable 
future warming resulting from physical Earth system inertia. Different 
variants are discussed in the literature, including (i) the ‘constant 
composition commitment’ (CCC), defined by Meehl et al. (2007) as 
the further warming that would result if atmospheric concentrations 
of GHGs and other climate forcers were stabilised at the current level; 
and (ii) and the ‘zero emissions commitment’ (ZEC), defined as the 
further warming that would still occur if all future anthropogenic 
emissions of greenhouse gases and aerosol precursors were 
eliminated instantaneously (Meehl et al., 2007; Collins et al., 2013). 

The CCC is primarily associated with thermal inertia of the ocean 
(Hansen et al., 2005), and has led to the misconception that 
substantial future warming is inevitable (Matthews and Solomon, 
2013). The CCC takes into account the warming from past emissions, 
but also includes warming from future emissions (declining but still 
non-zero) that are required to maintain a constant atmospheric 

composition. It is therefore not relevant to the warming commitment 
from past emissions alone.

The ZEC, although based on equally idealised assumptions, allows 
for a clear separation of the response to past emissions from the 
effects of future emissions. The magnitude and sign of the ZEC 
depend on the mix of GHGs and aerosols considered. For CO2, which 
takes hundreds of thousands of years to be fully removed from the 
atmosphere by natural processes following its emission (Eby et al., 
2009; Ciais et al., 2013), the multi-century warming commitment 
from emissions to date in addition to warming already observed 
is estimated to range from slightly negative (i.e., a slight cooling 
relative to present-day) to slightly positive (Matthews and Caldeira, 
2008; Lowe et al., 2009; Gillett et al., 2011; Collins et al., 2013). 
Some studies estimate a larger ZEC from CO2, but for cumulative 
emissions much higher than those up to present day (Frölicher et al., 
2014; Ehlert and Zickfeld, 2017). The ZEC from past CO2 emissions 
is small because the continued warming effect from ocean thermal 
inertia is approximately balanced by declining radiative forcing due 
to CO2 uptake by the ocean (Solomon et al., 2009; Goodwin et al., 
2015; Williams et al., 2017). Thus, although present-day CO2-induced 
warming is irreversible on millennial time scales (without human 
intervention such as active carbon dioxide removal or solar radiation 
modification; Section 1.4.1), past CO2 emissions do not commit to 
substantial further warming (Matthews and Solomon, 2013). 

Sustained net zero anthropogenic emissions of CO2 and declining net 
anthropogenic non-CO2 radiative forcing over a multi-decade period 
would halt anthropogenic global warming over that period, although 
it would not halt sea level rise or many other aspects of climate system 
adjustment. The rate of decline of non-CO2 radiative forcing must be 
sufficient to compensate for the ongoing adjustment of the climate 
system to this forcing (assuming it remains positive) due to ocean 
thermal inertia. It therefore depends on deep ocean response time 
scales, which are uncertain but of order centuries, corresponding to 
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decline rates of non-CO2 radiative forcing of less than 1% per year. In 
the longer term, Earth system feedbacks such as the release of carbon 
from melting permafrost may require net negative CO2 emissions to 
maintain stable temperatures (Lowe and Bernie, 2018).

For warming SLCFs, meaning those associated with positive radiative 
forcing such as methane, the ZEC is negative. Eliminating emissions 
of these substances results in an immediate cooling relative to the 
present (Figure 1.5, magenta lines) (Frölicher and Joos, 2010; Matthews 
and Zickfeld, 2012; Mauritsen and Pincus, 2017). Cooling SLCFs (those 
associated with negative radiative forcing) such as sulphate aerosols 
create a positive ZEC, as elimination of these forcers results in rapid 
increase in radiative forcing and warming (Figure 1.5, green lines) 
(Matthews and Zickfeld, 2012; Mauritsen and Pincus, 2017; Samset 
et al., 2018). Estimates of the warming commitment from eliminating 
aerosol emissions are affected by large uncertainties in net aerosol 
radiative forcing (Myhre et al., 2013, 2017) and the impact of other 

measures affecting aerosol loading (e.g., Fernández et al., 2017). 
If present-day emissions of all GHGs (short- and long-lived) and 
aerosols (including sulphate, nitrate and carbonaceous aerosols) are 
eliminated (Figure 1.5, yellow lines) GMST rises over the following 
decade, driven by the removal of negative aerosol radiative forcing. 
This initial warming is followed by a gradual cooling driven by the 
decline in radiative forcing of short-lived greenhouse gases (Matthews 
and Zickfeld, 2012; Collins et al., 2013). Peak warming following 
elimination of all emissions was assessed at a few tenths of a degree in 
AR5, and century-scale warming was assessed to change only slightly 
relative to the time emissions are reduced to zero (Collins et al., 2013). 
New evidence since AR5 suggests a larger methane forcing (Etminan 
et al., 2016) but no revision in the range of aerosol forcing (although 
this remains an active field of research, e.g., Myhre et al., 2017). This 
revised methane forcing estimate results in a smaller peak warming 
and a faster temperature decline than assessed in AR5 (Figure 1.5, 
yellow line).

Figure 1.5 |  Warming commitment from past emissions of greenhouse gases and aerosols: Radiative forcing (top) and global mean surface temperature change 
(bottom) for scenarios with different combinations of greenhouse gas and aerosol precursor emissions reduced to zero in 2020. Variables were calculated using a simple 
climate–carbon cycle model (Millar et al., 2017a) with a simple representation of atmospheric chemistry (Smith et al., 2018). The bars on the right-hand side indicate the median 
warming in 2100 and 5–95% uncertainty ranges (also indicated by the plume around the yellow line) taking into account one estimate of uncertainty in climate response, 
effective radiative forcing and carbon cycle sensitivity, and constraining simple model parameters with response ranges from AR5 combined with historical climate observations 
(Smith et al., 2018). Temperatures continue to increase slightly after elimination of CO2 emissions (blue line) in response to constant non-CO2 forcing. The dashed blue line 
extrapolates one estimate of the current rate of warming, while dotted blue lines show a case where CO2 emissions are reduced linearly to zero assuming constant non-CO2 
forcing after 2020. Under these highly idealized assumptions, the time to stabilize temperatures at 1.5°C is approximately double the time remaining to reach 1.5°C at the 
current warming rate.
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Expert judgement based on the available evidence (including model 
simulations, radiative forcing and climate sensitivity) suggests that if 
all anthropogenic emissions were reduced to zero immediately, any 
further warming beyond the 1°C already experienced would likely be 
less than 0.5°C over the next two to three decades, and also likely 
less than 0.5°C on a century time scale. 

Since most sources of emissions cannot, in reality, be brought to 
zero instantaneously due to techno-economic inertia, the current 
rate of emissions also constitutes a conditional commitment to 
future emissions and consequent warming depending on achievable 
rates of emission reductions. The current level and rate of human-
induced warming determines both the time left before a temperature 
threshold is exceeded if warming continues (dashed blue line 
in Figure 1.5) and the time over which the warming rate must be 
reduced to avoid exceeding that threshold (approximately indicated 
by the dotted blue line in Figure 1.5). Leach et al. (2018) use a central 
estimate of human-induced warming of 1.02°C in 2017, increasing 
at 0.215°C per decade (Haustein et al., 2017), to argue that it will 
take 13–32 years (one-standard-error range) to reach 1.5°C if the 
current warming rate continues, allowing 25–64 years to stabilise 
temperatures at 1.5°C if the warming rate is reduced at a constant 

rate of deceleration starting immediately. Applying a similar approach 
to the multi-dataset average GMST used in this report gives an 
assessed likely range for the date at which warming reaches 1.5°C 
of 2030 to 2052. The lower bound on this range, 2030, is supported 
by multiple lines of evidence, including the AR5 assessment for the 
likely range of warming (0.3°C–0.7°C) for the period 2016–2035 
relative to 1986–2005. The upper bound, 2052, is supported by fewer 
lines of evidence, so we have used the upper bound of the 5–95% 
confidence interval given by the Leach et al. (2018) method applied to 
the multi-dataset average GMST, expressed as the upper limit of the 
likely range, to reflect the reliance on a single approach. Results are 
sensitive both to the confidence level chosen and the number of years 
used to estimate the current rate of anthropogenic warming (5 years 
used here, to capture the recent acceleration due to rising non-CO2 
forcing). Since the rate of human-induced warming is proportional 
to the rate of CO2 emissions (Matthews et al., 2009; Zickfeld et al., 
2009) plus a term approximately proportional to the rate of increase 
in non-CO2 radiative forcing (Gregory and Forster, 2008; Allen et al., 
2018; Cross-Chapter Box 2 in this chapter), these time scales also 
provide an indication of minimum emission reduction rates required 
if a warming greater than 1.5°C is to be avoided (see Figure 1.5, 
Supplementary Material 1.SM.6 and FAQ 1.2).

Cross-Chapter Box 2 | Measuring Progress to Net Zero Emissions Combining Long-Lived and Short-
Lived Climate Forcers 

Contributing Authors:   
Piers Forster (UK), Myles R. Allen (UK), Elmar Kriegler (Germany), Joeri Rogelj (Austria/Belgium), Seth Schultz (USA), Drew Shindell 
(USA), Kirsten Zickfeld (Canada/Germany)

Emissions of many different climate forcers will affect the rate and magnitude of climate change over the next few decades (Myhre et al., 
2013). Since these decades will determine when 1.5°C is reached or whether a warming greater than 1.5°C is avoided, understanding 
the aggregate impact of different forcing agents is particularly important in the context of 1.5°C pathways. Paragraph 17 of Decision 1 
of the 21st Conference of the Parties on the adoption of the Paris Agreement specifically states that this report is to identify aggregate 
greenhouse gas emission levels compatible with holding the increase in global average temperatures to 1.5°C above pre-industrial 
levels (see Chapter 2). This request highlights the need to consider the implications of different methods of aggregating emissions of 
different gases, both for future temperatures and for other aspects of the climate system (Levasseur et al., 2016; Ocko et al., 2017). 

To date, reporting of GHG emissions under the UNFCCC has used Global Warming Potentials (GWPs) evaluated over a 100-year time 
horizon (GWP100) to combine multiple climate forcers. IPCC Working Group 3 reports have also used GWP100 to represent multi-gas 
pathways (Clarke et al., 2014). For reasons of comparability and consistency with current practice, Chapter 2 in this Special Report 
continues to use this aggregation method. Numerous other methods of combining different climate forcers have been proposed, such 
as the Global Temperature-change Potential (GTP; Shine et al., 2005) and the Global Damage Potential (Tol et al., 2012; Deuber et al., 
2013).

Climate forcers fall into two broad categories in terms of their impact on global temperature (Smith et al., 2012): long-lived GHGs, such 
as CO2 and nitrous oxide (N2O), whose warming impact depends primarily on the total cumulative amount emitted over the past century 
or the entire industrial epoch; and short-lived climate forcers (SLCFs), such as methane and black carbon, whose warming impact 
depends primarily on current and recent annual emission rates (Reisinger et al., 2012; Myhre et al., 2013; Smith et al., 2013; Strefler et 
al., 2014). These different dependencies affect the emissions reductions required of individual forcers to limit warming to 1.5°C or any 
other level.

Natural processes that remove CO2 permanently from the climate system are so slow that reducing the rate of CO2-induced warming 
to zero requires net zero global anthropogenic CO2 emissions (Archer and Brovkin, 2008; Matthews and Caldeira, 2008; Solomon et al., 
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2009), meaning almost all remaining anthropogenic CO2 emissions must be compensated for by an equal rate of anthropogenic carbon 
dioxide removal (CDR). Cumulative CO2 emissions are therefore an accurate indicator of CO2-induced warming, except in periods of 
high negative CO2 emissions (Zickfeld et al., 2016), and potentially in century-long periods of near-stable temperatures (Bowerman et 
al., 2011; Wigley, 2018). In contrast, sustained constant emissions of a SLCF such as methane, would (after a few decades) be consistent 
with constant methane concentrations and hence very little additional methane-induced warming (Allen et al., 2018; Fuglestvedt et al., 
2018). Both GWP and GTP would equate sustained SLCF emissions with sustained constant CO2 emissions, which would continue to 
accumulate in the climate system, warming global temperatures indefinitely. Hence nominally ‘equivalent’ emissions of CO2 and SLCFs, 
if equated conventionally using GWP or GTP, have very different temperature impacts, and these differences are particularly evident 
under ambitious mitigation characterizing 1.5°C pathways.

Since the AR5, a revised usage of GWP has been proposed (Lauder et al., 2013; Allen et al., 2016), denoted GWP* (Allen et al., 
2018), that addresses this issue by equating a permanently sustained change in the emission rate of an SLCF or SLCF-precursor (in 
tonnes-per-year), or other non-CO2 forcing (in watts per square metre), with a one-off pulse emission (in tonnes) of a fixed amount 
of CO2. Specifically, GWP* equates a 1 tonne-per-year increase in emission rate of an SLCF with a pulse emission of GWPH x H tonnes 
of CO2, where GWPH is the conventional GWP of that SLCF evaluated over time GWPH for SLCFs decreases with increasing time H, 
GWPH x H for SLCFs is less dependent on the choice of time horizon. Similarly, a permanent 1 W m−2 increase in radiative forcing has 
a similar temperature impact as the cumulative emission of H/AGWPH tonnes of CO2, where AGWPH is the Absolute Global Warming 
Potential of CO2 (Shine et al., 2005; Myhre et al., 2013; Allen et al., 2018). This indicates approximately how future changes in non-
CO2 radiative forcing affect cumulative CO2 emissions consistent with any given level of peak warming.

When combined using GWP*, cumulative aggregate GHG emissions are closely proportional to total GHG-induced warming, while 
the annual rate of GHG-induced warming is proportional to the annual rate of aggregate GHG emissions (see Cross-Chapter Box 2, 
Figure 1). This is not the case when emissions are aggregated using GWP or GTP, with discrepancies particularly pronounced when 
SLCF emissions are falling. Persistent net zero CO2-equivalent emissions containing a residual positive forcing contribution from 
SLCFs and aggregated using GWP100 or GTP would result in a steady decline of GMST. Net zero global emissions aggregated using 
GWP* (which corresponds to zero net emissions of CO2 and other long-lived GHGs like nitrous oxide, combined with near-constant 
SLCF forcing – see Figure 1.5) results in approximately stable GMST (Allen et al., 2018; Fuglestvedt et al., 2018 and Cross-Chapter 
Box 2, Figure 1, below).

Whatever method is used to relate emissions of different greenhouse gases, scenarios achieving stable GMST well below 2°C 
require both near-zero net emissions of long-lived greenhouse gases and deep reductions in warming SLCFs (Chapter 2), in part to 
compensate for the reductions in cooling SLCFs that are expected to accompany reductions in CO2 emissions (Rogelj et al., 2016b; 
Hienola et al., 2018). Understanding the implications of different methods of combining emissions of different climate forcers is, 
however, helpful in tracking progress towards temperature stabilisation and ‘balance between anthropogenic emissions by sources 
and removals by sinks of greenhouse gases’ as stated in Article 4 of the Paris Agreement. Fuglestvedt et al. (2018) and Tanaka and 
O’Neill (2018) show that when, and even whether, aggregate GHG emissions need to reach net zero before 2100 to limit warming 
to 1.5°C depends on the scenario, aggregation method and mix of long-lived and short-lived climate forcers.

The comparison of the impacts of different climate forcers can also consider more than their effects on GMST (Johansson, 2012; Tol 
et al., 2012; Deuber et al., 2013; Myhre et al., 2013; Cherubini and Tanaka, 2016). Climate impacts arise from both magnitude and 
rate of climate change, and from other variables such as precipitation (Shine et al., 2015). Even if GMST is stabilised, sea level rise 
and associated impacts will continue to increase (Sterner et al., 2014), while impacts that depend on CO2 concentrations such as 
ocean acidification may begin to reverse. From an economic perspective, comparison of different climate forcers ideally reflects the 
ratio of marginal economic damages if used to determine the exchange ratio of different GHGs under multi-gas regulation (Tol et 
al., 2012; Deuber et al., 2013; Kolstad et al., 2014). 

Emission reductions can interact with other dimensions of sustainable development (see Chapter 5). In particular, early action on 
some SLCFs (including actions that may warm the climate, such as reducing sulphur dioxide emissions) may have considerable 
societal co-benefits, such as reduced air pollution and improved public health with associated economic benefits (OECD, 2016; 
Shindell et al., 2016). Valuation of broadly defined social costs attempts to account for many of these additional non-climate factors 
along with climate-related impacts (Shindell, 2015; Sarofim et al., 2017; Shindell et al., 2017). See Chapter 4, Section 4.3.6, for a 
discussions of mitigation options, noting that mitigation priorities for different climate forcers depend on multiple economic and 
social criteria that vary between sectors, regions and countries.

Cross-Chapter Box 2 (continued)
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Cross-Chapter Box 2, Figure 1 |  Implications of different approaches to calculating aggregate greenhouse gas emissions on a pathway to net 
zero. (a) Aggregate emissions of well-mixed greenhouse gases (WMGHGs) under the RCP2.6 mitigation scenario expressed as CO2-equivalent using GWP100 (blue); 
GTP100 (green) and GWP* (yellow). Aggregate WMGHG emissions appear to fall more rapidly if calculated using GWP* than using either GWP or GTP, primarily 
because GWP* equates a falling methane emission rate with negative CO2 emissions, as only active CO2 removal would have the same impact on radiative forcing 
and GMST as a reduction in methane emission rate. (b) Cumulative emissions of WMGHGs combined as in panel (a) (blue, green and yellow lines & left hand axis) 
and warming response to combined emissions (black dotted line and right hand axis, Millar et al. (2017a). The temperature response under ambitious mitigation is 
closely correlated with cumulative WMGHG emissions aggregated using GWP*, but with neither emission rate nor cumulative emissions if aggregated using GWP 
or GTP.

Cross-Chapter Box 2 (continued)

1.3	 Impacts at 1.5°C and Beyond

1.3.1	 Definitions

Consistent with the AR5 (IPCC, 2014a), ‘impact’ in this report refers 
to the effects of climate change on human and natural systems. 
Impacts may include the effects of changing hazards, such as the 
frequency and intensity of heat waves. ‘Risk’ refers to potential 
negative impacts of climate change where something of value is at 
stake, recognizing the diversity of values. Risks depend on hazards, 
exposure, vulnerability (including sensitivity and capacity to respond) 
and likelihood. Climate change risks can be managed through efforts 
to mitigate climate change forcers, adaptation of impacted systems, 
and remedial measures (Section 1.4.1).

In the context of this report, regional impacts of global warming at 
1.5°C and 2°C are assessed in Chapter 3. The ‘warming experience at 
1.5°C’ is that of regional climate change (temperature, rainfall, and 
other changes) at the time when global average temperatures, as 
defined in Section 1.2.1, reach 1.5°C above pre-industrial (the same 
principle applies to impacts at any other global mean temperature). 
Over the decade 2006–2015, many regions have experienced higher 
than average levels of warming and some are already now 1.5°C or 
more warmer with respect to the pre-industrial period (Figure 1.3). 

At a global warming of 1.5°C, some seasons will be substantially 
warmer than 1.5°C above pre-industrial (Seneviratne et al., 2016). 
Therefore, most regional impacts of a global mean warming of 1.5°C 
will be different from those of a regional warming by 1.5°C. 

The impacts of 1.5°C global warming will vary in both space and 
time (Ebi et al., 2016). For many regions, an increase in global 
mean temperature by 1.5°C or 2°C implies substantial increases 
in the occurrence and/or intensity of some extreme events (Fischer 
and Knutti, 2015; Karmalkar and Bradley, 2017; King et al., 2017; 
Chevuturi et al., 2018), resulting in different impacts (see Chapter 
3). By comparing impacts at 1.5°C versus those at 2°C, this report 
discusses the ‘avoided impacts’ by maintaining global temperature 
increase at or below 1.5°C as compared to 2°C, noting that these 
also depend on the pathway taken to 1.5°C (see Section 1.2.3 and 
Cross-Chapter Box 8 in Chapter 3 on 1.5°C warmer worlds). Many 
impacts take time to observe, and because of the warming trend, 
impacts over the past 20 years were associated with a level of human-
induced warming that was, on average, 0.1°C–0.23°C colder than 
its present level, based on the AR5 estimate of the warming trend 
over this period (Section 1.2.1 and Kirtman et al., 2013). Attribution 
studies (e.g., van Oldenborgh et al., 2017) can address this bias, but 
informal estimates of ‘recent impact experience’ in a rapidly warming 
world necessarily understate the temperature-related impacts of the 
current level of warming.
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1.3.2	 Drivers of Impacts

Impacts of climate change are due to multiple environmental drivers 
besides rising temperatures, such as rising atmospheric CO2, shifting 
rainfall patterns (Lee et al., 2018), rising sea levels, increasing ocean 
acidification, and extreme events, such as floods, droughts, and heat 
waves (IPCC, 2014a). Changes in rainfall affect the hydrological cycle 
and water availability (Schewe et al., 2014; Döll et al., 2018; Saeed 
et al., 2018). Several impacts depend on atmospheric composition,  
increasing atmospheric carbon dioxide levels leading to changes in 
plant productivity (Forkel et al., 2016), but also to ocean acidification 
(Hoegh-Guldberg et al., 2007). Other impacts are driven by changes 
in ocean heat content such as the destabilization of coastal ice sheets 
and sea level rise (Bindoff et al., 2007; Chen et al., 2017), whereas 
impacts due to heat waves depend directly on ambient air or ocean 
temperature (Matthews et al., 2017). Impacts can be direct, such as 
coral bleaching due to ocean warming, and indirect, such as reduced 
tourism due to coral bleaching. Indirect impacts can also arise from 
mitigation efforts such as changed agricultural management (Section 
3.6.2) or remedial measures such as solar radiation modification 
(Section 4.3.8, Cross-Chapter Box 10 in Chapter 4). 

Impacts may also be triggered by combinations of factors, including 
‘impact cascades’ (Cramer et al., 2014) through secondary 
consequences of changed systems. Changes in agricultural water 
availability caused by upstream changes in glacier volume are a 
typical example. Recent studies also identify compound events 
(e.g., droughts and heat waves), that is, when impacts are induced 
by the combination of several climate events (AghaKouchak et al., 
2014; Leonard et al., 2014; Martius et al., 2016; Zscheischler and 
Seneviratne, 2017).

There are now techniques to attribute impacts formally to 
anthropogenic global warming and associated rainfall changes 
(Rosenzweig et al., 2008; Cramer et al., 2014; Hansen et al., 2016), 
taking into account other drivers such as land-use change (Oliver and 
Morecroft, 2014) and pollution (e.g., tropospheric ozone; Sitch et al., 
2007). There are multiple lines of evidence that climate change has 
observable and often severely negative effects on people, especially 
where climate-sensitive biophysical conditions and socio-economic 
and political constraints on adaptive capacities combine to create 
high vulnerabilities (IPCC, 2012a, 2014a; World Bank, 2013). The 
character and severity of impacts depend not only on the hazards 
(e.g., changed climate averages and extremes) but also on the 
vulnerability (including sensitivities and adaptive capacities) of 
different communities and their exposure to climate threats. These 
impacts also affect a range of natural and human systems, such 
as terrestrial, coastal and marine ecosystems and their services; 
agricultural production; infrastructure; the built environment; human 
health; and other socio-economic systems (Rosenzweig et al., 2017).

Sensitivity to changing drivers varies markedly across systems 
and regions. Impacts of climate change on natural and managed 
ecosystems can imply loss or increase in growth, biomass or diversity 
at the level of species populations, interspecific relationships such as 
pollination, landscapes or entire biomes. Impacts occur in addition 
to the natural variation in growth, ecosystem dynamics, disturbance, 

succession and other processes, rendering attribution of impacts 
at lower levels of warming difficult in certain situations. The same 
magnitude of warming can be lethal during one phase of the life 
of an organism and irrelevant during another. Many ecosystems 
(notably forests, coral reefs and others) undergo long-term 
successional processes characterised by varying levels of resilience 
to environmental change over time. Organisms and ecosystems may 
adapt to environmental change to a certain degree, through changes 
in physiology, ecosystem structure, species composition or evolution. 
Large-scale shifts in ecosystems may cause important feedbacks, 
in terms of changing water and carbon fluxes through impacted 
ecosystems – these can amplify or dampen atmospheric change at 
regional to continental scale. Of particular concern is the response of 
most of the world’s forests and seagrass ecosystems, which play key 
roles as carbon sinks (Settele et al., 2014; Marbà et al., 2015).

Some ambitious efforts to constrain atmospheric greenhouse gas 
concentrations may themselves impact ecosystems. In particular, 
changes in land use, potentially required for massively enhanced 
production of biofuels (either as simple replacement of fossil fuels, or 
as part of bioenergy with carbon capture and storage, BECCS) impact 
all other land ecosystems through competition for land (e.g., Creutzig, 
2016) (see Cross-Chapter Box 7 in Chapter 3, Section 3.6.2.1).

Human adaptive capacity to a 1.5°C warmer world varies markedly 
for individual sectors and across sectors such as water supply, public 
health, infrastructure, ecosystems and food supply. For example, den-
sity and risk exposure, infrastructure vulnerability and resilience, gov-
ernance, and institutional capacity all drive different impacts across 
a range of human settlement types (Dasgupta et al., 2014; Revi et al., 
2014; Rosenzweig et al., 2018). Additionally, the adaptive capacity of 
communities and human settlements in both rural and urban areas, 
especially in highly populated regions, raises equity, social justice and 
sustainable development issues. Vulnerabilities due to gender, age, 
level of education and culture act as compounding factors (Arora-
Jonsson, 2011; Cardona et al., 2012; Resurrección, 2013; Olsson et 
al., 2014; Vincent et al., 2014).

1.3.3	 Uncertainty and Non-Linearity of Impacts

Uncertainties in projections of future climate change and impacts 
come from a variety of different sources, including the assumptions 
made regarding future emission pathways (Moss et al., 2010), the 
inherent limitations and assumptions of the climate models used for 
the projections, including limitations in simulating regional climate 
variability (James et al., 2017), downscaling and bias-correction 
methods (Ekström et al., 2015), the assumption of a linear scaling 
of impacts with GMST used in many studies (Lewis et al., 2017; King 
et al., 2018b), and in impact models (e.g., Asseng et al., 2013). The 
evolution of climate change also affects uncertainty with respect 
to impacts. For example, the impacts of overshooting 1.5°C and 
stabilization at a later stage compared to stabilization at 1.5°C 
without overshoot may differ in magnitude (Schleussner et al., 2016). 

AR5 (IPCC, 2013b) and World Bank (2013) underscored the non-
linearity of risks and impacts as temperature rises from 2°C to 4°C of 
warming, particularly in relation to water availability, heat extremes, 
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bleaching of coral reefs, and more. Recent studies (Schleussner et al., 
2016; James et al., 2017; Barcikowska et al., 2018; King et al., 2018a) 
assess the impacts of 1.5°C versus 2°C warming, with the same 
message of non-linearity. The resilience of ecosystems, meaning 
their ability either to resist change or to recover after a disturbance, 
may change, and often decline, in a non-linear way. An example 
are reef ecosystems, with some studies suggesting that reefs will 
change, rather than disappear entirely, and with particular species 
showing greater tolerance to coral bleaching than others (Pörtner 
et al., 2014). A key issue is therefore whether ecosystems such as 
coral reefs survive an overshoot scenario, and to what extent they 
would be able to recover after stabilization at 1.5°C or higher levels 
of warming (see Box 3.4).

1.4	 Strengthening the Global Response 

This section frames the implementation options, enabling conditions 
(discussed further in Cross-Chapter Box 3 on feasibility in this 
chapter), capacities and types of knowledge and their availability 
(Blicharska et al., 2017) that can allow institutions, communities 
and societies to respond to the 1.5°C challenge in the context of 
sustainable development and the Sustainable Development Goals 
(SDGs). It also addresses other relevant international agreements 
such as the Sendai Framework for Disaster Risk Reduction. Equity and 
ethics are recognised as issues of importance in reducing vulnerability 
and eradicating poverty. 

The connection between the enabling conditions for limiting global 
warming to 1.5°C and the ambitions of the SDGs are complex across 
scale and multi-faceted (Chapter 5). Climate mitigation–adaptation 
linkages, including synergies and trade-offs, are important when 
considering opportunities and threats for sustainable development. 
The IPCC AR5 acknowledged that ‘adaptation and mitigation 
have the potential to both contribute to and impede sustainable 
development, and sustainable development strategies and choices 
have the potential to both contribute to and impede climate change 
responses’ (Denton et al., 2014). Climate mitigation and adaptation 
measures and actions can reflect and enforce specific patterns 
of development and governance that differ amongst the world’s 
regions (Gouldson et al., 2015; Termeer et al., 2017). The role of 
limited adaptation and mitigation capacity, limits to adaptation and 
mitigation, and conditions of mal-adaptation and mal-mitigation are 
assessed in this report (Chapters 4 and 5).

1.4.1	 Classifying Response Options

Key broad categories of responses to the climate change problem are 
framed here. Mitigation refers to efforts to reduce or prevent the 
emission of greenhouse gases, or to enhance the absorption of gases 
already emitted, thus limiting the magnitude of future warming 
(IPCC, 2014b). Mitigation requires the use of new technologies, 
clean energy sources, reduced deforestation, improved sustainable 
agricultural methods, and changes in individual and collective 
behaviour. Many of these may provide substantial co-benefits for air 
quality, biodiversity and sustainable development. Mal-mitigation 

includes changes that could reduce emissions in the short-term but 
could lock in technology choices or practices that include significant 
trade-offs for effectiveness of future adaptation and other forms of 
mitigation (Chapters 2 and 4).

Carbon dioxide removal (CDR) or ‘negative emissions’ activities 
are considered in this report as distinct from the above mitigation 
activities. While most mitigation activities focus on reducing the 
amount of carbon dioxide or other greenhouse gases emitted, 
CDR aims to reduce concentrations already in the atmosphere. 
Technologies for CDR are mostly in their infancy despite their 
importance to ambitious climate change mitigation pathways (Minx 
et al., 2017). Although some CDR activities such as reforestation 
and ecosystem restoration are well understood, the feasibility of 
massive-scale deployment of many CDR technologies remains an 
open question (IPCC, 2014b; Leung et al., 2014) (Chapters 2 and 4). 
Technologies for the active removal of other greenhouse gases, such 
as methane, are even less developed, and are briefly discussed in 
Chapter 4.

Climate change adaptation refers to the actions taken to manage 
the impacts of climate change (IPCC, 2014a). The aim is to reduce 
vulnerability and exposure to the harmful effects of climate change 
(e.g., sea level rise, more intense extreme weather events or food 
insecurity). It also includes exploring the potential beneficial 
opportunities associated with climate change (for example, longer 
growing seasons or increased yields in some regions). Different 
adaptation pathways can be undertaken. Adaptation can be 
incremental, or transformational, meaning fundamental attributes 
of the system are changed (Chapter 3 and 4). There can be limits 
to ecosystem-based adaptation or the ability of humans to adapt 
(Chapter 4). If there is no possibility for adaptive actions that can 
be applied to avoid an intolerable risk, these are referred to as 
hard adaptation limits, while soft adaptation limits are identified 
when there are currently no options to avoid intolerable risks, but 
they are theoretically possible (Chapter 3 and 4). While climate 
change is a global issue, impacts are experienced locally. Cities and 
municipalities are at the frontline of adaptation (Rosenzweig et al., 
2018), focusing on reducing and managing disaster risks due to 
extreme and slow-onset weather and climate events, installing flood 
and drought early warning systems, and improving water storage 
and use (Chapters 3 and 4 and Cross-Chapter Box 12 in Chapter 5). 
Agricultural and rural areas, including often highly vulnerable remote 
and indigenous communities, also need to address climate-related 
risks by strengthening and making more resilient agricultural and 
other natural resource extraction systems. 

Remedial measures are distinct from mitigation or adaptation, as 
the aim is to temporarily reduce or offset warming (IPCC, 2012b). 
One such measure is solar radiation modification (SRM), also referred 
to as solar radiation management in the literature, which involves 
deliberate changes to the albedo of the Earth system, with the net 
effect of increasing the amount of solar radiation reflected from the 
Earth to reduce the peak temperature from climate change (The Royal 
Society, 2009; Smith and Rasch, 2013; Schäfer et al., 2015). It should 
be noted that while some radiation modification measures, such as 
cirrus cloud thinning (Kristjánsson et al., 2016), aim at enhancing 
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outgoing long-wave radiation, SRM is used in this report to refer to 
all direct interventions on the planetary radiation budget. This report 
does not use the term ‘geo-engineering’ because of inconsistencies 
in the literature, which uses this term to cover SRM, CDR or both, 
whereas this report explicitly differentiates between CDR and SRM. 
Large-scale SRM could potentially be used to supplement mitigation 
in overshoot scenarios to keep the global mean temperature below 
1.5°C and temporarily reduce the severity of near-term impacts (e.g., 
MacMartin et al., 2018). The impacts of SRM (both biophysical and 
societal), costs, technical feasibility, governance and ethical issues 
associated need to be carefully considered (Schäfer et al., 2015; 
Section 4.3.8 and Cross-Chapter Box 10 in Chapter 4). 

1.4.2	 Governance, Implementation and Policies

A challenge in creating the enabling conditions of a 1.5°C warmer 
world is the governance capacity of institutions to develop, implement 
and evaluate the changes needed within diverse and highly 
interlinked global social-ecological systems (Busby, 2016) (Chapter 
4). Policy arenas, governance structures and robust institutions are 
key enabling conditions for transformative climate action (Chapter 
4). It is through governance that justice, ethics and equity within 
the adaptation–mitigation–sustainable development nexus can be 
addressed (von Stechow et al., 2016) (Chapter 5).

Governance capacity includes a wide range of activities and efforts 
needed by different actors to develop coordinated climate mitigation 
and adaptation strategies in the context of sustainable development, 
taking into account equity, justice and poverty eradication. Significant 
governance challenges include the ability to incorporate multiple 
stakeholder perspectives in the decision-making process to reach 
meaningful and equitable decisions, interactions and coordination 

between different levels of government, and the capacity to raise 
financing and support for both technological and human resource 
development. For example, Lövbrand et al. (2017), argue that the 
voluntary pledges submitted by states and non-state actors to meet 
the conditions of the Paris Agreement will need to be more firmly 
coordinated, evaluated and upscaled.

Barriers for transitioning from climate change mitigation and 
adaptation planning to practical policy implementation include 
finance, information, technology, public attitudes, social values 
and practices (Whitmarsh et al., 2011; Corner and Clarke, 2017), 
and human resource constraints. Institutional capacity to deploy 
available knowledge and resources is also needed (Mimura et al., 
2014). Incorporating strong linkages across sectors, devolution of 
power and resources to sub-national and local governments with 
the support of national government, and facilitating partnerships 
among public, civic, private sectors and higher education institutions 
(Leal Filho et al., 2018) can help in the implementation of identified 
response options (Chapter 4). Implementation challenges of 1.5°C 
pathways are larger than for those that are consistent with limiting 
warming to well below 2°C, particularly concerning scale and speed 
of the transition and the distributional impacts on ecosystems and 
socio-economic actors. Uncertainties in climate change at different 
scales and capacities to respond combined with the complexities of 
coupled social and ecological systems point to a need for diverse and 
adaptive implementation options within and among different regions 
involving different actors. The large regional diversity between highly 
carbon-invested economies and emerging economies are important 
considerations for sustainable development and equity in pursuing 
efforts to limit warming to 1.5°C. Key sectors, including energy, food 
systems, health, and water supply, also are critical to understanding 
these connections. 

Cross-Chapter Box 3 |  Framing Feasibility: Key Concepts and Conditions for Limiting Global Temperature 
Increases to 1.5°C

Contributing Authors:   
William Solecki (USA), Anton Cartwright (South Africa), Wolfgang Cramer (France/Germany), James Ford (UK/Canada), Kejun Jiang 
(China), Joana Portugal Pereira (UK/Portugal), Joeri Rogelj (Austria/Belgium), Linda Steg (Netherlands), Henri Waisman (France)

This Cross-Chapter Box describes the concept of feasibility in relation to efforts to limit global warming to 1.5°C in the context of 
sustainable development and efforts to eradicate poverty and draws from the understanding of feasibility emerging within the IPCC 
(IPCC, 2017). Feasibility can be assessed in different ways, and no single answer exists as to the question of whether it is feasible to limit 
warming to 1.5°C. This implies that an assessment of feasibility would go beyond a ‘yes’ or a ‘no’. Rather, feasibility provides a frame 
to understand the different conditions and potential responses for implementing adaptation and mitigation pathways, and options 
compatible with a 1.5°C warmer world. This report assesses the overall feasibility of limiting warming to 1.5°C, and the feasibility of 
adaptation and mitigation options compatible with a 1.5°C warmer world, in six dimensions: 
Geophysical: What global emission pathways could be consistent with conditions of a 1.5°C warmer world? What are the physical 
potentials for adaptation?
Environmental-ecological: What are the ecosystem services and resources, including geological storage capacity and related rate 
of needed land-use change, available to promote transformations, and to what extent are they compatible with enhanced resilience?
Technological: What technologies are available to support transformation? 
Economic: What economic conditions could support transformation? 
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Socio-cultural: What conditions could support transformations in behaviour and lifestyles? To what extent are the transformations 
socially acceptable and consistent with equity?
Institutional: What institutional conditions are in place to support transformations, including multi-level governance, institutional 
capacity, and political support?

Assessment of feasibility in this report starts by evaluating the unavoidable warming from past emissions (Section 1.2.4) and identifying 
mitigation pathways that would lead to a 1.5°C world, which indicates that rapid and deep deviations from current emission pathways 
are necessary (Chapter 2). In the case of adaptation, an assessment of feasibility starts from an evaluation of the risks and impacts of 
climate change (Chapter 3). To mitigate and adapt to climate risks, system-wide technical, institutional and socio-economic transitions 
would be required, as well as the implementation of a range of specific mitigation and adaptation options. Chapter 4 applies various 
indicators categorised in these six dimensions to assess the feasibility of illustrative examples of relevant mitigation and adaptation 
options (Section 4.5.1). Such options and pathways have different effects on sustainable development, poverty eradication and 
adaptation capacity (Chapter 5). 

The six feasibility dimensions interact in complex and place-specific ways. Synergies and trade-offs may occur between the feasibility 
dimensions, and between specific mitigation and adaptation options (Section 4.5.4). The presence or absence of enabling conditions 
would affect the options that comprise feasibility pathways (Section 4.4), and can reduce trade-offs and amplify synergies between 
options. 

Sustainable development, eradicating poverty and reducing inequalities are not only preconditions for feasible transformations, but 
the interplay between climate action (both mitigation and adaptation options) and the development patterns to which they apply may 
actually enhance the feasibility of particular options (see Chapter 5).

The connections between the feasibility dimensions can be specified across three types of effects (discussed below). Each of these 
dimensions presents challenges and opportunities in realizing conditions consistent with a 1.5°C warmer world. 

Systemic effects: Conditions that have embedded within them system-level functions that could include linear and non-linear 
connections and feedbacks. For example, the deployment of technology and large installations (e.g., renewable or low carbon energy 
mega-projects) depends upon economic conditions (costs, capacity to mobilize investments for R&D), social or cultural conditions 
(acceptability), and institutional conditions (political support; e.g., Sovacool et al., 2015). Case studies can demonstrate system-level 
interactions and positive or negative feedback effects between the different conditions (Jacobson et al., 2015; Loftus et al., 2015). This 
suggests that each set of conditions and their interactions need to be considered to understand synergies, inequities and unintended 
consequences.

Dynamic effects: Conditions that are highly dynamic and vary over time, especially under potential conditions of overshoot or no 
overshoot. Some dimensions might be more time sensitive or sequential than others (i.e., if conditions are such that it is no longer 
geophysically feasible to avoid overshooting 1.5°C, the social and institutional feasibility of avoiding overshoot will be no longer 
relevant). Path dependencies, risks of legacy lock-ins related to existing infrastructures, and possibilities of acceleration permitted by 
cumulative effects (e.g., dramatic cost decreases driven by learning-by-doing) are all key features to be captured. The effects can play 
out over various time scales and thus require understanding the connections between near-term (meaning within the next several years 
to two decades) and long-term implications (meaning over the next several decades) when assessing feasibility conditions.

Spatial effects: Conditions that are spatially variable and scale dependent, according to context-specific factors such as regional-
scale environmental resource limits and endowment; economic wealth of local populations; social organisation, cultural beliefs, values 
and worldviews; spatial organisation, including conditions of urbanisation; and financial and institutional and governance capacity. 
This means that the conditions for achieving the global transformation required for a 1.5°C world will be heterogeneous and vary 
according to the specific context. On the other hand, the satisfaction of these conditions may depend upon global-scale drivers, such as 
international flows of finance, technologies or capacities. This points to the need for understanding feasibility to capture the interplay 
between the conditions at different scales.

With each effect, the interplay between different conditions influences the feasibility of both pathways (Chapter 2) and options (Chapter 
4), which in turn affect the likelihood of limiting warming to 1.5°C. The complexity of these interplays triggers unavoidable uncertainties, 
requiring transformations that remain robust under a range of possible futures that limit warming to 1.5°C. 

Cross-Chapter Box 3 (continued)
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1.4.3	 Transformation, Transformation Pathways, 
and Transition: Evaluating Trade-Offs and 
Synergies Between Mitigation, Adaptation 
and Sustainable Development Goals

Embedded in the goal of limiting warming to 1.5°C is the 
opportunity for intentional societal transformation (see Box 1.1 
on the Anthropocene). The form and process of transformation are 
varied and multifaceted (Pelling, 2011; O’Brien et al., 2012; O’Brien 
and Selboe, 2015; Pelling et al., 2015). Fundamental elements of 
1.5°C-related transformation include a decoupling of economic 
growth from energy demand and CO2 emissions; leap-frogging 
development to new and emerging low-carbon, zero-carbon and 
carbon-negative technologies; and synergistically linking climate 
mitigation and adaptation to global scale trends (e.g., global trade 
and urbanization) that will enhance the prospects for effective 
climate action, as well as enhanced poverty reduction and greater 
equity (Tschakert et al., 2013; Rogelj et al., 2015; Patterson et al., 
2017) (Chapters 4 and 5). The connection between transformative 
climate action and sustainable development illustrates a complex 
coupling of systems that have important spatial and time scale lag 
effects and implications for process and procedural equity, including 
intergenerational equity and for non-human species (Cross-Chapter 
Box 4 in this chapter, Chapter 5). Adaptation and mitigation transition 
pathways highlight the importance of cultural norms and values, 
sector-specific context, and proximate (i.e., occurrence of an extreme 
event) drivers that when acting together enhance the conditions for 
societal transformation (Solecki et al., 2017; Rosenzweig et al., 2018) 
(Chapters 4 and 5). 

Diversity and flexibility in implementation choices exist for adaptation, 
mitigation (including carbon dioxide removal, CDR) and remedial 
measures (such as solar radiation modification, SRM), and a potential 
for trade-offs and synergies between these choices and sustainable 
development (IPCC, 2014d; Olsson et al., 2014). The responses 

chosen could act to synergistically enhance mitigation, adaptation 
and sustainable development, or they may result in trade-offs 
which positively impact some aspects and negatively impact others. 
Climate change is expected to decrease the likelihood of achieving 
the Sustainable Development Goals (SDGs). While some strategies 
limiting warming towards 1.5°C are expected to significantly increase 
the likelihood of meeting those goals while also providing synergies 
for climate adaptation and mitigation (Chapter 5).

Dramatic transformations required to achieve the enabling conditions 
for a 1.5°C warmer world could impose trade-offs on dimensions 
of development (IPCC, 2014d; Olsson et al., 2014). Some choices 
of adaptation methods also could adversely impact development 
(Olsson et al., 2014). This report recognizes the potential for adverse 
impacts and focuses on finding the synergies between limiting 
warming, sustainable development, and eradicating poverty, thus 
highlighting pathways that do not constrain other goals, such as 
sustainable development and eradicating poverty.

The report is framed to address these multiple goals simultaneously 
and assesses the conditions to achieve a cost-effective and socially 
acceptable solution, rather than addressing these goals piecemeal 
(von Stechow et al., 2016) (Section 4.5.4 and Chapter 5), although 
there may be different synergies and trade-offs between a 2°C (von 
Stechow et al., 2016) and 1.5°C warmer world (Kainuma et al., 
2017). Climate-resilient development pathways (see Cross-Chapter 
Box 12 in Chapter 5 and Glossary) are trajectories that strengthen 
sustainable development, including mitigating and adapting to 
climate change and efforts to eradicate poverty while promoting 
fair and cross-scalar resilience in a changing climate. They take into 
account dynamic livelihoods; the multiple dimensions of poverty, 
structural inequalities; and equity between and among poor and 
non-poor people (Olsson et al., 2014). Climate-resilient development 
pathways can be considered at different scales, including cities, rural 
areas, regions or at global level (Denton et al., 2014; Chapter 5).

Cross-Chapter Box 4 | Sustainable Development and the Sustainable Development Goals

Contributing Authors:   
Diana Liverman (USA), Mustafa Babiker (Sudan), Purnamita Dasgupta (India), Riyanti Djanlante (Japan/Indonesia), Stephen Humphreys 
(UK/Ireland), Natalie Mahowald (USA), Yacob Mulugetta (UK/Ethiopia), Virginia Villariño (Argentina), Henri Waisman (France)

Sustainable development is most often defined as ‘development that meets the needs of the present without compromising the ability 
of future generations to meet their own needs’ (WCED, 1987) and includes balancing social well-being, economic prosperity and 
environmental protection. The AR5 used this definition and linked it to climate change (Denton et al., 2014). The most significant step 
since AR5 is the adoption of the UN Sustainable Development Goals, and the emergence of literature that links them to climate (von 
Stechow et al., 2015; Wright et al., 2015; Epstein and Theuer, 2017; Hammill and Price-Kelly, 2017; Kelman, 2017; Lofts et al., 2017; 
Maupin, 2017; Gomez-Echeverri, 2018).

In September 2015, the UN endorsed a universal agenda – ‘Transforming our World: the 2030 Agenda for Sustainable Development’ 
– which aims ‘to take the bold and transformative steps which are urgently needed to shift the world onto a sustainable and resilient 
path’. Based on a participatory process, the resolution in support of the 2030 agenda adopted 17 non-legally-binding Sustainable 
Development Goals (SDGs) and 169 targets to support people, prosperity, peace, partnerships and the planet (Kanie and Biermann, 
2017). 
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The SDGs expanded efforts to reduce poverty and other deprivations under the UN Millennium Development Goals (MDGs). There were 
improvements under the MDGs between 1990 and 2015, including reducing overall poverty and hunger, reducing infant mortality, and 
improving access to drinking water (UN, 2015a). However, greenhouse gas emissions increased by more than 50% from 1990 to 2015, 
and 1.6 billion people were still living in multidimensional poverty with persistent inequalities in 2015 (Alkire et al., 2015).

The SDGs raise the ambition for eliminating poverty, hunger, inequality and other societal problems while protecting the environment. 
They have been criticised: as too many and too complex, needing more realistic targets, overly focused on 2030 at the expense of 
longer-term objectives, not embracing all aspects of sustainable development, and even contradicting each other (Horton, 2014; Death 
and Gabay, 2015; Biermann et al., 2017; Weber, 2017; Winkler and Satterthwaite, 2017). 

Climate change is an integral influence on sustainable development, closely related to the economic, social and environmental 
dimensions of the SDGs. The IPCC has woven the concept of sustainable development into recent assessments, showing how climate 
change might undermine sustainable development, and the synergies between sustainable development and responses to climate 
change (Denton et al., 2014). Climate change is also explicit in the SDGs. SDG13 specifically requires ‘urgent action to address climate 
change and its impacts’. The targets include strengthening resilience and adaptive capacity to climate-related hazards and natural 
disasters; integrating climate change measures into national policies, strategies and planning; and improving education, awareness-
raising and human and institutional capacity. 

Targets also include implementing the commitment undertaken by developed-country parties to the UNFCCC to the goal of mobilizing 
jointly 100 billion USD annually by 2020 and operationalizing the Green Climate Fund, as well as promoting mechanisms for raising 
capacity for effective climate change-related planning and management in least developed countries and Small Island Developing 
States, including focusing on women, youth and local and marginalised communities. SDG13 also acknowledges that the UNFCCC is 
the primary international, intergovernmental forum for negotiating the global response to climate change.

Climate change is also mentioned in SDGs beyond SDG13, for example in goal targets 1.5, 2.4, 11.B, 12.8.1 related to poverty, hunger, 
cities and education respectively. The UNFCCC addresses other SDGs in commitments to ‘control, reduce or prevent anthropogenic 
emissions of greenhouse gases […] in all relevant sectors, including the energy, transport, industry, agriculture, forestry and waste 
management sectors’ (Art4, 1(c)) and to work towards ‘the conservation and enhancement, as appropriate, of […] biomass, forests and 
oceans as well as other terrestrial, coastal and marine ecosystems’ (Art4, 1(d)). This corresponds to SDGs that seek clean energy for all 
(Goal 7), sustainable industry (Goal 9) and cities (Goal 11) and the protection of life on land and below water (14 and 15). 

The SDGs and UNFCCC also differ in their time horizons. The SDGs focus primarily on 2030 whereas the Paris Agreement sets out that 
‘Parties aim […] to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the 
second half of this century’. 

The IPCC decision to prepare this report on the impacts of 1.5°C and associated emission pathways explicitly asked for the assessment 
to be in the context of sustainable development and efforts to eradicate poverty. Chapter 1 frames the interaction between sustainable 
development, poverty eradication and ethics and equity. Chapter 2 assesses how risks and synergies of individual mitigation measures 
interact with 1.5°C pathways within the context of the SDGs and how these vary according to the mix of measures in alternative 
mitigation portfolios (Section 2.5). Chapter 3 examines the impacts of 1.5°C global warming on natural and human systems with 
comparison to 2°C and provides the basis for considering the interactions of climate change with sustainable development in Chapter 5. 
Chapter 4 analyses strategies for strengthening the response to climate change, many of which interact with sustainable development. 
Chapter 5 takes sustainable development, eradicating poverty and reducing inequalities as its focal point for the analysis of pathways 
to 1.5°C and discusses explicitly the linkages between achieving SDGs while eradicating poverty and reducing inequality. 

Cross-Chapter Box 4 (continued)
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Cross-Chapter Box 4, Figure 1 |  Climate action is number 13 of the UN Sustainable Development Goals.

Cross-Chapter Box 4 (continued)

1.5	 Assessment Frameworks and Emerging 
Methodologies that Integrate Climate 
Change Mitigation and Adaptation 
with Sustainable Development 

This report employs information and data that are global in scope 
and include region-scale analysis. It also includes syntheses of 
municipal, sub-national, and national case studies. Global level 
statistics including physical and social science data are used, as 
well as detailed and illustrative case study material of particular 
conditions and contexts. The assessment provides the state of 
knowledge, including an assessment of confidence and uncertainty. 
The main time scale of the assessment is the 21st century and the 
time is separated into the near-, medium-, and long-term. Near-term 
refers to the coming decade, medium-term to the period 2030–2050, 
while long-term refers to 2050–2100. Spatial and temporal contexts 
are illustrated throughout, including: assessment tools that include 
dynamic projections of emission trajectories and the underlying 
energy and land transformation (Chapter 2); methods for assessing 
observed impacts and projected risks in natural and managed 
ecosystems and at 1.5°C and higher levels of warming in natural and 
managed ecosystems and human systems (Chapter 3); assessments 
of the feasibility of mitigation and adaptation options (Chapter 4); 
and linkages of the Shared Socioeconomic Pathways (SSPs) and 
Sustainable Development Goals (SDGs) (Cross-Chapter Boxes 1 and 
4 in this chapter, Chapter 2 and Chapter 5). 

1.5.1	 Knowledge Sources and Evidence 
Used in the Report

This report is based on a comprehensive assessment of documented 
evidence of the enabling conditions to pursuing efforts to limit the 
global average temperature rise to 1.5°C and adapting to this level 
of warming in the overarching context of the Anthropocene (Delanty 
and Mota, 2017). Two sources of evidence are used: peer-reviewed 
scientific literature and ‘grey’ literature in accordance with procedure 
on the use of literature in IPCC reports (IPCC, 2013a, Annex 2 to 
Appendix A), with the former being the dominant source. Grey 
literature is largely used on key issues not covered in peer-reviewed 
literature. 

The peer-reviewed literature includes the following sources: 1) 
knowledge regarding the physical climate system and human-induced 
changes, associated impacts, vulnerabilities, and adaptation options, 
established from work based on empirical evidence, simulations, 
modelling, and scenarios, with emphasis on new information since 
the publication of the IPCC AR5 to the cut-off date for this report 
(15th of May 2018); 2) humanities and social science theory and 
knowledge from actual human experiences of climate change 
risks and vulnerability in the context of social-ecological systems, 
development, equity, justice, and governance, and from indigenous 
knowledge systems; and 3) mitigation pathways based on climate 
projections into the future. 
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The grey literature category extends to empirical observations, 
interviews, and reports from government, industry, research institutes, 
conference proceedings and international or other organisations. 
Incorporating knowledge from different sources, settings and 
information channels while building awareness at various levels will 
advance decision-making and motivate implementation of context-
specific responses to 1.5°C warming (Somanathan et al., 2014). 
The assessment does not assess non-written evidence and does not 
use oral evidence, media reports or newspaper publications. With 
important exceptions, such as China, published knowledge from 
the most vulnerable parts of the world to climate change is limited 
(Czerniewicz et al., 2017).

1.5.2	 Assessment Frameworks and Methodologies 

Climate models and associated simulations 

The multiple sources of climate model information used in this 
assessment are provided in Chapter 2 (Section 2.2) and Chapter 
3 (Section 3.2). Results from global simulations, which have also 
been assessed in previous IPCC reports and that are conducted as 
part of the World Climate Research Programme (WCRP) Coupled 
Models Intercomparison Project (CMIP) are used. The IPCC AR4 and 
Managing the Risks of Extreme Events and Disasters to Advance 
Climate Change Adaptation (SREX) reports were mostly based on 
simulations from the CMIP3 experiment, while the AR5 was mostly 
based on simulations from the CMIP5 experiment. The simulations 
of the CMIP3 and CMIP5 experiments were found to be very 
similar (e.g., Knutti and Sedláček, 2012; Mueller and Seneviratne, 
2014). In addition to the CMIP3 and CMIP5 experiments, results 
from coordinated regional climate model experiments (e.g., the 
Coordinated Regional Climate Downscaling Experiment, CORDEX) 
have been assessed and are available for different regions (Giorgi and 
Gutowski, 2015). For instance, assessments based on publications 
from an extension of the IMPACT2C project (Vautard et al., 2014; 
Jacob and Solman, 2017) are newly available for 1.5°C projections. 
Recently, simulations from the ‘Half a degree Additional warming, 
Prognosis and Projected Impacts’ (HAPPI) multimodel experiment 
have been performed to specifically assess climate changes at 1.5°C 
vs 2°C global warming (Mitchell et al., 2016). The HAPPI protocol 
consists of coupled land–atmosphere initial condition ensemble 
simulations with prescribed sea surface temperatures (SSTs); sea ice, 
GHG and aerosol concentrations; and solar and volcanic activity that 
coincide with three forced climate states: present-day (2006–2015) 
(see Section 1.2.1) and future (2091–2100) either with 1.5°C or 2°C 
global warming (prescribed by modified SSTs).

Detection and attribution of change in climate and impacted systems

Formalized scientific methods are available to detect and attribute 
impacts of greenhouse gas forcing on observed changes in climate 
(e.g., Hegerl et al., 2007; Seneviratne et al., 2012; Bindoff et al., 2013) 
and impacts of climate change on natural and human systems (e.g., 
Stone et al., 2013; Hansen and Cramer, 2015; Hansen et al., 2016). 
The reader is referred to these sources, as well as to the AR5 for more 
background on these methods.

Global climate warming has already reached approximately 1°C 
(see Section 1.2.1) relative to pre-industrial conditions, and thus 
‘climate at 1.5°C global warming’ corresponds to approximately 
the addition of only half a degree of warming compared to the 
present day, comparable to the warming that has occurred since 
the 1970s (Bindoff et al., 2013). Methods used in the attribution of 
observed changes associate with this recent warming are therefore 
also applicable to assessments of future changes in climate at 1.5°C 
warming, especially in cases where no climate model simulations or 
analyses are available. 

Impacts of 1.5°C global warming can be assessed in part from 
regional and global climate changes that have already been detected 
and attributed to human influence (e.g., Schleussner et al., 2017) and 
are components of the climate system that are most responsive to 
current and projected future forcing. For this reason, when specific 
projections are missing for 1.5°C global warming, some of the 
assessments of climate change provided in Chapter 3 (Section 3.3) 
build upon joint assessments of (i) changes that were observed and 
attributed to human influence up to the present, that is, for 1°C 
global warming and (ii) projections for higher levels of warming (e.g., 
2°C, 3°C or 4°C) to assess the changes at 1.5°C. Such assessments 
are for transient changes only (see Chapter 3, Section 3.3).

Besides quantitative detection and attribution methods, assessments 
can also be based on indigenous and local knowledge (see Chapter 4, 
Box 4.3). While climate observations may not be available to assess 
impacts from a scientific perspective, local community knowledge 
can also indicate actual impacts (Brinkman et al., 2016; Kabir et al., 
2016). The challenge is that a community’s perception of loss due 
to the impacts of climate change is an area that requires further 
research (Tschakert et al., 2017).

Costs and benefits analysis

Cost–benefit analyses are common tools used for decision-making, 
whereby the costs of impacts are compared to the benefits from 
different response actions (IPCC, 2014a, b). However, for the 
case of climate change, recognising the complex inter-linkages 
of the Anthropocene, cost–benefit analysis tools can be difficult 
to use because of disparate impacts versus costs and complex 
interconnectivity within the global social-ecological system (see 
Box 1.1 and Cross-Chapter Box 5 in Chapter 2). Some costs are 
relatively easily quantifiable in monetary terms but not all. Climate 
change impacts human lives and livelihoods, culture and values, and 
whole ecosystems. It has unpredictable feedback loops and impacts 
on other regions (IPCC, 2014a), giving rise to indirect, secondary, 
tertiary and opportunity costs that are typically extremely difficult to 
quantify. Monetary quantification is further complicated by the fact 
that costs and benefits can occur in different regions at very different 
times, possibly spanning centuries, while it is extremely difficult if not 
impossible to meaningfully estimate discount rates for future costs 
and benefits. Thus standard cost–benefit analyses become difficult 
to justify (IPCC, 2014a; Dietz et al., 2016) and are not used as an 
assessment tool in this report.
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1.6	 Confidence, Uncertainty and Risk

This report relies on the IPCC’s uncertainty guidance provided in 
Mastrandrea et al. (2011) and sources given therein. Two metrics for 
qualifying key findings are used: 

Confidence: Five qualifiers are used to express levels of confidence 
in key findings, ranging from very low, through low, medium, 
high, to very high. The assessment of confidence involves at least 
two dimensions, one being the type, quality, amount or internal 
consistency of individual lines of evidence, and the second being 
the level of agreement between different lines of evidence. Very 
high confidence findings must either be supported by a high level 
of agreement across multiple lines of mutually independent and 
individually robust lines of evidence or, if only a single line of evidence 
is available, by a very high level of understanding underlying that 
evidence. Findings of low or very low confidence are presented only 
if they address a topic of major concern.

Likelihood: A calibrated language scale is used to communicate 
assessed probabilities of outcomes, ranging from exceptionally 
unlikely (<1%), extremely unlikely (<5%), very unlikely (<10%), 
unlikely (<33%), about as likely as not (33–66%), likely (>66%), very 
likely (>90%), extremely likely (>95%) to virtually certain (>99%). 
These terms are normally only applied to findings associated with 
high or very high confidence. Frequency of occurrence within a model 
ensemble does not correspond to actual assessed probability of 
outcome unless the ensemble is judged to capture and represent the 
full range of relevant uncertainties. 

Three specific challenges arise in the treatment of uncertainty and 
risk in this report. First, the current state of the scientific literature on 
1.5°C means that findings based on multiple lines of robust evidence 
for which quantitative probabilistic results can be expressed may be 
few in number, and those that do exist may not be the most policy-
relevant. Hence many key findings are expressed using confidence 
qualifiers alone.

Second, many of the most important findings of this report are 
conditional because they refer to ambitious mitigation scenarios, 
potentially involving large-scale technological or societal 
transformation. Conditional probabilities often depend strongly on 
how conditions are specified, such as whether temperature goals 
are met through early emission reductions, reliance on negative 
emissions, or through a low climate response. Whether a certain 
risk is considered high at 1.5°C may therefore depend strongly on 
how 1.5°C is specified, whereas a statement that a certain risk may 
be substantially higher at 2°C relative to 1.5°C may be much more 
robust. 

Third, achieving ambitious mitigation goals will require active, 
goal-directed efforts aiming explicitly for specific outcomes and 
incorporating new information as it becomes available (Otto et 
al., 2015). This shifts the focus of uncertainty from the climate 
outcome itself to the level of mitigation effort that may be required 
to achieve it. Probabilistic statements about human decisions are 

always problematic, but in the context of robust decision-making, 
many near-term policies that are needed to keep open the option of 
limiting warming to 1.5°C may be the same, regardless of the actual 
probability that the goal will be met (Knutti et al., 2015).

1.7	 Storyline of the Report

The storyline of this report (Figure 1.6) includes a set of interconnected 
components. The report consists of five chapters (plus Supplementary 
Material for Chapters 1 through 4), a Technical Summary and a 
Summary for Policymakers. It also includes a set of boxes to elucidate 
specific or cross-cutting themes, as well as Frequently Asked 
Questions for each chapter, a Glossary, and several other Annexes.

At a time of unequivocal and rapid global warming, this report 
emerges from the long-term temperature goal of the Paris Agreement 
– strengthening the global response to the threat of climate change 
by pursuing efforts to limit warming to 1.5°C through reducing 
emissions to achieve a balance between anthropogenic emissions by 
sources and removals by sinks of greenhouse gases. The assessment 
focuses first, in Chapter 1, on how 1.5°C is defined and understood, 
what is the current level of warming to date, and the present 
trajectory of change. The framing presented in Chapter 1 provides the 
basis through which to understand the enabling conditions of a 1.5°C 
warmer world and connections to the SDGs, poverty eradication, and 
equity and ethics.

In Chapter 2, scenarios of a 1.5°C warmer world and the associated 
pathways are assessed. The pathways assessment builds upon 
the AR5 with a greater emphasis on sustainable development in 
mitigation pathways. All pathways begin now and involve rapid 
and unprecedented societal transformation. An important framing 
device for this report is the recognition that choices that determine 
emissions pathways, whether ambitious mitigation or ‘no policy’ 
scenarios, do not occur independently of these other changes and 
are, in fact, highly interdependent. 

Projected impacts that emerge in a 1.5°C warmer world and beyond 
are dominant narrative threads of the report and are assessed in 
Chapter 3. The chapter focuses on observed and attributable global 
and regional climate changes and impacts and vulnerabilities. The 
projected impacts have diverse and uneven spatial, temporal, human, 
economic, and ecological system-level manifestations. Central to the 
assessment is the reporting of impacts at 1.5°C and 2°C, potential 
impacts avoided through limiting warming to 1.5°C, and, where 
possible, adaptation potential and limits to adaptive capacity.

Response options and associated enabling conditions emerge next, in 
Chapter 4. Attention is directed to exploring questions of adaptation 
and mitigation implementation, integration, and transformation in 
a highly interdependent world, with consideration of synergies and 
trade-offs. Emission pathways, in particular, are broken down into 
policy options and instruments. The role of technological choices, 
institutional capacity and global-scale trends like urbanization and 
changes in ecosystems are assessed. 
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Chapter 5 covers linkages between achieving the SDGs and a 1.5°C 
warmer world and turns toward identifying opportunities and 
challenges of transformation. This is assessed within a transition to 
climate-resilient development pathways and connection between the 
evolution towards 1.5°C, associated impacts, and emission pathways. 
Positive and negative effects of adaptation and mitigation response 
measures and pathways for a 1.5°C warmer world are examined. 

Progress along these pathways involves inclusive processes, 
institutional integration, adequate finance and technology, and 
attention to issues of power, values, and inequalities to maximize 
the benefits of pursuing climate stabilisation at 1.5°C and the goals 
of sustainable development at multiple scales of human and natural 
systems from global, regional, national to local and community 
levels.

Figure 1.6 |  Schematic of report storyline.
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Frequently Asked Questions 

FAQ 1.1 |	 Why are we Talking about 1.5°C?

Summary: Climate change represents an urgent and potentially irreversible threat to human societies and the 
planet. In recognition of this, the overwhelming majority of countries around the world adopted the Paris Agree-
ment in December 2015, the central aim of which includes pursuing efforts to limit global temperature rise 
to 1.5°C. In doing so, these countries, through the United Nations Framework Convention on Climate Change 
(UNFCCC), also invited the IPCC to provide a Special Report on the impacts of global warming of 1.5°C above pre-
industrial levels and related global greenhouse gas emissions pathways. 

At the 21st Conference of the Parties (COP21) in December 2015, 195 nations adopted the Paris Agreement2. The 
first instrument of its kind, the landmark agreement includes the aim to strengthen the global response to the 
threat of climate change by ‘holding the increase in the global average temperature to well below 2°C above 
pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels’. 

The first UNFCCC document to mention a limit to global warming of 1.5°C was the Cancun Agreement, adopted 
at the sixteenth COP (COP16) in 2010. The Cancun Agreement established a process to periodically review the 
‘adequacy of the long-term global goal (LTGG) in the light of the ultimate objective of the Convention and the 
overall progress made towards achieving the LTGG, including a consideration of the implementation of the 
commitments under the Convention’. The definition of LTGG in the Cancun Agreement was ‘to hold the increase 
in global average temperature below 2°C above pre-industrial levels’. The agreement also recognised the need 
to consider ‘strengthening the long-term global goal on the basis of the best available scientific knowledge…to 
a global average temperature rise of 1.5°C’. 

Beginning in 2013 and ending at the COP21 in Paris in 2015, the first review period of the long-term global goal 
largely consisted of the Structured Expert Dialogue (SED). This was a fact-finding, face-to-face exchange of views 
between invited experts and UNFCCC delegates. The final report of the SED3 concluded that ‘in some regions and 
vulnerable ecosystems, high risks are projected even for warming above 1.5°C’. The SED report also suggested 
that Parties would profit from restating the temperature limit of the long-term global goal as a ‘defence line’ 
or ‘buffer zone’, instead of a ‘guardrail’ up to which all would be safe, adding that this new understanding 
would ‘probably also favour emission pathways that will limit warming to a range of temperatures below 2°C’. 
Specifically on strengthening the temperature limit of 2°C, the SED’s key message was: ‘While science on the 
1.5°C warming limit is less robust, efforts should be made to push the defence line as low as possible’. The 
findings of the SED, in turn, fed into the draft decision adopted at COP21.

With the adoption of the Paris Agreement, the UNFCCC invited the IPCC to provide a Special Report in 2018 on 
‘the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emissions 
pathways’. The request was that the report, known as SR1.5, should not only assess what a 1.5°C warmer world 
would look like but also the different pathways by which global temperature rise could be limited to 1.5°C. In 
2016, the IPCC accepted the invitation, adding that the Special Report would also look at these issues in the 
context of strengthening the global response to the threat of climate change, sustainable development and 
efforts to eradicate poverty.

The combination of rising exposure to climate change and the fact that there is a limited capacity to adapt to its 
impacts amplifies the risks posed by warming of 1.5°C and 2°C. This is particularly true for developing and island 
countries in the tropics and other vulnerable countries and areas. The risks posed by global warming of 1.5°C are 
greater than for present-day conditions but lower than at 2°C.

(continued on next page)

2	 Paris Agreement FCCC/CP/2015/10/Add.1 https://unfccc.int/documents/9097
3	 Structured Expert Dialogue (SED) final report FCCC/SB/2015/INF.1 https://unfccc.int/documents/8707

https://unfccc.int/documents/9097
https://unfccc.int/documents/8707
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FAQ 1.1, Figure 1 | Timeline of notable dates in preparing the IPCC Special Report on Global Warming of 1.5°C (blue) embedded within processes and milestones 
of the United Nations Framework Convention on Climate Change (UNFCCC; grey), including events that may be relevant for discussion of temperature limits.

FAQ 1.1 (continued)
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Frequently Asked Questions 

FAQ 1.2 |	 How Close are we to 1.5°C?

Summary: Human-induced warming has already reached about 1°C above pre-industrial levels at the time of writ-
ing of this Special Report. By the decade 2006–2015, human activity had warmed the world by 0.87°C (±0.12°C) 
compared to pre-industrial times (1850–1900). If the current warming rate continues, the world would reach 
human-induced global warming of 1.5°C around 2040.

Under the 2015 Paris Agreement, countries agreed to cut greenhouse gas emissions with a view to ‘holding the 
increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to 
limit the temperature increase to 1.5°C above pre-industrial levels’. While the overall intention of strengthening 
the global response to climate change is clear, the Paris Agreement does not specify precisely what is meant by 
‘global average temperature’, or what period in history should be considered ‘pre-industrial’. To answer the 
question of how close are we to 1.5°C of warming, we need to first be clear about how both terms are defined 
in this Special Report.

The choice of pre-industrial reference period, along with the method used to calculate global average 
temperature, can alter scientists’ estimates of historical warming by a couple of tenths of a degree Celsius. Such 
differences become important in the context of a global temperature limit just half a degree above where we are 
now. But provided consistent definitions are used, they do not affect our understanding of how human activity 
is influencing the climate. 

In principle, ‘pre-industrial levels’ could refer to any period of time before the start of the industrial revolution. 
But the number of direct temperature measurements decreases as we go back in time. Defining a ‘pre-industrial’ 
reference period is, therefore, a compromise between the reliability of the temperature information and how 
representative it is of truly pre-industrial conditions. Some pre-industrial periods are cooler than others for 
purely natural reasons. This could be because of spontaneous climate variability or the response of the climate 
to natural perturbations, such as volcanic eruptions and variations in the sun’s activity. This IPCC Special Report 
on Global Warming of 1.5°C uses the reference period 1850–1900 to represent pre-industrial temperature. This 
is the earliest period with near-global observations and is the reference period used as an approximation of pre-
industrial temperatures in the IPCC Fifth Assessment Report.

Once scientists have defined ‘pre-industrial’, the next step is to calculate the amount of warming at any given 
time relative to that reference period. In this report, warming is defined as the increase in the 30-year global 
average of combined air temperature over land and water temperature at the ocean surface. The 30-year 
timespan accounts for the effect of natural variability, which can cause global temperatures to fluctuate from 
one year to the next. For example, 2015 and 2016 were both affected by a strong El Niño event, which amplified 
the underlying human-caused warming. 

In the decade 2006–2015, warming reached 0.87°C (±0.12°C) relative to 1850–1900, predominantly due to human 
activity increasing the amount of greenhouse gases in the atmosphere. Given that global temperature is currently 
rising by 0.2°C (±0.1°C) per decade, human-induced warming reached 1°C above pre-industrial levels around 
2017 and, if this pace of warming continues, would reach 1.5°C around 2040. 

While the change in global average temperature tells researchers about how the planet as a whole is changing, 
looking more closely at specific regions, countries and seasons reveals important details. Since the 1970s, most 
land regions have been warming faster than the global average, for example. This means that warming in 
many regions has already exceeded 1.5°C above pre-industrial levels. Over a fifth of the global population live 
in regions that have already experienced warming in at least one season that is greater than 1.5°C above pre-
industrial levels. 

(continued on next page)
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FAQ 1.2, Figure 1 | Human-induced warming reached approximately 1°C above pre-industrial levels in 2017. At the present rate, global temperatures would 
reach 1.5°C around 2040. Stylized 1.5°C pathway shown here involves emission reductions beginning immediately, and CO2 emissions reaching zero by 2055.
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Executive Summary

This chapter assesses mitigation pathways consistent with limiting 
warming to 1.5°C above pre-industrial levels. In doing so, it explores 
the following key questions: What role do CO2 and non-CO2 emissions 
play? {2.2, 2.3, 2.4, 2.6} To what extent do 1.5°C pathways involve 
overshooting and returning below 1.5°C during the 21st century? {2.2, 
2.3} What are the implications for transitions in energy, land use and 
sustainable development? {2.3, 2.4, 2.5} How do policy frameworks 
affect the ability to limit warming to 1.5°C? {2.3, 2.5} What are the 
associated knowledge gaps? {2.6}

The assessed pathways describe integrated, quantitative 
evolutions of all emissions over the 21st century associated 
with global energy and land use and the world economy. The 
assessment is contingent upon available integrated assessment 
literature and model assumptions, and is complemented by other 
studies with different scope, for example, those focusing on individual 
sectors. In recent years, integrated mitigation studies have improved 
the characterizations of mitigation pathways. However, limitations 
remain, as climate damages, avoided impacts, or societal co-benefits 
of the modelled transformations remain largely unaccounted for, while 
concurrent rapid technological changes, behavioural aspects, and 
uncertainties about input data present continuous challenges. (high 
confidence) {2.1.3, 2.3, 2.5.1, 2.6, Technical Annex 2}

The Chances of Limiting Warming to 1.5°C 
and the Requirements for Urgent Action

Pathways consistent with 1.5°C of warming above pre-industrial 
levels can be identified under a range of assumptions about 
economic growth, technology developments and lifestyles.  
However, lack of global cooperation, lack of governance of the required 
energy and land transformation, and increases in resource-intensive 
consumption are key impediments to achieving 1.5°C pathways. 
Governance challenges have been related to scenarios with high 
inequality and high population growth in the 1.5°C pathway literature. 
{2.3.1, 2.3.2, 2.5}

Under emissions in line with current pledges under the Paris 
Agreement (known as Nationally Determined Contributions, 
or NDCs), global warming is expected to surpass 1.5°C above 
pre-industrial levels, even if these pledges are supplemented 
with very challenging increases in the scale and ambition of 
mitigation after 2030 (high confidence). This increased action 
would need to achieve net zero CO2 emissions in less than 15 years. 
Even if this is achieved, temperatures would only be expected to remain 
below the 1.5°C threshold if the actual geophysical response ends up 
being towards the low end of the currently estimated uncertainty range. 
Transition challenges as well as identified trade-offs can be reduced if 
global emissions peak before 2030 and marked emissions reductions 
compared to today are already achieved by 2030. {2.2, 2.3.5, Cross-
Chapter Box 11 in Chapter 4}

Limiting warming to 1.5°C depends on greenhouse gas (GHG) 
emissions over the next decades, where lower GHG emissions in 
2030 lead to a higher chance of keeping peak warming to 1.5°C 
(high confidence). Available pathways that aim for no or limited (less 
than 0.1°C) overshoot of 1.5°C keep GHG emissions in 2030 to 25–30 
GtCO2e yr−1 in 2030 (interquartile range). This contrasts with median 
estimates for current unconditional NDCs of 52–58 GtCO2e yr−1 in 
2030. Pathways that aim for limiting warming to 1.5°C by 2100 after 
a temporary temperature overshoot rely on large-scale deployment 
of carbon dioxide removal (CDR) measures, which are uncertain and 
entail clear risks. In model pathways with no or limited overshoot of 
1.5°C, global net anthropogenic CO2 emissions decline by about 45% 
from 2010 levels by 2030 (40–60% interquartile range), reaching net 
zero around 2050 (2045–2055 interquartile range). For limiting global 
warming to below 2°C with at least 66% probability CO2 emissions 
are projected to decline by about 25% by 2030 in most pathways (10–
30% interquartile range) and reach net zero around 2070 (2065–2080 
interquartile range).1 {2.2, 2.3.3, 2.3.5, 2.5.3, Cross-Chapter Boxes 6 in 
Chapter 3 and 9 in Chapter 4, 4.3.7}

Limiting warming to 1.5°C implies reaching net zero CO2 
emissions globally around 2050 and concurrent deep reductions 
in emissions of non-CO2 forcers, particularly methane (high 
confidence). Such mitigation pathways are characterized by energy-
demand reductions, decarbonization of electricity and other fuels, 
electrification of energy end use, deep reductions in agricultural 
emissions, and some form of CDR with carbon storage on land or 
sequestration in geological reservoirs. Low energy demand and low 
demand for land- and GHG-intensive consumption goods facilitate 
limiting warming to as close as possible to 1.5°C. {2.2.2, 2.3.1, 2.3.5, 
2.5.1, Cross-Chapter Box 9 in Chapter 4}.

In comparison to a 2°C limit, the transformations required to limit 
warming to 1.5°C are qualitatively similar but more pronounced 
and rapid over the next decades (high confidence). 1.5°C implies 
very ambitious, internationally cooperative policy environments that 
transform both supply and demand (high confidence). {2.3, 2.4, 2.5}

Policies reflecting a high price on emissions are necessary 
in models to achieve cost-effective 1.5°C pathways (high 
confidence). Other things being equal, modelling studies suggest 
the global average discounted marginal abatement costs for limiting 
warming to 1.5°C being about 3–4 times higher compared to 2°C 
over the 21st century, with large variations across models and socio-
economic and policy assumptions. Carbon pricing can be imposed 
directly or implicitly by regulatory policies. Policy instruments, like 
technology policies or performance standards, can complement explicit 
carbon pricing in specific areas. {2.5.1, 2.5.2, 4.4.5}

Limiting warming to 1.5°C requires a marked shift in investment 
patterns (medium confidence). Additional annual average energy-
related investments for the period 2016 to 2050 in pathways limiting 
warming to 1.5°C compared to pathways without new climate policies 
beyond those in place today (i.e., baseline) are estimated to be around 

1	 Kyoto-GHG emissions in this statement are aggregated with GWP-100 values of the IPCC Second Assessment Report.
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830 billion USD2010 (range of 150 billion to 1700 billion USD2010 
across six models). Total energy-related investments increase by about 
12% (range of 3% to 24%) in 1.5°C pathways relative to 2°C pathways. 
Average annual investment in low-carbon energy technologies and 
energy efficiency are upscaled by roughly a factor of six (range of factor 
of 4 to 10) by 2050 compared to 2015, overtaking fossil investments 
globally by around 2025 (medium confidence). Uncertainties and 
strategic mitigation portfolio choices affect the magnitude and focus 
of required investments. {2.5.2}

Future Emissions in 1.5°C Pathways 

Mitigation requirements can be quantified using carbon budget 
approaches that relate cumulative CO2 emissions to global mean 
temperature increase. Robust physical understanding underpins 
this relationship, but uncertainties become increasingly relevant as a 
specific temperature limit is approached. These uncertainties relate to 
the transient climate response to cumulative carbon emissions (TCRE), 
non-CO2 emissions, radiative forcing and response, potential additional 
Earth system feedbacks (such as permafrost thawing), and historical 
emissions and temperature. {2.2.2, 2.6.1} 

Cumulative CO2 emissions are kept within a budget by reducing 
global annual CO2 emissions to net zero. This assessment 
suggests a remaining budget of about 420 GtCO2 for a two-
thirds chance of limiting warming to 1.5°C, and of about 580 
GtCO2 for an even chance (medium confidence). The remaining 
carbon budget is defined here as cumulative CO2 emissions from the 
start of 2018 until the time of net zero global emissions for global 
warming defined as a change in global near-surface air temperatures. 
Remaining budgets applicable to 2100 would be approximately 
100 GtCO2 lower than this to account for permafrost thawing and 
potential methane release from wetlands in the future, and more 
thereafter. These estimates come with an additional geophysical 
uncertainty of at least ±400 GtCO2, related to non-CO2 response 
and TCRE distribution. Uncertainties in the level of historic warming 
contribute ±250 GtCO2. In addition, these estimates can vary by 
±250 GtCO2 depending on non-CO2 mitigation strategies as found in 
available pathways. {2.2.2, 2.6.1}

Staying within a remaining carbon budget of 580 GtCO2 implies 
that CO2 emissions reach carbon neutrality in about 30 years, 
reduced to 20 years for a 420 GtCO2 remaining carbon budget  
(high confidence). The ±400 GtCO2 geophysical uncertainty range 
surrounding a carbon budget translates into a variation of this timing 
of carbon neutrality of roughly ±15–20 years. If emissions do not start 
declining in the next decade, the point of carbon neutrality would need 
to be reached at least two decades earlier to remain within the same 
carbon budget. {2.2.2, 2.3.5}

Non-CO2 emissions contribute to peak warming and thus 
affect the remaining carbon budget. The evolution of 
methane and sulphur dioxide emissions strongly influences 
the chances of limiting warming to 1.5°C. In the near-term, a 
weakening of aerosol cooling would add to future warming, 
but can be tempered by reductions in methane emissions (high 
confidence). Uncertainty in radiative forcing estimates (particularly 

aerosol) affects carbon budgets and the certainty of pathway 
categorizations. Some non-CO2 forcers are emitted alongside CO2, 
particularly in the energy and transport sectors, and can be largely 
addressed through CO2 mitigation. Others require specific measures, 
for example, to target agricultural nitrous oxide (N2O) and methane 
(CH4), some sources of black carbon, or hydrofluorocarbons (high 
confidence). In many cases, non-CO2 emissions reductions are similar 
in 2°C pathways, indicating reductions near their assumed maximum 
potential by integrated assessment models. Emissions of N2O and 
NH3 increase in some pathways with strongly increased bioenergy 
demand. {2.2.2, 2.3.1, 2.4.2, 2.5.3}

The Role of Carbon Dioxide Removal (CDR) 

All analysed pathways limiting warming to 1.5°C with no 
or limited overshoot use CDR to some extent to neutralize 
emissions from sources for which no mitigation measures 
have been identified and, in most cases, also to achieve 
net negative emissions to return global warming to 1.5°C 
following a peak (high confidence). The longer the delay in 
reducing CO2 emissions towards zero, the larger the likelihood 
of exceeding 1.5°C, and the heavier the implied reliance on 
net negative emissions after mid-century to return warming to 
1.5°C (high confidence). The faster reduction of net CO2 emissions 
in 1.5°C compared to 2°C pathways is predominantly achieved by 
measures that result in less CO2 being produced and emitted, and 
only to a smaller degree through additional CDR. Limitations on 
the speed, scale and societal acceptability of CDR deployment also 
limit the conceivable extent of temperature overshoot. Limits to our 
understanding of how the carbon cycle responds to net negative 
emissions increase the uncertainty about the effectiveness of CDR to 
decline temperatures after a peak. {2.2, 2.3, 2.6, 4.3.7}

CDR deployed at scale is unproven, and reliance on such 
technology is a major risk in the ability to limit warming to 
1.5°C. CDR is needed less in pathways with particularly strong 
emphasis on energy efficiency and low demand. The scale and 
type of CDR deployment varies widely across 1.5°C pathways, 
with different consequences for achieving sustainable 
development objectives (high confidence). Some pathways rely 
more on bioenergy with carbon capture and storage (BECCS), while 
others rely more on afforestation, which are the two CDR methods 
most often included in integrated pathways. Trade-offs with other 
sustainability objectives occur predominantly through increased land, 
energy, water and investment demand. Bioenergy use is substantial 
in 1.5°C pathways with or without BECCS due to its multiple roles in 
decarbonizing energy use. {2.3.1, 2.5.3, 2.6.3, 4.3.7}

Properties of Energy and Land Transitions in 1.5°C Pathways 

The share of primary energy from renewables increases while 
coal usage decreases across pathways limiting warming to 
1.5°C with no or limited overshoot (high confidence). By 2050, 
renewables (including bioenergy, hydro, wind, and solar, with direct-
equivalence method) supply a share of 52–67% (interquartile range) 
of primary energy in 1.5°C pathways with no or limited overshoot; 
while the share from coal decreases to 1–7% (interquartile range), 
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with a large fraction of this coal use combined with carbon capture 
and storage (CCS). From 2020 to 2050 the primary energy supplied 
by oil declines in most pathways (−39 to −77% interquartile range). 
Natural gas changes by −13% to −62% (interquartile range), but 
some pathways show a marked increase albeit with widespread 
deployment of CCS. The overall deployment of CCS varies widely 
across 1.5°C pathways with no or limited overshoot, with cumulative 
CO2 stored through 2050 ranging from zero up to 300 GtCO2 
(minimum–maximum range), of which zero up to 140 GtCO2 is stored 
from biomass. Primary energy supplied by bioenergy ranges from 
40–310 EJ yr−1 in 2050 (minimum-maximum range), and nuclear from 
3–66 EJ yr−1 (minimum–maximum range). These ranges reflect both 
uncertainties in technological development and strategic mitigation 
portfolio choices. {2.4.2}

1.5°C pathways with no or limited overshoot include a rapid 
decline in the carbon intensity of electricity and an increase 
in electrification of energy end use (high confidence). By 2050, 
the carbon intensity of electricity decreases to −92 to +11 gCO2 MJ−1 
(minimum–maximum range) from about 140 gCO2 MJ−1 in 2020, 
and electricity covers 34–71% (minimum–maximum range) of final 
energy across 1.5°C pathways with no or limited overshoot from 
about 20% in 2020. By 2050, the share of electricity supplied by 
renewables increases to 59–97% (minimum-maximum range) across 
1.5°C pathways with no or limited overshoot. Pathways with higher 
chances of holding warming to below 1.5°C generally show a faster 
decline in the carbon intensity of electricity by 2030 than pathways 
that temporarily overshoot 1.5°C. {2.4.1, 2.4.2, 2.4.3}

Transitions in global and regional land use are found in all 
pathways limiting global warming to 1.5°C with no or limited 
overshoot, but their scale depends on the pursued mitigation 
portfolio (high confidence). Pathways that limit global warming to 
1.5°C with no or limited overshoot project a 4 million km2 reduction 
to a 2.5 million km2 increase of non-pasture agricultural land for food 
and feed crops and a 0.5–11 million km2 reduction of pasture land, 
to be converted into 0-6 million km2 of agricultural land for energy 
crops and a 2 million km2 reduction to 9.5 million km2 increase in 
forests by 2050 relative to 2010 (medium confidence). Land-use 
transitions of similar magnitude can be observed in modelled 2°C 
pathways (medium confidence). Such large transitions pose profound 
challenges for sustainable management of the various demands on 
land for human settlements, food, livestock feed, fibre, bioenergy, 
carbon storage, biodiversity and other ecosystem services (high 
confidence). {2.3.4, 2.4.4}

Demand-Side Mitigation and Behavioural Changes 

Demand-side measures are key elements of 1.5°C pathways. 
Lifestyle choices lowering energy demand and the land- and 
GHG-intensity of food consumption can further support 
achievement of 1.5°C pathways (high confidence). By 2030 and 
2050, all end-use sectors (including building, transport, and industry) 
show marked energy demand reductions in modelled 1.5°C pathways, 
comparable and beyond those projected in 2°C pathways. Sectoral 
models support the scale of these reductions. {2.3.4, 2.4.3, 2.5.1}

Links between 1.5°C Pathways and Sustainable Development 

Choices about mitigation portfolios for limiting warming to 
1.5°C can positively or negatively impact the achievement of 
other societal objectives, such as sustainable development 
(high confidence). In particular, demand-side and efficiency 
measures, and lifestyle choices that limit energy, resource, and 
GHG-intensive food demand support sustainable development  
(medium confidence). Limiting warming to 1.5°C can be achieved 
synergistically with poverty alleviation and improved energy security 
and can provide large public health benefits through improved air 
quality, preventing millions of premature deaths. However, specific 
mitigation measures, such as bioenergy, may result in trade-offs that 
require consideration. {2.5.1, 2.5.2, 2.5.3}
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2.1	 Introduction to Mitigation Pathways and 
the Sustainable Development Context

This chapter assesses the literature on mitigation pathways to limit or 
return global mean warming to 1.5°C (relative to the pre-industrial 
base period 1850–1900). Key questions addressed are: What types of 
mitigation pathways have been developed that could be consistent 
with 1.5°C? What changes in emissions, energy and land use do they 
entail? What do they imply for climate policy and implementation, and 
what impacts do they have on sustainable development? In terms of 
feasibility (see Cross-Chapter Box 3 in Chapter 1), this chapter focuses 
on geophysical dimensions and technological and economic enabling 
factors. Social and institutional dimensions as well as additional 
aspects of technical feasibility are covered in Chapter 4.

Mitigation pathways are typically designed to reach a predefined 
climate target alone. Minimization of mitigation expenditures, but 
not climate-related damages or sustainable development impacts, 
is often the basis for these pathways to the desired climate target 
(see Cross-Chapter Box 5 in this chapter for additional discussion). 
However, there are interactions between mitigation and multiple other 
sustainable development goals (see Sections 1.1 and 5.4) that provide 
both challenges and opportunities for climate action. Hence there are 
substantial efforts to evaluate the effects of the various mitigation 
pathways on sustainable development, focusing in particular on 
aspects for which integrated assessment models (IAMs) provide 
relevant information (e.g., land-use changes and biodiversity, food 
security, and air quality). More broadly, there are efforts to incorporate 
climate change mitigation as one of multiple objectives that, in general, 
reflect societal concerns more completely and could potentially provide 
benefits at lower costs than simultaneous single-objective policies 
(e.g., Clarke et al., 2014). For example, with carefully selected policies, 
universal energy access can be achieved while simultaneously reducing 
air pollution and mitigating climate change (McCollum et al., 2011; 
Riahi et al., 2012; IEA, 2017d). This chapter thus presents both the 
pathways and an initial discussion of their context within sustainable 
development objectives (Section 2.5), with the latter, along with equity 
and ethical issues, discussed in more detail in Chapter 5.

As described in Cross-Chapter Box 1 in Chapter 1, scenarios are 
comprehensive, plausible, integrated descriptions of possible futures 
based on specified, internally consistent underlying assumptions, 
with pathways often used to describe the clear temporal evolution of 
specific scenario aspects or goal-oriented scenarios. We include both 
these usages of ‘pathways’ here.

2.1.1	 Mitigation Pathways Consistent with 1.5°C

Emissions scenarios need to cover all sectors and regions over the 
21st century to be associated with a climate change projection out to 
2100. Assumptions regarding future trends in population, consumption 
of goods and services (including food), economic growth, behaviour, 
technology, policies and institutions are all required to generate 

scenarios (Section 2.3.1). These societal choices must then be linked 
to the drivers of climate change, including emissions of well-mixed 
greenhouse gases and aerosol and ozone precursors as well as land-
use and land-cover changes. Deliberate solar radiation modification is 
not included in these scenarios (see Cross-Chapter Box 10 in Chapter 4).

Plausible developments need to be anticipated in many facets of the 
key sectors of energy and land use. Within energy, these scenarios 
consider energy resources like biofuels, energy supply and conversion 
technologies, energy consumption, and supply and end-use efficiency. 
Within land use, agricultural productivity, food demand, terrestrial 
carbon management, and biofuel production are all considered. 
Climate policies are also considered, including carbon pricing and 
technology policies such as research and development funding and 
subsidies. The scenarios incorporate regional differentiation in sectoral 
and policy development. The climate changes resulting from such 
scenarios are derived using models that typically incorporate physical 
understanding of the carbon cycle and climate response derived from 
complex geophysical models evaluated against observations (Sections 
2.2 and 2.6). 

The temperature response to a given emission pathway (see glossary) is 
uncertain and therefore quantified in terms of a probabilistic outcome. 
Chapter 1 assesses the climate objectives of the Paris Agreement in 
terms of human-induced warming, thus excluding potential impacts 
of natural forcing such as volcanic eruptions or solar output changes 
or unforced internal variability. Temperature responses in this chapter 
are assessed using simple geophysically based models that evaluate 
the anthropogenic component of future temperature change and do 
not incorporate internal natural variations and are thus fit for purpose 
in the context of this assessment (Section 2.2.1). Hence a scenario 
that is consistent with 1.5°C may in fact lead to either a higher or 
lower temperature change, but within quantified and generally well-
understood bounds (see also Chapter 1, Section 1.2.3). Consistency 
with avoiding a human-induced temperature change limit must 
therefore also be defined probabilistically, with likelihood values 
selected based on risk-avoidance preferences. Responses beyond 
global mean temperature are not typically evaluated in such models 
and are assessed in Chapter 3.

2.1.2	 The Use of Scenarios

Variations in scenario assumptions and design define to a large 
degree which questions can be addressed with a specific scenario 
set, for example, the exploration of implications of delayed climate 
mitigation action. In this assessment, the following classes of 1.5°C- 
and 2°C-consistent scenarios are of particular interest to the topics 
addressed in this chapter: (i) scenarios with the same climate target 
over the 21st century but varying socio-economic assumptions 
(Sections 2.3 and 2.4), (ii) pairs of scenarios with similar socio-
economic assumptions but with forcing targets aimed at 1.5°C and 2°C 
(Section 2.3), and (iii) scenarios that follow the Nationally Determined 
Contributions or NDCs2 until 2030 with much more stringent mitigation 
action thereafter (Section 2.3.5). 

2	 Current pledges include those from the United States although they have stated their intention to withdraw in the future.
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Characteristics of these pathways, such as emissions reduction rates, 
time of peaking, and low-carbon energy deployment rates, can be 
assessed as being consistent with 1.5°C. However, they cannot be 
assessed as ‘requirements’ for 1.5°C, unless a targeted analysis 
is available that specifically asked whether there could be other 
1.5°C-consistent pathways without the characteristics in question. AR5 
already assessed such targeted analyses, for example, asking which 
technologies are important in order to keep open the possibility of 
limiting warming to 2°C (Clarke et al., 2014). By now, several such 
targeted analyses are also available for questions related to 1.5°C 
(Luderer et al., 2013; Rogelj et al., 2013b; Bauer et al., 2018; Strefler 
et al., 2018b; van Vuuren et al., 2018). This assessment distinguishes 
between ‘consistent’ and the much stronger concept of required 
characteristics of 1.5°C pathways wherever possible. 

Ultimately, society will adjust the choices it makes as new information 
becomes available and technical learning progresses, and these 
adjustments can be in either direction. Earlier scenario studies have 
shown, however, that deeper emissions reductions in the near term 
hedge against the uncertainty of both climate response and future 
technology availability (Luderer et al., 2013; Rogelj et al., 2013b; Clarke 
et al., 2014). Not knowing what adaptations might be put in place in 
the future, and due to limited studies, this chapter examines prospective 
rather than iteratively adaptive mitigation pathways (Cross-Chapter 
Box 1 in Chapter 1). Societal choices illustrated by scenarios may also 
influence what futures are envisioned as possible or desirable and 
hence whether those come into being (Beck and Mahony, 2017).

2.1.3	 New Scenario Information since AR5

In this chapter, we extend the AR5 mitigation pathway assessment 
based on new scenario literature. Updates in understanding of 
climate sensitivity, transient climate response, radiative forcing, and 
the cumulative carbon budget consistent with 1.5°C are discussed in 
Sections 2.2.

Mitigation pathways developed with detailed process-based 
integrated assessment models (IAMs) covering all sectors and regions 
over the 21st century describe an internally consistent and calibrated 
(to historical trends) way to get from current developments to 
meeting long-term climate targets like 1.5°C (Clarke et al., 2014). The 
overwhelming majority of available 1.5°C pathways were generated 
by such IAMs, and these pathways can be directly linked to climate 
outcomes and their consistency with the 1.5°C goal evaluated. The 
AR5 similarly relied upon such studies, which were mainly discussed in 
Chapter 6 of Working Group III (WGIII) (Clarke et al., 2014). 

Since the AR5, several new, integrated multimodel studies have 
appeared in the literature that explore specific characteristics of 
scenarios more stringent than the lowest scenario category assessed 
in AR5 that was assessed to limit warming below 2°C with greater 
than 66% likelihood (Rogelj et al., 2015b, 2018; Akimoto et al., 2017; 
Marcucci et al., 2017; Su et al., 2017; Bauer et al., 2018; Bertram et 
al., 2018; Grubler et al., 2018; Holz et al., 2018b; Kriegler et al., 2018a; 
Liu et al., 2018; Luderer et al., 2018; Strefler et al., 2018a; van Vuuren 
et al., 2018; Vrontisi et al., 2018; Zhang et al., 2018). Those scenarios 
explore 1.5°C-consistent pathways from multiple perspectives 

(see Supplementary Material 2.SM.1.3), examining sensitivity to 
assumptions regarding:
•	 socio-economic drivers and developments including energy and  
	 food demand as, for example, characterized by the Shared Socio- 
	 Economic Pathways (SSPs; Cross-Chapter Box 1 in Chapter 1) 
•	 near-term climate policies describing different levels of strengthening  
	 the NDCs
•	 the use of bioenergy and the availability and desirability of carbon  
	 dioxide removal (CDR) technologies

A large number of these scenarios were collected in a scenario database 
established for the assessment of this Special Report (Supplementary 
Material 2.SM.1.3). Mitigation pathways were classified by four 
factors: consistency with a temperature increase limit (as defined by 
Chapter 1), whether they temporarily overshoot that limit, the extent 
of this potential overshoot, and the likelihood of falling within these 
bounds. 

Specifically, they were put into classes that either kept surface 
temperature increases below a given threshold throughout the 21st 
century or returned to a value below 1.5°C above pre-industrial levels 
at some point before 2100 after temporarily exceeding that level earlier 
– referred to as an overshoot (OS). Both groups were further separated 
based on the probability of being below the threshold and the degree 
of overshoot, respectively (Table 2.1). Pathways are uniquely classified, 
with 1.5°C-related classes given higher priority than 2°C classes in 
cases where a pathway would be applicable to either class. 

The probability assessment used in the scenario classification is based 
on simulations using two reduced-complexity carbon cycle, atmospheric 
composition, and climate models: the ‘Model for the Assessment of 
Greenhouse Gas-Induced Climate Change’ (MAGICC) (Meinshausen 
et al., 2011a), and the ‘Finite Amplitude Impulse Response’ (FAIRv1.3) 
model (Smith et al., 2018). For the purpose of this report, and to facilitate 
comparison with AR5, the range of the key carbon cycle and climate 
parameters for MAGICC and its setup are identical to those used in 
AR5 WGIII (Clarke et al., 2014). For each mitigation pathway, MAGICC 
and FAIR simulations provide probabilistic estimates of atmospheric 
concentrations, radiative forcing and global temperature outcomes until 
2100. However, the classification uses MAGICC probabilities directly for 
traceability with AR5 and because this model is more established in the 
literature. Nevertheless, the overall uncertainty assessment is based on 
results from both models, which are considered in the context of the 
latest radiative forcing estimates and observed temperatures (Etminan 
et al., 2016; Smith et al., 2018) (Section 2.2 and Supplementary Material 
2.SM.1.1). The comparison of these lines of evidence shows high 
agreement in the relative temperature response of pathways, with 
medium agreement on the precise absolute magnitude of warming, 
introducing a level of imprecision in these attributes. Consideration of 
the combined evidence here leads to medium confidence in the overall 
geophysical characteristics of the pathways reported here. 

In addition to the characteristics of the above-mentioned classes, 
four illustrative pathway archetypes have been selected and are used 
throughout this chapter to highlight specific features of and variations 
across 1.5°C pathways. These are chosen in particular to illustrate the 
spectrum of CO

2 emissions reduction patterns consistent with 1.5°C, 
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Pathway group Pathway Class Pathway Selection Criteria and Description Number of 
Scenarios

Number of 
Scenarios

1.5°C or 
1.5°C-consistent**

Below-1.5°C
Pathways limiting peak warming to below 1.5°C during the entire 21st century 
with 50–66% likelihood*

9

90
1.5°C-low-OS

Pathways limiting median warming to below 1.5°C in 2100 and with a 
50–67% probability of temporarily overshooting that level earlier, generally 
implying less than 0.1°C higher peak warming than Below-1.5°C pathways

44

1.5°C-high-OS
Pathways limiting median warming to below 1.5°C in 2100 and with a greater 
than 67% probability of temporarily overshooting that level earlier, generally 
implying 0.1–0.4°C higher peak warming than Below-1.5°C pathways 

37

2°C or 
2°C-consistent

Lower-2°C
Pathways limiting peak warming to below 2°C during the entire 21st century 
with greater than 66% likelihood

74

132

Higher-2°C
Pathways assessed to keep peak warming to below 2°C during the entire 
21st century with 50–66% likelihood 

58

Table 2.1 |	 Classification of pathways that this chapter draws upon, along with the number of available pathways in each class. The definition of each class  
	 is based on probabilities derived from the MAGICC model in a setup identical to AR5 WGIII (Clarke et al., 2014), as detailed in Supplementary Material  2.SM.1.4. 

	 *	 No pathways were available that achieve a greater than 66% probability of limiting warming below 1.5°C during the entire 21st century based on the MAGICC model projections.

	**	 This chapter uses the term 1.5°C-consistent pathways to refer to pathways with no overshoot, with limited (low) overshoot, and with high overshoot. However, the Summary for Policymakers  
		  focusses on pathways with no or limited (low) overshoot.

ranging from very rapid and deep near-term decreases, facilitated 
by efficiency and demand-side measures that lead to limited CDR 
requirements, to relatively slower but still rapid emissions reductions 
that lead to a temperature overshoot and necessitate large CDR 
deployment later in the century (Section 2.3).

2.1.4	 Utility of Integrated Assessment Models 
(IAMs) in the Context of this Report

IAMs lie at the basis of the assessment of mitigation pathways in this 
chapter, as much of the quantitative global scenario literature is derived 
with such models. IAMs combine insights from various disciplines in a 
single framework, resulting in a dynamic description of the coupled 
energy–economy–land-climate system that cover the largest sources 
of anthropogenic greenhouse gas (GHG) emissions from different 
sectors. Many of the IAMs that contributed mitigation scenarios to this 
assessment include a process-based description of the land system in 
addition to the energy system (e.g., Popp et al., 2017), and several have 
been extended to cover air pollutants (Rao et al., 2017) and water use 
(Hejazi et al., 2014; Fricko et al., 2016; Mouratiadou et al., 2016). Such 
integrated pathways hence allow the exploration of the whole-system 
transformation, as well as the interactions, synergies, and trade-
offs between sectors, and, increasingly, questions beyond climate 
mitigation (von Stechow et al., 2015). The models do not, however, fully 
account for all constraints that could affect realization of pathways 
(see Chapter 4). 

Section 2.3 assesses the overall characteristics of 1.5°C pathways 
based on fully integrated pathways, while Sections 2.4 and 2.5 describe 
underlying sectoral transformations, including insights from sector-
specific assessment models and pathways that are not derived from 
IAMs. Such models provide detail in their domain of application and 
make exogenous assumptions about cross-sectoral or global factors. 
They often focus on a specific sector, such as the energy (Bruckner et 
al., 2014; IEA, 2017a; Jacobson, 2017; OECD/IEA and IRENA, 2017), 
buildings (Lucon et al., 2014) or transport (Sims et al., 2014) sector, or 

a specific country or region (Giannakidis et al., 2018). Sector-specific 
pathways are assessed in relation to integrated pathways because they 
cannot be directly linked to 1.5°C by themselves if they do not extend 
to 2100 or do not include all GHGs or aerosols from all sectors.

AR5 found sectoral 2°C decarbonization strategies from IAMs to be 
consistent with sector-specific studies (Clarke et al., 2014). A growing 
body of literature on 100%-renewable energy scenarios has emerged 
(e.g., see Creutzig et al., 2017; Jacobson et al., 2017), which goes 
beyond the wide range of IAM projections of renewable energy shares 
in 1.5°C and 2°C pathways. While the representation of renewable 
energy resource potentials, technology costs and system integration in 
IAMs has been updated since AR5, leading to higher renewable energy 
deployments in many cases (Luderer et al., 2017; Pietzcker et al., 2017), 
none of the IAM projections identify 100% renewable energy solutions 
for the global energy system as part of cost-effective mitigation 
pathways (Section 2.4.2). Bottom-up studies find higher mitigation 
potentials in the industry, buildings, and transport sectors in 2030 than 
realized in selected 2°C pathways from IAMs (UNEP 2017), indicating 
the possibility to strengthen sectoral decarbonization strategies until 
2030 beyond the integrated 1.5°C pathways assessed in this chapter 
(Luderer et al., 2018). 

Detailed, process-based IAMs are a diverse set of models ranging 
from partial equilibrium energy–land models to computable general 
equilibrium models of the global economy, from myopic to perfect 
foresight models, and from models with to models without endogenous 
technological change (Supplementary Material 2.SM.1.2). The IAMs 
used in this chapter have limited to no coverage of climate impacts. 
They typically use GHG pricing mechanisms to induce emissions 
reductions and associated changes in energy and land uses consistent 
with the imposed climate goal. The scenarios generated by these 
models are defined by the choice of climate goals and assumptions 
about near-term climate policy developments. They are also shaped 
by assumptions about mitigation potentials and technologies as well 
as baseline developments such as, for example, those represented by 
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different Shared Socio-Economic Pathways (SSPs), especially those 
pertaining to energy and food demand (Riahi et al., 2017). See Section 
2.3.1 for discussion of these assumptions. Since the AR5, the scenario 
literature has greatly expanded the exploration of these dimensions. 
This includes low-demand scenarios (Grubler et al., 2018; van Vuuren 
et al., 2018), scenarios taking into account a larger set of sustainable 
development goals (Bertram et al., 2018), scenarios with restricted 
availability of CDR technologies (Bauer et al., 2018; Grubler et al., 2018; 
Holz et al., 2018b; Kriegler et al., 2018a; Strefler et al., 2018b; van Vuuren 
et al., 2018), scenarios with near-term action dominated by regulatory 
policies (Kriegler et al., 2018a) and scenario variations across the 
SSPs (Riahi et al., 2017; Rogelj et al., 2018). IAM results depend upon 
multiple underlying assumptions, for example, the extent to which 
global markets and economies are assumed to operate frictionless 
and policies are cost-optimized, assumptions about technological 
progress and availability and costs of mitigation and CDR measures, 
assumptions about underlying socio-economic developments and 
future energy, food and materials demand, and assumptions about 
the geographic and temporal pattern of future regulatory and carbon 
pricing policies (see Supplementary Material  2.SM.1.2 for additional 
discussion on IAMs and their limitations).

2.2	 Geophysical Relationships and Constraints

Emissions pathways can be characterized by various geophysical 
characteristics, such as radiative forcing (Masui et al., 2011; Riahi et 
al., 2011; Thomson et al., 2011; van Vuuren et al., 2011b), atmospheric 
concentrations (van Vuuren et al., 2007, 2011a; Clarke et al., 2014) or 
associated temperature outcomes (Meinshausen et al., 2009; Rogelj 
et al., 2011; Luderer et al., 2013). These attributes can be used to 
derive geophysical relationships for specific pathway classes, such as 
cumulative CO2 emissions compatible with a specific level of warming, 
also known as ‘carbon budgets’ (Meinshausen et al., 2009; Rogelj et al., 
2011; Stocker et al., 2013; Friedlingstein et al., 2014a), the consistent 
contributions of non-CO2 GHGs and aerosols to the remaining carbon 
budget (Bowerman et al., 2011; Rogelj et al., 2015a, 2016b), or to 
temperature outcomes (Lamarque et al., 2011; Bowerman et al., 2013; 
Rogelj et al., 2014b). This section assesses geophysical relationships for 
both CO2 and non-CO2 emissions (see glossary). 

2.2.1	 Geophysical Characteristics of Mitigation Pathways

This section employs the pathway classification introduced in Section 
2.1, with geophysical characteristics derived from simulations with 
the MAGICC reduced-complexity carbon cycle and climate model and 
supported by simulations with the FAIR reduced-complexity model 
(Section 2.1). Within a specific category and between models, there 
remains a large degree of variance. Most pathways exhibit a temperature 
overshoot which has been highlighted in several studies focusing on 
stringent mitigation pathways (Huntingford and Lowe, 2007; Wigley 
et al., 2007; Nohara et al., 2015; Rogelj et al., 2015d; Zickfeld and 
Herrington, 2015; Schleussner et al., 2016; Xu and Ramanathan, 
2017). Only very few of the scenarios collected in the database for 
this report hold the average future warming projected by MAGICC 
below 1.5°C during the entire 21st century (Table 2.1, Figure 2.1). Most 

1.5°C-consistent pathways available in the database overshoot 1.5°C 
around mid-century before peaking and then reducing temperatures 
so as to return below that level in 2100. However, because of 
numerous geophysical uncertainties and model dependencies (Section 
2.2.1.1, Supplementary Material 2.SM.1.1), absolute temperature 
characteristics of the various pathway categories are more difficult to 
distinguish than relative features (Figure 2.1, Supplementary Material 
2.SM.1.1), and actual probabilities of overshoot are imprecise. However, 
all lines of evidence available for temperature projections indicate a 
probability greater than 50% of overshooting 1.5°C by mid-century in 
all but the most stringent pathways currently available (Supplementary 
Material 2.SM.1.1, 2.SM.1.4).

Most 1.5°C-consistent pathways exhibit a peak in temperature by mid-
century whereas 2°C-consistent pathways generally peak after 2050 
(Supplementary Material 2.SM.1.4). The peak in median temperature 
in the various pathway categories occurs about ten years before 
reaching net zero CO2 emissions due to strongly reduced annual 
CO2 emissions and deep reductions in CH4 emissions (Section 2.3.3). 
The two reduced-complexity climate models used in this assessment 
suggest that virtually all available 1.5°C-consistent pathways peak 
and then decline global mean temperature, but with varying rates 
of temperature decline after the peak (Figure 2.1). The estimated 
decadal rates of temperature change by the end of the century are 
smaller than the amplitude of the climate variability as assessed in AR5 
(1 standard deviation of about ±0.1°C), which hence complicates the 
detection of a global peak and decline of warming in observations on 
time scales of one to two decades (Bindoff et al., 2013). In comparison, 
many pathways limiting warming to 2°C or higher by 2100 still have 
noticeable increasing trends at the end of the century, and thus imply 
continued warming. 

By 2100, the difference between 1.5°C- and 2°C-consistent pathways 
becomes clearer compared to mid-century, not only for the temperature 
response (Figure 2.1) but also for atmospheric CO2 concentrations. In 
2100, the median CO2 concentration in 1.5°C-consistent pathways is 
below 2016 levels (Le Quéré et al., 2018), whereas it remains higher 
by about 5–10% compared to 2016 in the 2°C-consistent pathways. 

2.2.1.1	 Geophysical uncertainties: non-CO2 forcing agents

Impacts of non-CO2 climate forcers on temperature outcomes are 
particularly important when evaluating stringent mitigation pathways 
(Weyant et al., 2006; Shindell et al., 2012; Rogelj et al., 2014b, 2015a; 
Samset et al., 2018). However, many uncertainties affect the role of 
non-CO2 climate forcers in stringent mitigation pathways.

A first uncertainty arises from the magnitude of the radiative forcing 
attributed to non-CO2 climate forcers. Figure 2.2 illustrates how, for 
one representative 1.5°C-consistent pathway (SSP2-1.9) (Fricko et al., 
2017; Rogelj et al., 2018), the effective radiative forcings as estimated 
by MAGICC and FAIR can differ (see Supplementary Material 2.SM1.1 
for further details). This large spread in non-CO2 effective radiative 
forcings leads to considerable uncertainty in the predicted temperature 
response. This uncertainty ultimately affects the assessed temperature 
outcomes for pathway classes used in this chapter (Section 2.1) and 
also affects the carbon budget (Section 2.2.2). Figure 2.2 highlights 
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Figure 2.1 |  Pathways classification overview. (a) Average global mean temperature increase relative to 2010 as projected by FAIR and MAGICC in 2030, 2050 and 
2100; (b) response of peak warming to cumulative CO2 emissions until net zero by MAGICC (red) and FAIR (blue); (c) decadal rate of average global mean temperature change 
from 2081 to 2100 as a function of the annual CO2 emissions averaged over the same period as given by FAIR (transparent squares) and MAGICC (filled circles). In panel (a), 
horizontal lines at 0.63°C and 1.13°C are indicative of the 1.5°C and 2°C warming thresholds with the respect to 1850–1900, taking into account the assessed historical 
warming of 0.87°C ±0.12°C between the 1850–1900 and 2006–2015 periods (Chapter 1, Section 1.2.1). In panel (a), vertical lines illustrate both the physical and the scenario 
uncertainty as captured by MAGICC and FAIR and show the minimal warming of the 5th percentile of projected warming and the maximal warming of the 95th percentile of 
projected warming per scenario class. Boxes show the interquartile range of mean warming across scenarios, and thus represent scenario uncertainty only. 

the important role of methane emissions reduction in this scenario, in 
agreement with the recent literature focussing on stringent mitigation 
pathways (Shindell et al., 2012; Rogelj et al., 2014b, 2015a; Stohl et al., 
2015; Collins et al., 2018).

For mitigation pathways that aim at halting and reversing radiative 
forcing increase during this century, the aerosol radiative forcing is a 
considerable source of uncertainty (Figure 2.2) (Samset et al., 2018; 
Smith et al., 2018). Indeed, reductions in SO2 (and NOx) emissions 
largely associated with fossil-fuel burning are expected to reduce the 
cooling effects of both aerosol radiative interactions and aerosol cloud 

interactions, leading to warming (Myhre et al., 2013; Samset et al., 
2018). A multimodel analysis (Myhre et al., 2017) and a study based 
on observational constraints (Malavelle et al., 2017) largely support 
the AR5 best estimate and uncertainty range of aerosol forcing. 
The partitioning of total aerosol radiative forcing between aerosol 
precursor emissions is important (Ghan et al., 2013; Jones et al., 
2018; Smith et al., 2018) as this affects the estimate of the mitigation 
potential from different sectors that have aerosol precursor emission 
sources. The total aerosol effective radiative forcing change in stringent 
mitigation pathways is expected to be dominated by the effects from 
the phase-out of SO2, although the magnitude of this aerosol-warming 
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Figure 2.2 |  Changes and uncertainties in effective radiative forcings (ERF) 
for one 1.5°C-consistent pathway (SSP2-19) as estimated by MAGICC 
and FAIR. The lines are indicative of the total effective radiative forcing from all 
anthropogenic sources (solid lines) and for non-CO2 agents only (dashed lines), as 
represented by MAGICC (red) and FAIR (blue) relative to 2010, respectively. Vertical 
bars show the mean radiative forcing as predicted by MAGICC and FAIR of relevant 
non-CO2 agents for year 2030, 2050 and 2100. The vertical lines give the uncertainty 
(1 standard deviation) of the ERFs for the represented species.

effect depends on how much of the present-day aerosol cooling is 
attributable to SO2, particularly the cooling associated with aerosol–
cloud interaction (Figure 2.2). Regional differences in the linearity of 
aerosol–cloud interactions (Carslaw et al., 2013; Kretzschmar et al., 
2017) make it difficult to separate the role of individual precursors. 
Precursors that are not fully mitigated will continue to affect the 
Earth system. If, for example, the role of nitrate aerosol cooling is at 
the strongest end of the assessed IPCC AR5 uncertainty range, future 
temperature increases may be more modest if ammonia emissions 
continue to rise (Hauglustaine et al., 2014). 

Figure 2.2 shows that there are substantial differences in the evolution 
of estimated effective radiative forcing of non-CO2 forcers between 
MAGICC and FAIR. These forcing differences result in MAGICC 
simulating a larger warming trend in the near term compared to both 
the FAIR model and the recent observed trends of 0.2°C per decade 
reported in Chapter 1 (Figure 2.1, Supplementary Material 2.SM.1.1, 
Chapter 1, Section 1.2.1.3). The aerosol effective forcing is stronger in 
MAGICC compared to either FAIR or the AR5 best estimate, though it 
is still well within the AR5 uncertainty range (Supplementary Material 
2.SM.1.1.1). A recent revision (Etminan et al., 2016) increases the 
methane forcing by 25%. This revision is used in the FAIR but not in the 
AR5 setup of MAGICC that is applied here. Other structural differences 
exist in how the two models relate emissions to concentrations that 
contribute to differences in forcing (see Supplementary Material 
2.SM.1.1.1).

Non-CO2 climate forcers exhibit a greater geographical variation in 
radiative forcings than CO2, which leads to important uncertainties in the 
temperature response  (Myhre et al., 2013). This uncertainty increases 
the relative uncertainty of the temperature pathways associated with 
low emission scenarios compared to high emission scenarios (Clarke 
et al., 2014). It is also important to note that geographical patterns 
of temperature change and other climate responses, especially those 
related to precipitation, depend significantly on the forcing mechanism 
(Myhre et al., 2013; Shindell et al., 2015; Marvel et al., 2016; Samset et 
al., 2016) (see also Chapter 3, Section 3.6.2.2).

2.2.1.2	 Geophysical uncertainties: climate and Earth system 
feedbacks

Climate sensitivity uncertainty impacts future projections as well as 
carbon-budget estimates (Schneider et al., 2017). AR5 assessed the 
equilibrium climate sensitivity (ECS) to be likely in the 1.5°–4.5°C 
range, extremely unlikely less than 1°C and very unlikely greater 
than 6°C. The lower bound of this estimate is lower than the range 
of CMIP5 models (Collins et al., 2013). The evidence for the 1.5°C 
lower bound on ECS in AR5 was based on analysis of energy-budget 
changes over the historical period. Work since AR5 has suggested 
that the climate sensitivity inferred from such changes has been 
lower than the 2 × CO2 climate sensitivity for known reasons (Forster, 
2016; Gregory and Andrews, 2016; Rugenstein et al., 2016; Armour, 
2017; Ceppi and Gregory, 2017; Knutti et al., 2017; Proistosescu and 
Huybers, 2017). Both a revised interpretation of historical estimates 
and other lines of evidence based on analysis of climate models with 
the best representation of today’s climate (Sherwood et al., 2014; 
Zhai et al., 2015; Tan et al., 2016; Brown and Caldeira, 2017; Knutti 

et al., 2017) suggest that the lower bound of ECS could be revised 
upwards, which would decrease the chances of limiting warming 
below 1.5°C in assessed pathways. However, such a reassessment has 
been challenged (Lewis and Curry, 2018), albeit from a single line of 
evidence. Nevertheless, it is premature to make a major revision to the 
lower bound. The evidence for a possible revision of the upper bound 
on ECS is less clear, with cases argued from different lines of evidence 
for both decreasing (Lewis and Curry, 2015, 2018; Cox et al., 2018) 
and increasing (Brown and Caldeira, 2017) the bound presented in the 
literature. The tools used in this chapter employ ECS ranges consistent 
with the AR5 assessment. The MAGICC ECS distribution has not been 
selected to explicitly reflect this but is nevertheless consistent (Rogelj 
et al., 2014a). The FAIR model used here to estimate carbon budgets 
explicitly constructs log-normal distributions of ECS and transient 
climate response based on a multi-parameter fit to the AR5 assessed 
ranges of climate sensitivity and individual historic effective radiative 
forcings (Smith et al., 2018) (Supplementary Material 2.SM.1.1.1).

Several feedbacks of the Earth system, involving the carbon cycle, non-
CO2 GHGs and/or aerosols, may also impact the future dynamics of the 
coupled carbon–climate system’s response to anthropogenic emissions. 
These feedbacks are caused by the effects of nutrient limitation (Duce et 
al., 2008; Mahowald et al., 2017), ozone exposure (de Vries et al., 2017), 
fire emissions (Narayan et al., 2007) and changes associated with 
natural aerosols (Cadule et al., 2009; Scott et al., 2018). Among these 
Earth system feedbacks, the importance of the permafrost feedback’s 
influence has been highlighted in recent studies. Combined evidence 
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from both models (MacDougall et al., 2015; Burke et al., 2017; Lowe 
and Bernie, 2018) and field studies (like Schädel et al., 2014; Schuur et 
al., 2015) shows high agreement that permafrost thawing will release 
both CO2 and CH4 as the Earth warms, amplifying global warming. This 
thawing could also release N2O (Voigt et al., 2017a, b). Field, laboratory 
and modelling studies estimate that the vulnerable fraction in 
permafrost is about 5–15% of the permafrost soil carbon (~5300–5600 
GtCO2 in Schuur et al., 2015) and that carbon emissions are expected to 
occur beyond 2100 because of system inertia and the large proportion 
of slowly decomposing carbon in permafrost (Schädel et al., 2014). 
Published model studies suggest that a large part of the carbon release 
to the atmosphere is in the form of CO2 (Schädel et al., 2016), while the 
amount of CH4 released by permafrost thawing is estimated to be much 
smaller than that CO2. Cumulative CH4 release by 2100 under RCP2.6 
ranges from 0.13 to 0.45 Gt of methane (Burke et al., 2012; Schneider 
von Deimling et al., 2012, 2015), with fluxes being the highest in the 
middle of the century because of maximum thermokarst lake extent by 
mid-century (Schneider von Deimling et al., 2015). 

The reduced complexity climate models employed in this assessment 
do not take into account permafrost or non-CO2 Earth system 
feedbacks, although the MAGICC model has a permafrost module that 
can be enabled. Taking the current climate and Earth system feedbacks 
understanding together, there is a possibility that these models 
would underestimate the longer-term future temperature response to 
stringent emission pathways (Section 2.2.2).

2.2.2	 The Remaining 1.5°C Carbon Budget

2.2.2.1	 Carbon budget estimates

Since the AR5, several approaches have been proposed to estimate 
carbon budgets compatible with 1.5°C or 2°C. Most of these 
approaches indirectly rely on the approximate linear relationship 
between peak global mean temperature and cumulative emissions 
of carbon (the transient climate response to cumulative emissions of 
carbon, TCRE) (Collins et al., 2013; Friedlingstein et al., 2014a; Rogelj et 
al., 2016b), whereas others base their estimates on equilibrium climate 
sensitivity (Schneider et al., 2017). The AR5 employed two approaches 
to determine carbon budgets. Working Group I (WGI) computed 
carbon budgets from 2011 onwards for various levels of warming 
relative to the 1861–1880 period using RCP8.5 (Meinshausen et al., 
2011b; Stocker et al., 2013), whereas WGIII estimated their budgets 
from a set of available pathways that were assessed to have a >50% 
probability to exceed 1.5°C by mid-century, and return to 1.5°C or 
below in 2100 with greater than 66% probability (Clarke et al., 2014). 
These differences made AR5 WGI and WGIII carbon budgets difficult to 
compare as they are calculated over different time periods, are derived 
from a different sets of multi-gas and aerosol emission scenarios, 
and use different concepts of carbon budgets (exceedance for WGI, 
avoidance for WGIII) (Rogelj et al., 2016b; Matthews et al., 2017). 

Carbon budgets can be derived from CO2-only experiments as well 
as from multi-gas and aerosol scenarios. Some published estimates 
of carbon budgets compatible with 1.5°C or 2°C refer to budgets 
for CO2-induced warming only, and hence do not take into account 
the contribution of non-CO2 climate forcers (Allen et al., 2009; 

Matthews et al., 2009; Zickfeld et al., 2009; IPCC, 2013a). However, 
because the projected changes in non-CO2 climate forcers tend to 
amplify future warming, CO2-only carbon budgets overestimate the 
total net cumulative carbon emissions compatible with 1.5°C or 2°C 
(Friedlingstein et al., 2014a; Rogelj et al., 2016b; Matthews et al., 2017; 
Mengis et al., 2018; Tokarska et al., 2018). 

Since the AR5, many estimates of the remaining carbon budget for 
1.5°C have been published (Friedlingstein et al., 2014a; MacDougall 
et al., 2015; Peters, 2016; Rogelj et al., 2016b, 2018; Matthews et al., 
2017; Millar et al., 2017; Goodwin et al., 2018b; Kriegler et al., 2018b; 
Lowe and Bernie, 2018; Mengis et al., 2018; Millar and Friedlingstein, 
2018; Schurer et al., 2018; Séférian et al., 2018; Tokarska and Gillett, 
2018; Tokarska et al., 2018). These estimates cover a wide range as a 
result of differences in the models used, and of methodological choices, 
as well as physical uncertainties. Some estimates are exclusively model-
based while others are based on observations or on a combination of 
both. Remaining carbon budgets limiting warming below 1.5°C or 2°C 
that are derived from Earth system models of intermediate complexity 
(MacDougall et al., 2015; Goodwin et al., 2018a), IAMs (Luderer et al., 
2018; Rogelj et al., 2018), or are based on Earth-system model results 
(Lowe and Bernie, 2018; Séférian et al., 2018; Tokarska and Gillett, 
2018) give remaining carbon budgets of the same order of magnitude 
as the IPCC AR5 Synthesis Report (SYR) estimates (IPCC, 2014a). 
This is unsurprising as similar sets of models were used for the AR5 
(IPCC, 2013b). The range of variation across models stems mainly from 
either the inclusion or exclusion of specific Earth system feedbacks 
(MacDougall et al., 2015; Burke et al., 2017; Lowe and Bernie, 2018) or 
different budget definitions (Rogelj et al., 2018).

In contrast to the model-only estimates discussed above and employed 
in the AR5, this report additionally uses observations to inform its 
evaluation of the remaining carbon budget. Table 2.2 shows that the 
assessed range of remaining carbon budgets consistent with 1.5°C 
or 2°C is larger than the AR5 SYR estimate and is part way towards 
estimates constrained by recent observations (Millar et al., 2017; 
Goodwin et al., 2018a; Tokarska and Gillett, 2018). Figure 2.3 illustrates 
that the change since AR5 is, in very large part, due to the application 
of a more recent observed baseline to the historic temperature change 
and cumulative emissions; here adopting the baseline period of 2006–
2015 (see Chapter 1, Section 1.2.1). AR5 SYR Figures SPM.10 and 2.3 
already illustrated the discrepancy between models and observations, 
but did not apply this as a correction to the carbon budget because they 
were being used to illustrate the overall linear relationship between 
warming and cumulative carbon emissions in the CMIP5 models since 
1870, and were not specifically designed to quantify residual carbon 
budgets relative to the present for ambitious temperature goals. The 
AR5 SYR estimate was also dependent on a subset of Earth system 
models illustrated in Figure 2.3 of this report. Although, as outlined 
below and in Table 2.2, considerably uncertainties remain, there is high 
agreement across various lines of evidence assessed in this report that 
the remaining carbon budget for 1.5°C or 2°C would be larger than 
the estimates at the time of the AR5. However, the overall remaining 
budget for 2100 is assessed to be smaller than that derived from the 
recent observational-informed estimates, as Earth system feedbacks 
such as permafrost thawing reduce the budget applicable to centennial 
scales (see Section 2.2.2.2).
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2.2.2.2	 CO2 and non-CO2 contributions to the remaining 
carbon budget

A remaining carbon budget can be estimated from calculating the 
amount of CO2 emissions consistent (given a certain value of TCRE) 
with an allowable additional amount of warming. Here, the allowable 
warming is the 1.5°C warming threshold minus the current warming 
taken as the 2006–2015 average, with a further amount removed to 
account for the estimated non-CO2 temperature contribution to the 
remaining warming (Peters, 2016; Rogelj et al., 2016b). This assessment 
uses the TCRE range from AR5 WGI (Collins et al., 2013) supported 
by estimates of non-CO2 contributions that are based on published 
methods and integrated pathways (Friedlingstein et al., 2014a; Allen et 
al., 2016, 2018; Peters, 2016; Smith et al., 2018). Table 2.2 and Figure 
2.3 show the assessed remaining carbon budgets and key uncertainties 
for a set of additional warming levels relative to the 2006–2015 period 
(see Supplementary Material 2.SM.1.1.2 for details). With an assessed 
historical warming of 0.87°C ± 0.12°C from 1850–1900 to 2006–2015 
(Chapter 1, Section 1.2.1), 0.63°C of additional warming would be 

Figure 2.3 |  Temperature changes from 1850–1900 versus cumulative CO2 emissions since 1st January 1876. Solid lines with dots reproduce the globally 
averaged near-surface air temperature response to cumulative CO2 emissions plus non-CO2 forcers as assessed in Figure SPM10 of WGI AR5, except that points marked with 
years relate to a particular year, unlike in WGI AR5 Figure SPM.10, where each point relates to the mean over the previous decade. The AR5 data was derived from 15 Earth 
system models and 5 Earth system models of Intermediate Complexity for the historic observations (black) and RCP8.5 scenario (red), and the red shaded plume shows the 
range across the models as presented in the AR5. The purple shaded plume and the line are indicative of the temperature response to cumulative CO2 emissions and non-CO2 
warming adopted in this report. The non-CO2 warming contribution is averaged from the MAGICC and FAIR models, and the purple shaded range assumes the AR5 WGI TCRE 
distribution (Supplementary Material 2.SM.1.1.2). The 2010 observation of surface temperature change (0.97°C based on 2006–2015 mean compared to 1850–1900, Chapter 
1, Section 1.2.1) and cumulative carbon dioxide emissions from 1876 to the end of 2010 of 1,930 GtCO2 (Le Quéré et al., 2018) is shown as a filled purple diamond. The value 
for 2017 based on the latest cumulative carbon emissions up to the end of 2017 of 2,220 GtCO2 (Version 1.3 accessed 22 May 2018) and a surface temperature anomaly of 
1.1°C based on an assumed temperature increase of 0.2°C per decade is shown as a hollow purple diamond. The thin blue line shows annual observations, with CO2 emissions 
from Le Quéré et al. (2018) and estimated globally averaged near-surface temperature from scaling the incomplete coverage and blended HadCRUT4 dataset in Chapter 1. The 
thin black line shows the CMIP5 multimodel mean estimate with CO2 emissions also from (Le Quéré et al., 2018). The thin black line shows the GMST historic temperature trends 
from Chapter 1, which give lower temperature changes up to 2006–2015 of 0.87°C and would lead to a larger remaining carbon budget. The dotted black lines illustrate the 
remaining carbon budget estimates for 1.5°C given in Table 2.2. Note these remaining budgets exclude possible Earth system feedbacks that could reduce the budget, such as 
CO2 and CH4 release from permafrost thawing and tropical wetlands (see Section 2.2.2.2).

approximately consistent with a global mean temperature increase 
of 1.5°C relative to pre-industrial levels. For this level of additional 
warming, remaining carbon budgets have been estimated (Table 2.2, 
Supplementary Material 2.SM.1.1.2). 

The remaining carbon budget calculation presented in the Table 
2.2 and illustrated in Figure 2.3 does not consider additional Earth 
system feedbacks such as permafrost thawing. These are uncertain 
but estimated to reduce the remaining carbon budget by an order of 
magnitude of about 100 GtCO2 and more thereafter. Accounting for 
such feedbacks would make the carbon budget more applicable for 
2100 temperature targets, but would also increase uncertainty (Table 
2.2 and see below). Excluding such feedbacks, the assessed range for 
the remaining carbon budget is estimated to be 840, 580, and 420 
GtCO2 for the 33rd, 50th and, 67th percentile of TCRE, respectively, 
with a median non-CO2 warming contribution and starting from 1 
January 2018 onward. Consistent with the approach used in the 
IPCC Fifth Assessment Report (IPCC, 2013b), the latter estimates 
use global near-surface air temperatures both over the ocean and 
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over land to estimate global surface temperature change since pre-
industrial. The global warming from the pre-industrial period until the 
2006–2015 reference period is estimated to amount to 0.97°C with 
an uncertainty range of about ±0.1°C (see Chapter 1, Section 1.2.1). 
Three methodological improvements lead to these estimates of the 
remaining carbon budget being about 300 GtCO2 larger than those 
reported in Table 2.2 of the IPCC AR5 SYR (IPCC, 2014a) (medium 
confidence). The AR5 used 15 Earth System Models (ESM) and 5 
Earth-system Models of Intermediate Complexity (EMIC) to derive an 
estimate of the remaining carbon budget. Their approach hence made 
implicit assumptions about the level of warming to date, the future 
contribution of non-CO2 emissions, and the temperature response 
to CO2 (TCRE). In this report, each of these aspects are considered 
explicitly. When estimating global warming until the 2006–2015 
reference period as a blend of near-surface air temperature over land 
and sea-ice regions, and sea-surface temperature over open ocean, 
by averaging the four global mean surface temperature time series 
listed in Chapter 1 Section 1.2.1, the global warming would amount 
to 0.87°C ±0.1°C. Using the latter estimate of historical warming and 
projecting global warming using global near-surface air temperatures 
from model projections leads to remaining carbon budgets for limiting 
global warming to 1.5°C of 1080, 770, and 570 GtCO2 for the 33rd, 
50th, and 67th percentile of TCRE, respectively. Note that future 
research and ongoing observations over the next years will provide a 
better indication as to how the 2006–2015 base period compares with 
the long-term trends and might affect the budget estimates. Similarly, 
improved understanding in Earth system feedbacks would result in a 
better quantification of their impacts on remaining carbon budgets for 
1.5°C and 2°C. 

After TCRE uncertainty, a major additional source of uncertainty is the 
magnitude of non-CO2 forcing and its contribution to the temperature 
change between the present day and the time of peak warming. 
Integrated emissions pathways can be used to ensure consistency 
between CO2 and non-CO2 emissions (Bowerman et al., 2013; Collins 
et al., 2013; Clarke et al., 2014; Rogelj et al., 2014b, 2015a; Tokarska et 
al., 2018). Friedlingstein et al. (2014a) used pathways with limited to 
no climate mitigation to find a variation due to non-CO2 contributions 
of about ±33% for a 2°C carbon budget. Rogelj et al. (2016b) showed 
no particular bias in non-CO2 radiative forcing or warming at the time 
of exceedance of 2°C or at peak warming between scenarios with 
increasing emissions and strongly mitigated scenarios (consistent 
with Stocker et al., 2013). However, clear differences of the non-
CO2 warming contribution at the time of deriving a 2°C-consistent 
carbon budget were reported for the four RCPs. Although the spread 
in non-CO2 forcing across scenarios can be smaller in absolute terms 
at lower levels of cumulative emissions, it can be larger in relative 
terms compared to the remaining carbon budget (Stocker et al., 2013; 
Friedlingstein et al., 2014a; Rogelj et al., 2016b). Tokarska and Gillett 
(2018) find no statistically significant differences in 1.5°C-consistent 
cumulative emissions budgets when calculated for different RCPs from 
consistent sets of CMIP5 simulations. 

The mitigation pathways assessed in this report indicate that emissions 
of non-CO2 forcers contribute an average additional warming of around 
0.15°C relative to 2006–2015 at the time of net zero CO2 emissions, 
reducing the remaining carbon budget by roughly 320 GtCO2. This 

arises from a weakening of aerosol cooling and continued emissions 
of non-CO2 GHGs (Sections 2.2.1, 2.3.3). This non-CO2 contribution 
at the time of net zero CO2 emissions varies by about ±0.1°C across 
scenarios, resulting in a carbon budget uncertainty of about ±250 
GtCO2, and takes into account marked reductions in methane emissions 
(Section 2.3.3). If these reductions are not achieved, remaining carbon 
budgets are further reduced. Uncertainties in the non-CO2 forcing and 
temperature response are asymmetric and can influence the remaining 
carbon budget by −400 to +200 GtCO2, with the uncertainty in aerosol 
radiative forcing being the largest contributing factor (Table 2.2). The 
MAGICC and FAIR models in their respective parameter setups and 
model versions used to assess the non-CO2 warming contribution give 
noticeable different non-CO2 effective radiative forcing and warming 
for the same scenarios while both being within plausible ranges of 
future response (Figure 2.2 and Supplementary Material 2.SM.1.1, 
2.SM.1.2). For this assessment, it is premature to assess the accuracy 
of their results, so it is assumed that both are equally representative 
of possible futures. Their non-CO2 warming estimates are therefore 
averaged for the carbon budget assessment and their differences used 
to guide the uncertainty assessment of the role of non-CO2 forcers. 
Nevertheless, the findings are robust enough to give high confidence 
that the changing emissions of non-CO2 forcers (particularly the 
reduction in cooling aerosol precursors) cause additional near-term 
warming and reduce the remaining carbon budget compared to the 
CO2-only budget. 

TCRE uncertainty directly impacts carbon budget estimates (Peters, 
2016; Matthews et al., 2017; Millar and Friedlingstein, 2018). Based 
on multiple lines of evidence, AR5 WGI assessed a likely range for 
TCRE of 0.2°–0.7°C per 1000 GtCO2 (Collins et al., 2013). The TCRE 
of the CMIP5 Earth system models ranges from 0.23°C to 0.66°C 
per 1000 GtCO2 (Gillett et al., 2013). At the same time, studies using 
observational constraints find best estimates of TCRE of 0.35°–0.41°C 
per 1000 GtCO2 (Matthews et al., 2009; Gillett et al., 2013; Tachiiri et 
al., 2015; Millar and Friedlingstein, 2018). This assessment continues 
to use the assessed AR5 TCRE range under the working assumption 
that TCRE is normally distributed (Stocker et al., 2013). Observation-
based estimates have reported log-normal distributions of TCRE (Millar 
and Friedlingstein, 2018). Assuming a log-normal instead of normal 
distribution of the assessed AR5 TCRE range would result in about a 
200 GtCO2 increase for the median budget estimates but only about 
half at the 67th percentile, while historical temperature uncertainty 
and uncertainty in recent emissions contribute ±150 and ±50 GtCO2 
to the uncertainty, respectively (Table 2.2).

Calculating carbon budgets from the TCRE requires the assumption 
that the instantaneous warming in response to cumulative CO2 
emissions equals the long-term warming or, equivalently, that 
the residual warming after CO2 emissions cease is negligible. The 
magnitude of this residual warming, referred to as the zero-emission 
commitment, ranges from slightly negative (i.e., a slight cooling) 
to slightly positive for CO2 emissions up to present-day (Chapter 1, 
Section 1.2.4) (Lowe et al., 2009; Frölicher and Joos, 2010; Gillett et 
al., 2011; Matthews and Zickfeld, 2012). The delayed temperature 
change from a pulse CO2 emission introduces uncertainties in emission 
budgets, which have not been quantified in the literature for budgets 
consistent with limiting warming to 1.5°C. As a consequence, this 
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uncertainty does not affect our carbon budget estimates directly but 
it is included as an additional factor in the assessed Earth system 
feedback uncertainty (as detailed below) of roughly 100 GtCO2 on 
decadal time scales presented in Table 2.2.

Remaining carbon budgets are further influenced by Earth system 
feedbacks not accounted for in CMIP5 models, such as the permafrost 
carbon feedback (Friedlingstein et al., 2014b; MacDougall et al., 2015; 
Burke et al., 2017; Lowe and Bernie, 2018), and their influence on 
the TCRE. Lowe and Bernie (2018) used a simple climate sensitivity 
scaling approach to estimate that Earth system feedbacks (such as 
CO2 released by permafrost thawing or methane released by wetlands) 
could reduce carbon budgets for 1.5°C and 2°C by roughly 100 
GtCO2 on centennial time scales. Their findings are based on an older 
understanding of Earth system feedbacks (Arneth et al., 2010). This 
estimate is broadly supported by more recent analysis of individual 
feedbacks. Schädel et al. (2014) suggest an upper bound of 24.4 PgC 
(90 GtCO2) emitted from carbon release from permafrost over the next 
forty years for a RCP4.5 scenario. Burke et al. (2017) use a single model 
to estimate permafrost emissions between 0.3 and 0.6 GtCO2 y

-1 from 
the point of 1.5°C stabilization, which would reduce the budget by 
around 20 GtCO2 by 2100. Comyn-Platt et al. (2018) include carbon 
and methane emissions from permafrost and wetlands and suggest the 
1.5°C remaining carbon budget is reduced by 116 GtCO2. Additionally, 
Mahowald et al. (2017) find there is possibility of 0.5–1.5 GtCO2 y

-1 
being released from aerosol-biogeochemistry changes if aerosol 
emissions cease. In summary, these additional Earth system feedbacks 
taken together are assessed to reduce the remaining carbon budget 
applicable to 2100 by an order of magnitude of 100 GtCO2, compared 
to the budgets based on the assumption of a constant TCRE presented 
in Table 2.2 (limited evidence, medium agreement), leading to overall 
medium confidence in their assessed impact. After 2100, the impact 
of additional Earth system feedbacks is expected to further reduce the 
remaining carbon budget (medium confidence).

The uncertainties presented in Table 2.2 cannot be formally combined, 
but current understanding of the assessed geophysical uncertainties 
suggests at least a ±50% possible variation for remaining carbon 
budgets for 1.5°C-consistent pathways. By the end of 2017, 
anthropogenic CO2 emissions since the pre-industrial period are 
estimated to have amounted to approximately 2200 ±320 GtCO2 
(medium confidence) (Le Quéré et al., 2018). When put in the context 
of year-2017 CO2 emissions (about 42 GtCO2 yr-1, ±3 GtCO2 yr-1, high 
confidence) (Le Quéré et al., 2018), a remaining carbon budget of 
580 GtCO2 (420 GtCO2) suggests meeting net zero global CO2 emissions 
in about 30 years (20 years) following a linear decline starting from 
2018 (rounded to the nearest five years), with a variation of ±15–20 
years due to the geophysical uncertainties mentioned above (high 
confidence).

The remaining carbon budgets assessed in this section are consistent 
with limiting peak warming to the indicated levels of additional 
warming. However, if these budgets are exceeded and the use of 
CDR (see Sections 2.3 and 2.4) is envisaged to return cumulative 
CO2 emissions to within the carbon budget at a later point in time, 
additional uncertainties apply because the TCRE is different under 
increasing and decreasing atmospheric CO2 concentrations due to 

ocean thermal and carbon cycle inertia (Herrington and Zickfeld, 2014; 
Krasting et al., 2014; Zickfeld et al., 2016). This asymmetrical behaviour 
makes carbon budgets path-dependent in the case of a budget and/or 
temperature overshoot (MacDougall et al., 2015). Although potentially 
large for scenarios with large overshoot (MacDougall et al., 2015), this 
path-dependence of carbon budgets has not been well quantified for 
1.5°C- and 2°C-consistent scenarios and as such remains an important 
knowledge gap. This assessment does not explicitly account for path 
dependence but takes it into consideration for its overall confidence 
assessment. 

This assessment finds a larger remaining budget from the 2006–2015 
base period than the 1.5°C and 2°C remaining budgets inferred from 
AR5 from the start of 2011, which were approximately 1000 GtCO2 
for the 2°C (66% of model simulations) and approximately 400 GtCO2 
for the 1.5°C budget (66% of model simulations). In contrast, this 
assessment finds approximately 1600 GtCO2 for the 2°C (66th TCRE 
percentile) and approximately 860 GtCO2 for the 1.5°C budget (66th 
TCRE percentile) from 2011. However, these budgets are not directly 
equivalent as AR5 reported budgets for fractions of CMIP5 simulations 
and other lines of evidence, while this report uses the assessed range 
of TCRE and an assessment of the non-CO2 contribution at net zero CO2 
emissions to provide remaining carbon budget estimates at various 
percentiles of TCRE. Furthermore, AR5 did not specify remaining 
budgets to carbon neutrality as we do here, but budgets until the time 
the temperature limit of interest was reached, assuming negligible zero 
emission commitment and taking into account the non-CO2 forcing at 
that point in time.

In summary, although robust physical understanding underpins the 
carbon budget concept, relative uncertainties become larger as a 
specific temperature limit is approached. For the budget, applicable 
to the mid-century, the main uncertainties relate to the TCRE, non-CO2 
emissions, radiative forcing and response. For 2100, uncertain Earth 
system feedbacks such as permafrost thawing would further reduce 
the available budget. The remaining budget is also conditional upon 
the choice of baseline, which is affected by uncertainties in both 
historical emissions, and in deriving the estimate of globally averaged 
human-induced warming. As a result, only medium confidence can be 
assigned to the assessed remaining budget values for 1.5°C and 2.0°C 
and their uncertainty.
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*(5)

Non-CO2 
scenario 
variation 

*(6)

Non-CO2 
forcing and 
response 

uncertainty

TCRE 
distribution 
uncertainty 

*(7)

Historical 
temperature 
uncertainty 

*(1)

Recent 
emissions 

uncertainty 
*(8)

33rd 50th 67th [GtCO2] [GtCO2] [GtCO2] [GtCO2] [GtCO2] [GtCO2]

0.3  290 160 80  

Budgets on 
the left are 
reduced by 
about –100 

on centennial 
time scales

0.4  530 350 230

0.5  770 530 380

0.53 ~1.5°C 840 580 420 ±250 –400 to +200 +100 to +200 ±250 ±20

0.6  1010 710 530

0.63 1080 770 570

0.7  1240 900 680

0.78  1440 1040 800

0.8  1480 1080 830

0.9  1720 1260 980

1  1960 1450 1130

1.03 ~2°C  2030 1500 1170

1.1 2200 1630 1280

1.13 2270 1690 1320

1.2  2440 1820 1430

Notes: 
*(1)	 Chapter 1 has assessed historical warming between the 1850–1900 and 2006–2015 periods to be 0.87°C with a ±0.12°C likely (1-standard deviation) range, and global near-surface air  
	 temperature to be 0.97°C. The temperature changes from the 2006–2015 period are expressed in changes of global near-surface air temperature. 

*(2)	 Historical CO2 emissions since the middle of the 1850–1900 historical base period (mid-1875) are estimated at 1940 GtCO2 (1640–2240 GtCO2, one standard deviation range) until end  
	 2010. Since 1 January 2011, an additional 290 GtCO2 (270–310 GtCO2, one sigma range) has been emitted until the end of 2017 (Le Quéré et al., 2018).  

*(3)	 TCRE: transient climate response to cumulative emissions of carbon, assessed by AR5 to fall likely between 0.8–2.5°C/1000 PgC (Collins et al., 2013), considering a normal distribution  
	 consistent with AR5 (Stocker et al., 2013). Values are rounded to the nearest 10 GtCO2.

*(4)	 Focussing on the impact of various key uncertainties on median budgets for 0.53°C of additional warming.

*(5)	 Earth system feedbacks include CO2 released by permafrost thawing or methane released by wetlands, see main text. 

*(6)	 Variations due to different scenario assumptions related to the future evolution of non-CO2 emissions.

*(7)	 The distribution of TCRE is not precisely defined. Here the influence of assuming a lognormal instead of a normal distribution shown. 

*(8)	 Historical emissions uncertainty reflects the uncertainty in historical emissions since 1 January 2011. 

Table 2.2 |	 The assessed remaining carbon budget and its uncertainties. Shaded blue horizontal bands illustrate the uncertainty in historical temperature increase 	
	 from the 1850–1900 base period until the 2006–2015 period as estimated from global near-surface air temperatures, which impacts the additional warming 		
	 until a specific temperature limit like 1.5°C or 2°C relative to the 1850–1900 period. Shaded grey cells indicate values for when historical temperature increase 	
	 is estimated from a blend of near-surface air temperatures over land and sea ice regions and sea-surface temperatures over oceans.

2.3	 Overview of 1.5°C Mitigation Pathways 

Limiting global mean temperature increase at any level requires global 
CO2 emissions to become net zero at some point in the future (Zickfeld 
et al., 2009; Collins et al., 2013). At the same time, limiting the residual 
warming of short-lived non-CO2 emissions can be achieved by reducing 
their annual emissions as much as possible (Section 2.2, Cross-Chapter 
Box 2 in Chapter 1). This would require large-scale transformations of 
the global energy–agriculture–land-economy system, affecting the 
way in which energy is produced, agricultural systems are organized, 
and food, energy and materials are consumed (Clarke et al., 2014). This 
section assesses key properties of pathways consistent with limiting 
global mean temperature to 1.5°C relative to pre-industrial levels, 
including their underlying assumptions and variations.

Since the AR5, an extensive body of literature has appeared on integrated 
pathways consistent with 1.5°C (Section 2.1) (Rogelj et al., 2015b, 2018; 
Akimoto et al., 2017; Löffler et al., 2017; Marcucci et al., 2017; Su et al., 
2017; Bauer et al., 2018; Bertram et al., 2018; Grubler et al., 2018; Holz 
et al., 2018b; Kriegler et al., 2018a; Liu et al., 2018; Luderer et al., 2018; 
Strefler et al., 2018a; van Vuuren et al., 2018; Vrontisi et al., 2018; Zhang 
et al., 2018). These pathways have global coverage and represent all 
GHG-emitting sectors and their interactions. Such integrated pathways 
allow the exploration of the whole-system transformation, and hence 
provide the context in which the detailed sectoral transformations 
assessed in Section 2.4 of this chapter are taking place.

The overwhelming majority of published integrated pathways have 
been developed by global IAMs that represent key societal systems 
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and their interactions, like the energy system, agriculture and land use, 
and the economy (see Section 6.2 in Clarke et al., 2014). Very often 
these models also include interactions with a representation of the 
geophysical system, for example, by including spatially explicit land 
models or carbon cycle and climate models. The complex features of 
these subsystems are approximated and simplified in these models. 
IAMs are briefly introduced in Section 2.1 and important knowledge 
gaps identified in Section 2.6. An overview to the use, scope and 
limitations of IAMs is provided in Supplementary Material 2.SM.1.2.

The pathway literature is assessed in two ways in this section. First, 
various insights on specific questions reported by studies can be assessed 
to identify robust or divergent findings. Second, the combined body of 
scenarios can be assessed to identify salient features of pathways in line 
with a specific climate goal across a wide range of models. The latter 
can be achieved by assessing pathways available in the database to 
this assessment (Section 2.1, Supplementary Material 2.SM.1.2–4). The 
ensemble of scenarios available to this assessment is an ensemble of 
opportunity: it is a collection of scenarios from a diverse set of studies 
that was not developed with a common set of questions and a statistical 
analysis of outcomes in mind. This means that ranges can be useful to 
identify robust and sensitive features across available scenarios and 
contributing modelling frameworks, but do not lend themselves to a 
statistical interpretation. To understand the reasons underlying the ranges, 
an assessment of the underlying scenarios and studies is required. To this 
end, this section highlights illustrative pathway archetypes that help to 
clarify the variation in assessed ranges for 1.5°C-consistent pathways.

2.3.1	 Range of Assumptions Underlying 1.5°C Pathways 

Earlier assessments have highlighted that there is no single pathway to 
achieve a specific climate objective (e.g., Clarke et al., 2014). Pathways 
depend on the underlying development processes, and societal 
choices, which affect the drivers of projected future baseline emissions. 
Furthermore, societal choices also affect climate change solutions in 
pathways, like the technologies that are deployed, the scale at which 
they are deployed, or whether solutions are globally coordinated.  
A key finding is that 1.5°C-consistent pathways could be identified 
under a considerable range of assumptions in model studies despite 
the tightness of the 1.5°C emissions budget (Figures 2.4, 2.5) (Rogelj 
et al., 2018).

The AR5 provided an overview of how differences in model structure 
and assumptions can influence the outcome of transformation 
pathways (Section 6.2 in Clarke et al., 2014, as well as Table A.II.14 
in Krey et al., 2014b) and this was further explored by the modelling 
community in recent years with regard to, e.g., socio-economic drivers 
(Kriegler et al., 2016; Marangoni et al., 2017; Riahi et al., 2017), 
technology assumptions (Bosetti et al., 2015; Creutzig et al., 2017; 
Pietzcker et al., 2017), and behavioural factors (van Sluisveld et al., 
2016; McCollum et al., 2017).  

2.3.1.1	 Socio-economic drivers and the demand for 
energy and land in 1.5°C pathways

There is deep uncertainty about the ways humankind will use energy 
and land in the 21st century. These ways are intricately linked to 

future population levels, secular trends in economic growth and 
income convergence, behavioural change and technological progress. 
These dimensions have been recently explored in the context of 
the SSPs (Kriegler et al., 2012; O’Neill et al., 2014), which provide 
narratives (O’Neill et al., 2017) and quantifications (Crespo Cuaresma, 
2017; Dellink et al., 2017; KC and Lutz, 2017; Leimbach et al., 2017; 
Riahi et al., 2017) of different world futures across which scenario 
dimensions are varied to explore differential challenges to adaptation 
and mitigation (Cross-Chapter Box 1 in Chapter 1). This framework 
is increasingly adopted by IAMs to systematically explore the impact 
of socio-economic assumptions on mitigation pathways (Riahi et al., 
2017), including 1.5°C-consistent pathways (Rogelj et al., 2018). The 
narratives describe five worlds (SSP1–5) with different socio-economic 
predispositions to mitigate and adapt to climate change (Table 2.3). As 
a result, population and economic growth projections can vary strongly 
across integrated scenarios, including available 1.5°C-consistent 
pathways (Figure 2.4). For example, based on alternative future 
fertility, mortality, migration and educational assumptions, population 
projections vary between 8.5 and 10.0 billion people by 2050 and 
between 6.9 and 12.6 billion people by 2100 across the SSPs. An 
important factor for these differences is future female educational 
attainment, with higher attainment leading to lower fertility rates and 
therefore decreased population growth up to a level of 1 billion people 
by 2050 (Lutz and KC, 2011; Snopkowski et al., 2016; KC and Lutz, 
2017). Consistent with population development, GDP per capita also 
varies strongly in SSP baselines, ranging from about 20 to more than 
50 thousand USD2010 per capita in 2050 (in purchasing power parity 
values, PPP), in part driven by assumptions on human development, 
technological progress and development convergence between and 
within regions (Crespo Cuaresma, 2017; Dellink et al., 2017; Leimbach 
et al., 2017). Importantly, none of the GDP projections in the mitigation 
pathway literature assessed in this chapter included the feedback of 
climate damages on economic growth (Hsiang et al., 2017). 

Baseline projections for energy-related GHG emissions are sensitive to 
economic growth assumptions, while baseline projections for land-use 
emissions are more directly affected by population growth (assuming 
unchanged land productivity and per capita demand for agricultural 
products) (Kriegler et al., 2016). SSP-based modelling studies of 
mitigation pathways have identified high challenges to mitigation 
for worlds with a focus on domestic issues and regional security 
combined with high population growth (SSP3), and for worlds with 
rapidly growing resource and fossil-fuel intensive consumption (SSP5) 
(Riahi et al., 2017). No model could identify a 2°C-consistent pathway 
for SSP3, and high mitigation costs were found for SSP5. This picture 
translates to 1.5°C-consistent pathways that have to remain within 
even tighter emissions constraints (Rogelj et al., 2018). No model 
found a 1.5°C-consistent pathway for SSP3 and some models could not 
identify 1.5°C-consistent pathways for SSP5 (2 of 4 models, compared 
to 1 of 4 models for 2°C-consistent pathways). The modelling analysis 
also found that the effective control of land-use emissions becomes 
even more critical in 1.5°C-consistent pathways. Due to high inequality 
levels in SSP4, land use can be less well managed. This caused 2 of 
3 models to no longer find an SSP4-based 1.5°C-consistent pathway 
even though they identified SSP4-based 2°C-consistent pathways at 
relatively moderate mitigation costs (Riahi et al., 2017). Rogelj et al. 
(2018) further reported that all six participating models identified 
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1.5°C-consistent pathways in a sustainability oriented world (SSP1) and 
four of six models found 1.5°C-consistent pathways for middle-of-the-
road developments (SSP2). These results show that 1.5°C-consistent 
pathways can be identified under a broad range of assumptions, but 
that lack of global cooperation (SSP3), high inequality (SSP4) and/or 
high population growth (SSP3) that limit the ability to control land use 
emissions, and rapidly growing resource-intensive consumption (SSP5) 
are key impediments. 

Figure 2.4 compares the range of underlying socio-economic 
developments as well as energy and food demand in available 
1.5°C-consistent pathways with the full set of published scenarios 
that were submitted to this assessment. While 1.5°C-consistent 
pathways broadly cover the full range of population and economic 
growth developments (except for the high population development 
in SSP3-based scenarios), they tend to cluster on the lower end for 
energy and food demand. They still encompass, however, a wide range 
of developments from decreasing to increasing demand levels relative 
to today. For the purpose of this assessment, a set of four illustrative 
1.5°C-consistent pathway archetypes were selected to show the 
variety of underlying assumptions and characteristics (Figure 2.4). They 
comprise three 1.5°C-consistent pathways based on the SSPs (Rogelj 
et al., 2018): a sustainability oriented scenario (S1 based on SSP1) 
developed with the AIM model (Fujimori, 2017), a fossil-fuel intensive 

and high energy demand scenario (S5, based on SSP5) developed with 
the REMIND-MAgPIE model (Kriegler et al., 2017), and a middle-of-
the-road scenario (S2, based on SSP2) developed with the MESSAGE-
GLOBIOM model (Fricko et al., 2017). In addition, we include a scenario 
with low energy demand (LED) (Grubler et al., 2018), which reflects 
recent literature with a stronger focus on demand-side measures 
(Bertram et al., 2018; Grubler et al., 2018; Liu et al., 2018; van Vuuren 
et al., 2018). Pathways LED, S1, S2, and S5 are referred to as P1, P2, P3, 
and P4 in the Summary for Policymakers.

2.3.1.2	 Mitigation options in 1.5°C pathways

In the context of 1.5°C pathways, the portfolio of mitigation options 
available to the model becomes an increasingly important factor. IAMs 
include a wide variety of mitigation options, as well as measures that 
achieve CDR from the atmosphere (Krey et al., 2014a, b) (see Chapter 4, 
Section 4.3 for a broad assessment of available mitigation measures). 
For the purpose of this assessment, we elicited technology availability 
in models that submitted scenarios to the database as summarized 
in Supplementary Material 2.SM.1.2, where a detailed picture of the 
technology variety underlying available 1.5°C-consistent pathways 
is provided. Modelling choices on whether a particular mitigation 
measure is included are influenced by an assessment of its global 
mitigation potential, the availability of data and literature describing 

Socio-Economic 
Challenges to 

Mitigation

Socio-Economic Challenges to Adaptation

Low Medium High

High

SSP5: Fossil-fuelled development
• low population
• very high economic growth per capita
• high human development
• high technological progress
• ample fossil fuel resources
• very resource intensive lifestyles
• high energy and food demand per capita
• economic convergence and global cooperation

SSP3: Regional rivalry
• high population
• low economic growth per capita
• low human development
• low technological progress
• resource-intensive lifestyles
• resource-constrained energy and food demand 
   per capita
• focus on regional food and energy security
• regionalization and lack of global cooperation

Medium

SSP2: Middle of the road
• medium population
• medium and uneven economic growth
• medium and uneven human development
• medium and uneven technological progress
• resource-intensive lifestyles
• medium and uneven energy and food demand 
   per capita
• limited global cooperation and economic convergence

Low

SSP1: Sustainable development
• low population
• high economic growth per capita
• high human development
• high technological progress
• environmentally oriented technological and 
   behavioural change
• resource-efficient lifestyles
• low energy and food demand per capita
• economic convergence and global cooperation

SSP4: Inequality
• Medium to high population
• Unequal low to medium economic 
   growth per capita
• Unequal low to medium human development
• unequal technological progress: high in globalized   
   high-tech sectors, slow in domestic sectors
• unequal lifestyles and energy /food consumption:  
   resource intensity depending on income
• Globally connected elite, disconnected domestic 
   work forces

Table 2.3 |	 Key Characteristics of the Five Shared Socio-Economic Pathways (SSPs) (O’Neill et al., 2017). 
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S1
S2
S5
LED
All scenarios
1.5C pathways

(a) (b)

(c) (d)

Figure 2.4 |  Range of assumptions about socio-economic drivers and projections for energy and food demand in the pathways available to this 
assessment. 1.5°C-consistent pathways are blue, other pathways grey. Trajectories for the illustrative 1.5°C-consistent archetypes used in this Chapter (LED, S1, S2, S5; 
referred to as P1, P2, P3, and P4 in the Summary for Policymakers.) are highlighted. S1 is a sustainability oriented scenario, S2 is a middle-of-the-road scenario, and S5 is a 
fossil-fuel intensive and high energy demand scenario. LED is a scenario with particularly low energy demand. Population assumptions in S2 and LED are identical. Panels show 
(a) world population, (b) gross world product in purchasing power parity values, (c) final energy demand, and (d) food demand. 

its techno-economic characteristics and future prospects, and the 
computational challenge of representing the measure, e.g., in terms of 
required spatio-temporal and process detail.

This elicitation (Supplementary Material 2.SM.1.2) confirms that 
IAMs cover most supply-side mitigation options on the process level, 
while many demand-side options are treated as part of underlying 
assumptions, which can be varied (Clarke et al., 2014). In recent years, 
there has been increasing attention on improving the modelling 
of integrating variable renewable energy into the power system 
(Creutzig et al., 2017; Luderer et al., 2017; Pietzcker et al., 2017) and 
of behavioural change and other factors influencing future demand 
for energy and food (van Sluisveld et al., 2016; McCollum et al., 2017; 
Weindl et al., 2017), including in the context of 1.5°C-consistent 
pathways (Grubler et al., 2018; van Vuuren et al., 2018). The literature 
on the many diverse CDR options only recently started to develop 
strongly (Minx et al., 2017) (see Chapter 4, Section 4.3.7 for a detailed 
assessment), and hence these options are only partially included in 
IAM analyses. IAMs mostly incorporate afforestation and bioenergy 
with carbon capture and storage (BECCS) and only in few cases also 
include direct air capture with CCS (DACCS) (Chen and Tavoni, 2013; 
Marcucci et al., 2017; Strefler et al., 2018b). 

Several studies have either directly or indirectly explored the 
dependence of 1.5°C-consistent pathways on specific (sets of) 
mitigation and CDR technologies (Bauer et al., 2018; Grubler et al., 

2018; Holz et al., 2018b; Kriegler et al., 2018a; Liu et al., 2018; Rogelj et 
al., 2018; Strefler et al., 2018b; van Vuuren et al., 2018). However, there 
are a few potentially disruptive technologies that are typically not yet 
well covered in IAMs and that have the potential to alter the shape of 
mitigation pathways beyond the ranges in the IAM-based literature. 
Those are also included in Supplementary Material 2.SM.1.2. The 
configuration of carbon-neutral energy systems projected in mitigation 
pathways can vary widely, but they all share a substantial reliance 
on bioenergy under the assumption of effective land-use emissions 
control. There are other configurations with less reliance on bioenergy 
that are not yet comprehensively covered by global mitigation pathway 
modelling. One approach is to dramatically reduce and electrify energy 
demand for transportation and manufacturing to levels that make 
residual non-electric fuel use negligible or replaceable by limited 
amounts of electrolytic hydrogen. Such an approach is presented in 
a first-of-its kind low-energy-demand scenario (Grubler et al., 2018) 
which is part of this assessment. Other approaches rely less on energy 
demand reductions, but employ cheap renewable electricity to push 
the boundaries of electrification in the industry and transport sectors 
(Breyer et al., 2017; Jacobson, 2017). In addition, these approaches 
deploy renewable-based Power-2-X (read: Power to “x”) technologies 
to substitute residual fossil-fuel use (Brynolf et al., 2018). An important 
element of carbon-neutral Power-2-X applications is the combination 
of hydrogen generated from renewable electricity and CO2 captured 
from the atmosphere (Zeman and Keith, 2008). Alternatively, algae 
are considered as a bioenergy source with more limited implications 
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for land use and agricultural systems than energy crops (Williams and 
Laurens, 2010; Walsh et al., 2016; Greene et al., 2017).

Furthermore, a range of measures could radically reduce agricultural 
and land-use emissions and are not yet well-covered in IAM modelling. 
This includes plant-based proteins (Joshi and Kumar, 2015) and cultured 
meat (Post, 2012) with the potential to substitute for livestock products 
at much lower GHG footprints (Tuomisto and Teixeira de Mattos, 2011). 
Large-scale use of synthetic or algae-based proteins for animal feed 
could free pasture land for other uses (Madeira et al., 2017; Pikaar et al., 
2018). Novel technologies such as methanogen inhibitors and vaccines 
(Wedlock et al., 2013; Hristov et al., 2015; Herrero et al., 2016; Subharat 
et al., 2016) as well as synthetic and biological nitrification inhibitors 
(Subbarao et al., 2013; Di and Cameron, 2016) could substantially 
reduce future non-CO2 emissions from agriculture if commercialized 
successfully. Enhancing carbon sequestration in soils (Paustian et al., 
2016; Frank et al., 2017; Zomer et al., 2017) can provide the dual benefit 
of CDR and improved soil quality. A range of conservation, restoration 
and land management options can also increase terrestrial carbon 
uptake (Griscom et al., 2017). In addition, the literature discusses 
CDR measures to permanently sequester atmospheric carbon in rocks 
(mineralization and enhanced weathering, see Chapter 4, Section 
4.3.7) as well as carbon capture and usage in long-lived products like 
plastics and carbon fibres (Mazzotti et al., 2005; Hartmann et al., 2013). 
Progress in the understanding of the technical viability, economics and 
sustainability of these ways to achieve and maintain carbon neutral 
energy and land use can affect the characteristics, costs and feasibility 
of 1.5°C-consistent pathways significantly. 

2.3.1.3	 Policy assumptions in 1.5°C pathways

Besides assumptions related to socio-economic drivers and mitigation 
technology, scenarios are also subject to assumptions about the 
mitigation policies that can be put in place. Mitigation policies can 
either be applied immediately in scenarios or follow staged or delayed 
approaches. Policies can span many sectors (e.g., economy-wide carbon 
pricing), or policies can be applicable to specific sectors only (like the 
energy sector) with other sectors (e.g., the agricultural or the land-use 
sector) treated differently. These variations can have an important 
impact on the ability of models to generate scenarios compatible with 
stringent climate targets like 1.5°C (Luderer et al., 2013; Rogelj et al., 
2013b; Bertram et al., 2015b; Kriegler et al., 2018a; Michaelowa et al., 
2018). In the scenario ensemble available to this assessment, several 
variations of near-term mitigation policy implementation can be found: 
immediate and cross-sectoral global cooperation from 2020 onward 
towards a global climate objective, a phase-in of globally coordinated 
mitigation policy from 2020 to 2040, and a more short-term oriented 
and regionally diverse global mitigation policy, following NDCs until 
2030 (Kriegler et al., 2018a; Luderer et al., 2018; McCollum et al., 2018; 
Rogelj et al., 2018; Strefler et al., 2018b). For example, the above-
mentioned SSP quantifications assume regionally scattered mitigation 
policies until 2020, and vary in global convergence thereafter (Kriegler 
et al., 2014a; Riahi et al., 2017). The impact of near-term policy choices 
on 1.5°C-consistent pathways is discussed in Section 2.3.5. The 
literature has also explored 1.5°C-consistent pathways that build on 
a portfolio of policy approaches until 2030, including the combination 
of regulatory policies and carbon pricing (Kriegler et al., 2018a), 

and a variety of ancillary policies to safeguard other sustainable 
development goals (Bertram et al., 2018; van Vuuren et al., 2018). 
A further discussion of policy implications of 1.5°C-consistent pathways 
is provided in Section 2.5.1, while a general discussion of policies and 
options to strengthen action are subject of Chapter 4, Section 4.4.  

2.3.2	 Key Characteristics of 1.5°C Pathways

1.5°C-consistent pathways are characterized by a rapid phase out 
of CO2 emissions and deep emissions reductions in other GHGs and 
climate forcers (Section 2.2.2 and 2.3.3). This is achieved by broad 
transformations in the energy; industry; transport; buildings; and 
agriculture, forestry and other land-use (AFOLU) sectors (Section 2.4) 
(Bauer et al., 2018; Grubler et al., 2018; Holz et al., 2018b; Kriegler 
et al., 2018b; Liu et al., 2018; Luderer et al., 2018; Rogelj et al., 
2018; van Vuuren et al., 2018; Zhang et al., 2018). Here we assess 
1.5°C-consistent pathways with and without overshoot during 
the 21st century. One study also explores pathways overshooting 
1.5°C for longer than the 21st century (Akimoto et al., 2017), but 
these are not considered 1.5°C-consistent pathways in this report 
(Chapter 1, Section 1.1.3). This subsection summarizes robust and 
varying properties of 1.5°C-consistent pathways regarding system 
transformations, emission reductions and overshoot. It aims to provide 
an introduction to the detailed assessment of the emissions evolution 
(Section 2.3.3), CDR deployment (Section 2.3.4), energy (Section 2.4.1, 
2.4.2), industry (2.4.3.1), buildings (2.4.3.2), transport (2.4.3.3) and 
land-use transformations (Section 2.4.4) in 1.5°C-consistent pathways. 
Throughout Sections 2.3 and 2.4, pathway properties are highlighted 
with four 1.5°C-consistent pathway archetypes (LED, S1, S2, S5; referred 
to as P1, P2, P3, and P4 in the Summary for Policymakers) covering a 
wide range of different socio-economic and technology assumptions 
(Figure 2.5, Section 2.3.1). 

2.3.2.1	 Variation in system transformations underlying 1.5°C 
pathways

Be it for the energy, transport, buildings, industry, or AFOLU sector, 
the literature shows that multiple options and choices are available in 
each of these sectors to pursue stringent emissions reductions (Section 
2.3.1.2, Supplementary Material 2.SM.1.2, Chapter 4, Section 4.3). 
Because the overall emissions total under a pathway is limited by a 
geophysical carbon budget (Section 2.2.2), choices in one sector affect 
the efforts that are required from others (Clarke et al., 2014). A robust 
feature of 1.5°C-consistent pathways, as highlighted by the set of 
pathway archetypes in Figure 2.5, is a virtually full decarbonization of the 
power sector around mid-century, a feature shared with 2°C-consistent 
pathways. The additional emissions reductions in 1.5°C-consistent 
compared to 2°C-consistent pathways come predominantly from the 
transport and industry sectors (Luderer et al., 2018). Emissions can be 
apportioned differently across sectors, for example, by focussing on 
reducing the overall amount of CO2 produced in the energy end-use 
sectors, and using limited contributions of CDR by the AFOLU sector 
(afforestation and reforestation, S1 and LED pathways in Figure 2.5) 
(Grubler et al., 2018; Holz et al., 2018b; van Vuuren et al., 2018), or 
by being more lenient about the amount of CO2 that continues to 
be produced in the above-mentioned end-use sectors (both by 2030 
and mid-century) and strongly relying on technological CDR options 
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like BECCS (S2 and S5 pathways in Figure 2.5) (Luderer et al., 2018; 
Rogelj et al., 2018). Major drivers of these differences are assumptions 
about energy and food demand and the stringency of near-term climate 
policy (see the difference between early action in the scenarios S1, 
LED and more moderate action until 2030 in the scenarios S2, S5). 
Furthermore, the carbon budget in each of these pathways depends 
also on the non-CO2 mitigation measures implemented in each of them, 
particularly for agricultural emissions (Sections 2.2.2, 2.3.3) (Gernaat et 
al., 2015). Those pathways differ not only in terms of their deployment 
of mitigation and CDR measures (Sections 2.3.4 and 2.4), but also in 
terms of the resulting temperature overshoot (Figure 2.1). Furthermore, 
they have very different implications for the achievement of sustainable 
development objectives, as further discussed in Section 2.5.3.

2.3.2.2	 Pathways keeping warming below 1.5°C or temporarily 
overshooting it

This subsection explores the conditions that would need to be fulfilled 
to stay below 1.5°C warming without overshoot. As discussed in Section 
2.2.2, to keep warming below 1.5°C with a two-in-three (one-in-two) 
chance, the cumulative amount of CO2 emissions from 2018 onwards 
need to remain below a carbon budget of 420 (580) GtCO2; accounting 
for the effects of additional Earth system feedbacks until 2100 reduces 
this estimate by 100 GtCO2. Based on the current state of knowledge, 

exceeding this remaining carbon budget at some point in time would 
give a one-in-three (one-in-two) chance that the 1.5°C limit is overshot 
(Table 2.2). For comparison, around 290 ± 20 (1 standard deviation 
range) GtCO2 have been emitted in the years 2011–2017, with annual 
CO2 emissions in 2017 around 42 ± 3 GtCO2 yr−1 (Jackson et al., 2017; 
Le Quéré et al., 2018). Committed fossil-fuel emissions from existing 
fossil-fuel infrastructure as of 2010 have been estimated at around 
500 ± 200 GtCO2 (with about 200 GtCO2 already emitted through 
2017) (Davis and Caldeira, 2010). Coal-fired power plants contribute 
the largest part. Committed emissions from existing coal-fired power 
plants built through the end of 2016 are estimated to add up to roughly 
200 GtCO2, and a further 100–150 GtCO2 from coal-fired power plants 
under construction or planned (González-Eguino et al., 2017; Edenhofer 
et al., 2018). However, there has been a marked slowdown of planned 
coal-power projects in recent years, and some estimates indicate that 
the committed emissions from coal plants that are under construction 
or planned have halved since 2015 (Shearer et al., 2018). Despite these 
uncertainties, the committed fossil-fuel emissions are assessed to 
already amount to more than two thirds (half) of the remaining carbon 
budget.

An important question is to what extent the nationally determined 
contributions (NDCs) under the Paris Agreement are aligned with the 
remaining carbon budget. It was estimated that the NDCs, if successfully 

Figure 2.5 |  Evolution and break down of global anthropogenic CO2 emissions until 2100. The top-left panel shows global net CO2 emissions in Below-1.5°C, 
1.5°C-low-overshoot (OS), and 1.5°C-high-OS pathways, with the four illustrative 1.5°C-consistent pathway archetypes of this chapter highlighted. Ranges at the bottom of the 
top-left panel show the 10th–90th percentile range (thin line) and interquartile range (thick line) of the time that global CO2 emissions reach net zero per pathway class, and for 
all pathways classes combined. The top-right panel provides a schematic legend explaining all CO2 emissions contributions to global CO2 emissions. The bottom row shows how 
various CO2 contributions are deployed and used in the four illustrative pathway archetypes (LED, S1, S2, S5, referred to as P1, P2, P3, and P4 in the Summary for Policymakers) 
used in this chapter (see Section 2.3.1.1). Note that the S5 scenario reports the building and industry sector emissions jointly. Green-blue areas hence show emissions from the 
transport sector and the joint building and industry demand sector, respectively. 
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implemented, imply a total of 400–560 GtCO2 emissions over the 
2018–2030 period (considering both conditional and unconditional 
NDCs) (Rogelj et al., 2016a). Thus, following an NDC trajectory would 
already exhaust 95–130% (70–95%) of the remaining two-in-three 
(one-in-two) 1.5°C carbon budget (unadjusted for additional Earth 
system feedbacks) by 2030. This would leave no time (0–9 years) to 
bring down global emissions from NDC levels of around 40 GtCO2 yr−1 
in 2030 (Fawcett et al., 2015; Rogelj et al., 2016a) to net zero (further 
discussion in Section 2.3.5).

Most 1.5°C-consistent pathways show more stringent emissions 
reductions by 2030 than implied by the NDCs (Section 2.3.5) The lower 
end of those pathways reach down to below 20 GtCO2 yr−1 in 2030 
(Section 2.3.3, Table 2.4), less than half of what is implied by the NDCs. 
Whether such pathways will be able to limit warming to 1.5°C without 
overshoot will depend on whether cumulative net CO2 emissions over 
the 21st century can be kept below the remaining carbon budget at 
any time. Net global CO2 emissions are derived from the gross amount 
of CO2 that humans annually emit into the atmosphere reduced by the 
amount of anthropogenic CDR in each year. New research has looked 
more closely at the amount and the drivers of gross CO2 emissions 
from fossil-fuel combustion and industrial processes (FFI) in deep 
mitigation pathways (Luderer et al., 2018), and found that the larger 
part of remaining CO2 emissions come from direct fossil-fuel use in 
the transport and industry sectors, while residual energy supply sector 
emissions (mostly from the power sector) are limited by a rapid approach 
to net zero CO2 emissions until mid-century. The 1.5°C pathways with 
no or limited (<0.1°C) overshoot that were reported in the scenario 
database project remaining FFI CO2 emissions of 610–1260 GtCO2 over 
the period 2018–2100 (5th–95th percentile range; median: 880 GtCO2). 
Kriegler et al. (2018b) conducted a sensitivity analysis that explores the 
four central options for reducing fossil-fuel emissions: lowering energy 
demand, electrifying energy services, decarbonizing the power sector 
and decarbonizing non-electric fuel use in energy end-use sectors. By 
exploring these options to their extremes, they found a lowest value 
of 500 GtCO2 (2018–2100) gross fossil-fuel CO2 emissions for the 
hypothetical case of aligning the strongest assumptions for all four 
mitigation options. The two lines of evidence and the fact that available 
1.5°C pathways cover a wide range of assumptions (Section 2.3.1) 
give a robust indication of a lower limit of about 500 GtCO2 remaining 
fossil-fuel and industry CO2 emissions in the 21st century.

To compare these numbers with the remaining carbon budget, CO2 
emissions from agriculture, forestry and other land use (AFOLU) need 
to be taken into account. In many of the 1.5°C-consistent pathways, 
AFOLU CO2 emissions reach zero at or before mid-century and then 
turn to negative values (Table 2.4). This means human changes to the 
land lead to atmospheric carbon being stored in plants and soils. This 
needs to be distinguished from the natural CO2 uptake by land, which is 
not accounted for in the anthropogenic AFOLU CO2 emissions reported 
in the pathways. Given the difference in estimating the ‘anthropogenic’ 
sink between countries and the global integrated assessment and 
carbon modelling community (Grassi et al., 2017), the AFOLU CO2 

estimates included here are not necessarily directly comparable with 
countries’ estimates at global level. The cumulated amount of AFOLU 
CO2 emissions until the time they reach zero combine with the fossil-fuel 
and industry CO2 emissions to give a total amount of gross emissions 

of 650–1270 GtCO2 for the period 2018–2100 (5th–95th percentile; 
median 950 GtCO2) in 1.5°C pathways with no or limited overshoot. 
The lower end of the range is close to what emerges from a scenario 
of transformative change that halves CO2 emissions every decade 
from 2020 to 2050 (Rockström et al., 2017). All these estimates are 
above the remaining carbon budget for a one-in-two chance of limiting 
warming below 1.5°C without overshoot, including the low end of the 
hypothetical sensitivity analysis of Kriegler et al. (2018b), who assumes 
75 Gt AFOLU CO2 emissions adding to a total of 575 GtCO2 gross CO2 

emissions. As almost no cases have been identified that keep gross CO2 

emissions within the remaining carbon budget for a one-in-two chance 
of limiting warming to 1.5°C, and based on current understanding of 
the geophysical response and its uncertainties, the available evidence 
indicates that avoiding overshoot of 1.5°C will require some type of 
CDR in a broad sense, e.g., via net negative AFOLU CO2 emissions 
(medium confidence). (Table 2.2).

Net CO2 emissions can fall below gross CO2 emissions, if CDR is 
brought into the mix. Studies have looked at mitigation and CDR 
in combination to identify strategies for limiting warming to 1.5°C 
(Sanderson et al., 2016; Ricke et al., 2017). CDR, which may include 
net negative AFOLU CO2 emissions, is deployed by all 1.5°C-consistent 
pathways available to this assessment, but the scale of deployment 
and choice of CDR measures varies widely (Section 2.3.4). Furthermore, 
no CDR technology has been deployed at scale yet, and all come with 
concerns about their potential (Fuss et al., 2018), feasibility (Nemet et 
al., 2018) and/or sustainability (Smith et al., 2015; Fuss et al., 2018) (see 
Sections 2.3.4, 4.3.2 and 4.3.7 and Cross-Chapter Box 7 in Chapter 3 
for further discussion). CDR can have two very different functions in 
1.5°C-consistent pathways. If deployed in the first half of the century, 
before net zero CO2 emissions are reached, it neutralizes some of the 
remaining CO2 emissions year by year and thus slows the accumulation 
of CO2 in the atmosphere. In this first function it can be used to remain 
within the carbon budget and avoid overshoot. If CDR is deployed in the 
second half of the century after carbon neutrality has been established, 
it can still be used to neutralize some residual emissions from other 
sectors, but also to create net negative emissions that actively draw 
down the cumulative amount of CO2 emissions to return below a 
1.5°C warming level. In the second function, CDR enables temporary 
overshoot. The literature points to strong limitations to upscaling 
CDR (limiting its first abovementioned function) and to sustainability 
constraints (limiting both abovementioned functions) (Fuss et al., 
2018; Minx et al., 2018; Nemet et al., 2018). Large uncertainty hence 
exists about what amount of CDR could actually be available before 
mid-century. Kriegler et al. (2018b) explore a case limiting CDR to 
100 GtCO2 until 2050, and the 1.5°C pathways with no or limited 
overshoot available in the report’s database project 40–260 GtCO2 
CDR until the point of carbon neutrality (5th to 95th percentile; median 
110 GtCO2). Because gross CO2 emissions in most cases exceed the 
remaining carbon budget by several hundred GtCO2 and given the limits 
to CDR deployment until 2050, most of the 1.5°C-consistent pathways 
available to this assessment are overshoot pathways. However, the 
scenario database also contains nine non-overshoot pathways that 
remain below 1.5°C throughout the 21st century (Table 2.1).
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2.3.3	 Emissions Evolution in 1.5°C Pathways

This section assesses the salient temporal evolutions of climate forcers 
over the 21st century. It uses the classification of 1.5°C pathways 
presented in Section 2.1, which includes a Below-1.5°C class, as well 
as other classes with varying levels of projected overshoot (1.5°C-low-
OS and 1.5°C-high-OS). First, aggregate-GHG benchmarks for 2030 
are assessed. Subsequent sections assess long-lived climate forcers 
(LLCF) and short-lived climate forcers (SLCF) separately because they 
contribute in different ways to near-term, peak and long-term warming 
(Section 2.2, Cross-Chapter Box 2 in Chapter 1). 

Estimates of aggregated GHG emissions in line with specific policy 
choices are often compared to near-term benchmark values from 
mitigation pathways to explore their consistency with long-term 
climate goals (Clarke et al., 2014; UNEP, 2016, 2017; UNFCCC, 2016). 
Benchmark emissions or estimates of peak years derived from IAMs 
provide guidelines or milestones that are consistent with achieving a 
given temperature level. While they do not set mitigation requirements 
in a strict sense, exceeding these levels in a given year almost invariably 
increases the mitigation challenges afterwards by increasing the rates 
of change and increasing the reliance on speculative technologies, 
including the possibility that its implementation becomes unachievable 
(see Cross-Chapter Box 3 in Chapter 1 for a discussion of feasibility 
concepts) (Luderer et al., 2013; Rogelj et al., 2013b; Clarke et al., 2014; 
Fawcett et al., 2015; Riahi et al., 2015; Kriegler et al., 2018a). These 
trade-offs are particularly pronounced in 1.5°C pathways and are 
discussed in Section 2.3.5. This section assesses Kyoto-GHG emissions 
in 2030 expressed in CO2 equivalent (CO2e) emissions using 100-year 
global warming potentials.3   

Appropriate benchmark values of aggregated GHG emissions depend 
on a variety of factors. First and foremost, they are determined by the 
desired likelihood to keep warming below 1.5°C and the extent to which 
projected temporary overshoot is to be avoided (Sections 2.2, 2.3.2, 
and 2.3.5). For instance, median aggregated 2030 GHG emissions are 
about 10 GtCO2e yr−1 lower in 1.5°C-low-OS compared to 1.5°C-high-
OS pathways, with respective interquartile ranges of 26–31 and 36–49 
GtCO2e yr−1 (Table 2.4). These ranges correspond to about 25–30 and 
35–48 GtCO2e yr−1 in 2030, respectively, when aggregated with 100-
year Global Warming Potentials from the IPCC Second Assessment 
Report. The limited evidence available for pathways aiming to limit 
warming below 1.5°C without overshoot or with limited amounts of 
CDR (Grubler et al., 2018; Holz et al., 2018b; van Vuuren et al., 2018) 
indicates that under these conditions consistent emissions in 2030 
would fall at the lower end and below the above mentioned ranges. 
Due to the small number of 1.5°C pathways with no overshoot in the 
report’s database (Table 2.4) and the potential for a downward bias in 
the selection of underlying scenario assumptions, the headline range 
for 1.5°C pathways with no or limited overshoot is also assessed to 
be of the order of 25–30 GtCO2e yr−1. Ranges for the 1.5°C-low-OS 
and Lower-2°C classes only overlap outside their interquartile ranges, 

highlighting the more accelerated reductions in 1.5°C-consistent 
compared to 2°C-consistent pathways. 

Appropriate emissions benchmark values also depend on the 
acceptable or desired portfolio of mitigation measures, representing 
clearly identified trade-offs and choices (Sections 2.3.4, 2.4, and 2.5.3) 
(Luderer et al., 2013; Rogelj et al., 2013a; Clarke et al., 2014; Krey et al., 
2014a; Strefler et al., 2018b). For example, lower 2030 GHG emissions 
correlate with a lower dependence on the future availability and 
desirability of CDR (Strefler et al., 2018b). On the other hand, pathways 
that assume or anticipate only limited deployment of CDR during 
the 21st century imply lower emissions benchmarks over the coming 
decades, which are achieved in models through further reducing 
CO2 emissions in the coming decades. The pathway archetypes 
used in the chapter illustrate this further (Figure 2.6). Under middle- 
of-the-road assumptions of technological and socioeconomic 
development, pathway S2 suggests emission benchmarks of 34, 12 
and −8 GtCO2e yr−1 in the years 2030, 2050, and 2100, respectively. 
In contrast, a pathway that further limits overshoot and aims at 
eliminating the reliance on negative emissions technologies like 
BECCS as well as CCS (here labelled as the LED pathway) shows 
deeper emissions reductions in 2030 to limit the cumulative amount 
of CO2 until net zero global CO2 emissions (carbon neutrality). The LED 
pathway here suggests emission benchmarks of 25, 9 and 2 GtCO2e yr−1 
in the years 2030, 2050, and 2100, respectively. However, a pathway 
that allows and plans for the successful large-scale deployment of 
BECCS by and beyond 2050 (S5) shows a shift in the opposite direction. 
The variation within and between the abovementioned ranges of 
2030 GHG benchmarks hence depends strongly on societal choices 
and preferences related to the acceptability and availability of certain 
technologies. 

Overall these variations do not strongly affect estimates of the 
1.5°C-consistent timing of global peaking of GHG emissions. Both 
Below-1.5°C and 1.5°C-low-OS pathways show minimum–maximum 
ranges in 2030 that do not overlap with 2020 ranges, indicating the 
global GHG emissions peaked before 2030 in these pathways. Also, 
2020 and 2030 GHG emissions in 1.5°C-high-OS pathways only 
overlap outside their interquartile ranges. 

Kyoto-GHG emission reductions are achieved by reductions in CO2 
and non-CO2 GHGs. The AR5 identified two primary factors that 
influence the depth and timing of reductions in non-CO2 Kyoto-GHG 
emissions: (i) the abatement potential and costs of reducing the 
emissions of these gases and (ii) the strategies that allow making 
trade-offs between them (Clarke et al., 2014). Many studies indicate 
low-cost, near-term mitigation options in some sectors for non-CO2 
gases compared to supply-side measures for CO2 mitigation (Clarke et 
al., 2014). A large share of this potential is hence already exploited in 
mitigation pathways in line with 2°C. At the same time, by mid-century 
and beyond, estimates of further reductions of non-CO2 Kyoto-GHGs – 
in particular CH4 and N2O – are hampered by the absence of mitigation 

3	 In this chapter GWP-100 values from the IPCC Fourth Assessement Report are used because emissions of fluorinated gases in the integrated pathways have been reported 
in this metric to the database. At a global scale, switching between GWP-100 values of the Second, Fourth or Fifth IPCC Assessment Reports could result in variations in 
aggregated Kyoto-GHG emissions of about ±5% in 2030 (UNFCCC, 2016).
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options in the current generation of IAMs, which are hence not able 
to reduce residual emissions of sources linked to livestock production 
and fertilizer use (Clarke et al., 2014; Gernaat et al., 2015) (Sections 
2.3.1.2, 2.4.4, Supplementary Material  2.SM.1.2). Therefore, while net 
CO2 emissions are projected to be markedly lower in 1.5°C-consistent 
compared to 2°C-consistent pathways, this is much less the case for 
methane (CH4) and nitrous-oxide (N2O) (Figures 2.6–2.7). This results 
in reductions of CO2 being projected to take up the largest share of 
emissions reductions when moving between 1.5°C-consistent and 
2°C-consistent pathways (Rogelj et al., 2015b, 2018; Luderer et al., 
2018). If additional non-CO2 mitigation measures are identified and 
adequately included in IAMs, they are expected to further contribute to 
mitigation efforts by lowering the floor of residual non-CO2 emissions. 
However, the magnitude of these potential contributions has not been 
assessed as part of this report. 

As a result of the interplay between residual CO2 and non-CO2 emissions 
and CDR, global GHG emissions reach net zero levels at different times 
in different 1.5°C-consistent pathways. Interquartile ranges of the 
years in which 1.5°C-low-OS and 1.5°C-high-OS reach net zero GHG 
emissions range from 2060 to 2080 (Table 2.4). A seesaw characteristic 
can be found between near-term emissions reductions and the timing 
of net zero GHG emissions. This is because pathways with limited 
emissions reductions in the next one to two decades require net 
negative CO2 emissions later on (see earlier). Most 1.5°C-high-OS 
pathways lead to net zero GHG emissions in approximately the third 
quarter of this century, because all of them rely on significant amounts 
of annual net negative CO2 emissions in the second half of the 
century to decline temperatures after overshoot (Table 2.4). However, 
in pathways that aim at limiting overshoot as much as possible or 
more slowly decline temperatures after their peak, emissions reach 
the point of net zero GHG emissions slightly later or at times never. 
Early emissions reductions in this case reduce the requirement for net 
negative CO2 emissions. Estimates of 2030 GHG emissions in line with 
the current NDCs overlap with the highest quartile of 1.5°C-high-OS 
pathways (Cross-Chapter Box 9 in Chapter 4).

2.3.3.1	 Emissions of long-lived climate forcers

Climate effects of long-lived climate forcers (LLCFs) are dominated by 
CO2, with smaller contributions of N2O and some fluorinated gases 
(Myhre et al., 2013; Blanco et al., 2014). Overall net CO2 emissions 
in pathways are the result of a combination of various anthropogenic 
contributions (Figure 2.5) (Clarke et al., 2014): (i) CO2 produced by fossil-
fuel combustion and industrial processes, (ii) CO2 emissions or removals 
from the agriculture, forestry and other land use (AFOLU) sector, (iii) 
CO2 capture and sequestration (CCS) from fossil fuels or industrial 
activities before it is released to the atmosphere, (iv) CO2 removal by 
technological means, which in current pathways is mainly achieved 
by BECCS and AFOLU-related CDR, although other options could 
be conceivable (see Chapter 4, Section 4.3.7). Pathways apply these 
four contributions in different configurations (Figure 2.5) depending 
on societal choices and preferences related to the acceptability and 
availability of certain technologies, the timing and stringency of near-
term climate policy, and the ability to limit the demand that drives 
baseline emissions (Marangoni et al., 2017; Riahi et al., 2017; Grubler 
et al., 2018; Rogelj et al., 2018; van Vuuren et al., 2018), and come with 

very different implication for sustainable development (Section 2.5.3). 

All 1.5°C pathways see global CO2 emissions embark on a steady 
decline to reach (near) net zero levels around 2050, with 1.5°C-low-
OS pathways reaching net zero CO2 emissions around 2045–2055 
(Table 2.4; Figure 2.5). Near-term differences between the various 
pathway classes are apparent, however. For instance, Below-1.5°C and 
1.5°C-low-OS pathways show a clear shift towards lower CO2 emissions 
in 2030 relative to other 1.5°C and 2°C pathway classes, although in all 
1.5°C classes reductions are clear (Figure 2.6). These lower near-term 
emissions levels are a direct consequence of the former two pathway 
classes limiting cumulative CO2 emissions until carbon neutrality in 
order to aim for a higher probability of limiting peak warming to 1.5°C 
(Section 2.2.2 and 2.3.2.2). In some cases, 1.5°C-low-OS pathways 
achieve net zero CO2 emissions one or two decades later, contingent on 
2030 CO2 emissions in the lower quartile of the literature range, that 
is, below about 18 GtCO2 yr−1. Median year-2030 global CO2 emissions 
are of the order of 5–10 GtCO2 yr−1 lower in Below-1.5°C compared 
to 1.5°C-low-OS pathways, which are in turn lower than 1.5°C-high-
OS pathways (Table 2.4). Below-1.5°C and 1.5°C-low-OS pathways 
combined show a decline in global net anthropogenic CO2 emissions 
of about 45% from 2010 levels by 2030 (40–60% interquartile range). 
Lower-2°C pathways show CO2 emissions declining by about 25% by 
2030 in most pathways (10–30% interquartile range). The 1.5°C-high-
OS pathways show emissions levels that are broadly similar to the 
2°C-consistent pathways in 2030.

The development of CO2 emissions in the second half of the century in 
1.5°C pathways is characterized by the need to stay or return within 
a carbon budget. Figure 2.6 shows net CO2 and N2O emissions from 
various sources in 2050 and 2100 in 1.5°C pathways in the literature. 
Virtually all 1.5°C pathways obtain net negative CO2 emissions at some 
point during the 21st century, but the extent to which net negative 
emissions are relied upon varies substantially (Figure 2.6, Table 2.4). 
This net withdrawal of CO2 from the atmosphere compensates for 
residual long-lived non-CO2 GHG emissions that also accumulate in 
the atmosphere (like N2O) or cancels some of the build-up of CO2 due 
to earlier emissions to achieve increasingly higher likelihoods that 
warming stays or returns below 1.5°C (see Section 2.3.4 for a discussion 
of various uses of CDR). Even non-overshoot pathways that aim at 
achieving temperature stabilization would hence deploy a certain 
amount of net negative CO2 emissions to offset any accumulating 
long-lived non-CO2 GHGs. The 1.5°C overshoot pathways display 
significantly larger amounts of annual net negative CO2 emissions in 
the second half of the century. The larger the overshoot the more net 
negative CO2 emissions are required to return temperatures to 1.5°C 
by the end of the century (Table 2.4, Figure 2.1). 

N2O emissions decline to a much lesser extent than CO2 in currently 
available 1.5°C pathways (Figure 2.6). Current IAMs have limited 
emissions-reduction potentials (Gernaat et al., 2015) (Sections 2.3.1.2, 
2.4.4, Supplementary Material  2.SM.1.2), reflecting the difficulty of 
eliminating N2O emission from agriculture (Bodirsky et al., 2014). 
Moreover, the reliance of some pathways on significant amounts of 
bioenergy after mid-century (Section 2.4.2) coupled to a substantial 
use of nitrogen fertilizer (Popp et al., 2017) also makes reducing N2O 
emissions harder (for example, see pathway S5 in Figure 2.6). As 
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Figure 2.6 |  Annual global emissions characteristics for 2020, 2030, 2050, 2100. Data are shown for (a) Kyoto-GHG emissions, and (b) global total CO2 emissions, 
(c) CO2 emissions from the agriculture, forestry and other land use (AFOLU) sector, (d) global N2O emissions, and (e) CO2 emissions from fossil fuel use and industrial processes. 
The latter is also split into (f) emissions from the energy supply sector (electricity sector and refineries) and (g) direct emissions from fossil-fuel use in energy demand sectors 
(industry, buildings, transport) (bottom row). Horizontal black lines show the median, boxes show the interquartile range, and whiskers the minimum–maximum range. Icons 
indicate the four pathway archetypes used in this chapter. In case less than seven data points are available in a class, the minimum–maximum range and single data points 
are shown. Kyoto-GHG, emissions in the top panel are aggregated with AR4 GWP-100 and contain CO2, CH4, N2O, HFCs, PFCs, and SF6. NF3 is typically not reported by IAMs. 
Scenarios with year-2010 Kyoto-GHG emissions outside the range assessed by IPCC AR5 WGIII assessed are excluded (IPCC, 2014b).
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a result, sizeable residual N2O emissions are currently projected to 
continue throughout the century, and measures to effectively mitigate 
them will be of continued relevance for 1.5°C societies. Finally, the 
reduction of nitrogen use and N2O emissions from agriculture is already 
a present-day concern due to unsustainable levels of nitrogen pollution 
(Bodirsky et al., 2012). Section 2.4.4 provides a further assessment of 
the agricultural non-CO2 emissions reduction potential. 

2.3.3.2	 Emissions of short-lived climate forcers and 
fluorinated gases

SLCFs include shorter-lived GHGs like CH4 and some fluorinated gases 
as well as particles (aerosols), their precursors and ozone precursors. 
SLCFs are strongly mitigated in 1.5°C pathways, as is the case for 
2°C pathways (Figure 2.7). SLCF emissions ranges of 1.5°C and 2°C 
pathway classes strongly overlap, indicating that the main incremental 
mitigation contribution between 1.5°C and 2°C pathways comes from 
CO2 (Luderer et al., 2018; Rogelj et al., 2018). CO2 and SLCF emissions 
reductions are connected in situations where SLCF and CO2 are 
co-emitted by the same process, for example, with coal-fired power 
plants (Shindell and Faluvegi, 2010) or within the transport sector 
(Fuglestvedt et al., 2010). Many CO2-targeted mitigation measures 
in industry, transport and agriculture (Sections 2.4.3–4) hence also 
reduce non-CO2 forcing (Rogelj et al., 2014b; Shindell et al., 2016).   

Despite the fact that methane has a strong warming effect (Myhre 
et al., 2013; Etminan et al., 2016), current 1.5°C-consistent pathways 
still project significant emissions of CH4 by 2050, indicating only a 
limited CH4 mitigation potential in IAM analyses (Gernaat et al., 2015) 
(Sections 2.3.1.2, 2.4.4, Table 2.SM.2). The AFOLU sector contributes an 
important share of the residual CH4 emissions until mid-century, with 
its relative share increasing from slightly below 50% in 2010 to around 
55–70% in 2030, and 60–80% in 2050 in 1.5°C-consistent pathways 
(interquartile range across 1.5°C-consistent pathways for projections). 
Many of the proposed measures to target CH4 (Shindell et al., 2012; 
Stohl et al., 2015) are included in 1.5°C-consistent pathways (Figure 
2.7), though not all (Sections 2.3.1.2, 2.4.4, Table 2.SM.2). A detailed 
assessment of measures to further reduce AFOLU CH4 emissions has 
not been conducted.

Overall reductions of SLCFs can have effects of either sign on 
temperature depending on the balance between cooling and warming 
agents. The reduction in SO2 emissions is the dominant single effect as 
it weakens the negative total aerosol forcing. This means that reducing 
all SLCF emissions to zero would result in a short-term warming, 
although this warming is unlikely to be more than 0.5°C (Section 2.2 
and Figure 1.5 (Samset et al., 2018)). Because of this effect, suggestions 
have been proposed that target the warming agents only (referred to 
as short-lived climate pollutants or SLCPs instead of the more general 
short-lived climate forcers; e.g., Shindell et al., 2012), though aerosols 
are often emitted in varying mixtures of warming and cooling species 
(Bond et al., 2013). Black carbon (BC) emissions reach similar levels 
across 1.5°C-consistent and 2°C-consistent pathways available in the 
literature, with interquartile ranges of emissions reductions across 
pathways of 16–34% and 48–58% in 2030 and 2050, respectively, 
relative to 2010 (Figure 2.7). Recent studies have identified further 
reduction potentials for the near term, with global reductions of about 

80% being suggested (Stohl et al., 2015; Klimont et al., 2017). Because 
the dominant sources of certain aerosol mixtures are emitted during 
the combustion of fossil fuels, the rapid phase-out of unabated fossil 
fuels to avoid CO2 emissions would also result in removal of these 
either warming or cooling SLCF air-pollutant species. Furthermore, 
SLCFs are also reduced by efforts to reduce particulate air pollution. 
For example, year-2050 SO2 emissions (precursors of sulphate aerosol) 
in 1.5°C-consistent pathways are about 75–85% lower than their 2010 
levels. Some caveats apply, for example, if residential biomass use 
would be encouraged in industrialised countries in stringent mitigation 
pathways without appropriate pollution control measures, aerosol 
concentrations could also increase (Sand et al., 2015; Stohl et al., 2015).

Emissions of fluorinated gases (IPCC/TEAP, 2005; US EPA, 2013; Velders 
et al., 2015; Purohit and Höglund-Isaksson, 2017) in 1.5°C-consistent 
pathways are reduced by roughly 75–80% relative to 2010 levels 
(interquartile range across 1.5°C-consistent pathways) in 2050, 
with no clear differences between the classes. Although unabated 
hydrofluorocarbon (HFC) emissions have been projected to increase 
(Velders et al., 2015), the Kigali Amendment recently added HFCs to 
the basket of gases controlled under the Montreal Protocol (Höglund-
Isaksson et al., 2017). As part of the larger group of fluorinated 
gases, HFCs are also assumed to decline in 1.5°C-consistent 
pathways. Projected reductions by 2050 of fluorinated gases under 
1.5°C-consistent pathways are deeper than published estimates of 
what a full implementation of the Montreal Protocol including its 
Kigali Amendment would achieve (Höglund-Isaksson et al., 2017), 
which project roughly a halving of fluorinated gas emissions in 2050 
compared to 2010. Assuming the application of technologies that 
are currently commercially available and at least to a limited extent 
already tested and implemented, potential fluorinated gas emissions 
reductions of more than 90% have been estimated (Höglund-Isaksson 
et al., 2017).

There is a general agreement across 1.5°C-consistent pathways that 
until 2030 forcing from the warming SLCFs is reduced less strongly 
than the net cooling forcing from aerosol effects, compared to 2010. 
As a result, the net forcing contributions from all SLCFs combined are 
projected to increase slightly by about 0.2–0.3 W m−2, compared to 
2010. Also, by the end of the century, about 0.1–0.3 W m−2 of SLCF 
forcing is generally currently projected to remain in 1.5°C-consistent 
scenarios (Figure 2.8). This is similar to developments in 2°C-consistent 
pathways (Rose et al., 2014b; Riahi et al., 2017), which show median 
forcing contributions from these forcing agents that are generally no 
more than 0.1 W m−2 higher. Nevertheless, there can be additional gains 
from targeted deeper reductions of CH4 emissions and tropospheric 
ozone precursors, with some scenarios projecting less than 0.1 W m−2 
forcing from SLCFs by 2100.

2.3.4	 CDR in 1.5°C Pathways 

Deep mitigation pathways assessed in AR5 showed significant 
deployment of CDR, in particular through BECCS (Clarke et al., 2014). 
This has led to increased debate about the necessity, feasibility and 
desirability of large-scale CDR deployment, sometimes also called 
‘negative emissions technologies’ in the literature (Fuss et al., 2014; 
Anderson and Peters, 2016; Williamson, 2016; van Vuuren et al., 
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Annual emissions/sequestration 
(GtCO2 yr-1)

Absolute Annual Change 
(GtCO2/yr–1)

Timing of 
Global Zero

Name Category # 2030 2050 2100 2010–2030 2020–2030 2030–2050 Year

Total CO2 
(net)

Below-1.5°C 5* 13.4 (15.4, 11.4) –3.0 (1.7, –10.6) –8.0 (–2.6, –14.2) –1.2 (–1.0, –1.3) –2.5 (–1.8, –2.8) –0.8 (–0.7, –1.2) 2044 (2037, 2054)

1.5°C-low-OS 37 20.8 (22.2, 18.0) –0.4 (2.7, –2.0) –10.8 (–8.1, –14.3) –0.8 (–0.7, –1.0) –1.7 (–1.4, –2.3) –1.0 (–0.8, –1.2) 2050 (2047, 2055)

1.5°C with no 
or limited OS

42
20.3 

(22.0, 15.9)
–0.5 (2.2, –2.8)

–10.2 
(–7.6, –14.2)

–0.9 (–0.7, –1.1) –1.8 (–1.5, –2.3) –1.0 (–0.8, –1.2)
2050 

(2046, 2055)

1.5°C-high-OS 36 29.1 (36.4, 26.0) 1.0 (6.3, –1.2) –13.8 (–11.1, –16.4) –0.4 (0.0, –0.6) –1.1 (–0.5, –1.5) –1.3 (–1.1, –1.8) 2052 (2049, 2059)

Lower-2°C 54 28.9 (33.7, 24.5) 9.9 (13.1, 6.5) –5.1 (–2.6, –10.3) –0.4 (–0.2, –0.6) –1.1 (–0.8, –1.6) –0.9 (–0.8, –1.2) 2070 (2063, 2079)

Higher-2°C 54 33.5 (35.0, 31.0) 17.9 (19.1, 12.2) –3.3 (0.6, –11.5) –0.2 (–0.0, –0.4) –0.7 (–0.5, –0.9) –0.8 (–0.6, –1.0)
2085 

(2070, post–2100)

CO2 from 
fossil fuels 

and industry 
(gross)

Below-1.5°C 5* 18.0 (21.4, 13.8) 10.5 (20.9, 0.3) 8.3 (11.6, 0.1) –0.7 (–0.6, –1) –1.5 (–0.9, –2.2) –0.4 (0, –0.7) -

1.5°C-low-OS 37 22.1 (24.4, 18.7) 10.3 (14.1, 7.8) 5.6 (8.1, 2.6) –0.5 (–0.4, –0.6) –1.3 (–0.9, –1.7) –0.6 (–0.5, –0.7) -

1.5°C with no 
or limited OS

42
21.6 

(24.2, 18.0)
10.3 (13.8, 7.7) 6.1 (8.4, 2.6) –0.5 (–0.4, –0.7) –1.3 (–0.9, –1.8) –0.6 (–0.4, –0.7) -

1.5°C-high-OS 36 27.8 (37.1, 25.6) 13.1 (17.0, 11.6) 6.6 (8.8, 2.8) –0.2 (0.2, –0.3) –0.8 (–0.2, –1.1) –0.7 (–0.6, –1.0) -

Lower-2°C 54 27.7 (31.5, 23.5) 15.4 (19.0, 11.1) 7.2 (10.4, 3.7) –0.2 (–0.0, –0.4) –0.8 (–0.5, –1.2) –0.6 (–0.5, –0.8) -

Higher-2°C 54 31.3 (33.4, 28.7) 19.2 (22.6, 17.1) 8.1 (10.9, 5.0) –0.1 (0.1, –0.2) –0.5 (–0.2, –0.7) –0.6 (–0.5, –0.7) -

CO2 from 
fossil fuels 

and industry 
(net)

Below-1.5°C 5* 16.4 (18.2, 13.5) 1.0 (7.0, 0) –2.7 (0, –9.8) –0.8 (–0.7, –1) –1.8 (–1.2, –2.2) –0.6 (–0.5, –0.9) -

1.5°C-low-OS 37 20.6 (22.2, 17.5) 3.2 (5.6, –0.6) –8.5 (–4.1, –11.6) –0.6 (–0.5, –0.7) –1.4 (–1.1, –1.8) –0.8 (–0.7, –1.1) -

1.5°C with no 
or limited OS

42
20.1 

(22.1, 16.8)
3.0 (5.6, 0.0)

–8.3 
(–3.5, –10.8)

–0.6 (–0.5, –0.8) –1.4 (–1.1, –1.9) –0.8 (–0.7, –1.1) -

1.5°C-high-OS 36 26.9 (34.7, 25.3) 4.2 (10.0, 1.2) –10.7 (–6.9, –13.2) –0.3 (0.1, –0.3) –0.9 (–0.3, –1.2) –1.2 (–0.9, –1.5) -

Lower-2°C 54 28.2 (31.0, 23.1) 11.8 (14.1, 6.2) –3.1 (–0.7, –6.4) –0.2 (–0.1, –0.4) –0.8 (–0.5, –1.2) –0.8 (–0.7, –1.0) -

Higher-2°C 54 31.0 (33.0, 28.7) 17.0 (19.3, 13.1) –2.9 (3.3, –8.0) –0.1 (0.1, –0.2) –0.5 (–0.2, –0.7) –0.7 (–0.5, –1.0) -

CO2 from 
AFOLU

Below-1.5°C 5* –2.2 (–0.3, –4.8) –4.4 (–1.2, –11.1) –4.4 (–2.6, –5.3) –0.3 (–0.2, –0.4) –0.5 (–0.4, –0.8) –0.1 (0, –0.4) -

1.5°C-low-OS 37 –0.1 (0.8, –1.0) –2.3 (–0.6, –4.1) –2.4 (–1.2, –4.2) –0.2 (–0.2, –0.3) –0.4 (–0.3, –0.5) –0.1 (–0.1, –0.2) -

1.5°C with no 
or limited OS

42 –0.1 (0.7, –1.3) –2.6 (–0.6, –4.5) –2.6 (–1.3, –4.2) –0.2 (–0.2, –0.3) –0.4 (–0.3, –0.5) –0.1 (–0.1, –0.2) -

1.5°C-high-OS 36 1.2 (2.7, 0.1) –2.1 (–0.3, –5.4) –2.4 (–1.5, –5.0) –0.1 (–0.1, –0.3) –0.2 (–0.1, –0.5) –0.2 (–0.0, –0.3) -

Lower-2°C 54 1.4 (2.8, 0.3) –1.4 (–0.5, –2.7) –2.4 (–1.3, –4.2) –0.2 (–0.1, –0.2) –0.3 (–0.2, –0.4) –0.1 (–0.1, –0.2) -

Higher-2°C 54 1.5 (2.7, 0.8) –0.0 (1.9, –1.6) –1.3 (0.1, –3.9) –0.2 (–0.1, –0.2) –0.2 (–0.1, –0.4) –0.1 (–0.0, –0.1) -

Bioenergy 
combined 

with carbon 
capture 

and storage 
(BECCS)

Below-1.5°C 5* 0.4 (1.1, 0) 3.4 (8.3, 0) 5.7 (13.4, 0) 0 (0.1, 0) 0 (0.1, 0) 0.2 (0.4, 0) -

1.5°C-low-OS 36 0.3 (1.1, 0.0) 4.6 (6.4, 3.8) 12.4 (15.6, 7.6) 0.0 (0.1, 0.0) 0.0 (0.1, 0.0) 0.2 (0.3, 0.2) -

1.5°C with no 
or limited OS

41 0.4 (1.0, 0.0) 4.5 (6.3, 3.4) 12.4 (15.0, 6.4) 0.0 (0.1, 0.0) 0.0 (0.1, 0.0) 0.2 (0.3, 0.2) -

1.5°C-high-OS 36 0.1 (0.4, 0.0) 6.8 (9.5, 3.7) 14.9 (16.3, 12.1) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.3 (0.4, 0.2) -

Lower-2°C 54 0.1 (0.3, 0.0) 3.6 (4.6, 1.8) 9.5 (12.1, 6.9) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.2 (0.2, 0.1) -

Higher-2°C
47 0.1 (0.2, 0.0) 3.0 (4.9, 1.6)

10.8 
(15.3, 8.2) [46]

0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.1 (0.2, 0.1)
-

Kyoto 
GHG (AR4) 
[GtCO2e]

Below-1.5°C
5* 22.1 (22.8, 20.7) 2.7 (8.1, –3.5) –2.6 (2.7, –10.7) –1.4 (–1.3, –1.5) –2.9 (–2.1, –3.3) –0.9 (–0.7, –1.3)

2066 
(2044, post–2100)

1.5°C-low-OS 31 27.9 (31.1, 26.0) 7.0 (9.9, 4.5) –3.8 (–2.1, –7.9) –1.1 (–0.9, –1.2) –2.3 (–1.8, –2.8) –1.1 (–0.9, –1.2) 2068 (2061, 2080)

1.5°C with no 
or limited OS

36 27.4 (30.9, 24.7) 6.5 (9.6, 4.2) –3.7 (–1.8, –7.8) –1.1 (–1.0, –1.3) –2.4 (–1.9, –2.9) –1.1 (–0.9, –1.2) 2067 (2061, 2084)

1.5°C-high-OS 32 40.4 (48.9, 36.3) 8.4 (12.3, 6.2) –8.5 (–5.7, 
–11.2)

–0.5 (–0.0, –0.7)
–1.3 (–0.6, –1.8) –1.5 (–1.3, –2.1) 2063 (2058, 2067)

Lower-2°C
46 39.6 (45.1, 35.7) 18.3 (20.4, 15.2) 2.1 (4.2, –2.4) –0.5 (–0.1, –0.7) –1.5 (–0.9, –2.2) –1.1 (–0.9, –1.2)

post–2100 
(2090 post–2100)

Higher-2°C
42 45.3 (48.5, 39.3) 25.9 (27.9, 23.3) 5.2 (11.5, –4.8) –0.2 (–0.0, –0.6) –1.0 (–0.6, –1.2) –1.0 (–0.7, –1.2)

post–2100 
(2085 post–2100)

Table 2.4 |	 Emissions in 2030, 2050 and 2100 in 1.5°C and 2°C scenario classes and absolute annual rates of change between 2010–2030, 2020–2030 and  
	 2030–2050, respectively. 
	 Values show median and interquartile range across available scenarios (25th and 75th percentile given in brackets). If fewer than seven scenarios are available  
	 (*), the minimum–maximum range is given instead. Kyoto-GHG emissions are aggregated with GWP-100 values from IPCC AR4. Emissions in 2010 for total  
	 net CO2, CO2 from fossil-fuel use and industry, and AFOLU CO2 are estimated at 38.5, 33.4, and 5 GtCO2 yr−1, respectively (Le Quéré et al., 2018). Percentage  
	 reduction numbers included in headline statement C.1 in the Summary for Policymakers are computed relative to 2010 emissions in each individual pathway, and  
	 hence differ slightly from a case where reductions are computed relative to the historical 2010 emissions reported above. A difference is reported in estimating the  
	 ‘anthropogenic’ sink by countries or the global carbon modelling community (Grassi et al., 2017), and AFOLU CO2 estimates reported here are thus not necessarily  
	 comparable with countries’ estimates. Scenarios with year-2010 Kyoto-GHG emissions outside the range assessed by IPCC AR5 WGIII are excluded (IPCC, 2014b),  
	 as are scenario duplicates that would bias ranges towards a single study. 
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Figure 2.7 |  Global characteristics of a selection of short-lived non-CO2 emissions until mid-century for five pathway classes used in this chapter. Data 
are shown for (a) methane (CH4), (b) fluorinated gases (F-gas), (c) black carbon (BC), and (d) sulphur dioxide (SO2) emissions. Boxes with different colours refer to different 
scenario classes. Icons on top the ranges show four illustrative pathway archetypes that apply different mitigation strategies for limiting warming to 1.5°C. Boxes show the 
interquartile range, horizontal black lines the median, and whiskers the minimum–maximum range. F-gases are expressed in units of CO2-equivalence computed with 100-year 
Global Warming Potentials reported in IPCC AR4. 

Figure 2.8 |  Estimated aggregated effective radiative forcing of SLCFs for 1.5°C and 2°C pathway classes in 2010, 2020, 2030, 2050, and 2100, 
as estimated by the FAIR model (Smith et al., 2018). Aggregated short-lived climate forcer (SLCF) radiative forcing is estimated as the difference between total 
anthropogenic radiative forcing and the sum of CO2 and N2O radiative forcing over time, and is expressed relative to 1750. Symbols indicate the four pathways archetypes 
used in this chapter. Horizontal black lines indicate the median, boxes the interquartile range, and whiskers the minimum–maximum range per pathway class. Because very few 
pathways fall into the Below-1.5°C class, only the minimum–maximum is provided here.  
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2017a; Obersteiner et al., 2018). Most CDR technologies remain largely 
unproven to date and raise substantial concerns about adverse side-
effects on environmental and social sustainability (Smith et al., 2015; 
Dooley and Kartha, 2018). A set of key questions emerge: how strongly 
do 1.5°C-consistent pathways rely on CDR deployment and what types 
of CDR measures are deployed at which scale? How does this vary 
across available 1.5°C-consistent pathways and on which factors does 
it depend? How does CDR deployment compare between 1.5°C- and 
2°C-consistent pathways and how does it compare with the findings 
at the time of the AR5? How does CDR deployment in 1.5°C-consistent 
pathways relate to questions about availability, policy implementation 
and sustainable development implications that have been raised 
about CDR technologies? The first three questions are assessed in this 
section with the goal to provide an overview and assessment of CDR 
deployment in the 1.5°C pathway literature. The fourth question is only 
touched upon here and is addressed in greater depth in Chapter 4, 
Section 4.3.7, which assesses the rapidly growing literature on costs, 
potentials, availability and sustainability implications of individual 
CDR measures (Minx et al., 2017, 2018; Fuss et al., 2018; Nemet 
et al., 2018). In addition, Section 2.3.5 assesses the relationship 
between delayed mitigation action and increased CDR reliance. CDR 
deployment is intricately linked to the land-use transformation in 
1.5°C-consistent pathways. This transformation is assessed in Section 
2.4.4. Bioenergy and BECCS impacts on sustainable land management 
are further assessed in Chapter 3, Section 3.6.2 and Cross-Chapter Box 
7 in Chapter 3. Ultimately, a comprehensive assessment of the land 
implication of land-based CDR measures will be provided in the IPCC 
AR6 Special Report on Climate Change and Land (SRCCL). 

2.3.4.1	 CDR technologies and deployment levels in 1.5°C 
pathways

A number of approaches to actively remove carbon-dioxide from 
the atmosphere are increasingly discussed in the literature (Minx 
et al., 2018) (see also Chapter 4, Section 4.3.7). Approaches under 
consideration include the enhancement of terrestrial and coastal 
carbon storage in plants and soils such as afforestation and 
reforestation (Canadell and Raupach, 2008), soil carbon enhancement 
(Paustian et al., 2016; Frank et al., 2017; Zomer et al., 2017), and other 
conservation, restoration, and management options for natural and 
managed land (Griscom et al., 2017) and coastal ecosystems (McLeod 
et al., 2011). Biochar sequestration (Woolf et al., 2010; Smith, 2016; 
Werner et al., 2018) provides an additional route for terrestrial carbon 
storage. Other approaches are concerned with storing atmospheric 
carbon dioxide in geological formations. They include the combination 
of biomass use for energy production with carbon capture and storage 
(BECCS) (Obersteiner et al., 2001; Keith and Rhodes, 2002; Gough 
and Upham, 2011) and direct air capture with storage (DACCS) using 
chemical solvents and sorbents (Zeman and Lackner, 2004; Keith et 
al., 2006; Socolow et al., 2011). Further approaches investigate the 
mineralization of atmospheric carbon dioxide (Mazzotti et al., 2005; 
Matter et al., 2016), including enhanced weathering of rocks (Schuiling 
and Krijgsman, 2006; Hartmann et al., 2013; Strefler et al., 2018a). 
A fourth group of approaches is concerned with the sequestration 
of carbon dioxide in the oceans, for example by means of ocean 
alkalinization (Kheshgi, 1995; Rau, 2011; Ilyina et al., 2013; Lenton et 
al., 2018). The costs, CDR potential and environmental side effects of 

several of these measures are increasingly investigated and compared 
in the literature, but large uncertainties remain, in particular concerning 
the feasibility and impact of large-scale deployment of CDR measures 
(The Royal Society, 2009; Smith et al., 2015; Psarras et al., 2017; Fuss 
et al., 2018) (see Chapter 4.3.7). There are also proposals to remove 
methane, nitrous oxide and halocarbons via photocatalysis from the 
atmosphere (Boucher and Folberth, 2010; de Richter et al., 2017), but 
a broader assessment of their effectiveness, cost and sustainability 
impacts is lacking to date. 

Only some of these approaches have so far been considered in IAMs 
(see Section 2.3.1.2). The mitigation scenario literature up to AR5 
mostly included BECCS and, to a more limited extent, afforestation 
and reforestation (Clarke et al., 2014). Since then, some 2°C- and 
1.5°C-consistent pathways including additional CDR measures such 
as DACCS (Chen and Tavoni, 2013; Marcucci et al., 2017; Lehtilä and 
Koljonen, 2018; Strefler et al., 2018b) and soil carbon sequestration 
(Frank et al., 2017) have become available. Other, more speculative 
approaches, in particular ocean-based CDR and removal of non-CO2 

gases, have not yet been taken up by the literature on mitigation 
pathways. See Supplementary Material 2.SM.1.2 for an overview on 
the coverage of CDR measures in models which contributed pathways 
to this assessment. Chapter 4.3.7 assesses the potential, costs, and 
sustainability implications of the full range of CDR measures.

Integrated assessment modelling has not yet explored land conservation, 
restoration and management options to remove carbon dioxide from 
the atmosphere in sufficient depth, despite land management having a 
potentially considerable impact on the terrestrial carbon stock (Erb et 
al., 2018). Moreover, associated CDR measures have low technological 
requirements, and come with potential environmental and social 
co-benefits (Griscom et al., 2017). Despite the evolving capabilities of 
IAMs in accounting for a wider range of CDR measures, 1.5°C-consistent 
pathways assessed here continue to predominantly rely on BECCS and 
afforestation/reforestation (see Supplementary Material 2.SM.1.2). 
However, IAMs with spatially explicit land-use modelling include a full 
accounting of land-use change emissions comprising carbon stored 
in the terrestrial biosphere and soils. Net CDR in the AFOLU sector, 
including but not restricted to afforestation and reforestation, can thus 
in principle be inferred by comparing AFOLU CO2 emissions between 
a baseline scenario and a 1.5°C-consistent pathway from the same 
model and study. However, baseline AFOLU CO2 emissions can not only 
be reduced by CDR in the AFOLU sector but also by measures to reduce 
deforestation and preserve land carbon stocks. The pathway literature 
and pathway data available to this assessment do not yet allow 
separating the two contributions. As a conservative approximation, the 
additional net negative AFOLU CO2 emissions below the baseline are 
taken as a proxy for AFOLU CDR in this assessment. Because this does 
not include CDR that was deployed before reaching net zero AFOLU 
CO2 emissions, this approximation is a lower-bound for terrestrial CDR 
in the AFOLU sector (including all mitigation-policy-related factors that 
lead to net negative AFOLU CO2 emissions).

The scale and type of CDR deployment in 1.5°C-consistent pathways 
varies widely (Figure 2.9 and 2.10). Overall CDR deployment over the 
21st century is substantial in most of the pathways, and deployment 
levels cover a wide range, on the order of 100–1000 Gt CO2 in 1.5°C 
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pathways with no or limited overshoot (730 [260–1030] GtCO2, for 
median and 5th–95th percentile range). Both BECCS (480 [0–1000] 
GtCO2 in 1.5°C pathways with no or limited overshoot) and AFOLU 
CDR measures including afforestation and reforestation (210 [10-
540] GtCO2 in 1.5°C pathways with no or limited overshoot) can play 
a major role,4 but for both cases pathways exist where they play no 
role at all. This shows the flexibility in substituting between individual 
CDR measures, once a portfolio of options becomes available. The high 
end of the CDR deployment range is populated by high overshoot 
pathways, as illustrated by pathway archetype S5 based on SSP5 
(fossil-fuelled development, see Section 2.3.1.1) and characterized 
by very large BECCS deployment to return warming to 1.5°C by 2100 
(Kriegler et al., 2017). In contrast, the low end is populated by a few 
pathways with no or limited overshoot that limit CDR to on the order of 
100–200 GtCO2 over the 21st century, coming entirely from terrestrial 
CDR measures with no or small use of BECCS. These are pathways 
with very low energy demand facilitating the rapid phase-out of 
fossil fuels and process emissions that exclude BECCS and CCS use 
(Grubler et al., 2018) and/or pathways with rapid shifts to sustainable 

food consumption freeing up sufficient land areas for afforestation 
and reforestation (Haberl et al., 2011; van Vuuren et al., 2018). Some 
pathways use neither BECCS nor afforestation but still rely on CDR 
through considerable net negative CO2 emissions in the AFOLU sector 
around mid-century (Holz et al., 2018b). We conclude that the role of 
BECCS as a dominant CDR measure in deep mitigation pathways has 
been reduced since the time of the AR5. This is related to three factors: 
a larger variation of underlying assumptions about socio-economic 
drivers (Riahi et al., 2017; Rogelj et al., 2018) and associated energy 
(Grubler et al., 2018) and food demand (van Vuuren et al., 2018); 
the incorporation of a larger portfolio of mitigation and CDR options 
(Marcucci et al., 2017; Grubler et al., 2018; Lehtilä and Koljonen, 
2018; Liu et al., 2018; van Vuuren et al., 2018); and targeted analysis 
of deployment limits for (specific) CDR measures (Holz et al., 2018b; 
Kriegler et al., 2018a; Strefler et al., 2018b), including the availability 
of bioenergy (Bauer et al., 2018), CCS (Krey et al., 2014a; Grubler et 
al., 2018) and afforestation (Popp et al., 2014b, 2017). As additional 
CDR measures are being built into IAMs, the prevalence of BECCS is 
expected to be further reduced.

Figure 2.9 |  Cumulative CDR deployment in 1.5°C-consistent pathways in the literature as reported in the database collected for this assessment until 
2050 (panel a) and until 2100 (panel b). Total CDR comprises all forms of CDR, including AFOLU CDR and BECCS, and, in a few pathways, other CDR measures like DACCS. 
It does not include CCS combined with fossil fuels (which is not a CDR technology as it does not result in active removal of CO2 from the atmosphere). AFOLU CDR has not been 
reported directly and is hence represented by means of a proxy: the additional amount of net negative CO2 emissions in the AFOLU sector compared to a baseline scenario (see 
text for a discussion). ‘Compensatory CO2’ depicts the cumulative amount of CDR that is used to neutralize concurrent residual CO2 emissions. ‘Net negative CO2’ describes the 
additional amount of CDR that is used to produce net negative CO2 emissions, once residual CO2 emissions are neutralized. The two quantities add up to total CDR for individual 
pathways (not for percentiles and medians, see Footnote 4).

4	 The median and percentiles of the sum of two quantities is in general not equal to the sum of the medians and percentiles, respectively, of the two quantitites.  

As discussed in Section 2.3.2, CDR can be used in two ways in 
mitigation pathways: (i) to move more rapidly towards the point of 
carbon neutrality and maintain it afterwards in order to stabilize global 
mean temperature rise, and (ii) to produce net negative CO2 emissions, 
drawing down anthropogenic CO2 in the atmosphere in order to decline 
global mean temperature after an overshoot peak (Kriegler et al., 2018b; 
Obersteiner et al., 2018). Both uses are important in 1.5°C-consistent 
pathways (Figure 2.9 and 2.10). Because of the tighter remaining 1.5°C 

carbon budget, and because many pathways in the literature do not 
restrict exceeding this budget prior to 2100, the relative weight of 
the net negative emissions component of CDR increases compared to 
2°C-consistent pathways. The amount of compensatory CDR remains 
roughly the same over the century. This is the net effect of stronger 
deployment of compensatory CDR until mid-century to accelerate 
the approach to carbon neutrality and less compensatory CDR in the 
second half of the century due to deeper mitigation of end-use sectors 
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Figure 2.10 |  Accounting of cumulative CO2 emissions for the four 1.5°C-consistent pathway archetypes. See top panel for explanation of the bar plots. Total 
CDR is the difference between gross (red horizontal bar) and net (purple horizontal bar) cumulative CO2 emissions over the period 2018–2100, and it is equal to the sum of the 
BECCS (grey) and AFOLU CDR (green) contributions. Cumulative net negative emissions are the difference between peak (orange horizontal bar) and net (purple) cumulative CO2 
emissions. The blue shaded area depicts the estimated range of the remaining carbon budget for a two-in-three to one-in-two chance of staying below1.5°C. The grey shaded 
area depicts the range when accounting for additional Earth system feedbacks.  

in 1.5°C-consistent pathways (Luderer et al., 2018). Comparing median 
levels, end-of-century net cumulative CO2 emissions are roughly 
600 GtCO2 smaller in 1.5°C compared to 2°C-consistent pathways, 
with approximately two thirds coming from further reductions of gross 
CO2 emissions and the remaining third from increased CDR deployment. 
As a result, median levels of total CDR deployment in 1.5°C-consistent 
pathways are larger than in 2°C-consistent pathways (Figure 2.9), but 
with marked variations in each pathway class.

Ramp-up rates of individual CDR measures in 1.5°C-consistent 
pathways are provided in Table 2.4. BECCS deployment is still 
limited in 2030, but ramps up to median levels of 3 (Below-1.5°C), 
5 (1.5°C-low-OS) and 7 GtCO2 yr−1 (1.5°C-high-OS) in 2050, and to 6 
(Below-1.5°C), 12 (1.5°C-low-OS) and 15 GtCO2 yr−1 (1.5°C-high-OS) 
in 2100, respectively. In 1.5°C pathways with no or limited overshoot, 
this amounts to 0–1, 0–8, and 0–16 GtCO2 yr−1 in 2030, 2050, and 
2100, respectively (ranges refer to the union of the min-max range 
of the Below-1.5°C and the interquartile range of the 1.5°C-low-OS 
class; see Table 2.4). Net CDR in the AFOLU sector reaches slightly 
lower levels in 2050, and stays more constant until 2100. In 1.5°C 
pathways with no or limited overshoot, AFOLU CDR amounts to 0–5, 

1–11, and 1–5 GtCO2 yr−1 (see above for the definition of the ranges) 
in 2030, 2050, and 2100, respectively. In contrast to BECCS, AFOLU 
CDR is more strongly deployed in non-overshoot than overshoot 
pathways. This indicates differences in the timing of the two CDR 
approaches. Afforestation is scaled up until around mid-century, when 
the time of carbon neutrality is reached in 1.5°C-consistent pathways, 
while BECCS is projected to be used predominantly in the 2nd half 
of the century (Figure 2.5). This reflects the fact that afforestation is 
a readily available CDR technology, while BECCS is more costly and 
much less mature a technology. As a result, the two options contribute 
differently to compensating concurrent CO2 emissions (until 2050) 
and to producing net negative CO2 emissions (post-2050). BECCS 
deployment is particularly strong in pathways with high overshoots 
but can also feature in pathways with low overshoot (see Figure 2.5 
and 2.10). Annual deployment levels until mid-century are not found 
to be significantly different between 2°C-consistent pathways and 
1.5°C-consistent pathways with no or low overshoot. This suggests 
similar implementation challenges for ramping up BECCS deployment 
at the rates projected in the pathways (Honegger and Reiner, 2018; 
Nemet et al., 2018). The feasibility and sustainability of upscaling CDR 
at these rates is assessed in Chapter 4.3.7.
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Concerns have been raised that building expectations about large-
scale CDR deployment in the future can lead to an actual reduction 
of near-term mitigation efforts (Geden, 2015; Anderson and Peters, 
2016; Dooley and Kartha, 2018). The pathway literature confirms that 
CDR availability influences the shape of mitigation pathways critically 
(Krey et al., 2014a; Holz et al., 2018b; Kriegler et al., 2018a; Strefler 
et al., 2018b). Deeper near-term emissions reductions are required to 
reach the 1.5°C–2°C target range if CDR availability is constrained. As 
a result, the least-cost benchmark pathways to derive GHG emissions 
gap estimates (UNEP, 2017) are dependent on assumptions about CDR 

availability. Using GHG benchmarks in climate policy makes implicit 
assumptions about CDR availability (Fuss et al., 2014; van Vuuren 
et al., 2017a). At the same time, the literature also shows that rapid 
and stringent mitigation as well as large-scale CDR deployment occur 
simultaneously in 1.5°C pathways due to the tight remaining carbon 
budget (Luderer et al., 2018). Thus, an emissions gap is identified even 
for high CDR availability (Strefler et al., 2018b), contradicting a wait-
and-see approach. There are significant trade-offs between near-term 
action, overshoot and reliance on CDR deployment in the long-term 
which are assessed in Section 2.3.5.

Box 2.1 |  Bioenergy and BECCS Deployment in Integrated Assessment Modelling

Bioenergy can be used in various parts of the energy sector of IAMs, including for electricity, liquid fuel, biogas, and hydrogen production. 
It is this flexibility that makes bioenergy and bioenergy technologies valuable for the decarbonization of energy use (Klein et al., 2014; 
Krey et al., 2014a; Rose et al., 2014a; Bauer et al., 2017, 2018). Most bioenergy technologies in IAMs are also available in combination 
with CCS (BECCS). Assumed capture rates differ between technologies, for example, about 90% for electricity and hydrogen production 
and about 40–50% for liquid fuel production. Decisions about bioenergy deployment in IAMs are based on economic considerations to 
stay within a carbon budget that is consistent with a long-term climate goal. IAMs consider both the value of bioenergy in the energy 
system and the value of BECCS in removing CO2 from the atmosphere. Typically, if bioenergy is strongly limited, BECCS technologies 
with high capture rates are favoured. If bioenergy is plentiful IAMs tend to choose biofuel technologies with lower capture rates but 
high value for replacing fossil fuels in transport (Kriegler et al., 2013a; Bauer et al., 2018). Most bioenergy use in IAMs is combined with 
CCS if available (Rose et al., 2014a). If CCS is unavailable, bioenergy use remains largely unchanged or even increases due to the high 
value of bioenergy for the energy transformation (Bauer et al., 2018). As land impacts are tied to bioenergy use, the exclusion of BECCS 
from the mitigation portfolio will not automatically remove the trade-offs with food, water and other sustainability objectives due to 
the continued and potentially increased use of bioenergy.

IAMs assume bioenergy to be supplied mostly from second generation biomass feedstocks such as dedicated cellulosic crops (for 
example Miscanthus or poplar) as well as agricultural and forest residues. Detailed process IAMs include land-use models that capture 
competition for land for different uses (food, feed, fiber, bioenergy, carbon storage, biodiversity protection) under a range of dynamic 
factors including socio-economic drivers, productivity increases in crop and livestock systems, food demand, and land, environmental, 
biodiversity, and carbon policies. Assumptions about these factors can vary widely between different scenarios (Calvin et al., 2014; 
Popp et al., 2017; van Vuuren et al., 2018). IAMs capture a number of potential environmental impacts from bioenergy production, in 
particular indirect land-use change emissions from land conversion and nitrogen and water use for bioenergy production (Kraxner et al., 
2013; Bodirsky et al., 2014; Bonsch et al., 2014; Obersteiner et al., 2016; Humpenöder et al., 2018). The impact of bioenergy production 
on soil degradation is an area of active IAM development and was not comprehensively accounted for in the mitigation pathways 
assessed in this report (but is, for example, in Frank et al., 2017). Whether bioenergy has large adverse impacts on environmental and 
societal goals depends in large parts on the governance of land use (Haberl et al., 2013; Erb et al., 2016b; Obersteiner et al., 2016; 
Humpenöder et al., 2018). Here IAMs often make idealized assumptions about effective land management, such as full protection of 
the land carbon stock by conservation measures and a global carbon price, respectively, but variations on these assumptions have also 
been explored (Calvin et al., 2014; Popp et al., 2014a).

2.3.4.2	 Sustainability implications of CDR deployment in 1.5°C 
pathways

Strong concerns about the sustainability implications of large-scale 
CDR deployment in deep mitigation pathways have been raised in the 
literature (Williamson and Bodle, 2016; Boysen et al., 2017b; Dooley and 
Kartha, 2018; Heck et al., 2018), and a number of important knowledge 
gaps have been identified (Fuss et al., 2016). An assessment of the 
literature on implementation constraints and sustainable development 
implications of CDR measures is provided in Chapter 4, Section 4.3.7 and 
the Cross-chapter Box 7 in Chapter 3. An initial discussion of potential 

environmental side effects of CDR deployment in 1.5°C-consistent 
pathways is provided in this section. Chapter 4, Section 4.3.7 then 
contrasts CDR deployment in 1.5°C-consistent pathways with other 
branches of literature on limitations of CDR. Integrated modelling aims 
to explore a range of developments compatible with specific climate 
goals and often does not include the full set of broader environmental 
and societal concerns beyond climate change. This has given rise to 
the concept of sustainable development pathways (Cross-Chapter Box 
1 in Chapter 1) (van Vuuren et al., 2015), and there is an increasing 
body of work to extend integrated modelling to cover a broader range 
of sustainable development goals (Section 2.6). However, only some 
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of the available 1.5°C-consistent pathways were developed within a 
larger sustainable development context  (Bertram et al., 2018; Grubler 
et al., 2018; Rogelj et al., 2018; van Vuuren et al., 2018). As discussed 
in Section 2.3.4.1, those pathways are characterized by low energy 
and/or food demand effectively limiting fossil-fuel substitution and 
alleviating land competition, respectively. They also include regulatory 
policies for deepening early action and ensuring environmental 
protection (Bertram et al., 2018). Overall sustainability implications of 
1.5°C-consistent pathways are assessed in Section 2.5.3 and Chapter 
5, Section 5.4.

Individual CDR measures have different characteristics and therefore 
would carry different risks for their sustainable deployment at scale 
(Smith et al., 2015). Terrestrial CDR measures, BECCS and enhanced 
weathering of rock powder distributed on agricultural lands require 
land. Those land-based measures could have substantial impacts 
on environmental services and ecosystems (Cross-Chapter Box 7 in 
Chapter 3) (Smith and Torn, 2013; Boysen et al., 2016; Heck et al., 2016; 
Krause et al., 2017). Measures like afforestation and bioenergy with 
and without CCS that directly compete with other land uses could have 
significant impacts on agricultural and food systems (Creutzig et al., 
2012, 2015; Calvin et al., 2014; Popp et al., 2014b, 2017; Kreidenweis 
et al., 2016; Boysen et al., 2017a; Frank et al., 2017; Stevanović et al., 
2017; Strapasson et al., 2017; Humpenöder et al., 2018). BECCS using 
dedicated bioenergy crops could substantially increase agricultural 
water demand (Bonsch et al., 2014; Séférian et al., 2018) and nitrogen 
fertilizer use (Bodirsky et al., 2014). DACCS and BECCS rely on CCS and 
would require safe storage space in geological formations, including 
management of leakage risks (Pawar et al., 2015) and induced 
seismicity (Nicol et al., 2013). Some approaches like DACCS have high 
energy demand (Socolow et al., 2011). Most of the CDR measures 
currently discussed could have significant impacts on either land, 
energy, water, or nutrients if deployed at scale (Smith et al., 2015). 
However, actual trade-offs depend on a multitude factors (Haberl et 
al., 2011; Erb et al., 2012; Humpenöder et al., 2018), including the 
modalities of CDR deployment (e.g., on marginal vs. productive land) 
(Bauer et al., 2018), socio-economic developments (Popp et al., 2017), 
dietary choices (Stehfest et al., 2009; Popp et al., 2010; van Sluisveld et 
al., 2016; Weindl et al., 2017; van Vuuren et al., 2018), yield increases, 
livestock productivity and other advances in agricultural technology 
(Havlik et al., 2013; Valin et al., 2013; Havlík et al., 2014; Weindl et al., 
2015; Erb et al., 2016b), land policies (Schmitz et al., 2012; Calvin et al., 
2014; Popp et al., 2014a), and governance of land use (Unruh, 2011; 
Buck, 2016; Honegger and Reiner, 2018).

Figure 2.11 shows the land requirements for BECCS and afforestation 
in the selected 1.5°C-consistent pathway archetypes, including the LED 
(Grubler et al., 2018) and S1 pathways (Fujimori, 2017; Rogelj et al., 
2018) following a sustainable development paradigm. As discussed, 
these land-use patterns are heavily influenced by assumptions about, 
among other things, future population levels, crop yields, livestock 
production systems, and food and livestock demand, which all vary 
between the pathways (Popp et al., 2017) (Section 2.3.1.1). In pathways 
that allow for large-scale afforestation in addition to BECCS, land 
demand for afforestation can be larger than for BECCS (Humpenöder 
et al., 2014). This follows from the assumption in the modelled 
pathways that, unlike bioenergy crops, forests are not harvested to 

allow unabated carbon storage on the same patch of land. If wood 
harvest and subsequent processing or burial are taken into account, 
this finding can change. There are also synergies between the various 
uses of land, which are not reflected in the depicted pathways. Trees 
can grow on agricultural land (Zomer et al., 2016), and harvested 
wood can be used with BECCS and pyrolysis systems (Werner et al., 
2018). The pathways show a very substantial land demand for the two 
CDR measures combined, up to the magnitude of the current global 
cropland area. This is achieved in IAMs in particular by a conversion of 
pasture land freed by intensification of livestock production systems, 
pasture intensification and/or demand changes (Weindl et al., 2017), 
and to a more limited extent, cropland for food production, as well 
as expansion into natural land. However, pursuing such large-scale 
changes in land use would pose significant food supply, environmental 
and governance challenges, concerning both land management and 
tenure (Unruh, 2011; Erb et al., 2012, 2016b; Haberl et al., 2013; 
Haberl, 2015; Buck, 2016), particularly if synergies between land 
uses, the relevance of dietary changes for reducing land demand, and 
co-benefits with other sustainable development objectives are not 
fully recognized. A general discussion of the land-use transformation in 
1.5°C-consistent pathways is provided in Section 2.4.4. 

An important consideration for CDR which moves carbon from the 
atmosphere to the geological, oceanic or terrestrial carbon pools is the 
permanence of carbon stored in these different pools (Matthews and 
Caldeira, 2008; NRC, 2015; Fuss et al., 2016; Jones et al., 2016) (see 
also Chapter 4, Section 4.3.7 for a discussion). Terrestrial carbon can 
be returned to the atmosphere on decadal time scales by a variety of 
mechanisms, such as soil degradation, forest pest outbreaks and forest 
fires, and therefore requires careful consideration of policy frameworks 
to manage carbon storage, for example, in forests (Gren and Aklilu, 
2016). There are similar concerns about outgassing of CO

2 from ocean 
storage (Herzog et al., 2003), unless it is transformed to a substance 
that does not easily exchange with the atmosphere, for example, ocean 
alkalinity or buried marine biomass (Rau, 2011). Understanding of the 
assessment and management of the potential risk of CO2 release from 
geological storage of CO2 has improved since the IPCC Special Report 
on Carbon Dioxide Capture and Storage (IPCC, 2005) with experience 
and the development of management practices in geological storage 
projects, including risk management to prevent sustentative leakage 
(Pawar et al., 2015). Estimates of leakage risk have been updated to 
include scenarios of unregulated drilling and limited wellbore integrity 
(Choi et al., 2013) and find that about 70% of stored CO2 would still 
be retained after 10,000 years in these circumstances (Alcalde et al., 
2018). The literature on the potential environmental impacts from the 
leakage of CO2 – and approaches to minimize these impacts should 
a leak occur – has also grown and is reviewed by Jones et al. (2015). 
To the extent that non-permanence of terrestrial and geological carbon 
storage is driven by socio-economic and political factors, there are 
parallels to questions of fossil-fuel reservoirs remaining in the ground 
(Scott et al., 2015).
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2.3.5	 Implications of Near-Term Action in 1.5°C Pathways 

Less CO2 emission reductions in the near term would require steeper 
and deeper reductions in the longer term in order to meet specific 
warming targets afterwards (Riahi et al., 2015; Luderer et al., 2016a). 
This is a direct consequence of the quasi-linear relationship between 
the total cumulative amount of CO2 emitted into the atmosphere and 
global mean temperature rise (Matthews et al., 2009; Zickfeld et al., 
2009; Collins et al., 2013; Knutti and Rogelj, 2015). Besides this clear 
geophysical trade-off over time, delaying GHG emissions reductions 
over the coming years also leads to economic and institutional lock-in 
into carbon-intensive infrastructure, that is, the continued investment 
in and use of carbon-intensive technologies that are difficult or costly 
to phase-out once deployed (Unruh and Carrillo-Hermosilla, 2006; 
Jakob et al., 2014; Erickson et al., 2015; Steckel et al., 2015; Seto et al., 
2016; Michaelowa et al., 2018). Studies show that to meet stringent 
climate targets despite near-term delays in emissions reductions, 
models prematurely retire carbon-intensive infrastructure, in particular 
coal without CCS (Bertram et al., 2015a; Johnson et al., 2015). The AR5 
reports that delaying mitigation action leads to substantially higher 
rates of emissions reductions afterwards, a larger reliance on CDR 
technologies in the long term, and higher transitional and long-term 
economic impacts (Clarke et al., 2014). The literature mainly focuses 
on delayed action until 2030 in the context of meeting a 2°C goal 
(den Elzen et al., 2010; van Vuuren and Riahi, 2011; Kriegler et al., 
2013b; Luderer et al., 2013, 2016a; Rogelj et al., 2013b; Riahi et al., 
2015; OECD/IEA and IRENA, 2017). However, because of the smaller 
carbon budget consistent with limiting warming to 1.5°C and the 
absence of a clearly declining long-term trend in global emissions 
to date, these general insights apply equally, or even more so, to the 
more stringent mitigation context of 1.5°C-consistent pathways. This 

is further supported by estimates of committed emissions due to fossil 
fuel-based infrastructure (Seto et al., 2016; Edenhofer et al., 2018).

All available 1.5°C pathways that explore consistent mitigation action 
from 2020 onwards peak global Kyoto-GHG emissions in the next 
decade and already decline Kyoto-GHG emissions to below 2010 levels 
by 2030. The near-term emissions development in these pathways 
can be compared with estimated emissions in 2030 implied by the 
Nationally Determined Contributions (NDCs) submitted by Parties 
to the Paris Agreement (Figure 2.12). Altogether, the unconditional 
(conditional) NDCs are assessed to result in global Kyoto-GHG 
emissions on the order of 52–58 (50–54) GtCO2e yr−1 in 2030 (e.g., 
den Elzen et al., 2016; Fujimori et al., 2016; UNFCCC, 2016; Rogelj et 
al., 2017; Rose et al., 2017b; Benveniste et al., 2018; Vrontisi et al., 
2018; see Cross-Chapter Box 11 in Chapter 4 for detailed assessment). 
In contrast, 1.5°C pathways with limited overshoot available to this 
assessment show an interquartile range of about 26–31 (median 28) 
GtCO2e yr−1 in 20305 (Table 2.4, Section 2.3.3). Based on these ranges, 
this report assesses the emissions gap for a two-in-three chance of 
limiting warming to 1.5°C to be 26 (19–29) and 28 (22–33) GtCO2e 
(median and interquartile ranges) for conditional and unconditional 
NDCs, respectively (Cross-Chapter Box 11, applying GWP-100 values 
from the IPCC Second Assessment Report).

The later emissions peak and decline, the more CO2 will have 
accumulated in the atmosphere. Peak cumulated CO2 emissions – 
and consequently peak temperatures – increase with higher 2030 
emissions levels (Figure 2.12). Current NDCs (Cross-Chapter Box 11 in 
Chapter 4) are estimated to lead to CO2 emissions of about 400–560 
GtCO2 from 2018 to 2030 (Rogelj et al., 2016a). Available 1.5°C- and 
2°C-consistent pathways with 2030 emissions in the range estimated 

Figure 2.11 |  Land-use changes in 2050 and 2100 in the illustrative 1.5°C-consistent pathway archetypes (Fricko et al., 2017; Fujimori, 2017; Kriegler et 
al., 2017; Grubler et al., 2018; Rogelj et al., 2018). Changes in land for food crops, energy crops, forest, pasture and other natural land are shown, compared to 2010.  

5	 Note that aggregated Kyoto-GHG emissions implied by the NDCs from Cross-Chapter Box 11 in Chapter 4 and Kyoto-GHG ranges from the pathway classes in Chapter 2 
are only approximately comparable, because this chapter applies GWP-100 values from the IPCC Fourth Assessment Report while the NDC Cross-Chapter Box 11 applies 
GWP-100 values from the IPCC Second Assessment Report. At a global scale, switching between GWP-100 values of the Second to the Fourth IPCC Assessment Report 
would result in an increase in estimated aggregated Kyoto-GHG emissions of no more than about 3% in 2030 (UNFCCC, 2016).  
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for the NDCs rely on an assumed swift and widespread deployment of 
CDR after 2030, and show peak cumulative CO2 emissions from 2018 
of about 800–1000 GtCO2, above the remaining carbon budget for a 
one-in-two chance of remaining below 1.5°C. These emissions reflect 
that no pathway is able to project a phase-out of CO2 emissions starting 
from year-2030 NDC levels of about 40 GtCO2 yr−1 (Fawcett et al., 2015; 
Rogelj et al., 2016a) to net zero in less than about 15 years. Based on 
the implied emissions until 2030, the high challenges of the assumed 

post-2030 transition, and the assessment of carbon budgets in Section 
2.2.2, global warming is assessed to exceed 1.5°C if emissions stay at 
the levels implied by the NDCs until 2030 (Figure 2.12). The chances 
of remaining below 1.5°C in these circumstances remain conditional 
upon geophysical properties that are uncertain, but these Earth 
system response uncertainties would have to serendipitously align 
beyond current median estimates in order for current NDCs to become 
consistent with limiting warming to 1.5°C.  

Figure 2.12 |  Median global warming estimated by MAGICC (panel a) and peak cumulative CO2 emissions (panel b) in 1.5°C-consistent pathways in the 
SR1.5 scenario database, as a function of CO2-equivalent emissions (based on AR4 GWP-100) of Kyoto-GHGs in 2030. Pathways that were forced to go through 
the NDCs or a similarly high emissions point in 2030 by design are highlighted by yellow marker edges (see caption of Figure 2.13 and text for further details on the design 
of these pathways). The combined range of global Kyoto-GHG emissions in 2030 for the conditional and unconditional NDCs assessed in Cross-Chapter Box 11 is shown by 
the grey shaded area (adjusted to AR4 GWPs for comparison). As a second line of evidence, peak cumulative CO2 emissions derived from a 1.5°C pathway sensitivity analysis 
(Kriegler et al., 2018b) are shown by grey circles in the right-hand panel. Circles show gross fossil-fuel and industry emissions of the sensitivity cases, increased by assumptions 
about the contributions from AFOLU (5 GtCO2 yr−1 until 2020, followed by a linear phase out until 2040) and non-CO2 Kyoto-GHGs (median non-CO2 contribution from 
1.5°C-consistent pathways available in the database: 10 GtCO2e yr−1 in 2030), and reduced by assumptions about CDR deployment until the time of net zero CO2 emissions 
(limiting case for CDR deployment assumed in (Kriegler et al., 2018b) (logistic growth to 1, 4, 10 GtCO2 yr−1 in 2030, 2040, and 2050, respectively, leading to approximately 
100 GtCO2 of CDR by mid-century).

It is unclear whether following NDCs until 2030 would still allow 
global mean temperature to return to 1.5°C by 2100 after a temporary 
overshoot, due to the uncertainty associated with the Earth system 
response to net negative emissions after a peak (Section 2.2). Available 
IAM studies are working with reduced-form carbon cycle–climate 
models like MAGICC, which assume a largely symmetric Earth-
system response to positive and net negative CO2 emissions. The IAM 
findings on returning warming to 1.5°C from NDCs after a temporary 
temperature overshoot are hence all conditional on this assumption. 
Two types of pathways with 1.5°C-consistent action starting in 2030 
have been considered in the literature (Luderer et al., 2018) (Figure 
2.13): pathways aiming to obtain the same end-of-century carbon 
budget as 1.5°C-consistent pathways starting in 2020 despite higher 
emissions until 2030, and pathways assuming the same mitigation 
stringency after 2030 as in 1.5°C-consistent pathways starting in 
2020 (approximated by using the same global price of emissions as 

found in least-cost pathways starting from 2020). An IAM comparison 
study found increasing challenges to implementing pathways with the 
same end-of-century carbon budgets after following NDCs until 2030 
(Luderer et al., 2018). The majority of model experiments (four out of 
seven) failed to produce NDC pathways that would return cumulative 
CO2 emissions over the 2016–2100 period to 200 GtCO2, indicating 
limitations to the availability and timing of CDR. The few such 
pathways that were identified show highly disruptive features in 2030 
(including abrupt transitions from moderate to very large emissions 
reduction and low carbon energy deployment rates) indicating a high 
risk that the required post-2030 transformations are too steep and 
abrupt to be achieved by the mitigation measures in the models (high 
confidence). NDC pathways aiming for a cumulative 2016–2100 CO2 

emissions budget of 800 GtCO2 were more readily obtained (Luderer et 
al., 2018), and some were classified as 1.5°C-high-OS pathways in this 
assessment (Section 2.1).
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Figure 2.13 |  Comparison of 1.5°C-consistent pathways starting action as of 2020 (A; light-blue diamonds) with pathways following the NDCs until 2030 
and aiming to limit warming to 1.5°C thereafter. The 1.5°C pathways that follow the NDCs until 2030 either aim for the same cumulative CO2 emissions by 2100 as the 
pathways that start action as of 2020 (B; red diamonds) or assume the same mitigation stringency as reflected by the price of emissions in associated least-cost 1.5°C-consistent 
pathways starting from 2020 (P; black diamonds). Panels show (a) the underlying emissions pathways, (b) additional warming in the delay scenarios compared to 2020 action 
case, (c) cumulated CDR, (d) CDR ramp-up rates, (e) cumulated gross CO2 emissions from fossil-fuel combustion and industrial (FFI) processes over the 2018–2100 period, and (f) 
gross FFI CO2 emissions reductions rates. Scenario pairs or triplets (circles and diamonds) with 2020 and 2030 action variants were calculated by six (out of seven) models in the 
ADVANCE study symbols (Luderer et al., 2018) and five of them (passing near-term plausibility checks) are shown by symbols. Only two of five models could identify pathways 
with post-2030 action leading to a 2016–2100 carbon budget of about 200 GtCO2 (red). The range of all 1.5°C pathways with no and low overshoot is shown by the boxplots. 
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NDC pathways that apply a post-2030 price of emissions as found in 
least-cost pathways starting from 2020 show infrastructural carbon 
lock-in as a result of following NDCs instead of least-cost action until 
2030. A key finding is that carbon lock-ins persist long after 2030, with 
the majority of additional CO2 emissions occurring during the 2030–
2050 period. Luderer et al. (2018) find 90 (80–120) GtCO2 additional 
emissions until 2030, growing to 240 (190–260) GtCO2 by 2050 and 
290 (200–200) GtCO2 by 2100. As a result, peak warming is about 0.2°C 
higher and not all of the modelled pathways return warming to 1.5°C 
by the end of the century. There is a four sided trade-off between (i) 
near-term ambition, (ii) degree of overshoot, (iii) transitional challenges 
during the 2030–2050 period, and (iv) the amount of CDR deployment 
required during the century (Figure 2.13) (Holz et al., 2018b; Strefler 
et al., 2018b). Transition challenges, overshoot, and CDR requirements 
can be significantly reduced if global emissions peak before 2030 

and fall below levels in line with current NDCs by 2030. For example, 
Strefler et al. (2018b) find that CDR deployment levels in the second 
half of the century can be halved in 1.5°C-consistent pathways with 
similar CO2 emissions reductions rates during the 2030–2050 period 
if CO2 emissions by 2030 are reduced by an additional 30% compared 
to NDC levels. Kriegler et al. (2018a) investigate a global rollout of 
selected regulatory policies and moderate carbon pricing policies. 
They show that additional reductions of about 10 GtCO2e yr−1 can be 
achieved in 2030 compared to the current NDCs. Such a 20% reduction 
of year-2030 emissions compared to current NDCs would effectively 
lower the disruptiveness of post-2030 action. The strengthening of 
short-term policies in deep mitigation pathways has hence been 
identified as a way of bridging options to keep the Paris climate goals 
within reach (Bertram et al., 2015b; IEA, 2015a; Spencer et al., 2015; 
Kriegler et al., 2018a).  

1.5°C Pathway 
Characteristic

Supporting Information Reference

Rapid and profound near-term 

decarbonisation of energy supply

Strong upscaling of renewables and sustainable biomass and reduction of unabated (no CCS) fossil fuels, 

along with the rapid deployment of CCS, lead to a zero-emission energy supply system by mid-century.

Section 2.4.1 

Section 2.4.2

Greater mitigation efforts 

on the demand side

All end-use sectors show marked demand reductions beyond the reductions projected for 2°C pathways. Demand 

reductions from IAMs for 2030 and 2050 lie within the potential assessed by detailed sectoral bottom-up assessments. 
Section 2.4.3

Switching from fossil fuels to 

electricity in end-use sectors
Both in the transport and the residential sector, electricity covers markedly larger shares of total demand by mid-century.

Section 2.4.3.2 

Section 2.4.3.3

Comprehensive emission 

reductions are implemented 

in the coming decade

Virtually all 1.5°C-consistent pathways decline net annual CO2 emissions between 2020 and 2030, reaching carbon 

neutrality around mid-century. In 2030, below-1.5°C and 1.5°C-low-OS pathways show maximum net CO2 emissions 

of 18 and 28 GtCO2 yr−1, respectively. GHG emissions in these scenarios are not higher than 34 GtCO2e yr−1 in 2030.

Section 2.3.4

Additional reductions, on top of 

reductions from both CO2 and 

non-CO2 required for 2°C, 

are mainly from CO2

Both CO2 and the non-CO2 GHGs and aerosols are strongly reduced by 2030 and until 2050 in 1.5°C pathways.  

The greatest difference to 2°C pathways, however, lies in additional reductions of CO2, as the non-CO2 mitigation 

potential that is currently included in integrated pathways is mostly already fully deployed for reaching a 2°C pathway.

Section 2.3.1.2

Considerable shifts in 

investment patterns

Low-carbon investments in the energy supply side (energy production and refineries) are projected to average 

1.6–3.8 trillion 2010USD yr−1 globally to 2050. Investments in fossil fuels decline, with investments in unabated coal 

halted by 2030 in most available 1.5°C-consistent projections, while the literature is less conclusive for investments 

in unabated gas and oil. Energy demand investments are a critical factor for which total estimates are uncertain.

Section 2.5.2

Options are available to 

align 1.5°C pathways with 

sustainable development

Synergies can be maximized, and risks of trade-offs limited or avoided through an informed choice of mitigation 

strategies. Particularly pathways that focus on a lowering of demand show many synergies and few trade-offs.
Section 2.5.3

CDR at scale before mid-century

By 2050, 1.5°C pathways project deployment of BECCS at a scale of 3–7 GtCO2yr−1 (range of medians across 

1.5°C pathway classes), depending on the level of energy demand reductions and mitigation in other sectors. 

Some 1.5°C pathways are available that do not use BECCS, but only focus terrestrial CDR in the AFOLU sector. 

Section 2.3.3, 2.3.4.1 

Table 2.5 |	 Overview of Key Characteristics of 1.5°C Pathways.

2.4	 Disentangling the Whole-System 
Transformation 

Mitigation pathways map out prospective transformations of the 
energy, land and economic systems over this century (Clarke et al., 
2014). There is a diversity of potential pathways consistent with 1.5°C, 
yet they share some key characteristics summarized in Table 2.5. To 
explore characteristics of 1.5°C pathways in greater detail, this section 
focuses on changes in energy supply and demand, and changes in the 
AFOLU sector.

2.4.1	 Energy System Transformation 

The energy system links energy supply (Section 2.4.2) with energy 
demand (Section 2.4.3) through final energy carriers, including 
electricity and liquid, solid or gaseous fuels, that are tailored to 
their end-uses. To chart energy-system transformations in mitigation 
pathways, four macro-level decarbonization indicators associated with 
final energy are useful: limits on the increase of final energy demand, 
reductions in the carbon intensity of electricity, increases in the share 
of final energy provided by electricity, and reductions in the carbon 
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Figure 2.14 |  Decomposition of transformation pathways into (a) energy demand, (b) carbon intensity of electricity, (c) the electricity share in final energy, 
and (d) the carbon intensity of the residual (non-electricity) fuel mix. Box plots show median, interquartile range and full range of pathways. Pathway temperature classes 
(Table 2.1) and illustrative pathway archetypes are indicated in the legend. Values following the class labels give the number of available pathways in each class. 

2.4.2	 Energy Supply

Several energy supply characteristics are evident in 1.5°C pathways 
assessed in this section: (i) growth in the share of energy derived 
from low-carbon-emitting sources (including renewables, nuclear and 
fossil fuel with CCS) and a decline in the overall share of fossil fuels 
without CCS (Section 2.4.2.1), (ii) rapid decline in the carbon intensity 
of electricity generation simultaneous with further electrification of 
energy end-use (Section 2.4.2.2), and (iii) the growth in the use of CCS 
applied to fossil and biomass carbon in most 1.5°C pathways (Section 
2.4.2.3).  

2.4.2.1	 Evolution of primary energy contributions over time

By mid-century, the majority of primary energy comes from non-fossil-
fuels (i.e., renewables and nuclear energy) in most 1.5°C pathways 
(Table 2.6). Figure 2.15 shows the evolution of primary energy supply 
over this century across 1.5°C pathways, and in detail for the four 
illustrative pathway archetypes highlighted in this chapter. Note that 
this section reports primary energy using the direct equivalent method 
on the basis of lower heating values (Bruckner et al., 2014).

intensity of final energy other than electricity (referred to in this section 
as the carbon intensity of the residual fuel mix). Figure 2.14 shows 
changes of these four indicators for the pathways in the scenario 
database (Section 2.1.3 and Supplementary Material 2.SM.1.3) for 
1.5°C and 2°C pathways (Table 2.1).

Pathways in both the 1.5°C and 2°C classes (Figure 2.14) generally 
show rapid transitions until mid-century, with a sustained but slower 
evolution thereafter. Both show an increasing share of electricity 
accompanied by a rapid decline in the carbon intensity of electricity. 
Both also show a generally slower decline in the carbon intensity of 
the residual fuel mix, which arises from the decarbonization of liquids, 
gases and solids provided to industry, residential and commercial 
activities, and the transport sector.

The largest differences between 1.5°C and 2°C pathways are seen in the 
first half of the century (Figure 2.14), where 1.5°C pathways generally 
show lower energy demand, a faster electrification of energy end-use, 
and a faster decarbonization of the carbon intensity of electricity and 
the residual fuel mix. There are very few pathways in the Below-1.5°C 
class (Figure 2.14). Those scenarios that are available, however, show 
a faster decline in the carbon intensity of electricity generation and 
residual fuel mix by 2030 than most pathways that are projected to 
temporarily overshoot 1.5°C and return by 2100 (or 2°C pathways). 
The Below-1.5°C pathways also appear to differentiate themselves 
from the other pathways as early as 2030 through reductions in final 
energy demand and increases in electricity share (Figure 2.14). 
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The share of energy from renewable sources (including biomass, hydro, 
solar, wind and geothermal) increases in all 1.5°C pathways with no or 
limited overshoot, with the renewable energy share of primary energy 
reaching 38–88% in 2050 (Table 2.6), with an interquartile range of 
52–67%. The magnitude and split between bioenergy, wind, solar, 
and hydro differ between pathways, as can be seen in the illustrative 
pathway archetypes in Figure 2.15. Bioenergy is a major supplier of 
primary energy, contributing to both electricity and other forms of 
final energy such as liquid fuels for transportation (Bauer et al., 2018). 
In 1.5°C pathways, there is a significant growth in bioenergy used in 
combination with CCS for pathways where it is included (Figure 2.15). 

Nuclear power increases its share in most 1.5°C pathways with no or 
limited overshoot by 2050, but in some pathways both the absolute 
capacity and share of power from nuclear generators decrease (Table 
2.15). There are large differences in nuclear power between models 
and across pathways (Kim et al., 2014; Rogelj et al., 2018). One of 
the reasons for this variation is that the future deployment of nuclear 
can be constrained by societal preferences assumed in narratives 
underlying the pathways (O’Neill et al., 2017; van Vuuren et al., 2017b). 
Some 1.5°C pathways with no or limited overshoot no longer see a role 

for nuclear fission by the end of the century, while others project about 
95 EJ yr−1 of nuclear power in 2100 (Figure 2.15). 

The share of primary energy provided by total fossil fuels decreases from 
2020 to 2050 in all 1.5°C pathways, but trends for oil, gas and coal differ 
(Table 2.6). By 2050, the share of primary energy from coal decreases 
to 0–11% across 1.5°C pathways with no or limited overshoot, with 
an interquartile range of 1–7%. From 2020 to 2050 the primary energy 
supplied by oil changes by −93 to −9% (interquartile range −77 to 
−39%); natural gas changes by −88 to +85% (interquartile range 
−62 to −13%), with varying levels of CCS. Pathways with higher use 
of coal and gas tend to deploy CCS to control their carbon emissions 
(see Section 2.4.2.3). As the energy transition is accelerated by several 
decades in 1.5°C pathways compared to 2°C pathways, residual fossil-
fuel use (i.e., fossil fuels not used for electricity generation) without 
CCS is generally lower in 2050 than in 2°C pathways, while combined 
hydro, solar, and wind power deployment is generally higher than in 
2°C pathways (Figure 2.15).

In addition to the 1.5°C pathways included in the scenario database 
(Supplementary Material 2.SM.1.3), there are other analyses in the 

Figure 2.15 |  Primary energy supply for the four illustrative pathway archetypes plus the IEA’s Faster Transition Scenario (OECD/IEA and IRENA, 2017) (panel 
a), and their relative location in the ranges for pathways limiting warming to 1.5°C with no or limited overshoot (panel b). The category ‘Other renewables’ 
includes primary energy sources not covered by the other categories, for example, hydro and geothermal energy. The number of pathways that have higher primary energy than the 
scale in the bottom panel are indicated by the numbers above the whiskers. Black horizontal dashed lines indicates the level of primary energy supply in 2015 (IEA, 2017e). Box 
plots in the lower panel show the minimum–maximum range (whiskers), interquartile range (box), and median (vertical thin black line). Symbols in the lower panel show the four 
pathway archetypes S1 (white square), S2 (yellow square), S5 (black square), LED (white disc), as well as the IEA–(red disc). Pathways with no or limited overshoot included the 
Below-1.5°C and 1.5°C-low-OS classes.  
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literature including, for example, sector-based analyses of energy 
demand and supply options. Even though they were not necessarily 
developed in the context of the 1.5°C target, they explore in greater 
detail some options for deep reductions in GHG emissions. For example, 
there are analyses of transitions to up to 100% renewable energy by 
2050 (Creutzig et al., 2017; Jacobson et al., 2017), which describe 
what is entailed for a renewable energy share largely from solar and 
wind (and electrification) that is above the range of 1.5°C pathways 
available in the database, although there have been challenges to the 
assumptions used in high-renewable analyses (e.g., Clack et al., 2017). 
There are also analyses that result in a large role for nuclear energy 
in mitigation of GHGs (Hong et al., 2015; Berger et al., 2017a, b; Xiao 
and Jiang, 2018). BECCS could also contribute a larger share, but faces 

challenges related to its land use and impact on food supply (Burns 
and Nicholson, 2017) (assessed in greater detail in Sections 2.3.4.2, 
4.3.7 and 5.4). These analyses could, provided their assumptions prove 
plausible, expand the range of 1.5°C pathways.

In summary, the share of primary energy from renewables increases 
while that from coal decreases across 1.5°C pathways (high 
confidence). This statement is true for all 1.5°C pathways in the 
scenario database and associated literature (Supplementary Material 
2.SM.1.3), and is consistent with the additional studies mentioned 
above, an increase in energy supply from lower-carbon-intensity 
energy supply, and a decrease in energy supply from higher-carbon-
intensity energy supply.

Median
(max, min) Count

Primary Energy Supply (EJ) Share in Primary Energy (%) Growth (factor) 
2020-20502020 2030 2050 2020 2030 2050

Below-
1.5°C and 

1.5°C- 
low-OS 

pathways

total primary 50
565.33 

(619.70, 483.22)
464.50 

(619.87, 237.37)
553.23 

(725.40, 289.02)
NA NA NA

–0.05 
(0.48, –0.51)

renewables 50
87.14  

(101.60, 60.16)
146.96  

(203.90, 87.75)
291.33  

(584.78, 176.77)
14.90  

(20.39, 10.60)
29.08  

(62.15, 18.24)
60.24  

(87.89, 38.03)
2.37 (6.71, 0.91)

biomass 50
60.41 

(70.03, 40.54)
77.07  

(113.02, 44.42)
152.30  

(311.72, 40.36)
10.17 

(13.66, 7.14)
17.22  

(35.61, 9.08)
27.29  

(54.10, 10.29)
1.71  

(5.56, –0.42)

non-biomass 50
26.35 

(36.57, 17.78)
62.58 

(114.41, 25.79)
146.23 

(409.94, 53.79)
4.37 

(7.19, 3.01)
13.67  

(26.54, 5.78)
27.98  

(61.61, 12.04)
4.28 (13.46, 1.45)

wind & solar 44
10.93 

(20.16, 2.61)
40.14 

(82.66, 7.05)
121.82 

(342.77, 27.95)
1.81 

(3.66, 0.45)
9.73 

(19.56, 1.54)
21.13 

(51.52, 4.48)
10.00 (53.70, 3.71)

nuclear 50
10.91 

(18.55, 8.52)
16.26 

(36.80, 6.80)
24.51 

(66.30, 3.09)
2.10 

(3.37, 1.45)
3.52 

(9.61, 1.32)
4.49 

(12.84, 0.44)
1.24 (5.01, –0.64)

fossil 50
462.95 

(520.41, 376.30)
310.36 

(479.13, 70.14)
183.79 

(394.71, 54.86)
82.53 

(86.65, 77.73)
66.58 

(77.30, 29.55)
32.79 

60.84, 8.58)
–0.59 (–0.21, –0.89)

coal 50
136.89 

(191.02, 83.23)
44.03 

(127.98, 5.97)
24.15 

(71.12, 0.92)
25.63 

(30.82, 17.19)
9.62 (20.65, 1.31) 5.08 (11.43, 0.15) –0.83 (–0.57, –0.99)

gas 50
132.95 

(152.80, 105.01)
112.51 

(173.56, 17.30)
76.03 

(199.18, 14.92)
23.10 

(28.39, 18.09)
22.52 

(35.05, 7.08)
13.23 

(34.83, 3.68)
–0.40 (0.85, –0.88)

oil 50
197.26 

(245.15, 151.02)
156.16 

(202.57, 38.94)
69.94 

(167.52, 15.07)
34.81 

(42.24, 29.00)
31.24 

(39.84, 16.41)
12.89 

(27.04, 2.89)
–0.66 (–0.09, –0.93)

1.5°C- 
high-OS

total primary 35
594.96  

(636.98, 510.55)
559.04 

(749.05, 419.28)
651.46 

(1012.50, 415.31)
NA NA NA 0.13 (0.59, –0.27)

renewables 35
89.84 

(98.60, 66.57)
135.12 

(159.84, 87.93)
323.21 

(522.82, 177.66)
15.08 

(18.58, 11.04)
23.65 

(29.32, 13.78)
62.16 

(86.26, 28.47)
2.68 (4.81, 1.17)

biomass 35
62.59 

(73.03, 48.42)
69.05 

(98.27, 56.54)
160.16 

(310.10, 71.17)
10.30 

(14.23, 8.03)
13.64 

(16.37, 9.03)
23.79 

(45.79, 10.64)
1.71 (3.71, 0.19)

non-biomass 35
28.46 

(36.58, 17.60)
59.81 

(92.12, 27.39)
164.91 

(329.69, 55.72)
4.78 

(6.64, 2.84)
10.23 

(16.59, 4.49)
31.17 

(45.86, 9.87)
6.10 (10.63, 1.38)

wind & solar 26
11.32 

(20.17, 1.91)
40.31 

(65.50, 8.14)
139.20 

(275.47, 30.92)
1.95 (3.66, 0.32) 7.31 (11.61, 1.83)

26.01 
(38.79, 6.33)

16.06 (63.34, 3.13)

nuclear 35
10.94 

(14.27, 8.52)
16.12 

(41.73, 6.80)
22.98 

(115.80, 3.09)
1.86 (2.37, 1.45) 2.99 (5.57, 1.20)

4.17 
(13.60, 0.43)

1.49 (7.22, –0.64)

fossil 35
497.30 

(543.29, 407.49)
397.76 

(568.91, 300.63)
209.80 

(608.39, 43.87)
83.17 

(86.59, 79.39)
73.87 

(82.94, 68.00)
33.58 

(60.09, 7.70)
–0.56 (0.12, –0.91)

coal 35
155.65 

(193.55, 118.40)
70.99 

(176.99, 19.15)
18.95 

(134.69, 0.36)
25.94 

(30.82, 19.10)
14.53 

(26.35, 3.64)
4.14 (13.30, 0.05) –0.87 (–0.30, –1.00)

gas 35
138.01 

(169.50, 107.07)
147.43 

(208.55, 76.45)
97.71 

(265.66, 15.96)
23.61 

(27.35, 19.26)
25.79 

(32.73, 14.69)
15.67 

(33.80, 2.80)
–0.31 (0.99, –0.88)

oil 35
195.02 

(236.40, 154.66)
198.50 

(319.80, 102.10)
126.20 

(208.04, 24.68)
32.21 

(38.87, 28.07)
33.27 

(50.12, 24.35)
18.61 

(27.30, 4.51)
–0.34 (0.06, –0.87)

Table 2.6 |	 Global primary energy supply of 1.5°C pathways from the scenario database (Supplementary Material 2.SM.1.3). 
	 Values given for the median (maximum, minimum) across the full range of 85 available 1.5°C pathways. Growth Factor = [(primary energy supply in 2050)/(primary  
	 energy supply in 2020) − 1]
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Median
(max, min) Count

Primary Energy Supply (EJ) Share in Primary Energy (%) Growth (factor) 
2020-20502020 2030 2050 2020 2030 2050

Two above 
classes 

combined

total primary 85
582.12 

(636.98, 483.22)
502.81 

(749.05, 237.37)
580.78 

(1012.50, 289.02)
- - - 0.03 (0.59, –0.51)

renewables 85
87.70 

(101.60, 60.16)
139.48 

(203.90, 87.75)
293.80 

(584.78, 176.77)
15.03 

(20.39, 10.60)
27.90 

(62.15, 13.78)
60.80 

(87.89, 28.47)
2.62 (6.71, 0.91)

biomass 85
61.35 

(73.03, 40.54)
75.28 

(113.02, 44.42)
154.13 

(311.72, 40.36)
10.27 

(14.23, 7.14)
14.38 

(35.61, 9.03)
26.38 

(54.10, 10.29)
1.71 (5.56, –0.42)

non-biomass 85
26.35 

(36.58, 17.60)
61.60 

(114.41, 25.79)
157.37 

(409.94, 53.79)
4.40 

(7.19, 2.84)
11.87 

(26.54, 4.49)
28.60 

(61.61, 9.87)
4.63 (13.46, 1.38)

wind & solar 70
10.93 

(20.17, 1.91)
40.17 

(82.66, 7.05)
125.31 

(342.77, 27.95)
1.81 (3.66, 0.32) 8.24 (19.56, 1.54)

22.10 
(51.52, 4.48)

11.64 (63.34, 3.13)

nuclear 85
10.93 

(18.55, 8.52)
16.22 

(41.73, 6.80)
24.48 

(115.80, 3.09)
1.97 (3.37, 1.45) 3.27 (9.61, 1.20)

4.22 
(13.60, 0.43)

1.34 (7.22, –0.64)

fossil 85
489.52 

(543.29, 376.30)
343.48 

(568.91, 70.14)
198.58 

(608.39, 43.87)
83.05 

(86.65, 77.73)
69.19 

(82.94, 29.55)
33.06 

(60.84, 7.70)
–0.58 (0.12, –0.91)

coal 85
147.09 

(193.55, 83.23)
49.46 

(176.99, 5.97)
23.84 

(134.69, 0.36)
25.72 

(30.82, 17.19)
10.76 

(26.35, 1.31)
4.99 (13.30, 0.05) –0.85 (–0.30, –1.00)

gas 85
135.58 

(169.50, 105.01)
127.99 

(208.55, 17.30)
88.97 

(265.66, 14.92)
23.28 

(28.39, 18.09)
24.02 

(35.05, 7.08)
13.46 

(34.83, 2.80)
–0.37 (0.99, –0.88)

oil 85
195.02 

(245.15, 151.02)
175.69 

(319.80, 38.94)
93.48 

(208.04, 15.07)
33.79 

(42.24, 28.07)
32.01 

(50.12, 16.41)
16.22 

(27.30, 2.89)
–0.54 (0.06, –0.93)

Median
(max, min) Count

Electricity Generation (EJ) Share in Electricity Generation (%) Growth (factor) 
2020–20502020 2030 2050 2020 2030 2050

TBelow 
-1.5°C and 

1.5°C- 
low-OS 

pathways

total 
generation

50
98.45 

(113.98, 83.53)
115.82 

(152.40, 81.28)
215.58 

(354.48, 126.96)
NA NA NA 1.15 (2.55, 0.28)

renewables 50
26.28 

(41.80, 18.50)
63.30 

(111.70, 32.41)
145.50 

(324.26, 90.66)
26.32 

(41.84, 18.99)
53.68 

(79.67, 37.30)
77.12 

(96.65, 58.89)
4.48 (10.88, 2.65)

biomass 50 2.02 (7.00, 0.76)
4.29 

(11.96, 0.79)
20.35 

(39.28, 0.24)
1.97 (6.87, 0.82) 3.69 (13.29, 0.73)

8.77 
(30.28, 0.10)

6.42 (38.14, –0.93)

non-biomass 50
24.21 

(35.72, 17.70)
57.12 

(101.90, 25.79)
135.04 

(323.91, 53.79)
24.38 

(40.43, 17.75)
49.88 

(78.27, 29.30)
64.68 

(96.46, 41.78)
4.64 (10.64, 1.45)

wind & solar 50 1.66 (6.60, 0.38)
8.91 

(48.04, 0.60)
39.04 

(208.97, 2.68)
1.62 (7.90, 0.38) 8.36 (41.72, 0.53)

19.10 
(60.11, 1.65)

26.31 (169.66, 5.23)

nuclear 50
10.84 

(18.55, 8.52)
15.46 

(36.80, 6.80)
21.97 

(64.72, 3.09)
12.09 

(18.34, 8.62)
14.33 

(31.63, 5.24)
8.10 

(27.53, 1.02)
0.71 (4.97, –0.64)

fossil 50
59.43 

(68.75, 39.48)
36.51 

(66.07, 2.25)
14.81 

(57.76, 0.00)
61.32 

(67.40, 47.26)
30.04 

(52.86, 1.95)
8.61 (25.18, 0.00) –0.74 (0.01, –1.00)

coal 50
31.02 

(42.00, 14.40)
8.83 

(34.11, 0.00)
1.38 

(17.39, 0.00)
32.32 

40.38, 17.23)
7.28 (27.29, 0.00) 0.82 (7.53, 0.00) –0.96 (–0.56, –1.00)

gas 50
24.70 

(32.46, 13.44)
22.59 

(42.08, 2.01)
12.79 

(53.17, 0.00)
24.39 

(35.08, 11.80)
20.18 

(37.23, 1.75)
6.93 (24.87, 0.00) –0.47 (1.27, –1.00)

oil 50
2.48 

(13.36, 1.12)
1.89 (7.56, 0.24) 0.10 (8.78, 0.00)

2.82 
(11.73, 1.01)

1.95 (5.67, 0.21) 0.05 (3.80, 0.00) –0.92 (0.36, –1.00)

1.5°C- 
high-OS

total 
generation

35
101.44 

(113.96, 88.55)
125.26 

(177.51, 89.60)
251.50 

(363.10, 140.65)
NA NA NA 1.38 (2.19, 0.39)

renewables 35
26.38 

(31.83, 18.26)
53.32 

(86.85, 30.06)
173.29 

(273.92, 84.69)
28.37 

(32.96, 17.38)
42.73 

(65.73, 25.11)
82.39 

(94.66, 35.58)
5.97 (8.68, 2.37)

biomass 35 1.23 (6.47, 0.66) 2.14 (7.23, 0.86)
10.49 

(40.32, 0.21)
1.22 (7.30, 0.63) 1.59 (6.73, 0.72)

3.75 
(28.09, 0.08)

7.93 (33.32, –0.81)

non-biomass 35
24.56 

(30.70, 17.60)
47.96 

(85.83, 27.39)
144.13 

(271.17, 55.72)
26.77 

(31.79, 16.75)
40.07 

(64.96, 23.10)
69.72 

(94.58, 27.51)
5.78 (8.70, 1.38)

Table 2.6 (continued)

Table 2.7 |	 Global electricity generation of 1.5°C pathways from the scenarios database.  
	 (Supplementary Material 2.SM.1.3). Values given for the median (maximum, minimum) values across the full range across 89 available 1.5°C pathways. Growth  
	 Factor = [(primary energy supply in 2050)/(primary energy supply in 2020) – 1].

Table 2.7 (continued next page)
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Table 2.7 (continued)

Median
(max, min) Count

Electricity Generation (EJ) Share in Electricity Generation (%) Growth (factor) 
2020-20502020 2030 2050 2020 2030 2050

1.5°C- 
high-OS

wind & solar 35 2.24 (5.07, 0.42)
8.95 

(36.52, 1.18)
65.08 

(183.38, 13.79)
2.21 (5.25, 0.41) 7.48 (27.90, 0.99)

25.88 
(61.24, 8.71)

30.70 (106.95, 4.87)

nuclear 35
10.84 

(14.08, 8.52)
16.12 

(41.73, 6.80)
22.91 

(115.80, 3.09)
10.91 

(13.67, 8.62)
14.65 

(23.51, 5.14)
11.19 

(39.61, 1.12)
1.49 (7.22, –0.64)

fossil 35
62.49 

(76.76, 49.09)
48.08 

(87.54, 30.99)
11.84 

(118.12, 0.78)
61.58 

(71.03, 54.01)
42.02 

(59.48, 24.27)
6.33 (33.19, 0.27) –0.80 (0.54, –0.99)

coal 35
32.37 

(46.20, 26.00)
16.22 

(43.12, 1.32)
1.18 

(46.72, 0.01)
32.39 

(40.88, 24.41)
14.23 

(29.93, 1.19)
0.55 (12.87, 0.00) –0.96 (0.01, –1.00)

gas 35
26.20 

(41.20, 20.11)
26.45 

(51.99, 16.45)
10.66 

(67.94, 0.76)
26.97 

(39.20, 19.58)
22.29 

(43.43, 14.03)
5.29 (32.59, 0.26) –0.57 (1.63, –0.97)

oil 35 1.51 (6.28, 1.12) 0.61 (7.54, 0.36) 0.04 (7.47, 0.00) 1.51 (6.27, 1.01) 0.55 (6.20, 0.26) 0.02 (3.31, 0.00) –0.99 (0.98, –1.00)

Two above 
classes 

combined

total 
generation

85
100.09 

(113.98, 83.53)
120.01 

(177.51, 81.28)
224.78 

(363.10, 126.96)
NA NA NA 1.31 (2.55, 0.28)

renewables 85
26.38 

(41.80, 18.26)
59.50 

(111.70, 30.06)
153.72 

(324.26, 84.69)
27.95 

(41.84, 17.38)
51.51 

(79.67, 25.11)
77.52 

(96.65, 35.58)
5.08 (10.88, 2.37)

biomass 85 1.52 (7.00, 0.66)
3.55 

(11.96, 0.79)
16.32 

(40.32, 0.21)
1.55 (7.30, 0.63) 2.77 (13.29, 0.72)

8.02 
(30.28, 0.08)

6.53 (38.14, –0.93)

non-biomass 85
24.48 

(35.72, 17.60)
55.68 

(101.90, 25.79)
136.40 

(323.91, 53.79)
25.00 

(40.43, 16.75)
47.16 

(78.27, 23.10)
66.75 

(96.46, 27.51)
4.75 (10.64, 1.38)

wind & solar 85 1.66 (6.60, 0.38)
8.95 

(48.04, 0.60)
43.20 

(208.97, 2.68)
1.67 

(7.90, 0.38)
8.15 

(41.72, 0.53)
19.70 

(61.24, 1.65)
28.02 (169.66, 4.87)

nuclear 85
10.84 

(18.55, 8.52)
15.49 

(41.73, 6.80)
22.64 

(115.80, 3.09)
10.91 

(18.34, 8.62)
14.34 

(31.63, 5.14)
8.87 

(39.61, 1.02)
1.21 (7.22, –0.64)

fossil 85
61.35 

(76.76, 39.48)
38.41 

(87.54, 2.25)
14.10 

(118.12, 0.00)
61.55 

(71.03, 47.26)
33.96 

(59.48, 1.95)
8.05 (33.19, 0.00) –0.76 (0.54, –1.00)

coal 85
32.37 

(46.20, 14.40)
10.41 

(43.12, 0.00)
1.29 

(46.72, 0.00)
32.39 

(40.88, 17.23)
8.95 (29.93, 0.00) 0.59 (12.87, 0.00) –0.96 (0.01, –1.00)

gas 85
24.70 

(41.20, 13.44)
25.00 

(51.99, 2.01)
11.92 

(67.94, 0.00)
24.71 

(39.20, 11.80)
21.03 

(43.43, 1.75)
6.78 (32.59, 0.00) –0.52 (1.63, –1.00)

oil 85
1.82 

(13.36, 1.12)
0.92 (7.56, 0.24) 0.08 (8.78, 0.00)

2.04 
(11.73, 1.01)

0.71 (6.20, 0.21) 0.04 (3.80, 0.00) –0.97 (0.98, –1.00)

2.4.2.2	 Evolution of electricity supply over time

Electricity supplies an increasing share of final energy, reaching 
34–71% in 2050, across 1.5°C pathways with no or limited overshoot 
(Figure 2.14), extending the historical increases in electricity share 
seen over the past decades (Bruckner et al., 2014). From 2020 to 2050, 
the quantity of electricity supplied in most 1.5°C pathways with no or 
limited overshoot more than doubles (Table 2.7). By 2050, the carbon 
intensity of electricity has fallen rapidly to −92 to +11 gCO2 MJ−1 
electricity across 1.5°C pathways with no or limited overshoot from 
a value of around 140 gCO2 MJ−1 (range: 88–181 gCO2 MJ−1) in 2020 
(Figure 2.14). A negative contribution to carbon intensity is provided by 
BECCS in most pathways (Figure 2.16).

By 2050, the share of electricity supplied by renewables increases from 
23% in 2015 (IEA, 2017b) to 59–97% across 1.5°C pathways with no 
or limited overshoot. Wind, solar, and biomass together make a major 
contribution in 2050, although the share for each spans a wide range 
across 1.5°C pathways (Figure 2.16). Fossil fuels on the other hand 
have a decreasing role in electricity supply, with their share falling to 
0–25% by 2050 (Table 2.7).

In summary, 1.5°C pathways include a rapid decline in the carbon 
intensity of electricity and an increase in electrification of energy end-
use (high confidence). This is the case across all 1.5°C pathways and 
their associated literature (Supplementary Material 2.SM.1.3), with 
pathway trends that extend those seen in past decades, and results 
that are consistent with additional analyses (see Section 2.4.2.2).

2.4.2.3	 Deployment of carbon capture and storage

Studies have shown the importance of CCS for deep mitigation pathways 
(Krey et al., 2014a; Kriegler et al., 2014b), based on its multiple roles to 
limit fossil-fuel emissions in electricity generation, liquids production, 
and industry applications along with the projected ability to remove 
CO2 from the atmosphere when combined with bioenergy. This remains 
a valid finding for those 1.5°C and 2°C pathways that do not radically 
reduce energy demand or do not offer carbon-neutral alternatives to 
liquids and gases that do not rely on bioenergy.

There is a wide range of CCS that is deployed across 1.5°C pathways 
(Figure 2.17). A few 1.5°C pathways with very low energy demand 
do not include CCS at all (Grubler et al., 2018). For example, the LED 
pathway has no CCS, whereas other pathways, such as the S5 pathway, 
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Figure 2.16 |  Electricity generation for the four illustrative pathway archetypes plus the IEA’s Faster Transition Scenario (IEA, 2017d) (panel a), and their 
relative location in the ranges for pathways limiting warming to 1.5°C with no or limited overshoot (panel b). The category ‘Other renewables’ includes electricity 
generation not covered by the other categories, for example, hydro and geothermal. The number of pathways that have higher primary energy than the scale in the bottom panel 
are indicated by the numbers above the whiskers. Black horizontal dashed lines indicate the level of primary energy supply in 2015 (IEA, 2017e). Box plots in the lower panel show 
the minimum–maximum range (whiskers), interquartile range (box), and median (vertical thin black line). Symbols in the lower panel show the four pathway archetypes – S1 (white 
square), S2 (yellow square), S5 (black square), LED (white disc) – as well as the IEA’s Faster Transition Scenario (red disc). Pathways with no or limited overshoot included the Below-
1.5°C and 1.5°C-low-OS classes.  

rely on a large amount of BECCS to get to net-zero carbon emissions. 
The cumulative fossil and biomass CO2 stored through 2050 ranges from 
zero to 300 GtCO2 across 1.5°C pathways with no or limited overshoot, 
with zero up to 140 GtCO2 from biomass captured and stored. Some 
pathways have very low fossil-fuel use overall, and consequently little 
CCS applied to fossil fuels. In 1.5°C pathways where the 2050 coal use 
remains above 20 EJ yr−1 in 2050, 33–100% is combined with CCS. 
While deployment of CCS for natural gas and coal vary widely across 
pathways, there is greater natural gas primary energy connected to 
CCS than coal primary energy connected to CCS in many pathways 
(Figure 2.17).

CCS combined with fossil-fuel use remains limited in some 1.5°C 
pathways (Rogelj et al., 2018), as the limited 1.5°C carbon budget 
penalizes CCS if it is assumed to have incomplete capture rates or if 
fossil fuels are assumed to continue to have significant lifecycle GHG 
emissions (Pehl et al., 2017). However, high capture rates are technically 
achievable now at higher cost, although efforts to date have focussed 
on reducing the costs of capture (IEAGHG, 2006; NETL, 2013).

The quantity of CO2 stored via CCS over this century in 1.5°C pathways 
with no or limited overshoot ranges from zero to more than 1,200 
GtCO2, (Figure 2.17). The IPCC Special Report on Carbon Dioxide 
Capture and Storage (IPCC, 2005) found that that, worldwide, it is 
likely that there is a technical potential of at least about 2,000 GtCO2 

of storage capacity in geological formations. Furthermore, the IPCC 
(2005) recognized that there could be a much larger potential for 
geological storage in saline formations, but the upper limit estimates 
are uncertain due to lack of information and an agreed methodology. 
Since IPCC (2005), understanding has improved and there have been 
detailed regional surveys of storage capacity (Vangkilde-Pedersen 
et al., 2009; Ogawa et al., 2011; Wei et al., 2013; Bentham et al., 
2014; Riis and Halland, 2014; Warwick et al., 2014; NETL, 2015) and 
improvement and standardization of methodologies (e.g., Bachu et al. 
2007a, b). Dooley (2013) synthesized published literature on both the 
global geological storage resource as well as the potential demand 
for geologic storage in mitigation pathways, and found that the 
cumulative demand for CO2 storage was small compared to a practical 
storage capacity estimate (as defined by Bachu et al., 2007a) of 3,900 
GtCO2 worldwide. Differences remain, however, in estimates of storage 
capacity due to, for example, the potential storage limitations of 
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subsurface pressure build-up (Szulczewski et al., 2014) and assumptions 
on practices that could manage such issues (Bachu, 2015). Kearns et 
al. (2017) constructed estimates of global storage capacity of 8,000 to 
55,000 GtCO2 (accounting for differences in detailed regional and local 
estimates), which is sufficient at a global level for this century, but 
found that at a regional level, robust demand for CO2 storage exceeds 
their lower estimate of regional storage available for some regions. 
However, storage capacity is not solely determined by the geological 
setting, and Bachu (2015) describes storage engineering practices 
that could further extend storage capacity estimates. In summary, 
the storage capacity of all of these global estimates is larger than the 
cumulative CO2 stored via CCS in 1.5°C pathways over this century.

There is uncertainty in the future deployment of CCS given the 
limited pace of current deployment, the evolution of CCS technology 
that would be associated with deployment, and the current lack of 
incentives for large-scale implementation of CCS (Bruckner et al., 2014; 
Clarke et al., 2014; Riahi et al., 2017). Given the importance of CCS in 
most mitigation pathways and its current slow pace of improvement, 
the large-scale deployment of CCS as an option depends on the further 
development of the technology in the near term. Chapter 4 discusses 
how progress on CCS might be accelerated.

2.4.3	 Energy End-Use Sectors

Since the power sector is almost decarbonized by mid-century in both 
1.5°C and 2°C pathways, major differences come from CO2 emission 
reductions in end-use sectors. Energy-demand reductions are key 
and common features in 1.5˚C pathways, and they can be achieved 
by efficiency improvements and various specific demand-reduction 
measures. Another important feature is end-use decarbonization 
including by electrification, although the potential and challenges in 
each end-use sector vary significantly. 

In the following sections, the potential and challenges of CO2 emission 
reductions towards 1.5°C and 2°C- consistent pathways are discussed 
for each end-use energy sector (industry, buildings, and transport). 
For this purpose, two types of pathways are analysed and compared: 
IAM (integrated assessment modelling) studies and sectoral (detailed) 
studies. IAM data are extracted from the database that was compiled 
for this assessment (see Supplementary Material 2.SM.1.3), and the 
sectoral data are taken from a recent series of publications; ‘Energy 
Technology Perspectives’ (ETP) (IEA, 2014, 2015b, 2016a, 2017a), the 
IEA/IRENA report (OECD/IEA and IRENA, 2017), and the Shell Sky report 
(Shell International B.V., 2018). The IAM pathways are categorized 
according to their temperature rise in 2100 and the overshoot of 
temperature during the century (see Table 2.1 in Section 2.1). Since 
the number of Below-1.5°C pathways is small, the following analyses 

Figure 2.17 |  CCS deployment in 1.5°C and 2°C pathways for (a) biomass, (b) coal and (c) natural gas (EJ of primary energy) and (d) the cumulative quantity 
of fossil (including from, e.g., cement production) and biomass CO2 stored via CCS (in GtCO2 stored).  TBox plots show median, interquartile range and full range of 
pathways in each temperature class. Pathway temperature classes (Table 2.1), illustrative pathway archetypes, and the IEA’s Faster Transition Scenario (IEA WEM) (OECD/IEA and 
IRENA, 2017) are indicated in the legend.
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Figure 2.18 |  Comparison of CO2 emission trajectories of sectoral pathways 
(IEA ETP-B2DS, ETP-2DS, IEA-66%2DS, Shell-Sky) with the ranges of IAM pathway (2DS 
are 2°C-consistent pathways and 1.5DS-OS are1.5°C overshoot pathways). The CO2 
emissions shown here are the energy-related emissions, including industrial process 
emissions.

focus only on the features of the 1.5°C-low-OS and 1.5°C-high-OS 
pathways (hereafter denoted together as 1.5°C overshoot pathways 
or IAM-1.5DS-OS) and 2°C-consistent pathways (IAM-2DS). In order to 
show the diversity of IAM pathways, we again show specific data from 
the four illustrative pathways archetypes used throughout this chapter 
(see Sections 2.1 and 2.3).

IEA ETP-B2DS (‘Beyond 2 Degrees’) and ETP-2DS are pathways with 
a 50% chance of limiting temperature rise below 1.75°C and 2°C 
by 2100, respectively (IEA, 2017a). The IEA-66%2DS pathway keeps 
global mean temperature rise below 2°C, not just in 2100 but also 
over the course of the 21st century, with a 66% chance of being below 
2°C by 2100 (OECD/IEA and IRENA, 2017). The comparison of CO2 
emission trajectories between ETP-B2DS and IAM-1.5DS-OS show that 
these are consistent up to 2060 (Figure 2.18). IEA scenarios assume 
that only a very low level of BECCS is deployed to help offset emissions 
in difficult-to-decarbonize sectors, and that global energy-related CO2 
emissions do not turn net negative at any time but stay at zero from 
2060 to 2100 (IEA, 2017a). Therefore, although its temperature rise 
in 2100 is below 1.75°C rather than below 1.5°C, this scenario can 
give information related to a 1.5°C overshoot pathway up to 2050. 
The trajectory of IEA-66%2DS (also referred to in other publications as 
IEA’s ‘Faster Transition Scenario’) lies between IAM-1.5DS-OS and IAM-
2DS pathway ranges, and IEA-2DS stays in the range of 2°C-consistent 
IAM pathways. The Shell-Sky scenario aims to hold the temperature 
rise to well below 2°C, but it is a delayed action pathway relative to 
others, as can be seen in Figure 2.18.

Energy-demand reduction measures are key to reducing CO2 emissions 
from end-use sectors for low-carbon pathways. The upstream energy 
reductions can be from several times to an order of magnitude larger 
than the initial end-use demand reduction. There are interdependencies 
among the end-use sectors and between energy-supply and end-use 
sectors, which elevate the importance of a wide, systematic approach. 
As shown in Figure 2.19, global final energy consumption grows by 30% 
and 10% from 2010 to 2050 for 2°C-consistent and 1.5°C overshoot 
pathways from IAMs, respectively, while much higher growth of 75% is 
projected for reference scenarios. The ranges within a specific pathway 
class are due to a variety of factors as introduced in Section 2.3.1, as 
well as differences between modelling frameworks. The important 
energy efficiency and conservation improvements that facilitate many 
of the 1.5°C pathways raise the issue of potential rebound effects 
(Saunders, 2015), which, while promoting development, can make 
the achievement of low-energy demand futures more difficult than 
modelling studies anticipate (see Sections 2.5 and 2.6).

Final energy demand is driven by demand in energy services for 
mobility, residential and commercial activities (buildings), and 
manufacturing. Projections of final energy demand depend heavily on 
assumptions about socio-economic futures as represented by the SSPs 
(Bauer et al., 2017) (see Sections 2.1, 2.3 and 2.5). The structure of this 
demand drives the composition of final energy use in terms of energy 
carriers (electricity, liquids, gases, solids, hydrogen etc.).

Figure 2.19 shows the structure of global final energy demand in 2030 
and 2050, indicating the trend toward electrification and fossil fuel 
usage reduction. This trend is more significant in 1.5°C pathways than 
2°C pathways. Electrification continues throughout the second half of 
the century, leading to a 3.5- to 6-fold increase in electricity demand 
(interquartile range; median 4.5) by the end of the century relative to 
today (Grubler et al., 2018; Luderer et al., 2018). Since the electricity 
sector is completely decarbonized by mid-century in 1.5°C pathways 
(see Figure 2.20), electrification is the primary means to decarbonize 
energy end-use sectors. 

The CO2 emissions6  of end-use sectors and carbon intensity are shown 
in Figure 2.20. The projections of IAMs and IEA studies show rather 
different trends, especially in the carbon intensity. These differences 
come from various factors, including the deployment of CCS, the 
level of fuel switching and efficiency improvements, and the effect 
of structural and behavioural changes. IAM projections are generally 
optimistic for the industry sectors, but not for buildings and transport 
sectors. Although GDP increases by a factor of 3.4 from 2010 to 2050, 
the total energy consumption of end-use sectors grows by only about 
30% and 20% in 1.5°C overshoot and 2°C-consistent pathways, 
respectively. However, CO2 emissions would need to be reduced further 
to achieve the stringent temperature limits. Figure 2.20 shows that the 
reduction in CO2 emissions of end-use sectors is larger and more rapid 
in 1.5°C overshoot than 2°C-consistent pathways, while emissions 
from the power sector are already almost zero in 2050 in both sets 
of pathways, indicating that supply-side emissions reductions are 
almost fully exploited already in 2°C-consistent pathways (see Figure 
2.20) (Rogelj et al., 2015b, 2018; Luderer et al., 2016b). The emission 
reductions in end-use sectors are largely made possible by efficiency 
improvements, demand reduction measures and electrification, but 
the level of emissions reductions varies across end-use sectors. While 
the carbon intensity of the industry and buildings sectors decreases 

6	 This section reports ‘direct’ CO2 emissions as reported for pathways in the database for the report. As shown below, the emissions from electricity are nearly zero around 
2050, so the impact of indirect emissions on the whole emission contributions of each sector is very small in 2050.
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Figure 2.19 |  (a) Global final energy, (b) direct CO2 emissions from the all energy demand sectors, (c) carbon intensity, and (d) structure of final energy 
(electricity, liquid fuel, coal, and biomass). The squares and circles indicate the IAM archetype pathways and diamonds indicate the data of sectoral scenarios. The red dotted 
line indicates the 2010 level. H2DS = Higher-2°C, L2DS = Lower-2°C, 1.5DS-H = 1.5°C-high-OS, 1.5DS-L = 1.5°C-low-OS. The label 1.5DS combines both high and low overshoot 
1.5°C-consistent pathway. See Section 2.1 for descriptions. 
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to a very low level of around 10 gCO2 MJ-1, the carbon intensity of 
transport becomes the highest of any sector by 2040 due to its higher 
reliance on oil-based fuels. In the following subsections, the potential 
and challenges of CO2 emission reduction in each end-use sector are 
discussed in detail.

2.4.3.1	 Industry

The industry sector is the largest end-use sector, both in terms of 
final energy demand and GHG emissions. Its direct CO2 emissions 
currently account for about 25% of total energy-related and process 
CO2 emissions, and emissions have increased at an average annual 
rate of 3.4% between 2000 and 2014, significantly faster than total 
CO2 emissions (Hoesly et al., 2018). In addition to emissions from 
the combustion of fossil fuels, non-energy uses of fossil fuels in the 
petrochemical industry and metal smelting, as well as non-fossil fuel 
process emissions (e.g., from cement production) contribute a small 
amount (~5%) to the sector’s CO2 emissions inventory. Material 
industries are particularly energy and emissions intensive: together, 
the steel, non-ferrous metals, chemicals, non-metallic minerals, and 

pulp and paper industries accounted for close to 66% of final energy 
demand and 72% of direct industry-sector emissions in 2014 (IEA, 
2017a). In terms of end-uses, the bulk of energy in manufacturing 
industries is required for process heating and steam generation, 
while most electricity (but smaller shares of total final energy) is used 
for mechanical work (Banerjee et al., 2012; IEA, 2017a).

As shown in Figure 2.21, a major share of the additional emission 
reductions required for 1.5°C-overshoot pathways compared to 
those in 2°C-consistent pathways comes from industry. Final energy, 
CO2 emissions, and carbon intensity are consistent in IAM and 
sectoral studies, but in IAM-1.5°C-overshoot pathways the share of 
electricity is higher than IEA-B2DS (40% vs. 25%) and hydrogen is 
also considered to have a share of about 5% versus 0%. In 2050, final 
energy is increased by 30% and 5% compared with the 2010 level 
(red dotted line) for 1.5°C-overshoot and 2°C-consistent pathways, 
respectively, but CO2 emissions are decreased by 80% and 50% 
and carbon intensity by 80% and 60%, respectively. This additional 
decarbonization is brought by switching to low-carbon fuels and CCS 
deployment.



139

2

Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development	 Chapter 2

Figure 2.21 |  Comparison of (a) final energy, (b) direct CO2 emissions, (c) carbon intensity, (d) electricity and biomass consumption in the industry sector 
between IAM and sectoral studies. The squares and circles indicate the IAM archetype pathways and diamonds the data of sectoral scenarios. The red dotted line indicates the 
2010 level. H2DS = Higher-2°C, L2DS = Lower-2°C, 1.5DS-H = 1.5°C-high-OS, 1.5DS-L = 1.5°C-low-OS. The label 1.5DS combines both high and low overshoot 1.5°C-consistent 
pathways. Section 2.1 for descriptions.
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Figure 2.20 |  Comparison of (a) direct CO2 emissions and (b) carbon intensity of the power and energy end-use sectors (industry, buildings, and transport 
sectors) between IAMs and sectoral studies (IEA-ETP and IEA/IRENA). Diamond markers in panel (b) show data for IEA-ETP scenarios (2DS and B2DS), and IEA/IRENA 
scenario (66%2DS). Note: for the data from IAM studies, there is rather large variation of projections for each indicator. Please see the details in the following figures in each end-
use sector section.
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Broadly speaking, the industry sector’s mitigation measures can 
be categorized in terms of the following five strategies: (i) reducing 
demand, (ii) energy efficiency, (iii) increasing electrification of energy 
demand, (iv) reducing the carbon content of non-electric fuels, and 
(v) deploying innovative processes and application of CCS. IEA ETP 
estimates the relative contribution of different measures for CO2 

emission reduction in their B2DS scenario compared with their reference 
scenario in 2050 as follows: energy efficiency 42%, innovative process 
and CCS 37%, switching to low-carbon fuels and feedstocks 13% and 
material efficiency (include efficient production and use to contribute 
to demand reduction) 8%. The remainder of this section delves more 
deeply into the potential mitigation contributions of these strategies as 
well as their limitations.

Reduction in the use of industrial materials, while delivering similar 
services, or improving the quality of products could help to reduce 
energy demand and overall system-level CO2 emissions. Strategies 
include using materials more intensively, extending product lifetimes, 
increasing recycling, and increasing inter-industry material synergies, 
such as clinker substitution in cement production (Allwood et al., 2013; 
IEA, 2017a). Related to material efficiency, use of fossil-fuel feedstocks 
could shift to lower-carbon feedstocks, such as from oil to natural gas 
and biomass, and end-uses could shift to more sustainable materials, 
such as biomass-based materials, reducing the demand for energy-
intensive materials (IEA, 2017a).

Reaping energy efficiency potentials hinges critically on advanced 
management practices, such as energy management systems, in 
industrial facilities as well as targeted policies to accelerate adoption of 
the best available technology (see Section 2.5). Although excess energy, 
usually as waste heat, is inevitable, recovering and reusing this waste 
heat under economically and technically viable conditions benefits 
the overall energy system. Furthermore, demand-side management 
strategies could modulate the level of industrial activity in line with 
the availability of resources in the power system. This could imply a 
shift away from peak demand and as power supply decarbonizes, this 
demand-shaping potential could shift some load to times with high 
portions of low-carbon electricity generation (IEA, 2017a).

In the industry sector, energy demand increases more than 40% 
between 2010 and 2050 in baseline scenarios. However, in the 
1.5°C-overshoot and 2°C-consistent pathways from IAMs, the increase 
is only 30% and 5%, respectively (Figure 2.21). These energy-demand 
reductions encompass both efficiency improvements in production and 
reductions in material demand, as most IAMs do not discern these two 
factors.

CO2 emissions from industry increase by 30% in 2050 compared to 
2010 in baseline scenarios. By contrast, these emissions are reduced 
by 80% and 50% relative to 2010 levels in 1.5°C-overshoot and 
2°C-consistent pathways from IAMs, respectively (Figure 2.21). By mid-

century, CO2 emissions per unit of electricity are projected to decrease 
to near zero in both sets of pathways (see Figure 2.20). An accelerated 
electrification of the industry sector thus becomes an increasingly 
powerful mitigation option. In the IAM pathways, the share of electricity 
increases up to 30% by 2050 in 1.5°C-overshoot pathways (Figure 
2.21) from 20% in 2010. Some industrial fuel uses are substantially 
more difficult to electrify than others, and electrification would have 
other effects on the process, including impacts on plant design, cost 
and available process integration options (IEA, 2017a).7  

In 1.5°C-overshoot pathways, the carbon intensity of non-electric fuels 
consumed by industry decreases to 16 gCO2 MJ−1 by 2050, compared 
to 25 gCO2 MJ−1 in 2°C-consistent pathways. Considerable carbon 
intensity reductions are already achieved by 2030, largely via a rapid 
phase-out of coal. Biomass becomes an increasingly important energy 
carrier in the industry sector in deep-decarbonization pathways, but 
primarily in the longer term (in 2050, biomass accounts for only 10% 
of final energy consumption even in 1.5°C-overshoot pathways). In 
addition, hydrogen plays a considerable role as a substitute for fossil-
based non-electric energy demands in some pathways.

Without major deployment of new sustainability-oriented low-carbon 
industrial processes, the 1.5°C-overshoot target is difficult to achieve. 
Bringing such technologies and processes to commercial deployment 
requires significant investment in research and development. Some 
examples of innovative low-carbon process routes include: new 
steelmaking processes such as upgraded smelt reduction and upgraded 
direct reduced iron, inert anodes for aluminium smelting, and full oxy-
fuelling kilns for clinker production in cement manufacturing (IEA, 
2017a). 

CCS plays a major role in decarbonizing the industry sector in the 
context of 1.5°C and 2°C pathways, especially in industries with 
higher process emissions, such as cement, iron and steel industries. 
In 1.5°C-overshoot pathways, CCS in industry reaches 3 GtCO2 yr−1 

by 2050, albeit with strong variations across pathways. Given the 
projected long-lead times and need for technological innovation, early 
scale-up of industry-sector CCS is essential to achieving the stringent 
temperature target. Development and demonstration of such projects 
has been slow, however. Currently, only two large-scale industrial CCS 
projects outside of oil and gas processing are in operation (Global 
CCS Institute, 2016). The estimated current cost8 of CO2 avoided (in 
USD2015) ranges from $20–27 tCO2

−1 for gas processing and bio-
ethanol production, and $60–138 tCO2

−1 for fossil fuel-fired power 
generation up to $104–188 tCO2

−1 for cement production (Irlam, 2017).

2.4.3.2	 Buildings

In 2014, the buildings sector accounted for 31% of total global final 
energy use, 54% of final electricity demand, and 8% of energy-related 
CO2 emissions (excluding indirect emissions due to electricity). When 

7	 Electrification can be linked with the heating and drying process by electric boilers and electro-thermal processes, and also with low-temperature heat demand by heat  
	 pumps. In the iron and steel industry, hydrogen produced by electrolysis can be used as a reduction agent of iron instead of coke. Excess resources, such as black liquor,  
	 will provide the opportunity to increase the systematic efficiency to use for electricity generation.

8	 These are first-of-a-kind (FOAK) cost data.
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upstream electricity generation is taken into account, buildings were 
responsible for 23% of global energy-related CO2 emissions, with one-
third of those from direct fossil fuel consumption (IEA, 2017a).

Past growth of energy consumption has been mainly driven by 
population and economic growth, with improved access to electricity, 
and higher use of electrical appliances and space cooling resulting 
from increasing living standards, especially in developing countries 
(Lucon et al., 2014). These trends will continue in the future and in 
2050, energy consumption is projected to increase by 20% and 50% 
compared to 2010 in the IAM-1.5°C-overshoot and 2°C-consistent 
pathways, respectively (Figure 2.22). However, sectoral studies (IEA-
ETP scenarios) show different trends. Energy consumption in 2050 
decreases compared to 2010 in ETP-B2DS, and the reduction rate of 
CO2 emissions is higher than in IAM pathways (Figure 2.22). Mitigation 
options are often more widely covered in sectoral studies (Lucon et al., 
2014), leading to greater reductions in energy consumption and CO2 
emissions.

Emissions reductions are driven by a clear tempering of energy 
demand and a strong electrification of the buildings sector. The share 
of electricity in 2050 is 60% in 1.5°C-overshoot pathways, compared 

with 50% in 2°C-consistent pathways (Figure 2.22). Electrification 
contributes to the reduction of direct CO2 emissions by replacing 
carbon-intensive fuels, like oil and coal. Furthermore, when combined 
with a rapid decarbonization of the power system (see Section 2.4.1) it 
also enables further reduction of indirect CO2 emissions from electricity. 
Sectoral bottom-up models generally estimate lower electrification 
potentials for the buildings sector in comparison to global IAMs (see 
Figure 2.22). Besides CO2 emissions, increasing global demand for 
air conditioning in buildings may also lead to increased emissions of 
HFCs in this sector over the next few decades. Although these gases 
are currently a relatively small proportion of annual GHG emissions, 
their use in the air conditioning sector is expected to grow rapidly over 
the next few decades if alternatives are not adopted. However, their 
projected future impact can be significantly mitigated through better 
servicing and maintenance of equipment and switching of cooling 
gases (Shah et al., 2015; Purohit and Höglund-Isaksson, 2017).

IEA-ETP (IEA, 2017a) analysed the relative importance of various 
technology measures toward the reduction of energy and CO2 
emissions in the buildings sector. The largest energy savings potential 
is in heating and cooling demand, largely due to building envelope 
improvements and high efficiency and renewable equipment. In the 
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Figure 2.22 |  Comparison of (a) final energy, (b) direct CO2 emissions, (c) carbon intensity, (d) electricity and biomass consumption in the buildings sector 
between IAM and sectoral studies. The squares and circles indicate the IAM archetype pathways and diamonds the data of sectoral scenarios. The red dotted line indicates the 
2010 level. H2DS = Higher-2°C, L2DS = Lower-2°C, 1.5DS-H = 1.5°C-high-OS, 1.5DS-L = 1.5°C-low-OS. The label 1.5DS combines both high and low overshoot 1.5°C-consistent 
pathways. Section 2.1 for descriptions.
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ETP-B2DS, energy demand for space heating and cooling is 33% lower 
in 2050 than in the reference scenario, and these reductions account 
for 54% of total reductions from the reference scenario. Energy savings 
from shifts to high-performance lighting, appliances, and water heating 
equipment account for a further 24% of the total reduction. The long-
term, strategic shift away from fossil-fuel use in buildings, alongside 
the rapid uptake of energy efficient, integrated and renewable 
energy technologies (with clean power generation), leads to a drastic 
reduction of CO2 emissions. In ETP-B2DS, the direct CO2 emissions are 
79% lower than the reference scenario in 2050, and the remaining 
emissions come mainly from the continued use of natural gas.

The buildings sector is characterized by very long-living infrastructure, 
and immediate steps are hence important to avoid lock-in of inefficient 
carbon and energy-intensive buildings. This applies both to new buildings 
in developing countries where substantial new construction is expected 
in the near future and to retrofits of existing building stock in developed 
regions. This represents both a significant risk and opportunity for 
mitigation.9 A recent study highlights the benefits of deploying the most 
advanced renovation technologies, which would avoid lock-in into less 
efficient measures (Güneralp et al., 2017). Aside from the effect of building 
envelope measures, adoption of energy-efficient technologies such as 
heat pumps and, more recently, light-emitting diodes is also important 
for the reduction of energy and CO2 emissions (IEA, 2017a). Consumer 
choices, behaviour and building operation can also significantly affect 
energy consumption (see Chapter 4, Section 4.3).

2.4.3.3	 Transport

Transport accounted for 28% of global final energy demand and 23% 
of global energy-related CO2 emissions in 2014. Emissions increased by 
2.5% annually between 2010 and 2015, and over the past half century 
the sector has witnessed faster emissions growth than any other. The 
transport sector is the least diversified energy end-use sector; the 
sector consumed 65% of global oil final energy demand, with 92% of 
transport final energy demand consisting of oil products (IEA, 2017a), 
suggesting major challenges for deep decarbonization.

Final energy, CO2 emissions, and carbon intensity for the transport 
sector are shown in Figure 2.23. The projections of IAMs are more 
pessimistic than IEA-ETP scenarios, though both clearly project deep 
cuts in energy consumption and CO2 emissions by 2050. For example, 
1.5°C-overshoot pathways from IAMs project a reduction of 15% in 
energy consumption between 2015 and 2050, while ETP-B2DS projects 
a reduction of 30% (Figure 2.23). Furthermore, IAM pathways are 
generally more pessimistic in the projections of CO2 emissions and 
carbon intensity reductions. In AR5 (Clarke et al., 2014; Sims et al., 
2014), similar comparisons between IAMs and sectoral studies were 
performed and these were in good agreement with each other. Since 
the AR5, two important changes can be identified: rapid growth of 
electric vehicle sales in passenger cars, and more attention towards 

structural changes in this sector. The former contributes to reduction 
of CO2 emissions and the latter to reduction of energy consumption. 

Deep emissions reductions in the transport sector would be achieved by 
several means. Technology-focused measures such as energy efficiency 
and fuel-switching are two of these. Structural changes that avoid or 
shift transport activity are also important. While the former solutions 
(technologies) always tend to figure into deep decarbonization 
pathways in a major way, this is not always the case with the latter, 
especially in IAM pathways. Comparing different types of global 
transport models, Yeh et al. (2016) find that sectoral (intensive) studies 
generally envision greater mitigation potential from structural changes 
in transport activity and modal choice. Though, even there, it is primarily 
the switching of passengers and freight from less- to more-efficient 
travel modes (e.g., cars, trucks and airplanes to buses and trains) that is 
the main strategy; other actions, such as increasing vehicle load factors 
(occupancy rates) and outright reductions in travel demand (e.g., as 
a result of integrated transport, land-use and urban planning), figure 
much less prominently. Whether these dynamics accurately reflect the 
actual mitigation potential of structural changes in transport activity 
and modal choice is a point of investigation. According to the recent 
IEA-ETP scenarios, the share of avoid (reduction of mobility demand) 
and shift (shifting to more efficient modes) measures in the reduction of 
CO2 emissions from the reference to B2DS scenarios in 2050 amounts 
to 20% (IEA, 2017a). 

The potential and strategies to reduce energy consumption and CO2 
emissions differ significantly among transport modes. In ETP-B2DS, 
the shares of energy consumption and CO2 emissions in 2050 for each 
mode are rather different (see Table 2.8), indicating the challenge 
of decarbonizing heavy-duty vehicles (HDV, trucks), aviation, and 
shipping. The reduction of CO2 emissions in the whole sector from 
the reference scenario to ETP-B2DS is 60% in 2050, with varying 
contributions per mode (Table 2.8). Since there is no silver bullet for 
this deep decarbonization, every possible measure would be required 
to achieve this stringent emissions outcome. The contribution of 
various measures for the CO2 emission reduction from the reference 
scenario to the IEA-B2DS in 2050 can be decomposed to efficiency 
improvement (29%), biofuels (36%), electrification (15%), and avoid/
shift (20%) (IEA, 2017a). It is noted that the share of electrification 
becomes larger compared with older studies, reflected by the recent 
growth of electric vehicle sales worldwide. Another new trend is the 
allocation of biofuels to each mode of transport. In IEA-B2DS, the total 
amount of biofuels consumed in the transport sector is 24EJ10 in 2060, 
and allocated to LDV (light-duty vehicles, 17%), HDV (35%), aviation 
(28%), and shipping (21%), that is, more biofuels is allocated to the 
difficult-to-decarbonize modes (see Table 2.8).

In road transport, incremental vehicle improvements (including 
engines) are relevant, especially in the short to medium term. Hybrid 
electric vehicles are also instrumental to enabling the transition from 

9	 In this section, we only discuss the direct emissions from the sector, but the selection of building materials has a significant impact on the reduction of energy and emissions  
	 during production, such as shift from the steel and concrete to wood-based materials.

10	 This is estimated for the biofuels produced in a “sustainable manner” from non-food crop feedstocks, which are capable of delivering significant lifecycle GHG emissions 
savings compared with fossil fuel alternatives, and which do not directly compete with food and feed crops for agricultural land or cause adverse sustainability impacts. 
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internal combustion engine vehicles to electric vehicles, especially 
plug-in hybrid electric vehicles. Electrification is a powerful measure to 
decarbonize short-distance vehicles (passenger cars and two and three 
wheelers) and the rail sector. In road freight transport (trucks), systemic 
improvements (e.g., in supply chains, logistics, and routing) would be 
effective measures in conjunction with efficiency improvement of 
vehicles. Shipping and aviation are more challenging to decarbonize, 
while their demand growth is projected to be higher than other 

Share of Each Mode (%) Reduction from 2014 (%)

Energy Biofuel CO2 Energy CO2

LDV 36 17 30 51 81

HDV 33 35 36 8 56

Rail 6 - –1 –136 107

Aviation 12 28 14 14 56

Shipping 17 21 21 26 29

Table 2.8 | 	Transport sector indicators by mode in 2050 (IEA, 2017a).  
	 Share of energy consumption, biofuel consumption, CO2 emissions, and reduction of energy consumption and CO2 emissions from 2014. (CO2 emissions are well- 
	 to-wheel emissions, including the emission during the fuel production.), LDV: light duty vehicle, HDV: heavy duty vehicle.

transport modes. Both modes would need to pursue highly ambitious 
efficiency improvements and use of low-carbon fuels. In the near and 
medium term, this would be advanced biofuels while in the long term 
it could be hydrogen as direct use for shipping or an intermediate 
product for synthetic fuels for both modes (IEA, 2017a).

The share of low-carbon fuels in the total transport fuel mix 
increases to 10% and 16% by 2030 and to 40% and 58% by 2050 
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Figure 2.23 |  Comparison of (a) final energy, (b) direct CO2 emissions, (c) carbon intensity, (d) electricity and biofuel consumption in the transport sector 
between IAM and sectoral studies. The squares and circles indicate the IAM archetype pathways and diamonds the data of sectoral scenarios. The red dotted line indicates the 
2010 level. H2DS = Higher-2°C, L2DS = Lower-2°C, 1.5DS-H = 1.5°C-high-OS, 1.5DS-L = 1.5°C-low-OS. The label 1.5DS combines both high and low overshoot 1.5°C-consistent 
pathways. Section 2.1 for descriptions.
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in 1.5°C-overshoot pathways from IAMs and the IEA-B2DS pathway, 
respectively. The IEA-B2DS scenario is on the more ambitious side, 
especially in the share of electricity. Hence, there is wide variation 
among scenarios, including the IAM pathways, regarding changes 
in the transport fuel mix over the first half of the century. As seen in 
Figure 2.23, the projections of energy consumption, CO2 emissions and 
carbon intensity are quite different between IAM and ETP scenarios. 
These differences can be explained by more weight on efficiency 
improvements and avoid/shift decreasing energy consumption, and 
the higher share of biofuels and electricity accelerating the speed of 
decarbonization in ETP scenarios. Although biofuel consumption and 
electric vehicle sales have increased significantly in recent years, the 
growth rates projected in these pathways would be unprecedented 
and far higher than has been experienced to date.

The 1.5°C pathways require an acceleration of the mitigation solutions 
already featured in 2°C-consistent pathways (e.g., more efficient 
vehicle technologies operating on lower-carbon fuels), as well as 
those having received lesser attention in most global transport 
decarbonization pathways up to now (e.g., mode-shifting and travel 
demand management). Current-generation, global pathways generally 
do not include these newer transport sector developments, whereby 
technological solutions are related to shifts in traveller’s behaviour.

2.4.4	 Land-Use Transitions and Changes 
in the Agricultural Sector

The agricultural and land system described together under the umbrella 
of the AFOLU (agriculture, forestry, and other land use) sector plays 
an important role in 1.5°C pathways (Clarke et al., 2014; Smith and 
Bustamante, 2014; Popp et al., 2017). On the one hand, its emissions 
need to be limited over the course of this century to be in line with 
pathways limiting warming to 1.5°C (see Sections 2.2-3). On the other 
hand, the AFOLU system is responsible for food and feed production; 
for wood production for pulp and construction; for the production of 
biomass that is used for energy, CDR or other uses; and for the supply of 
non-provisioning (ecosystem) services (Smith and Bustamante, 2014). 
Meeting all demands together requires changes in land use, as well as 
in agricultural and forestry practices, for which a multitude of potential 
options have been identified (Smith and Bustamante, 2014; Popp et 
al., 2017) (see also Supplementary Material  2.SM.1.2 and Chapter 4, 
Section 4.3.1, 4.3.2 and 4.3.7). 

This section assesses the transformation of the AFOLU system, mainly 
making use of pathways from IAMs (see Section 2.1) that are based on 
quantifications of the SSPs and that report distinct land-use evolutions 
in line with limiting warming to 1.5°C (Calvin et al., 2017; Fricko et 
al., 2017; Fujimori, 2017; Kriegler et al., 2017; Popp et al., 2017; Riahi 
et al., 2017; van Vuuren et al., 2017b; Doelman et al., 2018; Rogelj 
et al., 2018). The SSPs were designed to vary mitigation challenges 
(O’Neill et al., 2014) (Cross-Chapter Box 1 in Chapter 1), including 
for the AFOLU sector (Popp et al., 2017; Riahi et al., 2017). The SSP 
pathway ensemble hence allows for a structured exploration of AFOLU 
transitions in the context of climate change mitigation in line with 
1.5°C, taking into account technological and socio-economic aspects. 
Other considerations, like food security, livelihoods and biodiversity, 
are also of importance when identifying AFOLU strategies. These are 

at present only tangentially explored by the SSPs. Further assessments 
of AFOLU mitigation options are provided in other parts of this report 
and in the IPCC Special Report on Climate Change and Land (SRCCL). 
Chapter 4 provides an assessment of bioenergy (including feedstocks, 
see Section 4.3.1), livestock management (Section 4.3.1), reducing 
rates of deforestation and other land-based mitigation options (as 
mitigation and adaptation option, see Section 4.3.2), and BECCS, 
afforestation and reforestation options (including the bottom-up 
literature of their sustainable potential, mitigation cost and side 
effects, Section 4.3.7). Chapter 3 discusses impacts land-based CDR 
(Cross-Chapter Box 7 in Chapter 3). Chapter 5 assesses the sustainable 
development implications of AFOLU mitigation, including impacts on 
biodiversity (Section 5.4). Finally, the SRCCL will undertake a more 
comprehensive assessment of land and climate change aspects. For 
the sake of complementarity, this section focusses on the magnitude 
and pace of land transitions in 1.5°C pathways, as well as on the 
implications of different AFOLU mitigation strategies for different land 
types. The interactions with other societal objectives and potential 
limitations of identified AFOLU measures link to these large-scale 
evolutions, but these are assessed elsewhere (see above).

Land-use changes until mid-century occur in the large majority of 
SSP pathways, both under stringent mitigation and in absence of 
mitigation (Figure 2.24). In the latter case, changes are mainly due 
to socio-economic drivers like growing demands for food, feed and 
wood products. General transition trends can be identified for many 
land types in 1.5°C pathways, which differ from those in baseline 
scenarios and depend on the interplay with mitigation in other 
sectors (Figure 2.24) (Popp et al., 2017; Riahi et al., 2017; Rogelj et 
al., 2018). Mitigation that demands land mainly occurs at the expense 
of agricultural land for food and feed production. Additionally, some 
biomass is projected to be grown on marginal land or supplied from 
residues and waste, but at lower shares. Land for second-generation 
energy crops (such as Miscanthus or poplar) expands by 2030 
and 2050 in all available pathways that assume a cost-effective 
achievement of a 1.5°C temperature goal in 2100 (Figure 2.24), but 
the scale depends strongly on underlying socio-economic assumptions 
(see later discussion of land pathway archetypes). Reducing rates of 
deforestation restricts agricultural expansion, and forest cover can 
expand strongly in 1.5°C and 2°C pathways alike compared to its 
extent in no-climate-policy baselines due to reduced deforestation and 
afforestation and reforestation measures. However, the extent to which 
forest cover expands varies highly across models in the literature, 
with some models projecting forest cover to stay virtually constant or 
decline slightly. This is due to whether afforestation and reforestation is 
included as a mitigation technology in these pathways and interactions 
with other sectors. 

As a consequence of other land-use changes, pasture land is generally 
projected to be reduced compared to both baselines in which no climate 
change mitigation action is undertaken and 2°C-consistent pathways. 
Furthermore, cropland for food and feed production decreases in 
most 1.5°C pathways, both compared to a no-climate baseline and 
relative to 2010. These reductions in agricultural land for food and feed 
production are facilitated by intensification on agricultural land and in 
livestock production systems (Popp et al., 2017), as well as changes 
in consumption patterns (Frank et al., 2017; Fujimori, 2017) (see 
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also Chapter 4, Section 4.3.2 for an assessment of these mitigation 
options). For example, in a scenario based on rapid technological 
progress (Kriegler et al., 2017), global average cereal crop yields in 
2100 are assumed to be above 5 tDM ha−1 yr−1 in mitigation scenarios 
aiming at limiting end-of-century radiative forcing to 4.5 or 2.6 W m−2, 
compared to 4 tDM ha−1 yr−1 in the SSP5 baseline to ensure the same 
food production. Similar improvements are present in 1.5°C variants 
of such scenarios. Historically, cereal crop yields are estimated at 
1 tDM ha−1 yr−1 and about 3 tDM ha−1 yr−1 in 1965 and 2010, 
respectively (calculations based on FAOSTAT, 2018). For aggregate 
energy crops, models assume 4.2–8.9 tDM ha−1 yr−1 in 2010, increasing 
to about 6.9–17.4 tDM ha−1 yr−1 in 2050, which fall within the range 
found in the bottom-up literature yet depend on crop, climatic zone, 
land quality and plot size (Searle and Malins, 2014).

The pace of projected land transitions over the coming decades can 
differ strongly between 1.5°C and baseline scenarios without climate 
change mitigation and from historical trends (Table 2.9). However, 
there is uncertainty in the sign and magnitude of these future land-
use changes (Prestele et al., 2016; Popp et al., 2017; Doelman et al., 
2018). The pace of projected cropland changes overlaps with historical 
trends over the past four decades, but in several cases also goes well 
beyond this range. By the 2030–2050 period, the projected reductions 

in pasture and potentially strong increases in forest cover imply a 
reversed dynamic compared to historical and baseline trends. This 
suggests that distinct policy and government measures would be 
needed to achieve forest increases, particularly in a context of projected 
increased bioenergy use.

Changes in the AFOLU sector are driven by three main factors: demand 
changes, efficiency of production, and policy assumptions (Smith et 
al., 2013; Popp et al., 2017). Demand for agricultural products and 
other land-based commodities is influenced by consumption patterns 
(including dietary preferences and food waste affecting demand for 
food and feed) (Smith et al., 2013; van Vuuren et al., 2018), demand for 
forest products for pulp and construction (including less wood waste), 
and demand for biomass for energy production (Lambin and Meyfroidt, 
2011; Smith and Bustamante, 2014). Efficiency of agricultural and 
forestry production relates to improvements in agricultural and forestry 
practices (including product cascades, by-products and more waste- and 
residue-based biomass for energy production), agricultural and forestry 
yield increases, and intensification of livestock production systems 
leading to higher feed efficiency and changes in feed composition 
(Havlík et al., 2014; Weindl et al., 2015). Policy assumptions relate to 
the level of land protection, the treatment of food waste, policy choices 
about the timing of mitigation action (early vs late), the choice and 

Figure 2.24 |  Overview of land-use change transitions in 2030 and 2050, relative to 2010 based on pathways based on the Shared Socio-Economic Pathways (SSPs) (Popp et 
al., 2017; Riahi et al., 2017; Rogelj et al., 2018). Grey: no-climate-policy baseline; green: 2.6 W m−2 pathways; blue: 1.9 W m−2 pathways. Pink: 1.9 W m−2 pathways grouped per 
underlying socio-economic assumption (from left to right: SSP1 sustainability, SSP2 middle-of-the-road, SSP5 fossil-fuelled development). Ranges show the minimum–maximum 
range across the SSPs. Single pathways are shown with plus signs. Illustrative archetype pathways are highlighted with distinct icons. Each panel shows the changes for a different 
land type. The 1.9 and 2.6 W m−2 pathways are taken as proxies for 1.5°C and 2°C pathways, respectively. The 2.6 W m−2 pathways are mostly consistent with the Lower-2°C and 
Higher-2°C pathway classes. The 1.9 W m−2 pathways are consistent with the 1.5°C-low-OS (mostly SSP1 and SSP2) and 1.5°C-high-OS (SSP5) pathway classes. In 2010, pasture 
was estimated to cover about 3–3.5 103 Mha, food and feed crops about 1.5–1.6 103 Mha, energy crops about 0–14 Mha and forest about 3.7–4.2 103 Mha, across the models 
that reported SSP pathways (Popp et al., 2017). When considering pathways limiting warming to 1.5°C with no or limited overshoot, the full set of scenarios shows a conversion 
of 50–1100 Mha of pasture into 0–600 Mha for energy crops, a 200 Mha reduction to 950 Mha increase forest, and a 400 Mha decrease to a 250 Mha increase in non-pasture 
agricultural land for food and feed crops by 2050 relative to 2010. The large range across the literature and the understanding of the variations across models and assumptions 
leads to medium confidence in the size of these ranges.
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preference of land-based mitigation options (for example, the inclusion 
of afforestation and reforestation as mitigation options), interactions 
with other sectors (Popp et al., 2017), and trade (Schmitz et al., 2012; 
Wiebe et al., 2015).

A global study (Stevanović et al., 2017) reported similar GHG reduction 
potentials for both production-side (agricultural production measures 
in combination with reduced deforestation) and consumption-side 
(diet change in combination with lower shares of food waste) measures 
on the order of 40% in 210011 (compared to a baseline scenario 
without land-based mitigation). Lower consumption of livestock 
products by 2050 could also substantially reduce deforestation and 
cumulative carbon losses (Weindl et al., 2017). On the supply side, 
minor productivity growth in extensive livestock production systems 
is projected to lead to substantial CO2 emission abatement, but the 
emission-saving potential of productivity gains in intensive systems is 
limited, mainly due to trade-offs with soil carbon stocks (Weindl et al., 
2017). In addition, even within existing livestock production systems, a 
transition from extensive to more productive systems bears substantial 
GHG abatement potential, while improving food availability (Gerber et 
al., 2013; Havlík et al., 2014). Many studies highlight the capability of 
agricultural intensification for reducing GHG emissions in the AFOLU 
sector or even enhancing terrestrial carbon stocks (Valin et al., 2013; 
Popp et al., 2014a; Wise et al., 2014). Also the importance of immediate 
and global land-use regulations for a comprehensive reduction of 

Annual Pace of Land-Use Change [Mha yr–1]

Land Type Pathway Time Window Historical

2010–2030 2030–2050 1970–1990 1990–2010

Pasture 1.9 W m–2 [–14.6/3.0] [–28.7/–5.2] 8.7 
Permanent meadows 
and pastures (FAO)

0.9 
Permanent meadows 
and pastures (FAO)

2.6 W m–2 [–9.3/4.1] [–21.6/0.4]

Baseline [–5.1/14.1] [–9.6/9.0]

Cropland for food, 
feed and material

1.9 W m–2 [–12.7/9.0] [–18.5/0.1]

2.6 W m–2 [–12.9/8.3] [–16.8/2.3]

Baseline [–5.3/9.9] [–2.7/6.7]

Cropland for energy 1.9 W m–2 [0.7/10.5] [3.9/34.8]

2.6 W m–2 [0.2/8.8] [2.0/22.9]

Baseline [0.2/4.2] [–0.2/6.1]

Total cropland (Sum 
of cropland for food 
and feed & energy)

1.9 W m–2 [–6.8/12.8] [–5.8/26.7] 4.6 
Arable land and 
Permanent crops

0.9 
Arable land and 
Permanent crops

2.6 W m–2 [–8.4/9.3] [–7.1/17.8]

Baseline [–3.0/11.3] [0.6/11.0]

Forest 1.9 W m–2 [–4.8/23.7] [0.0/34.3]
N.A. 
Forest (FAO)

–5.6 
Forest (FAO)

2.6 W m–2 [–4.7/22.2] [–2.4/31.7]

Baseline [–13.6/3.3] [–6.5/4.3]

Table 2.9 |	 Annual pace of land-use change in baseline, 2°C and 1.5°C pathways.  
	 All values in Mha yr−1. The 2.6 W m−2 pathways are mostly consistent with the Lower-2°C and Higher-2°C pathway classes. The 1.9 W m−2 pathways are  
	 broadly consistent with the 1.5°C-low-OS (mostly SSP1 and SSP2) and 1.5°C-high-OS (SSP5) pathway classes. Baseline projections reflect land-use developments  
	 projected by integrated assessment models under the assumptions of the Shared Socio-Economic Pathways (SSPs) in absence of climate policies (Popp et al., 2017;  
	 Riahi et al., 2017; Rogelj et al., 2018). Values give the full range across SSP scenarios. According to the Food and Agriculture Organization of the United Nations  
	 (FAOSTAT, 2018), 4.9 billion hectares (approximately 40% of the land surface) was under agricultural use in 2005, either as cropland (1.5 billion hectares) or  
	 pasture (3.4 billion hectares). FAO data in the table are equally from FAOSTAT (2018).

land-related GHG emissions (especially related to deforestation) 
has been shown by several studies (Calvin et al., 2017; Fricko et al., 
2017; Fujimori, 2017). Ultimately, there are also interactions between 
these three factors and the wider society and economy, for example, 
if CDR technologies that are not land-based are deployed (like direct 
air capture – DACCS, see Chapter 4, Section 4.3.7) or if other sectors 
over- or underachieve their projected mitigation contributions (Clarke 
et al., 2014). Variations in these drivers can lead to drastically different 
land-use implications (Popp et al., 2014b) (Figure 2.24).

Stringent mitigation pathways inform general GHG dynamics in 
the AFOLU sector. First, CO2 emissions from deforestation can be 
abated at relatively low carbon prices if displacement effects in 
other regions (Calvin et al., 2017) or other land-use types with high 
carbon density (Calvin et al., 2014; Popp et al., 2014a; Kriegler et 
al., 2017) can be avoided. However, efficiency and costs of reducing 
rates of deforestation strongly depend on governance performance, 
institutions and macroeconomic factors (Wang et al., 2016). Secondly, 
besides CO2 reductions, the land system can play an important role 
for overall CDR efforts (Rogelj et al., 2018) via BECCS, afforestation 
and reforestation, or a combination of options. The AFOLU sector also 
provides further potential for active terrestrial carbon sequestration, 
for example, via land restoration, improved management of forest and 
agricultural land (Griscom et al., 2017), or biochar applications (Smith, 
2016) (see also Chapter 4, Section 4.3.7). These options have so far 

11	 Land-based mitigation options on the supply and the demand side are assessed in 4.3.2, and CDR options with a land component in 4.3.7. Chapter 5 (Section 5.4) assesses 
the implications of land-based mitigation for related SDGs, e.g., food security. 
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not been extensively integrated in the mitigation pathway literature 
(see Supplementary Material  2.SM.1.2), but in theory their availability 
would impact the deployment of other CDR technologies, like BECCS 
(Section 2.3.4) (Strefler et al., 2018a). These interactions will be 
discussed further in the SRCCL.

Residual agricultural non-CO2 emissions of CH4 and N2O play an 
important role for temperature stabilization pathways, and their relative 
importance increases in stringent mitigation pathways in which CO2 is 
reduced to net zero emissions globally (Gernaat et al., 2015; Popp et al., 
2017; Stevanović et al., 2017; Rogelj et al., 2018), for example, through 
their impact on the remaining carbon budget (Section 2.2). Although 
agricultural non-CO2 emissions show marked reduction potentials 
in 2°C-consistent pathways, complete elimination of these emission 
sources does not occur in IAMs based on the evolution of agricultural 
practice assumed in integrated models (Figure 2.25) (Gernaat et al., 
2015). Methane emissions in 1.5°C pathways are reduced through 
improved agricultural management (e.g., improved management of 
water in rice production, manure and herds, and better livestock quality 
through breeding and improved feeding practices) as well as dietary 
shifts away from emissions-intensive livestock products. Similarly, 
N2O emissions decrease due to improved N-efficiency and manure 
management (Frank et al., 2018). However, high levels of bioenergy 
production can also result in increased N2O emissions (Kriegler et 
al., 2017), highlighting the importance of appropriate management 
approaches (Davis et al., 2013). Residual agricultural emissions can be 
further reduced by limiting demand for GHG-intensive foods through 
shifts to healthier and more sustainable diets (Tilman and Clark, 2014; 
Erb et al., 2016b; Springmann et al., 2016) and reductions in food waste 
(Bajželj et al., 2014; Muller et al., 2017; Popp et al., 2017) (see also 
Chapter 4 and SRCCL). Finally, several mitigation measures that could 
affect these agricultural non-CO2 emissions are not, or only to a limited 
degree, considered in the current integrated pathway literature (see 
Supplementary Material 2.SM.1.2). Such measures (like plant-based 
and synthetic proteins, methane inhibitors and vaccines in livestock, 
alternate wetting and drying in paddy rice, or nitrification inhibitors) 
are very diverse and differ in their development or deployment stages. 
Their potentials have not been explicitly assessed here.

Pathways consistent with 1.5°C rely on one or more of the three 
strategies highlighted above (demand changes, efficiency gains, and 

policy assumptions), and can apply these in different configurations. 
For example, among the four illustrative archetypes used in this 
chapter (Section 2.1), the LED and S1 pathways focus on generally 
low resource and energy consumption (including healthy diets with 
low animal-calorie shares and low food waste) as well as significant 
agricultural intensification in combination with high levels of nature 
protection. Under such assumptions, comparably small amounts of 
land are needed for land-demanding mitigation activities such as 
BECCS and afforestation and reforestation, leaving the land footprint 
for energy crops in 2050 virtually the same compared to 2010 levels for 
the LED pathway. In contrast, future land-use developments can look 
very different under the resource- and energy-intensive S5 pathway 
that includes less healthy diets with high animal shares and high 
shares of food waste (Tilman and Clark, 2014; Springmann et al., 2016) 
combined with a strong orientation towards technology solutions to 
compensate for high reliance on fossil-fuel resources and associated 
high levels of GHG emissions in the baseline. In such pathways, climate 
change mitigation strategies strongly depend on the availability of 
CDR through BECCS (Humpenöder et al., 2014). As a consequence, the 
S5 pathway sources significant amounts of biomass through bioenergy 
crop expansion in combination with agricultural intensification. Also, 
further policy assumptions can strongly affect land-use developments, 
highlighting the importance for land use of making appropriate 
policy choices. For example, within the SSP set, some pathways rely 
strongly on a policy to incentivize afforestation and reforestation for 
CDR together with BECCS, which results in an expansion of forest area 
and a corresponding increase in terrestrial carbon stock. Finally, the 
variety of pathways illustrates how policy choices in the AFOLU and 
other sectors strongly affect land-use developments and associated 
sustainable development interactions (Chapter 5, Section 5.4) in 1.5°C 
pathways.

The choice of strategy or mitigation portfolio impacts the GHG 
dynamics of the land system and other sectors (see Section 2.3), as well 
as the synergies and trade-offs with other environmental and societal 
objectives (see Section 2.5.3 and Chapter 5, Section 5.4). For example, 
AFOLU developments in 1.5°C pathways range from strategies 
that differ by almost an order of magnitude in their projected land 
requirements for bioenergy (Figure 2.24), and some strategies would 
allow an increase in forest cover over the 21st century compared to 
strategies under which forest cover remains approximately constant. 

Figure 2.25 |  Agricultural emissions in transformation pathways. Global agricultural (a) CH4 and (b) N2O emissions. Box plots show median, interquartile range and full 
range. Classes are defined in Section 2.1. 
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High agricultural yields and application of intensified animal husbandry, 
implementation of best-available technologies for reducing non-CO2 
emissions, or lifestyle changes including a less-meat-intensive diet and 
less CO2-intensive transport modes, have been identified as allowing 
for such a forest expansion and reduced footprints from bioenergy 
without compromising food security (Frank et al., 2017; Doelman et al., 
2018; van Vuuren et al., 2018). 

The IAMs used in the pathways underlying this assessment (Popp 
et al., 2017; Riahi et al., 2017; Rogelj et al., 2018) do not include all 
potential land-based mitigation options and side-effects, and their 
results are hence subject to uncertainty. For example, recent research 
has highlighted the potential impact of forest management practices 
on land carbon content (Erb et al., 2016a; Naudts et al., 2016) and 
the uncertainty surrounding future crop yields (Haberl et al., 2013; 
Searle and Malins, 2014) and water availability (Liu et al., 2014). 
These aspects are included in IAMs in varying degrees but were not 
assessed in this report. Furthermore, land-use modules of some IAMs 
can depict spatially resolved climate damages to agriculture (Nelson et 
al., 2014), but this option was not used in the SSP quantifications (Riahi 
et al., 2017). Damages (e.g., due to ozone exposure or varying indirect 
fertilization due to atmospheric N and Fe deposition (e.g., Shindell et 
al., 2012; Mahowald et al., 2017) are also not included. Finally, this 
assessment did not look into the literature of agricultural sector models 
which could provide important additional detail and granularity to the 
discussion presented here.12  This limits their ability to capture the full 
mitigation potentials and benefits between scenarios. An in-depth 
assessment of these aspects lies outside the scope of this Special 
Report. However, their existence affects the confidence assessment of 
the AFOLU transition in 1.5°C pathways. 

Despite the limitations of current modelling approaches, there is high 
agreement and robust evidence across models and studies that the 
AFOLU sector plays an important role in stringent mitigation pathways. 
The findings from these multiple lines of evidence also result in high 
confidence that AFOLU mitigation strategies can vary significantly 
based on preferences and policy choices, facilitating the exploration of 
strategies that can achieve multiple societal objectives simultaneously 
(see also Section 2.5.3). At the same time, given the many uncertainties 
and limitations, only low to medium confidence can be attributed by 
this assessment to the more extreme AFOLU developments found in 
the pathway literature, and low to medium confidence to the level of 
residual non-CO2 emissions.

2.5	 Challenges, Opportunities and Co-Impacts 
of Transformative Mitigation Pathways

This section examines aspects other than climate outcomes of 1.5°C 
mitigation pathways. Focus is given to challenges and opportunities 
related to policy regimes, price of carbon and co-impacts, including 
sustainable development issues, which can be derived from the existing 
integrated pathway literature. Attention is also given to uncertainties 
and critical assumptions underpinning mitigation pathways. The 

12	 For example, the GLEAM (http://www.fao.org/gleam/en/) model from the UN Food and Agricultural Organisation (FAO).

challenges and opportunities identified in this section are further 
elaborated Chapter 4 (e.g., policy choice and implementation) and 
Chapter 5 (e.g., sustainable development). The assessment indicates 
unprecedented policy and geopolitical challenges.

2.5.1	 Policy Frameworks and Enabling Conditions

Moving from a 2°C to a 1.5°C pathway implies bold integrated policies 
that enable higher socio-technical transition speeds, larger deployment 
scales, and the phase-out of existing systems that may lock in 
emissions for decades (high confidence) (Geels et al., 2017; Kuramochi 
et al., 2017; Rockström et al., 2017; Vogt-Schilb and Hallegatte, 2017; 
Kriegler et al., 2018a; Michaelowa et al., 2018). This requires higher 
levels of transformative policy regimes in the near term, which allow 
deep decarbonization pathways to emerge and a net zero carbon 
energy–economy system to emerge in the 2040–2060 period (Rogelj 
et al., 2015b; Bataille et al., 2016b). This enables accelerated levels 
of technological deployment and innovation (Geels et al., 2017; IEA, 
2017a; Grubler et al., 2018) and assumes more profound behavioural, 
economic and political transformation (Sections 2.3, 2.4 and 4.4). 
Despite inherent levels of uncertainty attached to modelling studies 
(e.g., related to climate and carbon cycle response), studies stress the 
urgency for transformative policy efforts to reduce emissions in the 
short term (Riahi et al., 2015; Kuramochi et al., 2017; Rogelj et al., 
2018).

The available literature indicates that mitigation pathways in line 
with 1.5°C pathways would require stringent and integrated policy 
interventions (very high confidence). Higher policy ambition often 
takes the form of stringent economy-wide emission targets (and 
resulting peak-and-decline of emissions), larger coverage of NDCs to 
more gases and sectors (e.g., land-use, international aviation), much 
lower energy and carbon intensity rates than historically seen, carbon 
prices much higher than the ones observed in real markets, increased 
climate finance, global coordinated policy action, and implementation 
of additional initiatives (e.g., by non-state actors) (Sections 2.3, 2.4 and 
2.5.2). The diversity (beyond explicit carbon pricing) and effectiveness 
of policy portfolios are of prime importance, particularly in the short-
term (Mundaca and Markandya, 2016; Kuramochi et al., 2017; OECD, 
2017; Kriegler et al., 2018a; Michaelowa et al., 2018). For instance, 
deep decarbonization pathways in line with a 2˚C target (covering 
74% of global energy-system emissions) include a mix of stringent 
regulation (e.g., building codes, minimum performance standards), 
carbon pricing mechanisms and R&D (research and development) 
innovation policies (Bataille et al., 2016a). Explicit carbon pricing, 
direct regulation and public investment to enable innovation are 
critical for deep decarbonization pathways (Grubb et al., 2014). 
Effective planning (including compact city measures) and integrated 
regulatory frameworks are also key drivers in the IEA-ETP B2DS study 
for the transport sector (IEA, 2017a). Effective urban planning can 
reduce GHG emissions from urban transport between 20% and 50% 
(Creutzig, 2016). Comprehensive policy frameworks would be needed 
if the decarbonization of the power system is pursued while increasing 
end-use electrification (including transport) (IEA, 2017a). Technology 
policies (e.g., feed-in-tariffs), financing instruments, carbon pricing 

http://www.fao.org/gleam/en/
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and system integration management driving the rapid adoption of 
renewable energy technologies are critical for the decarbonization 
of electricity generation (Bruckner et al., 2014; Luderer et al., 2014; 
Creutzig et al., 2017; Pietzcker et al., 2017). Likewise, low-carbon and 
resilient investments are facilitated by a mix of coherent policies, 
including fiscal and structural reforms (e.g., labour markets), public 
procurement, carbon pricing, stringent standards, information schemes, 
technology policies, fossil-fuel subsidy removal, climate risk disclosure, 
and land-use and transport planning (OECD, 2017). Pathways in which 
CDR options are restricted emphasize the strengthening of near-term 
policy mixes (Luderer et al., 2013; Kriegler et al., 2018a). Together with 
the decarbonization of the supply side, ambitious policies targeting 
fuel switching and energy efficiency improvements on the demand 
side play a major role across mitigation pathways (Clarke et al., 2014; 
Kriegler et al., 2014b; Riahi et al., 2015; Kuramochi et al., 2017; Brown 
and Li, 2018; Rogelj et al., 2018; Wachsmuth and Duscha, 2018). 

The combined evidence suggests that aggressive policies addressing 
energy efficiency are central in keeping 1.5°C within reach and lowering 
energy system and mitigation costs (high confidence) (Luderer et al., 
2013; Rogelj et al., 2013b, 2015b; Grubler et al., 2018). Demand-side 
policies that increase energy efficiency or limit energy demand at a 
higher rate than historically observed are critical enabling factors for 
reducing mitigation costs in stringent mitigation pathways across the 
board (Luderer et al., 2013; Rogelj et al., 2013b, 2015b; Clarke et al., 
2014; Bertram et al., 2015a; Bataille et al., 2016b). Ambitious sector-
specific mitigation policies in industry, transportation and residential 
sectors are needed in the short run for emissions to peak in 2030 
(Méjean et al., 2018). Stringent demand-side policies (e.g., tightened 
efficiency standards for buildings and appliances) driving the expansion, 
efficiency and provision of high-quality energy services are essential 
to meet a 1.5˚C mitigation target while reducing the reliance on CDR 
(Grubler et al., 2018). A 1.5˚C pathway for the transport sector is possible 
using a mix of additional and stringent policy actions preventing (or 
reducing) the need for transport, encouraging shifts towards efficient 
modes of transport, and improving vehicle-fuel efficiency (Gota et al., 
2018). Stringent demand-side policies also reduce the need for CCS 
(Wachsmuth and Duscha, 2018). Even in the presence of weak near 
term policy frameworks, increased energy efficiency lowers mitigation 
costs noticeably compared to pathways with reference energy intensity 
(Bertram et al., 2015a). Common issues in the literature relate to the 
rebound effect, the potential overestimation of the effectiveness 
of energy efficiency policy, and policies to counteract the rebound 
(Saunders, 2015; van den Bergh, 2017; Grubler et al., 2018) (Sections 
2.4 and 4.4).

SSP-based modelling studies underline that socio-economic and 
climate policy assumptions strongly influence mitigation pathway 
characteristics and the economics of achieving a specific climate 
target (very high confidence) (Bauer et al., 2017; Guivarch and Rogelj, 
2017; Riahi et al., 2017; Rogelj et al., 2018). SSP assumptions related 
to economic growth and energy intensity are critical determinants 
of projected CO2 emissions (Marangoni et al., 2017). A multimodel 
inter-comparison study found that mitigation challenges in line with 
a 1.5˚C target vary substantially across SSPs and policy assumptions 
(Rogelj et al., 2018). Under SSP1-SPA1 (sustainability) and SSP2-SPA2 
(middle-of-the-road), the majority of IAMs were capable of producing 

1.5˚C pathways. On the contrary, none of the IAMs contained in the 
SR1.5 database could produce a 1.5°C pathway under SSP3-SPA3 
assumptions. Preventing elements include, for instance, climate 
policy fragmentation, limited control of land-use emissions, heavy 
reliance on fossil fuels, unsustainable consumption and marked 
inequalities (Rogelj et al., 2018). Dietary aspects of the SSPs are also 
critical: climate-friendly diets were contained in ‘sustainability’ (SSP1) 
and meat-intensive diets in SSP3 and SSP5 (Popp et al., 2017). CDR 
requirements are reduced under ‘sustainability’ related assumptions 
(Strefler et al., 2018b). These are major policy-related reasons for why 
SSP1-SPA1 translates into relatively low mitigation challenges whereas 
SSP3-SPA3 and SSP5-SPA5 entail futures that pose the highest socio-
technical and economic challenges. SSPs/SPAs assumptions indicate 
that policy-driven pathways that encompass accelerated change away 
from fossil fuels, large-scale deployment of low-carbon energy supplies, 
improved energy efficiency and sustainable consumption lifestyles 
reduce the risks of climate targets becoming unreachable (Clarke et 
al., 2014; Riahi et al., 2015, 2017; Marangoni et al., 2017; Rogelj et al., 
2017, 2018; Strefler et al., 2018b).

Policy assumptions that lead to weak or delayed mitigation action from 
what would be possible in a fully cooperative world strongly influence 
the achievability of mitigation targets (high confidence) (Luderer et al., 
2013; Rogelj et al., 2013b; OECD, 2017; Holz et al., 2018a; Strefler et al., 
2018b). Such regimes also include current NDCs (Fawcett et al., 2015; 
Aldy et al., 2016; Rogelj et al., 2016a, 2017; Hof et al., 2017; van Soest et 
al., 2017), which have been reported to make achieving a 2°C pathway 
unattainable without CDR (Strefler et al., 2018b). Not strengthening 
NDCs would make it very challenging to keep 1.5°C within reach (see 
Section 2.3 and Cross-Chapter Box 11 in Chapter 4). One multimodel 
inter-comparison study (Luderer et al., 2016b, 2018) explored the effects 
on 1.5°C pathways assuming the implementation of current NDCs 
until 2030 and stringent reductions thereafter. It finds that delays in 
globally coordinated actions lead to various models reaching no 1.5°C 
pathways during the 21st century. Transnational emission reduction 
initiatives (TERIs) outside the UNFCCC have also been assessed and 
found to overlap (70–80%) with NDCs and be inadequate to bridge 
the gap between NDCs and a 2°C pathway (Roelfsema et al., 2018). 
Weak and fragmented short-term policy efforts use up a large share of 
the long-term carbon budget before 2030–2050 (Bertram et al., 2015a; 
van Vuuren et al., 2016) and increase the need for the full portfolio 
of mitigation measures, including CDR (Clarke et al., 2014; Riahi 
et al., 2015; Xu and Ramanathan, 2017). Furthermore, fragmented 
policy scenarios also exhibit ‘carbon leakage’ via energy and capital 
markets (Arroyo-Currás et al., 2015; Kriegler et al., 2015b). A lack of 
integrated policy portfolios can increase the risks of trade-offs between 
mitigation approaches and sustainable development objectives (see 
Sections 2.5.3 and 5.4). However, more detailed analysis is needed 
about realistic (less disruptive) policy trajectories until 2030 that can 
strengthen near-term mitigation action and meaningfully decrease 
post-2030 challenges (see Chapter 4, Section 4.4).

Whereas the policy frameworks and enabling conditions identified 
above pertain to the ‘idealized’ dimension of mitigation pathways, 
aspects related to 1.5°C mitigation pathways in practice are of prime 
importance. For example, issues related to second-best stringency 
levels, international cooperation, public acceptance, distributional 
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consequences, multilevel governance, non-state actions, compliance 
levels, capacity building, rebound effects, linkages across highly 
heterogeneous policies, sustained behavioural change, finance and 
intra- and inter-generational issues need to be considered (see Chapter 
4, Section 4.4) (Bataille et al., 2016a; Mundaca and Markandya, 2016; 
Baranzini et al., 2017; MacDougall et al., 2017; van den Bergh, 2017; 
Vogt-Schilb and Hallegatte, 2017; Chan et al., 2018; Holz et al., 2018a; 
Klinsky and Winkler, 2018; Michaelowa et al., 2018; Patterson et al., 
2018). Furthermore, policies interact with a wide portfolio of pre-
existing policy instruments that address multiple areas (e.g., technology 
markets, economic growth, poverty alleviation, climate adaptation) and 
deal with various market failures (e.g., information asymmetries) and 
behavioural aspects (e.g., heuristics) that prevent or hinder mitigation 
actions (Kolstad et al., 2014; Mehling and Tvinnereim, 2018). The socio-
technical transition literature points to multiple complexities in real-
world settings that prevent reaching ‘idealized’ policy conditions but 
at the same time can still accelerate transformative change through 
other co-evolutionary processes of technology and society (Geels et 

al., 2017; Rockström et al., 2017). Such co-processes are complex and 
go beyond the role of policy (including carbon pricing) and comprise 
the role of citizens, businesses, stakeholder groups or governments, 
as well as the interplay of institutional and socio-political dimensions 
(Michaelowa et al., 2018; Veland et al., 2018). It is argued that large 
system transformations, similar to those in 1.5°C pathways, require 
prioritizing an evolutionary and behavioural framework in economic 
theory rather than an optimization or equilibrium framework as is 
common in current IAMs (Grubb et al., 2014; Patt, 2017). Accumulated 
know-how, accelerated innovation and public investment play a key 
role in (rapid) transitions (see Sections 4.2 and 4.4) (Geels et al., 2017; 
Michaelowa et al., 2018).

In summary, the emerging literature supports the AR5 on the need for 
integrated, robust and stringent policy frameworks targeting both the 
supply and demand-side of energy-economy systems (high confidence). 
Continuous ex-ante policy assessments provide learning opportunities 
for both policy makers and stakeholders.

Cross-Chapter Box 5 |  Economics of 1.5°C Pathways and the Social Cost of Carbon	

Contributing Authors: 
Luis Mundaca (Sweden/Chile), Mustafa Babiker (Sudan), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Jean-Charles 
Hourcade (France), Elmar Kriegler (Germany), Anil Markandya (Spain/UK), Joyashree Roy (India), Drew Shindell (USA)

Two approaches have been commonly used to assess alternative emissions pathways: cost-effectiveness analysis (CEA) and 
cost–benefit analysis (CBA). CEA aims at identifying emissions pathways minimising the total mitigation costs of achieving 
a given warming or GHG limit (Clarke et al., 2014). CBA has the goal to identify the optimal emissions trajectory minimising the 
discounted flows of abatement expenditures and monetized climate change damages (Boardman et al., 2006; Stern, 2007). A third 
concept, the Social Cost of Carbon (SCC) measures the total net damages of an extra metric ton of CO2 emissions due to the 
associated climate change (Nordhaus, 2014; Pizer et al., 2014; Rose et al., 2017a). Negative and positive impacts are monetized, 
discounted and the net value is expressed as an equivalent loss of consumption today. The SCC can be evaluated for any emissions 
pathway under policy consideration (Rose, 2012; NASEM, 2016, 2017). 

Along the optimal trajectory determined by CBA, the SCC equals the discounted value of the marginal abatement cost of a metric ton 
of CO2 emissions. Equating the present value of future damages and marginal abatement costs includes a number of critical value 
judgements in the formulation of the social welfare function (SWF), particularly in how non-market damages and the distribution of 
damages across countries and individuals and between current and future generations are valued (Kolstad et al., 2014). For example, 
since climate damages accrue to a larger extent farther in the future and can persist for many years, assumptions and approaches 
to determine the social discount rate (normative ‘prescriptive’ vs. positive ‘descriptive’) and social welfare function (e.g., discounted 
utilitarian SWF vs. undiscounted prioritarian SWF) can heavily influence CBA outcomes and associated estimates of SCC (Kolstad et 
al., 2014; Pizer et al., 2014; Adler and Treich, 2015; Adler et al., 2017; NASEM, 2017; Nordhaus, 2017; Rose et al., 2017a).

In CEA, the marginal abatement cost of carbon is determined by the climate goal under consideration. It equals the shadow price 
of carbon associated with the goal which in turn can be interpreted as the willingness to pay for imposing the goal as a political 
constraint. Emissions prices are usually expressed in carbon (equivalent) prices using the GWP-100 metric as the exchange rate 
for pricing emissions of non-CO2 GHGs controlled under internationally climate agreements (like CH4, N2O and fluorinated gases, 
see Cross-Chapter Box 2 in Chapter 1).13  Since policy goals like the goals of limiting warming to 1.5°C or well below 2°C do not 
directly result from a money metric trade-off between mitigation and damages, associated shadow prices can differ from the SCC in 
a CBA. In CEA, value judgments are to a large extent concentrated in the choice of climate goal and related implications, while more 
explicit assumptions about social values are required to perform CBA. For example, in CEA assumptions about the social discount 
rate no longer affect the overall abatement levels now set by the climate goal, but the choice and timing of investments in individual 
measures to reach these levels.

13	 Also other metrics to compare emissions have been suggested and adopted by governments nationally (Kandlikar, 1995; Marten et al., 2015; Shindell, 2015; IWG, 2016).
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Although CBA-based and CEA-based assessment are both subject to large uncertainty about socio-techno-economic trends, policy 
developments and climate response, the range of estimates for the SCC along an optimal trajectory determined by CBA is far wider 
than for estimates of the shadow price of carbon in CEA-based approaches. In CBA, the value judgments about inter- and intra-
generational equity combined with uncertainties in the climate damage functions assumed, including their empirical basis, are 
important (Pindyck, 2013; Stern, 2013; Revesz et al., 2014). In a CEA-based approach, the value judgments about the aggregate 
welfare function matter less, and uncertainty about climate response and impacts can be tied into various climate targets and 
related emissions budgets (Clarke et al., 2014).

The CEA- and CBA-based carbon cost estimates are derived with a different set of tools. They are all summarised as integrated 
assessment models (IAMs) but in fact are of very different nature (Weyant, 2017). Detailed process IAMs such as AIM (Fujimori, 
2017), GCAM (Thomson et al., 2011; Calvin et al., 2017), IMAGE (van Vuuren et al., 2011b, 2017b), MESSAGE-GLOBIOM (Riahi 
et al., 2011; Havlík et al., 2014; Fricko et al., 2017), REMIND-MAgPIE (Popp et al., 2010; Luderer et al., 2013; Kriegler et al., 2017) 
and WITCH (Bosetti et al., 2006, 2008, 2009) include a process-based representation of energy and land systems, but in most 
cases lack a comprehensive representation of climate damages, and are typically used for CEA. Diagnostic analyses across CBA-
IAMs indicate important dissimilarities in modelling assembly, implementation issues and behaviour (e.g., parametric uncertainty, 
damage responses, income sensitivity) that need to be recognized to better understand SCC estimates (Rose et al., 2017a). 

CBA-IAMs such as DICE (Nordhaus and Boyer, 2000; Nordhaus, 2013, 2017), PAGE (Hope, 2006) and FUND (Tol, 1999; Anthoff and 
Tol, 2009) attempt to capture the full feedback from climate response to socio-economic damages in an aggregated manner, but are 
usually much more stylised than detailed process IAMs. In a nutshell, the methodological framework for estimating SCC involves 
projections of population growth, economic activity and resulting emissions; computations of atmospheric composition and global 
mean temperatures as a result of emissions; estimations of physical impacts of climate changes; monetization of impacts (positive 
and negative) on human welfare; and the discounting of the future monetary value of impacts to year of emission (Kolstad et al., 
2014; Revesz et al., 2014; NASEM, 2017; Rose et al., 2017a). There has been a discussion in the literature to what extent CBA-
IAMs underestimate the SCC due to, for example, a limited treatment or difficulties in addressing damages to human well-being, 
labour productivity, value of capital stock, ecosystem services and the risks of catastrophic climate change for future generations 
(Ackerman and Stanton, 2012; Revesz et al., 2014; Moore and Diaz, 2015; Stern, 2016). However, there has been progress in ‘bottom-
up’ empirical analyses of climate damages (Hsiang et al., 2017), the insights of which could be integrated into these models (Dell et 
al., 2014). Most of the models used in Chapter 2 on 1.5°C mitigation pathways are detailed process IAMs and thus deal with CEA. 

An important question is how results from CEA- and CBA-type approaches can be compared and synthesized. Such synthesis needs 
to be done with care, since estimates of the shadow price of carbon under the climate goal and SCC estimates from CBA might not 
be directly comparable due to different tools, approaches and assumptions used to derive them. Acknowledging this caveat, the 
SCC literature has identified a range of factors, assumptions and value judgements that support SCC values above $100 tCO2

−1 that 
are also found as net present values of the shadow price of carbon in 1.5°C pathways. These factors include accounting for tipping 
points in the climate system (Lemoine and Traeger, 2014; Cai et al., 2015; Lontzek et al., 2015), a low social discount rate (Nordhaus, 
2007a; Stern, 2007) and inequality aversion (Schmidt et al., 2013; Dennig et al., 2015; Adler et al., 2017). 

The SCC and the shadow price of carbon are not merely theoretical concepts but used in regulation (Pizer et al., 2014; Revesz et al., 
2014; Stiglitz et al., 2017). As stated by the report of the High-Level Commission on Carbon Pricing (Stiglitz et al., 2017), in the real 
world there is a distinction to be made between the implementable and efficient explicit carbon prices and the implicit (notional) 
carbon prices to be retained for policy appraisal and the evaluation of public investments, as is already done in some jurisdictions 
such as the USA, UK and France. Since 2008, the U.S. government has used SCC estimates to assess the benefits and costs related 
to CO2 emissions resulting from federal policymaking (NASEM, 2017; Rose et al., 2017a).

The use of the SCC for policy appraisals is, however, not straightforward in an SDG context. There are suggestions that a broader 
range of polluting activities than only CO2 emissions, for example emissions of air pollutants, and a broader range of impacts 
than only climate change, such as impacts on air quality, health and sustainable development in general (see Chapter 5 for a 
detailed discussion), would need to be included in social costs (Sarofim et al., 2017; Shindell et al., 2017a). Most importantly, 
a consistent valuation of the SCC in a sustainable development framework would require accounting for the SDGs in the social 
welfare formulation (see Chapter 5).

Cross Chapter Box 5 (continued)
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2.5.2	 Economic and Investment Implications of 1.5°C 
Pathways

2.5.2.1	 Price of carbon emissions

The price of carbon assessed here is fundamentally different from the 
concepts of optimal carbon price in a cost–benefit analysis, or the social 
cost of carbon (see Cross-Chapter Box 5 in this chapter and Chapter 
3, Section 3.5.2). Under a cost-effectiveness analysis (CEA) modelling 
framework, prices for carbon (mitigation costs) reflect the stringency of 
mitigation requirements at the margin (i.e., cost of mitigating one extra 
unit of emission). Explicit carbon pricing is briefly addressed here to the 
extent it pertains to the scope of Chapter 2. For detailed policy issues 
about carbon pricing see Section 4.4.5.

Based on data available for this special report, the price of carbon 
varies substantially across models and scenarios, and their values 
increase with mitigation efforts (see Figure 2.26) (high confidence). 
For instance, undiscounted values under a Higher-2°C pathway range 
from 15–220 USD2010 tCO2-eq

−1 in 2030, 45–1050 USD2010 tCO2-eq
−1 

in 2050, 120–1100 USD2010 tCO2-eq
−1 in 2070 and 175–2340 USD2010 

tCO2-eq
−1 in 2100. On the contrary, estimates for a Below-1.5°C 

pathway range from 135–6050 USD2010 tCO2-eq
−1 in 2030, 245–14300 

USD2010 tCO2-eq
−1 in 2050, 420–19300 USD2010 tCO2-eq

−1 in 2070 
and 690–30100 USD2010 tCO2-eq

−1 in 2100. Values for 1.5°C-low-OS 
pathway are relatively higher than 1.5°C-high-OS pathway in 2030, 
but the difference decreases over time, particularly between 2050 and 
2070. This is because in 1.5°C-high-OS pathways there is relatively 
less mitigation activity in the first half of the century, but more in 
the second half. The low energy demand (LED, P1 in the Summary for 
Policymakers) scenario exhibits the lowest values across the illustrative 
pathway archetypes. As a whole, the global average discounted price 
of emissions across 1.5°C- and 2°C pathways differs by a factor of 
four across models (assuming a 5% annual discount rate, comparing to 
Below-1.5°C and 1.5°C-low-OS pathways). If 1.5°C-high-OS pathways 
(with peak warming 0.1–0.4°C higher than 1.5°C) or pathways with 
very large land-use sinks are also considered, the differential value is 
reduced to a limited degree, from a factor 4 to a factor 3. The increase 
in mitigation costs between 1.5°C and 2°C pathways is based on a 
direct comparison of pathway pairs from the same model and the 
same study in which the 1.5°C pathway assumes a significantly smaller 
carbon budget compared to the 2°C pathway (e.g., 600 GtCO2 smaller 
in the CD-LINKS and ADVANCE studies). This assumption is the main 
driver behind the increase in the price of carbon (Luderer et al., 2018; 
McCollum et al., 2018).14

The wide range of values depends on numerous aspects, including 
methodologies, projected energy service demands, mitigation targets, 
fuel prices and technology availability (high confidence) (Clarke et al., 
2014; Kriegler et al., 2015b; Rogelj et al., 2015c; Riahi et al., 2017; 
Stiglitz et al., 2017). The characteristics of the technology portfolio, 
particularly in terms of investment costs and deployment rates, play a 
key role (Luderer et al., 2013, 2016a; Clarke et al., 2014; Bertram et al., 
2015a; Riahi et al., 2015; Rogelj et al., 2015c). Models that encompass 

a higher degree of technology granularity and that entail more 
flexibility regarding mitigation response often produce relatively lower 
mitigation costs than those that show less flexibility from a technology 
perspective (Bertram et al., 2015a; Kriegler et al., 2015a). Pathways 
providing high estimates often have limited flexibility of substituting 
fossil fuels with low-carbon technologies and the associated need 
to compensate fossil-fuel emissions with CDR. The price of carbon is 
also sensitive to the non-availability of BECCS (Bauer et al., 2018). 
Furthermore, and due to the treatment of future price anticipation, 
recursive-dynamic modelling approaches (with ‘myopic anticipation’) 
exhibit higher prices in the short term but modest increases in the long 
term compared to optimization modelling frameworks with ‘perfect 
foresight’ that show exponential pricing trajectories (Guivarch and 
Rogelj, 2017). The chosen social discount rate in CEA studies (range 
of 2–8% per year in the reported data, varying over time and sectors) 
can also affect the choice and timing of investments in mitigation 
measures (Clarke et al., 2014; Kriegler et al., 2015b; Weyant, 2017). 
However, the impacts of varying discount rates on 1.5°C (and 2°C) 
mitigation strategies can only be assessed to a limited degree. The 
above highlights the importance of sampling bias in pathway analysis 
ensembles towards outcomes derived from models which are more 
flexible, have more mitigation options and cheaper cost assumptions 
and thus can provide feasible pathways in contrast to other who are 
unable to do so (Tavoni and Tol, 2010; Clarke et al., 2014; Bertram et 
al., 2015a; Kriegler et al., 2015a; Guivarch and Rogelj, 2017). All CEA-
based IAM studies reveal no unique path for the price of emissions 
(Bertram et al., 2015a; Kriegler et al., 2015b; Akimoto et al., 2017; Riahi 
et al., 2017).

Socio-economic conditions and policy assumptions also influence the 
price of carbon (very high confidence) (Bauer et al., 2017; Guivarch and 
Rogelj, 2017; Hof et al., 2017; Riahi et al., 2017; Rogelj et al., 2018). A 
multimodel study (Riahi et al., 2017) estimated the average discounted 
price of carbon (2010–2100, 5% discount rate) for a 2°C target to 
be nearly three times higher in the SSP5 marker than in the SSP1 
marker. Another multimodel study (Rogelj et al., 2018) estimated the 
average discounted price of carbon (2020–2100, 5%) to be 35–65% 
lower in SSP1 compared to SSP2 in 1.5°C pathways. Delayed near-
term mitigation policies and measures, including the limited extent of 
international global cooperation, result in increases in total economic 
mitigation costs and corresponding prices of carbon (Luderer et al., 
2013; Clarke et al., 2014). This is because stronger efforts are required 
in the period after the delay to counterbalance the higher emissions 
in the near term. Staged accession scenarios also produce higher 
mitigation costs than immediate action mitigation scenarios under the 
same stringency level of emissions (Kriegler et al., 2015b). 

It has been long argued that an explicit carbon pricing mechanism 
(whether via a tax or cap-and-trade scheme) can theoretically achieve 
cost-effective emission reductions (Nordhaus, 2007b; Stern, 2007; 
Aldy and Stavins, 2012; Goulder and Schein, 2013; Somanthan et al., 
2014; Weitzman, 2014; Tol, 2017). Whereas the integrated assessment 
literature is mostly focused on the role of carbon pricing to reduce 
emissions (Clarke et al., 2014; Riahi et al., 2017; Weyant, 2017), there 

14	 Unlike AR5, which only included cost-effective scenarios for estimating discounted average carbon prices for 2015–2100 (also using a 5% discount rate) (see Clarke et al., 
2014, p.450), please note that values shown in Figure 2.26b include delays or technology constraint cases (see Sections 2.1 and 2.3).
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is an emerging body of studies (including bottom-up approaches) that 
focuses on the interaction and performance of various policy mixes (e.g., 
regulation, subsidies, standards). Assuming global implementation of 
a mix of regionally existing best-practice policies (mostly regulatory 
policies in the electricity, industry, buildings, transport and agricultural 
sectors) and moderate carbon pricing (between 5–20 USD2010 tCO2

−1 
in 2025 in most world regions and average prices around 25 USD2010 
tCO2

−1 in 2030), early action mitigation pathways are generated that 
reduce global CO2 emissions by an additional 10 GtCO2e in 2030 
compared to the NDCs (Kriegler et al., 2018a) (see Section 2.3.5). 
Furthermore, a mix of stringent energy efficiency policies (e.g., minimum 
performance standards, building codes) combined with a carbon tax 
(rising from 10 USD2010 tCO2

−1 in 2020 to 27 USD2010 tCO2
−1 in 2040) 

is more cost-effective than a carbon tax alone (from 20 to 53 USD2010 
tCO2

−1) to generate a 1.5°C pathway for the U.S. electric sector (Brown 
and Li, 2018). Likewise, a policy mix encompassing a moderate carbon 
price (7 USD2010 tCO2

−1 in 2015) combined with a ban on new coal-
based power plants and dedicated policies addressing renewable 
electricity generation capacity and electric vehicles reduces efficiency 
losses compared with an optimal carbon pricing in 2030 (Bertram et al., 
2015b). One study estimates the carbon prices in high energy-intensive 
pathways to be 25–50% higher than in low energy-intensive pathways 
that assume ambitious regulatory instruments, economic incentives 
(in addition to a carbon price) and voluntary initiatives (Méjean et 
al., 2018). A bottom-up approach shows that stringent minimum 
performance standards (MEPS) for appliances (e.g., refrigerators) can 
effectively complement explicit carbon pricing, as tightened MEPS can 
achieve ambitious efficiency improvements that cannot be assured by 
carbon prices of 100 USD2010 tCO2

−1 or higher (Sonnenschein et al., 
2018). In addition, the revenue recycling effect of carbon pricing can 
reduce mitigation costs by displacing distortionary taxes (Baranzini et 
al., 2017; OECD, 2017; McFarland et al., 2018; Sands, 2018; Siegmeier 
et al., 2018), and the reduction of capital tax (compared to a labour 
tax) can yield greater savings in welfare costs (Sands, 2018). The effect 
on public budgets is particularly important in the near term; however, 
it can decline in the long term as carbon neutrality is achieved (Sands, 
2018). The literature indicates that explicit carbon pricing is relevant 
but needs to be complemented with other policies to drive the required 
changes in line with 1.5°C cost-effective pathways (low to medium 
evidence, high agreement) (see Chapter 4, Section 4.4.5) (Stiglitz et al., 
2017; Mehling and Tvinnereim, 2018; Méjean et al., 2018; Michaelowa 
et al., 2018).

In summary, new analyses are consistent with AR5 and show 
that the price of carbon increases significantly if a higher level of 
stringency is pursued (high confidence). Values vary substantially 
across models, scenarios and socio-economic, technology and policy 
assumptions. While an explicit carbon pricing mechanism is central 
to prompt mitigation scenarios compatible with 1.5°C pathways, a 
complementary mix of stringent policies is required. 

2.5.2.2	 Investments

Realizing the transformations towards a 1.5°C world would require a 
major shift in investment patterns (McCollum et al., 2018). Literature on 
global climate change mitigation investments is relatively sparse, with 
most detailed literature having focused on 2°C pathways (McCollum 

Figure 2.26 |  Global price of carbon emissions consistent with mitigation 
pathways. Panels show (a) undiscounted price of carbon (2030–2100) and (b) average 
price of carbon (2030–2100) discounted at a 5% discount rate to 2020 in USD2010. 
AC: Annually compounded. NPV: Net present value. Median values in floating black line. 
The number of pathways included in box plots is indicated in the legend. Number of 
pathways outside the figure range is noted at the top.

et al., 2013; Bowen et al., 2014; Gupta and Harnisch, 2014; Marangoni 
and Tavoni, 2014; OECD/IEA and IRENA, 2017). 

Global energy-system investments in the year 2016 are estimated at 
approximately 1.7 trillion USD2010 (approximately 2.2% of global GDP 
and 10% of gross capital formation), of which 0.23 trillion USD2010 
was for incremental end-use energy efficiency and the remainder for 
supply-side capacity installations (IEA, 2017c). There is some uncertainty 
surrounding this number because not all entities making investments 
report them publicly, and model-based estimates show an uncertainty 
range of about ±15% (McCollum et al., 2018). Notwithstanding, the 
trend for global energy investments has been generally upward over 
the last two decades: increasing about threefold between 2000 and 
2012, then levelling off for three years before declining in both 2015 
and 2016 as a result of the oil price collapse and simultaneous capital 
cost reductions for renewables (IEA, 2017c). 

Estimates of demand-side investments, either in total or for incremental 
efficiency efforts, are more uncertain, mainly due to a lack of reliable 
statistics and definitional issues about what exactly is counted towards 
a demand-side investment and what the reference should be for 
estimating incremental efficiency (McCollum et al., 2013). Grubler and 
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Wilson (2014) use two working definitions (a broader and a narrower 
one) to provide a first-order estimate of historical end-use technology 
investments in total. The broad definition defines end-use technologies 
as the technological systems purchasable by final consumers in order 
to provide a useful service, for example, heating and air conditioning 
systems, cars, freezers, or aircraft. The narrow definition sets the boundary 
at the specific energy-using components or subsystems of the larger end-
use technologies (e.g., compressor, car engine, heating element). Based 
on these two definitions, demand-side energy investments for the year 
2005 were estimated about 1–3.5 trillion USD2010 (central estimate 1.7 
trillion USD2010) using the broad definition and 0.1–0.6 trillion USD2010 
(central estimate 0.3 trillion USD2010) using the narrower definition. 
Due to these definitional issues, demand-side investment projections are 
uncertain, often underreported, and difficult to compare. Global IAMs 
often do not fully and explicitly represent all the various measures that 
could improve end-use efficiency.

Research carried out by six global IAM teams found that 1.5°C-consistent 
climate policies would require a marked upscaling of energy system 
supply-side investments (resource extraction, power generation, fuel 
conversion, pipelines/transmission, and energy storage) between 
now and mid-century, reaching levels of between 1.6–3.8 trillion 
USD2010 yr−1 globally on average over the 2016–2050 timeframe 
(McCollum et al., 2018) (Figure 2.27). How these investment needs 
compare to those in a policy baseline scenario is uncertain: they could 
be higher, much higher, or lower. Investments in the policy baselines 
from these same models are 1.6–2.7 trillion USD2010 yr−1. Much 
hinges on the reductions in energy demand growth embodied in the 
1.5°C pathways, which require investing in energy efficiency. Studies 
suggest that annual supply-side investments by mid-century could be 
lowered by around 10% (McCollum et al., 2018) and in some cases up 
to 50% (Grubler et al., 2018) if strong policies to limit energy demand 
growth are successfully implemented. However, the degree to which 
these supply-side reductions would be partially offset by an increase in 
demand-side investments is unclear. 

Some trends are robust across scenarios (Figure 2.27). First, pursuing 
1.5°C mitigation efforts requires a major reallocation of the investment 
portfolio, implying a financial system aligned to mitigation challenges. 
The path laid out by countries’ current NDCs until 2030 will not 
drive these structural changes; and despite increasing low-carbon 
investments in recent years (IEA, 2016b; Frankfurt School-UNEP Centre/
BNEF, 2017), these are not yet aligned with 1.5°C. Second, additional 
annual average energy-related investments for the period 2016 to 2050 
in pathways limiting warming to 1.5°C compared to the baseline (i.e., 
pathways without new climate policies beyond those in place today) 
are estimated by the models employed in McCollum et al. (2018) to 
be around 830 billion USD2010 (range of 150 billion to 1700 billion 
USD2010 across six models). This compares to total annual average 
energy supply investments in 1.5°C pathways of 1460 to 3510 billion 
USD2010 and total annual average energy demand investments of 
640 to 910 billion USD2010 for the period 2016 to 2050. Total energy-
related investments increase by about 12% (range of 3% to 24%) in 
1.5°C pathways relative to 2°C pathways. Average annual investment 
in low-carbon energy technologies and energy efficiency are upscaled 
by roughly a factor of six (range of factor of 4 to 10) by 2050 compared 
to 2015. Specifically, annual investments in low-carbon energy are 

projected to average 0.8–2.9 trillion USD2010 yr−1 globally to 2050 
in 1.5°C pathways, overtaking fossil investments globally already by 
around 2025 (McCollum et al., 2018). The bulk of these investments 
are projected to be for clean electricity generation, particularly solar 
and wind power (0.09–1.0 trillion USD2010 yr−1 and 0.1–0.35 trillion 
USD2010 yr−1, respectively) as well as nuclear power (0.1–0.25 trillion 
USD2010 yr−1). Third, the precise apportioning of these investments 
depends on model assumptions and societal preferences related to 
mitigation strategies and policy choices (see Sections 2.1 and 2.3). 
Investments for electricity transmission and distribution and storage 
are also scaled up in 1.5°C pathways (0.3–1.3 trillion USD2010 yr−1), 
given their widespread electrification of the end-use sectors (see 
Section 2.4). Meanwhile, 1.5°C pathways see a reduction in annual 
investments for fossil-fuel extraction and unabated fossil electricity 
generation (to 0.3–0.85 trillion USD2010 yr−1 on average over the 
2016–2050 period). Investments in unabated coal are halted by 2030 
in most 1.5°C projections, while the literature is less conclusive for 
investments in unabated gas (McCollum et al., 2018). This illustrates 
how mitigation strategies vary between models, but in the real world 
should be considered in terms of their societal desirability (see Section 
2.5.3). Furthermore, some fossil investments made over the next few 
years – or those made in the last few – will likely need to be retired prior 
to fully recovering their capital investment or before the end of their 
operational lifetime (Bertram et al., 2015a; Johnson et al., 2015; OECD/
IEA and IRENA, 2017). How the pace of the energy transition will be 
affected by such dynamics, namely with respect to politics and society, 
is not well captured by global IAMs at present. Modelling studies 
have, however, shown how the reliability of institutions influences 
investment risks and hence climate mitigation investment decisions 
(Iyer et al., 2015), finding that a lack of regulatory credibility or policy 
commitment fails to stimulate low-carbon investments (Bosetti and 
Victor, 2011; Faehn and Isaksen, 2016).

Low-carbon supply-side investment needs are projected to be largest in 
OECD countries and those of developing Asia. The regional distribution 
of investments in 1.5°C pathways estimated by the multiple models 
in (McCollum et al., 2018) are the following (average over 2016–2050 
timeframe): 0.30–1.3 trillion USD2010 yr−1(ASIA), 0.35–0.85 trillion 
USD2010 yr−1 (OECD), 0.08–0.55 trillion USD2010 yr−1 (MAF), 0.07–0.25 
trillion USD2010 yr−1 (LAM), and 0.05–0.15 trillion USD2010 yr−1 (REF) 
(regions are defined consistent with their use in AR5 WGIII, see Table 
A.II.8 in Krey et al., 2014b).

Until now, IAM investment analyses of 1.5°C pathways have focused 
on middle-of-the-road socio-economic and technological development 
futures (SSP2) (Fricko et al., 2017). Consideration of a broader range 
of development futures would yield different outcomes in terms of 
the magnitudes of the projected investment levels. Sensitivity analyses 
indicate that the magnitude of supply-side investments as well as the 
investment portfolio do not change strongly across the SSPs for a given 
level of climate policy stringency (McCollum et al., 2018). With only one 
dedicated multimodel comparison study published, there is limited to 
medium evidence available. For some features, there is high agreement 
across modelling frameworks leading, for example, to medium to high 
confidence that limiting global temperature increase to 1.5°C would 
require a major reallocation of the investment portfolio. Given the limited 
amount of sensitivity cases available compared to the default SSP2 
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assumptions, medium confidence can be assigned to the specific energy 
and climate mitigation investment estimates reported here.

Assumptions in modelling studies indicate a number of challenges. 
For instance, access to finance and mobilization of funds are critical 
(Fankhauser et al., 2016; OECD, 2017). In turn, policy efforts need to be 
effective in redirecting financial resources (UNEP, 2015; OECD, 2017) and 
reducing transaction costs for bankable mitigation projects (i.e. projects 
that have adequate future cash flow, collateral, etc. so lenders are willing 
to finance it), particularly on the demand side (Mundaca et al., 2013; 
Brunner and Enting, 2014; Grubler et al., 2018). Assumptions also imply 
that policy certainty, regulatory oversight mechanisms and fiduciary duty 
need to be robust and effective to safeguard credible and stable financial 

markets and de-risk mitigation investments in the long term (Clarke et 
al., 2014; Mundaca et al., 2016; EC, 2017; OECD, 2017). Importantly, 
the different time horizons that actors have in the competitive finance 
industry are typically not explicitly captured by modelling assumptions 
(Harmes, 2011). See Chapter 4, Section 4.4.5 for details of climate 
finance in practice.

In summary and despite inherent uncertainties, the emerging literature 
indicates a gap between current investment patterns and those 
compatible with 1.5°C (or 2°C) pathways (limited to medium evidence, 
high agreement). Estimates and assumptions from modelling frameworks 
suggest a major shift in investment patterns and entail a financial system 
effectively aligned with mitigation challenges (high confidence). 

Figure 2.27 |  Historical and projected global energy investments. (a) Historical investment estimates across six global models from (McCollum et al., 2018) (bars = 
model means, whiskers full model range) compared to historical estimates from IEA (International Energy Agency (IEA) 2016) (triangles). (b) Average annual investments over the 
2016–2050 period in the “baselines” (i.e., pathways without new climate policies beyond those in place today), scenarios which implement the NDCs (‘NDC’, including conditional 
NDCs), scenarios consistent with the Lower-2°C pathway class (‘2°C’), and scenarios in line with the 1.5°C-low-OS pathway class (‘1.5°C’). Whiskers show the range of models; wide 
bars show the multimodel means; narrow bars represent analogous values from individual IEA scenarios (OECD/IEA and IRENA, 2017). (c) Average annual mitigation investments 
and disinvestments for the 2016–2030 periods relative to the baseline. The solid bars show the values for ‘2°C’ pathways, while the hatched areas show the additional investments 
for the pathways labelled with ‘1.5°C’. Whiskers show the full range around the multimodel means. T&D stands for transmission and distribution, and CCS stands for carbon capture 
and storage. Global cumulative carbon dioxide emissions, from fossil fuels and industrial processes (FF&I) but excluding land use, over the 2016-2100 timeframe range from 880 to 
1074 GtCO2 (multimodel mean: 952 GtCO2) in the ‘2°C’ pathway and from 206 to 525 GtCO2 (mean: 390 GtCO2) in the ‘1.5°C’ pathway.
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2.5.3	 Sustainable Development Features 
of 1.5°C Pathways

Potential synergies and trade-offs between 1.5°C mitigation pathways 
and different sustainable development (SD) dimensions (see Cross-
Chapter Box 4 in Chapter 1) are an emerging field of research. Chapter 
5, Section 5.4 assesses interactions between individual mitigation 
measures with other societal objectives, as well as the Sustainable 

Development Goals (SDGs) (Table 5.1). This section synthesized 
the Chapter 5 insights to assess how these interactions play out 
in integrated 1.5°C pathways, and the four illustrative pathway 
archetypes of this chapter in particular (see Section 2.1). Information 
from integrated pathways is combined with the interactions assessed 
in Chapter 5 and aggregated for each SDG, with a level of confidence 
attributed to each interaction based on the amount and agreement of 
the scientific evidence (see Chapter 5). 

Figure 2.28 |  Interactions of individual mitigation measures and alternative mitigations portfolios for 1.5°C with Sustainable Development Goals (SDGs). 
The assessment of interactions between mitigation measures and individual SDGs is based on the assessment of Chapter 5, Section 5.4. Proxy indicators and synthesis method are 
described in Supplementary Material  2.SM.1.5.
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Figure 2.28 shows how the scale and combination of individual 
mitigation measures (i.e., their mitigation portfolios) influence the 
extent of synergies and trade-offs with other societal objectives. All 
pathways generate multiple synergies with sustainable development 
dimensions and can advance several other SDGs simultaneously. Some, 
however, show higher risks for trade-offs. An example is increased 
biomass production and its potential to increase pressure on land and 
water resources, food production, and biodiversity and to reduce air 
quality when combusted inefficiently. At the same time, mitigation 
actions in energy-demand sectors and behavioural response options 
with appropriate management of rebound effects can advance multiple 
SDGs simultaneously, more so than energy supply-side mitigation 
actions (see Chapter 5, Section 5.4, Table 5.1 and Figure 5.3 for more 
examples). Of the four pathway archetypes used in this chapter (LED, 
S1, S2, and S5, referred to as P1, P2, P3, and P4 in the Summary for 
Policymakers), the S1 and LED pathways show the largest number of 
synergies and least number of potential trade-offs, while for the S5 
pathway more potential trade-offs are identified. In general, pathways 
with emphasis on demand reductions and policies that incentivize 
behavioural change, sustainable consumption patterns, healthy diets 
and relatively low use of CDR (or only afforestation) show relatively 
more synergies with individual SDGs than other pathways.

There is robust evidence and high agreement in the pathway literature 
that multiple strategies can be considered to limit warming to 1.5°C (see 
Sections 2.1.3, 2.3 and 2.4). Together with the extensive evidence on 
the existence of interactions of mitigation measures with other societal 
objectives (Chapter 5, Section 5.4), this results in high confidence that 
the choice of mitigation portfolio or strategy can markedly affect the 
achievement of other societal objectives. For instance, action on SLCFs 
has been suggested to facilitate the achievement of SDGs (Shindell et 
al., 2017b) and to reduce regional impacts, for example, from black 
carbon sources on snow and ice loss in the Arctic and alpine regions 
(Painter et al., 2013), with particular focus on the warming sub-set of 
SLCFs. Reductions in both surface aerosols and ozone through methane 
reductions provide health and ecosystem co-benefits (Jacobson, 2002, 
2010; Anenberg et al., 2012; Shindell et al., 2012; Stohl et al., 2015; 
Collins et al., 2018). Public health benefits of stringent mitigation 
pathways in line with 1.5°C pathways can be sizeable. For instance, 
a study examining a more rapid reduction of fossil-fuel usage to 
achieve 1.5°C relative to 2°C, similar to that of other recent studies 
(Grubler et al., 2018; van Vuuren et al., 2018), found that improved 
air quality would lead to more than 100 million avoided premature 
deaths over the 21st century (Shindell et al., 2018). These benefits are 
assumed to be in addition to those occurring under 2°C pathways 
(e.g., Silva et al., 2016), and could in monetary terms offset either a 
large portion or all of the initial mitigation costs (West et al., 2013; 
Shindell et al., 2018). However, some sources of SLCFs with important 
impacts for public health (e.g., traditional biomass burning) are only 
mildly affected by climate policy in the available integrated pathways 
and are more strongly impacted by baseline assumptions about future 
societal development and preferences, and technologies instead (Rao 
et al., 2016, 2017).

At the same time, the literature on climate–SDG interactions is still 
an emergent field of research and hence there is low to medium 
confidence in the precise magnitude of the majority of these 

interactions. Very limited literature suggests that achieving co-benefits 
is not automatically assured but results from conscious and carefully 
coordinated policies and implementation strategies (Shukla and 
Chaturvedi, 2012; Clarke et al., 2014; McCollum et al., 2018). 
Understanding these mitigation–SDG interactions is key for selecting 
mitigation options that maximize synergies and minimize trade-offs 
towards the 1.5°C and sustainable development objectives (van Vuuren 
et al., 2015; Hildingsson and Johansson, 2016; Jakob and Steckel, 2016; 
von Stechow et al., 2016; Delponte et al., 2017).

In summary, the combined evidence indicates that the chosen 
mitigation portfolio can have a distinct impact on the achievement 
of other societal policy objectives (high confidence); however, there is 
uncertainty regarding the specific extent of climate–SDG interactions.

2.6	 Knowledge Gaps

This section summarizes the knowledge gaps articulated in earlier 
sections of the chapter.

2.6.1	 Geophysical Understanding 

Knowledge gaps are associated with the carbon cycle response, the 
role of non-CO2 emissions and the evaluation of an appropriate historic 
baseline. 

Quantifying how the carbon cycle responds to negative emissions is 
an important knowledge gap for strong mitigation pathways (Section 
2.2). Earth system feedback uncertainties are important to consider for 
the longer-term response, particularly in how permafrost melting might 
affect the carbon budget (Section 2.2). Future research and ongoing 
observations over the next years will provide a better indication as to 
how the 2006-2015 base period compares with the long-term trends 
and might at present bias the carbon budget estimates.

The future emissions of short-lived climate forcers and their 
temperature response are a large source of uncertainty in 1.5°C 
pathways, having a greater relative uncertainty than in higher CO2 
emission pathways. Their global emissions, their sectoral and regional 
disaggregation, and their climate response are generally less well 
quantified than for CO2 (Sections 2.2 and 2.3). Emissions from the 
agricultural sector, including land-use based mitigation options, in 
1.5°C pathways constitute the main source of uncertainty here and 
are an important gap in understanding the potential achievement of 
stringent mitigation scenarios (Sections 2.3 and 2.4). This also includes 
uncertainties surrounding the mitigation potential of the long-lived 
GHG nitrous oxide (Sections 2.3 and 2.4).

There is considerable uncertainty in how future emissions of aerosol 
precursors will affect the effective radiative forcing from aerosol–cloud 
interaction. The potential future warming from mitigation of these 
emissions reduces remaining carbon budgets and increases peak 
temperatures (Section 2.2). The potential co-benefits of mitigating air 
pollutants and how the reduction in air pollution may affect the carbon 
sink are also important sources of uncertainty (Sections 2.2 and 2.5).
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The pathway classification employed in this chapter employs results 
from the MAGICC model with its AR5 parameter sets. The alternative 
representation of the relationship between emissions and effective 
radiative forcing and response in the FAIR model would lead to a different 
classification that would make 1.5°C targets more achievable (Section 
2.2 and Supplementary Material 2.SM.1.1). Such a revision would 
significantly alter the temperature outcomes for the pathways and, if 
the result is found to be robust, future research and assessments would 
need to adjust their classifications accordingly. Any possible high bias in 
the MAGICC response may be partly or entirely offset by missing Earth 
system feedbacks that are not represented in either climate emulator and 
that would act to increase the temperature response (Section 2.2). For 
this assessment report, any possible bias in the MAGICC setup applied 
in this and earlier reports is not established enough in the literature to 
change the classification approach. However, we only place medium 
confidence in the classification adopted by the chapter. 

2.6.2	 Integrated Assessment Approaches

IAMs attempt to be as broad as possible in order to explore 
interactions between various societal subsystems, like the economy, 
land, and energy system. They hence include stylized and simplified 
representations of these subsystems. Climate damages, avoided 
impacts and societal co-benefits of the modelled transformations 
remain largely unaccounted for and are important knowledge gaps. 
Furthermore, rapid technological changes and uncertainties about 
input data present continuous challenges.

The IAMs used in this report do not account for climate impacts 
(Section 2.1), and similarly, none of the Gross Domestic Product (GDP) 
projections in the mitigation pathway literature assessed in this chapter 
included the feedback of climate damages on economic growth (Section 
2.3). Although some IAMs do allow for climate impact feedbacks in 
their modelling frameworks, particularly in their land components, 
such feedbacks were by design excluded in pathways developed in the 
context of the SSP framework. The SSP framework aims at providing 
an integrative framework for the assessment of climate change 
adaptation and mitigation. IAMs are typically developed to inform 
the mitigation component of this question, while the assessment of 
impacts is carried out by specialized impact models. However, the use 
of a consistent set of socio-economic drivers embodied by the SSPs 
allows for an integrated assessment of climate change impacts and 
mitigation challenges at a later stage. Further integration of these 
two strands of research will allow a better understanding of climate 
impacts on mitigation studies.

Many of the IAMs that contributed mitigation pathways to this 
assessment include a process-based description of the land system in 
addition to the energy system, and several have been extended to cover 
air pollutants and water use. These features make them increasingly fit 
to explore questions beyond those that touch upon climate mitigation 
only. The models do not, however, fully account for all constraints that 
could affect realization of pathways (Section 2.1).

While the representation of renewable energy resource potentials, 
technology costs and system integration in IAMs has been updated 
since AR5, bottom-up studies find higher mitigation potentials in the 

industry, buildings, and transport sector in that realized by selected 
pathways from IAMs, indicating the possibility to strengthen sectoral 
decarbonization strategies compared to the IAM 1.5°C pathways 
assessed in this chapter (Section 2.1).

Studies indicate that a major shift in investment patterns is required 
to limit global warming to 1.5°C. This assessment would benefit from 
a more explicit representation and understanding of the financial 
sector within the modelling approaches. Assumptions in modelling 
studies imply low-to-zero transaction costs for market agents and 
that regulatory oversight mechanisms and fiduciary duty need to be 
highly robust to guarantee stable and credible financial markets in 
the long term. This area can be subject to high uncertainty, however. 
The heterogeneity of actors (e.g., banks, insurance companies, asset 
managers, or credit rating agencies) and financial products also needs 
to be taken into account, as does the mobilization of capital and 
financial flows between countries and regions (Section 2.5). 

The literature on interactions between 1.5˚C mitigation pathways 
and SDGs is an emergent field of research (Section 2.3.5, 2.5 and Chapter 
5). Whereas the choice of mitigation strategies can noticeably affect the 
attainment of various societal objectives, there is uncertainty regarding 
the extent of the majority of identified interactions. Understanding 
climate–SDG interactions helps inform the choice of mitigation options 
that minimize trade-offs and risks and maximize synergies towards 
sustainable development objectives and the 1.5°C goal (Section 2.5).

2.6.3	 Carbon Dioxide Removal (CDR) 

Most 1.5°C and 2°C pathways are heavily reliant on CDR at a 
speculatively large scale before mid-century. There are a number 
of knowledge gaps associated which such technologies. Chapter 4 
performs a detailed assessment of CDR technologies.

There is uncertainty in the future deployment of CCS given the 
limited pace of current deployment, the evolution of CCS technology 
that would be associated with deployment, and the current lack of 
incentives for large-scale implementation of CCS (Chapter 4, Section 
4.2.7). Technologies other than BECCS and afforestation have yet to 
be comprehensively assessed in integrated assessment approaches. No 
proposed technology is close to deployment at scale, and regulatory 
frameworks are not established. This limits how they can be realistically 
implemented within IAMs. (Section 2.3)

Evaluating the potential from BECCS is problematic due to large 
uncertainties in future land projections due to differences in modelling 
approaches in current land-use models, and these differences are 
at least as great as the differences attributed to climate scenario 
variations. (Section 2.3)

There is substantial uncertainty about the adverse effects of large-
scale CDR deployment on the environment and societal sustainable 
development goals. It is not fully understood how land-use and 
land-management choices for large-scale BECCS will affect various 
ecosystem services and sustainable development, and how they further 
translate into indirect impacts on climate, including GHG emissions 
other than CO2. (Section 2.3, Section 2.5.3)



159

2

Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development	 Chapter 2

Frequently Asked Questions 

FAQ 2.1 |	 What Kind of Pathways Limit Warming to 1.5°C and are we on Track?

Summary: There is no definitive way to limit global temperature rise to 1.5°C above pre-industrial levels. This 
Special Report identifies two main conceptual pathways to illustrate different interpretations. One stabilizes 
global temperature at, or just below, 1.5°C. Another sees global temperature temporarily exceed 1.5°C before 
coming back down. Countries’ pledges to reduce their emissions are currently not in line with limiting global 
warming to 1.5°C.

Scientists use computer models to simulate the emissions of greenhouse gases that would be consistent with 
different levels of warming. The different possibilities are often referred to as ‘greenhouse gas emission 
pathways’. There is no single, definitive pathway to limiting warming to 1.5°C.

This IPCC special report identifies two main pathways that explore global warming of 1.5°C. The first involves 
global temperature stabilizing at or below before 1.5°C above pre-industrial levels. The second pathway sees 
warming exceed 1.5°C around mid-century, remain above 1.5°C for a maximum duration of a few decades, and 
return to below 1.5°C before 2100. The latter is often referred to as an ‘overshoot’ pathway. Any alternative 
situation in which global temperature continues to rise, exceeding 1.5°C permanently until the end of the 21st 
century, is not considered to be a 1.5°C pathway.

The two types of pathway have different implications for greenhouse gas emissions, as well as for climate change 
impacts and for achieving sustainable development. For example, the larger and longer an ‘overshoot’, the 
greater the reliance on practices or technologies that remove CO2 from the atmosphere, on top of reducing 
the sources of emissions (mitigation). Such ideas for CO2 removal have not been proven to work at scale and, 
therefore, run the risk of being less practical, effective or economical than assumed. There is also the risk that 
the use of CO2 removal techniques ends up competing for land and water, and if these trade-offs are not 
appropriately managed, they can adversely affect sustainable development. Additionally, a larger and longer 
overshoot increases the risk for irreversible climate impacts, such as the onset of the collapse of polar ice shelves 
and accelerated sea level rise.

Countries that formally accept or ‘ratify’ the Paris Agreement submit pledges for how they intend to address 
climate change. Unique to each country, these pledges are known as Nationally Determined Contributions 
(NDCs). Different groups of researchers around the world have analysed the combined effect of adding up all 
the NDCs. Such analyses show that current pledges are not on track to limit global warming to 1.5°C above pre-
industrial levels. If current pledges for 2030 are achieved but no more, researchers find very few (if any) ways to 
reduce emissions after 2030 sufficiently quickly to limit warming to 1.5°C. This, in turn, suggests that with the 
national pledges as they stand, warming would exceed 1.5°C, at least for a period of time, and practices and 
technologies that remove CO2 from the atmosphere at a global scale would be required to return warming to 
1.5°C at a later date.

A world that is consistent with holding warming to 1.5°C would see greenhouse gas emissions rapidly decline 
in the coming decade, with strong international cooperation and a scaling up of countries’ combined ambition 
beyond current NDCs. In contrast, delayed action, limited international cooperation, and weak or fragmented 
policies that lead to stagnating or increasing greenhouse gas emissions would put the possibility of limiting 
global temperature rise to 1.5°C above pre-industrial levels out of reach.

(continued on next page)
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FAQ 2.1, Figure 1 |  Two main pathways for limiting global temperature rise to 1.5°C above pre-industrial levels are discussed in this Special Report. These are: 
stabilizing global temperature at, or just below, 1.5°C (left) and global temperature temporarily exceeding 1.5°C before coming back down later in the century 
(right). Temperatures shown are relative to pre-industrial but pathways are illustrative only, demonstrating conceptual not quantitative characteristics.

FAQ 2.1 (continued)
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Frequently Asked Questions 

FAQ 2.2 |	 What do Energy Supply and Demand have to do with Limiting Warming  
	 to 1.5°C?

Summary: Limiting global warming to 1.5°C above pre-industrial levels would require major reductions in green-
house gas emissions in all sectors. But different sectors are not independent of each other, and making changes 
in one can have implications for another. For example, if we as a society use a lot of energy, then this could 
mean we have less flexibility in the choice of mitigation options available to limit warming to 1.5°C. If we use 
less energy, the choice of possible actions is greater – for example, we could be less reliant on technologies that 
remove carbon dioxide (CO2) from the atmosphere.

To stabilize global temperature at any level, ‘net’ CO2 emissions would need to be reduced to zero. This means the 
amount of CO2 entering the atmosphere must equal the amount that is removed. Achieving a balance between 
CO2 ‘sources’ and ‘sinks’ is often referred to as ‘net zero’ emissions or ‘carbon neutrality’. The implication of net 
zero emissions is that the concentration of CO2 in the atmosphere would slowly decline over time until a new 
equilibrium is reached, as CO2 emissions from human activity are redistributed and taken up by the oceans and 
the land biosphere. This would lead to a near-constant global temperature over many centuries. 

Warming will not be limited to 1.5°C or 2°C unless transformations in a number of areas achieve the required 
greenhouse gas emissions reductions. Emissions would need to decline rapidly across all of society’s main sectors, 
including buildings, industry, transport, energy, and agriculture, forestry and other land use (AFOLU). Actions 
that can reduce emissions include, for example, phasing out coal in the energy sector, increasing the amount of 
energy produced from renewable sources, electrifying transport, and reducing the ‘carbon footprint’ of the food 
we consume.

The above are examples of ‘supply-side’ actions. Broadly speaking, these are actions that can reduce greenhouse 
gas emissions through the use of low-carbon solutions. A different type of action can reduce how much energy 
human society uses, while still ensuring increasing levels of development and well-being. Known as ‘demand-side’ 
actions, this category includes improving energy efficiency in buildings and reducing consumption of energy- 
and greenhouse-gas intensive products through behavioural and lifestyle changes, for example. Demand- and 
supply-side measures are not an either-or question, they work in parallel with each other. But emphasis can be 
given to one or the other. 

Making changes in one sector can have consequences for another, as they are not independent of each other. 
In other words, the choices that we make now as a society in one sector can either restrict or expand our 
options later on. For example, a high demand for energy could mean we would need to deploy almost all known 
options to reduce emissions in order to limit global temperature rise to 1.5°C above pre-industrial levels, with 
the potential for adverse side-effects. In particular, a pathway with high energy demand would increase our 
reliance on practices and technologies that remove CO2 from the atmosphere. As of yet, such techniques have 
not been proven to work on a large scale and, depending on how they are implemented, could compete for land 
and water. By leading to lower overall energy demand, effective demand-side measures could allow for greater 
flexibility in how we structure our energy system. However, demand-side measures are not easy to implement 
and barriers have prevented the most efficient practices being used in the past.

(continued on next page)
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FAQ 2.2, Figure 1 |  Having a lower energy demand increases the flexibility in choosing options for supplying energy. A larger energy demand means many more 
low carbon energy supply options would need to be used.
 

FAQ 2.2 (continued)
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Impacts of 1.5°C of Global Warming on Natural and Human Systems	 Chapter 3

Executive Summary

This chapter builds on findings of AR5 and assesses new scientific 
evidence of changes in the climate system and the associated impacts 
on natural and human systems, with a specific focus on the magnitude 
and pattern of risks linked for global warming of 1.5°C above 
temperatures in the pre-industrial period. Chapter 3 explores observed 
impacts and projected risks to a range of natural and human systems, 
with a focus on how risk levels change from 1.5°C to 2°C of global 
warming. The chapter also revisits major categories of risk (Reasons for 
Concern, RFC) based on the assessment of new knowledge that has 
become available since AR5. 

1.5°C and 2°C Warmer Worlds

The global climate has changed relative to the pre-industrial 
period, and there are multiple lines of evidence that these 
changes have had impacts on organisms and ecosystems, as 
well as on human systems and well-being (high confidence). The 
increase in global mean surface temperature (GMST), which reached 
0.87°C in 2006–2015 relative to 1850–1900, has increased the 
frequency and magnitude of impacts (high confidence), strengthening 
evidence of how an increase in GMST of 1.5°C or more could impact 
natural and human systems (1.5°C versus 2°C). {3.3, 3.4, 3.5, 3.6, 
Cross-Chapter Boxes 6, 7 and 8 in this chapter}

Human-induced global warming has already caused multiple 
observed changes in the climate system (high confidence). 
Changes include increases in both land and ocean temperatures, as well 
as more frequent heatwaves in most land regions (high confidence). 
There is also high confidence that global warming has resulted in an 
increase in the frequency and duration of marine heatwaves. Further, 
there is substantial evidence that human-induced global warming has 
led to an increase in the frequency, intensity and/or amount of heavy 
precipitation events at the global scale (medium confidence), as well 
as an increased risk of drought in the Mediterranean region (medium 
confidence). {3.3.1, 3.3.2, 3.3.3, 3.3.4, Box 3.4}

Trends in intensity and frequency of some climate and weather 
extremes have been detected over time spans during which 
about 0.5°C of global warming occurred (medium confidence). 
This assessment is based on several lines of evidence, including 
attribution studies for changes in extremes since 1950. {3.2, 3.3.1, 
3.3.2, 3.3.3, 3.3.4}

Several regional changes in climate are assessed to occur with 
global warming up to 1.5°C as compared to pre-industrial 
levels, including warming of extreme temperatures in many 
regions (high confidence), increases in frequency, intensity and/or 
amount of heavy precipitation in several regions (high confidence), 
and an increase in intensity or frequency of droughts in some regions 
(medium confidence). {3.3.1, 3.3.2, 3.3.3, 3.3.4, Table 3.2}

There is no single ‘1.5°C warmer world’ (high confidence). In 
addition to the overall increase in GMST, it is important to consider the 
size and duration of potential overshoots in temperature. Furthermore, 
there are questions on how the stabilization of an increase in GMST of 
1.5°C can be achieved, and how policies might be able to influence the 
resilience of human and natural systems, and the nature of regional 
and subregional risks. Overshooting poses large risks for natural and 
human systems, especially if the temperature at peak warming is 
high, because some risks may be long-lasting and irreversible, such 
as the loss of some ecosystems (high confidence). The rate of change 
for several types of risks may also have relevance, with potentially 
large risks in the case of a rapid rise to overshooting temperatures, 
even if a decrease to 1.5°C can be achieved at the end of the 21st 
century or later (medium confidence). If overshoot is to be minimized, 
the remaining equivalent CO2 budget available for emissions is very 
small, which implies that large, immediate and unprecedented global 
efforts to mitigate greenhouse gases are required (high confidence). 
{3.2, 3.6.2, Cross-Chapter Box 8 in this chapter}

Robust1 global differences in temperature means and extremes 
are expected if global warming reaches 1.5°C versus 2°C above 
the pre-industrial levels (high confidence). For oceans, regional 
surface temperature means and extremes are projected to be higher 
at 2°C compared to 1.5°C of global warming (high confidence). 
Temperature means and extremes are also projected to be higher at 
2°C compared to 1.5°C in most land regions, with increases being 
2–3 times greater than the increase in GMST projected for some 
regions (high confidence). Robust increases in temperature means and 
extremes are also projected at 1.5°C compared to present-day values 
(high confidence) {3.3.1, 3.3.2}. There are decreases in the occurrence 
of cold extremes, but substantial increases in their temperature, in 
particular in regions with snow or ice cover (high confidence) {3.3.1}.

Climate models project robust1 differences in regional climate 
between present-day and global warming up to 1.5°C2, and 
between 1.5°C and 2°C2 (high confidence), depending on the 
variable and region in question (high confidence). Large, robust 
and widespread differences are expected for temperature 
extremes (high confidence). Regarding hot extremes, the strongest 
warming is expected to occur at mid-latitudes in the warm season (with 
increases of up to 3°C for 1.5°C of global warming, i.e., a factor of two) 
and at high latitudes in the cold season (with increases of up to 4.5°C 
at 1.5°C of global warming, i.e., a factor of three) (high confidence). 
The strongest warming of hot extremes is projected to occur in 
central and eastern North America, central and southern Europe, the 
Mediterranean region (including southern Europe, northern Africa and 
the Near East), western and central Asia, and southern Africa (medium 
confidence). The number of exceptionally hot days are expected to 
increase the most in the tropics, where interannual temperature 
variability is lowest; extreme heatwaves are thus projected to emerge 
earliest in these regions, and they are expected to already become 
widespread there at 1.5°C global warming (high confidence). Limiting 
global warming to 1.5°C instead of 2°C could result in around 420 

1	 Robust is used here to mean that at least two thirds of climate models show the same sign of changes at the grid point scale, and that differences in large regions are 
statistically significant.

2	 Projected changes in impacts between different levels of global warming are determined with respect to changes in global mean near-surface air temperature.
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million fewer people being frequently exposed to extreme heatwaves, 
and about 65 million fewer people being exposed to exceptional 
heatwaves, assuming constant vulnerability (medium confidence). 
{3.3.1, 3.3.2, Cross-Chapter Box 8 in this chapter}

Limiting global warming to 1.5°C would limit risks of increases 
in heavy precipitation events on a global scale and in several 
regions compared to conditions at 2°C global warming  
(medium confidence). The regions with the largest increases in heavy 
precipitation events for 1.5°C to 2°C global warming include: several 
high-latitude regions (e.g. Alaska/western Canada, eastern Canada/
Greenland/Iceland, northern Europe and northern Asia); mountainous 
regions (e.g., Tibetan Plateau); eastern Asia (including China and Japan); 
and eastern North America (medium confidence). Tropical cyclones are 
projected to decrease in frequency but with an increase in the number 
of very intense cyclones (limited evidence, low confidence). Heavy 
precipitation associated with tropical cyclones is projected to be higher 
at 2°C compared to 1.5°C of global warming (medium confidence). 
Heavy precipitation, when aggregated at a global scale, is projected to 
be higher at 2°C than at 1.5°C of global warming (medium confidence) 
{3.3.3, 3.3.6}

Limiting global warming to 1.5°C is expected to substantially 
reduce the probability of extreme drought, precipitation deficits, 
and risks associated with water availability (i.e., water stress) in 
some regions (medium confidence). In particular, risks associated 
with increases in drought frequency and magnitude are projected to be 
substantially larger at 2°C than at 1.5°C in the Mediterranean region 
(including southern Europe, northern Africa and the Near East) and 
southern Africa (medium confidence). {3.3.3, 3.3.4, Box 3.1, Box 3.2} 

Risks to natural and human systems are expected to be lower 
at 1.5°C than at 2°C of global warming (high confidence). This 
difference is due to the smaller rates and magnitudes of climate 
change associated with a 1.5°C temperature increase, including lower 
frequencies and intensities of temperature-related extremes. Lower 
rates of change enhance the ability of natural and human systems 
to adapt, with substantial benefits for a wide range of terrestrial, 
freshwater, wetland, coastal and ocean ecosystems (including coral 
reefs) (high confidence), as well as food production systems, human 
health, and tourism (medium confidence), together with energy 
systems and transportation (low confidence). {3.3.1, 3.4}

Exposure to multiple and compound climate-related risks is 
projected to increase between 1.5°C and 2°C of global warming 
with greater proportions of people both exposed and susceptible to 
poverty in Africa and Asia (high confidence). For global warming from 
1.5°C to 2°C, risks across energy, food, and water sectors could overlap 
spatially and temporally, creating new – and exacerbating current – 
hazards, exposures, and vulnerabilities that could affect increasing 
numbers of people and regions (medium confidence). Small island 
states and economically disadvantaged populations are particularly at 
risk (high confidence). {3.3.1, 3.4.5.3, 3.4.5.6, 3.4.11, 3.5.4.9, Box 3.5}

Global warming of 2°C would lead to an expansion of areas with 
significant increases in runoff, as well as those affected by flood 
hazard, compared to conditions at 1.5°C (medium confidence). 
Global warming of 1.5°C would also lead to an expansion of the global 
land area with significant increases in runoff (medium confidence) and 
an increase in flood hazard in some regions (medium confidence) 
compared to present-day conditions. {3.3.5}

The probability of a sea-ice-free Arctic Ocean3 during summer 
is substantially higher at 2°C compared to 1.5°C of global 
warming (medium confidence). Model simulations suggest that 
at least one sea-ice-free Arctic summer is expected every 10 years 
for global warming of 2°C, with the frequency decreasing to one 
sea-ice-free Arctic summer every 100 years under 1.5°C (medium 
confidence). An intermediate temperature overshoot will have no long-
term consequences for Arctic sea ice coverage, and hysteresis is not 
expected (high confidence). {3.3.8, 3.4.4.7}

Global mean sea level rise (GMSLR) is projected to be around 
0.1 m (0.04 – 0.16 m) less by the end of the 21st century in a 
1.5°C warmer world compared to a 2°C warmer world (medium 
confidence). Projected GMSLR for 1.5°C of global warming has an 
indicative range of 0.26 – 0.77m, relative to 1986–2005, (medium 
confidence). A smaller sea level rise could mean that up to 10.4 million 
fewer people (based on the 2010 global population and assuming no 
adaptation) would be exposed to the impacts of sea level rise globally 
in 2100 at 1.5°C compared to at 2°C. A slower rate of sea level rise 
enables greater opportunities for adaptation (medium confidence). 
There is high confidence that sea level rise will continue beyond 2100. 
Instabilities exist for both the Greenland and Antarctic ice sheets, which 
could result in multi-meter rises in sea level on time scales of century 
to millennia. There is medium confidence that these instabilities could 
be triggered at around 1.5°C to 2°C of global warming. {3.3.9, 3.4.5, 
3.6.3}

The ocean has absorbed about 30% of the anthropogenic 
carbon dioxide, resulting in ocean acidification and changes to 
carbonate chemistry that are unprecedented for at least the 
last 65 million years (high confidence). Risks have been identified 
for the survival, calcification, growth, development and abundance of 
a broad range of marine taxonomic groups, ranging from algae to fish, 
with substantial evidence of predictable trait-based sensitivities (high 
confidence). There are multiple lines of evidence that ocean warming 
and acidification corresponding to 1.5°C of global warming would 
impact a wide range of marine organisms and ecosystems, as well as 
sectors such as aquaculture and fisheries (high confidence). {3.3.10, 
3.4.4}

Larger risks are expected for many regions and systems for 
global warming at 1.5°C, as compared to today, with adaptation 
required now and up to 1.5°C. However, risks would be larger at 2°C of 
warming and an even greater effort would be needed for adaptation to 
a temperature increase of that magnitude (high confidence). {3.4, Box 
3.4, Box 3.5, Cross-Chapter Box 6 in this chapter}

3	 Ice free is defined for the Special Report as when the sea ice extent is less than 106 km2. Ice coverage less than this is considered to be equivalent to an ice-free Arctic Ocean 
for practical purposes in all recent studies. 
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Future risks at 1.5°C of global warming will depend on the 
mitigation pathway and on the possible occurrence of a 
transient overshoot (high confidence). The impacts on natural 
and human systems would be greater if mitigation pathways 
temporarily overshoot 1.5°C and return to 1.5°C later in the century, 
as compared to pathways that stabilize at 1.5°C without an overshoot 
(high confidence). The size and duration of an overshoot would also 
affect future impacts (e.g., irreversible loss of some ecosystems) (high 
confidence). Changes in land use resulting from mitigation choices 
could have impacts on food production and ecosystem diversity. {3.6.1, 
3.6.2, Cross-Chapter Boxes 7 and 8 in this chapter}

Climate Change Risks for Natural and Human systems 

Terrestrial and Wetland Ecosystems

Risks of local species losses and, consequently, risks of 
extinction are much less in a 1.5°C versus a 2°C warmer world 
(high confidence). The number of species projected to lose over 
half of their climatically determined geographic range at 2°C global 
warming (18% of insects, 16% of plants, 8% of vertebrates) is 
projected to be reduced to 6% of insects, 8% of plants and 4% of 
vertebrates at 1.5°C warming (medium confidence). Risks associated 
with other biodiversity-related factors, such as forest fires, extreme 
weather events, and the spread of invasive species, pests and 
diseases, would also be lower at 1.5°C than at 2°C of warming (high 
confidence), supporting a greater persistence of ecosystem services. 
{3.4.3, 3.5.2}

Constraining global warming to 1.5°C, rather than to 2°C 
and higher, is projected to have many benefits for terrestrial 
and wetland ecosystems and for the preservation of their 
services to humans (high confidence). Risks for natural and 
managed ecosystems are higher on drylands compared to humid 
lands. The global terrestrial land area projected to be affected by 
ecosystem transformations (13%, interquartile range 8–20%) at 2°C 
is approximately halved at 1.5°C global warming to 4% (interquartile 
range 2–7%) (medium confidence). Above 1.5°C, an expansion of 
desert terrain and vegetation would occur in the Mediterranean 
biome (medium confidence), causing changes unparalleled in the last 
10,000 years (medium confidence). {3.3.2.2, 3.4.3.2, 3.4.3.5, 3.4.6.1, 
3.5.5.10, Box 4.2}

Many impacts are projected to be larger at higher latitudes, 
owing to mean and cold-season warming rates above the 
global average (medium confidence). High-latitude tundra and 
boreal forest are particularly at risk, and woody shrubs are already 
encroaching into tundra (high confidence) and will proceed with 
further warming. Constraining warming to 1.5°C would prevent the 
thawing of an estimated permafrost area of 1.5 to 2.5 million km2 
over centuries compared to thawing under 2°C (medium confidence). 
{3.3.2, 3.4.3, 3.4.4}

Ocean Ecosystems

Ocean ecosystems are already experiencing large-scale 
changes, and critical thresholds are expected to be reached at 
1.5°C and higher levels of global warming (high confidence). 
In the transition to 1.5°C of warming, changes to water temperatures 
are expected to drive some species (e.g., plankton, fish) to relocate 
to higher latitudes and cause novel ecosystems to assemble (high 
confidence). Other ecosystems (e.g., kelp forests, coral reefs) are 
relatively less able to move, however, and are projected to experience 
high rates of mortality and loss (very high confidence). For example, 
multiple lines of evidence indicate that the majority (70–90%) of 
warm water (tropical) coral reefs that exist today will disappear even 
if global warming is constrained to 1.5°C (very high confidence). 
{3.4.4, Box 3.4}

Current ecosystem services from the ocean are expected to be 
reduced at 1.5°C of global warming, with losses being even 
greater at 2°C of global warming (high confidence). The risks 
of declining ocean productivity, shifts of species to higher latitudes, 
damage to ecosystems (e.g., coral reefs, and mangroves, seagrass 
and other wetland ecosystems), loss of fisheries productivity (at 
low latitudes), and changes to ocean chemistry (e.g., acidification, 
hypoxia and dead zones) are projected to be substantially lower 
when global warming is limited to 1.5°C (high confidence). {3.4.4, 
Box 3.4}

Water Resources

The projected frequency and magnitude of floods and droughts 
in some regions are smaller under 1.5°C than under 2°C of 
warming (medium confidence). Human exposure to increased 
flooding is projected to be substantially lower at 1.5°C compared to 
2°C of global warming, although projected changes create regionally 
differentiated risks (medium confidence). The differences in the risks 
among regions are strongly influenced by local socio-economic 
conditions (medium confidence). {3.3.4, 3.3.5, 3.4.2}

Risks of water scarcity are projected to be greater at 2°C than at 
1.5°C of global warming in some regions (medium confidence). 
Depending on future socio-economic conditions, limiting global 
warming to 1.5°C, compared to 2°C, may reduce the proportion of 
the world population exposed to a climate change-induced increase 
in water stress by up to 50%, although there is considerable variability 
between regions (medium confidence). Regions with particularly 
large benefits could include the Mediterranean and the Caribbean 
(medium confidence). Socio-economic drivers, however, are expected 
to have a greater influence on these risks than the changes in climate 
(medium confidence). {3.3.5, 3.4.2, Box 3.5}

Land Use, Food Security and Food Production Systems

Limiting global warming to 1.5°C, compared with 2°C, is 
projected to result in smaller net reductions in yields of maize, 
rice, wheat, and potentially other cereal crops, particularly in 
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sub-Saharan Africa, Southeast Asia, and Central and South America; 
and in the CO2-dependent nutritional quality of rice and wheat 
(high confidence). A loss of 7–10% of rangeland livestock globally 
is projected for approximately 2°C of warming, with considerable 
economic consequences for many communities and regions (medium 
confidence). {3.4.6, 3.6, Box 3.1, Cross-Chapter Box 6 in this chapter}

Reductions in projected food availability are larger at 2°C 
than at 1.5°C of global warming in the Sahel, southern Africa, 
the Mediterranean, central Europe and the Amazon (medium 
confidence). This suggests a transition from medium to high risk of 
regionally differentiated impacts on food security between 1.5°C and 
2°C (medium confidence). Future economic and trade environments 
and their response to changing food availability (medium confidence) 
are important potential adaptation options for reducing hunger risk 
in low- and middle-income countries. {Cross-Chapter Box 6 in this 
chapter}

Fisheries and aquaculture are important to global food security 
but are already facing increasing risks from ocean warming 
and acidification (medium confidence). These risks are 
projected to increase at 1.5°C of global warming and impact 
key organisms such as fin fish and bivalves (e.g., oysters), 
especially at low latitudes (medium confidence). Small-scale 
fisheries in tropical regions, which are very dependent on habitat 
provided by coastal ecosystems such as coral reefs, mangroves, 
seagrass and kelp forests, are expected to face growing risks at 1.5°C 
of warming because of loss of habitat (medium confidence). Risks 
of impacts and decreasing food security are projected to become 
greater as global warming reaches beyond 1.5°C and both ocean 
warming and acidification increase, with substantial losses likely for 
coastal livelihoods and industries (e.g., fisheries and aquaculture) 
(medium to high confidence). {3.4.4, 3.4.5, 3.4.6, Box 3.1, Box 3.4, 
Box 3.5, Cross-Chapter Box 6 in this chapter}

Land use and land-use change emerge as critical features of 
virtually all mitigation pathways that seek to limit global 
warming to 1.5°C (high confidence). Most least-cost mitigation 
pathways to limit peak or end-of-century warming to 1.5°C make 
use of carbon dioxide removal (CDR), predominantly employing 
significant levels of bioenergy with carbon capture and storage 
(BECCS) and/or afforestation and reforestation (AR) in their portfolio 
of mitigation measures (high confidence). {Cross-Chapter Box 7 in 
this chapter}

Large-scale deployment of BECCS and/or AR would have 
a far-reaching land and water footprint (high confidence). 
Whether this footprint would result in adverse impacts, for example 
on biodiversity or food production, depends on the existence and 
effectiveness of measures to conserve land carbon stocks, measures 
to limit agricultural expansion in order to protect natural ecosystems, 
and the potential to increase agricultural productivity (medium 
agreement). In addition, BECCS and/or AR would have substantial 
direct effects on regional climate through biophysical feedbacks, 
which are generally not included in Integrated Assessments Models 
(high confidence). {3.6.2, Cross-Chapter Boxes 7 and 8 in this chapter}

The impacts of large-scale CDR deployment could be greatly 
reduced if a wider portfolio of CDR options were deployed, if a 
holistic policy for sustainable land management were adopted, 
and if increased mitigation efforts were employed to strongly 
limit the demand for land, energy and material resources, 
including through lifestyle and dietary changes (medium 
confidence). In particular, reforestation could be associated with 
significant co-benefits if implemented in a manner than helps restore 
natural ecosystems (high confidence). {Cross-Chapter Box 7 in this 
chapter}

Human Health, Well-Being, Cities and Poverty

Any increase in global temperature (e.g., +0.5°C) is projected 
to affect human health, with primarily negative consequences  
(high confidence). Lower risks are projected at 1.5°C than at 2°C 
for heat-related morbidity and mortality (very high confidence), and 
for ozone-related mortality if emissions needed for ozone formation 
remain high (high confidence). Urban heat islands often amplify the 
impacts of heatwaves in cities (high confidence). Risks for some 
vector-borne diseases, such as malaria and dengue fever are projected 
to increase with warming from 1.5°C to 2°C, including potential 
shifts in their geographic range (high confidence). Overall for vector-
borne diseases, whether projections are positive or negative depends 
on the disease, region and extent of change (high confidence). Lower 
risks of undernutrition are projected at 1.5°C than at 2°C (medium 
confidence). Incorporating estimates of adaptation into projections 
reduces the magnitude of risks (high confidence). {3.4.7, 3.4.7.1, 
3.4.8, 3.5.5.8} 

Global warming of 2°C is expected to pose greater risks to urban 
areas than global warming of 1.5°C (medium confidence). The 
extent of risk depends on human vulnerability and the effectiveness 
of adaptation for regions (coastal and non-coastal), informal 
settlements and infrastructure sectors (such as energy, water and 
transport) (high confidence). {3.4.5, 3.4.8}

Poverty and disadvantage have increased with recent warming 
(about 1°C) and are expected to increase for many populations 
as average global temperatures increase from 1°C to 1.5°C 
and higher (medium confidence). Outmigration in agricultural-
dependent communities is positively and statistically significantly 
associated with global temperature (medium confidence). Our 
understanding of the links of 1.5°C and 2°C of global warming to 
human migration are limited and represent an important knowledge 
gap. {3.4.10, 3.4.11, 5.2.2, Table 3.5}

Key Economic Sectors and Services

Risks to global aggregated economic growth due to climate 
change impacts are projected to be lower at 1.5°C than at 2°C 
by the end of this century (medium confidence). {3.5.2, 3.5.3} 

The largest reductions in economic growth at 2°C compared 
to 1.5°C of warming are projected for low- and middle-income 
countries and regions (the African continent, Southeast Asia, 
India, Brazil and Mexico) (low to medium confidence). Countries 
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in the tropics and Southern Hemisphere subtropics are projected to 
experience the largest impacts on economic growth due to climate 
change should global warming increase from 1.5°C to 2°C (medium 
confidence). {3.5}

Global warming has already affected tourism, with increased 
risks projected under 1.5°C of warming in specific geographic 
regions and for seasonal tourism including sun, beach and 
snow sports destinations (very high confidence). Risks will be 
lower for tourism markets that are less climate sensitive, such as 
gaming and large hotel-based activities (high confidence). Risks for 
coastal tourism, particularly in subtropical and tropical regions, will 
increase with temperature-related degradation (e.g., heat extremes, 
storms) or loss of beach and coral reef assets (high confidence). 
{3.3.6, 3.4.4.12, 3.4.9.1, Box 3.4}

Small Islands, and Coastal and Low-lying areas

Small islands are projected to experience multiple inter-
related risks at 1.5°C of global warming that will increase with 
warming of 2°C and higher levels (high confidence). Climate 
hazards at 1.5°C are projected to be lower compared to those at 2°C 
(high confidence). Long-term risks of coastal flooding and impacts on 
populations, infrastructures and assets (high confidence), freshwater 
stress (medium confidence), and risks across marine ecosystems (high 
confidence) and critical sectors (medium confidence) are projected to 
increase at 1.5°C compared to present-day levels and increase further 
at 2°C, limiting adaptation opportunities and increasing loss and 
damage (medium confidence). Migration in small islands (internally 
and internationally) occurs for multiple reasons and purposes, mostly 
for better livelihood opportunities (high confidence) and increasingly 
owing to sea level rise (medium confidence). {3.3.2.2, 3.3.6–9, 
3.4.3.2, 3.4.4.2, 3.4.4.5, 3.4.4.12, 3.4.5.3, 3.4.7.1, 3.4.9.1, 3.5.4.9, 
Box 3.4, Box 3.5}

Impacts associated with sea level rise and changes to the 
salinity of coastal groundwater, increased flooding and 
damage to infrastructure, are projected to be critically 
important in vulnerable environments, such as small islands, 
low-lying coasts and deltas, at global warming of 1.5°C and 
2°C (high confidence). Localized subsidence and changes to river 
discharge can potentially exacerbate these effects. Adaptation is 
already happening (high confidence) and will remain important over 
multi-centennial time scales. {3.4.5.3, 3.4.5.4, 3.4.5.7, 5.4.5.4, Box 
3.5}

Existing and restored natural coastal ecosystems may be 
effective in reducing the adverse impacts of rising sea levels 
and intensifying storms by protecting coastal and deltaic 
regions (medium confidence). Natural sedimentation rates are 
expected to be able to offset the effect of rising sea levels, given 
the slower rates of sea level rise associated with 1.5°C of warming 
(medium confidence). Other feedbacks, such as landward migration 
of wetlands and the adaptation of infrastructure, remain important 
(medium confidence). {3.4.4.12, 3.4.5.4, 3.4.5.7}

Increased Reasons for Concern 

There are multiple lines of evidence that since AR5 the assessed 
levels of risk increased for four of the five Reasons for Concern 
(RFCs) for global warming levels of up to 2°C (high confidence). 
The risk transitions by degrees of global warming are now: from high 
to very high between 1.5°C and 2°C for RFC1 (Unique and threatened 
systems) (high confidence); from moderate to high risk between 1°C and 
1.5°C for RFC2 (Extreme weather events) (medium confidence); from 
moderate to high risk between 1.5°C and 2°C for RFC3 (Distribution of 
impacts) (high confidence); from moderate to high risk between 1.5°C 
and 2.5°C for RFC4 (Global aggregate impacts) (medium confidence); 
and from moderate to high risk between 1°C and 2.5°C for RFC5 
(Large-scale singular events) (medium confidence). {3.5.2}

1.	 The category ‘Unique and threatened systems’ (RFC1) 
display a transition from high to very high risk which is 
now located between 1.5°C and 2°C of global warming as 
opposed to at 2.6°C of global warming in AR5, owing to new and 
multiple lines of evidence for changing risks for coral reefs, the 
Arctic and biodiversity in general (high confidence). {3.5.2.1}

2.	 In ‘Extreme weather events’ (RFC2), the transition from 
moderate to high risk is now located between 1.0°C and 
1.5°C of global warming, which is very similar to the AR5 
assessment but is projected with greater confidence (medium 
confidence). The impact literature contains little information 
about the potential for human society to adapt to extreme 
weather events, and hence it has not been possible to locate 
the transition from ‘high’ to ‘very high’ risk within the context of 
assessing impacts at 1.5°C versus 2°C of global warming. There 
is thus low confidence in the level at which global warming could 
lead to very high risks associated with extreme weather events in 
the context of this report. {3.5} 

3.	 With respect to the ‘Distribution of impacts’ (RFC3) a 
transition from moderate to high risk is now located 
between 1.5°C and 2°C of global warming, compared with 
between 1.6°C and 2.6°C global warming in AR5, owing to new 
evidence about regionally differentiated risks to food security, 
water resources, drought, heat exposure and coastal submergence 
(high confidence). {3.5}

4.	 In ‘global aggregate impacts’ (RFC4) a transition from 
moderate to high levels of risk is now located between 
1.5°C and 2.5°C of global warming, as opposed to at 3.6°C of 
warming in AR5, owing to new evidence about global aggregate 
economic impacts and risks to Earth’s biodiversity (medium 
confidence). {3.5}

5.	 Finally, ‘large-scale singular events’ (RFC5), moderate risk 
is now located at 1°C of global warming and high risk is 
located at 2.5°C of global warming, as opposed to at 1.6°C 
(moderate risk) and around 4°C (high risk) in AR5, because of new 
observations and models of the West Antarctic ice sheet (medium 
confidence). {3.3.9, 3.5.2, 3.6.3}
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3.1	 About the Chapter 

Chapter 3 uses relevant definitions of a potential 1.5°C warmer world 
from Chapters 1 and 2 and builds directly on their assessment of gradual 
versus overshoot scenarios. It interacts with information presented in 
Chapter 2 via the provision of specific details relating to the mitigation 
pathways (e.g., land-use changes) and their implications for impacts. 
Chapter 3 also includes information needed for the assessment and 
implementation of adaptation options (presented in Chapter 4), as 
well as the context for considering the interactions of climate change 
with sustainable development and for the assessment of impacts on 
sustainability, poverty and inequalities at the household to subregional 
level (presented in Chapter 5).

This chapter is necessarily transdisciplinary in its coverage of the 
climate system, natural and managed ecosystems, and human 
systems and responses, owing to the integrated nature of the natural 
and human experience. While climate change is acknowledged as a 
centrally important driver, it is not the only driver of risks to human and 
natural systems, and in many cases, it is the interaction between these 
two broad categories of risk that is important (Chapter 1).

The flow of the chapter, linkages between sections, a list of chapter- 
and cross-chapter boxes, and a content guide for reading according 
to focus or interest are given in Figure 3.1. Key definitions used in the 
chapter are collected in the Glossary. Confidence language is used 
throughout this chapter and likelihood statements (e.g., likely, very 
likely) are provided when there is high confidence in the assessment.

Section 3.1
Introduction

Section 3.2
Assessing 1.5°C

Section 3.4
Observed Impacts and 

Projected Risks in Natural 
and Human Systems

Section 3.3
Global and Regional 
Climate Changes and 
Associated Hazards

Section 3.6
Implications of Different  
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Figure 3.1 |  Chapter 3 structure and quick guide.

The underlying literature assessed in Chapter 3 is broad and includes a 
large number of recent publications specific to assessments for 1.5°C 
of warming. The chapter also utilizes information covered in prior 
IPCC special reports, for example the Special Report on Managing the 
Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX; IPCC, 2012), and many chapters from the IPCC 
WGII Fifth Assessment Report (AR5) that assess impacts on natural 
and managed ecosystems and humans, as well as adaptation options 
(IPCC, 2014b). For this reason, the chapter provides information based 

on a broad range of assessment methods. Details about the approaches 
used are presented in Section 3.2. 

Section 3.3 gives a general overview of recent literature on observed 
climate change impacts as the context for projected future risks. With 
a few exceptions, the focus here is the analysis of transient responses 
at 1.5°C and 2°C of global warming, with simulations of short-term 
stabilization scenarios (Section 3.2) also assessed in some cases. In 
general, long-term equilibrium stabilization responses could not be 
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assessed owing to a lack of data and analysis. A detailed analysis of 
detection and attribution is not provided but will be the focus of the next 
IPCC assessment report (AR6). Furthermore, possible interventions in 
the climate system through radiation modification measures, which are 
not tied to reductions of greenhouse gas emissions or concentrations, 
are not assessed in this chapter.

Understanding the observed impacts and projected risks of climate 
change is crucial to comprehending how the world is likely to change 
under global warming of 1.5°C above temperatures in the pre-industrial 
period (with reference to 2°C). Section 3.4 explores the new literature 
and updates the assessment of impacts and projected risks for a large 
number of natural and human systems. By also exploring adaptation 
opportunities, where the literature allows, the section prepares the 
reader for discussions in subsequent chapters about opportunities to 
tackle both mitigation and adaptation. The section is mostly globally 
focused because of limited research on regional risks and adaptation 
options at 1.5°C and 2°C. For example, the risks of 1.5°C and 2°C of 
warming in urban areas, as well as the risks of health outcomes under 
these two warming scenarios (e.g. climate-related diseases, air quality 
impacts and mental health problems), were not considered because 
of a lack of projections of how these risks might change in a 1.5°C or 
2°C warmer world. In addition, the complexity of many interactions 
of climate change with drivers of poverty, along with a paucity of 
relevant studies, meant it was not possible to detect and attribute 
many dimensions of poverty and disadvantage to climate change. Even 
though there is increasing documentation of climate-related impacts on 
places where indigenous people live and where subsistence-oriented 
communities are found, relevant projections of the risks associated 
with warming of 1.5°C and 2°C are necessarily limited. 

To explore avoided impacts and reduced risks at 1.5°C compared with 
at 2°C of global warming, the chapter adopts the AR5 ‘Reasons for 
Concern’ aggregated projected risk framework (Section 3.5). Updates 
in terms of the aggregation of risks are informed by the most recent 
literature and the assessments offered in Sections 3.3 and 3.4, with 
a focus on the impacts at 2°C of warming that could potentially be 
avoided if warming were constrained to 1.5°C. Economic benefits that 
would be obtained (Section 3.5.3), climate change ‘hotspots’ that could 
be avoided or reduced (Section 3.5.4 as guided by the assessments of 
Sections 3.3, 3.4 and 3.5), and tipping points that could be circumvented 
(Section 3.5.5) at 1.5°C compared to higher degrees of global warming 
are all examined. The latter assessments are, however, constrained to 
regional analyses, and hence this particular section does not include an 
assessment of specific losses and damages. 

Section 3.6 provides an overview on specific aspects of the mitigation 
pathways considered compatible with 1.5°C of global warming, 
including some scenarios involving temperature overshoot above 
1.5°C global warming during the 21st century. Non-CO2 implications 
and projected risks of mitigation pathways, such as changes to land 
use and atmospheric compounds, are presented and explored. Finally, 
implications for sea ice, sea level and permafrost beyond the end of the 
century are assessed.

The exhaustive assessment of literature specific to global warming 
of 1.5°C above the pre-industrial period, presented across all the 

sections in Chapter 3, highlights knowledge gaps resulting from the 
heterogeneous information available across systems, regions and 
sectors. Some of these gaps are described in Section 3.7.

3.2	 How are Risks at 1.5°C and 
Higher Levels of Global Warming 
Assessed in this Chapter?

The methods that are applied for assessing observed and projected 
changes in climate and weather are presented in Section 3.2.1, while 
those used for assessing the observed impacts on and projected risks to 
natural and managed systems, and to human settlements, are described 
in Section 3.2.2. Given that changes in climate associated with 1.5°C 
of global warming were not the focus of past IPCC reports, dedicated 
approaches based on recent literature that are specific to the present 
report are also described. Background on specific methodological 
aspects (climate model simulations available for assessments at 1.5°C 
global warming, attribution of observed changes in climate and their 
relevance for assessing projected changes at 1.5°C and 2°C global 
warming, and the propagation of uncertainties from climate forcing 
to impacts on ecosystems) are provided in the Supplementary Material 
3.SM.

3.2.1	 How are Changes in Climate and Weather at 1.5°C 
versus Higher Levels of Warming Assessed?

Evidence for the assessment of changes to climate at 1.5°C versus 
2°C can be drawn both from observations and model projections. 
Global mean surface temperature (GMST) anomalies were about 
+0.87°C (±0.10°C likely range) above pre-industrial industrial (1850–
1900) values in the 2006-–2015 decade, with a recent warming 
of about 0.2°C (±0.10°C) per decade (Chapter 1). Human-induced 
global warming reached approximately 1°C (±0.2°C likely range) in 
2017 (Chapter 1). While some of the observed trends may be due 
to internal climate variability, methods of detection and attribution 
can be applied to assess which part of the observed changes may be 
attributed to anthropogenic forcing (Bindoff et al., 2013b). Hence, 
evidence from attribution studies can be used to assess changes 
in the climate system that are already detectable at lower levels of 
global warming and would thus continue to change with a further 
0.5°C or 1°C of global warming (see Supplementary Material 3.SM.1 
and Sections 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.11). A recent study 
identified significant changes in extremes for a 0.5°C difference in 
global warming based on the historical record (Schleussner et al., 
2017). It should also be noted that attributed changes in extremes 
since 1950 that were reported in the IPCC AR5 report (IPCC, 2013) 
generally correspond to changes in global warming of about 0.5°C 
(see 3.SM.1)

Climate model simulations are necessary for the investigation of 
the response of the climate system to various forcings, in particular 
to forcings associated with higher levels of greenhouse gas 
concentrations. Model simulations include experiments with global 
and regional climate models, as well as impact models – driven with 
output from climate models – to evaluate the risk related to climate 
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change for natural and human systems (Supplementary Material 
3.SM.1). Climate model simulations were generally used in the context 
of particular ‘climate scenarios’ from previous IPCC reports (e.g., 
IPCC, 2007, 2013). This means that emissions scenarios (IPCC, 2000) 
were used to drive climate models, providing different projections 
for given emissions pathways. The results were consequently used in 
a ‘storyline’ framework, which presents the development of climate 
in the course of the 21st century and beyond for a given emissions 
pathway. Results were assessed for different time slices within the 
model projections such as 2016–2035 (‘near term’, which is slightly 
below a global warming of 1.5°C according to most scenarios, Kirtman 
et al., 2013), 2046–2065 (mid-21st century, Collins et al., 2013), and 
2081–2100 (end of 21st century, Collins et al., 2013). Given that this 
report focuses on climate change for a given mean global temperature 
response (1.5°C or 2°C), methods of analysis had to be developed and/
or adapted from previous studies in order to provide assessments for 
the specific purposes here. 

A major challenge in assessing climate change under 1.5°C, or 2°C 
(and higher levels), of global warming pertains to the definition of 
a ‘1.5°C or 2°C climate projection’ (see also Cross-Chapter Box 
8 in this chapter). Resolving this challenge includes the following 
considerations:

A.	 The need to distinguish between (i) transient climate responses  
	 (i.e., those that ‘pass through’ 1.5°C or 2°C of global warming),  
	 (ii) short-term stabilization responses (i.e., scenarios for the late  
	 21st century that result in stabilization at a mean global warming  
	 of 1.5°C or 2°C by 2100), and (iii) long-term equilibrium  
	 stabilization responses (i.e., those occurring after several  
	 millennia once climate (temperature) equilibrium at 1.5°C or 2°C  
	 is reached). These responses can be very different in terms of  
	 climate variables and the inertia associated with a given climate  
	 forcing. A striking example is sea level rise (SLR). In this case,  
	 projected increases within the 21st century are minimally  
	 dependent on the scenario considered, yet they stabilize at very  
	 different levels for a long-term warming of 1.5°C versus 2°C  
	 (Section 3.3.9). 

B.	 The ‘1.5°C or 2°C emissions scenarios’ presented in Chapter  
	 2 are targeted to hold warming below 1.5°C or 2°C with a certain  
	 probability (generally two-thirds) over the course, or at the  
	 end, of the 21st century. These scenarios should be seen as the  
	 operationalization of 1.5°C or 2°C warmer worlds. However,  
	 when these emission scenarios are used to drive climate models,  
	 some of the resulting simulations lead to warming above these  
	 respective thresholds (typically with a probability of one-third, see  
	 Chapter 2 and Cross-Chapter Box 8 in this chapter). This is due 
	 both to discrepancies between models and to internal climate  
	 variability. For this reason, the climate outcome for any of these  
	 scenarios, even those excluding an overshoot (see next point, C.),  
	 include some probability of reaching a global climate warming  
	 of more than 1.5°C or 2°C. Hence, a comprehensive assessment  
	 of climate risks associated with ‘1.5°C or 2°C climate scenarios’  
	 needs to include consideration of higher levels of warming (e.g.,  
	 up to 2.5°C to 3°C, see Chapter 2 and Cross-Chapter Box 8 in this  
	 chapter).

C.	 Most of the ‘1.5°C scenarios’, and some of the ‘2°C emissions  
	 scenarios’ presented in Chapter 2 include a temperature  
	 overshoot during the course of the 21st century. This means that  
	 median temperature projections under these scenarios exceed 
	 the target warming levels over the course of the century (typically  
	 0.5°C–1°C higher than the respective target levels at most),  
	 before warming returns to below 1.5°C or 2°C by 2100. During  
	 the overshoot phase, impacts would therefore correspond to  
	 higher transient temperature increases than 1.5°C or 2°C. For this  
	 reason, impacts of transient responses at these higher warming  
	 levels are also partly addressed in Cross-Chapter Box 8 in this  
	 chapter (on a 1.5°C warmer world), and some analyses for  
	 changes in extremes are also presented for higher levels of  
	 warming in Section 3.3 (Figures 3.5, 3.6, 3.9, 3.10, 3.12 and 3.13).  
	 Most importantly, different overshoot scenarios may have very  
	 distinct impacts depending on (i) the peak temperature of  
	 the overshoot, (ii) the length of the overshoot period, and (iii) the  
	 associated rate of change in global temperature over the  
	 time period of the overshoot. While some of these issues are  
	 briefly addressed in Sections 3.3 and 3.6, and in the Cross-Chapter  
	 Box 8, the definition of overshoot and related questions will need  
	 to be more comprehensively addressed in the IPCC AR6 report.

D.	 The levels of global warming that are the focus of this report  
	 (1.5°C and 2°C) are measured relative to the pre-industrial period.  
	 This definition requires an agreement on the exact reference time  
	 period (for 0°C of warming) and the time frame over which the  
	 global warming is assessed, typically 20 to 30 years in length. As  
	 discussed in Chapter 1, a climate with 1.5°C global warming is  
	 one in which temperatures averaged over a multi-decade time  
	 scale are 1.5°C above those in the pre-industrial reference period.  
	 Greater detail is provided in Cross-Chapter Box 8 in this chapter.  
	 Inherent to this is the observation that the mean temperature of  
	 a ‘1.5°C warmer world’ can be regionally and temporally much  
	 higher (e.g., with regional annual temperature extremes involving  
	 warming of more than 6°C; see Section 3.3 and Cross-Chapter  
	 Box 8 in this chapter).

E.	 The interference of factors unrelated to greenhouse gases with  
	 mitigation pathways can strongly affect regional climate. For  
	 example, biophysical feedbacks from changes in land use and  
	 irrigation (e.g., Hirsch et al., 2017; Thiery et al., 2017), or projected  
	 changes in short-lived pollutants (e.g., Z. Wang et al., 2017), can  
	 have large influences on local temperatures and climate  
	 conditions. While these effects are not explicitly integrated into the  
	 scenarios developed in Chapter 2, they may affect projected  
	 changes in climate under 1.5°C of global warming. These issues  
	 are addressed in more detail in Section 3.6.2.2.

The assessment presented in the current chapter largely focuses on 
the analysis of transient responses in climate at 1.5°C versus 2°C 
and higher levels of global warming (see point A. above and Section 
3.3). It generally uses the empirical scaling relationship (ESR) approach 
(Seneviratne et al., 2018c), also termed the ‘time sampling’ approach 
(James et al., 2017), which consists of sampling the response at 1.5°C 
and other levels of global warming from all available global climate 
model scenarios for the 21st century (e.g., Schleussner et al., 2016b; 
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Seneviratne et al., 2016; Wartenburger et al., 2017). The ESR approach 
focuses more on the derivation of a continuous relationship, while 
the term ‘time sampling’ is more commonly used when comparing a 
limited number of warming levels (e.g., 1.5°C versus 2°C). A similar 
approach in the case of regional climate model (RCM) simulations 
consists of sampling the RCM model output corresponding to the 
time frame at which the driving general circulation model (GCM) 
reaches the considered temperature level, for example, as done within  
IMPACT2C (Jacob and Solman, 2017), see description in Vautard et 
al. (2014). As an alternative to the ESR or time sampling approach, 
pattern scaling may be used. Pattern scaling is a statistical approach 
that describes relationships of specific climate responses as a function 
of global temperature change. Some assessments presented in this 
chapter are based on this method. The disadvantage of pattern scaling, 
however, is that the relationship may not perfectly emulate the models’ 
responses at each location and for each global temperature level 
(James et al., 2017). Expert judgement is a third methodology that can 
be used to assess probable changes at 1.5°C or 2°C of global warming 
by combining changes that have been attributed to the observed time 
period (corresponding to warming of 1°C or less if assessed over a 
shorter period) with known projected changes at 3°C or 4°C above 
pre-industrial temperatures (Supplementary Material 3.SM.1). In order 
to assess effects induced by a 0.5°C difference in global warming, 
the historical record can be used at first approximation as a proxy, 
meaning that conditions are compared for two periods that have a 
0.5°C difference in GMST warming (such as 1991–2010 and 1960–
1979, e.g., Schleussner et al., 2017). This in particular also applies to 
attributed changes in extremes since 1950 that were reported in the 
IPCC AR5 report (IPCC, 2013; see also 3.SM.1). Using observations, 
however, it is not possible to account for potential non-linear changes 
that could occur above 1°C of global warming or as 1.5°C of warming 
is reached.

In some cases, assessments of short-term stabilization responses 
are also presented, derived using a subset of model simulations that 
reach a given temperature limit by 2100, or driven by sea surface 
temperature (SST) values consistent with such scenarios. This includes 
new results from the ‘Half a degree additional warming, prognosis and 
projected impacts’ (HAPPI) project (Section 1.5.2; Mitchell et al., 2017). 
Notably, there is evidence that for some variables (e.g., temperature 
and precipitation extremes), responses after short-term stabilization 
(i.e., approximately equivalent to the RCP2.6 scenario) are very similar 
to the transient response of higher-emissions scenarios (Seneviratne et 
al., 2016, 2018c; Wartenburger et al., 2017; Tebaldi and Knutti, 2018). 
This is, however, less the case for mean precipitation (e.g., Pendergrass 
et al., 2015), for which other aspects of the emissions scenarios appear 
relevant.

For the assessment of long-term equilibrium stabilization responses, 
this chapter uses results from existing simulations where available 
(e.g., for sea level rise), although the available data for this type of 
projection is limited for many variables and scenarios and will need to 
be addressed in more depth in the IPCC AR6 report.

Supplementary Material 3.SM.1 of this chapter includes further details 
of the climate models and associated simulations that were used to 
support the present assessment, as well as a background on detection 

and attribution approaches of relevance to assessing changes in 
climate at 1.5°C of global warming.

3.2.2	 How are Potential Impacts on Ecosystems Assessed 
at 1.5°C versus Higher Levels of Warming?

Considering that the impacts observed so far are for a global warming 
lower than 1.5°C (generally up to the 2006–2015 decade, i.e., for a 
global warming of 0.87°C or less; see above), direct information on 
the impacts of a global warming of 1.5°C is not yet available. The 
global distribution of observed impacts shown in AR5 (Cramer et al., 
2014), however, demonstrates that methodologies now exist which 
are capable of detecting impacts on systems strongly influenced by 
factors (e.g., urbanization and human pressure in general) or where 
climate may play only a secondary role in driving impacts. Attribution 
of observed impacts to greenhouse gas forcing is more rarely 
performed, but a recent study (Hansen and Stone, 2016) shows that 
most of the detected temperature-related impacts that were reported 
in AR5 (Cramer et al., 2014) can be attributed to anthropogenic climate 
change, while the signals for precipitation-induced responses are more 
ambiguous.

One simple approach for assessing possible impacts on natural and 
managed systems at 1.5°C versus 2°C consists of identifying impacts of 
a global 0.5°C of warming in the observational record (e.g., Schleussner 
et al., 2017) assuming that the impacts would scale linearly for higher 
levels of warming (although this may not be appropriate). Another 
approach is to use conclusions from analyses of past climates combined 
with modelling of the relationships between climate drivers and natural 
systems (Box 3.3). A more complex approach relies on laboratory or 
field experiments (Dove et al., 2013; Bonal et al., 2016), which provide 
useful information on the causal effect of a few factors, which can be 
as diverse as climate, greenhouse gases (GHG), management practices, 
and biological and ecological variables, on specific natural systems that 
may have unusual physical and chemical characteristics (e.g., Fabricius 
et al., 2011; Allen et al., 2017). This last approach can be important 
in helping to develop and calibrate impact mechanisms and models 
through empirical experimentation and observation. 

Risks for natural and human systems are often assessed with 
impact models where climate inputs are provided by representative 
concentration pathway (RCP)-based climate projections. The number 
of studies projecting impacts at 1.5°C or 2°C of global warming 
has increased in recent times (see Section 3.4), even if the four RCP 
scenarios used in AR5 are not strictly associated with these levels 
of global warming. Several approaches have been used to extract 
the required climate scenarios, as described in Section 3.2.1. As an 
example, Schleussner et al. (2016b) applied a time sampling (or ESR) 
approach, described in Section 3.2.1, to estimate the differential effect 
of 1.5°C and 2°C of global warming on water availability and impacts 
on agriculture using an ensemble of simulations under the RCP8.5 
scenario. As a further example using a different approach, Iizumi et al. 
(2017) derived a 1.5°C scenario from simulations with a crop model 
using an interpolation between the no-change (approximately 2010) 
conditions and the RCP2.6 scenario (with a global warming of 1.8°C in 
2100), and they derived the corresponding 2°C scenario from RCP2.6 
and RCP4.5 simulations in 2100. The Inter-Sectoral Impact Model 
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Integration and Intercomparison Project Phase 2 (ISIMIP2; Frieler et 
al., 2017) extended this approach to investigate a number of sectoral 
impacts on terrestrial and marine ecosystems. In most cases, risks are 
assessed by impact models coupled offline to climate models after bias 
correction, which may modify long-term trends (Grillakis et al., 2017). 

Assessment of local impacts of climate change necessarily involves 
a change in scale, such as from the global scale to that of natural 
or human systems (Frieler et al., 2017; Reyer et al., 2017d; Jacob et 
al., 2018). An appropriate method of downscaling (Supplementary 
Material 3.SM.1) is crucial for translating perspectives on 1.5°C and 
2°C of global warming to scales and impacts relevant to humans and 
ecosystems. A major challenge associated with this requirement is 
the correct reproduction of the variance of local to regional changes, 
as well as the frequency and amplitude of extreme events (Vautard 
et al., 2014). In addition, maintaining physical consistency between 
downscaled variables is important but challenging (Frost et al., 2011).

Another major challenge relates to the propagation of the uncertainties 
at each step of the methodology, from the global forcings to the global 
climate and from regional climate to impacts at the ecosystem level, 
considering local disturbances and local policy effects. The risks for 
natural and human systems are the result of complex combinations of 
global and local drivers, which makes quantitative uncertainty analysis 
difficult. Such analyses are partly done using multimodel approaches, 
such as multi-climate and multi-impact models (Warszawski et al., 
2013, 2014; Frieler et al., 2017). In the case of crop projections, for 
example, the majority of the uncertainty is caused by variation among 
crop models rather than by downscaling outputs of the climate models 
used (Asseng et al., 2013). Error propagation is an important issue 
for coupled models. Dealing correctly with uncertainties in a robust 
probabilistic model is particularly important when considering the 
potential for relatively small changes to affect the already small signal 
associated with 0.5°C of global warming (Supplementary Material 
3.SM.1). The computation of an impact per unit of climatic change, 
based either on models or on data, is a simple way to present the 
probabilistic ecosystem response while taking into account the various 
sources of uncertainties (Fronzek et al., 2011). 

In summary, in order to assess risks at 1.5°C and higher levels of 
global warming, several things need to be considered. Projected 
climates under 1.5°C of global warming differ depending on temporal 
aspects and emission pathways. Considerations include whether global 
temperature is (i) temporarily at this level (i.e., is a transient phase on its 
way to higher levels of warming), (ii) arrives at 1.5°C, with or without 
overshoot, after stabilization of greenhouse gas concentrations, or (iii) 
is at this level as part of long-term climate equilibrium (complete only 
after several millennia). Assessments of impacts of 1.5°C of warming 
are generally based on climate simulations for these different possible 
pathways. Most existing data and analyses focus on transient impacts 
(i). Fewer data are available for dedicated climate model simulations 
that are able to assess pathways consistent with (ii), and very few data 
are available for the assessment of changes at climate equilibrium (iii). 
In some cases, inferences regarding the impacts of further warming of 
0.5°C above present-day temperatures (i.e., 1.5°C of global warming) 
can also be drawn from observations of similar sized changes (0.5°C) 
that have occurred in the past, such as during the last 50 years. 

However, impacts can only be partly inferred from these types of 
observations, given the strong possibility of non-linear changes, as well 
as lag effects for some climate variables (e.g., sea level rise, snow and 
ice melt). For the impact models, three challenges are noted about the 
coupling procedure: (i) the bias correction of the climate model, which 
may modify the simulated response of the ecosystem, (ii) the necessity 
to downscale the climate model outputs to reach a pertinent scale for 
the ecosystem without losing physical consistency of the downscaled 
climate fields, and (iii) the necessity to develop an integrated study of 
the uncertainties. 

3.3	 Global and Regional Climate 
Changes and Associated Hazards

This section provides the assessment of changes in climate at 
1.5°C of global warming relative to changes at higher global mean 
temperatures. Section 3.3.1 provides a brief overview of changes to 
global climate. Sections 3.3.2–3.3.11 provide assessments for specific 
aspects of the climate system, including regional assessments for 
temperature (Section 3.3.2) and precipitation (Section 3.3.3) means 
and extremes. Analyses of regional changes are based on the set of 
regions displayed in Figure 3.2. A synthesis of the main conclusions 
of this section is provided in Section 3.3.11. The section builds upon 
assessments from the IPCC AR5 WGI report (Bindoff et al., 2013a; 
Christensen et al., 2013; Collins et al., 2013; Hartmann et al., 2013; 
IPCC, 2013) and Chapter 3 of the IPCC Special Report on Managing 
the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX; Seneviratne et al., 2012), as well as a substantial 
body of new literature related to projections of climate at 1.5°C and 2°C 
of warming above the pre-industrial period (e.g., Vautard et al., 2014; 
Fischer and Knutti, 2015; Schleussner et al., 2016b, 2017; Seneviratne 
et al., 2016, 2018c; Déqué et al., 2017; Maule et al., 2017; Mitchell et 
al., 2017, 2018a; Wartenburger et al., 2017; Zaman et al., 2017; Betts et 
al., 2018; Jacob et al., 2018; Kharin et al., 2018; Wehner et al., 2018b). 
The main assessment methods are as already detailed in Section 3.2. 

3.3.1	 Global Changes in Climate

There is high confidence that the increase in global mean surface 
temperature (GMST) has reached 0.87°C (±0.10°C likely range) 
above pre-industrial values in the 2006–2015 decade (Chapter 1). 
AR5 assessed that the globally averaged temperature (combined 
over land and ocean) displayed a warming of about 0.85°C [0.65°C 
to 1.06°C] during the period 1880–2012, with a large fraction of the 
detected global warming being attributed to anthropogenic forcing 
(Bindoff et al., 2013a; Hartmann et al., 2013; Stocker et al., 2013). 
While new evidence has highlighted that sampling biases and the 
choice of approaches used to estimate GMST (e.g., using water 
versus air temperature over oceans and using model simulations 
versus observations-based estimates) can affect estimates of GMST 
increase (Richardson et al., 2016; see also Supplementary Material 
3.SM.2), the present assessment is consistent with that of AR5 
regarding a detectable and dominant effect of anthropogenic forcing 
on observed trends in global temperature (also confirmed in Ribes 
et al., 2017). As highlighted in Chapter 1, human-induced warming 
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reached approximately 1°C (±0.2°C likely range) in 2017. More 
background on recent observed trends in global climate is provided 
in the Supplementary Material 3.SM.2.

A global warming of 1.5°C implies higher mean temperatures 
compared to during pre-industrial times in almost all locations, both 
on land and in oceans (high confidence) (Figure 3.3). In addition, 
a global warming of 2°C versus 1.5°C results in robust differences 
in the mean temperatures in almost all locations, both on land and 
in the ocean (high confidence). The land–sea contrast in warming 
is important and implies particularly large changes in temperature 
over land, with mean warming of more than 1.5°C in most land 
regions (high confidence; see Section 3.3.2 for more details). The 
largest increase in mean temperature is found in the high latitudes 
of the Northern Hemisphere (high confidence; Figure 3.3, see Section 
3.3.2 for more details). Projections for precipitation are more 
uncertain, but they highlight robust increases in mean precipitation 
in the Northern Hemisphere high latitudes at 1.5°C global warming 

versus pre-industrial conditions, as well as at 2°C global warming 
versus pre-industrial conditions (high confidence) (Figure 3.3). There 
are consistent but less robust signals when comparing changes in 
mean precipitation at 2°C versus 1.5°C of global warming. Hence, 
it is assessed that there is medium confidence in an increase of 
mean precipitation in high-latitudes at 2°C versus 1.5°C of global 
warming (Figure 3.3). For droughts, changes in evapotranspiration 
and precipitation timing are also relevant (see Section 3.3.4). Figure 
3.4 displays changes in temperature extremes (the hottest daytime 
temperature of the year, TXx, and the coldest night-time temperature 
of the year, TNn) and heavy precipitation (the annual maximum 
5-day precipitation, Rx5day). These analyses reveal distinct patterns 
of changes, with the largest changes in TXx occurring on mid-latitude 
land and the largest changes in TNn occurring at high latitudes 
(both on land and in oceans). Differences in TXx and TNn compared 
to pre-industrial climate are robust at both global warming levels. 
Differences in TXx and TNn at 2°C versus 1.5°C of global warming 
are robust across most of the globe. Changes in heavy precipitation 
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Figure 3.2 |  Regions used for regional analyses provided in Section 3.3. The choice of regions is based on the IPCC Fifth Assessment Report (AR5, Chapter 14, Christensen 
et al., 2013 and Annex 1: Atlas) and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX, Chapter 3, 
Seneviratne et al., 2012), with seven additional regions in the Arctic, Antarctic and islands not included in the IPCC SREX report (indicated with asterisks). Analyses for regions 
with asterisks are provided in the Supplementary Material 3.SM.2
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are less robust, but particularly strong increases are apparent at high 
latitudes as well as in the tropics at both 1.5°C and 2°C of global 
warming compared to pre-industrial conditions. The differences in 
heavy precipitation at 2°C versus 1.5°C global warming are generally 
not robust at grid-cell scale, but they display consistent increases in 
most locations (Figure 3.4). However, as addressed in Section 3.3.3, 
statistically significant differences are found in several large regions and 
when aggregated over the global land area. We thus assess that there 
is high confidence regarding global-scale differences in temperature 
means and extremes at 2°C versus 1.5°C global warming, and medium 
confidence regarding global-scale differences in precipitation means 
and extremes. Further analyses, including differences at 1.5°C and 2°C 
global warming versus 1°C (i.e., present-day) conditions are provided 
in the Supplementary Material 3.SM.2.

These projected changes at 1.5°C and 2°C of global warming are 
consistent with the attribution of observed historical global trends 
in temperature and precipitation means and extremes (Bindoff et al., 
2013a), as well as with some observed changes under the recent 
global warming of 0.5°C (Schleussner et al., 2017). These comparisons 
are addressed in more detail in Sections 3.3.2 and 3.3.3. Attribution 
studies have shown that there is high confidence that anthropogenic 
forcing has had a detectable influence on trends in global warming 
(virtually certain since the mid-20th century), in land warming on 
all continents except Antarctica (likely since the mid-20th century), 
in ocean warming since 1970 (very likely), and in increases in hot 
extremes and decreases in cold extremes since the mid-20th century 

(very likely) (Bindoff et al., 2013a). In addition, there is medium 
confidence that anthropogenic forcing has contributed to increases 
in mean precipitation at high latitudes in the Northern Hemisphere 
since the mid-20th century and to global-scale increases in heavy 
precipitation in land regions with sufficient observations over the 
same period (Bindoff et al., 2013a). Schleussner et al. (2017) showed, 
through analyses of recent observed tendencies, that changes in 
temperature extremes and heavy precipitation indices are detectable 
in observations for the 1991–2010 period compared with those 
for 1960–1979, with a global warming of approximately 0.5°C 
occurring between these two periods (high confidence). The observed 
tendencies over that time frame are thus consistent with attributed 
changes since the mid-20th century (high confidence).

The next sections assess changes in several different types of climate-
related hazards. It should be noted that the different types of hazards 
are considered in isolation but some regions are projected to be 
affected by collocated and/or concomitant changes in several types 
of hazards (high confidence). Two examples are sea level rise and 
heavy precipitation in some regions, possibly leading together to more 
flooding, and droughts and heatwaves, which can together increase 
the risk of fire occurrence. Such events, also called compound events, 
may substantially increase risks in some regions (e.g., AghaKouchak et 
al., 2014; Van Den Hurk et al., 2015; Martius et al., 2016; Zscheischler 
et al., 2018). A detailed assessment of physically-defined compound 
events was not possible as part of this report, but aspects related to 
overlapping multi-sector risks are highlighted in Sections 3.4 and 3.5.

Precipitation (%) Precipitation (%)

Temperature (°C) Temperature (°C)

Mean temperature change
at 1.5°C GMST warming

Mean temperature change
at 2.0°C GMST warming

Difference in mean temperature
change (2.0°C - 1.5°C)

Mean precipitation change
at 1.5°C GMST warming

Mean precipitation change
at 2.0°C GMST warming

Difference in mean precipitation
change (2.0°C - 1.5°C)

Figure 3.3 |  Projected changes in mean temperature (top) and mean precipitation (bottom) at 1.5°C (left) and 2°C (middle) of global warming compared to the pre-industrial 
period (1861–1880), and the difference between 1.5°C and 2°C of global warming (right). Cross-hatching highlights areas where at least two-thirds of the models agree on 
the sign of change as a measure of robustness (18 or more out of 26). Values were assessed from the transient response over a 10-year period at a given warming level, based 
on Representative Concentration Pathway (RCP)8.5 Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations (adapted from Seneviratne et al., 2016 and 
Wartenburger et al., 2017, see Supplementary Material 3.SM.2 for more details). Note that the responses at 1.5°C of global warming are similar for RCP2.6 simulations (see 
Supplementary Material 3.SM.2). Differences compared to 1°C of global warming are provided in the Supplementary Material 3.SM.2. 
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precipitation (Rx5day) (2.0°C – 1.5°C)

Figure 3.4 |  Projected changes in extremes at 1.5°C (left) and 2°C (middle) of global warming compared to the pre-industrial period (1861–1880), and the difference between 
1.5°C and 2°C of global warming (right). Cross-hatching highlights areas where at least two-thirds of the models agree on the sign of change as a measure of robustness 
(18 or more out of 26): temperature of annual hottest day (maximum temperature), TXx (top), and temperature of annual coldest night (minimum temperature), TNn (middle), 
and annual maximum 5-day precipitation, Rx5day (bottom). The underlying methodology and data basis are the same as for Figure 3.3 (see Supplementary Material 3.SM.2 
for more details). Note that the responses at 1.5°C of global warming are similar for Representative Concentration Pathway (RCP)2.6 simulations (see Supplementary Material 
3.SM.2). Differences compared to 1°C of global warming are provided in the Supplementary Material 3.SM.2.

3.3.2	 Regional Temperatures on Land, Including Extremes

3.3.2.1	 Observed and attributed changes in regional 
temperature means and extremes

While the quality of temperature measurements obtained through 
ground observational networks tends to be high compared to that of 
measurements for other climate variables (Seneviratne et al., 2012), 
it should be noted that some regions are undersampled. Cowtan and 
Way (2014) highlighted issues regarding undersampling, which is 
most problematic at the poles and over Africa, and which may lead 
to biases in estimated changes in GMST (see also Supplementary 
Material 3.SM.2 and Chapter 1). This undersampling also affects the 
confidence of assessments regarding regional observed and projected 
changes in both mean and extreme temperature. Despite this partly 
limited coverage, the attribution chapter of AR5 (Bindoff et al., 2013a) 
and recent papers (e.g., Sun et al., 2016; Wan et al., 2018) assessed 
that, over every continental region and in many sub-continental 

regions, anthropogenic influence has made a substantial contribution 
to surface temperature increases since the mid-20th century.

Based on the AR5 and SREX, as well as recent literature (see 
Supplementary Material 3.SM), there is high confidence (very likely) 
that there has been an overall decrease in the number of cold days 
and nights and an overall increase in the number of warm days and 
nights at the global scale on land. There is also high confidence (likely) 
that consistent changes are detectable on the continental scale in 
North America, Europe and Australia. There is high confidence that 
these observed changes in temperature extremes can be attributed to 
anthropogenic forcing (Bindoff et al., 2013a). As highlighted in Section 
3.2, the observational record can be used to assess past changes 
associated with a global warming of 0.5°C. Schleussner et al. (2017) 
used this approach to assess observed changes in extreme indices for 
the 1991–2010 versus the 1960–1979 period, which corresponds to 
just about a 0.5°C GMST difference in the observed record (based on 
the Goddard Institute for Space Studies Surface Temperature Analysis 
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(GISTEMP) dataset, Hansen et al., 2010). They found that substantial 
changes due to 0.5°C of warming are apparent for indices related to 
hot and cold extremes, as well as for the Warm Spell Duration Indicator 
(WSDI). In particular, they identified that one-quarter of the land has 
experienced an intensification of hot extremes (maximum temperature 
on the hottest day of the year, TXx) by more than 1°C and a reduction in 
the intensity of cold extremes by at least 2.5°C (minimum temperature 
on the coldest night of the year, TNn). In addition, the same study 
showed that half of the global land mass has experienced changes 
in WSDI of more than six days, as well as an emergence of extremes 
outside the range of natural variability (Schleussner et al., 2017). 
Analyses from Schleussner et al. (2017) for temperature extremes are 
provided in the Supplementary Material 3.SM, Figure 3.SM.6. It should 
be noted that assessments of attributed changes in the IPCC SREX and 
AR5 reports were generally provided since 1950, for time frames also 
approximately corresponding to a 0.5°C global warming (3.SM).

3.3.2.2	 Projected changes in regional temperature means and 
extremes at 1.5°C versus 2°C of global warming

There are several lines of evidence available for providing a regional 
assessment of projected changes in temperature means and extremes 
at 1.5°C versus 2°C of global warming (see Section 3.2). These include: 
analyses of changes in extremes as a function of global warming based 
on existing climate simulations using the empirical scaling relationship 
(ESR) and variations thereof (e.g., Schleussner et al., 2017; Dosio and 
Fischer, 2018; Seneviratne et al., 2018c; see Section 3.2 for details about 
the methodology); dedicated simulations of 1.5°C versus 2°C of global 
warming, for instance based on the Half a degree additional warming, 
prognosis and projected impacts (HAPPI) experiment (Mitchell et al., 
2017) or other model simulations (e.g., Dosio et al., 2018; Kjellström et 
al., 2018); and analyses based on statistical pattern scaling approaches 
(e.g., Kharin et al., 2018). These different lines of evidence lead to 
qualitatively consistent results regarding changes in temperature 
means and extremes at 1.5°C of global warming compared to the pre-
industrial climate and 2°C of global warming. 

There are statistically significant differences in temperature means and 
extremes at 1.5°C versus 2°C of global warming, both in the global 
average (Schleussner et al., 2016b; Dosio et al., 2018; Kharin et al., 
2018), as well as in most land regions (high confidence) (Wartenburger 
et al., 2017; Seneviratne et al., 2018c; Wehner et al., 2018b). Projected 
temperatures over oceans display significant increases in means and 
extremes between 1.5°C and 2°C of global warming (Figures 3.3 and 
3.4). A general background on the available evidence on regional 
changes in temperature means and extremes at 1.5°C versus 2°C of 
global warming is provided in the Supplementary Material 3.SM.2. As 
an example, Figure 3.5 shows regionally-based analyses for the IPCC 
SREX regions (see Figure 3.2) of changes in the temperature of hot 
extremes as a function of global warming (corresponding analyses 
for changes in the temperature of cold extremes are provided in the 
Supplementary Material 3.SM.2). As demonstrated in these analyses, 
the mean response of the intensity of temperature extremes in climate 
models to changes in the global mean temperature is approximately 
linear and independent of the considered emissions scenario 
(Seneviratne et al., 2016; Wartenburger et al., 2017). Nonetheless, in 
the case of changes in the number of days exceeding a given threshold, 

changes are approximately exponential, with higher increases for rare 
events (Fischer and Knutti, 2015; Kharin et al., 2018); see also Figure 
3.6. This behaviour is consistent with a linear increase in absolute 
temperature for extreme threshold exceedances (Whan et al., 2015). 

As mentioned in Section 3.3.1, there is an important land–sea warming 
contrast, with stronger warming on land (see also Christensen et al., 
2013; Collins et al., 2013; Seneviratne et al., 2016), which implies that 
regional warming on land is generally more than 1.5°C even when 
mean global warming is at 1.5°C. As highlighted in Seneviratne et al. 
(2016), this feature is generally stronger for temperature extremes 
(Figures 3.4 and 3.5; Supplementary Material 3.SM.2 ). For differences 
in regional temperature extremes at a mean global warming of 1.5°C 
versus 2°C, that is, a difference of 0.5°C in global warming, this implies 
differences of as much as 1°C–1.5°C in some locations, which are two 
to three times larger than the differences in global mean temperature. 
For hot extremes, the strongest warming is found in central and eastern 
North America, central and southern Europe, the Mediterranean, 
western and central Asia, and southern Africa (Figures 3.4 and 3.5) 
(medium confidence). These regions are all characterized by a strong 
soil-moisture–temperature coupling and projected increased dryness 
(Vogel et al., 2017), which leads to a reduction in evaporative cooling 
in the projections. Some of these regions also show a wide range of 
responses to temperature extremes, in particular central Europe and 
central North America, owing to discrepancies in the representation of 
the underlying processes in current climate models (Vogel et al., 2017). 
For mean temperature and cold extremes, the strongest warming is 
found in the northern high-latitude regions (high confidence). This is 
due to substantial ice-snow-albedo-temperature feedbacks (Figure 
3.3 and Figure 3.4, middle) related to the known ‘polar amplification’ 
mechanism (e.g., IPCC, 2013; Masson-Delmotte et al., 2013).

Figure 3.7 displays maps of changes in the number of hot days 
(NHD) at 1.5°C and 2°C of GMST increase. Maps of changes in the 
number of frost days (FD) can be found in Supplementary Material 
3.SM.2. These analyses reveal clear patterns of changes between the 
two warming levels, which are consistent with analysed changes in 
heatwave occurrence (e.g., Dosio et al., 2018). For the NHD, the largest 
differences are found in the tropics (high confidence), owing to the 
low interannual temperature variability there (Mahlstein et al., 2011), 
although absolute changes in hot temperature extremes tended to 
be largest at mid-latitudes (high confidence) (Figures 3.4 and 3.5). 
Extreme heatwaves are thus projected to emerge earliest in the tropics 
and to become widespread in these regions already at 1.5°C of global 
warming (high confidence). These results are consistent with other 
recent assessments. Coumou and Robinson (2013) found that 20% 
of the global land area, centred in low-latitude regions, is projected 
to experience highly unusual monthly temperatures during Northern 
Hemisphere summers at 1.5°C of global warming, with this number 
nearly doubling at 2°C of global warming. 

Figure 3.8 features an objective identification of ‘hotspots’ / key 
risks in temperature indices subdivided by region, based on the ESR 
approach applied to Coupled Model Intercomparison Project Phase 
5 (CMIP5) simulations (Wartenburger et al., 2017). Note that results 
based on the HAPPI multimodel experiment (Mitchell et al., 2017) 
are similar (Seneviratne et al., 2018c). The considered regions follow 
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the classification used in Figure 3.2 and also include the global land 
areas. Based on these analyses, the following can be stated: significant 
changes in responses are found in all regions for most temperature 
indices, with the exception of i) the diurnal temperature range (DTR) in 
most regions, ii) ice days (ID), frost days (FD) and growing season length 
(GSL) (mostly in regions where differences are zero, because, e.g., there 
are no ice or frost days), iii) the minimum yearly value of the maximum 
daily temperature (TXn) in very few regions. In terms of the sign of 
the changes, warm extremes display an increase in intensity, frequency 
and duration (e.g., an increase in the temperature of the hottest day of 
the year (TXx) in all regions, an increase in the proportion of days with 
a maximum temperature above the 90th percentile of Tmax (TX90p) 
in all regions, and an increase in the length of the WSDI in all regions), 
while cold extremes display a decrease in intensity, frequency and 
duration (e.g., an increase in the temperature of the coldest night of 
the year (TNn) in all regions, a decrease in the proportion of days with 
a minimum temperature below the 10th percentile of Tmin (TN10p), 
and a decrease in the cold spell duration index (CSDI) in all regions). 
Hence, while warm extremes are intensified, cold extremes become 
less intense in affected regions.

Overall, large increases in hot extremes occur in many densely 
inhabited regions (Figure 3.5), for both warming scenarios compared 
to pre-industrial and present-day climate, as well as for 2°C versus 
1.5°C GMST warming. For instance, Dosio et al. (2018) concluded, 
based on a modelling study, that 13.8% of the world population would 
be exposed to ‘severe heatwaves’ at least once every 5 years under 
1.5°C of global warming, with a threefold increase (36.9%) under 2°C 
of GMST warming, corresponding to a difference of about 1.7 billion 
people between the two global warming levels. They also concluded 
that limiting global warming to 1.5°C would result in about 420 
million fewer people being frequently exposed to extreme heatwaves, 
and about 65 million fewer people being exposed to ‘exceptional 
heatwaves’ compared to conditions at 2°C GMST warming. However, 
changes in vulnerability were not considered in their study. For this 
reason, we assess that there is medium confidence in their conclusions.

In summary, there is high confidence that there are robust and 
statistically significant differences in the projected temperature means 
and extremes at 1.5°C versus 2°C of global warming, both in the global 
average and in nearly all land regions4 (likely). Further, the observational 
record reveals that substantial changes due to a 0.5°C GMST warming 
are apparent for indices related to hot and cold extremes, as well as for 
the WSDI (likely). A global warming of 2°C versus 1.5°C would lead to 
more frequent and more intense hot extremes in all land regions4, as 
well as longer warm spells, affecting many densely inhabited regions 
(very likely). The strongest increases in the frequency of hot extremes 
are projected for the rarest events (very likely). On the other hand, cold 
extremes would become less intense and less frequent, and cold spells 
would be shorter (very likely). Temperature extremes on land would 
generally increase more than the global average temperature (very 
likely). Temperature increases of extreme hot days in mid-latitudes are 
projected to be up to two times the increase in GMST, that is, 3°C at 
1.5°C GMST warming (high confidence). The highest levels of warming 
for extreme hot days are expected to occur in central and eastern North 

America, central and southern Europe, the Mediterranean, western and 
central Asia, and southern Africa (medium confidence). These regions 
have a strong soil-moisture-temperature coupling in common as well 
as increased dryness and, consequently, a reduction in evaporative 
cooling. However, there is a substantial range in the representation 
of these processes in models, in particular in central Europe and 
central North America (medium confidence). The coldest nights in high 
latitudes warm by as much as 1.5°C for a 0.5°C increase in GMST, 
corresponding to a threefold stronger warming (high confidence). NHD 
shows the largest differences between 1.5°C and 2°C in the tropics, 
because of the low interannual temperature variability there (high 
confidence); extreme heatwaves are thus projected to emerge earliest 
in these regions, and they are expected to become widespread already 
at 1.5°C of global warming (high confidence). Limiting global warming 
to 1.5°C instead of 2°C could result in around 420 million fewer people 
being frequently exposed to extreme heatwaves, and about 65 million 
fewer people being exposed to exceptional heatwaves, assuming 
constant vulnerability (medium confidence).

3.3.3	 Regional Precipitation, Including Heavy 
Precipitation and Monsoons

This section addresses regional changes in precipitation on land, with 
a focus on heavy precipitation and consideration of changes to the key 
features of monsoons.

3.3.3.1	 Observed and attributed changes in regional 
precipitation

Observed global changes in the water cycle, including precipitation, 
are more uncertain than observed changes in temperature (Hartmann 
et al., 2013; Stocker et al., 2013). There is high confidence that 
mean precipitation over the mid-latitude land areas of the Northern 
Hemisphere has increased since 1951 (Hartmann et al., 2013). For 
other latitudinal zones, area-averaged long-term positive or negative 
trends have low confidence because of poor data quality, incomplete 
data or disagreement amongst available estimates (Hartmann et al., 
2013). There is, in particular, low confidence regarding observed trends 
in precipitation in monsoon regions, according to the SREX report 
(Seneviratne et al., 2012) and AR5 (Hartmann et al., 2013), as well as 
more recent publications (Singh et al., 2014; Taylor et al., 2017; Bichet 
and Diedhiou, 2018; see Supplementary Material 3.SM.2). 

For heavy precipitation, AR5 (Hartmann et al., 2013) assessed that 
observed trends displayed more areas with increases than decreases in 
the frequency, intensity and/or amount of heavy precipitation (likely). 
In addition, for land regions where observational coverage is sufficient 
for evaluation, it was assessed that there is medium confidence that 
anthropogenic forcing has contributed to a global-scale intensification 
of heavy precipitation over the second half of the 20th century (Bindoff 
et al., 2013a).

Regarding changes in precipitation associated with global warming 
of 0.5°C, the observed record suggests that increases in precipitation 
extremes can be identified for annual maximum 1-day precipitation 

4	 Using the SREX definition of regions (Figure 3.2) Continued page 194 >
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Figure 3.5 |  Projected changes in annual maximum daytime temperature (TXx) as a function of global warming for IPCC Special Report on Managing the Risk of Extreme Events 
and Disasters to Advance Climate Change Adaptation (SREX) regions (see Figure 3.2), based on an empirical scaling relationship applied to Coupled Model Intercomparison 
Project Phase 5 (CMIP5) data (adapted from Seneviratne et al., 2016 and Wartenburger et al., 2017) together with projected changes from the Half a degree additional warming, 
prognosis and projected impacts (HAPPI) multimodel experiment (Mitchell et al., 2017; based on analyses in Seneviratne et al., 2018c) (bar plots on regional analyses and central 
plot, respectively). For analyses for other regions from Figure 3.2 (with asterisks), see Supplementary Material 3.SM.2. (The stippling indicates significance of the differences in 
changes between 1.5°C and 2°C of global warming based on all model simulations, using a two-sided paired Wilcoxon test (P = 0.01, after controlling the false discovery rate 
according to Benjamini and Hochberg, 1995). See Supplementary Material 3.SM.2 for details.

Figure 3.6 |  Probability ratio (PR) of exceeding extreme temperature thresholds. (a) PR of exceeding the 99th (blue) and 99.9th (red) percentile of pre-industrial daily 
temperatures at a given warming level, averaged across land (from Fischer and Knutti, 2015). (b) PR for the hottest daytime temperature of the year (TXx). (c) PR for the coldest 
night of the year (TNn) for different event probabilities (with RV indicating return values) in the current climate (1°C of global warming). Shading shows the interquartile 
(25–75%) range (from Kharin et al., 2018). 
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Figure 3.7 |  Projected changes in the number of hot days (NHD; 10% warmest days) at 1.5°C (left) and at 2°C (middle) of global warming compared to the pre-industrial 
period (1861–1880), and the difference between 1.5°C and 2°C of warming (right). Cross-hatching highlights areas where at least two-thirds of the models agree on the sign of 
change as a measure of robustness (18 or more out of 26). The underlying methodology and the data basis are the same as for Figure 3.2 (see Supplementary Material 3.SM.2 
for more details). Differences compared to 1°C global warming are provided in the Supplementary Material 3.SM.2.

Figure 3.8 |  Significance of differences in regional mean temperature and range of temperature indices between the 1.5°C and 2°C global mean temperature targets (rows). 
Definitions of indices: T: mean temperature; CSDI: cold spell duration index; DTR: diurnal temperature range; FD: frost days; GSL: growing season length; ID: ice days; SU: summer 
days; TN10p: proportion of days with a minimum temperature (TN) lower than the 10th percentile of TN; TN90p: proportion of days with TN higher than the 90th percentile of 
TN; TNn: minimum yearly value of TN; TNx: maximum yearly value of TN; TR: tropical nights; TX10p: proportion of days with a maximum temperature (TX) lower than the 10th 
percentile of TX; TX90p: proportion of days with TX higher than the 90th percentile of TX; TXn: minimum yearly value of TX; TXx: maximum yearly value of TX; WSDI: warm spell 
duration index. Columns indicate analysed regions and global land (see Figure 3.2 for definitions). Significant differences are shown in red shading, with increases indicated 
with + and decreases indicated with –, while non-significant differences are shown in grey shading. White shading indicates when an index is the same at the two global 
warming levels (i.e., zero changes). Note that decreases in CSDI, FD, ID, TN10p and TX10p are linked to increased temperatures on cold days or nights. Significance was tested 
using a two-sided paired Wilcoxon test (P=0.01, after controlling the false discovery rate according to Benjamini and Hochberg, 1995) (adapted from Wartenburger et al., 2017). 
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(RX1day) and consecutive 5-day precipitation (RX5day) for GMST 
changes of this magnitude (Supplementary Material 3.SM.2, Figure 
3.SM.7; Schleussner et al., 2017). It should be noted that assessments 
of attributed changes in the IPCC SREX and AR5 reports were generally 
provided since 1950, for time frames also approximately corresponding 
to a 0.5°C global warming (3.SM).

3.3.3.2	 Projected changes in regional precipitation at 1.5°C 
versus 2°C of global warming

Figure 3.3 in Section 3.3.1 summarizes the projected changes in mean 
precipitation at 1.5°C and 2°C of global warming. Both warming 
levels display robust differences in mean precipitation compared to 
the pre-industrial period. Regarding differences at 2°C vs 1.5°C global 
warming, some regions are projected to display changes in mean 
precipitation at 2°C compared with that at 1.5°C of global warming in 
the CMIP5 multimodel average, such as decreases in the Mediterranean 
area, including southern Europe, the Arabian Peninsula and Egypt, or 
increases in high latitudes. The results, however, are less robust across 
models than for mean temperature. For instance, Déqué et al. (2017) 
investigated the impact of 2°C of global warming on precipitation over 
tropical Africa and found that average precipitation does not show a 
significant response, owing to two phenomena: (i) the number of days 
with rain decreases whereas the precipitation intensity increases, and 
(ii) the rainy season occurs later during the year, with less precipitation 
in early summer and more precipitation in late summer. The results 
from Déqué et al. (2017) regarding insignificant differences between 
1.5°C and 2°C scenarios for tropical Africa are consistent with the 
results presented in Figure 3.3. For Europe, recent studies (Vautard et 
al., 2014; Jacob et al., 2018; Kjellström et al., 2018) have shown that 
2°C of global warming was associated with a robust increase in mean 
precipitation over central and northern Europe in winter but only over 
northern Europe in summer, and with decreases in mean precipitation 
in central/southern Europe in summer. Precipitation changes reaching 
20% have been projected for the 2°C scenario (Vautard et al., 2014) 
and are overall more pronounced than with 1.5°C of global warming 
(Jacob et al., 2018; Kjellström et al., 2018).

Regarding changes in heavy precipitation, Figure 3.9 displays projected 
changes in the 5-day maximum precipitation (Rx5day) as a function 
of global temperature increase, using a similar approach as in Figure 
3.5. Further analyses are available in Supplementary Material 3.SM.2. 
These analyses show that projected changes in heavy precipitation are 
more uncertain than those for temperature extremes. However, the 
mean response of model simulations is generally robust and linear 
(see also Fischer et al., 2014; Seneviratne et al., 2016). As observed for 
temperature extremes, this response is also mostly independent of the 
considered emissions scenario (e.g., RCP2.6 versus RCP8.5; see also 
Section 3.2). This feature appears to be specific to heavy precipitation, 
possibly due to a stronger coupling with temperature, as the scaling of 
projections of mean precipitation changes with global warming shows 
some scenario dependency (Pendergrass et al., 2015).

Robust changes in heavy precipitation compared to pre-industrial 
conditions are found at both 1.5°C and 2°C global warming (Figure 
3.4). This is also consistent with results for, for example, the European 

continent, although different indices for heavy precipitation changes 
have been analysed. Based on regional climate simulations, Vautard 
et al. (2014) found a robust increase in heavy precipitation everywhere 
in Europe and in all seasons, except southern Europe in summer at 2°C 
versus 1971–2000. Their findings are consistent with those of Jacob 
et al. (2014), who used more recent downscaled climate scenarios 
(EURO-CORDEX) and a higher resolution (12 km), but the change 
is not so pronounced in Teichmann et al. (2018). There is consistent 
agreement in the direction of change in heavy precipitation at 1.5°C 
of global warming over much of Europe, compared to 1971–2000 
(Jacob et al., 2018).

Differences in heavy precipitation are generally projected to be 
small between 1.5°C and 2°C GMST warming (Figure 3.4 and 3.9 
and Supplementary Material 3.SM.2, Figure 3.SM.10). Some regions 
display substantial increases, for instance southern Asia, but generally 
in less than two-thirds of the CMIP5 models (Figure 3.4, Supplementary 
Material 3.SM.2, Figure 3.SM.10). Wartenburger et al. (2017) suggested 
that there are substantial differences in heavy precipitation in eastern 
Asia at 1.5°C versus 2°C. Overall, while there is variation among 
regions, the global tendency is for heavy precipitation to increase at 
2°C compared with at 1.5°C (see e.g., Fischer and Knutti, 2015 and 
Kharin et al., 2018, as illustrated in Figure 3.10 from this chapter; see 
also Betts et al., 2018). 

AR5 assessed that the global monsoon, aggregated over all monsoon 
systems, is likely to strengthen, with increases in its area and intensity, 
while the monsoon circulation weakens (Christensen et al., 2013). A 
few publications provide more recent evaluations of projections of 
changes in monsoons for high-emission scenarios (e.g., Jiang and Tian, 
2013; Jones and Carvalho, 2013; Sylla et al., 2015, 2016; Supplementary 
Material 3.SM.2 ). However, scenarios at 1.5°C or 2°C global warming 
would involve a substantially smaller radiative forcing than those 
assessed in AR5 and these more recent studies, and there appears 
to be no specific assessment of changes in monsoon precipitation at 
1.5°C versus 2°C of global warming in the literature. Consequently, the 
current assessment is that there is low confidence regarding changes 
in monsoons at these lower global warming levels, as well as regarding 
differences in monsoon responses at 1.5°C versus 2°C.

Similar to Figure 3.8, Figure 3.11 features an objective identification of 
‘hotspots’ / key risks outlined in heavy precipitation indices subdivided 
by region, based on the approach by Wartenburger et al. (2017). The 
considered regions follow the classification used in Figure 3.2 and also 
include global land areas. Hotspots displaying statistically significant 
changes in heavy precipitation at 1.5°C versus 2°C global warming 
are located in high-latitude (Alaska/western Canada, eastern Canada/
Greenland/Iceland, northern Europe, northern Asia) and high-elevation 
(e.g., Tibetan Plateau) regions, as well as in eastern Asia (including 
China and Japan) and in eastern North America. Results are less 
consistent for other regions. Note that analyses for meteorological 
drought (lack of precipitation) are provided in Section 3.3.4.

In summary, observations and projections for mean and heavy 
precipitation are less robust than for temperature means and extremes 
(high confidence). Observations show that there are more areas with 
increases than decreases in the frequency, intensity and/or amount of 

3.3.3.1 (continued)
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Figure 3.9 |  Projected changes in annual 5-day maximum precipitation (Rx5day) as a function of global warming for IPCC Special Report on the Risk of Extreme Events and 
Disasters to Advance Climate Change Adaptation (SREX) regions (see Figure 3.2), based on an empirical scaling relationship applied to Coupled Model Intercomparison Project 
Phase 5 (CMIP5) data together with projected changes from the HAPPI multimodel experiment (bar plots on regional analyses and central plot). The underlying methodology 
and data basis are the same as for Figure 3.5 (see Supplementary Material 3.SM.2 for more details).

Figure 3.10 |  Probability ratio (PR) of exceeding (heavy precipitation) thresholds. (a) PR of exceeding the 99th (blue) and 99.9th (red) percentile of pre-industrial daily 
precipitation at a given warming level, averaged across land (from Fischer and Knutti, 2015). (b) PR for precipitation extremes (RX1day) for different event probabilities (with RV 
indicating return values) in the current climate (1°C of global warming). Shading shows the interquartile (25–75%) range (from Kharin et al., 2018).
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3.3.3.2 (continued) 

heavy precipitation (high confidence). Several large regions display 
statistically significant differences in heavy precipitation at 1.5°C 
versus 2°C GMST warming, with stronger increases at 2°C global 
warming, and there is a global tendency towards increases in heavy 
precipitation on land at 2°C compared with 1.5°C warming (high 
confidence). Overall, regions that display statistically significant 

changes in heavy precipitation between 1.5°C and 2°C of global 
warming are located in high latitudes (Alaska/western Canada, eastern 
Canada/Greenland/Iceland, northern Europe, northern Asia) and high 
elevation (e.g., Tibetan Plateau), as well as in eastern Asia (including 
China and Japan) and in eastern North America (medium confidence). 
There is low confidence in projected changes in heavy precipitation in 
other regions.

Figure 3.11 |  Significance of differences in regional mean precipitation and range of precipitation indices between the 1.5°C and 2°C global mean temperature targets 
(rows). Definition of indices: PRCPTOT: mean precipitation; CWD: consecutive wet days; R10mm: number of days with precipitation >10 mm; R1mm: number of days with 
precipitation >1 mm; R20mm: number of days with precipitation >20 mm; R95ptot: proportion of rain falling as 95th percentile or higher; R99ptot: proportion of rain falling as 
99th percentile or higher; RX1day: intensity of maximum yearly 1-day precipitation; RX5day: intensity of maximum yearly 5-day precipitation; SDII: Simple Daily Intensity Index. 
Columns indicate analysed regions and global land (see Figure 3.2 for definitions). Significant differences are shown in light blue (wetting tendency) or brown (drying tendency) 
shading, with increases indicated with ‘+’ and decreases indicated with ‘–’, while non-significant differences are shown in grey shading. The underlying methodology and the 
data basis are the same as in Figure 3.8 (see Supplementary Material 3.SM.2 for more details).

3.3.4	 Drought and Dryness

3.3.4.1	 Observed and attributed changes

The IPCC AR5 assessed that there was low confidence in the sign of 
drought trends since 1950 at the global scale, but that there was high 
confidence in observed trends in some regions of the world, including 
drought increases in the Mediterranean and West Africa and drought 
decreases in central North America and northwest Australia (Hartmann 
et al., 2013; Stocker et al., 2013). AR5 assessed that there was low 
confidence in the attribution of global changes in droughts and did 
not provide assessments for the attribution of regional changes in 
droughts (Bindoff et al., 2013a). 

The recent literature does not suggest that the SREX and AR5 
assessment of drought trends should be revised, except in the 
Mediterranean region. Recent publications based on observational and 
modelling evidence suggest that human emissions have substantially 
increased the probability of drought years in the Mediterranean region 
(Gudmundsson and Seneviratne, 2016; Gudmundsson et al., 2017). 
Based on this evidence, there is medium confidence that enhanced 

greenhouse forcing has contributed to increased drying in the 
Mediterranean region (including southern Europe, northern Africa and 
the Near East) and that this tendency will continue to increase under 
higher levels of global warming.

3.3.4.2	 Projected changes in drought and dryness at 1.5°C 
versus 2°C

There is medium confidence in projections of changes in drought 
and dryness. This is partly consistent with AR5, which assessed these 
projections as being ‘likely (medium confidence)’ (Collins et al., 2013; 
Stocker et al., 2013). However, given this medium confidence, the 
current assessment does not include a likelihood statement, thereby 
maintaining consistency with the IPCC uncertainty guidance document 
(Mastrandrea et al., 2010) and the assessment of the IPCC SREX report 
(Seneviratne et al., 2012). The technical summary of AR5 (Stocker et 
al., 2013) assessed that soil moisture drying in the Mediterranean, 
southwestern USA and southern African regions was consistent with 
projected changes in the Hadley circulation and increased surface 
temperatures, and it concluded that there was high confidence 
in likely surface drying in these regions by the end of this century 
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Box 3.1 |  Sub-Saharan Africa: Changes in Temperature and Precipitation Extremes

Sub-Saharan Africa has experienced the dramatic consequences of climate extremes becoming more frequent and more intense over the 
past decades (Paeth et al., 2010; Taylor et al., 2017). In order to join international efforts to reduce climate change, all African countries 
signed the Paris Agreement. In particular, through their nationally determined contributions (NDCs), they committed to contribute to the 
global effort to mitigate greenhouse gas (GHG) emissions with the aim to constrain global temperature increases to ‘well below 2°C’ 
and to pursue efforts to limit warming to ‘1.5°C above pre-industrial levels’. The target of limiting global warming to 1.5°C above pre-
industrial levels is useful for conveying the urgency of the situation. However, it focuses the climate change debate on a temperature 
threshold (Section 3.3.2), while the potential impacts of these global warming levels on key sectors at local to regional scales, such as 
agriculture, energy and health, remain uncertain in most regions and countries of Africa (Sections 3.3.3, 3.3.4, 3.3.5 and 3.3.6).

Weber et al. (2018) found that at regional scales, temperature increases in sub-Saharan Africa are projected to be higher than the global 
mean temperature increase (at global warming of 1.5°C and at 2°C; see Section 3.3.2 for further background and analyses of climate 
model projections). Even if the mean global temperature anomaly is kept below 1.5°C, regions between 15°S and 15°N are projected to 
experience an increase in hot nights, as well as longer and more frequent heatwaves (e.g., Kharin et al., 2018). Increases would be even 
larger if the global mean temperature were to reach 2°C of global warming, with significant changes in the occurrence and intensity of 
temperature extremes in all sub-Saharan regions (Sections 3.3.1 and 3.3.2; Figures 3.4, 3.5 and 3.8).

West and Central Africa are projected to display particularly large increases in the number of hot days, both at 1.5°C and 2°C of global 
warming (Section 3.3.2). This is due to the relatively small interannual present-day variability in this region, which implies that climate-
change signals can be detected earlier there (Section 3.3.2; Mahlstein et al., 2011). Projected changes in total precipitation exhibit 
uncertainties, mainly in the Sahel (Section 3.3.3 and Figure 3.8; Diedhiou et al., 2018). In the Guinea Coast and Central Africa, only a 
small change in total precipitation is projected, although most models (70%) indicate a decrease in the length of wet periods and a 
slight increase in heavy rainfall. Western Sahel is projected by most models (80%) to experience the strongest drying, with a significant 
increase in the maximum length of dry spells (Diedhiou et al., 2018). Above 2°C, this region could become more vulnerable to drought 
and could face serious food security issues (Cross-Chapter Box 6 and Section 3.4.6 in this chapter; Salem et al., 2017; Parkes et al., 
2018). West Africa has thus been identified as a climate-change hotspot with negative impacts from climate change on crop yields and 
production (Cross-Chapter Box 6 and Section 3.4.6; Sultan and Gaetani, 2016; Palazzo et al., 2017). Despite uncertainty in projections 
for precipitation in West Africa, which is essential for rain-fed agriculture, robust evidence of yield loss might emerge. This yield loss 
is expected to be mainly driven by increased mean temperature, while potential wetter or drier conditions – as well as elevated CO2 
concentrations – could modulate this effect (Roudier et al., 2011; see also Cross-Chapter Box 6 and Section 3.4.6). Using Representative 
Concentration Pathway (RCP)8.5 Coordinated Regional Climate Downscaling Experiment (CORDEX) scenarios from 25 regional climate 
models (RCMs) forced with different general circulation models (GCMs), Klutse et al. (2018) noted a decrease in mean rainfall over 
West Africa in models with stronger warming for this region at 1.5°C of global warming (Section 3.3.4). Mba et al. (2018) used a similar 
approach and found a lack of consensus in the changes in precipitation over Central Africa (Figure 3.8 and Section 3.3.4), although there 
was a tendency towards a decrease in the maximum number of consecutive wet days (CWD) and a significant increase in the maximum 
number of consecutive dry days (CDD).

Over southern Africa, models agree on a positive sign of change for temperature, with temperature rising faster at 2°C (1.5°C–2.5°C) as 
compared to 1.5°C (0.5°C–1.5°C) of global warming. Areas in the south-western region, especially in South Africa and parts of Namibia 
and Botswana, are expected to experience the largest increases in temperature (Section 3.3.2; Engelbrecht et al., 2015; Maúre et al., 
2018). The western part of southern Africa is projected to become drier with increasing drought frequency and number of heatwaves 
towards the end of the 21st century (Section 3.3.4; Engelbrecht et al., 2015; Dosio, 2017; Maúre et al., 2018). At 1.5°C, a robust signal 
of precipitation reduction is found over the Limpopo basin and smaller areas of the Zambezi basin in Zambia, as well as over parts of 
Western Cape in South Africa, while an increase is projected over central and western South Africa, as well as in southern Namibia 
(Section 3.3.4). At 2°C, the region is projected to face robust precipitation decreases of about 10–20% and increases in the number of 
CDD, with longer dry spells projected over Namibia, Botswana, northern Zimbabwe and southern Zambia. Conversely, the number of 
CWD is projected to decrease, with robust signals over Western Cape (Maúre et al., 2018). Projected reductions in stream flow of 5–10% 
in the Zambezi River basin have been associated with increased evaporation and transpiration rates resulting from a rise in temperature 
( Section 3.3.5; Kling et al., 2014), with issues for hydroelectric power across the region of southern Africa.

For Eastern Africa, Osima et al. (2018) found that annual rainfall projections show a robust increase in precipitation over Somalia and 
a less robust decrease over central and northern Ethiopia (Section 3.3.3). The number of CDD and CWD are projected to increase and 
decrease, respectively (Section 3.3.4). These projected changes could impact the agricultural and water sectors in the region (Cross-
Chapter Box 6 in this chapter and Section 3.4.6).
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under the RCP8.5 scenario. However, more recent assessments have 
highlighted uncertainties in dryness projections due to a range of 
factors, including variations between the drought and dryness indices 
considered, and the effects of enhanced CO2 concentrations on plant 
water-use efficiency (Orlowsky and Seneviratne, 2013; Roderick et 
al., 2015). Overall, projections of changes in drought and dryness for 
high-emissions scenarios (e.g., RCP8.5, corresponding to about 4°C of 
global warming) are uncertain in many regions, although a few regions 
display consistent drying in most assessments (e.g., Seneviratne et al., 
2012; Orlowsky and Seneviratne, 2013). Uncertainty is expected to be 
even larger for conditions with a smaller signal-to-noise ratio, such as 
for global warming levels of 1.5°C and 2°C.

Some published literature is now available on the evaluation of 
differences in drought and dryness occurrence at 1.5°C and 2°C of global 
warming for (i) precipitation minus evapotranspiration (P–E, a general 
measure of water availability; Wartenburger et al., 2017; Greve et al., 
2018), (ii) soil moisture anomalies (Lehner et al., 2017; Wartenburger 
et al., 2017), (iii) consecutive dry days (CDD) (Schleussner et al., 2016b; 
Wartenburger et al., 2017), (iv) the 12-month standardized precipitation 
index (Wartenburger et al., 2017), (v) the Palmer drought severity index 
(Lehner et al., 2017), and (vi) annual mean runoff (Schleussner et al., 
2016b, see also next section). These analyses have produced consistent 
findings overall, despite the known sensitivity of drought assessments to 
chosen drought indices (see above paragraph). These analyses suggest 
that increases in drought, dryness or precipitation deficits are projected 
at 1.5°C or 2°C global warming in some regions compared to the pre-

industrial or present-day conditions, as well as between these two 
global warming levels, although there is substantial variability in signals 
depending on the considered indices or climate models (Lehner et al., 
2017; Schleussner et al., 2017; Greve et al., 2018) (medium confidence). 
Generally, the clearest signals are found for the Mediterranean region 
(medium confidence). 

Greve et al. (2018, Figure 3.12) derives the sensitivity of regional 
changes in precipitation minus evapotranspiration to global 
temperature changes. The simulations analysed span the full range of 
available emission scenarios, and the sensitivities are derived using 
a modified pattern scaling approach. The applied approach assumes 
linear dependencies on global temperature changes while thoroughly 
addressing associated uncertainties via resampling methods. Northern 
high-latitude regions display robust responses tending towards 
increased wetness, while subtropical regions display a tendency 
towards drying but with a large range of responses. While the internal 
variability and the scenario choice play an important role in the overall 
spread of the simulations, the uncertainty stemming from the climate 
model choice usually dominates, accounting for about half of the total 
uncertainty in most regions (Wartenburger et al., 2017; Greve et al., 
2018). The sign of projections, that is, whether there might be increases 
or decreases in water availability under higher global warming levels, 
is particularly uncertain in tropical and mid-latitude regions. An 
assessment of the implications of limiting the global mean temperature 
increase to values below (i) 1.5°C or (ii) 2°C shows that constraining 
global warming to the 1.5°C target might slightly influence the mean 

Figure 3.12 |  Summary of the likelihood of increases/decreases in precipitation minus evapotranspiration (P–E) in Coupled Model Intercomparison Project Phase 5 (CMIP5) 
simulations considering all scenarios and a representative subset of 14 climate models (one from each modelling centre). Panel plots show the uncertainty distribution of the 
sensitivity of P–E to global temperature change, averaged for most IPCC Special Report on Managing the Risk of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX) regions (see Figure 3.2) outlined in the map (from Greve et al., 2018). 
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Figure 3.13 |  Projected changes in consecutive dry days (CDD) as a function of global warming for IPCC Special Report on Managing the Risk of Extreme Events and Disasters 
to Advance Climate Change Adaptation (SREX) regions, based on an empirical scaling relationship applied to Coupled Model Intercomparison Project Phase 5 (CMIP5) data 
together with projected changes from the HAPPI multimodel experiment (bar plots on regional analyses and central plot, respectively). The underlying methodology and the 
data basis are the same as for Figure 3.5 (see Supplementary Material 3.SM.2 for more details). 

response but could substantially reduce the risk of experiencing 
extreme changes in regional water availability (Greve et al., 2018).

The findings from the analysis for the mean response by Greve et al. 
(2018) are qualitatively consistent with results from Wartenburger et 
al. (2017), who used an ESR (Section 3.2) rather than a pattern scaling 
approach for a range of drought and dryness indices. They are also 
consistent with a study by Lehner et al. (2017), who assessed changes 
in droughts based on soil moisture changes and the Palmer-Drought 
Severity Index. Notably, these two publications do not provide a 

specific assessment of changes in the tails of the drought and dryness 
distribution. The conclusions of Lehner et al. (2017) are that (i) ‘risks of 
consecutive drought years show little change in the US Southwest and 
Central Plains, but robust increases in Europe and the Mediterranean’, 
and that (ii) ‘limiting warming to 1.5°C may have benefits for future 
drought risk, but such benefits are regional, and in some cases highly 
uncertain’.

Figure 3.13 features projected changes in CDD as a function of global 
temperature increase, using a similar approach as for Figures 3.5 (based 

Figure 3.14 |  Significance of differences in regional drought and dryness indices between the 1.5°C and 2°C global mean temperature targets (rows). Definition of indices: 
CDD: consecutive dry days; P–E: precipitation minus evapotranspiration; SMA: soil moisture anomalies; SPI12: 12-month Standarized Precipitation Index. Columns indicate 
analysed regions and global land (see Figure 3.2 for definitions). Significant differences are shown in light blue/brown shading (increases indicated with +, decreases indicated 
with –; light blue shading indicates decreases in dryness (decreases in CDD, or increases in P–E, SMA or SPI12) and light brown shading indicates increases in dryness (increases 
in CDD, or decreases in P–E, SMA or SPI12). Non-significant differences are shown in grey shading. The underlying methodology and the data basis are the same as for Figure 
3.7 (see Supplementary Material 3.SM.2 for more details).
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on Wartenburger et al., 2017). The figure also include results from the 
HAPPI experiment (Mitchell et al., 2017). Again, the CMIP5-based ESR 
estimates and the results of the HAPPI experiment agree well. Note 
that the responses vary widely among the considered regions. 

Similar to Figures 3.8 and 3.11, Figure 3.14 features an objective 
identification of ‘hotspots’ / key risks in dryness indices subdivided 
by region, based on the approach by Wartenburger et al. (2017). This 
analysis reveals the following hotspots of drying (i.e. increases in CDD 
and/or decreases in P–E, soil moisture anomalies (SMA) and 12-month 
Standardized Precipitation Index (SPI12), with at least one of the 
indices displaying statistically significant drying): the Mediterranean 
region (MED; including southern Europe, northern Africa, and the Near 
East), northeastern Brazil (NEB) and southern Africa. 

Consistent with this analysis, the available literature particularly 
supports robust increases in dryness and decreases in water availability 
in southern Europe and the Mediterranean with a shift from 1.5°C to 
2°C of global warming (medium confidence) (Figure 3.13; Schleussner 
et al., 2016b; Lehner et al., 2017; Wartenburger et al., 2017; Greve et 
al., 2018; Samaniego et al., 2018). This region is already displaying 
substantial drying in the observational record (Seneviratne et al., 2012; 
Sheffield et al., 2012; Greve et al., 2014; Gudmundsson and Seneviratne, 
2016; Gudmundsson et al., 2017), which provides additional evidence 
supporting this tendency and suggests that it will be a hotspot of 
dryness change at global warming levels beyond 1.5°C (see also Box 
3.2). The other identified hotspots, southern Africa and northeastern 

Brazil, also consistently display drying trends under higher levels of 
forcing in other publications (e.g., Orlowsky and Seneviratne, 2013), 
although no published studies could be found reporting observed 
drying trends in these regions. There are substantial increases in 
the risk of increased dryness (medium confidence) in both the 
Mediterranean region and Southern Africa at 2°C versus 1.5°C of 
global warming because these regions display significant changes 
in two dryness indicators (CDD and SMA) between these two global 
warming levels (Figure 3.14); the strongest effects are expected for 
extreme droughts (medium confidence) (Figure 3.12). There is low 
confidence elsewhere, owing to a lack of consistency in analyses 
with different models or different dryness indicators. However, in 
many regions there is medium confidence that most extreme risks of 
changes in dryness are avoided if global warming is constrained at 
1.5°C instead of 2°C (Figure 3.12).

In summary, in terms of drought and dryness, limiting global warming 
to 1.5°C is expected to substantially reduce the probability of extreme 
changes in water availability in some regions compared to changes 
under 2°C of global warming (medium confidence). For shift from 1.5°C 
to 2°C of GMST warming, the available studies and analyses suggest 
strong increases in the probability of dryness and reduced water 
availability in the Mediterranean region (including southern Europe, 
northern Africa and the Near East) and in southern Africa (medium 
confidence). Based on observations and modelling experiments, a 
drying trend is already detectable in the Mediterranean region, that is, 
at global warming of less than 1°C (medium confidence). 

Box 3.2 |  Droughts in the Mediterranean Basin and the Middle East 

Human society has developed in tandem with the natural environment of the Mediterranean basin over several millennia, laying 
the groundwork for diverse and culturally rich communities. Even if advances in technology may offer some protection from climatic 
hazards, the consequences of climatic change for inhabitants of this region continue to depend on the long-term interplay between an 
array of societal and environmental factors (Holmgren et al., 2016). As a result, the Mediterranean is an example of a region with high 
vulnerability where various adaptation responses have emerged. Previous IPCC assessments and recent publications project regional 
changes in climate under increased temperatures, including consistent climate model projections of increased precipitation deficit 
amplified by strong regional warming (Section 3.3.3; Seneviratne et al., 2012; Christensen et al., 2013; Collins et al., 2013; Greve and 
Seneviratne, 2015). 

The long history of resilience to climatic change is especially apparent in the eastern Mediterranean region, which has experienced a 
strong negative trend in precipitation since 1960 (Mathbout et al., 2017) and an intense and prolonged drought episode between 2007 
and 2010 (Kelley et al., 2015). This drought was the longest and most intense in the last 900 years (Cook et al., 2016). Some authors 
(e.g., Trigo et al., 2010; Kelley et al., 2015) assert that very low precipitation levels have driven a steep decline in agricultural productivity 
in the Euphrates and Tigris catchment basins, and displaced hundreds of thousands of people, mainly in Syria. Impacts on the water 
resources (Yazdanpanah et al., 2016) and crop performance in Iran have also been reported (Saeidi et al., 2017). Many historical periods 
of turmoil have coincided with severe droughts, for example the drought which occurred at the end of the Bronze Age approximately 
3200 years ago (Kaniewski et al., 2015). In this instance, a number of flourishing eastern Mediterranean civilizations collapsed, and rural 
settlements re-emerged with agro-pastoral activities and limited long-distance trade. This illustrates how some vulnerable regions are 
forced to pursue drastic adaptive responses, including migration and societal structure changes.

The potential evolution of drought conditions under 1.5°C or 2°C of global warming (Section 3.3.4) can be analysed by comparing the 
2008 drought (high temperature, low precipitation) with the 1960 drought (low temperature, low precipitation) (Kelley et al., 2015). 
Though the precipitation deficits were comparable, the 2008 drought was amplified by increased evapotranspiration induced by much 
higher temperatures (a mean increase of 1°C compared with the 1931–2008 period in Syria) and a large population increase (from 
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5 million in 1960 to 22 million in 2008). Koutroulis et al. (2016) reported that only 6% out of the total 18% decrease in water availability 
projected for Crete under 2°C of global warming at the end of the 21st century would be due to decreased precipitation, with the 
remaining 12% due to an increase in evapotranspiration. This study and others like it confirm an important risk of extreme drought 
conditions for the Middle East under 1.5°C of global warming (Jacob et al., 2018), with risks being even higher in continental locations 
than on islands; these projections are consistent with current observed changes (Section 3.3.4; Greve et al., 2014). Risks of drying in the 
Mediterranean region could be substantially reduced if global warming is limited to 1.5°C compared to 2°C or higher levels of warming 
(Section 3.4.3; Guiot and Cramer, 2016). Higher warming levels may induce high levels of vulnerability exacerbated by large changes 
in demography.

3.3.5	 Runoff and Fluvial Flooding 

3.3.5.1	 Observed and attributed changes in runoff and river 
flooding

There has been progress since AR5 in identifying historical changes 
in streamflow and continental runoff. Using the available streamflow 
data, Dai (2016) showed that long‐term (1948–2012) flow trends 
are statistically significant only for 27.5% of the world’s 200 major 
rivers, with negative trends outnumbering the positive ones. Although 
streamflow trends are mostly not statistically significant, they are 
consistent with observed regional precipitation changes. From 1950 to 
2012, precipitation and runoff have increased over southeastern South 
America, central and northern Australia, the central and northeastern 
United States, central and northern Europe, and most of Russia, and 
they have decreased over most of Africa, East and South Asia, eastern 
coastal Australia, the southeastern and northwestern United States, 
western and eastern Canada, the Mediterranean region and some 
regions of Brazil (Dai, 2016). 

A large part of the observed regional trends in streamflow and runoff 
might have resulted from internal multi-decadal and multi-year climate 
variations, especially the Pacific decadal variability (PDV), the Atlantic 
Multi-Decadal Oscillation (AMO) and the El Niño–Southern Oscillation 
(ENSO), although the effect of anthropogenic greenhouse gases 
and aerosols could also be important (Hidalgo et al., 2009; Gu and 
Adler, 2013, 2015; Chiew et al., 2014; Luo et al., 2016; Gudmundsson 
et al., 2017). Additionally, other human activities can influence the 
hydrological cycle, such as land-use/land-cover change, modifications 
in river morphology and water table depth, construction and 
operation of hydropower plants, dikes and weirs, wetland drainage, 
and agricultural practices such as water withdrawal for irrigation. All 
of these activities can also have a large impact on runoff at the river 
basin scale, although there is less agreement over their influence on 
global mean runoff (Gerten et al., 2008; Sterling et al., 2012; Hall et al., 
2014; Betts et al., 2015; Arheimer et al., 2017). Some studies suggest 
that increases in global runoff resulting from changes in land cover 
or land use (predominantly deforestation) are counterbalanced by 
decreases resulting from irrigation (Gerten et al., 2008; Sterling et al., 
2012). Likewise, forest and grassland fires can modify the hydrological 
response at the watershed scale when the burned area is significant 
(Versini et al., 2013; Springer et al., 2015; Wine and Cadol, 2016).

Few studies have explored observed changes in extreme streamflow 
and river flooding since the IPCC AR5. Mallakpour and Villarini (2015) 

analysed changes of flood magnitude and frequency in the central 
United States by considering stream gauge daily records with at least 
50 years of data ending no earlier than 2011. They showed that flood 
frequency has increased, whereas there was limited evidence of a 
decrease in flood magnitude in this region. Stevens et al. (2016) found 
a rise in the number of reported floods in the United Kingdom during 
the period 1884–2013, with flood events appearing more frequently 
towards the end of the 20th century. A peak was identified in 2012, 
when annual rainfall was the second highest in over 100 years. Do et al. 
(2017) computed the trends in annual maximum daily streamflow data 
across the globe over the 1966–2005 period. They found decreasing 
trends for a large number of stations in western North America and 
Australia, and increasing trends in parts of Europe, eastern North 
America, parts of South America, and southern Africa. 

In summary, streamflow trends since 1950 are not statistically 
significant in most of the world’s largest rivers (high confidence), 
while flood frequency and extreme streamflow have increased in some 
regions (high confidence).

3.3.5.2	 Projected changes in runoff and river flooding at 1.5°C 
versus 2°C of global warming

Global-scale assessments of projected changes in freshwater systems 
generally suggest that areas with either positive or negative changes 
in mean annual streamflow are smaller for 1.5°C than for 2°C of 
global warming (Betts et al., 2018; Döll et al., 2018). Döll et al. (2018) 
found that only 11% of the global land area (excluding Greenland and 
Antarctica) shows a statistically significantly larger hazard at 2°C than 
at 1.5°C. Significant decreases are found for 13% of the global land 
area for both global warming levels, while significant increases are 
projected to occur for 21% of the global land area at 1.5°C, and rise 
to between 26% (Döll et al., 2018) and approximately 50% (Betts et 
al., 2018) at 2°C.

At the regional scale, projected runoff changes generally follow the 
spatial extent of projected changes in precipitation (see Section 3.3.3). 
Emerging literature includes runoff projections for different warming 
levels. For 2°C of global warming, an increase in runoff is projected 
for much of the high northern latitudes, Southeast Asia, East Africa, 
northeastern Europe, India, and parts of, Austria, China, Hungary, 
Norway, Sweden, the northwest Balkans and Sahel (Schleussner et 
al., 2016b; Donnelly et al., 2017; Döll et al., 2018; Zhai et al., 2018). 
Additionally, decreases are projected in the Mediterranean region, 
southern Australia, Central America, and central and southern South 

Box 3.2 (continued)
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America (Schleussner et al., 2016b; Donnelly et al., 2017; Döll et al., 
2018). Differences between 1.5°C and 2°C would be most prominent 
in the Mediterranean, where the median reduction in annual runoff 
is expected to be about 9% (likely range 4.5–15.5%) at 1.5°C, 
while at 2°C of warming runoff could decrease by 17% (likely range 
8–25%) (Schleussner et al., 2016b). Consistent with these projections, 
Döll et al. (2018) found that statistically insignificant changes in the 
mean annual streamflow around the Mediterranean region became 
significant when the global warming scenario was changed from 1.5°C 
to 2°C, with decreases of 10–30% between these two warming levels. 
Donnelly et al. (2017) found an intense decrease in runoff along both 
the Iberian and Balkan coasts with an increase in warming level.

Basin-scale projections of river runoff at different warming levels 
are available for many regions. Betts et al. (2018) assessed runoff 
changes in 21 of the world’s major river basins at 1.5°C and 2°C of 
global warming (Figure 3.15). They found a general tendency towards 
increased runoff, except in the Amazon, Orange, Danube and Guadiana 
basins where the range of projections indicate decreased mean flows 
(Figure 3.13). In the case of the Amazon, mean flows are projected 
to decline by up to 25% at 2°C global warming (Betts et al., 2018). 

Gosling et al. (2017) analysed the impact of global warming of 1°C, 2°C 
and 3°C above pre-industrial levels on river runoff at the catchment 
scale, focusing on eight major rivers in different continents: Upper 
Amazon, Darling, Ganges, Lena, Upper Mississippi, Upper Niger, Rhine 
and Tagus. Their results show that the sign and magnitude of change 
with global warming for the Upper Amazon, Darling, Ganges, Upper 
Niger and Upper Mississippi is unclear, while the Rhine and Tagus may 
experience decreases in projected runoff and the Lena may experience 
increases. Donnelly et al. (2017) analysed the mean flow response to 
different warming levels for six major European rivers: Glomma, Wisla, 
Lule, Ebro, Rhine and Danube. Consistent with the increases in mean 
runoff projected for large parts of northern Europe, the Glomma, Wisla 
and Lule rivers could experience increased discharges with global 
warming while discharges from the Ebro could decrease, in part due 
to a decrease in runoff in southern Europe. In the case of the Rhine 
and Danube rivers, Donnelly et al. (2017) did not find clear results. 
Mean annual runoff of the Yiluo River catchment in northern China 
is projected to decrease by 22% at 1.5°C and by 21% at 2°C, while 
the mean annual runoff for the Beijiang River catchment in southern 
China is projected to increase by less than 1% at 1.5°C and 3% at 
2°C in comparison to the studied baseline period (L. Liu et al., 2017). 

Figure 3.15 |  Runoff changes in twenty-one of the world’s major river basins at 1.5°C (blue) and 2°C (orange) of global warming, simulated by the Joint UK Land Environment 
Simulator (JULES) ecosystem–hydrology model under the ensemble of six climate projections. Boxes show the 25th and 75th percentile changes, whiskers show the range, circles 
show the four projections that do not define the ends of the range, and crosses show the ensemble means. Numbers in square brackets show the ensemble-mean flow in the 
baseline (millimetres of rain equivalent) (Source: Betts et al., 2018). 
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Chen et al. (2017) assessed the future changes in water resources in 
the Upper Yangtze River basin for the same warming levels and found 
a slight decrease in the annual discharge at 1.5°C but a slight increase 
at 2°C. Montroull et al. (2018) studied the hydrological impacts of the 
main rivers (Paraguay, Paraná, Iguazú and Uruguay) in La Plata basin 
in South America under 1.5°C and 2°C of global warming and for two 
emissions scenarios. The Uruguay basin shows increases in streamflow 
for all scenarios/warming targets except for the combination of 
RCP8.5/1.5°C of warming. The increase is approximately 15% above 
the 1981–2000 reference period for 2°C of global warming and the 
RCP4.5 scenario. For the other three rivers the sign of the change in 
mean streamflow depends strongly on the RCP and GCM used.

Marx et al. (2018) analysed how hydrological low flows in Europe are 
affected under different global warming levels (1.5°C, 2°C and 3°C). 
The Alpine region showed the strongest low flow increase, from 22% 
at 1.5°C to 30% at 2°C, because of the relatively large snow melt 
contribution, while in the Mediterranean low flows are expected to 
decrease because of the decreases in annual precipitation projected 
for that region. Döll et al. (2018) found that extreme low flows in the 
tropical Amazon, Congo and Indonesian basins could decrease by 10% 
at 1.5°C, whereas they could increase by 30% in the southwestern part 
of Russia under the same warming level. At 2°C, projected increases in 
extreme low flows are exacerbated in the higher northern latitudes and 
in eastern Africa, India and Southeast Asia, while projected decreases 
intensify in the Amazon basin, western United States, central Canada, 
and southern and western Europe, although not in the Congo basin or 
Indonesia, where models show less agreement. 

Recent analyses of projections in river flooding and extreme runoff and 
flows are available for different global warming levels. At the global 
scale, Alfieri et al. (2017) assessed the frequency and magnitude of river 
floods and their impacts under 1.5°C, 2°C and 4°C global warming 
scenarios. They found that flood events with an occurrence interval 
longer than the return period of present-day flood protections are 
projected to increase in all continents under all considered warming 
levels, leading to a widespread increment in the flood hazard. Döll et al. 
(2018) found that high flows are projected to increase significantly on 
11% and 21% of the global land area at 1.5°C and 2°C, respectively. 
Significantly increased high flows are expected to occur in South and 
Southeast Asia and Central Africa at 1.5°C, with this effect intensifying 
and including parts of South America at 2°C.

Regarding the continental scale, Donnelly et al. (2017) and Thober et 
al. (2018) explored climate change impacts on European high flows 
and/or floods under 1.5°C, 2°C and 3°C of global warming. Thober et 
al. (2018) identified the Mediterranean region as a hotspot of change, 
with significant decreases in high flows of −11% and –13% at 1.5°C 
and 2°C, respectively, mainly resulting from reduced precipitation (Box 
3.2). In northern regions, high flows are projected to rise by 1% and 
5% at 1.5°C and 2°C, respectively, owing to increasing precipitation, 
although floods could decrease by 6% in both scenarios because of 
less snowmelt. Donnelly et al. (2017) found that high runoff levels 
could rise in intensity, robustness and spatial extent over large parts 
of continental Europe with an increasing warming level. At 2°C, flood 
magnitudes are expected to increase significantly in Europe south of 
60°N, except for some regions (Bulgaria, Poland and southern Spain); 

in contrast, they are projected to decrease at higher latitudes (e.g., 
in most of Finland, northwestern Russia and northern Sweden), with 
the exception of southern Sweden and some coastal areas in Norway 
where flood magnitudes may increase (Roudier et al., 2016). At the 
basin scale, Mohammed et al. (2017) found that floods are projected to 
be more frequent and flood magnitudes greater at 2°C than at 1.5°C 
in the Brahmaputra River in Bangladesh. In coastal regions, increases 
in heavy precipitation associated with tropical cyclones (Section 
3.3.6) combined with increased sea levels (Section 3.3.9) may lead to 
increased flooding (Section 3.4.5).

In summary, there is medium confidence that global warming of 2°C 
above the pre-industrial period would lead to an expansion of the 
area with significant increases in runoff, as well as the area affected 
by flood hazard, compared to conditions at 1.5°C of global warming.  
A global warming of 1.5°C would also lead to an expansion of the global 
land area with significant increases in runoff (medium confidence) and 
to an increase in flood hazard in some regions (medium confidence) 
compared to present-day conditions.

3.3.6	 Tropical Cyclones and Extratropical Storms 

Most recent studies on observed trends in the attributes of tropical 
cyclones have focused on the satellite era starting in 1979 (Rienecker 
et al., 2011), but the study of observed trends is complicated by the 
heterogeneity of constantly advancing remote sensing techniques and 
instrumentation during this period (e.g., Landsea, 2006; Walsh et al., 
2016). Numerous studies leading up to and after AR5 have reported 
a decreasing trend in the global number of tropical cyclones and/or 
the globally accumulated cyclonic energy (Emanuel, 2005; Elsner et al., 
2008; Knutson et al., 2010; Holland and Bruyère, 2014; Klotzbach and 
Landsea, 2015; Walsh et al., 2016). A theoretical physical basis for such 
a decrease to occur under global warming was recently provided by 
Kang and Elsner (2015). However, using a relatively short (20 year) 
and relatively homogeneous remotely sensed record, Klotzbach (2006) 
reported no significant trends in global cyclonic activity, consistent 
with more recent findings of Holland and Bruyère (2014). Such 
contradictions, in combination with the fact that the almost four-
decade-long period of remotely sensed observations remains relatively 
short to distinguish anthropogenically induced trends from decadal 
and multi-decadal variability, implies that there is only low confidence 
regarding changes in global tropical cyclone numbers under global 
warming over the last four decades.

Studies in the detection of trends in the occurrence of very intense 
tropical cyclones (category 4 and 5 hurricanes on the Saffir-Simpson 
scale) over recent decades have yielded contradicting results. Most 
studies have reported increases in these systems (Emanuel, 2005; 
Webster et al., 2005; Klotzbach, 2006; Elsner et al., 2008; Knutson et al., 
2010; Holland and Bruyère, 2014; Walsh et al., 2016), in particular for the 
North Atlantic, North Indian and South Indian Ocean basins (e.g., Singh 
et al., 2000; Singh, 2010; Kossin et al., 2013; Holland and Bruyère, 2014; 
Walsh et al., 2016). In the North Indian Ocean over the Arabian Sea, an 
increase in the frequency of extremely severe cyclonic storms has been 
reported and attributed to anthropogenic warming (Murakami et al., 
2017). However, to the east over the Bay of Bengal, tropical cyclones 
and severe tropical cyclones have exhibited decreasing trends over 
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the period 1961–2010, although the ratio between severe tropical 
cyclones and all tropical cyclones is increasing (Mohapatra et al., 
2017). Moreover, studies that have used more homogeneous records, 
but were consequently limited to rather short periods of 20 to 25 years, 
have reported no statistically significant trends or decreases in the 
global number of these systems (Kamahori et al., 2006; Klotzbach and 
Landsea, 2015). Likewise, CMIP5 model simulations of the historical 
period have not produced anthropogenically induced trends in very 
intense tropical cyclones (Bender et al., 2010; Knutson et al., 2010, 
2013; Camargo, 2013; Christensen et al., 2013), consistent with the 
findings of Klotzbach and Landsea (2015). There is consequently low 
confidence in the conclusion that the number of very intense cyclones 
is increasing globally. 

General circulation model (GCM) projections of the changing 
attributes of tropical cyclones under high levels of greenhouse gas 
forcing (3°C to 4°C of global warming) consistently indicate decreases 
in the global number of tropical cyclones (Knutson et al., 2010, 2015; 
Sugi and Yoshimura, 2012; Christensen et al., 2013; Yoshida et al., 
2017). A smaller number of studies based on statistical downscaling 
methodologies contradict these findings, however, and indicate 
increases in the global number of tropical cyclones under climate 
change (Emanuel, 2017). Most studies also indicate increases in the 
global number of very intense tropical cyclones under high levels of 
global warming (Knutson et al., 2015; Sugi et al., 2017), consistent 
with dynamic theory (Kang and Elsner, 2015), although a few studies 
contradict this finding (e.g., Yoshida et al., 2017). Hence, it is assessed 
that under 3°C to 4°C of warming that the global number of tropical 
cyclones would decrease whilst the number of very intense cyclones 
would increase (medium confidence).

To date, only two studies have directly explored the changing tropical 
cyclone attributes under 1.5°C versus 2°C of global warming. Using 
a high resolution global atmospheric model, Wehner et al. (2018a) 
concluded that the differences in tropical cyclone statistics under 1.5°C 
versus 2°C stabilization scenarios, as defined by the HAPPI protocols 
(Mitchell et al., 2017) are small. Consistent with the majority of studies 
performed for higher degrees of global warming, the total number 
of tropical cyclones is projected to decrease under global warming, 
whilst the most intense (categories 4 and 5) cyclones are projected 
to occur more frequently. These very intense storms are projected 
to be associated with higher peak wind speeds and lower central 
pressures under 2°C versus 1.5°C of global warming. The accumulated 
cyclonic energy is projected to decrease globally from 1.5°C to 2°C, in 
association with a decrease in the global number of tropical cyclones 
under progressively higher levels of global warming. It is also noted 
that heavy rainfall associated with tropical cyclones was assessed in 
the IPCC SREX as likely to increase under increasing global warming 
(Seneviratne et al., 2012). Two recent articles suggest that there is 
high confidence that the current level of global warming (i.e., about 
1°C, see Section 3.3.1) increased the heavy precipitation associated 
with the 2017 Hurricane Harvey by about 15% or more (Risser and 
Wehner, 2017; van Oldenborgh et al., 2017). Hence, it can be inferred, 
under the assumption of linear dynamics, that further increases in 
heavy precipitation would occur under 1.5°C, 2°C and higher levels of 
global warming (medium confidence). Using a high resolution regional 
climate model, Muthige et al. (2018) explored the effects of different 

degrees of global warming on tropical cyclones over the southwest 
Indian Ocean, using transient simulations that downscaled a number of 
RCP8.5 GCM projections. Decreases in tropical cyclone frequencies are 
projected under both 1.5°C and 2°C of global warming. The decreases 
in cyclone frequencies under 2°C of global warming are somewhat 
larger than under 1.5°C, but no further decreases are projected under 
3°C. This suggests that 2°C of warming, at least in these downscaling 
simulations, represents a type of stabilization level in terms of tropical 
cyclone formation over the southwest Indian Ocean and landfall over 
southern Africa (Muthige et al., 2018). There is thus limited evidence 
that the global number of tropical cyclones will be lower under 2°C 
compared to 1.5°C of global warming, but with an increase in the 
number of very intense cyclones (low confidence).

The global response of the mid-latitude atmospheric circulation to 
1.5°C and 2°C of warming was investigated using the HAPPI ensemble 
with a focus on the winter season (Li et al., 2018). Under 1.5°C of 
global warming a weakening of storm activity over North America, 
an equatorward shift of the North Pacific jet exit and an equatorward 
intensification of the South Pacific jet are projected. Under an additional 
0.5°C of warming a poleward shift of the North Atlantic jet exit and 
an intensification on the flanks of the Southern Hemisphere storm 
track are projected to become more pronounced. The weakening of 
the Mediterranean storm track that is projected under low mitigation 
emerges in the 2°C warmer world (Li et al., 2018). AR5 assessed that 
under high greenhouse gas forcing (3°C or 4°C of global warming) 
there is low confidence in projections of poleward shifts of the 
Northern Hemisphere storm tracks, while there is high confidence that 
there would be a small poleward shift of the Southern Hemisphere 
storm tracks (Stocker et al., 2013). In the context of this report, the 
assessment is that there is limited evidence and low confidence in 
whether any projected signal for higher levels of warming would be 
clearly manifested under 2°C of global warming.

3.3.7	 Ocean Circulation and Temperature

It is virtually certain that the temperature of the upper layers of the 
ocean (0–700 m in depth) has been increasing, and that the global 
mean for sea surface temperature (SST) has been changing at a rate 
just behind that of GMST. The surfaces of three ocean basins has 
warmed over the period 1950–2016 (by 0.11°C, 0.07°C and 0.05°C 
per decade for the Indian, Atlantic and Pacific Oceans, respectively; 
Hoegh-Guldberg et al., 2014), with the greatest changes occurring 
at the highest latitudes. Isotherms (i.e., lines of equal temperature) of 
sea surface temperature (SST) are shifting to higher latitudes at rates 
of up to 40 km per year (Burrows et al., 2014; García Molinos et al., 
2015). Long-term patterns of variability make detecting signals due to 
climate change complex, although the recent acceleration of changes 
to the temperature of the surface layers of the ocean has made the 
climate signal more distinct (Hoegh-Guldberg et al., 2014). There is also 
evidence of significant increases in the frequency of marine heatwaves 
in the observational record (Oliver et al., 2018), consistent with 
changes in mean ocean temperatures (high confidence). Increasing 
climate extremes in the ocean are associated with the general rise in 
global average surface temperature, as well as more intense patterns 
of climate variability (e.g., climate change intensification of ENSO) 
(Section 3.5.2.5). Increased heat in the upper layers of the ocean is 
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also driving more intense storms and greater rates of inundation in 
some regions, which, together with sea level rise, are already driving 
significant impacts to sensitive coastal and low-lying areas (Section 
3.3.6). 

Increasing land–sea temperature gradients have the potential to 
strengthen upwelling systems associated with the eastern boundary 
currents (Benguela, Canary, Humboldt and Californian Currents; 
Bakun, 1990). Observed trends support the conclusion that a general 
strengthening of longshore winds has occurred (Sydeman et al., 2014), 
but the implications of trends detected in upwelling currents themselves 
are unclear (Lluch-Cota et al., 2014). Projections of the scale of changes 
between 1°C and 1.5°C of global warming and between 1.5°C and 
2°C are only informed by the changes during the past increase in GMST 
of 0.5°C (low confidence). However, evidence from GCM projections 
of future climate change indicates that a general strengthening of the 
Benguela, Canary and Humboldt upwelling systems under enhanced 
anthropogenic forcing (D. Wang et al., 2015) is projected to occur 
(medium confidence). This strengthening is projected to be stronger 
at higher latitudes. In fact, evidence from regional climate modelling 
is supportive of an increase in long-shore winds at higher latitudes, 
whereas long-shore winds may decrease at lower latitudes as a 
consequence of the poleward displacement of the subtropical highs 
under climate change (Christensen et al., 2007; Engelbrecht et al., 
2009). 

It is more likely than not that the Atlantic Meridional Overturning 
Circulation (AMOC) has been weakening in recent decades, given 
the detection of the cooling of surface waters in the North Atlantic 
and evidence that the Gulf Stream has slowed since the late 1950s 
(Rahmstorf et al., 2015b; Srokosz and Bryden, 2015; Caesar et al., 
2018). There is only limited evidence linking the current anomalously 
weak state of AMOC to anthropogenic warming (Caesar et al., 2018). It 
is very likely that the AMOC will weaken over the 21st century. The best 
estimates and ranges for the reduction based on CMIP5 simulations 
are 11% (1– 24%) in RCP2.6 and 34% (12– 54%) in RCP8.5 (AR5). 
There is no evidence indicating significantly different amplitudes of 
AMOC weakening for 1.5°C versus 2°C of global warming.

3.3.8	 Sea Ice

Summer sea ice in the Arctic has been retreating rapidly in recent 
decades. During the period 1997 to 2014, for example, the monthly 
mean sea ice extent during September (summer) decreased on average 
by 130,000 km² per year (Serreze and Stroeve, 2015). This is about four 
times as fast as the September sea ice loss during the period 1979 
to 1996. Sea ice thickness has also decreased substantially, with an 
estimated decrease in ice thickness of more than 50% in the central 
Arctic (Lindsay and Schweiger, 2015). Sea ice coverage and thickness 
also decrease in CMIP5 simulations of the recent past, and are 
projected to decrease in the future (Collins et al., 2013). However, 
the modelled sea ice loss in most CMIP5 models is much smaller 
than observed losses. Compared to observations, the simulations are 
less sensitive to both global mean temperature rise (Rosenblum and 

Eisenman, 2017) and anthropogenic CO2 emissions (Notz and Stroeve, 
2016). This mismatch between the observed and modelled sensitivity 
of Arctic sea ice implies that the multi-model-mean responses of future 
sea ice evolution probably underestimates the sea ice loss for a given 
amount of global warming. To address this issue, studies estimating 
the future evolution of Arctic sea ice tend to bias correct the model 
simulations based on the observed evolution of Arctic sea ice in 
response to global warming. Based on such bias correction, pre-AR5 
and post-AR5 studies generally agree that for 1.5°C of global warming 
relative to pre-industrial levels, the Arctic Ocean will maintain a sea ice 
cover throughout summer in most years (Collins et al., 2013; Notz and 
Stroeve, 2016; Screen and Williamson, 2017; Jahn, 2018; Niederdrenk 
and Notz, 2018; Sigmond et al., 2018). For 2°C of global warming, 
chances of a sea ice-free Arctic during summer are substantially higher 
(Screen and Williamson, 2017; Jahn, 2018; Niederdrenk and Notz, 
2018; Screen et al., 2018; Sigmond et al., 2018). Model simulations 
suggest that there will be at least one sea ice-free Arctic5 summer after 
approximately 10 years of stabilized warming at 2°C, as compared 
to one sea ice-free summer after 100 years of stabilized warming at 
1.5°C above pre-industrial temperatures (Jahn, 2018; Screen et al., 
2018; Sigmond et al., 2018). For a specific given year under stabilized 
warming of 2°C, studies based on large ensembles of simulations with 
a single model estimate the likelihood of ice-free conditions as 35% 
without a bias correction of the underlying model (Sanderson et al., 
2017; Jahn, 2018); as between 10% and >99% depending on the 
observational record used to correct the sensitivity of sea ice decline 
to global warming in the underlying model (Niederdrenk and Notz, 
2018); and as 19% based on a procedure to correct for biases in the 
climatological sea ice coverage in the underlying model (Sigmond et 
al., 2018). The uncertainty of the first year of the occurrence of an ice-
free Arctic Ocean arising from internal variability is estimated to be 
about 20 years (Notz, 2015; Jahn et al., 2016).

The more recent estimates of the warming necessary to produce an ice-
free Arctic Ocean during summer are lower than the ones given in AR5 
(about 2.6°C–3.1°C of global warming relative to pre-industrial levels 
or 1.6°C–2.1°C relative to present-day conditions), which were similar 
to the estimate of 3°C of global warming relative to pre-industrial 
levels (or 2°C relative to present-day conditions) by Mahlstein and 
Knutti (2012) based on bias-corrected CMIP3 models. Rosenblum and 
Eisenman (2016) explained why the sensitivity estimated by Mahlstein 
and Knutti (2012) might be too low, estimating instead that September 
sea ice in the Arctic would disappear at 2°C of global warming 
relative to pre-industrial levels (or about 1°C relative to present-day 
conditions), in line with the other recent estimates. Notz and Stroeve 
(2016) used the observed correlation between September sea ice 
extent and cumulative CO2 emissions to estimate that the Arctic Ocean 
would become nearly free of sea ice during September with a further 
1000 Gt of emissions, which also implies a sea ice loss at about 2°C of 
global warming. Some of the uncertainty in these numbers stems from 
the possible impact of aerosols (Gagne et al., 2017) and of volcanic 
forcing (Rosenblum and Eisenman, 2016). During winter, little Arctic 
sea ice is projected to be lost for either 1.5°C or 2°C of global warming 
(Niederdrenk and Notz, 2018). 

5	 Ice free is defined for the Special Report as when the sea ice extent is less than 106 km2. Ice coverage less than this is considered to be equivalent to an ice-free Arctic Ocean 
for practical purposes in all recent studies.
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A substantial number of pre-AR5 studies found that there is no 
indication of hysteresis behaviour of Arctic sea ice under decreasing 
temperatures following a possible overshoot of a long-term 
temperature target (Holland et al., 2006; Schröder and Connolley, 2007; 
Armour et al., 2011; Sedláček et al., 2011; Tietsche et al., 2011; Boucher 
et al., 2012; Ridley et al., 2012). In particular, the relationship between 
Arctic sea ice coverage and GMST was found to be indistinguishable 
between a warming scenario and a cooling scenario. These results have 
been confirmed by post-AR5 studies (Li et al., 2013; Jahn, 2018), which 
implies high confidence that an intermediate temperature overshoot 
has no long-term consequences for Arctic sea ice coverage.

In the Antarctic, sea ice shows regionally contrasting trends, such as a 
strong decrease in sea ice coverage near the Antarctic peninsula but 
increased sea ice coverage in the Amundsen Sea (Hobbs et al., 2016). 
Averaged over these contrasting regional trends, there has been a slow 
long-term increase in overall sea ice coverage in the Southern Ocean, 
although with comparably low ice coverage from September 2016 
onwards. Collins et al. (2013) assessed low confidence in Antarctic 
sea ice projections because of the wide range of model projections 
and an inability of almost all models to reproduce observations such 
as the seasonal cycle, interannual variability and the long-term slow 
increase. No existing studies have robustly assessed the possible future 
evolution of Antarctic sea ice under low-warming scenarios.

In summary, the probability of a sea-ice-free Arctic Ocean during 
summer is substantially higher at 2°C compared to 1.5°C of global 
warming relative to pre-industrial levels, and there is medium 
confidence that there will be at least one sea ice-free Arctic summer 
after about 10 years of stabilized warming at 2°C, while about 
100 years are required at 1.5°C. There is high confidence that an 
intermediate temperature overshoot has no long-term consequences 
for Arctic sea ice coverage with regrowth on decadal time scales.

3.3.9	 Sea Level

Sea level varies over a wide range of temporal and spatial scales, which 
can be divided into three broad categories. These are global mean sea 
level (GMSL), regional variation about this mean, and the occurrence of 
sea-level extremes associated with storm surges and tides. GMSL has 
been rising since the late 19th century from the low rates of change that 
characterized the previous two millennia (Church et al., 2013). Slowing 
in the reported rate over the last two decades (Cazenave et al., 2014) 
may be attributable to instrumental drift in the observing satellite 
system (Watson et al., 2015) and increased volcanic activity (Fasullo 
et al., 2016). Accounting for the former results in rates (1993 to mid-
2014) between 2.6 and 2.9 mm yr–1 (Watson et al., 2015). The relative 
contributions from thermal expansion, glacier and ice-sheet mass loss, 
and freshwater storage on land are relatively well understood (Church 
et al., 2013; Watson et al., 2015) and their attribution is dominated by 
anthropogenic forcing since 1970 (15 ± 55% before 1950, 69 ± 31% 
after 1970) (Slangen et al., 2016).

There has been a significant advance in the literature since AR5, which 
has included the development of semi-empirical models (SEMs) into a 
broader emulation-based approach (Kopp et al., 2014; Mengel et al., 
2016; Nauels et al., 2017) that is partially based on the results from 

more detailed, process-based modelling Church et al. (2013) assigned 
low confidence to SEMs because these models assume that the 
relation between climate forcing and GMSL is the same in the past 
(calibration) and future (projection). Probable future changes in the 
relative contributions of thermal expansion, glaciers and (in particular) 
ice sheets invalidate this assumption. However, recent emulation-
based studies overcame this shortcoming by considering individual 
GMSL contributors separately, and they are therefore employed in 
this assessment. In this subsection, the process-based literature of 
individual contributors to GMSL is considered for scenarios close to 
1.5°C and 2°C of global warming before emulation-based approaches 
are assessed.

A limited number of processes-based studies are relevant to GMSL in 
1.5°C and 2°C worlds. Marzeion et al. (2018) used a global glacier model 
with temperature-scaled scenarios based on RCP2.6 to investigate 
the difference between 1.5°C and 2°C of global warming and found 
little difference between scenarios in the glacier contribution to GMSL 
for the year 2100 (54–97 mm relative to present-day levels for 1.5°C 
and 63–112 mm for 2°C, using a 90% confidence interval). This arises 
because glacier melt during the remainder of the century is dominated 
by the response to warming from pre-industrial to present-day levels, 
which is in turn a reflection of the slow response times of glaciers. Fürst 
et al. (2015) made projections of the Greenland ice sheet’s contribution 
to GMSL using an ice-flow model forced by the regional climate 
model Modèle Atmosphérique Régional (MAR; considered by Church 
et al. (2013) to be the ‘most realistic’ such model). They projected an 
RCP2.6 range of 24–60 mm (1 standard deviation) by the end of the 
century (relative to the year 2000 and consistent with the assessment 
of Church et al. (2013); however, their projections do not allow the 
difference between 1.5°C and 2°C worlds to be evaluated.

The Antarctic ice sheet can contribute both positively, through increases 
in outflow (solid ice lost directly to the ocean), and negatively, through 
increases in snowfall (owing to the increased moisture-bearing capacity 
of a warmer atmosphere), to future GMSL rise. Frieler et al. (2015) 
suggested a range of 3.5–8.7% °C–1 for this effect, which is consistent 
with AR5. Observations from the Amundsen Sea sector of Antarctica 
suggest an increase in outflow (Mouginot et al., 2014) over recent 
decades associated with grounding line retreat (Rignot et al., 2014) 
and the influx of relatively warm Circumpolar Deepwater (Jacobs et al., 
2011). Literature on the attribution of these changes to anthropogenic 
forcing is still in its infancy (Goddard et al., 2017; Turner et al., 2017a). 
RCP2.6-based projections of Antarctic outflow (Levermann et al., 
2014; Golledge et al., 2015; DeConto and Pollard, 2016, who include 
snowfall changes) are consistent with the AR5 assessment of Church 
et al. (2013) for end-of-century GMSL for RCP2.6, and do not support 
substantial additional GMSL rise by Marine Ice Sheet Instability or 
associated instabilities (see Section 3.6). While agreement is relatively 
good, concerns about the numerical fidelity of these models still exist, 
and this may affect the quality of their projections (Drouet et al., 2013; 
Durand and Pattyn, 2015). An assessment of Antarctic contributions 
beyond the end of the century, in particular related to the Marine Ice 
Sheet Instability, can be found in Section 3.6.

While some literature on process-based projections of GMSL for the 
period up to 2100 is available, it is insufficient for distinguishing 
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between emissions scenarios associated with 1.5°C and 2°C warmer 
worlds. This literature is, however, consistent with the assessment by 
Church et al. (2013) of a likely range of 0.28–0.61 m in 2100 (relative 
to 1986–2005), suggesting that the AR5 assessment is still appropriate. 

Recent emulation-based studies show convergence towards this 
AR5 assessment (Table 3.1) and offer the advantage of allowing a 
comparison between 1.5°C and 2°C warmer worlds. Table 3.1 features 
a compilation of recent emulation-based and SEM studies.

Study Baseline
RCP2.6 1.5°C 2°C

67% 90% 67% 90% 67% 90%

AR5 1986–2005 28–61

Kopp et al. (2014) 2000 37–65 29–82

Jevrejeva et al. (2016) 1986–2005 29–58

Kopp et al. (2016) 2000 28–51 24–61

Mengel et al. (2016) 1986–2005 28–56

Nauels et al. (2017) 1986–2005 35–56

Goodwin et al. (2017) 1986–2005 31–59 
45–70 
45–72

Schaeffer et al. (2012) 2000 52–96 54–99 56–105

Schleussner et al. (2016b) 2000 26–53 36–65

Bittermann et al. (2017) 2000 29–46 39–61

Jackson et al. (2018) 1986–2005 30–58 
40–77

20–67 
28–93

35–64 
47–93

24–74 
32–117

Sanderson et al. (2017) 50–80 60–90

Nicholls et al. (2018) 1986–2005 24–54 31–65

Rasmussen et al. (2018) 2000 35–64 28–82 39–76 28–96

Goodwin et al. (2018) 1986–2005 26–62 30–69

Table 3.1 |	 Compilation of recent projections for sea level at 2100 (in cm) for Representative Concentration Pathway (RCP)2.6, and 1.5°C and 2°C scenarios. Upper and lower  
	 limits are shown for the 17-84% and 5-95% confidence intervals quoted in the original papers. 

There is little consensus between the reported ranges of GMSL rise 
(Table 3.1). Projections vary in the range 0.26–0.77 m and 0.35–0.93 
m for 1.5°C and 2°C respectively for the 17–84% confidence interval 
(0.20–0.99 m and 0.24–1.17 m for the 5–95% confidence interval). 
There is, however, medium agreement that GMSL in 2100 would be 
0.04–0.16 m higher in a 2°C warmer world compared to a 1.5°C 
warmer world based on the 17–84% confidence interval (0.00–0.24 
m based on 5–95% confidence interval) with a value of around 0.1 
m. There is medium confidence in this assessment because of issues 
associated with projections of the Antarctic contribution to GMSL 
that are employed in emulation-based studies (see above) and the 
issues previously identified with SEMs (Church et al., 2013).

Translating projections of GMSL to the scale of coastlines and 
islands requires two further steps. The first step accounts for regional 
changes associated with changing water and ice loads (such as 
Earth’s gravitational field and rotation, and vertical land movement), 
as well as spatial differences in ocean heat uptake and circulation. 
The second step maps regional sea level to changes in the return 
periods of particular flood events to account for effects not included 
in global climate models, such as tides, storm surges, and wave setup 
and runup. Kopp et al. (2014) presented a framework to do this and 
gave an example application for nine sites located in the US, Japan, 
northern Europe and Chile. Of these sites, seven (all except those in 
northern Europe) were found to experience at least a quadrupling 
in the number of years in the 21st century with 1-in-100-year floods 
under RCP2.6 compared to under no future sea level rise. Rasmussen 

et al. (2018) used this approach to investigate the difference 
between 1.5°C and 2°C warmer worlds up to 2200. They found that 
the reduction in the frequency of 1-in-100-year floods in a 1.5°C 
compared to a 2°C warmer world would be greatest in the eastern 
USA and Europe, with ESL event frequency amplification being 
reduced by about a half and with smaller reductions for small island 
developing states (SIDS). This last result contrasts with the finding 
of Vitousek et al. (2017) that regions with low variability in extreme 
water levels (such as SIDS in the tropics) are particularly sensitive to 
GMSL rise, such that a doubling of frequency may be expected for 
even small (0.1–0.2 m) rises. Schleussner et al. (2011) emulated the 
AMOC based on a subset of CMIP-class climate models. When forced 
using global temperatures appropriate for the CP3-PD scenario (1°C 
of warming in 2100 relative to 2000 or about 2°C of warming relative 
to pre-industrial) the emulation suggests an 11% median reduction 
in AMOC strength at 2100 (relative to 2000) with an associated 
0.04 m dynamic sea level rise along the New York City coastline. 

In summary, there is medium confidence that GMSL rise will be about 
0.1 m (within a 0.00–0.20 m range based on 17–84% confidence-
interval projections) less by the end of the 21st century in a 1.5°C 
compared to a 2°C warmer world. Projections for 1.5°C and 2°C 
global warming cover the ranges 0.2–0.8 m and 0.3–1.00 m relative 
to 1986–2005, respectively (medium confidence). Sea level rise 
beyond 2100 is discussed in Section 3.6; however, recent literature 
strongly supports the assessment by Church et al. (2013) that sea 
level rise will continue well beyond 2100 (high confidence).



208

Chapter 3	 Impacts of 1.5°C of Global Warming on Natural and Human Systems

3

Box 3.3 |  Lessons from Past Warm Climate Episodes 

Climate projections and associated risk assessments for a future warmer world are based on climate model simulations. However, 
Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models do not include all existing Earth system feedbacks and 
may therefore underestimate both rates and extents of changes (Knutti and Sedláček, 2012). Evidence from natural archives of three 
moderately warmer (1.5°C–2°C) climate episodes in Earth’s past help to assess such long-term feedbacks (Fischer et al., 2018).

While evidence over the last 2000 years and during the Last Glacial Maximum (LGM) was discussed in detail in the IPCC Fifth 
Assessment Report (Masson-Delmotte et al., 2013), the climate system response during past warm intervals was the focus of a recent 
review paper (Fischer et al., 2018) summarized in this Box. Examples of past warmer conditions with essentially modern physical 
geography include the Holocene Thermal Maximum (HTM; broadly defined as about 10–5 kyr before present (BP), where present 
is defined as 1950), the Last Interglacial (LIG; about 129–116 kyr BP) and the Mid Pliocene Warm Period (MPWP; 3.3–3.0 Myr BP). 

Changes in insolation forcing during the HTM (Marcott et al., 2013) and the LIG (Hoffman et al., 2017) led to a global temperature 
up to 1°C higher than that in the pre-industrial period (1850–1900); high-latitude warming was 2°C–4°C (Capron et al., 2017), while 
temperature in the tropics changed little (Marcott et al., 2013). Both HTM and LIG experienced atmospheric CO2 levels similar to 
pre-industrial conditions (Masson-Delmotte et al. 2013). During the MPWP, the most recent time period when CO2 concentrations 
were similar to present-day levels, the global temperature was >1°C and Arctic temperatures about 8°C warmer than pre-industrial 
(Brigham-Grette et al., 2013). 

Although imperfect as analogues for the future, these regional changes can inform risk assessments such as the potential for 
crossing irreversible thresholds or amplifying anthropogenic changes (Box 3.3, Figure 1). For example, HTM and LIG greenhouse gas 
(GHG) concentrations show no evidence of runaway greenhouse gas releases under limited global warming. Transient releases of 
CO2 and CH4 may follow permafrost melting, but these occurrences may be compensated by peat growth over longer time scales (Yu 
et al., 2010). Warming may release CO2 by enhancing soil respiration, counteracting CO2 fertilization of plant growth (Frank et al., 
2010). Evidence of a collapse of the Atlantic Meridional Overturning Circulation (AMOC) during these past events of limited global 
warming could not be found (Galaasen et al., 2014). 

The distribution of ecosystems and biomes (major ecosystem types) changed significantly during past warming events, both in 
the ocean and on land. For example, some tropical and temperate forests retreated because of increased aridity, while savannas 
expanded (Dowsett et al., 2016). Further, poleward shifts of marine and terrestrial ecosystems, upward shifts in alpine regions, and 
reorganizations of marine productivity during past warming events are recorded in natural archives (Williams et al., 2009; Haywood 
et al., 2016). Finally, past warming events are associated with partial sea ice loss in the Arctic. The limited amount of data collected 
so far on Antarctic sea ice precludes firm conclusions about Southern Hemisphere sea ice losses (de Vernal et al., 2013). 

Reconstructed global sea level rise of 6–9 m during the LIG and possibly >6 m during the MPWP requires a retreat of either the 
Greenland or Antarctic ice sheets or both (Dutton et al., 2015). While ice sheet and climate models suggest a substantial retreat 
of the West Antarctic ice sheet (WAIS) and parts of the East Antarctic ice sheet (DeConto and Pollard, 2016) during these periods, 
direct observational evidence is still lacking. Evidence for ice retreat in Greenland is stronger, although a complete collapse of the 
Greenland ice sheet during the LIG can be excluded (Dutton et al., 2015). Rates of past sea level rises under modest warming were 
similar to or up to two times larger than rises observed over the past two decades (Kopp et al., 2013). Given the long time scales 
required to reach equilibrium in a warmer world, sea level rise will likely continue for millennia even if warming is limited to 2°C.

Finally, temperature reconstructions from these past warm intervals suggest that current climate models underestimate regional 
warming at high latitudes (polar amplification) and long-term (multi-millennial) global warming. None of these past warm climate 
episodes involved the high rate of change in atmospheric CO2 and temperatures that we are experiencing today (Fischer et al., 2018). 
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GIS:
HTM: deglacial reequilibration
LIG: partial retreat
MPWP: smaller

WAIS
HTM: deglacial reequilibration
LIG: partial retreat likely
MPWP: retreat likely

Arctic sea ice:
HTM: reduced
LIG: reduced
MPWP: reduced

Antarctic sea ice:
HTM: limited evidence
LIG: reduced
MPWP: reduced

marine ecosystems:
HTM: rather unchanged
LIG: poleward shift
MPWP: poleward shift

marine ecosystems:
HTM: rather unchanged
LIG: poleward shift
MPWP: poleward shift

boreal forests:
HTM: northward expansion
LIG: expansion
MPWP: northward expansion

Savanna:
HTM: expansion
LIG: expansion likely
MPWP: expansion

EAIS:
HTM: deglacial reequilibration
LIG: partial retreat possible
MPWP: partial retreat possible

Box 3.3, Figure 1 |  Impacts and responses of components of the Earth System. Summary of typical changes found for warmer periods in the paleorecord, as discussed 
by Fischer et al. (2018). All statements are relative to pre-industrial conditions. Statements in italics indicate that no conclusions can be drawn for the future. Note that 
significant spatial variability and uncertainty exists in the assessment of each component, and this figure therefore should not be referred to without reading the 
publication in detail. HTM: Holocene Thermal Maximum, LIG: Last Interglacial, MPWP: Mid Pliocene Warm Period. (Adapted from Fischer et al., 2018).

Box 3.3 (continued)

3.3.10	 Ocean Chemistry 

Ocean chemistry includes pH, salinity, oxygen, CO2, and a range of other 
ions and gases, which are in turn affected by precipitation, evaporation, 
storms, river runoff, coastal erosion, up-welling, ice formation, and the 
activities of organisms and ecosystems (Stocker et al., 2013). Ocean 
chemistry is changing alongside increasing global temperature, with 
impacts projected at 1.5°C and, more so, at 2°C of global warming 
(Doney et al., 2014) (medium to high confidence). Projected changes in 
the upper layers of the ocean include altered pH, oxygen content and 
sea level. Despite its many component processes, ocean chemistry has 
been relatively stable for long periods of time prior to the industrial 
period (Hönisch et al., 2012). Ocean chemistry is changing under the 
influence of human activities and rising greenhouse gases (virtually 
certain; Rhein et al., 2013; Stocker et al., 2013). About 30% of CO2 
emitted by human activities, for example, has been absorbed by 
the upper layers of the ocean, where it has combined with water to 
produce a dilute acid that dissociates and drives ocean acidification 

(high confidence) (Cao et al., 2007; Stocker et al., 2013). Ocean pH has 
decreased by 0.1 pH units since the pre-industrial period, a shift that 
is unprecedented in the last 65 Ma (high confidence) (Ridgwell and 
Schmidt, 2010) or even 300 Ma of Earth’s history (medium confidence) 
(Hönisch et al., 2012).

Ocean acidification is a result of increasing CO2 in the atmosphere 
(very high confidence) and is most pronounced where temperatures 
are lowest (e.g., polar regions) or where CO2-rich water is brought to 
the ocean surface by upwelling (Feely et al., 2008). Acidification can 
also be influenced by effluents from natural or disturbed coastal land 
use (Salisbury et al., 2008), plankton blooms (Cai et al., 2011), and 
the atmospheric deposition of acidic materials (Omstedt et al., 2015). 
These sources may not be directly attributable to climate change, 
but they may amplify the impacts of ocean acidification (Bates and 
Peters, 2007; Duarte et al., 2013). Ocean acidification also influences 
the ionic composition of seawater by changing the organic and 
inorganic speciation of trace metals (e.g., 20-fold increases in free ion 
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concentrations of metals such as aluminium) – with changes expected 
to have impacts although they are currently poorly documented and 
understood (low confidence) (Stockdale et al., 2016).

Oxygen varies regionally and with depth; it is highest in polar regions 
and lowest in the eastern basins of the Atlantic and Pacific Oceans and 
in the northern Indian Ocean (Doney et al., 2014; Karstensen et al., 
2015; Schmidtko et al., 2017). Increasing surface water temperatures 
have reduced oxygen in the ocean by 2% since 1960, with other 
variables such as ocean acidification, sea level rise, precipitation, wind 
and storm patterns playing roles (Schmidtko et al., 2017). Changes 
to ocean mixing and metabolic rates, due to increased temperature 
and greater supply of organic carbon to deep areas, has increased the 
frequency of ‘dead zones’, areas where oxygen levels are so low that 
they no longer support oxygen dependent life (Diaz and Rosenberg, 
2008). The changes are complex and include both climate change and 
other variables (Altieri and Gedan, 2015), and are increasing in tropical 
as well as temperate regions (Altieri et al., 2017). 

Ocean salinity is changing in directions that are consistent with 
surface temperatures and the global water cycle (i.e., precipitation 
versus evaporation). Some regions, such as northern oceans and the 
Arctic, have decreased in salinity, owing to melting glaciers and ice 
sheets, while others have increased in salinity, owing to higher sea 
surface temperatures and evaporation (Durack et al., 2012). These 
changes in salinity (i.e., density) are also potentially contributing to 
large-scale changes in water movement (Section 3.3.8). 

3.3.11	 Global Synthesis 

Table 3.2 features a summary of the assessments of global and 
regional climate changes and associated hazards described in this 
chapter, based on the existing literature. For more details about 
observation and attribution in ocean and cryosphere systems, 
please refer to the upcoming IPCC Special Report on the Ocean and 
Cryosphere in a Changing Climate (SROCC) due to be released in 
2019.

Observed change 
(recent past versus 

pre-industrial)

Attribution of observed 
change to human-

induced forcing 
(present-day versus 

pre-industrial)

Projected change 
at 1.5°C of global 

warming compared 
to pre-industrial 

(1.5°C versus 0°C)

Projected change 
at 2°C of global 

warming compared 
to pre-industrial 
(2°C versus 0°C)

Differences between 
2°C and 1.5°C of 
global warming

GMST 
anomaly

GMST anomalies were 0.87°C 
(±0.10°C likely range) above 
pre-industrial (1850–1900) 
values in the 2006–2015 
decade, with a recent warming 
of about 0.2°C (±0.10°C) per 
decade (high confidence)

[Chapter 1]

The observed 0.87°C GMST 
increase in the 2006–2015 
decade compared to 
pre-industrial (1850–1900) 
conditions was mostly human-
induced (high confidence)

Human-induced warming 
reached about 1°C (±0.2°C 
likely range) above pre-
industrial levels in 2017

[Chapter 1]

1.5°C 2°C 0.5°C

Temperature 
extremes

Overall decrease in the 
number of cold days and 
nights and overall increase 
in the number of warm days 
and nights at the global 
scale on land (very likely)

Continental-scale increase in 
intensity and frequency of hot 
days and nights, and decrease 
in intensity and frequency 
of cold days and nights, in 
North America, Europe and 
Australia (very likely)

Increases in frequency or 
duration of warm spell lengths 
in large parts of Europe, Asia 
and Australia (high confidence 
(likely)), as well as at the global 
scale (medium confidence)

[Section 3.3.2]

Anthropogenic forcing has 
contributed to the observed 
changes in  frequency and 
intensity of daily temperature 
extremes on the global 
scale since the mid-20th 
century (very likely)

[Section 3.3.2]

Global-scale increased intensity 
and frequency of hot days 
and nights, and decreased 
intensity and frequency of cold 
days and nights (very likely)

Warming of temperature 
extremes highest over land, 
including many inhabited 
regions (high confidence), with 
increases of up to 3°C in the 
mid-latitude warm season and 
up to 4.5°C in the high-latitude 
cold season (high confidence)

Largest increase in 
frequency of unusually 
hot extremes in tropical 
regions (high confidence)

[Section 3.3.2]

Global-scale increased intensity 
and frequency of hot days 
and nights, and decreased 
intensity and frequency of cold 
days and nights (very likely) 

Warming of temperature 
extremes highest over land, 
including many inhabited 
regions (high confidence), with 
increases of up to 4°C in the 
mid-latitude warm season and 
up to 6°C in the high-latitude 
cold season (high confidence)

Largest increase in 
frequency of unusually 
hot extremes in tropical 
regions (high  confidence)

[Section 3.3.2]

Global-scale increased intensity 
and frequency of hot days and 
nights, and decreased intensity 
and frequency of cold days 
and nights (high confidence) 

Global-scale increase in 
length of warm spells and 
decrease in length of cold 
spells (high confidence) 

Strongest increase in 
frequency for the rarest 
and most extreme events 
(high confidence)

Particularly large increases 
in hot extremes in inhabited 
regions (high confidence)

[Section 3.3.2]

Table 3.2  |	 Summary of assessments of global and regional climate changes and associated hazards. Confidence and likelihood statements are quoted from the relevant  
	 chapter text and are omitted where no assessment was made, in which case the IPCC Fifth Assessment Report (AR5) assessment is given where available.  
	 GMST: global mean surface temperature, AMOC: Atlantic Meridional Overturning Circulation, GMSL: global mean sea level.
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Observed change 
(recent past versus 

pre-industrial)

Attribution of observed 
change to human-

induced forcing 
(present-day versus 

pre-industrial)

Projected change 
at 1.5°C of global 

warming compared 
to pre-industrial 

(1.5°C versus 0°C)

Projected change 
at 2°C of global 

warming compared 
to pre-industrial 
(2°C versus 0°C)

Differences between 
2°C and 1.5°C of 
global warming

Heavy 
precipitation

More areas with increases than 
decreases in the frequency, 
intensity and/or amount of 
heavy precipitation (likely)

[Section 3.3.3]

Human influence contrib-
uted to the global-scale 
tendency towards increases in 
the frequency, intensity and/or 
amount of heavy precipitation 
events (medium confidence) 

[Section 3.3.3; AR5 Chapter 
10 (Bindoff et al., 2013a)] 

Increases in frequency, 
intensity and/or amount 
heavy precipitation when 
averaged over global land, 
with positive trends in several 
regions (high confidence)

[Section 3.3.3]

Increases in frequency, 
intensity and/or amount 
heavy precipitation when 
averaged over global land, 
with positive trends in several 
regions (high confidence)

[Section 3.3.3]

Higher frequency, intensity 
and/or amount of heavy 
precipitation when averaged 
over global land, with positive 
trends in several regions 
(medium confidence)

Several regions are projected 
to experience increases 
in heavy precipitation at 
2°C versus 1.5°C (medium 
confidence), in particular in 
high-latitude and mountainous 
regions, as well as in eastern 
Asia and eastern North 
America (medium confidence) 

[Section 3.3.3]

Drought and 
dryness

High confidence in dryness 
trends in some regions, 
especially drying in the Medi-
terranean region (including 
southern Europe, northern 
Africa and the Near East)

Low confidence in drought 
and dryness trends at 
the global scale

[Section 3.3.4]

Medium confidence in 
attribution of drying 
trends in southern Europe 
(Mediterranean region) 

Low confidence elsewhere, in 
part due to large interannual 
variability and longer duration 
(and thus lower frequency) of 
drought events, as well as to 
dependency on the dryness 
index definition applied

[Section 3.3.4]

Medium confidence 
in drying trends in the 
Mediterranean region

Low confidence elsewhere, in 
part due to large interannual 
variability and longer duration 
(and thus lower frequency) of 
drought events, as well as to 
dependency on the dryness 
index definition applied

Increases in drought, dryness 
or precipitation deficits 
projected in some regions 
compared to the pre-industrial 
or present-day conditions, 
but substantial variability 
in signals depending on 
considered indices or climate 
model (medium confidence)

[Section 3.3.4]

Medium confidence in drying 
trends in the Mediterranean 
region and Southern Africa

Low confidence elsewhere, in 
part due to large interannual 
variability and longer duration 
(and thus lower frequency) of 
drought events, as well as to 
dependency on the dryness 
index definition applied

Increases in drought, dryness 
or precipitation deficits 
projected in some regions 
compared to the pre-industrial 
or present-day conditions, 
but substantial variability 
in signals depending on 
considered indices or climate 
model (medium confidence).

[Section 3.3.4]

Medium confidence in 
stronger drying trends in 
the Mediterranean region 
and Southern Africa 

Low confidence elsewhere, in 
part due to large interannual 
variability and longer duration 
(and thus lower frequency) of 
drought events, as well as to 
dependency on the dryness 
index definition applied

[Section 3.3.4]

Runoff and 
river flooding

Streamflow trends mostly 
not statistically significant 
(high confidence)

Increase in flood frequency and 
extreme streamflow in some 
regions (high confidence)

[Section 3.3.5]

Not assessed in this report Expansion of the global land 
area with a significant increase 
in runoff (medium confidence)

Increase in flood 
hazard in some regions 
(medium confidence) 

[Section 3.3.5]

Expansion of the global land 
area with a significant increase 
in runoff (medium confidence)

Increase in flood 
hazard in some regions 
(medium confidence)

[Section 3.3.5]

Expansion of the global land 
area with significant increase 
in runoff (medium confidence)

Expansion in the area 
affected by flood hazard 
(medium confidence)

[Section 3.3.5]

Tropical and 
extra-tropical 

cyclones

Low confidence in 
the robustness of 
observed changes 

[Section 3.3.6]

Not meaningful to assess given 
low confidence in changes, 
due to large interannual 
variability, heterogeneity 
of the observational record 
and contradictory findings 
regarding trends in the 
observational record

Increases in heavy precipitation 
associated with tropical 
cyclones (medium confidence)

Further increases in heavy 
precipitation associated 
with tropical cyclones 
(medium confidence)

Heavy precipitation associated 
with tropical cyclones is 
projected to be higher at 
2°C compared to 1.5°C 
global warming (medium 
confidence). Limited evidence 
that the global number of 
tropical cyclones will be lower 
under 2°C of global warming 
compared to under 1.5°C of 
warming, but an increase in 
the number of very intense 
cyclones (low confidence) 

Table 3.2 (continued)
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Observed change 
(recent past versus 

pre-industrial)

Attribution of observed 
change to human-

induced forcing 
(present-day versus 

pre-industrial)

Projected change 
at 1.5°C of global 

warming compared 
to pre-industrial 

(1.5°C versus 0°C)

Projected change 
at 2°C of global 

warming compared 
to pre-industrial 
(2°C versus 0°C)

Differences between 
2°C and 1.5°C of 
global warming

Ocean 
circulation and 
temperature

Observed warming of the 
upper ocean, with slightly 
lower rates than global 
warming (virtually certain) 

Increased occurrence of marine 
heatwaves (high confidence)

AMOC has been weakening 
over recent decades 
(more likely than not)

[Section 3.3.7]

Limited evidence attributing 
the weakening of AMOC 
in recent decades to 
anthropogenic forcing

[Section 3.3.7]

Further increases in ocean temperatures, including more frequent marine heatwaves (high confidence)

AMOC will weaken over the 21st century and substantially so under high levels (more than 2°C) of 
global warming (very likely)

[Section 3.3.7]

Sea ice

Continuing the trends reported 
in AR5, the annual Arctic sea 
ice extent decreased over 
the period 1979–2012. The 
rate of this decrease was 
very likely between 3.5 and 
4.1% per decade (0.45 to 
0.51 million km2 per decade)

[AR5 Chapter 4 (Vaughan 
et al., 2013)]

Anthropogenic forcings are 
very likely to have contributed 
to Arctic sea ice loss since 1979

[AR5 Chapter 10  
(Bindoff et al., 2013a)]

At least one sea-ice-free Arctic 
summer after about 100 years 
of stabilized warming 
(medium confidence)

[Section 3.3.8]

At least one sea-ice-free  
Arctic summer after about 
10 years of stabilized warming 
(medium confidence)

[Section 3.3.8]

Probability of sea-ice-free 
Arctic summer greatly reduced 
at 1.5°C versus 2°C of global 
warming (medium confidence)

[Section 3.3.8]

Intermediate temperature overshoot has no long-term consequences for Arctic sea ice cover  
(high confidence) 

[3.3.8]

Sea level

It is likely that the rate of 
GMSL rise has continued to 
increase since the early 20th 
century, with estimates that 
range from 0.000 [–0.002 
to 0.002] mm yr–2 to 0.013 
[0.007 to 0.019] mm yr–2

[AR5 Chapter 13 
(Church et al., 2013)]

It is very likely that there is 
a substantial contribution 
from anthropogenic forcings 
to the global mean sea 
level rise since the 1970s

[AR5 Chapter 10 (Bindoff 
et al., 2013a)]

Not assessed in this report Not assessed in this report GMSL rise will be about  
0.1 m (0.00–0.20 m) less 
at 1.5°C versus 2°C global 
warming (medium confidence)

[Section 3.3.9]

Ocean  
chemistry

Ocean acidification due to 
increased CO2 has resulted in 
a 0.1 pH unit decrease since 
the pre-industrial period, which 
is unprecedented in the last 
65 Ma (high confidence)

[Section 3.3.10]

The oceanic uptake of 
anthropogenic CO2 has resulted 
in acidification of surface 
waters (very high confidence).

[Section 3.3.10]

Ocean chemistry is changing with global temperature increases, with impacts 
projected at 1.5°C and, more so, at 2°C of warming (high confidence)

[Section 3.3.10]

Table 3.2 (continued)

3.4	 Observed Impacts and Projected Risks 
in Natural and Human Systems

3.4.1	 Introduction

In Section 3.4, new literature is explored and the assessment of impacts 
and projected risks is updated for a large number of natural and 
human systems. This section also includes an exploration of adaptation 
opportunities that could be important steps towards reducing climate 
change, thereby laying the ground for later discussions on opportunities 
to tackle both mitigation and adaptation while at the same time 
recognising the importance of sustainable development and reducing 
the inequities among people and societies facing climate change.

Working Group II (WGII) of the IPCC Fifth Assessment Report (AR5) 
provided an assessment of the literature on the climate risk for natural 
and human systems across a wide range of environments, sectors 
and greenhouse gas scenarios, as well as for particular geographic 

regions (IPCC, 2014a, b). The comprehensive assessment undertaken 
by AR5 evaluated the evidence of changes to natural systems, and 
the impact on human communities and industry. While impacts varied 
substantially among systems, sectors and regions, many changes 
over the past 50 years could be attributed to human driven climate 
change and its impacts. In particular, AR5 attributed observed impacts 
in natural ecosystems to anthropogenic climate change, including 
changes in phenology, geographic and altitudinal range shifts in flora 
and fauna, regime shifts and increased tree mortality, all of which can 
reduce ecosystem functioning and services thereby impacting people. 
AR5 also reported increasing evidence of changing patterns of disease 
and invasive species, as well as growing risks for communities and 
industry, which are especially important with respect to sea level rise 
and human vulnerability.

One of the important themes that emerged from AR5 is that previous 
assessments may have under-estimated the sensitivity of natural and 
human systems to climate change. A more recent analysis of attribution 
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to greenhouse gas forcing at the global scale (Hansen and Stone, 
2016) confirmed that many impacts related to changes in regional 
atmospheric and ocean temperature can be confidently attributed to 
anthropogenic forcing, while attribution to anthropogenic forcing of 
changes related to precipitation are by comparison less clear. Moreover, 
there is no strong direct relationship between the robustness of climate 
attribution and that of impact attribution (Hansen and Stone, 2016). 
The observed changes in human systems are amplified by the loss 
of ecosystem services (e.g., reduced access to safe water) that are 
supported by biodiversity (Oppenheimer et al., 2014). Limited research 
on the risks of warming of 1.5°C and 2°C was conducted following 
AR5 for most key economic sectors and services, for livelihoods and 
poverty, and for rural areas. For these systems, climate is one of many 
drivers that result in adverse outcomes. Other factors include patterns 
of demographic change, socio-economic development, trade and 
tourism. Further, consequences of climate change for infrastructure, 
tourism, migration, crop yields and other impacts interact with 
underlying vulnerabilities, such as for individuals and communities 
engaged in pastoralism, mountain farming and artisanal fisheries, to 
affect livelihoods and poverty (Dasgupta et al., 2014). 

Incomplete data and understanding of these lower-end climate 
scenarios have increased the need for more data and an improved 
understanding of the projected risks of warming of 1.5°C and 2°C for 
reference. In this section, the available literature on the projected risks, 
impacts and adaptation options is explored, supported by additional 
information and background provided in Supplementary Material 
3.SM.3.1, 3.SM.3.2, 3.SM.3.4, and 3.SM.3.5. A description of the main 
assessment methods of this chapter is given in Section 3.2.2.

3.4.2	 Freshwater Resources (Quantity and Quality)

3.4.2.1	 Water availability

Working Group II of AR5 concluded that about 80% of the world’s 
population already suffers from serious threats to its water security, as 
measured by indicators including water availability, water demand and 
pollution (Jiménez Cisneros et al., 2014). UNESCO (2011) concluded 
that climate change can alter the availability of water and threaten 
water security. 

Although physical changes in streamflow and continental runoff that 
are consistent with climate change have been identified (Section 
3.3.5), water scarcity in the past is still less well understood because 
the scarcity assessment needs to take into account various factors, such 
as the operations of water supply infrastructure and human water use 
behaviour (Mehran et al., 2017), as well as green water, water quality 
and environmental flow requirements (J. Liu et al., 2017). Over the past 
century, substantial growth in populations, industrial and agricultural 
activities, and living standards have exacerbated water stress in many 
parts of the world, especially in semi-arid and arid regions such as 
California in the USA (AghaKouchak et al., 2015; Mehran et al., 2015). 
Owing to changes in climate and water consumption behaviour, and 
particularly effects of the spatial distribution of population growth 
relative to water resources, the population under water scarcity 
increased from 0.24 billion (14% of the global population) in the 
1900s to 3.8 billion (58%) in the 2000s. In that last period (2000s), 1.1 

billion people (17% of the global population) who mostly live in South 
and East Asia, North Africa and the Middle East faced serious water 
shortage and high water stress (Kummu et al., 2016).

Over the next few decades, and for increases in global mean 
temperature less than about 2°C, AR5 concluded that changes in 
population will generally have a greater effect on water resource 
availability than changes in climate. Climate change, however, will 
regionally exacerbate or offset the effects of population pressure 
(Jiménez Cisneros et al., 2014). 

The differences in projected changes to levels of runoff under 1.5°C 
and 2°C of global warming, particularly those that are regional, are 
described in Section 3.3.5. Constraining warming to 1.5°C instead 
of 2°C might mitigate the risks for water availability, although 
socio-economic drivers could affect water availability more than the 
risks posed by variation in warming levels, while the risks are not 
homogeneous among regions (medium confidence) (Gerten et al., 
2013; Hanasaki et al., 2013; Arnell and Lloyd-Hughes, 2014; Schewe et 
al., 2014; Karnauskas et al., 2018). Assuming a constant population in 
the models used in his study, Gerten et al. (2013) determined that an 
additional 8% of the world population in 2000 would be exposed to 
new or aggravated water scarcity at 2°C of global warming. This value 
was almost halved – with 50% greater reliability – when warming was 
constrained to 1.5°C. People inhabiting river basins, particularly in the 
Middle East and Near East, are projected to become newly exposed 
to chronic water scarcity even if global warming is constrained to 
less than 2°C. Many regions, especially those in Europe, Australia 
and southern Africa, appear to be affected at 1.5°C if the reduction 
in water availability is computed for non-water-scarce basins as well 
as for water-scarce regions. Out of a contemporary population of 
approximately 1.3 billion exposed to water scarcity, about 3% (North 
America) to 9% (Europe) are expected to be prone to aggravated 
scarcity at 2°C of global warming (Gerten et al., 2013). Under the 
Shared Socio-Economic Pathway (SSP)2 population scenario, about 8% 
of the global population is projected to experience a severe reduction 
in water resources under warming of 1.7°C in 2021–2040, increasing 
to 14% of the population under 2.7°C in 2043–2071, based on the 
criteria of discharge reduction of either >20% or >1 standard deviation 
(Schewe et al., 2014). Depending on the scenarios of SSP1–5, exposure 
to the increase in water scarcity in 2050 will be globally reduced by 
184–270 million people at about 1.5°C of warming compared to the 
impacts at about 2°C. However, the variation between socio-economic 
levels is larger than the variation between warming levels (Arnell and 
Lloyd-Hughes, 2014). 

On many small islands (e.g., those constituting SIDS), freshwater stress 
is expected to occur as a result of projected aridity change. Constraining 
warming to 1.5°C, however, could avoid a substantial fraction of 
water stress compared to 2°C, especially across the Caribbean region, 
particularly on the island of Hispaniola (Dominican Republic and Haiti) 
(Karnauskas et al., 2018). Hanasaki et al. (2013) concluded that the 
projected range of changes in global irrigation water withdrawal 
(relative to the baseline of 1971–2000), using human configuration 
fixing non-meteorological variables for the period around 2000, are 
1.1–2.3% and 0.6–2.0% lower at 1.5°C and 2°C, respectively. In the 
same study, Hanasaki et al. (2013) highlighted the importance of water 
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use scenarios in water scarcity assessments, but neither quantitative 
nor qualitative information regarding water use is available. 

When the impacts on hydropower production at 1.5°C and 2°C are 
compared, it is found that mean gross potential increases in northern, 
eastern and western Europe, and decreases in southern Europe (Jacob 
et al., 2018; Tobin et al., 2018). The Baltic and Scandinavian countries 
are projected to experience the most positive impacts on hydropower 
production. Greece, Spain and Portugal are expected to be the most 
negatively impacted countries, although the impacts could be reduced 
by limiting warming to 1.5°C (Tobin et al., 2018). In Greece, Spain and 
Portugal, warming of 2°C is projected to decrease hydropower potential 
below 10%, while limiting global warming to 1.5°C would keep the 
reduction to 5% or less. There is, however, substantial uncertainty 
associated with these results due to a large spread between the 
climate models (Tobin et al., 2018).

Due to a combination of higher water temperatures and reduced 
summer river flows, the usable capacity of thermoelectric power plants 
using river water for cooling is expected to reduce in all European 
countries (Jacob et al., 2018; Tobin et al., 2018), with the magnitude 
of decreases being about 5% for 1.5°C and 10% for 2°C of global 
warming for most European countries (Tobin et al., 2018). Greece, 
Spain and Bulgaria are projected to have the largest reduction at 2°C 
of warming (Tobin et al., 2018).

Fricko et al. (2016) assessed the direct water use of the global energy 
sector across a broad range of energy system transformation pathways 
in order to identify the water impacts of a 2°C climate policy. This 
study revealed that there would be substantial divergence in water 
withdrawal for thermal power plant cooling under conditions in which 
the distribution of future cooling technology for energy generation is 
fixed, whereas adopting alternative cooling technologies and water 
resources would make the divergence considerably smaller.

3.4.2.2	 Extreme hydrological events (floods and droughts)

Working Group II of AR5 concluded that socio-economic losses from 
flooding since the mid-20th century have increased mainly because 
of greater exposure and vulnerability (high confidence) (Jiménez 
Cisneros et al., 2014). There was low confidence due to limited 
evidence, however, that anthropogenic climate change has affected 
the frequency and magnitude of floods. WGII AR5 also concluded that 
there is no evidence that surface water and groundwater drought 
frequency has changed over the last few decades, although impacts 
of drought have increased mostly owing to increased water demand 
(Jiménez Cisneros et al., 2014).

Since AR5, the number of studies related to fluvial flooding and 
meteorological drought based on long-term observed data has been 
gradually increasing. There has also been progress since AR5 in 
identifying historical changes in streamflow and continental runoff 
(Section 3.3.5). As a result of population and economic growth, 
increased exposure of people and assets has caused more damage 
due to flooding. However, differences in flood risks among regions 
reflect the balance among the magnitude of the flood, the populations, 
their vulnerabilities, the value of assets affected by flooding, and the 

capacity to cope with flood risks, all of which depend on socio-economic 
development conditions, as well as topography and hydro-climatic 
conditions (Tanoue et al., 2016). AR5 concluded that there was low 
confidence in the attribution of global changes in droughts (Bindoff et 
al., 2013b). However, recent publications based on observational and 
modelling evidence assessed that human emissions have substantially 
increased the probability of drought years in the Mediterranean region 
(Section 3.3.4).

WGII AR5 assessed that global flood risk will increase in the future, 
partly owing to climate change (low to medium confidence), with 
projected changes in the frequency of droughts longer than 12 months 
being more uncertain because of their dependence on accumulated 
precipitation over long periods (Jiménez Cisneros et al., 2014).

Increases in the risks associated with runoff at the global scale 
(medium confidence), and in flood hazard in some regions (medium 
confidence), can be expected at global warming of 1.5°C, with an 
overall increase in the area affected by flood hazard at 2°C (medium 
confidence) (Section 3.3.5). There are studies, however, that indicate 
that socio-economic conditions will exacerbate flood impacts 
more than global climate change, and that the magnitude of these 
impacts could be larger in some regions (Arnell and Lloyd-Hughes, 
2014; Winsemius et al., 2016; Alfieri et al., 2017; Arnell et al., 2018; 
Kinoshita et al., 2018). Assuming constant population sizes, countries 
representing 73% of the world population will experience increasing 
flood risk, with an average increase of 580% at 4°C compared to the 
impact simulated over the baseline period 1976–2005. This impact 
is projected to be reduced to a 100% increase at 1.5°C and a 170% 
increase at 2°C (Alfieri et al., 2017). Alfieri et al. (2017) additionally 
concluded that the largest increases in flood risks would be found in 
the US, Asia, and Europe in general, while decreases would be found in 
only a few countries in eastern Europe and Africa. Overall, Alfieri et al. 
(2017) reported that the projected changes are not homogeneously 
distributed across the world land surface. Alfieri et al. (2018) studied 
the population affected by flood events using three case studies in 
European states, specifically central and western Europe, and found 
that the population affected could be limited to 86% at 1.5°C of 
warming compared to 93% at 2°C. Under the SSP2 population 
scenario, Arnell et al. (2018) found that 39% (range 36–46%) of 
impacts on populations exposed to river flooding globally could be 
avoided at 1.5°C compared to 2°C of warming. 

Under scenarios SSP1–5, Arnell and Lloyd-Hughes (2014) found 
that the number of people exposed to increased flooding in 2050 
under warming of about 1.5°C could be reduced by 26–34 million 
compared to the number exposed to increased flooding associated 
with 2°C of warming. Variation between socio-economic levels, 
however, is projected to be larger than variation between the two 
levels of global warming. Kinoshita et al. (2018) found that a serious 
increase in potential flood fatality (5.7%) is projected without any 
adaptation if global warming increases from 1.5°C to 2°C, whereas 
the projected increase in potential economic loss (0.9%) is relatively 
small. Nevertheless, their study indicates that socio-economic changes 
make a larger contribution to the potentially increased consequences 
of future floods, and about half of the increase in potential economic 
losses could be mitigated by autonomous adaptation.
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There is limited information about the global and regional 
projected risks posed by droughts at 1.5°C and 2°C of global 
warming. However, hazards by droughts at 1.5°C could be reduced 
compared to the hazards at 2°C in some regions, in particular in the 
Mediterranean region and southern Africa (Section 3.3.4). Under 
constant socio-economic conditions, the population exposed to 
drought at 2°C of warming is projected to be larger than at 1.5°C 
(low to medium confidence) (Smirnov et al., 2016; Sun et al., 2017; 
Arnell et al., 2018; Liu et al., 2018). Under the same scenario, the 
global mean monthly number of people expected to be exposed to 
extreme drought at 1.5°C in 2021–2040 is projected to be 114.3 
million, compared to 190.4 million at 2°C in 2041–2060 (Smirnov et 
al., 2016). Under the SSP2 population scenario, Arnell et al. (2018) 
projected that 39% (range 36–51%) of impacts on populations 
exposed to drought could be globally avoided at 1.5°C compared 
to 2°C warming.

Liu et al. (2018) studied the changes in population exposure to severe 
droughts in 27 regions around the globe for 1.5°C and 2°C of warming 
using the SSP1 population scenario compared to the baseline period 
of 1986–2005 based on the Palmer Drought Severity Index (PDSI). 
They concluded that the drought exposure of urban populations in 
most regions would be decreased at 1.5°C (350.2 ± 158.8 million 
people) compared to 2°C (410.7 ± 213.5 million people). Liu et al. 
(2018) also suggested that more urban populations would be exposed 
to severe droughts at 1.5°C in central Europe, southern Europe, the 
Mediterranean, West Africa, East and West Asia, and Southeast Asia, 
and that number of affected people would increase further in these 
regions at 2°C. However, it should be noted that the PDSI is known 
to have limitations (IPCC SREX, Seneviratne et al., 2012), and drought 
projections strongly depend on considered indices (Section 3.3.4); thus 
only medium confidence is assigned to these projections. In the Haihe 
River basin in China, a study has suggested that the proportion of the 
population exposed to droughts is projected to be reduced by 30.4% 
at 1.5°C but increased by 74.8% at 2°C relative to the baseline value 
of 339.65 million people in the 1986–2005 period, when assessing 
changes in droughts using the Standardized Precipitation-Evaporation 
Index, using a Penman–Monteith estimate of potential evaporation 
(Sun et al., 2017) .

Alfieri et al. (2018) estimated damage from flooding in Europe for 
the baseline period (1976–2005) at 5 billion euro of losses annually, 
with projections of relative changes in flood impacts that will rise with 
warming levels, from 116% at 1.5°C to 137% at 2°C.

Kinoshita et al. (2018) studied the increase of potential economic loss 
under SSP3 and projected that the smaller loss at 1.5°C compared 
to 2°C (0.9%) is marginal, regardless of whether the vulnerability is 
fixed at the current level or not. By analysing the differences in results 
with and without flood protection standards, Winsemius et al. (2016) 
showed that adaptation measures have the potential to greatly reduce 
present-day and future flood damage. They concluded that increases in 
flood-induced economic impacts (% gross domestic product, GDP) in 
African countries are mainly driven by climate change and that Africa’s 
growing assets would become increasingly exposed to floods. Hence, 
there is an increasing need for long-term and sustainable investments 
in adaptation in Africa. 

3.4.2.3	 Groundwater

Working Group II of AR5 concluded that the detection of changes in 
groundwater systems, and attribution of those changes to climatic 
changes, are rare, owing to a lack of appropriate observation wells 
and an overall small number of studies (Jiménez Cisneros et al., 2014).

Since AR5, the number of studies based on long-term observed data 
continues to be limited. The groundwater-fed lakes in northeastern 
central Europe have been affected by climate and land-use changes, 
and they showed a predominantly negative lake-level trend in 1999–
2008 (Kaiser et al., 2014).

WGII AR5 concluded that climate change is projected to reduce 
groundwater resources significantly in most dry subtropical regions 
(high confidence) (Jiménez Cisneros et al., 2014).

In some regions, groundwater is often intensively used to supplement 
the excess demand, often leading to groundwater depletion. Climate 
change adds further pressure on water resources and exaggerates 
human water demands by increasing temperatures over agricultural 
lands (Wada et al., 2017). Very few studies have projected the risks of 
groundwater depletion under 1.5°C and 2°C of global warming. Under 
2°C of warming, impacts posed on groundwater are projected to be 
greater than at 1.5°C (low confidence) (Portmann et al., 2013; Salem 
et al., 2017). 

Portmann et al. (2013) indicated that 2% (range 1.1–2.6%) of the 
global land area is projected to suffer from an extreme decrease in 
renewable groundwater resources of more than 70% at 2°C, with a 
clear mitigation at 1.5°C. These authors also projected that 20% of 
the global land surface would be affected by a groundwater reduction 
of more than 10% at 1.5°C of warming, with the percentage of land 
impacted increasing at 2°C. In a groundwater-dependent irrigated 
region in northwest Bangladesh, the average groundwater level during 
the major irrigation period (January–April) is projected to decrease in 
accordance with temperature rise (Salem et al., 2017).

3.4.2.4	 Water quality

Working Group II of AR5 concluded that most observed changes to 
water quality from climate change are from isolated studies, mostly 
of rivers or lakes in high-income countries, using a small number of 
variables (Jiménez Cisneros et al., 2014). AR5 assessed that climate 
change is projected to reduce raw water quality, posing risks to 
drinking water quality with conventional treatment (medium to high 
confidence) (Jiménez Cisneros et al., 2014).

Since AR5, studies have detected climate change impacts on several 
indices of water quality in lakes, watersheds and regions (e.g., Patiño 
et al., 2014; Aguilera et al., 2015; Watts et al., 2015; Marszelewski 
and Pius, 2016; Capo et al., 2017). The number of studies utilising 
RCP scenarios at the regional or watershed scale have gradually 
increased since AR5 (e.g., Boehlert et al., 2015; Teshager et al., 2016; 
Marcinkowski et al., 2017). Few studies, have explored projected 
impacts on water quality under 1.5°C versus 2°C of warming, 
however, the differences are unclear (low confidence) (Bonte and 
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Zwolsman, 2010; Hosseini et al., 2017). The daily probability of 
exceeding the chloride standard for drinking water taken from Lake 
IJsselmeer (Andijk, the Netherlands) is projected to increase by 
a factor of about five at 2°C relative to the present-day warming 
level of 1°C since 1990 (Bonte and Zwolsman, 2010). Mean monthly 
dissolved oxygen concentrations and nutrient concentrations in 
the upper Qu’Appelle River (Canada) in 2050–2055 are projected 
to decrease less at about 1.5°C of warming (RCP2.6) compared to 
concentrations at about 2°C (RCP4.5) (Hosseini et al., 2017). In three 
river basins in Southeast Asia (Sekong, Sesan and Srepok), about 2°C 
of warming (corresponding to a 1.05°C increase in the 2030s relative 
to the baseline period 1981–2008, RCP8.5), impacts posed by land-
use change on water quality are projected to be greater than at 1.5°C 
(corresponding to a 0.89°C increase in the 2030s relative to the 
baseline period 1981–2008, RCP4.5) (Trang et al., 2017). Under the 
same warming scenarios, Trang et al. (2017) projected changes in the 
annual nitrogen (N) and phosphorus (P) yields in the 2030s, as well as 
with combinations of two land-use change scenarios: (i) conversion 
of forest to grassland, and (ii) conversion of forest to agricultural 
land. The projected changes in N (P) yield are +7.3% (+5.1%) under 
a 1.5°C scenario and –6.6% (–3.6%) under 2°C, whereas changes 
under the combination of land-use scenarios are (i) +5.2% (+12.6%) 
at 1.5°C and +8.8% (+11.7%) at 2°C, and (ii) +7.5% (+14.9%) at 
1.5°C and +3.7% (+8.8%) at 2°C (Trang et al., 2017). 

3.4.2.5	 Soil erosion and sediment load

Working Group II of AR5 concluded that there is little or no 
observational evidence that soil erosion and sediment load have been 
altered significantly by climate change (low to medium confidence) 
(Jiménez Cisneros et al., 2014). As the number of studies on climate 
change impacts on soil erosion has increased where rainfall is an 
important driver (Lu et al., 2013), studies have increasingly considered 
other factors, such as rainfall intensity (e.g., Shi and Wang, 2015; 
Li and Fang, 2016), snow melt, and change in vegetation cover 
resulting from temperature rise (Potemkina and Potemkin, 2015), 
as well as crop management practices (Mullan et al., 2012). WGII 
AR5 concluded that increases in heavy rainfall and temperature are 
projected to change soil erosion and sediment yield, although the 
extent of these changes is highly uncertain and depends on rainfall 
seasonality, land cover, and soil management practices (Jiménez 
Cisneros et al., 2014).

While the number of published studies of climate change impacts on 
soil erosion have increased globally since 2000 (Li and Fang, 2016), 
few articles have addressed impacts at 1.5°C and 2°C of global 
warming. The existing studies have found few differences in projected 
risks posed on sediment load under 1.5°C and 2°C (low confidence) 
(Cousino et al., 2015; Shrestha et al., 2016). The differences between 
average annual sediment load under 1.5°C and 2°C of warming are 
not clear, owing to complex interactions among climate change, land 
cover/surface and soil management (Cousino et al., 2015; Shrestha 
et al., 2016). Averages of annual sediment loads are projected to 
be similar under 1.5°C and 2°C of warming, in particular in the 
Great Lakes region in the USA and in the Lower Mekong region in 
Southeast Asia (Cross-Chapter Box 6 in this chapter, Cousino et al., 
2015; Shrestha et al., 2016). 

3.4.3	 Terrestrial and Wetland Ecosystems 

3.4.3.1	 Biome shifts 

Latitudinal and elevational shifts of biomes (major ecosystem 
types) in boreal, temperate and tropical regions have been detected 
(Settele et al., 2014) and new studies confirm these changes (e.g., 
shrub encroachment on tundra; Larsen et al., 2014). Attribution 
studies indicate that anthropogenic climate change has made a 
greater contribution to these changes than any other factor (medium 
confidence) (Settele et al., 2014). 

An ensemble of seven Dynamic Vegetation Models driven by projected 
climates from 19 alternative general circulation models (GCMs) 
(Warszawski et al., 2013) shows 13% (range 8–20%) of biomes 
transforming at 2°C of global warming, but only 4% (range 2–7%) 
doing so at 1°C, suggesting that about 6.5% may be transformed at 
1.5°C; these estimates indicate a doubling of the areal extent of biome 
shifts between 1.5°C and 2°C of warming (medium confidence) (Figure 
3.16a). A study using the single ecosystem model LPJmL (Gerten et 
al., 2013) illustrated that biome shifts in the Arctic, Tibet, Himalayas, 
southern Africa and Australia would be avoided by constraining 
warming to 1.5°C compared with 2°C (Figure 3.16b). Seddon et al. 
(2016) quantitatively identified ecologically sensitive regions to climate 
change in most of the continents from tundra to tropical rainforest. 
Biome transformation may in some cases be associated with novel 
climates and ecological communities (Prober et al., 2012). 

3.4.3.2	 Changes in phenology

Advancement in spring phenology of 2.8 ± 0.35 days per decade has 
been observed in plants and animals in recent decades in most Northern 
Hemisphere ecosystems (between 30°N and 72°N), and these shifts 
have been attributed to changes in climate (high confidence) (Settele 
et al., 2014). The rates of change are particularly high in the Arctic 
zone owing to the stronger local warming (Oberbauer et al., 2013), 
whereas phenology in tropical forests appears to be more responsive 
to moisture stress (Zhou et al., 2014). While a full review cannot be 
included here, trends consistent with this earlier finding continue to 
be detected, including in the flowering times of plants (Parmesan 
and Hanley, 2015), in the dates of egg laying and migration in birds 
(newly reported in China; Wu and Shi, 2016), in the emergence dates 
of butterflies (Roy et al., 2015), and in the seasonal greening-up of 
vegetation as detected by satellites (i.e., in the normalized difference 
vegetation index, NDVI; Piao et al., 2015).

The potential for decoupling species–species interactions owing to 
differing phenological responses to climate change is well established 
(Settele et al., 2014), for example for plants and their insect pollinators 
(Willmer, 2012; Scaven and Rafferty, 2013). Mid-century projections 
of plant and animal phenophases in the UK clearly indicate that 
the timing of phenological events could change more for primary 
consumers (6.2 days earlier on average) than for higher trophic 
levels (2.5–2.9 days earlier on average) (Thackeray et al., 2016). This 
indicates the potential for phenological mismatch and associated 
risks for ecosystem functionality in the future under global warming 
of 2.1°C–2.7°C above pre-industrial levels. Further, differing responses 
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Figure 3.16 |  (a) Fraction of global natural vegetation (including managed forests) at risk of severe ecosystem change as a function of global mean temperature change for 
all ecosystems, models, global climate change models and Representative Concentration Pathways (RCPs). The colours represent the different ecosystem models, which are also 
horizontally separated for clarity. Results are collated in unit-degree bins, where the temperature for a given year is the average over a 30-year window centred on that year. 
The boxes span the 25th and 75th percentiles across the entire ensemble. The short, horizontal stripes represent individual (annual) data points, the curves connect the mean 
value per ecosystem model in each bin. The solid (dashed) curves are for models with (without) dynamic vegetation composition changes. Source: (Warszawski et al., 2013) 
(b) Threshold level of global temperature anomaly above pre-industrial levels that leads to significant local changes in terrestrial ecosystems. Regions with severe (coloured) or 
moderate (greyish) ecosystem transformation; delineation refers to the 90 biogeographic regions. All values denote changes found in >50% of the simulations. Source: (Gerten 
et al., 2013). Regions coloured in dark red are projected to undergo severe transformation under a global warming of 1.5°C while those coloured in light red do so at 2°C; other 
colours are used when there is no severe transformation unless global warming exceeds 2°C.

(a)

(b)
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could alter community structure in temperate forests (Roberts et al., 
2015). Specifically, temperate forest phenology is projected to advance 
by 14.3 days in the near term (2010–2039) and 24.6 days in the 
medium term (2040–2069), so as a first approximation the difference 
between 2°C and 1.5°C of global warming is about 10 days (Roberts et 
al., 2015). This phenological plasticity is not always adaptive and must 
be interpreted cautiously (Duputié et al., 2015), and considered in the 
context of accompanying changes in climate variability (e.g., increased 
risk of frost damage for plants or earlier emergence of insects resulting in 
mortality during cold spells). Another adaptive response of some plants is 
range expansion with increased vigour and altered herbivore resistance 
in their new range, analogous to invasive plants (Macel et al., 2017).

In summary, limiting warming to 1.5°C compared with 2°C may avoid 
advance in spring phenology (high confidence) by perhaps a few days 
(medium confidence) and hence decrease the risks of loss of ecosystem 
functionality due to phenological mismatch between trophic levels, 
and also of maladaptation coming from the sensitivity of many species 
to increased climate variability. Nevertheless, this difference between 
1.5°C and 2°C of warming might be limited for plants that are able to 
expand their range. 

3.4.3.3	 Changes in species range, abundance and extinction 

AR5 (Settele et al., 2014) concluded that the geographical ranges of 
many terrestrial and freshwater plant and animal species have moved 
over the last several decades in response to warming: approximately 17 
km poleward and 11 m up in altitude per decade. Recent trends confirm 
this finding; for example, the spatial and interspecific variance in bird 
populations in Europe and North America since 1980 were found to be 
well predicted by trends in climate suitability (Stephens et al., 2016). 
Further, a recent meta-analysis of 27 studies concerning a total of 976 
species (Wiens, 2016) found that 47% of local extinctions (extirpations) 
reported across the globe during the 20th century could be attributed to 
climate change, with significantly more extinctions occurring in tropical 
regions, in freshwater habitats and for animals. IUCN (2018) lists 305 
terrestrial animal and plant species from Pacific Island developing nations 
as being threatened by climate change and severe weather. Owing 
to lags in the responses of some species to climate change, shifts in 
insect pollinator ranges may result in novel assemblages with unknown 
implications for biodiversity and ecosystem function (Rafferty, 2017).

Warren et al. (2013) simulated climatically determined geographic range 
loss under 2°C and 4°C of global warming for 50,000 plant and animal 
species, accounting for uncertainty in climate projections and for the 
potential ability of species to disperse naturally in an attempt to track their 
geographically shifting climate envelope. This earlier study has now been 
updated and expanded to incorporate 105,501 species, including 19,848 
insects, and new findings indicate that warming of 2°C by 2100 would 
lead to projected bioclimatic range losses of >50% in 18% (6–35%) of 
the 19,848 insects species, 8% (4–16%) of the 12,429 vertebrate species, 
and 16% (9–28%) of the 73,224 plant species studied (Warren et al., 
2018a). At 1.5°C of warming, these values fall to 6% (1–18%) of the 
insects, 4% (2–9%) of the vertebrates and 8% (4–15%) of the plants 
studied. Hence, the number of insect species projected to lose over half 
of their geographic range is reduced by two-thirds when warming is 
limited to 1.5°C compared with 2°C, while the number of vertebrate 

and plant species projected to lose over half of their geographic range 
is halved (Warren et al., 2018a) (medium confidence). These findings are 
consistent with estimates made from an earlier study suggesting that 
range losses at 1.5°C were significantly lower for plants than those at 
2°C of warming (Smith et al., 2018). It should be noted that at 1.5°C 
of warming, and if species’ ability to disperse naturally to track their 
preferred climate geographically is inhibited by natural or anthropogenic 
obstacles, there would still remain 10% of the amphibians, 8% of the 
reptiles, 6% of the mammals, 5% of the birds, 10% of the insects and 
8% of the plants which are projected to lose over half their range, while 
species on average lose 20–27% of their range (Warren et al., 2018a). 
Given that bird and mammal species can disperse more easily than 
amphibians and reptiles, a small proportion can expand their range 
as climate changes, but even at 1.5°C of warming the total range loss 
integrated over all birds and mammals greatly exceeds the integrated 
range gain (Warren et al., 2018a).

A number of caveats are noted for studies projecting changes to climatic 
range. This approach, for example, does not incorporate the effects of 
extreme weather events and the role of interactions between species. 
As well, trophic interactions may locally counteract the range expansion 
of species towards higher altitudes (Bråthen et al., 2018). There is also 
the potential for highly invasive species to become established in new 
areas as the climate changes (Murphy and Romanuk, 2014), but there is 
no literature that quantifies this possibility for 1.5°C of global warming.

Pecl et al. (2017) summarized at the global level the consequences 
of climate-change-induced species redistribution for economic 
development, livelihoods, food security, human health and culture. 
These authors concluded that even if anthropogenic greenhouse gas 
emissions stopped today, the effort for human systems to adapt to 
the most crucial effects of climate-driven species redistribution will 
be far-reaching and extensive. For example, key insect crop pollinator 
families (Apidae, Syrphidae and Calliphoridae; i.e., bees, hoverflies 
and blowflies) are projected to retain significantly greater geographic 
ranges under 1.5°C of global warming compared with 2°C (Warren 
et al., 2018a). In some cases, when species (such as pest and disease 
species) move into areas which have become climatically suitable 
they may become invasive or harmful to human or natural systems 
(Settele et al., 2014). Some studies are beginning to locate ‘refugial’ 
areas where the climate remains suitable in the future for most of the 
species currently present. For example, Smith et al. (2018) estimated 
that 5.5–14% more of the globe’s terrestrial land area could act as 
climatic refugia for plants under 1.5°C of warming compared to 2°C. 

There is no literature that directly estimates the proportion of species at 
increased risk of global (as opposed to local) commitment to extinction 
as a result of climate change, as this is inherently difficult to quantify. 
However, it is possible to compare the proportions of species at risk 
of very high range loss; for example, a discernibly smaller number of 
terrestrial species are projected to lose over 90% of their range at 
1.5°C of global warming compared with 2°C (Figure 2 in Warren et 
al., 2018a). A link between very high levels of range loss and greatly 
increased extinction risk may be inferred (Urban, 2015). Hence, limiting 
global warming to 1.5°C compared with 2°C would be expected to 
reduce both range losses and associated extinction risks in terrestrial 
species (high confidence).
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3.4.3.4	 Changes in ecosystem function, biomass  
and carbon stocks

Working Group II of AR5 (Settele et al., 2014) concluded that there is 
high confidence that net terrestrial ecosystem productivity at the global 
scale has increased relative to the pre-industrial era and that rising 
CO2 concentrations are contributing to this trend through stimulation 
of photosynthesis. There is, however, no clear and consistent signal 
of a climate change contribution. In northern latitudes, the change in 
productivity has a lower velocity than the warming, possibly because of 
a lack of resource and vegetation acclimation mechanisms (M. Huang 
et al., 2017). Biomass and soil carbon stocks in terrestrial ecosystems 
are currently increasing (high confidence), but they are vulnerable to 
loss of carbon to the atmosphere as a result of projected increases in 
the intensity of storms, wildfires, land degradation and pest outbreaks 
(Settele et al., 2014; Seidl et al., 2017). These losses are expected to 
contribute to a decrease in the terrestrial carbon sink. Anderegg et al. 
(2015) demonstrated that total ecosystem respiration at the global 
scale has increased in response to increases in night-time temperature 
(1 PgC yr–1 °C–1, P=0.02). 

The increase in total ecosystem respiration in spring and autumn, 
associated with higher temperatures, may convert boreal forests 
from carbon sinks to carbon sources (Hadden and Grelle, 2016). In 
boreal peatlands, for example, increased temperature may diminish 
carbon storage and compromise the stability of the peat (Dieleman 
et al., 2016). In addition, J. Yang et al. (2015) showed that fires reduce 
the carbon sink of global terrestrial ecosystems by 0.57 PgC yr–1 in 
ecosystems with large carbon stores, such as peatlands and tropical 
forests. Consequently, for adaptation purposes, it is necessary to 
enhance carbon sinks, especially in forests which are prime regulators 
within the water, energy and carbon cycles (Ellison et al., 2017). Soil can 
also be a key compartment for substantial carbon sequestration (Lal, 
2014; Minasny et al., 2017), depending on the net biome productivity 
and the soil quality (Bispo et al., 2017). 

AR5 assessed that large uncertainty remains regarding the land carbon 
cycle behaviour of the future (Ciais et al., 2013), with most, but not all, 
CMIP5 models simulating continued terrestrial carbon uptake under 
all four RCP scenarios (Jones et al., 2013). Disagreement between 
models outweighs differences between scenarios even up to the year 
2100 (Hewitt et al., 2016; Lovenduski and Bonan, 2017). Increased 
atmospheric CO2 concentrations are expected to drive further increases 
in the land carbon sink (Ciais et al., 2013; Schimel et al., 2015), which 
could persist for centuries (Pugh et al., 2016). Nitrogen, phosphorus and 
other nutrients will limit the terrestrial carbon cycle response to both 
elevated CO2 and altered climate (Goll et al., 2012; Yang et al., 2014; 
Wieder et al., 2015; Zaehle et al., 2015; Ellsworth et al., 2017). Climate 
change may accelerate plant uptake of carbon (Gang et al., 2015) 
but also increase the rate of decomposition (Todd-Brown et al., 2014; 
Koven et al., 2015; Crowther et al., 2016). Ahlström et al. (2012) found 
a net loss of carbon in extra-tropical regions and the largest spread 
across model results in the tropics. The projected net effect of climate 
change is to reduce the carbon sink expected under CO2 increase alone 
(Settele et al., 2014). Friend et al. (2014) found substantial uptake of 
carbon by vegetation under future scenarios when considering the 
effects of both climate change and elevated CO2.

There is limited published literature examining modelled land carbon 
changes specifically under 1.5°C of warming, but existing CMIP5 
models and published data are used in this report to draw some 
conclusions. For systems with significant inertia, such as vegetation or 
soil carbon stores, changes in carbon storage will depend on the rate 
of change of forcing and thus depend on the choice of scenario (Jones 
et al., 2009; Ciais et al., 2013; Sihi et al., 2017). To avoid legacy effects 
of the choice of scenario, this report focuses on the response of gross 
primary productivity (GPP) – the rate of photosynthetic carbon uptake 
– by the models, rather than by changes in their carbon store. 

Figure 3.17 shows different responses of the terrestrial carbon cycle 
to climate change in different regions. The models show a consistent 
response of increased GPP in temperate latitudes of approximately 2 
GtC yr–1 °C–1. Similarly, Gang et al. (2015) projected a robust increase 
in the net primary productivity (NPP) of temperate forests. However, 
Ahlström et al. (2012) showed that this effect could be offset or reversed 
by increases in decomposition. Globally, most models project that GPP 
will increase or remain approximately unchanged (Hashimoto et al., 
2013). This projection is supported by findings by Sakalli et al. (2017) 
for Europe using Euro-CORDEX regional models under a 2°C global 
warming for the period 2034–2063, which indicated that storage 
will increase by 5% in soil and by 20% in vegetation. However, using 
the same models Jacob et al. (2018) showed that limiting warming 
to 1.5°C instead of 2°C avoids an increase in ecosystem vulnerability 
(compared to a no-climate change scenario) of 40–50%. 

At the global level, linear scaling is acceptable for net primary production, 
biomass burning and surface runoff, and impacts on terrestrial carbon 
storage are projected to be greater at 2°C than at 1.5°C (Tanaka et 
al., 2017). If global CO2 concentrations and temperatures stabilize, or 
peak and decline, then both land and ocean carbon sinks – which are 
primarily driven by the continued increase in atmospheric CO2 – will 
also decline and may even become carbon sources (Jones et al., 2016). 
Consequently, if a given amount of anthropogenic CO2 is removed from 
the atmosphere, an equivalent amount of land and ocean anthropogenic 
CO2 will be released to the atmosphere (Cao and Caldeira, 2010). 

In conclusion, ecosystem respiration is expected to increase with 
increasing temperature, thus reducing soil carbon storage. Soil carbon 
storage is expected to be larger if global warming is restricted to 
1.5°C, although some of the associated changes will be countered by 
enhanced gross primary production due to elevated CO2 concentrations 
(i.e., the ‘fertilization effect’) and higher temperatures, especially at 
mid- and high latitudes (medium confidence). 

3.4.3.5	 Regional and ecosystem-specific risks 

A large number of threatened systems, including mountain 
ecosystems, highly biodiverse tropical wet and dry forests, deserts, 
freshwater systems and dune systems, were assessed in AR5. These 
include Mediterranean areas in Europe, Siberian, tropical and desert 
ecosystems in Asia, Australian rainforests, the Fynbos and succulent 
Karoo areas of South Africa, and wetlands in Ethiopia, Malawi, Zambia 
and Zimbabwe. In all these systems, it has been shown that impacts 
accrue with greater warming, and thus impacts at 2°C are expected to 
be greater than those at 1.5°C (medium confidence). 
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Figure 3.17 |  The response of terrestrial productivity (gross primary productivity, GPP) to climate change, globally (top left) and for three latitudinal regions: 30°S–30°N; 
30–60°N and 60–90°N. Data come from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive (http://cmip-pcmdi.llnl.gov/cmip5/). Seven Earth System 
Models were used: Norwegian Earth System Model (NorESM-ME, yellow); Community Earth System Model (CESM, red); Institute Pierre Simon Laplace (IPLS)-CM5-LR (dark 
blue); Geophysical Fluid Dynamics Laboratory (GFDL, pale blue); Max Plank Institute-Earth System Model (MPI-ESM, pink); Hadley Centre New Global Environmental Model 
2-Earth System (HadGEM2-ES, orange); and Canadian Earth System Model 2 (CanESM2, green). Differences in GPP between model simulations with (‘1pctCO2’) and without 
(‘esmfixclim1’) the effects of climate change are shown. Data are plotted against the global mean temperature increase above pre-industrial levels from simulations with a 1% 
per year increase in CO2 (‘1pctCO2’). 

The High Arctic region, with tundra-dominated landscapes, has warmed 
more than the global average over the last century (Section 3.3; Settele 
et al., 2014). The Arctic tundra biome is experiencing increasing fire 
disturbance and permafrost degradation (Bring et al., 2016; DeBeer et 
al., 2016; Jiang et al., 2016; Yang et al., 2016). Both of these processes 
facilitate the establishment of woody species in tundra areas. Arctic 
terrestrial ecosystems are being disrupted by delays in winter onset 
and mild winters associated with global warming (high confidence) 
(Cooper, 2014). Observational constraints suggest that stabilization 
at 1.5°C of warming would avoid the thawing of approximately 1.5 
to 2.5 million km2 of permafrost (medium confidence) compared 
with stabilization at 2°C (Chadburn et al., 2017), but the time scale 
for release of thawed carbon as CO2 or CH4 should be many centuries 
(Burke et al., 2017). In northern Eurasia, the growing season length is 
projected to increase by about 3–12 days at 1.5°C and 6–16 days at 
2°C of warming (medium confidence) (Zhou et al., 2018). Aalto et al. 
(2017) predicted a 72% reduction in cryogenic land surface processes 
in northern Europe for RCP2.6 in 2040–2069 (corresponding to a global 
warming of approximately 1.6°C), with only slightly larger losses for 
RCP4.5 (2°C of global warming). 

Projected impacts on forests as climate change occurs include increases 
in the intensity of storms, wildfires and pest outbreaks (Settele et al., 
2014), potentially leading to forest dieback (medium confidence). 
Warmer and drier conditions in particular facilitate fire, drought and insect 
disturbances, while warmer and wetter conditions increase disturbances 
from wind and pathogens (Seidl et al., 2017). Particularly vulnerable 
regions are Central and South America, Mediterranean Basin, South 
Africa, South Australia where the drought risk will increase (see Figure 
3.12). Including disturbances in simulations may influence productivity 
changes in European forests in response to climate change (Reyer et 
al., 2017b). There is additional evidence for the attribution of increased 
forest fire frequency in North America to anthropogenic climate change 
during 1984–2015, via the mechanism of increasing fuel aridity almost 
doubling the western USA forest fire area compared to what would 
have been expected in the absence of climate change (Abatzoglou and 
Williams, 2016). This projection is in line with expected fire risks, which 
indicate that fire frequency could increase over 37.8% of the global land 
area during 2010–2039 (Moritz et al., 2012), corresponding to a global 
warming level of approximately 1.2°C, compared with over 61.9% of 
the global land area in 2070–2099, corresponding to a warming of 
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approximately 3.5°C.6 The values in Table 26-1 in a recent paper by 
Romero-Lankao et al. (2014) also indicate significantly lower wildfire 
risks in North America for near-term warming (2030–2040, considered a 
proxy for 1.5°C of warming) than at 2°C (high confidence).

The Amazon tropical forest has been shown to be close to its climatic 
limits (Hutyra et al., 2005), but this threshold may move under elevated 
CO2 (Good et al., 2011). Future changes in rainfall, especially dry season 
length, will determine responses of the Amazon forest (Good et al., 
2013). The forest may be especially vulnerable to combined pressure 
from multiple stressors, namely changes in climate and continued 
anthropogenic disturbance (Borma et al., 2013; Nobre et al., 2016). 
Modelling (Huntingford et al., 2013) and observational constraints 
(Cox et al., 2013) suggest that large-scale forest dieback is less likely 
than suggested under early coupled modelling studies (Cox et al., 2000; 
Jones et al., 2009). Nobre et al. (2016) estimated a climatic threshold of 
4°C of warming and a deforestation threshold of 40%. 

In many places around the world, the savanna boundary is moving 
into former grasslands. Woody encroachment, including increased 
tree cover and biomass, has increased over the past century, owing 
to changes in land management, rising CO2 levels, and climate 
variability and change (often in combination) (Settele et al., 2014). For 
plant species in the Mediterranean region, shifts in phenology, range 
contraction and health decline have been observed with precipitation 
decreases and temperature increases (medium confidence) (Settele 
et al., 2014). Recent studies using independent complementary 
approaches have shown that there is a regional-scale threshold in the 
Mediterranean region between 1.5°C and 2°C of warming (Guiot and 
Cramer, 2016; Schleussner et al., 2016b). Further, Guiot and Cramer 
(2016) concluded that biome shifts unprecedented in the last 10,000 
years can only be avoided if global warming is constrained to 1.5°C 
(medium confidence) – whilst 2°C of warming will result in a decrease 
of 12–15% of the Mediterranean biome area. The Fynbos biome in 
southwestern South Africa is vulnerable to the increasing impact of 
fires under increasing temperatures and drier winters. It is projected 
to lose about 20%, 45% and 80% of its current suitable climate area 
under 1°C, 2°C and 3°C of global warming, respectively, compared to 
1961–1990 (high confidence) (Engelbrecht and Engelbrecht, 2016). In 
Australia, an increase in the density of trees and shrubs at the expense 
of grassland species is occurring across all major ecosystems and is 
projected to be amplified (NCCARF, 2013). Regarding Central America, 
Lyra et al. (2017) showed that the tropical rainforest biomass would be 
reduced by about 40% under global warming of 3°C, with considerable 
replacement by savanna and grassland. With a global warming of close 
to 1.5°C in 2050, a biomass decrease of 20% is projected for tropical 
rainforests of Central America (Lyra et al., 2017). If a linear response is 
assumed, this decrease may reach 30% (medium confidence). 

Freshwater ecosystems are considered to be among the most threatened 
on the planet (Settele et al., 2014). Although peatlands cover only about 
3% of the land surface, they hold one-third of the world’s soil carbon 
stock (400 to 600 Pg) (Settele et al., 2014). When drained, this carbon 
is released to the atmosphere. At least 15% of peatlands have drained, 

mostly in Europe and Southeast Asia, and are responsible for 5% of 
human derived CO2 emissions (Green and Page, 2017). Moreover, in the 
Congo basin (Dargie et al., 2017) and in the Amazonian basin (Draper et 
al., 2014), the peatlands store the equivalent carbon as that of a tropical 
forest. However, stored carbon is vulnerable to land-use change and 
future risk of drought, for example in northeast Brazil (high confidence) 
(Figure 3.12, Section 3.3.4.2). At the global scale, these peatlands are 
undergoing rapid major transformations through drainage and burning 
in preparation for oil palm and other crops or through unintentional 
burning (Magrin et al., 2014). Wetland salinization, a widespread 
threat to the structure and ecological functioning of inland and coastal 
wetlands, is occurring at a high rate and large geographic scale (Section 
3.3.6; Herbert et al., 2015). Settele et al. (2014) found that rising water 
temperatures are projected to lead to shifts in freshwater species 
distributions and worsen water quality. Some of these ecosystems 
respond non-linearly to changes in temperature. For example, Johnson 
and Poiani (2016) found that the wetland function of the Prairie Pothole 
region in North America is projected to decline at temperatures beyond 
a local warming of 2°C–3°C above present-day values (1°C local 
warming, corresponding to 0.6°C of global warming). If the ratio of local 
to global warming remains similar for these small levels of warming, 
this would indicate a global temperature threshold of 1.2°C–1.8°C 
of warming. Hence, constraining global warming to approximately 
1.5°C would maintain the functioning of prairie pothole ecosystems in 
terms of their productivity and biodiversity, although a 20% increase 
of precipitation could offset 2°C of global warming (high confidence) 
(Johnson and Poiani, 2016).

3.4.3.6	 Summary of implications for ecosystem services 

In summary, constraining global warming to 1.5°C rather than 2°C 
has strong benefits for terrestrial and wetland ecosystems and their 
services (high confidence). These benefits include avoidance or 
reduction of changes such as biome transformations, species range 
losses, increased extinction risks (all high confidence) and changes 
in phenology (high confidence), together with projected increases 
in extreme weather events which are not yet factored into these 
analyses (Section 3.3). All of these changes contribute to disruption of 
ecosystem functioning and loss of cultural, provisioning and regulating 
services provided by these ecosystems to humans. Examples of such 
services include soil conservation (avoidance of desertification), flood 
control, water and air purification, pollination, nutrient cycling, sources 
of food, and recreation. 

3.4.4	 Ocean Ecosystems

The ocean plays a central role in regulating atmospheric gas 
concentrations, global temperature and climate. It also provides 
habitat to a large number of organisms and ecosystems that provide 
goods and services worth trillions of USD per year (e.g., Costanza et 
al., 2014; Hoegh-Guldberg et al., 2015). Together with local stresses 
(Halpern et al., 2015), climate change poses a major threat to an 
increasing number of ocean ecosystems (e.g., warm water or tropical 
coral reefs: virtually certain, WGII AR5) and consequently to many 

6	 The approximate temperatures are derived from Figure 10.5a in Meehl et al. (2007), which indicates an ensemble average projection of 0.7°C or 3°C above 1980–1999 
temperatures, which were already 0.5°C above pre-industrial values.



222

Chapter 3	 Impacts of 1.5°C of Global Warming on Natural and Human Systems

3

coastal communities that depend on marine resources for food, 
livelihoods and a safe place to live. Previous sections of this report 
have described changes in the ocean, including rapid increases 
in ocean temperature down to a depth of at least 700 m (Section 
3.3.7). In addition, anthropogenic carbon dioxide has decreased 
ocean pH and affected the concentration of ions in seawater such 
as carbonate (Sections 3.3.10 and 3.4.4.5), both over a similar depth 
range. Increased ocean temperatures have intensified storms in some 
regions (Section 3.3.6), expanded the ocean volume and increased 
sea levels globally (Section 3.3.9), reduced the extent of polar 
summer sea ice (Section 3.3.8), and decreased the overall solubility 
of the ocean for oxygen (Section 3.3.10). Importantly, changes in the 
response to climate change rarely operate in isolation. Consequently, 
the effect of global warming of 1.5°C versus 2°C must be considered 
in the light of multiple factors that may accumulate and interact over 
time to produce complex risks, hazards and impacts on human and 
natural systems.

3.4.4.1	 Observed impacts 

Physical and chemical changes to the ocean resulting from increasing 
atmospheric CO2 and other GHGs are already driving significant changes 
to ocean systems (very high confidence) and will continue to do so at 
1.5°C, and more so at 2°C, of global warming above pre-industrial 
temperatures (Section 3.3.11). These changes have been accompanied 
by other changes such as ocean acidification, intensifying storms and 
deoxygenation (Levin and Le Bris, 2015). Risks are already significant 
at current greenhouse gas concentrations and temperatures, and they 
vary significantly among depths, locations and ecosystems, with impacts 
being singular, interactive and/or cumulative (Boyd et al., 2015).

3.4.4.2	 Warming and stratification of the surface ocean 

As atmospheric greenhouse gases have increased, the global mean 
surface temperature (GMST) has reached about 1°C above the pre-
industrial period, and oceans have rapidly warmed from the ocean 
surface to the deep sea (high confidence) (Sections 3.3.7; Hughes 
and Narayanaswamy, 2013; Levin and Le Bris, 2015; Yasuhara and 
Danovaro, 2016; Sweetman et al., 2017). Marine organisms are 
already responding to these changes by shifting their biogeographical 
ranges to higher latitudes at rates that range from approximately 0 
to 40 km yr–1 (Burrows et al., 2014; Chust, 2014; Bruge et al., 
2016; Poloczanska et al., 2016), which has consequently affected 
the structure and function of the ocean, along with its biodiversity 
and foodwebs (high confidence). Movements of organisms does 
not necessarily equate to the movement of entire ecosystems. For 
example, species of reef-building corals have been observed to shift 
their geographic ranges, yet this has not resulted in the shift of entire 
coral ecosystems (high confidence) (Woodroffe et al., 2010; Yamano 
et al., 2011). In the case of ‘less mobile’ ecosystems (e.g., coral reefs, 
kelp forests and intertidal communities), shifts in biogeographical 
ranges may be limited, with mass mortalities and disease outbreaks 
increasing in frequency as the exposure to extreme temperatures 
increases (very high confidence) (Hoegh-Guldberg, 1999; Garrabou 
et al., 2009; Rivetti et al., 2014; Maynard et al., 2015; Krumhansl et 
al., 2016; Hughes et al., 2017b; see also Box 3.4). These trends are 
projected to become more pronounced at warming of 1.5°C, and 

more so at 2°C, above the pre-industrial period (Hoegh-Guldberg et 
al., 2007; Donner, 2009; Frieler et al., 2013; Horta E Costa et al., 2014; 
Vergés et al., 2014, 2016; Zarco-Perello et al., 2017) and are likely to 
result in decreases in marine biodiversity at the equator but increases 
in biodiversity at higher latitudes (Cheung et al., 2009; Burrows et 
al., 2014).

While the impacts of species shifting their ranges are mostly negative 
for human communities and industry, there are instances of short-
term gains. Fisheries, for example, may expand temporarily at high 
latitudes in the Northern Hemisphere as the extent of summer sea ice 
recedes and NPP increases (medium confidence) (Cheung et al., 2010; 
Lam et al., 2016; Weatherdon et al., 2016). High-latitude fisheries are 
not only influenced by the effect of temperature on NPP but are also 
strongly influenced by the direct effects of changing temperatures on 
fish and fisheries (Section 3.4.4.9; Barange et al., 2014; Pörtner et al., 
2014; Cheung et al., 2016b; Weatherdon et al., 2016). Temporary gains 
in the productivity of high-latitude fisheries are offset by a growing 
number of examples from low and mid-latitudes where increases in 
sea temperature are driving decreases in NPP, owing to the direct 
effects of elevated temperatures and/or reduced ocean mixing from 
reduced ocean upwelling, that is, increased stratification (low-medium 
confidence) (Cheung et al., 2010; Ainsworth et al., 2011; Lam et al., 
2012, 2014, 2016; Bopp et al., 2013; Boyd et al., 2014; Chust et al., 2014; 
Hoegh-Guldberg et al., 2014; Poloczanska et al., 2014; Pörtner et al., 
2014; Signorini et al., 2015). Reduced ocean upwelling has implications 
for millions of people and industries that depend on fisheries for food 
and livelihoods (Bakun et al., 2015; FAO, 2016; Kämpf and Chapman, 
2016), although there is low confidence in the projection of the size 
of the consequences at 1.5°C. It is also important to appreciate these 
changes in the context of large-scale ocean processes such as the 
ocean carbon pump. The export of organic carbon to deeper layers of 
the ocean increases as NPP changes in the surface ocean, for example, 
with implications for foodwebs and oxygen levels (Boyd et al., 2014; 
Sydeman et al., 2014; Altieri and Gedan, 2015; Bakun et al., 2015; 
Boyd, 2015).

3.4.4.3	 Storms and coastal runoff 

Storms, wind, waves and inundation can have highly destructive impacts 
on ocean and coastal ecosystems, as well as the human communities 
that depend on them (IPCC, 2012; Seneviratne et al., 2012). The intensity 
of tropical cyclones across the world’s oceans has increased, although the 
overall number of tropical cyclones has remained the same or decreased 
(medium confidence) (Section 3.3.6; Elsner et al., 2008; Holland and 
Bruyère, 2014). The direct force of wind and waves associated with 
larger storms, along with changes in storm direction, increases the risks 
of physical damage to coastal communities and to ecosystems such as 
mangroves (low to medium confidence) (Long et al., 2016; Primavera et 
al., 2016; Villamayor et al., 2016; Cheal et al., 2017) and tropical coral 
reefs (De’ath et al., 2012; Bozec et al., 2015; Cheal et al., 2017). These 
changes are associated with increases in maximum wind speed, wave 
height and the inundation, although trends in these variables vary from 
region to region (Section 3.3.5). In some cases, this can lead to increased 
exposure to related impacts, such as flooding, reduced water quality and 
increased sediment runoff (medium-high confidence) (Brodie et al., 2012; 
Wong et al., 2014; Anthony, 2016; AR5, Table 5.1). 
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Sea level rise also amplifies the impacts of storms and wave action 
(Section 3.3.9), with robust evidence that storm surges and damage 
are already penetrating farther inland than a few decades ago, 
changing conditions for coastal ecosystems and human communities. 
This is especially true for small islands (Box 3.5) and low-lying coastal 
communities, where issues such as storm surges can transform coastal 
areas (Section 3.4.5; Brown et al., 2018a). Changes in the frequency of 
extreme events, such as an increase in the frequency of intense storms, 
have the potential (along with other factors, such as disease, food web 
changes, invasive organisms and heat stress-related mortality; Burge 
et al., 2014; Maynard et al., 2015; Weatherdon et al., 2016; Clements 
et al., 2017) to overwhelm the capacity for natural and human systems 
to recover following disturbances. This has recently been seen for key 
ecosystems such as tropical coral reefs (Box 3.4), which have changed 
from coral-dominated ecosystems to assemblages dominated by other 
organisms such as seaweeds, with changes in associated organisms 
and ecosystem services (high confidence) (De’ath et al., 2012; Bozec et 
al., 2015; Cheal et al., 2017; Hoegh-Guldberg et al., 2017; Hughes et al., 
2017a, b). The impacts of storms are amplified by sea level rise (Section 
3.4.5), leading to substantial challenges today and in the future for 
cities, deltas and small island states in particular (Sections 3.4.5.2 to 
3.4.5.4), as well as for coastlines and their associated ecosystems 
(Sections 3.4.5.5 to 3.4.5.7).

3.4.4.4	 Ocean circulation 

The movement of water within the ocean is essential to its biology 
and ecology, as well to the circulation of heat, water and nutrients 
around the planet (Section 3.3.7). The movement of these factors 
drives local and regional climates, as well as primary productivity and 
food production. Firmly attributing recent changes in the strength and 
direction of ocean currents to climate change, however, is complicated 
by long-term patterns and variability (e.g., Pacific decadal oscillation, 
PDO; Signorini et al., 2015) and a lack of records that match the long-
term nature of these changes in many cases (Lluch-Cota et al., 2014). An 
assessment of the literature since AR5 (Sydeman et al., 2014), however, 
concluded that (overall) upwelling-favourable winds have intensified 
in the California, Benguela and Humboldt upwelling systems, but 
have weakened in the Iberian system and have remained neutral in 
the Canary upwelling system in over 60 years of records (1946–2012) 
(medium confidence). These conclusions are consistent with a growing 
consensus that wind-driven upwelling systems are likely to intensify 
under climate change in many upwelling systems (Sydeman et al., 
2014; Bakun et al., 2015; Di Lorenzo, 2015), with potentially positive 
and negative consequences (Bakun et al., 2015). 

Changes in ocean circulation can have profound impacts on marine 
ecosystems by connecting regions and facilitating the entry and 
establishment of species in areas where they were unknown before (e.g., 
‘tropicalization’ of temperate ecosystems; Wernberg et al., 2012; Vergés 
et al., 2014, 2016; Zarco-Perello et al., 2017), as well as the arrival of novel 
disease agents (low-medium confidence) (Burge et al., 2014; Maynard 
et al., 2015; Weatherdon et al., 2016). For example, the herbivorous sea 
urchin Centrostephanus rodgersii has been reached Tasmania from the 
Australian mainland, where it was previously unknown, owing to a 
strengthening of the East Australian Current (EAC) that connects the 
two regions (high confidence) (Ling et al., 2009). As a consequence, the 

distribution and abundance of kelp forests has rapidly decreased, with 
implications for fisheries and other ecosystem services (Ling et al., 2009). 
These risks to marine ecosystems are projected to become greater at 
1.5°C, and more so at 2°C (medium confidence) (Cheung et al., 2009; 
Pereira et al., 2010; Pinsky et al., 2013; Burrows et al., 2014). 

Changes to ocean circulation can have even larger influence in terms of 
scale and impacts. Weakening of the Atlantic Meridional Overturning 
Circulation (AMOC), for example, is projected to be highly disruptive to 
natural and human systems as the delivery of heat to higher latitudes 
via this current system is reduced (Collins et al., 2013). Evidence of 
a slowdown of AMOC has increased since AR5 (Smeed et al., 2014; 
Rahmstorf et al., 2015a, b; Kelly et al., 2016), yet a strong causal 
connection to climate change is missing (low confidence) (Section 
3.3.7).

3.4.4.5	 Ocean acidification 

Ocean chemistry encompasses a wide range of phenomena and chemical 
species, many of which are integral to the biology and ecology of the 
ocean (Section 3.3.10; Gattuso et al., 2014, 2015; Hoegh-Guldberg et 
al., 2014; Pörtner et al., 2014). While changes to ocean chemistry are 
likely to be of central importance, the literature on how climate change 
might influence ocean chemistry over the short and long term is limited 
(medium confidence). By contrast, numerous risks from the specific 
changes associated with ocean acidification have been identified (Dove 
et al., 2013; Kroeker et al., 2013; Pörtner et al., 2014; Gattuso et al., 
2015; Albright et al., 2016), with the consensus that resulting changes 
to the carbonate chemistry of seawater are having, and are likely to 
continue to have, fundamental and substantial impacts on a wide variety 
of organisms (high confidence). Organisms with shells and skeletons 
made out of calcium carbonate are particularly at risk, as are the early 
life history stages of a large number of organisms and processes such 
as de-calcification, although there are some taxa that have not shown 
high-sensitivity to changes in CO2, pH and carbonate concentrations 
(Dove et al., 2013; Fang et al., 2013; Kroeker et al., 2013; Pörtner et 
al., 2014; Gattuso et al., 2015). Risks of these impacts also vary with 
latitude and depth, with the greatest changes occurring at high latitudes 
as well as deeper regions. The aragonite saturation horizon (i.e., where 
concentrations of calcium and carbonate fall below the saturation point 
for aragonite, a key crystalline form of calcium carbonate) is decreasing 
with depth as anthropogenic CO2 penetrates deeper into the ocean over 
time. Under many models and scenarios, the aragonite saturation is 
projected to reach the surface by 2030 onwards, with a growing list of 
impacts and consequences for ocean organisms, ecosystems and people 
(Orr et al., 2005; Hauri et al., 2016).

Further, it is difficult to reliably separate the impacts of ocean warming 
and acidification. As ocean waters have increased in sea surface 
temperature (SST) by approximately 0.9°C they have also decreased 
by 0.2 pH units since 1870–1899 (‘pre-industrial’; Table 1 in Gattuso et 
al., 2015; Bopp et al., 2013). As CO2 concentrations continue to increase 
along with other GHGs, pH will decrease while sea temperature will 
increase, reaching 1.7°C and a decrease of 0.2 pH units (by 2100 
under RCP4.5) relative to the pre-industrial period. These changes are 
likely to continue given the negative correlation of temperature and 
pH. Experimental manipulation of CO2, temperature and consequently 
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acidification indicate that these impacts will continue to increase in 
size and scale as CO2 and SST continue to increase in tandem (Dove et 
al., 2013; Fang et al., 2013; Kroeker et al., 2013).

While many risks have been defined through laboratory and mesocosm 
experiments, there is a growing list of impacts from the field (medium 
confidence) that include community-scale impacts on bacterial 
assemblages and processes (Endres et al., 2014), coccolithophores 
(K.J.S. Meier et al., 2014), pteropods and polar foodwebs (Bednaršek et 
al., 2012, 2014), phytoplankton (Moy et al., 2009; Riebesell et al., 2013; 
Richier et al., 2014), benthic ecosystems (Hall-Spencer et al., 2008; 
Linares et al., 2015), seagrass (Garrard et al., 2014), and macroalgae 
(Webster et al., 2013; Ordonez et al., 2014), as well as excavating 
sponges, endolithic microalgae and reef-building corals (Dove et al., 
2013; Reyes-Nivia et al., 2013; Fang et al., 2014), and coral reefs (Box 
3.4; Fabricius et al., 2011; Allen et al., 2017). Some ecosystems, such as 
those from bathyal areas (i.e., 200–3000 m below the surface), are likely 
to undergo very large reductions in pH by the year 2100 (0.29 to 0.37 
pH units), yet evidence of how deep-water ecosystems will respond is 
currently limited despite the potential planetary importance of these 
areas (low to medium confidence) (Hughes and Narayanaswamy, 
2013; Sweetman et al., 2017).

3.4.4.6	 Deoxygenation 

Oxygen levels in the ocean are maintained by a series of processes 
including ocean mixing, photosynthesis, respiration and solubility 
(Boyd et al., 2014, 2015; Pörtner et al., 2014; Breitburg et al., 2018). 
Concentrations of oxygen in the ocean are declining (high confidence) 
owing to three main factors related to climate change: (i) heat-related 
stratification of the water column (less ventilation and mixing), (ii) 
reduced oxygen solubility as ocean temperature increases, and (iii) 
impacts of warming on biological processes that produce or consume 
oxygen such as photosynthesis and respiration (high confidence) (Bopp 
et al., 2013; Pörtner et al., 2014; Altieri and Gedan, 2015; Deutsch et 
al., 2015; Schmidtko et al., 2017; Shepherd et al., 2017; Breitburg et 
al., 2018). Further, a range of processes (Section 3.4.11) are acting 
synergistically, including factors not related to climate change, such 
as runoff and coastal eutrophication (e.g., from coastal farming 
and intensive aquaculture). These changes can lead to increased 
phytoplankton productivity as a result of the increased concentration 
of dissolved nutrients. Increased supply of organic carbon molecules 
from coastal run-off can also increase the metabolic activity of coastal 
microbial communities (Altieri and Gedan, 2015; Bakun et al., 2015; 
Boyd, 2015). Deep sea areas are likely to experience some of the 
greatest challenges, as abyssal seafloor habitats in areas of deep-water 
formation are projected to experience decreased water column oxygen 
concentrations by as much as 0.03 mL L–1 by 2100 (Levin and Le Bris, 
2015; Sweetman et al., 2017). 

The number of ‘dead zones’ (areas where oxygenated waters have 
been replaced by hypoxic conditions) has been growing strongly 
since the 1990s (Diaz and Rosenberg, 2008; Altieri and Gedan, 2015; 
Schmidtko et al., 2017). While attribution can be difficult because of 
the complexity of the processes involved, both related and unrelated 
to climate change, some impacts associated to deoxygenation (low-
medium confidence) include the expansion of oxygen minimum 

zones (OMZ) (Turner et al., 2008; Carstensen et al., 2014; Acharya and 
Panigrahi, 2016; Lachkar et al., 2018), physiological impacts (Pörtner 
et al., 2014), and mortality and/or displacement of oxygen dependent 
organisms such as fish (Hamukuaya et al., 1998; Thronson and Quigg, 
2008; Jacinto, 2011) and invertebrates (Hobbs and Mcdonald, 2010; 
Bednaršek et al., 2016; Seibel, 2016; Altieri et al., 2017). In addition, 
deoxygenation interacts with ocean acidification to present substantial 
separate and combined challenges for fisheries and aquaculture 
(medium confidence) (Hamukuaya et al., 1998; Bakun et al., 2015; 
Rodrigues et al., 2015; Feely et al., 2016; S. Li et al., 2016; Asiedu et al., 
2017a; Clements and Chopin, 2017; Clements et al., 2017; Breitburg et 
al., 2018). Deoxygenation is expected to have greater impacts as ocean 
warming and acidification increase (high confidence), with impacts 
being larger and more numerous than today (e.g., greater challenges 
for aquaculture and fisheries from hypoxia), and as the number of 
hypoxic areas continues to increase. Risks from deoxygenation are 
virtually certain to increase as warming continues, although our 
understanding of risks at 1.5°C versus 2°C is incomplete (medium 
confidence). Reducing coastal pollution, and consequently the 
penetration of organic carbon into deep benthic habitats, is expected 
to reduce the loss of oxygen in coastal waters and hypoxic areas in 
general (high confidence) (Breitburg et al., 2018). 

3.4.4.7	 Loss of sea ice 

Sea ice is a persistent feature of the planet’s polar regions (Polyak et al., 
2010) and is central to marine ecosystems, people (e.g., food, culture 
and livelihoods) and industries (e.g., fishing, tourism, oil and gas, and 
shipping). Summer sea ice in the Arctic, however, has been retreating 
rapidly in recent decades (Section 3.3.8), with an assessment of the 
literature revealing that a fundamental transformation is occurring 
in polar organisms and ecosystems, driven by climate change (high 
confidence) (Larsen et al., 2014). These changes are strongly affecting 
people in the Arctic who have close relationships with sea ice and 
associated ecosystems, and these people are facing major adaptation 
challenges as a result of sea level rise, coastal erosion, the accelerated 
thawing of permafrost, changing ecosystems and resources, and many 
other issues (Ford, 2012; Ford et al., 2015). 

There is considerable and compelling evidence that a further increase 
of 0.5°C beyond the present-day average global surface temperature 
will lead to multiple levels of impact on a variety of organisms, from 
phytoplankton to marine mammals, with some of the most dramatic 
changes occurring in the Arctic Ocean and western Antarctic Peninsula 
(Turner et al., 2014, 2017b; Steinberg et al., 2015; Piñones and Fedorov, 
2016). 

The impacts of climate change on sea ice are part of the focus 
of the IPCC Special Report on the Ocean and Cryosphere in a 
Changing Climate (SROCC), due to be released in 2019, and hence 
are not covered comprehensively here. However, there is a range of 
responses to the loss of sea ice that are occurring and which increase 
at 1.5°C and further so with 2°C of global warming. Some of these 
changes are described briefly here. Photosynthetic communities, 
such macroalgae, phytoplankton and microalgae dwelling on the 
underside of floating sea ice are changing, owing to increased 
temperatures, light and nutrient levels. As sea ice retreats, mixing of 
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the water column increases, and phototrophs have increased access 
to seasonally high levels of solar radiation (medium confidence) 
(Dalpadado et al., 2014; W.N. Meier et al., 2014). These changes are 
expected to stimulate fisheries productivity in high-latitude regions 
by mid-century (high confidence) (Cheung et al., 2009, 2010, 2016b; 
Lam et al., 2014), with evidence that this is already happening for 
several high-latitude fisheries in the Northern Hemisphere, such as the 
Bering Sea, although these ‘positive’ impacts may be relatively short-
lived (Hollowed and Sundby, 2014; Sundby et al., 2016). In addition to 
the impact of climate change on fisheries via impacts on net primary 
productivity (NPP), there are also direct effects of temperature on 
fish, which may in turn have a range of impacts (Pörtner et al., 2014). 
Sea ice in Antarctica is undergoing changes that exceed those seen 
in the Arctic (Maksym et al., 2011; Reid et al., 2015), with increases 
in sea ice coverage in the western Ross Sea being accompanied by 
strong decreases in the Bellingshausen and Amundsen Seas (Hobbs 
et al., 2016). While Antarctica is not permanently populated, the 
ramifications of changes to the productivity of vast regions, such 
as the Southern Ocean, have substantial implications for ocean 
foodwebs and fisheries globally.

3.4.4.8	 Sea level rise 

Mean sea level is increasing (Section 3.3.9), with substantial impacts 
already being felt by coastal ecosystems and communities (Wong et 
al., 2014) (high confidence). These changes are interacting with other 
factors, such as strengthening storms, which together are driving larger 
storm surges, infrastructure damage, erosion and habitat loss (Church et 
al., 2013; Stocker et al., 2013; Blankespoor et al., 2014). Coastal wetland 
ecosystems such as mangroves, sea grasses and salt marshes are under 
pressure from rising sea level (medium confidence) (Section 3.4.5; Di 
Nitto et al., 2014; Ellison, 2014; Lovelock et al., 2015; Mills et al., 2016; 
Nicholls et al., 2018), as well as from a wide range of other risks and 
impacts unrelated to climate change, with the ongoing loss of wetlands 
recently estimated at approximately 1% per annum across a large 
number of countries (Blankespoor et al., 2014; Alongi, 2015). While some 
ecosystems (e.g., mangroves) may be able to shift shoreward as sea levels 
increase, coastal development (e.g., buildings, seawalls and agriculture) 
often interrupts shoreward shifts, as well as reducing sediment supplies 
down some rivers (e.g., dams) due to coastal development (Di Nitto et al., 
2014; Lovelock et al., 2015; Mills et al., 2016). 

Responses to sea level rise challenges for ocean and coastal systems 
include reducing the impact of other stresses, such as those arising 
from tourism, fishing, coastal development, reduced sediment 
supply and unsustainable aquaculture/agriculture, in order to build 
ecological resilience (Hossain et al., 2015; Sutton-Grier and Moore, 
2016; Asiedu et al., 2017a). The available literature largely concludes 
that these impacts will intensify under a 1.5°C warmer world but will 
be even higher at 2°C, especially when considered in the context of 
changes occurring beyond the end of the current century. In some 
cases, restoration of coastal habitats and ecosystems may be a cost-
effective way of responding to changes arising from increasing levels 
of exposure to rising sea levels, intensifying storms, coastal inundation 
and salinization (Section 3.4.5 and Box 3.5; Arkema et al., 2013), 
although limitations of these strategies have been identified (e.g., 
Lovelock et al., 2015; Weatherdon et al., 2016). 

3.4.4.9	 Projected risks and adaptation options for oceans under 
global warming of 1.5°C or 2°C above pre-industrial levels

A comprehensive discussion of risk and adaptation options for all 
natural and human systems is not possible in the context and length 
of this report, and hence the intention here is to illustrate key risks 
and adaptation options for ocean ecosystems and sectors. This 
assessment builds on the recent expert consensus of Gattuso et al. 
(2015) by assessing new literature from 2015–2017 and adjusting 
the levels of risk from climate change in the light of literature since 
2014. The original expert group’s assessment (Supplementary Material 
3.SM.3.2) was used as input for this new assessment, which focuses 
on the implications of global warming of 1.5°C as compared to 2°C. A 
discussion of potential adaptation options is also provided, the details 
of which will be further explored in later chapters of this special report. 
The section draws on the extensive analysis and literature presented in 
the Supplementary Material of this report (3.SM.3.2, 3.SM.3.3) and has 
a summary in Figures 3.18 and 3.20 which outline the added relative 
risks of climate change. 

3.4.4.10	  Framework organisms (tropical corals, mangroves 
and seagrass)

Marine organisms (‘ecosystem engineers’), such as seagrass, kelp, 
oysters, salt marsh species, mangroves and corals, build physical 
structures or frameworks (i.e., sea grass meadows, kelp forests, oyster 
reefs, salt marshes, mangrove forests and coral reefs) which form the 
habitat for a large number of species (Gutiérrez et al., 2012). These 
organisms in turn provide food, livelihoods, cultural significance, and 
services such as coastal protection to human communities (Bell et al., 
2011, 2018; Cinner et al., 2012; Arkema et al., 2013; Nurse et al., 2014; 
Wong et al., 2014; Barbier, 2015; Bell and Taylor, 2015; Hoegh-Guldberg 
et al., 2015; Mycoo, 2017; Pecl et al., 2017).

Risks of climate change impacts for seagrass and mangrove ecosystems 
were recently assessed by an expert group led by Short et al. (2016). 
Impacts of climate change were assessed to be similar across a range 
of submerged and emerged plants. Submerged plants such as sea-
grass were affected mostly by temperature extremes (Arias-Ortiz et al., 
2018), and indirectly by turbidity, while emergent communities such 
as mangroves and salt marshes were most susceptible to sea level 
variability and temperature extremes, which is consistent with other 
evidence (Di Nitto et al., 2014; Sierra-Correa and Cantera Kintz, 2015; 
Osorio et al., 2016; Sasmito et al., 2016), especially in the context of 
human activities that reduce sediment supply (Lovelock et al., 2015) 
or interrupt the shoreward movement of mangroves though the 
construction of coastal infrastructure. This in turn leads to ‘coastal 
squeeze’ where coastal ecosystems are trapped between changing 
ocean conditions and coastal infrastructure (Mills et al., 2016). 
Projections of the future distribution of seagrasses suggest a poleward 
shift, which raises concerns that low-latitude seagrass communities 
may contract as a result of increasing stress levels (Valle et al., 2014).

Climate change (e.g., sea level rise, heat stress, storms) presents risk 
for coastal ecosystems such as seagrass (high confidence) and reef-
building corals (very high confidence) (Figure 3.18, Supplementary 
Material 3.SM.3.2), with evidence of increasing concern since AR5 and 
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the conclusion that tropical corals may be even more vulnerable to 
climate change than indicated in assessments made in 2014 (Hoegh-
Guldberg et al., 2014; Gattuso et al., 2015). The current assessment 
also considered the heatwave-related loss of 50% of shallow-water 
corals across hundreds of kilometres of the world’s largest continuous 
coral reef system, the Great Barrier Reef. These large-scale impacts, 
plus the observation of back-to-back bleaching events on the Great 
Barrier Reef (predicted two decades ago, Hoegh-Guldberg, 1999) and 
arriving sooner than predicted (Hughes et al., 2017b, 2018), suggest 
that the research community may have underestimated climate risks 
for coral reefs (Figure 3.18). The general assessment of climate risks for 
mangroves prior to this special report was that they face greater risks 
from deforestation and unsustainable coastal development than from 
climate change (Alongi, 2008; Hoegh-Guldberg et al., 2014; Gattuso et 
al., 2015). Recent large-scale die-offs (Duke et al., 2017; Lovelock et al., 
2017), however, suggest that risks from climate change may have been 
underestimated for mangroves as well. With the events of the last past 
three years in mind, risks are now considered to be undetectable to 
moderate (i.e., moderate risks now start at 1.3°C as opposed to 1.8°C; 
medium confidence). Consequently, when average global warming 
reaches 1.3°C above pre-industrial levels, the risk of climate change to 
mangroves are projected to be moderate (Figure 3.18) while tropical 
coral reefs will have reached a high level of risk as examplified by 
increasing damage from heat stress since the early 1980s. At global 
warming of 1.8°C above pre-industrial levels, seagrasses are projected 
to reach moderate to high levels of risk (e.g., damage resulting from 
sea level rise, erosion, extreme temperatures, and storms), while risks 
to mangroves from climate change are projected to remain moderate 
(e.g., not keeping up with sea level rise, and more frequent heat stress 
mortality) although there is low certainty as to when or if this important 
ecosystem is likely to transition to higher levels of additional risk from 
climate change (Figure 3.18).

Warm water (tropical) coral reefs are projected to reach a very high 
risk of impact at 1.2°C (Figure 3.18), with most available evidence 
suggesting that coral-dominated ecosystems will be non-existent at this 
temperature or higher (high confidence). At this point, coral abundance 
will be near zero at many locations and storms will contribute to 
‘flattening’ the three-dimensional structure of reefs without recovery, 
as already observed for some coral reefs (Alvarez-Filip et al., 2009). The 
impacts of warming, coupled with ocean acidification, are expected 
to undermine the ability of tropical coral reefs to provide habitat for 
thousand of species, which together provide a range of ecosystem 
services (e.g., food, livelihoods, coastal protection, cultural services) 
that are important for millions of people (high confidence) (Burke et 
al., 2011).

Strategies for reducing the impact of climate change on framework 
organisms include reducing stresses not directly related to climate 
change (e.g., coastal pollution, overfishing and destructive coastal 
development) in order to increase their ecological resilience in the face 
of accelerating climate change impacts (World Bank, 2013; Ellison, 
2014; Anthony et al., 2015; Sierra-Correa and Cantera Kintz, 2015; 
Kroon et al., 2016; O’Leary et al., 2017), as well as protecting locations 
where organisms may be more robust (Palumbi et al., 2014) or less 
exposed to climate change (Bongaerts et al., 2010; van Hooidonk et 
al., 2013; Beyer et al., 2018). This might involve cooler areas due to 

upwelling, or involve deep-water locations that experience less extreme 
conditions and impacts. Given the potential value of such locations for 
promoting the survival of coral communities under climate change, 
efforts to prevent their loss resulting from other stresses are important 
(Bongaerts et al., 2010, 2017; Chollett et al., 2010, 2014; Chollett and 
Mumby, 2013; Fine et al., 2013; van Hooidonk et al., 2013; Cacciapaglia 
and van Woesik, 2015; Beyer et al., 2018). A full understanding of 
the role of refugia in reducing the loss of ecosystems has yet to be 
developed (low to medium confidence). There is also interest in ex 
situ conservation approaches involving the restoration of corals via 
aquaculture (Shafir et al., 2006; Rinkevich, 2014) or the use of ‘assisted 
evolution’ to help corals adapt to changing sea temperatures (van 
Oppen et al., 2015, 2017), although there are numerous challenges 
that must be surpassed if these approaches are to be cost-effective 
responses to preserving coral reefs under rapid climate change (low 
confidence) (Hoegh-Guldberg, 2012, 2014a; Bayraktarov et al., 2016).

High levels of adaptation are expected to be required to prevent 
impacts on food security and livelihoods in coastal populations 
(medium confidence). Integrating coastal infrastructure with changing 
ecosystems such as mangroves, seagrasses and salt marsh, may offer 
adaptation strategies as they shift shoreward as sea levels rise (high 
confidence). Maintaining the sediment supply to coastal areas would 
also assist mangroves in keeping pace with sea level rise (Shearman et 
al., 2013; Lovelock et al., 2015; Sasmito et al., 2016). For this reason, 
habitat for mangroves can be strongly affected by human actions such 
as building dams which reduce the sediment supply and hence the 
ability of mangroves to escape ‘drowning’ as sea level rises (Lovelock 
et al., 2015). In addition, integrated coastal zone management should 
recognize the importance and economic expediency of using natural 
ecosystems such as mangroves and tropical coral reefs to protect 
coastal human communities (Arkema et al., 2013; Temmerman et al., 
2013; Ferrario et al., 2014; Hinkel et al., 2014; Elliff and Silva, 2017). 
Adaptation options include developing alternative livelihoods and 
food sources, ecosystem-based management/adaptation such as 
ecosystem restoration, and constructing coastal infrastructure that 
reduces the impacts of rising seas and intensifying storms (Rinkevich, 
2015; Weatherdon et al., 2016; Asiedu et al., 2017a; Feller et al., 
2017). Clearly, these options need to be carefully assessed in terms 
of feasibility, cost and scalability, as well as in the light of the coastal 
ecosystems involved (Bayraktarov et al., 2016).

3.4.4.11	  Ocean foodwebs (pteropods, bivalves, krill and fin fish)

Ocean foodwebs are vast interconnected systems that transfer solar 
energy and nutrients from phytoplankton to higher trophic levels, 
including apex predators and commercially important species such 
as tuna. Here, we consider four representative groups of marine 
organisms which are important within foodwebs across the ocean, and 
which illustrate the impacts and ramifications of 1.5°C or higher levels 
of warming. 

The first group of organisms, pteropods, are small pelagic molluscs 
that suspension feed and produce a calcium carbonate shell. They are 
highly abundant in temperate and polar waters where they are an 
important link in the foodweb between phytoplankton and a range 
of other organisms including fish, whales and birds. The second group, 
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bivalve molluscs (e.g., clams, oysters and mussels), are filter-feeding 
invertebrates. These invertebrate organisms underpin important 
fisheries and aquaculture industries, from polar to tropical regions, and 
are important food sources for a range of organisms including humans. 
The third group of organisms considered here is a globally significant 
group of invertebrates known as euphausiid crustaceans (krill), which 
are a key food source for many marine organisms and hence a major 
link between primary producers and higher trophic levels (e.g., fish, 
mammals and sea birds). Antarctic krill, Euphausia superba, are among 
the most abundant species in terms of mass and are consequently an 
essential component of polar foodwebs (Atkinson et al., 2009). The last 
group, fin fishes, is vitally important components of ocean foodwebs, 
contribute to the income of coastal communities, industries and nations, 
and are important to the foodsecurity and livelihood of hundreds of 
millions of people globally (FAO, 2016). Further background for this 
section is provided in Supplementary Material 3.SM.3.2.

There is a moderate risk to ocean foodwebs under present-day 
conditions (medium to high confidence) (Figure 3.18). Changing 
water chemistry and temperature are already affecting the ability of 
pteropods to produce their shells, swim and survive (Bednaršek et 
al., 2016). Shell dissolution, for example, has increased by 19–26% 
in both nearshore and offshore populations since the pre-industrial 
period (Feely et al., 2016). There is considerable concern as to 
whether these organisms are declining further, especially given 
the central importance in ocean foodwebs (David et al., 2017). 
Reviewing the literature reveals that pteropods are projected to 
face high risks of impact at average global temperatures 1.5°C 
above pre-industrial levels and increasing risks of impacts at 2°C 
(medium confidence).

As GMST increases by 1.5°C and more, the risk of impacts from ocean 
warming and acidification are expected to be moderate to high, except 
in the case of bivalves (mid-latitudes) where the risks of impacts are 
projected to be high to very high (Figure 3.18). Ocean warming and 
acidification are already affecting the life history stages of bivalve 
molluscs (e.g., Asplund et al., 2014; Mackenzie et al., 2014; Waldbusser 
et al., 2014; Zittier et al., 2015; Shi et al., 2016; Velez et al., 2016; Q. 
Wang et al., 2016; Castillo et al., 2017; Lemasson et al., 2017; Ong et al., 
2017; X. Zhao et al., 2017). Impacts on adult bivalves include decreased 
growth, increased respiration and reduced calcification, whereas 
larval stages tend to show greater developmental abnormalities and 
increased mortality after exposure to these conditions (medium to high 
confidence) (Q. Wang et al., 2016; Lemasson et al., 2017; Ong et al., 
2017; X. Zhao et al., 2017). Risks are expected to accumulate at higher 
temperatures for bivalve molluscs, with very high risks expected at 
1.8°C of warming or more. This general pattern applies to low-latitude 
fin fish, which are expected to experience moderate to high risks of 
impact at 1.3°C of global warming (medium confidence), and very high 
risks at 1.8°C at low latitudes (medium confidence) (Figure 3.18).

Large-scale changes to foodweb structure are occurring in all oceans. For 
example, record levels of sea ice loss in the Antarctic (Notz and Stroeve, 
2016; Turner et al., 2017b) translate into a loss of habitat and hence 
reduced abundance of krill (Piñones and Fedorov, 2016), with negative 
ramifications for the seabirds and whales which feed on krill (Croxall, 
1992; Trathan and Hill, 2016) (low-medium confidence). Other influences, 

such as high rates of ocean acidification coupled with shoaling of the 
aragonite saturation horizon, are likely to also play key roles (Kawaguchi 
et al., 2013; Piñones and Fedorov, 2016). As with many risks associated 
with impacts at the ecosystem scale, most adaptation options focus on 
the management of stresses unrelated to climate change but resulting 
from human activities, such as pollution and habitat destruction. 
Reducing these stresses will be important in efforts to maintain important 
foodweb components. Fisheries management at local to regional scales 
will be important in reducing stress on foodweb organisms, such as 
those discussed here, and in helping communities and industries adapt 
to changing foodweb structures and resources (see further discussion of 
fisheries per se below; Section 3.4.6.3). One strategy is to maintain larger 
population levels of fished species in order to provide more resilient 
stocks in the face of challenges that are increasingly driven by climate 
change (Green et al., 2014; Bell and Taylor, 2015).

3.4.4.12	  Key ecosystem services (e.g., carbon uptake, coastal 
protection, and tropical coral reef recreation) 

The ocean provides important services, including the regulation of 
atmospheric composition via gas exchange across the boundary 
between ocean and atmosphere, and the storage of carbon in vegetation 
and soils associated with ecosystems such as mangroves, salt marshes 
and coastal peatlands. These services involve a series of physicochemical 
processes which are influenced by ocean chemistry, circulation, biology, 
temperature and biogeochemical components, as well as by factors other 
than climate (Boyd, 2015). The ocean is also a net sink for CO2 (another 
important service), absorbing approximately 30% of human emissions 
from the burning of fossil fuels and modification of land use (IPCC, 2013). 
Carbon uptake by the ocean is decreasing (Iida et al., 2015), and there is 
increasing concern from observations and models regarding associated 
changes to ocean circulation (Sections 3.3.7 and 3.4.4., Rahmstorf et 
al., 2015b);. Biological components of carbon uptake by the ocean are 
also changing, with observations of changing net primary productivity 
(NPP) in equatorial and coastal upwelling systems (medium confidence) 
(Lluch-Cota et al., 2014; Sydeman et al., 2014; Bakun et al., 2015), as 
well as subtropical gyre systems (low confidence) (Signorini et al., 2015). 
There is general agreement that NPP will decline as ocean warming and 
acidification increase (medium confidence) (Bopp et al., 2013; Boyd et al., 
2014; Pörtner et al., 2014; Boyd, 2015).

Projected risks of impacts from reductions in carbon uptake, coastal 
protection and services contributing to coral reef recreation suggest 
a transition from moderate to high risks at 1.5°C and higher (low 
confidence). At 2°C, risks of impacts associated with changes to 
carbon uptake are high (high confidence), while the risks associated 
with reduced coastal protection and recreation on tropical coral 
reefs are high, especially given the vulnerability of this ecosystem 
type, and others (e.g., seagrass and mangroves), to climate change 
(medium confidence) (Figure 3.18). Coastal protection is a service 
provided by natural barriers such as mangroves, seagrass meadows, 
coral reefs, and other coastal ecosystems, and it is important for 
protecting human communities and infrastructure against the impacts 
associated with rising sea levels, larger waves and intensifying 
storms (high confidence) (Gutiérrez et al., 2012; Kennedy et al., 
2013; Ferrario et al., 2014; Barbier, 2015; Cooper et al., 2016; Hauer 
et al., 2016; Narayan et al., 2016). Both natural and human coastal 
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protection have the potential to reduce these impacts (Fu and Song, 
2017). Tropical coral reefs, for example, provide effective protection 
by dissipating about 97% of wave energy, with 86% of the energy 
being dissipated by reef crests alone (Ferrario et al., 2014; Narayan 
et al., 2016). Mangroves similarly play an important role in coastal 
protection, as well as providing resources for coastal communities, 

but they are already under moderate risk of not keeping up with sea 
level rise due to climate change and to contributing factors, such as 
reduced sediment supply or obstacles to shoreward shifts (Saunders 
et al., 2014; Lovelock et al., 2015). This implies that coastal areas 
currently protected by mangroves may experience growing risks over 
time.

Figure 3.18 |  Summary of additional risks of impacts from ocean warming (and associated climate change factors such ocean acidification) for a range of ocean organisms, 
ecosystems and sectors at 1.0°C, 1.5°C and 2.0°C of warming of the average sea surface temperature (SST) relative to the pre-industrial period. The grey bar represents the 
range of GMST for the most recent decade: 2006–2015. The assessment of changing risk levels and associated confidence were primarily derived from the expert judgement 
of Gattuso et al. (2015) and the lead authors and relevant contributing authors of Chapter 3 (SR1.5), while additional input was received from the many reviewers of the 
ocean systems section of SR1.5. Notes: (i) The analysis shown here is not intended to be comprehensive. The examples of organisms, ecosystems and sectors included here are 
intended to illustrate the scale, types and projection of risks for representative natural and human ocean systems. (ii) The evaluation of risks by experts did not consider genetic 
adaptation, acclimatization or human risk reduction strategies (mitigation and societal adaptation). (iii) As discussed elsewhere (Sections 3.3.10 and 3.4.4.5, Box 3.4; Gattuso 
et al., 2015), ocean acidification is also having impacts on organisms and ecosystems as carbon dioxide increases in the atmosphere. These changes are part of the responses 
reported here, although partitioning the effects of the two drivers is difficult at this point in time and hence was not attempted. (iv) Confidence levels for location of transition 
points between levels of risk (L = low, M = moderate, H = high and VH = very high) are assessed and presented here as in the accompanying study by Gattuso et al. (2015). 
Three transitions in risk were possible: W–Y (white to yellow), Y–R (yellow to red), and R–P (red to purple), with the colours corresponding to the level of additional risk posed 
by climate change. The confidence levels for these transitions were assessed, based on level of agreement and extent of evidence, and appear as letters associated with each 
transition (see key in diagram).
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Tourism is one of the largest industries globally (Rosselló-Nadal, 2014; 
Markham et al., 2016; Spalding et al., 2017). A substantial part of the 
global tourist industry is associated with tropical coastal regions and 
islands, where tropical coral reefs and related ecosystems play important 
roles (Section 3.4.9.1) (medium confidence). Coastal tourism can be a 
dominant money earner in terms of foreign exchange for many countries, 
particularly small island developing states (SIDS) (Section 3.4.9.1, Box 
3.5; Weatherdon et al., 2016; Spalding et al., 2017). The direct relationship 
between increasing global temperatures, intensifying storms, elevated 
thermal stress, and the loss of tropical coral reefs has raised concern 
about the risks of climate change for local economies and industries 
based on tropical coral reefs. Risks to coral reef recreational services from 
climate change are considered here, as well as in Box 3.5, Section 3.4.9 
and Supplementary Material 3.SM.3.2.

Adaptations to the broad global changes in carbon uptake by the ocean 
are limited and are discussed later in this report with respect to changes 
in NPP and implications for fishing industries. These adaptation options 
are broad and indirect, and the only other solution at large scale is 
to reduce the entry of CO2 into the ocean. Strategies for adapting to 
reduced coastal protection involve (a) avoidance of vulnerable areas 
and hazards, (b) managed retreat from threatened locations, and/or (c) 
accommodation of impacts and loss of services (Bell, 2012; André et al., 
2016; Cooper et al., 2016; Mills et al., 2016; Raabe and Stumpf, 2016; Fu 
and Song, 2017). Within these broad options, there are some strategies 
that involve direct human intervention, such as coastal hardening and 
the construction of seawalls and artificial reefs (Rinkevich, 2014, 2015; 
André et al., 2016; Cooper et al., 2016; Narayan et al., 2016), while 
others exploit opportunities for increasing coastal protection by involving 
naturally occurring oyster banks, coral reefs, mangroves, seagrass and 
other ecosystems (UNEP-WCMC, 2006; Scyphers et al., 2011; Zhang et 

al., 2012; Ferrario et al., 2014; Cooper et al., 2016). Natural ecosystems, 
when healthy, also have the ability to repair themselves after being 
damaged, which sets them apart from coastal hardening and other 
human structures that require constant maintenance (Barbier, 2015; Elliff 
and Silva, 2017). In general, recognizing and restoring coastal ecosystems 
may be more cost-effective than installing human structures, in that 
creating and maintaining structures is typically expensive (Temmerman 
et al., 2013; Mycoo, 2017).

Recent studies have increasingly stressed the need for coastal protection 
to be considered within the context of coastal land management, 
including protecting and ensuring that coastal ecosystems are able to 
undergo shifts in their distribution and abundance as climate change 
occurs (Clausen and Clausen, 2014; Martínez et al., 2014; Cui et al., 
2015; André et al., 2016; Mills et al., 2016). Facilitating these changes 
will require new tools in terms of legal and financial instruments, as 
well as integrated planning that involves not only human communities 
and infrastructure, but also associated ecosystem responses and values 
(Bell, 2012; Mills et al., 2016). In this regard, the interactions between 
climate change, sea level rise and coastal disasters are increasingly 
being informed by models (Bosello and De Cian, 2014) with a widening 
appreciation of the role of natural ecosystems as an alternative to 
hardened coastal structures (Cooper et al., 2016). Adaptation options 
for tropical coral reef recreation include: (i) protecting and improving 
biodiversity and ecological function by minimizing the impact of 
stresses unrelated to climate change (e.g., pollution and overfishing), 
(ii) ensuring adequate levels of coastal protection by supporting and 
repairing ecosystems that protect coastal regions, (iii) ensuring fair 
and equitable access to the economic opportunities associated with 
recreational activities, and (iv) seeking and protecting supplies of water 
for tourism, industry and agriculture alongside community needs.

Box 3.4 |  Warm-Water (Tropical) Coral Reefs in a 1.5°C Warmer World	

Warm-water coral reefs face very high risks (Figure 3.18) from climate change. A world in which global warming is restricted to 1.5°C 
above pre-industrial levels would be a better place for coral reefs than that of a 2°C warmer world, in which coral reefs would mostly 
disappear (Donner et al., 2005; Hoegh-Guldberg et al., 2014; Schleussner et al., 2016b; van Hooidonk et al., 2016; Frieler et al., 2017; 
Hughes et al., 2017a). Even with warming up until today (GMST for decade 2006–2015: 0.87°C; Chapter 1), a substantial proportion 
of coral reefs have experienced large-scale mortalities that have lead to much reduced coral populations (Hoegh-Guldberg et al., 
2014). In the last three years alone (2016–2018), large coral reef systems such as the Great Barrier Reef (Australia) have lost as 
much as 50% of their shallow water corals (Hughes et al., 2017b). 

Coral-dominated reefs are found along coastlines between latitudes 30°S and 30°N, where they provide habitat for over a million 
species (Reaka-Kudla, 1997) and food, income, coastal protection, cultural context and many other services for millions of people 
in tropical coastal areas (Burke et al., 2011; Cinner et al., 2012; Kennedy et al., 2013; Pendleton et al., 2016). Ultimately, coral reefs 
are underpinned by a mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium (Hoegh-
Guldberg et al., 2017). Warm-water coral reefs are found down to depths of 150 m and are dependent on light, making them distinct 
from the cold deep-water reef systems that extend down to depths of 2000 m or more. The difficulty in accessing deep-water reefs 
also means that the literature on the impacts of climate change on these systems is very limited by comparison to those on warm-
water coral reefs (Hoegh-Guldberg et al., 2017). Consequently, this Box focuses on the impacts of climate change on warm-water 
(tropical) coral reefs, particularly with respect to their prospects under average global surface temperatures of 1.5°C and 2°C above 
the pre-industrial period. 
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The distribution and abundance of coral reefs has decreased by approximately 50% over the past 30 years (Gardner et al., 2005; 
Bruno and Selig, 2007; De’ath et al., 2012) as a result of pollution, storms, overfishing and unsustainable coastal development (Burke 
et al., 2011; Halpern et al., 2015; Cheal et al., 2017). More recently, climate change (i.e., heat stress; Hoegh-Guldberg, 1999; Baker 
et al., 2008; Spalding and Brown, 2015; Hughes et al., 2017b) has emerged as the greatest threat to coral reefs, with temperatures 
of just 1°C above the long-term summer maximum for an area (reference period 1985–1993) over 4–6 weeks being enough to 
cause mass coral bleaching (loss of the symbionts) and mortality (very high confidence) (WGII AR5, Box 18-2; Cramer et al., 2014). 
Ocean warming and acidification can also slow growth and calcification, making corals less competitive compared to other benthic 
organisms such as macroalgae or seaweeds (Dove et al., 2013; Reyes-Nivia et al., 2013, 2014). As corals disappear, so do fish and 
many other reef-dependent species, which directly impacts industries such as tourism and fisheries, as well as the livelihoods for 
many, often disadvantaged, coastal people (Wilson et al., 2006; Graham, 2014; Graham et al., 2015; Cinner et al., 2016; Pendleton et 
al., 2016). These impacts are exacerbated by increasingly intense storms (Section 3.3.6), which physically destroy coral communities 
and hence reefs (Cheal et al., 2017), and by ocean acidification (Sections 3.3.10 and 3.4.4.5), which can weaken coral skeletons, 
contribute to disease, and slow the recovery of coral communities after mortality events (low to medium confidence) (Gardner et 
al., 2005; Dove et al., 2013; Kennedy et al., 2013; Webster et al., 2013; Hoegh-Guldberg, 2014b; Anthony, 2016). Ocean acidification 
also leads to enhanced activity by decalcifying organisms such as excavating sponges (Kline et al., 2012; Dove et al., 2013; Fang et 
al., 2013, 2014; Reyes-Nivia et al., 2013, 2014). 

The predictions of back-to-back bleaching events (Hoegh-Guldberg, 1999) have become the reality in the summers of 2016–2017 
(e.g., Hughes et al., 2017b), as have projections of declining coral abundance (high confidence). Models have also become increasingly 
capable and are currently predicting the large-scale loss of coral reefs by mid-century under even low-emissions scenarios (Hoegh-
Guldberg, 1999; Donner et al., 2005; Donner, 2009; van Hooidonk and Huber, 2012; Frieler et al., 2013; Hoegh-Guldberg et al., 
2014; van Hooidonk et al., 2016). Even achieving emissions reduction targets consistent with the ambitious goal of 1.5°C of global 
warming under the Paris Agreement will result in the further loss of 70–90% of reef-building corals compared to today, with 99% 
of corals being lost under warming of 2°C or more above the pre-industrial period (Frieler et al., 2013; Hoegh-Guldberg, 2014b; 
Hoegh-Guldberg et al., 2014; Schleussner et al., 2016b; Hughes et al., 2017a). 

The assumptions underpinning these assessments are considered to be highly conservative. In some cases, ‘optimistic’ assumptions 
in models include rapid thermal adaptation by corals of 0.2°C–1°C per decade (Donner et al., 2005) or 0.4°C per decade (Schleussner 
et al., 2016b), as well as very rapid recovery rates from impacts (e.g., five years in the case of Schleussner et al., 2016b). Adaptation 
to climate change at these high rates, has not been documented, and recovery from mass mortality tends to take much longer 
(>15 years; Baker et al., 2008). Probability analysis also indicates that the underlying increases in sea temperatures that drive coral 
bleaching and mortality are 25% less likely under 1.5°C when compared to 2°C (King et al., 2017). Spatial differences between 
the rates of heating suggest the possibility of temporary climate refugia (Caldeira, 2013; van Hooidonk et al., 2013; Cacciapaglia 
and van Woesik, 2015; Keppel and Kavousi, 2015), which may play an important role in terms of the regeneration of coral reefs, 
especially if these refuges are protected from risks unrelated to climate change. Locations at higher latitudes are reporting the arrival 
of reef-building corals, which may be valuable in terms of the role of limited refugia and coral reef structures but will have low 
biodiversity (high confidence) when compared to present-day tropical reefs (Kersting et al., 2017). Similarly, deep-water (30–150 
m) or mesophotic coral reefs (Bongaerts et al., 2010; Holstein et al., 2016) may play an important role because they avoid shallow 
water extremes (i.e., heat and storms) to some extent, although the ability of these ecosystems to assist in repopulating damaged 
shallow water areas may be limited (Bongaerts et al., 2017).

Given the sensitivity of corals to heat stress, even short periods of overshoot (i.e., decades) are expected to be extremely damaging 
to coral reefs. Losing 70–90% of today’s coral reefs, however, will remove resources and increase poverty levels across the world’s 
tropical coastlines, highlighting the key issue of equity for the millions of people that depend on these valuable ecosystems 
(Cross-Chapter Box 6; Spalding et al., 2014; Halpern et al., 2015). Anticipating these challenges to food and livelihoods for coastal 
communities will become increasingly important, as will adaptation options, such as the diversification of livelihoods and the 
development of new sustainable industries, to reduce the dependency of coastal communities on threatened ecosystems such as 
coral reefs (Cinner et al., 2012, 2016; Pendleton et al., 2016). At the same time, coastal communities will need to pre-empt changes 
to other services provided by coral reefs such as coastal protection (Kennedy et al., 2013; Hoegh-Guldberg et al., 2014; Pörtner et 
al., 2014; Gattuso et al., 2015). Other threats and challenges to coastal living, such as sea level rise, will amplify challenges from 
declining coral reefs, specially for SIDS and low-lying tropical nations. Given the scale and cost of these interventions, implementing 
them earlier rather than later would be expedient.

Box 3.4 (continued)
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3.4.5	 Coastal and Low-Lying Areas, and Sea Level Rise

Sea level rise (SLR) is accelerating in response to climate change 
(Section 3.3.9; Church et al., 2013) and will produce significant impacts 
(high confidence). In this section, impacts and projections of SLR are 
reported at global and city scales (Sections 3.4.5.1 and 3.4.5.2) and for 
coastal systems (Sections 3.4.5.3 to 3.4.5.6). For some sectors, there 
is a lack of precise evidence of change at 1.5°C and 2°C of global 
warming. Adaptation to SLR is discussed in Section 3.4.5.7. 

3.4.5.1	 Global / sub-global scale

Sea level rise (SLR) and other oceanic climate changes are already 
resulting in salinization, flooding, and erosion and in the future are 
projected to affect human and ecological systems, including health, 
heritage, freshwater availability, biodiversity, agriculture, fisheries and 
other services, with different impacts seen worldwide (high confidence). 
Owing to the commitment to SLR, there is an overlapping uncertainty 
in projections at 1.5°C and 2°C (Schleussner et al., 2016b; Sanderson 
et al., 2017; Goodwin et al., 2018; Mengel et al., 2018; Nicholls et al., 
2018; Rasmussen et al., 2018) and about 0.1 m difference in global 
mean sea level (GMSL) rise between 1.5°C and 2°C worlds in the year 
2100 (Section 3.3.9, Table 3.3). Exposure and impacts at 1.5°C and 2°C 
differ at different time horizons (Schleussner et al., 2016b; Brown et 
al., 2018a, b; Nicholls et al., 2018; Rasmussen et al., 2018). However, 
these are distinct from impacts associated with higher increases in 
temperature (e.g., 4°C or more, as discussed in Brown et al., 2018a) 
over centennial scales. The benefits of climate change mitigation 
reinforce findings of earlier IPCC reports (e.g., Wong et al., 2014). 

Table 3.3 shows the land and people exposed to SLR (assuming there 
is no adaptation or protection at all) using the Dynamic Interactive 
Vulnerability Assessment (DIVA) model (extracted from Brown et al., 
2018a and Goodwin et al., 2018; see also Supplementary Material 
3.SM, Table 3.SM.4). Thus, exposure increases even with temperature 
stabilization. The exposed land area is projected to at least double by 
2300 using a RCP8.5 scenario compared with a mitigation scenario  
(Brown et al., 2018a). In the 21st century, land area exposed to 
sea level rise (assuming there is no adaptation or protection at all) 
is projected to be at least an order of magnitude larger than the 
cumulative land loss due to submergence (which takes into account 
defences) (Brown et al., 2016, 2018a) regardless of the SLR scenario 
applied. Slower rates of rise due to climate change mitigation may 
provide a greater opportunity for adaptation (medium confidence), 
which could substantially reduce impacts. 

In agreement with the assessment in WGII AR5 Section 5.4.3.1 (Wong 
et al., 2014), climate change mitigation may reduce or delay coastal 
exposure and impacts (very high confidence). Adaptation has the 
potential to substantially reduce risk through a portfolio of available 
options (Sections 5.4.3.1 and 5.5 of Wong et al., 2014; Sections 6.4.2.3 
and 6.6 of Nicholls et al., 2007). At 1.5°C in 2100, 31–69 million people 
(2010 population values) worldwide are projected to be exposed to 
flooding, assuming no adaptation or protection at all, compared 
with 32–79 million people (2010 population values) at 2°C in 2100 
(Supplementary Material 3.SM, Table 3.SM.4; Rasmussen et al., 2018). 
As a result, up to 10.4 million more people would be exposed to sea 

level rise at 2°C compared with 1.5°C in 2100 (medium confidence). 
With a 1.5°C stabilization scenario in 2100, 62.7 million people per year 
are at risk from flooding, with this value increasing to 137.6 million 
people per year in 2300 (50th percentile, average across SSP1–5, no 
socio-economic change after 2100). These projections assume that no 
upgrade to current protection levels occurs (Nicholls et al., 2018). The 
number of people at risk increases by approximately 18% in 2030 if 
a 2°C scenario is used and by 266% in 2300 if an RCP8.5 scenario 
is considered (Nicholls et al., 2018). Through prescribed IPCC Special 
Report on Emissions Scenarios (SRES) SLR scenarios, Arnell et al. 
(2016) also found that the number of people exposed to flooding 
increased substantially at warming levels higher than 2°C, assuming 
no adaptation beyond current protection levels. Additionally, impacts 
increased in the second half of the 21st century. 

Coastal flooding is projected to cost thousands of billions of USD 
annually, with damage costs under constant protection estimated 
at 0.3–5.0% of global gross domestic product (GDP) in 2100 under 
an RCP2.6 scenario (Hinkel et al., 2014). Risks are projected to be 
highest in South and Southeast Asia, assuming there is no upgrade 
to current protection levels, for all levels of climate warming (Arnell et 
al., 2016; Brown et al., 2016). Countries with at least 50 million people 
exposed to SLR (assuming no adaptation or protection at all) based on 
a 1,280 Pg C emissions scenario (approximately a 1.5°C temperature 
rise above today’s level) include China, Bangladesh, Egypt, India, 
Indonesia, Japan, Philippines, United States and Vietnam (Clark et al., 
2016). Rasmussen et al. (2018) and Brown et al. (2018a) project that 
similar countries would have high exposure to SLR in the 21st century 
using 1.5°C and 2°C scenarios. Thus, there is high confidence that SLR 
will have significant impacts worldwide in this century and beyond.

3.4.5.2	 Cities

Observations of the impacts of SLR in cities are difficult to record 
because multiple drivers of change are involved. There are observations 
of ongoing and planned adaptation to SLR and extreme water levels 
in some cities (Araos et al., 2016; Nicholls et al., 2018), whilst other 
cities have yet to prepare for these impacts (high confidence) (see 
Section 3.4.8 and Cross-Chapter Box 9 in Chapter 4). There are limited 
observations and analyses of how cities will cope with higher and/or 
multi-centennial SLR, with the exception of Amsterdam, New York and 
London (Nicholls et al., 2018).

Coastal urban areas are projected to see more extreme water levels 
due to rising sea levels, which may lead to increased flooding and 
damage of infrastructure from extreme events (unless adaptation is 
undertaken), plus salinization of groundwater. These impacts may be 
enhanced through localized subsidence (Wong et al., 2014), which 
causes greater relative SLR. At least 136 megacities (port cities with 
a population greater than 1 million in 2005) are at risk from flooding 
due to SLR (with magnitudes of rise possible under 1.5°C or 2°C in the 
21st century, as indicated in Section 3.3.9) unless further adaptation 
is undertaken (Hanson et al., 2011; Hallegatte et al., 2013). Many of 
these cities are located in South and Southeast Asia (Hallegatte et 
al., 2013; Cazenave and Cozannet, 2014; Clark et al., 2016; Jevrejeva 
et al., 2016). Jevrejeva et al. (2016) projected that more than 90% of 
global coastlines could experience SLR greater than 0.2 m with 2°C 
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of warming by 2040 (RCP8.5). However, for scenarios where 2°C is 
stabilized or occurs later in time, this figure is likely to differ because 
of the commitment to SLR. Raising existing dikes helps protect against 
SLR, substantially reducing risks, although other forms of adaptation 
exist. By 2300, dike heights under a non-mitigation scenario (RCP8.5) 
could be more than 2 m higher (on average for 136 megacities) than 
under climate change mitigation scenarios at 1.5°C or 2°C (Nicholls 
et al., 2018). Thus, rising sea levels commit coastal cities to long-term 
adaptation (high confidence).

3.4.5.3	 Small islands

Qualitative physical observations of SLR (and other stresses) include 
inundation of parts of low-lying islands, land degradation due to 
saltwater intrusion in Kiribati and Tuvalu (Wairiu, 2017), and shoreline 
change in French Polynesia (Yates et al., 2013), Tuvalu (Kench et al., 
2015, 2018) and Hawaii (Romine et al., 2013). Observations, models 
and other evidence indicate that unconstrained Pacific atolls have kept 
pace with SLR, with little reduction in size or net gain in land (Kench 
et al., 2015, 2018; McLean and Kench, 2015; Beetham et al., 2017). 
Whilst islands are highly vulnerable to SLR (high confidence), they are 
also reactive to change. Small islands are impacted by multiple climatic 
stressors, with SLR being a more important stressor to some islands 
than others (Sections 3.4.10, 4.3.5.6, 5.2.1, 5.5.3.3, Boxes 3.5, 4.3 and 
5.3).

Observed adaptation to multiple drivers of coastal change, including 
SLR, includes retreat (migration), accommodation and defence. 
Migration (internal and international) has always been important 
on small islands (Farbotko and Lazrus, 2012; Weir et al., 2017), with 
changing environmental and weather conditions being just one factor in 
the choice to migrate (Sections 3.4.10, 4.3.5.6 and 5.3.2; Campbell and 
Warrick, 2014). Whilst flooding may result in migration or relocation, 
for example in Vunidogoloa, Fiji (McNamara and Des Combes, 2015; 
Gharbaoui and Blocher, 2016) and the Solomon Islands (Albert et al., 
2017), in situ adaptation may be tried or preferred, for example stilted 
housing or raised floors in Tubigon, Bohol, Philippines (Jamero et al., 
2017), raised roads and floors in Batasan and Ubay, Philippines (Jamero 
et al., 2018), and raised platforms for faluw in Leang, Federated States 
of Micronesia (Nunn et al., 2017). Protective features, such as seawalls 
or beach nourishment, are observed to locally reduce erosion and flood 
risk but can have other adverse implications (Sovacool, 2012; Mycoo, 
2014, 2017; Nurse et al., 2014; AR5 Section 29.6.22).

There is a lack of precise, quantitative studies of projected impacts 
of SLR at 1.5°C and 2°C. Small islands are projected to be at risk 
and very sensitive to coastal climate change and other stressors 
(high confidence) (Nurse et al., 2014; Benjamin and Thomas, 2016; 
Ourbak and Magnan, 2017; Brown et al., 2018a; Nicholls et al., 2018; 
Rasmussen et al., 2018; AR5 Sections 29.3 and 29.4), such as oceanic 
warming, SLR (resulting in salinization, flooding and erosion), cyclones 
and mass coral bleaching and mortality (Section 3.4.4, Boxes 3.4 and 
3.5). These impacts can have significant socio-economic and ecological 
implications, such as on health, agriculture and water resources, which 
in turn have impacts on livelihoods (Sovacool, 2012; Mycoo, 2014, 
2017; Nurse et al., 2014). Combinations of drivers causing adverse 
impacts are important. For example, Storlazzi et al. (2018) found that 

the impacts of SLR and wave-induced flooding (within a temperature 
horizon equivalent of 1.5°C), could affect freshwater availability on 
Roi-Namur, Marshall Islands, but is also dependent on other extreme 
weather events. Freshwater resources may also be affected by 
a 0.40 m rise in sea level (which may be experienced with a 1.5°C 
warming) in other Pacific atolls (Terry and Chui, 2012). Whilst SLR is 
a major hazard for atolls, islands reaching higher elevations are also 
threatened given that there is often a lot of infrastructure located near 
the coast (high confidence) (Kumar and Taylor, 2015; Nicholls et al., 
2018). Tens of thousands of people on small islands are exposed to 
SLR (Rasmussen et al., 2018). Giardino et al. (2018) found that hard 
defence structures on the island of Ebeye in the Marshall Islands were 
effective in reducing damage due to SLR at 1.5°C and 2°C. Additionally, 
damage was also reduced under mitigation scenarios compared with 
non-mitigation scenarios. In Jamaica and St Lucia, SLR and extreme 
sea levels are projected to threaten transport system infrastructure at 
1.5°C unless further adaptation is undertaken (Monioudi et al., 2018). 
Slower rates of SLR will provide a greater opportunity for adaptation 
to be successful (medium confidence), but this may not be substantial 
enough on islands with a very low mean elevation. Migration and/or 
relocation may be an adaptation option (Section 3.4.10). Thomas and 
Benjamin (2017) highlight three areas of concern in the context of loss 
and damage at 1.5°C: a lack of data, gaps in financial assessments, 
and a lack of targeted policies or mechanisms to address these issues 
(Cross-Chapter Box 12 in Chapter 5). Small islands are projected to 
remain vulnerable to SLR (high confidence).

3.4.5.4	 Deltas and estuaries 

Observations of SLR and human influence are felt through salinization, 
which leads to mixing in deltas and estuaries, aquifers, leading to 
flooding (also enhanced by precipitation and river discharge), land 
degradation and erosion. Salinization is projected to impact freshwater 
sources and pose risks to ecosystems and human systems (Section 
5.4; Wong et al., 2014). For instance, in the Delaware River estuary on 
the east coast of the USA, upward trends of salinity (measured since 
the 1900s), accounting for the effects of streamflow and seasonal 
variations, have been detected and SLR is a potential cause (Ross et 
al., 2015).

Z. Yang et al. (2015) found that future climate scenarios for the USA 
(A1B 1.6°C and B1 2°C in the 2040s) had a greater effect on salinity 
intrusion than future land-use/land-cover change in the Snohomish 
River estuary in Washington state (USA). This resulted in a shift in 
the salinity both upstream and downstream in low flow conditions. 
Projecting impacts in deltas needs an understanding of both fluvial 
discharge and SLR, making projections complex because the drivers 
operate on different temporal and spatial scales (Zaman et al., 2017; 
Brown et al., 2018b). The mean annual flood depth when 1.5°C is first 
projected to be reached in the Ganges-Brahmaputra delta may be less 
than the most extreme annual flood depth seen today, taking into 
account SLR, surges, tides, bathymetry and local river flows (Brown et 
al., 2018b). Further, increased river salinity and saline intrusion in the 
Ganges-Brahmaputra-Meghna is likely with 2°C of warming (Zaman 
et al., 2017). Salinization could impact agriculture and food security 
(Cross-Chapter Box 6 in this chapter). For 1.5°C or 2°C stabilization 
conditions in 2200 or 2300 plus surges, a minimum of 44% of the 
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Bangladeshi Ganges-Brahmaputra, Indian Bengal, Indian Mahanadi 
and Ghanese Volta delta land area (without defences) would be 
exposed unless sedimentation occurs (Brown et al., 2018b). Other 
deltas are similarly vulnerable. SLR is only one factor affecting deltas, 
and assessment of numerous geophysical and anthropogenic drivers 
of geomorphic change is important (Tessler et al., 2018). For example, 
dike building to reduce flooding and dam building (Gupta et al., 2012) 
restricts sediment movement and deposition, leading to enhanced 
subsidence, which can occur at a greater rate than SLR (Auerbach 
et al., 2015; Takagi et al., 2016). Although dikes remain essential for 
reducing flood risk today, promoting sedimentation is an advisable 
strategy (Brown et al., 2018b) which may involve nature-based 
solutions. Transformative decisions regarding the extent of sediment 
restrictive infrastructure may need to be considered over centennial 
scales (Brown et al., 2018b). Thus, in a 1.5°C or 2°C warmer world, 
deltas, which are home to millions of people, are expected to be highly 
threatened from SLR and localized subsidence (high confidence).

3.4.5.5	 Wetlands

Observations indicate that wetlands, such as saltmarshes and mangrove 
forests, are disrupted by changing conditions (Sections 3.4.4.8; Wong et 
al., 2014; Lovelock et al., 2015), such as total water levels and sediment 
availability. For example, saltmarshes in Connecticut and New York, 
USA, measured from 1900 to 2012, have accreted with SLR but have 
lost marsh surface relative to tidal datums, leading to increased marsh 
flooding and further accretion (Hill and Anisfeld, 2015). This change 
stimulated marsh carbon storage and aided climate change mitigation. 

Salinization may lead to shifts in wetland communities and their 
ecosystem functions (Herbert et al., 2015). Some projections of wetland 
change, with magnitudes (but not necessarily rates or timing) of SLR 
analogous to 1.5°C and 2°C of global warming, indicate a net loss of 
wetlands in the 21st century (e.g., Blankespoor et al., 2014; Cui et al., 
2015; Arnell et al., 2016; Crosby et al., 2016), whilst others report a net 
gain with wetland transgression (e.g., Raabe and Stumpf, 2016 in the 
Gulf of Mexico). However, the feedback between wetlands and sea 
level is complex, with parameters such as a lack of accommodation 
space restricting inland migration, or sediment supply and feedbacks 
between plant growth and geomorphology (Kirwan and Megonigal, 
2013; Ellison, 2014; Martínez et al., 2014; Spencer et al., 2016) still 
being explored. Reducing global warming from 2°C to 1.5°C will 
deliver long-term benefits, with natural sedimentation rates more likely 
keep up with SLR. It remains unclear how wetlands will respond and 
under what conditions (including other climate parameters) to a global 
temperature rise of 1.5°C and 2°C. However, they have great potential 
to aid and benefit climate change mitigation and adaptation (medium 
confidence) (Sections 4.3.2.2 and 4.3.2.3).

3.4.5.6	 Other coastal settings

Numerous impacts have not been quantified at 1.5°C or 2°C but remain 
important. This includes systems identified in WGII AR5 (AR5 – Section 
5.4 of Wong et al., 2014), such as beaches, barriers, sand dunes, rocky 
coasts, aquifers, lagoons and coastal ecosystems (for the last system, 
see Section 3.4.4.12). For example, SLR potentially affects erosion and 
accretion, and therefore sediment movement, instigating shoreline 

change (Section 5.4.2.1 of Wong et al., 2014), which could affect land-
based ecosystems. Global observations indicate no overall clear effect 
of SLR on shoreline change (Le Cozannet et al., 2014), as it is highly 
site specific (e.g., Romine et al., 2013). Infrastructure and geological 
constraints reduce shoreline movement, causing coastal squeeze. In 
Japan, for example, SLR is projected to cause beach losses under an 
RCP2.6 scenario, which will worsen under RCP8.5 (Udo and Takeda, 
2017). Further, compound flooding (the combined risk of flooding from 
multiple sources) has increased significantly over the past century in 
major coastal cities (Wahl et al., 2015) and is likely to increase with 
further development and SLR at 1.5°C and 2°C unless adaptation is 
undertaken. Thus, overall SLR will have a wide range of adverse effects 
on coastal zones (medium confidence).

3.4.5.7	 Adapting to coastal change

Adaptation to coastal change from SLR and other drivers is occurring 
today (high confidence) (see Cross-Chapter Box 9 in Chapter 
4), including migration, ecosystem-based adaptation, raising 
infrastructure and defences, salt-tolerant food production, early 
warning systems, insurance and education (Section 5.4.2.1 of Wong et 
al., 2014). Climate change mitigation will reduce the rate of SLR this 
century, decreasing the need for extensive and, in places, immediate 
adaptation. Adaptation will reduce impacts in human settings (high 
confidence) (Hinkel et al., 2014; Wong et al., 2014), although there is 
less certainty for natural ecosystems (Sections 4.3.2 and 4.3.3.3). While 
some ecosystems (e.g., mangroves) may be able to move shoreward 
as sea levels increase, coastal development (e.g., coastal building, 
seawalls and agriculture) often interrupt these transitions (Saunders et 
al., 2014). Options for responding to these challenges include reducing 
the impact of other stresses such as those arising from tourism, fishing, 
coastal development and unsustainable aquaculture/agriculture. In 
some cases, restoration of coastal habitats and ecosystems can be a 
cost-effective way of responding to changes arising from increasing 
levels of exposure from rising sea levels, changes in storm conditions, 
coastal inundation and salinization (Arkema et al., 2013; Temmerman 
et al., 2013; Ferrario et al., 2014; Hinkel et al., 2014; Spalding et al., 
2014; Elliff and Silva, 2017).

Since AR5, planned and autonomous adaptation and forward planning 
have become more widespread (Araos et al., 2016; Nicholls et al., 
2018), but continued efforts are required as many localities are in the 
early stages of adapting or are not adapting at all (Cross-Chapter Box 
9 in Chapter 4; Araos et al., 2016). This is region and sub-sector specific, 
and also linked to non-climatic factors (Ford et al., 2015; Araos et al., 
2016; Lesnikowski et al., 2016). Adaptation pathways (e.g., Ranger et 
al., 2013; Barnett et al., 2014; Rosenzweig and Solecki, 2014; Buurman 
and Babovic, 2016) assist long-term planning but are not widespread 
practices despite knowledge of long-term risks (Section 4.2.2). 
Furthermore, human retreat and migration are increasingly being 
considered as an adaptation response (Hauer et al., 2016; Geisler and 
Currens, 2017), with a growing emphasis on green adaptation. There 
are few studies on the adaptation limits to SLR where transformation 
change may be required (AR5-Section 5.5 of Wong et al., 2014; Nicholls 
et al., 2015). Sea level rise poses a long-term threat (Section 3.3.9), and 
adaptation will remain essential at the centennial scale under 1.5°C 
and 2°C of warming (high confidence).
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Table 3.3  |	 Land and people exposed to sea level rise (SLR), assuming no protection at all. Extracted from Brown et al. (2018a) and Goodwin et al. (2018). SSP: Shared Socio- 
	 Economic Pathway; wrt: with respect to; *:Population held constant at 2100 level.

Climate scenario
Impact factor, assuming there is 

no adaptation or protection at all 
(50th, [5th-95th percentiles])

Year

2050 2100 2200 2300

1.5°C Temperature rise wrt 1850–1900 (°C) 1.71 (1.44–2.16) 1.60 (1.26–2.33) 1.41 (1.15–2.10) 1.32 (1.12–1.81)

SLR (m) wrt 1986–2005 0.20 (0.14–0.29) 0.40 (0.26–0.62) 0.73 (0.47–1.25) 1.00 (0.59–1.55)

Land exposed (x103 km2) 574 [558–597] 620 [575–669] 666 [595–772] 702 [666–853]

People exposed, SSP1–5 (millions) 127.9–139.0 
[123.4–134.0, 
134.5–146.4]

102.7–153.5 
[94.8–140.7, 
102.7–153.5]

--
133.8–207.1 

[112.3–169.6, 
165.2–263.4]*

2°C Temperature rise wrt 1850–1900 (° C) 1.76 (1.51–2.16) 2.03 (1.72–2.64) 1.90 (1.66–2.57) 1.80 (1.60–2.20)

SLR (m) wrt 1986-2005 0.20 (0.14–0.29) 0.46 (0.30–0.69) 0.90 (0.58–1.50) 1.26 (0.74–1.90)

Land exposed (x103 km2) 575 [558–598] 637 [585–686] 705 [618–827] 767 [642–937]

People exposed, SSP1–5 (millions) 128.1–139.2 
[123.6–134.2, 
134.7–146.6]

105.5–158.1 
[97.0–144.1, 
118.1–179.0]

--
148.3–233.0 

[120.3–183.4, 
186.4–301.8]*

Box 3.5 |  Small Island Developing States (SIDS) 	

Global warming of 1.5°C is expected to prove challenging for small island developing states (SIDS) that are already experiencing 
impacts associated with climate change (high confidence). At 1.5°C, compounding impacts from interactions between climate drivers 
may contribute to the loss of, or change in, critical natural and human systems (medium to high confidence). There are a number of 
reduced risks at 1.5°C versus 2°C, particularly when coupled with adaptation efforts (medium to high confidence). 

Changing climate hazards for SIDS at 1.5°C

Mean surface temperature is projected to increase in SIDS at 1.5°C of global warming (high confidence). The Caribbean region 
will experience 0.5°C–1.5°C of warming compared to a 1971–2000 baseline, with the strongest warming occurring over larger 
land masses (Taylor et al., 2018). Under the Representative Concentration Pathway (RCP)2.6 scenario, the western tropical Pacific 
is projected to experience warming of 0.5°C–1.7°C relative to 1961–1990. Extreme temperatures will also increase, with potential 
for elevated impacts as a result of comparably small natural variability (Reyer et al., 2017a). Compared to the 1971–2000 baseline, 
up to 50% of the year is projected to be under warm spell conditions in the Caribbean at 1.5°C, with a further increase of up to 
70 days at 2°C (Taylor et al., 2018).

Changes in precipitation patterns, freshwater availability and drought sensitivity differ among small island regions (medium to high 
confidence). Some western Pacific islands and those in the northern Indian Ocean may see increased freshwater availability, while 
islands in most other regions are projected to see a substantial decline (Holding et al., 2016; Karnauskas et al., 2016). For several 
SIDS, approximately 25% of the overall freshwater stress projected under 2°C at 2030 could be avoided by limiting global warming 
to 1.5°C (Karnauskas et al., 2018). In accordance with an overall drying trend, an increasing drought risk is projected for Caribbean 
SIDS (Lehner et al., 2017), and moderate to extreme drought conditions are projected to be about 9% longer on average at 2°C 
versus 1.5°C for islands in this region (Taylor et al., 2018). 

Projected changes in the ocean system at higher warming targets (Section 3.4.4), including potential changes in circulation (Section 
3.3.7) and increases in both surface temperatures (Section 3.3.7) and ocean acidification (Section 3.3.10), suggest increasing risks 
for SIDS associated with warming levels close to and exceeding 1.5°C.

Differences in global sea level between 1.5°C and 2°C depend on the time scale considered and are projected to fully materialize 
only after 2100 (Section 3.3.9). Projected changes in regional sea level are similarly time dependent, but generally found to be 
above the global average for tropical regions including small islands (Kopp et al., 2014; Jevrejeva et al., 2016). Threats related to 
sea level rise (SLR) for SIDS, for example from salinization, flooding, permanent inundation, erosion and pressure on ecosystems, 
will therefore persist well beyond the 21st century even under 1.5°C of warming (Section 3.4.5.3; Nicholls et al., 2018). Prolonged 
interannual sea level inundations may increase throughout the tropical Pacific with ongoing warming and in the advent of an 
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increased frequency of extreme La Niña events, exacerbating coastal impacts of projected global mean SLR (Widlansky et al., 2015). 
Changes to the frequency of extreme El Niño and La Niña events may also increase the frequency of droughts and floods in South 
Pacific islands (Box 4.2, Section 3.5.2; Cai et al., 2012).

Extreme precipitation in small island regions is often linked to tropical storms and contributes to the climate hazard (Khouakhi et 
al., 2017). Similarly, extreme sea levels for small islands, particularly in the Caribbean, are linked to tropical cyclone occurrence 
(Khouakhi and Villarini, 2017). Under a 1.5°C stabilization scenario, there is a projected decrease in the frequency of weaker tropical 
storms and an increase in the number of intense cyclones (Section 3.3.6; Wehner et al., 2018a). There are not enough studies 
to assess differences in tropical cyclone statistics for 1.5°C versus 2°C (Section 3.3.6). There are considerable differences in the 
adaptation responses to tropical cyclones across SIDS (Cross-Chapter Box 11 in Chapter 4).

Impacts on key natural and human systems

Projected increases in aridity and decreases in freshwater availability at 1.5°C of warming, along with additional risks from SLR 
and increased wave-induced run-up, might leave several atoll islands uninhabitable (Storlazzi et al., 2015; Gosling and Arnell, 
2016). Changes in the availability and quality of freshwater, linked to a combination of changes to climate drivers, may adversely 
impact SIDS’ economies (White and Falkland, 2010; Terry and Chui, 2012; Holding and Allen, 2015; Donk et al., 2018). Growth-rate 
projections based on temperature impacts alone indicate robust negative impacts on gross domestic product (GDP) per capita 
growth for SIDS (Sections 3.4.7.1, 3.4.9.1 and 3.5.4.9; Pretis et al., 2018). These impacts would be reduced considerably under 1.5°C 
but may be increased by escalating risks from climate-related extreme weather events and SLR (Sections 3.4.5.3, 3.4.9.4 and 3.5.3)

Marine systems and associated livelihoods in SIDS face higher risks at 2°C compared to 1.5°C (medium to high confidence). 
Mass coral bleaching and mortality are projected to increase because of interactions between rising ocean temperatures, ocean 
acidification, and destructive waves from intensifying storms (Section 3.4.4 and 5.2.3, Box 3.4). At 1.5°C, approximately 70–90% of 
global coral reefs are projected to be at risk of long-term degradation due to coral bleaching, with these values increasing to 99% at 
2°C (Frieler et al., 2013; Schleussner et al., 2016b). Higher temperatures are also related to an increase in coral disease development, 
leading to coral degradation (Maynard et al., 2015). For marine fisheries, limiting warming to 1.5°C decreases the risk of species 
extinction and declines in maximum catch potential, particularly for small islands in tropical oceans (Cheung et al., 2016a).

Long-term risks of coastal flooding and impacts on populations, infrastructure and assets are projected to increase with higher levels 
of warming (high confidence). Tropical regions including small islands are expected to experience the largest increases in coastal 
flooding frequency, with the frequency of extreme water-level events in small islands projected to double by 2050 (Vitousek et al., 
2017). Wave-driven coastal flooding risks for reef-lined islands may increase as a result of coral reef degradation and SLR (Quataert 
et al., 2015). Exposure to coastal hazards is particularly high for SIDS, with a significant share of population, infrastructure and assets 
at risk (Sections 3.4.5.3 and 3.4.9; Scott et al., 2012; Kumar and Taylor, 2015; Rhiney, 2015; Byers et al., 2018). Limiting warming to 
1.5°C instead of 2°C would spare the inundation of lands currently home to 60,000 individuals in SIDS by 2150 (Rasmussen et al., 
2018). However, such estimates do not consider shoreline response (Section 3.4.5) or adaptation.

Risks of impacts across sectors are projected to be higher at 1.5°C compared to the present, and will further increase at 2°C (medium 
to high confidence). Projections indicate that at 1.5°C there will be increased incidents of internal migration and displacement 
(Sections 3.5.5, 4.3.6 and 5.2.2; Albert et al., 2017), limited capacity to assess loss and damage (Thomas and Benjamin, 2017) 
and substantial increases in the risk to critical transportation infrastructure from marine inundation (Monioudi et al., 2018). The 
difference between 1.5°C and 2°C might exceed limits for normal thermoregulation of livestock animals and result in persistent heat 
stress for livestock animals in SIDS (Lallo et al., 2018). 

At 1.5°C, limits to adaptation will be reached for several key impacts in SIDS, resulting in residual impacts, as well as loss and 
damage (Section 1.1.1, Cross-Chapter Box 12 in Chapter 5). Limiting temperature increase to 1.5°C versus 2°C is expected to reduce 
a number of risks, particularly when coupled with adaptation efforts that take into account sustainable development (Section 3.4.2 
and 5.6.3.1, Box 4.3 and 5.3, Mycoo, 2017; Thomas and Benjamin, 2017). Region-specific pathways for SIDS exist to address climate 
change (Section 5.6.3.1, Boxes 4.6 and 5.3, Cross-Chapter Box 11 in Chapter 4).

Box 3.5 (continued)
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3.4.6	 Food, Nutrition Security and Food Production 
Systems (Including Fisheries and Aquaculture)

3.4.6.1	 Crop production 

Quantifying the observed impacts of climate change on food security 
and food production systems requires assumptions about the many 
non-climate variables that interact with climate change variables. 
Implementing specific strategies can partly or greatly alleviate the 
climate change impacts on these systems (Wei et al., 2017), whilst the 
degree of compensation is mainly dependent on the geographical area 
and crop type (Rose et al., 2016). Despite these uncertainties, recent 
studies confirm that observed climate change has already affected crop 
suitability in many areas, resulting in changes in the production levels 
of the main agricultural crops. These impacts are evident in many areas 
of the world, ranging from Asia (C. Chen et al., 2014; Sun et al., 2015; 
He and Zhou, 2016) to America (Cho and McCarl, 2017) and Europe 
(Ramirez-Cabral et al., 2016), and they particularly affect the typical 
local crops cultivated in specific climate conditions (e.g., Mediterranean 
crops like olive and grapevine, Moriondo et al., 2013a, b). 

Temperature and precipitation trends have reduced crop production 
and yields, with the most negative impacts being on wheat and maize 
(Lobell et al., 2011), whilst the effects on rice and soybean yields are 
less clear and may be positive or negative (Kim et al., 2013; van Oort 
and Zwart, 2018). Warming has resulted in positive effects on crop yield 
in some high-latitude areas (Jaggard et al., 2007; Supit et al., 2010; 
Gregory and Marshall, 2012; C. Chen et al., 2014; Sun et al., 2015; He 
and Zhou, 2016; Daliakopoulos et al., 2017), and may make it possible 
to have more than one harvest per year (B. Chen et al., 2014; Sun et 
al., 2015). Climate variability has been found to explain more than 
60% of the of maize, rice, wheat and soybean yield variations in the 
main global breadbaskets areas (Ray et al., 2015), with the percentage 
varying according to crop type and scale (Moore and Lobell, 2015; Kent 
et al., 2017). Climate trends also explain changes in the length of the 
growing season, with greater modifications found in the northern high-
latitude areas (Qian et al., 2010; Mueller et al., 2015).

The rise in tropospheric ozone has already reduced yields of wheat, 
rice, maize and soybean by 3–16% globally (Van Dingenen et al., 
2009). In some studies, increases in atmospheric CO2 concentrations 
were found to increase yields by enhancing radiation and water use 
efficiencies (Elliott et al., 2014; Durand et al., 2018). In open-top 
chamber experiments with a combination of elevated CO2 and 1.5°C of 
warming, maize and potato yields were observed to increase by 45.7% 
and 11%, respectively (Singh et al., 2013; Abebe et al., 2016). However, 
observations of trends in actual crop yields indicate that reductions 
as a result of climate change remain more common than crop yield 
increases, despite increased atmospheric CO2 concentrations (Porter 
et al., 2014). For instance, McGrath and Lobell (2013) indicated that 
production stimulation at increased atmospheric CO2 concentrations 
was mostly driven by differences in climate and crop species, whilst 
yield variability due to elevated CO2 was only about 50–70% of the 
variability due to climate. Importantly, the faster growth rates induced 
by elevated CO2 have been found to coincide with lower protein content 
in several important C3 cereal grains (Myers et al., 2014), although this 
may not always be the case for C4 grains, such as sorghum, under 

drought conditions (De Souza et al., 2015). Elevated CO2 concentrations 
of 568–590 ppm (a range that corresponds approximately to RCP6 in 
the 2080s and hence a warming of 2.3°C–3.3°C (van Vuuren et al., 
2011a, AR5 WGI Table 12.2 ) alone reduced the protein, micronutrient 
and B vitamin content of the 18 rice cultivars grown most widely in 
Southeast Asia, where it is a staple food source, by an amount sufficient 
to create nutrition-related health risks for 600 million people (Zhu et 
al., 2018). Overall, the effects of increased CO2 concentrations alone 
during the 21st century are therefore expected to have a negative 
impact on global food security (medium confidence).

Crop yields in the future will also be affected by projected changes in 
temperature and precipitation. Studies of major cereals showed that 
maize and wheat yields begin to decline with 1°C–2°C of local warming 
and under nitrogen stress conditions at low latitudes (high confidence) 
(Porter et al., 2014; Rosenzweig et al., 2014). A few studies since AR5 
have focused on the impacts on cropping systems for scenarios where 
the global mean temperature increase is within 1.5°C. Schleussner et 
al. (2016b) projected that constraining warming to 1.5°C rather than 
2°C would avoid significant risks of declining tropical crop yield in 
West Africa, Southeast Asia, and Central and South America. Ricke et al. 
(2016) highlighted that cropland stability declines rapidly between 1°C 
and 3°C of warming, whilst Bassu et al. (2014) found that an increase 
in air temperature negatively influences the modelled maize yield 
response by –0.5 t ha−1 °C–1 and Challinor et al. (2014) reported similar 
effect for tropical regions. Niang et al. (2014) projected significantly 
lower risks to crop productivity in Africa at 1.5°C compared to 2°C of 
warming. Lana et al. (2017) indicated that the impact of temperature 
increases on crop failure of maize hybrids would be much greater as 
temperatures increase by 2°C compared to 1.5°C (high confidence). J. 
Huang et al. (2017) found that limiting warming to 1.5°C compared 
to 2°C would reduce maize yield losses over drylands. Although 
Rosenzweig et al. (2017, 2018) did not find a clear distinction between 
yield declines or increases in some breadbasket regions between the 
two temperature levels, they generally did find projections of decreasing 
yields in breadbasket regions when the effects of CO2 fertilization were 
excluded. Iizumi et al. (2017) found smaller reductions in maize and 
soybean yields at 1.5°C than at 2°C of projected warming, higher rice 
production at 2°C than at 1.5°C, and no clear differences for wheat 
on a global mean basis. These results are largely consistent with those 
of other studies (Faye et al., 2018; Ruane et al., 2018). In the western 
Sahel and southern Africa, moving from 1.5°C to 2°C of warming has 
been projected to result in a further reduction of the suitability of maize, 
sorghum and cocoa cropping areas and yield losses, especially for C3 
crops, with rainfall change only partially compensating these impacts 
(Läderach et al., 2013; World Bank, 2013; Sultan and Gaetani, 2016).

A significant reduction has been projected for the global production of 
wheat (by 6.0 ± 2.9%), rice (by 3.2 ± 3.7%), maize (by 7.4 ± 4.5%), 
and soybean, (by 3.1%) for each degree Celsius increase in global 
mean temperature (Asseng et al., 2015; C. Zhao et al., 2017). Similarly, 
Li et al. (2017) indicated a significant reduction in rice yields for each 
degree Celsius increase, by about 10.3%, in the greater Mekong 
subregion (medium confidence; Cross-Chapter Box 6: Food Security 
in this chapter). Large rice and maize yield losses are to be expected 
in China, owing to climate extremes (medium confidence) (Wei et al., 
2017; Zhang et al., 2017).
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While not often considered, crop production is also negatively affected 
by the increase in both direct and indirect climate extremes. Direct 
extremes include changes in rainfall extremes (Rosenzweig et al., 
2014), increases in hot nights (Welch et al., 2010; Okada et al., 2011), 
extremely high daytime temperatures (Schlenker and Roberts, 2009; 
Jiao et al., 2016; Lesk et al., 2016), drought (Jiao et al., 2016; Lesk et 
al., 2016), heat stress (Deryng et al., 2014, Betts et al., 2018), flooding 
(Betts et al., 2018; Byers et al., 2018), and chilling damage (Jiao et al., 
2016), while indirect effects include the spread of pests and diseases 
(Jiao et al., 2014; van Bruggen et al., 2015), which can also have 
detrimental effects on cropping systems. 

Taken together, the findings of studies on the effects of changes in 
temperature, precipitation, CO2 concentration and extreme weather 
events indicate that a global warming of 2°C is projected to result in a 
greater reduction in global crop yields and global nutrition than global 
warming of 1.5°C (high confidence; Section 3.6). 

3.4.6.2	 Livestock production  

Studies of climate change impacts on livestock production are few in 
number. Climate change is expected to directly affect yield quantity and 
quality (Notenbaert et al., 2017), as well as indirectly impacting the 
livestock sector through feed quality changes and spread of pests and 
diseases (Kipling et al., 2016) (high confidence). Increased warming and 
its extremes are expected to cause changes in physiological processes 
in livestock (i.e., thermal distress, sweating and high respiratory rates) 
(Mortola and Frappell, 2000) and to have detrimental effects on animal 
feeding, growth rates (André et al., 2011; Renaudeau et al., 2011; Collier 
and Gebremedhin, 2015) and reproduction (De Rensis et al., 2015). Wall 
et al. (2010) observed reduced milk yields and increased cow mortality 
as the result of heat stress on dairy cow production over some UK 
regions. 

Further, a reduction in water supply might increase cattle water demand 
(Masike and Urich, 2008). Generally, heat stress can be responsible 
for domestic animal mortality increase and economic losses (Vitali et 
al., 2009), affecting a wide range of reproductive parameters (e.g., 
embryonic development and reproductive efficiency in pigs, Barati et al., 
2008; ovarian follicle development and ovulation in horses, Mortensen 
et al., 2009). Much attention has also been dedicated to ruminant 
diseases (e.g., liver fluke, Fox et al., 2011; blue-tongue virus, Guis et al., 
2012; foot-and-mouth disease (FMD), Brito et al. (2017); and zoonotic 
diseases, Njeru et al., 2016; Simulundu et al., 2017). 

Climate change impacts on livestock are expected to increase. In 
temperate climates, warming is expected to lengthen the forage 
growing season but decrease forage quality, with important variations 
due to rainfall changes (Craine et al., 2010; Hatfield et al., 2011; 
Izaurralde et al., 2011). Similarly, a decrease in forage quality is expected 
for both natural grassland in France (Graux et al., 2013) and sown 
pastures in Australia (Perring et al., 2010). Water resource availability 
for livestock is expected to decrease owing to increased runoff and 
reduced groundwater resources. Increased temperature will likely 
induce changes in river discharge and the amount of water in basins, 
leading human and livestock populations to experience water stress, 
especially in the driest areas (i.e., sub-Saharan Africa and South Asia) 

(medium confidence) (Palmer et al., 2008). Elevated temperatures are 
also expected to increase methane production (Knapp et al., 2014; M.A. 
Lee et al., 2017). Globally, a decline in livestock of 7–10% is expected at 
about 2°C of warming, with associated economic losses between $9.7 
and $12.6 billion (Boone et al., 2018).

3.4.6.3	 Fisheries and aquaculture production  

Global fisheries and aquaculture contribute a total of 88.6 and 59.8 
million tonnes of fish and other products annually (FAO, 2016), 
and play important roles in the food security of a large number of 
countries (McClanahan et al., 2015; Pauly and Charles, 2015) as well 
as being essential for meeting the protein demand of a growing 
global population (Cinner et al., 2012, 2016; FAO, 2016; Pendleton 
et al., 2016). A steady increase in the risks associated with bivalve 
fisheries and aquaculture at mid-latitudes is coincident with increases 
in temperature, ocean acidification, introduced species, disease and 
other drivers ( Lacoue-Labarthe et al., 2016; Clements and Chopin, 
2017; Clements et al., 2017; Parker et al., 2017). Sea level rise and 
storm intensification pose a risk to hatcheries and other infrastructure 
(Callaway et al., 2012; Weatherdon et al., 2016), whilst others risks 
are associated with the invasion of parasites and pathogens (Asplund 
et al., 2014; Castillo et al., 2017). Specific human strategies have 
reduced these risks, which are expected to be moderate under RCP2.6 
and very high under RCP8.5 (Gattuso et al., 2015). The risks related 
to climate change for fin fish (Section 3.4.4) are producing a number 
of challenges for small-scale fisheries (e.g., Kittinger, 2013; Pauly and 
Charles, 2015; Bell et al., 2018). Recent literature from 2015 to 2017 
has described growing threats from rapid shifts in the biogeography 
of key species (Poloczanska et al., 2013, 2016; Burrows et al., 2014; 
García Molinos et al., 2015) and the ongoing rapid degradation of 
key ecosystems such as coral reefs, seagrass and mangroves (Section 
3.4.4, Box 3.4). The acceleration of these changes, coupled with non-
climate stresses (e.g., pollution, overfishing and unsustainable coastal 
development), are driving many small-scale fisheries well below the 
sustainable harvesting levels required to maintain these resources 
as a source of food (McClanahan et al., 2009, 2015; Cheung et al., 
2010; Pendleton et al., 2016). As a result, future scenarios surrounding 
climate change and global population growth increasingly project 
shortages of fish protein for many regions, such as the Pacific Ocean 
(Bell et al., 2013, 2018) and Indian Ocean (McClanahan et al., 2015). 
Mitigation of these risks involves marine spatial planning, fisheries 
repair, sustainable aquaculture, and the development of alternative 
livelihoods (Kittinger, 2013; McClanahan et al., 2015; Song and 
Chuenpagdee, 2015; Weatherdon et al., 2016). Other threats concern 
the increasing incidence of alien species and diseases (Kittinger et al., 
2013; Weatherdon et al., 2016).

Risks of impacts related to climate change on low-latitude small-scale 
fin fisheries are moderate today but are expected to reach very high 
levels by 1.1°C of global warming. Projections for mid- to high-latitude 
fisheries include increases in fishery productivity in some cases (Cheung 
et al., 2013; Hollowed et al., 2013; Lam et al., 2014; FAO, 2016). These 
projections are associated with the biogeographical shift of species 
towards higher latitudes (Fossheim et al., 2015), which brings benefits 
as well as challenges (e.g., increased production yet a greater risk of 
disease and invasive species; low confidence). Factors underpinning 
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the expansion of fisheries production to high-latitude locations include 
warming, increased light levels and mixing due to retreating sea ice 
(Cheung et al., 2009), which result in substantial increases in primary 
productivity and fish harvesting in the North Pacific and North Atlantic 
(Hollowed and Sundby, 2014).

Present-day risks for mid-latitude bivalve fisheries and aquaculture 
become undetectible up to 1.1°C of global warming, moderate at 
1.3°C, and moderate to high up to 1.9°C (Figure 3.18). For instance, 
Cheung et al. (2016a), simulating the loss in fishery productivity 
at 1.5°C, 2°C and 3.5°C above the pre-industrial period, found that 
the potential global catch for marine fisheries will likely decrease by 
more than three million metric tonnes for each degree of warming. 
Low-latitude fin-fish fisheries have higher risks of impacts, with risks 
being moderate under present-day conditions and becoming high 
above 0.9°C and very high at 2°C of global warming. High-latitude 

fisheries are undergoing major transformations, and while production 
is increasing, present-day risk is moderate and is projected to remain 
moderate at 1.5°C and 2°C (Figure 3.18). 

Adaptation measures can be applied to shellfish, large pelagic fish 
resources and biodiversity, and they include options such as protecting 
reproductive stages and brood stocks from periods of high ocean 
acidification (OA), stock selection for high tolerance to OA (high 
confidence) (Ekstrom et al., 2015; Rodrigues et al., 2015; Handisyde 
et al., 2016; Lee, 2016; Weatherdon et al., 2016; Clements and Chopin, 
2017), redistribution of highly migratory resources (e.g., Pacific tuna) 
(high confidence), governance instruments such as international 
fisheries agreements (Lehodey et al., 2015; Matear et al., 2015), 
protection and regeneration of reef habitats, reduction of coral reef 
stresses, and development of alternative livelihoods (e.g., aquaculture; 
Bell et al., 2013, 2018).

Cross-Chapter Box 6 | Food Security 

Lead Authors: 
Ove Hoegh-Guldberg (Australia), Sharina Abdul Halim (Malaysia), Marco Bindi (Italy), Marcos Buckeridge (Brazil), Arona Diedhiou (Ivory 
Coast/Senegal), Kristie L. Ebi (USA), Deborah Ley (Guatemala/Mexico), Diana Liverman (USA), Chandni Singh (India), Rachel Warren 
(UK), Guangsheng Zhou (China). 

Contributing Author: 
Lorenzo Brilli (Italy)

Climate change influences food and nutritional security through its effects on food availability, quality, access and distribution (Paterson 
and Lima, 2010; Thornton et al., 2014; FAO, 2016). More than 815 million people were undernourished in 2016, and 11% of the world’s 
population has experienced recent decreases in food security, with higher percentages in Africa (20%), southern Asia (14.4%) and the 
Caribbean (17.7%) (FAO et al., 2017). Overall, food security is expected to be reduced at 2°C of global warming compared to 1.5°C, 
owing to projected impacts of climate change and extreme weather on yields, crop nutrient content, livestock, fisheries and aquaculture 
and land use (cover type and management) (Sections 3.4.3.6, 3.4.4.12 and 3.4.6), (high confidence). The effects of climate change 
on crop yield, cultivation area, presence of pests, food price and supplies are projected to have major implications for sustainable 
development, poverty eradication, inequality and the ability of the international community to meet the United Nations sustainable 
development goals (SDGs; Cross-Chapter Box 4 in Chapter 1). 

Goal 2 of the SDGs is to end hunger, achieve food security, improve nutrition and promote sustainable agriculture by 2030. This goal 
builds on the first millennium development goal (MDG-1) which focused on eradicating extreme poverty and hunger, through efforts 
that reduced the proportion of undernourished people in low- and middle-income countries from 23.3% in 1990 to 12.9% in 2015. 
Climate change threatens the capacity to achieve SDG 2 and could reverse the progress made already. Food security and agriculture 
are also critical to other aspects of sustainable development, including poverty eradication (SDG 1), health and well-being (SDG 3), 
clean water (SDG 6), decent work (SDG 8), and the protection of ecosystems on land (SDG 14) and in water (SDG 15) (UN, 2015, 2017; 
Pérez-Escamilla, 2017). 

Increasing global temperature poses large risks to food security globally and regionally, especially in low-latitude areas (medium 
confidence) (Cheung et al., 2010; Rosenzweig et al., 2013; Porter et al., 2014; Rosenzweig and Hillel, 2015; Lam et al., 2016), with warming 
of 2°C projected to result in a greater reduction in global crop yields and global nutrition than warming of 1.5°C (high confidence) (Section 
3.4.6), owing to the combined effects of changes in temperature, precipitation and extreme weather events, as well as increasing CO2 
concentrations. Climate change can exacerbate malnutrition by reducing nutrient availability and the quality of food products (medium 
confidence) (Cramer et al., 2014; Zhu et al., 2018). Generally, vulnerability to decreases in water and food availability is projected to be 
reduced at 1.5°C versus 2°C (Cheung et al., 2016a; Betts et al., 2018), especially in regions such as the African Sahel, the Mediterranean, 
central Europe, the Amazon, and western and southern Africa (medium confidence) (Sultan and Gaetani, 2016; Lehner et al., 2017; Betts 
et al., 2018; Byers et al., 2018; Rosenzweig et al., 2018). 
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Rosenzweig et al. (2018) and Ruane et al. (2018) reported that the higher CO2 concentrations associated with 2°C as compared to 
those at 1.5°C of global warming are projected to drive positive effects in some regions. Production can also benefit from warming in 
higher latitudes, with more fertile soils, favouring crops, and grassland production, in contrast to the situation at low latitudes (Section 
3.4.6), and similar benefits could arise for high-latitude fisheries production (high confidence) (Section 3.4.6.3). Studies exploring 
regional climate change risks on crop production are strongly influenced by the use of different regional climate change projections 
and by the assumed strength of CO2 fertilization effects (Section 3.6), which are uncertain. For C3 crops, theoretically advantageous 
CO2 fertilization effects may not be realized in the field; further, they are often accompanied by losses in protein and nutrient content of 
crops (Section 3.6), and hence these projected benefits may not be realized. In addition, some micronutrients such as iron and zinc will 
accumulate less and be less available in food (Myers et al., 2014). Together, the impacts on protein availability may bring as many as 
150 million people into protein deficiency by 2050 (Medek et al., 2017). However, short-term benefits could arise for high-latitude 
fisheries production as waters warm, sea ice contracts and primary productivity increases under climate change (high confidence) 
(Section 3.4.6.3; Cheung et al., 2010; Hollowed and Sundby, 2014; Lam et al., 2016; Sundby et al., 2016; Weatherdon et al., 2016).

Factors affecting the projections of food security include variability in regional climate projections, climate change mitigation (where 
land use is involved; see Section 3.6 and Cross-Chapter Box 7 in this chapter) and biological responses (medium confidence) (Section 
3.4.6.1; McGrath and Lobell, 2013; Elliott et al., 2014; Pörtner et al., 2014; Durand et al., 2018), extreme events such as droughts 
and floods (high confidence) (Sections 3.4.6.1, 3.4.6.2; Rosenzweig et al., 2014; Wei et al., 2017), financial volatility (Kannan et al., 
2000; Ghosh, 2010; Naylor and Falcon, 2010; HLPE, 2011), and the distributions of pests and disease (Jiao et al., 2014; van Bruggen 
et al., 2015). Changes in temperature and precipitation are projected to increase global food prices by 3–84% by 2050 (IPCC, 2013). 
Differences in price impacts of climate change are accompanied by differences in land-use change (Nelson et al., 2014b), energy policies 
and food trade (Mueller et al., 2011; Wright, 2011; Roberts and Schlenker, 2013). Fisheries and aquatic production systems (aquaculture) 
face similar challenges to those of crop and livestock sectors (Section 3.4.6.3; Asiedu et al., 2017a, b; Utete et al., 2018). Human 
influences on food security include demography, patterns of food waste, diet shifts, incomes and prices, storage, health status, trade 
patterns, conflict, and access to land and governmental or other assistance (Chapters 4 and 5). Across all these systems, the efficiency 
of adaptation strategies is uncertain because it is strongly linked with future economic and trade environments and their response to 
changing food availability (medium confidence) (Lobell et al., 2011; von Lampe et al., 2014; d’Amour et al., 2016; Wei et al., 2017). 

Climate change impacts on food security can be reduced through adaptation (Hasegawa et al., 2014). While climate change is projected 
to decrease agricultural yield, the consequences could be reduced substantially at 1.5°C versus 2°C with appropriate investment (high 
confidence) (Neumann et al., 2010; Muller, 2011; Roudier et al., 2011), awareness-raising to help inform farmers of new technologies for 
maintaining yield, and strong adaptation strategies and policies that develop sustainable agricultural choices (Sections 4.3.2 and 4.5.3). 
In this regard, initiatives such as ‘climate-smart’ food production and distribution systems may assist via technologies and adaptation 
strategies for food systems (Lipper et al., 2014; Martinez-Baron et al., 2018; Whitfield et al., 2018), as well as helping meet mitigation 
goals (Harvey et al., 2014). 

K.R. Smith et al. (2014) concluded that climate change will exacerbate current levels of childhood undernutrition and stunting through 
reduced food availability. As well, climate change can drive undernutrition-related childhood mortality, and increase disability-adjusted 
life years lost, with the largest risks in Asia and Africa (Supplementary Material 3.SM, Table 3.SM.12; Ishida et al., 2014; Hasegawa et al., 
2016; Springmann et al., 2016). Studies comparing the health risks associated with reduced food security at 1.5°C and 2°C concluded 
that risks would be higher and the globally undernourished population larger at 2°C (Hales et al., 2014; Ishida et al., 2014; Hasegawa 
et al., 2016). Climate change impacts on dietary and weight-related risk factors are projected to increase mortality, owing to global 
reductions in food availability and consumption of fruit, vegetables and red meat (Springmann et al., 2016). Further, temperature 
increases are projected to reduce the protein and micronutrient content of major cereal crops, which is expected to further affect food 
and nutritional security (Myers et al., 2017; Zhu et al., 2018). 

Strategies for improving food security often do so in complex settings such as the Mekong River basin in Southeast Asia. The Mekong is 
a major food bowl (Smajgl et al., 2015) but is also a climate change hotspot (de Sherbinin, 2014; Lebel et al., 2014). This area is also a 
useful illustration of the complexity of adaptation choices and actions in a 1.5°C warmer world. Climate projections include increased 
annual average temperatures and precipitation in the Mekong (Zhang et al., 2017), as well as increased flooding and related disaster risks 
(T.F. Smith et al., 2013; Ling et al., 2015; Zhang et al., 2016). Sea level rise and saline intrusion are ongoing risks to agricultural systems 
in this area by reducing soil fertility and limiting the crop productivity (Renaud et al., 2015). The main climate impacts in the Mekong are 
expected to be on ecosystem health, through salinity intrusion, biomass reduction and biodiversity losses (Le Dang et al., 2013; Smajgl 
et al., 2015); agricultural productivity and food security (Smajgl et al., 2015); livelihoods such as fishing and farming (D. Wu et al., 2013); 
and disaster risk (D. Wu et al., 2013; Hoang et al., 2016), with implications for human mortality and economic and infrastructure losses. 

Cross-Chapter Box 6 (continued)
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Adaptation imperatives and costs in the Mekong will be higher under higher temperatures and associated impacts on agriculture 
and aquaculture, hazard exposure, and infrastructure. Adaptation measures to meet food security include greater investment in crop 
diversification and integrated agriculture–aquaculture practices (Renaud et al., 2015), improvement of water-use technologies (e.g., 
irrigation, pond capacity improvement and rainwater harvesting), soil management, crop diversification, and strengthening allied 
sectors such as livestock rearing and aquaculture (ICEM, 2013). Ecosystem-based approaches, such as integrated water resources 
management, demonstrate successes in mainstreaming adaptation into existing strategies (Sebesvari et al., 2017). However, some of 
these adaptive strategies can have negative impacts that deepen the divide between land-wealthy and land-poor farmers (Chapman 
et al., 2016). Construction of high dikes, for example, has enabled triple-cropping, which benefits land-wealthy farmers but leads to 
increasing debt for land-poor farmers (Chapman and Darby, 2016). 

Institutional innovation has happened through the Mekong River Commission (MRC), which is an intergovernmental body between 
Cambodia, Lao PDR, Thailand and Viet Nam that was established in 1995. The MRC has facilitated impact assessment studies, regional 
capacity building and local project implementation (Schipper et al., 2010), although the mainstreaming of adaptation into development 
policies has lagged behind needs (Gass et al., 2011). Existing adaptation interventions can be strengthened through greater flexibility 
of institutions dealing with land-use planning and agricultural production, improved monitoring of saline intrusion, and the installation 
of early warning systems that can be accessed by the local authorities or farmers (Renaud et al., 2015; Hoang et al., 2016; Tran et al., 
2018). It is critical to identify and invest in synergistic strategies from an ensemble of infrastructural options (e.g., building dikes); soft 
adaptation measures (e.g., land-use change) (Smajgl et al., 2015; Hoang et al., 2018); combinations of top-down government-led (e.g., 
relocation) and bottom-up household strategies (e.g., increasing house height) (Ling et al., 2015); and community-based adaptation 
initiatives that merge scientific knowledge with local solutions (Gustafson et al., 2016, 2018; Tran et al., 2018). Special attention needs 
to be given to strengthening social safety nets and livelihood assets whilst ensuring that adaptation plans are mainstreamed into 
broader development goals (Sok and Yu, 2015; Kim et al., 2017). The combination of environmental, social and economic pressures on 
people in the Mekong River basin highlights the complexity of climate change impacts and adaptation in this region, as well as the fact 
that costs are projected to be much lower at 1.5°C than 2°C of global warming.

Cross-Chapter Box 6 (continued)

3.4.7	 Human Health

Climate change adversely affects human health by increasing exposure 
and vulnerability to climate-related stresses, and decreasing the 
capacity of health systems to manage changes in the magnitude and 
pattern of climate-sensitive health outcomes (Cramer et al., 2014; Hales 
et al., 2014). Changing weather patterns are associated with shifts in 
the geographic range, seasonality and transmission intensity of selected 
climate-sensitive infectious diseases (e.g., Semenza and Menne, 2009), 
and increasing morbidity and mortality are associated with extreme 
weather and climate events (e.g., K.R. Smith et al., 2014). Health 
detection and attribution studies conducted since AR5 have provided 
evidence, using multistep attribution, that climate change is negatively 
affecting adverse health outcomes associated with heatwaves, 
Lyme disease in Canada, and Vibrio emergence in northern Europe 
(Mitchell, 2016; Mitchell et al., 2016; Ebi et al., 2017). The IPCC AR5 
concluded there is high to very high confidence that climate change 
will lead to greater risks of injuries, disease and death, owing to more 
intense heatwaves and fires, increased risks of undernutrition, and 
consequences of reduced labour productivity in vulnerable populations 
(K.R. Smith et al., 2014). 

3.4.7.1	 Projected risk at 1.5°C and 2°C of global warming 

The projected risks to human health of warming of 1.5°C and 2°C, 
based on studies of temperature-related morbidity and mortality, 
air quality and vector borne diseases assessed in and since AR5, are 
summarized in Supplementary Material 3.SM, Tables 3.SM.8, 3.SM.9 

and 3.SM.10 (based on Ebi et al., 2018). Other climate-sensitive 
health outcomes, such as diarrheal diseases, mental health issues 
and the full range of sources of poor air quality, were not considered 
because of the lack of projections of how risks could change at 1.5°C 
and 2°C. Few projections were available for specific temperatures 
above pre-industrial levels; Supplementary Material 3.SM, Table 
3.SM.7 provides the conversions used to translate risks projected for 
particular time slices to those for specific temperature changes (Ebi 
et al., 2018).

Temperature-related morbidity and mortality: The magnitude of 
projected heat-related morbidity and mortality is greater at 2°C than 
at 1.5°C of global warming (very high confidence)(Doyon et al., 2008; 
Jackson et al., 2010; Hanna et al., 2011; Huang et al., 2012; Petkova 
et al., 2013; Hajat et al., 2014; Hales et al., 2014; Honda et al., 2014; 
Vardoulakis et al., 2014; Garland et al., 2015; Huynen and Martens, 
2015; Li et al., 2015; Schwartz et al., 2015; L. Wang et al., 2015; 
Guo et al., 2016; T. Li et al., 2016; Chung et al., 2017; Kendrovski 
et al., 2017; Mishra et al., 2017; Arnell et al., 2018; Mitchell et al., 
2018b). The number of people exposed to heat events is projected 
to be greater at 2°C than at 1.5°C (Russo et al., 2016; Mora et al., 
2017; Byers et al., 2018; Harrington and Otto, 2018; King et al., 
2018). The extent to which morbidity and mortality are projected 
to increase varies by region, presumably because of differences in 
acclimatization, population vulnerability, the built environment, 
access to air conditioning and other factors (Russo et al., 2016; Mora 
et al., 2017; Byers et al., 2018; Harrington and Otto, 2018; King et 
al., 2018). Populations at highest risk include older adults, children, 
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women, those with chronic diseases, and people taking certain 
medications (very high confidence). Assuming adaptation takes place 
reduces the projected magnitude of risks (Hales et al., 2014; Huynen 
and Martens, 2015; T. Li et al., 2016). 

In some regions, cold-related mortality is projected to decrease with 
increasing temperatures, although increases in heat-related mortality 
generally are projected to outweigh any reductions in cold-related 
mortality with warmer winters, with the heat-related risks increasing 
with greater degrees of warming (Huang et al., 2012; Hajat et al., 2014; 
Vardoulakis et al., 2014; Gasparrini et al., 2015; Huynen and Martens, 
2015; Schwartz et al., 2015).

Occupational health: Higher ambient temperatures and humidity levels 
place additional stress on individuals engaging in physical activity. Safe 
work activity and worker productivity during the hottest months of the 
year would be increasingly compromised with additional climate change 
(medium confidence) (Dunne et al., 2013; Kjellstrom et al., 2013, 2018; 
Sheffield et al., 2013; Habibi Mohraz et al., 2016). Patterns of change may 
be complex; for example, at 1.5°C, there could be about a 20% reduction 
in areas experiencing severe heat stress in East Asia, compared to 
significant increases in low latitudes at 2°C (Lee and Min, 2018). The costs 
of preventing workplace heat-related illnesses through worker breaks 
suggest that the difference in economic loss between 1.5°C and 2°C could 
be approximately 0.3% of global gross domestic product (GDP) in 2100 
(Takakura et al., 2017). In China, taking into account population growth 
and employment structure, high temperature subsidies for employees 
working on extremely hot days are projected to increase from 38.6 billion 
yuan yr–1 in 1979–2005 to 250 billion yuan yr–1 in the 2030s (about 1.5°C) 
(Zhao et al., 2016).

Air quality: Because ozone formation is temperature dependent, 
projections focusing only on temperature increase generally conclude 
that ozone-related mortality will increase with additional warming, with 
the risks higher at 2°C than at 1.5°C (high confidence) (Supplementary 
Material 3.SM, Table 3.SM.9; Heal et al., 2013; Tainio et al., 2013; 
Likhvar et al., 2015; Silva et al., 2016; Dionisio et al., 2017; J.Y. Lee 
et al., 2017). Reductions in precursor emissions would reduce future 
ozone concentrations and associated mortality. Mortality associated 
with exposure to particulate matter could increase or decrease in the 
future, depending on climate projections and emissions assumptions 
(Supplementary Material 3.SM, Table 3.SM.8; Tainio et al., 2013; 
Likhvar et al., 2015; Silva et al., 2016).

Malaria: Recent projections of the potential impacts of climate 
change on malaria globally and for Asia, Africa, and South America 
(Supplementary Material 3.SM, Table 3.SM.10) confirm that weather 
and climate are among the drivers of the geographic range, intensity of 
transmission, and seasonality of malaria, and that the relationships are 
not necessarily linear, resulting in complex patterns of changes in risk 
with additional warming (very high confidence) (Ren et al., 2016; Song 
et al., 2016; Semakula et al., 2017). Projections suggest that the burden 
of malaria could increase with climate change because of a greater 
geographic range of the Anopheles vector, longer season, and/or 
increase in the number of people at risk, with larger burdens at higher 
levels of warming, but with regionally variable patterns (medium to 
high confidence). Vector populations are projected to shift with climate 

change, with expansions and reductions depending on the degree of 
local warming, the ecology of the mosquito vector, and other factors 
(Ren et al., 2016).

Aedes (mosquito vector for dengue fever, chikungunya, yellow 
fever and Zika virus): Projections of the geographic distribution of 
Aedes aegypti and Ae. albopictus (principal vectors) or of the prevalence 
of dengue fever generally conclude that there will be an increase in the 
number of mosquitos and a larger geographic range at 2°C than at 
1.5°C, and they suggest that more individuals will be at risk of dengue 
fever, with regional differences (high confidence) (Fischer et al., 2011, 
2013; Colón-González et al., 2013, 2018; Bouzid et al., 2014; Ogden 
et al., 2014a; Mweya et al., 2016). The risks increase with greater 
warming. Projections suggest that climate change is projected to 
expand the geographic range of chikungunya, with greater expansions 
occurring at higher degrees of warming (Tjaden et al., 2017).

Other vector-borne diseases: Increased warming in North 
America and Europe could result in geographic expansions of 
regions (latitudinally and altitudinally) climatically suitable for West 
Nile virus transmission, particularly along the current edges of its 
transmission areas, and extension of the transmission season, with 
the magnitude and pattern of changes varying by location and level 
of warming (Semenza et al., 2016). Most projections conclude that 
climate change could expand the geographic range and seasonality 
of Lyme and other tick-borne diseases in parts of North America and 
Europe (Ogden et al., 2014b; Levi et al., 2015). The projected changes 
are larger with greater warming and under higher greenhouse gas 
emissions pathways. Projections of the impacts of climate change on 
leishmaniosis and Chagas disease indicate that climate change could 
increase or decrease future health burdens, with greater impacts 
occurring at higher degrees of warming (González et al., 2014; 
Ceccarelli and Rabinovich, 2015).

In summary, warming of 2°C poses greater risks to human health than 
warming of 1.5°C, often with the risks varying regionally, with a few 
exceptions (high confidence). There is very high confidence that each 
additional unit of warming could increase heat-related morbidity and 
mortality, and that adaptation would reduce the magnitude of impacts. 
There is high confidence that ozone-related mortality could increase if 
precursor emissions remain the same, and that higher temperatures 
could affect the transmission of some infectious diseases, with 
increases and decreases projected depending on the disease (e.g., 
malaria, dengue fever, West Nile virus and Lyme disease), region and 
degree of temperature change. 

3.4.8	 Urban Areas

There is new literature on urban climate change and its differential 
impacts on and risks for infrastructure sectors – energy, water, transport 
and buildings – and vulnerable populations, including those living in 
informal settlements (UCCRN, 2018). However, there is limited literature 
on the risks of warming of 1.5°C and 2°C in urban areas. Heat-related 
extreme events (Matthews et al., 2017), variability in precipitation (Yu 
et al., 2018) and sea level rise can directly affect urban areas (Section 
3.4.5, Bader et al., 2018; Dawson et al., 2018). Indirect risks may arise 
from interactions between urban and natural systems.
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Future warming and urban expansion could lead to more extreme 
heat stress (Argüeso et al., 2015; Suzuki-Parker et al., 2015). At 1.5°C 
of warming, twice as many megacities (such as Lagos, Nigeria and 
Shanghai, China) could become heat stressed, exposing more than 
350 million more people to deadly heat by 2050 under midrange 
population growth. Without considering adaptation options, such 
as cooling from more reflective roofs, and overall characteristics of 
urban agglomerations in terms of land use, zoning and building codes 
(UCCRN, 2018), Karachi (Pakistan) and Kolkata (India) could experience 
conditions equivalent to the deadly 2015 heatwaves on an annual 
basis under 2°C of warming (Akbari et al., 2009; Oleson et al., 2010; 
Matthews et al., 2017). Warming of 2°C is expected to increase the 
risks of heatwaves in China’s urban agglomerations (Yu et al., 2018). 
Stabilizing at 1.5°C of warming instead of 2°C could decrease mortality 
related to extreme temperatures in key European cities, assuming no 
adaptation and constant vulnerability (Jacob et al., 2018; Mitchell et 
al., 2018a). Holding temperature change to below 2°C but taking urban 
heat islands (UHI) into consideration, projections indicate that there 
could be a substantial increase in the occurrence of deadly heatwaves in 
cities. The urban impacts of these heatwaves are expected to be similar 
at 1.5°C and 2°C and substantially larger than under the present climate 
(Matthews et al., 2017; Yu et al., 2018). Increases in the intensity of 
UHI could exacerbate warming of urban areas, with projections ranging 
from a 6% decrease to a 30% increase for a doubling of CO2 (McCarthy 
et al., 2010). Increases in population and city size, in the context of a 
warmer climate, are projected to increase UHI (Georgescu et al., 2012; 
Argüeso et al., 2014; Conlon et al., 2016; Kusaka et al., 2016; Grossman-
Clarke et al., 2017).

For extreme heat events, an additional 0.5°C of warming implies 
a shift from the upper bounds of observed natural variability to a 
new global climate regime (Schleussner et al., 2016b), with distinct 
implications for the urban poor (Revi et al., 2014; Jean-Baptiste et al., 
2018; UCCRN, 2018). Adverse impacts of extreme events could arise 
in tropical coastal areas of Africa, South America and Southeast Asia 
(Schleussner et al., 2016b). These urban coastal areas in the tropics 
are particularly at risk given their large informal settlements and other 
vulnerable urban populations, as well as vulnerable assets, including 
businesses and critical urban infrastructure (energy, water, transport 
and buildings) (McGranahan et al., 2007; Hallegatte et al., 2013; Revi 
et al., 2014; UCCRN, 2018). Mediterranean water stress is projected 
to increase from 9% at 1.5°C to 17% at 2°C compared to values in 
1986–2005 period. Regional dry spells are projected to expand from 
7% at 1.5°C to 11% at 2°C for the same reference period. Sea level rise 
is expected to be lower at 1.5°C than 2°C, lowering risks for coastal 
metropolitan agglomerations (Schleussner et al., 2016b). 

Climate models are better at projecting implications of greenhouse 
gas forcing on physical systems than at assessing differential risks 
associated with achieving a specific temperature target (James et 
al., 2017). These challenges in managing risks are amplified when 
combined with the scale of urban areas and assumptions about socio-
economic pathways (Krey et al., 2012; Kamei et al., 2016; Yu et al., 
2016; Jiang and Neill, 2017). 

In summary, in the absence of adaptation, in most cases, warming 
of 2°C poses greater risks to urban areas than warming of 1.5°C, 

depending on the vulnerability of the location (coastal or non-coastal) 
(high confidence), businesses, infrastructure sectors (energy, water 
and transport), levels of poverty, and the mix of formal and informal 
settlements.

3.4.9	 Key Economic Sectors and Services

Climate change could affect tourism, energy systems and transportation 
through direct impacts on operations (e.g., sea level rise) and through 
impacts on supply and demand, with the risks varying significantly with 
geographic region, season and time. Projected risks also depend on 
assumptions with respect to population growth, the rate and pattern 
of urbanization, and investments in infrastructure. Table 3.SM.11 in 
Supplementary Material 3.SM summarizes the cited publications. 

3.4.9.1	 Tourism

The implications of climate change for the global tourism sector are 
far-reaching and are impacting sector investments, destination assets 
(environment and cultural), operational and transportation costs, and 
tourist demand patterns (Scott et al., 2016a; Scott and Gössling, 2018). 
Since AR5, observed impacts on tourism markets and destination 
communities continue to be not well analysed, despite the many 
analogue conditions (e.g., heatwaves, major hurricanes, wild fires, 
reduced snow pack, coastal erosion and coral reef bleaching) that 
are anticipated to occur more frequently with climate change. There 
is some evidence that observed impacts on tourism assets, such as 
environmental and cultural heritage, are leading to the development of 
‘last chance to see’ tourism markets, where travellers visit destinations 
before they are substantially degraded by climate change impacts or 
to view the impacts of climate change on landscapes (Lemelin et al., 
2012; Stewart et al., 2016; Piggott-McKellar and McNamara, 2017). 

There is limited research on the differential risks of a 1.5° versus 
2°C temperature increase and resultant environmental and socio-
economic impacts in the tourism sector. The translation of these 
changes in climate resources for tourism into projections of tourism 
demand remains geographically limited to Europe. Based on analyses 
of tourist comfort, summer and spring/autumn tourism in much 
of western Europe may be favoured by 1.5°C of warming, but with 
negative effects projected for Spain and Cyprus (decreases of 8% and 
2%, respectively, in overnight stays) and most coastal regions of the 
Mediterranean (Jacob et al., 2018). Similar geographic patterns of 
potential tourism gains (central and northern Europe) and reduced 
summer favourability (Mediterranean countries) are projected under 
2°C (Grillakis et al., 2016). Considering potential changes in natural 
snow only, winter overnight stays at 1.5°C are projected to decline 
by 1–2% in Austria, Italy and Slovakia, with an additional 1.9 million 
overnight stays lost under 2°C of warming (Jacob et al., 2018). Using 
an econometric analysis of the relationship between regional tourism 
demand and climate conditions, Ciscar et al. (2014) projected that a 
2°C warmer world would reduce European tourism by 5% (€15 billion 
yr–1), with losses of up to 11% (€6 billion yr–1) for southern Europe and 
a potential gain of €0.5 billion yr–1 in the UK.

There is growing evidence that the magnitude of projected impacts is 
temperature dependent and that sector risks could be much greater 



243

3

Impacts of 1.5°C of Global Warming on Natural and Human Systems	 Chapter 3

with higher temperature increases and resultant environmental 
and socio-economic impacts (Markham et al., 2016; Scott et al., 
2016a; Jones, 2017; Steiger et al., 2017). Studies from 27 countries 
consistently project substantially decreased reliability of ski areas that 
are dependent on natural snow, increased snowmaking requirements 
and investment in snowmaking systems, shortened and more variable 
ski seasons, a contraction in the number of operating ski areas, 
altered competitiveness among and within regional ski markets, 
and subsequent impacts on employment and the value of vacation 
properties (Steiger et al., 2017). Studies that omit snowmaking do 
not reflect the operating realities of most ski areas and overestimate 
impacts at 1.5°C–2°C. In all regional markets, the extent and timing 
of these impacts depend on the magnitude of climate change and the 
types of adaptive responses by the ski industry, skiers and destination 
communities. The decline in the number of former Olympic Winter 
Games host locations that could remain climatically reliable for future 
Olympic and Paralympic Winter Games has been projected to be much 
greater under scenarios warmer than 2°C (Scott et al., 2015; Jacob et 
al., 2018).

The tourism sector is also affected by climate-induced changes in 
environmental assets critical for tourism, including biodiversity, 
beaches, glaciers and other features important for environmental and 
cultural heritage. Limited analyses of projected risks associated with 
1.5°C versus 2°C are available (Section 3.4.4.12). A global analysis of 
sea level rise (SLR) risk to 720 UNESCO Cultural World Heritage sites 
projected that about 47 sites might be affected under 1°C of warming, 
with this number increasing to 110 and 136 sites under 2°C and 3°C, 
respectively (Marzeion and Levermann, 2014). Similar risks to vast 
worldwide coastal tourism infrastructure and beach assets remain 
unquantified for most major tourism destinations and small island 
developing states (SIDS) that economically depend on coastal tourism. 
One exception is the projection that an eventual 1 m SLR could 
partially or fully inundate 29% of 900 coastal resorts in 19 Caribbean 
countries, with a substantially higher proportion (49–60%) vulnerable 
to associated coastal erosion (Scott and Verkoeyen, 2017).

A major barrier to understanding the risks of climate change for tourism, 
from the destination community scale to the global scale, has been 
the lack of integrated sectoral assessments that analyse the full range 
of potential compounding impacts and their interactions with other 
major drivers of tourism (Rosselló-Nadal, 2014; Scott et al., 2016b). 
When applied to 181 countries, a global vulnerability index including 
27 indicators found that countries with the lowest risk are located in 
western and northern Europe, central Asia, Canada and New Zealand, 
while the highest sector risks are projected for Africa, the Middle 
East, South Asia and SIDS in the Caribbean, Indian and Pacific Oceans 
(Scott and Gössling, 2018). Countries with the highest risks and where 
tourism represents a significant proportion of the national economy 
(i.e., more than 15% of GDP) include many SIDS and least developed 
countries. Sectoral climate change risk also aligns strongly with regions 
where tourism growth is projected to be the strongest over the coming 
decades, including sub-Saharan Africa and South Asia, pointing to an 
important potential barrier to tourism development. The transnational 
implications of these impacts on the highly interconnected global 
tourism sector and the contribution of tourism to achieving the 2030 
sustainable development goals (SDGs) remain important uncertainties.

In summary, climate is an important factor influencing the geography 
and seasonality of tourism demand and spending globally (very high 
confidence). Increasing temperatures are projected to directly impact 
climate-dependent tourism markets, including sun, beach and snow 
sports tourism, with lesser risks for other tourism markets that are less 
climate sensitive (high confidence). The degradation or loss of beach 
and coral reef assets is expected to increase risks for coastal tourism, 
particularly in subtropical and tropical regions (high confidence).

3.4.9.2	 Energy systems

Climate change is projected to lead to an increased demand for air 
conditioning in most tropical and subtropical regions (Arent et al., 
2014; Hong and Kim, 2015) (high confidence). Increasing temperatures 
will decrease the thermal efficiency of fossil, nuclear, biomass and 
solar power generation technologies, as well as buildings and other 
infrastructure (Arent et al., 2014). For example, in Ethiopia, capital 
expenditures through 2050 might either decrease by approximately 
3% under extreme wet scenarios or increase by up to 4% under a 
severe dry scenario (Block and Strzepek, 2012). 

Impacts on energy systems can affect gross domestic product (GDP). 
The economic damage in the United States from climate change is 
estimated to be, on average, roughly 1.2% cost of GDP per year per 
1°C increase under RCP8.5 (Hsiang et al., 2017). Projections of GDP 
indicate that negative impacts of energy demand associated with 
space heating and cooling in 2100 will be greatest (median: –0.94% 
change in GDP) under 4°C (RCP8.5) compared with under 1.5°C 
(median: –0.05%), depending on the socio-economic conditions (Park 
et al., 2018). Additionally, projected total energy demands for heating 
and cooling at the global scale do not change much with increases in 
global mean surface temperature (GMST) of up to 2°C. A high degree 
of variability is projected between regions (Arnell et al., 2018).

Evidence for the impact of climate change on energy systems since AR5 
is limited. Globally, gross hydropower potential is projected to increase 
(by 2.4% under RCP2.6 and by 6.3% under RCP8.5 for the 2080s), with 
the most growth expected in Central Africa, Asia, India and northern 
high latitudes (van Vliet et al., 2016). Byers et al. (2018) found that 
energy impacts at 2°C increase, including more cooling degree days, 
especially in tropical regions, as well as increased hydro-climatic risk 
to thermal and hydropower plants predominantly in Europe, North 
America, South and Southeast Asia and southeast Brazil. Donk et al. 
(2018) assessed future climate impacts on hydropower in Suriname 
and projected a decrease of approximately 40% in power capacity 
for a global temperature increase in the range of 1.5°C. At minimum 
and maximum increases in global mean temperature of 1.35°C and 
2°C, the overall stream flow in Florida, USA is projected to increase 
by an average of 21%, with pronounced seasonal variations, resulting 
in increases in power generation in winter (+72%) and autumn 
(+15%) and decreases in summer (–14%; Chilkoti et al., 2017). Greater 
changes are projected at higher temperature increases. In a reference 
scenario with global mean temperatures rising by 1.7°C from 2005 
to 2050, U.S. electricity demand in 2050 was 1.6–6.5% higher than 
in a control scenario with constant temperatures (McFarland et al., 
2015). Decreased electricity generation of –15% is projected for Brazil 
starting in 2040, with values expected to decline to –28% later in the 
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century (de Queiroz et al., 2016). In large parts of Europe, electricity 
demand is projected to decrease, mainly owing to reduced heating 
demand (Jacob et al., 2018).

In Europe, no major differences in large-scale wind energy resources 
or in inter- or intra-annual variability are projected for 2016–2035 
under RCP8.5 and RCP4.5 (Carvalho et al., 2017). However, in 2046–
2100, wind energy density is projected to decrease in eastern Europe 
(–30%) and increase in Baltic regions (+30%). Intra-annual variability 
is expected to increase in northern Europe and decrease in southern 
Europe. Under RCP4.5 and RCP8.5, the annual energy yield of European 
wind farms as a whole, as projected to be installed by 2050, will remain 
stable (±5 yield for all climate models). However, wind farm yields are 
projected to undergo changes of up to 15% in magnitude at country 
and local scales and of 5% at the regional scale (Tobin et al., 2015, 
2016). Hosking et al. (2018) assessed wind power generation over 
Europe for 1.5°C of warming and found the potential for wind energy 
to be greater than previously assumed in northern Europe. Additionally, 
Tobin et al. (2018) assessed impacts under 1.5°C and 2°C of warming 
on wind, solar photovoltaic and thermoelectric power generation 
across Europe. These authors found that photovoltaic and wind power 
might be reduced by up to 10%, and hydropower and thermoelectric 
generation might decrease by up to 20%, with impacts being limited 
at 1.5°C of warming but increasing as temperature increases (Tobin et 
al., 2018).

3.4.9.3	 Transportation

Road, air, rail, shipping and pipeline transportation can be impacted 
directly or indirectly by weather and climate, including increases in 
precipitation and temperature; extreme weather events (flooding and 
storms); SLR; and incidence of freeze–thaw cycles (Arent et al., 2014). 
Much of the published research on the risks of climate change for the 
transportation sector has been qualitative. 

The limited new research since AR5 supports the notion that increases 
in global temperatures will impact the transportation sector. Warming 
is projected to result in increased numbers of days of ice-free navigation 
and a longer shipping season in cold regions, thus affecting shipping 
and reducing transportation costs (Arent et al., 2014). In the North Sea 
Route, large-scale commercial shipping might not be possible until 
2030 for bulk shipping and until 2050 for container shipping under 
RCP8.5. A 0.05% increase in mean temperature is projected from an 
increase in short-lived pollutants, as well as elevated CO2 and non-CO2 
emissions, associated with additional economic growth enabled by the 
North Sea Route. (Yumashev et al., 2017). Open water vessel transit 
has the potential to double by mid-century, with a two to four month 
longer season (Melia et al., 2016).

3.4.10	 Livelihoods and Poverty, and the Changing 
Structure of Communities 

Multiple drivers and embedded social processes influence the 
magnitude and pattern of livelihoods and poverty, as well as the 
changing structure of communities related to migration, displacement 
and conflict (Adger et al., 2014). In AR5, evidence of a climate change 

signal was limited, with more evidence of impacts of climate change on 
the places where indigenous people live and use traditional ecological 
knowledge (Olsson et al., 2014).

3.4.10.1	  Livelihoods and poverty

At approximately 1.5°C of global warming (2030), climate change is 
expected to be a poverty multiplier that makes poor people poorer and 
increases the poverty head count (Hallegatte et al., 2016; Hallegatte 
and Rozenberg, 2017). Poor people might be heavily affected by climate 
change even when impacts on the rest of population are limited. 
Climate change alone could force more than 3 million to 16 million 
people into extreme poverty, mostly through impacts on agriculture 
and food prices (Hallegatte et al., 2016; Hallegatte and Rozenberg, 
2017). Unmitigated warming could reshape the global economy later 
in the century by reducing average global incomes and widening 
global income inequality (Burke et al., 2015b). The most severe impacts 
are projected for urban areas and some rural regions in sub-Saharan 
Africa and Southeast Asia.

3.4.10.2	 The changing structure of communities: 
migration, displacement and conflict

Migration: In AR5, the potential impacts of climate change on migration 
and displacement were identified as an emerging risk (Oppenheimer et 
al., 2014). The social, economic and environmental factors underlying 
migration are complex and varied; therefore, detecting the effect of 
observed climate change or assessing its possible magnitude with any 
degree of confidence is challenging (Cramer et al., 2014). 

No studies have specifically explored the difference in risks between 
1.5°C and 2°C of warming on human migration. The literature 
consistently highlights the complexity of migration decisions and the 
difficulties in attributing causation (e.g., Nicholson, 2014; Baldwin and 
Fornalé, 2017; Bettini, 2017; Constable, 2017; Islam and Shamsuddoha, 
2017; Suckall et al., 2017). The studies on migration that have 
most closely explored the probable impacts of 1.5°C and 2°C have 
mainly focused on the direct effects of temperature and precipitation 
anomalies on migration or the indirect effects of these climatic changes 
through changing agriculture yield and livelihood sources (Mueller et 
al., 2014; Piguet and Laczko, 2014; Mastrorillo et al., 2016; Sudmeier-
Rieux et al., 2017).

Temperature has had a positive and statistically significant effect 
on outmigration over recent decades in 163 countries, but only for 
agriculture-dependent countries (R. Cai et al., 2016). A 1°C increase 
in average temperature in the International Migration Database of the 
Organisation for Economic Co-operation and Development (OECD) 
was associated with a 1.9% increase in bilateral migration flows from 
142 sending countries and 19 receiving countries, and an additional 
millimetre of average annual precipitation was associated with an 
increase in migration by 0.5% (Backhaus et al., 2015). In another 
study, an increase in precipitation anomalies from the long-term mean, 
was strongly associated with an increase in outmigration, whereas no 
significant effects of temperature anomalies were reported (Coniglio 
and Pesce, 2015).
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Internal and international migration have always been important for 
small islands (Farbotko and Lazrus, 2012; Weir et al., 2017). There is 
rarely a single cause for migration (Constable, 2017). Numerous factors 
are important, including work, education, quality of life, family ties, 
access to resources, and development (Bedarff and Jakobeit, 2017; 
Speelman et al., 2017; Nicholls et al., 2018). Depending on the situation, 
changing weather, climate or environmental conditions might each be 
a factor in the choice to migrate (Campbell and Warrick, 2014).

Displacement: At 2°C of warming, there is a potential for significant 
population displacement concentrated in the tropics (Hsiang and Sobel, 
2016). Tropical populations may have to move distances greater than 
1000 km if global mean temperature rises by 2°C from 2011–2030 to 
the end of the century. A disproportionately rapid evacuation from the 
tropics could lead to a concentration of population in tropical margins 
and the subtropics, where population densities could increase by 300% 
or more (Hsiang and Sobel, 2016).

Conflict: A recent study has called for caution in relating conflict 
to climate change, owing to sampling bias (Adams et al., 2018). 
Insufficient consideration of the multiple drivers of conflict often leads 
to inconsistent associations being reported between climate change 
and conflict (e.g., Hsiang et al., 2013; Hsiang and Burke, 2014; Buhaug, 
2015, 2016; Carleton and Hsiang, 2016; Carleton et al., 2016). There 
also are inconsistent relationships between climate change, migration 
and conflict (e.g., Theisen et al., 2013; Buhaug et al., 2014; Selby, 2014; 
Christiansen, 2016; Brzoska and Fröhlich, 2016; Burrows and Kinney, 
2016; Reyer et al., 2017c; Waha et al., 2017). Across world regions and 
from the international to micro level, the relationship between drought 
and conflict is weak under most circumstances (Buhaug, 2016; von 
Uexkull et al., 2016). However, drought significantly increases the 
likelihood of sustained conflict for particularly vulnerable nations or 
groups, owing to the dependence of their livelihood on agriculture. 
This is particularly relevant for groups in the least developed countries 
(von Uexkull et al., 2016), in sub-Saharan Africa (Serdeczny et al., 2016; 
Almer et al., 2017) and in the Middle East (Waha et al., 2017). Hsiang 
et al. (2013) reported causal evidence and convergence across studies 
that climate change is linked to human conflicts across all major 
regions of the world, and across a range of spatial and temporal scales. 
A 1°C increase in temperature or more extreme rainfall increases 
the frequency of intergroup conflicts by 14% (Hsiang et al., 2013). If 
the world warms by 2°C–4°C by 2050, rates of human conflict could 
increase. Some causal associations between violent conflict and 
socio-political instability were reported from local to global scales 
and from hour to millennium time frames (Hsiang and Burke, 2014). 
A temperature increase of one standard deviation increased the risk 
of interpersonal conflict by 2.4% and intergroup conflict by 11.3% 
(Burke et al., 2015a). Armed-conflict risks and climate-related disasters 
are both relatively common in ethnically fractionalized countries, 
indicating that there is no clear signal that environmental disasters 
directly trigger armed conflicts (Schleussner et al., 2016a).

In summary, average global temperatures that extend beyond 1.5°C are 
projected to increase poverty and disadvantage in many populations 
globally (medium confidence). By the mid- to late 21st century, climate 
change is projected to be a poverty multiplier that makes poor people 

poorer and increases poverty head count, and the association between 
temperature and economic productivity is not linear (high confidence). 
Temperature has a positive and statistically significant effect on 
outmigration for agriculture-dependent communities (medium 
confidence). 

3.4.11	 Interacting and Cascading Risks

The literature on compound as well as interacting and cascading risks 
at warming of 1.5°C and 2°C is limited. Spatially compound risks, 
often referred to as hotspots, involve multiple hazards from different 
sectors overlapping in location (Piontek et al., 2014). Global exposures 
were assessed for 14 impact indicators, covering water, energy and 
land sectors, from changes including drought intensity and water 
stress index, cooling demand change and heatwave exposure, habitat 
degradation, and crop yields using an ensemble of climate and impact 
models (Byers et al., 2018). Exposures are projected to approximately 
double between 1.5°C and 2°C, and the land area affected by climate 
risks is expected to increase as warming progresses. For populations 
vulnerable to poverty, the exposure to climate risks in multiple sectors 
could be an order of magnitude greater (8–32 fold) in the high poverty 
and inequality scenarios (SSP3; 765–1,220 million) compared to under 
sustainable socio-economic development (SSP1; 23–85 million). Asian 
and African regions are projected to experience 85–95% of global 
exposure, with 91–98% of the exposed and vulnerable population 
(depending on SSP/GMT combination), approximately half of which 
are in South Asia. Figure 3.19 shows that moderate and large multi-
sector impacts are prevalent at 1.5°C where vulnerable people live, 
predominantly in South Asia (mostly Pakistan, India and China), but that 
impacts spread to sub-Saharan Africa, the Middle East and East Asia at 
higher levels of warming. Beyond 2°C and at higher risk thresholds, 
the world’s poorest populations are expected to be disproportionately 
impacted, particularly in cases (SSP3) of great inequality in Africa and 
southern Asia. Table 3.4 shows the number of exposed and vulnerable 
people at 1.5°C and 2°C of warming, with 3°C shown for context, for 
selected multi-sector risks.

3.4.12	 Summary of Projected Risks at 1.5°C and 2°C 
of Global Warming 

The information presented in Section 3.4 is summarized below in Table 
3.5, which illustrates the growing evidence of increasing risks across a 
broad range of natural and human systems at 1.5°C and 2°C of global 
warming. 
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Figure 3.19 |  Multi-sector risk maps for 1.5°C (top), 2°C (middle), and locations where 2°C brings impacts not experienced at 1.5°C (2°C–1.5°C; bottom). The maps in the 
left column show the full range of the multi-sector risk (MSR) score (0–9), with scores ≤5.0 shown with a transparency gradient and scores >5.0 shown with a colour gradient. 
Score must be >4.0 to be considered ‘multi-sector’. The maps in the right column overlay the 2050 vulnerable populations (low income) under Shared Socio-Economic Pathway 
(SSP)2 (greyscale) with the multi-sector risk score >5.0 (colour gradient), thus indicating the concentrations of exposed and vulnerable populations to risks in multiple sectors. 
Source: Byers et al. (2018).

SSP2 
(SSP1 to SSP3 range), millions

1.5°C 2°C 3°C

Indicator Exposed
Exposed 

and vulnerable
Exposed

Exposed 
and vulnerable

Exposed
Exposed 

and vulnerable

Water stress index 3340 (3032–3584) 496 (103–1159) 3658 (3080–3969) 586 (115–1347) 3920 (3202–4271) 662 (146–1480)

Heatwave event exposure 3960 (3546–4508) 1187 (410–2372) 5986 (5417–6710) 1581 (506–3218) 7909 (7286–8640) 1707 (537–3575)

Hydroclimate risk to power production 334 (326–337) 30 (6–76) 385 (374–389) 38 (9–94) 742 (725–739) 72 (16–177)

Crop yield change 35 (32–36) 8 (2–20) 362 (330–396) 81 (24–178) 1817 (1666–1992) 406 (118–854)

Habitat degradation 91 (92–112) 10 (4–31) 680 (314–706) 102 (23–234) 1357 (809–1501) 248 (75–572)

Multi-sector exposure  

Two indicators   1129 (1019–1250) 203 (42–487) 2726 (2132–2945) 562 (117–1220) 3500 (3212–3864) 707 (212–1545)

Three indicators   66 (66–68) 7 (0.9–19) 422 (297–447) 54 (8–138) 1472 (1177–1574) 237 (48–538)

Four indicators  5 (0.3–5.7) 0.3 (0–1.2) 11 (5–14) 0.5 (0–2) 258 (104–280) 33 (4–86)

Table 3.4 |	 Number of exposed and vulnerable people at 1.5°C, 2°C, and 3°C for selected multi-sector risks under shared socioeconomic pathways (SSPs). 
	 Source: Byers et al., 2018
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3.4.13	 Synthesis of Key Elements of Risk

Some elements of the assessment in Section 3.4 were synthesized into 
Figure 3.18 and 3.20, indicating the overall risk for a representative set 
of natural and human systems from increases in global mean surface 
temperature (GMST) and anthropogenic climate change. The elements 
included are supported by a substantive enough body of literature 
providing at least medium confidence in the assessment. The format for 
Figures 3.18 and 3.20 match that of Figure 19.4 of WGII AR5 Chapter 
19 (Oppenheimer et al., 2014) indicating the levels of additional risk 
as colours: undetectable (white) to moderate (detected and attributed; 
yellow), from moderate to high (severe and widespread; red), and 
from high to very high (purple), the last of which indicates significant 
irreversibility or persistence of climate-related hazards combined 
with a much reduced capacity to adapt. Regarding the transition 
from undetectable to moderate, the impact literature assessed in AR5 
focused on describing and quantifying linkages between weather and 
climate patterns and impact outcomes, with limited detection and 
attribution to anthropogenic climate change (Cramer et al., 2014). A 
more recent analysis of attribution to greenhouse gas forcing at the 
global scale (Hansen and Stone, 2016) confirmed that the impacts 
related to changes in regional atmospheric and ocean temperature can 
be confidently attributed to anthropogenic forcing, while attribution 
to anthropogenic forcing of those impacts related to precipitation is 
only weakly evident or absent. Moreover, there is no strong direct 
relationship between the robustness of climate attribution and that of 
impact attribution (Hansen and Stone, 2016).

The current synthesis is complementary to the synthesis in Section 3.5.2 
that categorizes risks into ‘Reasons for Concern’ (RFCs), as described in 
Oppenheimer et al. (2014). Each element, or burning ember, presented 
here (Figures 3.18, 3.20) maps to one or more RFCs (Figure 3.21). It 
should be emphasized that risks to the elements assessed here are 
only a subset of the full range of risks that contribute to the RFCs. 
Figures 3.18 and 3.20 are not intended to replace the RFCs but rather 
to indicate how risks to particular elements of the Earth system accrue 
with global warming, through the visual burning embers format, 
with a focus on levels of warming of 1.5°C and 2°C. Key evidence 
assessed in earlier parts of this chapter is summarized to indicate the 
transition points between the levels of risk. In this regard, the assessed 
confidence in assigning the transitions between risk levels are as 
follows: L=Low, M=Medium, H=High, and VH=Very high levels of 
confidence. A detailed account of the procedures involved is provided 
in the Supplementary Material (3.SM.3.2 and 3.SM.3.3).

In terrestrial ecosystems (feeding into RFC1 and RFC4), detection and 
attribution studies show that impacts of climate change on terrestrial 
ecosystems began to take place over the past few decades, indicating 
a transition from no risk (white areas in Figure 3.20) to moderate risk 
below recent temperatures (high confidence) (Section 3.4.3). Risks to 
unique and threatened terrestrial ecosystems are generally projected to 
be higher under warming of 2°C compared to 1.5°C (Section 3.5.2.1), 
while at the global scale severe and widespread risks are projected 
to occur by 2°C of warming. These risks are associated with biome 
shifts and species range losses (Sections 3.4.3 and 3.5.2.4); however, 
because many systems and species are projected to be unable to adapt 
to levels of warming below 2°C, the transition to high risk (red areas 

in Figure 3.20) is located below 2°C (high confidence). With 3°C of 
warming, however, biome shifts and species range losses are expected 
to escalate to very high levels, and the systems are projected to have 
very little capacity to adapt (Figure 3.20) (high confidence) (Section 
3.4.3). 

In the Arctic (related to RFC1), the increased rate of summer sea ice 
melt was detected and attributed to climate change by the year 2000 
(corresponding to warming of 0.7°C), indicating moderate risk. At 
1.5°C of warming an ice-free Arctic Ocean is considered unlikely, whilst 
by 2°C of warming it is considered likely and this unique ecosystem is 
projected to be unable to adapt. Hence, a transition from high to very 
high risk is expected between 1.5°C and 2°C of warming. 

For warm-water coral reefs, there is high confidence in the transitions 
between risk levels, especially in the growing impacts in the 
transition of warming from non-detectable (0.2°C to 0.4°C), and then 
successively higher levels risk until high and very high levels of risks 
by 1.2°C (Section 3.4.4 and Box 3.4). This assessment considered the 
heatwave-related loss of 50% of shallow water corals across hundreds 
of kilometres of the world’s largest continuous coral reef system, 
the Great Barrier Reef, as well as losses at other sites globally. The 
major increase in the size and loss of coral reefs over the past three 
years, plus sequential mass coral bleaching and mortality events on 
the Great Barrier Reef, (Hoegh-Guldberg, 1999; Hughes et al., 2017b, 
2018), have reinforced the scale of climate-change related risks to 
coral reefs. General assessments of climate-related risks for mangroves 
prior to this special report concluded that they face greater risks from 
deforestation and unsustainable coastal development than from 
climate change (Alongi, 2008; Hoegh-Guldberg et al., 2014; Gattuso et 
al., 2015). Recent climate-related die-offs (Duke et al., 2017; Lovelock 
et al., 2017), however, suggest that climate change risks may have 
been underestimated for mangroves as well, and risks have thus been 
assessed as undetectable to moderate, with the transition now starting 
at 1.3°C as opposed to 1.8°C as assessed in 2015 (Gattuso et al., 2015). 
Risks of impacts related to climate change on small-scale fisheries at 
low latitudes, many of which are dependent on ecosystems such as 
coral reefs and mangroves, are moderate today but are expected to 
reach high levels of risk around 0.9°C–1.1°C (high confidence) (Section 
3.4.4.10).

The transition from undetectable to moderate risk (related to RFCs 3 
and 4), shown as white to yellow in Figure 3.20, is based on AR5 WGII 
Chapter 7, which indicated with high confidence that climate change 
impacts on crop yields have been detected and attributed to climate 
change, and the current assessment has provided further evidence 
to confirm this (Section 3.4.6). Impacts have been detected in the 
tropics (AR5 WGII Chapters 7 and 18), and regional risks are projected 
to become high in some regions by 1.5°C of warming, and in many 
regions by 2.5°C, indicating a transition from moderate to high risk 
between 1.5°C and 2.5°C of warming (medium confidence).

Impacts from fluvial flooding (related to RFCs 2, 3 and 4) depend on 
the frequency and intensity of the events, as well as the extent of 
exposure and vulnerability of society (i.e., socio-economic conditions 
and the effect of non-climate stressors). Moderate risks posed by 
1.5°C of warming are expected to continue to increase with higher 
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levels of warming (Sections 3.3.5 and 3.4.2), with projected risks being 
threefold the current risk in economic damages due to flooding in 19 
countries for warming of 2°C, indicating a transition to high risk at 
this level (medium confidence). Because few studies have assessed the 
potential to adapt to these risks, there was insufficient evidence to 
locate a transition to very high risk (purple).

Climate-change induced sea level rise (SLR) and associated coastal 
flooding (related to RFCs 2, 3 and 4) have been detectable and 
attributable since approximately 1970 (Slangen et al., 2016), during 
which time temperatures have risen by 0.3°C (medium confidence) 
(Section 3.3.9). Analysis suggests that impacts could be more 
widespread in sensitive systems such as small islands (high confidence) 
(Section 3.4.5.3) and increasingly widespread by the 2070s (Brown 
et al., 2018a) as temperatures rise from 1.5°C to 2°C, even when 
adaptation measures are considered, suggesting a transition to high 

risk (Section 3.4.5). With 2.5°C of warming, adaptation limits are 
expected to be exceeded in sensitive areas, and hence a transition to 
very high risk is projected. Additionally, at this temperature, sea level 
rise could have adverse effects for centuries, posing significant risk to 
low-lying areas (high confidence) (Sections 3.4.5.7 and 3.5.2.5).

For heat-related morbidity and mortality (related to RFCs 2, 3 and 4), 
detection and attribution studies show heat-related mortality in some 
locations increasing with climate change (high confidence) (Section 
3.4.7; Ebi et al., 2017). The projected risks of heat-related morbidity and 
mortality are generally higher under warming of 2°C than 1.5°C (high 
confidence), with projections of greater exposure to high ambient 
temperatures and increased morbidity and mortality (Section 3.4.7). 
Risk levels will depend on the rate of warming and the (related) level of 
adaptation, so a transition in risk from moderate (yellow) to high (red) 
is located between 1°C and 3°C (medium confidence). 

2006-2015

Index: Level of additional 
risk due to climate change

Undetectable

Moderate

High

Very high

Purple indicates very high 
risks of severe impacts and 
the presence of significant 
irreversibility or the 
persistence of climate-related 
hazards, combined with 
limited ability to adapt due to 
the nature of the hazard or 
impacts/risks. 
Red indicates severe and 
widespread impacts/risks. 
Yellow  indicates that 
impacts/risks are detectable 
and attributable to climate 
change with at least medium 
confidence. 
White indicates that no 
impacts are detectable and 
attributable to climate 
change.

0

1.0

1.5

2.0

Risks and/or impacts for specific natural, managed and human systems
The key elements are presented here as a function of the risk level assessed 
between 1.5°C and 2°C.

0

1.0

1.5

2.0

MangrovesFluvial 
Flooding

Heat-related 
morbidity 

and mortality

Ability to achieve 
Sustainable 

Development 
Goals (SDGs)

TourismCrop 
Yields

Artic
(including 
ocean area 
and sea ice)

Terrestrial
Ecosystems

Small scale 
fisheries

(low latitude)

Warm-water
corals,

Coral reefs

Coastal 
flooding

2006-2015

Gl
ob

al
 m

ea
n 

su
rfa

ce
 te

m
pe

ra
tu

re
 ch

an
ge

 
re

la
tiv

e 
to

 p
re

-in
du

st
ria

l l
ev

el
s (

0C
)

Gl
ob

al
 m

ea
n 

su
rfa

ce
 te

m
pe

ra
tu

re
 ch

an
ge

 
re

la
tiv

e 
to

 p
re

-in
du

st
ria

l l
ev

el
s (

0C
)

M

H
VH

VH

H

M

Confidence level  for transition: L=Low, M=Medium, H=High and VH=Very high

H

H

H

H

H

H

H

H

M

M

M

M

H

M

H

M

H
M

M

H

Figure 3.20 |  The dependence of risks and/or impacts associated with selected elements of human and natural systems on the level of climate change, adapted from Figure 
3.21 and from AR5 WGII Chapter 19, Figure 19.4, and highlighting the nature of this dependence between 0°C and 2°C warming above pre-industrial levels. The selection of 
impacts and risks to natural, managed and human systems is illustrative and is not intended to be fully comprehensive. Following the approach used in AR5, literature was used 
to make expert judgements to assess the levels of global warming at which levels of impact and/or risk are undetectable (white), moderate (yellow), high (red) or very high 
(purple). The colour scheme thus indicates the additional risks due to climate change. The transition from red to purple, introduced for the first time in AR4, is defined by a very 
high risk of severe impacts and the presence of significant irreversibility or persistence of climate-related hazards combined with limited ability to adapt due to the nature of the 
hazard or impact. Comparison of the increase of risk across RFCs indicates the relative sensitivity of RFCs to increases in GMST. As was done previously, this assessment takes 
autonomous adaptation into account, as well as limits to adaptation independently of development pathway. The levels of risk illustrated reflect the judgements of the authors 
of Chapter 3 and Gattuso et al. (2015; for three marine elements). The grey bar represents the range of GMST for the most recent decade: 2006–2015.



253

3

Impacts of 1.5°C of Global Warming on Natural and Human Systems	 Chapter 3

For tourism (related to RFCs 3 and 4), changing weather patterns, 
extreme weather and climate events, and sea level rise are affecting 
many – but not all – global tourism investments, as well as 
environmental and cultural destination assets (Section 3.4.4.12), with 
‘last chance to see’ tourism markets developing based on observed 
impacts on environmental and cultural heritage (Section 3.4.9.1), 
indicating a transition from undetectable to moderate risk between 
0°C and 1.5°C of warming (high confidence). Based on limited 
analyses, risks to the tourism sector are projected to be larger at 2°C 
than at 1.5°C, with impacts on climate-sensitive sun, beach and snow 
sports tourism markets being greatest. The degradation or loss of 
coral reef systems is expected to increase the risks to coastal tourism 
in subtropical and tropical regions. A transition in risk from moderate 
to high levels of added risk from climate change is projcted to occur 
between 1.5°C and 3°C (medium confidence). 

Climate change is already having large scale impacts on ecosystems, 
human health and agriculture, which is making it much more difficult 
to reach goals to eradicate poverty and hunger, and to protect health 
and life on land (Sections 5.1 and 5.2.1 in Chapter 5), suggesting a 
transition from undetectable to moderate risk for recent temperatures 
at 0.5°C of warming (medium confidence). Based on the limited 
analyses available, there is evidence and agreement that the risks 
to sustainable development are considerably less at 1.5°C than 2°C 
(Section 5.2.2), including impacts on poverty and food security. It is 
easier to achieve many of the sustainable development goals (SDGs) at 
1.5°C, suggesting that a transition to higher risk will not begin yet at 
this level. At 2°C and higher levels of warming (e.g., RCP8.5), however, 
there are high risks of failure to meet SDGs such as eradicating 
poverty and hunger, providing safe water, reducing inequality and 
protecting ecosystems, and these risks are projected to become severe 
and widespread if warming increases further to about 3°C (medium 
confidence) (Section 5.2.3). 

Disclosure statement: The selection of elements depicted in Figures 
3.18 and 3.20 is not intended to be fully comprehensive and does not 
necessarily include all elements for which there is a substantive body 
of literature, nor does it necessarily include all elements which are of 
particular interest to decision-makers. 

3.5	 Avoided Impacts and Reduced Risks 
at 1.5°C Compared with 2°C 
of Global Warming 

3.5.1	 Introduction 

Oppenheimer et al. (2014, AR5 WGII Chapter 19) provided a framework 
that aggregates projected risks from global mean temperature 
change into five categories identified as ‘Reasons for Concern’. Risks 
are classified as moderate, high or very high and coloured yellow, 
red or purple, respectively, in Figure 19.4 of that chapter (AR5 WGII 
Chapter 19 for details and findings). The framework’s conceptual 
basis and the risk judgements made by Oppenheimer et al. (2014) 
were recently reviewed, and most judgements were confirmed in the 
light of more recent literature (O’Neill et al., 2017). The approach 

of Oppenheimer et al. (2014) was adopted, with updates to the 
aggregation of risk informed by the most recent literature, for the 
analysis of avoided impacts at 1.5°C compared to 2°C of global 
warming presented in this section. 

The regional economic benefits that could be obtained by limiting the 
global temperature increase to 1.5°C of warming, rather than 2°C 
or higher levels, are discussed in Section 3.5.3 in the light of the five 
RFCs explored in Section 3.5.2. Climate change hotspots that could 
be avoided or reduced by achieving the 1.5°C target are summarized 
in Section 3.5.4. The section concludes with a discussion of regional 
tipping points that could be avoided at 1.5°C compared to higher 
degrees of global warming (Section 3.5.5). 

3.5.2	 Aggregated Avoided Impacts and Reduced 
Risks at 1.5°C versus 2°C of Global Warming

A brief summary of the accrual of RFCs with global warming, as 
assessed in WGII AR5, is provided in the following sections, which 
leads into an update of relevant literature published since AR5. The 
new literature is used to confirm the levels of global warming at which 
risks are considered to increase from undetectable to moderate, from 
moderate to high, and from high to very high. Figure 3.21 modifies 
Figure 19.4 from AR5 WGII, and the following text in this subsection 
provides justification for the modifications. O’Neill et al. (2017) 
presented a very similar assessment to that of WGII AR5, but with 
further discussion of the potential to create ‘embers’ specific to socio-
economic scenarios in the future. There is insufficient literature to 
do this at present, so the original, simple approach has been used 
here. As the focus of the present assessment is on the consequences 
of global warming of 1.5°C–2°C above the pre-industrial period, no 
assessment for global warming of 3°C or more is included in the 
figure (i.e., analysis is discontinued at 2.5°C).

3.5.2.1	 RFC 1 – Unique and threatened systems

WGII AR5 Chapter 19 found that some unique and threatened 
systems are at risk from climate change at current temperatures, 
with increasing numbers of systems at potential risk of severe 
consequences at global warming of 1.6°C above pre-industrial levels. 
It was also observed that many species and ecosystems have a limited 
ability to adapt to the very large risks associated with warming of 
2.6°C or more, particularly Arctic sea ice and coral reef systems (high 
confidence). In the AR5 analysis, a transition from white to yellow 
indicated that the onset of moderate risk was located below present-
day global temperatures (medium confidence); a transition from 
yellow to red indicated that the onset of high risk was located at 
1.6°C, and a transition from red to purple indicated that the onset 
of very high risk was located at about 2.6°C. This WGII AR5 analysis 
already implied that there would be a significant reduction in risks 
to unique and threatened systems if warming were limited to 1.5°C 
compared with 2°C. Since AR5, evidence of present-day impacts in 
these systems has continued to grow (Sections 3.4.2, 3.4.4 and 3.4. 
5), whilst new evidence has also accumulated for reduced risks at 
1.5°C compared to 2°C of warming in Arctic ecosystems (Section 
3.3.9), coral reefs (Section 3.4.4) and some other unique ecosystems 
(Section 3.4.3), as well as for biodiversity.
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New literature since AR5 has provided a closer focus on the comparative 
levels of risk to coral reefs at 1.5°C versus 2°C of global warming. As 
assessed in Section 3.4.4 and Box 3.4, reaching 2°C will increase the 
frequency of mass coral bleaching and mortality to a point at which it 
will result in the total loss of coral reefs from the world’s tropical and 
subtropical regions. Restricting overall warming to 1.5°C will still see 
a downward trend in average coral cover (70–90% decline by mid-
century) but will prevent the total loss of coral reefs projected with 
warming of 2°C (Frieler et al., 2013). The remaining reefs at 1.5°C will 
also benefit from increasingly stable ocean conditions by the mid-to-
late 21st century. Limiting global warming to 1.5°C during the course 
of the century may, therefore, open the window for many ecosystems 
to adapt or reassort geographically. This indicates a transition in risk 
in this system from high to very high (high confidence) at 1.5°C of 
warming and contributes to a lowering of the transition from high to 
very high (Figure 3.21) in this RFC1 compared to in AR5. Further details 
of risk transitions for ocean systems are described in Figure 3.18.

Substantial losses of Arctic Ocean summer ice were projected in 
WGI AR5 for global warming of 1.6°C, with a nearly ice-free Arctic 
Ocean being projected for global warming of more than 2.6°C. 
Since AR5, the importance of a threshold between 1°C and 2°C has 
been further emphasized in the literature, with sea ice projected to 
persist throughout the year for a global warming of less than 1.5°C, 

yet chances of an ice-free Arctic during summer being high at 2°C of 
warming (Section 3.3.8). Less of the permafrost in the Arctic is projected 
to thaw under 1.5°C of warming (17–44%) compared with under 2°C 
(28–53%) (Section 3.3.5.2; Chadburn et al., 2017), which is expected 
to reduce risks to both social and ecological systems in the Arctic. This 
indicates a transition in the risk in this system from high to very high 
between 1.5°C and 2°C of warming and contributes to a lowering of 
the transition from high to very high in this RFC1 compared to in AR5.

AR5 identified a large number of threatened systems, including mountain 
ecosystems, highly biodiverse tropical wet and dry forests, deserts, 
freshwater systems and dune systems. These include Mediterranean 
areas in Europe, Siberian, tropical and desert ecosystems in Asia, 
Australian rainforests, the Fynbos and succulent Karoo areas of South 
Africa, and wetlands in Ethiopia, Malawi, Zambia and Zimbabwe. In all 
these systems, impacts accrue with greater warming and impacts at 2°C 
are expected to be greater than those at 1.5°C (medium confidence). 
One study since AR5 has shown that constraining global warming to 
1.5°C would maintain the functioning of prairie pothole ecosystems 
in North America in terms of their productivity and biodiversity, whilst 
warming of 2°C would not do so (Johnson et al., 2016). The large 
proportion of insects projected to lose over half their range at 2°C of 
warming (25%) compared to at 1.5°C (9%) also suggests a significant 
loss of functionality in these threatened systems at 2°C of warming, 

Figure 3.21 | The dependence of risks and/or impacts associated with the Reasons for Concern (RFCs) on the level of climate change, updated and adapted from WGII AR5 
Ch 19, Figure 19.4 and highlighting the nature of this dependence between 0°C and 2°C warming above pre-industrial levels. As in the AR5, literature was used to make 
expert judgements to assess the levels of global warming at which levels of impact and/or risk are undetectable (white), moderate (yellow), high (red) or very high (purple). 
The colour scheme thus indicates the additional risks due to climate change. The transition from red to purple, introduced for the first time in AR4, is defined by very high risk 
of severe impacts and the presence of significant irreversibility, or persistence of climate-related hazards combined with a limited ability to adapt due to the nature of the 
hazard or impact. Comparison of the increase of risk across RFCs indicates the relative sensitivity of RFCs to increases in GMST. As was done previously, this assessment takes 
autonomous adaptation into account, as well as limits to adaptation (RFC 1, 3, 5) independently of development pathway. The rate and timing of impacts were taken into 
account in assessing RFC 1 and 5. The levels of risk illustrated reflect the judgements of the Ch 3 authors. RFC1 Unique and threatened systems: ecological and human 
systems that have restricted geographic ranges constrained by climate related conditions and have high endemism or other distinctive properties. Examples include coral reefs, 
the Arctic and its indigenous people, mountain glaciers and biodiversity hotspots. RFC2 Extreme weather events: risks/impacts to human health, livelihoods, assets and 
ecosystems from extreme weather events such as heatwaves, heavy rain, drought and associated wildfires, and coastal flooding. RFC3 Distribution of impacts: risks/impacts 
that disproportionately affect particular groups due to uneven distribution of physical climate change hazards, exposure or vulnerability. RFC4 Global aggregate impacts: 
global monetary damage, global scale degradation and loss of ecosystems and biodiversity. RFC5 Large-scale singular events: are relatively large, abrupt and sometimes 
irreversible changes in systems that are caused by global warming. Examples include disintegration of the Greenland and Antarctic ice sheets. The grey bar represents the range 
of GMST for the most recent decade: 2006–2015.



255

3

Impacts of 1.5°C of Global Warming on Natural and Human Systems	 Chapter 3

owing to the critical role of insects in nutrient cycling, pollination, 
detritivory and other important ecosystem processes (Section 3.4.3).

Unique and threatened systems in small island states and in systems 
fed by glacier meltwater were also considered to contribute to this 
RFC in AR5, but there is little new information about these systems 
that pertains to 1.5°C or 2°C of global warming. Taken together, the 
evidence suggests that the transition from high to very high risk in 
unique and threatened systems occurs at a lower level of warming, 
between 1.5°C and 2°C (high confidence), than in AR5, where this 
transition was located at 2.6°C. The transition from moderate to high 
risk relocates very slightly from 1.6°C to 1.5°C (high confidence). There 
is also high confidence in the location of the transition from low to 
moderate risk below present-day global temperatures. 

3.5.2.2	 RFC 2 – Extreme weather events

Reduced risks in terms of the likelihood of occurrence of extreme 
weather events are discussed in this sub-subsection for 1.5°C as 
compared to 2°C of global warming, for those extreme events where 
evidence is currently available based on the assessments of Section 3.3. 
AR5 assigned a moderate level of risk from extreme weather events at 
recent temperatures (1986–2005) owing to the attribution of heat and 
precipitation extremes to climate change, and a transition to high risk 
beginning below 1.6°C of global warming based on the magnitude, 
likelihood and timing of projected changes in risk associated with 
extreme events, indicating more severe and widespread impacts. 
The AR5 analysis already suggested a significant benefit of limiting 
warming to 1.5°C, as doing so might keep risks closer to the moderate 
level. New literature since AR5 has provided greater confidence in a 
reduced level of risks due to extreme weather events at 1.5°C versus 
2°C of warming for some types of extremes (Section 3.3 and below; 
Figure 3.21). 

Temperature: It is expected that further increases in the number of 
warm days/nights and decreases in the number of cold days/nights, 
and an increase in the overall temperature of hot and cold extremes 
would occur under 1.5°C of global warming relative to pre-industrial 
levels (high confidence) compared to under the present-day climate 
(1°C of warming), with further changes occurring towards 2°C of 
global warming (Section 3.3). As assessed in Sections 3.3.1 and 3.3.2, 
impacts of 0.5°C of global warming can be identified for temperature 
extremes at global scales, based on observations and the analysis of 
climate models. At 2°C of global warming, it is likely that temperature 
increases of more than 2°C would occur over most land regions in 
terms of extreme temperatures (up to 4°C–6°C depending on region 
and considered extreme index) (Section 3.3.2, Table 3.2). Regional 
increases in temperature extremes can be robustly limited if global 
warming is constrained to 1.5°C, with regional warmings of up to 
3°C–4.5°C (Section 3.3.2, Table 3.2). Benefits obtained from this 
general reduction in extremes depend to a large extent on whether the 
lower range of increases in extremes at 1.5°C is sufficient for critical 
thresholds to be exceeded, within the context of wide-ranging aspects 
such as crop yields, human health and the sustainability of ecosystems.

Heavy precipitation: AR5 assessed trends in heavy precipitation 
for land regions where observational coverage was sufficient for 

assessment. It concluded with medium confidence that anthropogenic 
forcing has contributed to a global-scale intensification of heavy 
precipitation over the second half of the 20th century, for a global 
warming of approximately 0.5°C (Section 3.3.3). A recent observation-
based study likewise showed that a 0.5°C increase in global mean 
temperature has had a detectable effect on changes in precipitation 
extremes at the global scale (Schleussner et al., 2017), thus suggesting 
that there would be detectable differences in heavy precipitation at 
1.5°C and 2°C of global warming. These results are consistent with 
analyses of climate projections, although they also highlight a large 
amount of regional variation in the sensitivity of changes in heavy 
precipitation (Section 3.3.3). 

Droughts: When considering the difference between precipitation and 
evaporation (P–E) as a function of global temperature changes, the 
subtropics generally display an overall trend towards drying, whilst the 
northern high latitudes display a robust response towards increased 
wetting (Section 3.3.4, Figure 3.12). Limiting global mean temperature 
increase to 1.5°C as opposed to 2°C could substantially reduce the risk 
of reduced regional water availability in some regions (Section 3.3.4). 
Regions that are projected to benefit most robustly from restricted 
warming include the Mediterranean and southern Africa (Section 
3.3.4).

Fire: Increasing evidence that anthropogenic climate change has 
already caused significant increases in fire area globally (Section 
3.4.3) is in line with projected fire risks. These risks are projected to 
increase further under 1.5°C of global warming relative to the present 
day (Section 3.4.3). Under 1.2°C of global warming, fire frequency 
has been estimated to increase by over 37.8% of global land areas, 
compared to 61.9% of global land areas under 3.5°C of warming. For 
in-depth discussion and uncertainty estimates, see Meehl et al. (2007), 
Moritz et al. (2012) and Romero-Lankao et al. (2014). 

Regarding extreme weather events (RFC2), the transition from 
moderate to high risk is located between 1°C and 1.5°C of global 
warming (Figure 3.21), which is very similar to the AR5 assessment but 
is assessed with greater confidence (medium confidence). The impact 
literature contains little information about the potential for human 
society to adapt to extreme weather events, and hence it has not been 
possible to locate the transition from high to very high risk within the 
context of assessing impacts at 1.5°C and 2°C of global warming. 
There is thus low confidence in the level at which global warming could 
lead to very high risks associated with extreme weather events in the 
context of this report. 

3.5.2.3	 RFC 3 – Distribution of impacts

Risks due to climatic change are unevenly distributed and are 
generally greater at lower latitudes and for disadvantaged people and 
communities in countries at all levels of development. AR5 located 
the transition from undetectable to moderate risk below recent 
temperatures, owing to the detection and attribution of regionally 
differentiated changes in crop yields (medium to high confidence; 
Figure 3.20), and new literature has continued to confirm this finding. 
Based on the assessment of risks to regional crop production and 
water resources, AR5 located the transition from moderate to high risk 
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between 1.6°C and 2.6°C above pre-industrial levels. Cross-Chapter 
Box 6 in this chapter highlights that at 2°C of warming, new literature 
shows that risks of food shortage are projected to emerge in the African 
Sahel, the Mediterranean, central Europe, the Amazon, and western and 
southern Africa, and that these are much larger than the corresponding 
risks at 1.5°C. This suggests a transition from moderate to high risk of 
regionally differentiated impacts between 1.5°C and 2°C above pre-
industrial levels for food security (medium confidence) (Figure 3.20). 
Reduction in the availability of water resources at 2°C is projected to 
be greater than 1.5°C of global warming, although changes in socio-
economics could have a greater influence (Section 3.4.2), with larger 
risks in the Mediterranean (Box 3.2); estimates of the magnitude of the 
risks remain similar to those cited in AR5. Globally, millions of people 
may be at risk from sea level rise (SLR) during the 21st century (Hinkel 
et al., 2014; Hauer et al., 2016), particularly if adaptation is limited. At 
2°C of warming, more than 90% of global coastlines are projected to 
experience SLR greater than 0.2 m, suggesting regional differences in 
the risks of coastal flooding. Regionally differentiated multi-sector risks 
are already apparent at 1.5°C of warming, being more prevalent where 
vulnerable people live, predominantly in South Asia (mostly Pakistan, 
India and China), but these risks are projected to spread to sub-Saharan 
Africa, the Middle East and East Asia as temperature rises, with the 
world’s poorest people disproportionately impacted at 2°C of warming 
(Byers et al., 2018). The hydrological impacts of climate change in 
Europe are projected to increase in spatial extent and intensity across 
increasing global warming levels of 1.5°C, 2°C and 3°C (Donnelly et 
al., 2017). Taken together, a transition from moderate to high risk is 
now located between 1.5°C and 2°C above pre-industrial levels, based 
on the assessment of risks to food security, water resources, drought, 
heat exposure and coastal submergence (high confidence; Figure 3.21).

3.5.2.4	 RFC 4 – Global aggregate impacts

Oppenheimer et al. (2014) explained the inclusion of non-economic 
metrics related to impacts on ecosystems and species at the global 
level, in addition to economic metrics in global aggregate impacts. 
The degradation of ecosystem services by climate change and ocean 
acidification have generally been excluded from previous global 
aggregate economic analyses. 

Global economic impacts: WGII AR5 found that overall global 
aggregate impacts become moderate at 1°C–2°C of warming, and the 
transition to moderate risk levels was therefore located at 1.6°C above 
pre-industrial levels. This was based on the assessment of literature 
using model simulations which indicated that the global aggregate 
economic impact will become significantly negative between 1°C and 
2°C of warming (medium confidence), whilst there will be a further 
increase in the magnitude and likelihood of aggregate economic risks 
at 3°C of warming (low confidence).

Since AR5, three studies have emerged using two entirely different 
approaches which indicate that economic damages are projected to 
be higher by 2100 if warming reaches 2°C than if it is constrained 
to 1.5°C. The study by Warren et al. (2018c) used the integrated 
assessment model PAGE09 to estimate that avoided global economic 
damages of 22% (10–26%) accrue from constraining warming to 
1.5°C rather than 2°C, 90% (77–93%) from 1.5°C rather than 3.66°C, 

and 87% (74–91%) from 2°C rather than 3.66°C. In the second 
study, Pretis et al. (2018) identified several regions where economic 
damages are projected to be greater at 2°C compared to 1.5°C of 
warming, further estimating that projected damages at 1.5°C remain 
similar to today’s levels of economic damage. The third study, by M. 
Burke et al. (2018) used an empirical, statistical approach and found 
that limiting warming to 1.5°C instead of 2°C would save 1.5–2.0% 
of the gross world product (GWP) by mid-century and 3.5% of the 
GWP by end-of-century (see Figure 2A in M. Burke et al., 2018). 
Based on a 3% discount rate, this corresponds to 8.1–11.6 trillion 
USD and 38.5 trillion USD in avoided damages by mid- and end-of-
century, respectively, agreeing closely with the estimate by Warren et 
al. (2018c) of 15 trillion USD. Under the no-policy baseline scenario, 
temperature rises by 3.66°C by 2100, resulting in a global gross 
domestic product (GDP) loss of 2.6% (5–95% percentile range 0.5–
8.2%), compared with 0.3% (0.1–0.5%) by 2100 under the 1.5°C 
scenario and 0.5% (0.1–1.0%) in the 2°C scenario. Limiting warming 
to 1.5°C rather than 2°C by 2060 has also been estimated to result 
in co-benefits of 0.5–0.6% of the world GDP, owing to reductions in 
air pollution (Shindell et al., 2018), which is similar to the avoided 
damages identified for the USA (Box 3.6). 

Two studies focusing only on the USA found that economic damages 
are projected to be higher by 2100 if warming reaches 2°C than if it 
is constrained to 1.5°C. Hsiang et al. (2017) found a mean difference 
of 0.35% GDP (range 0.2–0.65%), while Yohe (2017) identified a GDP 
loss of 1.2% per degree of warming, hence approximately 0.6% for half 
a degree. Further, the avoided risks compared to a no-policy baseline 
are greater in the 1.5°C case (4%, range 2–7%) compared to the 2°C 
case (3.5%, range 1.8–6.5%). These analyses suggest that the point 
at which global aggregates of economic impacts become negative is 
below 2°C (medium confidence), and that there is a possibility that it 
is below 1.5°C of warming.

Oppenheimer et al. (2014) noted that the global aggregated damages 
associated with large-scale singular events has not been explored, and 
reviews of integrated modelling exercises have indicated a potential 
underestimation of global aggregate damages due to the lack of 
consideration of the potential for these events in many studies. Since 
AR5, further analyses of the potential economic consequences of 
triggering these large-scale singular events have indicated a two to 
eight fold larger economic impact associated with warming of 3°C 
than estimated in most previous analyses, with the extent of increase 
depending on the number of events incorporated. Lemoine and Traeger 
(2016) included only three known singular events whereas Y. Cai et al. 
(2016) included five.

Biome shifts, species range loss, increased risks of species 
extinction and risks of loss of ecosystem functioning and 
services: 13% (range 8–20%) of Earth’s land area is projected to 
undergo biome shifts at 2°C of warming compared to approximately 
7% at 1.5°C (medium confidence) (Section 3.4.3; Warszawski et al., 
2013), implying a halving of biome transformations. Overall levels of 
species loss at 2°C of warming are similar to values found in previous 
studies for plants and vertebrates (Warren et al., 2013, 2018a), but 
insects have been found to be more sensitive to climate change, with 
18% (6–35%) projected to lose over half their range at 2°C of warming 
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compared to 6% (1–18%) under 1.5°C of warming, corresponding 
to a difference of 66% (Section 3.4.3). The critical role of insects in 
ecosystem functioning therefore suggests that there will be impacts 
on global ecosystem functioning already at 2°C of warming, whilst 
species that lose large proportions of their range are considered to 
be at increased risk of extinction (Section 3.4.3.3). Since AR5, new 
literature has indicated that impacts on marine fish stocks and fisheries 
are lower under 1.5°C–2°C of global warming relative to pre-industrial 
levels compared to under higher warming scenarios (Section 3.4.6), 
especially in tropical and polar systems.

In AR5, the transition from undetectable to moderate impacts was 
considered to occur between 1.6°C and 2.6°C of global warming 
reflecting impacts on the economy and on biodiversity globally, whereas 
high risks were associated with 3.6°C of warming to reflect the high 
risks to biodiversity and accelerated effects on the global economy. 
New evidence suggests moderate impacts on the global aggregate 
economy and global biodiversity by 1.5°C of warming, suggesting a 
lowering of the temperature level for the transition to moderate risk 
to 1.5°C (Figure 3.21). Further, recent literature points to higher risks 
than previously assessed for the global aggregate economy and global 
biodiversity by 2°C of global warming, suggesting that the transition 
to a high risk level is located between 1.5°C and 2.5°C of warming 
(Figure 3.21), as opposed to at 3.6°C as previously assessed (medium 
confidence). 

3.5.2.5	 RFC 5 – Large-scale singular events

Large-scale singular events are components of the global Earth system 
that are thought to hold the risk of reaching critical tipping points 
under climate change, and that can result in or be associated with 
major shifts in the climate system. These components include:

•	 the cryosphere: West Antarctic ice sheet, Greenland ice sheet
•	 the thermohaline circulation: slowdown of the Atlantic Meridional  
	 Overturning Circulation (AMOC)
•	 the El Niño–Southern Oscillation (ENSO) as a global mode of  
	 climate variability
•	 role of the Southern Ocean in the global carbon cycle

AR5 assessed that the risks associated with these events become 
moderate between 0.6°C and 1.6°C above pre-industrial levels, based 
on early warning signs, and that risk was expected to become high 
between 1.6°C and 4.6°C based on the potential for commitment to 
large irreversible sea level rise from the melting of land-based ice sheets 
(low to medium confidence). The increase in risk between 1.6°C and 
2.6°C above pre-industrial levels was assessed to be disproportionately 
large. New findings since AR5 are described in detail below.

Greenland and West Antarctic ice sheets and marine ice sheet 
instability (MISI): Various feedbacks between the Greenland ice 
sheet and the wider climate system, most notably those related to 
the dependence of ice melt on albedo and surface elevation, make 
irreversible loss of the ice sheet a possibility. Church et al. (2013) 
assessed this threshold to be at 2°C of warming or higher levels relative 
to pre-industrial temperature. Robinson et al. (2012) found a range for 
this threshold of 0.8°C–3.2°C (95% confidence). The threshold of global 

temperature increase that may initiate irreversible loss of the West 
Antarctic ice sheet and marine ice sheet instability (MISI) is estimated 
to lie be between 1.5°C and 2°C. The time scale for eventual loss of the 
ice sheets varies between millennia and tens of millennia and assumes 
constant surface temperature forcing during this period. If temperature 
were to decline subsequently the ice sheets might regrow, although 
the amount of cooling required is likely to be highly dependent on the 
duration and rate of the previous retreat. The magnitude of global sea 
level rise that could occur over the next two centuries under 1.5°C–2°C 
of global warming is estimated to be in the order of several tenths of a 
metre according to most studies (low confidence) (Schewe et al., 2011; 
Church et al., 2013; Levermann et al., 2014; Marzeion and Levermann, 
2014; Fürst et al., 2015; Golledge et al., 2015), although a smaller 
number of investigations (Joughin et al., 2014; Golledge et al., 2015; 
DeConto and Pollard, 2016) project increases of 1–2 m. This body of 
evidence suggests that the temperature range of 1.5°C–2°C may be 
regarded as representing moderate risk, in that it may trigger MISI in 
Antarctica or irreversible loss of the Greenland ice sheet and it may be 
associated with sea level rise by as much as 1–2 m over a period of 
two centuries. 

Thermohaline circulation (slowdown of AMOC): It is more likely 
than not that the AMOC has been weakening in recent decades, 
given the detection of cooling of surface waters in the North Atlantic 
and evidence that the Gulf Stream has slowed since the late 1950s 
(Rahmstorf et al., 2015b; Srokosz and Bryden, 2015; Caesar et al., 
2018). There is limited evidence linking the recent weakening of the 
AMOC to anthropogenic warming (Caesar et al., 2018). It is very likely 
that the AMOC will weaken over the 21st century. Best estimates and 
ranges for the reduction based on CMIP5 simulations are 11% (1–24%) 
in RCP2.6 and 34% (12–54%) in RCP8.5 (AR5). There is no evidence 
indicating significantly different amplitudes of AMOC weakening for 
1.5°C versus 2°C of global warming, or of a shutdown of the AMOC at 
these global temperature thresholds. Associated risks are classified as 
low to moderate. 

El Niño–Southern Oscillation (ENSO): Extreme El Niño events are 
associated with significant warming of the usually cold eastern Pacific 
Ocean, and they occur about once every 20 years (Cai et al., 2015). Such 
events reorganize the distribution of regions of organized convection 
and affect weather patterns across the globe. Recent research indicates 
that the frequency of extreme El Niño events increases linearly with the 
global mean temperature, and that the number of such events might 
double (one event every ten years) under 1.5°C of global warming (G. 
Wang et al., 2017). This pattern is projected to persist for a century after 
stabilization at 1.5°C, thereby challenging the limits to adaptation, and 
thus indicates high risk even at the 1.5°C threshold. La Niña event 
(the opposite or balancing event to El Niño) frequency is projected to 
remain similar to that of the present day under 1.5°C–2°C of global 
warming.

Role of the Southern Ocean in the global carbon cycle: The critical 
role of the Southern Ocean as a net sink of carbon might decline under 
global warming, and assessing this effect under 1.5°C compared to 
2°C of global warming is a priority. Changes in ocean chemistry (e.g., 
oxygen content and ocean acidification), especially those associated 
with the deep sea, are associated concerns (Section 3.3.10). 
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For large-scale singular events (RFC5), moderate risk is now located 
at 1°C of warming and high risk is located at 2.5°C (Figure 3.21), as 
opposed to at 1.6°C (moderate risk) and around 4°C (high risk) in 
AR5, because of new observations and models of the West Antarctic 
ice sheet (medium confidence), which suggests that the ice sheet 
may be in the early stages of marine ice sheet instability (MISI). 
Very high risk is assessed as lying above 5°C because the growing 
literature on process-based projections of the West Antarctic ice sheet 
predominantly supports the AR5 assessment of an MISI contribution of 
several additional tenths of a metre by 2100.

3.5.3	 Regional Economic Benefit Analysis for the 1.5°C 
versus 2°C Global Goals

This section reviews recent literature that has estimated the economic 
benefits of constraining global warming to 1.5°C compared to 2°C. 
The focus here is on evidence pertaining to specific regions, rather 
than on global aggregated benefits (Section 3.5.2.4). At 2°C of global 
warming, lower economic growth is projected for many countries than 
at 1.5°C of global warming, with low-income countries projected to 
experience the greatest losses (low to medium confidence) (M. Burke 
et al., 2018; Pretis et al., 2018). A critical issue for developing countries 
in particular is that advantages in some sectors are projected to be 
offset by increasing mitigation costs (Rogelj et al., 2013; M. Burke et 
al., 2018), with food production being a key factor. That is, although 
restraining the global temperature increase to 2°C is projected to 
reduce crop losses under climate change relative to higher levels of 
warming, the associated mitigation costs may increase the risk of 
hunger in low-income countries (low confidence) (Hasegawa et al., 
2016). It is likely that the even more stringent mitigation measures 
required to restrict global warming to 1.5°C (Rogelj et al., 2013) will 
further increase these mitigation costs and impacts. International 
trade in food might be a key response measure for alleviating hunger 
in developing countries under 1.5°C and 2°C stabilization scenarios 
(IFPRI, 2018).

Although warming is projected to be the highest in the Northern 
Hemisphere under 1.5°C or 2°C of global warming, regions in 
the tropics and Southern Hemisphere subtropics are projected to 
experience the largest impacts on economic growth (low to medium 
confidence) (Gallup et al., 1999; M. Burke et al., 2018; Pretis et al., 
2018). Despite the uncertainties associated with climate change 
projections and econometrics (e.g., M. Burke et al., 2018), it is more 
likely than not that there will be large differences in economic 
growth under 1.5°C and 2°C of global warming for developing 
versus developed countries (M. Burke et al., 2018; Pretis et al., 
2018). Statistically significant reductions in gross domestic product 
(GDP) per capita growth are projected across much of the African 
continent, Southeast Asia, India, Brazil and Mexico (low to medium 
confidence). Countries in the western parts of tropical Africa are 
projected to benefit most from restricting global warming to 1.5°C, 
as opposed to 2°C, in terms of future economic growth (Pretis et al., 
2018). An important reason why developed countries in the tropics 
and subtropics are projected to benefit substantially from restricting 
global warming to 1.5°C is that present-day temperatures in these 
regions are above the threshold thought to be optimal for economic 
production (M. Burke et al., 2015b, 2018). 

The world’s largest economies are also projected to benefit from 
restricting warming to 1.5°C as opposed to 2°C (medium confidence), 
with the likelihood of such benefits being realized estimated at 
76%, 85% and 81% for the USA, China and Japan, respectively (M. 
Burke et al., 2018). Two studies focusing only on the USA found that 
economic damages are projected to be higher by 2100 if warming 
reaches 2°C than if it is constrained to 1.5°C. Yohe (2017) found a 
mean difference of 0.35% GDP (range 0.2–0.65%), while Hsiang 
et al. (2017) identified a GDP loss of 1.2% per degree of warming, 
hence approximately 0.6% for half a degree. Overall, no statistically 
significant changes in GDP are projected to occur over most of the 
developed world under 1.5°C of global warming in comparison to 
present-day conditions, but under 2°C of global warming impacts on 
GDP are projected to be generally negative (low confidence) (Pretis 
et al., 2018).

A caveat to the analyses of Pretis et al. (2018) and M. Burke et al. 
(2018) is that the effects of sea level rise were not included in the 
estimations of damages or future economic growth, implying a potential 
underestimation of the benefits of limiting warming to 1.5°C for the 
case where significant sea level rise is avoided at 1.5°C but not at 2°C.

3.5.4	 Reducing Hotspots of Change for 1.5°C and 2°C 
of Global Warming

This subsection integrates Sections 3.3 and 3.4 in terms of climate-
change-induced hotspots that occur through interactions across the 
physical climate system, ecosystems and socio-economic human 
systems, with a focus on the extent to which risks can be avoided or 
reduced by achieving the 1.5°C global warming goal (as opposed to 
the 2°C goal). Findings are summarized in Table 3.6.

3.5.4.1	 Arctic sea ice

Ice-free Arctic Ocean summers are very likely at levels of global 
warming higher than 2°C (Notz and Stroeve, 2016; Rosenblum and 
Eisenman, 2016; Screen and Williamson, 2017; Niederdrenk and 
Notz, 2018). Some studies even indicate that the entire Arctic Ocean 
summer period will become ice free under 2°C of global warming, 
whilst others more conservatively estimate this probability to be in the 
order of 50% (Section 3.3.8; Sanderson et al., 2017). The probability 
of an ice-free Arctic in September at 1.5°C of global warming is low 
and substantially lower than for the case of 2°C of global warming 
(high confidence) (Section 3.3.8; Screen and Williamson, 2017; Jahn, 
2018; Niederdrenk and Notz, 2018). There is, however, a single 
study that questions the validity of the 1.5°C threshold in terms of 
maintaining summer Arctic Ocean sea ice (Niederdrenk and Notz, 
2018). In contrast to summer, little ice is projected to be lost during 
winter for either 1.5°C or 2°C of global warming (medium confidence) 
(Niederdrenk and Notz, 2018). The losses in sea ice at 1.5°C and 
2°C of warming will result in habitat losses for organisms such as 
seals, polar bears, whales and sea birds (e.g., Larsen et al., 2014). 
There is high agreement and robust evidence that photosynthetic 
species will change because of sea ice retreat and related changes 
in temperature and radiation (Section 3.4.4.7), and this is very likely 
to benefit fisheries productivity in the Northern Hemisphere spring 
bloom system (Section 3.4.4.7).
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3.5.4.2	 Arctic land regions

In some Arctic land regions, the warming of cold extremes and the 
increase in annual minimum temperature at 1.5°C are stronger than 
the global mean temperature increase by a factor of two to three, 
meaning 3°C–4.5°C of regional warming at 1.5°C of global warming 
(e.g., northern Europe in Supplementary Material 3.SM, Figure 3.SM.5 
see also Section 3.3.2.2 and Seneviratne et al., 2016). Moreover, over 
much of the Arctic, a further increase of 0.5°C in the global surface 
temperature, from 1.5°C to 2°C, may lead to further temperature 
increases of 2°C–2.5°C (Figure 3.3). As a consequence, biome (major 
ecosystem type) shifts are likely in the Arctic, with increases in fire 
frequency, degradation of permafrost, and tree cover likely to occur at 
1.5°C of warming and further amplification of these changes expected 
under 2°C of global warming (e.g., Gerten et al., 2013; Bring et al., 
2016). Rising temperatures, thawing permafrost and changing weather 
patterns are projected to increasingly impact people, infrastructure and 
industries in the Arctic (W.N. Meier et al., 2014) with these impacts 
larger at 2°C than at 1.5°C of warming (medium confidence). 

3.5.4.3	 Alpine regions

Alpine regions are generally regarded as climate change hotspots 
given that rich biodiversity has evolved in their cold and harsh climate, 
but with many species consequently being vulnerable to increases in 
temperature. Under regional warming, alpine species have been found 
to migrate upwards on mountain slopes (Reasoner and Tinner, 2009), 
an adaptation response that is obviously limited by mountain height 
and habitability. Moreover, many of the world’s alpine regions are 
important from a water security perspective through associated glacier 
melt, snow melt and river flow (see Section 3.3.5.2 for a discussion of 
these aspects). Projected biome shifts are likely to be severe in alpine 
regions already at 1.5°C of warming and to increase further at 2°C 
(Gerten et al., 2013, Figure 1b; B. Chen et al., 2014).

3.5.4.4	 Southeast Asia

Southeast Asia is a region highly vulnerable to increased flooding in 
the context of sea level rise (Arnell et al., 2016; Brown et al., 2016, 
2018a). Risks from increased flooding are projected to rise from 1.5°C 
to 2°C of warming (medium confidence), with substantial increases 
projected beyond 2°C (Arnell et al., 2016). Southeast Asia displays 
statistically significant differences in projected changes in heavy 
precipitation, runoff and high flows at 1.5°C versus 2°C of warming, 
with stronger increases occurring at 2°C (Section 3.3.3; Wartenburger 
et al., 2017; Döll et al., 2018; Seneviratne et al., 2018c); thus, this region 
is considered a hotspot in terms of increases in heavy precipitation 
between these two global temperature levels (medium confidence) 
(Schleussner et al., 2016b; Seneviratne et al., 2016). For Southeast Asia, 
2°C of warming by 2040 could lead to a decline by one-third in per 
capita crop production associated with general decreases in crop yields 
(Nelson et al., 2010). However, under 1.5°C of warming, significant 
risks for crop yield reduction in the region are avoided (Schleussner et 
al., 2016b). These changes pose significant risks for poor people in both 
rural regions and urban areas of Southeast Asia (Section 3.4.10.1), with 
these risks being larger at 2°C of global warming compared to 1.5°C 
(medium confidence).

3.5.4.5	 Southern Europe and the Mediterranean

The Mediterranean is regarded as a climate change hotspot, both in 
terms of projected stronger warming of the regional land-based hot 
extremes compared to the mean global temperature increase (e.g., 
Seneviratne et al., 2016) and in terms of of robust increases in the 
probability of occurrence of extreme droughts at 2°C vs 1.5°C global 
warming (Section 3.3.4). Low river flows are projected to decrease in 
the Mediterranean under 1.5°C of global warming (Marx et al., 2018), 
with associated significant decreases in high flows and floods (Thober 
et al., 2018), largely in response to reduced precipitation. The median 
reduction in annual runoff is projected to almost double from about 
9% (likely range 4.5–15.5%) at 1.5°C to 17% (likely range 8–25%) 
at 2°C (Schleussner et al., 2016b). Similar results were found by Döll 
et al. (2018). Overall, there is high confidence that strong increases in 
dryness and decreases in water availability in the Mediterranean and 
southern Europe would occur from 1.5°C to 2°C of global warming. Sea 
level rise is expected to be lower for 1.5°C versus 2°C, lowering risks 
for coastal metropolitan agglomerations. The risks (assuming current 
adaptation) related to water deficit in the Mediterranean are high for 
global warming of 2°C but could be substantially reduced if global 
warming were limited to 1.5°C (Section 3.3.4; Guiot and Cramer, 2016; 
Schleussner et al., 2016b; Donnelly et al., 2017).

3.5.4.6	 West Africa and the Sahel

West Africa and the Sahel are likely to experience increases in the 
number of hot nights and longer and more frequent heatwaves 
even if the global temperature increase is constrained to 1.5°C, with 
further increases expected at 2°C of global warming and beyond 
(e.g., Weber et al., 2018). Moreover, daily rainfall intensity and runoff 
is expected to increase (low confidence) towards 2°C and higher 
levels of global warming (Schleussner et al., 2016b; Weber et al., 
2018), with these changes also being relatively large compared to 
the projected changes at 1.5°C of warming. Moreover, increased risks 
are projected in terms of drought, particularly for the pre-monsoon 
season (Sylla et al., 2015), with both rural and urban populations 
affected, and more so at 2°C of global warming as opposed to 1.5°C 
(Liu et al., 2018). Based on a World Bank (2013) study for sub-Saharan 
Africa, a 1.5°C warming by 2030 might reduce the present maize 
cropping areas by 40%, rendering these areas no longer suitable 
for current cultivars. Substantial negative impacts are also projected 
for sorghum suitability in the western Sahel (Läderach et al., 2013; 
Sultan and Gaetani, 2016). An increase in warming to 2°C by 2040 
would result in further yield losses and damages to crops (i.e., maize, 
sorghum, wheat, millet, groundnut and cassava). Schleussner et al. 
(2016b) found consistently reduced impacts on crop yield for West 
Africa under 2°C compared to 1.5°C of global warming. There is 
medium confidence that vulnerabilities to water and food security in 
the African Sahel will be higher at 2°C compared to 1.5°C of global 
warming (Cheung et al., 2016a; Betts et al., 2018), and at 2°C these 
vulnerabilities are expected to be worse (high evidence) (Sultan and 
Gaetani, 2016; Lehner et al., 2017; Betts et al., 2018; Byers et al., 
2018; Rosenzweig et al., 2018). Under global warming of more than 
2°C, the western Sahel might experience the strongest drying and 
experience serious food security issues (Ahmed et al., 2015; Parkes 
et al., 2018). 
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3.5.4.7	 Southern Africa

The southern African region is projected to be a climate change hotspot 
in terms of both hot extremes (Figures 3.5 and 3.6) and drying (Figure 
3.12). Indeed, temperatures have been rising in the subtropical regions 
of southern Africa at approximately twice the global rate over the last 
five decades (Engelbrecht et al., 2015). Associated elevated warming 
of the regional land-based hot extremes has occurred (Section 3.3; 
Seneviratne et al., 2016). Increases in the number of hot nights, as 
well as longer and more frequent heatwaves, are projected even if the 
global temperature increase is constrained to 1.5°C (high confidence), 
with further increases expected at 2°C of global warming and beyond 
(high confidence) (Weber et al., 2018).

Moreover, southern Africa is likely to generally become drier with 
reduced water availability under low mitigation (Niang et al., 2014; 
Engelbrecht et al., 2015; Karl et al., 2015; James et al., 2017), with 
this particular risk being prominent under 2°C of global warming and 
even under 1.5°C (Gerten et al., 2013). Risks are significantly reduced, 
however, under 1.5°C of global warming compared to under higher 
levels (Schleussner et al., 2016b). There are consistent and statistically 
significant increases in projected risks of increased meteorological 
drought in southern Africa at 2°C versus 1.5°C of warming (medium 
confidence). Despite the general rainfall reductions projected for 
southern Africa, daily rainfall intensities are expected to increase over 
much of the region (medium confidence), and increasingly so with 
higher levels of global warming. There is medium confidence that 
livestock in southern Africa will experience increased water stress 
under both 1.5°C and 2°C of global warming, with negative economic 
consequences (e.g., Boone et al., 2018). The region is also projected 
to experience reduced maize, sorghum and cocoa cropping area 
suitability, as well as yield losses under 1.5°C of warming, with further 
decreases occurring towards 2°C of warming (World Bank, 2013). 
Generally, there is high confidence that vulnerability to decreases in 
water and food availability is reduced at 1.5°C versus 2°C for southern 
Africa (Betts et al., 2018), whilst at 2°C these are expected to be higher 
(high confidence) (Lehner et al., 2017; Betts et al., 2018; Byers et al., 
2018; Rosenzweig et al., 2018).

3.5.4.8	 Tropics

Worldwide, the largest increases in the number of hot days are 
projected to occur in the tropics (Figure 3.7). Moreover, the largest 
differences in the number of hot days for 1.5°C versus 2°C of global 
warming are projected to occur in the tropics (Mahlstein et al., 2011). 
In tropical Africa, increases in the number of hot nights, as well as 
longer and more frequent heatwaves, are projected under 1.5°C of 
global warming, with further increases expected under 2°C of global 
warming (Weber et al., 2018). Impact studies for major tropical cereals 
reveal that yields of maize and wheat begin to decline with 1°C to 2°C 
of local warming in the tropics. Schleussner et al. (2016b) project that 
constraining warming to 1.5°C rather than 2°C would avoid significant 
risks of tropical crop yield declines in West Africa, Southeast Asia, and 
Central and South America. There is limited evidence and thus low 
confidence that these changes may result in significant population 
displacement from the tropics to the subtropics (e.g., Hsiang and Sobel, 
2016). 

3.5.4.9	 Small islands

It is widely recognized that small islands are very sensitive to climate 
change impacts such as sea level rise, oceanic warming, heavy 
precipitation, cyclones and coral bleaching (high confidence) (Nurse et 
al., 2014; Ourbak and Magnan, 2017). Even at 1.5°C of global warming, 
the compounding impacts of changes in rainfall, temperature, tropical 
cyclones and sea level are likely to be significant across multiple 
natural and human systems. There are potential benefits to small 
island developing states (SIDS) from avoided risks at 1.5°C versus 
2°C, especially when coupled with adaptation efforts. In terms of sea 
level rise, by 2150, roughly 60,000 fewer people living in SIDS will be 
exposed in a 1.5°C world than in a 2°C world (Rasmussen et al., 2018). 
Constraining global warming to 1.5°C may significantly reduce water 
stress (by about 25%) compared to the projected water stress at 2°C, 
for example in the Caribbean region (Karnauskas et al., 2018), and may 
enhance the ability of SIDS to adapt (Benjamin and Thomas, 2016). Up 
to 50% of the year is projected to be very warm in the Caribbean at 
1.5°C, with a further increase by up to 70 days at 2°C versus 1.5°C 
(Taylor et al., 2018). By limiting warming to 1.5°C instead of 2°C in 
2050, risks of coastal flooding (measured as the flood amplification 
factors for 100-year flood events) are reduced by 20–80% for SIDS 
(Rasmussen et al., 2018). A case study of Jamaica with lessons for 
other Caribbean SIDS demonstrated that the difference between 1.5°C 
and 2°C is likely to challenge livestock thermoregulation, resulting in 
persistent heat stress for livestock (Lallo et al., 2018).

3.5.4.10	  Fynbos and shrub biomes

The Fynbos and succulent Karoo biomes of South Africa are 
threatened systems that were assessed in AR5. Similar shrublands 
exist in the semi-arid regions of other continents, with the Sonora-
Mojave creosotebush-white bursage desert scrub ecosystem in the 
USA being a prime example. Impacts accrue across these systems 
with greater warming, with impacts at 2°C likely to be greater than 
those at 1.5°C (medium confidence). Under 2°C of global warming, 
regional warming in drylands is projected to be 3.2°C–4°C, and under 
1.5°C of global warming, mean warming in drylands is projected to  
still be about 3°C. The Fynbos biome in southwestern South Africa 
is vulnerable to the increasing impact of fires under increasing 
temperatures and drier winters (high confidence). The Fynbos biome 
is projected to lose about 20%, 45% and 80% of its current suitable 
climate area relative to its present-day area under 1°C, 2°C and 
3°C of warming, respectively (Engelbrecht and Engelbrecht, 2016), 
demonstrating the value of climate change mitigation in protecting 
this rich centre of biodiversity. 
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Region and/or 
Phenomenon

Warming of 1.5°C or less Warming of 1.5°C–2°C Warming of 2°C–3°C 

Arctic sea ice

Arctic summer sea ice is likely to be maintained

 
Habitat losses for organisms such as polar bears, 
whales, seals and sea birds

 
Benefits for Arctic fisheries 

The risk of an ice-free Arctic in summer is about 50% 
or higher

Habitat losses for organisms such as polar bears, 
whales,seals and sea birds may be critical if 
summers are ice free

Benefits for Arctic fisheries

The Arctic is very likely to be ice free in summer

 
Critical habitat losses for organisms such as 
polar bears, whales, seals and sea birds 

 
Benefits for Arctic fisheries

Arctic land regions

Cold extremes warm by a factor of 2–3, reaching 
up to 4.5°C (high confidence)

Biome shifts in the tundra and permafrost 
deterioration are likely

Cold extremes warm by as much as 8°C 
(high confidence)

Larger intrusions of trees and shrubs in the tundra 
than under 1.5°C of warming are likely; larger 
but constrained losses in permafrost are likely 

Drastic regional warming is very likely

 
A collapse in permafrost may occur (low 
confidence); a drastic biome shift from tundra 
to boreal forest is possible (low confidence)

Alpine regions Severe shifts in biomes are likely Even more severe shifts are likely Critical losses in alpine habitats are likely

Southeast Asia

Risks for increased flooding related to sea level rise

 
Increases in heavy precipitation events

 
Significant risks of crop yield reductions are avoided

Higher risks of increased flooding related 
to sea level rise (medium confidence)

Stronger increases in heavy precipitation events 
(medium confidence)

One-third decline in per capita crop production 
(medium confidence)

Substantial increases in risks related to flooding 
from sea level rise

Substantial increase in heavy precipitation 
and high-flow events

Substantial reductions in crop yield

Mediterranean

Increase in probability of extreme 
drought (medium confidence) 

Medium confidence in reduction in runoff 
of about 9% (likely range 4.5–15.5%) 

Risk of water deficit (medium confidence) 

Robust increase in probability of extreme 
drought (medium confidence)

Medium confidence in further reductions 
(about 17%) in runoff (likely range 8–28%)

Higher risks of water deficit (medium confidence)

Robust and large increases in extreme 
drought. Substantial reductions in precipitation 
and  in runoff (medium confidence)

Very high risks of water deficit (medium confidence)

West Africa and 
the Sahel

Increases in the number of hot nights and longer 
and more frequent heatwaves are likely

Reduced maize and sorghum production is likely, 
with area suitable for maize production reduced 
by as much as 40% 

Increased risks of undernutrition

Further increases in number of hot nights and 
longer and more frequent heatwaves are likely

Negative impacts on maize and sorghum production 
likely larger than at 1.5°C; medium confidence 
that vulnerabilities to food security in the African 
Sahel will be higher at 2°C compared to 1.5°C

Higher risks of undernutrition 

Substantial increases in the number of hot nights 
and heatwave duration and frequency (very likely)

Negative impacts on crop yield may result in major 
regional food insecurities (medium confidence) 
 

High risks of undernutrition

Southern Africa

Reductions in water availability (medium confidence)

Increases in number of hot nights and longer and 
more frequent heatwaves (high confidence)  

High risks of increased mortality from heatwaves 

High risk of undernutrition in communities 
dependent on dryland agriculture and livestock 

Larger reductions in rainfall and water 
availability (medium confidence)

Further increases in number of hot nights and 
longer and more frequent heatwaves (high 
confidence), associated increases in risks of 
increased mortality from heatwaves compared 
to 1.5°C warming (high confidence) 

Higher risks of undernutrition in communities 
dependent on dryland agriculture and livestock 

Large reductions in rainfall and water 
availability (medium confidence)

Drastic increases in the number of hot nights, hot 
days and heatwave duration and frequency to 
impact substantially on agriculture, livestock and 
human health and mortality (high confidence) 

Very high risks of undernutrition in communities 
dependent on dryland agriculture and livestock

Tropics 

Increases in the number of hot days and hot nights 
as well as longer and more frequent heatwaves 
(high confidence)

Risks to tropical crop yields in West Africa, 
Southeast Asia and Central and South America 
are significantly less than under 2°C of warming

The largest increase in hot days under 2°C compared 
to 1.5°C is projected for the tropics. 

Risks to tropical crop yields in West Africa,  
Southeast Asia and Central and South America  
could be extensive

Oppressive temperatures and accumulated 
heatwave duration very likely to directly impact 
human health, mortality and productivity

Substantial reductions in crop yield very likely

Small islands

Land of 60,000 less people exposed by 2150 on SIDS 
compared to impacts under 2°C of global warming 

Risks for coastal flooding reduced by 20–80% 
for SIDS  compared to 2°C of global warming

Freshwater stress reduced by 25%

Increase in the number of warm days for SIDS 
in the tropics

Persistent heat stress in cattle avoided

Loss of 70–90% of coral reefs

Tens of thousands of people displaced owing to 
inundation of SIDS

High risks for coastal flooding

Freshwater stress reduced by 25% compared to  
2°C of global warming

Freshwater stress from projected aridity

Further increase of about 70 warm days per year

Persistent heat stress in cattle in SIDS

Loss of most coral reefs and weaker remaining 
structures owing to ocean acidification

Substantial and widespread impacts 
through inundation of SIDS, coastal flooding, 
freshwater stress, persistent heat stress and 
loss of most coral reefs (very likely)

Fynbos biome
About 30% of suitable climate area lost 
(medium confidence)

Increased losses (about 45%) of suitable climate 
area (medium confidence)

Up to 80% of suitable climate area lost 
(medium confidence)

Table 3.6  |	 Emergence and intensity of climate change hotspots under different degrees of global warming.
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3.5.5	 Avoiding Regional Tipping Points by Achieving 
More Ambitious Global Temperature Goals

Tipping points refer to critical thresholds in a system that, when exceeded, 
can lead to a significant change in the state of the system, often with an 
understanding that the change is irreversible. An understanding of the 
sensitivities of tipping points in the physical climate system, as well as in 
ecosystems and human systems, is essential for understanding the risks 
associated with different degrees of global warming. This subsection 
reviews tipping points across these three areas within the context 
of the different sensitivities to 1.5°C versus 2°C of global warming. 
Sensitivities to less ambitious global temperature goals are also briefly 
reviewed. Moreover, an analysis is provided of how integrated risks 
across physical, natural and human systems may accumulate to lead 
to the exceedance of thresholds for particular systems. The emphasis in 
this section is on the identification of regional tipping points and their 
sensitivity to 1.5°C and 2°C of global warming, whereas tipping points 
in the global climate system, referred to as large-scale singular events, 
were already discussed in Section 3.5.2. A summary of regional tipping 
points is provided in Table 3.7.

3.5.5.1	 Arctic sea ice

Collins et al. (2013) discussed the loss of Artic sea ice in the context 
of potential tipping points. Climate models have been used to assess 
whether a bifurcation exists that would lead to the irreversible loss 
of Arctic sea ice (Armour et al., 2011; Boucher et al., 2012; Ridley et 
al., 2012) and to test whether the summer sea ice extent can recover 
after it has been lost (Schröder and Connolley, 2007; Sedláček et al., 
2011; Tietsche et al., 2011). These studies did not find evidence of 
bifurcation or indicate that sea ice returns within a few years of its loss, 
leading Collins et al. (2013) to conclude that there is little evidence 
for a tipping point in the transition from perennial to seasonal ice 
cover. No evidence has been found for irreversibility or tipping points, 
suggesting that year-round sea ice will return given a suitable climate 
(medium confidence) (Schröder and Connolley, 2007; Sedláček et al., 
2011; Tietsche et al., 2011).

3.5.5.2	 Tundra

Tree growth in tundra-dominated landscapes is strongly constrained by 
the number of days with mean air temperature above 0°C. A potential 
tipping point exists where the number of days below 0°C decreases 
to the extent that the tree fraction increases significantly. Tundra-
dominated landscapes have warmed more than the global average 
over the last century (Settele et al., 2014), with associated increases 
in fires and permafrost degradation (Bring et al., 2016; DeBeer et al., 
2016; Jiang et al., 2016; Yang et al., 2016). These processes facilitate 
conditions for woody species establishment in tundra areas, and for 
the eventual transition of the tundra to boreal forest. The number of 
investigations into how the tree fraction may respond in the Arctic to 
different degrees of global warming is limited, and studies generally 
indicate that substantial increases will likely occur gradually (e.g., 
Lenton et al., 2008). Abrupt changes are only plausible at levels of 
warming significantly higher than 2°C (low confidence) and would 
occur in conjunction with a collapse in permafrost (Drijfhout et al., 
2015).

3.5.5.3	 Permafrost

Widespread thawing of permafrost potentially makes a large carbon 
store (estimated to be twice the size of the atmospheric store; Dolman 
et al., 2010) vulnerable to decomposition, which could lead to further 
increases in atmospheric carbon dioxide and methane and hence to 
further global warming. This feedback loop between warming and the 
release of greenhouse gas from thawing tundra represents a potential 
tipping point. However, the carbon released to the atmosphere from 
thawing permafrost is projected to be restricted to 0.09–0.19 Gt C yr–1 

at 2°C of global warming and to 0.08–0.16 Gt C yr–1 at 1.5°C (E.J. 
Burke et al., 2018), which does not indicate a tipping point (medium 
confidence). At higher degrees of global warming, in the order of 
3°C, a different type of tipping point in permafrost may be reached. 
A single model projection (Drijfhout et al., 2015) suggested that 
higher temperatures may induce a smaller ice fraction in soils in the 
tundra, leading to more rapidly warming soils and a positive feedback 
mechanism that results in permafrost collapse (low confidence). The 
disparity between the multi-millennial time scales of soil carbon 
accumulation and potentially rapid decomposition in a warming 
climate implies that the loss of this carbon to the atmosphere would 
be essentially irreversible (Collins et al., 2013). 

3.5.5.4	 Asian monsoon

At a fundamental level, the pressure gradient between the Indian Ocean 
and Asian continent determines the strength of the Asian monsoon. As 
land masses warm faster than the oceans, a general strengthening of 
this gradient, and hence of monsoons, may be expected under global 
warming (e.g., Lenton et al., 2008). Additional factors such as changes 
in albedo induced by aerosols and snow-cover change may also affect 
temperature gradients and consequently pressure gradients and the 
strength of the monsoon. In fact, it has been estimated that an increase 
of the regional land mass albedo to 0.5 over India would represent a 
tipping point resulting in the collapse of the monsoon system (Lenton 
et al., 2008). The overall impacts of the various types of radiative 
forcing under different emissions scenarios are more subtle, with a 
weakening of the monsoon north of about 25°N in East Asia but a 
strengthening south of this latitude projected by Jiang and Tian (2013) 
under high and modest emissions scenarios. Increases in the intensity 
of monsoon precipitation are likely under low mitigation (AR5). Given 
that scenarios of 1.5°C or 2°C of global warming would include a 
substantially smaller radiative forcing than those assessed in the study 
by Jiang and Tian (2013), there is low confidence regarding changes in 
monsoons at these low global warming levels, as well as regarding the 
differences between responses at 1.5°C versus 2°C of warming.

3.5.5.5	 West African monsoon and the Sahel

Earlier work has identified 3°C of global warming as the tipping point 
leading to a significant strengthening of the West African monsoon and 
subsequent wettening (and greening) of the Sahel and Sahara (Lenton 
et al., 2008). AR5 (Niang et al., 2014), as well as more recent research 
through the Coordinated Regional Downscaling Experiment for Africa 
(CORDEX–AFRICA), provides a more uncertain view, however, in terms 
of the rainfall futures of the Sahel under low mitigation futures. Even 
if a wetter Sahel should materialize under 3°C of global warming (low 
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confidence), it should be noted that there would be significant offsets 
in the form of strong regional warming and related adverse impacts 
on crop yield, livestock mortality and human health under such low 
mitigation futures (Engelbrecht et al., 2015; Sylla et al., 2016; Weber 
et al., 2018).

3.5.5.6	 Rainforests

A large portion of rainfall over the world’s largest rainforests is 
recirculated (e.g., Lenton et al., 2008), which raises the concern that 
deforestation may trigger a threshold in reduced forest cover, leading 
to pronounced forest dieback. For the Amazon, this deforestation 
threshold has been estimated to be 40% (Nobre et al., 2016). Global 
warming of 3°C–4°C may also, independent of deforestation, represent 
a tipping point that results in a significant dieback of the Amazon 
forest, with a key forcing mechanism being stronger El Niño events 
bringing more frequent droughts to the region (Nobre et al., 2016). 
Increased fire frequencies under global warming may interact with and 
accelerate deforestation, particularly during periods of El Niño-induced 
droughts (Lenton et al., 2008; Nobre et al., 2016). Global warming of 
3°C is projected to reduce the extent of tropical rainforest in Central 
America, with biomass being reduced by about 40%, which can lead 
to a large replacement of rainforest by savanna and grassland (Lyra et 
al., 2017). Overall, modelling studies (Huntingford et al., 2013; Nobre 
et al., 2016) and observational constraints (Cox et al., 2013) suggest 
that pronounced rainforest dieback may only be triggered at 3°C–4°C 
(medium confidence), although pronounced biomass losses may occur 
at 1.5°C– 2°C of global warming.

3.5.5.7	 Boreal forests

Boreal forests are likely to experience stronger local warming than the 
global average (WGII AR5; Collins et al., 2013). Increased disturbance 
from fire, pests and heat-related mortality may affect, in particular, the 
southern boundary of boreal forests (medium confidence) (Gauthier 
et al., 2015), with these impacts accruing with greater warming and 
thus impacts at 2°C would be expected to be greater than those at 
1.5°C (medium confidence). A tipping point for significant dieback of 
the boreal forests is thought to exist, where increased tree mortality 
would result in the creation of large regions of open woodlands 
and grasslands, which would favour further regional warming and 
increased fire frequencies, thus inducing a powerful positive feedback 
mechanism (Lenton et al., 2008; Lenton, 2012). This tipping point has 
been estimated to exist between 3°C and 4°C of global warming 
(low confidence) (Lucht et al., 2006; Kriegler et al., 2009), but given 
the complexities of the various forcing mechanisms and feedback 
processes involved, this is thought to be an uncertain estimate.

3.5.5.8	 Heatwaves, unprecedented heat and human health

Increases in ambient temperature are linearly related to hospitalizations 
and deaths once specific thresholds are exceeded (so there is not a 
tipping point per se). It is plausible that coping strategies will not 
be in place for many regions, with potentially significant impacts on 
communities with low adaptive capacity, effectively representing the 
occurrence of a local/regional tipping point. In fact, even if global 
warming is restricted to below 2°C, there could be a substantial increase 

in the occurrence of deadly heatwaves in cities if urban heat island 
effects are considered, with impacts being similar at 1.5°C and 2°C but 
substantially larger than under the present climate (Matthews et al., 
2017). At 1.5°C of warming, twice as many megacities (such as Lagos, 
Nigeria, and Shanghai, China) than at present are likely to become heat 
stressed, potentially exposing more than 350 million more people to 
deadly heat stress by 2050. At 2°C of warming, Karachi (Pakistan) and 
Kolkata (India) could experience conditions equivalent to their deadly 
2015 heatwaves on an annual basis (medium confidence). These 
statistics imply a tipping point in the extent and scale of heatwave 
impacts. However, these projections do not integrate adaptation to 
projected warming, for instance cooling that could be achieved with 
more reflective roofs and urban surfaces in general (Akbari et al., 2009; 
Oleson et al., 2010).

3.5.5.9	 Agricultural systems: key staple crops

A large number of studies have consistently indicated that maize crop 
yield will be negatively affected under increased global warming, with 
negative impacts being higher at 2°C of warming than at 1.5°C (e.g., 
Niang et al., 2014; Schleussner et al., 2016b; J. Huang et al., 2017; 
Iizumi et al., 2017). Under 2°C of global warming, losses of 8–14% 
are projected in global maize production (Bassu et al., 2014). Under 
global warming of more than 2°C, regional losses are projected to 
be about 20% if they co-occur with reductions in rainfall (Lana et al., 
2017). These changes may be classified as incremental rather than 
representing a tipping point. Large-scale reductions in maize crop yield, 
including the potential collapse of this crop in some regions, may exist 
under 3°C or more of global warming (low confidence) (e.g., Thornton 
et al., 2011). 

3.5.5.10	 Agricultural systems: livestock in the tropics and 
subtropics

The potential impacts of climate change on livestock (Section 3.4.6), 
in particular the direct impacts through increased heat stress, have 
been less well studied than impacts on crop yield, especially from 
the perspective of critical thresholds being exceeded. A case study 
from Jamaica revealed that the difference in heat stress for livestock 
between 1.5°C and 2°C of warming is likely to exceed the limits for 
normal thermoregulation and result in persistent heat stress for these 
animals (Lallo et al., 2018). It is plausible that this finding holds for 
livestock production in both tropical and subtropical regions more 
generally (medium confidence) (Section 3.4.6). Under 3°C of global 
warming, significant reductions in the areas suitable for livestock 
production could occur (low confidence), owing to strong increases in 
regional temperatures in the tropics and subtropics (high confidence). 
Thus, regional tipping points in the viability of livestock production may 
well exist, but little evidence quantifying such changes exists.
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Tipping point Warming of 1.5°C or less Warming of 1.5°C–2°C Warming of up to 3°C 

Arctic sea ice

Arctic summer sea ice is likely to be maintained 

Sea ice changes reversible under suitable climate 
restoration

The risk of an ice-free Arctic in summer is about  
50% or higher

Sea ice changes reversible under suitable climate 
restoration

Arctic is very likely to be ice free in summer 

Sea ice changes reversible under suitable climate  
restoration

Tundra

Decrease in number of growing degree days 
below 0°C 

Abrupt increases in tree cover are unlikely 

Further decreases in number of growing degree 
days below 0°C 

Abrupt increased in tree cover are unlikely Potential for an abrupt increase in tree fraction 
(low confidence)

Permafrost

17–44% reduction in permafrost 

Approximately 2 million km2 more 
permafrost maintained than under 2°C of 
global warming (medium confidence)
Irreversible loss of stored carbon

28–53% reduction in permafrost

Irreversible loss of stored carbon

Potential for permafrost collapse (low confidence)

Asian monsoon
Low confidence in projected changes Low confidence in projected changes Increases in the intensity of 

monsoon precipitation likely

West African monsoon 
and the Sahel

Uncertain changes; unlikely that a tipping point is 
reached

Uncertain changes; unlikely that tipping point is 
reached

Strengthening of monsoon with 
wettening and greening of the Sahel 
and Sahara (low confidence)

Negative associated impacts through increases 
in extreme temperature events

Rainforests

Reduced biomass, deforestation and fire 
increases pose uncertain risks to forest dieback

Larger biomass reductions than under 1.5°C of 
warming; deforestation and fire increases pose 
uncertain risk to forest dieback

Reduced extent of tropical rainforest in Central 
America and large replacement of rainforest  
by savanna and grassland

Potential tipping point leading to pronounced 
forest dieback (medium confidence)

Boreal forests
Increased tree mortality at southern boundary of 
boreal forest (medium confidence)

Further increases in tree mortality at southern 
boundary of boreal forest (medium confidence)

Potential tipping point at 3°C–4°C for significant 
dieback of boreal forest (low confidence)

Heatwaves, unprecedented 
heat and human health

Substantial increase in occurrence of potentially  
deadly heatwaves (likely)

More than 350 million more people exposed to 
deadly heat by 2050 under a midrange 
population growth scenario (likely)

Substantial increase in potentially deadly 
heatwaves (likely)

Annual occurrence of heatwaves similar to the 
deadly 2015 heatwaves in India and Pakistan 
(medium confidence)

Substantial increase in potentially deadly 
heatwaves very likely

Agricultural systems: 
key staple crops 

Global maize crop reductions of about 10% Larger reductions in maize crop production than 
under 1.5°C of about 15%

Drastic reductions in maize crop globally 
and in Africa (high confidence) 

Potential tipping point for collapse of maize 
crop in some regions (low confidence)

Livestock in the tropics 
and subtropics 

Increased heat stress Onset of persistent heat stress 
(medium confidence)

Persistent heat stress likely

Table 3.7  |	 Summary of enhanced risks in the exceedance of regional tipping points under different global temperature goals.

Box 3.6 | Economic Damages from Climate Change 

Balancing the costs and benefits of mitigation is challenging because estimating the value of climate change damages depends on 
multiple parameters whose appropriate values have been debated for decades (for example, the appropriate value of the discount rate) 
or that are very difficult to quantify (for example, the value of non-market impacts; the economic effects of losses in ecosystem services; 
and the potential for adaptation, which is dependent on the rate and timing of climate change and on the socio-economic content). See 
Cross-Chapter Box 5 in Chapter 2 for the definition of the social cost of carbon and for a discussion of the economics of 1.5°C-consistent 
pathways and the social cost of carbon, including the impacts of inequality on the social cost of carbon.

Global economic damages of climate change are projected to be smaller under warming of 1.5°C than 2°C in 2100 (Warren et al., 
2018c). The mean net present value of the costs of damages from warming in 2100 for 1.5°C and. 2°C (including costs associated 
with climate change-induced market and non-market impacts, impacts due to sea level rise, and impacts associated with large-scale 
discontinuities) are $54 and $69 trillion, respectively, relative to 1961–1990. 
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Values of the social cost of carbon vary when tipping points are included. The social cost of carbon in the default setting of the Dynamic 
Integrated Climate-Economy (DICE) model increases from $15 tCO2

–1 to $116 (range 50–166) tCO2
–1 when large-scale singularities or 

‘tipping elements’ are incorporated (Y. Cai et al., 2016; Lemoine and Traeger, 2016). Lemoine and Traeger (2016) included optimization 
calculations that minimize welfare impacts resulting from the combination of climate change risks and climate change mitigation costs, 
showing that welfare is minimized if warming is limited to 1.5°C. These calculations excluded the large health co-benefits that accrue 
when greenhouse gas emissions are reduced (Section 3.4.7.1; Shindell et al., 2018).

The economic damages of climate change in the USA are projected to be large (Hsiang et al., 2017; Yohe, 2017). Hsiang et al. (2017) 
shows that the USA stand to lose -0.1 to 1.7% of the Gross Domestic Product (GDP) at 1.5°C warming. Yohe (2017) calculated transient 
temperature trajectories from a linear relationship with contemporaneous cumulative emissions under a median no-policy baseline 
trajectory that brings global emissions to roughly 93 GtCO2 yr–1 by the end of the century (Fawcett et al., 2015), with 1.75°C per 1000 
GtCO2 as the median estimate. Associated aggregate economic damages in decadal increments through the year 2100 are estimated 
in terms of the percentage loss of GDP at the median, 5th percentile and 95th percentile transient temperature (Hsiang et al., 2017). 
The results for the baseline no-policy case indicate that economic damages along median temperature change and median damages 
(median-median) reach 4.5% of GDP by 2100, with an uncertainty range of 2.5% and 8.5% resulting from different combinations of 
temperature change and damages. Avoided damages from achieving a 1.5°C temperature limit along the median-median case are 
nearly 4% (range 2–7%) by 2100. Avoided damages from achieving a 2°C temperature limit are only 3.5% (range 1.8–6.5%). Avoided 
damages from achieving 1.5°C versus 2°C are modest at about 0.35% (range 0.20–0.65%) by 2100. The values of achieving the two 
temperature limits do not diverge significantly until 2040, when their difference tracks between 0.05 and 0.13%; the differences 
between the two temperature targets begin to diverge substantially in the second half of the century. 

3.6	 Implications of Different 1.5°C and 2°C 
Pathways 

This section provides an overview on specific aspects of the mitigation 
pathways considered compatible with 1.5°C of global warming. Some 
of these aspects are also addressed in more detail in Cross-Chapter 
Boxes 7 and 8 in this chapter.

3.6.1	 Gradual versus Overshoot in 1.5°C Scenarios  

All 1.5°C scenarios from Chapter 2 include some overshoot above 
1.5°C of global warming during the 21st century (Chapter 2 and Cross-
Chapter Box 8 in this chapter). The level of overshoot may also depend 
on natural climate variability. An overview of possible outcomes of 
1.5°C-consistent mitigation scenarios for changes in the physical 
climate at the time of overshoot and by 2100 is provided in Cross-
Chapter Box 8 on ‘1.5°C warmer worlds’. Cross-Chapter Box 8 also 
highlights the implications of overshoots.

3.6.2	 Non-CO2 Implications and Projected Risks of 
Mitigation Pathways 

3.6.2.1	 Risks arising from land-use changes 
in mitigation pathways

In mitigation pathways, land-use change is affected by many different 
mitigation options. First, mitigation of non-CO2 emissions from 
agricultural production can shift agricultural production between 
regions via trade of agricultural commodities. Second, protection of 
carbon-rich ecosystems such as tropical forests constrains the area 
for agricultural expansion. Third, demand-side mitigation measures, 

such as less consumption of resource-intensive commodities (animal 
products) or reductions in food waste, reduce pressure on land (Popp 
et al., 2017; Rogelj et al., 2018). Finally, carbon dioxide removal 
(CDR) is a key component of most, but not all, mitigation pathways 
presented in the literature to date which constrain warming to 1.5°C 
or 2°C. Carbon dioxide removal measures that require land include 
bioenergy with carbon capture and storage (BECCS), afforestation and 
reforestation (AR), soil carbon sequestration, direct air capture, biochar 
and enhanced weathering (see Cross-Chapter Box 7 in this chapter). 
These potential methods are assessed in Section 4.3.7. 

In cost-effective integrated assessment modelling (IAM) pathways 
recently developed to be consistent with limiting warming to 1.5°C, 
use of CDR in the form of BECCS and AR are fundamental elements 
(Chapter 2; Popp et al., 2017; Hirsch et al., 2018; Rogelj et al., 2018; 
Seneviratne et al., 2018c). The land-use footprint of CDR deployment 
in 1.5°C-consistent pathways can be substantial (Section 2.3.4, Figure 
2.11), even though IAMs predominantly rely on second-generation 
biomass and assume future productivity increases in agriculture.

A body of literature has explored potential consequences of large-scale 
use of CDR. In this case, the corresponding land footprint by the end 
of the century could be extremely large, with estimates including: up 
to 18% of the land surface being used (Wiltshire and Davies-Barnard, 
2015); vast acceleration of the loss of primary forest and natural 
grassland (Williamson, 2016) leading to increased greenhouse gas 
emissions (P. Smith et al., 2013, 2015); and potential loss of up to 10% 
of the current forested lands to biofuels (Yamagata et al., 2018). Other 
estimates reach 380–700 Mha or 21–64% of current arable cropland 
(Section 4.3.7). Boysen et al. (2017) found that in a scenario in which 
emissions reductions were sufficient only to limit warming to 2.5°C, 

Box 3.6 (continued)
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use of CDR to further limit warming to 1.7°C would result in the 
conversion of 1.1–1.5 Gha of land – implying enormous losses of both 
cropland and natural ecosystems. Newbold et al. (2015) found that 
biodiversity loss in the Representative Concentration Pathway (RCP)2.6 
scenario could be greater than that in RCP4.5 and RCP6, in which there 
is more climate change but less land-use change. Risks to biodiversity 
conservation and agricultural production are therefore projected to 
result from large-scale bioenergy deployment pathways (P. Smith et 
al., 2013; Tavoni and Socolow, 2013). One study explored an extreme 
mitigation strategy encouraging biofuel expansion sufficient to limit 
warming to 1.5°C and found that this would be more disruptive to land 
use and crop prices than the impacts of a 2°C warmer world which 
has a larger climate signal and lower mitigation requirement (Ruane 
et al., 2018). However, it should again be emphasized that many of the 
pathways explored in Chapter 2 of this report follow strategies that 
explore how to reduce these issues. Chapter 4 provides an assessment 
of the land footprint of various CDR technologies (Section 4.3.7).

The degree to which BECCS has these large land-use footprints 
depends on the source of the bioenergy used and the scale at which 
BECCS is deployed. Whether there is competition with food production 
and biodiversity depends on the governance of land use, agricultural 
intensification, trade, demand for food (in particular meat), feed and 
timber, and the context of the whole supply chain (Section 4.3.7, 
Fajardy and Mac Dowell, 2017; Booth, 2018; Sterman et al., 2018).

The more recent literature reviewed in Chapter 2 explores pathways 
which limit warming to 2°C or below and achieve a balance between 
sources and sinks of CO2 by using BECCS that relies on second-
generation (or even third-generation) biofuels, changes in diet or more 
generally, management of food demand, or CDR options such as forest 
restoration (Chapter 2; Bajželj et al., 2014). Overall, this literature 
explores how to reduce the issues of competition for land with food 
production and with natural ecosystems (in particular forests) (Cross-
Chapter Box 1 in Chapter 1; van Vuuren et al., 2009; Haberl et al., 
2010, 2013; Bajželj et al., 2014; Daioglou et al., 2016; Fajardy and Mac 
Dowell, 2017). 

Some IAMs manage this transition by effectively protecting carbon 
stored on land and focusing on the conversion of pasture area 
into both forest area and bioenergy cropland. Some IAMs explore 
1.5°C-consistent pathways with demand-side measures such as dietary 
changes and efficiency gains such as agricultural changes (Sections 
2.3.4 and 2.4.4), which lead to a greatly reduced CDR deployment and 
consequently land-use impacts (van Vuuren et al., 2018). In reality, 
however, whether this CDR (and bioenergy in general) has large 
adverse impacts on environmental and societal goals depends in large 
part on the governance of land use (Section 2.3.4; Obersteiner et al., 
2016; Bertram et al., 2018; Humpenöder et al., 2018).

Rates of sequestration of 3.3 GtC ha–1 require 970 Mha of afforestation 
and reforestation (Smith et al., 2015). Humpenöder et al. (2014) 
estimated that in least-cost pathways afforestation would cover 2800 
Mha by the end of the century to constrain warming to 2°C. Hence, 
the amount of land considered if least-cost mitigation is implemented 
by afforestation and reforestation could be up to three to five 
times greater than that required by BECCS, depending on the forest 

management used. However, not all of the land footprint of CDR is 
necessarily to be in competition with biodiversity protection. Where 
reforestation is the restoration of natural ecosystems, it benefits both 
carbon sequestration and conservation of biodiversity and ecosystem 
services (Section 4.3.7) and can contribute to the achievement of 
the Aichi targets under the Convention on Biological Diversity (CBD) 
(Leadley et al., 2016). However, reforestation is often not defined in 
this way (Section 4.3.8; Stanturf et al., 2014) and the ability to deliver 
biodiversity benefits is strongly dependent on the precise nature 
of the reforestation, which has different interpretations in different 
contexts and can often include agroforestry rather than restoration 
of pristine ecosystems (Pistorious and Kiff, 2017). However, ‘natural 
climate solutions’, defined as conservation, restoration, and improved 
land management actions that increase carbon storage and/or avoid 
greenhouse gas emissions across global forests, wetlands, grasslands 
and agricultural lands, are estimated to have the potential to provide 
37% of the cost-effective CO2 mitigation needed by southern Europe 
and the Mediterranean by 2030 – in order to have a >66% chance of 
holding warming to below 2°C (Griscom et al., 2017). 

Any reductions in agricultural production driven by climate change 
and/or land management decisions related to CDR may (e.g., Nelson 
et al., 2014a; Dalin and Rodríguez-Iturbe, 2016) or may not (Muratori 
et al., 2016) affect food prices. However, these studies did not consider 
the deployment of second-generation (instead of first-generation) 
bioenergy crops, for which the land footprint can be much smaller. 

Irrespective of any mitigation-related issues, in order for ecosystems 
to adapt to climate change, land use would also need to be carefully 
managed to allow biodiversity to disperse to areas that become 
newly climatically suitable for it (Section 3.4.1) and to protect the 
areas where the future climate will still remain suitable. This implies 
a need for considerable expansion of the protected area network 
(Warren et al., 2018b), either to protect existing natural habitat or 
to restore it (perhaps through reforestation, see above). At the same 
time, adaptation to climate change in the agricultural sector (Rippke 
et al., 2016) can require transformational as well as new approaches 
to land-use management; in order to meet the rising food demand 
of a growing human population, it is projected that additional 
land will need to be brought into production unless there are large 
increases in agricultural productivity (Tilman et al., 2011). However, 
future rates of deforestation may be underestimated in the existing 
literature (Mahowald et al., 2017a), and reforestation may therefore 
be associated with significant co-benefits if implemented to restore 
natural ecosystems (high confidence). 

3.6.2.2	 Biophysical feedbacks on regional climate 
associated with land-use changes 

Changes in the biophysical characteristics of the land surface are known 
to have an impact on local and regional climates through changes in 
albedo, roughness, evapotranspiration and phenology, which can lead 
to a change in temperature and precipitation. This includes changes in 
land use through agricultural expansion/intensification (e.g., Mueller 
et al., 2016), reforestation/revegetation endeavours (e.g., Feng et al., 
2016; Sonntag et al., 2016; Bright et al., 2017) and changes in land 
management (e.g., Luyssaert et al., 2014; Hirsch et al., 2017) that can 
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involve double cropping (e.g., Jeong et al., 2014; Mueller et al., 2015; 
Seifert and Lobell, 2015), irrigation (e.g., Lobell et al., 2009; Sacks et 
al., 2009; Cook et al., 2011; Qian et al., 2013; de Vrese et al., 2016; 
Pryor et al., 2016; Thiery et al., 2017), no-till farming and conservation 
agriculture (e.g., Lobell et al., 2006; Davin et al., 2014), and wood 
harvesting (e.g., Lawrence et al., 2012). Hence, the biophysical impacts 
of land-use changes are an important topic to assess in the context of 
low-emissions scenarios (e.g., van Vuuren et al., 2011b), in particular 
for 1.5°C warming levels (see also Cross-Chapter Box 7 in this chapter).

The magnitude of the biophysical impacts is potentially large for 
temperature extremes. Indeed, changes induced both by modifications 
in moisture availability and irrigation and by changes in surface albedo 
tend to be larger (i.e., stronger cooling) for hot extremes than for mean 
temperatures (e.g., Seneviratne et al., 2013; Davin et al., 2014; Wilhelm 
et al., 2015; Hirsch et al., 2017; Thiery et al., 2017). The reasons for 
reduced moisture availability are related to a strong contribution of 
moisture deficits to the occurrence of hot extremes in mid-latitude 
regions (Mueller and Seneviratne, 2012; Seneviratne et al., 2013). In 
the case of surface albedo, cooling associated with higher albedo (e.g., 
in the case of no-till farming) is more effective at cooling hot days 
because of the higher incoming solar radiation for these days (Davin 
et al., 2014). The overall effect of either irrigation or albedo has been 
found to be at the most in the order of about 1°C–2°C regionally for 
temperature extremes. This can be particularly important in the context 
of low-emissions scenarios because the overall effect is in this case 
of similar magnitude to the response to the greenhouse gas forcing 
(Figure 3.22; Hirsch et al., 2017; Seneviratne et al., 2018a,c). 

In addition to the biophysical feedbacks from land-use change and land 
management on climate, there are potential consequences for particular 

ecosystem services. This includes climate change-induced changes in 
crop yield (e.g., Schlenker and Roberts, 2009; van der Velde et al., 2012; 
Asseng et al., 2013, 2015; Butler and Huybers, 2013; Lobell et al., 2014) 
which may be further exacerbated by competing demands for arable 
land between reforestation mitigation activities, crop growth for BECCS 
(Chapter 2), increasing food production to support larger populations, 
and urban expansion (see review by Smith et al., 2010). In particular, 
some land management practices may have further implications for 
food security, for instance throughincreases or decreases in yield when 
tillage is ceased in some regions (Pittelkow et al., 2014). 

We note that the biophysical impacts of land use in the context of 
mitigation pathways constitute an emerging research topic. This 
topic, as well as the overall role of land-use change in climate change 
projections and socio-economic pathways, will be addressed in depth 
in the upcoming IPCC Special Report on Climate Change and Land Use 
due in 2019. 

3.6.2.3	 Atmospheric compounds (aerosols and methane)

There are multiple pathways that could be used to limit anthropogenic 
climate change, and the details of the pathways will influence the 
impacts of climate change on humans and ecosystems. Anthropogenic-
driven changes in aerosols cause important modifications to the 
global climate (Bindoff et al., 2013a; Boucher et al., 2013b; P. Wu et 
al., 2013; Sarojini et al., 2016; H. Wang et al., 2016). Enforcement of 
strict air quality policies may lead to a large decrease in cooling aerosol 
emissions in the next few decades. These aerosol emission reductions 
may cause a warming comparable to that resulting from the increase 
in greenhouse gases by mid-21st century under low CO2 pathways 
(Kloster et al., 2009; Acosta Navarro et al., 2017). Further background 

Figure 3.22 | Regional temperature scaling with carbon dioxide (CO2) concentration (ppm) from 1850 to 2099 for two different regions defined in the Special Report on 
Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) for central Europe (CEU) (a) and central North America (CNA) (b). Solid 
lines correspond to the regional average annual maximum daytime temperature (TXx) anomaly, and dashed lines correspond to the global mean temperature anomaly, where 
all temperature anomalies are relative to 1850–1870 and units are degrees Celsius. The black line in all panels denotes the three-member control ensemble mean, with the grey 
shaded regions corresponding to the ensemble range. The coloured lines represent the three-member ensemble means of the experiments corresponding to albedo +0.02 (cyan), 
albedo +0.04 (purple), albedo + 0.08 (orange), albedo +0.10 (red), irrigation (blue), and irrigation with albedo +0.10 (green). Adapted from Hirsch et al. (2017). 
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is provided in Sections 2.2.2 and 2.3.1; Cross Chapter Box 1 in Chapter 
1). Because aerosol effects on the energy budget are regional, strong 
regional changes in precipitation from aerosols may occur if aerosol 
emissions are reduced for air quality reasons or as a co-benefit from 
switches to sustainable energy sources (H. Wang et al., 2016). Thus, 
regional impacts, especially on precipitation, are very sensitive to 
1.5°C-consistent pathways (Z. Wang et al., 2017). 

Pathways which rely heavily on reductions in methane (CH4) instead 
of CO2 will reduce warming in the short term because CH4 is such a 
stronger and shorter-lived greenhouse gas than CO2, but will lead 
to stronger warming in the long term because of the much longer 
residence time of CO2 (Myhre et al., 2013; Pierrehumbert, 2014). In 
addition, the dominant loss mechanism for CH4 is atmospheric photo-
oxidation. This conversion modifies ozone formation and destruction in 
the troposphere and stratosphere, therefore modifying the contribution 
of ozone to radiative forcing, as well as feedbacks on the oxidation 
rate of methane itself (Myhre et al., 2013). Focusing on pathways and 
policies which both improve air quality and reduce impacts of climate 

change can provide multiple co-benefits (Shindell et al., 2017). These 
pathways are discussed in detail in Sections 4.3.7 and 5.4.1 and in 
Cross-Chapter Box 12 in Chapter 5.

Atmospheric aerosols and gases can also modify the land and ocean 
uptake of anthropogenic CO2; some compounds enhance uptake while 
others reduce it (Section 2.6.2; Ciais et al., 2013). While CO2 emissions 
tend to encourage greater uptake of carbon by the land and the 
ocean (Ciais et al., 2013), CH4 emissions can enhance ozone pollution, 
depending on nitrogen oxides, volatile organic compounds and other 
organic species concentrations, and ozone pollution tends to reduce 
land productivity (Myhre et al., 2013; B. Wang et al., 2017). Aside from 
inhibiting land vegetation productivity, ozone may also alter the CO2, 
CH4 and nitrogen (N2O) exchange at the land–atmosphere interface 
and transform the global soil system from a sink to a source of 
carbon (B. Wang et al., 2017). Aerosols and associated nitrogen-based 
compounds tend to enhance the uptake of CO2 in land and ocean 
systems through deposition of nutrients and modification of climate 
(Ciais et al., 2013; Mahowald et al., 2017b).

Cross-Chapter Box 7 |  Land-Based Carbon Dioxide Removal in Relation to 1.5°C of Global Warming 

Lead Authors: 
Rachel Warren (United Kingdom), Marcos Buckeridge (Brazil), Sabine Fuss (Germany), Markku Kanninen (Finland), Joeri Rogelj 
(Austria/Belgium), Sonia I. Seneviratne (Switzerland), Raphael Slade (United Kingdom) 

Climate and land form a complex system characterized by multiple feedback processes and the potential for non-linear responses to 
perturbation. Climate determines land cover and the distribution of vegetation, affecting above- and below-ground carbon stocks. 
At the same time, land cover influences global climate through altered biogeochemical processes (e.g., atmospheric composition 
and nutrient flow into oceans), and regional climate through changing biogeophysical processes including albedo, hydrology, 
transpiration and vegetation structure (Forseth, 2010).

Greenhouse gas (GHG) fluxes related to land use are reported in the ‘agriculture, forestry and other land use’ sector (AFOLU) and 
comprise about 25% (about 10–12 GtCO2eq yr–1) of anthropogenic GHG emissions (P. Smith et al., 2014). Reducing emissions from 
land use, as well as land-use change, are thus an important component of low-emissions mitigation pathways (Clarke et al., 2014), 
particularly as land-use emissions can be influenced by human actions such as deforestation, afforestation, fertilization, irrigation, 
harvesting, and other aspects of cropland, grazing land and livestock management (Paustian et al., 2006; Griscom et al., 2017; 
Houghton and Nassikas, 2018).

In the IPCC Fifth Assessment Report, the vast majority of scenarios assessed with a 66% or better chance of limiting global warming 
to 2°C by 2100 included carbon dioxide removal (CDR) – typically about 10 GtCO2 yr–1 in 2100 or about 200–400 GtCO2 over 
the course of the century (Smith et al., 2015; van Vuuren et al., 2016). These integrated assessment model (IAM) results were 
predominately achieved by using bioenergy with carbon capture and storage (BECCS) and/or afforestation and reforestation (AR). 
Virtually all scenarios that limit either peak or end-of-century warming to 1.5°C also use land-intensive CDR technologies (Rogelj 
et al., 2015; Holz et al., 2017; Kriegler et al., 2017; Fuss et al., 2018; van Vuuren et al., 2018). Again, AR (Sections 2.3 and 4.3.7) 
and BECCS (Sections 4.3.2. and 4.3.7) predominate. Other CDR options, such as the application of biochar to soil, soil carbon 
sequestration, and enhanced weathering (Section 4.3.7) are not yet widely incorporated into IAMs, but their deployment would also 
necessitate the use of land and/or changes in land management.

Integrated assessment models provide a simplified representation of land use and, with only a few exceptions, do not include 
biophysical feedback processes (e.g., albedo and evapotranspiration effects) (Kreidenweis et al., 2016) despite the importance of 
these processes for regional climate, in particular hot extremes (Section 3.6.2.2; Seneviratne et al., 2018c). The extent, location and 
impacts of large-scale land-use change described by existing IAMs can also be widely divergent, depending on model structure, 
scenario parameters, modelling objectives and assumptions (including regarding land availability and productivity) (Prestele et 
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al., 2016; Alexander et al., 2017; Popp et al., 2017; Seneviratne et al., 2018c). Despite these limitations, IAM scenarios effectively  
highlight the extent and nature of potential land-use transitions implicit in limiting warming to 1.5°C.

Cross-Chapter Box 7 Table 1 presents a comparison of the five CDR options assessed in this report. This illustrates that if BECCS 
and AR were to be deployed at a scale of 12 GtCO2 yr–1 in 2100, for example, they would have a substantial land and water 
footprint. Whether this footprint would result in adverse impacts, for example on biodiversity or food production, depends on the 
existence and effectiveness of measures to conserve land carbon stocks, limit the expansion of agriculture at the expense of natural 
ecosystems, and increase agriculture productivity (Bonsch et al., 2016; Obersteiner et al., 2016; Bertram et al., 2018; Humpenöder et 
al., 2018). In comparison, the land and water footprints of enhanced weathering, soil carbon sequestration and biochar application 
are expected to be far less per GtCO2 sequestered. These options may offer potential co-benefits by providing an additional source of 
nutrients or by reducing N2O emissions, but they are also associated with potential side effects. Enhanced weathering would require 
massive mining activity, and providing feedstock for biochar would require additional land, even though a proportion of the required 
biomass is expected to come from residues (Woolf et al., 2010; Smith, 2016). For the terrestrial CDR options, permanence and 
saturation are important considerations, making their viability and long-term contributions to carbon reduction targets uncertain.

The technical, political and social feasibility of scaling up and implementing land-intensive CDR technologies (Cross-Chapter Box 3 
in Chapter 1) is recognized to present considerable potential barriers to future deployment (Boucher et al., 2013a; Fuss et al., 2014, 
2018; Anderson and Peters, 2016; Vaughan and Gough, 2016; Williamson, 2016; Minx et al., 2017, 2018; Nemet et al., 2018; Strefler 
et al., 2018; Vaughan et al., 2018). To investigate the implications of restricting CDR options should these barriers prove difficult to 
overcome, IAM studies (Section 2.3.4) have developed scenarios that limit – either implicitly or explicitly – the use of BECCS and 
bioenergy (Krey et al., 2014; Bauer et al., 2018; Rogelj et al., 2018) or the use of BECCS and afforestation (Strefler et al., 2018). 
Alternative strategies to limit future reliance on CDR have also been examined, including increased electrification, agricultural 
intensification, behavioural change, and dramatic improvements in energy and material efficiency (Bauer et al., 2018; Grubler et 
al., 2018; van Vuuren et al., 2018). Somewhat counterintuitively, scenarios that seek to limit the deployment of BECCs may result in 
increased land use, through greater deployment of bioenergy, and afforestation (Chapter 2, Box 2.1; Krey et al., 2014; Krause et al., 
2017; Bauer et al., 2018; Rogelj et al., 2018). Scenarios aiming to minimize the total human land footprint (including land for food, 
energy and climate mitigation) also result in land-use change, for example by increasing agricultural efficiency and dietary change 
(Grubler et al., 2018).

The impacts of changing land use are highly context, location and scale dependent (Robledo‐Abad et al., 2017). The supply of 
biomass for CDR (e.g., energy crops) has received particular attention. The literature identifies regional examples of where the use 
of land to produce biofuels might be sustainably increased (Jaiswal et al., 2017), where biomass markets could contribute to the 
provision of ecosystem services (Dale et al., 2017), and where bioenergy could increase the resilience of production systems and 
contribute to rural development (Kline et al., 2017). However, studies of global biomass potential provide only limited insight into 
the local feasibility of supplying large quantities of biomass on a global scale (Slade et al., 2014). Concerns about large-scale use 
of biomass for CDR include a range of potential consequences including greatly increased demand for freshwater use, increased 
competition for land, loss of biodiversity and/or impacts on food security (Section 3.6.2.1; Heck et al., 2018). The short- versus long-
term carbon impacts of substituting biomass for fossil fuels, which are largely determined by feedstock choice, also remain a source 
of contention (Schulze et al., 2012; Jonker et al., 2014; Booth, 2018; Sterman et al., 2018).

Afforestation and reforestation can also present trade-offs between biodiversity, carbon sequestration and water use, and these 
strategies have a higher land footprint per tonne of CO2 removed (Cunningham, 2015; Naudts et al., 2016; Smith et al., 2018). 
For example, changing forest management to strategies favouring faster growing species, greater residue extraction and shorter 
rotations may have a negative impact on biodiversity (de Jong et al., 2014). In contrast, reforestation of degraded land with native 
trees can have substantial benefits for biodiversity (Section 3.6). Despite these constraints, the potential for increased carbon 
sequestration through improved land stewardship measures is considered to be substantial (Griscom et al., 2017).

Evaluating the synergies and trade-offs between mitigation and adaptation actions, resulting land and climate impacts, and the 
myriad issues related to land-use governance will be essential to better understand the future role of CDR technologies. This topic 
will be addressed further in the IPCC Special Report on Climate Change and Land (SRCCL) due to be published in 2019.

Cross-Chapter Box 7 (continued next page)

Cross-Chapter Box 7 (continued)
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Key messages:

Cost-effective strategies to limit peak or end-of-century warming to 1.5°C all include enhanced GHG removals in the AFOLU sector 
as part of their portfolio of measures (high confidence). 

Large-scale deployment of land-based CDR would have far-reaching implications for land and water availability (high confidence). 
This may impact food production, biodiversity and the provision of other ecosystem services (high confidence). 

The impacts of deploying land-based CDR at large scales can be reduced if a wider portfolio of CDR options is deployed, and if 
increased mitigation effort focuses on strongly limiting demand for land, energy and material resources, including through lifestyle 
and dietary changes (medium confidence).

Afforestation and reforestation may be associated with significant co-benefits if implemented appropriately, but they feature large 
land and water footprints if deployed at large scales (medium confidence). 

Cross-Chapter Box 7 (continued)

Cross-Chapter Box 7, Table 1 |	 Comparison of land-based carbon removal options.
Sources: a assessed ranges by Fuss et al. (2018), see Figures in Section 4.3.7 for full literature range; b based on the 2100 estimate for mean potentials by Smith et 
al. (2015). Note that biophysical impacts of land-based CDR options besides albedo changes (e.g., through changes in evapotranspiration related to irrigation or 
land cover/use type) are not displayed.

Option Potentials a Cost a Required 
land b

Required 
water b

Impact on 
nutrients b

Impact on 
albedo b

Saturation  
and permanence a

GtCO2 y
−1 $ tCO2

−1 Mha GtCO2
−1 km3 GtCO2

−1 Mt N, P, K y−1 No units No units

BECCS  0.5–5  100–200 31–58 60 Variable

Variable; depends on source 
of biofuel (higher albedo for 
crops than for forests) and 
on land management (e.g., 
no-till farming for crops)

Long-term governance of 
storage; limits on rates of 
bioenergy production and 
carbon sequestration

Afforestation 
& reforestation

0.5–3.6 5–50 80 92 0.5
Negative, or reduced GHG 
benefit where not negative

Saturation of forests; 
vulnerable to disturbance; 
post-AR forest 
management essential

Enhanced 
weathering

2–4 50–200 3 0.4 0 0
Saturation of soil; residence 
time from months to 
geological timescale

Biochar 0.3–2 30–120 16–100 0

N: 8.2,
P: 2.7,
K: 19.1 0.08–0.12

Mean residence times 
between decades to 
centuries, depending on 
soil type, management and 
environmental conditions 

Soil carbon 
sequestration

2.3–5 0–100 0 0
N: 21.8,
P: 5.5,
K: 4.1 

0
Soil sinks saturate and can 
reverse if poor management 
practices resume

3.6.3	 Implications Beyond the End of the Century 

3.6.3.1	 Sea ice

Sea ice is often cited as a tipping point in the climate system (Lenton, 
2012). Detailed modelling of sea ice (Schröder and Connolley, 2007; 
Sedláček et al., 2011; Tietsche et al., 2011), however, suggests that 
summer sea ice can return within a few years after its artificial removal 

for climates in the late 20th and early 21st centuries. Further studies 
(Armour et al., 2011; Boucher et al., 2012; Ridley et al., 2012) modelled 
the removal of sea ice by raising CO2 concentrations and studied 
subsequent regrowth by lowering CO2. These studies suggest that 
changes in Arctic sea ice are neither irreversible nor exhibit bifurcation 
behaviour. It is therefore plausible that the extent of Arctic sea ice may 
quickly re-equilibrate to the end-of-century climate under an overshoot 
scenario. 
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3.6.3.2	 Sea level

Policy decisions related to anthropogenic climate change will have a 
profound impact on sea level, not only for the remainder of this century 
but for many millennia to come (Clark et al., 2016). On these long time 
scales, 50 m of sea level rise (SLR) is possible (Clark et al., 2016). While it 
is virtually certain that sea level will continue to rise well beyond 2100, 
the amount of rise depends on future cumulative emissions (Church et 
al., 2013) as well as their profile over time (Bouttes et al., 2013; Mengel 
et al., 2018). Marzeion et al. (2018) found that 28–44% of present-day 
glacier volume is unsustainable in the present-day climate and that it 
would eventually melt over the course of a few centuries, even if there 
were no further climate change. Some components of SLR, such as 
thermal expansion, are only considered reversible on centennial time 
scales (Bouttes et al., 2013; Zickfeld et al., 2013), while the contribution 
from ice sheets may not be reversible under any plausible future 
scenario (see below).

Based on the sensitivities summarized by Levermann et al. (2013), the 
contributions of thermal expansion (0.20–0.63 m °C–1) and glaciers 
(0.21 m °C–1 but falling at higher degrees of warming mostly because 
of the depletion of glacier mass, with a possible total loss of about 
0.6 m) amount to 0.5–1.2 m and 0.6–1.7 m in 1.5°C and 2°C warmer 
worlds, respectively. The bulk of SLR on greater than centennial time 
scales will therefore be caused by contributions from the continental 
ice sheets of Greenland and Antarctica, whose existence is threatened 
on multi-millennial time scales. 

For Greenland, where melting from the ice sheet’s surface is important, 
a well-documented instability exists where the surface of a thinning 
ice sheet encounters progressively warmer air temperatures that 
further promote melting and thinning. A useful indicator associated 
with this instability is the threshold at which annual mass loss from 
the ice sheet by surface melt exceeds mass gain by snowfall. Previous 
estimates put this threshold at about 1.9°C to 5.1°C above pre-
industrial temperatures (Gregory and Huybrechts, 2006). More recent 
analyses, however, suggest that this threshold sits between 0.8°C 
and 3.2°C, with a best estimate at 1.6°C (Robinson et al., 2012). The 
continued decline of the ice sheet after this threshold has been passed 
is highly dependent on the future climate and varies between about 
80% loss after 10,000 years to complete loss after as little as 2000 
years (contributing about 6 m to SLR). Church et al. (2013) were unable 
to quantify a likely range for this threshold. They assigned medium 
confidence to a range greater than 2°C but less than 4°C, and had 
low confidence in a threshold of about 1°C. There is insufficient new 
literature to change this assessment.

The Antarctic ice sheet, in contrast, loses the mass gained by snowfall 
as outflow and subsequent melt to the ocean, either directly from the 
underside of floating ice shelves or indirectly by the melting of calved 
icebergs. The long-term existence of this ice sheet will also be affected 
by a potential instability (the marine ice sheet instability, MISI), which 
links outflow (or mass loss) from the ice sheet to water depth at the 
grounding line (i.e., the point at which grounded ice starts to float and 
becomes an ice shelf) so that retreat into deeper water (the bedrock 
underlying much of Antarctica slopes downwards towards the centre 
of the ice sheet) leads to further increases in outflow and promotes 

yet further retreat (Schoof, 2007). More recently, a variant on this 
mechanism was postulated in which an ice cliff forms at the grounding 
line and retreats rapidly though fracture and iceberg calving (DeConto 
and Pollard, 2016). There is a growing body of evidence (Golledge et 
al., 2015; DeConto and Pollard, 2016) that large-scale retreat may be 
avoided in emissions scenarios such as Representative Concentration 
Pathway (RCP)2.6 but that higher-emissions RCP scenarios could lead 
to the loss of the West Antarctic ice sheet and sectors in East Antarctica, 
although the duration (centuries or millennia) and amount of mass loss 
during such a collapse is highly dependent on model details and no 
consensus exists yet. Schoof (2007) suggested that retreat may be 
irreversible, although a rigorous test has yet to be made. In this context, 
overshoot scenarios, especially of higher magnitude or longer duration, 
could increase the risk of such irreversible retreat.

Church et al. (2013) noted that the collapse of marine sectors of the 
Antarctic ice sheet could lead to a global mean sea level (GMSL) rise 
above the likely range, and that there was medium confidence that this 
additional contribution ‘would not exceed several tenths of a metre 
during the 21st century’. 

The multi-centennial evolution of the Antarctic ice sheet has been 
considered in papers by DeConto and Pollard (2016) and Golledge et 
al. (2015). Both suggest that RCP2.6 is the only RCP scenario leading 
to long-term contributions to GMSL of less than 1.0 m. The long-term 
committed future of Antarctica and the GMSL contribution at 2100 
are complex and require further detailed process-based modelling; 
however, a threshold in this contribution may be located close to 1.5°C 
to 2°C of global warming.

In summary, there is medium confidence that a threshold in the long-
term GMSL contribution of both the Greenland and Antarctic ice sheets 
lies around 1.5°C to 2°C of global warming relative to pre-industrial; 
however, the GMSL associated with these two levels of global warming 
cannot be differentiated on the basis of the existing literature. 

3.6.3.3	 Permafrost

The slow rate of permafrost thaw introduces a lag between the 
transient degradation of near-surface permafrost and contemporary 
climate, so that the equilibrium response is expected to be 25–38% 
greater than the transient response simulated in climate models (Slater 
and Lawrence, 2013). The long-term, equilibrium Arctic permafrost loss 
to global warming was analysed by Chadburn et al. (2017). They used 
an empirical relation between recent mean annual air temperatures 
and the area underlain by permafrost coupled to Coupled Model 
Intercomparison Project Phase 5 (CMIP5) stabilization projections 
to 2300 for RCP2.6 and RCP4.5. Their estimate of the sensitivity of 
permafrost to warming is 2.9–5.0 million km2 °C–1 (1 standard deviation 
confidence interval), which suggests that stabilizing climate at 1.5°C as 
opposed to 2°C would reduce the area of eventual permafrost loss by 
1.5 to 2.5 million km2 (stabilizing at 56–83% as opposed to 43–72% of 
1960–1990 levels). This work, combined with the assessment of Collins 
et al. (2013) on the link between global warming and permafrost loss, 
leads to the assessment that permafrost extent would be appreciably 
greater in a 1.5°C warmer world compared to in a 2°C warmer world 
(low to medium confidence).
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3.7	 Knowledge Gaps 

Most scientific literature specific to global warming of 1.5°C is only 
just emerging. This has led to differences in the amount of information 
available and gaps across the various sections of this chapter. In 
general, the number of impact studies that specifically focused on 
1.5°C lags behind climate-change projections in general, due in part to 
the dependence of the former on the latter. There are also insufficient 
studies focusing on regional changes, impacts and consequences at 
1.5°C and 2°C of global warming. 

The following gaps have been identified with respect to tools, 
methodologies and understanding in the current scientific literature 
specific to Chapter 3. The gaps identified here are not comprehensive 
but highlight general areas for improved understanding, especially 
regarding global warming at 1.5°C compared to 2°C and higher levels.

3.7.1	 Gaps in Methods and Tools 

•	 Regional and global climate model simulations for low-emissions 
scenarios such as a 1.5°C warmer world. 

•	 Robust probabilistic models which separate the relatively small 
signal between 1.5°C versus 2°C from background noise, and 
which handle the many uncertainties associated with non-
linearities, innovations, overshoot, local scales, and latent or 
lagging responses in climate. 

•	 Projections of risks under a range of climate and development 
pathways required to understand how development choices 
affect the magnitude and pattern of risks, and to provide better 
estimates of the range of uncertainties. 

•	 More complex and integrated socio-ecological models for predicting 
the response of terrestrial as well as coastal and oceanic ecosystems 
to climate and models which are more capable of separating climate 
effects from those associated with human activities.

•	 Tools for informing local and regional decision-making, especially 
when the signal is ambiguous at 1.5°C and/or reverses sign at 
higher levels of global warming.

3.7.2	 Gaps in Understanding 

3.7.2.1	 Earth systems and 1.5°C of global warming

•	 The cumulative effects of multiple stresses and risks (e.g., 
increased storm intensity interacting with sea level rise and the 
effect on coastal people; feedbacks on wetlands due to climate 
change and human activities). 

•	 Feedbacks associated with changes in land use/cover for low-
emissions scenarios, for example feedback from changes in 
forest cover, food production, biofuel production, bio-energy with 
carbon capture and storage (BECCS), and associated unquantified 
biophysical impacts. 

•	 The distinct impacts of different overshoot scenarios, depending 
on (i) the peak temperature of the overshoot, (ii) the length of the 
overshoot period, and (iii) the associated rate of change in global 
temperature over the time period of the overshoot. 

3.7.2.2	 Physical and chemical characteristics of a 1.5°C 
warmer world

•	 Critical thresholds for extreme events (e.g., drought and inundation) 
between 1.5°C and 2°C of warming for different climate models 
and projections. All aspects of storm intensity and frequency as a 
function of climate change, especially for 1.5°C and 2°C warmer 
worlds, and the impact of changing storminess on storm surges, 
damage, and coastal flooding at regional and local scales.

•	 The timing and implications of the release of stored carbon in 
Arctic permafrost in a 1.5°C warmer world and for climate 
stabilization by the end of the century.

•	 Antarctic ice sheet dynamics, global sea level, and links between 
seasonal and year-long sea ice in both polar regions.

3.7.2.3	 Terrestrial and freshwater systems

•	 The dynamics between climate change, freshwater resources and 
socio-economic impacts for lower levels of warming. 

•	 How the health of vegetation is likely to change, carbon storage in 
plant communities and landscapes, and phenomena such as the 
fertilization effect. 

•	 The risks associated with species’ maladaptation in response to 
climatic changes (e.g., effects of late frosts). Questions associated 
with issues such as the consequences of species advancing their 
spring phenology in response to warming, as well as the interaction 
between climate change, range shifts and local adaptation in a 
1.5°C warmer world.

•	 The biophysical impacts of land use in the context of mitigation 
pathways.

3.7.2.4	 Ocean Systems

•	 Deep sea processes and risks to deep sea habitats and ecosystems.

•	 How changes in ocean chemistry in a 1.5°C warmer world, 
including decreasing ocean oxygen content, ocean acidification 
and changes in the activity of multiple ion species, will affect 
natural and human systems. 

•	 How ocean circulation is changing towards 1.5°C and 2°C warmer 
worlds, including vertical mixing, deep ocean processes, currents, 
and their impacts on weather patterns at regional to local scales.

•	 The impacts of changing ocean conditions at 1.5°C and 2°C of 
warming on foodwebs, disease, invading species, coastal protection, 
fisheries and human well-being, especially as organisms modify 
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their biogeographical ranges within a changing ocean.

•	 Specific linkages between food security and changing coastal and 
ocean resources. 

3.7.2.5	 Human systems

•	 The impacts of global and regional climate change at 1.5°C on 
food distribution, nutrition, poverty, tourism, coastal infrastructure 
and public health, particularly for developing nations. 

•	 Health and well-being risks in the context of socio-economic 
and climate change at 1.5°C, especially in key areas such as 
occupational health, air quality and infectious disease.

•	 Micro-climates at urban/city scales and their associated risks 

for natural and human systems, within cities and in interaction 
with surrounding areas. For example, current projections do not 
integrate adaptation to projected warming by considering cooling 
that could be achieved through a combination of revised building 
codes, zoning and land use to build more reflective roofs and 
urban surfaces that reduce urban heat island effects.

•	 Implications of climate change at 1.5°C on livelihoods and 
poverty, as well as on rural communities, indigenous groups and 
marginalized people.

•	 The changing levels of risk in terms of extreme events, including 
storms and heatwaves, especially with respect to people being 
displaced or having to migrate away from sensitive and exposed 
systems such as small islands, low-lying coasts and deltas.
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Cross-Chapter Box 8 |  1.5°C Warmer Worlds  

Lead Authors: 
Sonia I. Seneviratne (Switzerland), Joeri Rogelj (Austria/Belgium), Roland Séférian (France), Myles R. Allen (United Kingdom), Marcos 
Buckeridge (Brazil), Kristie L. Ebi (United States of America), Ove Hoegh-Guldberg (Australia), Richard J. Millar (United Kingdom), 
Antony J. Payne (United Kingdom), Petra Tschakert (Australia), Rachel Warren (United Kingdom)

Contributing Authors: 
Neville Ellis (Australia), Richard Wartenburger (Germany/Switzerland)

Introduction 
 
The Paris Agreement includes goals of stabilizing global mean surface temperature (GMST) well below 2°C and 1.5°C above pre-
industrial levels in the longer term. There are several aspects, however, that remain open regarding what a ‘1.5°C warmer world’ 
could be like, in terms of mitigation (Chapter 2) and adaptation (Chapter 4), as well as in terms of projected warming and associated 
regional climate change (Chapter 3), which are overlaid on anticipated and differential vulnerabilities (Chapter 5). Alternative 
‘1.5°C warmer worlds’ resulting from mitigation and adaptation choices, as well as from climate variability (climate 
‘noise’), can be vastly different, as highlighted in this Cross-Chapter Box. In addition, the range of models underlying 1.5°C 
projections can be substantial and needs to be considered. 

Key questions7:

•	 What is a 1.5°C global mean warming, how is it measured, and what temperature increase does it imply for 
single locations and at specific times? Global mean surface temperature (GMST) corresponds to the globally averaged 
temperature of Earth derived from point-scale ground observations or computed in climate models (Chapters 1 and 3). Global 
mean surface temperature is additionally defined over a given time frame, for example averaged over a month, a year, or 
multiple decades. Because of climate variability, a climate-based GMST typically needs to be defined over several decades 
(typically 20 or 30 years; Chapter 3, Section 3.2). Hence, whether or when global warming reaches 1.5°C depends to some 
extent on the choice of pre-industrial reference period, whether 1.5°C refers to total or human-induced warming, and which 
variables and coverage are used to define GMST change (Chapter 1). By definition, because GMST is an average in time and 
space, there will be locations and time periods in which 1.5°C of warming is exceeded, even if the global mean warming is at 
1.5°C. In some locations, these differences can be particularly large (Cross-Chapter Box 8, Figure 1).

•	 What is the impact of different climate models for projected changes in climate at 1.5°C of global warming? 
The range between single model simulations of projected regional changes at 1.5°C GMST increase can be substantial for 
regional responses (Chapter 3, Section 3.3). For instance, for the warming of cold extremes in a 1.5°C warmer world, some 
model simulations project a 3°C warming while others project more than 6°C of warming in the Arctic land areas (Cross-
Chapter Box 8, Figure 2). For hot temperature extremes in the contiguous United States, the range of model simulations 
includes temperatures lower than pre-industrial values (–0.3°C) and a warming of 3.5°C (Cross-Chapter Box 8, Figure 2). Some 
regions display an even larger range (e.g., 1°C–6°C regional warming in hot extremes in central Europe at 1.5°C of warming; 
Chapter 3, Sections 3.3.1 and 3.3.2). This large spread is due to both modelling uncertainty and internal climate variability. 
While the range is large, it also highlights risks that can be avoided with near certainty in a 1.5°C warmer world compared 
to worlds at higher levels of warming (e.g., an 8°C warming of cold extremes in the Arctic is not reached at 1.5°C of global 
warming in the multimodel ensemble but could happen at 2°C of global warming; Cross-Chapter Box 8, Figure 2). Inferred 
projected ranges of regional responses (mean value, minimum and maximum) for different mitigation scenarios from Chapter 
2 are displayed in Cross-Chapter Box 8, Table 1. 

•	 What is the impact of emissions pathways with, versus without, an overshoot? All mitigation pathways projecting less 
than 1.5°C of global warming over or at the end of the 21st century include some probability of overshooting 1.5°C. These 
pathways include some periods with warming stronger than 1.5°C in the course of the coming decades and/or some probability 
of not reaching 1.5°C (Chapter 2, Section 2.2). This is inherent to the difficulty of limiting global warming to 1.5°C, given that 
we are already very close to this warming level. The implications of overshooting are large for risks to natural and human 
 
 
 
 

7	 Part of this discussion is based on Seneviratne et al. (2018b).
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Cross-Chapter Box 8 (continued)

Cross-Chapter Box 8, Figure 1 |  Range of projected realized temperatures at 1.5°C of global warming (due to stochastic noise and model-based spread). 
Temperatures with a 25% chance of occurrence at any location within a 10-year time frame are shown, corresponding to GMST anomalies of 1.5°C (Coupled Model 
Intercomparison Project Phase 5 (CMIP5) multimodel ensemble). The plots display the 25th percentile (Q25, left) and 75th percentile (Q75, right) values of mean 
temperature (Tmean), yearly maximum daytime temperature (TXx) and yearly minimum night-time temperature (TNn), sampled from all time frames with GMST 
anomalies of 1.5°C in Representative Concentration Pathway (RCP)8.5 model simulations of the CMIP5 ensemble. From Seneviratne et al. (2018b).

Cross-Chapter Box 8 (continued next page)
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systems, especially if the temperature at peak warming is high, because some risks may be long lasting and irreversible, such 
as the loss of some ecosystems (Chapter 3, Box 3.4). The chronology of emissions pathways and their implied warming is also 
important for the more slowly evolving parts of the Earth system, such as those associated with sea level rise. In addition, for 
several types of risks the rate of change may be most relevant (Loarie et al., 2009; LoPresti et al., 2015), with potentially large 
risks occurring in the case of a rapid rise to overshooting temperatures, even if a decrease to 1.5°C may be achieved at the end 
of the 21st century or later. On the other hand, if overshoot is to be minimized, the remaining equivalent CO2 budget available 
for emissions has to be very small, which implies that large, immediate and unprecedented global efforts to mitigate GHGs are 
required (Cross-Chapter Box 8, Table 1; Chapter 4).

•	 What is the probability of reaching 1.5°C of global warming if emissions compatible with 1.5°C pathways are 
followed? Emissions pathways in a ‘prospective scenario’ (see Chapter 1, Section 1.2.3, and Cross-Chapter Box 1 in Chapter 1 
on ‘Scenarios and pathways’) compatible with 1.5°C of global warming are determined based on their probability of reaching 
1.5°C by 2100 (Chapter 2, Section 2.1), given current knowledge of the climate system response. These probabilities cannot 
be quantified precisely but are typically 50–66% in 1.5°C-consistent pathways (Section 1.2.3). This implies a one-in-two to 
one-in-three probability that global warming would exceed 1.5°C even under a 1.5°C-consistent pathway, including some 
possibility that global warming would be substantially over this value (generally about 5–10% probability; see Cross-Chapter 
Box 8, Table 1 and Seneviratne et al., 2018b). These alternative outcomes need to be factored into the decision-making process. 
To address this issue, ‘adaptive’ mitigation scenarios have been proposed in which emissions are continually adjusted to 
achieve a temperature goal (Millar et al., 2017). The set of dimensions involved in mitigation options (Chapter 4) is complex 
and need system-wide approaches to be successful. Adaptive scenarios could be facilitated by the global stocktake mechanism 
established in the Paris Agreement, and thereby transfer the risk of higher-than-expected warming to a risk of faster-than- 
expected mitigation efforts. However, there are some limits to the feasibility of such approaches because some investments, for 
example in infrastructure, are long term and also because the actual departure from an aimed pathway will need to be detected 
against the backdrop of internal climate variability, typically over several decades (Haustein et al., 2017; Seneviratne et al., 
2018b). Avoiding impacts that depend on atmospheric composition as well as GMST (Baker et al., 2018) would also require 
limits on atmospheric CO2 concentrations in the event of a lower-than-expected GMST response.

•	 How can the transformation towards a 1.5°C warmer world be implemented? This can be achieved in a variety of 
ways, such as decarbonizing the economy with an emphasis on demand reductions and sustainable lifestyles, or, alternatively, 
with an emphasis on large-scale technological solutions, amongst many other options (Chapter 2, Sections 2.3 and 2.4; 
Chapter 4, Sections 4.1 and 4.4.4). Different portfolios of mitigation measures come with distinct synergies and trade-offs with 
respect to other societal objectives. Integrated solutions and approaches are required to achieve multiple societal objectives 
simultaneously (see Chapter 4, Section 4.5.4 for a set of synergies and trade-offs).

Cross-Chapter Box 8 (continued)

Cross-Chapter Box 8, Figure 2 |  Spread of projected multimodel changes in minimum annual night-time temperature (TNn) in Arctic land (left) and in maximum 
annual daytime temperature (TXx) in the contiguous United States as a function of mean global warming in climate simulations. The multimodel range (due to 
model spread and internal climate variability) is indicated in red shading (minimum and maximum value based on climate model simulations). The multimodel 
mean value is displayed with solid red and blue lines for two emissions pathways (blue: Representative Concentration Pathway (RCP)4.5; red: RCP8.5). The dashed 
red line indicates projections for a 1.5°C warmer world. The dashed black line displays the 1:1 line. The figure is based on Figure 3 of Seneviratne et al. (2016). 

Global mean temperature anomaly relative to pre-industrial conditions (°C)
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•	 What determines risks and opportunities in a 1.5°C warmer world? The risks to natural, managed and human systems in 
a 1.5°C warmer world will depend not only on uncertainties in the regional climate that results from this level of warming, but 
also very strongly on the methods that humanity uses to limit global warming to 1.5°C. This is particularly the case for natural 
ecosystems and agriculture (see Cross-Chapter Box 7 in this chapter and Chapter 4, Section 4.3.2). The risks to human systems 
will also depend on the magnitude and effectiveness of policies and measures implemented to increase resilience to the risks 
of climate change and on development choices over coming decades, which will influence the underlying vulnerabilities and 
capacities of communities and institutions for responding and adapting.

•	 Which aspects are not considered, or only partly considered, in the mitigation scenarios from Chapter 2? These 
include biophysical impacts of land use, water constraints on energy infrastructure, and regional implications of choices of 
specific scenarios for tropospheric aerosol concentrations or the modulation of concentrations of short-lived climate forcers, 
that is, greenhouse gases (Chapter 3, Section 3.6.3). Such aspects of development pathways need to be factored into 
comprehensive assessments of the regional implications of mitigation and adaptation measures. On the other hand, some of 
these aspects are assessed in Chapter 4 as possible options for mitigation and adaptation to a 1.5°C warmer world.

•	 Are there commonalities to all alternative 1.5°C warmer worlds? Human-driven warming linked to CO2 emissions is nearly 
irreversible over time frames of 1000 years or more (Matthews and Caldeira, 2008; Solomon et al., 2009). The GSMT of the Earth 
responds to the cumulative amount of CO2 emissions. Hence, all 1.5°C stabilization scenarios require both net CO2 emissions and 
multi-gas CO2-forcing-equivalent emissions to be zero at some point (Chapter 2, Section 2.2). This is also the case for stabilization 
scenarios at higher levels of warming (e.g., at 2°C); the only difference is the projected time at which the net CO2 budget is zero. 

Hence, a transition to decarbonization of energy use is necessary in all scenarios. It should be noted that all scenarios 
of Chapter 2 include approaches for carbon dioxide removal (CDR) in order to achieve the net zero CO2 emissions budget. 
Most of these use carbon capture and storage (CCS) in addition to reforestation, although to varying degrees (Chapter 
4, Section 4.3.7). Some potential pathways to 1.5°C of warming in 2100 would minimize the need for CDR (Obersteiner et 
al., 2018; van Vuuren et al., 2018). Taking into account the implementation of CDR, the CO2-induced warming by 2100 is 
determined by the difference between the total amount of CO2 generated (that can be reduced by early decarbonization) and 
the total amount permanently stored out of the atmosphere, for example by geological sequestration (Chapter 4, Section 4.3.7).

•	 What are possible storylines of ‘warmer worlds’ at 1.5°C versus higher levels of global warming? Cross-Chapter Box 
8, Table 2 features possible storylines based on the scenarios of Chapter 2, the impacts of Chapters 3 and 5, and the options of 
Chapter 4. These storylines are not intended to be comprehensive of all possible future outcomes. Rather, they are intended as 
plausible scenarios of alternative warmer worlds, with two storylines that include stabilization at 1.5°C (Scenario 1) or close to 
1.5°C (Scenario 2), and one storyline missing this goal and consequently only including reductions of CO2 emissions and efforts 
towards stabilization at higher temperatures (Scenario 3).

Summary:

There is no single ‘1.5°C warmer world’. Impacts can vary strongly for different worlds characterized by a 1.5°C global 
warming. Important aspects to consider (besides the changes in global temperature) are the possible occurrence 
of an overshoot and its associated peak warming and duration, how stabilization of the increase in global surface 
temperature at 1.5°C could be achieved, how policies might be able to influence the resilience of human and natural 
systems, and the nature of regional and subregional risks. 

The implications of overshooting are large for risks to natural and human systems, especially if the temperature at peak warming 
is high, because some risks may be long lasting and irreversible, such as the loss of some ecosystems. In addition, for several types 
of risks, the rate of change may be most relevant, with potentially large risks occurring in the case of a rapid rise to overshooting 
temperatures, even if a decrease to 1.5°C may be achieved at the end of the 21st century or later. If overshoot is to be minimized, the 
remaining equivalent CO2 budget available for emissions has to be very small, which implies that large, immediate and unprecedented 
global efforts to mitigate GHGs are required. 

The time frame for initiating major mitigation measures is essential in order to reach a 1.5°C (or even a 2°C) global stabilization 
of climate warming (see consistent cumulative CO2 emissions up to peak warming in Cross-Chapter Box 8, Table 1). If mitigation 
pathways are not rapidly activated, much more expensive and complex adaptation measures will have to be taken to avoid the 
impacts of higher levels of global warming on the Earth system. Cross-Chapter Box 8 (continued next page)

Cross-Chapter Box 8 (continued)
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Cross-Chapter Box 8, Table 1 |  Different worlds resulting from 1.5°C and 2°C mitigation (prospective) pathways, including 66% (probable) best-case outcome, 
and 5% worst-case outcome, based on Chapter 2 scenarios and Chapter 3 assessments of changes in regional climate. Note that the pathway characteristics 
estimates are based on computations with the MAGICC model (Meinshausen et al., 2011) consistent with the set-up used in AR5 WGIII (Clarke et al., 2014),  
but are uncertain and will be subject to updates and adjust-ments (see Chapter 2 for details). Updated from Seneviratne et al. (2018b).

Notes: 
a) 	66th percentile for global temperature (that is, 66% likelihood of being at or below values)

b)	 95th percentile for global temperature (that is, 5% likelihood of being at or above values)

c)	 All 1.5°C scenarios include a substantial probability of overshooting above 1.5°C global warming before returning to 1.5°C.

d)	 Interquartile range (25th percentile, q25, and 75th percentile, q75)

e) 	The regional projections in these rows provide the median and the range [q25, q75] associated with the median global temperature outcomes of the considered mitigation  
	 scenarios at peak warming.

f)	 TNn: Annual minimum night-time temperature

g)	 TXx: Annual maximum day-time temperature

h)	 Indicates drying of soil moisture expressed in units of standard deviations of pre-industrial climate (1861–1880) variability (where −1 is dry; −2 is severely dry; and −3 is very  
	 severely dry);

i)	 Rx5day: the annual maximum consecutive 5-day precipitation.

j)	 As for footnote e, but for the regional responses associated with the median global temperature outcomes of the considered mitigation scenarios in 2100

B1.5_LOS (below 1.5°C 
with low overshoot)
with 2/3 ´probable 

best-case outcome´a

B1.5_LOS (below 1.5°C 
with low overshoot) 

with 1/20 ´worst-case 
outcome´b

L20 (lower than 2°C) 
with 2/3 ´probable 

best-case outcome´a

L20 (lower than 2°C) 
with 1/20 ´worst-case 

outcome´b

Overshoot > 1.5°C in 21st centuryc Yes (51/51) Yes (51/51) Yes (72/72) Yes (72/72)

Overshoot > 2°C in 21st century No (0/51) Yes (37/51) No (72/72) Yes (72/72)

Cumulative CO2 emissions up to peak 
warming (relative to 2016)d [GtCO2]

610–760 590–750 1150–1460 1130–1470

Cumulative CO2 emissions up to 
2100 (relative to 2016)d [GtCO2]

170–560 1030–1440

Global GHG emissions in 2030d [GtCO2 y-1] 19–23 31–38

Years of global net zero CO2 emissionsd 2055–2066 2082–2090

Global mean temperature 
anomaly at peak warming 

1.7°C (1.66°C–1.72°C) 2.05°C (2.00°C–2.09°C) 2.11°C (2.05°C–2.17°C) 2.67°C (2.59°C–2.76°C)

Warming in the Arctice (TNnf) 4.93°C (4.36, 5.52) 6.02°C (5.12, 6.89) 6.24°C (5.39, 7.21) 7.69°C (6.69, 8.93)

Warming in Central North Americae (TXxg) 2.65°C (1.92, 3.15) 3.11°C (2.37, 3.63) 3.18°C (2.50, 3.71) 4.06°C (3.35, 4.63)

Warming in Amazon regione (TXx) 2.55°C (2.23, 2.83) 3.07°C (2.74, 3.46) 3.16°C (2.84, 3.57) 4.05°C (3.62, 4.46)

Drying in the Mediterranean regione,h –1.11 (–2.24, –0.41) –1.28 (–2.44, –0.51) –1.38 (–2.58, –0.53) –1.56 (–3.19, –0.67)

Increase in heavy precipita-
tion eventse in Southern Asiai 

9.94% (6.76, 14.00) 11.94% (7.52, 18.86) 12.68% (7.71, 22.39) 19.67% (11.56, 27.24)

Global mean temperature 
warming in 2100 

1.46°C (1.41°C–1.51°C) 1.87°C (1.81°C–1.94°C) 2.06°C (1.99°C–2.15°C) 2.66°C (2.56°C–2.76°C)

Warming in the Arcticj (TNn) 4.28°C (3.71, 4.77) 5.50°C (4.74, 6.21) 6.08°C (5.20, 6.94) 7.63°C (6.66, 8.90)

Warming in Central North Americaj (TXx) 2.31°C (1.56, 2.66) 2.83°C (2.03, 3.49) 3.12°C (2.38, 3.67) 4.06°C (3.33, 4.59)

Warming in Amazon regionj (TXx) 2.22°C (2.00, 2.45) 2.76°C (2.50, 3.07) 3.10°C (2.75, 3.49) 4.03°C (3.62, 4.45)

Drying in the Mediterranean regionj –0.95 (–1.98, –0.30) –1.10 (–2.17, –0.51) –1.26 (–2.43, –0.52) –1.55 (–3.17, –0.67)

Increase in heavy precipitation events  
in Southern Asiaj 

8.38% (4.63, 12.68) 10.34% (6.64, 16.07) 12.02% (7.41, 19.62) 19.72% (11.34, 26.95)
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Scenario 1 [one possible storyline 
among best-case scenarios]: 

Mitigation:  
early move to decarbonization, 
decarbonization designed to minimize 
land footprint, coordination and 
rapid action of the world’s nations 
towards 1.5°C goal by 2100

Internal climate variability:  
probable (66%) best-case outcome for 
global and regional climate responses

In 2020, strong participation and support for the Paris Agreement and its ambitious goals for reducing CO2 emissions 
by an almost unanimous international community led to a time frame for net zero emissions that is compatible with 
halting global warming at 1.5°C by 2100. 

There is strong participation in all major world regions at the national, state and/or city levels. Transport is strongly decarbonized 
through a shift to electric vehicles, with more cars with electric than combustion engines being sold by 2025 (Chapter 2, Section 
2.4.3; Chapter 4, Section 4.3.3). Several industry-sized plants for carbon capture and storage are installed and tested in the 2020s 
(Chapter 2, Section 2.4.2; Chapter 4, Sections 4.3.4 and 4.3.7). Competition for land between bioenergy cropping, food production, 
and biodiversity conservation is minimized by sourcing bioenergy for carbon capture and storage from agricultural wastes, algae 
and kelp farms (Cross-Chapter Box 7 in Chapter 3; Chapter 4, Section 4.3.2). Agriculture is intensified in countries with coordinated 
planning associated with a drastic decrease in food waste (Chapter 2, Section 2.4.4; Chapter 4, Section 4.3.2). This leaves many 
natural ecosystems relatively intact, supporting continued provision of most ecosystem services, although relocation of species 
towards higher latitudes and elevations still results in changes in local biodiversity in many regions, particularly in mountain, 
tropical, coastal and Arctic ecosystems (Chapter 3, Section 3.4.3). Adaptive measures such as the establishment of corridors for 
the movement of species and parts of ecosystems become a central practice within conservation management (Chapter 3, Section 
3.4.3; Chapter 4, Section 4.3.2). The movement of species presents new challenges for resource management as novel ecosystems, 
as well as pests and disease, increase (Cross-Chapter Box 6 in Chapter 3). Crops are grown on marginal land, no-till agriculture is 
deployed, and large areas are reforested with native trees (Chapter 2, Section 2.4.4; Chapter 3, Section 3.6.2; Cross-Chapter Box 
7 in Chapter 3; Chapter 4, Section 4.3.2). Societal preference for healthy diets reduces meat consumption and associated GHG 
emissions (Chapter 2, Section 2.4.4; Chapter 4, Section 4.3.2; Cross-Chapter Box 6 in Chapter 3). 

By 2100, global mean temperature is on average 0.5°C warmer than it was in 2018 (Chapter 1, Section 1.2.1). Only a minor 
temperature overshoot occurs during the century (Chapter 2, Section 2.2). In mid-latitudes, frequent hot summers and precipitation 
events tend to be more intense (Chapter 3, Section 3.3). Coastal communities struggle with increased inundation associated 
with rising sea levels and more frequent and intense heavy rainfall (Chapter 3, Sections 3.3.2 and 3.3.9; Chapter 4, Section 
4.3.2; Chapter 5, Box 5.3 and Section 5.3.2; Cross-Chapter Box 12 in Chapter 5), and some respond by moving, in many cases 
with consequences for urban areas. In the tropics, in particular in megacities, there are frequent deadly heatwaves whose risks 
are reduced by proactive adaptation (Chapter 3, Sections 3.3.1 and 3.4.8; Chapter 4, Section 4.3.8), overlaid on a suite of 
development challenges and limits in disaster risk management (Chapter 4, Section 4.3.3; Chapter 5, Sections 5.2.1 and 5.2.2; 
Cross-Chapter Box 12 in Chapter 5). Glaciers extent decreases in most mountainous areas (Chapter 3, Sections 3.3.5 and 3.5.4). 
Reduced Arctic sea ice opens up new shipping lanes and commercial corridors (Chapter 3, Section 3.3.8; Chapter 4, Box 4.3). 
Small island developing states (SIDS), as well as coastal and low-lying areas, have faced significant changes but have largely 
persisted in most regions (Chapter 3, Sections 3.3.9 and 3.5.4, Box 3.5). The Mediterranean area becomes drier (Chapter 3, 
Section 3.3.4 and Box 3.2) and irrigation of crops expands, drawing the water table down in many areas (Chapter 3, Section 
3.4.6). The Amazon is reasonably well preserved, through avoided risk of droughts (Chapter 3, Sections 3.3.4 and 3.4.3; Chapter 
4, Box 4.3) and reduced deforestation (Chapter 2, Section 2.4.4; Cross-Chapter Box 7 in Chapter 3; Chapter 4, Section 4.3.2), and 
the forest services are working with the pattern observed at the beginning of the 21st century (Chapter 4, Box 4.3). While some 
climate hazards become more frequent (Chapter 3, Section 3.3), timely adaptation measures help reduce the associated risks 
for most, although poor and disadvantaged groups continue to experience high climate risks to their livelihoods and well-being  
(Chapter 5, Section 5.3.1; Cross-Chapter Box 12 in Chapter 5; Chapter 3, Boxes 3.4 and 3.5; Cross-Chapter Box 6 in Chapter 3). 
Summer sea ice has not completely disappeared from the Arctic (Chapter 3, Section 3.4.4.7) and coral reefs, having been driven to 
a low level (10–30% of levels in 2018), have partially recovered by 2100 after extensive dieback (Chapter 3, Section 3.4.4.10 and 
Box 3.4). The Earth system, while warmer, is still recognizable compared to the 2000s, and no major tipping points are reached 
(Chapter 3, Section 3.5.2.5). Crop yields remain relatively stable (Chapter 3, Section 3.4). Aggregate economic damage of climate 
change impacts is relatively small, although there are some local losses associated with extreme weather events (Chapter 3, 
Section 3.5; Chapter 4). Human well-being remains overall similar to that in 2020 (Chapter 5, Section 5.2.2).

Scenario 2 [one possible storyline 
among mid-case scenarios]:

Mitigation:  
delayed action (ambitious targets 
reached only after warmer decade 
in the 2020s due to internal climate 
variability), overshoot at 2°C, decrease  
towards 1.5°C afterward, no efforts to  
minimize the land and water footprints  
of bioenergy 

Internal climate variability:  
10% worst-case outcome (2020s)  
followed by normal internal climate 
variability 

The international community continues to largely support the Paris Agreement and agrees in 2020 on reduction 
targets for CO2 emissions and time frames for net zero emissions. However, these targets are not ambitious enough 
to reach stabilization at 2°C of warming, let alone 1.5°C. 

In the 2020s, internal climate variability leads to higher warming than projected, in a reverse development to what 
happened in the so-called ‘hiatus’ period of the 2000s. Temperatures are regularly above 1.5°C of warming, although 
radiative forcing is consistent with a warming of 1.2°C or 1.3°C. Deadly heatwaves in major cities (Chicago, Kolkata, Beijing, 
Karachi, São Paulo), droughts in southern Europe, southern Africa and the Amazon region, and major flooding in Asia, all 
intensified by the global and regional warming (Chapter 3, Sections 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.4.8; Cross-Chapter 
Box 11 in Chapter 4), lead to increasing levels of public unrest and political destabilization (Chapter 5, Section 5.2.1). An 
emergency global summit in 2025 moves to much more ambitious climate targets. Costs for rapidly phasing out fossil fuel use and 
infrastructure, while rapidly expanding renewables to reduce emissions, are much higher than in Scenario 1, owing to a failure to 
support economic measures to drive the transition (Chapter 4). Disruptive technologies become crucial to face up to the adaptation 
measures needed (Chapter 4, Section 4.4.4).

Cross-Chapter Box 8, Table 2 |	 Storylines of possible worlds resulting from different mitigation options. The storylines build upon Cross-Chapter Box 8, Table 
1 and the assessments of Chapters 1–5. Only a few of the many possible storylines were chosen and they are presented for illustrative purposes. 

Cross-Chapter Box 8 (continued)
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Cross-Chapter Box 8, Table 2 (continued)

Cross-Chapter Box 8 (continued)

Scenario 2 [one possible storyline 
among mid-case scenarios]:

Mitigation:  
delayed action (ambitious targets 
reached only after warmer decade 
in the 2020s due to internal climate 
variability), overshoot at 2°C, decrease  
towards 1.5°C afterward, no efforts to  
minimize the land and water footprints  
of bioenergy 

Internal climate variability:  
10% worst-case outcome (2020s)  
followed by normal internal 
climate variability

Temperature peaks at 2°C of warming by the middle of the century before decreasing again owing to intensive implementation 
of bioenergy plants with carbon capture and storage (Chapter 2), without efforts to minimize the land and water footprint of 
bioenergy production (Cross-Chapter Box 7 in Chapter 3). Reaching 2°C of warming for several decades eliminates or severely 
damages key ecosystems such as coral reefs and tropical forests (Chapter 3, Section 3.4). The elimination of coral reef ecosystems 
and the deterioration of their calcified frameworks, as well as serious losses of coastal ecosystems such as mangrove forests and 
seagrass beds (Chapter 3, Boxes 3.4 and 3.5, Sections 3.4.4.10 and 3.4.5), leads to much reduced levels of coastal defence from 
storms, winds and waves. These changes increase the vulnerability and risks facing communities in tropical and subtropical regions, 
with consequences for many coastal communities (Cross-Chapter Box 12 in Chapter 5). These impacts are being amplified by 
steadily rising sea levels (Chapter 3, Section 3.3.9) and intensifying storms (Chapter 3, Section 3.4.4.3). The intensive area required 
for the production of bioenergy, combined with increasing water stress, puts pressure on food prices (Cross-Chapter Box 6 in 
Chapter 3), driving elevated rates of food insecurity, hunger and poverty (Chapter 4, Section 4.3.2; Cross-Chapter Box 6 in Chapter 
3; Cross-Chapter Box 11 in Chapter 4). Crop yields decline significantly in the tropics, leading to prolonged famines in some African 
countries (Chapter 3, Section 3.4; Chapter 4, Section 4.3.2). Food trumps environment in terms of importance in most countries, with 
the result that natural ecosystems decrease in abundance, owing to climate change and land-use change (Cross-Chapter Box 7 in 
Chapter 3). The ability to implement adaptive action to prevent the loss of ecosystems is hindered under the circumstances and 
is consequently minimal (Chapter 3, Sections 3.3.6 and 3.4.4.10). Many natural ecosystems, in particular in the Mediterranean, 
are lost because of the combined effects of climate change and land-use change, and extinction rates increase greatly (Chapter 
3, Section 3.4 and Box 3.2). 

By 2100, warming has decreased but is still stronger than 1.5°C, and the yields of some tropical crops are recovering (Chapter 
3, Section 3.4.3). Several of the remaining natural ecosystems experience irreversible climate change-related damages whilst 
others have been lost to land-use change, with very rapid increases in the rate of species extinctions (Chapter 3, Section 3.4; 
Cross-Chapter Box 7 in Chapter 3; Cross-Chapter Box 11 in Chapter 4). Migration, forced displacement, and loss of identity are 
extensive in some countries, reversing some achievements in sustainable development and human security (Chapter 5, Section 
5.3.2). Aggregate economic impacts of climate change damage are small, but the loss in ecosystem services creates large economic 
losses (Chapter 4, Sections 4.3.2 and 4.3.3). The health and well-being of people generally decrease from 2020, while the levels of 
poverty and disadvantage increase considerably (Chapter 5, Section 5.2.1).

Scenario 3 [one possible storyline 
among worst-case scenarios]:

Mitigation:  
uncoordinated action, major 
actions late in the 21st century, 
3°C of warming in 2100

Internal climate variability:  
unusual (ca. 10%) best-case scenario 
for one decade, followed by normal 
internal climate variability

In 2020, despite past pledges, the international support for the Paris Agreement starts to wane. In the years that 
follow, CO2 emissions are reduced at the local and national level but efforts are limited and not always successful. 

Radiative forcing increases and, due to chance, the most extreme events tend to happen in less populated regions and thus do not 
increase global concerns. Nonetheless, there are more frequent heatwaves in several cities and less snow in mountain resorts in 
the Alps, Rockies and Andes (Chapter 3, Section 3.3). Global warming of 1.5°C is reached by 2030 but no major changes in policies 
occur. Starting with an intense El Niño–La Niña phase in the 2030s, several catastrophic years occur while global warming starts 
to approach 2°C. There are major heatwaves on all continents, with deadly consequences in tropical regions and Asian megacities, 
especially for those ill-equipped for protecting themselves and their communities from the effects of extreme temperatures 
(Chapter 3, Sections 3.3.1, 3.3.2 and 3.4.8). Droughts occur in regions bordering the Mediterranean Sea, central North America, 
the Amazon region and southern Australia, some of which are due to natural variability and others to enhanced greenhouse gas 
forcing (Chapter 3, Section 3.3.4; Chapter 4, Section 4.3.2; Cross-Chapter Box 11 in Chapter 4). Intense flooding occurs in high-
latitude and tropical regions, in particular in Asia, following increases in heavy precipitation events (Chapter 3, Section 3.3.3). 
Major ecosystems (coral reefs, wetlands, forests) are destroyed over that period (Chapter 3, Section 3.4), with massive disruption 
to local livelihoods (Chapter 5, Section 5.2.2 and Box 5.3; Cross-Chapter Box 12 in Chapter 5). An unprecedented drought leads 
to large impacts on the Amazon rainforest (Chapter 3, Sections 3.3.4 and 3.4), which is also affected by deforestation (Chapter 2). 
A hurricane with intense rainfall and associated with high storm surges (Chapter 3, Section 3.3.6) destroys a large part of Miami. 
A two-year drought in the Great Plains in the USA and a concomitant drought in eastern Europe and Russia decrease global crop 
production (Chapter 3, Section 3.3.4), resulting in major increases in food prices and eroding food security. Poverty levels increase 
to a very large scale, and the risk and incidence of starvation increase considerably as food stores dwindle in most countries; human 
health suffers (Chapter 3, Section 3.4.6.1; Chapter 4, Sections 4.3.2 and 4.4.3; Chapter 5, Section 5.2.1).

There are high levels of public unrest and political destabilization due to the increasing climatic pressures, resulting in some 
countries becoming dysfunctional (Chapter 4, Sections 4.4.1 and 4.4.2). The main countries responsible for the CO2 emissions 
design rapidly conceived mitigation plans and try to install plants for carbon capture and storage, in some cases without sufficient 
prior testing (Chapter 4, Section 4.3.6). Massive investments in renewable energy often happen too late and are uncoordinated; 
energy prices soar as a result of the high demand and lack of infrastructure. In some cases, demand cannot be met, leading 
to further delays. Some countries propose to consider sulphate-aerosol based Solar Radiation Modification (SRM) (Chapter 4, 
Section 4.3.8); however, intensive international negotiations on the topic take substantial time and are inconclusive because of 
overwhelming concerns about potential impacts on monsoon rainfall and risks in case of termination (Cross-Chapter Box 10 in 
Chapter 5). Global and regional temperatures continue to increase strongly while mitigation solutions are being developed and 
implemented.
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Cross-Chapter Box 8, Table 2 (continued)

Cross-Chapter Box 8 (continued)

Scenario 3 [one possible storyline 
among worst-case scenarios]:

Mitigation:  
uncoordinated action, major 
actions late in the 21st century, 
3°C of warming in 2100

Internal climate variability:  
unusual (ca. 10%) best-case scenario 
for one decade, followed by normal 
internal climate variability

Global mean warming reaches 3°C by 2100 but is not yet stabilized despite major decreases in yearly CO2 emissions, as a net zero 
CO2 emissions budget could not yet be achieved and because of the long lifetime of CO2 concentrations (Chapters 1, 2 and 3). 
The world as it was in 2020 is no longer recognizable, with decreasing life expectancy, reduced outdoor labour productivity, and 
lower quality of life in many regions because of too frequent heatwaves and other climate extremes (Chapter 4, Section 4.3.3). 
Droughts and stress on water resources renders agriculture economically unviable in some regions (Chapter 3, Section 3.4; Chapter 
4, Section 4.3.2) and contributes to increases in poverty (Chapter 5, Section 5.2.1; Cross-Chapter Box 12 in Chapter 5). Progress on 
the sustainable development goals is largely undone and poverty rates reach new highs (Chapter 5, Section 5.2.3). Major conflicts 
take place (Chapter 3, Section 3.4.9.6; Chapter 5, Section 5.2.1). Almost all ecosystems experience irreversible impacts, species 
extinction rates are high in all regions, forest fires escalate, and biodiversity strongly decreases, resulting in extensive losses to 
ecosystem services. These losses exacerbate poverty and reduce quality of life (Chapter 3, Section 3.4; Chapter 4, Section 4.3.2). 
Life for many indigenous and rural groups becomes untenable in their ancestral lands (Chapter 4, Box 4.3; Cross-Chapter Box 12 
in Chapter 5). The retreat of the West Antarctic ice sheet accelerates (Chapter 3, Sections 3.3 and 3.6), leading to more rapid sea 
level rise (Chapter 3, Section 3.3.9; Chapter 4, Section 4.3.2). Several small island states give up hope of survival in their locations 
and look to an increasingly fragmented global community for refuge (Chapter 3, Box 3.5; Cross-Chapter Box 12 in Chapter 5). 
Aggregate economic damages are substantial, owing to the combined effects of climate changes, political instability, and losses 
of ecosystem services (Chapter 4, Sections 4.4.1 and 4.4.2; Chapter 3, Box 3.6 and Section 3.5.2.4). The general health and well-
being of people is substantially reduced compared to the conditions in 2020 and continues to worsen over the following decades 
(Chapter 5, Section 5.2.3). 
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Frequently Asked Questions 

FAQ 3.1 |	 What are the Impacts of 1.5°C and 2°C of Warming?

Summary: The impacts of climate change are being felt in every inhabited continent and in the oceans. However, 
they are not spread uniformly across the globe, and different parts of the world experience impacts differently. 
An average warming of 1.5°C across the whole globe raises the risk of heatwaves and heavy rainfall events, 
amongst many other potential impacts. Limiting warming to 1.5°C rather than 2°C can help reduce these risks, 
but the impacts the world experiences will depend on the specific greenhouse gas emissions ‘pathway’ taken. 
The consequences of temporarily overshooting 1.5°C of warming and returning to this level later in the century, 
for example, could be larger than if temperature stabilizes below 1.5°C. The size and duration of an overshoot 
will also affect future impacts.

Human activity has warmed the world by about 1°C since pre-industrial times, and the impacts of this warming 
have already been felt in many parts of the world. This estimate of the increase in global temperature is the 
average of many thousands of temperature measurements taken over the world’s land and oceans. Temperatures 
are not changing at the same speed everywhere, however: warming is strongest on continents and is particularly 
strong in the Arctic in the cold season and in mid-latitude regions in the warm season. This is due to self-
amplifying mechanisms, for instance due to snow and ice melt reducing the reflectivity of solar radiation at the 
surface, or soil drying leading to less evaporative cooling in the interior of continents. This means that some parts 
of the world have already experienced temperatures greater than 1.5°C above pre-industrial levels. 

Extra warming on top of the approximately 1°C we have seen so far would amplify the risks and associated 
impacts, with implications for the world and its inhabitants. This would be the case even if the global warming 
is held at 1.5°C, just half a degree above where we are now, and would be further amplified at 2°C of global 
warming. Reaching 2°C instead of 1.5°C of global warming would lead to substantial warming of extreme hot 
days in all land regions. It would also lead to an increase in heavy rainfall events in some regions, particularly in 
the high latitudes of the Northern Hemisphere, potentially raising the risk of flooding. In addition, some regions, 
such as the Mediterranean, are projected to become drier at 2°C versus 1.5°C of global warming. The impacts of 
any additional warming would also include stronger melting of ice sheets and glaciers, as well as increased sea 
level rise, which would continue long after the stabilization of atmospheric CO2 concentrations. 

Change in climate means and extremes have knock-on effects for the societies and ecosystems living on the 
planet. Climate change is projected to be a poverty multiplier, which means that its impacts are expected to make 
the poor poorer and the total number of people living in poverty greater. The 0.5°C rise in global temperatures 
that we have experienced in the past 50 years has contributed to shifts in the distribution of plant and animal 
species, decreases in crop yields and more frequent wildfires. Similar changes can be expected with further rises 
in global temperature.

Essentially, the lower the rise in global temperature above pre-industrial levels, the lower the risks to human 
societies and natural ecosystems. Put another way, limiting warming to 1.5°C can be understood in terms of 
‘avoided impacts’ compared to higher levels of warming. Many of the impacts of climate change assessed in this 
report have lower associated risks at 1.5°C compared to 2°C.

Thermal expansion of the ocean means sea level will continue to rise even if the increase in global temperature 
is limited to 1.5°C, but this rise would be lower than in a 2°C warmer world. Ocean acidification, the process by 
which excess CO2 is dissolving into the ocean and increasing its acidity, is expected to be less damaging in a world 
where CO2 emissions are reduced and warming is stabilized at 1.5°C compared to 2°C. The persistence of coral 
reefs is greater in a 1.5°C world than that of a 2°C world, too. 

The impacts of climate change that we experience in future will be affected by factors other than the change 
in temperature. The consequences of 1.5°C of warming will additionally depend on the specific greenhouse gas 
emissions ‘pathway’ that is followed and the extent to which adaptation can reduce vulnerability. This IPCC 
Special Report uses a number of ‘pathways’ to explore different possibilities for limiting global warming to 
1.5°C above pre-industrial levels. One type of pathway sees global temperature stabilize at, or just below, 1.5°C. 
Another sees global temperature temporarily exceed 1.5°C before declining later in the century (known as an 
‘overshoot’ pathway). 

(continued on next page)
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Such pathways would have different associated impacts, so it is important to distinguish between them for 
planning adaptation and mitigation strategies. For example, impacts from an overshoot pathway could be larger 
than impacts from a stabilization pathway. The size and duration of an overshoot would also have consequences 
for the impacts the world experiences. For instance, pathways that overshoot 1.5°C run a greater risk of passing 
through ‘tipping points’, thresholds beyond which certain impacts can no longer be avoided even if temperatures 
are brought back down later on. The collapse of the Greenland and Antarctic ice sheets on the time scale of 
centuries and millennia is one example of a tipping point.

FAQ 3.1, Figure 1 |  Temperature change is not uniform across the globe. Projected changes are shown for the average temperature of the annual hottest day (top) 
and the annual coldest night (bottom) with 1.5°C of global warming (left) and 2°C of global warming (right) compared to pre-industrial levels. 

FAQ3.1:Impact of 1.5°C and 2.0°C global warming 
Temperature rise is not uniform across the world. Some regions will experience greater increases in the temperature of 
hot days and cold nights than others.

+ 1.5°C: Change in average temperature of hottest days + 2.0°C: Change in average temperature of hottest days

+ 1.5°C: Change in average temperature of coldest nights + 2.0°C: Change in average temperature of coldest nights

°C

0.50.0 1.0 1.5 2.0 3.0 4.0 6.0 8.0 10.0
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Executive Summary

Limiting warming to 1.5°C above pre-industrial levels would 
require transformative systemic change, integrated with 
sustainable development. Such change would require the 
upscaling and acceleration of the implementation of far-
reaching, multilevel and cross-sectoral climate mitigation 
and addressing barriers. Such systemic change would need 
to be linked to complementary adaptation actions, including 
transformational adaptation, especially for pathways that 
temporarily overshoot 1.5°C (medium evidence, high agreement) 
{Chapter 2, Chapter 3, 4.2.1, 4.4.5, 4.5}. Current national pledges 
on mitigation and adaptation are not enough to stay below the Paris 
Agreement temperature limits and achieve its adaptation goals. While 
transitions in energy efficiency, carbon intensity of fuels, electrification 
and land-use change are underway in various countries, limiting 
warming to 1.5°C will require a greater scale and pace of change to 
transform energy, land, urban and industrial systems globally. {4.3, 4.4, 
Cross-Chapter Box 9 in this Chapter} 

Although multiple communities around the world are 
demonstrating the possibility of implementation consistent with 
1.5°C pathways {Boxes 4.1-4.10}, very few countries, regions, 
cities, communities or businesses can currently make such 
a claim (high confidence). To strengthen the global response, 
almost all countries would need to significantly raise their level 
of ambition. Implementation of this raised ambition would 
require enhanced institutional capabilities in all countries, 
including building the capability to utilize indigenous and local 
knowledge (medium evidence, high agreement). In developing 
countries and for poor and vulnerable people, implementing the 
response would require financial, technological and other forms of 
support to build capacity, for which additional local, national and 
international resources would need to be mobilized (high confidence). 
However, public, financial, institutional and innovation capabilities 
currently fall short of implementing far-reaching measures at scale in 
all countries (high confidence). Transnational networks that support 
multilevel climate action are growing, but challenges in their scale-up 
remain. {4.4.1, 4.4.2, 4.4.4, 4.4.5, Box 4.1, Box 4.2, Box 4.7}

Adaptation needs will be lower in a 1.5°C world compared to 
a 2°C world (high confidence) {Chapter 3; Cross-Chapter Box 11 
in this chapter}. Learning from current adaptation practices and 
strengthening them through adaptive governance {4.4.1}, lifestyle 
and behavioural change {4.4.3} and innovative financing mechanisms 
{4.4.5} can help their mainstreaming within sustainable development 
practices. Preventing maladaptation, drawing on bottom-up approaches 
{Box 4.6} and using indigenous knowledge {Box 4.3} would effectively 
engage and protect vulnerable people and communities. While 
adaptation finance has increased quantitatively, significant further 
expansion would be needed to adapt to 1.5°C. Qualitative gaps in the 
distribution of adaptation finance, readiness to absorb resources, and 
monitoring mechanisms undermine the potential of adaptation finance 
to reduce impacts. {Chapter 3, 4.4.2, 4.4.5, 4.6}

System Transitions

The energy system transition that would be required to limit 
global warming to 1.5°C above pre-industrial conditions is 
underway in many sectors and regions around the world  
(medium evidence, high agreement). The political, economic, social 
and technical feasibility of solar energy, wind energy and electricity 
storage technologies has improved dramatically over the past few 
years, while that of nuclear energy and carbon dioxide capture 
and storage (CCS) in the electricity sector have not shown similar 
improvements. {4.3.1}

Electrification, hydrogen, bio-based feedstocks and substitution, 
and, in several cases, carbon dioxide capture, utilization and 
storage (CCUS) would lead to the deep emissions reductions 
required in energy-intensive industries to limit warming to 
1.5°C. However, those options are limited by institutional, economic and 
technical constraints, which increase financial risks to many incumbent 
firms (medium evidence, high agreement). Energy efficiency in industry 
is more economically feasible and helps enable industrial system 
transitions but would have to be complemented with greenhouse gas 
(GHG)-neutral processes or carbon dioxide removal (CDR) to make 
energy-intensive industries consistent with 1.5°C (high confidence). 
{4.3.1, 4.3.4}

Global and regional land-use and ecosystems transitions and 
associated changes in behaviour that would be required to 
limit warming to 1.5°C can enhance future adaptation and 
land-based agricultural and forestry mitigation potential. Such 
transitions could, however, carry consequences for livelihoods 
that depend on agriculture and natural resources {4.3.2, Cross-
Chapter Box 6 in Chapter 3}. Alterations of agriculture and forest 
systems to achieve mitigation goals could affect current ecosystems 
and their services and potentially threaten food, water and livelihood 
security. While this could limit the social and environmental feasibility 
of land-based mitigation options, careful design and implementation 
could enhance their acceptability and support sustainable development 
objectives (medium evidence, medium agreement). {4.3.2, 4.5.3}

Changing agricultural practices can be an effective climate 
adaptation strategy. A diversity of adaptation options exists, 
including mixed crop-livestock production systems which can be a 
cost-effective adaptation strategy in many global agriculture systems 
(robust evidence, medium agreement). Improving irrigation efficiency 
could effectively deal with changing global water endowments, 
especially if achieved via farmers adopting new behaviours and water-
efficient practices rather than through large-scale infrastructural 
interventions (medium evidence, medium agreement). Well-designed 
adaptation processes such as community-based adaptation can be 
effective depending upon context and levels of vulnerability. {4.3.2, 
4.5.3}

Improving the efficiency of food production and closing yield 
gaps have the potential to reduce emissions from agriculture, 
reduce pressure on land, and enhance food security and future 
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mitigation potential (high confidence). Improving productivity of 
existing agricultural systems generally reduces the emissions intensity 
of food production and offers strong synergies with rural development, 
poverty reduction and food security objectives, but options to reduce 
absolute emissions are limited unless paired with demand-side 
measures. Technological innovation including biotechnology, with 
adequate safeguards, could contribute to resolving current feasibility 
constraints and expand the future mitigation potential of agriculture. 
{4.3.2, 4.4.4}

Shifts in dietary choices towards foods with lower emissions 
and requirements for land, along with reduced food loss and 
waste, could reduce emissions and increase adaptation options 
(high confidence). Decreasing food loss and waste and changing 
dietary behaviour could result in mitigation and adaptation (high 
confidence) by reducing both emissions and pressure on land, with 
significant co-benefits for food security, human health and sustainable 
development {4.3.2, 4.4.5, 4.5.2, 4.5.3, 5.4.2}, but evidence of 
successful policies to modify dietary choices remains limited. 

Mitigation and Adaptation Options and Other Measures

A mix of mitigation and adaptation options implemented in a 
participatory and integrated manner can enable rapid, systemic 
transitions – in urban and rural areas – that are necessary 
elements of an accelerated transition consistent with limiting 
warming to 1.5°C. Such options and changes are most effective 
when aligned with economic and sustainable development, 
and when local and regional governments are supported by 
national governments {4.3.3, 4.4.1, 4.4.3}. Various mitigation 
options are expanding rapidly across many geographies. Although 
many have development synergies, not all income groups have so 
far benefited from them. Electrification, end-use energy efficiency 
and increased share of renewables, amongst other options, are 
lowering energy use and decarbonizing energy supply in the built 
environment, especially in buildings. Other rapid changes needed in 
urban environments include demotorization and decarbonization of 
transport, including the expansion of electric vehicles, and greater use 
of energy-efficient appliances (medium evidence, high agreement). 
Technological and social innovations can contribute to limiting 
warming to 1.5°C, for example, by enabling the use of smart grids, 
energy storage technologies and general-purpose technologies, such 
as information and communication technology (ICT) that can be 
deployed to help reduce emissions. Feasible adaptation options include 
green infrastructure, resilient water and urban ecosystem services, 
urban and peri-urban agriculture, and adapting buildings and land use 
through regulation and planning (medium evidence, medium to high 
agreement). {4.3.3, 4.4.3, 4.4.4}

Synergies can be achieved across systemic transitions through 
several overarching adaptation options in rural and urban areas. 
Investments in health, social security and risk sharing and spreading 
are cost-effective adaptation measures with high potential for scaling 
up (medium evidence, medium to high agreement). Disaster risk 
management and education-based adaptation have lower prospects of 
scalability and cost-effectiveness (medium evidence, high agreement) 
but are critical for building adaptive capacity. {4.3.5, 4.5.3}

Converging adaptation and mitigation options can lead to 
synergies and potentially increase cost-effectiveness, but 
multiple trade-offs can limit the speed of and potential for 
scaling up. Many examples of synergies and trade-offs exist in 
all sectors and system transitions. For instance, sustainable water 
management (high evidence, medium agreement) and investment in 
green infrastructure (medium evidence, high agreement) to deliver 
sustainable water and environmental services and to support urban 
agriculture are less cost-effective than other adaptation options but 
can help build climate resilience. Achieving the governance, finance 
and social support required to enable these synergies and to avoid 
trade-offs is often challenging, especially when addressing multiple 
objectives, and attempting appropriate sequencing and timing of 
interventions. {4.3.2, 4.3.4, 4.4.1, 4.5.2, 4.5.3, 4.5.4}

Though CO2 dominates long-term warming, the reduction of 
warming short-lived climate forcers (SLCFs), such as methane 
and black carbon, can in the short term contribute significantly to 
limiting warming to 1.5°C above pre-industrial levels. Reductions 
of black carbon and methane would have substantial co-benefits 
(high confidence), including improved health due to reduced air 
pollution. This, in turn, enhances the institutional and socio-
cultural feasibility of such actions. Reductions of several warming 
SLCFs are constrained by economic and social feasibility (low evidence, 
high agreement). As they are often co-emitted with CO2, achieving the 
energy, land and urban transitions necessary to limit warming to 1.5°C 
would see emissions of warming SLCFs greatly reduced. {2.3.3.2, 4.3.6} 

Most CDR options face multiple feasibility constraints, which 
differ between options, limiting the potential for any single 
option to sustainably achieve the large-scale deployment 
required in the 1.5°C-consistent pathways described in 
Chapter 2 (high confidence). Those 1.5°C pathways typically rely 
on bioenergy with carbon capture and storage (BECCS), afforestation 
and reforestation (AR), or both, to neutralize emissions that are 
expensive to avoid, or to draw down CO2 emissions in excess of the 
carbon budget {Chapter 2}. Though BECCS and AR may be technically 
and geophysically feasible, they face partially overlapping yet different 
constraints related to land use. The land footprint per tonne of CO2 

removed is higher for AR than for BECCS, but given the low levels of 
current deployment, the speed and scales required for limiting warming 
to 1.5°C pose a considerable implementation challenge, even if the 
issues of public acceptance and absence of economic incentives were 
to be resolved (high agreement, medium evidence). The large potential 
of afforestation and the co-benefits if implemented appropriately (e.g., 
on biodiversity and soil quality) will diminish over time, as forests 
saturate (high confidence). The energy requirements and economic 
costs of direct air carbon capture and storage (DACCS) and enhanced 
weathering remain high (medium evidence, medium agreement). At the 
local scale, soil carbon sequestration has co-benefits with agriculture 
and is cost-effective even without climate policy (high confidence). Its 
potential feasibility and cost-effectiveness at the global scale appears 
to be more limited. {4.3.7}

Uncertainties surrounding solar radiation modification 
(SRM) measures constrain their potential deployment. These 
uncertainties include: technological immaturity; limited physical 
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understanding about their effectiveness to limit global warming; and 
a weak capacity to govern, legitimize, and scale such measures. Some 
recent model-based analysis suggests SRM would be effective but that 
it is too early to evaluate its feasibility. Even in the uncertain case that 
the most adverse side-effects of SRM can be avoided, public resistance, 
ethical concerns and potential impacts on sustainable development 
could render SRM economically, socially and institutionally undesirable 
(low agreement, medium evidence). {4.3.8, Cross-Chapter Box 10 in 
this chapter}

Enabling Rapid and Far-Reaching Change 

The speed of transitions and of technological change required 
to limit warming to 1.5°C above pre-industrial levels has been 
observed in the past within specific sectors and technologies 
{4.2.2.1}. But the geographical and economic scales at which 
the required rates of change in the energy, land, urban, 
infrastructure and industrial systems would need to take place 
are larger and have no documented historic precedent (limited 
evidence, medium agreement). To reduce inequality and alleviate 
poverty, such transformations would require more planning and 
stronger institutions (including inclusive markets) than observed in the 
past, as well as stronger coordination and disruptive innovation across 
actors and scales of governance. {4.3, 4.4}

Governance consistent with limiting warming to 1.5°C and the 
political economy of adaptation and mitigation can enable and 
accelerate systems transitions, behavioural change, innovation and 
technology deployment (medium evidence, medium agreement). 
For 1.5°C-consistent actions, an effective governance framework 
would include: accountable multilevel governance that includes non-
state actors, such as industry, civil society and scientific institutions; 
coordinated sectoral and cross-sectoral policies that enable collaborative 
multi-stakeholder partnerships; strengthened global-to-local financial 
architecture that enables greater access to finance and technology; 
addressing climate-related trade barriers; improved climate education 
and greater public awareness; arrangements to enable accelerated 
behaviour change; strengthened climate monitoring and evaluation 
systems; and reciprocal international agreements that are sensitive 
to equity and the Sustainable Development Goals (SDGs). System 
transitions can be enabled by enhancing the capacities of public, private 
and financial institutions to accelerate climate change policy planning 
and implementation, along with accelerated technological innovation, 
deployment and upkeep. {4.4.1, 4.4.2, 4.4.3, 4.4.4}

Behaviour change and demand-side management can 
significantly reduce emissions, substantially limiting the 
reliance on CDR to limit warming to 1.5°C {Chapter 2, 4.4.3}.
Political and financial stakeholders may find climate actions more cost-
effective and socially acceptable if multiple factors affecting behaviour 
are considered, including aligning these actions with people’s core 
values (medium evidence, high agreement). Behaviour- and lifestyle-
related measures and demand-side management have already led 
to emission reductions around the world and can enable significant 
future reductions (high confidence). Social innovation through bottom-

up initiatives can result in greater participation in the governance of 
systems transitions and increase support for technologies, practices 
and policies that are part of the global response to limit warming to 
1.5°C . {Chapter 2, 4.4.1, 4.4.3, Figure 4.3} 

This rapid and far-reaching response required to keep warming 
below 1.5°C and enhance the capacity to adapt to climate risks 
would require large increases of investments in low-emission 
infrastructure and buildings, along with a redirection of financial 
flows towards low-emission investments (robust evidence, high 
agreement). An estimated mean annual incremental investment of 
around 1.5% of global gross fixed capital formation (GFCF) for the 
energy sector is indicated between 2016 and 2035, as well as about 
2.5% of global GFCF for other development infrastructure that could 
also address SDG implementation. Though quality policy design and 
effective implementation may enhance efficiency, they cannot fully 
substitute for these investments. {2.5.2, 4.2.1, 4.4.5}

Enabling this investment requires the mobilization and better 
integration of a range of policy instruments that include the 
reduction of socially inefficient fossil fuel subsidy regimes and innovative 
price and non-price national and international policy instruments. These 
would need to be complemented by de-risking financial instruments 
and the emergence of long-term low-emission assets. These instruments 
would aim to reduce the demand for carbon-intensive services and shift 
market preferences away from fossil fuel-based technology. Evidence 
and theory suggest that carbon pricing alone, in the absence of 
sufficient transfers to compensate their unintended distributional cross-
sector, cross-nation effects, cannot reach the incentive levels needed 
to trigger system transitions (robust evidence, medium agreement). 
But, embedded in consistent policy packages, they can help mobilize 
incremental resources and provide flexible mechanisms that help reduce 
the social and economic costs of the triggering phase of the transition 
(robust evidence, medium agreement). {4.4.3, 4.4.4, 4.4.5}

Increasing evidence suggests that a climate-sensitive 
realignment of savings and expenditure towards low-emission, 
climate-resilient infrastructure and services requires an 
evolution of global and national financial systems. Estimates 
suggest that, in addition to climate-friendly allocation of public 
investments, a potential redirection of 5% to 10% of the annual 
capital revenues1 is necessary for limiting warming to 1.5°C {4.4.5, 
Table 1 in Box 4.8}. This could be facilitated by a change of incentives 
for private day-to-day expenditure and the redirection of savings 
from speculative and precautionary investments towards long-
term productive low-emission assets and services. This implies the 
mobilization of institutional investors and mainstreaming of climate 
finance within financial and banking system regulation. Access by 
developing countries to low-risk and low-interest finance through 
multilateral and national development banks would have to be 
facilitated (medium evidence, high agreement). New forms of public–
private partnerships may be needed with multilateral, sovereign and 
sub-sovereign guarantees to de-risk climate-friendly investments, 
support new business models for small-scale enterprises and help 
households with limited access to capital. Ultimately, the aim is to 

1	 Annual capital revenues are paid interests plus an increase of asset value.
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promote a portfolio shift towards long-term low-emission assets that 
would help redirect capital away from potentially stranded assets 
(medium evidence, medium agreement). {4.4.5}

Knowledge Gaps

Knowledge gaps around implementing and strengthening the 
global response to climate change would need to be urgently 
resolved if the transition to a 1.5°C world is to become reality.   
Remaining questions include: how much can be realistically expected 
from innovation and behavioural and systemic political and economic 
changes in improving resilience, enhancing adaptation and reducing 
GHG emissions? How can rates of changes be accelerated and scaled 
up? What is the outcome of realistic assessments of mitigation and 
adaptation land transitions that are compliant with sustainable 
development, poverty eradication and addressing inequality? What are 
life-cycle emissions and prospects of early-stage CDR options? How 
can climate and sustainable development policies converge, and how 
can they be organised within a global governance framework and 
financial system, based on principles of justice and ethics (including 
‘common but differentiated responsibilities and respective capabilities’ 
(CBDR-RC)), reciprocity and partnership? To what extent would 
limiting warming to 1.5°C require a harmonization of macro-financial 
and fiscal policies, which could include financial regulators such as 
central banks? How can different actors and processes in climate 
governance reinforce each other, and hedge against the fragmentation 
of initiatives? {4.1, 4.3.7, 4.4.1, 4.4.5, 4.6}
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4.1	 Accelerating the Global Response 
to Climate Change

This chapter discusses how the global economy and socio-technical 
and socio-ecological systems can transition to 1.5°C-consistent 
pathways and adapt to warming of 1.5°C above pre-industrial levels. 
In the context of systemic transitions, the chapter assesses adaptation 
and mitigation options, including carbon dioxide removal (CDR), and 
potential solar radiation modification (SRM) remediative measures 
(Section 4.3), as well as the enabling conditions that would be required 
for implementing the rapid and far-reaching global response of limiting 
warming to 1.5°C (Section 4.4), and render the options more or less 
feasible (Section 4.5). 

The impacts of a 1.5°C-warmer world, while less than in a 2°C-warmer 
world, would require complementary adaptation and development 
action, typically at local and national scale. From a mitigation 
perspective, 1.5°C-consistent pathways require immediate action on 
a greater and global scale so as to achieve net zero emissions by mid-
century, or earlier (Chapter 2). This chapter and Chapter 5 highlight 
the potential that combined mitigation, development and poverty 
reduction offer for accelerated decarbonization. 

The global context is an increasingly interconnected world, with the 
human population growing from the current 7.6 billion to over 9 billion 
by mid-century (UN DESA, 2017). There has been a consistent growth of 
global economic output, wealth and trade with a significant reduction 
in extreme poverty. These trends could continue for the next few 
decades (Burt et al., 2014), potentially supported by new and disruptive 
information and communication, and nano- and bio-technologies. 
However, these trends co-exist with rising inequality (Piketty, 2014), 
exclusion and social stratification, and regions locked in poverty traps 
(Deaton, 2013) that could fuel social and political tensions. 

The aftermath of the 2008 financial crisis generated a challenging 
environment in which leading economists have issued repeated alerts 
about the ‘discontents of globalisation’ (Stiglitz, 2002), ‘depression 
economics’ (Krugman, 2009), an excessive reliance of export-led 
development strategies (Rajan, 2011), and risks of ‘secular stagnation’ 
due to the ‘saving glut’ that slows down the flow of global savings 
towards productive 1.5°C-consistent investments (Summers, 2016). 
Each of these affects the implementation of both 1.5°C-consistent 
pathways and sustainable development (Chapter 5). 

The range of mitigation and adaptation actions that can be deployed in 
the short run are well-known: for example, low-emission technologies, 
new infrastructure, and energy efficiency measures in buildings, 
industry and transport; transformation of fiscal structures; reallocation 
of investments and human resources towards low-emission assets; 
sustainable land and water management; ecosystem restoration; 
enhancement of adaptive capacities to climate risks and impacts; 
disaster risk management; research and development; and mobilization 
of new, traditional and indigenous knowledge. 

The convergence of short-term development co-benefits from 
mitigation and adaptation to address ‘everyday development failures’ 

(e.g., institutions, market structures and political processes) (Hallegatte 
et al., 2016; Pelling et al., 2018) could enhance the adaptive capacity 
of key systems at risk (e.g., water, energy, food, biodiversity, urban, 
regional and coastal systems) to 1.5°C climate impacts (Chapter 
3). The issue is whether aligning 1.5°C-consistent pathways with 
the Sustainable Development Goals (SDGs) will secure support for 
accelerated change and a new growth cycle (Stern, 2013, 2015). It is 
difficult to imagine how a 1.5°C world would be attained unless the 
SDG on cities and sustainable urbanization is achieved in developing 
countries (Revi, 2016), or without reforms in the global financial 
intermediation system. 

Unless affordable and environmentally and socially acceptable 
CDR becomes feasible and available at scale well before 2050, 
1.5°C-consistent pathways will be difficult to realize, especially in 
overshoot scenarios. The social costs and benefits of 1.5°C-consistent 
pathways depend on the depth and timing of policy responses and 
their alignment with short term and long-term development objectives, 
through policy packages that bring together a diversity of  policy 
instruments, including public investment (Grubb et al., 2014; Winkler 
and Dubash, 2015; Campiglio, 2016). 

Whatever its potential long-term benefits, a transition to a 1.5°C 
world may suffer from a lack of broad political and public support, 
if it exacerbates existing short-term economic and social tensions, 
including unemployment, poverty, inequality, financial tensions, 
competitiveness issues and the loss of economic value of carbon-
intensive assets (Mercure et al., 2018). The challenge is therefore how 
to strengthen climate policies without inducing economic collapse or 
hardship, and to make them contribute to reducing some of the ‘fault 
lines’ of the world economy (Rajan, 2011).

This chapter reviews literature addressing the alignment of climate 
with other public policies (e.g., fiscal, trade, industrial, monetary, urban 
planning, infrastructure, and innovation) and with a greater access to 
basic needs and services, defined by the SDGs. It also reviews how 
de-risking low-emission investments and the evolution of the financial 
intermediation system can help reduce the ‘savings glut’ (Arezki et 
al., 2016) and the gap between cash balances and long-term assets 
(Aglietta et al., 2015b) to support more sustainable and inclusive 
growth. 

As the transitions associated with 1.5°C-consistent pathways require 
accelerated and coordinated action, in multiple systems across all 
world regions, they are inherently exposed to risks of freeriding and 
moral hazards. A key governance challenge is how the convergence 
of voluntary domestic policies can be organized via aligned global, 
national and sub-national governance, based on reciprocity (Ostrom 
and Walker, 2005) and partnership (UN, 2016), and how different 
actors and processes in climate governance can reinforce each other 
to enable this (Gupta, 2014; Andonova et al., 2017). The emergence of 
polycentric sources of climate action and transnational and subnational 
networks that link these efforts (Abbott, 2012) offer the opportunity to 
experiment and learn from different approaches, thereby accelerating 
approaches led by national governments (Cole, 2015; Jordan et al., 
2015). 
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Section 4.2 of this chapter outlines existing rates of change and 
attributes of accelerated change. Section 4.3 identifies global systems, 
and their components, that offer options for this change. Section 4.4 
documents the enabling conditions that influence the feasibility of 
those options, including economic, financial and policy instruments that 

could trigger the transition to 1.5°C-consistent pathways. Section 4.5 
assesses mitigation and adaptation options for feasibility, strategies for 
implementation and synergies and trade-offs between mitigation and 
adaptation. 

4.2	 Pathways Compatible with 1.5°C: Starting 
Points for Strengthening Implementation

4.2.1	 Implications for Implementation of 
1.5°C-Consistent Pathways 

The 1.5°C-consistent pathways assessed in Chapter 2 form the 
basis for the feasibility assessment in section 4.5. A wide range of 
1.5°C-consistent pathways from integrated assessment modelling 
(IAM), supplemented by other literature, are assessed in Chapter 2 
(Sections 2.1, 2.3, 2.4, and 2.5). The most common feature shared 
by these pathways is their requirement for faster and more radical 
changes compared to 2°C and higher warming pathways.

A variety of 1.5°C-consistent technological options and policy targets 
is identified in the assessed modelling literature (Sections 2.3, 2.4, 2.5). 
These technology and policy options include energy demand reduction, 
greater penetration of low-emission and carbon-free technologies 
as well as electrification of transport and industry, and reduction of 

land-use change. Both the detailed integrated modelling pathway 
literature and a number of broader sectoral and bottom-up studies 
provide examples of how these sectoral technological and policy 
characteristics can be broken down sectorally for 1.5°C-consistent 
pathways (see Table 4.1).

Both the integrated pathway literature and the sectoral studies agree 
on the need for rapid transitions in the production and use of energy 
across various sectors, to be consistent with limiting global warming 
to 1.5°C. The pace of these transitions is particularly significant for 
the supply mix and electrification (Table 4.1). Individual, sectoral 
studies may show higher rates of change compared to IAMs (Figueres 
et al., 2017; Rockström et al., 2017; WBCSD, 2017; Kuramochi et al., 
2018). These trends and transformation patterns create opportunities 
and challenges for both mitigation and adaptation (Sections 4.2.1.1 
and 4.2.1.2) and have significant implications for the assessment of 
feasibility and enablers, including governance, institutions, and policy 
instruments addressed in Sections 4.3 and 4.4.

Pathways
Number 

of 
scenarios

Energy Buildings Transport Industry

Share of 
renewables 
in primary 
energy [%] 

Share of 
renewables in 
electricity [%] 

Change 
in energy 

demand for 
buildings (2010 
baseline) [%]

Share of low-
carbon fuels 
(electricity, 

hydrogen and 
biofuel) in 

transport [%]

Share of 
electricity in 

transport [%]

Industrial 
emissions 
reductions  

(2010 baseline) 
[%]

IAM 
Pathways 

2030

1.5°C-no or low-OS 50 29 (37; 26) 54 (65; 47) 0 (7; −7) [42] 12 (18; 9) [29] 5 (7; 3) [49] 42 (55; 34) [42]

1.5°C-high-OS 35 24 (27; 20) 43 (54; 37) −17 (−12; −20) [29] 7 (8; 6) [23] 3 (5; 3) 18 (28; −13) [29] 

S1 29 58 −8 4 49

S2 29 48 −14 5 4 19

S5 14 25 3 1

LED 37 60 30 21 42

Other 
Studies 
2030

Löffler et al. (2017) 46 79

IEA (2017c) (ETP) 31 47 2 14 5 22

IEA (2017g) (WEM) 27 50 –6 17 6 15

IAM 
Pathways 

2050

1.5°C-no or low-OS 50 60 (67; 52) 77 (86; 69) −17 (3; −36) [42] 55 (66; 35) [29] 23 (29; 17) [49] 79 (91; 67) [42]

1.5°C-high-OS 35 62 (68; 47) 82 (88; 64) −37 (−13; −51) [29] 38 (44; 27) [23] 18 (23; 14) 68 (81; 54) [29] 

S1 58 81 −21 34 74

S2 53 63 −25 26 23 73

S5 67 70 53 10

LED 73 77 45 59 91

Other 
Studies 
2050

Löffler et al. (2017) 100 100    

IEA (2017c) (ETP) 58 74 5 55 30 57

IEA (2017g) (WEM) 47 69 −5 58 32 55

Table 4.1 |	 Sectoral indicators of the pace of transformation in 1.5°C-consistent pathways, based on selected integrated pathways assessed in Chapter 2 (from the scenario database) 
	  and several other studies reviewed in Chapter 2 that assess mitigation transitions consistent with limiting warming to 1.5°C. Values for ‘1.5°C-no or -low-OS’ and ‘1.5C-high- 
	 OS’ indicate the median and the interquartile ranges for 1.5°C scenarios. If a number in square brackets is indicated, this is the number of scenarios for this indicator. S1, S2, S5  
	 and LED represent the four illustrative pathway archetypes selected for this assessment (see Chapter 2, Section 2.1 and Supplementary Material 4.SM.1 for detailed description).
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4.2.1.1	 Challenges and Opportunities for Mitigation Along 
the Reviewed Pathways

Greater scale, speed and change in investment patterns. There 
is agreement in the literature reviewed by Chapter 2 that staying 
below 1.5°C would entail significantly greater transformation in terms 
of energy systems, lifestyles and investments patterns compared 
to 2°C-consistent pathways. Yet there is limited evidence and low 
agreement regarding the magnitudes and costs of the investments 
(Sections 2.5.1, 2.5.2 and 4.4.5). Based on the IAM literature reviewed 
in Chapter 2, climate policies in line with limiting warming to 1.5°C 
would require a marked upscaling of supply-side energy system 
investments between now and mid-century, reaching levels of between 
1.6–3.8 trillion USD yr−1 globally with an average of about 3.5 trillion 
USD yr−1 over 2016–2050 (see Figure 2.27). This can be compared to 
an average of about 3.0 trillion USD yr−1 over the same period for 
2°C-consistent pathways (also in Figure 2.27). 

Not only the level of investment but also the type and speed of 
sectoral transformation would be impacted by the transitions 
associated with 1.5°C-consistent pathways. IAM literature projects 
that investments in low-emission energy would overtake fossil 
fuel investments globally by 2025 in 1.5°C-consistent pathways 
(Chapter 2, Section 2.5.2). The projected low-emission investments 
in electricity generation allocations over the period 2016–2050 are: 
solar (0.09–1.0 trillion USD yr−1), wind (0.1–0.35 trillion USD yr−1), 
nuclear (0.1–0.25 trillion USD yr−1), and transmission, distribution, 
and storage (0.3–1.3 trillion USD yr−1). In contrast, investments in 
fossil fuel extraction and unabated fossil electricity generation along 
a 1.5°C-consistent pathway are projected to drop by 0.3–0.85 trillion 
USD yr−1 over the period 2016–2050, with investments in unabated 
coal generation projected to halt by 2030 in most 1.5°C-consistent 
pathways (Chapter 2, Section 2.5.2). Estimates of investments in 
other infrastructure are currently unavailable, but they could be 
considerably larger in volume than solely those in the energy sector 
(Section 4.4.5). 

Greater policy design and decision-making implications. The 
1.5°C-consistent pathways raise multiple challenges for effective 
policy design and responses to address the scale, speed, and pace 
of mitigation technology, finance and capacity building needs. These 
policies and responses would also need to deal with their distributional 
implications while addressing adaptation to residual climate impacts 
(see Chapter 5). The available literature indicates that 1.5°C-consistent 
pathways would require robust, stringent and urgent transformative 
policy interventions targeting the decarbonization of energy supply, 
electrification, fuel switching, energy efficiency, land-use change, and 
lifestyles (Chapter 2, Section 2.5, 4.4.2, 4.4.3). Examples of effective 
approaches to integrate mitigation with adaptation in the context of 
sustainable development and to deal with distributional implications 
proposed in the literature include the utilization of dynamic adaptive 
policy pathways (Haasnoot et al., 2013; Mathy et al., 2016) and 
transdisciplinary knowledge systems (Bendito and Barrios, 2016). 
Yet, even with good policy design and effective implementation, 
1.5°C-consistent pathways would incur higher costs. Projections of the 
magnitudes of global economic costs associated with 1.5°C-consistent 
pathways and their sectoral and regional distributions from the 

currently assessed literature are scant, yet suggestive. For example, IAM 
simulations assessed in Chapter 2 project (with a probability greater 
than 50%) that marginal abatement costs, typically represented in 
IAMs through a carbon price, would increase by about 3–4 times by 
2050 under a 1.5°C-consistent pathway compared to a 2°C-consistent 
pathway (Chapter 2, Section 2.5.2, Figure 2.26). Managing these 
costs and distributional effects would require an approach that takes 
account of unintended cross-sector, cross-nation, and cross-policy 
trade-offs during the transition (Droste et al., 2016; Stiglitz et al., 2017;  
Pollitt, 2018; Sands, 2018; Siegmeier et al., 2018). 

Greater sustainable development implications. Few studies 
address the relations between the Shared Socio-Economic Pathways 
(SSPs) and the Sustainable Developments Goals (SDGs) (O’Neill et al., 
2015; Riahi et al., 2017). Nonetheless, literature on potential synergies 
and trade-offs between 1.5°C-consistent mitigation pathways and 
sustainable development dimensions is emerging (Chapter 2, Section 
2.5.3, Chapter 5, Section 5.4). Areas of potential trade-offs include 
reduction in final energy demand in relation to SDG 7 (the universal 
clean energy access goal) and increase of biomass production in 
relation to land use, water resources, food production, biodiversity 
and air quality (Chapter 2, Sections 2.4.3, 2.5.3). Strengthening the 
institutional and policy responses to deal with these challenges is 
discussed in Section 4.4 together with the linkage between disruptive 
changes in the energy sector and structural changes in other 
infrastructure (transport, building, water and telecommunication) 
sectors. A more in-depth assessment of the complexity and interfaces 
between 1.5°C-consistent pathways and sustainable development is 
presented in Chapter 5.

4.2.1.2	 Implications for Adaptation Along the Reviewed 
Pathways

Climate variability and uncertainties in the underlying assumptions 
in Chapter 2’s IAMs as well as in model comparisons complicate 
discerning the implications for climate impacts, adaptation options and 
avoided adaptation investments at the global level of 2°C compared to 
1.5°C warming (James et al., 2017; Mitchell et al., 2017). 

Incremental warming from 1.5°C to 2°C would lead to significant 
increases in temperature and precipitation extremes in many regions 
(Chapter 3, Section 3.3.2, 3.3.3). Those projected changes in climate 
extremes under both warming levels, however, depend on the 
emissions pathways, as they have different greenhouse gas (GHG)/
aerosol forcing ratios. Impacts are sector-, system- and region-specific, 
as described in Chapter 3. For example, precipitation-related impacts 
reveal distinct regional differences (Chapter 3, Sections 3.3.3, 3.3.4, 
3.3.5, 3.4.2). Similarly, regional reduction in water availability and 
the lengthening of regional dry spells have negative implications for 
agricultural yields depending on crop types and world regions (see for 
example Chapter 3, Sections 3.3.4, 3.4.2, 3.4.6). 

Adaptation helps reduce impacts and risks. However, adaptation has 
limits. Not all systems can adapt, and not all impacts can be reversed 
(Cross-Chapter Box 12 in Chapter 5). For example, tropical coral reefs 
are projected to be at risk of severe degradation due to temperature-
induced bleaching (Chapter 3, Box 3.4).
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4.2.2	 System Transitions and Rates of Change

Society-wide transformation involves socio-technical transitions 
and social-ecological resilience (Gillard et al., 2016). Transitional 
adaptation pathways would need to respond to low-emission 
energy and economic systems, and the socio-technical transitions 
for mitigation involve removing barriers in social and institutional 
processes that could also benefit adaptation (Pant et al., 2015; Geels 
et al., 2017; Ickowitz et al., 2017). In this chapter, transformative 
change is framed in mitigation around socio-technical transitions, and 
in adaptation around socio-ecological transitions. In both instances, 
emphasis is placed on the enabling role of institutions (including 
markets, and formal and informal regulation). 1.5°C-consistent 
pathways and adaptation needs associated with warming of 1.5°C 
imply both incremental and rapid, disruptive and transformative 
changes. 

4.2.2.1	 Mitigation: historical rates of change and state 
of decoupling

Realizing 1.5°C-consistent pathways would require rapid and 
systemic changes on unprecedented scales (see Chapter 2 and 
Section 4.2.1). This section examines whether the needed rates of 
change have historical precedents and are underway.

Some studies conduct a de-facto validation of IAM projections. For CO2 
emission intensity over 1990–2010, this resulted in the IAMs projecting 
declining emission intensities while actual observations showed an 
increase. For individual technologies (in particular solar energy), IAM 
projections have been conservative regarding deployment rates and 
cost reductions (Creutzig et al., 2017), suggesting that IAMs do not 
always impute actual rates of technological change resulting from 
influence of shocks, broader changes and mutually reinforcing factors 
in society and politics (Geels and Schot, 2007; Daron et al., 2015; 
Sovacool, 2016; Battiston et al., 2017).

Other studies extrapolate historical trends into the future (Höök et al., 
2011; Fouquet, 2016), or contrast the rates of change associated with 
specific temperature limits in IAMs (such as those in Chapter 2) with 
historical trends to investigate plausibility of emission pathways and 
associated temperature limits (Wilson et al., 2013; Gambhir et al., 2017; 
Napp et al., 2017). When metrics are normalized to gross domestic 
product (GDP; as opposed to other normalization metrics such as 
primary energy), low-emission technology deployment rates used by 
IAMs over the course of the coming century are shown to be broadly 
consistent with past trends, but rates of change in emission intensity 
are typically overestimated (Wilson et al., 2013; Loftus et al., 2014; van 
Sluisveld et al., 2015). This bias is consistent with the findings from 
the ‘validation’ studies cited above, suggesting that IAMs may under-
report the potential for supply-side technological change assumed 
in 1.5°-consistent pathways, but may be more optimistic about the 
systemic ability to realize incremental changes in reduction of emission 
intensity as a consequence of favourable energy efficiency payback 
times (Wilson et al., 2013). This finding suggests that barriers and 
enablers other than costs and climate limits play a role in technological 
change, as also found in the innovation literature (Hekkert et al., 2007; 
Bergek et al., 2008; Geels et al., 2016b). 

One barrier to a greater rate of change in energy systems is that 
economic growth in the past has been coupled to the use of fossil 
fuels. Disruptive innovation and socio-technical changes could enable 
the decoupling of economic growth from a range of environmental 
drivers, including the consumption of fossil fuels, as represented by 
1.5°C-consistent pathways (UNEP, 2014; Newman, 2017). This may 
be relative decoupling due to rebound effects that see financial 
savings generated by renewable energy used in the consumption of 
new products and services (Jackson and Senker, 2011; Gillingham et 
al., 2013), but in 2015 and 2016 total global GHG emissions have 
decoupled absolutely from economic growth (IEA, 2017g; Peters 
et al., 2017). A longer data trend would be needed before stable 
decoupling can be established. The observed decoupling in 2015 
and 2016 was driven by absolute declines in both coal and oil use 
since the early 2000s in Europe, in the past seven years in the United 
States and Australia, and more recently in China (Newman, 2017). 
In 2017, decoupling in China reversed by 2% due to a drought 
and subsequent replacement of hydropower with coal-fired power 
(Tollefson, 2017), but this reversal is expected to be temporary (IEA, 
2017c). Oil consumption in China is still rising slowly, but absolute 
decoupling is ongoing in megacities like Beijing (Gao and Newman, 
2018) (see Box 4.9). 

4.2.2.2	 Transformational adaptation

In some regions and places, incremental adaptation would not 
be sufficient to mitigate the impacts of climate change on social-
ecological systems (see Chapter 3). Transformational adaptation 
would then be required (Bahadur and Tanner, 2014; Pant et al., 
2015; Gillard, 2016; Gillard et al., 2016; Colloff et al., 2017; Termeer 
et al., 2017). Transformational adaptation refers to actions aiming 
at adapting to climate change resulting in significant changes in 
structure or function that go beyond adjusting existing practices 
(Dowd et al., 2014; IPCC, 2014a; Few et al., 2017), including 
approaches that enable new ways of decision-making on adaptation 
(Colloff et al., 2017). Few studies have assessed the potentially 
transformative character of adaptation options (Pelling et al., 2015; 
Rippke et al., 2016; Solecki et al., 2017), especially in the context of 
warming of 1.5°C. 

Transformational adaptation can be adopted at a large scale, can lead 
to new strategies in a region or resource system, transform places 
and potentially shift locations (Kates et al., 2012). Some systems 
might require transformational adaptation at 1.5°C. Implementing 
adaptation policies in anticipation of 1.5°C would require 
transformation and flexible planning of adaptation (sometimes 
called adaptation pathways) (Rothman et al., 2014; Smucker et 
al., 2015; Holland, 2017; Gajjar et al., 2018), an understanding of 
the varied stakeholders involved and their motives, and knowledge 
of less visible aspects of vulnerability based on social, cultural, 
political, and economic factors (Holland, 2017). Transformational 
adaptation would seek deep and long-term societal changes that 
influence sustainable development (Chung Tiam Fook, 2017; Few 
et al., 2017). 

Adaptation requires multidisciplinary approaches integrating 
scientific, technological and social dimensions. For example, a 
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framework for transformational adaptation and the integration 
of mitigation and adaptation pathways can transform rural 
indigenous communities to address risks of climate change and 
other stressors (Thornton and Comberti, 2017). In villages in rural 
Nepal, transformational adaptation has taken place, with villagers 
changing their agricultural and pastoralist livelihood strategies after 
years of lost crops due to changing rain patterns and degradation 
of natural resources (Thornton and Comberti, 2017). Instead, they 
are now opening stores, hotels, and tea shops. In another case, the 
arrival of an oil pipeline altered traditional Alaskan communities’ 
livelihoods. With growth of oil production, investments were made 
for rural development. A later drop in oil production decreased these 
investments. Alaskan indigenous populations are also dealing with 
impacts of climate change, such as sea level rise, which is altering 
their livelihood sources. Transformational adaptation is taking 
place by changing the energy matrix to renewable energy, in which 
indigenous people apply their knowledge to achieve environmental, 
economic, and social benefits (Thornton and Comberti, 2017).

4.2.2.3	 Disruptive innovation

Demand-driven disruptive innovations that emerge as the product 
of political and social changes across multiple scales can be 
transformative (Seba, 2014; Christensen et al., 2015; Green and 
Newman, 2017a). Such innovations would lead to simultaneous, 
profound changes in behaviour, economies and societies (Seba, 2014; 
Christensen et al. 2015), but are difficult to predict in supply-focused 
economic models (Geels et al., 2016a; Pindyck, 2017). Rapid socio-
technical change has been observed in the solar industry (Creutzig et 
al. (2017). Similar changes to socio-ecological systems can stimulate 
adaptation and mitigation options that lead to more climate-resilient 
systems (Adger et al., 2005; Ostrom, 2009; Gillard et al., 2016) (see 
the Alaska and Nepal examples in Section 4.2.2.2). The increase in 
roof-top solar and energy storage technology as well as the increase in 
passive housing and net zero-emissions buildings are further examples 
of such disruptions (Green and Newman, 2017b). Both roof-top solar 
and energy storage have benefitted from countries’ economic growth 
strategies and associated price declines in photovoltaic technologies, 
particularly in China (Shrivastava and Persson, 2018), as well as from 
new information and communication technologies (Koomey et al., 
2013), rising demand for electricity in urban areas, and global concern 
regarding greenhouse gas emissions (Azeiteiro and Leal Filho, 2017; 
Lutz and Muttarak, 2017; Wamsler, 2017).

System co-benefits can create the potential for mutually enforcing 
and demand-driven climate responses (Jordan et al., 2015; 
Hallegatte and Mach, 2016; Pelling et al., 2018), and for rapid and 
transformational change (Cole, 2015; Geels et al., 2016b; Hallegatte 
and Mach, 2016). Examples of co-benefits include gender equality, 
agricultural productivity (Nyantakyi-Frimpong and Bezner-Kerr, 2015), 
reduced indoor air pollution (Satterthwaite and Bartlett, 2017), flood 
buffering (Colenbrander et al., 2017), livelihood support (Shaw et 
al., 2014; Ürge-Vorsatz et al., 2014), economic growth (GCEC, 2014; 
Stiglitz et al., 2017), social progress (Steg et al., 2015; Hallegatte and 
Mach, 2016) and social justice (Ziervogel et al., 2017; Patterson et 
al., 2018). 

Innovations that disrupt entire systems may leave firms and utilities 
with stranded assets, as the transition can happen very quickly (IPCC, 
2014b; Kossoy et al., 2015). This may have consequences for fossil 
fuels that are rendered ‘unburnable’ (McGlade and Ekins, 2015) and 
fossil fuel-fired power and industry assets that would become obsolete 
(Caldecott, 2017; Farfan and Breyer, 2017). The presence of multiple 
barriers and enablers operating in a system implies that rapid change, 
whether the product of many small changes (Termeer et al., 2017) 
or large-scale disruptions, is seldom an insular or discrete process 
(Sterling et al., 2017). This finding informs the multidimensional nature 
of feasibility in Cross-Chapter Box 3 in Chapter 1 which is applied in 
Section 4.5. Climate responses that are aligned with multiple feasibility 
dimensions and combine adaptation and mitigation interventions with 
non-climate benefits can accelerate change and reduce risks and costs 
(Fazey et al., 2018). Also political, social and technological influences on 
energy transitions, for example, can accelerate them faster than narrow 
techno-economic analysis suggests is possible (Kern and Rogge, 2016), 
but could also introduce new constraints and risks (Geels et al., 2016b; 
Sovacool, 2016; Eyre et al., 2018). 

Disruptive innovation and technological change may play a role in 
mitigation and in adaptation. The next section assesses mitigation 
and adaptation options in energy, land and ecosystem, urban and 
infrastructure and industrial systems.

4.3	 Systemic Changes for 1.5°C-Consistent 
Pathways

Section 4.2 emphasizes the importance of systemic change for 
1.5°C-consistent pathways. This section translates this into four 
main system transitions: energy, land and ecosystem, urban and 
infrastructure, and industrial system transitions. This section assesses 
the mitigation, adaptation and carbon dioxide removal options that 
offer the potential for such change within those systems, based on 
options identified by Chapter 2 and risks and impacts in Chapter 3. 

The section puts more emphasis on those adaptation options (Sections 
4.3.1–4.3.5) and mitigation options (Sections 4.3.1–4.3.4, 4.3.6 
and 4.3.7) that are 1.5°C-relevant and have developed considerably 
since AR5. They also form the basis for the mitigation and adaptation 
feasibility assessments in Section 4.5. Section 4.3.8 discusses solar 
radiation modification methods. 

This section emphasizes that no single solution or option can enable a 
global transition to 1.5°C-consistent pathways or adapting to projected 
impacts. Rather, accelerating change, much of which is already starting 
or underway, in multiple global systems, simultaneously and at different 
scales, could provide the impetus for these system transitions. The 
feasibility of individual options as well as the potential for synergies 
and reducing trade-offs will vary according to context and the local 
enabling conditions. These are explored at a high level in Section 4.5. 
Policy packages that bring together multiple enabling conditions can 
provide building blocks for a strategy to scale up implementation and 
intervention impacts.
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4.3.1	 Energy System Transitions

This section discusses the feasibility of mitigation and adaptation 
options related to the energy system transition. Only options relevant 
to 1.5°C and with significant changes since AR5 are discussed, which 
means that for options like hydropower and geothermal energy, 
the chapter refers to AR5 and does not provide a discussion. Socio-
technical inertia of energy options for 1.5°C-consistent pathways are 
increasingly being surmounted as fossil fuels start to be phased out. 
Supply-side mitigation and adaptation options and energy demand-
side options, including energy efficiency in buildings and transportation, 
are discussed in Section 4.3.3; options around energy use in industry 
are discussed in Section 4.3.4. 

Section 4.5 assesses the feasibility in a systematic manner based on 
the approach outlined in Cross-Chapter Box 3 in Chapter 1.

4.3.1.1	 Renewable electricity: solar and wind

All renewable energy options have seen considerable advances over 
the years since AR5, but solar energy and both onshore and offshore 
wind energy have had dramatic growth trajectories. They appear well 
underway to contribute to 1.5°C-consistent pathways (IEA, 2017c; 
IRENA, 2017b; REN21, 2017). 

The largest growth driver for renewable energy since AR5 has been 
the dramatic reduction in the cost of solar photovoltaics (PV) (REN21, 
2017). This has made rooftop solar competitive in sunny areas between 
45° north and south latitude (Green and Newman, 2017b), though 
IRENA (2018) suggests it is cost effective in many other places too. Solar 
PV with batteries has been cost effective in many rural and developing 
areas (Pueyo and Hanna, 2015; Szabó et al., 2016; Jimenez, 2017), 
for example 19 million people in Bangladesh now have solar-battery 
electricity in remote villages and are reporting positive experiences on 
safety and ease of use (Kabir et al., 2017). Small-scale distributed energy 
projects are being implemented in developed and developing cities 
where residential and commercial rooftops offer potential for consumers 
becoming producers (called prosumers) (ACOLA, 2017; Kotilainen and 
Saari, 2018). Such prosumers could contribute significantly to electricity 
generation in sun-rich areas like California (Kurdgelashvili et al., 2016) 
or sub-Saharan Africa in combination with micro-grids and mini-grids 
(Bertheau et al., 2017). It could also contribute to universal energy 
access (SDG 7) as shown by (IEA, 2017c).

The feasibility of renewable energy options depends to a large 
extent on geophysical characteristics of the area where the option is 
implemented. However, technological advances and policy instruments 
make renewable energy options increasingly attractive in other areas. 
For example, solar PV is deployed commercially in areas with low solar 
insolation, like northwest Europe (Nyholm et al., 2017). Feasibility also 
depends on grid adaptations (e.g., storage, see below) as renewables 
grow (IEA, 2017c). For regions with high energy needs, such as 
industrial areas (see Section 4.3.4), high-voltage DC transmission 
across long distances would be needed (MacDonald et al., 2016). 

Another important factor affecting feasibility is public acceptance, in 
particular for wind energy and other large-scale renewable facilities 

(Yenneti and Day, 2016; Rand and Hoen, 2017; Gorayeb et al., 2018) 
that raise landscape management (Nadaï and Labussière, 2017) and 
distributional justice (Yenneti and Day, 2016) challenges. Research 
indicates that financial participation and community engagement can 
be effective in mitigating resistance (Brunes and Ohlhorst, 2011; Rand 
and Hoen, 2017) (see Section 4.4.3). 

Bottom-up studies estimating the use of renewable energy in the future, 
either at the global or at the national level, are plentiful, especially in 
the grey literature. It is hotly debated whether a fully renewable energy 
or electricity system, with or without biomass, is possible (Jacobson et 
al., 2015, 2017) or not (Clack et al., 2017; Heard et al., 2017), and by 
what year. Scale-up estimates vary with assumptions about costs and 
technological maturity, as well as local geographical circumstances 
and the extent of storage used (Ghorbani et al., 2017; REN21, 2017). 
Several countries have adopted targets of 100% renewable electricity 
(IEA, 2017c) as this meets multiple social, economic and environmental 
goals and contributes to mitigation of climate change (REN21, 2017).

4.3.1.2	 Bioenergy and biofuels

Bioenergy is renewable energy from biomass. Biofuel is biomass-based 
energy used in transport. Chapter 2 suggests that pathways limiting 
warming to 1.5°C would enable supply of 67–310 (median 150) 
EJ yr−1 (see Table 2.8) from biomass. Most scenarios find that bioenergy 
is combined with carbon dioxide capture and storage (CCS, BECCS) if it 
is available but also find robust deployment of bioenergy independent 
of the availability of CCS (see Chapter 2, Section 2.3.4.2 and Section 
4.3.7 for a discussion of BECCS). Detailed assessments indicate that 
deployment is similar for pathways limiting global warming to below 
2°C (Chum et al., 2011; P. Smith et al., 2014; Creutzig et al., 2015b). 
There is however high agreement that the sustainable bioenergy 
potential in 2050 would be restricted to around 100 EJ yr−1 (Slade 
et al., 2014; Creutzig et al., 2015b). Sustainable deployment at such 
or higher levels envisioned by 1.5°C-consistent pathways may put 
significant pressure on available land, food production and prices 
(Popp et al., 2014b; Persson, 2015; Kline et al., 2017; Searchinger et 
al., 2017), preservation of ecosystems and biodiversity (Creutzig et 
al., 2015b; Holland et al., 2015; Santangeli et al., 2016), and potential 
water and nutrient constraints (Gerbens-Leenes et al., 2009; Gheewala 
et al., 2011; Bows and Smith, 2012; Smith and Torn, 2013; Bonsch et 
al., 2016; Lampert et al., 2016; Mouratiadou et al., 2016; Smith et al., 
2016b; Wei et al., 2016; Mathioudakis et al., 2017); but there is still low 
agreement on these interactions (Robledo-Abad et al., 2017). Some 
of the disagreement on the sustainable capacity for bioenergy stems 
from global versus local assessments. Global assessments may mask 
local dynamics that exacerbate negative impacts and shortages while 
at the same time niche contexts for deployment may avoid trade-offs 
and exploit co-benefits more effectively. In some regions of the world 
(e.g., the case of Brazilian ethanol, see Box 4.7, where land may be less 
of a constraint, the use of bioenergy is mature and the industry is well 
developed), land transitions could be balanced with food production 
and biodiversity to enable a global impact on CO2 emissions (Jaiswal 
et al., 2017).

The carbon intensity of bioenergy, key for both bioenergy as an 
emission-neutral energy option and BECCS as a CDR measure, is 
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still a matter of debate (Buchholz et al., 2016; Liu et al., 2018) and 
depends on management (Pyörälä et al., 2014; Torssonen et al., 2016; 
Baul et al., 2017; Kilpeläinen et al., 2017); direct and indirect land-use 
change emissions (Plevin et al., 2010; Schulze et al., 2012; Harris et 
al., 2015; Repo et al., 2015; DeCicco et al., 2016; Qin et al., 2016)2; the 
feedstock considered; and time frame (Zanchi et al., 2012; Daioglou et 
al., 2017; Booth, 2018; Sterman et al., 2018), as well as the availability 
of coordinated policies and management to minimize negative 
side effects and trade-offs, particularly those around food security 
(Stevanović et al., 2017) and livelihood and equity considerations 
(Creutzig et al., 2013; Calvin et al., 2014) .

Biofuels are a part of the transport sector in some cities and countries, 
and may be deployed as a mitigation option for aviation, shipping 
and freight transport (see Section 4.3.3.5) as well as industrial 
decarbonization (IEA, 2017g) (Section 4.3.4), though only Brazil has 
mainstreamed ethanol as a substantial, commercial option. Lower 
emissions and reduced urban air pollution have been achieved there 
by use of ethanol and biodiesel as fuels (Hill et al., 2006; Salvo et al., 
2017) (see Box 4.7).

4.3.1.3	 Nuclear energy

Many scenarios in Chapter 2 and in AR5 (Bruckner et al., 2014) 
project an increase in the use of nuclear power, while others project 
a decrease. The increase can be realized through existing mature 
nuclear technologies or new options (generation III/IV reactors, 
breeder reactors, new uranium and thorium fuel cycles, small reactors 
or nuclear cogeneration).  

Even though scalability and speed of scaling of nuclear plants have 
historically been high in many nations, such rates are currently not 
achieved anymore. In the 1960s and 1970s, France implemented a 
programme to rapidly get 80% of its power from nuclear in about 
25 years (IAEA, 2018), but the current time lag between the decision 
date and the commissioning of plants is observed to be 10-19 years 
(Lovins et al., 2018). The current deployment pace of nuclear energy is 
constrained by social acceptability in many countries due to concerns 
over risks of accidents and radioactive waste management (Bruckner 
et al., 2014). Though comparative risk assessment shows health risks 
are low per unit of electricity production (Hirschberg et al., 2016), and 
land requirement is lower than that of other power sources (Cheng and 
Hammond, 2017), the political processes triggered by societal concerns 
depend on the country-specific means of managing the political 
debates around technological choices and their environmental impacts 
(Gregory et al., 1993). Such differences in perception explain why the 
2011 Fukushima incident resulted in a confirmation or acceleration of 
phasing out nuclear energy in five countries (Roh, 2017) while 30 other 
countries have continued using nuclear energy, amongst which 13 are 
building new nuclear capacity, including China, India and the United 
Kingdom (IAEA, 2017; Yuan et al., 2017). 

Costs of nuclear power have increased over time in some developed 
nations, principally due to market conditions where increased 

investment risks of high-capital expenditure technologies have 
become significant. ‘Learning by doing’ processes often failed to 
compensate for this trend because they were slowed down by the 
absence of standardization and series effects (Grubler, 2010). What 
the costs of nuclear power are and have been is debated in the 
literature (Lovering et al., 2016; Koomey et al., 2017). Countries with 
liberalized markets that continue to develop nuclear employ de-risking 
instruments through long-term contracts with guaranteed sale prices 
(Finon and Roques, 2013). For instance, the United Kingdom works 
with public guarantees covering part of the upfront investment costs 
of newly planned nuclear capacity. This dynamic differs in countries 
such as China and South Korea, where monopolistic conditions in 
the electric system allow for reducing investment risks, deploying 
series effects and enhancing the engineering capacities of users 
due to stable relations between the security authorities and builders 
(Schneider et al., 2017).

The safety of nuclear plants depends upon the public authorities of 
each country. However, because accidents affect worldwide public 
acceptance of this industry, questions have been raised about the risk 
of economic and political pressures weakening the safety of the plants 
(Finon, 2013; Budnitz, 2016). This raises the issue of international 
governance of civil nuclear risks and reinforced international 
cooperation involving governments, companies and engineering 
(Walker and Lönnroth, 1983; Thomas, 1988; Finon, 2013), based on the 
experience of the International Atomic Energy Agency.

4.3.1.4	 Energy storage 

The growth in electricity storage for renewables has been around grid 
flexibility resources (GFR) that would enable several places to source 
more than half their power from non-hydro renewables (Komarnicki, 
2016). Ten types of GFRs within smart grids have been developed 
(largely since AR5)(Blaabjerg et al., 2004; IRENA, 2013; IEA, 2017d; 
Majzoobi and Khodaei, 2017), though how variable renewables 
can be balanced  without hydro or natural gas-based power back-
up at a larger scale would still need demonstration. Pumped hydro 
comprised 150 GW of storage capacity in 2016, and grid-connected 
battery storage just 1.7 GW, but the latter grew between 2015 to 
2016 by 50% (REN21, 2017). Battery storage has been the main 
growth feature in energy storage since AR5 (Breyer et al., 2017). 
This appears to the result of significant cost reductions due to mass 
production for electric vehicles (EVs) (Nykvist and Nilsson, 2015; Dhar 
et al., 2017). Although costs and technical maturity look increasingly 
positive, the feasibility of battery storage is challenged by concerns 
over the availability of resources and the environmental impacts of 
its production (Peters et al., 2017). Lithium, a common element in 
the earth’s crust, does not appear to be restricted and large increases 
in production have happened in recent years with eight new mines 
in Western Australia where most lithium is produced (GWA, 2016). 
Emerging battery technologies may provide greater efficiency and 
recharge rates (Belmonte et al., 2016) but remain significantly more 
expensive due to speed and scale issues compared to lithium ion 
batteries (Dhar et al., 2017; IRENA, 2017a).

2	 While there is high agreement that indirect land use change (iLUC) could occur, there is low agreement about the actual extent of iLUC (P. Smith et al., 2014; Verstegen et 
al., 2015; Zilberman, 2017)
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Research and demonstration of energy storage in the form of thermal 
and chemical systems continues, but large-scale commercial systems 
are rare (Pardo et al., 2014). Renewably derived synthetic liquid (like 
methanol and ammonia) and gas (like methane and hydrogen) are 
increasingly being seen as a feasible storage options for renewable 
energy (producing fuel for use in industry during times when solar 
and wind are abundant) (Bruce et al., 2010; Jiang et al., 2010; Ezeji, 
2017) but, in the case of carbonaceous storage media, would need a 
renewable source of carbon to make a positive contribution to GHG 
reduction (von der Assen et al., 2013; Abanades et al., 2017) (see also 
Section 4.3.4.5). The use of electric vehicles as a form of storage has 
been modelled and evaluated as an opportunity, and demonstrations 
are emerging (Dhar et al., 2017; Green and Newman, 2017a), but 
challenges to upscaling remain.

4.3.1.5	 Options for adapting electricity systems to 1.5°C  

Climate change has started to disrupt electricity generation and, if 
climate change adaptation options are not considered, it is predicted 
that these disruptions will be lengthier and more frequent (Jahandideh-
Tehrani et al., 2014; Bartos and Chester, 2015; Kraucunas et al., 2015; 
van Vliet et al., 2016). Adaptation would both secure vulnerable 
infrastructure and ensure the necessary generation capacity (Minville 
et al., 2009; Eisenack and Stecker, 2012; Schaeffer et al., 2012; Cortekar 
and Groth, 2015; Murrant et al., 2015; Panteli and Mancarella, 2015; 
Goytia et al., 2016). The literature shows high agreement that climate 
change impacts need to be planned for in the design of any kind of 
infrastructure, especially in the energy sector (Nierop, 2014), including 
interdependencies with other sectors that require electricity to function, 
including water, data, telecommunications and transport (Fryer, 2017). 

Recent research has developed new frameworks and models that 
aim to assess and identify vulnerabilities in energy infrastructure 
and create more proactive responses (Francis and Bekera, 2014; 
Ouyang and Dueñas-Osorio, 2014; Arab et al., 2015; Bekera and 
Francis, 2015; Knight et al., 2015; Jeong and An, 2016; Panteli et al., 
2016; Perrier, 2016; Erker et al., 2017; Fu et al., 2017). Assessments of 
energy infrastructure adaptation, while limited, emphasize the need 
for redundancy (Liu et al., 2017). The implementation of  controllable 
and islandable microgrids, including the use of residential batteries, 
can increase resiliency, especially after extreme weather events (Qazi 
and Young Jr., 2014; Liu et al., 2017). Hybrid renewables-based power 
systems with non-hydro capacity, such as with high-penetration wind 
generation, could provide the required system flexibility (Canales et 
al., 2015). Overall, there is high agreement that hybrid systems, taking 
advantage of an array of sources and time of use strategies, can help 
make electricity generation more resilient (Parkinson and Djilali, 2015), 
given that energy security standards are in place (Almeida Prado et 
al., 2016).

Interactions between water and energy are complex (IEA, 2017g). 
Water scarcity patterns and electricity disruptions will differ across 
regions. There is high agreement that mitigation and adaptation 
options for thermal electricity generation (if that remains fitted with 
CCS) need to consider increasing water shortages, taking into account 
other factors such as ambient water resources and demand changes in 
irrigation water (Hayashi et al., 2018). Increasing the efficiency of power 

plants can reduce emissions and water needs (Eisenack and Stecker, 
2012; van Vliet et al., 2016), but applying CCS would increase water 
consumption (Koornneef et al., 2012). The technological, economic, 
social and institutional feasibility of efficiency improvements is high, 
but insufficient to limit temperature rise to 1.5°C (van Vliet et al., 2016).

In addition, a number of options for water cooling management 
systems have been proposed, such as hydraulic measures (Eisenack 
and Stecker, 2012) and alternative cooling technologies (Chandel et al., 
2011; Eisenack and Stecker, 2012; Bartos and Chester, 2015; Murrant 
et al., 2015; Bustamante et al., 2016; van Vliet et al., 2016; Huang et al., 
2017b). There is high agreement on the technological and economic 
feasibility of these technologies, as their absence can severely impact 
the functioning of the power plant as well as safety and security 
standards.

4.3.1.6	 Carbon dioxide capture and storage in the power sector  

The AR5 (IPCC, 2014b) as well as Chapter 2, Section 2.4.2, assign 
significant emission reductions over the course of this century to CO2 
capture and storage (CCS) in the power sector. This section focuses 
on CCS in the fossil-fuelled power sector; Section 4.3.4 discusses 
CCS in non-power industry, and Section 4.3.7 discusses bioenergy 
with CCS (BECCS). Section 2.4.2 puts the cumulative CO2 stored 
from fossil-fuelled power at 410 (199–470 interquartile range) GtCO2 

over this century. Such modelling suggests that CCS in the power 
sector can contribute to cost-effective achievement of emission 
reduction requirements for limiting warming to 1.5°C. CCS may also 
offer employment and political advantages for fossil fuel-dependent 
economies (Kern et al., 2016), but may entail more limited co-benefits 
than other mitigation options (that, e.g., generate power) and therefore 
relies on climate policy incentives for its business case and economic 
feasibility. Since 2017, two CCS projects in the power sector capture 
2.4 MtCO2 annually, while 30 MtCO2 is captured annually in all CCS 
projects (Global CCS Institute, 2017). 

The technological maturity of CO2 capture options in the power sectors 
has improved considerably (Abanades et al., 2015; Bui et al., 2018), 
but costs have not come down between 2005 and 2015 due to limited 
learning in commercial settings and increased energy and resources 
costs (Rubin et al., 2015). Storage capacity estimates vary greatly, but 
Section 2.4.2 as well as literature (V. Scott et al., 2015) indicate that 
perhaps 10,000 GtCO2 could be stored in underground reservoirs. 
Regional availability of this may not be sufficient, and it requires 
efforts to have this storage and the corresponding infrastructure 
available at the necessary rates and times (de Coninck and Benson, 
2014). CO2 retention in the storage reservoir was recently assessed 
as 98% over 10,000 years for well-managed reservoirs, and 78% 
for poorly regulated ones (Alcalde et al., 2018).  A paper reviewing 
42 studies on public perception of CCS (Seigo et al., 2014) found that 
social acceptance of CCS is predicted by trust, perceived risks and 
benefits. The technology itself mattered less than the social context of 
the project. Though insights on communication of CCS projects to the 
general public and inhabitants of the area around the CO2 storage sites 
have been documented over the years, project stakeholders are not 
consistently implementing these lessons, although some projects have 
observed good practices (Ashworth et al., 2015).
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CCS in the power sector is hardly being realized at scale, mainly 
because the incremental costs of capture, and the development of 
transport and storage infrastructures are not sufficiently compensated 
by market or government incentives (IEA, 2017c). In the two full-scale 
projects in the power sector mentioned above, part of the capture costs 
are compensated for by revenues from enhanced oil recovery (EOR) 
(Global CCS Institute, 2017), demonstrating that EOR helps developing 
CCS further. EOR is a technique that uses CO2 to mobilize more oil 
out of depleting oil fields, leading to additional CO2 emissions by 
combusting the additionally recovered oil (Cooney et al., 2015). 

4.3.2	 Land and Ecosystem Transitions

This section assesses the feasibility of mitigation and adaptation options 
related to land use and ecosystems. Land transitions are grouped around 
agriculture and food, ecosystems and forests, and coastal systems. 

4.3.2.1	 Agriculture and food

In a 1.5°C world, local yields are projected to decrease in tropical 
regions that are major food producing areas of the world (West Africa, 
Southeast Asia, South Asia, and Central and northern South America) 
(Schleussner et al., 2016). Some high-latitude regions may benefit from 
the combined effects of elevated CO2 and temperature because their 
average temperatures are below optimal temperature for crops. In both 
cases there are consequences for food production and quality (Cross-
Chapter Box 6 in Chapter 3 on Food Security), conservation agriculture, 
irrigation, food wastage, bioenergy and the use of novel technologies.

Food production and quality. Increased temperatures, including 
1.5°C warming, would affect the production of cereals such as wheat 
and rice, impacting food security (Schleussner et al., 2016). There is 
medium agreement that elevated CO2 concentrations can change food 
composition, with implications for nutritional security (Taub et al., 
2008; Högy et al., 2009; DaMatta et al., 2010; Loladze, 2014; De Souza 
et al., 2015), with the effects being different depending on the region 
(Medek et al., 2017).

Meta-analyses of the effects of drought, elevated CO2, and temperature 
conclude that at 2°C local warming and above, aggregate production of 
wheat, maize, and rice are expected to decrease in both temperate and 
tropical areas (Challinor et al., 2014). These production losses could be 
lowered if adaptation measures are taken (Challinor et al., 2014), such 
as developing varieties better adapted to changing climate conditions. 

Adaptation options can help ensure access to sufficient, quality food. 
Such options include conservation agriculture, improved livestock 
management, increasing irrigation efficiency, agroforestry and 
management of food loss and waste. Complementary adaptation and 
mitigation options, for example, the use of climate services (Section 
4.3.5), bioenergy (Section 4.3.1) and biotechnology (Section 4.4.4) can 
also serve to reduce emissions intensity and the carbon footprint of food 
production.

Conservation agriculture (CA) is a soil management approach 
that reduces the disruption of soil structure and biotic processes by 
minimising tillage. A recent meta-analysis showed that no-till practices 

work well in water-limited agroecosystems when implemented jointly 
with residue retention and crop rotation, but when used independently, 
may decrease yields in other situations (Pittelkow et al., 2014). 
Additional climate adaptations include adjusting planting times and 
crop varietal selection and improving irrigation efficiency. Adaptations 
such as these may increase wheat and maize yields by 7–12% under 
climate change (Challinor et al., 2014). CA can also help build adaptive 
capacity (medium evidence, medium agreement) (H. Smith et al., 2017; 
Pradhan et al., 2018) and have mitigation co-benefits through improved 
fertiliser use or efficient use of machinery and fossil fuels (Harvey et al., 
2014; Cui et al., 2018; Pradhan et al., 2018). CA practices can also raise 
soil carbon and therefore remove CO2 from the atmosphere (Aguilera 
et al., 2013; Poeplau and Don, 2015; Vicente-Vicente et al., 2016). 
However, CA adoption can be constrained by inadequate institutional 
arrangements and funding mechanisms (Harvey et al., 2014; Baudron 
et al., 2015; Li et al., 2016; Dougill et al., 2017; H. Smith et al., 2017).

Sustainable intensification of agriculture consists of agricultural 
systems with increased production per unit area but with management 
of the range of potentially adverse impacts on the environment (Pretty 
and Bharucha, 2014). Sustainable intensification can increase the 
efficiency of inputs and enhance health and food security (Ramankutty 
et al., 2018).

Livestock management. Livestock are responsible for more GHG 
emissions than all other food sources. Emissions are caused by feed 
production, enteric fermentation, animal waste, land-use change 
and livestock transport and processing. Some estimates indicate that 
livestock supply chains could account for 7.1 GtCO2 per year, equivalent 
to 14.5% of global anthropogenic greenhouse gas emissions (Gerber 
et al., 2013). Cattle (beef, milk) are responsible for about two-thirds 
of that total, largely due to methane emissions resulting from rumen 
fermentation (Gerber et al., 2013; Opio et al., 2013). 

Despite ongoing gains in livestock productivity and volumes, the 
increase of animal products in global diets is restricting overall 
agricultural efficiency gains because of inefficiencies in the conversion 
of agricultural primary production (e.g., crops) in the feed-animal 
products pathway (Alexander et al., 2017), offsetting the benefits of 
improvements in livestock production systems (Clark and Tilman, 2017). 

There is increasing agreement that overall emissions from food systems 
could be reduced by targeting the demand for meat and other livestock 
products, particularly where consumption is higher than suggested 
by human health guidelines. Adjusting diets to meet nutritional 
targets could bring large co-benefits, through GHG mitigation and 
improvements in the overall efficiency of food systems (Erb et al., 2009; 
Tukker et al., 2011; Tilman and Clark, 2014; van Dooren et al., 2014; 
Ranganathan et al., 2016). Dietary shifts could contribute one-fifth of 
the mitigation needed to hold warming below 2°C, with one-quarter of 
low-cost options (Griscom et al., 2017). There, however, remains limited 
evidence of effective policy interventions to achieve such large-scale 
shifts in dietary choices, and prevailing trends are for increasing rather 
than decreasing demand for livestock products at the global scale 
(Alexandratos and Bruinsma, 2012; OECD/FAO, 2017). How the role 
of dietary shift could change in 1.5°C-consistent pathways is also not 
clear (see Chapter 2). 
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Adaptation of livestock systems can include a suite of strategies such 
as using different breeds and their wild relatives to develop a genetic 
pool resilient to climatic shocks and longer-term temperature shifts 
(Thornton and Herrero, 2014), improving fodder and feed management 
(Bell et al., 2014; Havet et al., 2014) and disease prevention and control 
(Skuce et al., 2013; Nguyen et al., 2016). Most interventions that 
improve the productivity of livestock systems and enhance adaptation 
to climate changes would also reduce the emissions intensity of food 
production, with significant co-benefits for rural livelihoods and the 
security of food supplies (Gerber et al., 2013; FAO and NZAGRC, 2017a, 
b, c). Whether such reductions in emission intensity result in lower 
or higher absolute GHG emissions depends on overall demand for 
livestock products, indicating the relevance of integrating supply-side 
with demand-side measures within food security objectives (Gerber 
et al., 2013; Bajželj et al., 2014). Transitions in livestock production 
systems (e.g., from extensive to intensive) can also result in significant 
emission reductions as part of broader land-based mitigation strategies 
(Havlik et al., 2014).

Overall, there is high agreement that farm strategies that integrate 
mixed crop–livestock systems can improve farm productivity and 
have positive sustainability outcomes (Havet et al., 2014; Thornton 
and Herrero, 2014; Herrero et al., 2015; Weindl et al., 2015). Shifting 
towards mixed crop–livestock systems is estimated to reduce 
agricultural adaptation costs to 0.3% of total production costs while 
abating deforestation by 76 Mha globally, making it a highly cost-
effective adaptation option with mitigation co-benefits (Weindl et 
al., 2015). Evidence from various regions supports this (Thornton and 
Herrero, 2015), although the feasible scale varies between regions and 
systems, as well as being moderated by overall demand in specific 
food products. In Australia, some farmers have successfully shifted 
to crop–livestock systems where, each year, they allocate land and 
forage resources in response to climate and price trends (Bell et al., 
2014) . However, there can be some unintended negative impacts 
of such integration, including increased burdens on women, higher 
requirements of capital, competing uses of crop residues (e.g., feed 
vs. mulching vs. carbon sequestration) and higher requirements 
of management skills, which can be a challenge across several low 
income countries (Thornton and Herrero, 2015; Thornton et al., 2018). 
Finally, the feasibility of improving livestock efficiency is dependent 
on socio-cultural context and acceptability: there remain significant 
issues around widespread adoption of crossbred animals, especially by 
smallholders (Thornton et al., 2018).  

Irrigation efficiency. Irrigation efficiency is especially critical since 
water endowments are expected to change, with  20–60 Mha of 
global cropland being projected to revert from irrigated to rain-fed 
land, while other areas will receive higher precipitation in shorter time 
spans, thus affecting irrigation demand (Elliott et al., 2014). While 
increasing irrigation system efficiency is necessary, there is mixed 
evidence on how to enact efficiency improvements (Fader et al., 2016; 
Herwehe and Scott, 2018). Physical and technical strategies include 
building large-scale reservoirs or dams, renovating or deepening 
irrigation channels, building on-farm rainwater harvesting structures, 
lining ponds, channels and tanks to reduce losses through percolation 
and evaporation, and investing in small infrastructure such as sprinkler 
or drip irrigation sets (Varela-Ortega et al., 2016; Sikka et al., 2018). 

Each strategy has differing costs and benefits relating to unique 
biophysical, social, and economic contexts. Also, increasing irrigation 
efficiency may foster higher dependency on irrigation, resulting in a 
heightened sensitivity to climate that may be maladaptive in the long 
term (Lindoso et al., 2014).

Improvements in irrigation efficiency would need to be supplemented 
with ancillary activities, such as shifting to crops that require less water 
and improving soil and moisture conservation (Fader et al., 2016; 
Hong and Yabe, 2017; Sikka et al., 2018). Currently, the feasibility of 
improving irrigation efficiency is constrained by issues of replicability 
across scale and sustainability over time (Burney and Naylor, 2012), 
institutional barriers and inadequate market linkages (Pittock et al., 
2017). 

Growing evidence suggests that investing in behavioural shifts 
towards using irrigation technology such as micro-sprinklers or drip 
irrigation, is an effective and quick adaptation strategy (Varela-Ortega 
et al., 2016; Herwehe and Scott, 2018; Sikka et al., 2018) as opposed 
to large dams which have high financial, ecological and social costs 
(Varela-Ortega et al., 2016). While improving irrigation efficiency is 
technically feasible (R. Fishman et al., 2015) and has clear benefits for 
environmental values (Pfeiffer and Lin, 2014; R. Fishman et al., 2015), 
feasibility is regionally differentiated as shown by examples as diverse 
as Kansas (Jägermeyr et al., 2015), India (R. Fishman et al., 2015) and 
Africa (Pittock et al., 2017).  

Agroforestry. The integration of trees and shrubs into crop and 
livestock systems, when properly managed, can potentially restrict soil 
erosion, facilitate water infiltration, improve soil physical properties 
and buffer against extreme events (Lasco et al., 2014; Mbow et al., 
2014; Quandt et al., 2017; Sida et al., 2018). There is medium evidence 
and high agreement on the feasibility of agroforestry practices that 
enhance productivity, livelihoods and carbon storage (Lusiana et al., 
2012; Murthy, 2013; Coulibaly et al., 2017; Sida et al., 2018), including 
from indigenous production systems (Coq-Huelva et al., 2017), with 
variation by region, agroforestry type, and climatic conditions (Place 
et al., 2012; Coe et al., 2014; Mbow et al., 2014; Iiyama et al., 2017; 
Abdulai et al., 2018). Long-term studies examining the success of 
agroforestry, however, are rare (Coe et al., 2014; Meijer et al., 2015; 
Brockington et al., 2016; Zomer et al., 2016). 

The extent to which agroforestry practices employed at the farm level 
could be scaled up globally while satisfying growing food demand 
is relatively unknown. Agroforestry adoption has been relatively low 
and uneven (Jacobi et al., 2017; Hernández-Morcillo et al., 2018), with 
constraints including the expense of establishment and lack of reliable 
financial support, insecure land tenure, landowner’s lack of experience 
with trees, complexity of management practices, fluctuating market 
demand and prices for different food and fibre products, the time and 
knowledge required for management, low intermediate benefits to 
offset revenue lags, and inadequate market access (Pattanayak et al., 
2003; Mercer, 2004; Sendzimir et al., 2011; Valdivia et al., 2012; Coe et 
al., 2014; Meijer et al., 2015; Coulibaly et al., 2017; Jacobi et al., 2017).

Managing food loss and waste. The way food is produced, 
processed and transported strongly influences GHG emissions. Around 
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one-third of the food produced on the planet is not consumed (FAO, 
2013), affecting food security and livelihoods (See Cross-Chapter Box 
6 on Food Security in Chapter 3). Food wastage is a combination 
of food loss – the decrease in mass and nutritional value of food 
due to poor infrastructure, logistics, and lack of storage technologies 
and management – and food waste that derives from inappropriate 
human consumption that leads to food spoilage associated with 
inferior quality or overproduction. Food wastage could lead to an 
increase in emissions estimated to 1.9–2.5 GtCO2-eq yr−1 (Hiç et al., 
2016). 

Decreasing food wastage has high mitigation and adaptation potential 
and could play an important role in land transitions towards 1.5°C, 
provided that reduced food waste results in lower production-side 
emissions rather than increased consumption (Foley et al., 2011). There 
is medium agreement that a combination of individual–institutional 
behaviour (Refsgaard and Magnussen, 2009; Thornton and Herrero, 
2014), and improved technologies and management (Lin et al., 2013; 
Papargyropoulou et al., 2014) can transform food waste into products 
with marketable value. Institutional behaviour depends on investment 
and policies, which if adequately addressed could enable mitigation 
and adaptation co-benefits in a relatively short time.

Novel technologies. New molecular biology tools have been 
developed that can lead to fast and precise genome modification (De 
Souza et al., 2016; Scheben et al., 2016) (e.g., CRISPR Cas9; Ran et 
al., 2013; Schaeffer and Nakata, 2015). Such genome editing tools 
may moderately assist in mitigation and adaptation of agriculture 
in relation to climate changes, elevated CO2, drought and flooding 
(DaMatta et al., 2010; De Souza et al., 2015, 2016). These tools could 
contribute to developing new plant varieties that can adapt to warming 
of 1.5°C and overshoot, potentially avoiding some of the costs of crop 
shifting (Schlenker and Roberts, 2009; De Souza et al., 2016). However, 
biosafety concerns and government regulatory systems can be a major 
barrier to the use of these tools as this increases the time and cost 
of turning scientific discoveries into ready applicable technologies 
(Andow and Zwahlen, 2006; Maghari and Ardekani, 2011).

The strategy of reducing enteric methane emissions by ruminants 
through the development of inhibitors or vaccines has already been 
attempted with some successes, although the potential for application 
at scale and in different situations remains uncertain. A methane 
inhibitor has been demonstrated to reduce methane from feedlot 
systems by 30% over a 12-week period (Hristov et al., 2015) with 
some productivity benefits, but the ability to apply it in grazing systems 
will depend on further technological developments as well as costs 
and incentives. A vaccine could potentially modify the microbiota of 
the rumen and be applicable even in extensive grazing systems by 
reducing the presence of methanogenic micro-organisms (Wedlock et 
al., 2013) but has not yet been successfully demonstrated to reduce 
emissions in live animals. Selective breeding for lower-emitting 
ruminants is becoming rapidly feasible, offering small but cumulative 
emissions reductions without requiring substantial changes in farm 
systems (Pickering et al., 2015).

Technological innovation in culturing marine and freshwater micro 
and macro flora has significant potential to expand food, fuel and 

fibre resources, and could reduce impacts on land and conventional 
agriculture (Greene et al., 2017).

Technological innovation could assist in increased agricultural efficiency 
(e.g., via precision agriculture), decrease food wastage and genetics 
that enhance plant adaptation traits (Section 4.4.4). Technological and 
associated management improvements may be ways to increase the 
efficiency of contemporary agriculture to help produce enough food 
to cope with population increases in a 1.5°C warmer world, and help 
reduce the pressure on natural ecosystems and biodiversity.

4.3.2.2	 Forests and other ecosystems

Ecosystem restoration. Biomass stocks in tropical, subtropical, 
temperate and boreal biomes currently hold 1085, 194, 176, 190 Gt CO2, 
respectively. Conservation and restoration can enhance these natural 
carbon sinks (Erb et al., 2017). 

Recent studies explore options for conservation, restoration and 
improved land management estimating up to 23 GtCO2 (Griscom et 
al., 2017). Mitigation potentials are dominated by reduced rates of 
deforestation, reforestation and forest management, and concentrated 
in tropical regions (Houghton, 2013; Canadell and Schulze, 2014; Grace 
et al., 2014; Houghton et al., 2015; Griscom et al., 2017). Much of the 
literature focuses on REDD+ (reducing emissions from deforestation and 
forest degradation) as an institutional mechanism. However, restoration 
and management activities need not be limited to REDD+, and locally 
adapted implementation may keep costs low, capitalize on co-benefits 
and ensure consideration of competing for socio-economic goals (Jantke 
et al., 2016; Ellison et al., 2017; Perugini et al., 2017; Spencer et al., 2017).

Half of the estimated potential can be achieved at <100 USD/tCO2; and 
a third of the cost-effective potential at <10 USD/tCO2 (Griscom et al., 
2017). Variation of costs in projects aiming to reduce emissions from 
deforestation is high when considering opportunity and transaction 
costs (Dang Phan et al., 2014; Overmars et al., 2014; Ickowitz et al., 
2017; Rakatama et al., 2017).

However, the focus on forests raises concerns of cross-biome leakage 
(medium evidence, low agreement) (Popp et al., 2014a; Strassburg 
et al., 2014; Jayachandran et al., 2017) and encroachment on other 
ecosystems (Veldman et al., 2015). Reducing rates of deforestation 
constrains the land available for agriculture and grazing, with trade-
offs between diets, higher yields and food prices (Erb et al., 2016a; 
Kreidenweis et al., 2016). Forest restoration and conservation are 
compatible with biodiversity (Rey Benayas et al., 2009; Jantke et al., 
2016) and available water resources; in the tropics, reducing rates of 
deforestation maintains cooler surface temperatures (Perugini et al., 
2017) and rainfall (Ellison et al., 2017). 

Its multiple potential co-benefits have made REDD+ important for local 
communities, biodiversity and sustainable landscapes (Ngendakumana 
et al., 2017; Turnhout et al., 2017). There is low agreement on whether 
climate impacts will reverse mitigation benefits of restoration (Le Page 
et al., 2013) by increasing the likelihood of disturbance (Anderegg et 
al., 2015), or reinforce them through carbon fertilization (P. Smith et 
al., 2014).
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Emerging regional assessments offer new perspectives for upscaling. 
Strengthening coordination, additional funding sources, and access 
and disbursement points increase the potential of REDD+ in working 
towards 2°C and 1.5°C limits (Well and Carrapatoso, 2017). While 
there are indications that land tenure has a positive impact (Sunderlin 
et al., 2014), a meta-analysis by Wehkamp et al. (2018a) shows that 
there is medium evidence and low agreement on which aspects of 
governance improvements are supportive of conservation. Local 
benefits, especially for indigenous communities, will only be accrued if 
land tenure is respected and legally protected, which is not often the 
case (Sunderlin et al., 2014; Brugnach et al., 2017). Although payments 
for reduced rates of deforestation may benefit the poor, the most 
vulnerable populations could have limited, uneven access (Atela et al., 
2014) and face lower opportunity costs from deforestation (Ickowitz 
et al., 2017).

Community-based adaptation (CbA). There is medium evidence 
and high agreement for the use of CbA. The specific actions to take 
will depend upon the location, context, and vulnerability of the specific 
community. CbA is defined as ‘a community-led process, based on 
communities’ priorities, needs, knowledge, and capacities, which aim 
to empower people to plan for and cope with the impacts of climate 
change’ (Reid et al., 2009). The integration of CbA with ecosystems-
based adaptation (EbA) has been increasingly promoted, especially in 
efforts to alleviate poverty (Mannke, 2011; Reid, 2016).

Despite the potential and advantages of both CbA and EbA, including 
knowledge exchange, information access and increased social capital 
and equity; institutional and governance barriers still constitute a 
challenge for local adaptation efforts (Wright et al., 2014; Fernández-
Giménez et al., 2015).

Wetland management. In wetland ecosystems, temperature rise has 
direct and irreversible impacts on species functioning and distribution, 
ecosystem equilibrium and services, and second-order impacts on local 
livelihoods (see Chapter 3, Section 3.4.3). The structure and function 
of wetland systems are changing due to climate change. Wetland 
management strategies, including adjustments in infrastructural, 
behavioural, and institutional practices have clear implications for 
adaptation (Colloff et al., 2016b; Finlayson et al., 2017; Wigand et al., 
2017) 

Despite international initiatives on wetland restoration and 
management through the Ramsar Convention on Wetlands, policies 
have not been effective (Finlayson, 2012; Finlayson et al., 2017). 
Institutional reform, such as flexible, locally relevant governance, 
drawing on principles of adaptive co-management, and multi-
stakeholder participation becomes increasingly necessary for effective 
wetland management (Capon et al., 2013; Finlayson et al., 2017).

4.3.2.3	 Coastal systems

Managing coastal stress. Particularly to allow for the landward 
relocation of coastal ecosystems under a transition to a 1.5°C warmer 
world, planning for climate change would need to be integrated with 
the use of coastlines by humans (Saunders et al., 2014; Kelleway et al., 
2017). Adaptation options for managing coastal stress include coastal 

hardening through the building of seawalls and the re-establishment 
of coastal ecosystems such as mangroves (André et al., 2016; Cooper 
et al., 2016). While the feasibility of the solutions is high, they are 
expensive to scale (robust evidence, medium agreement).  

There is low evidence and high agreement that reducing the impact 
of local stresses (Halpern et al., 2015) will improve the resilience of 
marine ecosystems as they transition to a 1.5°C world (O’Leary et 
al., 2017).  Approaches to reducing local stresses are considered 
feasible, cost-effective and highly scalable. Ecosystem resilience 
may be increased through alternative livelihoods (e.g., sustainable 
aquaculture), which are among a suite of options for building resilience 
in coastal ecosystems. These options enjoy high levels of feasibility yet 
are expensive, which stands in the way of scalability (robust evidence, 
medium agreement) (Hiwasaki et al., 2015; Brugnach et al., 2017).  

Working with coastal communities has the potential for improving 
the resilience of coastal ecosystems. Combined with the advantages 
of using indigenous knowledge to guide transitions, solutions can be 
more effective when undertaken in partnership with local communities, 
cultures, and knowledge (See Box 4.3).

Restoration of coastal ecosystems and fisheries. Marine 
restoration is expensive compared to terrestrial restoration, and the 
survival of projects is currently low, with success depending on the 
ecosystem and site, rather than the size of the financial investment 
(Bayraktarov et al., 2016). Mangrove replanting shows evidence 
of success globally, with numerous examples of projects that have 
established forests (Kimball et al., 2015; Bayraktarov et al., 2016).

Efforts with reef-building corals have been attempted with a low level 
of success (Bayraktarov et al., 2016). Technologies to help re-establish 
coral communities are limited (Rinkevich, 2014), as are largely 
untested disruptive technologies (e.g., genetic manipulation, assisted 
evolution) (van Oppen et al., 2015). Current technologies also have 
trouble scaling given the substantial costs and investment required 
(Bayraktarov et al., 2016).

Johannessen and Macdonald (2016) report the ‘blue carbon’ sink to 
be 0.4–0.8% of global anthropogenic emissions. However, this does 
not adequately account for post-depositional processes and could 
overestimate removal potentials, subject to a risk of reversal. Seagrass 
beds will thus not contribute significantly to enabling 1.5°C-consistent 
pathways.

4.3.3	 Urban and Infrastructure System Transitions

There will be approximately 70 million additional urban residents every 
year through to the middle part of this century (UN DESA, 2014). The 
majority of these new urban citizens will reside in small and medium-
sized cities in low- and middle-income countries (Cross-Chapter Box 
13 in Chapter 5). The combination of urbanization and economic 
and infrastructure development could account for an additional 
226 GtCO2 by 2050 (Bai et al. 2018). However, urban systems can 
harness the mega-trends of urbanization, digitalization, financialization 
and growing sub-national commitment to smart cities, green cities, 
resilient cities, sustainable cities and adaptive cities, for the type of 
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transformative change required by 1.5°C-consistent pathways (SDSN, 
2013; Parag and Sovacool, 2016; Roberts, 2016; Wachsmuth et al., 2016; 
Revi, 2017; Solecki et al., 2018). There is a growing number of urban 
climate responses driven by cost-effectiveness, development, work 
creation and inclusivity considerations (Solecki et al., 2013; Ahern et 
al., 2014; Floater et al., 2014; Revi et al., 2014a; Villarroel Walker et 
al., 2014; Kennedy et al., 2015; Rodríguez, 2015; McGranahan et al., 
2016; Dodman et al., 2017a; Newman et al., 2017; UN-Habitat, 2017; 
Westphal et al., 2017). 

In addition, low-carbon cities could reduce the need to deploy carbon 
dioxide removal (CDR) and solar radiation modification (SRM) (Fink, 
2013; Thomson and Newman, 2016).  

Cities are also places in which the risks associated with warming of 
1.5°C, such as heat stress, terrestrial and coastal flooding, new disease 
vectors, air pollution and water scarcity, will coalesce (see Chapter 3, 
Section 3.3) (Dodman et al., 2017a; Satterthwaite and Bartlett, 2017). 
Unless adaptation and mitigation efforts are designed around the need 
to decarbonize urban societies in the developed world and provide 
low-carbon solutions to the needs of growing urban populations in 
developing countries, they will struggle to deliver the pace or scale 
of change required by 1.5°C-consistent pathways (Hallegatte et al., 
2013; Villarroel Walker et al., 2014; Roberts, 2016; Solecki et al., 2018). 
The pace and scale of urban climate responses can be enhanced by 
attention to social equity (including gender equity), urban ecology 
(Brown and McGranahan, 2016; Wachsmuth et al., 2016; Ziervogel 
et al., 2016a) and participation in sub-national networks for climate 
action (Cole, 2015; Jordan et al., 2015). 

The long-lived urban transport, water and energy systems that will be 
constructed in the next three decades to support urban populations in 
developing countries and to retrofit cities in developed countries will 
have to be different to those built in Europe and North America in the 
20th century, if they are to support the required transitions (Freire et al., 
2014; Cartwright, 2015; McPhearson et al., 2016; Roberts, 2016; Lwasa, 
2017). Recent literature identifies energy, infrastructure, appliances, 
urban planning, transport and adaptation options as capable of 
facilitating systemic change. It is these aspects of the urban system that 
are discussed below and from which options in Section 4.5 are selected.

4.3.3.1	 Urban energy systems

Urban economies tend to be more energy intensive than national 
economies due to higher levels of per capita income, mobility and 
consumption (Kennedy et al., 2015; Broto, 2017; Gota et al., 2018). 
However, some urban systems have begun decoupling development 
from the consumption of fossil fuel-powered energy through energy 
efficiency, renewable energy and locally managed smart grids 
(Dodman, 2009; Freire et al., 2014; Eyre et al., 2018; Glazebrook and 
Newman, 2018).

The rapidly expanding cities of Africa and Asia, where energy poverty 
currently undermines adaptive capacity (Westphal et al., 2017; 
Satterthwaite et al., 2018), have the opportunity to benefit from recent 

price changes in renewable energy technologies to enable clean 
energy access to citizens (SDG 7) (Cartwright, 2015; Watkins, 2015; 
Lwasa, 2017; Kennedy et al., 2018; Teferi and Newman, 2018). This will 
require strengthened energy governance in these countries (Eberhard 
et al., 2017). Where renewable energy displaces paraffin, wood fuel 
or charcoal feedstocks in informal urban settlements, it provides 
the co-benefits of improved indoor air quality, reduced fire risk and 
reduced deforestation, all of which can enhance adaptive capacity 
and strengthen demand for this energy (Newham and Conradie, 2013; 
Winkler, 2017; Kennedy et al., 2018; Teferi and Newman, 2018). 

4.3.3.2	 Urban infrastructure, buildings and appliances

Buildings are responsible for 32% of global energy consumption (IEA, 
2016c) and have a large energy saving potential with available and 
demonstrated technologies such as energy efficiency improvements 
in technical installations and in thermal insulation (Toleikyte et al., 
2018) and energy sufficiency (Thomas et al., 2017). Kuramochi et 
al. (2018) show that 1.5°C-consistent pathways require building 
emissions to be reduced by 80–90% by 2050, new construction to 
be fossil-free and near-zero energy by 2020, and an increased rate of 
energy refurbishment of existing buildings to 5% per annum in OECD 
(Organisation for Economic Co-operation and Development) countries 
(see also Section 4.2.1).

Based on the IEA-ETP (IEA, 2017g), Chapter 2 identifies large saving 
potential in heating and cooling through improved building design, 
efficient equipment, lighting and appliances. Several examples of 
net zero energy in buildings are now available (Wells et al., 2018). 
In existing buildings, refurbishment enables energy saving (Semprini 
et al., 2017; Brambilla et al., 2018; D’Agostino and Parker, 2018; Sun 
et al., 2018) and cost savings (Toleikyte et al., 2018; Zangheri et al., 
2018).

Reducing the energy embodied in building materials provides further 
energy and GHG savings (Cabeza et al., 2013; Oliver and Morecroft, 
2014; Koezjakov et al., 2018), in particular through increased use of bio-
based materials (Lupíšek et al., 2015) and wood construction (Ramage 
et al., 2017). The United Nations Environment Programme (UNEP3) 
estimates that improving embodied energy, thermal performance, and 
direct energy use of buildings can reduce emissions by 1.9 GtCO2e yr −1 
(UNEP, 2017b), with an additional reduction of 3 GtCO2e yr−1 through 
energy efficient appliances and lighting (UNEP, 2017b). Further 
increasing the energy efficiency of appliances and lighting, heating 
and cooling offers the potential for further savings (Parikh and Parikh, 
2016; Garg et al., 2017). 

Smart technology, drawing on the internet of things (IoT) and building 
information modelling, offers opportunities to accelerate energy 
efficiency in buildings and cities (Moreno-Cruz and Keith, 2013; Hoy, 
2016) (see also Section 4.4.4). Some cities in developing countries 
are drawing on these technologies to adopt ‘leapfrog’ infrastructure, 
buildings and appliances to pursue low-carbon development (Newman 
et al., 2017; Teferi and Newman, 2017) (Cross-Chapter Box 13 in 
Chapter 5).

3	 Currently called UN Environment. 
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4.3.3.3	 Urban transport and urban planning

Urban form impacts demand for energy (Sims et al., 2014) and other 
welfare related factors: a meta-analysis of 300 papers reported 
energy savings of 26 USD per person per year attributable to a 10% 
increase in urban population density (Ahlfeldt and Pietrostefani, 
2017). Significant reductions in car use are associated with dense, 
pedestrianized cities and towns and medium-density transit corridors 
(Newman and Kenworthy, 2015; Newman et al., 2017) relative to low-
density cities in which car dependency is high (Schiller and Kenworthy, 
2018). Combined dense urban forms and new mass transit systems 
in Shanghai and Beijing have yielded less car use (Gao and Newman, 
2018) (see Box 4.9). Compact cities also create the passenger density 
required to make public transport more financially viable (Rode et al., 
2017; Ahlfeldt and Pietrostefani, 2017) and enable combinations of 
cleaner fuel feedstocks and urban smart grids, in which vehicles form 
part of the storage capacity (Oldenbroek et al., 2017). Similarly, the 
spatial organization of urban energy influenced the trajectories of 
urban development in cities as diverse as Hong Kong, Bengaluru and 
Maputo (Broto, 2017). 

The informal settlements of middle- and low-income cities, where urban 
density is more typically associated with a range of water- and vector-
borne health risks, may provide a notable exception to the adaptive 
advantages of urban density (Mitlin and Satterthwaite, 2013; Lilford et 
al., 2017) unless new approaches and technologies are harnessed to 
accelerate slum upgrading (Teferi and Newman, 2017).

Scenarios consistent with 1.5°C depend on a roughly 15% reduction 
in final energy use by the transport sector by 2050 relative to 2015 
(Chapter 2, Figure 2.12). In one analysis the phasing out of fossil fuel 
passenger vehicle sales by 2035–2050 was identified as a benchmark 
for aligning with 1.5°C-consistent pathways (Kuramochi et al., 2018). 
Reducing emissions from transport has lagged the power sector (Sims 
et al., 2014; Creutzig et al., 2015a), but evidence since AR5 suggests 
that cities are urbanizing and re-urbanizing in ways that coordinate 
transport sector adaptation and mitigation (Colenbrander et al., 2017; 
Newman et al., 2017; Salvo et al., 2017; Gota et al., 2018). The global 
transport sector could reduce 4.7 GtCO2e yr−1 (4.1–5.3) by 2030. 
This is significantly more than is predicted by integrated assessment 
models (UNEP, 2017b). Such a transition depends on cities that 
enable modal shifts and avoided journeys and that provide incentives 
for uptake of improved fuel efficiency and changes in urban design 
that encourage walkable cities, non-motorized transport and shorter 
commuter distances (IEA, 2016a; Mittal et al., 2016; Zhang et al., 
2016; Li and Loo, 2017). In at least 4 African cities, 43 Asian cities 
and 54 Latin American cities, transit-oriented development (TOD), 
has emerged as an organizing principle for urban growth and spatial 
planning (Colenbrander et al., 2017; Lwasa, 2017; BRTData, 2018). 
This trend is important to counter the rising demand for private cars in 
developing-country cities (AfDB/OECD/UNDP, 2016). In India, TOD has 
been combined with localized solar PV installations and new ways of 
financing rail expansion (Sharma, 2018). 

Cities pursuing sustainable transport benefit from reduced air pollution, 
congestion and road fatalities and are able to harness the relationship 
between transport systems, urban form, urban energy intensity 

and social cohesion (Goodwin and Van Dender, 2013; Newman and 
Kenworthy, 2015; Wee, 2015). 

Technology and electrification trends since AR5 make carbon-efficient 
urban transport easier (Newman et al., 2016), but realizing urban 
transport’s contribution to a 1.5°C-consistent pathways will require 
the type of governance that can overcome the financial, institutional, 
behavioural and legal barriers to change (Geels, 2014; Bakker et al., 
2017). 

Adaptation to a 1.5°C world is enabled by urban design and spatial 
planning policies that consider extreme weather conditions and reduce 
displacement by climate related disasters (UNISDR, 2009; UN-Habitat, 
2011; Mitlin and Satterthwaite, 2013).

Building codes and technology standards for public lighting, 
including traffic lights (Beccali et al., 2015), play a critical role in 
reducing carbon emissions, enhancing urban climate resilience and 
managing climate risk (Steenhof and Sparling, 2011; Parnell, 2015; 
Shapiro, 2016; Evans et al., 2017). Building codes can support the 
convergence to zero emissions from buildings (Wells et al., 2018) and 
can be used retrofit the existing building stock for energy efficiency 
(Ruparathna et al., 2016). 

The application of building codes and standards for 1.5°C-consistent 
pathways will require improved enforcement, which can be a challenge 
in developing countries where inspection resources are often limited 
and codes are poorly tailored to local conditions (Ford et al., 2015c; 
Chandel et al., 2016; Eisenberg, 2016; Shapiro, 2016; Hess and Kelman, 
2017; Mavhura et al., 2017). In all countries, building codes can be 
undermined by industry interests and can be maladaptive if they 
prevent buildings or land use from evolving to reduce climate impacts 
(Eisenberg, 2016; Shapiro, 2016). 

The deficit in building codes and standards in middle-income 
and developing-country cities need not be a constraint to more 
energy-efficient and resilient buildings (Tait and Euston-Brown, 
2017). For example, the relatively high price that poor households 
pay for unreliable and at times dangerous household energy 
in African cities has driven the uptake of renewable energy and 
energy efficiency technologies in the absence of regulations or 
fiscal incentives (Eberhard et al., 2011, 2016; Cartwright, 2015; 
Watkins, 2015). The Kuyasa Housing Project in Khayelitsha, one of 
Cape Town’s poorest suburbs, created significant mitigation and 
adaptation benefits by installing ceilings, solar water heaters and 
energy-efficient lightbulbs in houses independent of the formal 
housing or electrification programme (Winkler, 2017).

4.3.3.4	  Electrification of cities and transport

The electrification of urban systems, including transport, has shown 
global progress since AR5 (IEA, 2016a; Kennedy et al., 2018; Schiller 
and Kenworthy, 2018). High growth rates are now appearing in 
electric vehicles (Figure 4.1), electric bikes and electric transit (IEA, 
2018), which would need to displace fossil fuel-powered passenger 
vehicles by 2035–2050 to remain in line with 1.5°C-consistent 
pathways. China’s 2017 Road Map calls for 20% of new vehicle 
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Figure 4.1 |  Increase of the global electric car stock by country (2013–
2017). The grey line is battery electric vehicles (BEV) only while the black line includes 
both BEV and plug-in hybrid vehicles (PHEV). Source: (IEA, 2018). Based on IEA data 
from Global EV Outlook 2018 © OECD/IEA 2018, IEA Publishing.

sales to be electric. India is aiming for exclusively electric vehicles 
(EVs) by 2032 (NITI Aayog and RMI, 2017). Globally, EV sales were 
up 42% in 2016 relative to 2015, and in the United States EV sales 
were up 36% over the same period (Johnson and Walker, 2016). 

The extent of electric railways in and between cities has expanded 
since AR5 (IEA, 2016a; Mittal et al., 2016; Zhang et al., 2016; Li and 
Loo, 2017). In high-income cities there is medium evidence for the 
decoupling of car use and wealth since AR5 (Newman, 2017). In cities 
where private vehicle ownership is expected to increase, less carbon-
intensive fuel sources and reduced car journeys will be necessary as 
well as electrification of all modes of transport (Mittal et al., 2016; 
van Vuuren et al., 2017). Some recent urban data show a decoupling 
of urban growth and GHG emissions (Newman and Kenworthy, 2015) 
and that ‘peak car’ has been reached in Shanghai and Beijing (Gao and 
Kenworthy, 2017) and beyond (Manville et al., 2017) (also see Box 4.9).

An estimated 800 cities globally have operational bike-share schemes (E. 
Fishman et al., 2015), and China had 250 million electric bicycles in 2017 
(Newman et al., 2017). Advances in information and communication 
technologies (ICT) offer cities the chance to reduce urban transport 
congestion and fuel consumption by making better use of the urban 
vehicle fleet through car sharing, driverless cars and coordinated public 
transport, especially when electrified (Wee, 2015; Glazebrook and 
Newman, 2018). Advances in ‘big-data’ can assist in creating a better 
understanding of the connections between cities, green infrastructure, 
environmental services and health (Jennings et al., 2016) and improve 
decision-making in urban development (Lin et al., 2017).

4.3.3.5	 Shipping, freight and aviation

International transport hubs, including airports and ports, and the 
associated mobility of people are major economic contributors to most 
large cities even while under the governance of national authorities 
and international legislation. Shipping, freight and aviation systems 
have grown rapidly, and little progress has been made since AR5 on 
replacing fossil fuels, though some trials are continuing (Zhang, 2016; 
Bouman et al., 2017; EEA, 2017). Aviation emissions do not yet feature 

in IAMs (Bows-Larkin, 2015), but could be reduced by between a third 
and two-thirds through energy efficiency measures and operational 
changes (Dahlmann et al., 2016). On shorter intercity trips, aviation 
could be replaced by high-speed electric trains drawing on renewable 
energy (Åkerman, 2011). Some progress has been made on the use 
of electricity in planes and shipping (Grewe et al., 2017) though no 
commercial applications have arisen. Studies indicate that biofuels are 
the most viable means of decarbonizing intercontinental travel, given 
their technical characteristics, energy content and affordability (Wise 
et al., 2017). The lifecycle emissions of bio-based jet fuels and marine 
fuels can be considerable (Cox et al., 2014; IEA, 2017g) depending on 
their location (Elshout et al., 2014), but can be reduced by feedstock 
and conversion technology choices (de Jong et al., 2017). 

In recent years the potential for transport to use synfuels, such as 
ethanol, methanol, methane, ammonia and hydrogen, created from 
renewable electricity and CO2, has gained momentum but has not yet 
demonstrated benefits on a scale consistent with 1.5°C pathways (Ezeji, 
2017; Fasihi et al., 2017). Decarbonizing the fuel used by the world’s 
60,000 large ocean vessels faces governance barriers and the need for 
a global policy (Bows and Smith, 2012; IRENA, 2015; Rehmatulla and 
Smith, 2015). Low-emission marine fuels could simultaneously address 
sulphur and black carbon issues in ports and around waterways and 
accelerate the electrification of all large ports (Bouman et al., 2017; 
IEA, 2017g). 

4.3.3.6	 Climate-resilient land use 

Urban land use influences energy intensity, risk exposure and adaptive 
capacity (Carter et al., 2015; Araos et al., 2016a; Ewing et al., 2016; 
Newman et al., 2016; Broto, 2017). Accordingly, urban land-use 
planning can contribute to climate mitigation and adaptation (Parnell, 
2015; Francesch-Huidobro et al., 2017) and the growing number of 
urban climate adaptation plans provide instruments to do this (Carter 
et al., 2015; Dhar and Khirfan, 2017; Siders, 2017; Stults and Woodruff, 
2017). Adaptation plans can reduce exposure to urban flood risk 
(which, in a 1.5°C world, could double relative to 1976–2005; Alfieri 
et al., 2017), heat stress (Chapter 3, Section 3.5.5.8), fire risk (Chapter 
3, Section 3.4.3.4) and sea level rise (Chapter 3, Section 3.4.5.1) 
(Schleussner et al., 2016).   

Cities can reduce their risk exposure by considering investment in 
infrastructure and buildings that are more resilient to warming of 
1.5°C or beyond. Where adaptation planning and urban planning 
generate the type of local participation that enhances capacity to cope 
with risks, they can be mutually supportive processes  (Archer et al., 
2014; Kettle et al., 2014; Campos et al., 2016; Chu et al., 2017; Siders, 
2017; Underwood et al., 2017). Not all adaptation plans are reported 
as effective (Measham et al., 2011; Hetz, 2016; Woodruff and Stults, 
2016; Mahlkow and Donner, 2017), especially in developing-country 
cities (Kiunsi, 2013). In cases where adaptation planning may further 
marginalize poor citizens, either through limited local control over 
adaptation priorities or by displacing impacts onto poorer communities, 
successful urban risk management would need to consider factors 
such as justice, equity, and inclusive participation, as well as recognize 
the political economy of adaptation (Archer, 2016; Shi et al., 2016; 
Ziervogel et al., 2016a, 2017; Chu et al., 2017).
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4.3.3.7	 Green urban infrastructure and ecosystem services

Integrating and promoting green urban infrastructure (including 
street trees, parks, green roofs and facades, and water features) into 
city planning can be difficult (Leck et al., 2015) but increases urban 
resilience to impacts of 1.5°C warming (Table 4.2) in ways that can be 
more cost-effective than conventional infrastructure (Cartwright et al., 
2013; Culwick and Bobbins, 2016).

Realizing climate benefits from urban green infrastructure sometimes 
requires a city-region perspective (Wachsmuth et al., 2016). Where 
the urban impact on ecological systems in and beyond the city is 
appreciated, the potential for transformative change exists (Soderlund 
and Newman, 2015; Ziervogel et al., 2016a), and a locally appropriate 
combination of green space, ecosystem goods and services and the 
built environment can increase the set of urban adaptation options 
(Puppim de Oliveira et al., 2013). 

Milan, Italy, a city with deliberate urban greening policies, planted 
10,000 hectares of new forest and green areas over the last two 
decades (Sanesi et al., 2017). The accelerated growth of urban trees, 
relative to rural trees, in several regions of the world is expected to 
decrease tree longevity (Pretzsch et al., 2017), requiring monitoring 
and additional management of urban trees if their contribution to 
urban ecosystem-based adaptation and mitigation is to be maintained 
in a 1.5°C world (Buckeridge, 2015; Pretzsch et al., 2017). 

4.3.3.8	 Sustainable urban water and environmental services

Urban water supply and wastewater treatment is energy intensive and 
currently accounts for significant GHG emissions (Nair et al., 2014). 
Cities can integrate sustainable water resource management and the 
supply of water services in ways that support mitigation, adaptation 
and development through waste water recycling and storm water 
diversion (Xue et al., 2015; Poff et al., 2016). Governance and finance 
challenges complicate balancing sustainable water supply and rising 
urban demand, particularly in low-income cities (Bettini et al., 2015; 
Deng and Zhao, 2015; Hill Clarvis and Engle, 2015; Lemos, 2015; 
Margerum and Robinson, 2015). 

Urban surface-sealing with impervious materials affects the volume 
and velocity of runoff and flooding during intense rainfall (Skougaard 
Kaspersen et al., 2015), but urban design in many cities now seeks 
to mediate runoff, encourage groundwater recharge and enhance 
water quality (Liu et al., 2014; Lamond et al., 2015; Voskamp and 
Van de Ven, 2015; Costa et al., 2016; Mguni et al., 2016; Xie et al., 
2017). Challenges remain for managing intense rainfall events that are 
reported to be increasing in frequency and intensity in some locations 
(Ziervogel et al., 2016b), and urban flooding is expected to increase at 
1.5°C of warming (Alfieri et al., 2017). This risk falls disproportionately 
on women and poor people in cities (Mitlin, 2005; Chu et al., 2016; 
Ziervogel et al., 2016b; Chant et al., 2017; Dodman et al., 2017a, b).

Nexus approaches that highlight urban areas as socio-ecological 
systems can support policy coherence (Rasul and Sharma, 2016) and 
sustainable urban livelihoods (Biggs et al., 2015). The water–energy–
food (WEF) nexus is especially important to growing urban populations 
(Tacoli et al., 2013; Lwasa et al., 2014; Villarroel Walker et al., 2014). 

Green 
Infrastructure

Adaptation 
Benefits

Mitigation 
Benefits

References

Urban tree planting, 
urban parks

Reduced heat island 
effect, psychological 
benefits

Less cement, reduced 
air-conditioning use

Demuzere et al., 2014; Mullaney et al., 2015; Soderlund and Newman, 2015; 
Beaudoin and Gosselin, 2016; Green et al., 2016; Lin et al., 2017

Permeable surfaces Water recharge
Less cement in city, 
some bio-sequestration, 
less water pumping

Liu et al., 2014; Lamond et al., 2015; Skougaard Kaspersen et al., 2015; Voskamp 
and Van de Ven, 2015; Costa et al., 2016; Mguni et al., 2016; Xie et al., 2017

Forest retention, urban 
agricultural land

Flood mediation, 
healthy lifestyles

Reduced air pollution 
Nowak et al., 2006; Tallis et al., 2011; Elmqvist et al., 2013; Buckeridge, 2015; Culwick and 
Bobbins, 2016; Panagopoulos et al., 2016; Stevenson et al., 2016; R. White et al., 2017

Wetland restoration, 
riparian buffer zones

Reduced urban flood-
ing, low-skilled local 
work, sense of place

Some bio-sequestration, 
less energy spent on 
water treatment

Cartwright et al., 2013; Elmqvist et al., 2015; Brown and McGranahan, 2016; 
Camps-Calvet et al., 2016; Culwick and Bobbins, 2016; McPhearson et al., 
2016; Ziervogel et al., 2016b; Collas et al., 2017; F. Li et al., 2017

Biodiverse urban habitat
Psychological benefits, 
inner-city recreation 

Carbon sequestration
Beatley, 2011; Elmqvist et al., 2015; Brown and McGranahan, 2016; Camps-Calvet et al., 2016; 
McPhearson et al., 2016; Collas et al., 2017; F. Li et al., 2017 

Table 4.2  |	  Green urban infrastructure and benefits

4.3.4	 Industrial Systems Transitions

Industry consumes about one-third of global final energy and contributes, 
directly and indirectly, about one-third of global GHG emissions (IPCC, 
2014b). If the increase in global mean temperature is to remain under 
1.5°C, modelling indicates that industry cannot emit more than 2 
GtCO2 in 2050, corresponding to a reduction of between 67 and 91% 
(interquartile range) in GHG emissions compared to 2010 (see Chapter 
2, Figures 2.20 and 2.21, and Table 4.1). Moreover, the consequences 
of warming of 1.5°C or more pose substantial challenges for industrial 
diversity. This section will first briefly discuss the limited literature on 
adaptation options for industry. Subsequently, new literature since AR5 
on the feasibility of industrial mitigation options will be discussed. 

Research assessing adaptation actions by industry indicates that only 
a small fraction of corporations has developed adaptation measures. 
Studies of adaptation in the private sector remain limited (Agrawala et 
al., 2011; Linnenluecke et al., 2015; Averchenkova et al., 2016; Bremer 
and Linnenluecke, 2016; Pauw et al., 2016a) and for 1.5°C are largely 
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absent. This knowledge gap is particularly evident for medium-sized 
enterprises and in low- and middle-income nations (Surminski, 2013). 

Depending on the industrial sector, mitigation consistent with 1.5°C 
would mean, across industries, a reduction of final energy demand 
by one-third, an increase of the rate of recycling of materials and the 
development of a circular economy in industry (Lewandowski, 2016; 
Linder and Williander, 2017), the substitution of materials in high-
carbon products with those made up of renewable materials (e.g., wood 
instead of steel or cement in the construction sector, natural textile 
fibres instead of plastics), and a range of deep emission reduction 
options, including use of bio-based feedstocks, low-emission heat 
sources, electrification of production processes, and/or capture and 
storage of all CO2 emissions by 2050 (Åhman et al., 2016). Some of the 
choices for mitigation options and routes for GHG-intensive industry 
are discrete and potentially subject to path dependency: if an industry 
goes one way (e.g., in keeping existing processes), it will be harder to 
transition to process change (e.g., electrification) (Bataille et al., 2018). 
In the context of rising demand for construction, an increasing share 
of industrial production may be based in developing countries (N. Li et 
al., 2017), where current efficiencies may be lower than in developed 
countries, and technical and institutional feasibility may differ (Ma et 
al., 2015). 

Except for energy efficiency, costs of disruptive change associated 
with hydrogen- or electricity-based production, bio-based feedstocks 
and carbon dioxide capture, (utilization) and storage (CC(U)S) for 
trade-sensitive industrial sectors (in particular the iron and steel, 
petrochemical and refining industries) make policy action by individual 
countries challenging because of competitiveness concerns (Åhman et 
al., 2016; Nabernegg et al., 2017).

Table 4.3 provides an overview of applicable mitigation options for key 
industrial sectors. 

Industrial mitigation option Iron/Steel Cement
Refineries and 
Petrochemicals

Chemicals

Process and Energy 
Efficiency

Can make a difference of between 10% and 50%, depending on the plant. Relevant but not enough for 1.5°C

Bio-based 
Coke can be made from biomass 
instead of coal

Partial (only energy-related 
emissions)

Biomass can replace fossil feedstocks

Circularity & Substitution 
More recycling and replacement by low-emission materials,

including alternative chemistries for cement
Limited potential

Electrification & Hydrogen
Direct reduction with hydrogen 
Heat generation through electricity

Partial (only electrified heat 
generation)

Electrified heat and hydrogen generation

Carbon dioxide capture, 
utilization and storage

Possible for process emissions and energy. Reduces 
emissions by 80–95%, and net emissions can become 

negative when combined with biofuel

Can be applied to energy emissions and different stacks but not on 
emissions of products in the use phase (e.g., gasoline)

Table 4.3  |	 Overview of different mitigation options potentially consistent with limiting warming to 1.5°C and applicable to main industrial sectors, including examples of  
	 application (Napp et al., 2014; Boulamanti and Moya, 2017; Wesseling et al., 2017).

4.3.4.1	 Energy efficiency

Isolated efficiency implementation in energy-intensive industries is a 
necessary but insufficient condition for deep emission reductions (Napp 
et al., 2014; Aden, 2018). Various options specific to different industries 

are available. In general, their feasibility depends on lowering capital 
costs and raising awareness and expertise (Wesseling et al., 2017). 
General-purpose technologies, such as ICT, and energy management 
tools can improve the prospects of energy efficiency in industry (see 
Section 4.4.4).

Cross-sector technologies and practices, which play a role in all 
industrial sectors including small- and medium-sized enterprises (SMEs) 
and non-energy intensive industry, also offer potential for considerable 
energy efficiency improvements. They include: (i) motor systems (for 
example electric motors, variable speed drives, pumps, compressors 
and fans), responsible for about 10% of worldwide industrial energy 
consumption, with a global energy efficiency improvement potential of 
around 20–25% (Napp et al., 2014); and (ii) steam systems, responsible 
for about 30% of industrial energy consumption and energy saving 
potentials of about 10% (Hasanbeigi et al., 2014; Napp et al., 2014). 
Waste heat recovery from industry has substantial potential for energy 
efficiency and emission reduction (Forman et al., 2016). Low awareness 
and competition from other investments limit the feasibility of such 
options (Napp et al., 2014). 

4.3.4.2	 Substitution and circularity

Recycling materials and developing a circular economy can be 
institutionally challenging, as it requires advanced capabilities (Henry et 
al., 2006) and organizational changes (Cooper-Searle et al., 2018), but 
has advantages in terms of cost, health, governance and environment 
(Ali et al., 2017). An assessment of the impacts on energy use and 
environmental issues is not available, but substitution could play a large 
role in reducing emissions (Åhman et al., 2016) although its potential 
depends on the demand for material and the turnover rate of, for 
example, buildings (Haas et al., 2015). Material substitution and CO2 
storage options are under development, for example, the use of algae 
and renewable energy for carbon fibre production, which could become 
a net sink of CO2 (Arnold et al., 2018).

4.3.4.3	 Bio-based feedstocks

Bio-based feedstock processes could be seen as part of the circular 
materials economy (see section above). In several sectors, bio-based 
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feedstocks would leave the production process of materials relatively 
untouched, and a switch would not affect the product quality, 
making the option more attractive. However, energy requirements 
for processing bio-based feedstocks are often high, costs are also 
still higher, and the emissions over the full life cycle, both upstream 
and downstream, could be significant (Wesseling et al., 2017). Bio-
based feedstocks may put pressure on natural resources by increasing 
land demand by biodiversity impacts beyond bioenergy demand for 
electricity, transport and buildings (Slade et al., 2014), and, partly as a 
result, face barriers in public acceptance (Sleenhoff et al., 2015). 

4.3.4.4	 Electrification and hydrogen

Electrification of manufacturing processes would constitute a 
significant technological challenge and would entail a more disruptive 
innovation in industry than bio-based or CCS options to get to very low 
or zero emissions, except potentially in steel-making (Philibert, 2017). 
The disruptive characteristics could potentially lead to stranded assets, 
and could reduce political feasibility and industry support (Åhman 
et al., 2016). Electrification of manufacturing would require further 
technological development in industry, as well as an ample supply of 
cost-effective low-emission electricity (Philibert, 2017). 

Low-emission hydrogen can be produced by natural gas with CCS, 
by electrolysis of water powered by zero-emission electricity, or 
potentially in the future by generation IV nuclear reactors. Feasibility of 
electrification and use of hydrogen in production processes or fuel cells 
is affected by technical development (in terms of efficient hydrogen 
production and electrification of processes), by geophysical factors 
related to the availability of low-emission electricity (MacKay, 2013), 
by associated public perception and by economic feasibility, except 
in areas with ample solar and/or wind resources (Philibert, 2017; 
Wesseling et al., 2017). 

4.3.4.5	 CO2 capture, utilization and storage in industry

CO2 capture in industry is generally considered more feasible than CCS 
in the power sector (Section 4.3.1) or from bioenergy sources (Section 
4.3.7), although CCS in industry faces similar barriers. Almost all of 
the current full-scale (>1MtCO2 yr−1) CCS projects capture CO2 from 
industrial sources, including the Sleipner project in Norway, which has 
been injecting CO2 from a gas facility in an offshore saline formation 
since 1996 (Global CCS Institute, 2017). Compared to the power 
sector, retrofitting CCS on existing industrial plants would leave the 
production process of materials relatively untouched (Åhman et al., 
2016), though significant investments and modifications still have to 
be made. Some industries, in particular cement, emit CO2 as inherent 
process emissions and can therefore not reduce emissions to zero 
without CC(U)S. CO2 stacks in some industries have a high economic 
and technical feasibility for CO2 capture as the CO2 concentration in 
the exhaust gases is relatively high (IPCC, 2005b; Leeson et al., 2017), 
but others require strong modifications in the production process, 
limiting technical and economic feasibility, though costs remain 
lower than other deep GHG reduction options (Rubin et al., 2015). 
There are indications that the energy use in CO2 capture through 
amine solvents (for solvent regeneration) can decrease by around 
60%, from 5 GJ tCO2

−1 in 2005 to 2 GJ tCO2
−1 in the best-performing 

current pilot plants (Idem et al., 2015), increasing both technical and 
economic potential for this option. The heterogeneity of industrial 
production processes might point to the need for specific institutional 
arrangements to incentivize industrial CCS (Mikunda et al., 2014), and 
may decrease institutional feasibility.

Whether carbon dioxide utilization (CCU) can contribute to limiting 
warming to 1.5°C depends on the origin of the CO2 (fossil, biogenic 
or atmospheric), the source of electricity for converting the CO2 
or regenerating catalysts, and the lifetime of the product. Review 
studies indicate that CO2 utilization in industry has a small role to 
play in limiting warming to 1.5°C because of the limited potential of 
reusing CO2 with currently available technologies and the re-emission 
of CO2 when used as a fuel (IPCC, 2005b; Mac Dowell et al., 2017). 
However, new developments could make CCU more feasible, in 
particular in CO2 use as a feedstock for carbon-based materials that 
would isolate CO2 from the atmosphere for a long time, and in low-
cost, low-emission electricity that would make the energy use of CO2 
capture more sustainable. The conversion of CO2 to fuels using zero-
emission electricity has a lower technical, economic and environmental 
feasibility than direct CO2 capture and storage from industry (Abanades 
et al., 2017), although the economic prospects have improved recently 
(Philibert, 2017).  

4.3.5	 Overarching Adaptation Options Supporting 
Adaptation Transitions 

This section assesses overarching adaptation options –specific solutions 
from which actors can choose and make decisions to reduce climate 
vulnerability and build resilience. We examine their feasibility in 
the context of transitions of energy, land and ecosystem, urban and 
infrastructure, and industrial systems here, and further in Section 4.5. 
These options can contribute to creating an enabling environment for 
adaptation (see Table 4.4 and Section 4.4). 

4.3.5.1	 Disaster risk management (DRM)

DRM is a process for designing, implementing and evaluating strategies, 
policies and measures to improve the understanding of disaster risk, 
and promoting improvement in disaster preparedness, response and 
recovery (IPCC, 2012). There is increased demand to integrate DRM and 
adaptation (Howes et al., 2015; Kelman et al., 2015; Serrao-Neumann 
et al., 2015; Archer, 2016; Rose, 2016; van der Keur et al., 2016; Kelman, 
2017; Wallace, 2017) to reduce vulnerability, but institutional, technical 
and financial capacity challenges in frontline agencies constitute 
constraints (medium evidence, high agreement) (Eakin et al., 2015; Kita, 
2017; Wallace, 2017).

4.3.5.2	 Risk sharing and spreading

Risks associated with 1.5°C warming (Chapter 3, Section 3.4) may 
increase the demand for options that share and spread financial 
burdens. Formal, market-based (re)insurance spreads risk and 
provides a financial buffer against the impacts of climate hazards 
(Linnerooth-Bayer and Hochrainer-Stigler, 2015; Wolfrom and Yokoi-
Arai, 2015; O’Hare et al., 2016; Glaas et al., 2017; Patel et al., 2017). 
As an alternative to traditional indemnity-based insurance, index-
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based micro-crop and livestock insurance programmes have been 
rolled out in regions with less developed insurance markets (Akter et 
al., 2016, 2017; Jensen and Barrett, 2017). There is medium evidence 
and medium agreement on the feasibility of insurance for adaptation, 
with financial, social, and institutional barriers to implementation and 
uptake, especially in low-income nations (García Romero and Molina, 
2015; Joyette et al., 2015; Lashley and Warner, 2015; Jin et al., 2016). 
Social protection programmes include cash and in-kind transfers to 
protect poor and vulnerable households from the impact of economic 
shocks, natural disasters and other crises (World Bank, 2017b), and 
can build generic adaptive capacity and reduce vulnerability when 
combined with a comprehensive climate risk management approach 
(medium evidence, medium agreement) (Devereux, 2016; Lemos et al., 
2016).

4.3.5.3	 Education and learning

Educational adaptation options motivate adaptation through building 
awareness (Butler et al., 2016; Myers et al., 2017), leveraging multiple 
knowledge systems (Pearce et al., 2015; Janif et al., 2016), developing 
participatory action research and social learning processes (Butler and 
Adamowski, 2015; Ensor and Harvey, 2015; Butler et al., 2016; Thi 
Hong Phuong et al., 2017; Ford et al., 2018), strengthening extension 
services, and building mechanisms for learning and knowledge sharing 
through community-based platforms, international conferences and 
knowledge networks (Vinke-de Kruijf and Pahl-Wostl, 2016) (medium 
evidence, high agreement).

4.3.5.4	 Population health and health system adaptation options

Climate change will exacerbate existing health challenges (Chapter 3, 
Section 3.4.7). Options for enhancing current health services include 
providing access to safe water and improved sanitation, enhancing 
access to essential services such as vaccination, and developing or 
strengthening integrated surveillance systems (WHO, 2015). Combining 
these with iterative management can facilitate effective adaptation 
(medium evidence, high agreement).

4.3.5.5	 Indigenous knowledge 

There is medium evidence and high agreement that indigenous 
knowledge is critical for adaptation, underpinning adaptive capacity 
through the diversity of indigenous agro-ecological and forest 
management systems, collective social memory, repository of 
accumulated experience and social networks (Hiwasaki et al., 2015; 
Pearce et al., 2015; Mapfumo et al., 2016; Sherman et al., 2016; Ingty, 
2017) (Box 4.3). Indigenous knowledge is threatened by acculturation, 
dispossession of land rights and land grabbing, rapid environmental 
changes, colonization and social change, resulting in increasing 
vulnerability to climate change – which climate policy can exacerbate 
if based on limited understanding of indigenous worldviews (Thornton 
and Manasfi, 2010; Ford, 2012; Nakashima et al., 2012; McNamara 
and Prasad, 2014). Many scholars argue that recognition of indigenous 
rights, governance systems and laws is central to adaptation, mitigation 
and sustainable development (Magni, 2017; Thornton and Comberti, 
2017; Pearce, 2018).

4.3.5.6	 Human migration

Human migration, whether planned, forced or voluntary, is increasingly 
gaining attention as a response, particularly where climatic risks are 
becoming severe (Chapter 3, Section 3.4.10.2). There is medium 
evidence and low agreement as to whether migration is adaptive, 
in relation to cost effectiveness concerns (Grecequet et al., 2017) 
and scalability (Brzoska and Fröhlich, 2016; Gemenne and Blocher, 
2017; Grecequet et al., 2017). Migrating can have mixed outcomes 
on reducing socio-economic vulnerability (Birk and Rasmussen, 
2014; Kothari, 2014; Adger et al., 2015; Betzold, 2015; Kelman, 2015; 
Grecequet et al., 2017; Melde et al., 2017; World Bank, 2017a; Kumari 
Rigaud et al., 2018) and its feasibility is constrained by low political 
and legal acceptability and inadequate institutional capacity (Betzold, 
2015; Methmann and Oels, 2015; Brzoska and Fröhlich, 2016; Gemenne 
and Blocher, 2017; Grecequet et al., 2017; Yamamoto et al., 2017).  

4.3.5.7	 Climate services 

There is medium evidence and high agreement that climate services 
can play a critical role in aiding adaptation decision-making (Vaughan 
and Dessai, 2014; Wood et al., 2014; Lourenço et al., 2016; Trenberth et 
al., 2016; Singh et al., 2017; Vaughan et al., 2018). The higher uptake 
of short-term climate information such as weather advisories and 
daily forecasts contrast with lesser use of longer-term information 
such as seasonal forecasts and multi-decadal projections (Singh et al., 
2017; Vaughan et al., 2018). Climate service interventions have met 
challenges with scaling up due to low capacity, inadequate institutions, 
and difficulties in maintaining systems beyond pilot project stage 
(Sivakumar et al., 2014; Tall et al., 2014; Gebru et al., 2015; Singh et 
al., 2016b), and technical, institutional, design, financial and capacity 
barriers to the application of climate information for better decision-
making remain (Briley et al., 2015; WMO, 2015; L. Jones et al., 2016; 
Lourenço et al., 2016; Snow et al., 2016; Harjanne, 2017; Singh et al., 
2017; C.J. White et al., 2017). 
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Option Enabling Conditions Examples

Disaster risk 
management 

(DRM)

Governance and institutional capacity:  supports post-disaster 
recovery and reconstruction (Kelman et al., 2015; Kull et al., 2016).

Early warning systems (Anacona et al., 2015), and monitoring of dangerous lakes and  
surrounding slopes (including using remote sensing) offer DRM opportunities  
(Emmer et al., 2016; Milner et al., 2017).

Risk sharing 
and spreading: 

insurance 

Institutional capacity and finance:  buffers climate risk 
(Wolfrom and Yokoi-Arai, 2015; O’Hare et al., 2016; Glaas 
et al., 2017; Jenkins et al., 2017; Patel et al., 2017).

In 2007, the Caribbean Catastrophe Risk Insurance Facility was formed to pool risk from 
tropical cyclones, earthquakes, and excess rainfalls (Murphy et al., 2012; CCRIF, 2017).

Social safety nets
Institutional capacity and finance: builds generic adaptive capacity 
and reduces social vulnerability (Weldegebriel and Prowse, 2013; 
Eakin et al., 2014; Lemos et al., 2016; Schwan and Yu, 2017).

In sub-Saharan Africa, cash transfer programmes targeting poor communities have proven  
successful in smoothing household welfare and food security during droughts, strengthening  
community ties, and reducing debt levels (del Ninno et al., 2016; Asfaw et al., 2017;  
Asfaw and Davis, 2018).

Education and 
learning

Behavioural change and institutional capacity: social learning 
strengthens adaptation and affects longer-term change (Clemens 
et al., 2015; Ensor and Harvey, 2015; Henly-Shepard et al., 2015).

Participatory scenario planning is a process by which multiple stakeholders work together 
to envision future scenarios under a range of climatic conditions (Oteros-Rozas et al.,  
2015; Butler et al., 2016; Flynn et al., 2018).

Population health 
and health system

Institutional capacity: 1.5°C warming will primarily exacerbate  
existing health challenges (K.R. Smith et al., 2014), which can  
be targeted by enhancing health services. 

Heatwave early warning and response systems coordinate the implementation of multiple 
measures in response to predicted extreme temperatures (e.g., public announcements, 
opening public cooling shelters, distributing information on heat stress symptoms) 
(Knowlton et al., 2014; Takahashi et al., 2015; Nitschke et al., 2016, 2017).

Indigenous 
knowledge 

Institutional capacity and behavioural change: knowledge of 
environmental conditions helps communities detect and monitor  
change (Johnson et al., 2015; Mistry and Berardi, 2016;  
Williams et al., 2017).

Options such as integration of indigenous knowledge into resource management systems  
and school curricula, are identified as potential adaptations (Cunsolo Willox et al., 2013;  
McNamara and Prasad, 2014; MacDonald et al., 2015; Pearce et al., 2015; Chambers  
et al., 2017; Inamara and Thomas, 2017). 

Human migration
Governance: revising and adopting migration issues in national 
disaster risk management policies, National Adaptation Plans 
and NDCs (Kuruppu and Willie, 2015; Yamamoto et al., 2017).

In dryland India, populations in rural regions already experiencing 1.5°C warming are  
migrating to cities (Gajjar et al., 2018) but are inadequately covered by existing  
policies (Bhagat, 2017).

Climate services

Technological innovation: rapid technical development (due to 
increased financial inputs and growing demand) is improving  
quality of climate information provided (Rogers and Tsirkunov,  
2010; Clements et al., 2013; Perrels et al., 2013; Gasc et al., 2014;  
WMO, 2015; Roudier et al., 2016).

Climate services are seeing wide application in sectors such as agriculture, health, 
disaster management and insurance (Lourenço et al., 2016; Vaughan et al., 2018), 
with implications for adaptation decision-making (Singh et al., 2017).

Table 4.4 |	 Assessment of overarching adaptation options in relation to enabling conditions. For more details, see Supplementary Material 4.SM.2. 

Cross-Chapter Box 9 |  Risks, Adaptation Interventions, and Implications for Sustainable Development 
and Equity Across Four Social-Ecological Systems: Arctic, Caribbean, Amazon, and Urban	

Authors: 
Debora Ley (Guatemala/Mexico), Malcolm E. Araos (Canada), Amir Bazaz (India), Marcos Buckeridge (Brazil), Ines Camilloni 
(Argentina), James Ford (UK/Canada), Bronwyn Hayward (New Zealand), Shagun Mehrotra (USA/India), Antony Payne (UK), Patricia 
Pinho (Brazil), Aromar Revi (India), Kevon Rhiney (Jamaica), Chandni Singh (India), William Solecki (USA), Avelino Suarez (Cuba), 
Michael Taylor (Jamaica), Adelle Thomas (Bahamas).

This box presents four case studies from different social-ecological systems as examples of risks of 1.5°C warming and higher 
(Chapter 3); adaptation options that respond to these risks (Chapter 4); and their implications for poverty, livelihoods and 
sustainability (Chapter 5). It is not yet possible to generalize adaptation effectiveness across regions due to a lack of empirical 
studies and monitoring and evaluation of current efforts. 

Arctic 
The Arctic is undergoing the most rapid climate change globally (Larsen et al., 2014), warming by 1.9°C  over the last 30 years 
(Walsh, 2014; Grosse et al., 2016). For 2°C of global warming relative to pre-industrial levels, chances of an ice-free Arctic during 
summer are substantially higher than at 1.5°C (see Chapter 3, Sections 3.3.5 and 3.3.8), with permafrost melt, increased instances 
of storm surge, and extreme weather events anticipated along with later ice freeze up, earlier break up, and a longer ice-free open 
water season (Bring et al., 2016; DeBeer et al., 2016; Jiang et al., 2016; Chadburn et al., 2017; Melvin et al., 2017). Negative impacts 
on health, infrastructure, and economic sectors (AMAP, 2017a, b, 2018) are projected, although the extension of the summer ocean-
shipping season has potential economic opportunities (Ford et al., 2015b; Dawson et al., 2016; Ng et al., 2018). 
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Communities, many with indigenous roots, have adapted to environmental change, developing or shifting harvesting activities and 
patterns of travel and transitioning economic systems (Forbes et al., 2009; Wenzel, 2009; Ford et al., 2015b; Pearce et al., 2015), 
although emotional and psychological effects have been documented (Cunsolo Willox et al., 2012; Cunsolo and Ellis, 2018). Besides 
climate change (Keskitalo et al., 2011; Loring et al., 2016), economic and social conditions can constrain the capacity to adapt unless 
resources and cooperation are available from public and private sector actors (AMAP, 2017a, 2018) (see Chapter 5, Box 5.3). In 
Alaska, the cumulative economic impacts of climate change on public infrastructure are projected at 4.2 billion USD to 5.5 billion 
USD from 2015 to 2099, with adaptation efforts halving these estimates (Melvin et al., 2017). Marginalization, colonization, and 
land dispossession provide broader underlying challenges facing many communities across the circumpolar north in adapting to 
change (Ford et al., 2015a; Sejersen, 2015) (see Section 4.3.5). 

Adaptation opportunities include alterations to building codes and infrastructure design, disaster risk management, and surveillance 
(Ford et al., 2014a; AMAP, 2017a, b; Labbé et al., 2017). Most adaptation initiatives are currently occurring at local levels in response 
to both observed and projected environmental changes as well as social and economic stresses (Ford et al., 2015a). In a recent study 
of Canada, most adaptations were found to be in the planning stages (Labbé et al., 2017). Studies have suggested that a number of 
the adaptation actions are not sustainable, lack evaluation frameworks, and hold potential for maladaptation (Loboda, 2014; Ford et 
al., 2015a; Larsson et al., 2016). Utilizing indigenous and local knowledge and stakeholder engagement can aid the development of 
adaptation policies and broader sustainable development, along with more proactive and regionally coherent adaptation plans and 
actions, and regional cooperation (e.g., through the Arctic Council) (Larsson et al., 2016; AMAP, 2017a; Melvin et al., 2017; Forbis Jr 
and Hayhoe, 2018) (see Section 4.3.5). 

Caribbean Small Island Developing States (SIDS) and Territories
Extreme weather, linked to tropical storms and hurricanes, represent one of the largest risks facing Caribbean island nations 
(Chapter 3, Section 3.4.5.3). Non-economic damages include detrimental health impacts, forced displacement and destruction of 
cultural heritages. Projections of increased frequency of the most intense storms at 1.5°C and higher warming levels (Wehner et 
al., 2018; Chapter 3, Section 3.3.6; Box 3.5) are a significant cause for concern, making adaptation a matter of survival (Mycoo and 
Donovan, 2017).  

Despite a shared vulnerability arising from commonalities in location, circumstance and size (Bishop and Payne, 2012; Nurse et al., 
2014), adaptation approaches are nuanced by differences in climate governance, affecting vulnerability and adaptive capacity (see 
Section 4.4.1). Three cases exemplify differences in disaster risk management.

Cuba: Together with a robust physical infrastructure and human-resource base (Kirk, 2017), Cuba has implemented an effective 
civil defence system for emergency preparedness and disaster response, centred around community mobilization and preparedness 
(Kirk, 2017). Legislation to manage disasters, an efficient and robust early warning system, emergency stockpiles, adequate shelter 
system and continuous training and education of the population help create a ‘culture of risk’ (Isayama and Ono, 2015; Lizarralde 
et al., 2015) which reduces vulnerability to extreme events (Pichler and Striessnig, 2013). Cuba’s infrastructure is still susceptible to 
devastation, as seen in the aftermath of the 2017 hurricane season.

United Kingdom Overseas Territories (UKOT): All UKOT have developed National Disaster Preparedness Plans (PAHO/WHO, 
2016) and are part of the Caribbean Disaster Risk Management Program which aims to improve disaster risk management 
within the health sector. Different vulnerability levels across the UKOT (Lam et al., 2015) indicate the benefits of greater regional 
cooperation and capacity-building, not only within UKOT, but throughout the Caribbean (Forster et al., 2011). While sovereign states 
in the region can directly access climate funds and international support, Dependent Territories are reliant on their controlling 
states (Bishop and Payne, 2012). There tends to be low-scale management for environmental issues in UKOT, which increases 
UKOT’s vulnerability. Institutional limitations, lack of human and financial resources, and limited long-term planning are identified 
as barriers to adaptation (Forster et al., 2011).

Jamaica: Disaster management is coordinated through a hierarchy of national, parish and community disaster committees under the 
leadership of the Office of Disaster Preparedness and Emergency Management (ODPEM). ODPEM coordinates disaster preparedness 
and risk-reduction efforts among key state and non-state agencies (Grove, 2013). A National Disaster Committee provides technical 
and policy oversight to the ODPEM and is composed of representatives from multiple stakeholders (Osei, 2007). Most initiatives 
are primarily funded through a mix of multilateral and bilateral loan and grant funding focusing on strengthening technical and 
institutional capacities of state- and research-based institutions and supporting integration of climate change considerations into 
national and sectoral development plans (Robinson, 2017).

Cross Chapter Box 9 (continued)
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To improve climate change governance in the region, Pittman et al. (2015) suggest incorporating holistic and integrated management 
systems, improving flexibility in collaborative processes, implementing monitoring programs, and increasing the capacity of local 
authorities. Implementation of the 2030 Sustainable Development Agenda and the Sustainable Development Goals (SDGs) can 
contribute to addressing the risks related with extreme events (Chapter 5, Box 5.3).   

The Amazon
Terrestrial forests, such as the Amazon, are sensitive to changes in the climate, particularly drought (Laurance and Williamson, 2001) 
which might intensify through the 21st century (Marengo and Espinoza, 2016) (Chapter 3, Section 3.5.5.6). 

The poorest communities in the region face substantial risks with climate change, and barriers and limits to adaptive capacity (Maru 
et al., 2014; Pinho et al., 2014, 2015; Brondízio et al., 2016). The Amazon is considered a hotspot, with interconnections between 
increasing temperature, decreased precipitation and hydrological flow (Betts et al., 2018) (Sections 3.3.2.2, 3.3.3.2 and 3.3.5); low 
levels of socio-economic development (Pinho et al., 2014); and high levels of climate vulnerability (Darela et al., 2016). Limiting 
global warming to 1.5°C could increase food and water security in the region compared to 2°C (Betts et al., 2018), reduce the impact 
on poor people and sustainable development, and make adaptation easier (O’Neill et al., 2017), particularly in the Amazon (Bathiany 
et al., 2018) (Chapter 5, Section 5.2.2).

Climate policy in many Amazonian nations has focused on forests as carbon sinks (Soares-Filho et al., 2010). In 2009, the Brazilian 
National Policy on Climate Change acknowledged adaptation as a concern, and the government sought to mainstream adaptation 
into public administration. Brazil’s National Adaptation Plan sets guidelines for sectoral adaptation measures, primarily by developing 
capacity building, plans, assessments and tools to support adaptive decision-making. Adaptation is increasingly being presented 
as having mitigation co-benefits in the Brazilian Amazon (Gregorio et al., 2016), especially within ecosystem-based adaptation 
(Locatelli et al., 2011). In Peru’s Framework Law for Climate Change, every governmental sector will consider climatic conditions as 
potential risks and/or opportunities to promote economic development and to plan adaptation.

Drought and flood policies have had limited effectiveness in reducing vulnerability (Marengo et al., 2013). In the absence of effective 
adaptation, achieving the SDGs will be challenging, mainly in poverty, health, water and sanitation, inequality and gender equality 
(Chapter 5, Section 5.2.3). 

Urban systems
Around 360 million people reside in urban coastal areas where precipitation variability is exposing inadequacies of urban infrastructure 
and governance, with the poor being especially vulnerable (Reckien et al., 2017) (Cross-Chapter Box 13 in Chapter 5). Urban systems 
have seen growing adaptation action (Revi et al., 2014b; Araos et al., 2016b; Amundsen et al., 2018). Developing cities spend more 
on health and agriculture-related adaptation options while developed cities spend more on energy and water (Georgeson et al., 
2016). Current adaptation activities are lagging in emerging economies, which are major centres of population growth facing complex 
interrelated pressures on investment in health, housing and education (Georgeson et al., 2016; Reckien et al., 2017). 

New York, United States: Adaptation plans are undertaken across government levels, sectors and departments (NYC Parks, 2010; 
Vision 2020 Project Team, 2011; PlaNYC, 2013), and have been advanced by an expert science panel that is obligated by local city 
law to provide regular updates on policy-relevant climate science (NPCC, 2015). Federal initiatives include 2013’s Rebuild By Design 
competition to promote resilience through infrastructural projects (HSRTF, 2013). In 2013 the Mayor’s office, in response to Hurricane 
Sandy, published the city’s adaptation strategy (PlaNYC, 2013). In 2015, the OneNYC Plan for a Strong and Just City (OneNYC Team, 
2015) laid out a strategy for urban planning through a justice and equity lens. In 2017, new climate resiliency guidelines proposed 
that new construction must include sea level rise projections into planning and development (ORR, 2018). Although this attention 
to climate-resilient development may help reduce income inequality, its full effect could be constrained if a policy focus on resilience 
obscures analysis of income redistribution for the poor (Fainstein, 2018).

Kampala, Uganda: Kampala Capital City Authority (KCCA) has the statutory responsibility for managing the city.  The Kampala 
Climate Change Action Strategy (KCCAS) is responding to climatic impacts of elevated temperature and more intense, erratic rain. 
KCCAS has considered multi-scale and temporal aspects of response (Chelleri et al., 2015; Douglas, 2017; Fraser et al., 2017), 
strengthened community adaptation  (Lwasa, 2010; Dobson, 2017), responded to differential adaptive capacities (Waters and 
Adger, 2017) and believes in participatory processes and bridging of citywide linkages (KCCA, 2016). Analysis of the implications 
of uniquely adapted local solutions (e.g., motorcycle taxis) suggests sustainability can be enhanced when planning recognizes the 
need to adapt to uniquely local solutions (Evans et al., 2018).

Cross Chapter Box 9 (continued)
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Rotterdam, The Netherlands: The Rotterdam Climate Initiative (RCI) was launched to reduce greenhouse gas emissions and 
climate-proof Rotterdam (RCI, 2017). Rotterdam has an integrated adaptation strategy, built on flood management, accessibility, 
adaptive building, urban water systems and urban climate, defined through the Rotterdam Climate Proof programme and the 
Rotterdam Climate Change Adaptation Strategy (RCI, 2008, 2013). Governance mechanisms that enabled integration of flood 
risk management plans with other policies, citizen participation, institutional eco-innovation, and focusing on green infrastructure 
(Albers et al., 2015; Dircke and Molenaar, 2015; de Boer et al., 2016a; Huang-Lachmann and Lovett, 2016) have contributed to 
effective adaptation (Ward et al., 2013). Entrenched institutional characteristics constrain the response framework (Francesch-
Huidobro et al., 2017), but emerging evidence suggests that new governance arrangements and structures can potentially overcome 
these barriers in Rotterdam (Hölscher et al., 2018).

Cross Chapter Box 9 (continued)

4.3.6	 Short-Lived Climate Forcers

The main short-lived climate forcer (SLCF) emissions that cause 
warming are methane (CH4), other precursors of tropospheric ozone 
(i.e., carbon monoxide (CO), non-methane volatile organic compounds 
(NMVOC), black carbon (BC) and hydrofluorocarbons (HFCs); Myhre et 
al., 2013). SLCFs also include emissions that lead to cooling, such as 
sulphur dioxide (SO2) and organic carbon (OC). Nitrogen oxides (NOx) 
can have both warming and cooling effects, by affecting ozone (O3) 
and CH4, depending on time scale and location (Myhre et al., 2013).

Cross-Chapter Box 2 in Chapter 1 provides a discussion of role of 
SLCFs in comparison to long-lived GHGs. Chapter 2 shows that 
1.5°C-consistent pathways require stringent reductions in CO2 and 
CH4, and that non-CO2 climate forcers reduce carbon budgets by 
about 2200 GtCO2 per degree of warming attributed to them (see the 
Supplementary Material to Chapter 2).

Reducing non-CO2 emissions is part of most mitigation pathways 
(IPCC, 2014c). All current GHG emissions and other forcing agents 
affect the rate and magnitude of climate change over the next few 
decades, while long-term warming is mainly driven by CO2 emissions. 
CO2 emissions result in a virtually permanent warming, while 
temperature change from SLCFs disappears within decades after 
emissions of SLCFs are ceased. Any scenario that fails to reduce CO2 

emissions to net zero would not limit global warming, even if SLCFs are 
reduced, due to accumulating CO2-induced warming that overwhelms 
SLCFs’ mitigation benefits in a couple of decades (Shindell et al., 2012; 
Schmale et al., 2014) (and see Chapter 2, Section 2.3.3.2).

Mitigation options for warming SLCFs often overlap with other 
mitigation options, especially since many warming SLCFs are 
co-emitted with CO2. SLCFs are generally mitigated in 1.5°C- or 
2°C-consistent pathways as an integral part of an overall mitigation 
strategy (Chapter 2). For example, Section 2.3 indicates that most very-
low-emissions pathways include a transition away from the use of coal 
and natural gas in the energy sector and oil in transportation, which 
coincides with emission-reduction strategies related to methane from 
the fossil fuel sector and BC from the transportation sector. Much SLCF 
emission reduction aims at BC-rich sectors and considers the impacts 
of several co-emitted SLCFs (Bond et al., 2013; Sand et al., 2015; Stohl 
et al., 2015). The benefits of such strategies depend greatly upon the 
assumed level of progression of access to modern energy for the 

poorest populations who still rely on biomass fuels, as this affects the 
reference level of BC emissions (Rogelj et al., 2014).

Some studies have evaluated the focus on SLCFs in mitigation strategies 
and point towards trade-offs between short-term SLCF benefits 
and lock-in of long-term CO2 warming (Smith and Mizrahi, 2013; 
Pierrehumbert, 2014). Reducing fossil fuel combustion will reduce 
aerosols levels, and thereby cause warming from removal of aerosol 
cooling effects (Myhre et al., 2013; Xu and Ramanathan, 2017; Samset 
et al., 2018). While some studies have found a lower temperature effect 
from BC mitigation, thus questioning the effectiveness of targeted BC 
mitigation for climate change mitigation (Myhre et al., 2013; Baker et 
al., 2015; Stjern et al., 2017; Samset et al., 2018), other models and 
observationally constrained estimates suggest that these widely-used 
models do not fully capture observed effects of BC and co-emissions 
on climate (e.g., Bond et al., 2013; Cui et al., 2016; Peng et al., 2016). 

Table 4.5 provides an overview of three warming SLCFs and their 
emission sources, with examples of options for emission reductions 
and associated co-benefits.

A wide range of options to reduce SLCF emissions was extensively 
discussed in AR5 (IPCC, 2014b). Fossil fuel and waste sector methane 
mitigation options have high cost-effectiveness, producing a net profit 
over a few years, considering market costs only. Moreover, reducing 
roughly one-third to one-half of all human-caused emissions has 
societal benefits greater than mitigation costs when considering 
environmental impacts only (UNEP, 2011; Höglund-Isaksson, 2012; IEA, 
2017b; Shindell et al., 2017a). Since AR5, new options for methane, 
such as those related to shale gas, have been included in mitigation 
portfolios (e.g., Shindell et al., 2017a). 

Reducing BC emissions and co-emissions has sustainable development 
co-benefits, especially around human health (Stohl et al., 2015; 
Haines et al., 2017; Aakre et al., 2018), avoiding premature deaths 
and increasing crop yields (Scovronick et al., 2015; Peng et al., 2016). 
Additional benefits include lower likelihood of non-linear climate 
changes and feedbacks (Shindell et al., 2017b) and temporarily slowing 
down the rate of sea level rise (Hu et al., 2013). Interventions to reduce 
BC offer tangible local air quality benefits, increasing the likelihood of 
local public support (Eliasson, 2014; Venkataraman et al., 2016) (see 
Chapter 5, Section 5.4.2.1). Limited interagency co-ordination, poor 
science-policy interactions (Zusman et al., 2015), and weak policy and 



342

Chapter 4	 Strengthening and Implementing the Global Response

4

SLCF 
Compound

Atmospheric 
Lifetime

Annual Global 
Emission

Main Anthropogenic 
Emission Sources

Examples of Options 
to Reduce Emissions 

Consistent with 1.5°C

Examples of Co-Benefits 
Based on Haines et al. (2017) 
Unless Specified Otherwise

Methane
On the order 
of 10 years

0.3 GtCH4 (2010) 
(Pierrehumbert, 2014)

Fossil fuel extraction and 
transportation; 
Land-use change;  
Livestock and rice cultivation; 
Waste and wastewater

Managing manure from livestock; 
Intermittent irrigation of rice; 
Capture and usage of fugitive 
methane; 
Dietary change;  
For more: see Section 4.3.2 

Reduction of tropospheric ozone 
(Shindell et al., 2017a); 
Health benefits of dietary changes; 
Increased crop yields; 
Improved access to drinking water

HFCs  
Months to decades, 
depending on the gas

0.35 GtCO2-eq (2010)
(Velders et al., 2015)

Air conditioning; Refrigeration; 
Construction material

Alternatives to HFCs in 
air-conditioning and refrigeration 
applications

Greater energy efficiency 
(Mota-Babiloni et al., 2017)

Black Carbon Days
~7 Mt (2010) 
(Klimont et al., 2017)

Incomplete combustion of fossil 
fuels or biomass in vehicles (esp. 
diesel), cook stoves or kerosene 
lamps;  
Field and biomass burning

Fewer and cleaner vehicles; Reducing 
agricultural biomass burning;  
Cleaner cook stoves, gas-based 
or electric cooking; 
Replacing brick and coke ovens; 
Solar lamps; 
For more see Section 4.3.3

Health benefits of better air quality;  
Increased education opportunities; 
Reduced coal consumption for modern 
brick kilns;  
Reduced deforestation

Table 4.5  |	 Overview of main characteristics of three warming short-lived climate forcers (SLCFs) (core information based on Pierrehumbert, 2014 and Schmale et al., 2014;  
	 rest of the details as referenced). 

absence of inspections and enforcement (Kholod and Evans, 2016) are 
among barriers that reduce the institutional feasibility of options to 
reduce vehicle-induced BC emissions. A case study for India shows that 
switching from biomass cook stoves to cleaner gas stoves (based on 
liquefied petroleum gas or natural gas) or to electric cooking stoves is 
technically and economically feasible in most areas, but faces barriers 
in user preferences, costs and the organization of supply chains 
(Jeuland et al., 2015). Similar feasibility considerations emerge in 
switching from kerosene wick lamps for lighting to solar lanterns, from 
current low-efficiency brick kilns and coke ovens to cleaner production 
technologies; and from field burning of crop residues to agricultural 
practices using deep-sowing and mulching technologies (Williams et 
al., 2011; Wong, 2012). 

The radiative forcing from HFCs are currently small but have been 
growing rapidly (Myhre et al., 2013). The Kigali Amendment (from 
2016) to the Montreal Protocol set out a global accord for phasing 
out these compounds (Höglund-Isaksson et al., 2017). HFC mitigation 
options include alternatives with reduced warming effects, ideally 
combined with improved energy efficiency so as to simultaneously 
reduce CO2 and co-emissions (Shah et al., 2015). Costs for most 
of HFC’s mitigation potential are estimated to be below USD2010 
60 tCO2-eq−1, and the remainder below roughly double that number 
(Höglund-Isaksson et al., 2017). 

Reductions in SLCFs can provide large benefits towards sustainable 
development, beneficial for social, institutional and economic 
feasibility. Strategies that reduce SLCFs can provide benefits that 
include improved air quality (e.g., Anenberg et al., 2012) and crop yields 
(e.g., Shindell et al., 2012), energy access, gender equality and poverty 
eradication (e.g.,Shindell et al., 2012; Haines et al., 2017). Institutional 
feasibility can be negatively affected by an information deficit, with 

the absence of international frameworks for integrating SLCFs into 
emissions accounting and reporting mechanisms being a barrier to 
developing policies for addressing SLCF emissions (Venkataraman et 
al., 2016). The incentives for reducing SLCFs are particularly strong for 
small groups of countries, and such collaborations could increase the 
feasibility and effectiveness of SLCF mitigation options (Aakre et al., 
2018).

4.3.7	 Carbon Dioxide Removal (CDR)

CDR methods refer to a set of techniques for removing CO2 from the 
atmosphere. In the context of 1.5°C-consistent pathways (Chapter 2), 
they serve to offset residual emissions and, in most cases, achieve net 
negative emissions to return to 1.5°C from an overshoot. See Cross-
Chapter Box 7 in Chapter 3 for a synthesis of land-based CDR options. 
Cross-cutting issues and uncertainties are summarized in Table 4.6.

4.3.7.1	 Bioenergy with carbon capture and storage (BECCS) 

BECCS has been assessed in previous IPCC reports (IPCC, 2005b, 
2014b; P. Smith et al., 2014; Minx et al., 2017) and has been 
incorporated into integrated assessment models (Clarke et al., 2014), 
but also 1.5°C-consistent pathways without BECCS have emerged 
(Bauer et al., 2018; Grubler et al., 2018; Mousavi and Blesl, 2018; van 
Vuuren et al., 2018). Still, the overall set of  pathways limiting global 
warming to 1.5°C with limited or no overshoot indicates that 0–1, 0–8, 
and 0–16 GtCO2 yr−1 would be removed by BECCS by 2030, 2050 and 
2100, respectively (Chapter 2, Section 2.3.4). BECCS is constrained by 
sustainable bioenergy potentials (Section 4.3.1.2, Chapter 5, Section 
5.4.1.3 and Cross-Chapter Box 6 in Chapter 3), and availability of 
safe storage for CO2 (Section 4.3.1.6). Literature estimates for BECCS 
mitigation potentials in 2050 range from 1–85 GtCO2

4. Fuss et al. 

4	 As more bottom-up literature exists on bioenergy potentials, this exercise explored the bioenergy literature and converted those estimates to BECCS potential with 1EJ of 
bioenergy yielding 0.02–0.05 GtCO2 emission reduction. For the bottom-up literature references for the potentials range, please refer to Supplementary Material 4.SM.3 
Table 1.
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(2018) narrow this range to 0.5–5 GtCO2 yr−1 (medium agreement, 
high evidence) (Figure 4.3), meaning that BECCS mitigation potentials 
are not necessarily sufficient for 1.5°C-consistent pathways. This is, 
among other things, related to sustainability concerns (Boysen et al., 
2017; Heck et al., 2018; Henry et al., 2018).

Assessing BECCS deployment in 2°C pathways (of about 12 
GtCO2-eq yr−1 by 2100, considered as a conservative deployment 
estimate for BECCS-accepting pathways consistent with 1.5°C), Smith 
et al. (2016b) estimate a land-use intensity of 0.3–0.5 ha tCO2-eq−1 yr−1 
using forest residues, 0.16 ha CO2-eq−1 yr−1 for agricultural residues, 
and 0.03–0.1 ha tCO2-eq−1 yr−1 for purpose-grown energy crops. The 
average amount of BECCS in these pathways requires 25–46% of 
arable and permanent crop area in 2100. Land area estimates differ 
in scale and are not necessarily a good indicator of competition with, 
for example, food production, because requiring a smaller land area for 
the same potential could indicate that high-productivity agricultural 
land is used. In general, the literature shows low agreement on the 
availability of land (Fritz et al., 2011; see Erb et al., 2016b for recent 
advances). Productivity, food production and competition with other 
ecosystem services and land use by local communities are important 
factors for designing regulation. These potentials and trade-offs are not 
homogenously distributed across regions. However, Robledo-Abad et 
al. (2017) find that regions with higher potentials are understudied, 
given their potential contribution. Researchers have expressed the 
need to complement global assessments with regional, geographically 
explicit bottom-up studies of biomass potentials and socio-economic 
impacts (e.g., de Wit and Faaij, 2010; Kraxner et al., 2014; Baik et al., 
2018).

Energy production and land and water footprints show wide ranges 
in bottom-up assessments due to differences in technology, feedstock 
and other parameters (−1–150 EJ yr−1 of energy, 109–990 Mha, 6–79 
MtN, 218–4758 km3 yr−1 of water per GtCO2 yr−1; Smith and Torn, 
2013; Smith et al., 2016b; Fajardy and Mac Dowell, 2017) and are not 
comparable to IAM pathways which consider system effects (Bauer 
et al., 2018). Global impacts on nutrients and albedo are difficult to 
quantify (Smith et al., 2016b). BECCS competes with other land-based 
CDR and mitigation measures for resources (Chapter 2).  

There is uncertainty about the feasibility of timely upscaling (Nemet et 
al., 2018). CCS (see Section 4.3.1) is largely absent from the Nationally 
Determined Contributions (Spencer et al., 2015) and lowly ranked in 
investment priorities (Fridahl, 2017). Although there are dozens of small-
scale BECCS demonstrations (Kemper, 2015) and a full-scale project 
capturing 1 MtCO2 exists (Finley, 2014), this is well below the numbers 
associated with 1.5°C or 2°C-compatible pathways (IEA, 2016a; 
Peters et al., 2017). Although the majority of BECCS cost estimates are 
below 200 USD tCO2

−1 (Figure 4.2), estimates vary widely. Economic 
incentives for ramping up large CCS or BECCS infrastructure are weak 
(Bhave et al., 2017). The 2050 average investment costs for such a 
BECCS infrastructure for bio-electricity and biofuels are estimated at 
138 and 123 billion USD yr−1, respectively (Smith et al., 2016b). 

BECCS deployment is further constrained by bioenergy’s carbon 
accounting, land, water and nutrient requirements (Section 4.3.1), its 
compatibility with other policy goals and limited public acceptance of 

both bioenergy and CCS (Section 4.3.1). Current pathways are believed 
to have inadequate assumptions on the development of societal 
support and governance structures (Vaughan and Gough, 2016). 
However, removing BECCS and CCS from the portfolio of available 
options significantly raises modelled mitigation costs (Kriegler et al., 
2013; Bauer et al., 2018).

4.3.7.2	 Afforestation and reforestation (AR) 

Afforestation implies planting trees on land not forested for a long 
time (e.g., over the last 50 years in the context of the Kyoto Protocol), 
while reforestation implies re-establishment of forest formations after 
a temporary condition with less than 10% canopy cover due to human-
induced or natural perturbations. Houghton et al. (2015) estimate 
about 500 Mha could be available for the re-establishment of forests 
on lands previously forested, but not currently used productively. This 
could sequester at least 3.7 GtCO2 yr−1 for decades. The full literature 
range gives 2050 potentials of 1–7 GtCO2 yr−1 (low evidence, medium 
agreement), narrowed down to 0.5–3.6 GtCO2 yr−1 based on a number 
of constraints (Fuss et al., 2018). Abatement costs are estimated to 
be low compared to other CDR options, 5–50 USD tCO2-eq−1 (robust 
evidence, high agreement). Yet, realizing such large potentials comes 
at higher land and water footprints than BECCS, although there would 
be a positive impact on nutrients and the energy requirement would 
be negligible (Smith et al., 2016b; Cross-Chapter Box 7 in Chapter 3). 
The 2030 estimate by Griscom et al. (2017) is up to 17.9 GtCO2 yr−1 
for reforestation with significant co-benefits (Cross-Chapter Box 7 in 
Chapter 3).

Biogenic storage is not as permanent as emission reductions by 
geological storage. In addition, forest sinks saturate, a process which 
typically occurs in decades to centuries compared to the thousands 
of years of residence time of CO2 stored geologically (Smith et al., 
2016a) and is subject to disturbances that can be exacerbated by 
climate change (e.g., drought, forest fires and pests) (Seidl et al., 2017). 
Handling these challenges requires careful forest management. There 
is much practical experience with AR, facilitating upscaling but with 
two caveats: AR potentials are heterogeneously distributed (Bala et al., 
2007), partly because the planting of less reflective forests results in 
higher net absorbed radiation and localised surface warming in higher 
latitudes (Bright et al., 2015; Jones et al., 2015), and forest governance 
structures and monitoring capacities can be bottlenecks and are 
usually not considered in models (Wang et al., 2016; Wehkamp et al., 
2018b). There is medium agreement on the positive impacts of AR on 
ecosystems and biodiversity due to different forms of afforestation 
discussed in the literature: afforestation of grassland ecosystems or 
diversified agricultural landscapes with monocultures or invasive alien 
species can have significant negative impacts on biodiversity, water 
resources, etc. (P. Smith et al., 2014), while forest ecosystem restoration 
(forestry and agroforestry) with native species can have positive social 
and environmental impacts (Cunningham et al., 2015; Locatelli et al., 
2015; Paul et al., 2016; See Section 4.3.2). 

Synergies with other policy goals are possible (see also Section 4.5.4); 
for example, land spared by diet shifts could be afforested (Röös et al., 
2017) or used for energy crops (Grubler et al., 2018). Such land-sparing 
strategies could also benefit other land-based CDR options.
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Figure 4.2 |  Evidence on carbon dioxide removal (CDR) abatement costs, 2050 deployment potentials, and key side effects. Panel A presents estimates 
based on a systematic review of the bottom up literature (Fuss et al., 2018), corresponding to dashed blue boxes in Panel B. Dashed lines represent saturation limits for the 
corresponding technology. Panel B shows the percentage of papers at a given cost or potential estimate. Reference year for all potential estimates is 2050, while all cost 
estimates preceding 2050 have been included (as early as 2030, older estimates are excluded if they lack a base year and thus cannot be made comparable). Ranges have 
been trimmed to show detail (see Fuss et al., 2018 for the full range). Costs refer only to abatement costs. Icons for side-effects are allocated only if a critical mass of papers 
corroborates their occurrence 
Notes: For references please see Supplementary Material Table 4.SM.3. Direct air carbon dioxide capture and storage (DACCS) is theoretically only constrained by geological storage 
capacity, estimates presented are considering upscaling and cost challenges (Nemet et al., 2018). BECCS potential estimates are based on bioenergy estimates in the literature 
(EJ yr−1), converted to GtCO2 following footnote 4. Potentials cannot be added up, as CDR options would compete for resources (e.g., land). SCS - soil carbon sequestration; OA - 
ocean alkalinization; EW- enhanced weathering; DACCS - direct air carbon dioxide capture and storage; BECCS - bioenergy with carbon capture and storage; AR - afforestation.
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4.3.7.3	 Soil carbon sequestration and biochar

At local scales there is robust evidence that soil carbon sequestration 
(SCS, e.g., agroforestry, De Stefano and Jacobson, 2018), restoration 
of degraded land (Griscom et al., 2017), or conservation agriculture 
management practices (Aguilera et al., 2013; Poeplau and Don, 2015; 
Vicente-Vicente et al., 2016) have co-benefits in agriculture and that 
many measures are cost-effective even without supportive climate 
policy. Evidence at global scale for potentials and especially costs is 
much lower. The literature spans cost ranges of −45–100 USD tCO2

−1 
(negative costs relating to the multiple co-benefits of SCS, such as 
increased productivity and resilience of soils; P. Smith et al., 2014), 
and 2050 potentials are estimated at between 0.5 and 11 GtCO2 yr−1, 
narrowed down to 2.3–5.3 GtCO2 yr−1 considering that studies above 
5 GtCO2 yr−1 often do not apply constraints, while estimates lower than 
2 GtCO2 yr−1 mostly focus on single practices (Fuss et al., 2018). 

SCS has negligible water and energy requirements (Smith, 2016), 
affects nutrients and food security favourably (high agreement, robust 
evidence) and can be applied without changing current land use, thus 
making it socially more acceptable than CDR options with a high land 
footprint. However, soil sinks saturate after 10–100 years, depending 
on the SCS option, soil type and climate zone (Smith, 2016).

Biochar is formed by recalcitrant (i.e., very stable) organic carbon 
obtained from pyrolysis, which, applied to soil, can increase soil carbon 
sequestration leading to improved soil fertility properties.5 Looking at 
the full literature range, the global potential in 2050 lies between 1 
and 35 Gt CO2 yr−1 (low agreement, low evidence), but considering 
limitations in biomass availability and uncertainties due to a lack of 
large-scale trials of biochar application to agricultural soils under field 
conditions, Fuss et al. (2018) lower the 2050 range to 0.3–2 GtCO2 yr−1. 
This potential is below previous estimates (e.g., Woolf et al., 2010), 
which additionally consider the displacement of fossil fuels through 
biochar. Permanence depends on soil type and biochar production 
temperatures, varying between a few decades and several centuries 
(Fang et al., 2014). Costs are 30– 120 USD tCO2

−1 (medium agreement, 
medium evidence) (McCarl et al., 2009; McGlashan et al., 2012; 
McLaren, 2012; Smith, 2016).

Water requirements are low and at full theoretical deployment, up 
to 65 EJ yr−1 of energy could be generated as a side product (Smith, 
2016). Positive side effects include a favourable effect on nutrients and 
reduced N2O emissions (Cayuela et al., 2014; Kammann et al., 2017). 
However, 40–260 Mha are needed to grow the biomass for biochar 
for implementation at 0.3 GtCO2-eq yr−1 (Smith, 2016), even though 
it is also possible to use residues (e.g., Windeatt et al., 2014). Biochar 
is further constrained by the maximum safe holding capacity of soils 
(Lenton, 2010) and the labile nature of carbon sequestrated in plants 
and soil at higher temperatures (Wang et al., 2013).

4.3.7.4	 Enhanced weathering (EW) and ocean alkalinization

Weathering is the natural process of rock decomposition via chemical 
and physical processes in which CO2 is spontaneously consumed and 
converted to solid or dissolved alkaline bicarbonates and/or carbonates 
(IPCC, 2005a). The process is controlled by temperature, reactive 
surface area, interactions with biota and, in particular, water solution 
composition. CDR can be achieved by accelerating mineral weathering 
through the distribution of ground-up rock material over land 
(Hartmann and Kempe, 2008; Wilson et al., 2009; Köhler et al., 2010; 
Renforth, 2012; ten Berge et al., 2012; Manning and Renforth, 2013; 
Taylor et al., 2016), shorelines (Hangx and Spiers, 2009; Montserrat et 
al., 2017) or the open ocean (House et al., 2007; Harvey, 2008; Köhler 
et al., 2013; Hauck et al., 2016). Ocean alkalinization adds alkalinity to 
marine areas to locally increase the CO2 buffering capacity of the ocean 
(González and Ilyina, 2016; Renforth and Henderson, 2017).  

In the case of land application of ground minerals, the estimated CDR 
potential range is 0.72–95 GtCO2 yr−1 (low evidence, low agreement) 
(Hartmann and Kempe, 2008; Köhler et al., 2010; Hartmann et al., 
2013; Taylor et al., 2016; Strefler et al., 2018a). Marine application 
of ground minerals is limited by feasible rates of mineral extraction, 
grinding and delivery, with estimates of 1–6 GtCO2 yr−1 (low evidence, 
low agreement) (Köhler et al., 2013; Hauck et al., 2016; Renforth and 
Henderson, 2017). Agreement is low due to a variety of assumptions 
and unknown parameter ranges in the applied modelling procedures 
that would need to be verified by field experiments (Fuss et al., 2018). 
As with other CDR options, scaling and maturity are challenges, with 
deployment at scale potentially requiring decades (NRC, 2015a), 
considerable costs in transport and disposal (Hangx and Spiers, 2009; 
Strefler et al., 2018a) and mining (NRC, 2015a; Strefler et al., 2018a)6.

Site-specific cost estimates vary depending on the chosen technology 
for rock grinding (an energy-intensive process; Köhler et al., 2013; 
Hauck et al., 2016), material transport, and rock source (Renforth, 
2012; Hartmann et al., 2013), and range from 15–40 USD tCO2

−1 to 
3,460 USD tCO2

−1 (limited evidence, low agreement; Figure 4.2) 
(Schuiling and Krijgsman, 2006; Köhler et al., 2010; Taylor et al., 
2016). The evidence base for costs of ocean alkalinization and marine 
enhanced weathering is sparser than the land applications. The ocean 
alkalinization potential is assessed to be 0.1–10 GtCO2 yr−1 with costs 
of 14– >500 USD tCO2

−1 (Renforth and Henderson, 2017).

The main side effects of terrestrial EW are an increase in water pH 
(Taylor et al., 2016), the release of heavy metals like Ni and Cr and plant 
nutrients like K, Ca, Mg, P and Si (Hartmann et al., 2013), and changes in 
hydrological soil properties. Respirable particle sizes, though resulting in 
higher potentials, can have impacts on health (Schuiling and Krijgsman, 
2006; Taylor et al., 2016); utilization of wave-assisted decomposition 
through deployment on coasts could avert the need for fine grinding 
(Hangx and Spiers, 2009; Schuiling and de Boer, 2010). Side effects 

5	 Other pyrolysis products that can achieve net CO2 removals are bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas 
combustion) (Werner et al., 2018)

6	 It has also been suggested that ocean alkalinity can be increased through accelerated weathering of limestone (Rau and Caldeira, 1999; Rau, 2011; Chou et al., 2015) or  
	 electrochemical processes (House et al., 2007; Rau, 2008; Rau et al., 2013; Lu et al., 2015). However, these techniques have not been proven at large scale either  
	 (Renforth and Henderson, 2017). 
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of marine EW and ocean alkalinization are the potential release of 
heavy metals like Ni and Cr (Montserrat et al., 2017). Increasing ocean 
alkalinity helps counter ocean acidification (Albright et al., 2016; Feng 
et al., 2016). Ocean alkalinization could affect ocean biogeochemical 
functioning (González and Ilyina, 2016). A further caveat of relates to 
saturation state and the potential to trigger spontaneous carbonate 
precipitation.7 While the geochemical potential to remove and store 
CO2 is quite large, limited evidence on the preceding topics makes it 
difficult to assess the true capacity, net benefits and desirability of EW 
and ocean alkalinity addition in the context of CDR.

4.3.7.5	 Direct air carbon dioxide capture and storage (DACCS)

Capturing CO2 from ambient air through chemical processes with 
subsequent storage of the CO2 in geological formations is independent 
of source and timing of emissions and can avoid competition for land. 
Yet, this is also the main challenge: while the theoretical potential 
for DACCS is mainly limited by the availability of safe and accessible 
geological storage, the CO2 concentration in ambient air is 100–300 
times lower than at gas- or coal-fired power plants (Sanz-Pérez et al., 
2016) thus requiring more energy than flue gas CO2 capture (Pritchard 
et al., 2015). This appears to be the main challenge to DACCS (Sanz-
Pérez et al., 2016; Barkakaty et al., 2017). 

Studies explore alternative techniques to reduce the energy penalty 
of DACCS (van der Giesen et al., 2017). Energy consumption could be 
up to 12.9 GJ tCO2-eq−1; translating into an average of 156 EJ yr−1 by 
2100 (current annual global primary energy supply is 600 EJ); water 
requirements are estimated to average 0.8–24.8 km3 GtCO2-eq−1 yr−1  
(Smith et al., 2016b, based on Socolow et al., 2011).

However, the literature shows low agreement and is fragmented 
(Broehm et al., 2015). This fragmentation is reflected in a large range 
of cost estimates: from 20–1,000 USD tCO2

−1 (Keith et al., 2006; Pielke, 
2009; House et al., 2011; Ranjan and Herzog, 2011; Simon et al., 2011; 
Goeppert et al., 2012; Holmes and Keith, 2012; Zeman, 2014; Sanz-
Pérez et al., 2016; Sinha et al., 2017). There is lower agreement and a 
smaller evidence base at the lower end of the cost range. Fuss et al. 
(2018) narrow this range to 100–300 USD tCO2

-1.

Research and efforts by small-scale commercialization projects focus 
on utilization of captured CO2 (Wilcox et al., 2017). Given that only 
a few IAM scenarios incorporate DACCS (e.g., Chen and Tavoni, 
2013; Strefler et al., 2018b) its possible role in cost-optimized 1.5°C 
scenarios is not yet fully explored. Given the technology’s early stage 
of development (McLaren, 2012; NRC, 2015a; Nemet et al., 2018) 
and few demonstrations (Holmes et al., 2013; Rau et al., 2013; Agee 

et al., 2016), deploying the technology at scale is still a considerable 
challenge, though both optimistic (Lackner et al., 2012) and pessimistic 
outlooks exist (Pritchard et al., 2015).

4.3.7.6	 Ocean fertilization

Nutrients can be added to the ocean resulting in increased biologic 
production, leading to carbon fixation in the sunlit ocean and 
subsequent sequestration in the deep ocean or sea floor sediments. 
The added nutrients can be either micronutrients (such as iron) or 
macronutrients (such as nitrogen and/or phosphorous) (Harrison, 
2017). There is limited evidence and low agreement on the readiness of 
this technology to contribute to rapid decarbonization (Williamson et 
al., 2012). Only small-scale field experiments and theoretical modelling 
have been conducted (e.g., McLaren, 2012). The full range of CDR 
potential estimates is from 15.2 ktCO2 yr−1 (Bakker et al., 2001) for a 
spatially constrained field experiment up to 44 GtCO2 yr−1 (Sarmiento 
and Orr, 1991) following a modelling approach, but Fuss et al. (2018) 
consider the potential to be extremely limited given the evidence and 
existing barriers. Due to scavenging of iron, the iron addition only leads 
to inefficient use of the nitrogen in exporting carbon (Zeebe, 2005; 
Aumont and Bopp, 2006; Zahariev et al., 2008). 

Cost estimates range from 2 USD tCO2
−1 (for iron fertilization) (Boyd 

and Denman, 2008) to 457 USD tCO2
−1 (Harrison, 2013). Jones (2014) 

proposed values greater than 20 USD tCO2
−1 for nitrogen fertilization. 

Fertilization is expected to impact food webs by stimulating its base 
organisms (Matear, 2004), and extensive algal blooms may cause 
anoxia (Sarmiento and Orr, 1991; Matear, 2004; Russell et al., 2012) 
and deep water oxygen decline (Matear, 2004), with negative impacts 
on biodiversity. Nutrient inputs can shift ecosystem production from 
an iron-limited system to a P, N-, or Si-limited system depending on 
the location (Matear, 2004; Bertram, 2010) and non-CO2 GHGs may 
increase (Sarmiento and Orr, 1991; Matear, 2004; Bertram, 2010). The 
greatest theoretical potential for this practice is the Southern Ocean, 
posing challenges for monitoring and governance (Robinson et al., 
2014). The London Protocol of the International Maritime Organization 
has asserted authority for regulation of ocean fertilization (Strong et al., 
2009), which is widely viewed as a de facto moratorium on commercial 
ocean fertilization activities.

There is low agreement in the technical literature on the permanence 
of CO2 in the ocean, with estimated residence times of 1,600 years 
to millennia, especially if injected or buried in or below the sea floor 
(Williams and Druffel, 1987; Jones, 2014). Storage at the surface would 
mean that the carbon would be rapidly released after cessation (Zeebe, 
2005; Aumont and Bopp, 2006).

7	 This analysis relies on the assessment in Fuss et al. (2018), which provides more detail on saturation and permanence.
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8	 Current work (e.g., de Richter et al., 2017) examines other technologies considering non-CO2 GHGs like N2O.

Area of Uncertainty Cross-Cutting Issues and Uncertainties

Technology upscaling

•  CDR options are at different stages of technological readiness (McLaren, 2012) and differ with respect to scalability.   
•	 Nemet et al. (2018) find >50% of the CDR innovation literature concerned with the earliest stages of the innovation process (R&D), identifying a  
    dissonance between the large CO2 removals needed in 1.5°C pathways and the long -time periods involved in scaling up novel technologies.  
•	 Lack of post-R&D literature, including incentives for early deployment, niche markets, scale up, demand, and public acceptance.

Emerging and niche 
technologies

•	 For BECCS, there are niche opportunities with high efficiencies and fewer trade-offs, for example, sugar and paper processing facilities (Möllersten et al., 2003), 
    district heating (Kärki et al., 2013; Ericsson and Werner, 2016), and industrial and municipal waste (Sanna et al., 2012). Turner et al. (2018) constrain potential using 
    sustainability considerations and overlap with storage basins to avoid the CO2 transportation challenge, providing a possible, though limited entry point for BECCS. 
•	 The impacts on land use, water, nutrients and albedo of BECCS could be alleviated using marine sources of biomass that could include aquacultured micro  
    and macro flora (Hughes et al., 2012; Lenton, 2014). 
•	 Regarding captured CO2 as a resource is discussed as an entry point for CDR. However, this does not necessarily lead to carbon removals, particularly if  
    the CO2 is sourced from fossil fuels and/or if the products do not store the CO2 for climate-relevant horizons (von der Assen et al., 2013) (see also Section 4.3.4.5).  
•	 Methane8 is a much more potent GHG than CO2 (Montzka et al., 2011), associated with difficult-to-abate emissions in industry and agriculture and with 
    outgassing from lakes, wetlands, and oceans (Lockley, 2012; Stolaroff et al., 2012). Enhancing processes that naturally remove methane, either by chemical 
    or biological decomposition (Sundqvist et al., 2012), has been proposed to remove CH4. There is low confidence that existing technologies for CH4 
    removal are economically or energetically suitable for large-scale air capture (Boucher and Folberth, 2010). Methane removal potentials are limited due to 
    its low atmospheric concentration and its low chemical reactivity at ambient conditions.

Ethical aspects
•  Preston (2013) identifies distributive and procedural justice, permissibility, moral hazard (Shue, 2018), and hubris as ethical aspects that could apply to  
    large-scale CDR deployment.  
•  There is a lack of reflection on the climate futures produced by recent modelling and implying very different ethical costs/risks and benefits (Minx et al., 2018).

Governance

•	 Existing governance mechanisms are scarce and either targeted at particular CDR options (e.g., ocean-based) or aspects (e.g., concerning indirect land-use  
    change (iLUC)) associated with bioenergy upscaling, and often the mechanisms are at national or regional scale (e.g., EU). Regulation accounting for iLUC  
    by formulating sustainability criteria (e.g., the EU Renewable Energy Directive) has been assessed as insufficient in avoiding leakage (e.g., Frank et al., 2013). 
•	 An international governance mechanism is only in place for R&D of ocean fertilization within the Convention on Biological Diversity (IMO, 1972, 1996; CBD, 2008, 2010). 
•	 Burns and Nicholson (2017) propose a human rights-based approach to protect those potentially adversely impacted by CDR options. 

Policy

•	 The CDR potentials that can be realized are constrained by the lack of policy portfolios incentivising large-scale CDR (Peters and Geden, 2017).   
•	 Near-term opportunities could be supported through modifying existing policy mechanisms (Lomax et al., 2015). 
•	 Scott and Geden (2018) sketch three possible routes for limited progress, (i) at EU-level, (ii) at EU Member State level, and (iii) at private sector level, noting  
    the implied paradigm shift this would entail.  
•	 EU may struggle to adopt policies for CDR deployment on the scale or time-frame envisioned by IAMs (Geden et al., 2018). 
•	 Social impacts of large-scale CDR deployment (Buck, 2016) require policies taking these into account.  

Carbon cycle
•	 On long time scales, natural sinks could reverse (C.D. Jones et al., 2016) 
•	 No robust assessments yet of the effectiveness of CDR in reverting climate change (Tokarska and Zickfeld, 2015; Wu et al., 2015; Keller et al., 2018), 
    see also Chapter 2, Section 2.2.2.2.

Table 4.6  |  	Cross-cutting issues and uncertainties across carbon dioxide removal (CDR) options, aspects and uncertainties

4.3.8	 Solar Radiation Modification (SRM)

This report refrains from using the term ‘geoengineering’ and separates 
SRM from CDR and other mitigation options (see Chapter 1, Section 
1.4.1 and Glossary).

Table 4.7 gives an overview of SRM methods and characteristics. For a 
more comprehensive discussion of currently proposed SRM methods, 
and their implications for geophysical quantities and sustainable 
development, see also Cross-Chapter Box 10 in this Chapter. This 
section assesses the feasibility, from an institutional, technological, 
economic and social-cultural viewpoint, focusing on stratospheric 
aerosol injection (SAI) unless otherwise indicated, as most available 
literature is about SAI.

Some of the literature on SRM appears in the forms of commentaries, 
policy briefs, viewpoints and opinions (e.g., (Horton et al., 2016; Keith et 
al., 2017; Parson, 2017). This assessment covers original research rather 
than viewpoints, even if the latter appear in peer-reviewed journals. 

SRM could reduce some of the global risks of climate change related 
to temperature rise (Izrael et al., 2014; MacMartin et al., 2014), rate of 
sea level rise (Moore et al., 2010), sea-ice loss (Berdahl et al., 2014) and 
frequency of extreme storms in the North Atlantic and heatwaves in 
Europe (Jones et al., 2018). SRM also holds risks of changing precipitation 
and ozone concentrations and potentially reductions in biodiversity 
(Pitari et al., 2014; Visioni et al., 2017a; Trisos et al., 2018). Literature 
only supports SRM as a supplement to deep mitigation, for example in 
overshoot scenarios (Smith and Rasch, 2013; MacMartin et al., 2018).

4.3.8.1	 Governance and institutional feasibility

There is robust evidence but medium agreement for unilateral action 
potentially becoming a serious SRM governance issue (Weitzman, 
2015; Rabitz, 2016), as some argue that enhanced collaboration 
might emerge around SRM (Horton, 2011). An equitable institutional 
or governance arrangement around SRM would have to reflect 
views of different countries (Heyen et al., 2015) and be multilateral 
because of the risk of termination, and risks that implementation or 
unilateral action by one country or organization will produce negative 
precipitation or extreme weather effects across borders (Lempert and 
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SRM indicator
Stratospheric Aerosol 

injection (SAI)
Marine Cloud 

Brightening (MCB)
Cirrus Cloud 

Thinning (CCT)
Ground-Based Albedo 
Modification (GBAM)

Description of 
SRM method

Injection of a gas in the 
stratosphere, which then converts 
to aerosols. Injection of other 
particles also considered.

Spraying sea salt or other 
particles into marine clouds, 
making them more reflective.

Seeding to promote nucleation, reducing 
optical thickness and cloud lifetime, 
to allow more outgoing longwave 
radiation to escape into space.

Whitening roofs, changes in land use 
management (e.g., no-till farming), 
change of albedo at a larger scale 
(covering glaciers or deserts with reflective 
sheeting and changes in ocean albedo).

Radiative forcing 
efficiencies 

1–4 TgS W−1 m2 yr−1
100–295 Tg dry sea 
salt W−1 m2 yr−1

Not known
Small on global scale, up to 1°C–3°C 
on regional scale

Amount needed 
for 1°C overshoot

2–8 TgS yr−1 70 Tg dry sea salt yr−1 Not known
0.04–0.1 albedo change in agricultural 
and urban areas 

SRM specific 
impacts on climate 
variables

Changes in precipitation patterns 
and circulation regimes; in case 
of SO2 injection, disruption to 
stratospheric chemistry (for 
instance NOx depletion and 
changes in methane lifetime); 
increase in stratospheric water 
vapour and tropospheric-
stratospheric ice formation 
affecting cloud microphysics

Regional rainfall responses; 
reduction in hurricane intensity 

Low-level cloud changes; 
tropospheric drying; intensification 
of the hydrological cycle

Impacts on precipitation in monsoon areas; 
could target hot extremes

SRM specific 
impacts on human/
natural systems

In case of SO2  injection, 
stratospheric ozone loss (which 
could also have a positive 
effect – a net reduction in global 
mortality due to competing 
health impact pathways) and 
significant increase of surface UV

Reduction in the number 
of mild crop failures

Not known Not known

Maturity of science

Volcanic analogues; high 
agreement amongst simulations; 
robust evidence on ethical, 
governance and sustainable 
development limitations

Observed in ships tracks; 
several simulations confirm 
mechanism;  
regionally limited

No clear physical mechanism; 
limited evidence and low agreement; 
several simulations 

Natural and land-use analogues; 
several simulations confirm mechanism; 
high agreement to influence on regional 
temperature; land use costly

Key references

Robock et al., 2008;  
Heckendorn et al., 2009;  
Tilmes et al., 2012, 2016;  
Pitari et al., 2014;  
Crook et al., 2015;  
C.J. Smith et al., 2017;  
Visioni et al., 2017a, b;  
Eastham et al., 2018; 
Plazzotta et al., 2018

Salter et al., 2008; 
Alterskjær et al., 2012; 
Jones and Haywood, 2012; 
Latham et al., 2012, 2013; 
Kravitz et al., 2013;  
Crook et al., 2015; 
Parkes et al., 2015; 
Ahlm et al., 2017

Storelvmo et al., 2014; 
Kristjánsson et al., 2015;  
Jackson et al., 2016;  
Kärcher, 2017;  
Lohmann and Gasparini, 2017

Irvine et al., 2011; 
Akbari et al., 2012;  
Jacobson and Ten Hoeve, 2012;  
Davin et al., 2014;  
Crook et al., 2015, 2016;  
Seneviratne et al., 2018

Table 4.7  |	 Overview of the main characteristics of the most-studied SRM methods.

Prosnitz, 2011; Dilling and Hauser, 2013; NRC, 2015b). Some have 
suggested that the governance of research and field experimentation 
can help clarify uncertainties surrounding deployment of SRM (Long 
and Shepherd, 2014; Parker, 2014; NRC, 2015c; Caldeira and Bala, 
2017; Lawrence and Crutzen, 2017), and that SRM is compatible with 
democratic processes (Horton et al., 2018) or not (Szerszynski et al., 
2013; Owen, 2014). 

Several possible institutional arrangements have been considered 
for SRM governance: under the UNFCCC (in particular under the 
Subsidiary Body on Scientific and Technological Advice (SBSTA)) or the 
United Nations Convention on Biological Diversity (UNCBD) (Honegger 
et al., 2013; Nicholson et al., 2018), or through a consortium of 
states (Bodansky, 2013; Sandler, 2017). Reasons for states to join an 
international governance framework for SRM include having a voice in 
SRM diplomacy, prevention of unilateral action by others and benefits 
from research collaboration (Lloyd and Oppenheimer, 2014).

Alongside SBSTA, the WMO, UNESCO and UN Environment could play 
a role in governance of SRM (Nicholson et al., 2018). Each of these 
organizations has relevance with respect to the regulatory framework 
(Bodle et al., 2012; Williamson and Bodle, 2016). The UNCBD gives 
guidance that ‘that no climate-related geo-engineering activities that 
may affect biodiversity take place’ (CBD, 2010).  

4.3.8.2	 Economic and technological feasibility

The literature on the engineering costs of SRM is limited and may 
be unreliable in the absence of testing or deployment. There is high 
agreement that costs of SAI (not taking into account indirect and social 
costs, research and development costs and monitoring expenses) may 
be in the range of 1–10 billion USD yr−1 for injection of 1–5 MtS to 
achieve cooling of 1–2 W m−2 (Robock et al., 2009; McClellan et al., 
2012; Ryaboshapko and Revokatova, 2015; Moriyama et al., 2016), 
suggesting that cost-effectiveness may be high if side-effects are low 
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or neglected (McClellan et al., 2012). The overall economic feasibility 
of SRM also depends on externalities and social costs (Moreno-Cruz 
and Keith, 2013; Mackerron, 2014), climate sensitivity (Kosugi, 2013), 
option value (Arino et al., 2016), presence of climate tipping points 
(Eric Bickel, 2013)  and damage costs as a function of the level of SRM 
(Bahn et al., 2015; Heutel et al., 2018). Modelling of game-theoretic, 
strategic interactions of states under heterogeneous climatic impacts 
shows low agreement on the outcome and viability of a cost-benefit 
analysis for SRM (Ricke et al., 2015; Weitzman, 2015). 

For SAI, there is high agreement that aircrafts could, after some 
modifications, inject millions of tons of SO2 in the lower stratosphere 
(at approximately 20 km; (Davidson et al., 2012; McClellan et al., 2012; 
Irvine et al., 2016).

4.3.8.3	 Social acceptability and ethics

Ethical questions around SRM include those of international 
responsibilities for implementation, financing, compensation for 
negative effects, the procedural justice questions of who is involved 
in decisions, privatization and patenting, welfare, informed consent 
by affected publics, intergenerational ethics (because SRM requires 
sustained action in order to avoid termination hazards), and the 
so-called ‘moral hazard’ (Burns, 2011; Whyte, 2012; Gardiner, 2013; 
Lin, 2013; Buck et al., 2014; Klepper and Rickels, 2014; Morrow, 2014; 
Wong, 2014; Reynolds, 2015; Lockley and Coffman, 2016; McLaren, 
2016; Suarez and van Aalst, 2017; Reynolds et al., 2018). The literature 

shows low agreement on whether SRM research and deployment may 
lead policy-makers to reduce mitigation efforts and thus imply a moral 
hazard (Linnér and Wibeck, 2015). SRM might motivate individuals 
(as opposed to policymakers) to reduce their GHG emissions, but even 
a subtle difference in the articulation of information about SRM can 
influence subsequent judgements of favourability (Merk et al., 2016). 
The argument that SRM research increases the likelihood of deployment 
(the ‘slippery slope’ argument), is also made (Quaas et al., 2017), but 
some also found an opposite effect (Bellamy and Healey, 2018). 

Unequal representation and deliberate exclusion are plausible in 
decision-making on SRM, given diverging regional interests and the 
anticipated low resource requirements to deploy SRM (Ricke et al., 
2013). Whyte (2012) argues that the concerns, sovereignties, and 
experiences of indigenous peoples may particularly be at risk. 

The general public can be characterized as oblivious to and worried 
about SRM (Carr et al., 2013; Parkhill et al., 2013; Wibeck et al., 2017). 
An emerging literature discusses public perception of SRM, showing a 
lack of knowledge and unstable  opinions (Scheer and Renn, 2014). The 
perception of controllability affects legitimacy and public acceptability 
of SRM experiments (Bellamy et al., 2017). In Germany, laboratory 
work on SRM is generally approved of, field research much less so, 
and immediate deployment is largely rejected (Merk et al., 2015; Braun 
et al., 2017). Various factors could explain variations in the degree of 
rejection of SRM between Canada, China, Germany, Switzerland, the 
United Kingdom, and the United States (Visschers et al., 2017). 

Cross-Chapter Box 10 |  Solar Radiation Modification in the Context of 1.5°C Mitigation Pathways	

Contributing Authors: 
Anastasia Revokatova (Russian Federation), Heleen de Coninck (Netherlands/EU), Piers Forster (UK), Veronika Ginzburg (Russian 
Federation), Jatin Kala (Australia), Diana Liverman (USA), Maxime Plazzotta (France), Roland Séférian (France), Sonia I. Seneviratne 
(Switzerland), Jana Sillmann (Norway).

Solar radiation modification (SRM) refers to a range of radiation modification measures not related to greenhouse gas (GHG) 
mitigation that seek to limit global warming (see Chapter 1, Section 1.4.1). Most methods involve reducing the amount of incoming 
solar radiation reaching the surface, but others also act on the longwave radiation budget by reducing optical thickness and cloud 
lifetime (see Table 4.7). In the context of this report, SRM is assessed in terms of its potential to limit warming below 1.5°C in 
temporary overshoot scenarios as a way to reduce elevated temperatures and associated impacts (Irvine et al., 2016; Keith and 
Irvine, 2016; Chen and Xin, 2017; Sugiyama et al., 2017a; Visioni et al., 2017a; MacMartin et al., 2018). The inherent variability of the 
climate system would make it difficult to detect the efficacy or side-effects of SRM intervention when deployed in such a temporary 
scenario (Jackson et al., 2015). 

A.	 Potential SRM timing and magnitude
Published SRM approaches are summarized in Table 4.7. The timing and magnitude of potential SRM deployment depends on 
the temperature overshoot associated with mitigation pathways. All overshooting pathways make use of carbon dioxide removal. 
Therefore, if considered, SRM would only be deployed as a supplemental measure to large-scale carbon dioxide removal (Chapter 
2, Section 2.3). 

Cross-Chapter Box 10, Figure 1 below illustrates an example of how a hypothetical SRM deployment based on stratospheric aerosols 
injection (SAI) could be used to limit warming below 1.5°C using an ‘adaptive SRM’ approach (e.g., Kravitz et al., 2011; Tilmes et al., 
2016), where global mean temperature rise  exceeds 1.5°C compared to pre-industrial level by mid-century and returns below 1.5°C 
before 2100 with a 66% likelihood (see Chapter 2). In all such limited adaptive deployment scenarios, deployment of SRM only 
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commences under conditions in which CO2 emissions have already fallen substantially below their peak level and are continuing to 
fall. In order to hold warming to 1.5°C, a hypothetical SRM deployment could span from one to several decades, with the earliest 
possible threshold exceedance occurring before mid-century. Over this duration, SRM has to compensate for warming that exceeds 
1.5°C (displayed with hatching on panel a) with a decrease in radiative forcing (panel b) which could be achieved with a rate of SAI 
varying between 0–5.9 MtSO2 yr−1 (panel c) (Robock et al., 2008; Heckendorn et al., 2009).

SAI is the most-researched SRM method, with high agreement that it could limit warming to below 1.5°C (Tilmes et al., 2016; 
Jones et al., 2018). The response of global temperature to SO2 injection, however, is uncertain and varies depending on the model 
parametrization and emission scenarios (Jones et al., 2011; Kravitz et al., 2011; Izrael et al., 2014; Crook et al., 2015; Niemeier and 
Timmreck, 2015; Tilmes et al., 2016; Kashimura et al., 2017). Uncertainty also arises due to the nature and the optical properties of 
injected aerosols.

Cross-Chapter Box 10, Figure 1 |  Evolution of hypothetical SRM deployment (based on stratospheric aerosols injection, or SAI) in the context of 
1.5°C-consistent pathways. (a) Range of median temperature outcomes as simulated by MAGICC (see in Chapter 2, Section 2.2) given the range of CO2 emissions 
and (b) other climate forcers for mitigation pathways exceeding 1.5°C at mid-century and returning below by 2100 with a 66% likelihood. Geophysical characteristics are 
represented by (c) the magnitude of radiative forcing and (d) the amount of stratospheric SO2 injection that are required to keep the global median temperature below 
1.5°C during the temperature overshoot (given by the blue hatching on panel a). SRM surface radiative forcing has been diagnosed using a mean cooling efficiency of 
0.3°C (W− m2) of Plazzotta et al. (2018). Magnitude and timing of SO2 injection have been derived from published estimates of Heckendorn et al. (2009) and Robock 
et al. (2008).

Cross Chapter Box 10 (continued)
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Other approaches are less well researched, but the literature suggests that ground-based albedo modification (GBAM), marine cloud 
brightening (MCB) or cirrus cloud thinning (CCT) are not assessed to be able to substantially reduce overall global temperature 
(Irvine et al., 2011; Seneviratne et al., 2018). However, these SRM approaches are known to create spatially heterogeneous forcing 
and potentially more spatially heterogeneous climate effects, which may be used to mitigate regional climate impacts. This may 
be of most relevance in the case of GBAM when applied to crop and urban areas (Seneviratne et al., 2018). Most of the literature 
on regional mitigation has focused on GBAM in relationship with land-use and land-cover change scenarios. Both models and 
observations suggest that there is a high agreement that GBAM would result in cooling over the region of changed albedo, and in 
particular would reduce hot extremes (Irvine et al., 2011; Akbari et al., 2012; Jacobson and Ten Hoeve, 2012; Davin et al., 2014; Crook 
et al., 2015, 2016; Alkama and Cescatti, 2016; Seneviratne et al., 2018). In comparison, there is a limited evidence on the ability of 
MCB or CCT to mitigate regional climate impacts of 1.5°C warming because the magnitude of the climate response to MCB or CCT 
remains uncertain and the processes are not fully understood (Lohmann and Gasparini, 2017).

B.	 General consequences and impacts of solar radiation modification 
It has been proposed that deploying SRM as a supplement to mitigation may reduce increases in global temperature-related 
extremes and rainfall intensity, and lessen the loss of coral reefs from increasing sea-surface temperatures (Keith and Irvine, 2016), 
but it would not address, or could even worsen (Tjiputra et al., 2016), negative effects from continued ocean acidification.  

Another concern with SRM is the risk of  a ‘termination shock’ or ‘termination effect’ when suddenly stopping SRM, which might 
cause rapid temperature rise and associated impacts (Jones et al., 2013; Izrael et al., 2014; McCusker et al., 2014), most noticeably 
biodiversity loss (Trisos et al., 2018). The severity of the termination effect has recently been debated (Parker and Irvine, 2018) and 
depends on the degree of SRM cooling. This report only considers limited SRM in the context of mitigation pathways to 1.5°C. Other 
risks of SRM deployment could be associated with the lack of testing of the proposed deployment schemes (e.g., Schäfer et al., 
2013). Ethical aspects and issues related to the governance and economics are discussed in Section 4.3.8.

C.	 Consequences and impacts of SRM on the carbon budget
Because of its effects on surface temperature, precipitation and surface shortwave radiation, SRM would also alter the carbon 
budget pathways to 1.5°C or 2°C (Eliseev, 2012; Keller et al., 2014; Keith et al., 2017; Lauvset et al., 2017). 

Despite the large uncertainties in the simulated climate response to SRM, current model simulations suggest that SRM would 
lead to altered carbon budgets compatible with 1.5°C or 2°C. The 6 CMIP5 models investigated simulated an increase of natural 
carbon uptake by land biosphere and, to a smaller extent, by the oceans (high agreement). The multimodel mean of this response 
suggests an increase of the RCP4.5 carbon budget of about 150 GtCO2 after 50 years of SO2 injection with a rate of 4 TgS yr−1, which 
represents about 4 years of CO2 emissions at the current rate (36 GtCO2 yr−1). However, there is uncertainty around quantitative 
determination of the effects that SRM or its cessation has on the carbon budget due to a lack of understanding of the radiative 
processes driving the global carbon cycle response to SRM (Ramachandran et al., 2000; Mercado et al., 2009; Eliseev, 2012; Xia et 
al., 2016), uncertainties about how the carbon cycle will respond to termination effects of SRM, and uncertainties in climate–carbon 
cycle feedbacks (Friedlingstein et al., 2014).

D.	 Sustainable development and SRM
There are few studies investigating potential implications of SRM for sustainable development. These are based on a limited 
number of scenarios and hypothetical considerations, mainly referring to benefits from lower temperatures (Irvine et al., 2011; 
Nicholson, 2013; Anshelm and Hansson, 2014; Harding and Moreno-Cruz, 2016). Other studies suggest negative impacts from SRM 
implementation concerning issues related to regional disparities (Heyen et al., 2015), equity (Buck, 2012), fisheries, ecosystems, 
agriculture, and termination effects (Robock, 2012; Morrow, 2014; Wong, 2014). If SRM is initiated by the richer nations, there might 
be issues with local agency, and possibly worsening conditions for those suffering most under climate change (Buck et al., 2014). 
In addition, ethical issues related to testing SRM have been raised (e.g., Lenferna et al., 2017). Overall, there is high agreement that 
SRM would affect many development issues but limited evidence on the degree of influence, and how it manifests itself across 
regions and different levels of society.

E.	 Overall feasibility of SRM
If mitigation efforts do not keep global mean temperature below 1.5°C, SRM can potentially reduce the climate impacts of a 
temporary temperature overshoot, in particular extreme temperatures, rate of sea level rise and intensity of tropical cyclones, 
alongside intense mitigation and adaptation efforts. While theoretical developments show that SRM is technically feasible (see 
Section 4.3.8.2), global field experiments have not been conducted and most of the knowledge about SRM is based on imperfect 
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4.4	 Implementing Far-Reaching 
and Rapid Change

The feasibility of 1.5°C-compatible pathways is contingent upon 
enabling conditions for systemic change (see Cross Chapter Box 3 in 
Chapter 1). Section 4.3 identifies the major systems, and options within 
those systems, that offer the potential for change to align with 1.5°C 
pathways. 

AR5 identifies enabling conditions as influencing the feasibility 
of climate responses (Kolstad et al., 2014). This section draws on 
1.5°C-specific and related literature on rapid and scaled up change 
to identify the enabling conditions that influence the feasibility of 
adaptation and mitigation options assessed in Section 4.5. Examples 
from diverse regions and sectors are provided in Boxes 4.1 to 4.10 
to illustrate how these conditions could enable or constrain the 
implementation of incremental, rapid, disruptive and transformative 
mitigation and adaptation consistent with 1.5°C pathways. 

Coherence between the enabling conditions holds potential to enhance 
the feasibility of 1.5°C-consistent pathways and adapting to the 
consequences. This includes better alignment across governance scales 
(OECD, 2015a; Geels et al., 2017), enabling multilevel governance 
(Cheshmehzangi, 2016; Revi, 2017; Tait and Euston-Brown, 2017) and 
nested institutions (Abbott, 2012). It also includes interdisciplinary 
actions, combined adaptation and mitigation action (Göpfert et al., 
2018), and science–policy partnerships (Vogel et al., 2007; Hering et al., 
2014; Roberts, 2016; Figueres et al., 2017; Leal Filho et al., 2018). These 
partnerships are difficult to establish and sustain, but can generate 
trust (Cole, 2015; Jordan et al., 2015) and inclusivity that ultimately can 
provide durability and the realization of co-benefits for sustained rapid 
change (Blanchet, 2015; Ziervogel et al., 2016a). 

4.4.1	 Enhancing Multilevel Governance

Addressing climate change and implementing responses to 
1.5°C-consistent pathways would require engagement between 
various levels and types of governance (Betsill and Bulkeley, 2006; 
Kern and Alber, 2009; Christoforidis et al., 2013; Romero-Lankao et al., 
2018). AR5 highlighted the significance of governance as a means of 
strengthening adaptation and mitigation and advancing sustainable 
development (Fleurbaey et al., 2014). Governance is defined in the 
broadest sense as the ‘processes of interaction and decision-making 
among actors involved in a common problem’ (Kooiman, 2003; Hufty, 
2011; Fleurbaey et al., 2014). This definition goes beyond notions of 
formal government or political authority and integrates other actors, 
networks, informal institutions and communities. 

4.4.1.1	 Institutions and their capacity to invoke far-reaching 
and rapid change

Institutions – the rules and norms that guide human interactions 
(Section 4.4.2) – enable or impede the structures, mechanisms 
and measures that guide mitigation and adaptation. Institutions, 
understood as the ‘rules of the game’ (North, 1990), exert direct and 
indirect influence over the viability of 1.5°C-consistent pathways 
(Munck et al., 2014; Willis, 2017). Governance would be needed to 
support wide-scale and effective adoption of mitigation and adaptation 
options. Institutions and governance structures are strengthened 
when the principle of the ‘commons’ is explored as a way of sharing 
management and responsibilities (Ostrom et al., 1999; Chaffin et 
al., 2014; Young, 2016). Institutions would need to be strengthened 
to interact amongst themselves, and to share responsibilities for the 
development and implementation of rules, regulations and policies 
(Ostrom et al., 1999; Wejs et al., 2014; Craig et al., 2017), with the goal 
of ensuring that these embrace equity, justice, poverty alleviation and 
sustainable development, enabling a 1.5°C world (Reckien et al., 2017; 
Wood et al., 2017). 

Several authors have identified different modes of cross-stakeholder 
interaction in climate policy, including the role played by large 
multinational corporations, small enterprises, civil society and non-
state actors. Ciplet et al. (2015) argue that civil society is to a great 
extent the only reliable motor for driving institutions to change at 
the pace required. Kern and Alber (2009) recognize different forms of 
collaboration relevant to successful climate policies beyond the local 
level. Horizontal collaboration (e.g., transnational city networks) and 
vertical collaboration within nation-states can play an enabling role 
(Ringel, 2017). Vertical and horizontal collaboration requires synergistic 
relationships between stakeholders (Ingold and Fischer, 2014; Hsu et 
al., 2017). The importance of community participation is emphasized 
in literature, and in particular the need to take into account equity 
and gender considerations (Chapter 5) (Graham et al., 2015; Bryan 
et al., 2017; Wangui and Smucker, 2017). Participation often faces 
implementation challenges and may not always result in better policy 
outcomes. Stakeholders, for example, may not view climate change as 
a priority and may not share the same preferences, potentially creating 
a policy deadlock (Preston et al., 2013, 2015; Ford et al., 2016).

4.4.1.2	 International governance

International treaties help strengthen policy implementation, providing 
a medium- and long-term vision (Obergassel et al., 2016). International 
climate governance is organized via many mechanisms, including 
international organizations, treaties and conventions, for example, 

model simulations and some natural analogues. There are also considerable challenges to the implementation of SRM associated 
with disagreements over the governance, ethics, public perception, and distributional development impacts (see Section 4.3.8) (Boyd, 
2016; Preston, 2016; Asayama et al., 2017; Sugiyama et al., 2017b; Svoboda, 2017; McKinnon, 2018; Talberg et al., 2018). Overall, 
the combined uncertainties surrounding the various SRM approaches, including technological maturity, physical understanding, 
potential impacts, and challenges of governance, constrain the ability to implement SRM in the near future.  
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UNFCCC, the Paris Agreement and the Montreal Protocol. Other 
multilateral and bilateral agreements, such as trade agreements, also 
have a bearing on climate change.

There are significant differences between global mitigation and 
adaptation governance frames. Mitigation tends to be global by its 
nature and based on the principle of the climate system as a global 
commons (Ostrom et al., 1999). Adaptation has traditionally been 
viewed as a local process, involving local authorities, communities, 
and stakeholders (Khan, 2013; Preston et al., 2015), although it is now 
recognized to be a multi-scaled, multi-actor process that transcends 
scales from local and sub-national to national and international 
(Mimura et al., 2014; UNEP, 2017a). National governments provide a 
central pivot for coordination, planning, determining policy priorities 
and distributing resources. National governments are accountable 
to the international community through international agreements. 
Yet, many of the impacts of climate change are transboundary, so 
that bilateral and multilateral cooperation are needed (Nalau et al., 
2015; Donner et al., 2016; Magnan and Ribera, 2016; Tilleard and Ford, 
2016; Lesnikowski et al., 2017). The Kigali Amendment to the Montreal 
Protocol demonstrates that a global environmental agreement 
facilitating common but differentiated responsibilities is possible 
(Sharadin, 2018). This was operationalized by developed countries 
acting first, with developing countries following and benefiting from 
leap-frogging the trial-and-error stages of innovative technology 
development.

Work on international climate governance has focused on the nature 
of ‘climate regimes’ and coordinating the action of nation-states 
(Aykut, 2016) organized around a diverse set of instruments: (i) binding 
limits allocated by principles of historical responsibility and equity, (ii) 
carbon prices, emissions quotas, (iii) pledges and review of policies and 
measures or (iv) a combination of these options (Stavins, 1988; Grubb, 
1990; Pizer, 2002; Newell and Pizer, 2003). 

Literature on the Kyoto Protocol provides two important insights for 
the 1.5°C transition: the challenge of agreeing on rules to allocate 
emissions quotas (Shukla, 2005; Caney, 2012; Winkler et al., 2013; 
Gupta, 2014; Méjean et al., 2015) and a climate-centric vision (Shukla, 
2005; BASIC experts, 2011), separated from development issues which 
drove resistance from many developing nations (Roberts and Parks, 
2006). For the former, a burden-sharing approach led to an adversarial 
process among nations to decide who should be allocated ‘how much’ 
of the remainder of the emissions budget (Caney, 2014; Ohndorf et al., 
2015; Roser et al., 2015; Giménez-Gómez et al., 2016). Industry group 
lobbying further contributed to reducing space for manoeuvre of some 
major emitting nations (Newell and Paterson, 1998; Levy and Egan, 
2003; Dunlap and McCright, 2011; Michaelowa, 2013; Geels, 2014).

Given the political unwillingness to continue with the Kyoto Protocol 
approach a new approach was introduced in the Copenhagen Accord, 
the Cancun Agreements, and finally in the Paris Agreement. The 
transition to 1.5°C requires carbon neutrality and thus going beyond 
the traditional framing of climate as a ‘tragedy of the commons’ to be 
addressed via cost-optimal allocation rules, which demonstrated a low 
probability of enabling a transition to 1.5°C-consistent pathways (Patt, 
2017). The Paris Agreement, built on a ‘pledge and review’ system, 

is thought be more effective in securing trust (Dagnet et al., 2016) 
and enables effective monitoring and timely reporting on national 
actions (including adaptation), allowing for international scrutiny and 
persistent efforts of civil society and non-state actors to encourage 
action in both national and international contexts (Allan and Hadden, 
2017; Bäckstrand and Kuyper, 2017; Höhne et al., 2017; Lesnikowski et 
al., 2017; Maor et al., 2017; UNEP, 2017a), with some limitations (Nieto 
et al., 2018). 

The paradigm shift enabled at Cancun succeeded by focusing on the 
objective of ‘equitable access to sustainable development’ (Hourcade 
et al., 2015). The use of ‘pledge and review’ now underpins the Paris 
Agreement. This consolidates multiple attempts to define a governance 
approach that relies on Nationally Determined Contributions (NDCs) 
and on means for a ‘facilitative model’ (Bodansky and Diringer, 2014) 
to reinforce them. This enables a regular, iterative, review of NDCs 
allowing countries to set their own ambitions  after a global stocktake 
and more flexible, experimental forms of climate governance, which may 
provide room for higher ambition and be consistent with the needs of 
governing for a rapid transition to close the emission gap (Clémençon, 
2016; Falkner, 2016) (Cross-Chapter Box 11 in this chapter). Beyond 
a general consensus on the necessity of measurement, reporting and 
verification (MRV) mechanisms as a key element of a climate regime 
(Ford et al., 2015b; van Asselt et al., 2015), some authors emphasize 
different governance approaches to implement the Paris Agreement. 
Through the new proposed sustainable development mechanism in 
Article 6, the Paris Agreement allows the space to harness the lowest 
cost mitigation options worldwide. This may incentivize policymakers 
to enhance mitigation ambition by speeding up climate action as part 
of a ‘climate regime complex’ (Keohane and Victor, 2011) of loosely 
interrelated global governance institutions. In the Paris Agreement, the 
‘common but differentiated responsibilities and respective capabilities’ 
(CBDR-RC) principle could be expanded and revisited under a ‘sharing 
the pie’ paradigm (Ji and Sha, 2015) as a tool to open innovation 
processes towards alternative development pathways (Chapter 5).

COP 16 in Cancun was also the first time in the UNFCCC that 
adaptation was recognized to have similar priority as mitigation. The 
Paris Agreement recognizes the importance of adaptation action and 
cooperation to enhance such action. Chung Tiam Fook (2017) and 
Lesnikowski et al. (2017) suggest that the Paris Agreement is explicit 
about multilevel adaptation governance, outlines stronger transparency 
mechanisms, links adaptation to development and climate justice, and 
is therefore suggestive of greater inclusiveness of non-state voices and 
the broader contexts of social change.

1.5°C-consistent pathways require further exploration of conditions of 
trust and reciprocity amongst nation states (Schelling, 1991; Ostrom 
and Walker, 2005). Some authors (Colman et al., 2011; Courtois et al., 
2015) suggest a departure from the vision of actors acting individually 
in the pursuit of self-interest to that of iterated games with actors 
interacting over time showing that reciprocity, with occasional 
forgiveness and initial good faith, can lead to win-win outcomes and 
to cooperation as a stable strategy (Axelrod and Hamilton, 1981).

Regional cooperation plays an important role in the context of 
global governance. Literature on climate regimes has only started 
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exploring innovative governance arrangements, including coalitions 
of transnational actors including state, market and non-state actors 
(Bulkeley et al., 2012; Hovi et al., 2016; Hagen et al., 2017; Hermwille 
et al., 2017; Roelfsema et al., 2018) and groupings of countries, as 
a complement to the UNFCCC (Abbott and Snidal, 2009; Biermann, 
2010; Zelli, 2011; Nordhaus, 2015). Climate action requires multilevel 
governance from the local and community level to national, regional 
and international levels. Box 4.1 shows the role of sub-national 
authorities (e.g., regions and provinces) in facilitating urban climate 
action, while Box 4.2 shows that climate governance can be organized 
across hydrological as well as political units. 

4.4.1.3	 Sub-national governance

Local governments can play a key role (Melica et al., 2018; Romero-
Lankao et al., 2018) in influencing mitigation and adaptation 
strategies. It is important to understand how rural and urban 
areas, small islands, informal settlements and communities might 
intervene to reduce climate impacts (Bulkeley et al., 2011), either by 
implementing climate objectives defined at higher government levels 
or by taking initiative autonomously or collectively (Aall et al., 2007; 
Reckien et al., 2014; Araos et al., 2016a; Heidrich et al., 2016). Local 
governance faces the challenge of reconciling local concerns with 
global objectives. Local governments could coordinate and develop 
effective local responses, and could pursue procedural justice in 
ensuring community engagement and more effective policies around 
energy and vulnerability reduction (Moss et al., 2013; Fudge et al., 
2016). They can enable more participative decision-making (Barrett, 
2015; Hesse, 2016). Fudge et al. (2016) argue that local authorities 
are well-positioned to involve the wider community in: designing 
and implementing climate policies, engaging with sustainable energy 
generation (e.g., by supporting energy communities) (Slee, 2015), and 
the delivery of demand-side measures and adaptation implementation. 

By 2050, it is estimated three billion people will be living in slums and 
informal settlements: neighbourhoods without formal governance, on 
un-zoned land developments and in places that are exposed to climate-
related hazards (Bai et al., 2018). Emerging research is examining how 
citizens can contribute informally to governance with rapid urbanization 
and weaker government regulation (Sarmiento and Tilly, 2018). It 
remains to be seen how the possibilities and consequences of alternative 
urban governance models will be managed for large, complex problems 
and for addressing inequality and urban adaptation (Amin and Cirolia, 
2018; Bai et al., 2018; Sarmiento and Tilly, 2018).

Expanding networks of cities are sharing experiences on coping with 
climate change and drawing economic and development benefits from 
climate change responses – a recent institutional innovation. This could 
be complemented by efforts of national governments to enhance local 
climate action through national urban policies (Broekhoff et al., 2018). 
Over the years, non-state actors have set up several transnational 
climate governance initiatives to accelerate the climate response, for 
example, ICLEI (1990), C–40 (2005), the Global Island Partnership 
(2006) and the Covenant of Mayors (2008) (Gordon and Johnson, 
2017; Hsu et al., 2017; Ringel, 2017; Kona et al., 2018; Melica et al., 
2018) and to exert influence on national governments and the UNFCCC 

(Bulkeley, 2005). However, Michaelowa and Michaelowa (2017) find 
low effectiveness for over 100 of such mitigation initiatives. 

4.4.1.4	 Interactions and processes for multilevel governance

Literature has proposed multilevel governance in climate change as 
an enabler for systemic transformation and effective governance, 
as the concept is thought to allow for combining decisions across 
levels and sectors and across institutional types at the same level 
(Romero-Lankao et al., 2018), with multilevel reinforcement and the 
mobilization of economic interests at different levels of governance 
(Jänicke and Quitzow, 2017). These governance mechanisms are 
based on accountability and transparency rules and participation and 
coordination across and within these levels.

A study of 29 European countries showed that the rapid adoption 
and diffusion of adaptation policymaking is largely driven by internal 
factors, at the national and sub-national levels (Massey et al., 2014). 
An assessment of national-level adaptation in 117 countries (Berrang-
Ford et al., 2014) found good governance to be the one of the strongest 
predictors of national adaptation policy. An analysis of the climate 
responses of 200 large and medium-sized cities across eleven European 
countries found that factors such as membership of climate networks, 
population size, gross domestic product (GDP) per capita and adaptive 
capacity act as drivers of mitigation and adaptation plans (Reckien et 
al., 2015). 

Adaptation policy has seen growth in some areas (Massey et al., 
2014; Lesnikowski et al., 2016), although efforts to track adaptation 
progress are constrained by an absence of data sources on adaptation 
(Berrang-Ford et al., 2011; Ford and Berrang-Ford, 2016; Magnan, 
2016; Magnan and Ribera, 2016). Many developing countries have 
made progress in formulating national policies, plans and strategies on 
responding to climate change. The NDCs have been identified as one 
such institutional mechanism (Cross-Chapter Box 11 in this Chapter) 
(Magnan et al., 2015; Kato and Ellis, 2016; Peters et al., 2017). 

To overcome barriers to policy implementation, local conflicts of 
interest or vested interests, strong leadership and agency is needed by 
political leaders. As shown by the Covenant of Mayors initiative (Box 
4.1), political leaders with a vision for the future of the local community 
can succeed in reducing GHG emissions, when they are supported by 
civil society (Rivas et al., 2015; Croci et al., 2017; Kona et al., 2018). 
Any political vision would need to be translated into an action plan, 
which could include elements describing policies and measures needed 
to achieve transition, the human and financial resources needed, 
milestones, and appropriate measurement and verification processes 
(Azevedo and Leal, 2017). Discussing the plan with stakeholders 
and civil society, including citizens and allowing for participation for 
minorities, and having them provide input and endorse it, has been 
found to increase the likelihood of success (Rivas et al., 2015; Wamsler, 
2017). However, as described by Nightingale (2017) and Green (2016), 
struggles over natural resources and adaptation governance both at 
the national and community levels would also need to be addressed 
‘in politically unstable contexts, where power and politics shape 
adaptation outcomes’.
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Box 4.1 |  Multilevel Governance in the EU Covenant of Mayors: Example of the Provincia di Foggia

Since 2005, cities have emerged as a locus of institutional and governance climate innovation (Melica et al., 2018) and are driving 
responses to climate change (Roberts, 2016). Many cities have adopted more ambitious greenhouse gas (GHG) emission reduction 
targets than countries (Kona et al., 2018), with an overall commitment of GHG emission reduction targets by 2020 of 27%, almost 
7 percentage points higher than the minimum target for 2020 (Kona et al., 2018). The Covenant of Mayors (CoM) is an initiative 
in which municipalities voluntarily commit to CO2 emission reduction. The participation of small municipalities has been facilitated 
by the development and testing of a new multilevel governance model involving Covenant Territorial Coordinators (CTCs), i.e., 
provinces and regions, which commit to providing strategic guidance and financial and technical support to municipalities in their 
territories. Results from the 315 monitoring inventories submitted show an achievement of 23% reduction in emissions (compared 
to an average year 2005) for more than half of the cities under a CTC schema (Kona et al., 2018).

The Province of Foggia, acting as a CTC, gave support to 36 municipalities to participate in the CoM and to prepare Sustainable 
Energy Action Plans (SEAPs). The Province developed a common approach to prepare SEAPs, provided data to compile municipal 
emission inventories (Bertoldi et al., 2018) and guided the signatory to identify an appropriate combination of measures to curb 
GHG emissions. The local Chamber of Commerce also had a key role in the implementation of these projects by the municipalities 
(Lombardi et al., 2016). The joint action by the province and the municipalities in collaboration with the local business community 
could be seen as an example of multilevel governance (Lombardi et al., 2016).  

Researchers have investigated local forms of collaboration within local government, with the active involvement of citizens and 
stakeholders, and acknowledge that public acceptance is key to the successful implementation of policies (Larsen and Gunnarsson-
Östling, 2009; Musall and Kuik, 2011; Pollak et al., 2011; Christoforidis et al., 2013; Pasimeni et al., 2014; Lee and Painter, 2015). 
Achieving ambitious targets would need leadership, enhanced multilevel governance, vision and widespread participation in 
transformative change (Castán Broto and Bulkeley, 2013; Rosenzweig et al., 2015; Castán Broto, 2017; Fazey et al., 2017; Wamsler, 
2017; Romero-Lankao et al., 2018). The Chapter 5, Section 5.6.4 case studies of climate-resilient development pathways, at state 
and community scales, show that participation, social learning and iterative decision-making are governance features of strategies 
that deliver mitigation, adaptation, and sustainable development in a fair and equitable manner. Another insight is the finding 
that incremental voluntary changes are amplified through community networking, polycentric governance (Dorsch and Flachsland, 
2017), partnerships, and long-term change to governance systems at multiple levels (Stevenson and Dryzek, 2014; Lövbrand et al., 
2017; Pichler et al., 2017; Termeer et al., 2017).

Multilevel governance includes adaptation across local, regional, and 
national scales (Adger et al., 2005). The whole-of-government approach 
to understanding and influencing climate change policy design and 
implementation puts analytical emphasis on how different levels of 
government and different types of actors (e.g., public and private) 
can constrain or support local adaptive capacity (Corfee-Morlot et al., 
2011), including the role of the civil society. National governments, 
for example, have been associated with enhancing adaptive capacity 
through building awareness of climate impacts, encouraging economic 
growth, providing incentives, establishing legislative frameworks 
conducive to adaptation, and communicating climate change 
information (Berrang-Ford et al., 2014; Massey et al., 2014; Austin et al., 
2015; Henstra, 2016; Massey and Huitema, 2016). Local governments, 
on the other hand, are responsible for delivering basic services and 
utilities to the urban population, and protecting their integrity from 
the impacts of extreme weather (Austin et al., 2015; Cloutier et al., 
2015; Nalau et al., 2015; Araos et al., 2016b). National policies and 
transnational governance could be seen as complementary, rather 
than competitors, and strong national policies favour transnational 
engagement of sub- and non-state actors (Andonova et al., 2017). 
Local initiatives are complementary with higher level policies and can 
be integrated in the multilevel governance system (Fuhr et al., 2018). 

A multilevel approach considers that adaptation planning is affected 
by scale mismatches between the local manifestation of climate 
impacts and the diverse scales at which the problem is driven (Shi 
et al., 2016). Multilevel approaches may be relevant in low-income 
countries where limited financial resources and human capabilities 
within local governments often lead to greater dependency on 
national governments and other (donor) organizations, to strengthen 
adaptation responses (Donner et al., 2016; Adenle et al., 2017). 
National governments or international organizations may motivate 
urban adaptation externally through broad policy directives or projects 
by international donors. Municipal governments on the other hand 
work within the city to spur progress on adaptation. Individual political 
leadership in municipal government, for example, has been cited as 
a factor driving the adaptation policies of early adapters in Quito, 
Ecuador, and Durban, and South Africa (Anguelovski et al., 2014), 
and for adaptation more generally (Smith et al., 2009). Adaptation 
pathways can help identify maladaptive actions (Juhola et al., 2016; 
Magnan et al., 2016; Gajjar et al., 2018) and encourage social learning 
approaches across multiple levels of stakeholders in sectors such as 
marine biodiversity and water supply (Bosomworth et al., 2015; Butler 
et al., 2015; van der Brugge and Roosjen, 2015).
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Box 4.2 exemplifies how multilevel governance has been used for 
watershed management in different basins, given the impacts on water 
sources (Chapter 3, Section 3.4.2).

Box 4.2 |  Watershed Management in a 1.5˚C World

Water management is necessary in order for the global community to adapt to 1.5°C-consistent pathways. Cohesive planning 
that includes numerous stakeholders would be required to improve access, utilization and efficiency of water use and to ensure 
hydrologic viability.  

Response to drought and El Niño–Southern Oscillation (ENSO) in southern Guatemala
Hydro-meteorological events, including ENSO, have impacted Central America (Steinhoff et al., 2014; Chang et al., 2015; Maggioni et 
al., 2016) and are projected to increase in frequency during a 1.5°C transition (Wang et al., 2017). The 2014–2016 ENSO damaged 
agriculture, seriously impacting rural communities. 

In 2016, the Climate Change Institute, in conjunction with local governments, the private sector, communities and human rights 
organizations, established dialogue tables for different watersheds to discuss water usage amongst stakeholders and plans to 
mitigate the effects of drought, alleviate social tension, and map water use of watersheds at risk. The goal was to encourage better 
water resource management and to enhance ecological flow through improved communication, transparency, and coordination 
amongst users. These goals were achieved in 2017 when each previously affected river reached the Pacific Ocean with at least its 
minimum ecological flow (Guerra, 2017). 

Drought management through the Limpopo Watercourse Commission
The governments sharing the Limpopo river basin (Botswana, Mozambique, South Africa and Zimbabwe) formed the Limpopo 
Watercourse Commission in 2003 (Nyagwambo et al., 2008; Mitchell, 2013). It has an advisory body composed of working groups 
that assess water use and sustainability, decide national level distribution of water access, and support disaster and emergency 
planning. The Limpopo basin delta is highly vulnerable (Tessler et al., 2015), and is associated with a lack of infrastructure and 
investment capacity, requiring increased economic development together with plans for vulnerability reduction (Tessler et al., 
2015) and water rights (Swatuk, 2015). The high vulnerability is influenced by gender inequality, limited stakeholder participation 
and limited institutional capacity to address unequal water access (Mehta et al., 2014). The implementation of integrated water 
resources management (IWRM) would need to consider pre-existing social, economic, historical and cultural contexts (Merrey, 
2009; Mehta et al., 2014). The Commission therefore could play a role in improving participation and in providing an adaptable and 
equitable strategy for cross-border water sharing (Ekblom et al., 2017).

Flood management in the Danube
The Danube River Protection Convention is the official instrument for cooperation on transboundary water governance between 
the countries that share the Danube Basin. The International Commission for the Protection of the Danube River (ICPDR) provides 
a strong science–policy link through expert working groups dealing with issues including governance, monitoring and assessment, 
and flood protection (Schmeier, 2014). The Trans-National Monitoring Network (TNMN) was developed to undertake comprehensive 
monitoring of water quality (Schmeier, 2014). Monitoring of water quality constitutes almost 50% of ICPDR’s scientific publications, 
although ICPDR also works on governance, basin planning, monitoring, and IWRM, indicating its importance. The ICPDR is an 
example of IWRM ‘coordinating groundwater, surface water abstractions, flood management, energy production, navigation, and 
water quality’ (Hering et al., 2014).    
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Cross-Chapter Box 11 |  Consistency Between Nationally Determined Contributions and 1.5°C Scenarios

Contributing Authors: 
Paolo Bertoldi (Italy), Michel den Elzen (Netherlands), James Ford (Canada/UK), Richard Klein (Netherlands/Germany), Debora Ley 
(Guatemala/Mexico), Timmons Roberts (USA), Joeri Rogelj (Austria/Belgium).

Mitigation

1. Introduction
There is high agreement that Nationally Determined Contributions (NDCs) are important for the global response to climate change 
and represent an innovative bottom-up instrument in climate change governance (Section 4.4.1), with contributions from all 
signatory countries (den Elzen et al., 2016; Rogelj et al., 2016; Vandyck et al., 2016; Luderer et al., 2018; Vrontisi et al., 2018). The 
global emission projections resulting from full implementation of the NDCs represent an improvement compared to business as 
usual (Rogelj et al., 2016) and current policies scenarios to 2030 (den Elzen et al., 2016; Vrontisi et al., 2018). Most G20 economies 
would require new policies and actions to achieve their NDC targets (den Elzen et al., 2016; Vandyck et al., 2016; UNEP, 2017b; 
Kuramochi et al., 2018).

2. The effect of NDCs on global greenhouse gas (GHG) emissions
Several studies estimate global emission levels that would be achieved under the NDCs (e.g., den Elzen et al., 2016; Luderer et al., 
2016; Rogelj et al., 2016, 2017; Vandyck et al., 2016; Rose et al., 2017; Vrontisi et al., 2018). Rogelj et al. (2016) and UNEP (2017b) 
concluded that the full implementation of the unconditional and conditional NDCs are expected to result in global GHG emissions 
of about 55 (52–58) and 53 (50–54) GtCO2-eq yr−1, respectively (Cross-Chapter Box 11, Figure 1 below).

3. The effect of NDCs on temperature increase and carbon budget
Estimates of global average temperature increase are 2.9°C–3.4°C above preindustrial levels with a greater than 66% probability 
by 2100 (Rogelj et al., 2016; UNEP, 2017b), under a full implementation of unconditional NDCs and a continuation of climate action 
similar to that of the NDCs. Full implementation of the conditional NDCs would lower the estimates by about 0.2°C by 2100. As 
an indication of the carbon budget implications of NDC scenarios, Rogelj et al. (2016) estimated cumulative emissions in the range 
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Cross-Chapter Box 11, Figure 1 |  GHG emissions are all expressed in units of CO2-equivalence computed with 100-year global warming potentials (GWPs) reported 
in IPCC SAR, while the emissions for the 1.5°C and 2°C scenarios in Table 2.4 are reported using the 100-year GWPs reported in IPCC AR4, and are hence about 3% 
higher. Using IPCC AR4 instead of SAR GWP values is estimated to result in a 2–3% increase in estimated 1.5°C and 2°C emissions levels in 2030. Source: based on 
Rogelj et al. (2016) and UNEP (2017b).
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of 690 to 850 GtCO2 for the period 2011–2030 if the NDCs are successfully implemented. The carbon budget for post-2010 till 2100 
compatible with staying below 1.5°C with a 50–66% probability was estimated at  550–600 GtCO2 (Clarke et al., 2014; Rogelj et al., 
2016), which will be well exceeded by 2030 at full implementation of the NDCs (Chapter 2, Section 2.2 and Section 2.3.1). 

4. The 2030 emissions gap with 1.5°C and urgency of action
As the 1.5°C pathways require reaching carbon neutrality by mid-century, the NDCs alone are not sufficient, as they have a time 
horizon until 2030. Rogelj et al. (2016) and Hof et al. (2017) have used results or compared NDC pathways with emissions pathways 
produced by integrated assessment models (IAMs) assessing the contribution of NDCs to achieve the 1.5°C targets. There is high 
agreement that current NDC emissions levels are not in line with pathways that limit warming to 1.5°C by the end of the century 
(Rogelj et al., 2016, 2017; Hof et al., 2017; UNEP, 2017b; Vrontisi et al., 2018). The median 1.5°C emissions gap (>66% chance) for 
the full implementation of both the conditional and unconditional NDCs for 2030 is 26 (19–29) to 28 (22–33) GtCO2-eq (Cross-
Chapter Box 11, Figure 1 above). 

Studies indicate important trade-offs of delaying global emissions reductions (Chapter 2, Sections 2.3.5 and 2.5.1). AR5 identified 
flexibility in 2030 emission levels when pursuing a 2°C objective (Clarke et al., 2014) indicating that strongest trade-offs for 2°C 
pathways could be avoided if emissions are limited to below 50 GtCO2-eq yr−1 in 2030 (here computed with the GWP–100 metric 
of the IPCC SAR). New scenario studies show that full implementation of the NDCs by 2030 would imply the need for deeper and 
faster emission reductions beyond 2030 in order to meet 2°C, and also higher costs and efforts of negative emissions (Fujimori et 
al., 2016; Sanderson et al., 2016; Rose et al., 2017; van Soest et al., 2017; Luderer et al., 2018). However, no flexibility has been found 
for 1.5°C-consistent pathways (Luderer et al., 2016; Rogelj et al., 2017), indicating that if emissions through 2030 are at NDC levels, 
the resulting post-2030 reductions required to remain within a 1.5°C-consistent carbon budget during the 21st century (Chapter 2, 
Section 2.2) are not within the feasible operating space of IAMs. This indicates that the chances of failing to reach a 1.5°C pathway 
are significantly increased (Riahi et al., 2015), if near-term ambition is not strengthened beyond the level implied by current NDCs.

Accelerated and stronger short-term action and enhanced longer-term national ambition going beyond the NDCs would be needed 
for 1.5°C-consistent pathways. Implementing deeper emissions reductions than current NDCs would imply action towards levels 
identified in Chapter 2, Section 2.3.3, either as part of or over-delivering on NDCs. 

5. The impact of uncertainties on NDC emission levels
The measures proposed in NDCs are not legally binding (Nemet et al., 2017), further impacting estimates of anticipated 2030 
emission levels. The aggregation of targets results in high uncertainty (Rogelj et al., 2017), which could be reduced with clearer 
guidelines for compiling future NDCs focused more on energy accounting (Rogelj et al., 2017) and increased transparency and 
comparability (Pauw et al., 2018). 

Many factors would influence NDCs global aggregated effects, including: (1) variations in socio-economic conditions (GDP and 
population growth), (2) uncertainties in historical emission inventories, (3) conditionality of certain NDCs, (4) definition of NDC 
targets as ranges instead of single values, (5) the way in which renewable energy targets are expressed, and (6) the way in which 
traditional biomass use is accounted for. Additionally, there are land-use mitigation uncertainties (Forsell et al., 2016; Grassi et al., 
2017). Land-use options play a key role in many country NDCs; however, many analyses on NDCs do not use country estimates on 
land-use emissions, but use model estimates, mainly because of the large difference in estimating the ‘anthropogenic’ forest sink 
between countries and models (Grassi et al., 2017). 

6. Comparing countries’ NDC ambition (equity, cost optimal allocation and other indicators)
Various assessment frameworks have been proposed to analyse, benchmark and compare NDCs, and indicate possible strengthening, 
based on equity and other indicators (Aldy et al., 2016; den Elzen et al., 2016; Höhne et al., 2017; Jiang et al., 2017; Holz et al., 
2018).There is large variation in conformity/fulfilment with equity principles across NDCs and countries. Studies use assessment 
frameworks based on six effort sharing categories in the AR5 (Clarke et al., 2014) with the principles of ‘responsibility’, ‘capability’ 
and ‘equity’ (Höhne et al., 2017; Pan et al., 2017; Robiou du Pont et al., 2017). There is an important methodological gap in 
the assessment of the NDCs’ fairness and equity implications, partly due to lack of information on countries’ own assessments 
(Winkler et al., 2017). Implementation of Article 2.2 of the Paris Agreement could reflect equity and the principle of ‘common but 
differentiated responsibilities and respective capabilities’, due to different national circumstances and different interpretations of 
equity principles (Lahn and Sundqvist, 2017; Lahn, 2018).

Cross Chapter Box 11 (continued)
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Adaptation

The Paris Agreement recognizes adaptation by establishing a global goal for adaptation (Kato and Ellis, 2016; Rajamani, 2016; 
Kinley, 2017; Lesnikowski et al., 2017; UNEP, 2017a). This is assessed qualitatively, as achieving a temperature goal would determine 
the level of adaptation ambition required to deal with the consequent risks and impacts (Rajamani, 2016). Countries can include 
domestic adaptation goals in their NDCs, which together with national adaptation plans (NAPs) give countries flexibility to design 
and adjust their adaptation trajectories as their needs evolve and as progress is evaluated over time. A challenge for assessing 
progress on adaptation globally is the aggregation of many national adaptation actions and approaches. Knowledge gaps still 
remain about how to design measurement frameworks that generate and integrate national adaptation data without placing undue 
burdens on countries (UNEP, 2017a).

The Paris Agreement stipulates that adaptation communications shall be submitted as a component of or in conjunction with 
other communications, such as an NDC, a NAP, or a national communication. Of the 197 Parties to the UNFCCC, 140 NDCs have 
an adaptation component, almost exclusively from developing countries. NDC adaptation components could be an opportunity 
for enhancing adaptation planning and implementation by highlighting priorities and goals (Kato and Ellis, 2016). At the national 
level they provide momentum for the development of NAPs and raise the profile of adaptation (Pauw et al., 2016b, 2018). The Paris 
Agreement’s transparency framework includes adaptation, through which ‘adaptation communication’ and accelerated adaptation 
actions are submitted and reviewed every five years (Hermwille, 2016; Kato and Ellis, 2016). This framework, unlike others used in 
the past, is applicable to all countries taking into account differing capacities amongst Parties (Rajamani, 2016). 

Adaptation measures presented in qualitative terms include sectors, risks and vulnerabilities that are seen as priorities by the Parties. 
Sectoral coverage of adaptation actions identified in NDCs is uneven, with adaptation primarily reported to focus on the water 
sector (71% of NDCs with adaptation component), agriculture (63%), health (54%), and biodiversity/ecosystems (50%) (Pauw et 
al., 2016b, 2018). 

Cross Chapter Box 11 (continued)

4.4.2	 Enhancing Institutional Capacities

The implementation of sound responses and strategies to enable a 
transition to 1.5°C world would require strengthening governance 
and scaling up institutional capacities, particularly in developing 
countries (Adenle et al., 2017; Rosenbloom, 2017). Building on the 
characterization of governance in Section 4.4.1, this section examines 
the necessary institutional capacity to implement actions to limit 
warming to 1.5°C and adapt to the consequences. This takes into 
account a plurality of regional and local responses, as institutional 
capacity is highly context-dependent (North, 1990; Lustick et al., 
2011).  

Institutions would need to interact with one another and align across 
scales to ensure that rules and regulations are followed (Chaffin 
and Gunderson, 2016; Young, 2016). The institutional architecture 
required for a 1.5°C world would include the growing proportion of 
the world’s population that live in peri-urban and informal settlements 
and engage in informal economic activity (Simone and Pieterse, 2017). 
This population, amongst the most exposed to perturbed climates in 
the world (Hallegatte et al., 2017), is also beyond the direct reach 
of some policy instruments (Jaglin, 2014; Thieme, 2018). Strategies 
that accommodate the informal rules of the game adopted by these 
populations have large chances of success (McGranahan et al., 2016; 
Kaika, 2017).

The goal for strengthening implementation is to ensure that these rules 
and regulations embrace equity, equality and poverty alleviation along 

1.5°C-consistent pathways (mitigation) and enables the building of 
adaptive capacity that together, will enable sustainable development 
and poverty reduction.

Rising to the challenge of a transition to a 1.5°C world would require 
enhancing institutional climate change capacities along multiple 
dimensions presented below.

4.4.2.1	 Capacity for policy design and implementation

The enhancement of institutional capacity for integrated policy design 
and implementation has long been among the top items on the UN 
agenda of addressing global environmental problems and sustainable 
development (see Chapter 5, Section 5.5) (UNEP, 2005). 

Political stability, an effective regulatory and enforcement framework 
(e.g., institutions to impose sanctions, collect taxes and to verify 
building codes), access to a knowledge base and the availability of 
resources, would be needed at various governance levels to address 
a wide range of stakeholders and their concerns. The strengthening 
of the global response would need to support these with different 
interventions, in the context of sustainable development (Chapter 5, 
Section 5.5.1) (Pasquini et al., 2015).

Given the scale of change needed to limit warming to 1.5°C, 
strengthening the response capacity of relevant institutions is best 
addressed in ways that take advantage of existing decision-making 
processes in local and regional governments and within cities and 
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communities (Romero-Lankao et al., 2013), and draws upon diverse 
knowledge sources including indigenous and local knowledge 
(Nakashima et al., 2012; Smith and Sharp, 2012; Mistry and Berardi, 
2016; Tschakert et al., 2017). Examples of successful local institutional 
processes and the integration of local knowledge in climate-related 
decision-making are provided in Box 4.3 and Box 4.4.

Implementing 1.5°C-consistent strategies would require well-
functioning legal frameworks to be in place, in conjunction with 
clearly defined mandates, rights and responsibilities to enable the 
institutional capacity to deliver (Romero-Lankao et al., 2013). As 
an example, current rates of urbanization occurring in cities with a 
lack of institutional capacity for effective land-use planning, zoning 
and infrastructure development result in unplanned, informal urban 

settlements which are vulnerable to climate impacts. It is common 
for 30–50% of urban populations in low-income nations to live in 
informal settlements with no regulatory infrastructure (Revi et al., 
2014b). For example, in Huambo (Angola), a classified ‘urban’ area 
extends 20 km west of the city and is predominantly made up of 
‘unplanned’ urban settlements (Smith and Jenkins, 2015). 

Internationally, the Paris Agreement process has aimed at enhancing 
the capacity of decision-making institutions in developing countries 
to support effective implementation. These efforts are particularly 
reflected in Article 11 of the Paris Agreement on capacity building 
(the creation of the Paris Committee on Capacity Building), Article 13 
(the creation of the Capacity Building Initiative on Transparency), and 
Article 15 on compliance (UNFCCC, 2016).

Box 4.3 |  Indigenous Knowledge and Community Adaptation

Indigenous knowledge refers to the understandings, skills and philosophies developed by societies with long histories of interaction 
with their natural surroundings (UNESCO, 2017). This knowledge can underpin the development of adaptation and mitigation 
strategies (Ford et al., 2014b; Green and Minchin, 2014; Pearce et al., 2015; Savo et al., 2016). 

Climate change is an important concern for the Maya, who depend on climate knowledge for their livelihood. In Guatemala, the 
collaboration between the Mayan K’iché population of the Nahualate river basin and the Climate Change Institute has resulted in 
a catalogue of indigenous knowledge, used to identify indicators for watershed meteorological forecasts (López and Álvarez, 2016). 
These indicators are relevant but would need continuous assessment if their continued reliability is to be confirmed (Nyong et al., 
2007; Alexander et al., 2011; Mistry and Berardi, 2016). For more than ten years, Guatemala has maintained an ‘Indigenous Table 
for Climate Change’, to enable the consideration of indigenous knowledge in disaster management and adaptation development. 

In Tanzania, increased variability of rainfall is challenging indigenous and local communities (Mahoo et al., 2015; Sewando et 
al., 2016). The majority of agro-pastoralists use indigenous knowledge to forecast seasonal rainfall, relying on observations of 
plant phenology, bird, animal, and insect behaviour, the sun and moon, and wind (Chang’a et al., 2010; Elia et al., 2014; Shaffer, 
2014). Increased climate variability has raised concerns about the reliability of these indicators (Shaffer, 2014); therefore, initiatives 
have focused on the co-production of knowledge by involving local communities in monitoring and discussing the implications of 
indigenous knowledge and meteorological forecasts (Shaffer, 2014), and creating local forecasts by utilizing the two sources of 
knowledge (Mahoo et al., 2013). This has resulted in increased documentation of indigenous knowledge, understanding of relevant 
climate information amongst stakeholders, and adaptive capacity at the community level (Mahoo et al., 2013, 2015; Shaffer, 2014). 

The Pacific Islands and small island developing states (SIDS) are vulnerable to the effects of climate change, but the cultural resilience 
of Pacific Island inhabitants is also recognized (Nunn et al., 2017). In Fiji and Vanuatu, strategies used to prepare for cyclones include 
building reserve emergency supplies and utilizing farming techniques to ensure adequate crop yield to combat potential losses 
from a cyclone or drought (McNamara and Prasad, 2014; Granderson, 2017; Pearce et al., 2017). Social cohesion and kinship are 
important in responding and preparing for climate-related hazards, including the role of resource sharing, communal labour, and 
remittances (McMillen et al., 2014; Gawith et al., 2016; Granderson, 2017). There is a concern that indigenous knowledge will 
weaken, a process driven by westernization and disruptions in established bioclimatic indicators and traditional planning calendars 
(Granderson, 2017). In some urban settlements, it has been noted that cultural practices (e.g., prioritizing the quantity of food over 
the quality of food) can lower food security through dispersing limited resources and by encouraging the consumption of cheap 
but nutrient-poor foods (Mccubbin et al., 2017) (See Cross-Chapter Box 6 on Food Security in Chapter 3). Indigenous practices also 
encounter limitations, particularly in relation to sea level rise (Nunn et al., 2017). 
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Box 4.4 |  Manizales, Colombia: Supportive National Government and Localized Planning and Integration 
	    as an Enabling Condition for Managing Climate and Development Risks

Institutional reform in the city of Manizales, Colombia, helps identify three important features of an enabling environment: 
integrating climate change adaptation, mitigation and disaster risk management at the city-scale; the importance of decentralized 
planning and policy formulation within a supportive national policy environment; and the role of a multi-sectoral framework in 
mainstreaming climate action in development activities. 

Manizales is exposed to risks caused by rapid development and expansion in a mountainous terrain exposed to seismic activity and 
periodic wet and dry spells. Local assessments expect climate change to amplify the risk of disasters (Carreño et al., 2017). The city 
is widely recognized for its longstanding urban environmental policy (Biomanizales) and local environmental action plan (Bioplan), 
and has been integrating environmental planning in its development agenda for nearly two decades (Velásquez Barrero, 1998; 
Hardoy and Velásquez Barrero, 2014). When the city’s environmental agenda was updated in 2014 to reflect climate change risks, 
assessments were conducted in a participatory manner at the street and neighbourhood level (Hardoy and Velásquez Barrero, 2016). 

The creation of a new Environmental Secretariat assisted in coordination and integration of environmental policies, disaster risk 
management, development and climate change (Leck and Roberts, 2015). Planning in Manizales remains mindful of steep gradients 
through its longstanding Slope Guardian programme that trains women and keeps records of vulnerable households. Planning also 
looks to include mitigation opportunities and enhance local capacity through participatory engagement (Hardoy and Velásquez 
Barrero, 2016). 

Manizales’ mayors were identified as important champions for much of these early integration and innovation efforts. Their 
role may have been enabled by Colombia’s history of decentralized approaches to planning and policy formulation, including 
establishing environmental observatories (for continuous environmental assessment) and participatory tracking of environmental 
indicators. Multi-stakeholder involvement has both enabled and driven progress, and has enabled the integration of climate risks in 
development planning (Hardoy and Velásquez Barrero, 2016). 

4.4.2.2	 Monitoring, reporting, and review institutions

One of the novel features of the new climate governance architecture 
emerging from the 2015 Paris Agreement is the transparency 
framework in Article 13 committing countries, based on capacity, 
to provide regular progress reports on national pledges to address 
climate change (UNFCCC, 2016). Many countries will rely on public 
policies and existing national reporting channels to deliver on their 
NDCs under the Paris Agreement. Scaling up the mitigation and 
adaptation efforts in these countries to be consistent with 1.5°C 
would put significant pressure on the need to develop, enhance and 
streamline local, national and international climate change reporting 
and monitoring methodologies and institutional capacity in relation 
to mitigation, adaptation, finance, and GHG inventories (Ford et al., 
2015b; Lesnikowski et al., 2015; Schoenefeld et al., 2016). Consistent 
with this direction, the provision of the information to the stocktake 
under Article 14 of the Paris Agreement would contribute to enhancing 
reporting and transparency (UNFCCC, 2016). Nonetheless, approaches, 
reporting procedures, reference points, and data sources to assess 
progress on implementation across and within nations are still largely 
underdeveloped (Ford et al., 2015b; Araos et al., 2016b; Magnan and 
Ribera, 2016; Lesnikowski et al., 2017). The availability of independent 
private and public reporting and statistical institutions are integral to 
oversight, effective monitoring, reporting and review. The creation and 
enhancement of these institutions would be an important contribution 
to an effective transition to a low-emission world.

4.4.2.3	 Financial institutions

IPCC AR5 assessed that in order to enable a transition to a 2°C pathway, 
the volume of climate investments would need to be transformed along 
with changes in the pattern of general investment behaviour towards 
low emissions. The report argued that, compared to 2012, annually up 
to a trillion dollars in additional investment in low-emission energy and 
energy efficiency measures may be required until 2050 (Blanco et al., 
2014; IEA, 2014a). Financing of 1.5°C would present an even greater 
challenge, addressing financing of both existing and new assets, which 
would require significant transitions to the type and structure of financial 
institutions as well as to the method of financing (Cochrani et al., 2014; 
Ma, 2014). Both public and private financial institutions would be needed 
to contribute to the large resource mobilization needed for 1.5°C, yet, in 
the ordinary course of business, these transitions may not be expected. 
On the one hand, private financial institutions could face scale-up risk, 
for example, the risks associated with commercialization and scaling 
up of renewable technologies to accelerate mitigation (Wilson, 2012; 
Hartley and Medlock, 2013) and/or price risk, such as carbon price 
volatility that carbon markets could face. In contrast, traditional public 
financial institutions are limited by both structure and instruments, while 
concessional financing would require taxpayer support for subsidization. 
Special efforts and innovative approaches would be needed to address 
these challenges, for example the creation of special institutions that 
underwrite the value of emission reductions using auctioned price floors 
(Bodnar et al., 2018) to deal with price volatility.
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Financial institutions are equally important for adaptation. 
Linnerooth-Bayer and Hochrainer-Stigler (2015) discussed the 
benefits of financial instruments in adaptation, including the 
provision of post-disaster finances for recovery and pre-disaster 
security necessary for climate adaptation and poverty reduction. 
Pre-disaster financial instruments and options include insurance, 
such as index-based weather insurance schemes, catastrophe bonds, 
and laws to encourage insurance purchasing. The development and 
enhancement of microfinance institutions to ensure social resilience 
and smooth transitions in the adaptation to climate change impacts 
could be an important local institutional innovation (Hammill et al., 
2008). 

4.4.2.4	 Co-operative institutions and social safety nets

Effective cooperative institutions and social safety nets may help 
address energy access and adaptation, as well as distributional impacts 
during the transition to 1.5°C-consistent pathways and enabling 
sustainable development. Not all countries have the institutional 
capabilities to design and manage these. Social capital for adaptation 
in the form of bonding, bridging, and linking social institutions has 
proved to be effective in dealing with climate crises at the local, 
regional and national levels (Aldrich et al., 2016).

The shift towards sustainable energy systems in transitioning 
economies could impact the livelihoods of large populations in 
traditional and legacy employment sectors. The transition of selected 
EU Member States to biofuels, for example, caused anxiety among 
farmers, who lacked confidence in the biofuel crop market. Enabling 
contracts between farmers and energy companies, involving local 
governments, helped create an atmosphere of confidence during the 
transition (McCormick and Kåberger, 2007).

How do broader socio-economic processes influence urban 
vulnerabilities and thereby underpin climate change adaptation? 
This is a systemic challenge originating from a lack of collective 
societal ownership of the responsibility for climate risk management. 
Explanations for this situation include competing time-horizons due 

to self-interest of stakeholders to a more ‘rational’ conception of risk 
assessment, measured across a risk-tolerance spectrum (Moffatt, 2014).

Self-governing and self-organ¬ised institutional settings, where 
equipment and resource systems are commonly owned and managed, 
can poten¬tially generate a much higher diversity of administration 
solutions, than other institutional arrangements, where energy 
technology and resource systems are either owned and administered 
individually in market settings or via a central authority (e.g., the 
state). They can also increase the adaptability of technological systems 
while reducing their burden on the environment (Labanca, 2017). 
Educational, learning and awareness-building institutions can help 
strengthen the societal response to climate change (Butler et al., 2016; 
Thi Hong Phuong et al., 2017).

4.4.3	 Enabling Lifestyle and Behavioural Change

Humans are at the centre of global climate change: their actions cause 
anthropogenic climate change, and social change is key to effectively 
responding to climate change (Vlek and Steg, 2007; Dietz et al., 2013; 
ISSC and UNESCO, 2013; Hackmann et al., 2014). Chapter 2 shows 
that 1.5°C-consistent pathways assume substantial changes in 
behaviour. This section assesses the potential of behaviour change, as 
the integrated assessment models (IAMs) applied in Chapter 2 do not 
comprehensively asses this potential. 

Table 4.8 shows examples of mitigation and adaption actions relevant 
for 1.5°C-consistent pathways. Reductions in population growth can 
reduce overall carbon demand and mitigate climate change (Bridgeman, 
2017), particularly when population growth is accompanied by increases 
in affluence and carbon-intensive consumption (Rosa and Dietz, 2012; 
Clayton et al., 2017). Mitigation actions with a substantial carbon 
emission reduction potential (see Figure 4.3) that individuals may 
readily adopt would have the most climate impact (Dietz et al., 2009).

Various policy approaches and strategies can encourage and enable 
climate actions by individuals and organizations. Policy approaches 
would be more effective when they address key contextual and psycho-

Climate action Type of action Examples

Mitigation

Implementing resource efficiency in buildings
Insulation 
Low-carbon building materials

Adopting low-emission innovations
Electric vehicles 
Heat pumps, district heating and cooling

Adopting energy efficient appliances
Energy-efficient heating or cooling 
Energy-efficient appliances

Energy-saving behaviour

Walking or cycling rather than drive short distances 
Using mass transit rather than flying 
Lower temperature for space heating
Line drying of laundry
Reducing food waste

Buying products and materials with low GHG 
emissions during production and transport

Reducing meat and dairy consumption 
Buying local, seasonal food
Replacing aluminium products by low-GHG alternatives 

Organisational behaviour
Designing low-emission products and procedures
Replacing business travel by videoconferencing 

Table 4.8  |	 Examples of mitigation and adaptation behaviours relevant for 1.5°C (Dietz et al., 2009; Jabeen, 2014; Taylor et al., 2014; Araos et al., 2016b; Steg, 2016; Stern et  
	 al., 2016b; Creutzig et al., 2018)
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Figure 4.3 |  Examples of mitigation behaviour and their GHG emission reduction potential. Mitigation potential assessments are printed in different 
units. Based on [1] Carlsson-Kanyama and González (2009); [2] Tuomisto and Teixeira de Mattos (2011); [3] Springmann et al. (2016); [4] Nijland and Meerkerk (2017); [5] 
Woodcock et al. (2009); [6] Salon et al. (2012); [7] Dietz et al. (2009); [8] Mulville et al. (2017); [9] Huebner and Shipworth (2017); [10] Jaboyedoff et al. (2004); [11] Pellegrino 
et al. (2016); [12] Nägele et al. (2017). 

Climate action Type of action Examples

Adaptation

Growing different crops and raising different animal varieties Using crops with higher tolerance for higher temperatures or CO2 elevation

Flood protective behaviour
Elevating barriers between rooms
Building elevated storage spaces
Building drainage channels outside the home

Heat protective behaviour
Staying hydrated
Moving to cooler places
Installing green roofs

Efficient water use during water shortage crisis
Rationing water
Constructing wells or rainwater tanks

Mitigation & 
adaptation

Adoption of renewable energy sources 
Solar PV
Solar water heaters

Citizenship behaviour
Engage through civic channels to encourage or support planning for low-carbon  
climate-resilient development

Table 4.8 (continued)

social factors influencing climate actions, which differ across contexts 
and individuals (Steg and Vlek, 2009; Stern, 2011). This suggests 
that diverse policy approaches would be needed in 1.5°C-consistent 
pathways in different contexts and regions. Combinations of policies 
that target multiple barriers and enabling factors simultaneously can 
be more effective (Nissinen et al., 2015).

In the United States and Europe, GHG emissions are lower when 
legislators have strong environmental records (Jensen and Spoon, 2011; 
Dietz et al., 2015). Political elites affect public concern about climate 
change: pro-climate action statements increased concern, while anti-
climate action statements and anti-environment voting reduced public 
concern about climate change (Brulle et al., 2012). In the European 
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Union (EU), individuals worry more about climate change and engage 
more in climate actions in countries where political party elites are 
united rather than divided in their support for environmental issues 
(Sohlberg, 2017).

This section discusses how to enable and encourage behaviour and 
lifestyle changes that strengthen implementation of 1.5°C-consistent 
pathways by assessing psycho-social factors related to climate action, 
as well as the effects and acceptability of policy approaches targeting 
climate actions that are consistent with 1.5°C. Box 4.5 and Box 4.6 
illustrate how these have worked in practice. 

4.4.3.1	 Factors related to climate actions

Mitigation and adaptation behaviour is affected by many factors that 
shape which options are feasible and considered by individuals. Besides 
contextual factors (see other sub-sections in Section 4.4), these include 
abilities and different types of motivation to engage in behaviour. 

Ability to engage in climate action. Individuals more often engage 
in adaptation (Gebrehiwot and van der Veen, 2015; Koerth et al., 
2017) and mitigation behaviour (Pisano and Lubell, 2017) when they 
are or feel more capable to do so. Hence, it is important to enhance 
ability to act on climate change, which depends on income and 
knowledge, among other things. A higher income is related to higher 
CO2 emissions; higher income groups can afford more carbon-intensive 
lifestyles (Lamb et al., 2014; Dietz et al., 2015; Wang et al., 2015). Yet 
low-income groups may lack resources to invest in energy-efficient 
technology and refurbishments (Andrews-Speed and Ma, 2016) and 
adaptation options (Wamsler, 2007; Fleming et al., 2015b; Takahashi et 
al., 2016). Adaptive capacity further depends on gender roles (Jabeen, 
2014; Bunce and Ford, 2015), technical capacities and knowledge 
(Feola et al., 2015; Eakin et al., 2016; Singh et al., 2016b).

Knowledge of the causes and consequences of climate change and 
of ways to reduce GHG emissions is not always accurate (Bord et al., 
2000; Whitmarsh et al., 2011; Tobler et al., 2012), which can inhibit 
climate actions, even when people would be motivated to act. For 
example, people overestimate savings from low-energy activities, 
and underestimate savings from high-energy activities (Attari et al., 
2010). They know little about ‘embodied’ energy (i.e., energy needed 
to produce products; Tobler et al., 2011), including meat (de Boer et 
al., 2016b). Some people mistake weather for climate (Reynolds et al., 
2010), or conflate climate risks with other hazards, which can inhibit 
adequate adaptation (Taylor et al., 2014). 

More knowledge on adaptation is related to higher engagement in 
adaptation actions in some circumstances (Bates et al., 2009; van 
Kasteren, 2014; Hagen et al., 2016). How adaptation is framed in 
the media can influence the types of options viewed as important in 
different contexts (Boykoff et al., 2013; Moser, 2014; Ford and King, 
2015). 

Knowledge is important, but is often not sufficient to motivate action 
(Trenberth et al., 2016). Climate change knowledge and perceptions 
are not strongly related to mitigation actions (Hornsey et al., 2016). 
Direct experience of events related to climate change influences 

climate concerns and actions (Blennow et al., 2012; Taylor et al., 2014), 
more so than second-hand information (Spence et al., 2011; Myers et 
al., 2012; Demski et al., 2017); high impact events with low frequency 
are remembered more than low impact regular events (Meze-Hausken, 
2004; Singh et al., 2016b; Sullivan-Wiley and Short Gianotti, 2017). 
Personal experience with climate hazards strengthens motivation to 
protect oneself (Jabeen, 2014) and enhances adaptation actions (Bryan 
et al., 2009; Berrang-Ford et al., 2011; Demski et al., 2017), although 
this does not always translate into proactive adaptation (Taylor et 
al., 2014). Collectively constructed notions of risk and expectations 
of future climate variability shape risk perception and adaptation 
behaviour (Singh et al., 2016b). People with particular political views 
and those who emphasize individual autonomy may reject climate 
science knowledge and believe that there is widespread scientific 
disagreement about climate change (Kahan, 2010; O’Neill et al., 2013), 
inhibiting support for climate policy (Ding et al., 2011; McCright et al., 
2013). This may explain why extreme weather experiences enhances 
preparedness to reduce energy use among left- but not right-leaning 
voters (Ogunbode et al., 2017). 

Motivation to engage in climate action. Climate actions are 
more strongly related to motivational factors than to knowledge, 
reflecting individuals’ reasons for actions, such as values, ideology 
and worldviews (Hornsey et al., 2016). People consider various types 
of costs and benefits of actions (Gölz and Hahnel, 2016) and focus 
on consequences that have implications for the values they find most 
important (Dietz et al., 2013; Hahnel et al., 2015; Steg, 2016). This 
implies that different individuals consider different consequences when 
making choices. People who strongly value protecting the environment 
and other people generally more strongly consider climate impacts and 
act more on climate change than those who strongly endorse hedonic 
and egoistic values (Taylor et al., 2014; Steg, 2016). People are more 
prone to adopt sustainable innovations when they are more open to 
new ideas (Jansson, 2011; Wolske et al., 2017). Further, a free-market 
ideology is associated with weaker climate change beliefs (McCright 
and Dunlap, 2011; Hornsey et al., 2016), and a capital-oriented culture 
tends to promote activity associated with GHG emissions (Kasser et 
al., 2007). 

Some indigenous populations believe it is arrogant to predict the 
future, and some cultures have belief systems that interpret natural 
phenomena as sentient, where thoughts and words are believed to 
influence the future, with people reluctant to talk about negative future 
possibilities (Natcher et al., 2007; Flynn et al., 2018). Integrating these 
considerations into the design of adaptation and mitigation policy is 
important (Cochran et al., 2013; Chapin et al., 2016; Brugnach et al., 
2017; Flynn et al., 2018).

People are more prone to act on climate change when individual benefits 
of actions exceed costs (Steg and Vlek, 2009; Kardooni et al., 2016; 
Wolske et al., 2017). For this reason, people generally prefer adoption of 
energy-efficient appliances above energy-consumption reductions; the 
latter is perceived as more costly (Poortinga et al., 2003; Steg et al., 
2006), although transaction costs can inhibit the uptake of mitigation 
technology (Mundaca, 2007). Decentralized renewable energy systems 
are evaluated most favourably when they guarantee independence, 
autonomy, control and supply security (Ecker et al., 2017). 
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Besides, social costs and benefits affect climate action (Farrow et al., 
2017). People engage more in climate actions when they think others 
expect them to do so and when others act as well (Nolan et al., 2008; 
Le Dang et al., 2014; Truelove et al., 2015; Rai et al., 2016), and when 
they experience social support (Singh et al., 2016a; Burnham and Ma, 
2017; Wolske et al., 2017). Discussing effective actions with peers also 
encourages climate action (Esham and Garforth, 2013), particularly 
when individuals strongly identify with their peers (Biddau et al., 
2012; Fielding and Hornsey, 2016). Further, individuals may engage 
in mitigation actions when they think doing so would enhance their 
reputation (Milinski et al., 2006; Noppers et al., 2014; Kastner and 
Stern, 2015). Such social costs and benefits can be addressed in climate 
policy (see Section 4.4.3.2).

Feelings affect climate action (Brosch et al., 2014). Negative feelings 
related to climate change can encourage adaptation action (Kerstholt 
et al., 2017; Zhang et al., 2017), while positive feelings associated with 
climate risks may inhibit protective behaviour (Lefevre et al., 2015). 
Individuals are more prone to engage in mitigation actions when they 
worry about climate change (Verplanken and Roy, 2013) and when 
they expect to derive positive feelings from such actions (Pelletier et 
al., 1998; Taufik et al., 2016).

Furthermore, collective consequences affect climate actions 
(Balcombe et al., 2013; Dóci and Vasileiadou, 2015; Kastner and 
Stern, 2015). People are motivated to see themselves as morally 
right, which encourages mitigation actions (Steg et al., 2015), 
particularly when long-term goals are salient (Zaval et al., 2015) and 
behavioural costs are not too high (Diekmann and Preisendörfer, 
2003). Individuals are more prone to engage in climate actions when 
they believe climate change is occurring, when they are aware of 
threats caused by climate change and by their inaction, and when 
they think they can engage in actions that will reduce these threats 
(Esham and Garforth, 2013; Arunrat et al., 2017; Chatrchyan et al., 
2017). The more individuals are concerned about climate change and 
aware of the negative climate impact of their behaviour, the more 
they feel responsible for their actions and think that their actions can 
help reduce such negative impacts, which can strengthen their moral 
norms to act accordingly (Steg and de Groot, 2010; Jakovcevic and 
Steg, 2013; Chen, 2015; Ray et al., 2017; Wolske et al., 2017; Woods 
et al., 2017). Individuals may engage in mitigation actions when 
they see themselves as supportive of the environment (i.e., strong 
environmental self-identity) (Fielding et al., 2008; van der Werff et 
al., 2013b; Kashima et al., 2014; Barbarossa et al., 2017); a strong 
environmental identity strengthens intrinsic motivation to engage 
in mitigation actions both at home (van der Werff et al., 2013a) 
and at work (Ruepert et al., 2016). Environmental self-identity is 
strengthened when people realize they have engaged in mitigation 
actions, which can in turn promote further mitigation actions (van der 
Werff et al., 2014b).

Individuals are less prone to engage in adaptation behaviour 
themselves when they rely on external measures such as government 
interventions (Grothmann and Reusswig, 2006; Wamsler and Brink, 
2014a; Armah et al., 2015; Burnham and Ma, 2017) or perceive 
themselves as protected by god (Gandure et al., 2013; Dang et al., 
2014; Cannon, 2015). 

Habits, heuristics and biases. Decisions are often not based on 
weighing costs and benefits, but on habit or automaticity, both of 
individuals (Aarts and Dijksterhuis, 2000; Kloeckner et al., 2003) 
and within organizations (Dooley, 2017) and institutions (Munck 
et al., 2014). When habits are strong, individuals are less perceptive 
of information (Verplanken et al., 1997; Aarts et al., 1998) and may 
not consider alternatives as long as outcomes are good enough 
(Maréchal, 2010). Habits are mostly only reconsidered when the 
situation changed significantly (Fujii and Kitamura, 2003; Maréchal, 
2010; Verplanken and Roy, 2016). Hence, strategies that create the 
opportunity for reflection and encourage active decisions can break 
habits (Steg et al., 2018).

Individuals can follow heuristics, or ‘rules of thumb’, in making 
inferences, which demand less cognitive resources, knowledge 
and time than thinking through all implications of actions (Preston 
et al., 2013; Frederiks et al., 2015; Gillingham and Palmer, 2017). 
For example, people tend to think that larger and more visible 
appliances use more energy, which is not always accurate (Cowen 
and Gatersleben, 2017). They underestimate energy used for water 
heating and overestimate energy used for lighting (Stern, 2014). 
When facing choice overload, people may choose the easiest or first 
available option, which can inhibit energy-saving behaviour (Stern 
and Gardner, 1981; Frederiks et al., 2015). As a result, individuals 
and firms often strive for satisficing (‘good enough’) outcomes with 
regard to energy decisions (Wilson and Dowlatabadi, 2007; Klotz, 
2011), which can inhibit investments in energy efficiency (Decanio, 
1993; Frederiks et al., 2015).

Biases also play a role. In Mozambique, farmers displayed omission 
biases (unwillingness to take adaptation actions with potentially 
negative consequences to avoid personal responsibility for losses), 
while policymakers displayed action biases (wanting to demonstrate 
positive action despite potential negative consequences; Patt and 
Schröter, 2008). People tend to place greater value on relative losses 
than gains (Kahneman, 2003). Perceived gains and losses depend on 
the reference point or status-quo (Kahneman, 2003). Loss aversion 
and the status-quo bias prevent consumers from switching electricity 
suppliers (Ek and Söderholm, 2008), to time-of-use electricity tariffs 
(Nicolson et al., 2017), and to accept new energy systems (Leijten et 
al., 2014).

Owned inefficient appliances and fossil fuel-based electricity can act as 
endowments, increasing their value compared to alternatives (Pichert 
and Katsikopoulos, 2008; Dinner et al., 2011). Uncertainty and loss 
aversion lead consumers to undervalue future energy savings (Greene, 
2011) and savings from energy efficient technologies (Kolstad et al., 
2014). Uncertainties about the performance of products and illiquidity 
of investments can drive consumers to postpone (profitable) energy-
efficient investments (Sutherland, 1991; van Soest and Bulte, 2001). 
People with a higher tendency to delay decisions may engage less 
in energy saving actions (Lillemo, 2014). Training energy auditors in 
loss-aversion increased their clients’ investments in energy efficiency 
improvements (Gonzales et al., 1988). Engagement in energy saving 
and renewable energy programmes can be enhanced if participation is 
set as a default option (Pichert and Katsikopoulos, 2008; Ölander and 
Thøgersen, 2014; Ebeling and Lotz, 2015).  
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4.4.3.2	 Strategies and policies to promote actions 
on climate change

Policy can enable and strengthen motivation to act on climate change 
via top-down or bottom-up approaches, through informational 
campaigns, regulatory measures, financial (dis)incentives, and 
infrastructural and technological changes (Adger et al., 2003; Steg and 
Vlek, 2009; Henstra, 2016). 

Adaptation efforts tend to focus on infrastructural and technological 
solutions (Ford and King, 2015) with lower emphasis on socio-cognitive 
and finance aspects of adaptation. For example, flooding policies in 
cities focus on infrastructure projects and regulation such as building 
codes, and hardly target individual or household behaviour (Araos et 
al., 2016b; Georgeson et al., 2016). 

Current mitigation policies emphasize infrastructural and technology 
development, regulation, financial incentives and information 
provision (Mundaca and Markandya, 2016) that can create conditions 
enabling climate action, but target only some of the many factors 
influencing climate actions (see Section 4.4.5.1). They fall short of 
their true potential if their social and psychological implications are 

overlooked (Stern et al., 2016a). For example, promising energy-
saving or low-carbon technology may not be adopted or not be used 
as intended (Pritoni et al., 2015) when people lack resources and 
trustworthy information (Stern, 2011; Balcombe et al., 2013). 

Financial incentives or feedback on financial savings can encourage 
climate action (Santos, 2008; Bolderdijk et al., 2011; Maki et al., 
2016) (see Box 4.5), but are not always effective (Delmas et al., 
2013) and can be less effective than social rewards (Handgraaf et 
al., 2013) or emphasising benefits for people and the environment 
(Bolderdijk et al., 2013b; Asensio and Delmas, 2015; Schwartz et 
al., 2015). The latter can happen when financial incentives reduce 
a focus on environmental considerations and weaken intrinsic 
motivation to engage in climate action (Evans et al., 2012; Agrawal 
et al., 2015; Schwartz et al., 2015). In addition, pursuing small 
financial gains is perceived to be less worth the effort than pursuing 
equivalent CO2 emission reductions (Bolderdijk et al., 2013b; Dogan 
et al., 2014). Also, people may not respond to financial incentives 
(e.g., to improve energy efficiency) because they do not trust the 
organization sponsoring incentive programmes (Mundaca, 2007) or 
when it takes too much effort to receive the incentive (Stern et al., 
2016a). 

Box 4.5 |  How Pricing Policy has Reduced Car Use in Singapore, Stockholm and London

In Singapore, Stockholm and London, car ownership, car use, and GHG emissions have reduced because of pricing and regulatory 
policies and policies facilitating behaviour change. Notably, acceptability of these policies has increased as people experienced their 
positive effects.

Singapore implemented electronic road pricing in the central business district and at major expressways, a vehicle quota and 
registration fee system, and investments in mass transit. In the vehicle quota system introduced in 1990, registration of new vehicles 
is conditional upon a successful bid (via auctioning) (Chu, 2015), costing about 50,000 USD in 2014 (LTA, 2015). The registration 
tax incentivizes purchases of low-emission vehicles via a feebate system. As a result, per capita transport emissions (approximately 
1.25 tCO2yr−1) and car ownership (107 vehicles per 1000 capita) (LTA, 2017) are substantially lower than in cities with comparable 
income levels. Modal share of public transport was 63% during peak hours in 2013 (LTA, 2013).

The Stockholm congestion charge implemented in 2007 (after a trial in 2006) reduced kilometres driven in the inner city by 16%, and 
outside the city by 5%; traffic volumes reduced by 20% and remained constant over time despite economic and population growth 
(Eliasson, 2014). CO2 emissions from traffic reduced by 2–3% in Stockholm county. Vehicles entering or leaving the city centre 
were charged during weekdays (except for holidays). Charges were 1–2€ (maximum 6€ per day), being higher during peak hours; 
taxis, emergency vehicles and buses were exempted. Before introducing the charge, public transport and parking places near mass 
transit stations were extended. The aim and effects of the charge were extensively communicated to the public. Acceptability of the 
congestion charge was initially low, but the scheme gained support of about two-thirds of the population and all political parties 
after it was implemented (Eliasson, 2014), which may be related to the fact that the revenues were earmarked for constructing 
a motorway tunnel. After the trial, people believed that the charge had more positive effects on environmental, congestion and 
parking problems while costs increased less than they anticipated beforehand (Schuitema et al., 2010a). The initially hostile media 
eventually declared the scheme to be a success. 

In 2003, a congestion charge was implemented in the Greater London area, with an enforcement and compliance scheme and an 
information campaign on the functioning of the scheme. Vehicles entering, leaving, driving or parking on a public road in the zone 
at weekdays at daytime pay a congestion charge of 8£ (until 2005, 5£), with some exemptions. Revenues were invested in London’s 
bus network (80%), cycling facilities, and road safety measures (Leape, 2006). The number of cars entering the zone decreased by 
18% in 2003 and 2004. In the charging zone, vehicle kilometres driven decreased by 15% in the first year and a further 6% a year 
later, while CO2 emissions from road traffic reduced by 20% (Santos, 2008).
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While providing information on the causes and consequences of climate 
change or on effective climate actions generally increases knowledge, 
it often does not encourage engagement in climate actions by 
individuals (Abrahamse et al., 2005; Ünal et al., 2017) or organizations 
(Anderson and Newell, 2004). Similarly, media coverage on the UN 
Climate Summit slightly increased knowledge about the conference 
but did not enhance motivation to engage personally in climate 
protection (Brüggemann et al., 2017). Fear-inducing representations of 
climate change may inhibit action when they make people feel helpless 
and overwhelmed (O’Neill and Nicholson-Cole, 2009). Energy-related 
recommendations and feedback (e.g., via performance contracts, 
energy audits, smart metering) are more effective for promoting energy 
conservation, load shifting in electricity use and sustainable travel 
choices when framed in terms of losses rather than gains (Gonzales et 
al., 1988; Wolak, 2011; Bradley et al., 2016; Bager and Mundaca, 2017). 

Credible and targeted information at the point of decision can promote 
climate action (Stern et al., 2016a). For example, communicating the 
impacts of climate change is more effective when provided right 
before adaptation decisions are taken (e.g., before the agricultural 
season) and when bundled with information on potential actions to 
ameliorate impacts, rather than just providing information on climate 
projections with little meaning to end users (e.g., weather forecasts, 
seasonal forecasts, decadal climate trends) (Dorward et al., 2015; 
Singh et al., 2017). Similarly, heat action plans that provide early alerts 
and advisories combined with emergency public health measures can 
reduce heat-related morbidity and mortality (Benmarhnia et al., 2016). 

Information provision is more effective when tailored to the personal 
situation of individuals, demonstrating clear impacts, and resonating 
with individuals’ core values (Daamen et al., 2001; Abrahamse et al., 
2007; Bolderdijk et al., 2013a; Dorward et al., 2015; Singh et al., 2017). 
Tailored information prevents information overload, and people are 
more motivated to consider and act upon information that aligns with 
their core values and beliefs (Campbell and Kay, 2014; Hornsey et al., 
2016). Also, tailored information can remove barriers to receive and 
interpret information faced by vulnerable groups, such as the elderly 
during heatwaves (Vandentorren et al., 2006; Keim, 2008). Further, 
prompts can be effective when they serve as reminders to perform a 
planned action (Osbaldiston and Schott, 2012).

Feedback provision is generally effective in promoting mitigation 
behaviour within households (Abrahamse et al., 2005; Delmas et al., 
2013; Karlin et al., 2015) and at work (Young et al., 2015), particularly 
when provided in real-time or immediately after the action (Abrahamse 
et al., 2005), which makes the implications of one’s behaviour more 
salient (Tiefenbeck et al., 2016). Simple information is more effective 
than detailed and technical data (Wilson and Dowlatabadi, 2007; Ek 
and Söderholm, 2010; Frederiks et al., 2015). Energy labels (Banerjee 
and Solomon, 2003; Stadelmann, 2017), visualization techniques (Pahl 
et al., 2016), and ambient persuasive technology (Midden and Ham, 
2012) can encourage mitigation actions by providing information 
and feedback in a format that immediately makes sense and hardly 
requires users’ conscious attention. 

Social influence approaches that emphasize what other people do or 
think can encourage climate action (Clayton et al., 2015), particularly 

when they involve face-to-face interaction (Abrahamse and Steg, 2013). 
For example, community approaches, where change is initiated from 
the bottom-up, can promote adaptation (see Box 4.6) and mitigation 
actions (Middlemiss, 2011; Seyfang and Haxeltine, 2012; Abrahamse 
and Steg, 2013), especially when community ties are strong (Weenig 
and Midden, 1991). Furthermore, providing social models of desired 
actions can encourage mitigation action (Osbaldiston and Schott, 
2012; Abrahamse and Steg, 2013). Social influence approaches that do 
not involve social interaction, such as social norm, social comparison 
and group feedback, are less effective, but can be easily administered 
on a large scale at low costs (Allcott, 2011; Abrahamse and Steg, 2013). 

Goal setting can promote mitigation action when goals are not set 
too low or too high (Loock et al., 2013). Commitment strategies where 
people make a pledge to engage in climate actions can encourage 
mitigation behaviour (Abrahamse and Steg, 2013; Lokhorst et al., 2013), 
particularly when individuals also indicate how and when they will 
perform the relevant action and anticipate how to cope with possible 
barriers (i.e., implementation intentions) (Bamberg, 2000, 2002). Such 
strategies take advantage of individuals’ desire to be consistent (Steg, 
2016). Similarly, hypocrisy-related strategies that make people aware of 
inconsistencies between their attitudes and behaviour can encourage 
mitigation actions (Osbaldiston and Schott, 2012). 

Actions that reduce climate risks can be rewarded and facilitated, while 
actions that increase climate risks can be punished and inhibited, and 
behaviour change can be voluntary (e.g., information provision) or 
imposed (e.g., by law); voluntary changes that involve rewards are 
more acceptable than imposed changes that restrict choices (Eriksson 
et al., 2006, 2008; Steg et al., 2006; Dietz et al., 2007). Policies punishing 
maladaptive behaviour can increase vulnerability when they reinforce 
socio-economic inequalities that typically produce the maladaptive 
behaviour in the first place (Adger et al., 2003). Change can be initiated 
by governments at various levels, but also by individuals, communities, 
profit-making organizations, trade organizations, and other non-
governmental actors (Lindenberg and Steg, 2013; Robertson and 
Barling, 2015; Stern et al., 2016b). 

Strategies can target intrinsic versus extrinsic motivation. It may be 
particularly important to enhance intrinsic motivation so that people 
voluntarily engage in climate action over and again (Steg, 2016). 
Endorsement of mitigation and adaptation actions are positively 
related (Brügger et al., 2015; Carrico et al., 2015); both are positively 
related to concern about climate change (Brügger et al., 2015). 
Strategies that target general antecedents that affect a wide range 
of actions, such as values, identities, worldviews, climate change 
beliefs, awareness of the climate impacts of one’s actions, and feelings 
of responsibility to act on climate change, can encourage consistent 
actions on climate change (van Der Werff and Steg, 2015; Hornsey 
et al., 2016; Steg, 2016). Initial climate actions can lead to further 
commitment to climate action (Juhl et al., 2017), when people learn 
that such actions are easy and effective (Lauren et al., 2016), when they 
engaged in the initial behaviour for environmental reasons (Peters et 
al., 2018), hold strong pro-environmental values and norms (Thøgersen 
and Ölander, 2003), and when initial actions make them realise they 
are an environmentally sensitive person, motivating them to act on 
climate change in subsequent situations so as to be consistent (van der 
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Werff et al., 2014a; Lacasse, 2015, 2016). Yet some studies suggest that 
people may feel licensed not to engage in further mitigation actions 
when they believe they have already done their part (Truelove et al., 
2014).

4.4.3.3	 Acceptability of policy and system changes

Public acceptability can shape, enable or prevent policy and system 
changes. Acceptability reflects the extent to which policy or system 
changes are evaluated (un)favourably. Acceptability is higher when 
people expect more positive and less negative effects of policy 
and system changes (Perlaviciute and Steg, 2014; Demski et al., 
2015; Drews and Van den Bergh, 2016), including climate impacts 
(Schuitema et al., 2010b). Because of this, policy ‘rewarding’ 
climate actions is more acceptable than policy ‘punishing’ actions 
that increase climate risks (Steg et al., 2006; Eriksson et al., 2008). 
Pricing policy is more acceptable when revenues are earmarked for 
environmental purposes (Steg et al., 2006; Sælen and Kallbekken, 

2011) or redistributed towards those affected (Schuitema and Steg, 
2008). Acceptability can increase when people experience positive 
effects after a policy has been implemented (Schuitema et al., 2010a; 
Eliasson, 2014; Weber, 2015); effective policy trials can thus build 
public support for climate policy (see Box 4.8). 

Climate policy and renewable energy systems are more acceptable 
when people strongly value other people and the environment, or 
support egalitarian worldviews, left-wing or green political ideologies 
(Drews and Van den Bergh, 2016), and less acceptable when people 
strongly endorse self-enhancement values, or support individualistic 
and hierarchical worldviews (Dietz et al., 2007; Perlaviciute and Steg, 
2014; Drews and Van den Bergh, 2016). Solar radiation modification 
is more acceptable when people strongly endorse self-enhancement 
values, and less acceptable when they strongly value other people 
and the environment (Visschers et al., 2017). Climate policy is more 
acceptable when people believe climate change is real, when they 
are concerned about climate change (Hornsey et al., 2016), when 

Box 4.6 |  Bottom-up Initiatives: Adaptation Responses Initiated by Individuals and Communities

To effectively adapt to climate change, bottom-up initiatives by individuals and communities are essential, in addition to efforts 
of governments, organizations, and institutions (Wamsler and Brink, 2014a). This box presents examples of bottom-up adaptation 
responses and behavioural change. 

Fiji increasingly faces a lack of freshwater due to decreasing rainfall and rising temperatures (Deo, 2011; IPCC, 2014a). While 
some villages have access to boreholes, these are not sufficient to supply the population with freshwater. Villagers are adapting 
by rationing water, changing diets, and setting up inter-village sharing networks (Pearce et al., 2017). Some villagers take up wage 
employment to buy food instead of growing it themselves (Pearce et al., 2017). In Kiribati, residents adapt to drought by purchasing 
rainwater tanks and constructing additional wells (Kuruppu and Liverman, 2011). An important factor that motivated residents of 
Kiribati to adapt to drought was the perception that they could effectively adapt to the negative consequences of climate change 
(Kuruppu and Liverman, 2011). 

In the Philippines, seismic activity has caused some islands to flood during high tide. While the municipal government offered affected 
island communities the possibility to relocate to the mainland, residents preferred to stay and implement measures themselves in 
their local community to reduce flood damage (Laurice Jamero et al., 2017). Migration is perceived as undesirable because island 
communities have strong place-based identities (Mortreux and Barnett, 2009). Instead, these island communities have adapted to 
flooding by constructing stilted houses and raising floors, furniture, and roads to prevent water damage (Laurice Jamero et al., 2017). 
While inundation was in this case caused by seismic activity, this example indicates how island-based communities may respond to 
rising sea levels caused by climate change. 

Adaptation initiatives by individuals may temporarily reduce the impacts of climate change and enable residents to cope with 
changing environmental circumstances. However, they may not be sufficient to sustain communities’ way of life in the long term. For 
instance, in Fiji and Kiribati, freshwater and food are projected to become even scarcer in the future, rendering individual adaptations 
ineffective. Moreover, individuals can sometimes engage in behaviour that may be maladaptive over larger spatio-temporal scales. 
For example, in the Philippines, many islanders adapt to flooding by elevating their floors using coral stone (Laurice Jamero et 
al., 2017). Over time, this can harm the survivability of their community, as coral reefs are critical for reducing flood vulnerability 
(Ferrario et al., 2014). In Maharashtra, India, on-farm ponds are promoted as rainwater harvesting structures to adapt to dry spells 
during the monsoon season. However, some individuals fill these ponds with groundwater, leading to depletion of water tables and 
potentially maladaptive outcomes in the long run (Kale, 2015).  

Integration of individuals’ adaptation initiatives with top-down adaptation policy is critical (Butler et al., 2015), as failing to do so 
may lead individual actors to mistrust authority and can discourage them from undertaking adequate adaptive actions (Wamsler 
and Brink, 2014a). 
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they think their actions may reduce climate risks, and when they feel 
responsible to act on climate change (Steg et al., 2005; Eriksson et 
al., 2006; Jakovcevic and Steg, 2013; Drews and Van den Bergh, 2016; 
Kim and Shin, 2017). Stronger environmental awareness is associated 
with a preference for governmental regulation and behaviour change 
rather than free-market and technological solutions (Poortinga et al., 
2002). 

Climate policy is more acceptable when costs and benefits are 
distributed equally, when nature and future generations are 
protected (Sjöberg and Drottz-Sjöberg, 2001; Schuitema et al., 2011; 
Drews and Van den Bergh, 2016), and when fair procedures have 
been followed, including participation by the public (Dietz, 2013; 
Bernauer et al., 2016a; Bidwell, 2016) or public society organizations 
(Bernauer and Gampfer, 2013). Providing benefits to compensate 
affected communities for losses due to policy or systems changes 
enhanced public acceptability in some cases (Perlaviciute and Steg, 
2014), although people may disagree on what would be a worthwhile 
compensation (Aitken, 2010; Cass et al., 2010), or feel they are being 
bribed (Cass et al., 2010; Perlaviciute and Steg, 2014). 

Public support is higher when individuals trust responsible parties 
(Perlaviciute and Steg, 2014; Drews and Van den Bergh, 2016). Yet, 
public support for multilateral climate policy is not higher than for 
unilateral policy (Bernauer and Gampfer, 2015); public support for 
unilateral, non-reciprocal climate policy is rather strong and robust 
(Bernauer et al., 2016b). Public opposition may result from a culturally 
valued landscape being affected by adaptation or mitigation options, 
such as renewable energy development (Warren et al., 2005; Devine-
wright and Howes, 2010) or coastal protection measures (Kimura, 
2016), particularly when people have formed strong emotional bonds 
with the place (Devine-Wright, 2009, 2013). 

Climate actions may reduce human well-being when such actions 
involve more costs, effort or discomfort. Yet some climate actions 
enhance well-being, such as technology that improves daily comfort 
and nature-based solutions for climate adaptation (Wamsler and Brink, 
2014b). Further, climate action may enhance well-being (Kasser and 
Sheldon, 2002; Xiao et al., 2011; Schmitt et al., 2018) because pursuing 
meaning by acting on climate change can make people feel good 
(Venhoeven et al., 2013, 2016; Taufik et al., 2015), more so than merely 
pursuing pleasure.

4.4.4	 Enabling Technological Innovation

This section focuses on the role of technological innovation in limiting 
warming to 1.5°C, and how innovation can contribute to strengthening 
implementation to move towards or to adapt to 1.5°C worlds. This 
assessment builds on information of technological innovation and 
related policy debates in and after AR5 (Somanathan et al., 2014). 

4.4.4.1	 The nature of technological innovations

Technological systems have their own dynamics. New technologies 
have been described as emerging as part of a ‘socio-technical system’ 
that is integrated with social structures and that itself evolves over time 
(Geels and Schot, 2007). This progress is cumulative and accelerating 

(Kauffman, 2002; Arthur, 2009). To illustrate such a process of 
co-evolution: the progress of computer simulation enables us to better 
understand climate, agriculture, and material sciences, contributing 
to upgrading food production and quality, microscale manufacturing 
techniques, and leading to much faster computing technologies, 
resulting, for instance, in better performing photovoltaic (PV) cells. 

A variety of technological developments have and will contribute to 
1.5°C-consistent climate action or the lack of it. They can do this, for 
example, in the form of applications such as smart lighting systems, 
more efficient drilling techniques that make fossil fuels cheaper, or 
precision agriculture. As discussed in Section 4.3.1, costs of PV (IEA, 
2017f) and batteries (Nykvist and Nilsson, 2015) have sharply dropped. 
In addition, costs of fuel cells (Iguma and Kidoshi, 2015; Wei et al., 2017) 
and shale gas and oil (Wang et al., 2014; Mills, 2015) have come down 
as a consequence of innovation. 

4.4.4.2	 Technologies as enablers of climate action

Since AR5, literature has emerged as to how much future GHG emission 
reductions can be enabled by the rapid progress of general purpose 
technologies (GPTs), consisting of information and communication 
technologies (ICT), including artificial intelligence (AI) and the internet 
of things (IoT), nanotechnologies, biotechnologies, robotics, and so forth 
(WEF, 2015; OECD, 2017c). Although these may contribute to limiting 
warming to 1.5°C, the potential environmental, social and economic 
impacts of new technologies are uncertain. 

Rapid improvement of performance and cost reduction is observed 
for many GPTs. They include AI, sensors, internet, memory storage 
and microelectromechanical systems. The latter GPTs are not usually 
categorized as climate technologies, but they can impact GHG emissions. 

Progress of GPT could help reduce GHG emissions more cost-
effectively. Examples are shown in Table 4.9. It may however, result in 
more emissions by increasing the volume of economic activities, with 
unintended negative consequence on sustainable development. While 
ICT increases electricity consumption (Aebischer and Hilty, 2015), the 
energy consumption of ICT is usually dwarfed by the energy saving by 
ICT (Koomey et al., 2013; Malmodin et al., 2014), but rebound effects 
and other sustainable development impacts may be significant. An 
appropriate policy framework that accommodates such impacts and 
their uncertainties could address the potential negative impacts by GPT 
(Jasanoff, 2007).

GHG emission reduction potentials in relation to GPTs were estimated 
for passenger cars using a combination of three emerging technologies: 
electric vehicles, car sharing, and self-driving. GHG emission reduction 
potential is reported, assuming generation of electricity with low GHG 
emissions (Greenblatt and Saxena, 2015; ITF, 2015; Viegas et al., 2016; 
Fulton et al., 2017). It is also possible that GHG emissions increase due 
to an incentive to car use. Appropriate policies such as urban planning 
and efficiency regulations could contain such rebound effects (Wadud 
et al., 2016). 

Estimating emission reductions by GPT is difficult due to substantial 
uncertainties, including projections of future technological performance, 
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4 costs, penetration rates, and induced human activity. Even if a 
technology is available, the establishment of business models might 
not be feasible (Linder and Williander, 2017). Indeed, studies show a 
wide range of estimates, ranging from deep emission reductions to 
possible increases in emissions due to the rebound effect (Larson and 
Zhao, 2017). 

GPT could also enable climate adaptation, in particular through more 
effective climate disaster risk management and improved weather 
forecasting.

Sector Examples of Mitigation/Adaptation Technological Innovation Enabling GPT

Buildings
Energy and CO2 efficiency of logistics, warehouse and shops (GeSI, 2015; IEA, 2017a) IoT, AI

Smart lighting and air conditioning (IEA, 2016b, 2017a) IoT, AI

Industry

Energy efficiency improvement by industrial process optimization (IEA, 2017a) Robots, IoT

Bio-based plastic production by biorefinery (OECD, 2017c) Biotechnology

New materials from biorefineries (Fornell et al., 2013; McKay et al., 2016) ICT, biotechnology

Transport

Electric vehicles, car sharing, automation (Greenblatt and Saxena, 2015; Fulton et al., 2017) Biotechnology

Bio-based diesel fuel by biorefinery (OECD, 2017c) ICT, biotechnology

Second generation bioethanol potentially coupled to carbon capture systems (De Souza et al., 2014; Rochedo et al., 2016) Biotechnology

Logistical optimization, and electrification of trucks by overhead line (IEA, 2017e) ICT, biotechnology

Reduction of transport needs by remote education, health and other services (GeSI, 2015; IEA, 2017a) Biotechnology

Energy saving by lightweight aircraft components (Beyer, 2014; Faludi et al., 2015; Verhoef et al., 2018)
Additive manufacturing 

(3D printing)

Electricity

Solar PV manufacturing (Nemet, 2014) Nanotechnology

Smart grids and grid flexibility to accommodate intermittent renewables (Heard et al., 2017) IoT, AI

Plasma confinement for nuclear fusion (Baltz et al., 2017) AI

Agriculture

Precision agriculture (improvement of energy and resource efficiency including reduction of fertilizer use and N2O emissions) 
(Pierpaoli et al., 2013; Brown et al., 2016; Schimmelpfennig and Ebel, 2016)

Biotechnology ICT, AI

Methane inhibitors (and methane-suppressing vaccines) that reduce livestock emissions from enteric fermentation (Wedlock et al. 
2013; Hristov et al. 2015; Wollenberg et al. 2016)

Biotechnology

Engineering C3 into C4 photosynthesis to improve agricultural production and productivity (Schuler et al., 2016) Biotechnology

Genome editing using CRISPR to improve/adapt crops to a changing climate (Gao, 2018) Biotechnology

Disaster Reduction 
and Adaptation

Weather forecasting and early warning systems, in combination with user knowledge (Hewitt et al., 2012; Lourenço et al., 2016) ICT

Climate risk reduction (Upadhyay and Bijalwan, 2015) ICT

Rapid assessment of disaster damage (Kryvasheyeu et al., 2016) ICT

Table 4.9  |	 Examples of technological innovations relevant to 1.5°C enabled by general purpose technologies (GPT). Note: lists of enabling GPT or adaptation/mitigation  
	 options are not exhaustive, and the GPTs by themselves do not reduce emissions or increase climate change resilience.

Government policy usually plays a role in promoting or limiting 
GPTs, or science and technology in general. It has impacts on climate 
action, because the performance of further climate technologies 
will partly depend on the progress of GPTs. Governments have 
established institutions for achieving many social, and sometimes 
conflicting goals, including economic growth and addressing climate 
change (OECD, 2017c), which include investment in basic research 
and development (R&D) that can help develop game-changing 
technologies (Shayegh et al., 2017). Governments are also needed 
to create an enabling environment for the growth of scientific and 
technological ecosystems necessary for GPT development (Tassey, 
2014).

4.4.4.3	 The role of government in 1.5°C-consistent 
climate technology policy

While literature on 1.5°C-specific innovation policy is absent, a growing 
body of literature indicates that governments aim to achieve social, 
economic and environmental goals by promoting science and a broad 
range of technologies through ‘mission-driven’ innovation policies, 
based on differentiated national priorities (Edler and Fagerberg, 
2017). Governments can play a role in advancing climate technology 
via a ‘technology push’ policy on the technology supply side (e.g., 
R&D subsidies), and by ‘demand pull’ policy on the demand side (e.g., 
energy-efficiency regulation), and these policies can be complemented 
by enabling environments (Somanathan et al., 2014). Governments may 
also play a role in removing existent support for incumbents (Kivimaa 
and Kern, 2016). A growing literature indicates that policy mixes, rather 
than single policy instruments, are more effective in addressing climate 
innovation challenges ranging from technologies in the R&D phase to 
those ready for diffusion (Veugelers, 2012; Quitzow, 2015; Rogge et al., 
2017; Rosenow et al., 2017). Such innovation policies can help address 
two kinds of externalities: environmental externalities and proprietary 
problems (GEA, 2012; IPCC, 2014b; Mazzucato and Semieniuk, 2017). To 
avoid ‘picking winners’, governments often maintain a broad portfolio 
of technological options (Kverndokk and Rosendahl, 2007) and work in 
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close collaboration with the industrial sector and society in general. Some 
governments have achieved relative success in supporting innovation 
policies (Grubler et al., 2012; Mazzucato, 2013) that addressed climate-
related R&D (see Box 4.7 on bioethanol in Brazil). 

Box 4.7 |  Bioethanol in Brazil: Innovation and Lessons for Technology Transfer

The use of sugarcane as a bioenergy source started in Brazil in the 1970s. Government and multinational car factories modified 
car engines nationwide so that vehicles running only on ethanol could be produced. As demand grew, production and distribution 
systems matured and costs came down (Soccol et al., 2010). After a transition period in which both ethanol-only and gasoline-only 
cars were used, the flex-fuel era started in 2003, when all gasoline was blended with 25% ethanol (de Freitas and Kaneko, 2011). By 
2010, around 80% of the car fleet in Brazil had been converted to use flex-fuel (Goldemberg, 2011; Su et al., 2015). 

More than forty years of combining technology push and market pull measures led to the deployment of ethanol production, 
transportation and distribution systems across Brazil, leading to a significant decrease in CO2 emissions (Macedo et al., 2008). 
Examples of innovations include: (i) the development of environmentally well-adapted varieties of sugarcane; (ii) the development 
and scaling up of sugar fermentation in a non-sterile environment, and (iii) the development of adaptations of car engines to use 
ethanol as a fuel in isolation or in combination with gasoline (Amorim et al., 2011; de Freitas and Kaneko, 2011; De Souza et al., 
2014). Public procurement, public investment in R&D and mandated fuel blends accompanying these innovations were also crucial 
(Hogarth, 2017). In the future, innovation could lead to viable partial CO2 removal through deployment of BECCS associated with 
the bioethanol refineries (Fuss et al., 2014; Rochedo et al., 2016) (see Section 4.3.7).

Ethanol appears to reduce urban car emission of health-affecting ultrafine particles by 30% compared to gasoline-based cars, 
but increases ozone (Salvo et al., 2017). During the 1990s, when sugarcane burning was still prevalent, particulate pollution had 
negative consequences for human health and the environment (Ribeiro, 2008; Paraiso and Gouveia, 2015). While Jaiswal et al. 
(2017) report bioethanol’s limited impact on food production and forests in Brazil, despite the large scale, and attribute this to 
specific agro-ecological zoning legislation, various studies report adverse effects of bioenergy production through forest substitution 
by croplands (Searchinger et al., 2008), as well as impacts on biodiversity, water resources and food security (Rathore et al., 2016). 
For new generation biofuels, feasibility and life cycle assessment studies can provide information on their impacts on environmental, 
economic and social factors (Rathore et al., 2016).

Brazil and the European Union have tried to replicate Brazil’s bioethanol experience in climatically suitable African countries. 
Although such technology transfer achieved relative success in Angola and Sudan, the attempts to set up bioethanol value chains 
did not pass the phase of political deliberations and feasibility studies elsewhere in Africa. Lessons learned include the need for 
political and economic stability of the donor country (Brazil) and the necessity for market creation to attract investments in first-
generation biofuels alongside a safe legal and policy environment for improved technologies (Afionis et al., 2014; Favretto et al., 
2017). 

Funding for R&D could come from various sources, including the general 
budget, energy or resource taxation, or emission trading schemes (see 
Section 4.4.5). Investing in climate-related R&D has as an additional 
benefit of building capabilities to implement climate mitigation and 
adaptation technologies (Ockwell et al., 2015). Countries regard 
innovation in general and climate technology specifically as a national 
interests issue and addressing climate change primarily as being in 
the global interest. Reframing part of climate policy as technology or 
industrial policy might therefore contribute to resolving the difficulties 
that continue to plague emission target negotiations  (Faehn and 
Isaksen, 2016; Fischer et al., 2017; Lachapelle et al., 2017). 

Climate technology transfer to emerging economies has happened 
regardless of international treaties, as these countries have been keen 
to acquire them, and companies have an incentive to access emerging 
markets to remain competitive (Glachant and Dechezleprêtre, 2016). 

However, the complexity of these transfer processes is high, and 
they have to be conducted carefully by governments and institutions 
(Favretto et al., 2017). It is noticeable that the impact of the EU emission 
trading scheme (EU ETS) on innovation is contested; recent work 
(based on lower carbon prices than anticipated for 1.5°C-consistent 
pathways) indicates that it is limited (Calel and Dechezleprêtre, 2016), 
but earlier assessments (Blanco et al., 2014) indicate otherwise. 

4.4.4.4	 Technology transfer in the Paris Agreement

Technology development and transfer is recognized as an enabler of both 
mitigation and adaptation in Article 10 in the Paris Agreement (UNFCCC, 
2016) as well as in Article 4.5 of the original text of the UNFCCC (UNFCCC, 
1992). As previous sections have focused on technology development 
and diffusion, this section focuses on technology transfer. Technology 
transfer can adapt technologies to local circumstances, reduce financing 
costs, develop indigenous technology, and build capabilities to operate, 
maintain, adapt and innovate on technology globally (Ockwell et al., 
2015; de Coninck and Sagar, 2017). Technology cooperation could 
decrease global mitigation cost, and enhance developing countries’ 
mitigation contributions (Huang et al., 2017a). 
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The international institutional landscape around technology 
development and transfer includes the UNFCCC (via its technology 
framework and Technology Mechanism including the Climate 
Technology Centre and Network (CTCN)), the United Nations (a 
technology facilitation mechanism for the SDGs) and a variety of 
non-UN multilateral and bilateral cooperation initiatives such as the 
Consultative Group on International Agricultural Research (CGIAR, 
founded in the 1970s), and numerous initiatives of companies, 
foundations, governments and non-governmental and academic 
organizations. Moreover, in 2015, twenty countries launched an 
initiative called ‘Mission Innovation’, seeking to double their energy 
R&D funding. At this point it is difficult to evaluate whether Mission 
Innovation achieved its objective (Sanchez and Sivaram, 2017). At 
the same time, the private sector started an innovation initiative 
called the ‘Breakthrough Energy Coalition’. 

Most technology transfer is driven by through markets by the 
interests of technology seekers and technology holders, particularly 
in regions with well-developed institutional and technological 
capabilities such as developed and emerging nations (Glachant and 
Dechezleprêtre, 2016). However, the current international technology 
transfer landscape has gaps, in particular in reaching out to least-
developed countries, where institutional and technology capabilities 
are limited (de Coninck and Puig, 2015; Ockwell and Byrne, 2016). 
On the one hand, literature suggests that the management or even 
monitoring of all these UN, bilateral, private and public initiatives 
may fail to lead to better results. On the other hand, it is probably 
more cost-effective to adopt a strategy of ‘letting a thousand flowers 
bloom’, by challenging and enticing researchers in the public and 
the private sector to direct innovation towards low-emission and 
adaptation options (Haselip et al., 2015). This can be done at the 
same time as mission-oriented research is adopted in parallel by the 
scientific community (Mazzucato, 2018).

At COP 21, the UNFCCC requested the Subsidiary Body for Scientific 
and Technological Advice (SBSTA) to initiate the elaboration of 
the technology framework established under the Paris Agreement 
(UNFCCC, 2016). Among other things, the technology framework 
would ‘provide overarching guidance for the work of the Technology 
Mechanism in promoting and facilitating enhanced action on 
technology development and transfer in order to support the 
implementation of this Agreement’ (this Agreement being the 
Paris Agreement). An enhanced guidance issued by the Technology 
Executive Committee (TEC) for preparing a technology action plan 
(TAP) supports the new technology framework as well as the Parties’ 
long-term vision on technology development and transfer, reflected 
in the Paris Agreement (TEC, 2016). 

4.4.5	 Strengthening Policy Instruments and Enabling 
Climate Finance

Triggering rapid and far-reaching change in technical choices and 
institutional arrangements, consumption and lifestyles, infrastructure, 
land use, and spatial patterns implies the ability to scale up policy signals 
to enable the decoupling of GHGs emission, and economic growth and 
development (Section 4.2.2.3). Such a scale-up would also imply that 
potential short-term negative responses by populations and interest 
groups, which could block these changes from the outset, would need 
to be prevented or overcome. This section describes the size and nature 
of investment needs and the financial challenge over the coming two 
decades in the context of 1.5°C warmer worlds, assesses the potential 
and constraints of three categories of policy instruments that respond to 
the challenge, and explains the conditions for using them synergistically. 
The policy and finance instruments discussed in this section relate to 
Section 4.4.1 (on governance) and other Sections in 4.4.

4.4.5.1	 The core challenge: cost-efficiency, coordination 
of expectations and distributive effects

Box 4.8 shows that the average estimate by seven models of annual 
investment needs in the energy system is around 2.38 trillion USD2010 
(1.38 to 3.25) between 2016 and 2035. This represents between 2.53% 
(1.6–4%) of the world GDP in market exchange rates (MER) and 1.7% 
of the world GDP in purchasing power parity (PPP). OECD investment 
assessments for a 2°C-consistent transition suggest that including 
investments in transportation and in other infrastructure would increase 
the investment needs by a factor of three. Other studies not included in 
Box 4.8, in particular by the World Economic Forum (WEF, 2013) and the 
Global Commission on the Economy and Climate (GCEC, 2014) confirm 
these orders of magnitude of investment.

The average increase of investment in the energy sector resulting from 
Box 4.8 represents a mean value of 1.5% of the total world investment 
compared with the baselines scenario in MER and a little over 1% in 
PPP. Including infrastructure investments would raise this to 2.5% and 
1.7% respectively.9 

These incremental investments could be funded through a drain on 
consumption (Bowen et al., 2017), which would necessitate between 
0.68% and 0.45% lower global consumption than in the baseline. But, 
consumption at a constant savings/consumption ratio can alternatively 
be funded by shifting savings towards productive adaptation and 
mitigation investments, instead of real-estate sector and liquid financial 
products. This response depends upon whether it is possible to close the 
global investment funding gap for infrastructure that potentially inhibits 
growth, through structural changes in the global economy. In this case, 
investing more in infrastructure would not be an incremental cost in 
terms of development and welfare (IMF, 2014; Gurara et al., 2017)

9	 A calculation in MER tends indeed to underestimate the world GDP and its growth by giving a lower weight to fast-growing developing countries, whereas a calculation 
in PPP tends to overestimate it. The difference between the value of two currencies in PPP and MER should vanish as the gap of the income levels of the two concerned 
countries decreases. Accounting for this trend in modelling is challenging.
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Box 4.8 |  Investment Needs and the Financial Challenge of Limiting Warming to 1.5°C 

Peer-reviewed literature that estimates the investment needs over the next two decades to scale up the response to limit warming 
to 1.5°C is very limited (see Section 4.6). This box attempts to bring together available estimates of the order of magnitude of 
these investments, after consultation with the makers of those estimates, to provide the context for global and national financial 
mobilization policy and related institutional arrangements.

Table 1 in this box presents mean annual investments up to 2035, based on three studies (after clarifying their scope and harmonizing 
their metrics): an ensemble of four integrated assessment models (here denoted IAM, see Chapter 2), an Organization for Economic 
Co-operation and Development (OECD) scenario for a 2°C limit (OECD, 2017a) and scenarios from the International Energy Agency 
(IEA, 2016c). All three sources provide estimates for the energy sector for various mitigation scenarios. They give a mean value 
of 2.38 trillion USD of yearly investments in the energy sector over the period, with minimum and maximum values of 1.38 and 
3.25 respectively. We also report the OECD estimate for 2°C because it also covers transportation and other infrastructure (water, 
sanitation, and telecommunication), which are essential to deliver the Sustainable Development Goals (SDGs), including SDG 7 on 
clean energy access, and enhance the adaptive capacity to climate change.

The mean incremental share of annual energy investments to stay well below 2°C is 0.36% (between 0.2–1%) of global GDP 
between 2016 and 2035. Since total world investment (also called gross fixed capital formation (GFCF)) is about 24% of global 
GDP, the estimated incremental energy investments between a baseline and a 1.5°C transition would be approximately 1.5% 
(between 0.8–4.2%) of projected total world investments. As the higher ends of these ranges reflect pessimistic assumptions 
in 1.5°C-consistent pathways  on technological change, the implementation of policies to accelerate technical change (see the 
remainder of Section 4.4.5) could lower the probability of higher incremental investment. 

If we assume the amounts of investments given by the OECD for transportation and other infrastructure for warming of 2°C to be 
a lower limit for an 1.5°C pathway, then total incremental investments for all sectors for a 1.5°C-consistent pathway would be 
estimated at 2.4% of total world investments. This total incremental investment reaches 2.53% if the investments in transportation 
are scaled up proportionally with the investments in the energy sector and if all other investments are kept constant. Comparing this 
2.4% or 2.53% number for all sectors to the 1.5% number for energy only (see previous paragraph) suggests that the investments in 
sectors other than energy contribute significantly to incremental world investments, even though a comprehensive study or estimate 
of these investments for a 1.5°C limit is not available.

The issue, from a macroeconomic perspective, is whether these investments would be funded by higher savings at the costs of lower 
consumption. This would mean a 0.5% reduction in consumption for the energy sector for 1.5°C. Note that for a 2°C scenario, this 

Energy 
Investments

Of which 
Demand Side

Transport Other Infra-
structures

Total Ratio to 
MER GDP

IAM Baseline (mean) 1.96 0.24 1.96 1.8%

IAM NDC (mean) 2.04 0.28 2.04 1.9%

IAM 2°C (mean) 2.19 0.38 2.19 2.1%

IAM 1.5°C (mean) 2.32 0.45 2.32 2.2%

IEA NDC 2.40 0.72 2.40 2.3%

IEA 1.5°C 2.76 1.13 2.76 2.7%

Mean IAM-IEA, 1.5°C 2.38 0.54 2.38 2.53%

Min IAM-IEA, 1.5°C 1.38 0.38 1.38 1.6%

Max IAM-IEA, 1.5°C 3.25 1.13 3.25 4.0%

OECD Baseline 5.74 5.4%

OECD 2°C 2.13 0.40 2.73 1.52 6.38 6.0%

Box 4.8, Table 1 |	 Estimated annualized world mitigation investment needed to limit global warming to 2°C or 1.5°C (2015–2035 in trillions of USD at market  
	 exchange rates) from different sources. The top four lines indicate the results of Integrated Assessment Models (IAMs) as reported in Chapter 2 
	 for their Baseline, Nationally Determined Contributions (NDC), 2°C- and 1.5°C-consistent pathways. These numbers only cover the energy  
	 sector and the second row includes energy efficiency in all sectors. The final two rows indicate the mitigation investment needs for the energy,  
	 transport and other infrastructure according to the Organization for Economic Co-operation and Development (OECD) for a Baseline pathway  
	 and a 2°C-consistent pathway. Sources: IEA, 2016c; OECD, 2017a.
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reduction would be 0.8% if we account for the investment needs of all infrastructure sectors. Assuming conversely a constant 
savings ratio, this would necessitate reallocating existing capital flows towards infrastructure. In addition to these incremental 
investments, the amount of redirected investments is relevant from a financial perspective. In the reported IAM energy sector 
scenarios, about three times the incremental investments is redirected. There is no such assessment for the other sectors. The OECD 
report suggests that these ratios might be higher.

These orders of magnitude of investment can be compared to the available statistics of the global stock of 386 trillion USD of 
financial capital, which consists of 100 trillion USD in bonds (SIFMA, 2017), around 60 trillion USD in equity (World Bank, 2018b), 
and 226 trillion USD of loans managed by the banking system (IIF, 2017; World Bank, 2018a). The long-term rate of return (interest 
plus increase of shareholder value) is about 3% on bonds, 5% on bank lending and 7% on equity, leading to a weighted mean return 
on capital of 3.4% in real terms (5.4% in nominal terms). Using 3.4% as a lower bound and 5% as a higher bound (following Piketty, 
2014) and taking a conservative assumption that global financial capital grows at the same rate as global GDP, the estimated yearly 
financial capital revenues would be between 16.8 and 25.4 trillion USD.

Assuming that a quarter of these investments comes from public funds (as estimated by the World Bank; World Bank, 2018a), the 
amount of private resources needed to enable an energy sector transition is between 3.3% and 5.3% of annual capital income and 
between 5.6% and 8.3% of these revenues for all infrastructure to meet the 2°C limit and the SDGs.

Since the financial system has limited fungibility across budget lines, changing the partitioning of investments is not a zero-sum 
game. An effective policy regime could encourage investment managers to change their asset allocation. Part of the challenge may 
lie in increasing the pace of financing of low-emission assets to compensate for a possible 38% decrease, by 2035, in the value of 
fossil fuel assets (energy sector and indirect holdings in downstream uses like automobiles) (Mercure et al., 2018).

Box 4.8 (continued)

Investments in other (non-energy system) infrastructure to meet 
development and poverty-reduction goals can strengthen the adaptive 
capacity to address climate change, and are difficult to separate from 
overall sustainable development and poverty-alleviation investments 
(Hallegatte and Rozenberg, 2017). The magnitude of potential climate 
change damages is related to pre-existing fragility of impacted 
societies (Hallegatte et al., 2007). Enhancing infrastructure and service 
provision would lower this fragility, for example, through the provision 
of universal (water, sanitation, telecommunication) service access 
(Arezki et al., 2016). 

The main challenge is thus not just a lack of mobilization of aggregate 
resources but of redirection of savings towards infrastructure, and 
the further redirection of these infrastructure investments towards 
low-emission options. If emission-free assets emerge fast enough to 
compensate for the devaluation of high-emission assets, the sum of 
the required incremental and redirected investments in the energy 
sector would (up to 2035) be equivalent to between 3.3% and 5.3% 
of the average annual revenues of the private capital stock (see Box 
4.8) and to between 5.6% and 8.3%, including all infrastructure 
investments.

The interplay between mechanisms of financial intermediation 
and the private risk-return calculus is a major barrier to realizing 
these investments (Sirkis et al., 2015). This obstacle is not specific to 
climate mitigation investments but also affects infrastructure and 
has been characterised as the gap between the ‘propensity to save’ 
and the ‘propensity to invest’ (Summers, 2016). The issue is whether 
new financial instruments could close this gap and inject liquidity 
into the low-emission transition, thereby unlocking new economic 

opportunities (GCEC, 2014; NCE, 2016). By offsetting the crowding-out 
of other private and public investments (Pollitt and Mercure, 2017), the 
ensuing  ripple effect could reinforce growth and the sustainability of 
development (King, 2011; Teulings and Baldwin, 2014) and potentially 
trigger a new growth cycle (Stern, 2013, 2015). In this case, a massive 
mobilization of low-emission investments would require a significant 
effort but may be complementary to sustainable development 
investments.  

This uncertain but potentially positive outcome might be constrained 
by the higher energy costs of low-emission options in the energy and 
transportation sectors. The envelope of worldwide marginal abatement 
costs for 1.5°C-consistent pathways reported in Chapter 2 is 135–5500 
USD2010 tCO2

−1 in 2030 and 245–13000 USD2010 tCO2
−1 in 2050, 

which is between three to four times higher than for a 2°C limit.

These figures are consistent with the dramatic reduction in the unit 
costs of some low-emission technical options (for example solar 
PV, LED lighting) over the past decade (see Section 4.3.1) (OECD, 
2017c). Yet there are multiple constraints to a system-wide energy 
transition. Lower costs of some supply- and demand-side options do 
not always result in a proportional decrease in energy system costs. 
The adoption of alternative options can be slowed down by increasing 
costs of decommissioning existing infrastructure, the inertia of market 
structures, cultural habits and risk-adverse user behaviour (see Sections 
4.4.1 to 4.4.3). Learning-by-doing processes and R&D can accelerate 
the cost-efficiency of low-emission technology but often imply higher 
early-phase costs. The German energy transition resulted in high 
consumer prices for electricity in Germany (Kreuz and Müsgens, 2017) 
and needed strong accompanying measures to succeed. 
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One key issue is that energy costs can propagate across sectors and 
amplify overall production costs. During the early stage of a low-
emission transition, an increase in the prices of non-energy goods could 
reduce consumer purchasing power and final demand. A rise in energy 
prices has a proportionally greater impact in developing countries 
that are in a catch-up phase, as they have a stronger dependence on 
energy-intensive sectors (Crassous et al., 2006; Luderer et al., 2012) 
and a higher ratio of energy to labour cost (Waisman et al., 2012). This 
explains why with lower carbon prices, similar emission reductions are 
reached in South Africa (Altieri et al., 2016) and Brazil (La Rovere et al., 
2017a) compared to developed countries. However, three distributional 
issues emerge. 

First, in the absence of countervailing policies, higher energy costs 
have an adverse effect on the distribution of welfare (see also 
Chapter 5). The negative impact is inversely correlated with the 
level of income (Harberger, 1984; Fleurbaey and Hammond, 2004) 
and positively correlated with the share of energy in the households 
budget, which is high for low- and middle-income households 
(Proost and Van Regemorter, 1995; Barker and Kohler, 1998; West 
and Williams, 2004; Chiroleu-Assouline and Fodha, 2011). Moreover, 
climatic conditions and the geographical conditions of human 
settlements matter for heating and mobility needs (see Chapter 5). 
Medium-income populations in the suburbs, in remote areas, and in 
low-density regions can be as vulnerable as residents of low-income 
urban areas. Poor households with low levels of energy consumption 
are also impacted by price increases of non-energy goods caused by 
the propagation of energy costs (Combet et al., 2010; Dubois, 2012). 
These impacts are generally not offset by non-market co-benefits of 
climate policies for the poor (Baumgärtner et al., 2017).

A second matter of concern is the distortion of international competition 
and employment implications in the case of uneven carbon constraints, 
especially for energy-intensive industries (Demailly and Quirion, 2008). 
Some of these industries are not highly exposed to international 
competition because of their very high transportation costs per unit 
value added (Sartor, 2013; Branger et al., 2016), but other industries 
could suffer severe shocks, generate ‘carbon leakage’ through cheaper 
imports from countries with lower carbon constraints (Branger and 
Quirion, 2014), and weaken the surrounding regional industrial fabric 
with economy-wide and employment implications.

A third challenge is the depreciation of assets whose value is based on 
the valuation of fossil energy resources, of which future revenues may 
decline precipitously with higher carbon prices (Waisman et al., 2013; 
Jakob and Hilaire, 2015; McGlade and Ekins, 2015), and on emission-
intensive capital stocks (Guivarch and Hallegatte, 2011; OECD, 2015a; 
Pfeiffer et al., 2016). This raises issues of changes in industrial structure, 
adaptation of worker skills, and of stability of financial, insurance and 
social security systems. These systems are in part based on current 
holdings of carbon-based assets whose value might decrease by about 
38% by the mid-2030s (Mercure et al., 2018). This stranded asset 
challenge may be exacerbated by a decline of export revenues of fossil 
fuel producing countries and regions (Waisman et al., 2013; Jakob and 
Hilaire, 2015; McGlade and Ekins, 2015).

These distributional issues, if addressed carefully and expeditiously, could 
affect popular sensitivity towards climate policies. Addressing them 
could mitigate adverse macroeconomic effects on economic growth and 
employment that could undermine the potential benefits of a redirection 
of savings and investments towards 1.5°C-consistent pathways.

Strengthening policy instruments for a low-emission transition would 
thus need to reconcile three objectives: (i) handling the short-term 
frictions inherent to this transition in an equitable way, (ii) minimizing 
these frictions by lowering the cost of avoided GHGs emissions, and (iii) 
coordinating expectations of multiple stakeholders at various decision-
making levels to accelerate the decline in costs of emission reduction, 
efficiency and decoupling options and maximizing their co-benefits 
(see the practical example of lowering car use in cities in Box 4.9).

Three categories of policy tools would be available to meet the 
distributional challenges: carbon pricing, regulatory instruments and 
information and financial tools. Each of them has its own strengths 
and weaknesses, from a 1.5°C perspective, policy tools would have to 
be both scaled up and better coordinated in packages in a synergistic 
manner.

4.4.5.2	 Carbon pricing: necessity and constraints

Economic literature has long argued that climate and energy policy 
grounded only in regulation, standards and public funding of R&D is 
at risk of being influenced by political and administrative arbitrariness, 
which could raise the costs of implementation. This literature has argued 
that it may be more efficient to make these costs explicit through carbon 
taxes and carbon trading, securing the abatement of emissions in places 
and sectors where it is cheapest (IPCC, 1995, 2001; Gupta et al., 2007; 
Somanathan et al., 2014).

In a frictionless world, a uniform world carbon price could minimize the 
social costs of the low-carbon transition by equating the marginal costs 
of abatement across all sources of emissions. This implies that investors 
will be able to make the right choices under perfect foresight and that 
domestic and international compensatory transfers offset the adverse 
distributional impacts of higher energy prices and their consequences on 
economic activity. In the absence of such transfers, carbon prices would 
have to be differentiated by jurisdiction (Chichilnisky and Heal, 2000; 
Sheeran, 2006; Böhringer et al., 2009; Böhringer and Alexeeva-Talebi, 
2013). This differentiation could in turn raise concerns of distortions in 
international competition (Hourcade et al., 2001; Stavins et al., 2014).

Obstacles to enforcing a uniform world carbon price in the short run 
would not necessarily crowd out explicit national carbon pricing, for 
three reasons. First, a uniform carbon price would limit an emissions 
rebound resulting from a higher consumption of energy services 
enabled by efficiency gains, if energy prices do not change (Greening et 
al., 2000; Fleurbaey and Hammond, 2004; Sorrell et al., 2009; Guivarch 
and Hallegatte, 2011; Chitnis and Sorrell, 2015; Freire-González, 2017). 
Second, it could hedge against the arbitrariness of regulatory policies. 
Third, ‘revenue neutral’ recycling, at a constant share of taxes on GDP, 
into lowering some existing taxes would compensate for at least part 
of the propagation effect of higher energy costs (Stiglitz et al., 2017). 
The substitution by carbon taxes of taxes that cause distortions on the 
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Box 4.9 |  Emerging Cities and ‘Peak Car Use’: Evidence of Decoupling in Beijing 

The phenomenon of ‘peak car use’, or reductions in per capita car use, provides hope for continuing reductions in greenhouse 
gases from oil consumption (Millard-Ball and Schipper, 2011; Newman and Kenworthy, 2011; Goodwin and Van Dender, 2013). The 
phenomenon has been mostly associated with developed cities apart from some early signs in Eastern Europe, Latin America and 
China (Newman and Kenworthy, 2015). New research indicates that peak car is now also underway in China (Gao and Newman, 
2018). 

China’s rapid urban motorization was a result of strong economic growth, fast urban development and the prosperity of the Chinese 
automobile industry (Gao et al., 2015). However, recent data (Gao and Newman, 2018) (expressed as a percentage of daily trips) 
suggest the first signs of a break in the growth of car use along with the growth in mass transit, primarily the expansion of Metro 
systems (see Box 4.9, Figure 1). 

Chinese urban fabrics, featuring traditional dense linear forms and mixed land use, favour mass transit systems over automobiles 
(Gao and Newman, 2018). The data show that the decline in car use did not impede economic development, but the growth in 
vehicle kilometres of travel (VKT) has decoupled absolutely from GDP as shown in Box 4.9, Figure 2 below.

economy can counteract the regressive effect of higher energy prices. For 
example, offsetting increased carbon prices with lower labour taxes can 
potentially decrease labour costs (without affecting salaries), enhance 
employment and reduce the attractiveness of informal economic activity 
(Goulder, 2013).

The conditions under which an economic gain along with climate 
benefit (a ‘double dividend’) can be expected are well documented 
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Box 4.9, Figure 1 |  The modal split data in Beijing between 1986 and 2014. Source: (Gao and Newman, 2018).

Box 4.9, Figure 2 |  Peak car in Beijing: relationships between economic performance and private automobile use in Beijing from 1986 to 2014.
VKT is vehicle kilometres of travel. Source: (Gao and Newman, 2018).  

(Goulder, 1995; Bovenberg, 1999; Mooij, 2000). In the context of OECD 
countries, the literature examines how carbon taxation could substitute 
for other taxes to fund the social security system (Combet, 2013). The 
same general principles apply for countries that are building their social 
welfare system, such as China (Li and Wang, 2012) or Brazil (La Rovere 
et al., 2017a), but an optimal recycling scheme could differ based on the 
structure of the economy (Lefèvre et al., 2018).
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4.4.5.3	 Regulatory measures and information flows 

Regulatory instruments are a common tool for improving energy 
efficiency and enhancing renewable energy in OECD countries (e.g., the 
USA, Japan, Korea, Australia, the EU) and, more recently, in developing 
countries (M.J. Scott et al., 2015; Brown et al., 2017). Such instruments 
include constraints on the import of products banned in other countries 
(Knoop and Lechtenböhmer, 2017).

For energy efficiency, these instruments include end-use standards and 
labelling for domestic appliances, lighting, electric motors, water heaters 
and air-conditioners. They are often complemented by mandatory 
efficiency labels to attract consumers’ attention and stimulate the 
manufacture of more efficient products (Girod et al., 2017). Experience 
shows that these policy instruments are effective only if they are 
regularly reviewed to follow technological developments, as in the ‘Top 
Runner’ programme for domestic appliances in Japan (Sunikka-Blank 
and Iwafune, 2011).

In four countries, efficiency standards (e.g. miles per gallon or level of 
CO2 emission per kilometre) have been used in the transport sector, 
for light- and heavy-duty vehicles, which have spillovers for the global 
car industry. In the EU (Ajanovic and Haas, 2017) and the USA (Sen 
et al., 2017), vehicle manufacturers need to meet an annual CO2 
emission target for their entire new vehicle fleet. This allows them to 
compensate through the introduction of low-emission vehicles for the 
high-emission ones in the fleet. This leads to increasingly efficient fleets 
of vehicles over time but does not necessarily limit the driven distance.

Building codes that prescribe efficiency requirements for new and 
existing buildings have been adopted in many OECD countries (Evans 
et al., 2017) and are regularly revised to increase their efficiency per 
unit of floor space. Building codes can avoid locking rapidly urbanizing 
countries into poorly performing buildings that remain in use for the 
next 50–100 years (Ürge-Vorsatz et al., 2014). In OECD countries, 
however, their main role is to incentivize the retrofit of existing 
buildings. In addition of the convergence of these codes to net zero 
energy buildings (D’Agostino, 2015), a new focus should be placed, 
in the context of 1.5°C-consistent pathways, on public and private 
coordination to achieve better integration of building policies with the 
promotion of low-emission transportation modes (Bertoldi, 2017).

The efficacy of regulatory instruments can be reinforced by economic 
incentives, such as feed-in tariffs based on the quantity of renewable 
energy produced, subsidies or tax exemptions for energy savings 
(Bertoldi et al., 2013; Ritzenhofen and Spinler, 2016; García-Álvarez et 
al., 2017; Pablo-Romero et al., 2017), fee-bates, and ‘bonus-malus’ that 
foster the penetration of low-emission options (Butler and Neuhoff, 
2008). Economic incentives can also be combined with direct-use 
market-based instruments, for example combining, in the United 
States and, in some EU countries, carbon trading schemes with energy 
savings obligations for energy retailers (Haoqi et al., 2017), or with 
green certificates for renewable energy portfolio standards (Upton and 
Snyder, 2017). Scholars have investigated caps on utilities’ energy sales 
(Thomas et al., 2017) and emission caps implemented at a personal 
level (Fawcett et al., 2010).

In every country the design of carbon pricing policy implies a balance 
between incentivizing low-carbon behaviour and mitigating the 
adverse distributional consequences of higher energy prices (Combet 
et al., 2010). Carbon taxes can offset these effects if their revenues 
are redistributed through rebates to poor households. Other options 
include the reduction of value-added taxes for basic products or direct 
benefit transfers to enable poverty reduction (see Winkler et al. (2017) 
for South Africa and Grottera et al. (2016) for Brazil). This is possible 
because higher-income households pay more in absolute terms, even 
though their carbon tax burden is a relatively smaller share of their 
income (Arze del Granado et al., 2012).

Ultimately, the pace of increase of carbon prices would depend on the 
pace at which they can be embedded in a consistent set of fiscal and 
social policies. This is specifically critical in the context of the 1.5°C 
limit (Michaelowa et al., 2018). This is why, after a quarter century of 
academic debate and experimentation (see IPCC WGIII reports since 
the SAR), a gap persists with respect to ‘switching carbon prices’ 
needed to trigger rapid changes. In 2016, only 15% of global emissions 
are covered by carbon pricing, three-quarters of which with prices 
below 10 USD tCO2

−1 (World Bank, 2016). This is too low to outweigh 
the ‘noise’ from the volatility of oil markets (in the range of 100 USD 
tCO2

−1 over the past decade), of other price dynamics (interest rates, 
currency exchange rates and real estate prices) and of regulatory 
policies in energy, transportation and industry. For example, the 
dynamics of mobility depend upon a trade-off between housing prices 
and transportation costs in which the price of real estate and the inert 
endowments in public transport play as important a role as liquid fuel 
prices (Lampin et al., 2013). 

These considerations apply to attempts to secure a minimum price in 
carbon trading systems (Wood and Jotzo, 2011; Fell et al., 2012; Fuss 
et al., 2018) and to the reduction of fossil fuel subsidies. Estimated at 
650 billion USD in 2015 (Coady et al., 2017), these subsidies represent 
25–30% of government expenditures in forty (mostly developing) 
countries (IEA, 2014b). Reducing these subsidies would contribute to 
reaching 1.5°C-consistent pathways, but raises similar issues as carbon 
pricing around long-term benefits and short-term costs (Jakob et al., 
2015; Zeng and Chen, 2016), as well as social impacts. 

Explicit carbon prices remain a necessary condition of ambitious 
climate policies, and some authors highlight the potential benefit 
brought by coordination among groups of countries (Weischer et al., 
2012; Hermwille et al., 2017; Keohane et al., 2017). They could take the 
form of carbon pricing corridors (Bhattacharya et al., 2015). They are 
a necessary ‘lubricant’ through fiscal reforms or direct compensating 
transfers to accommodate the general equilibrium effects of higher 
energy prices but may not suffice to trigger the low-carbon transition 
because of a persistent ‘implementation gap’ between the aspirational 
carbon prices and those that can practically be enforced. When systemic 
changes, such as those needed for 1.5°C-consistent pathways, are at 
play on many dimensions of development, price levels ‘depend on the 
path and the path depends on political decisions’ (Drèze and Stern, 
1990). 
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In combination with the funding of public research institutes, grants 
or subsidies also support R&D, where risk and the uncertainty about 
long-term perspectives can reduce the private sector’s willingness to 
invest in low-emission innovation (see also Section 4.4.4). Subsidies can 
take the form of rebates on value-added tax (VAT), of direct support to 
investments (e.g., renewable energy or refurbishment of buildings) or 
feed-in tariffs (Mir-Artigues and del Río, 2014). They can be provided 
by the public budget, via consumption levies, or via the revenues of 
carbon taxes or pricing. Fee-bates, introduced in some countries (e.g., 
for cars), have had a neutral impact on public budgets by incentivizing 
low-emission products and penalizing high-emission ones (de Haan et 
al., 2009).

All policy instruments can benefit from information campaigns (e.g., TV 
ads) tailored to specific end-users. A vast majority of public campaigns on 
energy and climate have been delivered through mass-media channels 
and advertising-based approaches (Corner and Randall, 2011; Doyle, 
2011). Although some authors report large savings obtained by such 
campaigns, most agree that the effects are short-lived and decrease 
over time (Bertoldi et al., 2016). Recently, focus has been placed on the 
use of social norms to motivate behavioural changes (Allcott, 2011; Alló 
and Loureiro, 2014). More on strategies to change behaviour can be 
found in Section 4.4.3.

4.4.5.4	 Scaling up climate finance and de-risking 
low-emission investments

The redirection of savings towards low-emission investments may be 
constrained by enforceable carbon prices, implementation of technical 
standards and the short-term bias of financial systems (Miles, 1993; 
Bushee, 2001; Black and Fraser, 2002). The many causes of this bias are 
extensively analysed in economic literature (Tehranian and Waegelein, 
1985; Shleifer and Vishny, 1990; Bikhchandani and Sharma, 2000), 
including their link with prevailing patterns of economic globalization 
(Krugman, 2009; Rajan, 2011) and the chronic underinvestment in 
long-term infrastructure (IMF, 2014). Emerging literature explores how 
to overcome this through reforms targeted to bridge the gap between 
short-term cash balances and long-term low-emission assets and to 
reduce the risk-weighted capital costs of climate-resilient investments. 
This gap, which was qualified by the Governor of the Bank of England as 
a ‘tragedy of the horizon’ (Carney, 2016) that constitutes a threat to the 
stability of the financial system, is confirmed by the literature (Arezki et 
al., 2016; Christophers, 2017). This potential threat would encompass the 
impact of climate events on the value of assets (Battiston et al., 2017), 
liability risks (Heede, 2014) and the transition risk due to devaluation of 
certain classes of assets (Platinga and Scholtens, 2016).

The financial community’s attention to climate change grew after COP 
15 (ESRB ASC, 2016). This led to the introduction of climate-related risk 
disclosure in financial portfolios (UNEP, 2015), placing it on the agenda 
of G20 Green Finance Study Group and of the Financial Stability Board. 
This led to the creation of low-carbon financial indices that investors 
could consider as a ‘free option on carbon’ to hedge against risks of 
stranded carbon-intensive assets (Andersson et al., 2016). This could also 
accelerate the emergence of climate-friendly financial products such as 

green or climate bonds. The estimated value of the green bonds market 
in 2017 is 155 billion USD (BNEF, 2018). The bulk of these investments 
are in renewable energy, energy efficiency and low-emission transport 
(Lazurko and Venema, 2017), with only 4% for adaptation (OECD, 
2017b). One major question is whether individual strategies based on 
improved climate-related information alone will enable the financial 
system to allocate capital in an optimal way (Christophers, 2017) since 
climate change is a systemic risk (CISL, 2015; Schoenmaker and van 
Tilburg, 2016).

The readiness of financial actors to reduce investments in fossil fuels 
is a real trend (Platinga and Scholtens, 2016; Ayling and Gunningham, 
2017), but they may not resist the attractiveness of carbon-intensive 
investments in many regions. Hence, decarbonizing an investment 
portfolio is not synonymous with investing massively in low-emission 
infrastructure. Scaling up climate-friendly financial products may 
depend upon a business context conducive to the reduction of the risk-
weighted capital costs of low-emission projects. The typical leverage of 
public funding mechanisms for low-emission investment is low (2 to 4) 
compared with other sectors (10 to 15) (Maclean et al., 2008; Ward et 
al., 2009; MDB, 2016). This is due to the interplay of the uncertainty of 
emerging low-emission technologies in the midst of their learning-by-
doing cycle with uncertain future revenues due to volatility of fossil fuel 
prices (Roques et al., 2008; Gross et al., 2010) as well as uncertainty 
around regulatory policies. This inhibits low-emission investments by 
corporations functioning under a ‘shareholder value business regime’ 
(Berle and Means, 1932; Roe, 1996; Froud et al., 2000) and actors 
with restricted access to capital (e.g. cities, local authorities, SMEs and 
households).

De-risking policy instruments to enable low-emission investment 
encompasses interest rate subsidies, fee-bates, tax breaks, concessional 
loans from development banks, and public investment funds, including 
revolving funds. Given the constraints on public budgets, public 
guarantees can be used to increase the leverage effect of public 
financing on private financing. Such de-risking instruments imply 
indeed a full direct burden on public budgets only in case of default 
of the project. They could back for example various forms of green 
infrastructure funds (de Gouvello and Zelenko, 2010; Emin et al., 2014; 
Studart and Gallagher, 2015).10

The risk of defaulting can be mitigated by strong measurement, reporting 
and verifying (MRV) systems (Bellassen et al., 2015) and by the use of 
notional prices recommended in public economics (and currently in use 
in France and the UK) to calibrate public support to the provision of 
public goods in case of persisting distortions in pricing (Stiglitz et al., 
2017). Some suggest linking these notional prices to ‘social, economic 
and environmental value of voluntary mitigation actions’ recognized by 
the COP 21 Decision accompanying the Paris Agreement (paragraph 
108) (Hourcade et al., 2015; La Rovere et al., 2017b; Shukla et al., 2017), 
in order to incorporate the co-benefits of mitigation.

Such public guarantees ultimately amount to money issuance backed by 
low-emission projects as collateral. This explains the potentially strong 
link between global climate finance and the evolution of the financial 

10	 One prototype is the World Bank’s Pilot Auction Facility on Methane and Climate Change
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and monetary system. Amongst suggested mechanisms for this 
evolution are the use of International Monetary Fund’s (IMF’s) Special 
Drawing Rights to fund the paid-in capital of the Green Climate Fund 
(Bredenkamp and Pattillo, 2010) and the creation of carbon remediation 
assets at a predetermined face value per avoided tonne of emissions 
(Aglietta et al., 2015a, b). Such a predetermined value could hedge 
against the fragmentation of climate finance initiatives and support the 
emergence of financial products backed by a new class of long-term 
assets.

Combining public guarantees at a predetermined value of avoided 
emissions, in addition to improving the consistency of non-price 
measures, could support the emergence of financial products backed 
by a new class of certified assets to attract savers in search of safe and 
ethical investments (Aglietta et al., 2015b). It could hedge against the 
fragmentation of climate finance initiatives and provide a mechanism to 
compensate for the ‘stranded’ assets caused by divestment in carbon-
based activities and in lowering the systemic risk of stranded assets 
(Safarzyńska and van den Bergh, 2017). These new assets could also 
facilitate a low-carbon transition for fossil fuel producers and help them 
to overcome the ‘resource curse’ (Ross, 2015; Venables, 2016).

Blended injection of liquidity has monetary implications. Some argue 
that this questions the premise that money should remain neutral 
(Annicchiarico and Di Dio, 2015, 2016; Nikiforos and Zezza, 2017). 
Central banks or financial regulators could act as a facilitator of last 
resort for low-emission financing instruments, which could in turn lower 
the systemic risk of stranded assets (Safarzyńska and van den Bergh, 
2017). This may, in time, lead to the use of carbon-based monetary 
instruments to diversify reserve currencies (Jaeger et al., 2013) and 
differentiate reserve requirements (Rozenberg et al., 2013) in the 
context of a climate-friendly Bretton Woods (Sirkis et al., 2015; Stua, 
2017).

4.4.5.5	 Financial challenge for basic needs and adaptation 
finance

Adaptation finance is difficult to quantify for two reasons. The first is 
that it is very difficult to isolate specific investment needs to enhance 
climate resilience from the provision of basic infrastructure that are 
currently underinvested (IMF, 2014; Gurara et al., 2017). The UNEP 
(2016) estimate of investment needs on adaptation in developing 
countries between 140–300 billion USD yr−1 in 2030, a major part 
being investment expenditures that are complementary with SDG-
related investments focused on universal access to infrastructure and 
services and meeting basic needs. Many climate-adaptation-centric 
financial incentives are relevant to non-market services, offering fewer 
opportunities for market revenues while they contribute to creating 
resilience to climate impacts.    

Hence, adaptation investments and the provision of basic needs would 
typically have to be supported by national and sub-national government 
budgets together with support from overseas development assistance 
and multilateral development banks (Fankhauser and Schmidt-Traub, 
2011; Adenle et al., 2017; Robinson and Dornan, 2017), and a slow 
increase of dedicated NGO and private climate funds (Nakhooda 
and Watson, 2016). Even though the UNEP estimates of the costs of 

adaptation might be lower in a 1.5°C world (UNEP/Climate Analytics, 
2015) they would be higher than the UNEP estimate of 22.5 billion 
USD of bilateral and multilateral funding for climate change adaptation 
in 2014. Currently, 18–25% of climate finance flows to adaptation in 
developing countries (OECD, 2015b, 2016; Shine and Campillo, 2016). It 
remains fragmented, with small proportions flowing through UNFCCC 
channels (AdaptationWatch, 2015; Roberts and Weikmans, 2017).

Means of raising resources for adaptation, achieving the SDGs and 
meeting basic needs (Durand et al., 2016; Roberts et al., 2017) include 
the reduction of fossil fuel subsidies (Jakob et al., 2016), increasing 
revenues from carbon taxes (Jakob et al., 2016), levies on international 
aviation and maritime transport, and sharing of the proceeds of financial 
arrangements supporting mitigation activities (Keen et al., 2013). Each 
have different redistribution implications. Challenges, however, include 
the efficient use of resources, the emergence of long-term assets using 
infrastructure as collateral and the capacity to implement small-scale 
adaptation and the mainstreaming of adaptation in overall development 
policies. There is thus a need for greater policy coordination (Fankhauser 
and McDermott, 2014; Morita and Matsumoto, 2015; Sovacool et al., 
2015, 2017; Lemos et al., 2016; Adenle et al., 2017; Peake and Ekins, 
2017) that includes robust mechanisms for tracking, reporting and 
ensuring transparency of adaptation finance (Donner et al., 2016; Pauw 
et al., 2016a; Roberts and Weikmans, 2017; Trabacchi and Buchner, 
2017) and its consistency with the provision of basic needs (Hallegatte 
et al., 2016).

4.4.5.6	 Towards integrated policy packages and innovative 
forms of financial cooperation 

Carbon prices, regulation and standards, improved information and 
appropriate financial instruments can work synergistically to meet the 
challenge of ‘making finance flows consistent with a pathway towards 
low greenhouse gas emissions and climate-resilient development’, as in 
Article 2 in the Paris Agreement.

There is growing attention to the combination of policy instruments 
that address three domains of action: behavioural changes, economic 
optimization and long-term strategies (Grubb et al., 2014). For example, 
de-risking low-emission investments would result in higher volumes of 
low-emission investments, and would in turn lead to a lower switching 
price for the same climate ambition (Hirth and Steckel, 2016). In the 
reverse direction, higher explicit carbon prices may generate more 
low-emission projects for a given quantum of de-risking. For example, 
efficiency standards for housing can increase the efficacy of carbon prices 
and overcome the barriers coming from the high discount rates used by 
households (Parry et al., 2014), while explicit and notional carbon prices 
can lower the risk of arbitrary standards. The calibration of innovative 
financial instruments to notional carbon prices could encourage large 
multinational companies to increase their level of internal carbon prices 
(UNEP, 2016). These notional prices could be higher than explicit carbon 
prices because they redirect new hardware investments without an 
immediate impact on existing capital stocks and associated interests.

Literature, however, shows that conflicts between poorly articulated 
policy instruments can undermine their efficiency (Lecuyer and 
Quirion, 2013; Bhattacharya et al., 2017; García-Álvarez et al., 2017). 
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As has been illustrated in Europe, commitment uncertainty and lack of 
credibility of regulation have consistently led to low carbon prices in 
the case of the EU Emission Trading System (Koch et al., 2014, 2016). A 
comparative study shows how these conflicts can be avoided by policy 
packages that integrate many dimensions of public policies and are 
designed to match institutional and social context of each country and 
region (Bataille et al., 2015).

Even though policy packages depend upon domestic political 
processes, they might not reinforce the NDCs at a level consistent with 
the 1.5°C transition without a conducive international setting where 
international development finance plays a critical role. Section 4.4.1 
explores the means of mainstreaming climate finance in the current 
evolution of the lending practices of national and multilateral banks 
(Badré, 2018). This could facilitate the access of developing countries 
to loans via bond markets at low interest rates, encouragement 
of the emergence of new business models for infrastructure, 
and encouragement of  financial markets to support small-scale 
investments (Déau and Touati, 2017).

These financial innovations may involve non-state public actors 
like cities and regional public authorities that govern infrastructure 
investment, enable energy and food systems transitions and manage 
urban dynamics (Cartwright, 2015). They would help, for example, in 
raising the 4.5–5.4 trillion USD yr−1 from 2015 to 2030 announced 
by the Cities Climate Finance Leadership Alliance (CCFLA, 2016) to 
achieve the commitments by the Covenant of Mayors of many cities to 
long-term climate targets (Kona et al., 2018).

The evolution of global climate financial cooperation may involve 
central banks, financial regulatory authorities, and multilateral and 
commercial banks. There are still knowledge gaps about the form, 
structure and potential of these arrangements. They could be viewed 
as a form of a burden-sharing between high-, medium- and low-
income countries to enhance the deployment of ambitious Nationally 
Determined Contributions (NDCs) and new forms of ‘common but 
differentiated responsibility and respective capabilities’ (Edenhofer et 
al., 2015; Hourcade et al., 2015; Ji and Sha, 2015).  

4.5	 Integration and Enabling Transformation

4.5.1	 Assessing Feasibility of Options for Accelerated 
Transitions

Chapter 2 shows that 1.5°C-consistent pathways involve rapid, global 
climate responses to reach net zero emissions by mid-century or earlier. 
Chapter 3 identifies climate change risks and impacts to which the 
world would need to adapt during these transitions and additional risks 
and impacts during potential 1.5°C overshoot pathways. The feasibility 
of these pathways is contingent upon systemic change (Section 4.3) 
and enabling conditions (Section 4.4), including policy packages. This 
section assesses the feasibility of options (technologies, actions and 
measures) that form part of global systems under transition that make 
up 1.5°C-consistent pathways.

Following the assessment framework developed in Chapter 1, economic 
and technological, institutional and socio-cultural, and environmental and 
geophysical feasibility are considered and applied to system transitions 
(Sections 4.3.1–4.3.4), overarching adaptation options (Section 4.3.5) 
and carbon dioxide removal (CDR) options (Section 4.3.7). This is done 
to assess the multidimensional feasibility of mitigation and adaptation 
options that have seen considerable development and change since 
AR5. In the case of adaptation, the assessed AR5 options are typically 
clustered. For example, all options related to energy infrastructure 
resilience, independently of the generation source, are categorized as 
‘resilience of power infrastructure’. 

Table 4.10 presents sets of indicators against which the multidimensional 
feasibility of individual adaptation options relevant to warming of 1.5°C, 
and mitigation options along 1.5°C-consistent pathways, is assessed. 

The feasibility assessment takes the following steps. First, each of 
the mitigation and adaptation options is assessed along the relevant 
indicators grouped around six feasibility dimensions: economic, 
technological, institutional, socio-cultural, environmental/ecological 
and geophysical. Three types of feasibility groupings were assessed 
from the underlying literature: first, if the indicator could block the 
feasibility of this option; second, if the indicator has neither a positive 
nor a negative effect on the feasibility of the option or the evidence 
is mixed; and third, if the indicator does not pose any barrier to the 
feasibility of this option. The full assessment of each option under each 
indicator, including the literature references on which the assessment 
is based, can be found in supplementary materials 4.SM.4.2 and 
4.SM.4.3. When appropriate, it is indicated that there is no evidence 
(NE), limited evidence (LE) or that the indicator is not applicable to the 
option (NA).  

Next, for each feasibility dimension and option, the overall feasibility 
for a given dimension is assessed as the mean of combined scores 
of the relevant underlying indicators and classified into ‘insignificant 
barriers’ (2.5 to 3), ‘mixed or moderate but still existent barriers’ (1.5 
to 2.5) or ‘significant barriers’ (below 1.5) to feasibility. Indicators 
assessed as NA, LE or NE are not included in this overall assessment 
(see supplementary material 4.SM.4.1 for the averaging and weighing 
guidance). 

The results are summarized in Table 4.11 (for mitigation options) 
and Table 4.12 (for adaptation options) for each of the six feasibility 
dimensions: where dark shading indicates few feasibility barriers; 
moderate shading indicates that there are mixed or moderate but still 
existent barriers, and light shading indicates that multiple barriers, in 
this dimension, may block implementation. 

A three-step process of independent validation and discussion by 
authors was undertaken to make this assessment as robust as possible 
within the scope of this Special Report. It must, however, be recognized 
that this is an indicative assessment at global scale, and both policy 
and implementation at regional, national and local level would need to 
adapt and build on this knowledge, within the particular local context 
and constraints. Some contextual factors are indicated in the rightmost 
column in Tables 4.11 and 4.12. 



381

4

Strengthening and Implementing the Global Response	 Chapter 4

4.5.2	 Implementing Mitigation

This section builds on the insights on mitigation options in Section 4.3, 
applies the assessment methodology along feasibility dimensions and 
indicators explained in Section 4.5.1, and synthesizes the assessment 
of the enabling conditions in Section 4.4. 

4.5.2.1	 Assessing mitigation options for limiting warming 
to 1.5˚C against feasibility dimensions

An assessment of the degree to which examples of 1.5°C-relevant 
mitigation options face barriers to implementation, and on which 
contexts this depends, is summarized in Table 4.11. An explanation of 
the approach is given in Section 4.5.1 and in supplementary material 
4.SM.4.1. Selected options were mapped onto system transitions 
and clustered through an iterative process of literature review, 
expert feedback, and responses to reviewer comments. The detailed 
assessment and the literature underpinning the assessment can be 
found in supplementary material 4.SM.4.2.

The feasibility framework in Cross-Chapter Box 3 in Chapter 1 highlights 
that the feasibility of mitigation and adaptation options depends on 
many factors. Many of those are captured in the indicators in Table 4.10, 
but many depend on the specific context in which an option features. This 
Special Report did not have the mandate, space or the literature base 
to undertake a regionally specific assessment. Hence the assessment is 
caveated as providing a broad indication of the likely global barriers, 
ignoring significant regional diversity. Regional and context-specific 
literature is also just emerging as is noted in the knowledge gaps 

Feasibility Dimensions Adaptation Indicators Mitigation Indicators

Economic

Microeconomic viability
Macroeconomic viability
Socio-economic vulnerability reduction potential
Employment & productivity enhancement potential

Cost-effectiveness
Absence of distributional effects
Employment & productivity enhancement potential

Technological
Technical resource availability
Risks mitigation potential

Technical scalability
Maturity
Simplicity
Absence of risk

Institutional

Political acceptability
Legal & regulatory feasibility
Institutional capacity & administrative feasibility
Transparency & accountability potential

Political acceptability
Legal & administrative feasibility
Institutional capacity
Transparency & accountability potential

Socio-cultural

Social co-benefits (health, education)
Socio-cultural acceptability
Social & regional inclusiveness
Intergenerational equity

Social co-benefits (health, education)
Public acceptance
Social & regional inclusiveness
Intergenerational equity
Human capabilities

Environmental/Ecological
Ecological capacity
Adaptive capacity/ resilience building potential

Reduction of air pollution
Reduction of toxic waste
Reduction of water use
Improved biodiversity

Geophysical
Physical feasibility
Land use change enhancement potential
Hazard risk reduction potential

Physical feasibility (physical potentials)
Limited use of land
Limited use of scarce (geo)physical resources
Global spread

Table 4.10  |	 Sets of indicators against which the feasibility of adaptation and mitigation options are assessed for each feasibility dimension. The options are discussed in 
	  Sections 4.3.1-4.3.5 and 4.3.7.

section (Section 4.6). Nevertheless, in Table 4.11, an indicative attempt 
has been made to capture relevant contextual information. The ‘context’ 
column indicates which contextual factors may affect the feasibility of 
an option, including regional differences. For instance, solar irradiation 
in an area impacts the cost-effectiveness of solar photovoltaic energy, 
so solar irradiation is mentioned in this column.  

4.5.2.2	 Enabling conditions for implementation 
of mitigation options towards 1.5˚C

The feasibility assessment highlights six dimensions that could help 
inform an agenda that could be addressed by the areas discussed in 
Section 4.4: governance, behaviour and lifestyles, innovation, enhancing 
institutional capacities, policy and finance. For instance, Section 4.4.3 on 
behaviour offers strategies for addressing public acceptance problems, 
and how changes can be more effective when communication and 
actions relate to people’s values. This section synthesizes the findings in 
Section 4.4 in an attempt to link them to the assessment in Table 4.11. 
The literature on which the discussion is based is found in Section 4.4.

From Section 4.4, including the case studies presented in the Boxes 
4.1 to 4.10, several main messages can be constructed. For instance, 
governance would have to be multilevel and engaging different actors, 
while being efficient, and choosing the form of cooperation based on 
the specific systemic challenge or option at hand. If institutional capacity 
for financing and governing the various transitions is not urgently built, 
many countries would lack the ability to change pathways from a 
high-emission scenario to a low- or zero-emission scenario. In terms of 
innovation, governments, both national and multilateral, can contribute 
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System Mitigation Option Evidence Agreement Ec Tec Inst Soc Env Geo Context

Energy 
System 
Transitions

Wind energy (on-shore 
& off-shore)

Robust Medium

Wind regime, economic status, space for wind 
farms, and the existence of a legal framework 
for independent power producers affect uptake; 
cost-effectiveness affected by incentive regime 

Solar PV Robust High

Cost-effectiveness affected by solar irradiation 
and incentive regime. Also enhanced by legal 
framework for independent power producers, 
which affects uptake 

Bioenergy Robust Medium

Depends on availability of biomass and land and the 
capability to manage sustainable land use.
Distributional effects depend on the agrarian 
(or other) system used to produce feedstock

Electricity storage Robust High
Batteries universal, but grid-flexible resources 
vary with area’s level of development

Power sector carbon 
dioxide capture 
and storage

Robust High
Varies with local CO2 storage capacity, presence of 
legal framework, level of development and  
quality of public engagement

Nuclear energy Robust High

Electricity market organization, legal framework, 
standardization & know-how, country’s ‘democratic 
fabric’, institutional and technical capacity, and 
safety culture of public and private institutions

Land & 
Ecosystem 
Transitions

Reduced food 
wastage & efficient 
food production  

Robust High
Will depend on the combination of 
individual and institutional behaviour

Dietary shifts Medium High
Depends on individual behaviour, education, 
cultural factors and institutional support

Sustainable 
intensification 
of agriculture

Medium High
Depends on development and deployment 
of new technologies 

Ecosystems restoration Medium High Depends on location and institutional factors 

Land-use & urban 
planning

Robust Medium
Varies with urban fabric, not geography or economy; 
requires capacitated local government and legitimate 
tenure system

Electric cars and buses Medium High
Varies with degree of government intervention; 
requires capacity to retrofit “fuelling” stations

Sharing schemes Limited Medium
Historic schemes universal, but new ones depend 
on ICT status; undermined by high crime and low 
levels of law enforcement

Public transport Robust Medium

Depends on presence of existing ‘informal’ taxi 
systems, which may be more cost-effective and 
affordable than capital-intensive new build schemes, 
as well as (local) government capabilities

Non-motorized 
transport 

Robust High
Viability rests on linkages with public transport, 
cultural factors, climate and geography

Aviation & shipping Medium Medium
Varies with technology, governance 
and accountability 

Smart grids Medium Medium
Varies with economic status and presence or quality 
of existing grid

Efficient appliances Medium High
Adoption varies with economic status and policy 
framework

Low/zero-energy 
buildings 

Medium High
Depends on size of existing building stock and growth 
of building stock

Table 4.11  |	 Feasibility assessment of examples of 1.5°C-relevant mitigation options, with dark shading signifying the absence of barriers in the feasibility dimension, moderate 
	 shading indicating that, on average, the dimension does not have a positive or negative effect on the feasibility of the option, or the evidence is mixed, and faint  
	 shading the presence of potentially blocking barriers. No shading means that the literature found was not sufficient to make an assessment. Evidence and agreement  
	 assessment is undertaken at the option level. The context column on the far right indicates how the assessment might change if contextual factors were different. For  
	 the methodology and literature basis, see supplementary material 4.SM.4.1 and 4.SM.4.2. 
	 Abbreviations used: Ec: Economic - Tec: Technological - Inst: Institutional - Soc: Socio-cultural -  Env: Environmental/Ecological - Geo: Geophysical

Urban &  
Infra 
structure 
System  
Transitions
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System Mitigation Option Evidence Agreement Ec Tec Inst Soc Env Geo Context

Industrial 
System 
Transitions

Energy efficiency Robust High
Potential and adoption depend on existing efficiency, 
energy prices and interest rates, as well as 
government incentives 

Bio-based & circularity Medium Medium

Faces barriers in terms of pressure on natural 
resources and biodiversity. Product substitution 
depends on market organization and government 
incentivization 

Electrification 
& hydrogen

Medium High

Depends on availability of large-scale, cheap, 
emission-free electricity (electrification, hydrogen) 
or CO2 storage nearby (hydrogen). Manufacturers’ 
appetite to embrace disruptive innovations

Industrial carbon 
dioxide capture, 
utilization and storage

Robust High
High concentration of CO2 in exhaust gas improve 
economic and technical feasibility of CCUS in 
industry. CO2 storage or reuse possibilities 

Carbon 
Dioxide 
Removal

Bioenergy and carbon 
dioxide capture 
and storage

Robust Medium
Depends on biomass availability, CO2 storage 
capacity, legal framework, economic status and 
social acceptance 

Direct air carbon 
dioxide capture 
and storage

Medium Medium
Depends on CO2-free energy, CO2 storage capacity, 
legal framework, economic status and social 
acceptance

Afforestation & 
reforestation

Robust High
Depends on location, mode of implementation, 
and economic and institutional factors

Soil carbon 
sequestration & biochar

Robust High Depends on location, soil properties, time span

Enhanced weathering Medium Low
Depends on CO2-free energy, economic 
status and social acceptance

Table 4.11 (continued)

to applying general-purpose technologies to mitigation purposes. 
If this is not managed, some reduction in emissions could happen 
autonomously, but it may not lead to a 1.5°C-consistent pathway. 
International cooperation on technology, including technology transfer 
where this does not happen autonomously, is needed and can help 
create innovation capabilities in all countries that allow them to operate, 
maintain, adapt and regulate a portfolio of mitigation technologies. 
Case studies in the various subsections highlight the opportunities and 
challenges of doing this in practice. They indicate that it can be done in 
specific circumstances, which can be created. 

A combination of behaviour-oriented pricing policies and financing 
options can help change technologies and social behaviour as it would 
challenge the existing, high-emission socio-technical regime on multiple 
levels across feasibility characteristics. For instance, for dietary change, 
combining supply-side measures with value-driven communication and 
economic instruments may help make a lasting transition, while an 
economic instrument, such as enhanced prices or taxation, on its own 
may not be as robust. 

Governments could benefit from enhanced carbon prices, as a price and 
innovation incentive and also a source of additional revenue to correct 
distributional effects and subsidize the development of new, cost-
effective negative-emission technology and infrastructure. However, 
there is high evidence and medium agreement that pricing alone is 
insufficient. Even if prices rise significantly, they typically incentivize 
incremental change, but typically fail to provide the impetus for private 
actors to take the risk of engaging in the transformational changes 
that would be needed to limit warming to 1.5°C. Apart from the 

incentives to change behaviour and technology, financial systems are 
an indispensable element of a systemic transition. If financial markets 
do not acknowledge climate risk and the risk of transitions, regulatory 
financial institutions, such as central banks, could intervene. 

Strengthening implementation revolves around more than addressing 
barriers to feasibility. A system transition, be it in energy, industry, land 
or a city, requires changing the core parameters of a system. These relate, 
as introduced in Section 4.2 and further elaborated in Section 4.4, to 
how actors cooperate, how technologies are embedded, how resources 
are linked, how cultures relate and what values people associate with 
the transition and the current regime. 

4.5.3	 Implementing Adaptation

Article 7 of the Paris Agreement provides an aspirational global goal for 
adaptation, of ‘enhancing adaptive capacity, strengthening resilience, 
and reducing vulnerability’ (UNFCCC, 2016). Adaptation implementation 
is gathering momentum in many regions, guided by national NDC’s and 
national adaptation plans (see Cross-Chapter Box 11 in this Chapter).

Operationalizing adaptation in a set of regional environments on 
pathways to a 1.5°C world requires strengthened global and differentiated 
regional and local capacities. It also needs rapid and decisive adaptation 
actions to reduce the costs and magnitude of potential climate impacts 
(Vergara et al., 2015). 

This could be facilitated by: (i) enabling conditions, especially improved 
governance, economic measures and financing (Section 4.4); (ii) 
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enhanced clarity on adaptation options to help identify strategic 
priorities, sequencing and timing of implementation (Section 4.3); 
(iii) robust monitoring and evaluation frameworks; and (iv) political 
leadership (Magnan et al., 2015; Magnan and Ribera, 2016; Lesnikowski 
et al., 2017; UNEP, 2017a). 

4.5.3.1	 Feasible adaptation options

This section summarizes the feasibility (defined in Cross-Chapter Box 3, 
Table 1 in Chapter 1 and Table 4.4) of select adaptation options using 
evidence presented across this chapter and in supplementary material 
4.SM.4.3 and the expert-judgement of its authors (Table 4.12). The 
options assessed respond to risks and impacts identified in Chapter 3. 
They were selected based on options identified in AR5 (Noble et al., 
2014), focusing on those relevant to 1.5°C-compatible pathways, where 
sufficient literature exists. Selected options were mapped onto system 
transitions and clustered through an iterative process of literature 
review, expert feedback, and responses to reviewer comments.

Besides gaps in the literature around crucial adaptation questions 
on the transition to a 1.5°C world (Section 4.6), there is inadequate 
current literature to undertake a spatially differentiated assessment 
(Cross-Chapter Box 3 in Chapter 1). There are also limited baselines 
for exposure, vulnerability and risk to help policy and implementation 
prioritization. Hence, the compiled results can at best provide a broad 
framework to inform policymaking. Given the bottom-up nature of 
most adaptation implementation evidence, care needs to be taken in 
generalizing these findings. 

Options are considered as part of a systemic approach, recognizing that 
no single solution exists to limit warming to 1.5°C and adapting to its 
impacts. To respond to the local and regional context – and to synergies 
and trade-offs between adaptation, mitigation and sustainable 
development – packages of options suited to local enabling conditions 
can be implemented.

Table 4.12 summarizes the feasibility assessment through its six 
dimensions with levels of evidence and agreement and indicates how 
the feasibility of an adaptation option may be differentiated by certain 
contextual factors (last column). 

When considered jointly, the description of adaptation options (Section 
4.3), the feasibility assessment (summarized in Table 4.12), and 
discussion of enabling conditions (Section 4.4) show us how options 
can be implemented and lead towards transformational adaptation if 
and when needed.  

The adaptation options for energy system transitions focus on existing 
power infrastructure resilience and water management, when required, 
for any type of generation source. These options are not sufficient for 
the far-reaching transformations required in the energy sector, which 
have tended to focus on technologies to shift from a fossil-based to a 
renewable energy system (Erlinghagen and Markard, 2012; Muench 
et al., 2014; Brand and von Gleich, 2015; Monstadt and Wolff, 2015; 
Child and Breyer, 2017; Hermwille et al., 2017). There is also need for 
integration of such energy system transitions with social-ecological 
systems transformations to increase the resilience of the energy sector, 

for which appropriate enabling conditions, such as for technological 
innovations, are fundamentally important. Institutional capacities 
can be enhanced by expanding the role of actors as transformation 
catalysts (Erlinghagen and Markard, 2012). The integration of ethics 
and justice within these transformations can help attain SDG7 on clean 
energy access (Jenkins et al., 2018), while inclusion of the cultural 
dimension and cultural legitimacy (Amars et al., 2017) can provide a 
more substantial base for societal transformation. Strengthening policy 
instruments and regulatory frameworks and enhancing multilevel 
governance that focuses on resilience components can help secure 
these transitions (Exner et al., 2016).

For land and ecosystem transitions, the options of conservation 
agriculture, efficient irrigation, agroforestry, ecosystem restoration 
and avoided deforestation, and coastal defence and hardening have 
between medium and robust evidence with medium to high agreement. 
The other options assessed have limited or no evidence across one 
or more of the feasibility dimensions. Community-based adaptation 
is assessed as having medium evidence and high agreement to face 
scaling barriers. Scaling community-based adaptation may require  
structural changes, implying the need for transformational adaptation in 
some regions. This would involve enhanced multilevel governance and 
institutional capacities by enabling anticipatory and flexible decision-
making systems that access and develop collaborative networks 
(Dowd et al., 2014), tackling root causes of vulnerability (Chung Tiam 
Fook, 2017), and developing synergies between development and 
climate change (Burch et al., 2017). Case studies show the use of 
transformational adaptation approaches for fire management (Colloff 
et al., 2016a), floodplain and wetland management (Colloff et al., 
2016b), and forest management (Chung Tiam Fook, 2017), in which 
the strengthening of policy instruments and climate finance are also 
required.

There is growing recognition of the need for transformational 
adaptation within the agricultural sector but limited evidence on 
how to facilitate processes of deep, systemic change (Dowd et al., 
2014). Case studies demonstrate that transformational adaptation in 
agriculture requires a sequencing and overlap between incremental and 
transformational adaptation actions (Hadarits et al., 2017; Termeer et 
al., 2017), e.g., incremental improvements to crop management while 
new crop varieties are being researched and field-tested (Rippke et al., 
2016). Broader considerations include addressing stakeholder values 
and attitudes (Fleming et al., 2015a), understanding and leveraging the 
role of social capital, collaborative networks, and information (Dowd et 
al., 2014), and being inclusive with rural and urban communities, and 
the social, political, and cultural environment (Rickards and Howden, 
2012). Transformational adaptation in agriculture systems could have 
significant economic and institutional costs (Mushtaq, 2016), along with 
potential unintended negative consequences (Davidson, 2016; Rippke 
et al., 2016; Gajjar et al., 2018; Mushtaq, 2018),  and a need to focus 
on the transitional space between incremental and transformational 
adaptation (Hadarits et al., 2017), as well as the timing of the shift from 
one to the other (Läderach et al., 2017). 

Within urban and infrastructure transitions, green infrastructure and 
sustainable water management are assessed as the most feasible 
options, followed by sustainable land-use and urban planning. The 
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System Adaptation Option Evidence Agreement Ec Tec Inst Soc Env Geo Context

Energy System 
Transitions

Power infrastructure, 
including water

Medium High
Depends on existing power infrastructure, 
all generation sources and those with 
intensive water requirements

Land & 
Ecosystem 
Transitions

Conservation 
agriculture

Medium Medium
Depends on irrigated/rainfed system, ecosystem 
characteristics, crop type, other farming practices

Efficient irrigation Medium Medium
Depends on agricultural system, technology used, 
regional institutional and biophysical context

Efficient livestock 
systems

Limited High
Dependent on livestock breeds, feed practices, 
and biophysical context (e.g., carrying capacity)

Agroforestry Medium High
Depends on knowledge, financial support, and market 
conditions

Community-based 
adaptation

Medium High
Focus on rural areas and combined with ecosystems-
based adaptation, does not include urban settings

Ecosystem restoration 
& avoided deforestation

Robust Medium
Mostly focused on existing and evaluated REDD+ 
projects 

Biodiversity 
management

Medium Medium
Focus on hotspots of biodiversity vulnerability and 
high connectivity 

Coastal defence 
& hardening

Robust Medium
Depends on locations that require it as a first 
adaptation option

Sustainable aquaculture Limited Medium Depends on locations at risk and socio-cultural context

Urban & 
Infrastructure 
System 
Transitions 

Sustainable land-use 
& urban planning

Medium Medium
Depends on nature of planning systems 
and enforcement mechanisms 

Sustainable water 
management

Robust Medium
Balancing sustainable water supply and rising 
demand, especially in low-income countries

Green infrastructure 
& ecosystem services

Medium High
Depends on reconciliation of urban development 
with green infrastructure

Building codes 
& standards

Limited Medium
Adoption requires legal, educational, and 
enforcement mechanisms to regulate buildings

Industrial 
System 
Transitions

Intensive industry 
infrastructure resilience 
and water management

Limited High
Depends on intensive industry, existing infrastructure 
and using or requiring high demand of water 

Overarching 
Adaptation 
Options

Disaster risk 
management

Medium High
Requires institutional, technical, and financial 
capacity in frontline agencies and government 

Risk spreading and 
sharing: insurance

Medium Medium
Requires well-developed financial structures and public 
understanding 

Social safety nets Medium Medium
Type and mechanism of safety net, political priorities, 
institutional transparency

Climate services Medium High
Depends on climate information avail-
ability and usability, local infrastructure 
and institutions, national priorities 

Indigenous knowledge Medium High
Dependent on recognition of indigenous 
rights, laws, and governance systems 

Education and learning Medium High Existing education system, funding 

Population health 
and health system

Medium High NA Requires basic health services and infrastructure  

Human migration Medium Low
Hazard exposure, political and socio-cultural 
acceptability (in destination), migrant skills and 
social networks 

Table 4.12  |	 Feasibility assessment of examples of 1.5°C-relevant adaptation options, with dark shading signifying the absence of barriers in the feasibility dimension,  
	 moderate shading indicating that, on average, the dimension does not have a positive or negative effect on the feasibility of the option, or the evidence is mixed,  
	 and  light shading indicating the presence of potentially blocking barriers. No shading means that sufficient literature could not be found to make the  
	 assessment. NA signifies that the dimension is not applicable to that adaptation option. For methodology and literature basis, see supplementary material  
	 4.SM.4. 
	 Abbreviations used: Ec: Economic - Tec: Technological - Inst: Institutional - Soc: Socio-cultural -  Env: Environmental/Ecological - Geo: Geophysical
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need for transformational adaptation in urban settings arises from the 
root causes of poverty, failures in sustainable development, and a lack 
of focus on social justice (Revi et al., 2014a; Parnell, 2015; Simon and 
Leck, 2015; Shi et al., 2016; Ziervogel et al., 2016a; Burch et al., 2017), 
and necessitates a focus on governance structures and the inclusion of 
equity and justice concerns (Bos et al., 2015; Shi et al., 2016; Hölscher 
et al., 2018). 

Current implementation of urban ecosystems-based adaptation (EbA) 
lacks a systems perspective of transformations and consideration of 
the normative and ethical aspects of EbA (Brink et al., 2016). Flexibility 
within urban planning could help deal with the multiple uncertainties 
of implementing adaptation (Rosenzweig and Solecki, 2014; 
Radhakrishnan et al., 2018), for example, urban adaptation pathways 
were implemented in the aftermath of Superstorm Sandy in New York, 
which is considered as tipping point that led to the implementation of 
transformational adaptation practices.

Adaptation options for industry focus on infrastructure resilience 
and water management. Like with energy system transitions, 
technological innovation would be required, but also the enhancement 
of institutional capacities. Recent research illustrates transformational 
adaptation within industrial transitions focusing on the role of 
different actors and tools driving innovation, and points to the role 
of nationally appropriate mitigation actions in avoiding lock-ins and 
promoting system innovation (Boodoo and Olsen, 2017), the role of 
private sector in sustainability governance in the socio-political context 
(Burch et al., 2016), and of green entrepreneurs driving transformative 
change in the green economy (Gibbs and O’Neill, 2014). Lim-Camacho 
et al. (2015) suggest an analysis of the complete lifecycle of supply 
chains as a means of identifying additional adaptation strategies, as 
opposed to the current focus on a part of the supply chain. Chain-wide 
strategies can modify the rest of the chain and present a win-win with 
commercial objectives.

The assessed adaptation options also have mitigation synergies 
and trade-offs (assessed in Section 4.5.4) that need to be carefully 
considered, while planning climate action. 

4.5.3.2	 Monitoring and evaluation 

Monitoring and evaluation (M&E) in adaptation implementation can 
promote accountability and transparency of adaptation financing, 
facilitate policy learning and sharing good practices, pressure laggards, 
and guide adaptation planning. The majority of research on M&E focuses 
on specific policies or programmes, and has typically been driven by 
the needs of development organizations, donors, and governments to 
measure the impact and attribution of adaptation initiatives (Ford and 
Berrang-Ford, 2016). There is growing research examining adaptation 
progress across nations, sectors, and scales (Reckien et al., 2014; Araos 
et al., 2016a, b; Austin et al., 2016; Heidrich et al., 2016; Lesnikowski et 
al., 2016; Robinson, 2017). In response to a need for global, regional 
and local adaptation, the development of indicators and standardized 
approaches to evaluate and compare adaptation over time and 
across regions, countries, and sectors would enhance comparability 
and learning. A number of constraints continue to hamper progress 
on adaptation M&E, including a debate on what actually constitutes 

adaptation for the purposes of assessing progress (Dupuis and 
Biesbroek, 2013; Biesbroek et al., 2015), an absence of comprehensive 
and systematically collected data on adaptation to support longitudinal 
assessment and comparison (Ford et al., 2015b; Lesnikowski et al., 
2016), a lack of agreement on indicators to measure (Brooks et al., 
2013; Bours et al., 2015; Lesnikowski et al., 2015), and challenges of 
attributing altered vulnerability to adaptation actions (Ford et al., 2013; 
Bours et al., 2015; UNEP, 2017a).

4.5.4	 Synergies and Trade-Offs between 
Adaptation and Mitigation

Implementing a particular mitigation or adaptation option may affect the 
feasibility and effectiveness of other mitigation and adaptation options. 
Supplementary Material 4.SM.5.1 provides examples of possible positive 
impacts (synergies) and negative impacts (trade-offs) of mitigation 
options for adaptation. For example, renewable energy sources such as 
wind energy and solar PV combined with electricity storage can increase 
resilience due to distributed grids, thereby enhancing both mitigation 
and adaptation. Yet, as another example, urban densification may reduce 
GHG emissions, enhancing mitigation, but can also intensify heat island 
effects and inhibit restoration of local ecosystems if not accounted for, 
thereby increasing adaptation challenges.

The table in Supplementary Material 4.SM.5.2 provides examples 
of synergies and trade-offs of adaptation options for mitigation. It 
shows, for example, that conservation agriculture can reduce some 
GHG emissions and thus enhance mitigation, but at the same time can 
increase other GHG emissions, thereby reducing mitigation potential. 
As another example, agroforestry can reduce GHG emissions through 
reduced deforestation and fossil fuel consumption but has a lower 
carbon sequestration potential compared with natural and secondary 
forest.

Maladaptive actions could increase the risk of adverse climate-related 
outcomes. For example, biofuel targets could lead to indirect land use 
change and influence local food security, through a shift in land use 
abroad in response to increased domestic biofuel demand, increasing 
global GHG emissions rather than decreasing them.

Various options enhance both climate change mitigation and 
adaptation, and would hence serve two 1.5°C-related goals: reducing 
emissions while adapting to the associated climate change. Examples 
of such options are reforestation, urban and spatial planning, and land 
and water management. 

Synergies between mitigation and adaptation may be enhanced, and 
trade-offs reduced, by considering enabling conditions (Section 4.4), 
while trade-offs can be amplified when enabling conditions are not 
considered (C.A. Scott et al., 2015). For example, information that 
is tailored to the personal situation of individuals and communities, 
including climate services that are credible and targeted at the point 
of decision-making, can enable and promote both mitigation and 
adaptation actions (Section 4.4.3). Similarly, multilevel governance 
and community participation, respectively, can enable and promote 
both adaptation and mitigation actions (Section 4.4.1). Governance, 
policies and institutions can facilitate the implementation of the water–
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energy–food (WEF) nexus (Rasul and Sharma, 2016). The WEF nexus 
can enhance food, water and energy security, particularly in cities with 
agricultural production areas (Biggs et al., 2015), electricity generation 
with intensive water requirements (Conway et al 2015), and in 
agriculture (El Gafy et al., 2017) and livelihoods (Biggs et al., 2015). Such 
a nexus approach can reduce the transport energy that is embedded 
in food value chains (Villarroel Walker et al., 2014), providing diverse 
sources of food in the face of changing climates (Tacoli et al., 2013). 
Urban agriculture, where integrated, can mitigate climate change and 
support urban flood management (Angotti, 2015; Bell et al., 2015; Biggs 

et al., 2015; Gwedla and Shackleton, 2015; Lwasa et al., 2015; Yang 
et al., 2016; Sanesi et al., 2017). In the case of electricity generation, 
enabling conditions through a combination of carefully selected policy 
instruments can maximize the synergic benefits between low GHG 
energy production and water for energy (Shang et al., 2018). Despite 
the multiple benefits of maximizing synergies between mitigation 
and adaptations options through the WEF nexus approach (Chen and 
Chen, 2016), there are implementation challenges given institutional 
complexity, political economy, and interdependencies between actors 
(Leck et al., 2015).

Box 4.10 |  Bhutan: Synergies and Trade-Offs in Economic Growth, Carbon Neutrality and Happiness

Bhutan has three national goals: improving its gross national happiness index (GNHI), improving its economic growth (gross 
domestic product, GDP) and maintaining its carbon neutrality. These goals increasingly interact and raise questions about whether 
they can be sustainably maintained into the future. Interventions in this enabling environment are required to comply with all three 
goals. 

Bhutan is well known for its GNHI, which is based on a variety of indicators covering psychological well-being, health, education, 
cultural and community vitality, living standards, ecological issues and good governance (RGoB, 2012; Schroeder and Schroeder, 
2014; Ura, 2015). The GNHI is a precursor to the Sustainable Development Goals (SDGs) (Allison, 2012; Brooks, 2013) and reflects 
local enabling environments. The GNHI has been measured twice, in 2010 and 2015, and this showed an increase of 1.8% (CBS & 
GNH, 2016). Like most emerging countries, Bhutan wants to increase its wealth and become a middle-income country (RGoB, 2013, 
2016), while remaining carbon-neutral – a goal which has been in place since 2009 at COP15 and was reiterated in its Intended 
Nationally Determined Contribution (NEC, 2015). Bhutan achieves its current carbon-neutral status through hydropower and forest 
cover (Yangka and Diesendorf, 2016), which are part of its resilience and adaptation strategy.

Nevertheless, Bhutan faces rising GHG emissions. Transport and industry are the largest growth areas (NEC, 2011). Bhutan’s carbon-
neutral status would be threatened by 2044 with business-as-usual approaches to economic growth (Yangka and Newman, 2018). 
Increases in hydropower are being planned based on climate change scenarios that suggest sufficient water supply will be available 
(NEC, 2011). Forest cover is expected to remain sufficient to maintain co-benefits. The biggest challenge is to electrify both freight 
and passenger transport (ADB, 2013). Bhutan wants to be a model for achieving economic growth consistent with limiting climate 
change to 1.5°C and improving its GNHI (Michaelowa et al., 2018) through synthesizing all three goals and improving its adaptive 
capacity.

4.6	 Knowledge Gaps and Key Uncertainties

The global response to limiting warming to 1.5°C is a new knowledge 
area, which has emerged after the Paris Agreement. This section 
presents a number of knowledge gaps that have emerged from the 
assessment of mitigation, adaptation and carbon dioxide removal 
(CDR) options and solar radiation modification (SRM) measures; 
enabling conditions; and synergies and trade-offs. Illustrative questions 
that emerge synthesizing the more comprehensive Table 4.13 below 
include: how much can be realistically expected from innovation, 
behaviour and systemic political and economic change in improving 
resilience, enhancing adaptation and reducing GHG emissions? 
How can rates of changes be accelerated and scaled up? What is 
the outcome of realistic assessments of mitigation and adaptation 

land transitions that are compliant with sustainable development, 
poverty eradication and addressing inequality? What are life-cycle 
emissions and prospects of early-stage CDR options? How can climate 
and sustainable development policies converge, and how can they 
be organized within a global governance framework and financial 
system, based on principles of justice and ethics (CBDR-RC), reciprocity 
and partnership? To what extent would limiting warming to 1.5°C 
require a harmonization of macro-financial and fiscal policies, which 
could include central banks? How can different actors and processes 
in climate governance reinforce each other, and hedge against the 
fragmentation of initiatives?

These knowledge gaps are highlighted in Table 4.13 along with a cross-
reference to the respective sections in the last column.
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Knowledge Area Mitigation Adaptation Reference

1.5°C Pathways and 
Ensuing Change

• Lack of literature specific to 1.5°C on investment costs with 
   detailed breakdown by technology
• Lack of literature specific to 1.5°C on mitigation costs in 
   terms of GDP and welfare
• Lack of literature on distributional implications of 1.5°C 
   compared to 2°C or business-as-usual at sectoral 
   and regional levels
• Limited 1.5°C-specific case studies for mitigation
• Limited knowledge on the systemic and dynamic aspects of 
   transitions to 1.5°C, including how vicious or virtuous circles 
   might work, how self-reinforcing aspects can be actively 
   introduced and managed

• Lack of literature specific to 1.5°C on adaptation costs 
   and need 
• Lack of literature on what overshoot means for adaptation
• Lack of knowledge on avoided adaptation investments 
   associated with limiting warming to 1.5°C, 2°C or 
   business-as-usual 
• Limited 1.5°C-specific case studies for adaptation
• Scant literature examining current or future adaptation options, 
   or examining what different climate pathways mean for 
   adaptation success 
• Need for transformational adaptation at 1.5°C and beyond 
   remains largely unexplored 

 4.2

Options to 
Achieve 
and Adapt 
to 1.5°C

Energy 
Systems

• The shift to variable renewables that many countries are  
   implementing is just reaching a level where large-scale  
   storage systems or other grid flexibility options, e.g., demand  
   response, are required to enable resilient grid systems. Thus,  
   new knowledge on the opportunities and issues associated  
   with scaling up zero-carbon grids would be needed, including  
   knowledge about how zero-carbon electric grids can integrate  
   with the full-scale electrification of transport systems
• CCS suffers mostly from uncertainty about the feasibility  
   of timely upscaling, both due to lack of regulatory capacity 
   and concerns about storage safety and cost
• There is not much literature on the distributional implications 
   of large-scale bioenergy deployment, the assessment of 
   environmental feasibility is hampered by a diversity of contexts 
   of individual studies (type of feedstock, technology, land 
   availability), which could be improved through emerging  
   meta-studies

• Relatively little literature on individual adaptation options 
   since AR5
• No evidence on socio-cultural acceptability of adaptation 
   options
• Lack of regional research on the implementation of adaptation 
   options

4.3.1

Land & 
ecosystems

• More knowledge would be needed on how land-based 
   mitigation can be reconciled with land demands for 
   adaptation and development 
• While there is now more literature on the underlying 
   mechanisms of land transitions, data is often insufficient 
   to draw robust conclusions, and there is uncertainty about 
   land availability
• The lack of data on social and institutional information  
   (largest knowledge gap indicated for ecosystems restoration 
   in Table 4.11), which are therefore not widely integrated in 
   land use modelling 
• Examples of successful policy implementation and institutions  
   related to land-based mitigation leading to co-benefits for  
   adaptation and development are missing from the literature
• There is relatively little scientific literature on the effects 
   of dietary shifts and reduction of food wastage on mitigation, 
   especially regarding the institutional, technical and 
   environmental concerns

• Regional information on some options does not exist, 
   especially in the case of land-use transitions
• Limited research examining socio-cultural perspectives and 
   impacts of adaptation options, especially for efficient irrigation, 
   coastal defence and hardening, agroforestry and biodiversity 
   management
• Lack of longitudinal, regional studies assessing the impacts of 
   certain adaptation options, such as conservation agriculture 
   and shifting to efficient livestock systems 
• More knowledge is needed on the cost-effectiveness and  
   scalability of various adaptation options. For example, there  
   is no evidence for the macro-economic viability of community- 
   based adaptation (CbA) and biodiversity management, or on 
   employment and productivity enhancement potential for  
   biodiversity management and coastal defence and hardening.
• More knowledge is needed on risk mitigation and the potential 
   of biodiversity management
• Lack of evidence of the political acceptability of efficient 
   livestock systems
• Limited evidence on legal and regulatory feasibility of 
   conservation agriculture and no evidence on coastal 
   defence and hardening
• For transparency and accountability potential, there is limited 
   evidence for conservation agriculture and no evidence for 
   biodiversity management, coastal defence and hardening and 
   sustainable aquaculture
• No evidence on hazard risk reduction potential of conservation 
   agriculture and biodiversity management

4.3.2

Urban & 
infrastructure 
systems

• Limited evidence of effective land-use planning in low-income 
   cities where tenure and land zoning are contested, and the 
   risks of trying to implement land-use planning under 
   communal tenure 
• Limited evidence on the governance of public transport from 
   an accountability and transparency perspective 

• Regional and sectoral adaptation cost assessments are missing, 
   particularly in the context of welfare losses of households, 
   across time and space 
• More knowledge is needed on the political economy of 
   adaptation, particularly on how to impute different types of 
   cost and benefit in a consistent manner, on adaptation  
    performance indicators that could stimulate investment, 
    and the impact of adaptation interventions on socio-economic 
   and other types of inequality 

4.3.3

Table 4.13  |	 Knowledge gaps and uncertainties 
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Knowledge Area Mitigation Adaptation Reference

Options to 
Achieve 
and Adapt 
to 1.5°C

Urban & 
infrastructure 
systems

• Limited evidence on relationship between toxic waste 
   and public transport
•	Limited evidence on the impacts of electric vehicles and  
   non-motorized urban transport, as most schemes are too new
•	As changes in shipping and aviation have been limited to 
   date, limited evidence of social impacts
•	Knowledge about how to facilitate disruptive, demand-based 
   innovations that may be transformative in urban systems, 
   is needed
•	Understanding of the urban form implications of combined 
   changes from electric, autonomous and shared/public mobility 
   systems, is needed
•	Considering distributional consequences of climate responses 
   is an on-going need
•	Knowledge gaps in the application and scale up of  
   combinations of new smart technologies, sustainable design,  
   advanced construction techniques and new insulation 
   materials, renewable energy and behaviour change in urban 
   settlements
•	The potential for leapfrog technologies to be applied to slums  
   and new urban developments in developing countries is weak.

• More evidence would be needed on hot-spots, for example 
   the growth of peri-urban areas populated by large informal 
   settlements 
• Major uncertainties emanate from the lack of knowledge on 
   the integration of climate adaptation and mitigation, disaster 
   risk management, and urban poverty alleviation
• There is limited evidence on the institutional, technological  
   and economic feasibility of green infrastructure and  
   environmental services and for socio-cultural and  
   environmental feasibility of codes and standards
• In general, there is no evidence for the employment and  
   productivity enhancement potential of most adaptation options.
• There is limited evidence on the economic feasibility of 
   sustainable water management

4.3.3

Industrial 
systems

• Lack of knowledge on potential for scaling up and global  
   diffusion of zero- and low-emission technologies in industry
• Questions remain on the socio-cultural feasibility of industry 
   options, including human capacity and private sector  
   acceptance of new, radically different technologies from 
   current well-developed practices, as well as distributional  
   effects of potential new business models
• As the industrial transition unfolds, lack of knowledge on 
   its dynamic interactions with other sectors, in particular with 
   the power sector (and infrastructure) for electrification of 
   industry, with food production and other users of biomass 
   in case of bio-based industry developments, and with 
   CDR technologies in the case of CC(U)S 
• Life-cycle assessment-based comparative analyses of CCUS 
   options are missing, as well as life-cycle information on 
   electrification and hydrogen 
• Impacts of industrial system transitions are not well  
   understood, especially on employment, identity and well-being, 
   in particular in the case of substitution of conventional,  
   high-carbon industrial products with lower-carbon alternatives, 
   as well as electrification and use of hydrogen

• Very limited evidence on how industry would adapt to the 
   consequences of 1.5°C or 2°C temperature increases, in 
   particular large and immobile industrial clusters in low-lying 
   areas as well as availability of transportation and (cooling) 
   water resources and infrastructure 
• There is limited evidence on the economic, institutional and 
   socio-cultural feasibility of adaptation options available 
   to industry

4.3.4

Overarching 
adaptation 
options

• There is no evidence on technical and institutional feasibility of educational options
• There is limited evidence on employment and productivity enforcement potential of climate services
• There is limited evidence on socio-cultural acceptability of social safety nets
• There is a small but growing literature on human migration as an adaptation strategy. Scant literature on the cost-effectiveness 
   of migration

4.3.5

Short-lived 
climate 
forcers

• Limited evidence of co-benefits and trade-offs of SLCF 
   reduction (e.g., better health outcomes, agricultural 
   productivity improvements)
• Integration of  SLCFs into emissions accounting and  
   international reporting mechanisms enabling a better  
   understanding of the links between black carbon, air  
   pollution, climate change and agricultural productivity

4.3.6

Table 4.13 (continued)
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Knowledge Area Mitigation Adaptation Reference

Options 
to Achieve 
and Adapt 
to 1.5°C

Carbon 
dioxide 
removal

• A bottom-up analysis of CDR options indicates that there 
   are still key uncertainties around the individual technologies. 
   Ocean-based options will be assessed in depth in the IPCC 
   Special Report on the Ocean and Cryosphere in a Changing 
   Climate (SROCC)
• Assessments of environmental aspects are missing, 
   especially for ‘newer’ options like enhanced weathering 
   or direct air carbon capture
• In order to obtain more information on realistically available 
   and sustainable removal potentials, more bottom-up, regional 
   studies, also taking into account also social issues, would 
   be needed. These can better inform the modelling of 1.5°C 
   pathways
• Knowledge gaps on issues of governance and public  
   acceptance, the impacts of large-scale removals on the 
   carbon cycle, the potential to accelerate deployment and 
   upscaling, and means of incentivization
• Knowledge gaps on integrated systems of renewable energy  
   and CDR technologies such as enhanced weathering and 
   DACCS
•	Knowledge gaps on under which conditions the use of 
   captured CO2 is generating negative emissions and would 
   qualify as a mitigation option

4.3.7

Solar radiation 
modification (SRM)

• In spite of increasing attention to the different SRM measures and their potential to keep global temperature below 1.5°C,  
   knowledge gaps remain, not only with respect to the physical understanding of SRM measures but also concerning ethical issues 
•	We do not know how to govern SRM in order to avoid unilateral action and how to prevent possible reductions 
   in mitigation (‘moral hazard’)

4.3.8

Enabling 
Conditions

Governance

• As technological changes have begun to accelerate, there is 
   a lack of knowledge on new mechanisms that can enable 
   private enterprise to mainstream this activity, and reasons 
   for success and failure need to be researched
• Research is thin on effective multilevel governance, in 
   particular in developing countries, including participation 
   by civil society, women and minorities
• Gaps in knowledge remain pertaining to partnerships within  
   local governance arrangements that may act as mediators  
   and drivers for achieving global ambition and local action
• Methods for assessing contribution and aggregation of 
   non-state actors in limiting warming to 1.5°C
• Knowledge gap on an enhanced framework for assessment 
   of the ambition of NDCs 

• The ability to identify explanatory factors affecting the progress  
   of climate policy is constrained by a lack of data on adaptation  
   actions across nations, regions, and sectors, compounded by an 
   absence of frameworks for assessing progress. Most  
   hypotheses on what drives adaptation remain untested 
• Limited empirical assessment of how governance affects 
   adaptation across cases 
• Focus on ‘success’ stories and leading adaptors overlooks 
   lessons from situations where no or unsuccessful 
   adaptation is taking place 

4.4.1

Institutions

• Lack of 1.5°C-specific literature
• Role of regulatory financial institutions and their capacity to guarantee financial stability of economies when investments potentially 
   face risks, both because of climate impacts and because of the systems transitions if lower temperature scenarios are pursued
• Knowledge gaps on how to build capabilities across all countries and regions globally to implement, maintain, manage, govern and 
   further develop mitigation options for 1.5°C.
• While importance of indigenous and local knowledge is recognized, the ability to scale up beyond the local remains challenging 
   and little examined
• There is a lack of monitoring and evaluation (M&E) of adaptation measures, with most studies enumerating M&E challenges and 
   emphasising the importance of context and social learning. Very few studies evaluate whether and why an adaptation initiative 
   has been effective. One of the challenges of M&E for both mitigation and adaptation is a lack of high quality information for 
   modelling. Adaptation M&E is additionally challenged by limited understanding on what indicators to measure and how to attribute 
   altered vulnerability to adaptation actions

4.4.2

Lifestyle and 
behavioural 
change

• Whereas mitigation pathways studies address (implicitly or 
   explicitly) the reduction or elimination of market failures 
   (e.g., external costs, information asymmetries) via climate or 
   energy policies, no study addresses behavioural change 
   strategies in the relationship with mitigation and adaptation 
   actions in the 1.5°C context
• Limited knowledge on GHG emissions reduction potential of 
   diverse mitigation behaviour across the world
• Most studies on factors enabling lifestyle changes have been 
   conducted in high-income countries, more knowledge needed 
   from low- and middle-income countries, and the focus is  
   typically on enabling individual behaviour change, far less on 
   enabling change in organizations and political systems

• Knowledge gaps on factors enabling adaptation behaviour, 
   except for behaviour in agriculture.
• Little is known about cognitive and motivational factors 
   promoting adaptive behaviour.
• Little is known about how potential adaptation actions might 
   affect behaviour to influence vulnerability outcomes 

4.4.3

Table 4.13 (continued)
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Knowledge Area Mitigation Adaptation Reference

Enabling 
Conditions

Lifestyle and 
behavioural 
change

• Limited understanding and treatment of behavioural change  
   and the potential effects of related policies in ambitious  
   mitigation pathways, e.g., in Integrated Assessment Models 4.4.3

Lack of insight on what can enable changes in adaptation and mitigation behaviour in organizations and political systems

Technological 
innovation

• Quantitative estimates for mitigation and adaptation potentials at economy or sector scale as a result of the combination of  
   general purpose technologies and mitigation technologies have been scarce, except for some evidence in the transport sector
• Evidence on the role of international organizations, including the UNFCCC, in building capabilities and enhancing technological 
   innovation for 1.5°C, except for some parts of the transport sector
• Technology transfer trials to enable leapfrog applications in developing countries have limited evidence

4.4.4

Policy

• More empirical research would be needed to derive  
   robust conclusions on effectiveness of policies for  
   enabling transitions to 1.5°C and on which factors aid  
   decision-makers seeking to ratchet up their NDCs

• Understanding of what policies work (and do not work) is 
   limited for adaptation in general and for 1.5°C in 
   particular, beyond specific case studies

4.4.5

Finance Knowledge gaps persist with respect to the instruments to match finance to its most effective use in mitigation and adaptation 4.4.5

Synergies and Trade-Offs 
Between Adaptation 
and Mitigation

• Strong claims are made with respect to synergies and trade-offs, but there is little knowledge to underpin these, especially of 
   co-benefits by region
•	Water–energy conservation relationships of individual conservation measures in industries other than the water and energy sectors 
    have not been investigated in detail
•	 There is no evidence on synergies with adaptation of CCS in the power sector and of enhanced weathering under carbon 
    dioxide removal
•	 There is no evidence on trade-offs with adaptation of low- and zero-energy buildings, and circularity and substitution and 
    bio-based industrial system transitions
•	There is no evidence of synergies or trade-offs with mitigation of CbA
•	There is no evidence of trade-offs with mitigation of the built environment, on adaptation options for industrial energy,  
    and climate services

4.5.4

Table 4.13 (continued)
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Frequently Asked Questions 

FAQ 4.1 |	 What Transitions could Enable Limiting Global Warming to 1.5°C?

Summary: In order to limit warming to 1.5°C above pre-industrial levels, the world would need to transform 
in a number of complex and connected ways. While transitions towards lower greenhouse gas emissions are 
underway in some cities, regions, countries, businesses and communities, there are few that are currently 
consistent with limiting warming to 1.5°C. Meeting this challenge would require a rapid escalation in the current 
scale and pace of change, particularly in the coming decades. There are many factors that affect the feasibility 
of different adaptation and mitigation options that could help limit warming to 1.5°C and with adapting to the 
consequences. 

There are actions across all sectors that can substantially reduce greenhouse gas emissions. This Special Report 
assesses energy, land and ecosystems, urban and infrastructure, and industry in developed and developing 
nations to see how they would need to be transformed to limit warming to 1.5°C. Examples of actions include 
shifting to low- or zero-emission power generation, such as renewables; changing food systems, such as diet 
changes away from land-intensive animal products; electrifying transport and developing ‘green infrastructure’, 
such as building green roofs, or improving energy efficiency by smart urban planning, which will change the 
layout of many cities.

Because these different actions are connected, a ‘whole systems’ approach would be needed for the type of 
transformations that could limit warming to 1.5°C. This means that all relevant companies, industries and 
stakeholders would need to be involved to increase the support and chance of successful implementation. As 
an illustration, the deployment of low-emission technology (e.g., renewable energy projects or a bio-based 
chemical plants) would depend upon economic conditions (e.g., employment generation or capacity to mobilize 
investment), but also on social/cultural conditions (e.g., awareness and acceptability) and institutional conditions 
(e.g., political support and understanding).

To limit warming to1.5°C, mitigation would have to be large-scale and rapid. Transitions can be transformative or 
incremental, and they often, but not always, go hand in hand. Transformative change can arise from growth in 
demand for a new product or market, such that it displaces an existing one. This is sometimes called ‘disruptive 
innovation’. For example, high demand for LED lighting is now making more energy-intensive, incandescent 
lighting near-obsolete, with the support of policy action that spurred rapid industry innovation. Similarly, smart 
phones have become global in use within ten years. But electric cars, which were released around the same 
time, have not been adopted so quickly because the bigger, more connected transport and energy systems are 
harder to change. Renewable energy, especially solar and wind, is considered to be disruptive by some as it 
is rapidly being adopted and is transitioning faster than predicted. But its demand is not yet uniform. Urban 
systems that are moving towards transformation are coupling solar and wind with battery storage and electric 
vehicles in a more incremental transition, though this would still require changes in regulations, tax incentives, 
new standards, demonstration projects and education programmes to enable markets for this system to work. 

Transitional changes are already underway in many systems, but limiting warming to 1.5°C would require a 
rapid escalation in the scale and pace of transition, particularly in the next 10–20 years. While limiting warming 
to 1.5°C would involve many of the same types of transitions as limiting warming to 2°C, the pace of change 
would need to be much faster. While the pace of change that would be required to limit warming to 1.5°C can 
be found in the past, there is no historical precedent for the scale of the necessary transitions, in particular in a 
socially and economically sustainable way. Resolving such speed and scale issues would require people’s support, 
public-sector interventions and private-sector cooperation.

Different types of transitions carry with them different associated costs and requirements for institutional or 
governmental support. Some are also easier to scale up than others, and some need more government support 
than others. Transitions between, and within, these systems are connected and none would be sufficient on its 
own to limit warming to 1.5°C. 

The ‘feasibility’ of adaptation and mitigation options or actions within each system that together can limit 
warming to 1.5°C within the context of sustainable development and efforts to eradicate poverty requires careful 
consideration of multiple different factors. These factors include: (i) whether sufficient natural systems and 
resources are available to support the various options for transitioning (known as environmental feasibility); (ii) 
the degree to which the required technologies are developed and available (known as technological feasibility); 
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(iii) the economic conditions and implications (known as economic feasibility); (iv) what are the implications for 
human behaviour and health (known as social/cultural feasibility); and (v) what type of institutional support would 
be needed, such as governance, institutional capacity and political support (known as institutional feasibility). 
An additional factor (vi – known as the geophysical feasibility) addresses the capacity of physical systems to carry 
the option, for example, whether it is geophysically possible to implement large-scale afforestation consistent 
with 1.5°C. 

Promoting enabling conditions, such as finance, innovation and behaviour change, would reduce barriers to the 
options, make the required speed and scale of the system transitions more likely, and therefore would increase 
the overall feasibility limiting warming to 1.5°C.

FAQ 4.1, Figure 1 |  The different dimensions to consider when assessing the ‘feasibility’ of adaptation and mitigation options or actions within 
each system that can help to limit warming to 1.5°C. These are: (i) the environmental feasibility; (ii) the technological feasibility; (iii) the economic feasibility; (iv) 
the social/cultural feasibility; (v) the institutional feasibility; and (vi) the geophysical feasibility.

FAQ 4.1 (continued)
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Frequently Asked Questions 

FAQ 4.2 |	 What are Carbon Dioxide Removal and Negative Emissions?

Summary: Carbon dioxide removal (CDR) refers to the process of removing CO2 from the atmosphere. Since this is 
the opposite of emissions, practices or technologies that remove CO2 are often described as achieving ‘negative 
emissions’. The process is sometimes referred to more broadly as greenhouse gas removal if it involves removing 
gases other than CO2. There are two main types of CDR: either enhancing existing natural processes that remove 
carbon from the atmosphere (e.g., by increasing its uptake by trees, soil, or other ‘carbon sinks’) or using chemical 
processes to, for example, capture CO2 directly from the ambient air and store it elsewhere (e.g., underground). 
All CDR methods are at different stages of development and some are more conceptual than others, as they have 
not been tested at scale.

Limiting warming to 1.5°C above pre-industrial levels would require unprecedented rates of transformation 
in many areas, including in the energy and industrial sectors, for example. Conceptually, it is possible that 
techniques to draw CO2 out of the atmosphere (known as carbon dioxide removal, or CDR) could contribute to 
limiting warming to 1.5°C. One use of CDR could be to compensate for greenhouse gas emissions from sectors 
that cannot completely decarbonize, or which may take a long time to do so. 

If global temperature temporarily overshoots 1.5°C, CDR would be required to reduce the atmospheric 
concentration of CO2 to bring global temperature back down. To achieve this temperature reduction, the amount 
of CO2 drawn out of the atmosphere would need to be greater than the amount entering the atmosphere, 
resulting in ‘net negative emissions’. This would involve a greater amount of CDR than stabilizing atmospheric 
CO2 concentration – and, therefore, global temperature – at a certain level. The larger and longer an overshoot, 
the greater the reliance on practices that remove CO2 from the atmosphere. 

There are a number of CDR methods, each with different potentials for achieving negative emissions, as well 
as different associated costs and side effects. They are also at differing levels of development, with some more 
conceptual than others. One example of a CDR method in the demonstration phase is a process known as 
bioenergy with carbon capture and storage (BECCS), in which atmospheric CO2 is absorbed by plants and trees 
as they grow, and then the plant material (biomass) is burned to produce bioenergy. The CO2 released in the 
production of bioenergy is captured before it reaches the atmosphere and stored in geological formations deep 
underground on very long time scales. Since the plants absorb CO2 as they grow and the process does not emit 
CO2, the overall effect can be to reduce atmospheric CO2.

Afforestation (planting new trees) and reforestation (replanting trees where they previously existed) are also 
considered forms of CDR because they enhance natural CO2 ‘sinks’. Another category of CDR techniques uses 
chemical processes to capture CO2 from the air and store it away on very long time scales. In a process known 
as direct air carbon capture and storage (DACCS), CO2 is extracted directly from the air and stored in geological 
formations deep underground. Converting waste plant material into a charcoal-like substance called biochar and 
burying it in soil can also be used to store carbon away from the atmosphere for decades to centuries. 

There can be beneficial side effects of some types of CDR, other than removing CO2 from the atmosphere. For 
example, restoring forests or mangroves can enhance biodiversity and protect against flooding and storms. But 
there could also be risks involved with some CDR methods. For example, deploying BECCS at large scale would 
require a large amount of land to cultivate the biomass required for bioenergy. This could have consequences 
for sustainable development if the use of land competes with producing food to support a growing population, 
biodiversity conservation or land rights. There are also other considerations. For example, there are uncertainties 
about how much it would cost to deploy DACCS as a CDR technique, given that removing CO2 from the air 
requires considerable energy.
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FAQ 4.2, Figure 1 |  Carbon dioxide removal (CDR) refers to the process of removing CO2 from the atmosphere. There are a number of CDR techniques, 
each with different potential for achieving ‘negative emissions’, as well as different associated costs and side effects.

FAQ 4.2 (continued)
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Frequently Asked Questions 

FAQ 4.3 |	 Why is Adaptation Important in a 1.5°C-Warmer World? 

Summary: Adaptation is the process of adjusting to current or expected changes in climate and its effects. Even 
though climate change is a global problem, its impacts are experienced differently across the world. This means 
that responses are often specific to the local context, and so people in different regions are adapting in different 
ways. A rise in global temperature from the current 1°C above pre-industrial levels to 1.5°C, and beyond, increases 
the need for adaptation. Therefore, stabilizing global temperatures at 1.5°C above pre-industrial levels would 
require a smaller adaptation effort than at 2°C. Despite many successful examples around the world, progress in 
adaptation is, in many regions, in its infancy and unevenly distributed globally. 

Adaptation refers to the process of adjustment to actual or expected changes in climate and its effects. Since 
different parts of the world are experiencing the impacts of climate change differently, there is similar diversity 
in how people in a given region are adapting to those impacts. 

The world is already experiencing the impacts from 1°C of global warming above pre-industrial levels, and there 
are many examples of adaptation to impacts associated with this warming. Examples of adaptation efforts taking 
place around the world include investing in flood defences such as building sea walls or restoring mangroves, 
efforts to guide development away from high risk areas, modifying crops to avoid yield reductions, and using 
social learning (social interactions that change understanding on the community level) to modify agricultural 
practices, amongst many others. Adaptation also involves building capacity to respond better to climate change 
impacts, including making governance more flexible and strengthening financing mechanisms, such as by 
providing different types of insurance. 

In general, an increase in global temperature from present day to 1.5°C or 2°C (or higher) above pre-industrial 
temperatures would increase the need for adaptation. Stabilizing global temperature increase at 1.5°C would 
require a smaller adaptation effort than for 2°C. 

Since adaptation is still in early stages in many regions, there are questions about the capacity of vulnerable 
communities to cope with any amount of further warming. Successful adaptation can be supported at 
the national and sub-national levels, with national governments playing an important role in coordination, 
planning, determining policy priorities, and distributing resources and support. However, given that the need 
for adaptation can be very different from one community to the next, the kinds of measures that can successfully 
reduce climate risks will also depend heavily on the local context. 

When done successfully, adaptation can allow individuals to adjust to the impacts of climate change in ways that 
minimize negative consequences and to maintain their livelihoods. This could involve, for example, a farmer 
switching to drought-tolerant crops to deal with increasing occurrences of heatwaves. In some cases, however, 
the impacts of climate change could result in entire systems changing significantly, such as moving to an entirely 
new agricultural system in areas where the climate is no longer suitable for current practices. Constructing 
sea walls to stop flooding due to sea level rise from climate change is another example of adaptation, but 
developing city planning to change how flood water is managed throughout the city would be an example 
of transformational adaptation. These actions require significantly more institutional, structural, and financial 
support. While this kind of transformational adaptation would not be needed everywhere in a 1.5°C world, the 
scale of change needed would be challenging to implement, as it requires additional support, such as through 
financial assistance and behavioural change. Few empirical examples exist to date.

Examples from around the world show that adaptation is an iterative process. Adaptation pathways describe 
how communities can make decisions about adaptation in an ongoing and flexible way. Such pathways allow 
for pausing, evaluating the outcomes of specific adaptation actions, and modifying the strategy as appropriate. 
Due to their flexible nature, adaptation pathways can help to identify the most effective ways to minimise the 
impacts of present and future climate change for a given local context. This is important since adaptation can 
sometimes exacerbate vulnerabilities and existing inequalities if poorly designed. The unintended negative 
consequences of adaptation that can sometimes occur are known as ‘maladaptation’. Maladaptation can be seen 
if a particular adaptation option has negative consequences for some (e.g., rainwater harvesting upstream might 
reduce water availability downstream) or if an adaptation intervention in the present has trade-offs in the future 
(e.g., desalination plants may improve water availability in the present but have large energy demands over time).
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While adaptation is important to reduce the negative impacts from climate change, adaptation measures on 
their own are not enough to prevent climate change impacts entirely. The more global temperature rises, the 
more frequent, severe, and erratic the impacts will be, and adaptation may not protect against all risks. Examples 
of where limits may be reached include substantial loss of coral reefs, massive range losses for terrestrial species, 
more human deaths from extreme heat, and losses of coastal-dependent livelihoods in low lying islands and 
coasts. 

FAQ 4.3, Figure 1 |  Why is adaptation important in a world with global warming of 1.5°C? Examples of adaptation and transformational adaptation. 
Adapting to further warming requires action at national and sub-national levels and can mean different things to different people in different contexts. While 
transformational adaptation would not be needed everywhere in a world limited to 1.5°C warming, the scale of change needed would be challenging to implement.

FAQ 4.3 (continued)
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Executive Summary

This chapter takes sustainable development as the starting point 
and focus for analysis. It considers the broad and multifaceted 
bi-directional interplay between sustainable development, including 
its focus on eradicating poverty and reducing inequality in their 
multidimensional aspects, and climate actions in a 1.5°C warmer world. 
These fundamental connections are embedded in the Sustainable 
Development Goals (SDGs). The chapter also examines synergies 
and trade-offs of adaptation and mitigation options with sustainable 
development and the SDGs and offers insights into possible pathways, 
especially climate-resilient development pathways towards a 1.5°C 
warmer world.

Sustainable Development, Poverty and Inequality 
in a 1.5°C Warmer World

Limiting global warming to 1.5°C rather than 2°C above pre-
industrial levels would make it markedly easier to achieve many 
aspects of sustainable development, with greater potential to 
eradicate poverty and reduce inequalities (medium evidence, 
high agreement). Impacts avoided with the lower temperature 
limit could reduce the number of people exposed to climate risks and 
vulnerable to poverty by 62 to 457 million, and lessen the risks of 
poor people to experience food and water insecurity, adverse health 
impacts, and economic losses, particularly in regions that already face 
development challenges (medium evidence, medium agreement). 
{5.2.2, 5.2.3} Avoided impacts expected to occur between 1.5°C and 
2°C warming would also make it easier to achieve certain SDGs, such as 
those that relate to poverty, hunger, health, water and sanitation, cities 
and ecosystems (SDGs 1, 2, 3, 6, 11, 14 and 15) (medium evidence, 
high agreement). {5.2.3, Table 5.2 available at the end of the chapter}

Compared to current conditions, 1.5°C of global warming would 
nonetheless pose heightened risks to eradicating poverty, 
reducing inequalities and ensuring human and ecosystem well-
being (medium evidence, high agreement). Warming of 1.5°C is 
not considered ‘safe’ for most nations, communities, ecosystems and 
sectors and poses significant risks to natural and human systems as 
compared to the current warming of 1°C (high confidence). {Cross-
Chapter Box 12 in Chapter 5} The impacts of 1.5°C of warming would 
disproportionately affect disadvantaged and vulnerable populations 
through food insecurity, higher food prices, income losses, lost 
livelihood opportunities, adverse health impacts and population 
displacements (medium evidence, high agreement). {5.2.1} Some of 
the worst impacts on sustainable development are expected to be 
felt among agricultural and coastal dependent livelihoods, indigenous 
people, children and the elderly, poor labourers, poor urban dwellers in 
African cities, and people and ecosystems in the Arctic and Small Island 
Developing States (SIDS) (medium evidence, high agreement). {5.2.1, 
Box 5.3, Chapter 3, Box 3.5, Cross-Chapter Box 9 in Chapter 4}

Climate Adaptation and Sustainable Development

Prioritization of sustainable development and meeting the 
SDGs is consistent with efforts to adapt to climate change (high 

confidence). Many strategies for sustainable development enable 
transformational adaptation for a 1.5°C warmer world, provided 
attention is paid to reducing poverty in all its forms and to promoting 
equity and participation in decision-making (medium evidence, high 
agreement). As such, sustainable development has the potential 
to significantly reduce systemic vulnerability, enhance adaptive 
capacity, and promote livelihood security for poor and disadvantaged 
populations (high confidence). {5.3.1}

Synergies between adaptation strategies and the SDGs are 
expected to hold true in a 1.5°C warmer world, across sectors 
and contexts (medium evidence, medium agreement). Synergies 
between adaptation and sustainable development are significant 
for agriculture and health, advancing SDGs 1 (extreme poverty), 
2 (hunger), 3 (healthy lives and well-being) and 6 (clean water) (robust 
evidence, medium agreement). {5.3.2} Ecosystem- and community-
based adaptation, along with the incorporation of indigenous and 
local knowledge, advances synergies with SDGs 5 (gender equality), 
10 (reducing inequalities) and 16 (inclusive societies), as exemplified 
in drylands and the Arctic (high evidence, medium agreement). {5.3.2, 
Box 5.1, Cross-Chapter Box 10 in Chapter 4}

Adaptation strategies can result in trade-offs with and among 
the SDGs (medium evidence, high agreement). Strategies that 
advance one SDG may create negative consequences for other 
SDGs, for instance SDGs 3 (health) versus 7 (energy consumption) 
and agricultural adaptation and SDG 2 (food security) versus SDGs 3 
(health), 5 (gender equality), 6 (clean water), 10 (reducing inequalities), 
14 (life below water) and 15 (life on the land) (medium evidence, 
medium agreement). {5.3.2}

Pursuing place-specific adaptation pathways towards a 1.5°C 
warmer world has the potential for significant positive outcomes 
for well-being in countries at all levels of development (medium 
evidence, high agreement). Positive outcomes emerge when 
adaptation pathways (i) ensure a diversity of adaptation options based 
on people’s values and the trade-offs they consider acceptable, (ii) 
maximize synergies with sustainable development through inclusive, 
participatory and deliberative processes, and (iii) facilitate equitable 
transformation. Yet such pathways would be difficult to achieve 
without redistributive measures to overcome path dependencies, 
uneven power structures, and entrenched social inequalities (medium 
evidence, high agreement). {5.3.3}

Mitigation and Sustainable Development

The deployment of mitigation options consistent with 1.5°C 
pathways leads to multiple synergies across a range of 
sustainable development dimensions. At the same time, the 
rapid pace and magnitude of change that would be required 
to limit warming to 1.5°C, if not carefully managed, would lead 
to trade-offs with some sustainable development dimensions 
(high confidence). The number of synergies between mitigation 
response options and sustainable development exceeds the number 
of trade-offs in energy demand and supply sectors; agriculture, forestry 
and other land use (AFOLU); and for oceans (very high confidence). 
{Figure 5.2, Table 5.2 available at the end of the chapter} The 1.5°C 
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pathways indicate robust synergies, particularly for the SDGs 3 (health), 
7 (energy), 12 (responsible consumption and production) and 14 
(oceans) (very high confidence). {5.4.2, Figure 5.3} For SDGs 1 (poverty), 
2 (hunger), 6 (water) and 7 (energy), there is a risk of trade-offs or 
negative side effects from stringent mitigation actions compatible with 
1.5°C of warming (medium evidence, high agreement). {5.4.2}

Appropriately designed mitigation actions to reduce energy 
demand can advance multiple SDGs simultaneously. Pathways 
compatible with 1.5°C that feature low energy demand show the 
most pronounced synergies and the lowest number of trade-offs 
with respect to sustainable development and the SDGs (very high 
confidence). Accelerating energy efficiency in all sectors has synergies 
with SDGs 7 (energy), 9 (industry, innovation and infrastructure), 
11 (sustainable cities and communities), 12 (responsible consumption 
and production), 16 (peace, justice and strong institutions), and 
17 (partnerships for the goals) (robust evidence, high agreement). 
{5.4.1, Figure 5.2, Table 5.2} Low-demand pathways, which would 
reduce or completely avoid the reliance on bioenergy with carbon 
capture and storage (BECCS) in 1.5°C pathways, would result in 
significantly reduced pressure on food security, lower food prices and 
fewer people at risk of hunger (medium evidence, high agreement). 
{5.4.2, Figure 5.3}

The impacts of carbon dioxide removal options on SDGs depend 
on the type of options and the scale of deployment (high 
confidence). If poorly implemented, carbon dioxide removal (CDR) 
options such as bioenergy, BECCS and AFOLU would lead to trade-
offs. Appropriate design and implementation requires considering 
local people’s needs, biodiversity and other sustainable development 
dimensions (very high confidence). {5.4.1.3, Cross-Chapter Box 7 in 
Chapter 3}

The design of the mitigation portfolios and policy instruments 
to limit warming to 1.5°C will largely determine the overall 
synergies and trade-offs between mitigation and sustainable 
development (very high confidence). Redistributive policies 
that shield the poor and vulnerable can resolve trade-offs for 
a range of SDGs (medium evidence, high agreement). Individual 
mitigation options are associated with both positive and negative 
interactions with the SDGs (very high confidence). {5.4.1} However, 
appropriate choices across the mitigation portfolio can help to 
maximize positive side effects while minimizing negative side effects 
(high confidence). {5.4.2, 5.5.2} Investment needs for complementary 
policies resolving trade-offs with a range of SDGs are only a small 
fraction of the overall mitigation investments in 1.5°C pathways 
(medium evidence, high agreement). {5.4.2, Figure 5.4} Integration of 
mitigation with adaptation and sustainable development compatible 
with 1.5°C warming requires a systems perspective (high confidence). 
{5.4.2, 5.5.2}

Mitigation consistent with 1.5°C of warming create high risks 
for sustainable development in countries with high dependency 
on fossil fuels for revenue and employment generation (high 
confidence). These risks are caused by the reduction of global demand 
affecting mining activity and export revenues and challenges to rapidly 
decrease high carbon intensity of the domestic economy (robust 

evidence, high agreement). {5.4.1.2, Box 5.2} Targeted policies that 
promote diversification of the economy and the energy sector could 
ease this transition (medium evidence, high agreement). {5.4.1.2, 
Box 5.2}

Sustainable Development Pathways to 1.5°C

Sustainable development broadly supports and often enables 
the fundamental societal and systems transformations that 
would be required for limiting warming to 1.5°C above pre-
industrial levels (high confidence). Simulated pathways that 
feature the most sustainable worlds (e.g., Shared Socio-Economic 
Pathways (SSP) 1) are associated with relatively lower mitigation and 
adaptation challenges and limit warming to 1.5°C at comparatively 
lower mitigation costs. In contrast, development pathways with high 
fragmentation, inequality and poverty (e.g., SSP3) are associated with 
comparatively higher mitigation and adaptation challenges. In such 
pathways, it is not possible to limit warming to 1.5°C for the vast 
majority of the integrated assessment models (medium evidence, 
high agreement). {5.5.2} In all SSPs, mitigation costs substantially 
increase in 1.5°C pathways compared to 2°C pathways. No pathway 
in the literature integrates or achieves all 17 SDGs (high confidence). 
{5.5.2} Real-world experiences at the project level show that the 
actual integration between adaptation, mitigation and sustainable 
development is challenging as it requires reconciling trade-offs across 
sectors and spatial scales (very high confidence). {5.5.1}

Without societal transformation and rapid implementation 
of ambitious greenhouse gas reduction measures, pathways 
to limiting warming to 1.5°C and achieving sustainable 
development will be exceedingly difficult, if not impossible, 
to achieve (high confidence). The potential for pursuing such 
pathways differs between and within nations and regions, due to 
different development trajectories, opportunities and challenges (very 
high confidence). {5.5.3.2, Figure 5.1} Limiting warming to 1.5°C 
would require all countries and non-state actors to strengthen their 
contributions without delay. This could be achieved through sharing 
efforts based on bolder and more committed cooperation, with support 
for those with the least capacity to adapt, mitigate and transform 
(medium evidence, high agreement). {5.5.3.1, 5.5.3.2} Current 
efforts towards reconciling low-carbon trajectories and reducing 
inequalities, including those that avoid difficult trade-offs associated 
with transformation, are partially successful yet demonstrate notable 
obstacles (medium evidence, medium agreement). {5.5.3.3, Box 5.3, 
Cross-Chapter Box 13 in this chapter}

Social justice and equity are core aspects of climate-resilient 
development pathways for transformational social change. 
Addressing challenges and widening opportunities between 
and within countries and communities would be necessary 
to achieve sustainable development and limit warming to 
1.5°C, without making the poor and disadvantaged worse off  
(high confidence). Identifying and navigating inclusive and socially 
acceptable pathways towards low-carbon, climate-resilient futures is a 
challenging yet important endeavour, fraught with moral, practical and 
political difficulties and inevitable trade-offs (very high confidence). 
{5.5.2, 5.5.3.3, Box 5.3} It entails deliberation and problem-solving 
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processes to negotiate societal values, well-being, risks and resilience 
and to determine what is desirable and fair, and to whom (medium 
evidence, high agreement). Pathways that encompass joint, iterative 
planning and transformative visions, for instance in Pacific SIDS 
like Vanuatu and in urban contexts, show potential for liveable and 
sustainable futures (high confidence). {5.5.3.1, 5.5.3.3, Figure 5.5, 
Box 5.3, Cross-Chapter Box 13 in this chapter}

The fundamental societal and systemic changes to achieve 
sustainable development, eradicate poverty and reduce 
inequalities while limiting warming to 1.5°C would require 
meeting a set of institutional, social, cultural, economic and 
technological conditions (high confidence). The coordination 
and monitoring of policy actions across sectors and spatial scales 
is essential to support sustainable development in 1.5°C warmer 
conditions (very high confidence). {5.6.2, Box 5.3} External funding 
and technology transfer better support these efforts when they 
consider recipients’ context-specific needs (medium evidence, high 
agreement). {5.6.1} Inclusive processes can facilitate transformations 
by ensuring participation, transparency, capacity building and iterative 
social learning (high confidence). {5.5.3.3, Cross-Chapter Box 13, 
5.6.3} Attention to power asymmetries and unequal opportunities 
for development, among and within countries, is key to adopting 
1.5°C-compatible development pathways that benefit all populations 
(high confidence). {5.5.3, 5.6.4, Box 5.3} Re-examining individual and 
collective values could help spur urgent, ambitious and cooperative 
change (medium evidence, high agreement). {5.5.3, 5.6.5}
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5.1	 Scope and Delineations

This chapter takes sustainable development as the starting point and 
focus for analysis, considering the broader bi-directional interplay 
and multifaceted interactions between development patterns and 
climate actions in a 1.5°C warmer world and in the context of 
eradicating poverty and reducing inequality. It assesses the impacts 
of keeping temperatures at or below 1.5°C of global warming above 
pre-industrial levels on sustainable development and compares the 
impacts avoided at 1.5°C compared to 2°C (Section 5.2). It then 
examines the interactions, synergies and trade-offs of adaptation 
(Section 5.3) and mitigation (Section 5.4) measures with sustainable 
development and the Sustainable Development Goals (SDGs). The 
chapter offers insights into possible pathways towards a 1.5°C 
warmer world, especially through climate-resilient development 
pathways providing a comprehensive vision across different contexts 
(Section 5.5). The chapter also identifies the conditions that would be 
needed to simultaneously achieve sustainable development, poverty 
eradication, the reduction of inequalities, and the 1.5°C climate 
objective (Section 5.6).

5.1.1	 Sustainable Development, SDGs, Poverty 
Eradication and Reducing Inequalities

Chapter 1 (see Cross-Chapter Box 4 in Chapter 1) defines sustainable 
development as ‘development that meets the needs of the present 
and future generations’ through balancing economic, social and 
environmental considerations, and then introduces the United Nations 
(UN) 2030 Agenda for Sustainable Development, which sets out 
17 ambitious goals for sustainable development for all countries by 
2030. These SDGs are: no poverty (SDG 1), zero hunger (SDG 2), good 
health and well-being (SDG 3), quality education (SDG 4), gender 
equality (SDG 5), clean water and sanitation (SDG 6), affordable and 
clean energy (SDG 7), decent work and economic growth (SDG 8), 
industry, innovation and infrastructure (SDG 9), reduced inequalities 
(SDG 10), sustainable cities and communities (SDG 11), responsible 
consumption and production (SDG 12), climate action (SDG 13), life 
below water (SDG 14), life on land (SDG 15), peace, justice and strong 
institutions (SDG 16) and partnerships for the goals (SDG 17).

The IPCC Fifth Assessment Report (AR5) included extensive discussion 
of links between climate and sustainable development, especially in 
Chapter 13 (Olsson et al., 2014) and Chapter 20 (Denton et al., 2014) 
in Working Group II and Chapter 4 (Fleurbaey et al., 2014) in Working 
Group III. However, the AR5 preceded the 2015 adoption of the SDGs 
and the literature that argues for their fundamental links to climate 
(Wright et al., 2015; Salleh, 2016; von Stechow et al., 2016; Hammill 
and Price-Kelly, 2017; ICSU, 2017; Maupin, 2017; Gomez-Echeverri, 
2018).

The SDGs build on efforts under the UN Millennium Development Goals 
to reduce poverty, hunger, and other deprivations. According to the UN, 
the Millennium Development Goals were successful in reducing poverty 
and hunger and improving water security (UN, 2015a). However, critics 
argued that they failed to address within-country disparities, human 
rights and key environmental concerns, focused only on developing 
countries, and had numerous measurement and attribution problems 

(Langford et al., 2013; Fukuda-Parr et al., 2014). While improvements 
in water security, slums and health may have reduced some aspects 
of climate vulnerability, increases in incomes were linked to rising 
greenhouse gas (GHG) emissions and thus to a trade-off between 
development and climate change (Janetos et al., 2012; UN, 2015a; 
Hubacek et al., 2017).

While the SDGs capture many important aspects of sustainable 
development, including the explicit goals of poverty eradication 
and reducing inequality, there are direct connections from 
climate to other measures of sustainable development including 
multidimensional poverty, equity, ethics, human security, well-
being and climate-resilient development (Bebbington and 
Larrinaga, 2014; Robertson, 2014; Redclift and Springett, 2015; 
Barrington-Leigh, 2016; Helliwell et al., 2018; Kirby and O’Mahony, 
2018) (see Glossary). The UN proposes sustainable development 
as ‘eradicating poverty in all its forms and dimensions, combating 
inequality within and among countries, preserving the planet, 
creating sustained, inclusive and sustainable economic growth and 
fostering social inclusion’ (UN, 2015b). There is robust evidence 
of the links between climate change and poverty (see Chapter 1, 
Cross-Chapter Box 4). The AR5 concluded with high confidence 
that disruptive levels of climate change would preclude reducing 
poverty (Denton et al., 2014; Fleurbaey et al., 2014). International 
organizations have since stated that climate changes ‘undermine 
the ability of all countries to achieve sustainable development’ (UN, 
2015b) and can reverse or erase improvements in living conditions 
and decades of development (Hallegatte et al., 2016).

Climate warming has unequal impacts on different people and places 
as a result of differences in regional climate changes, vulnerabilities 
and impacts, and these differences then result in unequal impacts 
on sustainable development and poverty (Section 5.2). Responses to 
climate change also interact in complex ways with goals of poverty 
reduction. The benefits of adaptation and mitigation projects and 
funding may accrue to some and not others, responses may be costly 
and unaffordable to some people and countries, and projects may 
disadvantage some individuals, groups and development initiatives 
(Sections 5.3 and 5.4, Cross-Chapter Box 11 in Chapter 4).

5.1.2	 Pathways to 1.5°C

Pathways to 1.5°C (see Chapter 1, Cross-Chapter Box 1 in Chapter 1, 
Glossary) include ambitious reductions in emissions and strategies for 
adaptation that are transformational, as well as complex interactions 
with sustainable development, poverty eradication and reducing 
inequalities. The AR5 WGII introduced the concept of climate-
resilient development pathways (CRDPs) (see Glossary) which 
combine adaptation and mitigation to reduce climate change and 
its impacts, and emphasize the importance of addressing structural 
and intersecting inequalities, marginalization and multidimensional 
poverty to ‘transform […] the development pathways themselves 
towards greater social and environmental sustainability, equity, 
resilience, and justice’ (Olsson et al., 2014). This chapter assesses 
literature on CRDPs relevant to 1.5°C global warming (Section 5.5.3), 
to understand better the possible societal and systems transformations 
(see Glossary) that reduce inequality and increase well-being 
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(Figure 5.1). It also summarizes the knowledge on conditions to 
achieve such transformations, including changes in technologies, 

culture, values, financing and institutions that support low-carbon 
and resilient pathways and sustainable development (Section 5.6).

Figure 5.1 |  Climate-resilient development pathways (CRDPs) (green arrows) between a current world in which countries and communities exist at different levels of 
development (A) and future worlds that range from climate-resilient (bottom) to unsustainable (top) (D). CRDPs involve societal transformation rather than business-as-usual 
approaches, and all pathways involve adaptation and mitigation choices and trade-offs (B). Pathways that achieve the Sustainable Development Goals by 2030 and beyond, 
strive for net zero emissions around mid-21st century, and stay within the global 1.5°C warming target by the end of the 21st century, while ensuring equity and well-being for 
all, are best positioned to achieve climate-resilient futures (C). Overshooting on the path to 1.5°C will make achieving CRDPs and other sustainable trajectories more difficult; 
yet, the limited literature does not allow meaningful estimates.

5.1.3	 Types of Evidence 

A variety of sources of evidence are used to assess the interactions 
of sustainable development and the SDGs with the causes, impacts 
and responses to climate change of 1.5°C warming. This chapter builds 
on Chapter 3 to assess the sustainable development implications of 
impacts at 1.5°C and 2°C, and on Chapter 4 to examine the implications 
of response measures. Scientific and grey literature, with a post-
AR5 focus, and data that evaluate, measure and model sustainable 
development–climate links from various perspectives, quantitatively 
and qualitatively, across scales, and through well-documented case 
studies are assessed.

Literature that explicitly links 1.5°C global warming to sustainable 
development across scales remains scarce; yet we find relevant insights 
in many recent publications on climate and development that assess 
impacts across warming levels, the effects of adaptation and mitigation 
response measures, and interactions with the SDGs. Relevant evidence 
also stems from emerging literature on possible pathways, overshoot 

and enabling conditions (see Glossary) for integrating sustainable 
development, poverty eradication and reducing inequalities in the 
context of 1.5°C.

5.2	 Poverty, Equality and Equity Implications 
of a 1.5°C Warmer World

Climate change could lead to significant impacts on extreme poverty 
by 2030 (Hallegatte et al., 2016; Hallegatte and Rozenberg, 2017). 
The AR5 concluded, with very high confidence, that climate change 
and climate variability worsen existing poverty and exacerbate 
inequalities, especially for those disadvantaged by gender, age, race, 
class, caste, indigeneity and (dis)ability (Olsson et al., 2014). New 
literature on these links is substantial, showing that the poor will 
continue to experience climate change severely, and climate change 
will exacerbate poverty (very high confidence) (Fankhauser and 
Stern, 2016; Hallegatte et al., 2016; O’Neill et al., 2017a; Winsemius 
et al., 2018). The understanding of regional impacts and risks of 
1.5°C global warming and interactions with patterns of societal 
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vulnerability and poverty remains limited. Yet identifying and 
addressing poverty and inequality is at the core of staying within 
a safe and just space for humanity (Raworth, 2017; Bathiany et al., 
2018). Building on relevant findings from Chapter 3 (see Section 3.4), 
this section examines anticipated impacts and risks of 1.5°C and 
higher warming on sustainable development, poverty, inequality and 
equity (see Glossary).

5.2.1	 Impacts and Risks of a 1.5°C Warmer World: 
Implications for Poverty and Livelihoods

Global warming of 1.5°C will have consequences for sustainable 
development, poverty and inequalities. This includes residual risks, 
limits to adaptation, and losses and damages (Cross-Chapter Box 12 
in this chapter; see Glossary). Some regions have already experienced 
a 1.5°C warming, with impacts on food and water security, health and 
other components of sustainable development (medium evidence, 
medium agreement) (see Chapter 3, Section 3.4). Climate change is also 
already affecting poorer subsistence communities through decreases 
in crop production and quality, increases in crop pests and diseases, 
and disruption to culture (Savo et al., 2016). It disproportionally affects 
children and the elderly and can increase gender inequality (Kaijser 
and Kronsell, 2014; Vinyeta et al., 2015; Carter et al., 2016; Hanna and 
Oliva, 2016; Li et al., 2016).

At 1.5°C warming, compared to current conditions, further negative 
consequences are expected for poor people, and inequality and 
vulnerability (medium evidence, high agreement). Hallegatte and 
Rozenberg (2017) report that by 2030 (roughly approximating a 1.5°C 
warming), 122 million additional people could experience extreme 
poverty, based on a ‘poverty scenario’ of limited socio-economic 
progress, comparable to the Shared Socio-Economic Pathway (SSP) 
4 (inequality), mainly due to higher food prices and declining health, 
with substantial income losses for the poorest 20% across 92 countries. 
Pretis et al. (2018) estimate negative impacts on economic growth 
in lower-income countries at 1.5°C warming, despite uncertainties. 
Impacts are likely to occur simultaneously across livelihood, food, 
human, water and ecosystem security (limited evidence, high 
agreement) (Byers et al., 2018), but the literature on interacting and 
cascading effects remains scarce (Hallegatte et al., 2014; O’Neill et 
al., 2017b; Reyer et al., 2017a, b).

Chapter 3 outlines future impacts and risks for ecosystems and 
human systems, many of which could also undermine sustainable 
development and efforts to eradicate poverty and hunger, and 
to protect health and ecosystems. Chapter 3 findings (see Section 
3.5.2.1) suggest increasing Reasons for Concern from moderate to 
high at a warming of 1.1° to 1.6°C, including for indigenous people 
and their livelihoods, and ecosystems in the Arctic (O’Neill et al., 
2017b). In 2050, based on the Hadley Centre Climate Prediction 
Model 3 (HadCM3) and the Special Report on Emission Scenarios A1b 
scenario (roughly comparable to 1.5°C warming), 450 million more 
flood-prone people would be exposed to doubling in flood frequency, 
and global flood risk would increase substantially (Arnell and 
Gosling, 2016). For droughts, poor people are expected to be more 
exposed (85% in population terms) in a warming scenario greater 
than 1.5°C for several countries in Asia and southern and western 

Africa (Winsemius et al., 2018). In urban Africa, a 1.5°C warming 
could expose many households to water poverty and increased 
flooding (Pelling et al., 2018). At 1.5ºC warming, fisheries-dependent 
and coastal livelihoods, of often disadvantaged populations, would 
suffer from the loss of coral reefs (see Chapter 3, Box 3.4).

Global heat stress is projected to increase in a 1.5°C warmer world, 
and by 2030, compared to 1961–1990, climate change could be 
responsible for additional annual deaths of 38,000 people from heat 
stress, particularly among the elderly, and 48,000 from diarrhoea, 
60,000 from malaria, and 95,000 from childhood undernutrition (WHO, 
2014). Each 1°C increase could reduce work productivity by 1 to 3% 
for people working outdoors or without air conditioning, typically the 
poorer segments of the workforce (Park et al., 2015).

The regional variation in the ‘warming experience at 1.5°C’ (see Chapter 
1, Section 1.3.1) is large (see Chapter 3, Section 3.3.2). Declines in crop 
yields are widely reported for Africa (60% of observations), with serious 
consequences for subsistence and rain-fed agriculture and food security 
(Savo et al., 2016). In Bangladesh, by 2050, damages and losses are 
expected for poor households dependent on freshwater fish stocks due 
to lack of mobility, limited access to land and strong reliance on local 
ecosystems (Dasgupta et al., 2017). Small Island Developing States 
(SIDS) are expected to experience challenging conditions at 1.5°C 
warming due to increased risk of internal migration and displacement 
and limits to adaptation (see Chapter 3, Box 3.5, Cross-Chapter Box 
12 in this chapter). An anticipated decline of marine fisheries of 
3 million metric tonnes per degree warming would have serious 
regional impacts for the Indo-Pacific region and the Arctic (Cheung et 
al., 2016).

5.2.2	 Avoided Impacts of 1.5°C versus 2°C 
Warming for Poverty and Inequality

Avoided impacts between 1.5°C and 2°C warming are expected to 
have significant positive implications for sustainable development, 
and reducing poverty and inequality. Using the SSPs (see Chapter 1, 
Cross-Chapter Box 1 in Chapter 1, Section 5.5.2), Byers et al. (2018) 
model the number of people exposed to multi-sector climate risks 
and vulnerable to poverty (income < $10/day), comparing 2°C and 
1.5°C; the respective declines are from 86 million to 24 million for 
SSP1 (sustainability), from 498 million to 286 million for SSP2 (middle 
of the road), and from 1220 million to 763 million for SSP3 (regional 
rivalry), which suggests overall 62–457 million fewer people exposed 
and vulnerable at 1.5°C warming. Across the SSPs, the largest 
populations exposed and vulnerable are in South Asia (Byers et 
al., 2018). The avoided impacts on poverty at 1.5°C relative to 2°C 
are projected to depend at least as much or more on development 
scenarios than on warming (Wiebe et al., 2015; Hallegatte and 
Rozenberg, 2017).

Limiting warming to 1.5°C is expected to reduce the number of people 
exposed to hunger, water stress and disease in Africa (Clements, 
2009). It is also expected to limit the number of poor people exposed 
to floods and droughts at higher degrees of warming, especially in 
African and Asian countries (Winsemius et al., 2018). Challenges for 
poor populations – relating to food and water security, clean energy 
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access and environmental well-being – are projected to be less at 
1.5°C, particularly for vulnerable people in Africa and Asia (Byers et 
al., 2018). The overall projected socio-economic losses compared to the 
present day are less at 1.5°C (8% loss of gross domestic product per 
capita) compared to 2°C (13%), with lower-income countries projected 
to experience greater losses, which may increase economic inequality 
between countries (Pretis et al., 2018).

5.2.3	 Risks from 1.5°C versus 2°C Global Warming 
and the Sustainable Development Goals

The risks that can be avoided by limiting global warming to 1.5ºC rather 
than 2°C have many complex implications for sustainable development 
(ICSU, 2017; Gomez-Echeverri, 2018). There is high confidence that 
constraining warming to 1.5°C rather than 2°C would reduce risks 
for unique and threatened ecosystems, safeguarding the services they 
provide for livelihoods and sustainable development and making 
adaptation much easier (O’Neill et al., 2017b), particularly in Central 
America, the Amazon, South Africa and Australia (Schleussner et al., 
2016; O’Neill et al., 2017b; Reyer et al., 2017b; Bathiany et al., 2018).

In places that already bear disproportionate economic and social 
challenges to their sustainable development, people will face lower 
risks at 1.5°C compared to 2°C. These include North Africa and 
the Levant (less water scarcity), West Africa (less crop loss), South 
America and Southeast Asia (less intense heat), and many other 
coastal nations and island states (lower sea level rise, less coral reef 
loss) (Schleussner et al., 2016; Betts et al., 2018). The risks for food, 
water and ecosystems, particularly in subtropical regions such as 
Central America and countries such as South Africa and Australia, 
are expected to be lower at 1.5°C than at 2°C warming (Schleussner 
et al., 2016). Fewer people would be exposed to droughts and 

heat waves and the associated health impacts in countries such as 
Australia and India (King et al., 2017; Mishra et al., 2017). 

Limiting warming to 1.5°C would make it markedly easier to achieve 
the SDGs for poverty eradication, water access, safe cities, food 
security, healthy lives and inclusive economic growth, and would help 
to protect terrestrial ecosystems and biodiversity (medium evidence, 
high agreement) (Table 5.2 available at the end of the chapter). For 
example, limiting species loss and expanding climate refugia will 
make it easier to achieve SDG 15 (see Chapter 3, Section 3.4.3). One 
indication of how lower temperatures benefit the SDGs is to compare 
the impacts of Representative Concentration Pathway (RCP) 4.5 (lower 
emissions) and RCP8.5 (higher emissions) on the SDGs (Ansuategi 
et al., 2015). A low emissions pathway allows for greater success in 
achieving SDGs for reducing poverty and hunger, providing access 
to clean energy, reducing inequality, ensuring education for all and 
making cities more sustainable. Even at lower emissions, a medium 
risk of failure exists to meet goals for water and sanitation, and marine 
and terrestrial ecosystems.

Action on climate change (SDG 13), including slowing the rate of 
warming, would help reach the goals for water, energy, food and 
land (SDGs 6, 7, 2 and 15) (Obersteiner et al., 2016; ICSU, 2017) 
and contribute to poverty eradication (SDG 1) (Byers et al., 2018). 
Although the literature that connects 1.5°C to the SDGs is limited, a 
pathway that stabilizes warming at 1.5°C by the end of the century is 
expected to increase the chances of achieving the SDGs by 2030, with 
greater potential to eradicate poverty, reduce inequality and foster 
equity (limited evidence, medium agreement). There are no studies 
on overshoot and dimensions of sustainable development, although 
literature on 4°C of warming suggests the impacts would be severe 
(Reyer et al., 2017b).

Impacts
Chapter 3 
Section

1.5°C 2°C
Sustainable Development Goals 

(SDGs) More Easily Achieved 
when Limiting Warming to 1.5°C

Water scarcity

3.4.2.1 4% more people exposed to water stress 
8% more people exposed to water stress, 
with 184–270 million people more exposed

SDG 6 water availability for all

Table 3.4
496 (range 103–1159) million people exposed 
and vulnerable to water stress

586 (range 115–1347) million people exposed 
and vulnerable to water stress

Ecosystems

3.4.3,  
Table 3.4

Around 7% of land area experiences biome  
shifts

Around 13% (range 8–20%) of land area 
experiences biome shifts SDG 15 to protect terrestrial ecosystems  

and halt biodiversity loss
Box 3.5 70–90% of coral reefs at risk from bleaching 99% of coral reefs at risk from bleaching

Coastal cities

3.4.5.1
31–69 million people exposed to coastal 
flooding

32–79 million exposed to coastal flooding
SDG 11 to make cities and human 
settlements safe and resilient

3.4.5.2
Fewer cities and coasts exposed to sea level rise 
and extreme events

More people and cities exposed to flooding 

Food systems

3.4.6,  
Box 3.1

Significant declines in crop yields avoided, 
some yields may increase

Average crop yields decline SDG 2 to end hunger and 
achieve food security

Table 3.4 32–36 million people exposed to lower yields 330–396 million people exposed to lower yields

Health
3.4.5.1

Lower risk of temperature-related morbidity 
and smaller mosquito range

Higher risks of temperature-related morbidity 
and mortality and larger geographic range 
of mosquitoes SDG 3 to ensure healthy lives for all

3.4.5.2 3546–4508 million people exposed to heat waves 5417–6710 million people exposed to heat waves

Table 5.1  |	 Sustainable development implications of avoided impacts between 1.5°C and 2°C global warming.
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Cross-Chapter Box 12 |  Residual Risks, Limits to Adaptation and Loss and Damage

Lead Authors: 
Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Debora Ley (Guatemala/Mexico), Reinhard Mechler (Germany), Patricia 
Fernanda Pinho (Brazil), Aromar Revi (India), Petra Tschakert (Australia/Austria)

Contributing Authors: 
Karen Paiva Henrique (Brazil), Saleemul Huq (Bangladesh/UK), Rachel James (UK), Adelle Thomas (Bahamas), Margaretha 
Wewerinke-Singh (Netherlands)

Introduction
Residual climate-related risks, limits to adaptation, and loss and damage (see Glossary) are increasingly assessed in the scientific 
literature (van der Geest and Warner, 2015; Boyd et al., 2017; Mechler et al., 2019). The AR5 (IPCC, 2013; Oppenheimer et al., 2014) 
documented impacts that have been detected and attributed to climate change, projected increasing climate-related risks with con-
tinued global warming, and recognized barriers and limits to adaptation. It recognized that adaptation is constrained by biophysi-
cal, institutional, financial, social and cultural factors, and that the interaction of these factors with climate change can lead to soft 
adaptation limits (adaptive actions currently not available) and hard adaptation limits (adaptive actions appear infeasible leading 
to unavoidable impacts) (Klein et al., 2014).

Loss and damage: concepts and perspectives
‘Loss and Damage’ (L&D) has been discussed in international climate negotiations for three decades (INC, 1991; Calliari, 2016; 
Vanhala and Hestbaek, 2016). A work programme on L&D was established as part of the Cancun Adaptation Framework in 2010 
supporting developing countries particularly vulnerable to climate change impacts (UNFCCC, 2011a). In 2013, the Conference of 
the Parties (COP) 19 established the Warsaw International Mechanism for Loss and Damage (WIM) as a formal part of the United 
Nations Framework Convention on Climate Change (UNFCCC) architecture (UNFCCC, 2014). It acknowledges that L&D ‘includes, 
and in some cases involves more than, that which can be reduced by adaptation’ (UNFCCC, 2014). The Paris Agreement recognized 
‘the importance of averting, minimizing and addressing loss and damage associated with the adverse effects of climate change’ 
through Article 8 (UNFCCC, 2015).

There is no one definition of L&D in climate policy, and analysis of policy documents and stakeholder views has demonstrated ambi-
guity (Vanhala and Hestbaek, 2016; Boyd et al., 2017). UNFCCC documents suggest that L&D is associated with adverse impacts 
of climate change on human and natural systems, including impacts from extreme events and slow-onset processes (UNFCCC, 
2011b, 2014, 2015). Some documents focus on impacts in developing or particularly vulnerable countries (UNFCCC, 2011b, 2014). 
They refer to economic (loss of assets and crops) and non-economic (biodiversity, culture, health) impacts, the latter also being an 
action area under the WIM workplan, and irreversible and permanent loss and damage. Lack of clarity of what the term addresses 
(avoidance through adaptation and mitigation, unavoidable losses, climate risk management, existential risk) was expressed among 
stakeholders, with further disagreement ensuing about what constitutes anthropogenic climate change versus natural climate vari-
ability (Boyd et al., 2017).

Limits to adaptation and residual risks
The AR5 described adaptation limits as points beyond which actors’ objectives are compromised by intolerable risks threatening key 
objectives such as good health or broad levels of well-being, thus requiring transformative adaptation for overcoming soft limits 
(see Chapter 4, Sections 4.2.2.3, 4.5.3 and Cross-Chapter Box 9, Section 5.3.1) (Dow et al., 2013; Klein et al., 2014). The AR5 WGII 
risk tables, based on expert judgment, depicted the potential for, and the limits of, additional adaptation to reduce risk. Near-term 
(2030–2040) risks can be used as a proxy for 1.5°C warming by the end of the century and compared to longer-term (2080–2100) 
risks associated with an approximate 2°C warming. Building on the AR5 risk approach, Cross-Chapter Box 12, Figure 1 provides a 
stylised application example to poverty and inequality. 
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Limits to adaptation, residual risks, and losses in a 1.5°C warmer world
The literature on risks at 1.5°C (versus 2°C and more) and potentials for adaptation remains limited, particularly for specific regions, 
sectors, and vulnerable and disadvantaged populations. Adaptation potential at 1.5°C and 2°C is rarely assessed explicitly, making 
an assessment of residual risk challenging. Substantial progress has been made since the AR5 to assess which climate change 
impacts on natural and human systems can be attributed to anthropogenic emissions (Hansen and Stone, 2016) and to examine 
the influence of anthropogenic emissions on extreme weather events (NASEM, 2016), and on consequent impacts on human life 
(Mitchell et al., 2016), but less so on monetary losses and risks (Schaller et al., 2016). There has also been some limited research to 
examine local-level limits to adaptation (Warner and Geest, 2013; Filho and Nalau, 2018). What constitutes losses and damages 
is context-dependent and often requires place-based research into what people value and consider worth protecting (Barnett et 
al., 2016; Tschakert et al., 2017). Yet assessments of non-material and intangible losses are particularly challenging, such as loss 
of sense of place, belonging, identity, and damage to emotional and mental well-being (Serdeczny et al., 2017; Wewerinke-Singh, 
2018a). Warming of 1.5°C is not considered ‘safe’ for most nations, communities, ecosystems and sectors, and poses significant risks 
to natural and human systems as compared to the current warming of 1°C (high confidence) (see Chapter 3, Section 3.4, Box 3.4, 
Box 3.5, Table 3.5, Cross-Chapter Box 6 in Chapter 3). Table 5.2, drawing on findings from Chapters 3, 4 and 5, presents examples 
of soft and hard limits in natural and human systems in the context of 1.5°C and 2°C of warming.

Cross-Chapter Box 12, Figure 1 |  Stylized reduced risk levels due to avoided impacts between 2°C and 1.5°C warming (in solid red-orange), additional 
avoided impacts with adaptation under 2°C (striped orange) and under 1.5°C (striped yellow), and unavoidable impacts (losses) with no or very limited 
potential for adaptation (grey), extracted from the AR5 WGII risk tables (Field et al., 2014), and underlying chapters by Adger et al. (2014) and Olsson et al. 
(2014). For some systems and sectors (A), achieving 1.5°C could reduce risks to low (with adaptation) from very high (without adaptation) and high (with 
adaptation) under 2°C. For other areas (C), no or very limited adaptation potential is anticipated, suggesting limits, with the same risks for 1.5°C and 2°C. 
Other risks are projected to be medium under 2°C with further potential for reduction, especially with adaptation, to very low levels (B).

Cross-Chapter Box 12 (continued)

System/Region Example Soft Limit Hard Limit

Coral reefs
Loss of 70–90% of tropical coral reefs by mid-century under 1.5°C scenario (total loss under 2°C 
scenario) (see Chapter 3, Sections 3.4.4 and 3.5.2.1, Box 3.4)

✓

Biodiversity
6% of insects, 8% of plants and 4% of vertebrates lose over 50% of the climatically determined 
geographic range at 1.5°C (18% of insects, 16% of plants and 8% of vertebrates at 2°C) 
(see Chapter 3, Section 3.4.3.3)

✓

Poverty
24–357 million people exposed to multi-sector climate risks and vulnerable to poverty at 1.5°C 
(86–1220 million at 2°C) (see Section 5.2.2) ✓

Human health
Twice as many megacities exposed to heat stress at 1.5°C compared to present, potentially exposing 
350 million additional people to deadly heat wave conditions by 2050 (see Chapter 3, Section 3.4.8) ✓ ✓

Coastal livelihoods

Large-scale changes in oceanic systems (temperature and acidification) inflict damage and losses to 
livelihoods, income, cultural identity and health for coastal-dependent communities at 1.5°C (potential 
higher losses at 2°C) (see Chapter 3, Sections 3.4.4, 3.4.5, 3.4.6.3, Box 3.4, Box 3.5, Cross-Chapter 
Box 6, Chapter 4, Section 4.3.5; Section 5.2.3)

✓ ✓

Small Island Developing States
Sea level rise and increased wave run up combined with increased aridity and decreased 
freshwater availability at 1.5°C warming potentially leaving several atoll islands uninhabitable 
(see Chapter 3, Sections 3.4.3, 3.4.5, Box 3.5, Chapter 4, Cross-Chapter Box 9)

✓

Cross-Chapter Box 12, Table 1 |	 Soft and hard adaptation limits in the context of 1.5°C and 2°C of global warming.
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Approaches and policy options to address residual risk and loss and damage 
Conceptual and applied work since the AR5 has highlighted the synergies and differences with adaptation and disaster risk reduction 
policies (van der Geest and Warner, 2015; Thomas and Benjamin, 2017), suggesting more integration of existing mechanisms, yet 
careful consideration is advised for slow-onset and potentially irreversible impacts and risk (Mechler and Schinko, 2016). Scholarship 
on justice and equity has provided insight on compensatory, distributive and procedural equity considerations for policy and practice 
to address loss and damage (Roser et al., 2015; Wallimann-Helmer, 2015; Huggel et al., 2016). A growing body of legal literature 
considers the role of litigation in preventing and addressing loss and damage and finds that litigation risks for governments and 
business are bound to increase with improved understanding of impacts and risks as climate science evolves (high confidence) 
(Mayer, 2016; Banda and Fulton, 2017; Marjanac and Patton, 2018; Wewerinke-Singh, 2018b). Policy proposals include international 
support for experienced losses and damages (Crosland et al., 2016; Page and Heyward, 2017), addressing climate displacement, 
donor-supported implementation of regional public insurance systems (Surminski et al., 2016) and new global governance systems 
under the UNFCCC (Biermann and Boas, 2017).

Cross-Chapter Box 12 (continued)

5.3	 Climate Adaptation and 
Sustainable Development

Adaptation will be extremely important in a 1.5°C warmer world 
since substantial impacts will be felt in every region (high confidence) 
(Chapter 3, Section 3.3), even if adaptation needs will be lower than 
in a 2°C warmer world (see Chapter 4, Sections 4.3.1 to 4.3.5, 4.5.3, 
Cross-Chapter Box 10 in Chapter 4). Climate adaptation options 
comprise structural, physical, institutional and social responses, with 
their effectiveness depending largely on governance (see Glossary), 
political will, adaptive capacities and availability of finance (see 
Chapter 4, Sections 4.4.1 to 4.4.5) (Betzold and Weiler, 2017; Sonwa 
et al., 2017; Sovacool et al., 2017). Even though the literature is scarce 
on the expected impacts of future adaptation measures on sustainable 
development specific to warming experiences of 1.5°C, this section 
assesses available literature on how (i) prioritising sustainable 
development enhances or impedes climate adaptation efforts 
(Section 5.3.1); (ii) climate adaptation measures impact sustainable 
development and the SDGs in positive (synergies) or negative (trade-
offs) ways (Section 5.3.2); and (iii) adaptation pathways towards a 1.5°C 
warmer world affect sustainable development, poverty and inequalities 
(Section 5.3.3). The section builds on Chapter 4 (see Section 4.3.5) 
regarding available adaptation options to reduce climate vulnerability 
and build resilience (see Glossary) in the context of 1.5°C-compatible 
trajectories, with emphasis on sustainable development implications.

5.3.1	 Sustainable Development in Support 
of Climate Adaptation

Making sustainable development a priority, and meeting the SDGs, 
is consistent with efforts to adapt to climate change (very high 
confidence). Sustainable development is effective in building adaptive 
capacity if it addresses poverty and inequalities, social and economic 
exclusion, and inadequate institutional capacities (Noble et al., 2014; 
Abel et al., 2016; Colloff et al., 2017). Four ways in which sustainable 
development leads to effective adaptation are described below. 

First, sustainable development enables transformational adaptation 
(see Chapter 4, Section 4.2.2.2) when an integrated approach is 

adopted, with inclusive, transparent decision-making, rather than 
addressing current vulnerabilities as stand-alone climate problems 
(Mathur et al., 2014; Arthurson and Baum, 2015; Shackleton et al., 
2015; Lemos et al., 2016; Antwi-Agyei et al., 2017b). Ending poverty 
in its multiple dimensions (SDG 1) is often a highly effective form of 
climate adaptation (Fankhauser and McDermott, 2014; Leichenko 
and Silva, 2014; Hallegatte and Rozenberg, 2017). However, ending 
poverty is not sufficient, and the positive outcome as an adaptation 
strategy depends on whether increased household wealth is actually 
directed towards risk reduction and management strategies (Nelson 
et al., 2016), as shown in urban municipalities (Colenbrander et al., 
2017; Rasch, 2017) and agrarian communities (Hashemi et al., 2017), 
and whether finance for adaptation is made available (Section 5.6.1).

Second, local participation is effective when wider socio-economic 
barriers are addressed via multiscale planning (McCubbin et al., 
2015; Nyantakyi-Frimpong and Bezner-Kerr, 2015; Toole et al., 2016). 
This is the case, for instance, when national education efforts (SDG 4) 
(Muttarak and Lutz, 2014; Striessnig and Loichinger, 2015) and 
indigenous knowledge (Nkomwa et al., 2014; Pandey and Kumar, 2018) 
enhance information sharing, which also builds resilience (Santos et al., 
2016; Martinez-Baron et al., 2018) and reduces risks for maladaptation 
(Antwi-Agyei et al., 2018; Gajjar et al., 2018).

Third, development promotes transformational adaptation when 
addressing social inequalities (Section 5.5.3, 5.6.4), as in SDGs 
4, 5, 16 and 17 (O’Brien, 2016; O’Brien, 2017). For example, SDG 5 
supports measures that reduce women’s vulnerabilities and allow 
women to benefit from adaptation (Antwi-Agyei et al., 2015; Van Aelst 
and Holvoet, 2016; Cohen, 2017). Mobilization of climate finance, 
carbon taxation and environmentally motivated subsidies can reduce 
inequalities (SDG 10), advance climate mitigation and adaptation 
(Chancel and Picketty, 2015), and be conducive to strengthening and 
enabling environments for resilience building (Nhamo, 2016; Halonen 
et al., 2017).

Fourth, when sustainable development promotes livelihood security, 
it enhances the adaptive capacities of vulnerable communities and 
households. Examples include SDG 11 supporting adaptation in cities 
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to reduce harm from disasters (Kelman, 2017; Parnell, 2017); access to 
water and sanitation (SDG 6) with strong institutions (SDG 16) (Rasul 
and Sharma, 2016); SDG 2 and its targets that promote adaptation 
in agricultural and food systems (Lipper et al., 2014); and targets for 
SDG 3 such as reducing infectious diseases and providing health cover 
are consistent with health-related adaptation (ICSU, 2017; Gomez-
Echeverri, 2018).

Sustainable development has the potential to significantly reduce 
systemic vulnerability, enhance adaptive capacity and promote 
livelihood security for poor and disadvantaged populations (high 
confidence). Transformational adaptation (see Chapter 4, Sections 
4.2.2.2 and 4.5.3) would require development that takes into 
consideration multidimensional poverty and entrenched inequalities, 
local cultural specificities and local knowledge in decision-making, 
thereby making it easier to achieve the SDGs in a 1.5°C warmer world 
(medium evidence, high agreement).

5.3.2	 Synergies and Trade-Offs between Adaptation 
Options and Sustainable Development

There are short-, medium-, and long-term positive impacts (synergies) 
and negative impacts (trade-offs) between the dual goals of keeping 
temperatures below 1.5°C global warming and achieving sustainable 
development. The extent of synergies between development and 
adaptation goals will vary by the development process adopted for a 
particular SDG and underlying vulnerability contexts (medium evidence, 
high agreement). Overall, the impacts of adaptation on sustainable 
development, poverty eradication and reducing inequalities in general, 
and the SDGs specifically, are expected to be largely positive, given 
that the inherent purpose of adaptation is to lower risks. Building on 
Chapter 4 (see Section 4.3.5), this section examines synergies and 
trade-offs between adaptation and sustainable development for some 
key sectors and approaches.

Agricultural adaptation: The most direct synergy is between SDG 2 
(zero hunger) and adaptation in cropping, livestock and food systems, 
designed to maintain or increase production (Lipper et al., 2014; 
Rockström et al., 2017). Farmers with effective adaptation strategies 
tend to enjoy higher food security and experience lower levels of 
poverty (FAO, 2015; Douxchamps et al., 2016; Ali and Erenstein, 2017). 
Vermeulen et al. (2016) report strong positive returns on investment 
across the world from agricultural adaptation with side benefits for 
environment and economic well-being. Well-adapted agricultural 
systems contribute to safe drinking water, health, biodiversity and 
equity goals (DeClerck et al., 2016; Myers et al., 2017). Climate-smart 
agriculture has synergies with food security, though it can be biased 
towards technological solutions, may not be gender sensitive, and can 
create specific challenges for institutional and distributional aspects 
(Lipper et al., 2014; Arakelyan et al., 2017; Taylor, 2017).

At the same time, adaptation options increase risks for human 
health, oceans and access to water if fertiliser and pesticides are used 
without regulation or when irrigation reduces water availability for 
other purposes (Shackleton et al., 2015; Campbell et al., 2016). When 
agricultural insurance and climate services overlook the poor, inequality 
may rise (Dinku et al., 2014; Carr and Owusu-Daaku, 2015; Georgeson 

et al., 2017a; Carr and Onzere, 2018). Agricultural adaptation measures 
may increase workloads, especially for women, while changes in crop 
mix can result in loss of income or culturally inappropriate food (Carr 
and Thompson, 2014; Thompson-Hall et al., 2016; Bryan et al., 2017), 
and they may benefit farmers with more land to the detriment of land-
poor farmers, as seen in the Mekong River Basin (see Chapter 3, Cross-
Chapter Box 6 in Chapter 3).

Adaptation to protect human health: Adaptation options in the health 
sector are expected to reduce morbidity and mortality (Arbuthnott 
et al., 2016; Ebi and Otmani del Barrio, 2017). Heat-early-warning 
systems help lower injuries, illnesses and deaths (Hess and Ebi, 2016), 
with positive impacts for SDG 3. Institutions better equipped to 
share information, indicators for detecting climate-sensitive diseases, 
improved provision of basic health care services and coordination 
with other sectors also improve risk management, thus reducing 
adverse health outcomes (Dasgupta et al., 2016; Dovie et al., 2017). 
Effective adaptation creates synergies via basic public health measures 
(K.R. Smith et al., 2014; Dasgupta, 2016) and health infrastructure 
protected from extreme weather events (Watts et al., 2015). Yet trade-
offs can occur when adaptation in one sector leads to negative impacts 
in another sector. Examples include the creation of urban wetlands 
through flood control measures which can breed mosquitoes, and 
migration eroding physical and mental well-being, hence adversely 
affecting SDG 3 (K.R. Smith et al., 2014; Watts et al., 2015). Similarly, 
increased use of air conditioning enhances resilience to heat stress 
(Petkova et al., 2017), yet it can result in higher energy consumption, 
undermining SDG 13.

Coastal adaptation: Adaptation to sea level rise remains essential 
in coastal areas even under a climate stabilization scenario of 1.5°C 
(Nicholls et al., 2018). Coastal adaptation to restore ecosystems (for 
instance by planting mangrove forests) supports SDGs for enhancing 
life and livelihoods on land and oceans (see Chapter 4, Sections 
4.3.2.3). Synergistic outcomes between development and relocation 
of coastal communities are enhanced by participatory decision-making 
and settlement designs that promote equity and sustainability (van der 
Voorn et al., 2017). Limits to coastal adaptation may rise, for instance 
in low-lying islands in the Pacific, Caribbean and Indian Ocean, with 
attendant implications for loss and damage (see Chapter 3 Box 3.5, 
Chapter 4, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in 
Chapter 5, Box 5.3).

Migration as adaptation: Migration has been used in various contexts 
to protect livelihoods from challenges related to climate change 
(Marsh, 2015; Jha et al., 2017), including through remittances (Betzold 
and Weiler, 2017). Synergies between migration and the achievement 
of sustainable development depend on adaptive measures and 
conditions in both sending and receiving regions (Fatima et al., 2014; 
McNamara, 2015; Entzinger and Scholten, 2016; Ober and Sakdapolrak, 
2017; Schwan and Yu, 2017). Adverse developmental impacts arise 
when vulnerable women or the elderly are left behind or if migration 
is culturally disruptive (Wilkinson et al., 2016; Albert et al., 2017; Islam 
and Shamsuddoha, 2017).

Ecosystem-based adaptation: Ecosystem-based adaptation (EBA) can 
offer synergies with sustainable development (Morita and Matsumoto, 



Chapter 5	 Sustainable Development, Poverty Eradication and Reducing Inequalities

55

458

2015; Ojea, 2015; Szabo et al., 2015; Brink et al., 2016; Butt et al., 
2016; Conservation International, 2016; Huq et al., 2017), although 
assessments remain difficult (see Chapter 4, Section 4.3.2.2) (Doswald 
et al., 2014). Examples include mangrove restoration reducing 
coastal vulnerability, protecting marine and terrestrial ecosystems, 
and increasing local food security, as well as watershed management 
reducing flood risks and improving water quality (Chong, 2014). 
In drylands, EBA practices, combined with community-based 
adaptation, have shown how to link adaptation with mitigation to 
improve livelihood conditions of poor farmers (Box 5.1). Synergistic 
developmental outcomes arise where EBA is cost effective, inclusive 
of indigenous and local knowledge and easily accessible by the poor 
(Ojea, 2015; Daigneault et al., 2016; Estrella et al., 2016). Payment for 
ecosystem services can provide incentives to land owners and natural 
resource managers to preserve environmental services with synergies 
with SDGs 1 and 13 (Arriagada et al., 2015), when implementation 
challenges are overcome (Calvet-Mir et al., 2015; Wegner, 2016; Chan 
et al., 2017). Trade-offs include loss of other economic land use types, 
tension between biodiversity and adaptation priorities, and conflicts 
over governance (Wamsler et al., 2014; Ojea, 2015).

Community-based adaptation: Community-based adaptation (CBA) 
(see Chapter 4, Sections 4.3.3.2) enhances resilience and sustainability 
of adaptation plans (Ford et al., 2016; Fernandes-Jesus et al., 2017; 
Grantham and Rudd, 2017; Gustafson et al., 2017). Yet negative 
impacts occur if it fails to fairly represent vulnerable populations 
and to foster long-term social resilience (Ensor, 2016; Taylor Aiken 
et al., 2017). Mainstreaming CBA into planning and decision-making 
enables the attainment of SDGs 5, 10 and 16 (Archer et al., 2014; 
Reid and Huq, 2014; Vardakoulias and Nicholles, 2014; Cutter, 2016; 
Kim et al., 2017). Incorporating multiple forms of indigenous and 
local knowledge is an important element of CBA, as shown for 
instance in the Arctic region (see Chapter 4, Section 4.3.5.5, Box 4.3, 
Cross-Chapter Box 9) (Apgar et al., 2015; Armitage, 2015; Pearce 
et al., 2015; Chief et al., 2016; Cobbinah and Anane, 2016; Ford et 
al., 2016). Indigenous and local knowledge can be synergistic with 
achieving SDGs 2, 6 and 10 (Ayers et al., 2014; Lasage et al., 2015; 
Regmi and Star, 2015; Berner et al., 2016; Chief et al., 2016; Murtinho, 
2016; Reid, 2016).

There are clear synergies between adaptation options and several 
SDGs, such as poverty eradication, elimination of hunger, clean water 
and health (robust evidence, high agreement), as well-integrated 
adaptation supports sustainable development (Eakin et al., 2014; 
Weisser et al., 2014; Adam, 2015; Smucker et al., 2015). Substantial 
synergies are observed in the agricultural and health sectors, and 
in ecosystem-based adaptations. However, particular adaptation 
strategies can lead to adverse consequences for developmental 
outcomes (medium evidence, high agreement). Adaptation strategies 
that advance one SDG can result in trade-offs with other SDGs; for 
instance, agricultural adaptation to enhance food security (SDG 2) 
causing negative impacts for health, equality and healthy ecosystems 
(SDGs 3, 5, 6, 10, 14 and 15), and resilience to heat stress increasing 
energy consumption (SDGs 3 and 7) and high-cost adaptation 
in resource-constrained contexts (medium evidence, medium 
agreement).

5.3.3	 Adaptation Pathways towards a 1.5°C Warmer 
World and Implications for Inequalities

In a 1.5°C warmer world, adaptation measures and options would 
need to be intensified, accelerated and scaled up. This entails not only 
the right ‘mix’ of options (asking ‘right for whom and for what?’) but 
also a forward-looking understanding of dynamic trajectories, that is 
adaptation pathways (see Chapter 1, Cross-Chapter Box 1 in Chapter 
1), best understood as decision-making processes over sets of potential 
action sequenced over time (Câmpeanu and Fazey, 2014; Wise et al., 
2014). Given the scarcity of literature on adaptation pathways that 
navigate place-specific warming experiences at 1.5°C, this section 
presents insights into current local decision-making for adaptation 
futures. This grounded evidence shows that choices between possible 
pathways, at different scales and for different groups of people, are 
shaped by uneven power structures and historical legacies that create 
their own, often unforeseen change (Fazey et al., 2016; Bosomworth 
et al., 2017; Lin et al., 2017; Murphy et al., 2017; Pelling et al., 2018). 

Pursuing a place-specific adaptation pathway approach towards a 
1.5°C warmer world harbours the potential for significant positive 
outcomes, with synergies for well-being possibilities to ‘leap-frog the 
SDGs’ (J.R.A. Butler et al., 2016), in countries at all levels of development 
(medium evidence, high agreement). It allows for identifying local, 
socially salient tipping points before they are crossed, based on what 
people value and trade-offs that are acceptable to them (Barnett et al., 
2014, 2016; Gorddard et al., 2016; Tschakert et al., 2017). Yet evidence 
also reveals adverse impacts that reinforce rather than reduce existing 
social inequalities and hence may lead to poverty traps (medium 
evidence, high agreement) (Nagoda, 2015; Warner et al., 2015; Barnett 
et al., 2016; J.R.A. Butler et al., 2016; Godfrey-Wood and Naess, 2016; 
Pelling et al., 2016; Albert et al., 2017; Murphy et al., 2017).

Past development trajectories as well as transformational adaptation 
plans can constrain adaptation futures by reinforcing dominant 
political-economic structures and processes, and narrowing option 
spaces; this leads to maladaptive pathways that preclude alternative, 
locally relevant and sustainable development initiatives and increase 
vulnerabilities (Warner and Kuzdas, 2017; Gajjar et al., 2018). Such 
dominant pathways tend to validate the practices, visions and 
values of existing governance regimes and powerful members of a 
community while devaluing those of less privileged stakeholders. 
Examples from Romania, the Solomon Islands and Australia illustrate 
such pathway dynamics in which individual economic gains and 
prosperity matter more than community cohesion and solidarity; this 
discourages innovation, exacerbates inequalities and further erodes 
adaptive capacities of the most vulnerable (Davies et al., 2014; Fazey 
et al., 2016; Bosomworth et al., 2017). In the city of London, United 
Kingdom, the dominant adaptation and disaster risk management 
pathway promotes resilience that emphasizes self-reliance; yet it 
intensifies the burden on low-income citizens, the elderly, migrants 
and others unable to afford flood insurance or protect themselves 
against heat waves (Pelling et al., 2016). Adaptation pathways in the 
Bolivian Altiplano have transformed subsistence farmers into world-
leading quinoa producers, but loss of social cohesion and traditional 
values, dispossession and loss of ecosystem services now constitute 
undesirable trade-offs (Chelleri et al., 2016).
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A narrow view of adaptation decision-making, for example focused on 
technical solutions, tends to crowd out more participatory processes 
(Lawrence and Haasnoot, 2017; Lin et al., 2017), obscures contested 
values and reinforces power asymmetries (Bosomworth et al., 2017; 
Singh, 2018). A situated and context-specific understanding of 
adaptation pathways that galvanizes diverse knowledge, values and 
joint initiatives helps to overcome dominant path dependencies, avoid 
trade-offs that intensify inequities and challenge policies detached 

from place (Fincher et al., 2014; Wyborn et al., 2015; Murphy et al., 
2017; Gajjar et al., 2018). These insights suggest that adaptation 
pathway approaches to prepare for 1.5°C warmer futures would be 
difficult to achieve without considerations for inclusiveness, place-
specific trade-off deliberations, redistributive measures and procedural 
justice mechanisms to facilitate equitable transformation (medium 
evidence, high agreement).

Box 5.1 |  Ecosystem- and Community-Based Practices in Drylands

Drylands face severe challenges in building climate resilience (Fuller and Lain, 2017), yet small-scale farmers can play a crucial 
role as agents of change through ecosystem- and community-based practices that combine adaptation, mitigation and sustainable 
development.

Farmer managed natural regeneration (FMNR) of trees in cropland is practised in 18 countries across sub-Saharan Africa, Southeast 
Asia, Timor-Leste, India and Haiti and has, for example, permitted the restoration of over five million hectares of land in the Sahel 
(Niang et al., 2014; Bado et al., 2016). In Ethiopia, the Managing Environmental Resources to Enable Transitions programme, 
which entails community-based watershed rehabilitation in rural landscapes, supported around 648,000 people, resulting in 
the rehabilitation of 25,400,000 hectares of land in 72 severely food-insecure districts across Ethiopia between 2012 and 2015 
(Gebrehaweria et al., 2016). In India, local farmers have benefitted from watershed programmes across different agro-ecological 
regions (Singh et al., 2014; Datta, 2015).

These low-cost, flexible community-based practices represent low-regrets adaptation and mitigation strategies. These strategies 
often contribute to strengthened ecosystem resilience and biodiversity, increased agricultural productivity and food security, 
reduced household poverty and drudgery for women, and enhanced agency and social capital (Niang et al., 2014; Francis et al., 
2015; Kassie et al., 2015; Mbow et al., 2015; Reij and Winterbottom, 2015; Weston et al., 2015; Bado et al., 2016; Dumont et al., 
2017). Small check dams in dryland areas and conservation agriculture can significantly increase agricultural output (Kumar et al., 
2014; Agoramoorthy and Hsu, 2016; Pradhan et al., 2018). Mitigation benefits have also been quantified (Weston et al., 2015); for 
example, FMNR of more than five million hectares in Niger has sequestered 25–30 Mtonnes of carbon over 30 years (Stevens et 
al., 2014).

However, several constraints hinder scaling-up efforts: inadequate attention to the socio-technical processes of innovation (Grist 
et al., 2017; Scoones et al., 2017), difficulties in measuring the benefits of an innovation (Coe et al., 2017), farmers’ inability to 
deal with long-term climate risk (Singh et al., 2017), and difficulties for matching practices with agro-ecological conditions and 
complementary modern inputs (Kassie et al., 2015). Key conditions to overcome these challenges include: developing agroforestry 
value chains and markets (Reij and Winterbottom, 2015) and adaptive planning and management (Gray et al., 2016). Others include 
inclusive processes giving greater voice to women and marginalized groups (MRFCJ, 2015a; UN Women and MRFCJ, 2016; Dumont 
et al., 2017), strengthening community land and forest rights (Stevens et al., 2014; Vermeulen et al., 2016), and co-learning among 
communities of practice at different scales (Coe et al., 2014; Reij and Winterbottom, 2015; Sinclair, 2016; Binam et al., 2017; Dumont 
et al., 2017; Epule et al., 2017). 

5.4	 Mitigation and Sustainable Development

The AR5 WGIII examined the potential of various mitigation options 
for specific sectors (energy supply, industry, buildings, transport, and 
agriculture, forestry, and other land use; AFOLU); it provided a narrative 
of dimensions of sustainable development and equity as a framing for 
evaluating climate responses and policies, respectively, in Chapters 4, 
7, 8, 9, 10 and 11 (IPCC, 2014a). This section builds on the analyses of 
Chapters 2 and 4 of this report to re-assess mitigation and sustainable 
development in the context of 1.5°C global warming as well as the 
SDGs.

5.4.1	 Synergies and Trade-Offs between Mitigation 
Options and Sustainable Development

Adopting stringent climate mitigation options can generate multiple 
positive non-climate benefits that have the potential to reduce the 
costs of achieving sustainable development (IPCC, 2014b; Ürge-
Vorsatz et al., 2014, 2016; Schaeffer et al., 2015; von Stechow et al., 
2015). Understanding the positive impacts (synergies) but also the 
negative impacts (trade-offs) is key for selecting mitigation options 
and policy choices that maximize the synergies between mitigation 
and developmental actions (Hildingsson and Johansson, 2015; Nilsson 
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et al., 2016; Delponte et al., 2017; van Vuuren et al., 2017b; McCollum 
et al., 2018b). Aligning mitigation response options to sustainable 
development objectives can ensure public acceptance (IPCC, 2014a), 
encourage faster action (Lechtenboehmer and Knoop, 2017) and 
support the design of equitable mitigation (Holz et al., 2018; Winkler 
et al., 2018) that protect human rights (MRFCJ, 2015b) (Section 5.5.3).

This sub-section assesses available literature on the interactions of 
individual mitigation options (see Chapter 2, Section 2.3.1.2, Chapter 
4, Sections 4.2 and 4.3) with sustainable development and the SDGs 
and underlying targets. Table 5.2 presents an assessment of these 
synergies and trade-offs and the strength of the interaction using an 
SDG-interaction score (see Glossary) (McCollum et al., 2018b), with 
evidence and agreements levels. Figure 5.2 presents the information 
of Table 5.2, showing gross (not net) interactions with the SDGs. This 
detailed assessment of synergies and trade-offs of individual mitigation 
options with the SDGs (Table 5.2 a–d and Figure 5.2) reveals that the 
number of synergies exceeds that of trade-offs. Mitigation response 
options in the energy demand sector, AFOLU and oceans have more 
positive interactions with a larger number of SDGs compared to those 
on the energy supply side (robust evidence, high agreement).

5.4.1.1	 Energy Demand: Mitigation Options to Accelerate 
Reduction in Energy Use and Fuel Switch

For mitigation options in the energy demand sectors, the number 
of synergies with all sixteen SDGs exceeds the number of trade-offs 
(Figure 5.2 and Table 5.2) (robust evidence, high agreement). Most 
of the interactions are of a reinforcing nature, hence facilitating the 
achievement of the goals.

Accelerating energy efficiency in all sectors, which is a necessary 
condition for a 1.5°C warmer world (see Chapters 2 and 4), has 
synergies with a large number of SDGs (robust evidence, high 
agreement) (Figure 5.2 and Table 5.2). The diffusion of efficient 
equipment and appliances across end use sectors has synergies with 
international partnership (SDG 17) and participatory and transparent 
institutions (SDG 16) because innovations and deployment of new 
technologies require transnational capacity building and knowledge 
sharing. Resource and energy savings support sustainable production 
and consumption (SDG 12), energy access (SDG 7), innovation and 
infrastructure development (SDG 9) and sustainable city development 
(SDG 11). Energy efficiency supports the creation of decent jobs by new 
service companies providing services for energy efficiency, but the net 
employment effect of efficiency improvement remains uncertain due to 
macro-economic feedback (SDG 8) (McCollum et al., 2018b).

In the buildings sector, accelerating energy efficiency by way of, 
for example, enhancing the use of efficient appliances, refrigerant 
transition, insulation, retrofitting and low- or zero-energy buildings 
generates benefits across multiple SDG targets. For example, 
improved cook stoves make fuel endowments last longer and 
hence reduce deforestation (SDG 15), support equal opportunity by 
reducing school absences due to asthma among children (SDGs 3 
and 4) and empower rural and indigenous women by reducing drudgery 
(SDG 5) (robust evidence, high agreement) (Derbez et al., 2014; Lucon 
et al., 2014; Maidment et al., 2014; Scott et al., 2014; Cameron et al., 

2015; Fay et al., 2015; Liddell and Guiney, 2015; Shah et al., 2015; 
Sharpe et al., 2015; Wells et al., 2015; Willand et al., 2015; Hallegatte 
et al., 2016; Kusumaningtyas and Aldrian, 2016; Berrueta et al., 2017; 
McCollum et al., 2018a).

In energy-intensive processing industries, 1.5ºC-compatible trajectories 
require radical technology innovation through maximum electrification, 
shift to other low emissions energy carriers such as hydrogen or 
biomass, integration of carbon capture and storage (CCS) and 
innovations for carbon capture and utilization (CCU) (see Chapter 4, 
Section 4.3.4.5). These transformations have strong synergies with 
innovation and sustainable industrialization (SDG 9), supranational 
partnerships (SDGs 16 and 17) and sustainable production (SDG 12). 
However, possible trade-offs due to risks of CCS-based carbon 
leakage, increased electricity demands, and associated price impacts 
affecting energy access and poverty (SDGs 7 and 1) would need careful 
regulatory attention (Wesseling et al., 2017). In the mining industry, 
energy efficiency can be synergetic or face trade-offs with sustainable 
management (SDG 6), depending on the option retained for water 
management (Nguyen et al., 2014). Substitution and recycling are 
also an important driver of 1.5ºC-compatible trajectories in industrial 
systems (see Chapter 4, Section 4.3.4.2). Structural changes and 
reorganization of economic activities in industrial park/clusters 
following the principles of industrial symbiosis (circular economy) 
improves the overall sustainability by reducing energy and waste 
(Fan et al., 2017; Preston and Lehne, 2017) and reinforces responsible 
production and consumption (SDG 12) through recycling, water use 
efficiency (SDG 6), energy access (SDG 7) and ecosystem protection 
and restoration (SDG 15) (Karner et al., 2015; Zeng et al., 2017).

In the transport sector, deep electrification may trigger increases of 
electricity prices and adversely affect poor populations (SDG 1), unless 
pro-poor redistributive policies are in place (Klausbruckner et al., 2016). In 
cities, governments can lay the foundations for compact, connected low-
carbon cities, which are an important component of 1.5ºC-compatible 
transformations (see Chapter 4, Section 4.3.3) and show synergies with 
sustainable cities (SDG 11) (Colenbrander et al., 2016).

Behavioural responses are important determinants of the ultimate 
outcome of energy efficiency on emission reductions and energy access 
(SDG 7) and their management requires a detailed understanding 
of the drivers of consumption and the potential for and barriers to 
absolute reductions (Fuchs et al., 2016). Notably, the rebound effect 
tends to offset the benefits of efficiency for emissions reductions 
through growing demand for energy services (Sorrell, 2015; Suffolk and 
Poortinga, 2016). However, high rebound can help in providing faster 
access to affordable energy (SDG 7.1) where the goal is to reduce energy 
poverty and unmet energy demand (see Chapter 2, Section 2.4.3) 
(Chakravarty et al., 2013). Comprehensive policy design – including 
rebound supressing policies, such as carbon pricing and policies that 
encourage awareness building and promotional material design – is 
needed to tap the full potential of energy savings, as applicable to a 
1.5°C warming context (Chakravarty and Tavoni, 2013; IPCC, 2014b; 
Karner et al., 2015; Zhang et al., 2015; Altieri et al., 2016; Santarius 
et al., 2016) and to address policy-related trade-offs and welfare-
enhancing benefits (robust evidence, high agreement) (Chakravarty et 
al., 2013; Chakravarty and Roy, 2016; Gillingham et al., 2016).
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Other behavioural responses will affect the interplay between energy 
efficiency and sustainable development. Building occupants reluctant 
to change their habits may miss out on welfare-enhancing energy 
efficiency opportunities (Zhao et al., 2017). Preferences for new 
products and premature obsolescence for appliances is expected to 
adversely affect sustainable consumption and production (SDG 12) with 
ramifications for resource use efficiency (Echegaray, 2016). Changes 
in user behaviour towards increased physical activity, less reliance on 
motorized travel over short distances and the use of public transport 
would help to decarbonize the transport sector in a synergetic manner 
with SDGs 3, 11 and 12 (Shaw et al., 2014; Ajanovic, 2015; Chakrabarti 
and Shin, 2017), while reducing inequality in access to basic facilities 
(SDG 10) (Lucas and Pangbourne, 2014; Kagawa et al., 2015). However, 
infrastructure design and regulations would need to ensure road safety 
and address risks of road accidents for pedestrians (Hwang et al., 
2017; Khreis et al., 2017) to ensure sustainable infrastructure growth 
in human settlements (SDGs 9 and 11) (Lin et al., 2015; SLoCaT, 2017).

5.4.1.2	 Energy Supply: Accelerated Decarbonization 

Decreasing the share of coal in energy supply in line with 1.5ºC-compatible 
scenarios (see Chapter 2, Section 2.4.2) reduces adverse impacts of 
upstream supply-chain activities, in particular air and water pollution and 
coal mining accidents, and enhances health by reducing air pollution, 
notably in cities, showing synergies with SDGs 3, 11 and 12 (Yang et al., 
2016; UNEP, 2017).

Fast deployment of renewables such as solar, wind, hydro and modern 
biomass, together with the decrease of fossil fuels in energy supply (see 
Chapter 2, Section 2.4.2.1), is aligned with the doubling of renewables 
in the global energy mix (SDG 7.2). Renewables could also support 
progress on SDGs 1, 10, 11 and 12 and supplement new technology 
(robust evidence, high agreement) (Chaturvedi and Shukla, 2014; Rose 
et al., 2014; Smith and Sagar, 2014; Riahi et al., 2015; IEA, 2016; van 
Vuuren et al., 2017a; McCollum et al., 2018a). However, some trade-
offs with the SDGs can emerge from offshore installations, particularly 
SDG 14 in local contexts (McCollum et al., 2018a). Moreover, trade-
offs between renewable energy production and affordability (SDG 7) 
(Labordena et al., 2017) and other environmental objectives would 
need to be scrutinised for potential negative social outcomes. Policy 
interventions through regional cooperation-building (SDG 17) and 
institutional capacity (SDG 16) can enhance affordability (SDG 7) 
(Labordena et al., 2017). The deployment of small-scale renewables, or 
off-grid solutions for people in remote areas (Sánchez and Izzo, 2017), 
has strong potential for synergies with access to energy (SDG 7), but 
the actualization of these potentials requires measures to overcome 
technology and reliability risks associated with large-scale deployment 
of renewables (Giwa et al., 2017; Heard et al., 2017). Bundling energy-
efficient appliances and lighting with off-grid renewables can lead 
to substantial cost reduction while increasing reliability (IEA, 2017). 
Low-income populations in industrialized countries are often left out of 
renewable energy generation schemes, either because of high start-up 
costs or lack of home ownership (UNRISD, 2016).

Nuclear energy, the share of which increases in most of the 
1.5ºC-compatible pathways (see Chapter 2, Section 2.4.2.1), can increase 
the risks of proliferation (SDG 16), have negative environmental effects 

(e.g., for water use; SDG 6) and have mixed effects for human health 
when replacing fossil fuels (SDGs 7 and 3) (see Table 5.2). The use of 
fossil CCS, which plays an important role in deep mitigation pathways 
(see Chapter 2, Section 2.4.2.3), implies continued adverse impacts 
of upstream supply-chain activities in the coal sector, and because of 
lower efficiency of CCS coal power plants (SDG 12), upstream impacts 
and local air pollution are likely to be exacerbated (SDG 3). Furthermore, 
there is a non-negligible risk of carbon dioxide leakage from geological 
storage and the carbon dioxide transport infrastructure (SDG 3) 
(Table 5.2).

Economies dependent upon fossil fuel-based energy generation and/or 
export revenue are expected to be disproportionally affected by future 
restrictions on the use of fossil fuels under stringent climate goals and 
higher carbon prices; this includes impacts on employment, stranded 
assets, resources left underground, lower capacity use and early phasing 
out of large infrastructure already under construction (robust evidence, 
high agreement) (Box 5.2) (Johnson et al., 2015; McGlade and Ekins, 
2015; UNEP, 2017; Spencer et al., 2018). Investment in coal continues 
to be attractive in many countries as it is a mature technology and 
provides cheap energy supplies, large-scale employment and energy 
security (Jakob and Steckel, 2016; Vogt-Schilb and Hallegatte, 2017; 
Spencer et al., 2018). Hence, accompanying policies and measures 
would be required to ease job losses and correct for relatively higher 
prices of alternative energy (Oosterhuis and Ten Brink, 2014; Oei and 
Mendelevitch, 2016; Garg et al., 2017; HLCCP, 2017; Jordaan et al., 
2017; OECD, 2017; UNEP, 2017; Blondeel and van de Graaf, 2018; 
Green, 2018). Research on historical transitions shows that managing 
the impacts on workers through retraining programmes is essential 
in order to align the phase-down of mining industries with meeting 
ambitious climate targets, and the objectives of a ‘just transition’ 
(Galgóczi, 2014; Caldecott et al., 2017; Healy and Barry, 2017). This 
aspect is even more important in developing countries where the 
mining workforce is largely semi- or unskilled (Altieri et al., 2016; Tung, 
2016). Ambitious emissions reduction targets can unlock very strong 
decoupling potentials in industrialized fossil exporting economies 
(Hatfield-Dodds et al., 2015).
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Box 5.2 |  Challenges and Opportunities of Low-Carbon Pathways in Gulf Cooperative Council Countries

The Gulf Cooperative Council (GCC) region (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and United Arab Emirates) is characterized 
by high dependency on hydrocarbon resources (natural oil and gas), with high risks of socio-economic impacts of policies and 
response measures to address climate change. The region is also vulnerable to the decrease of the global demand and price of 
hydrocarbons as a result of climate change response measures. The projected declining use of oil and gas under low emissions 
pathways creates risks of significant economic losses for the GCC region (e.g., Waisman et al., 2013; Van de Graaf and Verbruggen, 
2015; Al-Maamary et al., 2016; Bauer et al., 2016), given that natural gas and oil revenues contributed to about 70% of government 
budgets and > 35% of the gross domestic product in 2010 (Callen et al., 2014).

The current high energy intensity of the domestic economies (Al-Maamary et al., 2017), triggered mainly by low domestic energy 
prices (Alshehry and Belloumi, 2015), suggests specific challenges for aligning mitigation towards 1.5°C-consistent trajectories, 
which would require strong energy efficiency and economic development for the region.

The region’s economies are highly reliant on fossil fuel for their domestic activities. Yet the renewables deployment potentials are 
large, deployment is already happening (Cugurullo, 2013; IRENA, 2016) and positive economic benefits can be envisaged (Sgouridis 
et al., 2016). Nonetheless, the use of renewables is currently limited by economics and structural challenges (Lilliestam and Patt, 
2015; Griffiths, 2017a). Carbon capture and storage (CCS) is also envisaged with concrete steps towards implementation (Alsheyab, 
2017; Ustadi et al., 2017); yet the real potential of this technology in terms of scale and economic dimensions is still uncertain.

Beyond the above mitigation-related challenges, the region’s human societies and fragile ecosystems are highly vulnerable to the 
impacts of climate change, such as water stress (Evans et al., 2004; Shaffrey et al., 2009), desertification (Bayram and Öztürk, 2014), 
sea level rise affecting vast low coastal lands, and high temperature and humidity with future levels potentially beyond adaptive 
capacities (Pal and Eltahir, 2016). A low-carbon pathway that manages climate-related risks within the context of sustainable 
development requires an approach that jointly addresses both types of vulnerabilities (Al Ansari, 2013; Lilliestam and Patt, 2015; 
Babiker, 2016; Griffiths, 2017b).

The Nationally Determined Contributions (NDCs) for GCC countries identified energy efficiency, deployment of renewables and 
technology transfer to enhance agriculture, food security, protection of marine resources, and management of water and costal zones 
(Babiker, 2016). Strategic vision documents, such as Saudi Arabia’s ‘Vision 2030’, identify emergent opportunities for energy price 
reforms, energy efficiency, turning emissions into valuable products, and deployment of renewables and other clean technologies, if 
accompanied with appropriate policies to manage the transition and in the context of economic diversification (Luomi, 2014; Atalay 
et al., 2016; Griffiths, 2017b; Howarth et al., 2017).

5.4.1.3	 Land-based agriculture, forestry and ocean: mitigation 
response options and carbon dioxide removal

In the AFOLU sector, dietary change towards global healthy diets, that 
is, a shift from over-consumption of animal-related to plant-related 
diets, and food waste reduction (see Chapter 4, Section 4.3.2.1) are 
in synergy with SDGs 2 and 6, and SDG 3 through lower consumption 
of animal products and reduced losses and waste throughout the food 
system, contributing to achieving SDGs 12 and 15 (Bajželj et al., 2014; 
Bustamante et al., 2014; Tilman and Clark, 2014; Hiç et al., 2016).

Power dynamics play an important role in achieving behavioural change 
and sustainable consumption (Fuchs et al., 2016). In forest management 
(see Chapter 4, Section 4.3.2.2), encouraging responsible sourcing of 
forest products and securing indigenous land tenure has the potential to 
increase economic benefits by creating decent jobs (SDG 8), maintaining 
biodiversity (SDG 15), facilitating innovation and upgrading technology 
(SDG 9), and encouraging responsible and just decision-making 
(SDG 16) (medium evidence, high agreement) (Ding et al., 2016; WWF, 
2017).

Emerging evidence indicates that future mitigation efforts that would 
be required to reach stringent climate targets, particularly those 
associated with carbon dioxide removal (CDR) (e.g., afforestation and 
reforestation and bioenergy with carbon capture and storage; BECCS), 
may also impose significant constraints upon poor and vulnerable 
communities (SDG 1) via increased food prices and competition for 
arable land, land appropriation and dispossession (Cavanagh and 
Benjaminsen, 2014; Hunsberger et al., 2014; Work, 2015; Muratori et 
al., 2016; Smith et al., 2016; Burns and Nicholson, 2017; Corbera et 
al., 2017) with disproportionate negative impacts upon rural poor and 
indigenous populations (SDG 1) (robust evidence, high agreement) 
(Section 5.4.2.2, Table 5.2, Figure 5.2) (Grubert et al., 2014; Grill et al., 
2015; Zhang and Chen, 2015; Fricko et al., 2016; Johansson et al., 2016; 
Aha and Ayitey, 2017; De Stefano et al., 2017; Shi et al., 2017). Crops 
for bioenergy may increase irrigation needs and exacerbate water 
stress with negative associated impacts on SDGs 6 and 10 (Boysen et 
al., 2017).

Ocean iron fertilization and enhanced weathering have two-way 
interactions with life under water and on land and food security (SDGs 
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2, 14 and 15) (Table 5.2). Development of blue carbon resources through 
coastal (mangrove) and marine (seaweed) vegetative ecosystems 
encourages: integrated water resource management (SDG 6) (Vierros, 
2017); promotes life on land (SDG 15) (Potouroglou et al., 2017); poverty 

reduction (SDG 1) (Schirmer and Bull, 2014; Lamb et al., 2016); and food 
security (SDG 2) (Ahmed et al., 2017a, b; Duarte et al., 2017; Sondak et 
al., 2017; Vierros, 2017; Zhang et al., 2017).

Figure 5.2 |  Synergies and trade-offs and gross Sustainable Development Goal (SDG)-interaction with individual mitigation options. The top three wheels represent synergies 
and the bottom three wheels show trade-offs. The colours on the border of the wheels correspond to the SDGs listed above, starting at the 9 o’clock position, with reading 
guidance in the top-left corner with the quarter circle (Note 1). Mitigation (climate action, SDG 13) is at the centre of the circle. The coloured segments inside the circles can be 
counted to arrive at the number of synergies (green) and trade-offs (red). The length of the coloured segments shows the strength of the synergies or trade-offs (Note 3) and 
the shading indicates confidence (Note 2). Various mitigation options within the energy demand sector, energy supply sector, and land and ocean sector, and how to read them 
within a segment are shown in grey (Note 4). See also Table 5.2.

5.4.2	 Sustainable Development Implications of 
1.5°C and 2°C Mitigation Pathways

While previous sections have focused on individual mitigation options 
and their interaction with sustainable development and the SDGs, 
this section takes a systems perspective. Emphasis is on quantitative 
pathways depicting path-dependent evolutions of human and 
natural systems over time. Specifically, the focus is on fundamental 
transformations and thus stringent mitigation policies consistent with 
1.5°C or 2°C, and the differential synergies and trade-offs with respect 
to the various sustainable development dimensions.

Both 1.5°C and 2°C pathways would require deep cuts in greenhouse 
gas (GHG) emissions and large-scale changes of energy supply and 
demand, as well as in agriculture and forestry systems (see Chapter 
2, Section 2.4). For the assessment of the sustainable development 
implications of these pathways, this chapter draws upon studies that 
show the aggregated impact of mitigation for multiple sustainable 
development dimensions (Grubler et al., 2018; McCollum et al., 
2018b; Rogelj et al., 2018) and across multiple integrated assessment 
modelling (IAM) frameworks. Often these tools are linked to 
disciplinary models covering specific SDGs in more detail (Cameron 
et al., 2016; Rao et al., 2017; Grubler et al., 2018; McCollum et al., 
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2018b). Using multiple IAMs and disciplinary models is important 
for a robust assessment of the sustainable development implications 
of different pathways. Emphasis is on multi-regional studies, which 
can be aggregated to the global scale. The recent literature on 1.5°C 
mitigation pathways has begun to provide quantifications for a range 
of sustainable development dimensions, including air pollution and 
health, food security and hunger, energy access, water security, and 
multidimensional poverty and equity.

5.4.2.1	 Air pollution and health

GHGs and air pollutants are typically emitted by the same sources. 
Hence, mitigation strategies that reduce GHGs or the use of fossil fuels 
typically also reduce emissions of pollutants, such as particulate matter 
(e.g., PM2.5 and PM10), black carbon (BC), sulphur dioxide (SO2), 
nitrogen oxides (NOx) and other harmful species (Clarke et al., 2014) 
(Figure 5.3), causing adverse health and ecosystem effects at various 
scales (Kusumaningtyas and Aldrian, 2016).

Mitigation pathways typically show that there are significant synergies 
for air pollution, and that the synergies increase with the stringency of 
the mitigation policies (Amann et al., 2011; Rao et al., 2016; Klimont 
et al., 2017; Shindell et al., 2017; Markandya et al., 2018). Recent 
multimodel comparisons indicate that mitigation pathways consistent 
with 1.5°C would result in higher synergies with air pollution compared 
to pathways that are consistent with 2°C (Figures 5.4 and 5.5). Shindell 
et al. (2018) indicate that health benefits worldwide over the century 
of 1.5°C pathways could be in the range of 110 to 190 million fewer 
premature deaths compared to 2°C pathways. The synergies for air 
pollution are highest in the developing world, particularly in Asia. In 
addition to significant health benefits, there are also economic benefits 
from mitigation, reducing the investment needs in air pollution control 
technologies by about 35% globally (or about 100 billion USD2010 per 
year to 2030 in 1.5°C pathways; McCollum et al., 2018b) (Figure 5.4).

5.4.2.2	 Food security and hunger

Stringent climate mitigation pathways in line with ‘well below 2°C’ or 
‘1.5°C’ goals often rely on the deployment of large-scale land-related 
measures, like afforestation and/or bioenergy supply (Popp et al., 2014; 
Rose et al., 2014; Creutzig et al., 2015). These land-related measures 
can compete with food production and hence raise food security 
concerns (Section 5.4.1.3) (P. Smith et al., 2014). Mitigation studies 
indicate that so-called ‘single-minded’ climate policy, aiming solely 
at limiting warming to 1.5°C or 2°C without concurrent measures in 
the food sector, can have negative impacts for global food security 
(Hasegawa et al., 2015; McCollum et al., 2018b). Impacts of 1.5°C 
mitigation pathways can be significantly higher than those of 2°C 
pathways (Figures 5.4 and 5.5). An important driver of the food security 
impacts in these scenarios is the increase of food prices and the effect 
of mitigation on disposable income and wealth due to GHG pricing. A 
recent study indicates that, on aggregate, the price and income effects 
on food may be bigger than the effect due to competition over land 
between food and bioenergy (Hasegawa et al., 2015). 

In order to address the issue of trade-offs with food security, mitigation 
policies would need to be designed in a way that shields the population 

at risk of hunger, including through the adoption of different 
complementary measures, such as food price support. The investment 
needs of complementary food price policies are found to be globally 
relatively much smaller than the associated mitigation investments 
of 1.5°C pathways (Figure 5.3) (McCollum et al., 2018b). Besides 
food support price, other measures include improving productivity 
and efficiency of agricultural production systems (FAO and NZAGRC, 
2017a, b; Frank et al., 2017) and programmes focusing on forest land-
use change (Havlík et al., 2014). All these lead to additional benefits of 
mitigation, improving resilience and livelihoods.

Van Vuuren et al. (2018) and Grubler et al. (2018) show that 1.5°C 
pathways without reliance on BECCS can be achieved through a 
fundamental transformation of the service sectors which would 
significantly reduce energy and food demand (see Chapter 2, Sections 
2.1.1, 2.3.1 and 2.4.3). Such low energy demand (LED) pathways 
would result in significantly reduced pressure on food security, lower 
food prices and fewer people at risk of hunger. Importantly, the trade-
offs with food security would be reduced by the avoided impacts in the 
agricultural sector due to the reduced warming associated with the 
1.5°C pathways (see Chapter 3, Section 3.5). However, such feedbacks 
are not comprehensively captured in the studies on mitigation.

5.4.2.3	 Lack of energy access/energy poverty

A lack of access to clean and affordable energy (especially for cooking) 
is a major policy concern in many countries, especially in those in South 
Asia and Africa where major parts of the population still rely primarily 
on solid fuels for cooking (IEA and World Bank, 2017). Scenario studies 
which quantify the interactions between climate mitigation and energy 
access indicate that stringent climate policy which would affect energy 
prices could significantly slow down the transition to clean cooking 
fuels, such as liquefied petroleum gas or electricity (Cameron et al., 
2016).

Estimates across six different IAMs (McCollum et al., 2018b) indicate 
that, in the absence of compensatory measures, the number of people 
without access to clean cooking fuels may increase. Redistributional 
measures, such as subsidies on cleaner fuels and stoves, could 
compensate for the negative effects of mitigation on energy access. 
Investment costs of the redistributional measures in 1.5°C pathways 
(on average around 120 billion USD2010 per year to 2030; Figure 5.4) 
are much smaller than the mitigation investments of 1.5°C pathways 
(McCollum et al., 2018b). The recycling of revenues from climate policy 
might act as a means to help finance the costs of providing energy 
access to the poor (Cameron et al., 2016).

5.4.2.4	 Water security

Transformations towards low emissions energy and agricultural 
systems can have major implications for freshwater demand as well as 
water pollution. The scaling up of renewables and energy efficiency as 
depicted by low emissions pathways would, in most instances, lower 
water demands for thermal energy supply facilities (‘water-for-energy’) 
compared to fossil energy technologies, and thus reinforce targets 
related to water access and scarcity (see Chapter 4, Section 4.2.1). 
However, some low-carbon options such as bioenergy, centralized solar 
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Figure 5.3 |  Sustainable development implications of mitigation actions in 1.5°C pathways. Panel (a) shows ranges for 1.5°C pathways for selected sustainable development 
dimensions compared to the ranges of 2°C pathways and baseline pathways. The panel (a) depicts interquartile and the full range across the scenarios for Sustainable 
Development Goal (SDG) 2 (hunger), SDG 3 (health), SDG 6 (water), SDG 7 (energy), SDG 12 (resources), SDG 13/14 (climate/ocean) and SDG 15 (land). Progress towards 
achieving the SDGs is denoted by arrow symbols (increase or decrease of indicator). Black horizontal lines show 2015 values for comparison. Note that sustainable development 
effects are estimated for the effect of mitigation and do not include benefits from avoided impacts (see Chapter 3, Section 3.5). Low energy demand (LED) denotes estimates 
from a pathway with extremely low energy demand reaching 1.5°C without bioenergy with carbon capture and storage (BECCS). Panel (b) presents the resulting full range 
for synergies and trade-offs of 1.5°C pathways compared to the corresponding baseline scenarios. The y-axis in panel (b) indicates the factor change in the 1.5°C pathway 
compared to the baseline. Note that the figure shows gross impacts of mitigation and does not include feedbacks due to avoided impacts. The realization of the side effects 
will critically depend on local circumstances and implementation practice. Trade-offs across many sustainable development dimensions can be reduced through complementary/
re-distributional measures. The figure is not comprehensive and focuses on those sustainable development dimensions for which quantifications across models are available. 
Sources: 1.5°C pathways database from Chapter 2 (Grubler et al., 2018; McCollum et al., 2018b).
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power, nuclear and hydropower technologies could, if not managed 
properly, have counteracting effects that compound existing water-
related problems in a given locale (Byers et al., 2014; Fricko et al., 2016; 
IEA, 2016; Fujimori et al., 2017a; Wang, 2017; McCollum et al., 2018a).

Under stringent mitigation efforts, the demand for bioenergy can 
result in a substantial increase of water demand for irrigation, thereby 
potentially contributing to water scarcity in water-stressed regions 
(Berger et al., 2015; Bonsch et al., 2016; Jägermeyr et al., 2017). 
However, this risk can be reduced by prioritizing rain-fed production of 
bioenergy (Hayashi et al., 2015, 2018; Bonsch et al., 2016), but might 
have adverse effects for food security (Boysen et al., 2017).

Reducing food and energy demand without compromising the needs 
of the poor emerges as a robust strategy for both water conservation 
and GHG emissions reductions (von Stechow et al., 2015; IEA, 2016; 
Parkinson et al., 2016; Grubler et al., 2018). The results underscore the 
importance of an integrated approach when developing water, energy 
and climate policy (IEA, 2016).

Estimates across different models for the impacts of stringent 
mitigation pathways on energy-related water uses seem ambiguous. 
Some pathways show synergies (Mouratiadou et al., 2018) while 
others indicate trade-offs and thus increases of water use due to 
mitigation (Fricko et al., 2016). The synergies depend on the adopted 
policy implementation or mitigation strategies and technology 
portfolio. A number of adaptation options exist (e.g., dry cooling), 
which can effectively reduce electricity-related water trade-offs (Fricko 
et al., 2016; IEA, 2016). Similarly, irrigation water use will depend on 
the regions where crops are produced, the sources of bioenergy (e.g., 
agriculture vs. forestry) and dietary change induced by climate policy. 
Overall, and also considering other water-related SDGs, including 
access to safe drinking water and sanitation as well as waste-water 
treatment, investments into the water sector seem to be only modestly 
affected by stringent climate policy compatible with 1.5°C (Figure 5.4) 
(McCollum et al., 2018b).

In summary, the assessment of mitigation pathways shows that to 
meet the 1.5°C target, a wide range of mitigation options would need 
to be deployed (see Chapter 2, Sections 2.3 and 2.4). While pathways 
aiming at 1.5°C are associated with high synergies for some sustainable 
development dimensions (such as human health and air pollution, forest 
preservation), the rapid pace and magnitude of the required changes 
would also lead to increased risks for trade-offs for other sustainable 
development dimensions (particularly food security) (Figures 5.4 and 
5.5). Synergies and trade-offs are expected to be unevenly distributed 
between regions and nations (Box 5.2), though little literature has 
formally examined such distributions under 1.5°C-consistent mitigation 
scenarios. Reducing these risks requires smart policy designs and 
mechanisms that shield the poor and redistribute the burden so that the 
most vulnerable are not disproportionately affected. Recent scenario 
analyses show that associated investments for reducing the trade-offs 
for, for example, food, water and energy access to be significantly lower 
than the required mitigation investments (McCollum et al., 2018b). 
Fundamental transformation of demand, including efficiency and 
behavioural changes, can help to significantly reduce the reliance on 
risky technologies, such as BECCS, and thus reduce the risk of potential 

Figure 5.4 |  Investment into mitigation up until 2030 and implications for 
investments for four sustainable development dimensions. Cross-hatched bars show 
the median investment in 1.5°C pathways across results from different models, and 
solid bars for 2°C pathways, respectively. Whiskers on bars represent minima and 
maxima across estimates from six models. Clean water and air pollution investments 
are available only from one model. Mitigation investments show the change in 
investments across mitigation options compared to the baseline. Negative mitigation 
investments (grey bars) denote disinvestment (reduced investment needs) into 
fossil fuel sectors compared to the baseline. Investments for different sustainable 
development dimensions denote the investment needs for complementary measures 
in order to avoid trade-offs (negative impacts) of mitigation. Negative sustainable 
development investments for air pollution indicate cost savings, and thus synergies 
of mitigation for air pollution control costs. The values compare to about 2 trillion 
USD2010 (range of 1.4 to 3 trillion) of total energy-related investments in the 1.5°C 
pathways. Source: Estimates from CD-LINKS scenarios summarised by McCollum et 
al., 2018b.

trade-offs between mitigation and other sustainable development 
dimensions (von Stechow et al., 2015; Grubler et al., 2018; van Vuuren 
et al., 2018). Reliance on demand-side measures only, however, would 
not be sufficient for meeting stringent targets, such as 1.5°C and 2°C 
(Clarke et al., 2014).

5.5	 Sustainable Development 
Pathways to 1.5°C 

This section assesses what is known in the literature on development 
pathways that are sustainable and climate-resilient and relevant to 
a 1.5°C warmer world. Pathways, transitions from today’s world to 
achieving a set of future goals (see Chapter 1, Section 1.2.3, Cross-
Chapter Box 1), follow broadly two main traditions: first, as integrated 
pathways describing the required societal and systems transformations, 
combining quantitative modelling and qualitative narratives at multiple 
spatial scales (global to sub-national); and second, as country- and 
community-level, solution-oriented trajectories and decision-making 
processes about context- and place-specific opportunities, challenges 
and trade-offs. These two notions of pathways offer different, though 
complementary, insights into the nature of 1.5°C-relevant trajectories 
and the short-term actions that enable long-term goals. Both highlight 
to varying degrees the urgency, ethics and equity dimensions of 
possible trajectories and society- and system-wide transformations, yet 
at different scales, building on Chapter 2 (see Section 2.4) and Chapter 
4 (see Section 4.5).
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5.5.1	 Integration of Adaptation, Mitigation 
and Sustainable Development

Insights into climate-compatible development (see Glossary) 
illustrate how integration between adaptation, mitigation and 
sustainable development works in context-specific projects, how 
synergies are achieved and what challenges are encountered during 
implementation (Stringer et al., 2014; Suckall et al., 2014; Antwi-Agyei 
et al., 2017a; Bickersteth et al., 2017; Kalafatis, 2017; Nunan, 2017). 
The operationalization of climate-compatible development, including 
climate-smart agriculture and carbon-forestry projects (Lipper et al., 
2014; Campbell et al., 2016; Quan et al., 2017), shows multilevel 
and multisector trade-offs involving ‘winners’ and ‘losers’ across 
governance levels (high confidence) (Kongsager and Corbera, 2015; 
Naess et al., 2015; Karlsson et al., 2017; Tanner et al., 2017; Taylor, 
2017; Wood, 2017; Ficklin et al., 2018). Issues of power, participation, 
values, equity, inequality and justice transcend case study examples of 
attempted integrated approaches (Nunan, 2017; Phillips et al., 2017; 
Stringer et al., 2017; Wood, 2017), also reflected in policy frameworks 
for integrated outcomes (Stringer et al., 2014; Di Gregorio et al., 2017; 
Few et al., 2017; Tanner et al., 2017).

Ultimately, reconciling trade-offs between development needs and 
emissions reductions towards a 1.5°C warmer world requires a 
dynamic view of the interlinkages between adaptation, mitigation 
and sustainable development (Nunan, 2017). This entails recognition 
of the ways in which development contexts shape the choice and 
effectiveness of interventions, limit the range of responses afforded 
to communities and governments, and potentially impose injustices 
upon vulnerable groups (UNRISD, 2016; Thornton and Comberti, 2017). 
A variety of approaches, both quantitative and qualitative, exist to 
examine possible sustainable development pathways under which 
climate and sustainable development goals can be achieved, and 
synergies and trade-offs for transformation identified (Sections 5.3 
and 5.4).

5.5.2	 Pathways for Adaptation, Mitigation 
and Sustainable Development 

This section focuses on the growing body of pathways literature 
describing the dynamic and systemic integration of mitigation 
and adaptation with sustainable development in the context of a 
1.5°C warmer world. These studies are critically important for the 
identification of ‘enabling’ conditions under which climate and the 
SDGs can be achieved, and thus help the design of transformation 
strategies that maximize synergies and avoid potential trade-offs 
(Sections 5.3 and 5.4). Full integration of sustainable development 
dimensions is, however, challenging, given their diversity and the need 
for high temporal, spatial and social resolution to address local effects, 
including heterogeneity related to poverty and equity (von Stechow 
et al., 2015). Research on long-term climate change mitigation and 
adaptation pathways has covered individual SDGs to different degrees. 
Interactions between climate and other SDGs have been explored for 
SDGs 2, 3, 4, 6, 7, 8, 12, 14 and 15 (Clarke et al., 2014; Abel et al., 2016; 
von Stechow et al., 2016; Rao et al., 2017), while interactions with 
SDGs 1, 5, 11 and 16 remain largely underexplored in integrated long-
term scenarios (Zimm et al., 2018).

Quantitative pathways studies now better represent ‘nexus’ 
approaches to assess sustainable development dimensions. In such 
approaches (see Chapter 4, Section 4.3.3.8), a subset of sustainable 
development dimensions are investigated together because of their 
close relationships (Welsch et al., 2014; Conway et al., 2015; Keairns 
et al., 2016; Parkinson et al., 2016; Rasul and Sharma, 2016; Howarth 
and Monasterolo, 2017). Compared to single-objective climate–SDG 
assessments (Section 5.4.2), nexus solutions attempt to integrate 
complex interdependencies across diverse sectors in a systems 
approach for consistent analysis. Recent pathways studies show how 
water, energy and climate (SDGs 6, 7 and 13) interact (Parkinson et al., 
2016; McCollum et al., 2018b) and call for integrated water–energy 
investment decisions to manage systemic risks. For instance, the 
provision of bioenergy, important in many 1.5°C-consistent pathways, 
can help resolve ‘nexus challenges’ by alleviating energy security 
concerns, but can also have adverse ‘nexus impacts’ on food security, 
water use and biodiversity (Lotze-Campen et al., 2014; Bonsch et al., 
2016). Policies that improve resource use efficiency across sectors can 
maximize synergies for sustainable development (Bartos and Chester, 
2014; McCollum et al., 2018b; van Vuuren et al., 2018). Mitigation 
compatible with 1.5°C can significantly reduce impacts and adaptation 
needs in the nexus sectors compared to 2°C (Byers et al., 2018). In 
order to avoid trade-offs due to high carbon pricing of 1.5°C pathways, 
regulation in specific areas may complement price-based instruments. 
Such combined policies generally lead also to more early action 
maximizing synergies and avoiding some of the adverse climate effects 
for sustainable development (Bertram et al., 2018).

The comprehensive analysis of climate change in the context of 
sustainable development requires suitable reference scenarios that 
lend themselves to broader sustainable development analyses. 
The Shared Socio-Economic Pathways (SSPs) (Chapter 1, Cross-
Chapter Box 1 in Chapter 1) (O’Neill et al., 2017a; Riahi et al., 2017) 
constitute an important first step in providing a framework for 
the integrated assessment of adaptation and mitigation and their 
climate–development linkages (Ebi et al., 2014). The five underlying 
SSP narratives (O’Neill et al., 2017a) map well into some of the key 
SDG dimensions, with one of the pathways (SSP1) explicitly depicting 
sustainability as the main theme (van Vuuren et al., 2017b).

To date, no pathway in the literature proves to achieve all 17 SDGs 
because several targets are not met or not sufficiently covered in the 
analysis, hence resulting in a sustainability gap (Zimm et al., 2018). 
The SSPs facilitate the systematic exploration of different sustainable 
dimensions under ambitious climate objectives. SSP1 proves to be in 
line with eight SDGs (3, 7, 8, 9, 10, 11, 13 and 15) and several of their 
targets in a 2°C warmer world (van Vuuren et al., 2017b; Zimm et al., 
2018). However, important targets for SDGs 1, 2 and 4 (i.e., people 
living in extreme poverty, people living at the risk of hunger and gender 
gap in years of schooling) are not met in this scenario.

The SSPs show that sustainable socio-economic conditions will play a 
key role in reaching stringent climate targets (Riahi et al., 2017; Rogelj 
et al., 2018). Recent modelling work has examined 1.5°C-consistent, 
stringent mitigation scenarios for 2100 applied to the SSPs, using 
six different IAMs. Despite the limitations of these models, which 
are coarse approximations of reality, robust trends can be identified 
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(Rogelj et al., 2018). SSP1 – which depicts broader ‘sustainability’ as 
well as enhancing equity and poverty reductions – is the only pathway 
where all models could reach 1.5°C and is associated with the lowest 
mitigation costs across all SSPs. A decreasing number of models was 
successful for SSP2, SSP4 and SSP5, respectively, indicating distinctly 
higher risks of failure due to high growth and energy intensity as 
well as geographical and social inequalities and uneven regional 
development. And reaching 1.5°C has even been found infeasible in 
the less sustainable SSP3 – ‘regional rivalry’ (Fujimori et al., 2017b; 
Riahi et al., 2017). All these conclusions hold true if a 2°C objective is 
considered (Calvin et al., 2017; Fujimori et al., 2017b; Popp et al., 2017; 
Riahi et al., 2017). Rogelj et al. (2018) also show that fewer scenarios 
are, however, feasible across different SSPs in case of 1.5°C, and 
mitigation costs substantially increase in 1.5°C pathways compared 
to 2°C pathways.

There is a wide range of SSP-based studies focusing on the connections 
between adaptation/impacts and different sustainable development 
dimensions (Hasegawa et al., 2014; Ishida et al., 2014; Arnell et al., 
2015; Bowyer et al., 2015; Burke et al., 2015; Lemoine and Kapnick, 
2016; Rozenberg and Hallegatte, 2016; Blanco et al., 2017; Hallegatte 
and Rozenberg, 2017; O’Neill et al., 2017a; Rutledge et al., 2017; 
Byers et al., 2018). New methods for projecting inequality and poverty 
(downscaled to sub-national rural and urban levels as well as spatially 
explicit levels) have enabled advanced SSP-based assessments of 
locally sustainable development implications of avoided impacts 
and related adaptation needs. For instance, Byers et al. (2018) find 
that, in a 1.5°C warmer world, a focus on sustainable development 
can reduce the climate risk exposure of populations vulnerable to 
poverty by more than an order of magnitude (Section 5.2.2). Moreover, 
aggressive reductions in between-country inequality may decrease 
the emissions intensity of global economic growth (Rao and Min, 
2018). This is due to the higher potential for decoupling of energy 
from income growth in lower-income countries, due to high potential 
for technological advancements that reduce the energy intensity of 
growth of poor countries – critical also for reaching 1.5°C in a socially 
and economically equitable way. Participatory downscaling of SSPs in 
several European Union countries and in Central Asia shows numerous 
possible pathways of solutions to the 2°C–1.5°C goal, depending on 
differential visions (Tàbara et al., 2018). Other participatory applications 
of the SSPs, for example in West Africa (Palazzo et al., 2017) and the 
southeastern United States (Absar and Preston, 2015), illustrate the 
potentially large differences in adaptive capacity within regions and 
between sectors.

Harnessing the full potential of the SSP framework to inform sustainable 
development requires: (i) further elaboration and extension of the 
current SSPs to cover sustainable development objectives explicitly; (ii) 
the development of new or variants of current narratives that would 
facilitate more SDG-focused analyses with climate as one objective 
(among other SDGs) (Riahi et al., 2017); (iii) scenarios with high regional 
resolution (Fujimori et al., 2017b); (iv) a more explicit representation 
of institutional and governance change associated with the SSPs 
(Zimm et al., 2018); and (v) a scale-up of localized and spatially explicit 
vulnerability, poverty and inequality estimates, which have emerged 
in recent publications based on the SSPs (Byers et al., 2018) and are 
essential to investigate equity dimensions (Klinsky and Winkler, 2018).

5.5.3	 Climate-Resilient Development Pathways

This section assesses the literature on pathways as solution-
oriented trajectories and decision-making processes for attaining 
transformative visions for a 1.5°C warmer world. It builds on climate-
resilient development pathways (CRDPs) introduced in the AR5 
(Section 5.1.2) (Olsson et al., 2014) as well as growing literature 
(e.g., Eriksen et al., 2017; Johnson, 2017; Orindi et al., 2017; Kirby and 
O’Mahony, 2018; Solecki et al., 2018) that uses CRDPs as a conceptual 
and aspirational idea for steering societies towards low-carbon, 
prosperous and ecologically safe futures. Such a notion of pathways 
foregrounds decision-making processes at local to national levels to 
situate transformation, resilience, equity and well-being in the complex 
reality of specific places, nations and communities (Harris et al., 2017; 
Ziervogel et al., 2017; Fazey et al., 2018; Gajjar et al., 2018; Klinsky and 
Winkler, 2018; Patterson et al., 2018; Tàbara et al., 2018).

Pathways compatible with 1.5°C warming are not merely scenarios 
to envision possible futures but processes of deliberation and 
implementation that address societal values, local priorities and 
inevitable trade-offs. This includes attention to politics and power that 
perpetuate business-as-usual trajectories (O’Brien, 2016; Harris et al., 
2017), the politics that shape sustainability and capabilities of everyday 
life (Agyeman et al., 2016; Schlosberg et al., 2017), and ingredients 
for community resilience and transformative change (Fazey et al., 
2018). Chartering CRDPs encourages locally situated and problem-
solving processes to negotiate and operationalize resilience ‘on the 
ground’ (Beilin and Wilkinson, 2015; Harris et al., 2017; Ziervogel et 
al., 2017). This entails contestation, inclusive governance and iterative 
engagement of diverse populations with varied needs, aspirations, 
agency and rights claims, including those most affected, to deliberate 
trade-offs in a multiplicity of possible pathways (high confidence) (see 
Figure 5.5) (Stirling, 2014; Vale, 2014; Walsh-Dilley and Wolford, 2015; 
Biermann et al., 2016; J.R.A. Butler et al., 2016; O’Brien, 2016, 2018; 
Harris et al., 2017; Jones and Tanner, 2017; Mapfumo et al., 2017; 
Rosenbloom, 2017; Gajjar et al., 2018; Klinsky and Winkler, 2018; Lyon, 
2018; Tàbara et al., 2018).

5.5.3.1	 Transformations, equity and well-being

Most literature related to CRDPs invokes the concept of transformation, 
underscoring the need for urgent and far-reaching changes in practices, 
institutions and social relations in society. Transformations towards a 
1.5°C warmer world would need to address considerations for equity 
and well-being, including in trade-off decisions (see Figure 5.1).

To attain the anticipated transformations, all countries as well as non-
state actors would need to strengthen their contributions, through 
bolder and more committed cooperation and equitable effort-sharing 
(medium evidence, high agreement) (Rao, 2014; Frumhoff et al., 2015; 
Ekwurzel et al., 2017; Millar et al., 2017; Shue, 2017; Holz et al., 2018; 
Robinson and Shine, 2018). Sustaining decarbonization rates at a 
1.5°C-compatible level would be unprecedented and not possible 
without rapid transformations to a net-zero-emissions global economy 
by mid-century or the later half of the century (see Chapters 2 and 
4). Such efforts would entail overcoming technical, infrastructural, 
institutional and behavioural barriers across all sectors and levels 
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Figure 5.5 |  Pathways into the future, with path dependencies and iterative problem-solving and decision-making (after Fazey et al., 2016).

of society (Pfeiffer et al., 2016; Seto et al., 2016) and defeating path 
dependencies, including poverty traps (Boonstra et al., 2016; Enqvist 
et al., 2016; Lade et al., 2017; Haider et al., 2018). Transformation also 
entails ensuring that 1.5°C-compatible pathways are inclusive and 
desirable, build solidarity and alliances, and protect vulnerable groups, 
including against disruptions of transformation (Patterson et al., 2018).

There is growing emphasis on the role of equity, fairness and justice (see 
Glossary) regarding context-specific transformations and pathways 
to a 1.5°C warmer world (medium evidence, high agreement) (Shue, 
2014; Thorp, 2014; Dennig et al., 2015; Moellendorf, 2015; Klinsky et 
al., 2017b; Roser and Seidel, 2017; Sealey-Huggins, 2017; Klinsky and 
Winkler, 2018; Robinson and Shine, 2018). Consideration for what is 
equitable and fair suggests the need for stringent decarbonization 
and up-scaled adaptation that do not exacerbate social injustices, 
locally and at national levels (Okereke and Coventry, 2016), uphold 
human rights (Robinson and Shine, 2018), are socially desirable and 
acceptable (von Stechow et al., 2016; Rosenbloom, 2017), address 
values and beliefs (O’Brien, 2018), and overcome vested interests 
(Normann, 2015; Patterson et al., 2016). Attention is often drawn to 
huge disparities in the cost, benefits, opportunities and challenges 
involved in transformation within and between countries, and the 
fact that the suffering of already poor, vulnerable and disadvantaged 
populations may be worsened, if care to protect them is not taken 
(Holden et al., 2017; Klinsky and Winkler, 2018; Patterson et al., 2018).

Well-being for all (Dearing et al., 2014; Raworth, 2017) is at the 
core of an ecologically safe and socially just space for humanity, 
including health and housing, peace and justice, social equity, gender 

equality and political voices (Raworth, 2017). It is in alignment with 
transformative social development (UNRISD, 2016) and the 2030 
Agenda of ‘leaving no one behind’. The social conditions to enable well-
being for all are to reduce entrenched inequalities within and between 
countries (Klinsky and Winkler, 2018); rethink prevailing values, ethics 
and behaviours (Holden et al., 2017); allow people to live a life in 
dignity while avoiding actions that undermine capabilities (Klinsky 
and Golub, 2016); transform economies (Popescu and Ciurlau, 2016; 
Tàbara et al., 2018); overcome uneven consumption and production 
patterns (Dearing et al., 2014; Häyhä et al., 2016; Raworth, 2017) and 
conceptualize development as well-being rather than mere economic 
growth (medium evidence, high agreement) (Gupta and Pouw, 2017).

5.5.3.2	 Development trajectories, sharing 
of efforts and cooperation

The potential for pursuing sustainable and climate-resilient development 
pathways towards a 1.5°C warmer world differs between and within 
nations, due to differential development achievements and trajectories, 
and opportunities and challenges (very high confidence) (Figure 5.1). 
There are clear differences between high-income countries where 
social achievements are high, albeit often with negative effects on 
the environment, and most developing nations where vulnerabilities 
to climate change are high and social support and life satisfaction 
are low, especially in the Least Developed Countries (LDCs) (Sachs et 
al., 2017; O’Neill et al., 2018). Differential starting points for CRDPs 
between and within countries, including path dependencies (Figure 
5.5), call for sensitivity to context (Klinsky and Winkler, 2018). For the 
developing world, limiting warming to 1.5°C also means potentially 



Chapter 5	 Sustainable Development, Poverty Eradication and Reducing Inequalities

55

470

severely curtailed development prospects (Okereke and Coventry, 
2016) and risks to human rights from both climate action and inaction 
to achieve this goal (Robinson and Shine, 2018) (Section 5.2). Within-
country development differences remain, despite efforts to ensure 
inclusive societies (Gupta and Arts, 2017; Gupta and Pouw, 2017). Cole 
et al. (2017), for instance, show how differences between provinces in 
South Africa constitute barriers to sustainable development trajectories 
and for operationalising nation-level SDGs, across various dimensions 
of social deprivation and environmental stress, reflecting historic 
disadvantages.

Moreover, various equity and effort- or burden-sharing approaches to 
climate stabilization in the literature describe how to sketch national 
potentials for a 1.5°C warmer world (e.g., Anand, 2004; CSO Equity 
Review, 2015; Meinshausen et al., 2015; Okereke and Coventry, 2016; 
Bexell and Jönsson, 2017; Otto et al., 2017; Pan et al., 2017; Robiou du 
Pont et al., 2017; Holz et al., 2018; Kartha et al., 2018; Winkler et al., 
2018;). Many approaches build on the AR5 ‘responsibility – capacity –
need’ assessment (Clarke et al., 2014), complement other proposed 
national-level metrics for capabilities, equity and fairness (Heyward 
and Roser, 2016; Klinsky et al., 2017a), or fall under the wider umbrella 
of fair share debates on responsibility, capability and the right to 
development in climate policy (Fuglestvedt and Kallbekken, 2016). 
Importantly, different principles and methodologies generate different 
calculated contributions, responsibilities and capacities (Skeie et al., 
2017).

The notion of nation-level fair shares is now also discussed in the 
context of limiting global warming to 1.5°C and the Nationally 
Determined Contributions (NDCs) (see Chapter 4, Cross-Chapter Box 
11 in Chapter 4) (CSO Equity Review, 2015; Mace, 2016; Pan et al., 
2017; Robiou du Pont et al., 2017; Holz et al., 2018; Kartha et al., 2018; 
Winkler et al., 2018). A study by Pan et al. (2017) concluded that all 
countries would need to contribute to ambitious emissions reductions 
and that current pledges for 2030 by seven out of eight high-emitting 
countries would be insufficient to meet 1.5°C. Emerging literature on 
justice-centred pathways to 1.5°C points towards ambitious emissions 
reductions domestically and committed cooperation internationally 
whereby wealthier countries support poorer ones, technologically, 
financially and otherwise to enhance capacities (Okereke and Coventry, 
2016; Holz et al., 2018; Robinson and Shine, 2018; Shue, 2018). These 
findings suggest that equitable and 1.5°C-compatible pathways would 
require fast action across all countries at all levels of development 
rather than late accession of developing countries (as assumed under 
SSP3, see Chapter 2), with external support for prompt mitigation and 
resilience-building efforts in the latter (medium evidence, medium 
agreement).

Scientific advances since the AR5 now also make it possible to determine 
contributions to climate change for non-state actors (see Chapter 4, 
Section 4.4.1) and their potential to contribute to CRDPs (medium 
evidence, medium agreement). These non-state actors includes cities 
(Bulkeley et al., 2013, 2014; Byrne et al., 2016), businesses (Heede, 
2014; Frumhoff et al., 2015; Shue, 2017), transnational initiatives 
(Castro, 2016; Andonova et al., 2017) and industries. Recent work 
demonstrates the contributions of 90 industrial carbon producers to 
global temperature and sea level rise, and their responsibilities to 

contribute to investments in and support for mitigation and adaptation 
(Heede, 2014; Ekwurzel et al., 2017; Shue, 2017) (Sections 5.6.1 and 
5.6.2).

At the level of groups and individuals, equity in pursuing climate 
resilience for a 1.5°C warmer world means addressing disadvantage, 
inequities and empowerment that shape transformative processes 
and pathways (Fazey et al., 2018), and deliberate efforts to strengthen 
the capabilities, capacities and well-being of poor, marginalized and 
vulnerable people (Byrnes, 2014; Tokar, 2014; Harris et al., 2017; 
Klinsky et al., 2017a; Klinsky and Winkler, 2018). Community-driven 
CRDPs can flag potential negative impacts of national trajectories on 
disadvantaged groups, such as low-income families and communities 
of colour (Rao, 2014). They emphasize social equity, participatory 
governance, social inclusion and human rights, as well as innovation, 
experimentation and social learning (see Glossary) (medium evidence, 
high agreement) (Sections 5.5.3.3 and 5.6).

5.5.3.3	 Country and community strategies and experiences 

There are many possible pathways towards climate-resilient futures 
(O’Brien, 2018; Tàbara et al., 2018). Literature depicting different 
sustainable development trajectories in line with CRDPs is growing, with 
some of it being specific to 1.5°C global warming. Most experiences 
to date are at local and sub-national levels (Cross-Chapter Box 13 in 
this chapter), while state-level efforts align largely with green economy 
trajectories or planning for climate resilience (Box 5.3). Due to the fact 
that these strategies are context-specific, the literature is scarce on 
comparisons, efforts to scale up and systematic monitoring.

States can play an enabling or hindering role in a transition to a 1.5°C 
warmer world (Patterson et al., 2018). The literature on strategies to 
reconcile low-carbon trajectories with sustainable development and 
ecological sustainability through green growth, inclusive growth, 
de-growth, post-growth and development as well-being shows low 
agreement (see Chapter 4, Section 4.5). Efforts that align best with 
CRDPs are described as ‘transformational’ and ‘strong’ (Ferguson, 
2015). Some view ‘thick green’ perspectives as enabling equity, 
democracy and agency building (Lorek and Spangenberg, 2014; Stirling, 
2014; Ehresman and Okereke, 2015; Buch-Hansen, 2018), others show 
how green economy and sustainable development pathways can align 
(Brown et al., 2014; Georgeson et al., 2017b), and how a green economy 
can help link the SDGs with NDCs, for instance in Mongolia, Kenya and 
Sweden (Shine, 2017). Others still critique the continuous reliance on 
market mechanisms (Wanner, 2014; Brockington and Ponte, 2015) and 
disregard for equity and distributional and procedural justice (Stirling, 
2014; Bell, 2015).

Country-level pathways and achievements vary significantly (robust 
evidence, medium agreement). For instance, the Scandinavian countries 
rank at the top of the Global Green Economy Index (Dual Citizen LLC, 
2016), although they also tend to show high spill-over effects (Holz et al., 
2018) and transgress their biophysical boundaries (O’Neill et al., 2018). 
State-driven efforts in non-member countries of the Organisation for 
Economic Co-operation and Development include Ethiopia’s ‘Climate-
resilient Green Economy Strategy’, Mozambique’s ‘Green Economy 
Action Plan’ and Costa Rica’s ecosystem- and conservation-driven 
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green transition paths. China and India have adopted technology and 
renewables pathways (Brown et al., 2014; Death, 2014, 2015, 2016; 
Khanna et al., 2014; Chen et al., 2015; Kim and Thurbon, 2015; Wang 
et al., 2015; Weng et al., 2015). Brazil promotes low per capita GHG 
emissions, clean energy sources, green jobs, renewables and sustainable 
transportation, while slowing rates of deforestation (see Chapter 4, Box 
4.7) (Brown et al., 2014; La Rovere, 2017). Yet concerns remain regarding 
persistent inequalities, ecosystem monetization, lack of participation 
in green-style projects (Brown et al., 2014) and labour conditions and 
risk of displacement in the sugarcane ethanol sector (McKay et al., 
2016). Experiences with low-carbon development pathways in LDCs 
highlight the crucial role of identifying synergies across scale, removing 
institutional barriers and ensuring equity and fairness in distributing 
benefits as part of the right to development (Rai and Fisher, 2017).

In small islands states, for many of which climate change hazards and 
impacts at 1.5°C pose significant risks to sustainable development (see 

Chapter 3 Box 3.5, Chapter 4 Box 4.3, Box 5.3), examples of CRDPs 
have emerged since the AR5. This includes the SAMOA Pathway: SIDS 
Accelerated Modalities of Action (see Chapter 4, Box 4.3) (UNGA, 2014; 
Government of Kiribati, 2016; Steering Committee on Partnerships for 
SIDS and UN DESA, 2016; Lefale et al., 2017) and the Framework for 
Resilient Development in the Pacific, a leading example of integrated 
regional climate change adaptation planning for mitigation and 
sustainable development, disaster risk management and low-carbon 
economies (SPC, 2016). Small islands of the Pacific vary significantly 
in their capacity and resources to support effective integrated planning 
(McCubbin et al., 2015; Barnett and Walters, 2016; Cvitanovic et al., 
2016; Hemstock et al., 2017; Robinson and Dornan, 2017). Vanuatu (Box 
5.3) has developed a significant coordinated national adaptation plan 
to advance the 2030 Agenda for Sustainable Development, respond to 
the Paris Agreement and reduce the risk of disasters in line with the 
Sendai targets (UNDP, 2016; Republic of Vanuatu, 2017).

Box 5.3 |  Republic of Vanuatu – National Planning for Development and Climate Resilience

The Republic of Vanuatu is leading Pacific Small Island Developing States (SIDS) to develop a nationally coordinated plan for climate-
resilient development in the context of high exposure to hazard risk (MoCC, 2016; UNU-EHS, 2016). The majority of the population 
depends on subsistence, rain-fed agriculture and coastal fisheries for food security (Sovacool et al., 2017). Sea level rise, increased 
prolonged drought, water shortages, intense storms, cyclone events and degraded coral reef environments threaten human security 
in a 1.5°C warmer world (see Chapter 3, Box 3.5) (SPC, 2015; Aipira et al., 2017). Given Vanuatu’s long history of climate hazards 
and disasters, local adaptive capacity is relatively high, despite barriers to the use of local knowledge and technology, and low rates 
of literacy and women’s participation (McNamara and Prasad, 2014; Aipira et al., 2017; Granderson, 2017). However, the adaptive 
capacity of Vanuatu and other SIDS is increasingly constrained due to more frequent severe weather events (see Chapter 3, Box 
3.5, Chapter 4, Cross-Chapter Box 9 in Chapter 4) (Gero et al., 2013; Kuruppu and Willie, 2015; SPC, 2015; Sovacool et al., 2017).

Vanuatu has developed a national sustainable development plan for 2016–2030: the People’s Plan (Republic of Vanuatu, 2016). 
This coordinated, inclusive plan of action on economy, environment and society aims to strengthen adaptive capacity and resilience 
to climate change and disasters. It emphasizes rights of all Ni-Vanuatu, including women, youth, the elderly and vulnerable groups 
(Nalau et al., 2016). Vanuatu has also developed a Coastal Adaptation Plan (Republic of Vanuatu, 2016), an integrated Climate 
Change and Disaster Risk Reduction Policy (2016–2030) (SPC, 2015) and the first South Pacific National Advisory Board on Climate 
Change & Disaster Risk Reduction (SPC, 2015; UNDP, 2016).

Vanuatu aims to integrate planning at multiple scales, and increase climate resilience by supporting local coping capacities and 
iterative processes of planning for sustainable development and integrated risk assessment (Aipira et al., 2017; Eriksson et al., 
2017; Granderson, 2017). Climate-resilient development is also supported by non-state partnerships, for example, the ‘Yumi stap 
redi long climate change’–the Vanuatu non-governmental organization Climate Change Adaptation Program (Maclellan, 2015). 
This programme focuses on equitable governance, with particular attention to supporting women’s voices in decision-making 
through allied programmes addressing domestic violence, and rights-based education to reduce social marginalization; alongside 
institutional reforms for greater transparency, accountability and community participation in decision-making (Davies, 2015; 
Maclellan, 2015; Sterrett, 2015; Ensor, 2016; UN Women, 2016).

Power imbalances embedded in the political economy of development (Nunn et al., 2014), gender discrimination (Aipira et al., 2017) 
and the priorities of climate finance (Cabezon et al., 2016) may marginalize the priorities of local communities and influence how 
local risks are understood, prioritised and managed (Kuruppu and Willie, 2015; Baldacchino, 2017; Sovacool et al., 2017). However, 
the experience of the low death toll after Cyclone Pam suggests effective use of local knowledge in planning and early warning may 
support resilience at least in the absence of storm surge flooding (Handmer and Iveson, 2017; Nalau et al., 2017). Nevertheless, the 
very severe infrastructure damage of Cyclone Pam 2015 highlights the limits of individual Pacific SIDS efforts and the need for global 
and regional responses to a 1.5°C warmer world (see Chapter 3, Box 3.5, Chapter 4, Box 4.3) (Dilling et al., 2015; Ensor, 2016; Shultz 
et al., 2016; Rey et al., 2017).



Chapter 5	 Sustainable Development, Poverty Eradication and Reducing Inequalities

55

472

Communities, towns and cities also contribute to low-carbon pathways, 
sustainable development and fair and equitable climate resilience, 
often focused on processes of power, learning and contestation as entry 
points to more localised CRDPs (medium evidence, high agreement) 
(Cross-Chapter Box 13 in this chapter, Box 5.2). In the Scottish Borders 
Climate Resilient Communities Project (United Kingdom), local flood 
management is linked with national policies to foster cross-scalar 
and inclusive governance, with attention to systemic disadvantages, 
shocks and stressors, capacity building, learning for change and climate 
narratives to inspire hope and action, all of which are essential for 
community resilience in a 1.5°C warmer world (Fazey et al., 2018). 
Narratives and storytelling are vital for realizing place-based 1.5°C 
futures as they create space for agency, deliberation, co-constructing 
meaning, imagination and desirable and dignified pathways (Veland 
et al., 2018). Engagement with possible futures, identity and self-
reliance is also documented for Alaska, where warming has already 
exceeded 1.5°C and indigenous communities invest in renewable 
energy, greenhouses for food security and new fishing practices to 
overcome loss of sea ice, flooding and erosion (Chapin et al., 2016; 
Fazey et al., 2018). The Asian Cities Climate Change Resilience Network 
facilitates shared learning dialogues, risk-to-resilience workshops, and 

iterative, consultative planning in flood-prone cities in India; vulnerable 
communities, municipal governmental agents, entrepreneurs and 
technical experts negotiate different visions, trade-offs and local politics 
to identify desirable pathways (Harris et al., 2017).

Transforming our societies and systems to limit global warming to 
1.5°C and ensuring equity and well-being for human populations 
and ecosystems in a 1.5°C warmer world would require ambitious 
and well-integrated adaptation–mitigation–development pathways 
that deviate fundamentally from high-carbon, business-as-usual 
futures (Okereke and Coventry, 2016; Arts, 2017; Gupta and Arts, 
2017; Sealey-Huggins, 2017). Identifying and negotiating socially 
acceptable, inclusive and equitable pathways towards climate-
resilient futures is a challenging, yet important, endeavour, fraught 
with complex moral, practical and political difficulties and inevitable 
trade-offs (very high confidence). The ultimate questions are: what 
futures do we want (Bai et al., 2016; Tàbara et al., 2017; Klinsky and 
Winkler, 2018; O’Brien, 2018; Veland et al., 2018), whose resilience 
matters, for what, where, when and why (Meerow and Newell, 2016), 
and ‘whose vision … is being pursued and along which pathways’ 
(Gillard et al., 2016).

Cross-Chapter Box 13 |  Cities and Urban Transformation

Lead Authors:
Fernando Aragon-Durand (Mexico), Paolo Bertoldi (Italy), Anton Cartwright (South Africa), François Engelbrecht (South Africa), 
Bronwyn Hayward (New Zealand), Daniela Jacob (Germany), Debora Ley (Guatemala/Mexico), Shagun Mehrotra (USA/India), Peter 
Newman (Australia), Aromar Revi (India), Seth Schultz (USA), William Solecki (USA), Petra Tschakert (Australia/Austria)

Contributor: 
Peter Marcotullio (USA)

Global Urbanization in a 1.5°C Warmer World
The concentration of economic activity, dense social networks, human resource capacity, investment in infrastructure and buildings, 
relatively nimble local governments, close connection to surrounding rural and natural environments, and a tradition of innovation 
provide urban areas with transformational potential (see Chapter 4, Section 4.3.3) (Castán Broto, 2017). In this sense, the urbanization 
megatrend that will take place over the next three decades, and add approximately 2 billion people to the global urban population 
(UN, 2014), offers opportunities for efforts to limit warming to 1.5°C.

Cities can also, however, concentrate the risks of flooding, landslides, fire and infectious and parasitic disease that are expected to 
heighten in a 1.5°C warmer world (Chapter 3). In African and Asian countries where urbanization rates are highest, these risks could 
expose and amplify pre-existing stresses related to poverty, exclusion, and governance (Gore, 2015; Dodman et al., 2017; Jiang and 
O’Neill, 2017; Pelling et al., 2018; Solecki et al., 2018). Through its impact on economic development and investment, urbanization 
often leads to increased consumption and environmental degradation and enhanced vulnerability and risk (Rosenzweig et al., 2018). 
In the absence of innovation, the combination of urbanization and urban economic development could contribute 226 GtCO2 in 
emissions by 2050 (Bai et al., 2018). At the same time, some new urban developments are demonstrating combined carbon and 
Sustainable Development Goals (SDG) benefits (Wiktorowicz et al., 2018), and it is in towns and cities that building renovation rates 
can be most easily accelerated to support the transition to 1.5°C pathways (Kuramochi et al., 2018), including through voluntary 
programmes (Van der Heijden, 2018).

Urban transformations and emerging climate-resilient development pathways
The 1.5°C pathways require action in all cities and urban contexts. Recent literature emphasizes the need to deliberate and negotiate 
how resilience and climate-resilient pathways can be fostered in the context of people’s daily lives, including the failings of everyday 
development such as unemployment, inadequate housing and a growing informal sector and settlements (informality), in order 
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to acknowledge local priorities and foster transformative learning (Vale, 2014; Shi et al., 2016; Harris et al., 2017; Ziervogel et al., 
2017; Fazey et al., 2018; Macintyre et al., 2018). Enhancing deliberate transformative capacities in urban contexts also entails new 
and relational forms of envisioning agency, equity, resilience, social cohesion and well-being (Section 5.5.3) (Gillard et al., 2016; 
Ziervogel et al., 2016). Two examples of urban transformation are explored here.

The built environment, spatial planning, infrastructure, energy services, mobility and urban–rural linkages necessary in rapidly 
growing cities in South Asia and Africa in the next three decades present mitigation, adaptation and development opportunities 
that are crucial for a 1.5°C world (Newman et al., 2017; Lwasa et al., 2018; Teferi and Newman, 2018). Realizing these opportunities 
would require the structural challenges of poverty, weak and contested local governance, and low levels of local government 
investment to be addressed on an unprecedented scale (Wachsmuth et al., 2016; Chu et al., 2017; van Noorloos and Kloosterboer, 
2017; Pelling et al., 2018).

Urban governance is critical to ensuring that the necessary urban transitions deliver economic growth and equity (Hughes et al., 
2018). The proximity of local governments to citizens and their needs can make them powerful agents of climate action (Melica et 
al., 2018), but urban governance is enhanced when it involves multiple actors (Ziervogel et al., 2016; Pelling et al., 2018), supportive 
national governments (Tait and Euston-Brown, 2017), and sub-national climate networks (see Chapter 4, Section 4.4.1). Governance 
is complicated for the urban population currently living in informality. This population is expected to triple, to three billion, by 
2050 (Satterthwaite et al., 2018), placing a significant portion of the world’s population beyond the direct reach of formal climate 
mitigation and adaptation policies (Revi et al., 2014). How to address the co-evolved and structural conditions that lead to urban 
informality and associated vulnerability to 1.5°C of warming is a central question for this report. Brown and McGranahan (2016) 
cite evidence that the informal urban ‘green economy’ that has emerged out of necessity in the absence of formal service provisions 
is frequently low-carbon and resource-efficient.

Realising the potential for low carbon transitions in informal urban settlements would require an express recognition of the unpaid-
for contributions of women in the informal economy, and new partnerships between the state and communities (Ziervogel et al., 
2017; Pelling et al., 2018; Satterthwaite et al., 2018). There is no guarantee that these partnerships will evolve or cohere into the 
type of service delivery and climate governance system that could steer the change on a scale required to limit to warming to 1.5°C 
(Jaglin, 2014). However, work by transnational networks, such as Shack/Slum Dwellers International, C40, the Global Covenant 
of Mayors, and the International Council for Local Environmental Initiatives, as well as efforts to combine in-country planning for 
Nationally Determined Contributions (NDCs) (Andonova et al., 2017; Fuhr et al., 2018) with those taking place to support the New 
Urban Agenda and National Urban Policies, represent one step towards realizing the potential (Tait and Euston-Brown, 2017). 
So too do ‘old urban agendas’, such as slum upgrading and universal water and sanitation provision (McGranahan et al., 2016; 
Satterthwaite, 2016; Satterthwaite et al., 2018).

Transition Towns (TTs) are a type of urban transformation that have emerged mainly in high-income countries. The grassroots TT 
movement (origin in the United Kingdom) combines adaptation, mitigation and just transitions, mainly at the level of communities 
and small towns. It now has more than 1,300 registered local initiatives in more than 40 countries (Grossmann and Creamer, 
2017), many of them in the United Kingdom, the United States, and other high-income countries. TTs are described as ‘progressive 
localism’ (Cretney et al., 2016), aiming to foster a ‘communitarian ecological citizenship’ that goes beyond changes in consumption 
and lifestyle (Kenis, 2016). They aspire to promote equitable communities resilient to the impacts of climate change, peak oil and 
unstable global markets; re-localization of production and consumption; and transition pathways to a post-carbon future (Feola and 
Nunes, 2014; Evans and Phelan, 2016; Grossmann and Creamer, 2017).

TT initiatives typically pursue lifestyle-related low-carbon living and economies, food self-sufficiency, energy efficiency through 
renewables, construction with locally sourced material and cottage industries (Barnes, 2015; Staggenborg and Ogrodnik, 2015; 
Taylor Aiken, 2016). Social and iterative learning through the collective involves dialogue, deliberation, capacity building, citizen 
science engagements, technical re-skilling to increase self-reliance, for example canning and preserving food and permaculture, 
future visioning and emotional training to share difficulties and loss (Feola and Nunes, 2014; Barnes, 2015; Boke, 2015; Taylor Aiken, 
2015; Kenis, 2016; Mehmood, 2016; Grossmann and Creamer, 2017).

Important conditions for successful transition groups include flexibility, participatory democracy, care ethics, inclusiveness and 
consensus-building, assuming bridging or brokering roles, and community alliances and partnerships (Feola and Nunes, 2014; 
Mehmood, 2016; Taylor Aiken, 2016; Grossmann and Creamer, 2017). Smaller scale rural initiatives allow for more experimentation 

Cross-Chapter Box 13 (continued)
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(Cretney et al., 2016), while those in urban centres benefit from stronger networks and proximity to power structures (North and 
Longhurst, 2013; Nicolosi and Feola, 2016). Increasingly, TTs recognize the need to participate in policymaking (Kenis and Mathijs, 
2014; Barnes, 2015).

Despite high self-ratings of success, some TT initiatives are too inwardly focused and geographically isolated (Feola and Nunes, 
2014), while others have difficulties in engaging marginalized, non-white, non-middle-class community members (Evans and 
Phelan, 2016; Nicolosi and Feola, 2016; Grossmann and Creamer, 2017). In the United Kingdom, expectations of innovations 
growing in scale (Taylor Aiken, 2015) and carbon accounting methods required by funding bodies (Taylor Aiken, 2016) 
undermine local resilience building. Tension between explicit engagements with climate change action and efforts to appeal 
to more people have resulted in difficult trade-offs and strained member relations (Grossmann and Creamer, 2017) though the 
contribution to changing an urban culture that prioritizes climate change is sometimes underestimated (Wiktorowicz et al., 2018). 
 
Urban actions that can highlight the 1.5°C agenda include individual actions within homes (Werfel, 2017; Buntaine and Prather, 
2018); demonstration zero carbon developments (Wiktorowicz et al., 2018); new partnerships between communities, government 
and business to build mass transit and electrify transport (Glazebrook and Newman, 2018); city plans to include climate outcomes 
(Millard-Ball, 2013); and support for transformative change across political, professional and sectoral divides (Bai et al., 2018).

Cross-Chapter Box 13 (continued)

5.6	 Conditions for Achieving Sustainable 
Development, Eradicating Poverty 
and Reducing Inequalities in 
1.5°C Warmer Worlds

This chapter has described the fundamental, urgent and systemic 
transformations that would be needed to achieve sustainable 
development, eradicate poverty and reduce inequalities in a 1.5°C 
warmer world, in various contexts and across scales. In particular, it 
has highlighted the societal dimensions, putting at the centre people’s 
needs and aspirations in their specific contexts. Here we synthesize 
some of the most pertinent enabling conditions (see Glossary) to 
support these profound transformations. These conditions are closely 
interlinked and connected by the overarching concept of governance, 
which broadly includes institutional, socio-economic, cultural and 
technological elements (see Chapter 1, Cross-Chapter Box 4 in 
Chapter 1).

5.6.1	 Finance and Technology Aligned with Local Needs

Significant gaps in green investment constrain transitions to a low-
carbon economy aligned with development objectives (Volz et al., 
2015; Campiglio, 2016). Hence, unlocking new forms of public, private 
and public–private financing is essential to support environmental 
sustainability of the economic system (Croce et al., 2011; Blyth et al., 
2015; Falcone et al., 2018) (see Chapter 4, Section 4.4.5). To avoid risks 
of undesirable trade-offs with the SDGs caused by national budget 
constraints, improved access to international climate finance is essential 
for supporting adaptation, mitigation and sustainable development, 
especially for LDCs and SIDS (medium evidence, high agreement) 
(Shine and Campillo, 2016; Wood, 2017). Care needs to be taken when 
international donors or partnership arrangements influence project 
financing structures (Kongsager and Corbera, 2015; Purdon, 2015; 
Phillips et al., 2017; Ficklin et al., 2018). Conventional climate funding 
schemes, especially the Clean Development Mechanism (CDM), have 

shown positive effects on sustainable development but also adverse 
consequences, for example, on adaptive capacities of rural households 
and uneven distribution of costs and benefits, often exacerbating 
inequalities (robust evidence, high agreement) (Aggarwal, 2014; 
Brohé, 2014; He et al., 2014; Schade and Obergassel, 2014; Smits and 
Middleton, 2014; Wood et al., 2016a; Horstmann and Hein, 2017; 
Kreibich et al., 2017). Close consideration of recipients’ context-
specific needs when designing financial support helps to overcome 
these limitations as it better aligns community needs, national policy 
objectives and donors’ priorities; puts the emphasis on the increase of 
transparency and predictability of support; and fosters local capacity 
building (medium evidence, high agreement) (Barrett, 2013; Boyle et 
al., 2013; Shine and Campillo, 2016; Ley, 2017; Sánchez and Izzo, 2017).

The development and transfer of technologies is another enabler for 
developing countries to contribute to the requirements of the 1.5°C 
objective while achieving climate resilience and their socio-economic 
development goals (see Chapter 4, Section 4.4.4). International-
level governance would be needed to boost domestic innovation 
and the deployment of new technologies, such as negative emission 
technologies, towards the 1.5°C objective (see Chapter 4, Section 4.3.7), 
but the alignment with local needs depends on close consideration 
of the specificities of the domestic context in countries at all levels 
of development (de Coninck and Sagar, 2015; IEA, 2015; Parikh et al., 
2018). Technology transfer supporting development in developing 
countries would require an understanding of local and national actors 
and institutions (de Coninck and Puig, 2015; de Coninck and Sagar, 
2017; Michaelowa et al., 2018), careful attention to the capacities in 
the entire innovation chain (Khosla et al., 2017; Olawuyi, 2017) and 
transfer of not only equipment but also knowledge (medium evidence, 
high agreement) (Murphy et al., 2015).

5.6.2	 Integration of Institutions 

Multilevel governance in climate change has emerged as a key enabler 
for systemic transformation and effective governance (see Chapter 4, 
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Section 4.4.1). On the one hand, low-carbon and climate-resilient 
development actions are often well aligned at the lowest scale 
possible (Suckall et al., 2015; Sánchez and Izzo, 2017), and informal, 
local institutions are critical in enhancing the adaptive capacity 
of countries and marginalized communities (Yaro et al., 2015). On 
the other hand, international and national institutions can provide 
incentives for projects to harness synergies and avoid trade-offs 
(Kongsager et al., 2016).

Governance approaches that coordinate and monitor multiscale 
policy actions and trade-offs across sectoral, local, national, regional 
and international levels are therefore best suited to implement goals 
towards 1.5°C warmer conditions and sustainable development (Ayers 
et al., 2014; Stringer et al., 2014; von Stechow et al., 2016; Gwimbi, 
2017; Hayward, 2017; Maor et al., 2017; Roger et al., 2017; Michaelowa 
et al., 2018). Vertical and horizontal policy integration and coordination 
is essential to take into account the interplay and trade-offs between 
sectors and spatial scales (Duguma et al., 2014; Naess et al., 2015; von 
Stechow et al., 2015; Antwi-Agyei et al., 2017a; Di Gregorio et al., 2017; 
Runhaar et al., 2018), enable the dialogue between local communities 
and institutional bodies (Colenbrander et al., 2016), and involve non-
state actors such as business, local governments and civil society 
operating across different scales (robust evidence, high agreement) 
(Hajer et al., 2015; Labriet et al., 2015; Hale, 2016; Pelling et al., 2016; 
Kalafatis, 2017; Lyon, 2018).

5.6.3	 Inclusive Processes

Inclusive governance processes are critical for preparing for a 1.5°C 
warmer world (Fazey et al., 2018; O’Brien, 2018; Patterson et al., 2018). 
These processes have been shown to serve the interests of diverse 
groups of people and enhance empowerment of often excluded 
stakeholders, notably women and youth (MRFCJ, 2015a; Dumont et 
al., 2017). They also enhance social- and co-learning which, in turn, 
facilitates accelerated and adaptive management and the scaling up 
of capacities for resilience building (Ensor and Harvey, 2015; Reij and 
Winterbottom, 2015; Tschakert et al., 2016; Binam et al., 2017; Dumont 
et al., 2017; Fazey et al., 2018; Lyon, 2018; O’Brien, 2018), and provides 
opportunities to blend indigenous, local and scientific knowledge 
(robust evidence, high agreement) (see Chapter 4, Section 4.3.5.5, 
Box 4.3, Section 5.3) (Antwi-Agyei et al., 2017a; Coe et al., 2017; 
Thornton and Comberti, 2017) . Such co-learning has been effective 
in improving deliberative decision-making processes that incorporate 
different values and world views (Cundill et al., 2014; C. Butler et al., 
2016; Ensor, 2016; Fazey et al., 2016; Gorddard et al., 2016; Aipira et 
al., 2017; Chung Tiam Fook, 2017; Maor et al., 2017), and create space 
for negotiating diverse interests and preferences (robust evidence, high 
agreement) (O’Brien et al., 2015; Gillard et al., 2016; DeCaro et al., 
2017; Harris et al., 2017; Lahn, 2018).

5.6.4	 Attention to Issues of Power and Inequality 

Societal transformations to limit global warming to 1.5°C and strive 
for equity and well-being for all are not power neutral (Section 5.5.3). 
Development preferences are often shaped by powerful interests that 
determine the direction and pace of change, anticipated benefits and 
beneficiaries, and acceptable and unacceptable trade-offs (Newell et 

al., 2014; Fazey et al., 2016; Tschakert et al., 2016; Winkler and Dubash, 
2016; Wood et al., 2016b; Karlsson et al., 2017; Quan et al., 2017; 
Tanner et al., 2017). Each development pathway, including legacies and 
path dependencies, creates its own set of opportunities and challenges 
and winners and losers, both within and across countries (Figure 5.5) 
(robust evidence, high agreement) (Mathur et al., 2014; Phillips et al., 
2017; Stringer et al., 2017; Wood, 2017; Ficklin et al., 2018; Gajjar et 
al., 2018).

Addressing the uneven distribution of power is critical to ensure 
that societal transformation towards a 1.5°C warmer world does 
not exacerbate poverty and vulnerability or create new injustices but 
rather encourages equitable transformational change (Patterson et 
al., 2018). Equitable outcomes are enhanced when they pay attention 
to just outcomes for those negatively affected by change (Newell et 
al., 2014; Dilling et al., 2015; Naess et al., 2015; Sovacool et al., 2015; 
Cervigni and Morris, 2016; Keohane and Victor, 2016) and promote 
human rights, increase equality and reduce power asymmetries within 
societies (robust evidence, high agreement) (UNRISD, 2016; Robinson 
and Shine, 2018).

5.6.5	 Reconsidering Values 

The profound transformations that would be needed to integrate 
sustainable development and 1.5°C-compatible pathways call for 
examining the values, ethics, attitudes and behaviours that underpin 
societies (Hartzell-Nichols, 2017; O’Brien, 2018; Patterson et al., 2018). 
Infusing values that promote sustainable development (Holden et al., 
2017), overcome individual economic interests and go beyond economic 
growth (Hackmann, 2016), encourage desirable and transformative 
visions (Tàbara et al., 2018), and care for the less fortunate (Howell 
and Allen, 2017) is part and parcel of climate-resilient and sustainable 
development pathways. This entails helping societies and individuals 
to strive for sufficiency in resource consumption within planetary 
boundaries alongside sustainable and equitable well-being (O’Neill 
et al., 2018). Navigating 1.5°C societal transformations, characterized 
by action from local to global, stresses the core commitment to 
social justice, solidarity and cooperation, particularly regarding the 
distribution of responsibilities, rights and mutual obligations between 
nations (medium evidence, high agreement) (Patterson et al., 2018; 
Robinson and Shine, 2018).

5.7	 Synthesis and Research Gaps

The assessment in Chapter 5 illustrates that limiting global warming 
to 1.5°C above pre-industrial levels is fundamentally connected with 
achieving sustainable development, poverty eradication and reducing 
inequalities. It shows that avoided impacts between 1.5°C and 2°C 
temperature stabilization would make it easier to achieve many aspects 
of sustainable development, although important risks would remain 
at 1.5°C (Section 5.2). Synergies between adaptation and mitigation 
response measures with sustainable development and the SDGs can 
often be enhanced when attention is paid to well-being and equity 
while, when unaddressed, poverty and inequalities may be exacerbated 
(Section 5.3 and 5.4). Climate-resilient development pathways (CRDPs) 
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open up routes towards socially desirable futures that are sustainable 
and liveable, but concrete evidence reveals complex trade-offs along 
a continuum of different pathways, highlighting the role of societal 
values, internal contestations and political dynamics (Section 5.5). The 
transformations towards sustainable development in a 1.5°C warmer 
world, in all contexts, involve fundamental societal and systemic 
changes over time and across scale, and a set of enabling conditions 
without which the dual goal is difficult if not impossible to achieve 
(Sections 5.5 and 5.6).

This assessment is supported by growing knowledge on the linkages 
between a 1.5°C warmer world and different dimensions of sustainable 
development. However, several gaps in the literature remain:

Limited evidence exists that explicitly examines the real-world 
implications of a 1.5°C warmer world (and overshoots) as well as 
avoided impacts between 1.5°C versus 2°C for the SDGs and sustainable 
development more broadly. Few projections are available for 
households, livelihoods and communities. And literature on differential 
localized impacts and their cross-sector interacting and cascading 
effects with multidimensional patterns of societal vulnerability, poverty 
and inequalities remains scarce. Hence, caution is needed when global-
level conclusions about adaptation and mitigation measures in a 1.5°C 
warmer world are applied to sustainable development in local, national 
and regional settings.

Limited literature has systematically evaluated context-specific 
synergies and trade-offs between and across adaptation and mitigation 
response measures in 1.5°C-compatible pathways and the SDGs. This 

hampers the ability to inform decision-making and fair and robust policy 
packages adapted to different local, regional or national circumstances. 
More research is required to understand how trade-offs and synergies 
will intensify or decrease, differentially across geographic regions and 
time, in a 1.5°C warmer world and as compared to higher temperatures.

Limited availability of interdisciplinary studies also poses a challenge 
for connecting the socio-economic transformations and the governance 
aspects of low emissions, climate-resilient transformations. For 
example, it remains unclear how governance structures enable or 
hinder different groups of people and countries to negotiate pathway 
options, values and priorities.

The literature does not demonstrate the existence of 1.5°C-compatible 
pathways achieving the ‘universal and indivisible’ agenda of the 
17 SDGs, and hence does not show whether and how the nature 
and pace of changes that would be required to meet 1.5°C climate 
stabilization could be fully synergetic with all the SDGs.

The literature on low emissions and CRDPs in local, regional and national 
contexts is growing. Yet the lack of standard indicators to monitor such 
pathways makes it difficult to compare evidence grounded in specific 
contexts with differential circumstances, and therefore to derive 
generic lessons on the outcome of decisions on specific indicators. This 
knowledge gap poses a challenge for connecting local-level visions 
with global-level trajectories to better understand key conditions for 
societal and systems transformations that reconcile urgent climate 
action with well-being for all.
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Frequently Asked Questions 

FAQ 5.1 |	 What are the Connections between Sustainable Development and Limiting Global  
	 Warming to 1.5°C above Pre-Industrial Levels?

Summary: Sustainable development seeks to meet the needs of people living today without compromising the 
needs of future generations, while balancing social, economic and environmental considerations. The 17 UN 
Sustainable Development Goals (SDGs) include targets for eradicating poverty; ensuring health, energy and food 
security; reducing inequality; protecting ecosystems; pursuing sustainable cities and economies; and a goal for 
climate action (SDG 13). Climate change affects the ability to achieve sustainable development goals, and limiting 
warming to 1.5°C will help meet some sustainable development targets. Pursuing sustainable development will 
influence emissions, impacts and vulnerabilities. Responses to climate change in the form of adaptation and 
mitigation will also interact with sustainable development with positive effects, known as synergies, or negative 
effects, known as trade-offs. Responses to climate change can be planned to maximize synergies and limit trade-
offs with sustainable development.

For more than 25 years, the United Nations (UN) and other international organizations have embraced the 
concept of sustainable development to promote well-being and meet the needs of today’s population without 
compromising the needs of future generations. This concept spans economic, social and environmental objectives 
including poverty and hunger alleviation, equitable economic growth, access to resources, and the protection of 
water, air and ecosystems. Between 1990 and 2015, the UN monitored a set of eight Millennium Development 
Goals (MDGs). They reported progress in reducing poverty, easing hunger and child mortality, and improving 
access to clean water and sanitation. But with millions remaining in poor health, living in poverty and facing 
serious problems associated with climate change, pollution and land-use change, the UN decided that more 
needed to be done. In 2015, the UN Sustainable Development Goals (SDGs) were endorsed as part of the 2030 
Agenda for Sustainable Development. The 17 SDGs (Figure FAQ 5.1) apply to all countries and have a timeline 
for success by 2030. The SDGs seek to eliminate extreme poverty and hunger; ensure health, education, peace, 
safe water and clean energy for all; promote inclusive and sustainable consumption, cities, infrastructure and 
economic growth; reduce inequality including gender inequality; combat climate change and protect oceans and 
terrestrial ecosystems.

Climate change and sustainable development are fundamentally connected. Previous IPCC reports found that 
climate change can undermine sustainable development, and that well-designed mitigation and adaptation 
responses can support poverty alleviation, food security, healthy ecosystems, equality and other dimensions of 
sustainable development. Limiting global warming to 1.5°C would require mitigation actions and adaptation 
measures to be taken at all levels. These adaptation and mitigation actions would include reducing emissions and 
increasing resilience through technology and infrastructure choices, as well as changing behaviour and policy. 
	  
These actions can interact with sustainable development objectives in positive ways that strengthen sustainable 
development, known as synergies. Or they can interact in negative ways, where sustainable development is 
hindered or reversed, known as trade-offs.

An example of a synergy is sustainable forest management, which can prevent emissions from deforestation 
and take up carbon to reduce warming at reasonable cost. It can work synergistically with other dimensions of 
sustainable development by providing food (SDG 2) and clean water (SDG 6) and protecting ecosystems (SDG 15). 
Other examples of synergies are when climate adaptation measures, such as coastal or agricultural projects, 
empower women and benefit local incomes, health and ecosystems.

An example of a trade-off can occur if ambitious climate change mitigation compatible with 1.5°C changes 
land use in ways that have negative impacts on sustainable development. An example could be turning natural 
forests, agricultural areas, or land under indigenous or local ownership to plantations for bioenergy production. 
If not managed carefully, such changes could undermine dimensions of sustainable development by threatening 
food and water security, creating conflict over land rights and causing biodiversity loss. Another trade-off could 
occur for some countries, assets, workers and infrastructure already in place if a switch is made from fossil fuels to 
other energy sources without adequate planning for such a transition. Trade-offs can be minimized if effectively 
managed, as when care is taken to improve bioenergy crop yields to reduce harmful land-use change or where 
workers are retrained for employment in lower carbon sectors.

(continued on next page)
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FAQ 5.1 (continued) 

Limiting temperature increase to 1.5°C can make it much easier to achieve the SDGs, but it is also possible that 
pursuing the SDGs could result in trade-offs with efforts to limit climate change. There are trade-offs when 
people escaping from poverty and hunger consume more energy or land and thus increase emissions, or if 
goals for economic growth and industrialization increase fossil fuel consumption and greenhouse gas emissions. 
Conversely, efforts to reduce poverty and gender inequalities and to enhance food, health and water security can 
reduce vulnerability to climate change. Other synergies can occur when coastal and ocean ecosystem protection 
reduces the impacts of climate change on these systems. The sustainable development goal of affordable and 
clean energy (SDG 7) specifically targets access to renewable energy and energy efficiency, which are important 
to ambitious mitigation and limiting warming to 1.5°C.

The link between sustainable development and limiting global warming to 1.5°C is recognized by the SDG for 
climate action (SDG 13), which seeks to combat climate change and its impacts while acknowledging that the United 
Nations Framework Convention on Climate Change (UNFCCC) is the primary international, intergovernmental 
forum for negotiating the global response to climate change.

The challenge is to put in place sustainable development policies and actions that reduce deprivation, alleviate 
poverty and ease ecosystem degradation while also lowering emissions, reducing climate change impacts and 
facilitating adaptation. It is important to strengthen synergies and minimize trade-offs when planning climate 
change adaptation and mitigation actions. Unfortunately, not all trade-offs can be avoided or minimized, but 
careful planning and implementation can build the enabling conditions for long-term sustainable development.

FAQ 5.1, Figure 1 |  Climate change action is one of the United Nations Sustainable Development Goals (SDGs) and is connected to sustainable development 
more broadly. Actions to reduce climate risk can interact with other sustainable development objectives in positive ways (synergies) and negative ways (trade-offs).
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Frequently Asked Questions 

FAQ 5.2 |	 What are the Pathways to Achieving Poverty Reduction and Reducing Inequalities  
	 while Reaching a 1.5°C World?

Summary: There are ways to limit global warming to 1.5°C above pre-industrial levels. Of the pathways that 
exist, some simultaneously achieve sustainable development. They entail a mix of measures that lower emissions 
and reduce the impacts of climate change, while contributing to poverty eradication and reducing inequalities. 
Which pathways are possible and desirable will differ between and within regions and nations. This is due to 
the fact that development progress to date has been uneven and climate-related risks are unevenly distributed. 
Flexible governance would be needed to ensure that such pathways are inclusive, fair and equitable to avoid 
poor and disadvantaged populations becoming worse off. Climate-resilient development pathways (CRDPs) offer 
possibilities to achieve both equitable and low-carbon futures.

Issues of equity and fairness have long been central to climate change and sustainable development. Equity, 
like equality, aims to promote justness and fairness for all. This is not necessarily the same as treating everyone 
equally, since not everyone comes from the same starting point. Often used interchangeably with fairness and 
justice, equity implies implementing different actions in different places, all with a view to creating an equal 
world that is fair for all and where no one is left behind.

The Paris Agreement states that it ‘will be implemented to reflect equity… in the light of different national 
circumstances’ and calls for ‘rapid reductions’ of greenhouse gases to be achieved ‘on the basis of equity, and in 
the context of sustainable development and efforts to eradicate poverty’. Similarly, the UN SDGs include targets 
to reduce poverty and inequalities, and to ensure equitable and affordable access to health, water and energy 
for all.

Equity and fairness are important for considering pathways that limit warming to 1.5°C in a way that is liveable 
for every person and species. They recognize the uneven development status between richer and poorer nations, 
the uneven distribution of climate impacts (including on future generations) and the uneven capacity of different 
nations and people to respond to climate risks. This is particularly true for those who are highly vulnerable to 
climate change, such as indigenous communities in the Arctic, people whose livelihoods depend on agriculture 
or coastal and marine ecosystems, and inhabitants of small island developing states. The poorest people will 
continue to experience climate change through the loss of income and livelihood opportunities, hunger, adverse 
health effects and displacement.

Well-planned adaptation and mitigation measures are essential to avoid exacerbating inequalities or creating 
new injustices. Pathways that are compatible with limiting warming to 1.5°C and aligned with the SDGs consider 
mitigation and adaptation options that reduce inequalities in terms of who benefits, who pays the costs and who 
is affected by possible negative consequences. Attention to equity ensures that disadvantaged people can secure 
their livelihoods and live in dignity, and that those who experience mitigation or adaptation costs have financial 
and technical support to enable fair transitions.

CRDPs describe trajectories that pursue the dual goal of limiting warming to 1.5°C while strengthening sustainable 
development. This includes eradicating poverty as well as reducing vulnerabilities and inequalities for regions, 
countries, communities, businesses and cities. These trajectories entail a mix of adaptation and mitigation 
measures consistent with profound societal and systems transformations. The goals are to meet the short-term 
SDGs, achieve longer-term sustainable development, reduce emissions towards net zero around the middle of 
the century, build resilience and enhance human capacities to adapt, all while paying close attention to equity 
and well-being for all.

The characteristics of CRDPs will differ across communities and nations, and will be based on deliberations with 
a diverse range of people, including those most affected by climate change and by possible routes towards 
transformation. For this reason, there are no standard methods for designing CRDPs or for monitoring their 
progress towards climate-resilient futures. However, examples from around the world demonstrate that flexible 
and inclusive governance structures and broad participation often help support iterative decision-making, 
continuous learning and experimentation. Such inclusive processes can also help to overcome weak institutional 
arrangements and power structures that may further exacerbate inequalities.

(continued on next page)
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FAQ 5.2 (continued)

Ambitious actions already underway around the world can offer insight into CRDPs for limiting warming to 1.5°C. 
For example, some countries have adopted clean energy and sustainable transport while creating environmentally 
friendly jobs and supporting social welfare programmes to reduce domestic poverty. Other examples teach us 
about different ways to promote development through practices inspired by community values. For instance, 
Buen Vivir, a Latin American concept based on indigenous ideas of communities living in harmony with nature, 
is aligned with peace; diversity; solidarity; rights to education, health, and safe food, water, and energy; and 
well-being and justice for all. The Transition Movement, with origins in Europe, promotes equitable and resilient 
communities through low-carbon living, food self-sufficiency and citizen science. Such examples indicate that 
pathways that reduce poverty and inequalities while limiting warming to 1.5°C are possible and that they can 
provide guidance on pathways towards socially desirable, equitable and low-carbon futures.

FAQ 5.2, Figure 1 |  Climate-resilient development pathways (CRDPs) describe trajectories that pursue the dual goals of limiting warming to 1.5°C while 
strengthening sustainable development. Decision-making that achieves the SDGs, lowers greenhouse gas emissions and limits global warming could help lead to 
a climate-resilient world, within the context of enhancing adaptation.
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1.5°C pathway  See Pathways.

1.5°C warmer worlds  Projected worlds in which global warming 
has reached and, unless otherwise indicated, been limited to 1.5°C 
above pre-industrial levels. There is no single 1.5°C warmer world, 
and projections of 1.5°C warmer worlds look different depending on 
whether it is considered on a near-term transient trajectory or at climate 
equilibrium after several millennia, and, in both cases, if it occurs with or 
without overshoot. Within the 21st century, several aspects play a role 
for the assessment of risk and potential impacts in 1.5°C warmer worlds: 
the possible occurrence, magnitude and duration of an overshoot; the 
way in which emissions reductions are achieved; the ways in which 
policies might be able to influence the resilience of human and natural 
systems; and the nature of the regional and sub-regional risks. Beyond 
the 21st century, several elements of the climate system would continue 
to change even if the global mean temperatures remain stable, including 
further increases of sea level. 

2030 Agenda for Sustainable Development  A UN resolution 
in September 2015 adopting a plan of action for people, planet and 
prosperity in a new global development framework anchored in 17 
Sustainable Development Goals (UN, 2015). See also Sustainable 
Development Goals (SDGs).

Acceptability of policy or system change  The extent to which 
a policy or system change is evaluated unfavourably or favourably, 
or rejected or supported, by members of the general public (public 
acceptability) or politicians or governments (political acceptability). 
Acceptability may vary from totally unacceptable/fully rejected to totally 
acceptable/fully supported; individuals may differ in how acceptable 
policies or system changes are believed to be.

Adaptability  See Adaptive capacity.

Adaptation  In human systems, the process of adjustment to actual 
or expected climate and its effects, in order to moderate harm or exploit 
beneficial opportunities. In natural systems, the process of adjustment 
to actual climate and its effects; human intervention may facilitate 
adjustment to expected climate and its effects. 

Incremental adaptation
Adaptation that maintains the essence and integrity of a system or 
process at a given scale. In some cases, incremental adaptation can 
accrue to result in transformational adaptation (Termeer et al., 2017; 
Tàbara et al., 2018). 

Transformational adaptation
Adaptation that changes the fundamental attributes of a socio-
ecological system in anticipation of climate change and its impacts.

Adaptation limits 
The point at which an actor’s objectives (or system needs) cannot be 
secured from intolerable risks through adaptive actions. 
•	 Hard adaptation limit: No adaptive actions are possible to avoid  
	 intolerable risks. 
•	 Soft adaptation limit: Options are currently not available to avoid  
	 intolerable risks through adaptive action.

See also Adaptation options, Adaptive capacity and Maladaptive 
actions (Maladaptation).

Adaptation behaviour  See Human behaviour.

Adaptation limits   See Adaptation.

Adaptation options  The array of strategies and measures that are 
available and appropriate for addressing adaptation. They include a 
wide range of actions that can be categorized as structural, institutional, 

ecological or behavioural. See also Adaptation, Adaptive capacity and 
Maladaptive actions (Maladaptation).

Adaptation pathways  See Pathways.

Adaptive capacity  The ability of systems, institutions, humans and 
other organisms to adjust to potential damage, to take advantage of 
opportunities, or to respond to consequences. This glossary entry builds 
from definitions used in previous IPCC reports and the Millennium 
Ecosystem Assessment (MEA, 2005). See also Adaptation, Adaptation 
options and Maladaptive actions (Maladaptation).

Adaptive governance  See Governance.

Aerosol  A suspension of airborne solid or liquid particles, with a 
typical size between a few nanometres and 10 μm that reside in the 
atmosphere for at least several hours. The term aerosol, which includes 
both the particles and the suspending gas, is often used in this report 
in its plural form to mean aerosol particles. Aerosols may be of either 
natural or anthropogenic origin. Aerosols may influence climate in 
several ways: through both interactions that scatter and/or absorb 
radiation and through interactions with cloud microphysics and other 
cloud properties, or upon deposition on snow- or ice-covered surfaces 
thereby altering their albedo and contributing to climate feedback. 
Atmospheric aerosols, whether natural or anthropogenic, originate from 
two different pathways: emissions of primary particulate matter (PM), 
and formation of secondary PM from gaseous precursors. The bulk of 
aerosols are of natural origin. Some scientists use group labels that refer 
to the chemical composition, namely: sea salt, organic carbon, black 
carbon (BC), mineral species (mainly desert dust), sulphate, nitrate, and 
ammonium. These labels are, however, imperfect as aerosols combine 
particles to create complex mixtures. See also Short-lived climate forcers 
(SLCF) and Black carbon (BC).

Afforestation  Planting of new forests on lands that historically have 
not contained forests. For a discussion of the term forest and related 
terms such as afforestation, reforestation and deforestation, see the IPCC 
Special Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000), 
information provided by the United Nations Framework Convention 
on Climate Change (UNFCCC, 2013) and the report on Definitions and 
Methodological Options to Inventory Emissions from Direct Human-
induced Degradation of Forests and Devegetation of Other Vegetation 
Types (IPCC, 2003). See also Reforestation, Deforestation, and Reducing 
Emissions from Deforestation and Forest Degradation (REDD+).

Agreement  In this report, the degree of agreement within the 
scientific body of knowledge on a particular finding is assessed based on 
multiple lines of evidence (e.g., mechanistic understanding, theory, data, 
models, expert judgement) and expressed qualitatively (Mastrandrea et 
al., 2010). See also Evidence, Confidence, Likelihood and Uncertainty.

Air pollution  Degradation of air quality with negative effects 
on human health or the natural or built environment due to the 
introduction, by natural processes or human activity, into the atmosphere 
of substances (gases, aerosols) which have a direct (primary pollutants) 
or indirect (secondary pollutants) harmful effect. See also Aerosol and 
Short-lived climate forcers (SLCF).

Albedo  The fraction of solar radiation reflected by a surface or 
object, often expressed as a percentage. Snow-covered surfaces have a 
high albedo, the surface albedo of soils ranges from high to low, and 
vegetation-covered surfaces and the oceans have a low albedo. The 
Earth’s planetary albedo changes mainly through varying cloudiness and 
changes in snow, ice, leaf area and land cover.

Ambient persuasive technology  Technological systems and 
environments that are designed to change human cognitive processing, 
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attitudes and behaviours without the need for the user’s conscious 
attention.

Anomaly  The deviation of a variable from its value averaged over a 
reference period.

Anthropocene  The ‘Anthropocene’ is a proposed new geological 
epoch resulting from significant human-driven changes to the structure 
and functioning of the Earth System, including the climate system. 
Originally proposed in the Earth System science community in 2000, the 
proposed new epoch is undergoing a formalization process within the 
geological community based on the stratigraphic evidence that human 
activities have changed the Earth System to the extent of forming 
geological deposits with a signature that is distinct from those of the 
Holocene, and which will remain in the geological record. Both the 
stratigraphic and Earth System approaches to defining the Anthropocene 
consider the mid-20th Century to be the most appropriate starting date, 
although others have been proposed and continue to be discussed. The 
Anthropocene concept has been taken up by a diversity of disciplines 
and the public to denote the substantive influence humans have had on 
the state, dynamics and future of the Earth System. See also Holocene.

Anthropogenic  Resulting from or produced by human activities. See 
also Anthropogenic emissions and Anthropogenic removals.

Anthropogenic emissions  Emissions of greenhouse gases (GHGs), 
precursors of GHGs and aerosols caused by human activities. These 
activities include the burning of fossil fuels, deforestation, land use 
and land-use changes (LULUC), livestock production, fertilisation, waste 
management and industrial processes. See also Anthropogenic and 
Anthropogenic removals.

Anthropogenic removals  Anthropogenic removals refer to the 
withdrawal of GHGs from the atmosphere as a result of deliberate 
human activities. These include enhancing biological sinks of CO2 and 
using chemical engineering to achieve long-term removal and storage. 
Carbon capture and storage (CCS) from industrial and energy-related 
sources, which alone does not remove CO2 in the atmosphere, can reduce 
atmospheric CO2 if it is combined with bioenergy production (BECCS). See 
also Anthropogenic emissions, Bioenergy with carbon dioxide capture 
and storage (BECCS) and Carbon dioxide capture and storage (CCS).

Artificial intelligence (AI)  Computer systems able to perform tasks 
normally requiring human intelligence, such as visual perception and 
speech recognition.

Atmosphere  The gaseous envelope surrounding the earth, divided 
into five layers – the troposphere which contains half of the Earth’s 
atmosphere, the stratosphere, the mesosphere, the thermosphere, 
and the exosphere, which is the outer limit of the atmosphere. The dry 
atmosphere consists almost entirely of nitrogen (78.1% volume mixing 
ratio) and oxygen (20.9% volume mixing ratio), together with a number 
of trace gases, such as argon (0.93 % volume mixing ratio), helium and 
radiatively active greenhouse gases (GHGs) such as carbon dioxide (CO2) 
(0.04% volume mixing ratio) and ozone (O3). In addition, the atmosphere 
contains the GHG water vapour (H2O), whose amounts are highly 
variable but typically around 1% volume mixing ratio. The atmosphere 
also contains clouds and aerosols. See also Troposphere, Stratosphere, 
Greenhouse gas (GHG) and Hydrological cycle.

Atmosphere–ocean general circulation model (AOGCM)  See 
Climate model.

Attribution  See Detection and attribution.

Baseline scenario  In much of the literature the term is also 
synonymous with the term business-as-usual (BAU) scenario, although 

the term BAU has fallen out of favour because the idea of business as 
usual in century-long socio-economic projections is hard to fathom. In 
the context of transformation pathways, the term baseline scenarios 
refers to scenarios that are based on the assumption that no mitigation 
policies or measures will be implemented beyond those that are already 
in force and/or are legislated or planned to be adopted. Baseline 
scenarios are not intended to be predictions of the future, but rather 
counterfactual constructions that can serve to highlight the level of 
emissions that would occur without further policy effort. Typically, 
baseline scenarios are then compared to mitigation scenarios that are 
constructed to meet different goals for greenhouse gas (GHG) emissions, 
atmospheric concentrations or temperature change. The term baseline 
scenario is often used interchangeably with reference scenario and no 
policy scenario. See also Emission scenario and Mitigation scenario.

Battery electric vehicle (BEV)  See Electric vehicle (EV).

Biochar  Stable, carbon-rich material produced by heating biomass 
in an oxygen-limited environment. Biochar may be added to soils to 
improve soil functions and to reduce greenhouse gas emissions from 
biomass and soils, and for carbon sequestration. This definition builds 
from IBI (2018).

Biodiversity  Biological diversity means the variability among living 
organisms from all sources, including, inter alia, terrestrial, marine and 
other aquatic ecosystems and the ecological complexes of which they 
are part; this includes diversity within species, between species and of 
ecosystems (UN, 1992).

Bioenergy  Energy derived from any form of biomass or its metabolic 
by-products. See also Biomass and Biofuel.

Bioenergy with carbon dioxide capture and storage 
(BECCS)  Carbon dioxide capture and storage (CCS) technology applied 
to a bioenergy facility. Note that depending on the total emissions of 
the BECCS supply chain, carbon dioxide (CO2) can be removed from the 
atmosphere. See also Bioenergy and Carbon dioxide capture and storage 
(CCS).

Biofuel  A fuel, generally in liquid form, produced from biomass. 
Biofuels currently include bioethanol from sugarcane or maize, biodiesel 
from canola or soybeans, and black liquor from the paper-manufacturing 
process. See also Biomass and Bioenergy.

Biomass   Living or recently dead organic material. See also Bioenergy 
and Biofuel.

Biophilic urbanism  Designing cities with green roofs, green walls 
and green balconies to bring nature into the densest parts of cities in 
order to provide green infrastructure and human health benefits. See also 
Green infrastructure.

Black carbon (BC)  Operationally defined aerosol species based on 
measurement of light absorption and chemical reactivity and/or thermal 
stability. It is sometimes referred to as soot. BC is mostly formed by the 
incomplete combustion of fossil fuels, biofuels and biomass but it also 
occurs naturally. It stays in the atmosphere only for days or weeks. It is 
the most strongly light-absorbing component of particulate matter (PM) 
and has a warming effect by absorbing heat into the atmosphere and 
reducing the albedo when deposited on snow or ice. See also Aerosol.

Blue carbon  Blue carbon is the carbon captured by living organisms 
in coastal (e.g., mangroves, salt marshes, seagrasses) and marine 
ecosystems, and stored in biomass and sediments.

Burden sharing (also referred to as Effort sharing)   In the 
context of mitigation, burden sharing refers to sharing the effort of 
reducing the sources or enhancing the sinks of greenhouse gases (GHGs) 
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from historical or projected levels, usually allocated by some criteria, as 
well as sharing the cost burden across countries.

Business as usual (BAU)  See Baseline scenario.

Carbon budget  This term refers to three concepts in the literature: 
(1) an assessment of carbon cycle sources and sinks on a global level, 
through the synthesis of evidence for fossil fuel and cement emissions, 
land-use change emissions, ocean and land CO2 sinks, and the resulting 
atmospheric CO2 growth rate. This is referred to as the global carbon 
budget; (2) the estimated cumulative amount of global carbon dioxide 
emissions that that is estimated to limit global surface temperature 
to a given level above a reference period, taking into account global 
surface temperature contributions of other GHGs and climate forcers; (3) 
the distribution of the carbon budget defined under (2) to the regional, 
national, or sub-national level based on considerations of equity, costs or 
efficiency. See also Remaining carbon budget.

Carbon cycle  The term used to describe the flow of carbon (in 
various forms, e.g., as carbon dioxide (CO2), carbon in biomass, and 
carbon dissolved in the ocean as carbonate and bicarbonate) through 
the atmosphere, hydrosphere, terrestrial and marine biosphere and 
lithosphere. In this report, the reference unit for the global carbon cycle 
is GtCO2 or GtC (Gigatonne of carbon = 1 GtC = 1015 grams of carbon. 
This corresponds to 3.667 GtCO2).

Carbon dioxide (CO2)  A naturally occurring gas, CO2 is also a 
by-product of burning fossil fuels (such as oil, gas and coal), of burning 
biomass, of land-use changes (LUC) and of industrial processes (e.g., 
cement production). It is the principal anthropogenic greenhouse gas 
(GHG) that affects the Earth’s radiative balance. It is the reference gas 
against which other GHGs are measured and therefore has a global 
warming potential (GWP) of 1. See also Greenhouse gas (GHG).

Carbon dioxide capture and storage (CCS)  A process in which 
a relatively pure stream of carbon dioxide (CO2) from industrial and 
energy-related sources is separated (captured), conditioned, compressed 
and transported to a storage location for long-term isolation from the 
atmosphere. Sometimes referred to as Carbon capture and storage. See 
also Carbon dioxide capture and utilisation (CCU), Bioenergy with carbon 
dioxide capture and storage (BECCS) and Uptake.

Carbon dioxide capture and utilisation (CCU)  A process in which 
CO2 is captured and then used to produce a new product. If the CO2 is 
stored in a product for a climate-relevant time horizon, this is referred 
to as carbon dioxide capture, utilisation and storage (CCUS). Only then, 
and only combined with CO2 recently removed from the atmosphere, can 
CCUS lead to carbon dioxide removal. CCU is sometimes referred to as 
carbon dioxide capture and use. See also Carbon dioxide capture and 
storage (CCS).

Carbon dioxide capture, utilisation and storage (CCUS)  See 
Carbon dioxide capture and utilisation (CCU).

Carbon dioxide removal (CDR)  Anthropogenic activities removing 
CO2 from the atmosphere and durably storing it in geological, terrestrial, 
or ocean reservoirs, or in products. It includes existing and potential 
anthropogenic enhancement of biological or geochemical sinks and 
direct air capture and storage, but excludes natural CO2 uptake not 
directly caused by human activities. See also Mitigation (of climate 
change), Greenhouse gas removal (GGR), Negative emissions, Direct air 
carbon dioxide capture and storage (DACCS) and Sink.

Carbon intensity  The amount of emissions of carbon dioxide (CO2) 
released per unit of another variable such as gross domestic product 
(GDP), output energy use or transport.

Carbon neutrality  See Net zero CO2 emissions.

Carbon price  The price for avoided or released carbon dioxide (CO2) 
or CO2-equivalent emissions. This may refer to the rate of a carbon tax, 
or the price of emission permits. In many models that are used to assess 
the economic costs of mitigation, carbon prices are used as a proxy to 
represent the level of effort in mitigation policies.

Carbon sequestration  The process of storing carbon in a carbon 
pool. See also Blue carbon, Carbon dioxide capture and storage (CCS), 
Uptake and Sink.

Carbon sink  See Sink.

Clean Development Mechanism (CDM)  A mechanism defined 
under Article 12 of the Kyoto Protocol through which investors 
(governments or companies) from developed (Annex B) countries may 
finance greenhouse gas (GHG) emission reduction or removal projects 
in developing countries (Non-Annex B), and receive Certified Emission 
Reduction Units (CERs) for doing so. The CERs can be credited towards the 
commitments of the respective developed countries. The CDM is intended 
to facilitate the two objectives of promoting sustainable development 
(SD) in developing countries and of helping industrialised countries to 
reach their emissions commitments in a cost-effective way. 

Climate  Climate in a narrow sense is usually defined as the average 
weather, or more rigorously, as the statistical description in terms of 
the mean and variability of relevant quantities over a period of time 
ranging from months to thousands or millions of years. The classical 
period for averaging these variables is 30 years, as defined by the World 
Meteorological Organization. The relevant quantities are most often 
surface variables such as temperature, precipitation and wind. Climate 
in a wider sense is the state, including a statistical description, of the 
climate system.

Climate change  Climate change refers to a change in the state of the 
climate that can be identified (e.g., by using statistical tests) by changes 
in the mean and/or the variability of its properties and that persists for an 
extended period, typically decades or longer. Climate change may be due 
to natural internal processes or external forcings such as modulations 
of the solar cycles, volcanic eruptions and persistent anthropogenic 
changes in the composition of the atmosphere or in land use. Note that 
the Framework Convention on Climate Change (UNFCCC), in its Article 
1, defines climate change as: ‘a change of climate which is attributed 
directly or indirectly to human activity that alters the composition of the 
global atmosphere and which is in addition to natural climate variability 
observed over comparable time periods.’ The UNFCCC thus makes a 
distinction between climate change attributable to human activities 
altering the atmospheric composition and climate variability attributable 
to natural causes. See also Climate variability, Global warming, Ocean 
acidification (OA) and Detection and attribution.

Climate change commitment  Climate change commitment is 
defined as the unavoidable future climate change resulting from inertia 
in the geophysical and socio-economic systems. Different types of climate 
change commitment are discussed in the literature (see subterms). 
Climate change commitment is usually quantified in terms of the further 
change in temperature, but it includes other future changes, for example 
in the hydrological cycle, in extreme weather events, in extreme climate 
events, and in sea level.

Constant composition commitment 
The constant composition commitment is the remaining climate change 
that would result if atmospheric composition, and hence radiative forcing, 
were held fixed at a given value. It results from the thermal inertia of the 
ocean and slow processes in the cryosphere and land surface.
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Constant emissions commitment 
The constant emissions commitment is the committed climate change 
that would result from keeping anthropogenic emissions constant.

Zero emissions commitment 
The zero emissions commitment is the climate change commitment 
that would result from setting anthropogenic emissions to zero. It is 
determined by both inertia in physical climate system components 
(ocean, cryosphere, land surface) and carbon cycle inertia. 

Feasible scenario commitment 
The feasible scenario commitment is the climate change that corresponds 
to the lowest emission scenario judged feasible.

Infrastructure commitment
The infrastructure commitment is the climate change that would result 
if existing greenhouse gas and aerosol emitting infrastructure were used 
until the end of its expected lifetime. 

Climate-compatible development (CCD)  A form of development 
building on climate strategies that embrace development goals and 
development strategies that integrate climate risk management, 
adaptation and mitigation. This definition builds from Mitchell and 
Maxwell (2010).

Climate extreme (extreme weather or climate event)  The 
occurrence of a value of a weather or climate variable above (or below) a 
threshold value near the upper (or lower) ends of the range of observed 
values of the variable. For simplicity, both extreme weather events and 
extreme climate events are referred to collectively as ‘climate extremes’. 
See also Extreme weather event.

Climate feedback  An interaction in which a perturbation in one 
climate quantity causes a change in a second and the change in the 
second quantity ultimately leads to an additional change in the first. A 
negative feedback is one in which the initial perturbation is weakened 
by the changes it causes; a positive feedback is one in which the initial 
perturbation is enhanced. The initial perturbation can either be externally 
forced or arise as part of internal variability.

Climate governance  See Governance.

Climate justice  See Justice.

Climate model  A numerical representation of the climate system 
based on the physical, chemical and biological properties of its 
components, their interactions and feedback processes, and accounting 
for some of its known properties. The climate system can be represented 
by models of varying complexity; that is, for any one component or 
combination of components a spectrum or hierarchy of models can be 
identified, differing in such aspects as the number of spatial dimensions, 
the extent to which physical, chemical or biological processes are 
explicitly represented, or the level at which empirical parametrizations 
are involved. There is an evolution towards more complex models 
with interactive chemistry and biology. Climate models are applied as 
a research tool to study and simulate the climate and for operational 
purposes, including monthly, seasonal and interannual climate 
predictions. See also Earth system model (ESM).

Climate neutrality  Concept of a state in which human activities 
result in no net effect on the climate system. Achieving such a state would 
require balancing of residual emissions with emission (carbon dioxide) 
removal as well as accounting for regional or local biogeophysical effects 
of human activities that, for example, affect surface albedo or local 
climate. See also Net zero CO2 emissions.

Climate projection  A climate projection is the simulated response 
of the climate system to a scenario of future emission or concentration of 

greenhouse gases (GHGs) and aerosols, generally derived using climate 
models. Climate projections are distinguished from climate predictions 
by their dependence on the emission/concentration/radiative forcing 
scenario used, which is in turn based on assumptions concerning, for 
example, future socioeconomic and technological developments that 
may or may not be realized.

Climate-resilient development pathways (CRDPs)  Trajectories 
that strengthen sustainable development and efforts to eradicate 
poverty and reduce inequalities while promoting fair and cross-scalar 
adaptation to and resilience in a changing climate. They raise the ethics, 
equity and feasibility aspects of the deep societal transformation needed 
to drastically reduce emissions to limit global warming (e.g., to 1.5°C) 
and achieve desirable and liveable futures and well-being for all.

Climate-resilient pathways  Iterative processes for managing 
change within complex systems in order to reduce disruptions and 
enhance opportunities associated with climate change. See also 
Development pathways (under Pathways), Transformation pathways 
(under Pathways), and Climate-resilient development pathways (CRDPs).

Climate sensitivity  Climate sensitivity refers to the change in the 
annual global mean surface temperature in response to a change in the 
atmospheric CO2 concentration or other radiative forcing.

Equilibrium climate sensitivity
Refers to the equilibrium (steady state) change in the annual global 
mean surface temperature following a doubling of the atmospheric 
carbon dioxide (CO2) concentration. As a true equilibrium is challenging 
to define in climate models with dynamic oceans, the equilibrium climate 
sensitivity is often estimated through experiments in AOGCMs where CO2 
levels are either quadrupled or doubled from pre-industrial levels and 
which are integrated for 100-200 years. The climate sensitivity parameter 
(units: °C (W m–2)–1) refers to the equilibrium change in the annual global 
mean surface temperature following a unit change in radiative forcing.

Effective climate sensitivity
An estimate of the global mean surface temperature response to a 
doubling of the atmospheric carbon dioxide (CO2) concentration that is 
evaluated from model output or observations for evolving non-equilibrium 
conditions. It is a measure of the strengths of the climate feedbacks at a 
particular time and may vary with forcing history and climate state, and 
therefore may differ from equilibrium climate sensitivity.

Transient climate response
The change in the global mean surface temperature, averaged over a 
20-year period, centered at the time of atmospheric CO2 doubling, in a 
climate model simulation in which CO2 increases at 1% yr-1 from pre-
industrial. It is a measure of the strength of climate feedbacks and the 
timescale of ocean heat uptake.

Climate services  Climate services refers to information and products 
that enhance users’ knowledge and understanding about the impacts of 
climate change and/or climate variability so as to aid decision-making of 
individuals and organizations and enable preparedness and early climate 
change action. Products can include climate data products.

Climate-smart agriculture (CSA)  Climate-smart agriculture (CSA) 
is an approach that helps to guide actions needed to transform and 
reorient agricultural systems to effectively support development and 
ensure food security in a changing climate. CSA aims to tackle three main 
objectives: sustainably increasing agricultural productivity and incomes, 
adapting and building resilience to climate change, and reducing and/or 
removing greenhouse gas emissions, where possible (FAO, 2018).

Climate system  The climate system is the highly complex system 
consisting of five major components: the atmosphere, the hydrosphere, 
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the cryosphere, the lithosphere and the biosphere and the interactions 
between them. The climate system evolves in time under the influence 
of its own internal dynamics and because of external forcings such as 
volcanic eruptions, solar variations and anthropogenic forcings such as 
the changing composition of the atmosphere and land-use change.

Climate target  Climate target refers to a temperature limit, 
concentration level, or emissions reduction goal used towards the aim of 
avoiding dangerous anthropogenic interference with the climate system. 
For example, national climate targets may aim to reduce greenhouse gas 
emissions by a certain amount over a given time horizon, for example 
those under the Kyoto Protocol.

Climate variability  Climate variability refers to variations in 
the mean state and other statistics (such as standard deviations, the 
occurrence of extremes, etc.) of the climate on all spatial and temporal 
scales beyond that of individual weather events. Variability may be due to 
natural internal processes within the climate system (internal variability), 
or to variations in natural or anthropogenic external forcing (external 
variability). See also Climate change.

CO2 equivalent (CO2-eq) emission  The amount of carbon dioxide 
(CO2) emission that would cause the same integrated radiative forcing 
or temperature change, over a given time horizon, as an emitted amount 
of a greenhouse gas (GHG) or a mixture of GHGs. There are a number 
of ways to compute such equivalent emissions and choose appropriate 
time horizons. Most typically, the CO2-equivalent emission is obtained by 
multiplying the emission of a GHG by its global warming potential (GWP) 
for a 100-year time horizon. For a mix of GHGs it is obtained by summing 
the CO2-equivalent emissions of each gas. CO2-equivalent emission is 
a common scale for comparing emissions of different GHGs but does 
not imply equivalence of the corresponding climate change responses. 
There is generally no connection between CO2-equivalent emissions and 
resulting CO2-equivalent concentrations.

Co-benefits  The positive effects that a policy or measure aimed at 
one objective might have on other objectives, thereby increasing the total 
benefits for society or the environment. Co-benefits are often subject 
to uncertainty and depend on local circumstances and implementation 
practices, among other factors. Co-benefits are also referred to as 
ancillary benefits.

Common but Differentiated Responsibilities and Respective 
Capabilities (CBDR-RC)  Common but Differentiated Responsibilities 
and Respective Capabilities (CBDR–RC) is a key principle in the United 
Nations Framework Convention on Climate Change (UNFCCC) that 
recognises the different capabilities and differing responsibilities of 
individual countries in tacking climate change. The principle of CBDR–
RC is embedded in the 1992 UNFCCC treaty. The convention states: 
“… the global nature of climate change calls for the widest possible 
cooperation by all countries and their participation in an effective and 
appropriate international response, in accordance with their common but 
differentiated responsibilities and respective capabilities and their social 
and economic conditions.” Since then the CBDR-RC principle has guided 
the UN climate negotiations. 

Conference of the Parties (COP)  The supreme body of UN 
conventions, such as the United Nations Framework Convention on 
Climate Change (UNFCCC), comprising parties with a right to vote that 
have ratified or acceded to the convention. See also United Nations 
Framework Convention on Climate Change (UNFCCC).

Confidence  The robustness of a finding based on the type, amount, 
quality and consistency of evidence (e.g., mechanistic understanding, 
theory, data, models, expert judgment) and on the degree of agreement 
across multiple lines of evidence. In this report, confidence is expressed 

qualitatively (Mastrandrea et al., 2010). See Section 1.6 for the list of 
confidence levels used. See also Agreement, Evidence, Likelihood and 
Uncertainty.

Conservation agriculture  A coherent group of agronomic and soil 
management practices that reduce the disruption of soil structure and 
biota. 

Constant composition commitment  See Climate change 
commitment.

Constant emissions commitment  See Climate change commitment.

Coping capacity  The ability of people, institutions, organizations, 
and systems, using available skills, values, beliefs, resources, and 
opportunities, to address, manage, and overcome adverse conditions in 
the short to medium term. This glossary entry builds from the definition 
used in UNISDR (2009) and IPCC (2012a). See also Resilience.

Cost–benefit analysis  Monetary assessment of all negative and 
positive impacts associated with a given action. Cost–benefit analysis 
enables comparison of different interventions, investments or strategies 
and reveals how a given investment or policy effort pays off for a particular 
person, company or country. Cost–benefit analyses representing society’s 
point of view are important for climate change decision-making, but 
there are difficulties in aggregating costs and benefits across different 
actors and across timescales. See also Discounting.

Cost-effectiveness  A measure of the cost at which policy goal or 
outcome is achieved. The lower the cost the greater the cost-effectiveness. 

Coupled Model Intercomparison Project (CMIP)  The Coupled 
Model Intercomparison Project (CMIP) is a climate modelling activity 
from the World Climate Research Programme (WCRP) which coordinates 
and archives climate model simulations based on shared model inputs by 
modelling groups from around the world. The CMIP3 multimodel data set 
includes projections using SRES scenarios. The CMIP5 data set includes 
projections using the Representative Concentration Pathways (RCPs). The 
CMIP6 phase involves a suite of common model experiments as well as 
an ensemble of CMIP-endorsed model intercomparison projects (MIPs).

Cumulative emissions  The total amount of emissions released over 
a specified period of time. See also Carbon budget, and Transient climate 
response to cumulative CO2 emissions (TCRE).

Decarbonization  The process by which countries, individuals or 
other entities aim to achieve zero fossil carbon existence. Typically 
refers to a reduction of the carbon emissions associated with electricity, 
industry and transport.

Decoupling  Decoupling (in relation to climate change) is where 
economic growth is no longer strongly associated with consumption of 
fossil fuels. Relative decoupling is where both grow but at different rates. 
Absolute decoupling is where economic growth happens but fossil fuels 
decline.

Deforestation  Conversion of forest to non-forest. For a discussion 
of the term forest and related terms such as afforestation, reforestation 
and deforestation, see the IPCC Special Report on Land Use, Land-Use 
Change, and Forestry (IPCC, 2000). See also information provided by the 
United Nations Framework Convention on Climate Change (UNFCCC, 
2013) and the report on Definitions and Methodological Options to 
Inventory Emissions from Direct Human-induced Degradation of Forests 
and Devegetation of Other Vegetation Types (IPCC, 2003). See also 
Afforestation, Reforestation and Reducing Emissions from Deforestation 
and Forest Degradation (REDD+).

Deliberative governance  See Governance.
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Demand- and supply-side measures 

Demand-side measures
Policies and programmes for influencing the demand for goods and/
or services. In the energy sector, demand-side management aims at 
reducing the demand for electricity and other forms of energy required 
to deliver energy services.

Supply-side measures
Policies and programmes for influencing how a certain demand for 
goods and/or services is met. In the energy sector, for example, supply-
side mitigation measures aim at reducing the amount of greenhouse gas 
emissions emitted per unit of energy produced.

See also Mitigation measures. 

Demand-side measures  See Demand- and supply-side measures.

Detection  See Detection and attribution.

Detection and attribution  Detection of change is defined as the 
process of demonstrating that climate or a system affected by climate 
has changed in some defined statistical sense, without providing a 
reason for that change. An identified change is detected in observations 
if its likelihood of occurrence by chance due to internal variability alone is 
determined to be small, for example, <10%. Attribution is defined as the 
process of evaluating the relative contributions of multiple causal factors 
to a change or event with a formal assessment of confidence.

Development pathways  See Pathways.

Direct air carbon dioxide capture and storage (DACCS)  Chemical 
process by which CO2 is captured directly from the ambient air, with 
subsequent storage. Also known as direct air capture and storage (DACS).

Disaster  Severe alterations in the normal functioning of a community 
or a society due to hazardous physical events interacting with vulnerable 
social conditions, leading to widespread adverse human, material, 
economic or environmental effects that require immediate emergency 
response to satisfy critical human needs and that may require external 
support for recovery. See also Hazard and Vulnerability.

Disaster risk management (DRM)  Processes for designing, 
implementing, and evaluating strategies, policies, and measures to 
improve the understanding of disaster risk, foster disaster risk reduction 
and transfer, and promote continuous improvement in disaster 
preparedness, response, and recovery practices, with the explicit purpose 
of increasing human security, well-being, quality of life, and sustainable 
development.

Discount rate  See Discounting.

Discounting  A mathematical operation that aims to make monetary 
(or other) amounts received or expended at different times (years) 
comparable across time. The discounter uses a fixed or possibly time-
varying discount rate from year to year that makes future value worth 
less today (if the discount rate is positive). The choice of discount rate(s) 
is debated as it is a judgement based on hidden and/or explicit values.

(Internal) Displacement  Internal displacement refers to the forced 
movement of people within the country they live in. Internally displaced 
persons (IDPs) are ‘Persons or groups of persons who have been forced or 
obliged to flee or to leave their homes or places of habitual residence, in 
particular as a result of or in order to avoid the effects of armed conflict, 
situations of generalized violence, violations of human rights or natural 
or human-made disasters, and who have not crossed an internationally 
recognized State border.’ (UN, 1998). See also Migration.

Disruptive innovation  Disruptive innovation is demand-led 
technological change that leads to significant system change and is 
characterized by strong exponential growth.

Distributive equity  See Equity.

Distributive justice  See Justice.

Double dividend  The extent to which revenues generated by policy 
instruments, such as carbon taxes or auctioned (tradeable) emission 
permits can (1) contribute to mitigation and (2) offset part of the 
potential welfare losses of climate policies through recycling the revenue 
in the economy by reducing other distortionary taxes.

Downscaling   Downscaling is a method that derives local- to 
regional-scale (up to 100 km) information from larger-scale models or 
data analyses. Two main methods exist: dynamical downscaling and 
empirical/statistical downscaling. The dynamical method uses the output 
of regional climate models, global models with variable spatial resolution, 
or high-resolution global models. The empirical/statistical methods are 
based on observations and develop statistical relationships that link the 
large-scale atmospheric variables with local/regional climate variables. In 
all cases, the quality of the driving model remains an important limitation 
on quality of the downscaled information. The two methods can be 
combined, e.g., applying empirical/statistical downscaling to the output 
of a regional climate model, consisting of a dynamical downscaling of a 
global climate model.

Drought  A period of abnormally dry weather long enough to cause a 
serious hydrological imbalance. Drought is a relative term, therefore any 
discussion in terms of precipitation deficit must refer to the particular 
precipitation-related activity that is under discussion. For example, 
shortage of precipitation during the growing season impinges on crop 
production or ecosystem function in general (due to soil moisture drought, 
also termed agricultural drought), and during the runoff and percolation 
season primarily affects water supplies (hydrological drought). Storage 
changes in soil moisture and groundwater are also affected by increases 
in actual evapotranspiration in addition to reductions in precipitation. 
A period with an abnormal precipitation deficit is defined as a 
meteorological drought. See also Soil moisture.

Megadrought 
A megadrought is a very lengthy and pervasive drought, lasting much 
longer than normal, usually a decade or more.

Early warning systems (EWS)  The set of technical, financial and 
institutional capacities needed to generate and disseminate timely and 
meaningful warning information to enable individuals, communities and 
organizations threatened by a hazard to prepare to act promptly and 
appropriately to reduce the possibility of harm or loss. Dependent upon 
context, EWS may draw upon scientific and/or Indigenous knowledge. 
EWS are also considered for ecological applications e.g., conservation, 
where the organization itself is not threatened by hazard but the 
ecosystem under conservation is (an example is coral bleaching alerts), 
in agriculture (for example, warnings of ground frost, hailstorms) and in 
fisheries (storm and tsunami warnings). This glossary entry builds from 
the definitions used in UNISDR (2009) and IPCC (2012a).

Earth system feedbacks  See Climate feedback.

Earth system model (ESM)  A coupled atmosphere–ocean general 
circulation model in which a representation of the carbon cycle is 
included, allowing for interactive calculation of atmospheric CO2 
or compatible emissions. Additional components (e.g., atmospheric 
chemistry, ice sheets, dynamic vegetation, nitrogen cycle, but also urban 
or crop models) may be included. See also Climate model.
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Ecosystem  An ecosystem is a functional unit consisting of living 
organisms, their non-living environment and the interactions within and 
between them. The components included in a given ecosystem and its 
spatial boundaries depend on the purpose for which the ecosystem is 
defined: in some cases they are relatively sharp, while in others they 
are diffuse. Ecosystem boundaries can change over time. Ecosystems 
are nested within other ecosystems and their scale can range from very 
small to the entire biosphere. In the current era, most ecosystems either 
contain people as key organisms, or are influenced by the effects of 
human activities in their environment. See also Ecosystem services.

Ecosystem services  Ecological processes or functions having 
monetary or non-monetary value to individuals or society at large. These 
are frequently classified as (1) supporting services such as productivity 
or biodiversity maintenance, (2) provisioning services such as food 
or fibre, (3) regulating services such as climate regulation or carbon 
sequestration, and (4) cultural services such as tourism or spiritual and 
aesthetic appreciation.

Effective climate sensitivity  See Climate sensitivity.

Effective radiative forcing  See Radiative forcing.

El Niño-Southern Oscillation (ENSO)  The term El Niño was 
initially used to describe a warm-water current that periodically flows 
along the coast of Ecuador and Peru, disrupting the local fishery. It has 
since become identified with warming of the tropical Pacific Ocean east 
of the dateline. This oceanic event is associated with a fluctuation of 
a global-scale tropical and subtropical surface pressure pattern called 
the Southern Oscillation. This coupled atmosphere–ocean phenomenon, 
with preferred time scales of two to about seven years, is known as the 
El Niño-Southern Oscillation (ENSO). It is often measured by the surface 
pressure anomaly difference between Tahiti and Darwin and/or the sea 
surface temperatures in the central and eastern equatorial Pacific. During 
an ENSO event, the prevailing trade winds weaken, reducing upwelling 
and altering ocean currents such that the sea surface temperatures 
warm, further weakening the trade winds. This phenomenon has a great 
impact on the wind, sea surface temperature and precipitation patterns 
in the tropical Pacific. It has climatic effects throughout the Pacific region 
and in many other parts of the world, through global teleconnections. The 
cold phase of ENSO is called La Niña.

Electric vehicle (EV)  A vehicle whose propulsion is powered fully or 
mostly by electricity. 

Battery electric vehicle (BEV)
A vehicle whose propulsion is entirely electric without any internal 
combustion engine.

Plug-in hybrid electric vehicle (PHEV)
A vehicle whose propulsion is mostly electric with batteries re-charged 
from an electric source but extra power and distance are provided by a 
hybrid internal combustion engine.

Emission pathways  See Pathways.

Emission scenario  A plausible representation of the future 
development of emissions of substances that are radiatively active (e.g., 
greenhouse gases (GHGs), aerosols) based on a coherent and internally 
consistent set of assumptions about driving forces (such as demographic 
and socio-economic development, technological change, energy and land 
use) and their key relationships. Concentration scenarios, derived from 
emission scenarios, are often used as input to a climate model to compute 
climate projections. See also Baseline scenario, Mitigation scenario, 
Socio-economic scenario, Scenario, Representative Concentration 
Pathways (RCPs) (under Pathways), Shared Socio-economic Pathways 
(SSPs) (under Pathways) and Transformation pathways (under Pathways).

Emission trajectories  A projected development in time of the 
emission of a greenhouse gas (GHG) or group of GHGs, aerosols, and 
GHG precursors. See also Emission pathways (under Pathways).

Emissions trading  A market-based instrument aiming at meeting 
a mitigation objective in an efficient way. A cap on GHG emissions is 
divided in tradeable emission permits that are allocated by a combination 
of auctioning and handing out free allowances to entities within the 
jurisdiction of the trading scheme. Entities need to surrender emission 
permits equal to the amount of their emissions (e.g., tonnes of CO2). 
An entity may sell excess permits to entities that can avoid the same 
amount of emissions in a cheaper way. Trading schemes may occur at 
the intra-company, domestic, or international level (e.g., the flexibility 
mechanisms under the Kyoto Protocol and the EU-ETS) and may apply 
to carbon dioxide (CO2), other greenhouse gases (GHGs), or other 
substances. 

Enabling conditions  Conditions that affect the feasibility of 
adaptation and mitigation options, and can accelerate and scale-up 
systemic transitions that would limit temperature increase to 1.5°C and 
enhance capacities of systems and societies to adapt to the associated 
climate change, while achieving sustainable development, eradicating 
poverty and reducing inequalities. Enabling conditions include finance, 
technological innovation, strengthening policy instruments, institutional 
capacity, multilevel governance, and changes in human behaviour 
and lifestyles. They also include inclusive processes, attention to 
power asymmetries and unequal opportunities for development and 
reconsideration of values. See also Feasibility.

Energy efficiency  The ratio of output or useful energy or energy 
services or other useful physical outputs obtained from a system, 
conversion process, transmission or storage activity to the input of energy 
(measured as kWh kWh-1, tonnes kWh-1 or any other physical measure 
of useful output like tonne-km transported). Energy efficiency is often 
described by energy intensity. In economics, energy intensity describes 
the ratio of economic output to energy input. Most commonly energy 
efficiency is measured as input energy over a physical or economic unit, 
i.e., kWh USD-1 (energy intensity), kWh tonne-1. For buildings, it is often 
measured as kWh m-2, and for vehicles as km liter-1 or liter km-1. Very often 
in policy ‘energy efficiency’ is intended as the measures to reduce energy 
demand through technological options such as insulating buildings, more 
efficient appliances, efficient lighting, efficient vehicles, etc.

Energy security  The goal of a given country, or the global community 
as a whole, to maintain an adequate, stable and predictable energy supply. 
Measures encompass safeguarding the sufficiency of energy resources to 
meet national energy demand at competitive and stable prices and the 
resilience of the energy supply; enabling development and deployment 
of technologies; building sufficient infrastructure to generate, store and 
transmit energy supplies; and ensuring enforceable contracts of delivery.

Enhanced weathering  Enhancing the removal of carbon dioxide 
(CO2) from the atmosphere through dissolution of silicate and carbonate 
rocks by grinding these minerals to small particles and actively applying 
them to soils, coasts or oceans.

(Model) Ensemble  A group of parallel model simulations 
characterising historical climate conditions, climate predictions, or 
climate projections. Variation of the results across the ensemble members 
may give an estimate of modelling-based uncertainty. Ensembles made 
with the same model but different initial conditions only characterize 
the uncertainty associated with internal climate variability, whereas 
multimodel ensembles including simulations by several models 
also include the impact of model differences. Perturbed parameter 
ensembles, in which model parameters are varied in a systematic 
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manner, aim to assess the uncertainty resulting from internal model 
specifications within a single model. Remaining sources of uncertainty 
unaddressed with model ensembles are related to systematic model 
errors or biases, which may be assessed from systematic comparisons 
of model simulations with observations wherever available. See also 
Climate projection.

Equality  A principle that ascribes equal worth to all human beings, 
including equal opportunities, rights, and obligations, irrespective of origins.

Inequality 
Uneven opportunities and social positions, and processes of discrimination 
within a group or society, based on gender, class, ethnicity, age, and (dis)
ability, often produced by uneven development. Income inequality refers 
to gaps between highest and lowest income earners within a country 
and between countries. See also Equity, Ethics and Fairness.

Equilibrium climate sensitivity  See Climate sensitivity.

Equity  Equity is the principle of fairness in burden sharing and is a 
basis for understanding how the impacts and responses to climate 
change, including costs and benefits, are distributed in and by society in 
more or less equal ways. It is often aligned with ideas of equality, fairness 
and justice and applied with respect to equity in the responsibility for, and 
distribution of, climate impacts and policies across society, generations, 
and gender, and in the sense of who participates and controls the 
processes of decision-making.

Distributive equity 
Equity in the consequences, outcomes, costs and benefits of actions or 
policies. In the case of climate change or climate policies for different 
people, places and countries, including equity aspects of sharing burdens 
and benefits for mitigation and adaptation.

Gender equity 
Ensuring equity in that women and men have the same rights, resources 
and opportunities. In the case of climate change gender equity recognizes 
that women are often more vulnerable to the impacts of climate change 
and may be disadvantaged in the process and outcomes of climate 
policy.	

Inter-generational equity 
Equity between generations that acknowledges that the effects of past 
and present emissions, vulnerabilities and policies impose costs and 
benefits for people in the future and of different age groups.

Procedural equity 
Equity in the process of decision-making, including recognition and 
inclusiveness in participation, equal representation, bargaining power, 
voice and equitable access to knowledge and resources to participate.

See also Equality, Ethics and Fairness.

Ethics  Ethics involves questions of justice and value. Justice is 
concerned with right and wrong, equity and fairness, and, in general, 
with the rights to which people and living beings are entitled. Value is a 
matter of worth, benefit, or good. See also Equality, Equity and Fairness.

Evidence  Data and information used in the scientific process to 
establish findings. In this report, the degree of evidence reflects the 
amount, quality and consistency of scientific/technical information on 
which the Lead Authors are basing their findings. See also Agreement, 
Confidence, Likelihood and Uncertainty.

Exposure  The presence of people; livelihoods; species or ecosystems; 
environmental functions, services, and resources; infrastructure; or 
economic, social, or cultural assets in places and settings that could be 
adversely affected. See also Hazard, Risk and Vulnerability.

Extratropical cyclone  Any cyclonic-scale storm that is not a tropical 
cyclone. Usually refers to a middle- or high-latitude migratory storm system 
formed in regions of large horizontal temperature variations. Sometimes 
called extratropical storm or extratropical low. See also Tropical cyclone.

Extreme weather event  An extreme weather event is an event that 
is rare at a particular place and time of year. Definitions of rare vary, but 
an extreme weather event would normally be as rare as or rarer than the 
10th or 90th percentile of a probability density function estimated from 
observations. By definition, the characteristics of what is called extreme 
weather may vary from place to place in an absolute sense. When a 
pattern of extreme weather persists for some time, such as a season, 
it may be classed as an extreme climate event, especially if it yields an 
average or total that is itself extreme (e.g., drought or heavy rainfall over 
a season). See also Heatwave and Climate extreme (extreme weather or 
climate event).

Extreme weather or climate event  See Climate extreme (extreme 
weather or climate event).

Fairness  Impartial and just treatment without favouritism or 
discrimination in which each person is considered of equal worth with 
equal opportunity. See also Equity, Equality and Ethics.

Feasibility  The degree to which climate goals and response options 
are considered possible and/or desirable. Feasibility depends on 
geophysical, ecological, technological, economic, social and institutional 
conditions for change. Conditions underpinning feasibility are dynamic, 
spatially variable, and may vary between different groups. See also 
Enabling conditions.

Feasible scenario commitment  See Climate change commitment.

Feedback  See Climate feedback.

Flexible governance  See Governance.

Flood  The overflowing of the normal confines of a stream or other 
body of water, or the accumulation of water over areas that are not 
normally submerged. Floods include river (fluvial) floods, flash floods, 
urban floods, pluvial floods, sewer floods, coastal floods, and glacial lake 
outburst floods.

Food security  A situation that exists when all people, at all times, 
have physical, social and economic access to sufficient, safe and 
nutritious food that meets their dietary needs and food preferences for 
an active and healthy life (FAO, 2001). 

Food wastage  Food wastage encompasses food loss (the loss of 
food during production and transportation) and food waste (the waste of 
food by the consumer) (FAO, 2013). 

Forcing  See Radiative forcing.

Forest  A vegetation type dominated by trees. Many definitions of the 
term forest are in use throughout the world, reflecting wide differences in 
biogeophysical conditions, social structure and economics. For a discussion 
of the term forest and related terms such as afforestation, reforestation 
and deforestation, see the IPCC Special Report on Land Use, Land-Use 
Change, and Forestry (IPCC, 2000). See also information provided by the 
United Nations Framework Convention on Climate Change (UNFCCC, 
2013) and the Report on Definitions and Methodological Options to 
Inventory Emissions from Direct Human-induced Degradation of Forests 
and Devegetation of Other Vegetation Types (IPCC, 2003). See also 
Afforestation, Deforestation and Reforestation.

Fossil fuels  Carbon-based fuels from fossil hydrocarbon deposits, 
including coal, oil, and natural gas.
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Framework Convention on Climate Change  See United Nations 
Framework Convention on Climate Change (UNFCCC).

Gender equity  See Equity.

General purpose technologies (GPT)  General purpose technologies 
can be or are used pervasively in a wide range of sectors in ways that 
fundamentally change the modes of operation of those sectors (Helpman, 
1998). Examples include the steam engine, power generator and motor, 
ICT, and biotechnology.

Geoengineering  In this report, separate consideration is given to 
the two main approaches considered as ‘geoengineering’ in some of the 
literature: solar radiation modification (SRM) and carbon dioxide removal 
(CDR). Because of this separation, the term ‘geoengineering’ is not used 
in this report. See also Carbon dioxide removal (CDR) and Solar radiation 
modification (SRM).

Glacier  A perennial mass of ice, and possibly firn and snow, 
originating on the land surface by the recrystallisation of snow and 
showing evidence of past or present flow. A glacier typically gains mass 
by accumulation of snow, and loses mass by melting and ice discharge 
into the sea or a lake if the glacier terminates in a body of water. Land ice 
masses of continental size (>50,000 km2) are referred to as ice sheets. 
See also Ice sheet.

Global climate model (also referred to as general circulation 
model, both abbreviated as GCM)  See Climate model.

Global mean surface temperature (GMST)  Estimated global 
average of near-surface air temperatures over land and sea-ice, and 
sea surface temperatures over ice-free ocean regions, with changes 
normally expressed as departures from a value over a specified reference 
period. When estimating changes in GMST, near-surface air temperature 
over both land and oceans are also used.1 See also Land surface air 
temperature, Sea surface temperature (SST) and Global mean surface air 
temperature (GSAT).

Global mean surface air temperature (GSAT)  Global average of 
near-surface air temperatures over land and oceans. Changes in GSAT are 
often used as a measure of global temperature change in climate models 
but are not observed directly. See also Global mean surface temperature 
(GMST) and Land surface air temperature.

Global warming  The estimated increase in global mean surface 
temperature (GMST) averaged over a 30-year period, or the 30-year 
period centered on a particular year or decade, expressed relative to 
pre-industrial levels unless otherwise specified. For 30-year periods that 
span past and future years, the current multi-decadal warming trend is 
assumed to continue. See also Climate change and Climate variability.

Governance  A comprehensive and inclusive concept of the full range 
of means for deciding, managing, implementing and monitoring policies 
and measures. Whereas government is defined strictly in terms of the 
nation-state, the more inclusive concept of governance recognizes the 
contributions of various levels of government (global, international, 
regional, sub-national and local) and the contributing roles of the private 
sector, of nongovernmental actors, and of civil society to addressing the 
many types of issues facing the global community.

Adaptive governance
An emerging term in the literature for the evolution of formal and 
informal institutions of governance that prioritize social learning in 
planning, implementation and evaluation of policy through iterative 
social learning to steer the use and protection of natural resources, 

ecosystem services and common pool natural resources, particularly in 
situations of complexity and uncertainty.

Climate governance
Purposeful mechanisms and measures aimed at steering social systems 
towards preventing, mitigating, or adapting to the risks posed by climate 
change (Jagers and Stripple, 2003).

Deliberative governance
Deliberative governance involves decision-making through inclusive 
public conversation, which allows opportunity for developing policy 
options through public discussion rather than collating individual 
preferences through voting or referenda (although the latter governance 
mechanisms can also be proceeded and legitimated by public deliberation 
processes).

Flexible governance
Strategies of governance at various levels, which prioritize the use 
of social learning and rapid feedback mechanisms in planning and 
policy making, often through incremental, experimental and iterative 
management processes.

Governance capacity
The ability of governance institutions, leaders, and non-state and civil 
society to plan, co-ordinate, fund, implement, evaluate and adjust 
policies and measures over the short, medium and long term, adjusting 
for uncertainty, rapid change and wide-ranging impacts and multiple 
actors and demands.

Multilevel governance
Multilevel governance refers to negotiated, non-hierarchical exchanges 
between institutions at the transnational, national, regional and local 
levels. Multilevel governance identifies relationships among governance 
processes at these different levels. Multilevel governance does include 
negotiated relationships among institutions at different institutional 
levels and also a vertical ‘layering’ of governance processes at 
different levels. Institutional relationships take place directly between 
transnational, regional and local levels, thus bypassing the state level 
(Peters and Pierre, 2001)

Participatory governance
A governance system that enables direct public engagement in decision-
making using a variety of techniques for example, referenda, community 
deliberation, citizen juries or participatory budgeting. The approach can be 
applied in formal and informal institutional contexts from national to local, 
but is usually associated with devolved decision-making. This definition 
builds from Fung and Wright (2003) and Sarmiento and Tilly (2018).

Governance capacity  See Governance.

Green infrastructure  The interconnected set of natural and 
constructed ecological systems, green spaces and other landscape 
features. It includes planted and indigenous trees, wetlands, parks, 
green open spaces and original grassland and woodlands, as well as 
possible building and street-level design interventions that incorporate 
vegetation. Green infrastructure provides services and functions in the 
same way as conventional infrastructure. This definition builds from 
Culwick and Bobbins (2016).

Greenhouse gas (GHG)  Greenhouse gases are those gaseous 
constituents of the atmosphere, both natural and anthropogenic, that 
absorb and emit radiation at specific wavelengths within the spectrum of 
terrestrial radiation emitted by the Earth’s surface, the atmosphere itself 
and by clouds. This property causes the greenhouse effect. Water vapour 
(H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and 

1	 Past IPCC reports, reflecting the literature, have used a variety of approximately equivalent metrics of GMST change.
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ozone (O3) are the primary GHGs in the Earth’s atmosphere. Moreover, 
there are a number of entirely human-made GHGs in the atmosphere, 
such as the halocarbons and other chlorine- and bromine-containing 
substances, dealt with under the Montreal Protocol. Beside CO2, N2O and 
CH4, the Kyoto Protocol deals with the GHGs sulphur hexafluoride (SF6), 
hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs). See also Carbon 
dioxide (CO2), Methane (CH4), Nitrous oxide (N2O) and Ozone (O3).

Greenhouse gas removal (GGR)  Withdrawal of a GHG and/or 
a precursor from the atmosphere by a sink. See also Carbon dioxide 
removal (CDR) and Negative emissions. 

Gross domestic product (GDP)  The sum of gross value added, 
at purchasers’ prices, by all resident and non-resident producers in the 
economy, plus any taxes and minus any subsidies not included in the 
value of the products in a country or a geographic region for a given 
period, normally one year. GDP is calculated without deducting for 
depreciation of fabricated assets or depletion and degradation of natural 
resources.

Gross fixed capital formation (GFCF)  One component of the GDP 
that corresponds to the total value of acquisitions, minus disposals of 
fixed assets during one year by the business sector, governments and 
households, plus certain additions to the value of non-produced assets 
(such as subsoil assets or major improvements in the quantity, quality or 
productivity of land).

Halocarbons  A collective term for the group of partially halogenated 
organic species, which includes the chlorofluorocarbons (CFCs), 
hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), halons, 
methyl chloride and methyl bromide. Many of the halocarbons have 
large global warming potentials. The chlorine and bromine-containing 
halocarbons are also involved in the depletion of the ozone layer.

Hazard  The potential occurrence of a natural or human-induced 
physical event or trend that may cause loss of life, injury, or other 
health impacts, as well as damage and loss to property, infrastructure, 
livelihoods, service provision, ecosystems and environmental resources. 
See also Disaster, Exposure, Risk, and Vulnerability.

Heatwave  A period of abnormally hot weather. Heatwaves and warm 
spells have various and in some cases overlapping definitions. See also 
Extreme weather event.

Heating, ventilation, and air conditioning (HVAC)  Heating, 
ventilation and air conditioning technology is used to control temperature 
and humidity in an indoor environment, be it in buildings or in vehicles, 
providing thermal comfort and healthy air quality to the occupants. HVAC 
systems can be designed for an isolated space, an individual building or 
a distributed heating and cooling network within a building structure or 
a district heating system. The latter provides economies of scale and also 
scope for integration with solar heat, natural seasonal cooling/heating etc.

Holocene  The Holocene is the current interglacial geological epoch, 
the second of two epochs within the Quaternary period, the preceding 
being the Pleistocene. The International Commission on Stratigraphy 
defines the start of the Holocene at 11,650 years before 1950. See also 
Anthropocene.

Human behaviour  The way in which a person acts in response to a 
particular situation or stimulus. Human actions are relevant at different 
levels, from international, national, and sub-national actors, to NGO, firm-
level actors, and communities, households, and individual actions.

Adaptation behaviour 
Human actions that directly or indirectly affect the risks of climate 
change impacts.

Mitigation behaviour 
Human actions that directly or indirectly influence mitigation. 

Human behavioural change  A transformation or modification of 
human actions. Behaviour change efforts can be planned in ways that 
mitigate climate change and/or reduce negative consequences of climate 
change impacts.

Human rights  Rights that are inherent to all human beings, universal, 
inalienable, and indivisible, typically expressed and guaranteed by law. 
They include the right to life; economic, social, and cultural rights; 
and the right to development and self-determination. Based upon the 
definition by the UN Office of the High Commissioner for Human Rights 
(UNOHCHR, 2018).

Procedural rights 
Rights to a legal procedure to enforce substantive rights.

Substantive rights 
Basic human rights, including the right to the substance of being human 
such as life itself, liberty and happiness.

Human security  A condition that is met when the vital core of human 
lives is protected, and when people have the freedom and capacity to live 
with dignity. In the context of climate change, the vital core of human 
lives includes the universal and culturally specific, material and non-
material elements necessary for people to act on behalf of their interests 
and to live with dignity.

Human system  Any system in which human organizations and 
institutions play a major role. Often, but not always, the term is 
synonymous with society or social system. Systems such as agricultural 
systems, urban systems, political systems, technological systems and 
economic systems are all human systems in the sense applied in this 
report.

Hydrological cycle  The cycle in which water evaporates from the 
oceans and the land surface, is carried over the earth in atmospheric 
circulation as water vapour, condenses to form clouds, precipitates as 
rain or snow, which on land can be intercepted by trees and vegetation, 
potentially accumulates as snow or ice, provides runoff on the land 
surface, infiltrates into soils, recharges groundwater, discharges into 
streams, flows out into the oceans, and ultimately evaporates again 
from the ocean or land surface. The various systems involved in the 
hydrological cycle are usually referred to as hydrological systems.

Ice sheet  A mass of land ice of continental size that is sufficiently 
thick to cover most of the underlying bed, so that its shape is mainly 
determined by its dynamics (the flow of the ice as it deforms internally 
and/or slides at its base). An ice sheet flows outward from a high central 
ice plateau with a small average surface slope. The margins usually slope 
more steeply, and most ice is discharged through fast flowing ice streams 
or outlet glaciers, in some cases into the sea or into ice shelves floating 
on the sea. There are only two ice sheets in the modern world, one on 
Greenland and one on Antarctica. During glacial periods there were 
others. See also Glacier.

(climate change) Impact assessment  The practice of identifying 
and evaluating, in monetary and/or non-monetary terms, the effects of 
climate change on natural and human systems.

Impacts (consequences, outcomes)  The consequences of 
realized risks on natural and human systems, where risks result from 
the interactions of climate-related hazards (including extreme weather 
and climate events), exposure, and vulnerability. Impacts generally 
refer to effects on lives; livelihoods; health and well-being; ecosystems 
and species; economic, social and cultural assets; services (including 
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ecosystem services); and infrastructure. Impacts may be referred to 
as consequences or outcomes, and can be adverse or beneficial. See 
also Adaptation, Exposure, Hazard, Loss and Damage, and losses and 
damages, and Vulnerability.

Incremental adaptation  See Adaptation.

Indigenous knowledge  Indigenous knowledge refers to the 
understandings, skills and philosophies developed by societies with 
long histories of interaction with their natural surroundings. For many 
Indigenous peoples, Indigenous knowledge informs decision-making 
about fundamental aspects of life, from day-to-day activities to longer 
term actions. This knowledge is integral to cultural complexes, which also 
encompass language, systems of classification, resource use practices, 
social interactions, values, ritual and spirituality. These distinctive ways 
of knowing are important facets of the world’s cultural diversity. This 
definition builds on UNESCO (2018).

Indirect land-use change (iLUC)  See Land-use change (LUC).

Industrial revolution  A period of rapid industrial growth with far-
reaching social and economic consequences, beginning in Britain during 
the second half of the 18th century and spreading to Europe and later to 
other countries, including the United States. The invention of the steam 
engine was an important trigger of this development. The industrial 
revolution marks the beginning of a strong increase in the use of fossil 
fuels, initially coal, and hence emission of carbon dioxide (CO2). See also 
Pre-industrial.

Industrialized/developed/developing countries  There are a 
diversity of approaches for categorizing countries on the basis of their 
level of development, and for defining terms such as industrialized, 
developed, or developing. Several categorizations are used in this report. 
(1) In the United Nations system, there is no established convention for 
designation of developed and developing countries or areas. (2) The 
United Nations Statistics Division specifies developed and developing 
regions based on common practice. In addition, specific countries are 
designated as Least Developed Countries (LDC), landlocked developing 
countries, small island developing states, and transition economies. Many 
countries appear in more than one of these categories. (3) The World 
Bank uses income as the main criterion for classifying countries as low, 
lower middle, upper middle and high income. (4) The UNDP aggregates 
indicators for life expectancy, educational attainment, and income into a 
single composite Human Development Index (HDI) to classify countries 
as low, medium, high or very high human development.

Inequality  See Equality.

Information and communication technology (ICT)  An umbrella 
term that includes any information and communication device or 
application, encompassing: computer systems, network hardware and 
software, cell phones, etc.

Infrastructure commitment  See Climate change commitment.

Institution  Institutions are rules and norms held in common by social 
actors that guide, constrain and shape human interaction. Institutions 
can be formal, such as laws and policies, or informal, such as norms and 
conventions. Organizations – such as parliaments, regulatory agencies, 
private firms and community bodies – develop and act in response to 
institutional frameworks and the incentives they frame. Institutions can 
guide, constrain and shape human interaction through direct control, 
through incentives, and through processes of socialization. See also 
Institutional capacity.

Institutional capacity  Institutional capacity comprises building 
and strengthening individual organizations and providing technical 

and management training to support integrated planning and decision-
making processes between organizations and people, as well as 
empowerment, social capital, and an enabling environment, including 
the culture, values and power relations (Willems and Baumert, 2003). 

Integrated assessment  A method of analysis that combines results 
and models from the physical, biological, economic and social sciences 
and the interactions among these components in a consistent framework 
to evaluate the status and the consequences of environmental change 
and the policy responses to it. See also Integrated assessment model 
(IAM).

Integrated assessment model (IAM)  Integrated assessment 
models (IAMs) integrate knowledge from two or more domains into 
a single framework. They are one of the main tools for undertaking 
integrated assessments.

One class of IAM used in respect of climate change mitigation may 
include representations of: multiple sectors of the economy, such as 
energy, land use and land-use change; interactions between sectors; the 
economy as a whole; associated GHG emissions and sinks; and reduced 
representations of the climate system. This class of model is used to assess 
linkages between economic, social and technological development and 
the evolution of the climate system. 

Another class of IAM additionally includes representations of the costs 
associated with climate change impacts, but includes less detailed 
representations of economic systems. These can be used to assess 
impacts and mitigation in a cost–benefit framework and have been used 
to estimate the social cost of carbon.

Integrated water resources management (IWRM)  A process 
which promotes the coordinated development and management of 
water, land and related resources in order to maximize economic and 
social welfare in an equitable manner without compromising the 
sustainability of vital ecosystems.

Inter-generational equity  See Equity.

Inter-generational justice  See Justice.

Internal variability  See Climate variability.

Internet of Things (IoT)  The network of computing devices 
embedded in everyday objects such as cars, phones and computers, 
connected via the internet, enabling them to send and receive data.

Iron fertilization  See Ocean fertilization.

Irreversibility  A perturbed state of a dynamical system is defined as 
irreversible on a given timescale, if the recovery time scale from this state 
due to natural processes is substantially longer than the time it takes for 
the system to reach this perturbed state. See also Tipping point.

Justice  Justice is concerned with ensuring that people get what is due 
to them, setting out the moral or legal principles of fairness and equity in 
the way people are treated, often based on the ethics and values of society.

Climate justice 
Justice that links development and human rights to achieve a human-
centred approach to addressing climate change, safeguarding the rights 
of the most vulnerable people and sharing the burdens and benefits of 
climate change and its impacts equitably and fairly. This definition builds 
upon the one used by the Mary Robinson Foundation – Climate Justice 
(MRFCJ, 2018).

Distributive justice 
Justice in the allocation of economic and non-economic costs and 
benefits across society.
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Inter-generational justice 
Justice in the distribution of economic and non-economic costs and 
benefits across generations.

Procedural justice 
Justice in the way outcomes are brought about including who participates 
and is heard in the processes of decision-making.

Social justice 
Just or fair relations within society that seek to address the distribution 
of wealth, access to resources, opportunity, and support according to 
principles of justice and fairness.

See also Equity, Ethics, Fairness, and Human rights.

Kyoto Protocol  The Kyoto Protocol to the United Nations Framework 
Convention on Climate Change (UNFCCC) is an international treaty 
adopted in December 1997 in Kyoto, Japan, at the Third Session of the 
Conference of the Parties (COP3) to the UNFCCC. It contains legally 
binding commitments, in addition to those included in the UNFCCC. 
Countries included in Annex B of the Protocol (mostly OECD countries 
and countries with economies in transition) agreed to reduce their 
anthropogenic greenhouse gas (GHG) emissions (carbon dioxide 
(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), 
perfluorocarbons (PFCs), and sulphur hexafluoride (SF6)) by at least 5% 
below 1990 levels in the first commitment period (2008–2012). The 
Kyoto Protocol entered into force on 16 February 2005 and as of May 
2018 had 192 Parties (191 States and the European Union). A second 
commitment period was agreed in December 2012 at COP18, known as 
the Doha Amendment to the Kyoto Protocol, in which a new set of Parties 
committed to reduce GHG emissions by at least 18% below 1990 levels 
in the period from 2013 to 2020. However, as of May 2018, the Doha 
Amendment had not received sufficient ratifications to enter into force. 
See also United Nations Framework Convention on Climate Change 
(UNFCCC) and Paris Agreement.

Land surface air temperature  The near-surface air temperature 
over land, typically measured at 1.25–2 m above the ground using 
standard meteorological equipment.

Land use  Land use refers to the total of arrangements, activities and 
inputs undertaken in a certain land cover type (a set of human actions). 
The term land use is also used in the sense of the social and economic 
purposes for which land is managed (e.g., grazing, timber extraction, 
conservation and city dwelling). In national greenhouse gas inventories, 
land use is classified according to the IPCC land use categories of forest 
land, cropland, grassland, wetland, settlements, other. See also Land-use 
change (LUC).

Land-use change (LUC)  Land-use change involves a change from 
one land use category to another. 

Indirect land-use change (iLUC)
Refers to market-mediated or policy-driven shifts in land use that cannot 
be directly attributed to land-use management decisions of individuals 
or groups. For example, if agricultural land is diverted to fuel production, 
forest clearance may occur elsewhere to replace the former agricultural 
production.

Land use, land-use change and forestry (LULUCF)
In the context of national greenhouse gas (GHG) inventories under the 
UNFCCC, LULUCF is a GHG inventory sector that covers anthropogenic 
emissions and removals of GHG from carbon pools in managed lands, 
excluding non-CO2 agricultural emissions. Following the 2006 IPCC 
Guidelines for National GHG Inventories, ‘anthropogenic’ land-related 
GHG fluxes are defined as all those occurring on ‘managed land’, i.e., 
‘where human interventions and practices have been applied to perform 

production, ecological or social functions’. Since managed land may 
include CO2 removals not considered as ‘anthropogenic’ in some of the 
scientific literature assessed in this report (e.g., removals associated with 
CO2 fertilization and N deposition), the land-related net GHG emission 
estimates included in this report are not necessarily directly comparable 
with LULUCF estimates in National GHG Inventories. 

See also Afforestation, Deforestation, Reforestation, and the IPCC Special 
Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).

Land use, land-use change and forestry (LULUCF)  See Land-use 
change (LUC).

Life cycle assessment (LCA)  Compilation and evaluation of the 
inputs, outputs and the potential environmental impacts of a product or 
service throughout its life cycle. This definition builds from ISO (2018). 

Likelihood  The chance of a specific outcome occurring, where this 
might be estimated probabilistically. Likelihood is expressed in this report 
using a standard terminology (Mastrandrea et al., 2010). See Section 1.6 
for the list of likelihood qualifiers used. See also Agreement, Evidence, 
Confidence and Uncertainty.

Livelihood  The resources used and the activities undertaken in order 
to live. Livelihoods are usually determined by the entitlements and assets 
to which people have access. Such assets can be categorised as human, 
social, natural, physical or financial.

Local knowledge  Local knowledge refers to the understandings 
and skills developed by individuals and populations, specific to the 
places where they live. Local knowledge informs decision-making about 
fundamental aspects of life, from day-to-day activities to longer-term 
actions. This knowledge is a key element of the social and cultural systems 
which influence observations of, and responses to climate change; it also 
informs governance decisions. This definition builds on UNESCO (2018).

Lock-in  A situation in which the future development of a system, 
including infrastructure, technologies, investments, institutions, and 
behavioural norms, is determined or constrained (‘locked in’) by historic 
developments.

Long-lived climate forcers (LLCF)  Long-lived climate forcers refer 
to a set of well-mixed greenhouse gases with long atmospheric lifetimes. 
This set of compounds includes carbon dioxide (CO2) and nitrous oxide 
(N2O), together with some fluorinated gases. They have a warming effect 
on climate. These compounds accumulate in the atmosphere at decadal 
to centennial time scales, and their effect on climate hence persists for 
decades to centuries after their emission. On time scales of decades to 
a century, already emitted emissions of long-lived climate forcers can 
only be abated by greenhouse gas removal (GGR). See also Short-lived 
climate forcers (SLCF).

Loss and Damage, and losses and damages  Research has taken 
Loss and Damage (capitalized letters) to refer to political debate under 
the UNFCCC following the establishment of the Warsaw Mechanism 
on Loss and Damage in 2013, which is to ‘address loss and damage 
associated with impacts of climate change, including extreme events 
and slow onset events, in developing countries that are particularly 
vulnerable to the adverse effects of climate change.’ Lowercase letters 
(losses and damages) have been taken to refer broadly to harm from 
(observed) impacts and (projected) risks (see Mechler et al., in press). 

Maladaptive actions (Maladaptation)  Actions that may lead 
to increased risk of adverse climate-related outcomes, including via 
increased GHG emissions, increased vulnerability to climate change, or 
diminished welfare, now or in the future. Maladaptation is usually an 
unintended consequence.
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Market exchange rate (MER)  The rate at which a currency of 
one country can be exchanged with the currency of another country. In 
most economies such rates evolve daily while in others there are official 
conversion rates that are adjusted periodically. See also Purchasing 
power parity (PPP).

Market failure  When private decisions are based on market prices 
that do not reflect the real scarcity of goods and services but rather 
reflect market distortions, they do not generate an efficient allocation 
of resources but cause welfare losses. A market distortion is any event 
in which a market reaches a market clearing price that is substantially 
different from the price that a market would achieve while operating 
under conditions of perfect competition and state enforcement of legal 
contracts and the ownership of private property. Examples of factors 
causing market prices to deviate from real economic scarcity are 
environmental externalities, public goods, monopoly power, information 
asymmetry, transaction costs and non-rational behaviour.

Measurement, Reporting and Verification (MRV) 

Measurement
‘Processes of data collection over time, providing basic datasets, including 
associated accuracy and precision, for the range of relevant variables. 
Possible data sources are field measurements, field observations, 
detection through remote sensing and interviews.’ (UN-REDD, 2009).

Reporting
‘The process of formal reporting of assessment results to the UNFCCC, 
according to predetermined formats and according to established 
standards, especially the IPCC [Intergovernmental Panel on Climate 
Change] Guidelines and GPG [Good Practice Guidance].’ (UN-REDD, 
2009) 

Verification
‘The process of formal verification of reports, for example the established 
approach to verify national communications and national inventory 
reports to the UNFCCC.’ (UN-REDD, 2009)

Megadrought  See Drought.

Methane (CH4)  One of the six greenhouse gases (GHGs) to be 
mitigated under the Kyoto Protocol and is the major component of 
natural gas and associated with all hydrocarbon fuels. Significant 
emissions occur as a result of animal husbandry and agriculture, and 
their management represents a major mitigation option.

Migrant  See Migration.

Migration  The International Organization for Migration (IOM) 
defines migration as ‘The movement of a person or a group of persons, 
either across an international border, or within a State. It is a population 
movement, encompassing any kind of movement of people, whatever 
its length, composition and causes; it includes migration of refugees, 
displaced persons, economic migrants, and persons moving for other 
purposes, including family reunification.’ (IOM, 2018).

Migrant 
The International Organization for Migration (IOM) defines a migrant 
as ‘any person who is moving or has moved across an international 
border or within a State away from his/her habitual place of residence, 
regardless of (1) the person’s legal status; (2) whether the movement is 
voluntary or involuntary; (3) what the causes for the movement are; or 
(4) what the length of the stay is.’ (IOM, 2018).

See also (Internal) Displacement.

Millennium Development Goals (MDGs)  A set of eight time-
bound and measurable goals for combating poverty, hunger, disease, 

illiteracy, discrimination against women and environmental degradation. 
These goals were agreed at the UN Millennium Summit in 2000 together 
with an action plan to reach the goals by 2015.

Mitigation (of climate change)  A human intervention to reduce 
emissions or enhance the sinks of greenhouse gases.

Mitigation behaviour  See Human behaviour.

Mitigation measures  In climate policy, mitigation measures are 
technologies, processes or practices that contribute to mitigation, for 
example, renewable energy (RE) technologies, waste minimization 
processes and public transport commuting practices. See also Mitigation 
option, and Policies (for climate change mitigation and adaptation).

Mitigation option  A technology or practice that reduces GHG 
emissions or enhances sinks. 

Mitigation pathways  See Pathways.

Mitigation scenario  A plausible description of the future that 
describes how the (studied) system responds to the implementation of 
mitigation policies and measures. See also Emission scenario, Pathways, 
Socio-economic scenario and Stabilization (of GHG or CO2-equivalent 
concentration).

Monitoring and evaluation (M&E)  Monitoring and evaluation 
refers to mechanisms put in place at national to local scales to respectively 
monitor and evaluate efforts to reduce greenhouse gas emissions and/
or adapt to the impacts of climate change with the aim of systematically 
identifying, characterizing and assessing progress over time. 

Motivation (of an individual)  An individual’s reason or reasons for 
acting in a particular way; individuals may consider various consequences 
of actions, including financial, social, affective and environmental 
consequences. Motivation can come from outside (extrinsic) or from 
inside (intrinsic) the individual.

Multilevel governance  See Governance.

Narratives  Qualitative descriptions of plausible future world 
evolutions, describing the characteristics, general logic and developments 
underlying a particular quantitative set of scenarios. Narratives are also 
referred to in the literature as ‘storylines’. See also Scenario, Scenario 
storyline and Pathways.

Nationally Determined Contributions (NDCs)  A term used under 
the United Nations Framework Convention on Climate Change (UNFCCC) 
whereby a country that has joined the Paris Agreement outlines its plans 
for reducing its emissions. Some countries’ NDCs also address how 
they will adapt to climate change impacts, and what support they need 
from, or will provide to, other countries to adopt low-carbon pathways 
and to build climate resilience. According to Article 4 paragraph 2 
of the Paris Agreement, each Party shall prepare, communicate and 
maintain successive NDCs that it intends to achieve. In the lead up to 
21st Conference of the Parties in Paris in 2015, countries submitted 
Intended Nationally Determined Contributions (INDCs). As countries join 
the Paris Agreement, unless they decide otherwise, this INDC becomes 
their first Nationally Determined Contribution (NDC). See also United 
Nations Framework Convention on Climate Change (UNFCCC) and Paris 
Agreement.

Negative emissions  Removal of greenhouse gases (GHGs) from 
the atmosphere by deliberate human activities, i.e., in addition to the 
removal that would occur via natural carbon cycle processes. See also 
Net negative emissions, Net zero emissions, Carbon dioxide removal 
(CDR) and Greenhouse gas removal (GGR). 
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Net negative emissions  A situation of net negative emissions is 
achieved when, as result of human activities, more greenhouse gases 
are removed from the atmosphere than are emitted into it. Where 
multiple greenhouse gases are involved, the quantification of negative 
emissions depends on the climate metric chosen to compare emissions 
of different gases (such as global warming potential, global temperature 
change potential, and others, as well as the chosen time horizon). See 
also Negative emissions, Net zero emissions and Net zero CO2 emissions.

Net zero CO2 emissions  Net zero carbon dioxide (CO2) emissions 
are achieved when anthropogenic CO2 emissions are balanced globally 
by anthropogenic CO2 removals over a specified period. Net zero CO2 
emissions are also referred to as carbon neutrality. See also Net zero 
emissions and Net negative emissions.

Net zero emissions  Net zero emissions are achieved when 
anthropogenic emissions of greenhouse gases to the atmosphere are 
balanced by anthropogenic removals over a specified period. Where 
multiple greenhouse gases are involved, the quantification of net zero 
emissions depends on the climate metric chosen to compare emissions 
of different gases (such as global warming potential, global temperature 
change potential, and others, as well as the chosen time horizon). See 
also Net zero CO2 emissions, Negative emissions and Net negative 
emissions.

Nitrous oxide (N2O)  One of the six greenhouse gases (GHGs) to be 
mitigated under the Kyoto Protocol. The main anthropogenic source of 
N2O is agriculture (soil and animal manure management), but important 
contributions also come from sewage treatment, fossil fuel combustion, 
and chemical industrial processes. N2O is also produced naturally from a 
wide variety of biological sources in soil and water, particularly microbial 
action in wet tropical forests.

Non-CO2 emissions and radiative forcing  Non-CO2 emissions 
included in this report are all anthropogenic emissions other than CO2 
that result in radiative forcing. These include short-lived climate forcers, 
such as methane (CH4), some fluorinated gases, ozone (O3) precursors, 
aerosols or aerosol precursors, such as black carbon and sulphur dioxide, 
respectively, as well as long-lived greenhouse gases, such as nitrous 
oxide (N2O) or other fluorinated gases. The radiative forcing associated 
with non-CO2 emissions and changes in surface albedo is referred to as 
non-CO2 radiative forcing.

Non-overshoot pathways  See Pathways.

Ocean acidification (OA)  Ocean acidification refers to a reduction 
in the pH of the ocean over an extended period, typically decades or 
longer, which is caused primarily by uptake of carbon dioxide (CO2) from 
the atmosphere, but can also be caused by other chemical additions or 
subtractions from the ocean. Anthropogenic ocean acidification refers to 
the component of pH reduction that is caused by human activity (IPCC, 
2011, p. 37). 

Ocean fertilization  Deliberate increase of nutrient supply to 
the near-surface ocean in order to enhance biological production 
through which additional carbon dioxide (CO2) from the atmosphere is 
sequestered. This can be achieved by the addition of micro-nutrients or 
macro-nutrients. Ocean fertilization is regulated by the London Protocol.

Overshoot  See Temperature overshoot.

Overshoot pathways  See Pathways.

Ozone (O3)  Ozone, the triatomic form of oxygen (O3), is a gaseous 
atmospheric constituent. In the troposphere, it is created both naturally 
and by photochemical reactions involving gases resulting from human 
activities (smog). Tropospheric ozone acts as a greenhouse gas. In the 

stratosphere, it is created by the interaction between solar ultraviolet 
radiation and molecular oxygen (O2). Stratospheric ozone plays a 
dominant role in the stratospheric radiative balance. Its concentration is 
highest in the ozone layer.

Paris Agreement  The Paris Agreement under the United Nations 
Framework Convention on Climate Change (UNFCCC) was adopted on 
December 2015 in Paris, France, at the 21st session of the Conference 
of the Parties (COP) to the UNFCCC. The agreement, adopted by 196 
Parties to the UNFCCC, entered into force on 4 November 2016 and as 
of May 2018 had 195 Signatories and was ratified by 177 Parties. One 
of the goals of the Paris Agreement is ‘Holding the increase in the global 
average temperature to well below 2°C above pre-industrial levels 
and pursuing efforts to limit the temperature increase to 1.5°C above 
pre-industrial levels’, recognising that this would significantly reduce 
the risks and impacts of climate change. Additionally, the Agreement 
aims to strengthen the ability of countries to deal with the impacts 
of climate change. The Paris Agreement is intended to become fully 
effective in 2020. See also United Nations Framework Convention on 
Climate Change (UNFCCC), Kyoto Protocol and Nationally Determined 
Contributions (NDCs).

Participatory governance  See Governance.

Pathways  The temporal evolution of natural and/or human systems 
towards a future state. Pathway concepts range from sets of quantitative 
and qualitative scenarios or narratives of potential futures to solution-
oriented decision-making processes to achieve desirable societal goals. 
Pathway approaches typically focus on biophysical, techno-economic, 
and/or socio-behavioural trajectories and involve various dynamics, goals 
and actors across different scales.

1.5°C pathway
A pathway of emissions of greenhouse gases and other climate forcers 
that provides an approximately one-in-two to two-in-three chance, given 
current knowledge of the climate response, of global warming either 
remaining below 1.5°C or returning to 1.5°C by around 2100 following 
an overshoot. See also Temperature overshoot.

Adaptation pathways
A series of adaptation choices involving trade-offs between short-term 
and long-term goals and values. These are processes of deliberation to 
identify solutions that are meaningful to people in the context of their 
daily lives and to avoid potential maladaptation. 

Development pathways
Development pathways are trajectories based on an array of social, 
economic, cultural, technological, institutional and biophysical features 
that characterise the interactions between human and natural systems 
and outline visions for the future, at a particular scale. 

Emission pathways
Modelled trajectories of global anthropogenic emissions over the 21st 
century are termed emission pathways. 

Mitigation pathways 
A mitigation pathway is a temporal evolution of a set of mitigation 
scenario features, such as greenhouse gas emissions and socio-economic 
development.

Overshoot pathways
Pathways that exceed the stabilization level (concentration, forcing, or 
temperature) before the end of a time horizon of interest (e.g., before 
2100) and then decline towards that level by that time. Once the target 
level is exceeded, removal by sinks of greenhouse gases is required. See 
also Temperature overshoot.
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Non-overshoot pathways
Pathways that stay below the stabilization level (concentration, forcing, 
or temperature) during the time horizon of interest (e.g., until 2100).

Representative Concentration Pathways (RCPs)
Scenarios that include time series of emissions and concentrations of 
the full suite of greenhouse gases (GHGs) and aerosols and chemically 
active gases, as well as land use/land cover (Moss et al., 2008). The 
word representative signifies that each RCP provides only one of many 
possible scenarios that would lead to the specific radiative forcing 
characteristics. The term pathway emphasizes the fact that not only the 
long-term concentration levels but also the trajectory taken over time to 
reach that outcome are of interest (Moss et al., 2010). RCPs were used to 
develop climate projections in CMIP5.

•	 RCP2.6: One pathway where radiative forcing peaks at  
	 approximately 3 W m-2 and then declines to be limited at 2.6 W m-2  
	 in 2100 (the corresponding Extended Concentration Pathway, or  
	 ECP, has constant emissions after 2100).
•	 RCP4.5 and RCP6.0: Two intermediate stabilization pathways  
	 in which radiative forcing is limited at approximately 4.5 W m-2  
	 and 6.0 W m-2 in 2100 (the corresponding ECPs have constant  
	 concentrations after 2150).
•	 RCP8.5: One high pathway which leads to >8.5 W m-2 in 2100  
	 (the corresponding ECP has constant emissions after 2100 until  
	 2150 and constant concentrations after 2250).

See also Coupled Model Intercomparison Project (CMIP) and Shared 
Socio-economic Pathways (SSPs).

Shared Socio-economic Pathways (SSPs) 
Shared Socio-economic Pathways (SSPs) were developed to complement 
the RCPs with varying socio-economic challenges to adaptation and 
mitigation (O’Neill et al., 2014). Based on five narratives, the SSPs 
describe alternative socio-economic futures in the absence of climate 
policy intervention, comprising sustainable development (SSP1), regional 
rivalry (SSP3), inequality (SSP4), fossil–fuelled development (SSP5) and 
middle-of-the-road development (SSP2) (O’Neill, 2000; O’Neill et al., 
2017; Riahi et al., 2017). The combination of SSP-based socio-economic 
scenarios and Representative Concentration Pathway (RCP)-based 
climate projections provides an integrative frame for climate impact and 
policy analysis.

Transformation pathways
Trajectories describing consistent sets of possible futures of greenhouse 
gas (GHG) emissions, atmospheric concentrations, or global mean 
surface temperatures implied from mitigation and adaptation actions 
associated with a set of broad and irreversible economic, technological, 
societal and behavioural changes. This can encompass changes in the 
way energy and infrastructure are used and produced, natural resources 
are managed and institutions are set up and in the pace and direction of 
technological change.

See also Scenario, Scenario storyline, Emission scenario, Mitigation 
scenario, Baseline scenario, Stabilization (of GHG or CO2-equivalent 
concentration) and Narratives.

Peri-urban areas  Peri-urban areas are those parts of a city that 
appear to be quite rural but are in reality strongly linked functionally to 
the city in its daily activities.

Permafrost  Ground (soil or rock and included ice and organic 
material) that remains at or below 0°C for at least two consecutive years.

pH  pH is a dimensionless measure of the acidity of a solution given by 
its concentration of hydrogen ions ([H+]). pH is measured on a logarithmic 
scale where pH = -log10[H+]. Thus, a pH decrease of 1 unit corresponds to 
a 10-fold increase in the concentration of H+, or acidity.

Plug-in hybrid electric vehicle (PHEV)  See Electric vehicle (EV).

Policies (for climate change mitigation and adaptation)  
Policies are taken and/or mandated by a government – often in conjunction 
with business and industry within a single country, or collectively with other 
countries – to accelerate mitigation and adaptation measures. Examples of 
policies are support mechanisms for renewable energy supplies, carbon or 
energy taxes, fuel efficiency standards for automobiles, etc.

Political economy  The set of interlinked relationships between 
people, the state, society and markets as defined by law, politics, 
economics, customs and power that determine the outcome of trade and 
transactions and the distribution of wealth in a country or economy. 

Poverty  Poverty is a complex concept with several definitions 
stemming from different schools of thought. It can refer to material 
circumstances (such as need, pattern of deprivation or limited resources), 
economic conditions (such as standard of living, inequality or economic 
position) and/or social relationships (such as social class, dependency, 
exclusion, lack of basic security or lack of entitlement). See also Poverty 
eradication.

Poverty eradication  A set of measures to end poverty in all its 
forms everywhere. See also Sustainable Development Goals (SDGs).

Precursors  Atmospheric compounds that are not greenhouse 
gases (GHGs) or aerosols, but that have an effect on GHG or aerosol 
concentrations by taking part in physical or chemical processes regulating 
their production or destruction rates. See also Aerosol and Greenhouse 
gas (GHG).

Pre-industrial  The multi-century period prior to the onset of large-
scale industrial activity around 1750. The reference period 1850–1900 
is used to approximate pre-industrial global mean surface temperature 
(GMST). See also Industrial revolution.

Procedural equity  See Equity.

Procedural justice  See Justice.

Procedural rights  See Human rights.

Projection  A projection is a potential future evolution of a quantity 
or set of quantities, often computed with the aid of a model. Unlike 
predictions, projections are conditional on assumptions concerning, for 
example, future socio-economic and technological developments that 
may or may not be realized. See also Climate projection, Scenario and 
Pathways.

Purchasing power parity (PPP)  The purchasing power of a currency 
is expressed using a basket of goods and services that can be bought 
with a given amount in the home country. International comparison of, 
for example, gross domestic products (GDPs) of countries can be based 
on the purchasing power of currencies rather than on current exchange 
rates. PPP estimates tend to lower the gap between the per capita GDP in 
industrialized and developing countries. See also Market exchange rate 
(MER).

Radiative forcing  Radiative forcing is the change in the net, 
downward minus upward, radiative flux (expressed in W m-2) at the 
tropopause or top of atmosphere due to a change in a driver of climate 
change, such as a change in the concentration of carbon dioxide (CO2) 
or the output of the Sun. The traditional radiative forcing is computed 
with all tropospheric properties held fixed at their unperturbed values, 
and after allowing for stratospheric temperatures, if perturbed, to 
readjust to radiative-dynamical equilibrium. Radiative forcing is called 
instantaneous if no change in stratospheric temperature is accounted for. 
The radiative forcing once rapid adjustments are accounted for is termed 
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the effective radiative forcing. Radiative forcing is not to be confused 
with cloud radiative forcing, which describes an unrelated measure of 
the impact of clouds on the radiative flux at the top of the atmosphere.

Reasons for Concern (RFCs)  Elements of a classification 
framework, first developed in the IPCC Third Assessment Report, which 
aims to facilitate judgments about what level of climate change may be 
dangerous (in the language of Article 2 of the UNFCCC) by aggregating 
risks from various sectors, considering hazards, exposures, vulnerabilities, 
capacities to adapt, and the resulting impacts.

Reducing Emissions from Deforestation and Forest Degradation 
(REDD+)  An effort to create financial value for the carbon stored in 
forests, offering incentives for developing countries to reduce emissions 
from forested lands and invest in low-carbon paths to sustainable 
development (SD). It is therefore a mechanism for mitigation that results 
from avoiding deforestation. REDD+ goes beyond deforestation and 
forest degradation, and includes the role of conservation, sustainable 
management of forests and enhancement of forest carbon stocks. 
The concept was first introduced in 2005 in the 11th Session of the 
Conference of the Parties (COP) in Montreal and later given greater 
recognition in the 13th Session of the COP in 2007 at Bali and inclusion 
in the Bali Action Plan, which called for ‘policy approaches and positive 
incentives on issues relating to reducing emissions from deforestation 
and forest degradation in developing countries (REDD) and the role of 
conservation, sustainable management of forests and enhancement 
of forest carbon stock in developing countries.’ Since then, support for 
REDD has increased and has slowly become a framework for action 
supported by a number of countries.

Reference period  The period relative to which anomalies are 
computed. See also Anomaly.

Reference scenario  See Baseline scenario.

Reforestation  Planting of forests on lands that have previously 
contained forests but that have been converted to some other use. For 
a discussion of the term forest and related terms such as afforestation, 
reforestation and deforestation, see the IPCC Special Report on Land Use, 
Land-Use Change, and Forestry (IPCC, 2000), information provided by 
the United Nations Framework Convention on Climate Change (UNFCCC, 
2013), the report on Definitions and Methodological Options to 
Inventory Emissions from Direct Human-induced Degradation of Forests 
and Devegetation of Other Vegetation Types (IPCC, 2003). See also 
Deforestation, Afforestation and Reducing Emissions from Deforestation 
and Forest Degradation (REDD+).

Region  A region is a relatively large-scale land or ocean area 
characterized by specific geographical and climatological features. The 
climate of a land-based region is affected by regional and local scale 
features like topography, land use characteristics and large water 
bodies, as well as remote influences from other regions, in addition to 
global climate conditions. The IPCC defines a set of standard regions for 
analyses of observed climate trends and climate model projections (see 
Figure 3.2; AR5, SREX).

Remaining carbon budget  Estimated cumulative net global 
anthropogenic CO2 emissions from the start of 2018 to the time that 
anthropogenic CO2 emissions reach net zero that would result, at some 
probability, in limiting global warming to a given level, accounting for the 
impact of other anthropogenic emissions.

Representative Concentration Pathways (RCPs)  See Pathways.

Resilience  The capacity of social, economic and environmental 
systems to cope with a hazardous event or trend or disturbance, 
responding or reorganizing in ways that maintain their essential function, 

identity and structure while also maintaining the capacity for adaptation, 
learning and transformation. This definition builds from the definition 
used by Arctic Council (2013). See also Hazard, Risk and Vulnerability.

Risk  The potential for adverse consequences where something of 
value is at stake and where the occurrence and degree of an outcome 
is uncertain. In the context of the assessment of climate impacts, the 
term risk is often used to refer to the potential for adverse consequences 
of a climate-related hazard, or of adaptation or mitigation responses to 
such a hazard, on lives, livelihoods, health and well-being, ecosystems 
and species, economic, social and cultural assets, services (including 
ecosystem services), and infrastructure. Risk results from the interaction 
of vulnerability (of the affected system), its exposure over time (to the 
hazard), as well as the (climate-related) hazard and the likelihood of its 
occurrence. 

Risk assessment  The qualitative and/or quantitative scientific 
estimation of risks. See also Risk, Risk management and Risk perception.

Risk management  Plans, actions, strategies or policies to reduce the 
likelihood and/or consequences of risks or to respond to consequences. 
See also Risk, Risk assessment and Risk perception.

Risk perception  The subjective judgment that people make about 
the characteristics and severity of a risk. See also Risk, Risk assessment 
and Risk management.

Runoff  The flow of water over the surface or through the subsurface, 
which typically originates from the part of liquid precipitation and/or 
snow/ice melt that does not evaporate or refreeze, and is not transpired. 
See also Hydrological cycle.

Scenario  A plausible description of how the future may develop 
based on a coherent and internally consistent set of assumptions 
about key driving forces (e.g., rate of technological change, prices) and 
relationships. Note that scenarios are neither predictions nor forecasts, 
but are used to provide a view of the implications of developments 
and actions. See also Baseline scenario, Emission scenario, Mitigation 
scenario and Pathways.

Scenario storyline  A narrative description of a scenario (or family of 
scenarios), highlighting the main scenario characteristics, relationships 
between key driving forces and the dynamics of their evolution. Also 
referred to as ‘narratives’ in the scenario literature. See also Narratives.

SDG-interaction score  A seven-point scale (Nilsson et al., 2016) 
used to rate interactions between mitigation options and the SDGs. 
Scores range from +3 (indivisible) to −3 (cancelling), with a zero score 
indicating ‘consistent’ but with neither a positive or negative interaction. 
The scale, as applied in this report, also includes direction (whether the 
interaction is uni- or bi-directional) and confidence as assessed per IPCC 
guidelines. 

Sea ice  Ice found at the sea surface that has originated from the freezing 
of seawater. Sea ice may be discontinuous pieces (ice floes) moved on the 
ocean surface by wind and currents (pack ice), or a motionless sheet 
attached to the coast (land-fast ice). Sea ice concentration is the fraction 
of the ocean covered by ice. Sea ice less than one year old is called first-
year ice. Perennial ice is sea ice that survives at least one summer. It may 
be subdivided into second-year ice and multi-year ice, where multi-year 
ice has survived at least two summers.

Sea level change (sea level rise/sea level fall)  Sea level can 
change, both globally and locally (relative sea level change) due to (1) a 
change in ocean volume as a result of a change in the mass of water in 
the ocean, (2) changes in ocean volume as a result of changes in ocean 
water density, (3) changes in the shape of the ocean basins and changes 
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in the Earth’s gravitational and rotational fields, and (4) local subsidence 
or uplift of the land. Global mean sea level change resulting from change 
in the mass of the ocean is called barystatic. The amount of barystatic 
sea level change due to the addition or removal of a mass of water is 
called its sea level equivalent (SLE). Sea level changes, both globally and 
locally, resulting from changes in water density are called steric. Density 
changes induced by temperature changes only are called thermosteric, 
while density changes induced by salinity changes are called halosteric. 
Barystatic and steric sea level changes do not include the effect of 
changes in the shape of ocean basins induced by the change in the ocean 
mass and its distribution.

Sea surface temperature (SST)  The sea surface temperature is 
the subsurface bulk temperature in the top few meters of the ocean, 
measured by ships, buoys, and drifters. From ships, measurements of 
water samples in buckets were mostly switched in the 1940s to samples 
from engine intake water. Satellite measurements of skin temperature 
(uppermost layer; a fraction of a millimeter thick) in the infrared or 
the top centimeter or so in the microwave are also used, but must be 
adjusted to be compatible with the bulk temperature.

Sendai Framework for Disaster Risk Reduction  The Sendai 
Framework for Disaster Risk Reduction 2015–2030 outlines seven clear 
targets and four priorities for action to prevent new, and to reduce 
existing, disaster risks. The voluntary, non-binding agreement recognizes 
that the State has the primary role to reduce disaster risk but that 
responsibility should be shared with other stakeholders, including local 
government and the private sector. Its aim is to achieve ‘substantial 
reduction of disaster risk and losses in lives, livelihoods and health and 
in the economic, physical, social, cultural and environmental assets of 
persons, businesses, communities and countries.’

Sequestration  See Uptake.

Shared Socio-economic Pathways (SSPs)  See Pathways.

Short-lived climate forcers (SLCF)  Short-lived climate forcers 
refers to a set of compounds that are primarily composed of those with 
short lifetimes in the atmosphere compared to well-mixed greenhouse 
gases, and are also referred to as near-term climate forcers. This set 
of compounds includes methane (CH4), which is also a well-mixed 
greenhouse gas, as well as ozone (O3) and aerosols, or their precursors, 
and some halogenated species that are not well-mixed greenhouse gases. 
These compounds do not accumulate in the atmosphere at decadal to 
centennial time scales, and so their effect on climate is predominantly 
in the first decade after their emission, although their changes can still 
induce long-term climate effects such as sea level change. Their effect 
can be cooling or warming. A subset of exclusively warming short-lived 
climate forcers is referred to as short-lived climate pollutants. See also 
Long-lived climate forcers (LLCF).

Short-lived climate pollutants (SLCP)  See Short-lived climate 
forcers (SLCF).

Sink  A reservoir (natural or human, in soil, ocean, and plants) where a 
greenhouse gas, an aerosol or a precursor of a greenhouse gas is stored. 
Note that UNFCCC Article 1.8 refers to a sink as any process, activity or 
mechanism which removes a greenhouse gas, an aerosol or a precursor 
of a greenhouse gas from the atmosphere. See also Uptake.

Small island developing states (SIDS)  Small island developing 
states (SIDS), as recognised by the United Nations OHRLLS (Office of 
the High Representative for the Least Developed Countries, Landlocked 
Developing Countries and Small Island Developing States), are a distinct 
group of developing countries facing specific social, economic and 
environmental vulnerabilities (UN-OHRLLS, 2011). They were recognized 

as a special case both for their environment and development at the 
Rio Earth Summit in Brazil in 1992. Fifty-eight countries and territories 
are presently classified as SIDS by the UN OHRLLS, with 38 being UN 
member states and 20 being Non-UN Members or Associate Members of 
the Regional Commissions (UN-OHRLLS, 2018). 

Social cost of carbon (SCC)  The net present value of aggregate 
climate damages (with overall harmful damages expressed as a number 
with positive sign) from one more tonne of carbon in the form of carbon 
dioxide (CO2), conditional on a global emissions trajectory over time.

Social costs  The full costs of an action in terms of social welfare 
losses, including external costs associated with the impacts of this action 
on the environment, the economy (GDP, employment) and on the society 
as a whole.

Social-ecological systems  An integrated system that includes 
human societies and ecosystems, in which humans are part of nature. 
The functions of such a system arise from the interactions and 
interdependence of the social and ecological subsystems. The system’s 
structure is characterized by reciprocal feedbacks, emphasising that 
humans must be seen as a part of, not apart from, nature. This definition 
builds from Arctic Council (2016) and Berkes and Folke (1998).

Social inclusion  A process of improving the terms of participation 
in society, particularly for people who are disadvantaged, through 
enhancing opportunities, access to resources, and respect for rights (UN 
DESA, 2016). 

Social justice  See Justice.

Social learning  A process of social interaction through which people 
learn new behaviours, capacities, values and attitudes.

Social value of mitigation activities (SVMA)  Social, economic 
and environmental value of mitigation activities that include, in addition 
to their climate benefits, their co-benefits to adaptation and sustainable 
development objectives.

Societal (social) transformation  See Transformation.

Socio-economic scenario  A scenario that describes a possible 
future in terms of population, gross domestic product (GDP), and other 
socio-economic factors relevant to understanding the implications of 
climate change. See also Baseline scenario, Emission scenario, Mitigation 
scenario and Pathways.

Socio-technical transitions  Socio-technical transitions are where 
technological change is associated with social systems and the two are 
inextricably linked.

Soil carbon sequestration (SCS)  Land management changes 
which increase the soil organic carbon content, resulting in a net removal 
of CO2 from the atmosphere.

Soil moisture  Water stored in the soil in liquid or frozen form. Root-
zone soil moisture is of most relevance for plant activity.

Solar radiation management  See Solar radiation modification (SRM).

Solar radiation modification (SRM)  Solar radiation modification 
refers to the intentional modification of the Earth’s shortwave radiative 
budget with the aim of reducing warming. Artificial injection of 
stratospheric aerosols, marine cloud brightening and land surface albedo 
modification are examples of proposed SRM methods. SRM does not 
fall within the definitions of mitigation and adaptation (IPCC, 2012b, p. 
2). Note that in the literature SRM is also referred to as solar radiation 
management or albedo enhancement.
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Stabilization (of GHG or CO2-equivalent concentration)  A 
state in which the atmospheric concentrations of one greenhouse gas 
(GHG) (e.g., carbon dioxide) or of a CO2-equivalent basket of GHGs (or a 
combination of GHGs and aerosols) remains constant over time.

Stranded assets  Assets exposed to devaluations or conversion to 
‘liabilities’ because of unanticipated changes in their initially expected 
revenues due to innovations and/or evolutions of the business context, 
including changes in public regulations at the domestic and international 
levels.

Stratosphere  The highly stratified region of the atmosphere above 
the troposphere extending from about 10 km (ranging from 9 km at high 
latitudes to 16 km in the tropics on average) to about 50 km altitude. See 
also Atmosphere, and Troposphere.

Sub-national actor  Sub-national actors include state/provincial, 
regional, metropolitan and local/municipal governments as well as non-
party stakeholders, such as civil society, the private sector, cities and other 
sub-national authorities, local communities and indigenous peoples. 

Substantive rights  See Human rights.

Supply-side measures  See Demand- and supply-side measures.

Surface temperature  See Global mean surface temperature (GMST), 
Land surface air temperature, Global mean surface air temperature 
(GSAT) and Sea surface temperature (SST).

Sustainability  A dynamic process that guarantees the persistence of 
natural and human systems in an equitable manner.

Sustainable development (SD)  Development that meets the needs 
of the present without compromising the ability of future generations to 
meet their own needs (WCED, 1987) and balances social, economic and 
environmental concerns. See also Sustainable Development Goals (SDGs) 
and Development pathways (under Pathways).

Sustainable Development Goals (SDGs)  The 17 global goals 
for development for all countries established by the United Nations 
through a participatory process and elaborated in the 2030 Agenda for 
Sustainable Development, including ending poverty and hunger; ensuring 
health and well-being, education, gender equality, clean water and 
energy, and decent work; building and ensuring resilient and sustainable 
infrastructure, cities and consumption; reducing inequalities; protecting 
land and water ecosystems; promoting peace, justice and partnerships; 
and taking urgent action on climate change. See also Sustainable 
development (SD).

Technology transfer  The exchange of knowledge, hardware and 
associated software, money and goods among stakeholders, which 
leads to the spread of technology for adaptation or mitigation. The 
term encompasses both diffusion of technologies and technological 
cooperation across and within countries.

Temperature overshoot  The temporary exceedance of a specified 
level of global warming, such as 1.5°C. Overshoot implies a peak followed 
by a decline in global warming, achieved through anthropogenic removal 
of CO2 exceeding remaining CO2 emissions globally. See also Overshoot 
pathways and Non-overshoot pathways (both under Pathways).

Tipping point  A level of change in system properties beyond which 
a system reorganizes, often abruptly, and does not return to the initial 
state even if the drivers of the change are abated. For the climate system, 
it refers to a critical threshold when global or regional climate changes 
from one stable state to another stable state. See also Irreversibility.

Transformation  A change in the fundamental attributes of natural 
and human systems.

Societal (social) transformation 
A profound and often deliberate shift initiated by communities toward 
sustainability, facilitated by changes in individual and collective values 
and behaviours, and a fairer balance of political, cultural, and institutional 
power in society.

Transformation pathways  See Pathways.

Transformational adaptation  See Adaptation.

Transformative change  A system-wide change that requires more 
than technological change through consideration of social and economic 
factors that, with technology, can bring about rapid change at scale.

Transient climate response  See Climate sensitivity.

Transient climate response to cumulative CO2 emissions 
(TCRE)  The transient global average surface temperature change per 
unit cumulative CO2 emissions, usually 1000 GtC. TCRE combines both 
information on the airborne fraction of cumulative CO2 emissions (the 
fraction of the total CO2 emitted that remains in the atmosphere, which 
is determined by carbon cycle processes) and on the transient climate 
response (TCR). See also Transient climate response (under Climate 
sensitivity).

Transit-oriented development (TOD)  An approach to urban 
development that maximizes the amount of residential, business and 
leisure space within walking distance of efficient public transport, so as 
to enhance mobility of citizens, the viability of public transport and the 
value of urban land in mutually supporting ways.

Transition  The process of changing from one state or condition 
to another in a given period of time. Transition can be in individuals, 
firms, cities, regions and nations, and can be based on incremental or 
transformative change.

Tropical cyclone  The general term for a strong, cyclonic-scale 
disturbance that originates over tropical oceans. Distinguished from 
weaker systems (often named tropical disturbances or depressions) by 
exceeding a threshold wind speed. A tropical storm is a tropical cyclone 
with one-minute average surface winds between 18 and 32 m s-1. Beyond 
32 m s-1, a tropical cyclone is called a hurricane, typhoon, or cyclone, 
depending on geographic location. See also Extratropical cyclone.

Troposphere  The lowest part of the atmosphere, from the surface 
to about 10 km in altitude at mid-latitudes (ranging from 9 km at high 
latitudes to 16 km in the tropics on average), where clouds and weather 
phenomena occur. In the troposphere, temperatures generally decrease 
with height. See also Atmosphere and Stratosphere.

Uncertainty  A state of incomplete knowledge that can result from 
a lack of information or from disagreement about what is known or 
even knowable. It may have many types of sources, from imprecision in 
the data to ambiguously defined concepts or terminology, incomplete 
understanding of critical processes, or uncertain projections of human 
behaviour. Uncertainty can therefore be represented by quantitative 
measures (e.g., a probability density function) or by qualitative 
statements (e.g., reflecting the judgment of a team of experts) (see Moss 
and Schneider, 2000; IPCC, 2004; Mastrandrea et al., 2010). See also 
Confidence and Likelihood.

United Nations Framework Convention on Climate Change 
(UNFCCC)  The UNFCCC was adopted in May 1992 and opened for 
signature at the 1992 Earth Summit in Rio de Janeiro. It entered into force 
in March 1994 and as of May 2018 had 197 Parties (196 States and the 
European Union). The Convention’s ultimate objective is the ‘stabilisation 
of greenhouse gas concentrations in the atmosphere at a level that 
would prevent dangerous anthropogenic interference with the climate 
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system.’ The provisions of the Convention are pursued and implemented 
by two treaties: the Kyoto Protocol and the Paris Agreement. See also 
Kyoto Protocol and Paris Agreement.

Uptake  The addition of a substance of concern to a reservoir. See also 
Carbon sequestration and Sink.

Vulnerability  The propensity or predisposition to be adversely 
affected. Vulnerability encompasses a variety of concepts and elements 
including sensitivity or susceptibility to harm and lack of capacity to cope 
and adapt. See also Exposure, Hazard and Risk.

Water cycle  See Hydrological cycle.

Well-being  A state of existence that fulfils various human needs, 
including material living conditions and quality of life, as well as the 
ability to pursue one’s goals, to thrive, and feel satisfied with one’s life. 
Ecosystem well-being refers to the ability of ecosystems to maintain their 
diversity and quality.

Zero emissions commitment  See Climate change commitment.
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μatm	 Microatmospheres

1.5DS	 1.5 Degree Scenario

2DS	 2 Degree Scenario

ACCESS	 Australian Community  
	 Climate and Earth-System Simulator

ACCMIP	 Atmospheric Chemistry and  
	 Climate Model Intercomparison Project

ACCRN	 The Asian Cities Climate  
	 Change Resilience Network

ACOLA	 Australian Council of Learned Academies

ACs	 Air Conditioners

ADB	 Asian Development Bank

ADVANCE	 Advanced Model Development and Validation 
	 for the Improved Analysis of Costs and Impacts 
	 of Mitigation Policies

AEZ	 Agro-Ecological Zone

AfDB	 African Development Bank

AFOLU	 Agriculture, Forestry and Other Land-Use

AGCM	 Atmospheric General Circulation Model

AI	 Artificial Intelligence

AIM	 Asia-Pacific Integrated Model

ALA	 Alaska/Northwest Canada

AMAP	 Arctic Monitoring and Assessment Programme

AMOC	 Atlantic Meridional Overturning Circulation

AMP	 Adjusting Mitigation Pathway

AMZ	 Amazon

ANT	 Antarctica

APEX	 Air Pollutants Exposure Model

AR	 Afforestation and Reforestation

AR4	 IPCC Fourth Assessment Report

AR5	 IPCC Fifth Assessment Report

AR6	 IPCC Sixth Assessment Report

ARC	 Arctic

ASEAN	 Association of Southeast Asian Nations

ASIA	 Non-OECD Asia

AUD	 Australian Dollar

B2DS	 Beyond 2 Degrees Scenario

BASIC	 Brazil, South Africa, India, China

BC	 Black Carbon

BCC-CSM	 Beijing Climate Center Climate System Model

BCM	 Bergen Climate Model

BECCS	 Bioenergy with Carbon  
	 dioxide Capture and Storage

BET	 Basic Energy systems, Economy, Environment, 
	 and End-use Technology Model

BEV	 Battery Electric Vehicle

BNEF	 Bloomberg New Energy Finance 

BNU	 Beijing Normal University

BRT	 Bus Rapid Transit

cm	 Centimetres

C	 Carbon

CA	 Conservation Agriculture

CAF	 Corporacion Andina de Fomento  
	 (Development Bank of Latin America)

CAM	 Central America/Mexico  
	 or Community Atmosphere Model

CAMx	 Comprehensive Air Quality Model with Extensions

CanESM	 Canadian Earth System Model

CanRCM	 Canadian Regional Climate Model

CAR	 Small Islands Regions Caribbean

CAS	 Central Asia

Cat-HM	 Catchment-scale Hydrological Models

CbA	 Community-based Adaptation

CBA	 Cost-Benefit Analysis

CBD	 Convention on Biological Diversity

CBDR-RC	 Common But Differentiated Responsibilities 
	 and Respective Capabilities

CBS & GNH	 Centre for Bhutan Studies  
	 and Gross National Happiness Research

CC	 Carbon Capture

CCAM	 Conformal Cubic Atmospheric Model 

CCC	 Constant Composition Commitment

CCCma	 Canadian Centre for Climate 
	 Modelling and Analysis

CCRIF	 Caribbean Catastrophe Risk Insurance Facility

CCS	 Carbon dioxide Capture and Storage

CCSM	 Community Climate System Model

CCT	 Cirrus Cloud Thinning

CCU	 Carbon dioxide Capture and Utilisation

CCUS	 Carbon dioxide Capture, Utilisation and Storage

CDD	 Consecutive Dry Days

CD-LINKS	 Linking Climate and Development Policies  
	 – Leveraging International  
	 Networks and Knowledge Sharing 

CDM	 Clean Development Mechanism

CDP	 Carbon Disclosure Project

CDR	 Carbon Dioxide Removal
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CEA	 Cost-Effectiveness Analysis

CEC	 Clean Energy Council

CEDS	 Community Emissions Data System

CEMICS	 Contextualizing Climate Engineering and Mitigation: 
	 Illusion, Complement or Substitute?

CES	 Constant Elasticity of Substitution

CESM	 Community Earth System Model

CEU	 Central Europe

CFCs	 Chlorofluorocarbons

CGCM	 Coupled Global Climate Model

CGE	 Computable General Equilibrium

CGI	 Canada/Greenland/Iceland

CGIAR	 Consultative Group on International Agricultural 
	 Research

CH4	 Methane

CHP	 Combined Heat and Power

CI	 Confidence Interval

CIRED	 Centre International de Recherche sur 
	 l’Environnement et le Développement

CISL	 Cambridge Institute for Sustainability Leadership

CLM	 Climate Limited-area Modelling

CMAQ	 Community Multiscale Air Quality Modeling System

CMIP3	 Coupled Model Intercomparison Project Phase 3

CMIP5	 Coupled Model Intercomparison Project Phase 5

CMIP6	 Coupled Model Intercomparison Project Phase 6

CNA	 Central North America

CNRM	 Centre National de Recherches Météorologiques

CO	 Carbon monoxide

CO2	 Carbon dioxide

CO2e	 Carbon dioxide equivalent

CO2eq	 Carbon dioxide equivalent

CoM	 Covenant of Mayors

COP	 Conference of the Parties

COPPE-COFFEE	 Programa de Planejamento Energético –  
	 COmputable Framework For Energy and 
	 the Environment

CORDEX	 Coordinated Regional  
	 Climate Downscaling Experiment

COSMO	 Consortium for Small-scale Modeling

CRCM	 Canadian Regional Climate Model 

CRDPs	 Climate-Resilient Development Pathways

CRIEPI	 Institut Central de Recherche des Industries 
	 Électriques

CRISPR	 Clustered Regularly Interspaced Short 
	 Palindromic Repeats

C-ROADS	 Climate Rapid Overview And Decision-support 
	 Simulator

CRU	 Climatic Research Unit

CSA	 Climate-Smart Agriculture

CSC	 Climate Service Center Germany

CSDI	 Cold Spell Duration Index

CSIRO	 Commonwealth Scientific and Industrial 
	 Research Organisation

CSP	 Concentrated Solar Power

CSR	 Corporate Social Responsibility

CTC	 Covenant Territorial Coordinator

CWD	 Consecutive Wet Days

DACCS	 Direct Air Carbon dioxide Capture and Storage

DACS	 Direct Air Capture and Storage

DALY	 Disability Adjusted Life Year

DICE	 Dynamic Integrated Climate-Economy model

DJF	 December, January, February

DM8H	 Daily Maximum 8-Hour exposure

DNE21+	 Dynamic New Earth 21 model

DOE	 Department of Energy (USA)

DRI	 Direct Reduced Iron

DRM	 Disaster Risk Management

DTU	 Technical University of Denmark

E	 Equilibrium, Evaporation or Evapotranspiration

EAF	 East Africa

EAIS	 East Antarctic Ice Sheet

EAS	 East Asia

EbA	 Ecosystems-based Adaptation

EC	 European Commission

ECF	 European Climate Foundation

ECMWF	 European Centre for Medium-Range 
	 Weather Forecasts

ECS	 Equilibrium Climate Sensitivity

EDGAR	 Emission Database for Global Atmospheric 
	 Research

EEA	 European Environment Agency

EGMAM	 ECHO-G Middle Atmosphere Model

E-HYPE	 European Hydrological Predictions 
	 for the Environment

EJ	 Exajoules

EMEP	 European Monitoring and Evaluation Programme
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EMF	 Energy Modeling Forum

EMIC	 Earth-system Model of Intermediate Complexity

ENA	 East North America

ENSO	 El Niño-Southern Oscillation

EOR	 Enhanced Oil Recovery

EPA	 Environmental Protection Agency (USA)

EPIs	 Energy-Intensive Processing Industries

ERA	 ECMWF ReAnalysis

ERF	 Effective Radiative Forcing

ERFaci	 Effective Radiative Forcing from aerosol-cloud 
	 interactions

ERFari	 Effective Radiative Forcing from aerosol-radiation 
	 interactions

ESCOs	 Energy Service Companies

ESL	 Extreme Sea Level

ESM	 Earth System Model

ESR	 Empirical Scaling Relationship

ESRB ASC	 European Systemic Risk Board Advisory 
	 Scientific Committee

ESRL	 NOAA Earth System Research Laboratory

Eta-CPTEC	 Eta Centro de Previsão do Tempo e 
	 Estudos Climáticos

ETP	 Pacific Islands region [3] or Energy Technology 
	 Perspectives model

ETS	 Emission Trading Scheme

EU	 European Union

EU-FP6	 European Union Sixth Framework Programme

EUG4	 France, Germany, Italy, United Kingdom

EURO-CORDEX	 European branch of the Coordinated Regional 
	 Climate Downscaling Experiment

EV	 Electric Vehicle

EW	 Enhanced Weathering

FAIR	 Finite Amplitude Impulse Response model

FAO	 Food and Agriculture Organization 
	 of the United Nations

FAOSTAT	 Database Collection of the Food and Agriculture 
	 Organization of the United Nations

FAQ	 Frequently Asked Questions

FARM	 Future Agricultural Resources Model

Fe	 Iron

FE	 Final Energy

FEMA	 Federal Emergency Management Agency (USA)

FF	 Fossil Fuel

FF&I	 Fossil-Fuel combustion and Industrial processes

F-gas	 Fluorinated gases

FGOALS	 Flexible Global Ocean-Atmosphere-Land 
	 System model

FIO	 First Institute of Oceanography

FMNR	 Farmer Managed Natural Regeneration

FUND	 Climate Framework for Uncertainty,  
	 Negotiation, and Distribution model

FUSSR	 Former Union of Soviet Socialist Republics

g	 Grams

GAMS	 General Algebraic Modeling System

GBAM	 Ground-Based Albedo Modification

GCAM	 Global Change Assessment Model 

GCC	 Gulf Cooperative Council

GCEC	 Global Commission on the Economy and Climate

GCM	 General Circulation Model or Global Climate Model

GCP	 Global Carbon Project 

GDP	 Gross Domestic Product

GE	 General Equilibrium

GEA	 Global Energy Assessment

GEM-E3	 General Equilibrium Model for Economy - 
	 Energy - Environment

GENeSYS-MOD	 Global Energy System Model

GeSI	 Global e-Sustainability Initiative

GFCF	 Gross Fixed Capital Formation

GFDL	 Geophysical Fluid Dynamic Laboratory

GFR	 Grid Flexibility Resources

Gha	 Gigahectares

GHCNDEX	 Global Historical Climatology Network – 
	 Daily climate Extremes

GHGs	 Greenhouse Gases

GHM	 Global Hydrological Models

GIS	 Greenland Ice Sheet

GISS	 Goddard Institute for Space Studies

GISTEMP	 Goddard Institute for Space Studies Surface 
	 Temperature Analysis

GJ	 Gigajoules

GLEAM	 Global Livestock Environmental Assessment Model

Glob-HM	 Global Hydrological Model

GLOBIOM	 GLObal BIOsphere Management model

GLOFs	 Glacial Lake Outburst Floods

GM	 Genetically Modified

GMO	 Genetically Modified Organism

GMSL	 Global Mean Sea Level
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GMST	 Global Mean Surface Temperature

GMT	 Global Mean Temperature

GNHI	 Gross National Happiness Index

GPP	 Gross Primary Productivity

GPT	 General Purpose Technologies

GRAPE	 Global Relationship Assessment to Protect 
	 the Environment model

GSAT	 Global mean Surface Air Temperature

Gt	 Gigatonne

GTP	 Global Temperature-change Potential

GWA	 Government of Western Australia

GWP	 Global Warming Potential or Gross World Product

ha	 Hectares

H2	 Hydrogen

HadCM	 Hadley Centre Coupled Model

HadCRUT	 Hadley Centre Climatic Research Unit Gridded 
	 Surface Temperature Data Set

HadEX	 Hadley Centre Global Climate Extremes index 

HadGEM	 Hadley Centre Global Environmental Model

HadRM	 Hadley Centre Regional Model

HAPPI	 Half a degree Additional warming, 
	 Prognosis and Projected Impacts

HDV	 Heavy-Duty Vehicle

HEV	 Hybrid Electric Vehicle

HFCs	 Hydrofluorocarbons

HLCCP	 High-Level Commission on Carbon Prices

HLPE	 High Level Panel of Experts on Food Security 
	 and Nutrition

HSRTF	 Hurricane Sandy Rebuilding Task Force 

HTM	 Holocene Thermal Maximum

HYMOD	 HYdrological MODel

IAEA	 International Atomic Energy Agency

IAMC	 Integrated Assessment Modelling Consortium

IAMs	 Integrated Assessment Models

IBA	 International Bar Association

IBI	 International Biochar Initiative

ICAMS	 Integrated Climate and Air Quality 
	 Modeling System

ICEM	 International Centre for Environmental 
	 Management

ICLEI	 International Council for Local Environmental 
	 Initiatives

ICPDR	 International Commission for the Protection 
	 of the Danube River

ICSU	 International Council for Science

ICT	 Information and Communication Technology

IEA	 International Energy Agency

IEAGHG	 IEA Greenhouse Gas R&D Programme

IFAD	 International Fund for Agricultural Development

IFPRI	 International Food Policy Research Institute

IGCC	 Integrated Gasification Combined Cycle

IIASA	 International Institute for Applied Systems Analysis

IIF	 Institute of International Finance

iLUC	 Indirect Land-Use Change 

IMACLIM-NLU	 IMpact Assessment of CLIMate policies model – 
	 Nexus Land-Use model

IMAGE	 Integrated Model to Assess the Global Environment

IMF	 International Monetary Fund

IMO	 International Maritime Organization

IMPACT2C	 Quantifying Projected Impacts under 2°C Warming

INDCs	 Intended Nationally Determined Contributions

INM	 Russian Institute for Numerical Mathematics

IOM	 International Organization for Migration

IoT	 Internet of Things

IPCC	 Intergovernmental Panel on Climate Change

IPSL	 Institute Pierre Simon Laplace

IRENA	 International Renewable Energy Agency

ISIMIP	 Inter-Sectoral Impact Model Intercomparison 
	 Project

ISO	 International Standards Organisation

ISSC	 International Social Science Council

ITF	 International Transport Forum

IUCN	 International Union for Conservation of Nature

IWG	 Interagency Working Group on Social Cost 
	 of Greenhouse Gases

IWRM	 Integrated Water Resources Management

JeDi	 Jena Diversity-Dynamic Global Vegetation Model

JJA	 June, July, August

JMA	 Japan Meteorological Agency

JRA-55	 Japanese 55-year Reanalysis

JRC	 European Commission – Joint Research Centre

JULES	 Joint United Kingdom Land Environment Simulator

kcal cap-1 day-1	 Kilocalories per capita per day

km	 Kilometres

kt	 Kilotonnes

kWh	 Kilowatt hours
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KNMI	 Koninklijk Nederlands Meteorologisch Instituut 
	 (Royal Netherlands Meteorological Institute)

L	 Litres

L&D	 Loss and Damage

LAM	 Latin America and Caribbean

LDCs	 Least Developed Countries

LDMz-INCA	 Laboratoire de Météorologie Dynamique  
	 – INteractions between Chemistry and Aerosols

LDV	 Light-Duty Vehicle

LE	 Limited Evidence

LED	 Low Energy Demand or Light Emitting Diode

LGM	 Last Glacial Maximum

LIG	 Last Interglacial

LLCFs	 Long-Lived Climate Forcers

LNG	 Liquefied Natural Gas

LPG	 Liquefied Petroleum Gas

LPJmL	 Lund-Potsdam-Jena managed Land model

LTA	 Land Transport Authority of Singapore 

LTGG	 Long-Term Global Goal

LUC	 Land-Use Change

LULUCF	 Land Use, Land-Use Change, and Forestry 

m	 Metres

m3 cap-1 yr-1	 Cubic metres per capita per year

mg	 Milligrams

mL	 Millilitres

mm	 Millimetres

M&E	 Monitoring and Evaluation

Ma	 Million years ago

MAC	 Marginal Abatement Cost

MacPDM	 Macro‐scale – Probability‐Distributed Moisture 
	 Model

MAGICC	 Model for the Assessment of Greenhouse Gas 
	 Induced Climate Change

MAgPIE	 Model of Agricultural Production and its Impact 
	 on the Environment

MAM	 March, April, May

MCB	 Marine Cloud Brightening

MCCA	 Mercado Común Centroamericano

MDB	 Group of Multilateral Development Banks

MDGs	 Millennium Development Goals

MEA	 Millennium Ecosystem Assessment

MED	 South Europe/Mediterranean

MEPS	 Minimum Energy Performance Standards

MER	 Market Exchange Rates

MERET	 Managing Environmental Resources to 
	 Enable Transitions

MERGE-ETL	 Model for Evaluating Regional and Global Effects  
	 of greenhouse gas reduction policies – 
	 Endogenous Technology Learning

MESSAGE	 Model for Energy Supply Systems And their 
	 General Environmental impact

Mha	 Megahectare

MIROC	 Model for Interdisciplinary Research on Climate

MISI	 Marine Ice Sheet Instability 

MIT IGSM	 Massachusetts Institute of Technology Integrated 
	 Global System Model

MJ	 Megajoules

MoCC	 Ministry of Climate Change and Adaptation 
	 (Government of Vanuatu)

MOHC	 Met Office Hadley Centre

MOPEX	 Model Parameter Estimation Experiment

MPAs	 Marine Protected Areas

MPI	 Max-Planck-Institut für Meteorologie  
	 (Max Planck Institute for Meteorology)

MPWP	 Mid Pliocene Warm Period

MRFCJ	 Mary Robinson Foundation – Climate Justice

MRI	 Meteorological Research Institute of 
	 Japan Meteorological Agency

MRV	 Measurement, Reporting and Verification

MSR	 Multi-Sector Risk score

Mt	 Megatonnes

N	 Nitrogen

N2O	 Nitrous oxide

NAP	 National Adaptation Plan

NAS	 North Asia

NASA	 National Aeronautics and Space Administration

NASEM	 National Academies of Sciences, Engineering, 
	 and Medicine

NAU	 North Australia

NCAR	 National Center for Atmospheric Research

NCCARF	 National Climate Change Adaptation Research 
	 Facility

NCE	 New Climate Economy

NDCs	 Nationally Determined Contributions

NEA	 Nuclear Energy Agency

NEB	 North-East Brazil

NEC	 National Environment Commission 
	 (Royal Government of Bhutan)
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NETL	 National Energy Technology Laboratory 
	 (US Department of Energy)

NEU	 North Europe

NF3	 Nitrogen trifluoride

NGO	 Non-Governmental Organization

NH3	 Ammonia

NHD	 Number of Hot Days

NITI Aayog	 National Institution for Transforming India

NMVOC	 Non-Methane Volatile Organic Compounds

NOAA	 National Oceanic and Atmospheric Administration

NorESM	 Norwegian Earth System Model

NOx	 Nitrogen oxides

NPCC	 New York City Panel on Climate Change

NPP	 Net Primary Productivity

NPV	 Net Present Value

NRC	 National Research Council

NSR	 Northern Sea Route

NTP	 Pacific Islands region [2]

NYC	 New York City

NZAGRC	 New Zealand Agricultural Greenhouse Gas 
	 Research Center

O2	 Oxygen

O3	 Ozone

OA	 Ocean Acidification or Ocean Alkalinization

OC	 Organic Carbon

OECD	 Organisation for Economic Co-operation 
	 and Development

OGCC	 Optimal Gasification Combined Cycle

OHCHR	 Office of the United Nations High Commissioner 
	 for Human Rights

OIF	 Ocean Iron Fertilisation

ORCHIDEE	 ORganising Carbon and Hydrology In Dynamic 
	 EcosystEms model

ORR	 NYC Mayor’s Office of Recovery & Resiliency

OS	 Overshoot

pp	 People

ppb	 Parts per billion

ppm	 Parts per million

ppt	 Parts per thousand

P	 Precipitation or Phosphorous

PAGE	 Policy Analysis of the Greenhouse Effect model

PAHO	 Pan American Health Organization

PCM	 Parallel Climate Model

PDSI	 Palmer Drought Severity Index

PE	 Primary Energy or Partial Equilibrium

PET	 Physiologically Equivalent Temperature or 
	 Potential Evapo-Transpiration

PFCs	 Perfluorocarbons

Pg	 Petagrams

PHEV	 Plug-in Hybrid Electric Vehicle

PIK	 Potsdam-Institut für Klimafolgenforschung  
	 (Potsdam Institute for Climate Impact Research)

PM10	 Particulate Matter with Aerodynamic 
	 Diameter <10 μm

PM2.5	 Particulate Matter with Aerodynamic 
	 Diameter <2.5 μm

POLES	 Prospective Outlook on Long-term 
	 Energy Systems model

PPP	 Purchasing Power Parity

PR	 Probability Ratio

PV	 Photovoltaics

R&D	 Research and Development

RCA	 Rossby Centre Regional Atmospheric Model

RCI	 Rotterdam Climate Initiative

RCM	 Regional Climate Model

RCPs	 Representative Concentration Pathways

REDD+	 Reducing Emissions from Deforestation and 
	 forest Degradation; and the role of conservation, 
	 sustainable management of forests and  
	 enhancement of forest carbon stocks in 
	 developing countries

ReEDS-IPM	 Regional Electricity Deployment System model – 
	 Integrated Planning Model

RegCM	 Regional Climate Model system

REMIND	 REgional Model of INvestments and Development

REN21	 Renewable Energy Policy Network for 
	 the 21st Century

RF	 Radiative Forcing

RFC	 Reason for Concern

RGoB	 Royal Government of Bhutan

RMI	 Rocky Mountain Institute

RNCFC	 Reference Non-CO2 Forcing Contribution

RNCTC 	 Reference Non-CO2 Temperature Contribution

Rx1day	 Annual maximum 1-day precipitation

Rx5day	 Annual maximum 5-day precipitation

SAF	 Southern Africa

SAH	 Sahara

SAI	 Stratospheric Aerosol Injection
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SAMS	 South American Monsoon System

SAR	 IPCC Second Assessment Report

SAS	 South Asia

SAT	 Surface Air Temperature

SAU	 South Australia/New Zealand

SBSTA	 Subsidiary Body for Scientific and Technological 
	 Advice (UNFCCC)

SCC	 Social Cost of Carbon

SCS	 Soil Carbon Sequestration

SD	 Sustainable Development

SDGs	 Sustainable Development Goals

SDGVM	 Sheffield Dynamic Global Vegetation Model

SDII	 Simple Daily Intensity Index

SDSN	 Sustainable Development Solutions Network

SEA	 Southeast Asia

SEAPs	 Sustainable Energy Action Plans

SED	 Structured Expert Dialogue

SEM	 Semi-Empirical Model

SF6	 Sulphur hexafluoride

SFM	 Sustainable Forest Management

SIDS	 Small Island Developing States 

SIFMA	 Securities Industry and Financial Markets 
	 Association

SLCFs	 Short-Lived Climate Forcers

SLCPs	 Short-Lived Climate Pollutants

SLR	 Sea Level Rise

SM	 Supplementary Material

SMA	 Soil Moisture Anomalies

SMHI	 Swedish Meteorological and Hydrological Institute

SO2	 Sulphur dioxide

SOLARIS HEPPA	 SOLARIS High Energy Particle Precipitation 
	 in the Atmosphere

SON	 September, October, November

SOx	 Sulphur oxides

SPAs	 Shared climate Policy Assumptions

SPC	 Secretariat of the Pacific Community

SPEI	 Standardized Precipitation Evapotranspiration 
	 Index

SPI	 Standardised Precipitation Index

SPM	 Summary for Policymakers

SR1.5	 IPCC Special Report on Global Warming of 1.5°C

SRCCL	 IPCC Special Report on Climate Change and Land

SRES	 IPCC Special Report on Emissions Scenarios

SREX	 IPCC Special Report on Managing the Risks of  
	 Extreme Events and Disasters to Advance Climate 
	 Change Adaptation

SRM	 Solar Radiation Modification

SROCC	 IPCC Special Report on the Ocean and Cryosphere 
	 in a Changing Climate

SSA	 Southeastern South America

SSPs	 Shared Socioeconomic Pathways

SST	 Sea Surface Temperature

STP	 Southern Tropical Pacific

SWAT	 Soil & Water Assessment Tool

SWF	 Social Welfare Function

SYR	 IPCC Synthesis Report

t	 Tonnes

tDM	 Tonnes Dry Matter

tril$	 Trillion dollars

T	 Temperature or Transient

T&D	 Transmission and Distribution

TCR	 Transient Climate Response

TCRE	 Transient Climate Response to cumulative 
	 CO2 Emissions

TEAP	 Technology and Economic Assessment Panel

TFE	 Thematic Focus Element

TFP	 Total Factor Productivity

Tg	 Teragrams

TIB	 Tibetan Plateau

TNn	 Coldest night-time temperature of the year

TOD	 Transit Oriented Development

TS	 Technical Summary

Tt	 Teratonnes

TTs	 Transition Towns

TXx	 Hottest daytime temperature of the year

UCCRN	 Urban Climate Change Research Network

UHI	 Urban Heat Islands

UITP	 Union Internationale des Transports Publics 
	 (International Association of Public Transport)

UKCP	 United Kingdom Climate Projections

UN	 United Nations

UN DESA	 United Nations Department of Economic 
	 and Social Affairs

UNCBD	 United Nations Convention on Biological Diversity

UNDP	 United Nations Development Programme

UNEP	 UN Environment
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UNEP-WCMC	 UNEP World Conservation Monitoring Centre

UNESCO	 United Nations Educational, Scientific and Cultura 
	 Organization

UNFCCC	 United Nations Framework Convention on Climate 
	 Change

UNGA	 United Nations General Assembly

UNICEF	 United Nations International Children’s 
	 Emergency Fund

UNISDR	 United Nations Office for Disaster Risk Reduction

UN-OHRLLS	 Office of the High Representative for the Least 
	 Developed Countries, Landlocked Developing 
	 Countries and Small Island Developing States

UNRISD	 United Nations Research Institute for 
	 Social Development

UNSCEAR	 United Nations Scientific Committee on the 
	 Effects of Atomic Radiation

UNU	 United Nations University

UNU-EHS	 United Nations University – Institute for 
	 Environment and Human Security

USD	 United States Dollars

UV	 Ultraviolet 

VISIT	 Vegetation Integrative Simulator for Trace Gases

VKT	 Vehicle Kilometres of Travel

VOCs	 Volatile Organic Compounds

w/	 With

w/o	 Without

w.r.t.	 With respect to

W	 Watts

WAF	 West Africa

WAIS	 West Antarctic Ice Sheet

WAS	 West Asia

WBCSD	 World Business Council for Sustainable Development

WBGU	 Wissenschaftlicher Beirat der Bundesregierung 
	 Globale Umweltveränderungen (German Advisory 
	 Council on Global Change)

WBM	 Water Balance Model

WCED	 World Commission on Environment 
	 and Development

WCRP	 World Climate Research Programme

WEC	 World Energy Council

WEF	 Water-Energy-Food or World Economic Forum

WEM	 World Energy Model

WEO	 World Energy Outlook

WFP	 World Food Programme

WGI	 IPCC Working Group I

WGII	 IPCC Working Group II

WGIII	 IPCC Working Group III

WHO	 World Health Organization

WIM	 Warsaw International Mechanism for Loss 
	 and Damage

WIO	 West Indian Ocean

WITCH	 World Induced Technical Change Hybrid Model

WMGHGs	 Well-Mixed Greenhouse Gases

WMO	 World Meteorological Organization

WNA	 West North America

WRF	 Weather Research and Forecasting

WSA	 West Coast South America

WSDI	 Warm Spell Duration Index

WTO	 World Trade Organization

yr	 Year

ZEC	 Zero Emissions Commitment
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Note: [*] indicates the term also appears in the 
Glossary.  Italicized page numbers denote tables, 
figures and boxed material. Bold page numbers 
indicate main discussion of topics.  Supplementary 
Material is listed by section number, for example, 
1.SM.3, 2.SM.1.3.4. 
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	 265–271, 278, 320, 1.SM.4, 1.SM.6
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carbon dioxide removal (CDR)* in, 17, 21, 95, 96, 
118–125, 180, 277, 316
classification of, 99–100, 100, 113–114
CO2 emissions, 1.SM.6
definition, 51, 53, 59–61
demand-side mitigation and, 97, 460–461
emissions and, 5, 6, 12, 13, 14–15, 18, 51, 95–96, 
112, 1.SM.6
emissions, benchmark indicators for 
sectoral changes in, 4.SM.1
emissions evolution in, 115–118, 117, 119
feasibility*, 18–19, 52, 56, 71–72, 380–386
four categories of, 59–61, 62, 63
future emissions in, 96, 104–107
impediments to, 93, 95, 110
implications of, 265–271
investments and economics, 16, 95–96, 150–151, 
152–155, 264–265
key characteristics, 112–114, 129
knowledge gaps, 388–390
mitigation and adaptation options*, 110–112, 
316–317
mitigation measures, 14–15, 19–21, 51–52, 110–112
model pathways, 12, 14–15, 278
multiple strategies for, 157, 469
near-term action, implications of, 126–129, 128
one-in-two to two-in-three chance (of reaching 
limit) in, 60, 63, 113
overview of, 108–129, 129
pathway archetypes, 99–100, 100, 112–113, 113
pathways remaining below 1.5°C, 100,  
113–114, 160
pathways temporarily exceeding 1.5°C, 100, 
113–114, 160
policies, 112, 148–150
remaining carbon budget*, 12, 96, 104–107, 108
scenarios, 98–100, 100
strengthening the global response, 18–23, 70–75, 
313–443
sustainable development and, 19–23, 20–21, 98, 
156–157, 156, 448–449, 463–472, 465
sustainable development pathways, 64, 448–449, 
466–472, 469, 479–480
synergies and trade-offs, 18–21, 20–21, 316, 391
system/sector transitions, 14–15, 15–16, 
323–349
time frame for mitigation, 95–96
transformations, 129–148, 322–323, 466
transitions, speed and scale of, 320, 320, 322–323
See also Pathways

1.5°C warmer worlds*, 4–6, 274–281
commonalities in, 277
definition, 53
energy supply and demand in (FAQ), 161, 162
equity and, 54–55, 451–453
impacts in, 7–10, 177–179, 319
importance of adaptation in (FAQ), 396–397, 397
key questions, 274–277
knowledge base for, 52, 53–56
poverty, equality, and equity implications, 451–453
projected climatic changes, 7–10, 186–188, 188, 189
projected risks and impacts, 7–10, 11, 51, 
175–311
risks, vs. 2°C worlds, 5, 7–9, 11, 177–181, 277
storyline of this report, 77–78, 78
storylines of, 277
sustainable development and, 18–23, 55–56, 447
temperature in, 283
time frame for mitigation, 277, 278
variation in, 177, 277, 278
watershed management in, 356
See also Global warming of 1.5°C

2030
emissions gap, 358
emissions levels in, 18, 95, 114

2030 Agenda for Sustainable Development*, 
	 56, 73, 469, 477
	 See also Sustainable Development Goals

A

Acceptability of policy or system change*, 
	 22, 368–369
Adaptability. See Adaptive capacity
Adaptation*, 5, 10

bottom-up approaches, 317, 368
community-based, 315, 330, 384, 458
definition, 51, 70, 396
ecosystem-based, 386, 457–458
FAQ on, 396–397, 397
feasibility, 380, 381, 385
finance, 21–22, 379, 456
implementing, 51, 315, 383–386
importance of, 396–397, 397
infrastructure investments, 21
integration with mitigation and sustainable 
development, 75–76, 448, 467
knowledge gaps, 388–391
levels of, 51
local participation, 456
maladaptation, 19, 386, 396
in Mekong River basin, 239–240
place-specific, 447, 458
potential for, 247–250
rate of temperature change and, 178
risk reduction and, 5, 10
sea level rise and, 10, 457
socio-economic challenges to, 110
specific sectors, 10
sustainable development and, 19, 447, 456–459
synergies, 18–19, 391, 447, 475
synergies with mitigation, 386–387, 475, 

4.SM.4.5.1, 4.SM.5.2
transformational, 5, 315, 322–323, 384, 397, 
456–457

Adaptation behaviour*, See Human behaviour
Adaptation limits*, 10, 70, 454–456

examples of, 455
hard limits, 70, 455
residual risks and, 454–455
for Small Island Developing States, 235
soft limits, 70, 455

Adaptation options*, 10, 19, 316–317, 319, 
	 336–337

in agriculture, 70, 315, 457
cost-effectiveness, 316
education and learning, 337, 456
enabling conditions*, 4.SM.2
energy system transitions, 4.SM.4.3.1
feasibility, 381, 384–386, 385, 
4.SM.4.3.1-4.SM.4.3.5
industrial system transitions, 4.SM.4.3.4
land and ecosystem transitions, 4.SM.4.3.2
overarching, 336–337, 338, 385, 389, 4.SM.4.3.5
supporting transitions, 336–337, 338
sustainable development and, 457–458
synergies, 18, 19
urban, 10, 70, 263, 340–341, 384–386, 385
urban and infrastructure transitions, 4.SM.4.3.3

Adaptation pathways*, 64, 70, 396, 458–459
	 place-specific, 458
Adaptive capacity*,	
	 enhancing, 316, 319, 456–457
	 factors affecting, 69
	 limits to, 10
	 sustainable development and, 447
Adaptive governance. See Governance
Aerosols*,	 12, 65, 118, 120, 267–268

aerosol cooling, 96, 267–268
knowledge gaps, 157
precursors, 98, 102–103, 118, 157
radiative forcing, 102–103
See also Black carbon

Afforestation*, 17, 21, 96, 121, 266, 270, 316, 343
co-benefits, 316
constraints, 316
FAQ, 394, 395
incentivization of, 147
land requirements, 125, 126, 265, 266, 269,  
270, 316
trade-offs, 269

AFOLU.  See Agriculture, forestry and other land-use
Africa

Fybnos and succulent Karoo biomes, 260, 261
Limpopo Watercourse Commission, 356
Sahel, 180, 236, 259, 261, 262–263
Southern Africa, 260, 261
tipping points*, 262–263, 264
West Africa and the Sahel, 259, 261, 264
West African monsoon, 262–263, 264

Agreement*. See Confidence; Evidence; Likelihood
Agriculture

adaptation options*, 70, 315, 457
agroforestry, 328, 384
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climate-smart agriculture*, 457, 467
conservation agriculture*, 267, 327, 384, 459
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