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1.SM.1: Supplementary Material for Figure 1.1 
 

Externally forced warming in Figure 1.1 is calculated for the Cowtan-Way (2014) dataset at every 

location and for each season following the method in Figure 1.3. The season with the greatest 

externally forced warming at every location (averaged over the 2006–2015 period) is indicated by the 

colour of that grid box in Figure 1.SM.1. Figure 1.SM.2 shows the warming to 2006–2015 in the 

season that has warmed the least. 

 
 
Figure 1.SM.1: Season of greatest human-induced warming in 2006–2015 relative to 1850–1900 for the data 

shown in Figure 1.1.  
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Figure 1.SM.2: As for Figure 1.1 but with scatter points coloured by warming in the season with least warming 

between the periods 1850–1900 and 2006–2015.  

 

Population data is taken from Doxsey-Whitfield et al. (2015) for 2010. The number of scatter points 

shown in each 1  × 1  grid box is directly proportional to the population count in the grid box, with a 

maximum number of scatter points in a single grid box associated with the maximum population 

count in the dataset. For grid boxes with (non-zero) population counts that are below the population 

threshold consistent with just a single scatter point (approximately 650,000), the probability that a 

single scatter point is plotted reduces from unity towards zero with decreasing population in the grid 

box to give an accurate visual impression of population distribution.  

 

The SDG Global Index Score is a quantitative measure of progress towards the 17 sustainable 

development goals (Sachs et al., 2017). The goals cut across the three dimensions of sustainable 

development – environmental sustainability, economic growth, and social inclusion. The index score 

has a range of 0–100, with 100 corresponding to all SDGs being met. Versions of Figure 1.1 using the 

HadCRUT4, NOAA and GISTEMP temperature datasets are shown in Figure 1.SM.3, Figure 1.SM.4 

and Figure 1.SM.5 respectively.  

 

 
 
Figure 1.SM.3: As for Figure 1.1 but using the HadCRUT4 temperature dataset.   
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Figure 1.SM.4: As for Figure 1.1 but using the NOAA temperature dataset.   

 

 

 

 
 
Figure 1.SM.5: As for Figure 1.1 but using the GISTEMP temperature dataset.   

 

 

 

1.SM.2: Supplementary Material for Figure 1.2 
 

Observational data used in Figure 1.2 are taken from the Met Office Hadley Centre 

(http://www.metoffice.gov.uk/hadobs/hadcrut4/), National Oceanic and Atmospheric Administration 

http://www.metoffice.gov.uk/hadobs/hadcrut4/)
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(NOAA) (https://www.ncdc.noaa.gov/data-access/marineocean-data/noaa-global-surface-temperature-

noaaglobaltemp), NASA’s Goddard Institute for Space Studies (https://data.giss.nasa.gov/gistemp/) 

and the Cowtan & Way dataset (https://www-

users.york.ac.uk/~kdc3/papers/coverage2013/series.html). The GISTEMP and NOAA observational 

products (which begin in 1880) are expressed relative to 1850–1900 by assigning these datasets the 

same anomaly as HadCRUT4 for the mean of the 1880–2017 period. All available data are used, 

through to the end of 2017, for all datasets. The grey “Observations range” shading indicates the 

range (minimum to maximum) monthly-mean anomaly across these four temperature datasets for the 

month in question.  

 

CMIP5 multimodel means, shown as light blue dashed (full-field surface air temperature) and solid 

blue (masked and blended as in Cowtan et al. (2015)) lines are expressed relative to a 1861–1880 base 

period and then expressed relative to the 1850–1900 reference period using the anomaly between the 

periods in the HadCRUT4 product (0.02°C). Model data are taken from Richardson et al. (2018). 

Only RCP8.5 r1i1p1 ensemble members are used, with only one ensemble member per model used 

for calculating the mean lines in this figure.  

 

The pink “Holocene” shading is derived from the “Standard5×5” reconstruction of Marcott et al. 

(2013) (expressed relative to 1850–1900 using the HadCRUT4 anomaly between this reference period 

and the 1961–90 base period of the data). The vertical extent of the solid shading is determined by the 

maximum and minimum temperature anomalies in the dataset in the period before 1850. Marcott et al. 

(2013) report data with a periodicity of 20 years, so the variability shown by the solid pink shading is 

not directly comparable to the higher-frequency variability seen in the observational products, which 

are reported every month, but this Holocene range can be compared to the emerging signal of human-

induced warming. Above and below the maximum and minimum temperature anomalies from 

Marcott et al. (2013), the pink shading fades out to white after a magnitude of warming that is equal 

to the standard deviation of monthly temperature anomalies in the HadCRUT4 dataset over the pre-

industrial reference period of 1850–1900, and as such this faded shading does not bound all monthly 

anomalies in the pre-industrial reference period.  

 

Near-term projections from AR5 (Kirtman et al., 2013) for the period 2016–2035 were assessed by 

AR5 to be likely (>66% probability) between 0.3 C and 0.7 C above the 1986–2005 average, 

assuming no climatically significant future volcanic eruptions. These are expressed relative to pre-

industrial levels using the updated 0.63 C warming to the 1986–2005 period (Section 1.2.1). 

 

Human-induced temperature change (thick yellow line) and total (human+natural) externally forced 

temperature change (thick orange line) are estimated using the method of Haustein et al. (2017) 

applied to the four-dataset mean. Best-estimate historical radiative forcings, extended until the end of 

2016, are taken from Myhre et al. (2013), incorporating the significant revision to the methane forcing 

proposed by Etminan et al. (2016). The 2-box thermal impulse-response model used in Myhre et al. 

(2013), with modified thermal response time scales to match the multimodel mean from Geoffroy et 

al. (2013), is used to derive the shape of the global mean temperature response time series to total 

anthropogenic and natural (combined volcanic and solar) forcing. Both of these time series are 

expressed as anomalies relative to their simulated 1850–1900 averages and then used as independent 

regressors in a multivariate linear regression to derive scaling factors on the two time series that 

minimize the residual between the combined forced response and the multi-dataset observational 

mean. The transparent shading around the thick yellow line indicates the likely range in attributed 

human-induced warming conservatively assessed at ±20%. Note that the corresponding likely range of 

±0.1 C uncertainty in the 0.7 C best-estimate anthropogenic warming trend over the 1951–2010 

period assessed in Bindoff et al. (2013) corresponds to a smaller fractional uncertainty (±14%): the 

broader range reflects greater uncertainty in early-century warming.  

 

https://www.ncdc.noaa.gov/data-access/marineocean-data/noaa-global-surface-temperature-noaaglobaltemp)
https://www.ncdc.noaa.gov/data-access/marineocean-data/noaa-global-surface-temperature-noaaglobaltemp)
https://data.giss.nasa.gov/gistemp/)
http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
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The vertical extent of the 1986–2005 cross denotes the 5–95% observational uncertainty range of 

±0.06 C (see Table 1.1) while that of the 2006–2015 cross denotes the assessed likely uncertainty 

range of ±0.12 C (Section 1.2.1).  

 

To provide a methodologically independent check on the attribution of human-induced warming since 

the 19th century (quantitative attribution results quoted in AR5 being primarily focused on the period 

1951–2010), Figure 1.SM.6 shows a recalculation of the results of Ribes and Terray (2013; figure 1 in 

the paper), applied to the CMIP5 multimodel mean response. Details of the calculation are provided 

in the original paper. In order to quantify the level of human-induced warming since the late 19th 

century, observations of global mean surface temperature (GMST) are regressed onto the model 

responses to either natural-only (NAT) or anthropogenic-only (ANT) forcings, consistent with many 

attribution studies assessed in AR5. Prior to this analysis, model outputs are preprocessed in order to 

ensure consistency with observations: spatial resolution is lowered to 5°, the spatio-temporal 

observational mask is applied, and all missing data are set to 0. Global and decadal averages of near-

surface temperature are calculated over the 1901–2010 period (11 decades), and translated into 

anomalies by subtracting the mean over the entire period (1901–2010). Multimodel mean response 

patterns are calculated over a subset of 7 CMIP5 models providing at least 4 historical simulations 

and 3 historical NAT-only simulations, all covering the 1901–2010 period. The regression analysis 

indicates how these multimodel mean responses have to be rescaled in order to best fit observations, 

accounting for internal variability in both observations and model responses, but neglecting 

observational uncertainty. Almost no rescaling is needed for ANT (regression coefficient: 1.05 ± 

0.18), while the NAT simulated response is revised downward (regression coefficient: 0.28 ± 0.49). 

The resulting estimate of the total externally forced response is very close to observations (Figure 

1.SM.6). The ANT regression coefficient can then be used to assess the human-induced warming over 

a longer period. Estimated in this way, the human-induced linear warming trend for 1880–2012 is 

found to be 0.86°C ± 0.14°C.   

 

 
 
Figure 1.SM.6: Contributions of natural (NAT) and anthropogenic (ANT) forcings to changes in GMST over 

the period 1901–2010. Decadal time series of GMST in HadCRUT4 observations (solid black), from 

multimodel mean response without any rescaling (dotted cyan), and as reconstructed by the linear regression 
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(dotted black). The estimated contributions of NAT forcings only (solid blue) and anthropogenic forcing only 

(solid red) correspond to the CMIP5 multimodel mean response to these forcings, after rescaling. All 

temperatures are anomalies with respect to the 1901–2010 average, after preprocessing (missing data treated as 

0). Vertices are plotted at the midpoint of the corresponding decade. 

 

 

To quantify the potential impact of natural (externally forced or internally generated) variability on 

decadal-mean temperatures in 2006–2015, Figure 1.SM.7 shows an estimate of the observed warming 

rate, corrected for the effects of natural variability according to the method of Foster and Rahmstorf 

(2011) applied to the mean of the four observational GMST datasets used in this report, updated to the 

end of 2017. The grey line shows the raw monthly GMST observations (with shading showing inter-

dataset range), while the green line shows the sum of the linear trend plus estimated known sources of 

variability, such as El Niño events or volcanic eruptions, estimated using an empirical regression 

model. The orange line shows the linear trend, after correcting for the impact of these known sources 

of variability, of 0.18°C per decade, while the two black lines show the recent reference periods used 

in this report. For comparison, the AR5 near-term predicted warming rate of 0.3°C–0.7°C over 30 

years (Kirtman et al, 2013) is shown as the pale blue plume. 

 

The blue line in the lower panel shows residual fluctuations that cannot be attributed to known 

sources or modes of variability, reflecting internally generated chaotic weather variability (the 

difference between grey and green lines in the top panel). The green line is not persistently below the 

yellow line, nor is the blue line persistently negative, over the period 2006–2015. There is a 

downward excursion in the residual “unexplained” variability around 2012–2013, and a strong ENSO 

cool phase event in 2011, but even together these depress the decadal average by only a couple of 

hundredths of a degree. 
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Figure 1.SM.7: Warming and warming rate for 1979–2017. The solid grey line shows the average of 

the four observational GMST datasets used in this assessment report, with the observational range 

shown by grey shading. The yellow line shows the linear trend through the observational data, 

corrected for the effects of known sources of natural variability (green line). The blue shading 

indicates that current warming rates are compatible with the AR5 near-term projections. The lower 

panel shows the residual unexplained variability (difference between grey and green lines in upper 

panel) after accounting for known sources, including ENSO, solar variability and volcanic activity.  

 

 

1.SM.3: Supplementary Material for Figure 1.3 
 

Regional warming shown in Figure 1.3 is derived using a similar method to the calculation of 

externally forced warming in Figure 1.2. At every grid box location in the native Cowtan–Way 

resolution, the time series of local temperature anomalies in the Cowtan-Way dataset are regressed 

onto the associated externally forced warming time series, calculated as in Figure 1.1 using all 

available historical monthly-mean anomalies. The best-fit relationship between these two quantities is 

then used to estimate the forced warming relative to 1850–1900 at this location. The maps in Figure 

1.3 show the average of these estimated local forced warming time series over the 2006–2015 period. 

Trends are only plotted only where over 50% of the entire observational record at this location is 

available.  

 

Supplementary maps are included below for the NOAA, GISTEMP and HadCRUT4 observational 

data. The regression of local temperature anomalies onto the global mean externally forced warming 

allows warming to be expressed relative to 1850–1900 despite many local series in these datasets 

beginning after 1900, but clearly these inferred century-time-scale warming levels are subject to a 

lower confidence level than the corresponding global values.  

 



 1SM-10 Total pages: 23 

 

 
 
Figure 1.SM.8: Externally forced warming for the average of 2006–2015 relative to 1850–1900 calculated for 

the NOAA observational dataset as for Figure 1.3.  
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Figure 1.SM.9: Externally forced warming for the average of 2006–2015 relative to 1850–1900 

calculated for the GISTEMP observational dataset as for Figure 1.3.  
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Figure 1.SM.10: Externally forced warming for the average of 2006–2015 relative to 1850–1900 calculated for 

the HadCRUT4 observational dataset as for Figure 1.3.  

 

 

1.SM.4: Supplementary Material for Figure 1.4 
 

Idealized temperature pathways are computed by specifying the level of human-induced warming in 

2017, 𝑇2017 = 1°C, with temperatures from 1850 to 2017 approximated by an exponential rise, with 

the exponential rate constant, 𝛾, set to give a rate of human-induced warming in 2017 of 

0.2°C/decade. Projected temperatures for 2018–2100 are determined by fitting a smooth 4th-order 

polynomial through specified warming values at particular times after 2017.  

 

Radiative forcing series 𝐹 that would give the temperature pathways described above are computed 

using a 2-time-constant climate response function (Myhre et al., 2013b), with equilibrium climate 

sensitivity (ECS) of 2.7°C, a transient climate response (TCR) of 1.6°C, and other parameters as 

given in Millar et al. (2017). Equivalent CO2 concentrations are given by 𝐶 = 278 ×  exp (𝐹 5.4⁄ ) 

ppm. 

 

Cumulative CO2-forcing-equivalent emissions (Jenkins et al, 2018), or the CO2 emission pathways 

that would give the CO2 concentration pathways compatible with each temperature scenario, are 

computed using an invertible simple carbon cycle model (Myhre et al., 2013b), modified to account 

for changing CO2 airborne fraction over the historical period (Millar et al., 2017). These would be 

proportional to CO2 emissions under the assumption of a constant fractional contribution of non-CO2 
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forcers to warming. An indicative cumulative impact variable (e.g., sea level rise) is computed from 

temperature pathways shown using the semiempirical model of Kopp et al. (2016).  

 

 

1.SM.5: Supplementary Material for Figure 1.5 
 

All scenarios in Figure 1.5 start with a 1000-member ensemble of the FaIR model (Smith et al., 2018) 

driven with emissions from the RCP historical dataset from 1765 to 2000 (Meinshausen et al., 2011), 

SSP2 from 2005 to 2020 (Fricko et al., 2017), and a linear interpolation between the two inventories 

for 2000 to 2005. Equilibrium climate sensitivity (ECS) and transient climate response (TCR) 

parameters are drawn from a joint lognormal distribution informed by CMIP5 models. Uncertainties 

in present-day non-CO2 effective radiative forcing (ERF) are drawn from the distributions in Myhre et 

al. (2013) and uncertainties in the carbon cycle response are given a 5–95% range of 13% around the 

best estimate (Millar et al., 2017). All uncertainties except TCR and ECS are assumed to be 

uncorrelated with each other. 

 

FaIR derives an ERF time series from emissions, from which temperature change is calculated. 

Greenhouse gas concentrations are first calculated, from which the radiative forcing relationships 

from Myhre et al. (1998) are used to determine ERF. An increase of ERF of 25% for methane forcing 

is applied which approximates the updated relationship from Etminan et al. (2016). The Myhre et al. 

(1998) relationships with a scaling for methane rather than the newer Etminan et al. (2016) 

relationships are used because the former does not assume any band overlap between CO2 and N2O, 

and isolating CO2 forcing from N2O forcing is problematic for certain commitments where CO2 

emissions are set to zero and N2O forcing is held constant. 

 

Aerosol forcing is based on the Aerocom radiative efficiencies (Myhre et al., 2013a) for ERFari (ERF 

from aerosol-radiation interactions) and a logarithmic dependence on emissions of black carbon, 

organic carbon and sulphate aerosols for ERFaci (ERF from aerosol–cloud interactions) based on the 

model of Ghan et al. (2013). Tropospheric ozone forcing is based on Stevenson et al. (2013). Other 

minor categories of anthropogenic forcing are derived from simple relationships that approximate the 

evolution of ERF in Annex II of Working Group I of AR5 (Prather et al., 2013) as described in Smith 

et al. (2018). For forcing categories other than methane (for which a significant revision to the best 

estimate ERF has occurred since AR5), a time-varying scaling factor is implemented over the 

historical period, so that for a best-estimate forcing, the AR5 ERF time series is replicated. This 

historical scaling decays linearly between 2000 and 2011 so that in 2011 onwards the FaIR ERF 

estimate is used for projections. For the 2000–2011 period the impact of the historical scaling is small, 

because FaIR emissions-forcing relationships are mostly derived from AR5 best estimates in 2005 or 

2011 (Smith et al., 2018). 

 

Two ensembles are produced: a historical (1765–2014) ensemble containing all (anthropogenic plus 

natural) forcing, and a historical+future (1765–2100) ensemble containing only anthropogenic forcing 

for each commitment scenario. In the ensemble where natural forcing is included, solar forcing for the 

historical period is calculated by using total solar irradiance from the SOLARIS HEPPA v3.2 dataset 

(Matthes et al., 2017) for 1850–2014 and from Myhre et al. (2013) for 1765–1850: the 1850–1873 

mean is subtracted from the time series which is then multiplied by 0.25 (annual illumination factor) 

times 0.7 (planetary co-albedo) to generate the effective radiative forcing (ERF) timeseries. Volcanic 

forcing is taken by using stratospheric aerosol optical depths from the CMIP6 historical Easy 

Volcanic Aerosol dataset (Toohey et al., 2016) prepared for the HadGEM3 CMIP6 historical 

integrations for 1850–2014. The integrated stratospheric aerosol optical depth at 550 nm (tau) is 

calculated and converted to ERF by the relationship ERF = −18×tau, based on time slice experiments 

in the HadGEM3 general circulation model, which agrees well with earlier HadGEM2 and HadCM3 

versions of the UK Met Office Hadley Centre model (Gregory et al., 2016). The 1850–2014 mean 

volcanic ERF of −0.107 is subtracted as an offset to define the mean historical volcanic ERF as zero. 
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Owing to rapid adjustments to stratospheric aerosol forcing, which are included in the definition of 

ERF, this less negative value of −18×tau is adopted for volcanic ERF than the  

RF = −25×tau used in AR5.  

 

The historical all-forcing scenario is then used to constrain parameter sets that satisfy the historical 

observed temperature trend of 0.90°C ± 0.19°C (mean and 5 to 95% range) over the 1880 to 2014 

period, using the mean of the HadCRUT4, GISTEMP and NOAA datasets. The trend was derived 

using an inflation factor for autocorrelation of residuals, and is the same method used to derive linear 

temperature trends in AR5 (Hartmann et al., 2013). The uncertainty bounds used here are wider than, 

but consistent with, the 1-sigma range of ±0.12°C assessed for the temperature change in 2006–2015 

relative to 1850–1900. The parameter sets that satisfy the historical temperature constraint in the 

historical ensemble (323 out of 1000) are then selected for the anthropogenic-only ensembles that 

include commitments. 

 

Each commitment scenario is driven with the following assumptions: 

 

1.       Zero CO2 emissions, constant non-CO2 forcing (blue): FaIR spun up with anthropogenic 

forcing to 2020. Total non-CO2 forcing in 2020 is used as the input to the 2021–2100 period with all 

CO2 fossil and land-use emissions abruptly set to zero. 

 

2.       Phase out of CO2 emissions with 1.5°C commitment (blue dotted): FaIR spun up with 

anthropogenic forcing to 2020. Total non-CO2 forcing in 2020 is used as the input to the 2021–2100 

period. Fossil and land-use CO2 emissions are ramped down to zero at a linear rate over 50 years from 

2021 to 2070, consistent with a 1.5°C temperature rise above pre-industrial levels at the point of zero 

CO2 emissions in 2070 with these climate response parameters and constant 2020 non-CO2 forcing. 

 

3.       Linear continuation of 2010–2020 temperature trend (blue dashed, in bottom panel only). 

 

4.       Zero GHG emissions, constant aerosol forcing (pink): FaIR spun up with anthropogenic forcing 

to 2020. All GHG emissions set abruptly to zero in 2021, with aerosol emissions held fixed at their 

2020 levels. 

 

5.       Zero CO2 and aerosol emissions, constant non-CO2 GHG forcing (teal): FaIR spun up with 

anthropogenic forcing to 2020. Total non-CO2 GHG forcing in 2020, which also includes the 

proportion of tropospheric ozone forcing attributable to methane emissions, is used as the input to the 

2021–2100 period. Fossil and land-use CO2 and aerosol emissions abruptly set to zero in 2021. 

 

6.       Zero emissions (yellow, including uncertainty range): FaIR spun up with anthropogenic forcing 

to 2020. All emissions set abruptly to zero in 2021. 

 

 

1.SM.6: Supplementary Material for FAQ 1.2 Figure 1 and Figure SPM 1 
 

This section provides supporting material for FAQ 1.2, Figure 1 and Figure SPM 1 in the Summary 

for Policymakers. Figure 1.SM.11, top panel, shows time series of annual CO2 emissions from the 

Global Carbon Project (Le Quéré et al, 2018) (black line and grey band, with the width of the band 

indicating the likely range, or one standard error, uncertainty in annual emissions), extrapolated to 

2020 and then declining in a straight line to reach net zero in either 2055 (grey line) or 2040 (blue 

line).  

 



 1SM-15 Total pages: 23 

 

 
Figure 1.SM.11: Time series of (top) annual CO2 emissions, (middle) cumulative CO2 emissions, and (bottom) 

non-CO2 radiative forcing corresponding to observation-based estimates over the historical period and stylized 

1.5°C-consistent pathways. 

 

The middle panel in Figure 1.SM.11 shows cumulative (time-integrated) CO2 emissions, with black 

line and grey band showing observed emissions from the Global Carbon Project, and grey and blue 

lines corresponding to the areas highlighted as blue+grey or blue, respectively, in the top panel. Grey 

and blue lines show, from 2017 onwards, cumulative emissions diagnosed from a simple climate–

carbon-cycle model (Millar et al, 2017) with historical airborne fraction scaled to reproduce median 

estimated annual emissions in 2017. Note this does not precisely reproduce median observed 

cumulative emissions in 2017 but is well within the range of uncertainty: Figure SPM.1 shows 

diagnosed cumulative emissions throughout.  

 

The bottom panel in Figure 1.SM.11 shows median non-CO2 ERF used to drive the model over the 

historical period, extending forcing components using the RCP8.5 scenario (http://www.pik-

potsdam.de/~mmalte/rcps/) between 2011 and 2020, with scaling applied to each forcing component 

time series to match the corresponding AR5 ERF component in 2011. The vertical bar in 2011 shows 

a simple indication of the likely range of non-CO2 forcing in 2011 obtained by subtracting the best-

estimate CO2 forcing from the total anthropogenic forcing uncertainty, assuming the latter is normally 

http://www.pik-potsdam.de/~mmalte/rcps/
http://www.pik-potsdam.de/~mmalte/rcps/


 1SM-16 Total pages: 23 

 

distributed: AR5 did not give a full assessment of the distribution of non-CO2 radiative forcing. It 

demonstrates there is considerable uncertainty in this quantity, which translates into uncertainty in 

climate system properties inferred from these data. However, this uncertainty has a much smaller 

impact on estimated human-induced warming to date, because this is also constrained by temperature 

observations. The grey line shows non-CO2 forcing in an indicative 1.5°C pathway consistent with 

those assessed by Chapter 2, while the purple line shows a stylized pathway in which non-CO2 

forcing remains constant after 2030. 

 

For all percentiles of the climate response distribution, non-CO2 forcing time series for these stylized 

scenarios are scaled to fit the temperature response to the corresponding percentiles of the assessed 

likely range of human-induced warming in 2017, assuming the latter is normally distributed. All non-

CO2 forcing components other than aerosols are scaled following their corresponding ranges of 

uncertainty of values in 2011 given in AR5, with low values of 2011 ERF corresponding to high 

values of TCR and vice versa. This accounts for the anti-correlation between estimated values of the 

TCR and estimates of current anthropogenic forcing. Then aerosol ERF (the most uncertain 

component) is scaled to reproduce the correct percentile of human-induced warming in 2011. Values 

of TCR, ECS and 2011 forcing components are given in Table 1.SM.1. For each combination of TCR 

and ECS, the strength of carbon cycle feedbacks are varied to span the range in the CMIP5 RCP2.6 

Earth System Model ensemble (±100%), co-varying with climate response to maximize the range of 

Transient Climate Response to Emissions (TCRE) following Millar et al (2017). Uncertainty in 

carbon cycle feedbacks makes only a minor contribution to overall response uncertainty in these low-

emissions scenarios. In each case, overall airborne fraction is scaled to reproduce observed annual 

emissions in 2017. 

 

Figure 1.SM.12 shows time series of observed and human-induced warming to 2017 and responses to 

these stylized future emissions scenarios. Observed and human-induced warming estimates are 

reproduced exactly as in Figure 1.2, with the orange shaded band showing the assessed uncertainty 

range of ±20%. The dashed line shows a simple linear extrapolation of the current rate of warming, as 

calculated over the past five years. Responses to stylized future CO2 emissions and non-CO2 forcing 

trajectories are simulated with the FaIR simple climate–carbon cycle model (Millar et al, 2017b). The 

four values of the TCR shown (giving the borders of the grey, blue and purple shaded plumes) 

correspond to the 17th, 33rd, 67th and 83rd percentiles of a normal distribution compatible with the 

likely range of TCR as assessed by AR5, combined with the same percentiles of a log-normal 

distribution for the ECS similarly anchored to the AR5 likely range for this quantity. Other thermal 

climate response parameters (short and long adjustment time scales) are set to match those given in 

Myhre et al (2013) as used in Millar et al (2017a).  
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Figure 1.SM.12: Time series of observed and human-induced warming to 2017 and responses to stylized 1.5°C 

pathways of CO2 and non-CO2 forcing shown in Figure 1.SM.11. Light shading in response plumes indicates 

likely range (17th to 83rd percentiles) while dark shading indicates central tercile (33rd to 67th percentiles). 

 

The smooth grey shaded bands in the top panel of Figure 1.SM.12 show the temperature response to 

CO2 emissions declining from 2020 to net zero in 2055 (grey line in top panel of Figure 1.SM.11), 

with non-CO2 forcing following the indicative 1.5°C pathway shown by the grey line in the bottom 

panel of Figure 1.SM.11. The middle panel of Figure 1.SM.12 shows the impact on future warming of 

bringing forward the date of net zero emissions to 2040 (blue line in top panel of Figure 1.SM.11), 

with the grey dashed lines showing the original percentiles from the top panel. This reduces 

cumulative CO2 emissions up to the time they reach net zero and hence reduces future warming, with 

the impact emerging after 2030, such that the entire likely range of future warming is now (on this 

estimate of the climate response distribution) below 1.5°C in 2100. 

 

All 1.5°C pathways that are also consistent with current emissions and radiative forcing trends show 

increasing total non-CO2 radiative forcing over the coming decade, as emissions of cooling aerosol 

precursors are reduced, but there is greater variation between scenarios in non-CO2 radiative forcing 

after 2030. The bottom panel in Figure 1.SM.12 shows the impact of varying future non-CO2 radiative 



 1SM-18 Total pages: 23 

 

forcing (grey and purple lines in Figure 1.SM.11, bottom panel). Failure to reduce non-CO2 forcing 

after 2030 means that a scenario that would otherwise be likely to give temperatures below 1.5°C in 

2100 instead would only be as likely as not to give temperatures below 1.5°C in 2100. If non-CO2 

forcing were allowed to increase further (as it does in some scenarios due primarily to methane 

emissions), temperatures in 2100 would increase even further. 

 

These changes demonstrate how future warming is determined by cumulative CO2 emissions up to the 

time of net zero and non-CO2 forcing in the decades immediately prior to that time.  

 

 

 

 
Table 1.SM.1: Climate system properties in the versions of the FaIR model used in Figure 1.SM.12 and Figure 

1.SM.13 as well as the FAQ 1.2, Figure 1 and Figure SPM 1. TCR, ECS and total anthropogenic forcing (Fant) 

in 2011 are set consistent with corresponding distributions in AR5, TCRE is diagnosed from the model while 

aerosol forcing (Faer) is adjusted to reproduce the corresponding percentile of human-induced warming in 2017.  

 

Percentile TCR (°C) ECS (°C) TCRE  

(°C TtC−1) 

Faer in 2011 

(W m−2) 

Fant in 2011 

(W m−2) 

17% 1.0 1.5 0.9 -0.58 3.11 

33% 1.4 2.0 1.3 -0.89 2.52 

50% 1.75 2.6 1.5 -0.94 2.25 

67% 2.1 3.3 1.7 -0.91 2.06 

83% 2.5 4.5 2.1 -0.81 1.88 

 

 

Carbon budget calculations in Chapter 2 are based on temperatures relative to 2006–2015, offset by a 

constant 0.87°C representing the best-estimate observed warming from pre-industrial to that decade. 

This has little effect on median estimates of future warming, because the median estimated human-

induced warming to the decade 2006–2015 was close to the observed warming, but it does affect 

uncertainties: the uncertainty in 2030 warming relative to 2006–2015 is lower than the uncertainty in 

2030 warming relative to pre-industrial because of the additional information provided by the current 

climate state and trajectory. This additional information is particularly important for the response to 

rapid mitigation scenarios in which peak warming occurs a small number of decades into the future 

(Millar et al, 2017a; Leach et al, 2018), highlighting the particular importance of a “seamless” 

approach to seasonal-to-decadal forecasting (Palmer et al, 2008; Boer et al, 2016) in the context of 

1.5°C. The impact of this additional information is illustrated in Figure 1.SM.13, which is constructed 

identically to Figure 1.SM.12 but shows all time series expressed as anomalies relative to 2006–2015 

rather than 1850–1900. The thick grey line at 0.63°C shows 1.5°C relative to pre-industrial expressed 

relative to this more recent decade. The central estimate is unaffected, as is the estimate of the time at 

which temperatures reach 1.5°C if the current rate of warming continues, but uncertainties are 

reduced. For example, the stylized pathway with CO2 emissions reaching zero in 2040 is likely to 

limit warming to less than 0.63°C above 2006–2015, even though it just overshoots 1.5°C relative to 

1850–1900. 
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Figure 1.SM.13: As Figure 1.SM.12, but showing time series of observed and human-induced warming to 2017 

and responses to stylized 1.5°C-consistent pathways relative to 2006–2015. The level of warming corresponding 

to 1.5°C relative to pre-industrial, given the central estimate of observed warming of 0.87°C from 1850–1900 to 

2006–2015, is shown by the horizontal line at 0.63°C. 

 

 

1.SM.7: Recent Trends in Emissions and Radiative Forcing 

Figure 1.2 shows a small increase in the estimated rate of human-induced warming since 2000, 

reaching 0.2°C per decade in the past few years. This is attributed (Haustein et al., 2017) to recent 

changes in a range of climate forcers, reviewed in this section. 

Most studies partition anthropogenic climate forcers into two groups by their lifetime. CO2 and other 

long-lived greenhouse gases such as nitrous oxide, sulphur hexafluoride and some halogenated gases 

contribute to forcing over decades and centuries. Other halogenated gases, ozone precursors and 

aerosols are defined as short-lived climate forcers (SLCF) due to their residence time of less than 

several years in the atmosphere. Although methane is either considered as either a long-lived climate 

forcer or SLCF in published studies or reports (Bowerman et al., 2013; Estrada et al., 2013; Heede, 
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2014; Jacobson, 2010; Kerr, 2013; Lamarque et al., 2011; Saunois et al., 2016a; WMO, 2015), we 

assign methane as a SLCF for the purpose of climate assessment because its lifetime is comparable to 

or shorter than the thermal adjustment time of the climate system (Smith et al., 2012). 

CO2, methane and nitrous oxide are the most prominent contributors of anthropogenic radiative 

forcing, contributing 63%, 20% and 6% of the anthropogenic radiative forcing in 2016 respectively, 

as shown in Figure 1.SM.14a. Other long-lived greenhouse gases, including halogenated gases, and 

SLCFs such as tropospheric ozone are responsible of about 37% of the anthropogenic radiative 

forcing (figures add up to more than 100% because of the compensating effect of aerosols). Emissions 

such as black carbon and sulphur dioxide form different types of aerosol particles, which interact with 

both shortwave and longwave radiation and alter clouds. The resulting net aerosol radiative forcing is 

spatially inhomogeneous and uncertain. Globally averaged, it is estimated to have reduced the 

globally averaged anthropogenic forcing by about 27% (figures from Myhre et al. (2013), updated: 

uncertainties in aerosol forcing in particular are reviewed in AR5, and will be reassessed in AR6. This 

report continues to work from the AR5 estimates.). 

As shown in Figure 1.SM.14b, the growth of CO2 emissions has slowed since 2013 because of 

changes in the energy mix moving from coal to natural gas and increased renewable energy 

generation (Boden et al., 2015). This slowdown in CO2 emission growth has occurred despite global 

GDP growth increasing to 3% y−1 in 2015, implying a structural shift away from carbon intensive 

activities (Jackson et al., 2015; Le Quéré et al., 2018). In 2016, however, anthropogenic CO2 

emissions are 36.18 GtCO2 y−1 and have begun to grow again by 0.4% with respect to 2015 (Le Quéré 

et al., 2018). Global average concentration in 2016 has reached 402.3 ppm, which represents an 

increase of about 38.4% from 1850–1900 average (290.7 ppm). 

Figure 1.SM.14c and d show that methane and nitrous oxide emissions, unlike CO2, have followed the 

most emission-intensive pathways assessed in AR5 (Saunois et al., 2016b; Thompson et al., 2014). 

However, current trends in methane and nitrous oxide emissions are not driven in the same way by 

human activities. About 60% of methane emissions are attributed to human activities (e.g. ruminants, 

rice agriculture, fossil fuel exploitation, landfills and biomass burning, Saikawa et al., 2014; Saunois 

et al., 2016b), while about 40% of nitrous oxide emissions are caused by various industrial processes 

and agriculture (Bodirsky et al., 2012; Thompson et al., 2014). It is thus more complicated to link 

rates of emissions to economic trends or energy demands than is the case with CO2 (Peters et al., 

2011). 

Estimates of anthropogenic emissions for methane and nitrous oxide are uncertain as shown by the 

difference between datasets in Figure 1.4. EDGARV4.2 (JRC, 2011) estimates and US–EPA 

projections give a global amount of methane emission ranging between 392.87 and 378.29 TgCH4y−1 

in 2016, an increase of 0.6–1% compared to 2015. However, livestock emissions in these databases 

are considered to be underestimated (Wolf et al., 2017). Similar uncertainties exist for anthropogenic 

N2O emissions, for which only US–EPA projections are available. According to US–EPA projections, 

anthropogenic N2O emissions reached 11.2 TgN2O y−1 in 2016, an increase of 1% on 2015. 

Anthropogenic CH4 and N2O emissions also appear to respond to major economic crises.  
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Figure 1.SM.14: Time series of (a) anthropogenic radiative forcing, (b) CO2, (c) methane (CH4) and (d) nitrous 

oxide emissions for the period 1986–2016. Anthropogenic radiative forcing data is from Myhre et 

al., (2013), extended from 2011 until the end of 2017 with greenhouse gas data from Dlugokencky 

and Tans (2016), updated radiative forcing approximations for greenhouse gases (Etminan et al., 

2016) and extended aerosol forcing following Myhre et al. (2017). Bar graph shows the sum of 

different forcing agents. Anthropogenic CO2 emissions are from the Global Carbon Project 

(GCP2017; Le Quéré et al., 2018) and EDGAR (Joint Research Centre, 2011) datasets. 

Anthropogenic emissions of CH4 and N2O (e) are estimated from EDGAR (JRC, 2011) and the US 

Environmental Protection Agency (EPA, 1990). The letters A, B, and C indicate dates of economic 

crises (A: former Soviet Union; B: Asian financial crisis; C: global financial crisis), which are 

reported following the methodology of (Peters et al., 2011). 
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2.SM.1 Part 1 
 

2.SM.1.1 Geophysical Relationships and Constraints 

 

2.SM.1.1.1 Reduced-complexity climate models 

 

The ‘Model for the Assessment of Greenhouse Gas Induced Climate Change’ (MAGICC6, Meinshausen et 

al., 2011a), is a reduced-complexity carbon cycle, atmospheric composition and climate model that has been 

widely used in prior IPCC Assessments and policy literature. This model is used with its parameter set as 

identical to that employed in AR5 for backwards compatibility. This model has been shown to match 

temperature trends very well compared to CMIP5 models (Collins et al., 2013; Clarke et al., 2014). 

 

The ‘Finite Amplitude Impulse Response’ (FAIRv1.3, Smith et al., 2018) model is similar to MAGICC but 

has even simpler representations of the carbon cycle and some atmospheric chemistry. Its parameter sets are 

based on AR5 physics with updated methane radiative forcing (Etminan et al., 2016). The FAIR model is a 

reasonable fit to CMIP5 models for lower emissions pathways but underestimates the temperature response 

compared to CMIP5 models for RCP8.5 (Smith et al., 2018). It has been argued that its near-term 

temperature trends are more realistic than MAGICC (Leach et al., 2018).  

 

The MAGICC model is used in this report to classify the different pathways in terms of temperature 

thresholds and its results are averaged with the FAIR model to support the evaluation of the non-CO2 forcing 

contribution to the remaining carbon budget. The FAIR model is less established in the literature but can be 

seen as being more up to date in regards to its radiative forcing treatment. It is used in this report to help 

assess uncertainty in the pathway classification approach and to support the carbon budget evaluation 

(Chapter 2, Section 2.2 and 2.SM.1.1.2). 

 

This section analyses geophysical differences between FAIR and MAGICC to help provide confidence in the 

assessed climate response findings of the main report (Sections 2.2 and 2.3).  

 

There are structural choices in how the models relate emissions to concentrations and effective radiative 

forcing. There are also differences in their ranges of climate sensitivity, their choice of carbon cycle 

parameters, and how they are constrained, even though both models are consistent with AR5 ranges. Overall, 

their temperature trends are similar for the range of emission trajectories (Figure 2.1 of the main report). 

However, differences exist in their near-term trends, with MAGICC exhibiting stronger warming trends than 

FAIR (see Figure 2.SM.1). Leach et al. (2018) also note that that MAGICC warms more strongly than 

current warming rates. By adjusting FAIR parameters to match those in MAGICC, more than half the 

difference in mean near-term warming trends can be traced to parameter choices. The remaining differences 

are due to choices regarding model structure (Figure 2.SM.1).  

 

A structural difference exists in the way the models transfer from the historical period to the future. The 

setup of MAGICC used for AR5 uses a parametrization that is constrained by observations of hemispheric 

temperatures and ocean heat uptake, as well as assessed ranges of radiative forcing consistent with AR4 

(Meinshausen et al., 2009). From 1765 to 2005 the setup used for AR5 bases forcing on observed 

concentrations and uses emissions from 2006. It also ramps down the magnitude of volcanic forcing from 

1995 to 2000 to give zero forcing in future scenarios, and solar forcing is fixed at 2009 values in the future. 

In contrast, FAIR produces a constrained set of parameters from emissions runs over the historic period 

(1765–2017) using both natural and anthropogenic forcings, and then uses this set to run the emissions 

model with only anthropogenic emissions for the full period of analysis (1765–2110). Structural choices in 

how aerosol, CH4 and N2O are implemented in the model are apparent (see Figure 2.SM.2). MAGICC has a 

weaker CH4 radiative forcing, but a stronger total aerosol effective radiative forcing that is close to the AR4 

best estimate of −1.2 Wm−2 for the total aerosol radiative forcing (Forster et al., 2007). As a result, its forcing 

is larger than either FAIR or the AR5 best estimate (Figure 2.SM.2), although its median aerosol forcing is 

well within the IPCC range (Myhre et al., 2013). The difference in N2O forcings between the models result 

both from a slightly downwards-revised radiative forcing estimate for N2O in Etminan et al. (2016) and the 

treatment of how the models account for natural emissions and atmospheric lifetime of N2O. The stronger 

aerosol forcing and its stronger recovery in MAGICC has the largest effect on near-term trends, with CH4 
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and N2O also contributing to stronger warming trends in the MAGICC model.  

 

The transient climate response to cumulative carbon emissions (TCRE) differences between the models are 

an informative illustration of their parametric differences (Figure 2.SM.3). In the setups used in this report, 

FAIR has a TCRE median of 0.38°C (5–95% range of 0.25°C to 0.57°C) per 1000 GtO2 and MAGICC a 

TCRE median of 0.47°C (5–95% range of 0.13°C to 1.02°C) per 1000 GtCO2. When directly used for the 

estimation of carbon budgets, this would make the remaining carbon budgets considerably larger in FAIR 

compared to MAGICC. As a result, rather than to use their budgets directly, this report bases its budget 

estimate on the AR5 TCRE likely (greater than 16–84%) range of 0.2°C to 0.7°C per 1000 GtCO2 (Collins et 

al., 2013) (see Section 2.SM.1.1.2).   

 

 

 
Figure 2.SM.1: Warming rates per decade for MAGICC (dark blue), FAIR (sky blue) and FAIR matching the 

MAGICC parameter set (light blue) for the scenario dataset used in this report. These bars represent the mean of 

regression slopes taken over each decade (years 0 to 9) for scenario median temperature changes, over all scenarios. 

The black bars show the standard deviation over the set of scenarios.  
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Figure 2.SM.2: Time series of MAGICC (dark blue dashed) and FAIR (sky blue dash-dotted) effective radiative forcing 

for an example emission scenario for the main forcing agents where the models exhibit differences. AR5 data is from 

Myhre et al. (2013), extended from 2011 until the end of 2017 with greenhouse gas data from NOAA/ESRL 

(www.esrl.noaa.gov/gmd/ccgg/trends/), updated radiative forcing approximations for greenhouse gases (Etminan et al., 

2016) and extended aerosol forcing following (Myhre et al., 2017). 

 

The summary assessment is that both models exhibit plausible temperature responses to emissions. It is too 

premature to say that either model may be biased. As MAGICC is more established in the literature than 

FAIR and has been tested against CMIP5 models, the classification of scenarios used in this report is based 

on MAGICC temperature projections. There is medium confidence in this classification and the likelihoods 

used at the boundaries could prove to underestimate the probability of staying below given temperatures 

thresholds if near-term temperatures in the applied setup of MAGICC turn out to be warming too strongly. 

However, neither model accounts for possible permafrost melting in their setup used for this report (although 

MAGICC does have a setting that would allow this to be included (Schneider von Deimling et al., 2012, 

2015)), so biases in MAGICC could cancel in terms of their effect on long-term temperature targets. The 

veracity of these reduced-complexity climate models is a substantial knowledge gap in the overall 

assessment of pathways and their temperature thresholds. 

 

The differences between FAIR and MAGICC have a substantial effect on their remaining carbon budgets 

(see Figure 2.SM.3), and the strong near-term warming in the specific MAGICC setup applied here (Leach et 

al., 2018) may bias its results to smaller remaining budgets (green line on Figure 2.SM.3). Likewise, the 

relatively small TCRE in FAIR (compared to AR5) might bias its results to higher remaining budgets 

(orange line on Figure 2.SM.3). Rather than using the entire model response, only the contribution of non-

CO2 warming from each model is used, using the method discussed next. 

http://www.esrl.noaa.gov/gmd/ccgg/trends/)
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Figure 2.SM.3: This figure follows Figure 2.3 of the main report but with two extra lines showing FAIR (orange) and 

MAGICC (green) results separately. These additional lines show the full model response averaged across all scenarios 

and geophysical parameters.  

 

2.SM.1.1.2 Methods for Assessing Remaining Carbon Budgets 

 

First, the basis for the median remaining carbon budget estimate is described based on MAGICC and FAIR 

non-CO2 warming contributions. This is then compared to a simple analysis approach. Lastly, the uncertainty 

analysis is detailed. 

 

 

2.SM.1.1.2.1 Median remaining carbon budget basis 

 

This assessment employs historical net cumulative CO2 emissions reported by the Global Carbon Project (Le 

Quéré et al., 2018). They report 2170 ± 240 GtCO2 emitted between 1 January 1876 and 31 December 2016. 

Annual CO2 emissions for 2017 are estimated at about 42 ± 3 GtCO2 yr−1 (Le Quéré et al., 2018) (Version 

1.3 accessed 22 May 2018). From 1 Jan 2011 until 31 December 2017, an additional 290 GtCO2 (270–310 

GtCO2, 1  range) have been emitted (Le Quéré et al., 2018).        

     

In WG1 AR5, TCRE was assessed to have a likely range of 0.22°C to 0.68°C per 1000 GtCO2. The middle 

of this range (0.45°C per 1000 GtCO2) is taken to be the best estimate, although no best estimate was 

explicitly defined (Collins et al., 2013; Stocker et al., 2013).  

 

TCRE is diagnosed from integrations of climate models forced with CO2 emissions only. However, the 

influence of other climate forcers on global temperatures should also be taken into account (see Figure 3 in 

Knutti and Rogelj (2015). 

The reference non-CO2 temperature contribution (RNCTC) is defined as the median future warming due to 

non-CO2 radiative forcing until the time of net zero CO2 emissions. The RNCTC is then removed from 
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predefined levels of future peak warming (∆𝑇peak) between 0.3°C to 1.2°C. The CO2-only carbon budget is 

subsequently computed for this revised set of warming levels (∆𝑇peak − 𝑅𝑁𝐶𝑇𝐶).  

 

In FAIR, the RNCTC is defined as the difference in temperature between two experiments, one where all 

anthropogenic emissions are included and one where only CO2 emissions are included, using the constrained 

parameter set. Parallel integrations with matching physical parameters are performed for the suite of 205 

scenarios in which CO2 emissions become net zero during the 21st century. The non-CO2 warming from a 

2006–2015 average baseline is evaluated at the time in which CO2 emissions become net zero. A linear 

regression between peak temperature relative to 2006–2015 and non-CO2 warming relative to 2006–2015 at 

the time of net zero emissions is performed over the set of 205 scenarios (Figure 2.SM.4). The RNCTC acts 

to reduce the ∆𝑇peak by an amount of warming caused by non-CO2 agents, which also takes into account 

warming effects of non-CO2 forcing on the carbon cycle response. In the MAGICC model the non-CO2 

temperature contribution is computed from the non-CO2 effective radiative forcing time series for the same 

205 scenarios, using the AR5 impulse response function (Myhre et al., 2013). As in FAIR, the RNCTC is 

then calculated from a linear regression of non-CO2 temperature change against peak temperature. 

 
Figure 2.SM.4: Relationship of RNCTC with peak temperature in the FAIR and MAGICC models. The black line is 

the linear regression relationship between peak temperature and RNCTC. The dashed lines show the quantile 

regressions at the 5th and 95th percentile.  

 

Table 2.SM.1 presents the CO2-only budgets for different levels of future warming assuming both a normal 

and a log-normal TCRE distribution, where the overall distribution matches the AR5 likely TCRE range of 

0.2°C to 0.7°C per 1000 GtCO2. Table 2.SM.2 presents the RNCTC values for different levels of future 

warming and how they affect the remaining carbon budget for the individual models assuming the normal 

distribution of TCRE. These are then averaged and rounded to give the numbers presented in the main 

chapter (Table 2.2). The budgets are taken with respect to the 2006–2015 baseline for temperature and from 

1 January 2018 for cumulative emissions. In the main report (Section 2.2), as well as in Table 2.SM.1, the 

estimates account for cumulative CO2 emissions between the start of 2011 and the end of 2017 of about 290 

GtCO2.  
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Table 2.SM.1: Remaining CO2-only budget in GtCO2 from 1 January 2018 for different levels of warming from 2006–

2015 for normal and log-normal distributions of TCRE based on the AR5 likely range. 290 GtCO2 have been removed to 

account for emissions between the start of 2011 and the end of 2017. Additional global warming is expressed as changes 

in global near-surface air temperature.   

 
 Normal Distribution Log-Normal Distribution 
CO2-Oonly Remaining  
Budgets (GtCO2) 
 

TCRE 0.35°C  
per 1000 GtCO2  

TCRE 0.45°C 
per 1000 GtCO2 

TCRE 0.55°C 
per 1000 GtCO2 

TCRE 0.30°C per 
1000 GtCO2  

TCRE 0.38°C 
per 1000 GtCO2 

TCRE 0.50°C 
per 1000 GtCO2 

Additional warming  
from 2006–2015 (°C) TCRE 33% TCRE 50% TCRE 67% TCRE 33% TCRE 50% TCRE 67% 

0.3 571 376 253 709 487 315 

0.4 859 598 434 1042 746 517 

0.5 1146 820 615 1374 1005 718 

0.6 1433 1042 796 1707 1265 920 

0.7 1720 1264 977 2040 1524 1122 

0.8 2007 1486 1158 2373 1783 1323 

0.9 2294 1709 1339 2706 2042 1525 

1 2581 1931 1520 3039 2301 1726 

1.1 2868 2153 1701 3372 2560 1928 

1.2 3156 2375 1882 3705 2819 2130 

 

 

 
Table 2.SM.2: Remaining carbon dioxide budget from 1 January 2018 reduced by the effect of non-CO2 forcers. Budgets 

are for different levels of warming from 2006–2015 for a normal distribution of TCRE based on the AR5 likely range of 

0.2°C to 0.7°C per 1000 GtCO2. 290 GtCO2 have been removed to account for emissions between the start of 2011 and 

the end of 2017. This method employed the RNCTC estimates of non-CO2 temperature change until the time of net zero 

CO2 emissions. Additional global warming is expressed as changes in global near-surface air temperature. 

 

  MAGICC  FAIR 
Remaining Carbon 
Budgets (GtCO2) 
Additional warming 
from 2006–2015 
(°C) 

MAGICC 
RNCTC 
(°C) TCRE 33% TCRE 50% TCRE 67% 

FAIR 
RNCTC 
(°C)  TCRE 33% TCRE 50% TCRE 67% 

0.3 0.14 184 77 9 0.06 402 245 146 

0.4 0.15 434 270 166 0.08 629 421 289 

0.5 0.16 681 461 322 0.10 856 596 433 

0.6 0.18 930 654 480 0.12 1083 772 576 

0.7 
0.19 

1177 845 635 
0.14 

1312 949 720 

0.8 
0.20 

1427 1038 793 
0.16 

1539 1125 863 

0.9 0.22 1674 1229 948 0.18 1766 1300 1006 

1 0.23 1924 1422 1106 0.20 1993 1476 1149 

1.1 0.24 2171 1613 1262 0.22 2223 1653 1294 

1.2 0.26 2421 1806 1419 0.25 2449 1829 1437 

 

 

 

2.SM.1.1.2.2 Checks on approach 

 

A simple approach to infer the carbon budget contribution from non-CO2 forcers has been proposed based on 

global warming potential and is found to hold for a wide range of mitigation scenarios (Allen et al., 2018) This 

is based on an empirical relationship between peak temperature, TCRE, cumulative CO2 emissions (𝐺CO2), 

non-CO2 forcing (∆𝐹non-CO2) and the Absolute Global Warming Potential of CO2 (AGWP𝐻(CO2)) over time 

horizon H, taken to be 100 years: 

 

 ∆𝑇peak   ≈ TCRE ×  (𝐺CO2 + ∆𝐹non-CO2  × (𝐻 AGWP𝐻(CO2⁄ ))) (2.SM.1) 
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This method reduces the budget by an amount proportional to the change in non-CO2 forcing. To determine 

this non-CO2 forcing contribution, a reference non-CO2 forcing contribution (RNCFC) is estimated from the 

MAGICC and FAIR runs. The RNCFC is defined as ∆𝐹non-CO2 in Equation 2.SM.1, which is a watts-per-

metre-squared difference in the non-CO2 effective radiative forcing between the 20 years before peak 

temperature is reached and 1996–2015. This provides an estimate of the non-CO2 forcing contribution to the 

change in carbon budget. A similar calculation was performed for aerosol forcing in isolation (∆𝐹aer) and the 

results showed that the weakening aerosol forcing is the largest contributor to the smaller carbon budget, 

compared to the CO2-only budget. AGWP100 values are taken from AR5 (Myhre et al., 2013) and the 

resultant remaining carbon budgets are given in Table 2.SM.3. This method reduces the remaining carbon 

budget by 1091 GtCO2 per Wm−2 of non-CO2 effective radiative forcing (with a 5% to 95% range of 886 to 

1474 GtCO2). These results show good agreement to those computed with the RNCTC method from Table 

2.SM.2, adding confidence to both methods. The RNCFC method is approximate and the choice of periods 

to use for averaging forcing is somewhat subjective, so the RNCTC is preferred over the RNCFC for this 

assessment.  

 
Table 2.SM.3: Remaining carbon dioxide budgets from 1 January 2018 reduced by the effect of non-CO2 forcers 

calculated by using a simple empirical approach based on non-CO2 forcing (RNCFC) computed by the FAIR model. 

Budgets are for different levels of warming from 2006–2015 and for a normal distribution of TCRE based on the AR5 

likely range of 0.2°C to 0.7°C per 1000 GtCO2. 290 GtCO2 have been removed to account for emissions between the start 

of 2011 and the end of 2017. Additional global warming is expressed as changes in global near-surface air temperature. 

 
 FAIR 

Remaining  
Budgets (GtCO2) 
Additional warming  
from 2006-2015 (°C) 

FAIR  
RNCFC (Wm−2) TCRE 33% TCRE 50% TCRE 67% 

0.3 0.191 363 168 45 

0.4 0.211 629 368 204 

0.5 0.232 893 568 362 

0.6 
0.253 1157 767 521 

0.7 
0.273 1423 967 680 

0.8 
0.294 1687 1166 838 

0.9 0.314 1952 1366 997 

1 0.335 2216 1566 1155 

1.1 0.356 2481 1765 1314 

1.2 0.376 2746 1965 1473 

 

 

2.SM.1.1.2.3 Uncertainties  

 

Uncertainties are explored across several lines of evidence and summarized in Table 2.2 of the main report. 

Expert judgement is used to estimate the overall uncertainty and to estimate the amount of 100 GtCO2 that is 

removed to account for possible missing permafrost and wetlands feedbacks (see Section 2.2). Irrespective of 

the metric used to estimate global warming, the uncertainty in global warming since pre-industrial levels 

(1850–1900) up to the 2006–2015 reference period as estimated in Chapter 1 is of the order of 0.1°C (likely 

range). This uncertainty affects how close warming since pre-industrial levels is to the 1.5°C and 2°C limits. 

To illustrate this impact, the remaining carbon budgets for a range of future warming thresholds between 

0.3°C and 1.2°C above present-day are analysed. The uncertainty in 2006–2015 warming compared to 1850–

1900 relates to a ±250 GtCO2 uncertainty in carbon budgets for a best-estimate TCRE. 

 

A measure of the uncertainty due to variations in the consistent level of non-CO2 mitigation at the time that 

net zero CO2 emissions are reached in pathways is analysed by a quantile regression of each pathway’s 

median peak temperature against its corresponding median RNCTC (evaluated with the FAIR model), for 

the 5th, median and 95th percentiles of scenarios. A variation of approximately ±0.1°C around the median 

RNCTC is observed for median peak temperatures between 0.3° and 1.2°C above the 2006–2015 mean. This 

variation is equated to a ±250 GtCO2 uncertainty in carbon budgets for a median TCRE estimate of about 
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0.45°C per 1000 GtCO2. An uncertainty of −400 to +200 GtCO2 is associated with the non-CO2 forcing and 

response. This is analysed from a regression of 5th and 95th percentile RNCTC against 5th and 95th 

percentile peak temperature calculated with FAIR, compared to the median RNCTC response. These 

uncertainty contributions are shown in Table 2.2 in the main chapter 

 

The effects of uncertainty in the TCRE distribution were gauged by repeating the remaining budget estimate 

for a log-normal distribution of the AR5 likely range. This reduces the median TCRE from 0.45°C per 1000 

GtCO2 to 0.38°C per 1000 GtCO2 (see Table 2.SM.1.1). Table 2.SM.1.4 presents these remaining budgets 

and shows that around 200 GtCO2 would be added to the budget by assuming a log-normal likely range. The 

assessment and evidence supporting either distribution is discussed in the main chapter. 

 
Table 2.SM.4: Remaining carbon dioxide budget from 1 January 2018 reduced by the effect of non-CO2 forcers. 

Numbers are differences between estimates of the remaining budget made with the log-normal distribution compared to 

that estimated with a normal distribution of TCRE based on the AR5 likely range (see Table 2.SM.1). 290 GtCO2 have 

been removed to account for emissions between the start of 2011 and the end of 2017. This method employed the FAIR 

model RNCTC estimates of non-CO2 temperature response. Additional global warming is expressed as changes in 

global near-surface air temperature. 

 
Remaining  
Budgets (GtCO2) 
 

Log-Normal Minus Normal TCRE Distribution  

Additional warming 
from  
 2006–2015 (°C) 

TCRE 33% TCRE 50% TCRE 67% 

0.3 110 89 50 

0.4 146 118 66 

0.5 183 148 82 

0.6 219 177 99 

0.7 255 207 115 

0.8 291 236 131 

0.9 328 265 148 

1 364 294 164 

1.1 400 324 180 

1.2 436 353 197 

 

 

Uncertainties in past CO2 emissions ultimately impact estimates of the remaining carbon budgets for 1.5°C 

or 2°C. Uncertainty in CO2 emissions induced by past land-use and land-cover changes contribute most, 

representing about 240 GtCO2 from 1870 to 2017. Yet this uncertainty is substantially reduced when 

deriving cumulative CO2 emissions from a recent period. The cumulative emissions from the 2006–2015 

reference period to 2017 used in this report are approximately 290 GtCO2 with an uncertainty of about 20 

GtCO2. 

 

 

 

2.SM.1.2 Integrated Assessment Models  

 

The set of process-based integrated assessment models (IAMs) that provided input to this assessment is not 

fundamentally different from those underlying the IPCC AR5 assessment of transformation pathways 

(Clarke et al., 2014), and an overview of these integrated modelling tools can be found there. However, there 

have been a number of model developments since AR5, in particular improving the sectoral detail of IAMs 

(Edelenbosch et al., 2017b), the representation of solar and wind energy (Creutzig et al., 2017; Johnson et al., 

2017; Luderer et al., 2017; Pietzcker et al., 2017), the description of bioenergy and food production and 

associated sustainability trade-offs (Havlík et al., 2014; Weindl et al., 2017; Bauer et al., 2018; Frank et al., 

2018), the representation of a larger portfolio of carbon dioxide removal (CDR) technologies (Chen and 

Tavoni, 2013; Marcucci et al., 2017; Strefler et al., 2018b), the accounting of behavioural change (van 

Sluisveld et al., 2016; McCollum et al., 2017; van Vuuren et al., 2018) and energy demand developments 

(Edelenbosch et al., 2017a, c; Grubler et al., 2018), and the modelling of sustainable development 
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implications (van Vuuren et al., 2015; Bertram et al., 2018), for example, relating to water use (Bonsch et al., 

2014; Hejazi et al., 2014; Fricko et al., 2016; Mouratiadou et al., 2016, 2018), access to clean water and 

sanitation (Parkinson et al., in press), materials use (Pauliuk et al., 2017), energy access (Cameron et al., 

2016), air quality (Rao et al., 2017), and bioenergy use and food security (Frank et al., 2017; Humpenöder et 

al., 2018). Furthermore, since AR5, a harmonized model documentation of IAMs and underlying 

assumptions has been established within the framework of the EU ADVANCE project, which is available at 

http://www.fp7-advance.eu/content/model-documentation.    

 

 

2.SM.1.2.1 Short Introduction to the Scope, Use and Limitations of Integrated Assessment Modelling 

 

IAMs are characterized by a dynamic representation of coupled systems, including energy, land, agricultural, 

economic and climate systems (Weyant, 2017). They are global in scope and typically cover sufficient 

sectors and sources of greenhouse gas emissions to project anthropogenic emissions and climate change and 

identify the consistency of different pathways with long-term goals of limiting warming to specific levels 

(Clarke et al., 2014). IAMs can be applied in a forward-looking manner to explore internally consistent 

socio-economic–climate futures, often extrapolating current trends under a range of assumptions or using 

counterfactual “no policy” assumptions to generate baselines for subsequent climate policy analysis. They 

can also be used in a back-casting mode to explore the implications of climate policy goals and climate 

targets for systems transitions and near-to-medium-term action. In most IAM-based studies, both 

applications of IAMs are used concurrently (Clarke et al., 2009; Edenhofer et al., 2010; Luderer et al., 2012; 

Kriegler et al., 2014, 2015b, 2016; Riahi et al., 2015; Tavoni et al., 2015). Sometimes the class of IAMs is 

defined more narrowly as the subset of integrated pathway models with an economic core and equilibrium 

assumptions on supply and demand, although non-equilibrium approaches to integrated assessment 

modelling exist (Guivarch et al., 2011; Mercure et al., 2018). IAMs with an economic core describe 

consistent price–quantity relationships, where the “shadow price” of a commodity generally reflects its 

scarcity in the given setting. To this end, the price of greenhouse gas emissions emerging in IAMs reflects 

the restriction of future emissions imposed by a warming limit (Cross-Chapter Box 5 in Chapter 2, Section 

2.SM.1.2.2). Such a price needs to be distinguished from suggested levels of emissions pricing in 

multidimensional policy contexts that are adapted to existing market environments and often include a 

portfolio of policy instruments (Chapter 2, Section 2.5.2) (Stiglitz et al., 2017). 

 

Detailed-process IAMs that describe energy–land transitions on a process level are critically different from 

stylized cost–benefit IAMs that aggregate such processes into stylized abatement cost and climate damage 

relationships to identify cost-optimal responses to climate change (Weyant, 2017). A key component of cost–

benefit IAMs is the representation of climate damages, which has been debated in the recent literature 

(Revesz et al., 2014; Cai et al., 2015; Lontzek et al., 2015; Burke et al., 2016; Stern, 2016). In the meantime, 

new approaches and estimates for improving the representation of climate damages are emerging (Dell et al., 

2014; Burke et al., 2015, 2018; Hsiang et al., 2017) (Chapter 3, Box 3.6). A detailed discussion of the 

strengths and weaknesses of cost-benefit IAMs is provided in AR5 (Clarke et al., 2014; Kolstad et al., 2014; 

Kunreuther et al., 2014) (see also Cross-Chapter Box 5 in Chapter 2). The assessment of 1.5°C-consistent 

pathways in Chapter 2 relies entirely on detailed-process IAMs. These IAMs have so far rarely attempted a 

full representation of climate damages on socio-economic systems, mainly for three reasons: a focus on the 

implications of mitigation goals for transition pathways (Clarke et al., 2014); the computational challenge to 

represent, estimate and integrate the complete range of climate impacts on a process level (Warszawski et al., 

2014); and ongoing fundamental research on measuring the breadth and depth of how biophysical climate 

impacts can affect societal welfare (Dennig et al., 2015; Adler et al., 2017; Hallegatte and Rozenberg, 2017). 

While some detailed-process IAMs account for climate impacts in selected sectors, such as agriculture 

(Stevanović et al., 2016), these IAMs do not take into account climate impacts as a whole in their pathway 

modelling. The 1.5°C and 2°C-consistent pathways available to this report hence do not reflect climate 

impacts and adaptation challenges below 1.5°C and 2°C, respectively. Pathway modelling to date is also not 

able to identify socio-economic benefits of avoided climate damages between 1.5°C-consistent pathways and 

pathways leading to higher warming levels. These limitations are important knowledge gaps (Chapter 2, 

Section 2.6) and are a subject of active research. Due to these limitations, the use of the integrated pathway 

literature in this report is concentrated on the assessment of mitigation action to limit warming to 1.5°C, 

while the assessment of impacts and adaptation challenges in 1.5°C-warmer worlds relies on a different body 

http://www.fp7-advance.eu/content/model-documentation
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of literature (see Chapters 3 to 5).  

 

The use of IAMs for climate policy assessments has been framed in the context of solution-oriented 

assessments (Edenhofer and Kowarsch, 2015; Beck and Mahony, 2017). This approach emphasizes the 

exploratory nature of integrated assessment modelling to produce scenarios of internally consistent, goal-

oriented futures. They describe a range of pathways that achieve long-term policy goals, and at the same 

time highlight trade-offs and opportunities associated with different courses of action. This literature has 

noted, however, that such exploratory knowledge generation about future pathways cannot be completely 

isolated from societal discourse, value formation and decision making and therefore needs to be reflective of 

its performative character (Edenhofer and Kowarsch, 2015; Beck and Mahony, 2017). This suggests an 

interactive approach which engages societal values and user perspectives in the pathway production process. 

It also requires transparent documentation of IAM frameworks and applications to enable users to 

contextualize pathway results in the assessment process. Integrated assessment modelling results assessed in 

AR5 were documented in Annex II of AR5 (Krey et al., 2014b), and this Supplementary Material aims to 

document the IAM frameworks that fed into the assessment of 1.5°C-consistent pathways in Chapter 2 of 

this report. It draws upon increased efforts to extend and harmonize IAM documentations1 (Section 

2.SM.1.2.5). Another important aspect for the use of IAMs in solution-oriented assessments is building trust 

in their applicability and validity. The literature has discussed approaches to IAM evaluation (Schwanitz, 

2013; Wilson et al., 2017), including model diagnostics (Kriegler et al., 2015a; Wilkerson et al., 2015; 

Craxton et al., 2017) and comparison with historical developments (Wilson et al., 2013; van Sluisveld et al., 

2015).  

 

 

2.SM.1.2.2 Economics and Policy Assumptions in IAMs 

 

Experiments with IAMs most often create scenarios under idealized policy conditions which assume that 

climate change mitigation measures are undertaken where and when they are the most effective (Clarke et 

al., 2014). Such ‘idealized implementation’ scenarios assume that a global price on GHG emissions is 

implemented across all countries, all economic sectors, and rises over time through 2100 in a way that will 

minimize discounted economic costs. The emissions price reflects marginal abatement costs and is often 

used as a proxy of climate policy costs (see Chapter 2, Section 2.5.2). Scenarios developed under these 

assumptions are often referred to as ‘least-cost’ or ‘cost-effective’ scenarios because they result in the lowest 

aggregate global mitigation costs when assuming that global markets and economies operate in a frictionless, 

idealized way (Clarke et al., 2014; Krey et al., 2014b). However, in practice, the feasibility (see Cross-

Chapter Box 3 in Chapter 1) of a global carbon pricing mechanism deserves careful consideration (see 

Chapter 4, Section 4.4). Scenarios from idealized conditions provide benchmarks for policymakers, since 

deviations from the idealized approaches capture important challenges for socio-technical and economic 

systems and resulting climate outcomes. 

 

Model experiments diverging from idealized policy assumptions aim to explore the influence of policy 

barriers to implementation of globally cost-effective climate change mitigation, particularly in the near term. 

Such scenarios are often referred to as ‘second-best’ scenarios. They include, for instance, (i) fragmented 

policy regimes in which some regions champion immediate climate mitigation action (e.g., by 2020) while 

other regions join this effort with a delay of one or more decades (Clarke et al., 2009; Blanford et al., 2014; 

Kriegler et al., 2015b), (ii) prescribed near-term mitigation efforts (until 2020 or 2030) after which a global 

climate target is adopted (Luderer et al., 2013, 2016; Rogelj et al., 2013b; Riahi et al., 2015), or (iii) 

variations in technology preferences in mitigation portfolios (Edenhofer et al., 2010; Luderer et al., 2012; 

Tavoni et al., 2012; Krey et al., 2014a; Kriegler et al., 2014; Riahi et al., 2015; Bauer et al., 2017, 2018). 

Energy transition governance adds a further layer of potential deviations from cost-effective mitigation 

pathways and has been shown to lead to potentially different mitigation outcomes (Trutnevyte et al., 2015; 

Chilvers et al., 2017; Li and Strachan, 2017). Governance factors are usually not explicitly accounted for in 

IAMs.  

 

Pricing mechanisms in IAMs are often augmented by assumptions about regulatory and behavioural climate 

                                                      
1http://www.fp7-advance.eu/content/model-documentation 
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policies in the near- to mid-term (Bertram et al., 2015; van Sluisveld et al., 2016; Kriegler et al., 2018). The 

choice of GHG price trajectory to achieve a pre-defined climate goal varies across IAMs and can affect the 

shape of mitigation pathways. For example, assuming exponentially increasing CO2 pricing to stay within a 

limited CO2 emissions budget is consistent with efficiency considerations in an idealized economic setting 

but can lead to temporary overshoot of the carbon budget if carbon dioxide removal (CDR) technologies are 

available. The pricing of non-CO2 greenhouse gases is often pegged to CO2 pricing using their global 

warming potentials (mostly GWP100) as exchange rates (see Cross-Chapter Box 2 in Chapter 1). This leads to 

stringent abatement of non-CO2 gases in the medium- to long-term, but also incentivizes continued 

compensation of these gases by CDR even after their full abatement potential is exploited, thus contributing 

to the pattern of peaking and declining temperatures in many mitigation pathways.  

 

The choice of economic discount rate is usually reflected in the increase of GHG pricing over time and thus 

also affects the timing of emissions reductions. For example, the deployment of capital-intensive abatement 

options like renewable energy can be pushed back by higher discount rates. IAMs make different 

assumptions about the discount rate, with many of them assuming a social discount rate of ca. 5% per year 

(Clarke et al., 2014). In a survey of modelling teams contributing scenarios to the database for this 

assessment, discount rate assumptions varied between 2% yr−1 and 8% yr−1 depending on whether social 

welfare considerations or the representation of market actor behaviour is given larger weight. Some IAMs 

assume fixed charge rates that can vary by sector, taking into account the fact that private actors require 

shorter time horizons to amortize their investment. The impact of the choice of discount rate on mitigation 

pathways is underexplored in the literature. In general, the choice of discount rate is expected to have a 

smaller influence on low-carbon technology deployment schedules for tighter climate targets, as they leave 

less flexibility in the timing of emissions reductions. However, the introduction of large-scale CDR options 

might increase sensitivity again. It was shown, for example, that if a long-term CDR option like direct air 

capture with CCS (DACCS) is introduced in the mitigation portfolio, lower discount rates lead to more early 

abatement and less CDR deployment (Chen and Tavoni, 2013). If discount rates vary across regions, with 

higher costs of capital in developing countries, industrialized countries mitigate more and developing 

countries less, resulting in higher overall mitigation costs compared to a case with globally uniform 

discounting (Iyer et al., 2015). More work is needed to study the sensitivity of the deployment schedule of 

low-carbon technologies to the choice of the discount rate. However, as overall emissions reductions need to 

remain consistent with the choice of climate goal, mitigation pathways from detailed process-based IAMs 

are still less sensitive to the choice of discount rate than cost-optimal pathways from cost-benefit IAMs (see 

Box 6.1 in Clarke et al., 2014) which have to balance near-term mitigation with long-term climate damages 

across time (Nordhaus, 2007; Dietz and Stern, 2008; Kolstad et al., 2014; Pizer et al., 2014) (see Cross-

Chapter Box 5 in Chapter 2).  

 

 

2.SM.1.2.3 Technology Assumptions and Transformation Modelling 

 

Although model-based assessments project drastic near-, medium- and long-term transformations in 1.5°C 

scenarios, projections also often struggle to capture a number of hallmarks of transformative change, 

including disruption, innovation, and non-linear change in human behaviour (Rockström et al., 2017). 

Regular revisions and adjustments are standard for expert and model projections, for example, to account for 

new information such as the adoption of the Paris Agreement. Costs and deployment of mitigation 

technologies will differ in reality from the values assumed in the full-century trajectories of the model 

results. CCS and nuclear provide examples of where real-world costs have been higher than anticipated 

(Grubler, 2010; Rubin et al., 2015), while solar PV is an example where real-world costs have been lower 

(Creutzig et al., 2017; Figueres et al., 2017; Haegel et al., 2017). Such developments will affect the low-

carbon transition for achieving stringent mitigation targets. This shows the difficulty of adequately 

estimating social and technological transitions and illustrates the challenges of producing scenarios 

consistent with a quickly evolving market (Sussams and Leaton, 2017). 

 

Behavioural and institutional frameworks affect the market uptake of mitigation technologies and socio-

technical transitions (see Chapter 4, Section 4.4). These aspects co-evolve with technology change and 

determine, among others, the adoption and use of low-carbon technologies (Clarke et al., 2014), which in 

turn can affect both the design and performance of policies (Kolstad et al., 2014; Wong-Parodi et al., 2016). 
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Predetermining technological change in models can preclude the examination of policies that aim to promote 

disruptive technologies (Stanton et al., 2009). In addition, knowledge creation, networks, business strategies, 

transaction costs, microeconomic decision-making processes and institutional capacities influence (no-

regret) actions, policy portfolios and innovation processes (and vice versa) (Mundaca et al., 2013; Lucon et 

al., 2014; Patt, 2015; Wong-Parodi et al., 2016; Geels et al., 2017); however, they are difficult to capture in 

equilibrium or cost-minimization model-based frameworks (Laitner et al., 2000; Wilson and Dowlatabadi, 

2007; Ackerman et al., 2009; Ürge-Vorsatz et al., 2009; Mundaca et al., 2010; Patt et al., 2010; Brunner and 

Enting, 2014; Grubb et al., 2014; Patt, 2015; Turnheim et al., 2015; Geels et al., 2017; Rockström et al., 

2017). It is argued that assessments that consider greater end-user heterogeneity, realistic market behaviour, 

and end-use technology details can address a more realistic and varied mix of policy instruments, innovation 

processes and transitional pathways (Ürge-Vorsatz et al., 2009; Mundaca et al., 2010; Wilson et al., 2012; 

Lucon et al., 2014; Li et al., 2015; Trutnevyte et al., 2015; Geels et al., 2017; McCollum et al., 2017). So-

called ‘rebound’ effects in which behavioural changes partially offset policies, such as consumers putting 

less effort into demand reduction when efficiency is improved, are captured to a varying, and in many cases 

only limited, degree in IAMs. 

 

There is also substantial variation in mitigation options represented in IAMs (see Section 2.SM.1.2.6) which 

depend on the one hand on the constraints of individual modelling frameworks and on the other hand on 

model development decisions influenced by modellers’ beliefs and preferences (Chapter 2, Section 2.3.1.2). 

Further limitations can arise on the system level. For example, trade-offs between material use for energy 

versus other uses are not fully captured in many IAMs (e.g., petroleum for plastics, biomass for material 

substitution). An important consideration for the analysis of mitigation potential is the choice of baseline. 

For example, IAMs often assume, in line with historical experience, that economic growth leads to a 

reduction in local air pollution as populations become richer (i.e., an environmental Kuznets curve) (Rao et 

al., 2017). In such cases, the mitigation potential is small because reference emissions that take into account 

this economic development effect are already low in scenarios that see continued economic development 

over their modelling time horizon. Assumptions about reference emissions are important because high 

reference emissions lead to high perceived mitigation potentials and potential overestimates of the actual 

benefit, while low reference emissions lead to low perceived benefits of mitigation measures and thus less 

incentive to address these important climate- and air-pollutants (Gschrey et al., 2011; Shindell et al., 2012; 

Amann et al., 2013; Rogelj et al., 2014; Shah et al., 2015; Velders et al., 2015).  

 

 

2.SM.1.2.4 Land Use and Bioenergy Modelling in IAMs 

 

The IAMs used in the land-use assessment in this chapter and that are based on the SSPs (Popp et al., 2017; 

Riahi et al., 2017) all include an explicit land model.2 These land models calculate the supply of food, feed, 

fibre, forestry, and bioenergy products (see also Chapter 2, Box 2.1). The supply depends on the amount of 

land allocated to the particular good, as well as the yield for the good. Different IAMs have different means 

of calculating land allocation and different assumptions about yield, which is typically assumed to increase 

over time, reflecting technological progress in the agricultural sector (see Popp et al., 2014 for examples). In 

these models, the supply of bioenergy (including BECCS) depends on the price and yield of bioenergy, the 

policy environment (e.g., any taxes or subsidizes affecting bioenergy profits), and the demand for land for 

other purposes. Dominant bioenergy feedstocks assumed in IAMs are woody and grassy energy crops 

(second-generation biomass) in addition to residues. Some models implement a “food first” approach, where 

food demands are met before any land is allocated to bioenergy. Other models use an economic land 

allocation approach, where bioenergy competes with other land uses depending on profitability. Competition 

between land uses depend strongly on socio-economic drivers such as population growth and food demand, 

and are typically varied across scenarios. When comparing global bioenergy yields from IAMs with the 

bottom-up literature, care must be taken that assumptions are comparable. An in-depth assessment of the 

land-use components of IAMs is outside the scope of this Special Report.  

                                                      
2 There are other IAMs that do not include an explicit land-use representation. These models use supply curves to 

represent bioenergy; that is, they have an exogenously specified relationship between the quantity of bioenergy supplied 

and the price of bioenergy. These models include land-use change (LUC) emissions in a similar manner, with the 

amount of emissions depending on the amount of bioenergy supplied. For some of these models, LUC emissions are 

assumed to be zero, regardless of the amount of bioenergy. 
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In all IAMs that include a land model, the land-use change emissions associated with these changes in land 

allocation are explicitly calculated. Most IAMs use an accounting approach to calculating land-use change 

emissions, similar to Houghton et al. (2012). These models calculate the difference in carbon content of land 

due to the conversion from one type to another and then allocate that difference across time in some manner. 

For example, increases in forest cover will increase terrestrial carbon stock, but that increase may take 

decades to accumulate. If forestland is converted to bioenergy, however, those emissions will enter the 

atmosphere more quickly. 

 

IAMs often account for carbon flows and trade flows related to bioenergy separately. That is, IAMs may 

treat bioenergy as “carbon neutral” in the energy system, in that the carbon price does not affect the cost of 

bioenergy. However, these models will account for any land-use change emissions associated with the land 

conversions needed to produce bioenergy. Additionally, some models will separately track the carbon uptake 

from growing bioenergy and the emissions from combusting bioenergy (assuming it is not combined with 

CCS).  

 
Table 2.SM.5: Land-use type descriptions as reported in pathways (adapted from the SSP database: 

https://tntcat.iiasa.ac.at/SspDb/)  

 

Land Use Type  Description/Examples 

Energy crops Land dedicated to second-generation energy crops. (e.g., switchgrass, Miscanthus, 
fast-growing wood species) 

Other crops Food and feed/fodder crops 

Pasture Pasture land. All categories of pasture land – not only high-quality rangeland. Based on 
FAO definition of “permanent meadows and pastures” 

Managed forest Managed forests producing commercial wood supply for timber or energy but also 
afforestation (note: woody energy crops are reported under “energy crops”) 

Natural forest Undisturbed natural forests, modified natural forests and regrown secondary forests 

Other natural land Unmanaged land (e.g., grassland, savannah, shrubland, rock ice, desert), excluding 
forests  

 

 

2.SM.1.2.5 Contributing Modelling Framework Reference Cards  

 

For each of the contributing modelling frameworks a reference card has been created highlighting the key 

features of the model. These reference cards are either based on information received from contributing 

modelling teams upon submission of scenarios to the SR1.5 database, or alternatively drawn from the 

ADVANCE IAM wiki documentation, available at http://www.fp7-advance.eu/content/model-

documentation, and updated. These reference cards are provided in part 2 of this Supplementary Material.  

 

https://tntcat.iiasa.ac.at/SspDb/
http://www.fp7-advance.eu/content/model-documentation
http://www.fp7-advance.eu/content/model-documentation
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2.SM.1.2.6 Overview of Mitigation Measures in Contributed IAM Scenarios 1 

 2 

 3 
Table 2.SM.6: Overview of the representation of mitigation measures in the integrated pathway literature, as submitted to the database supporting this report. Levels of inclusion 4 
have been elicited directly from contributing modelling teams by means of a questionnaire. The table shows the reported data. Dimensions of inclusion are explicit versus implicit, 5 
and endogenous or exogenous. An implicit level of inclusion is assigned when a mitigation measure is represented by a proxy like a marginal abatement cost curve in the agriculture, 6 
forestry and other land-use (AFOLU) sector without modelling individual technologies or activities. An exogenous level of inclusion is assigned when a mitigation measure is not 7 
part of the dynamics of the modelling framework but can be explored through alternative scenarios.  8 
 9 
 10 
 11 
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  Explicit Implicit  

 Endogenous  A C  

 Exogenous  B D  

     

 E Not represented by model 

     

Demand-Side Measures                                           

Energy efficiency improvements in energy end-uses (e.g., appliances in buildings, engines in transport, 
industrial processes) A A C D A D B D B A A A A A C C B C C B C 

Electrification of transport demand (e.g., electric vehicles, electric rail) A A A D A A B A A A A A A A C A A A A B A 
Electrification of energy demand for buildings (e.g., heat pumps, electric/induction stoves) A A A D A A B A D A A C C A C A A A A B C 

Electrification of industrial energy demand (e.g., electric arc furnace, heat pumps, electric boilers, 
conveyor belts, extensive use of motor control, induction heating, industrial use of microwave heating) A A C D A C D A D A A C C A C A A C C B C 

CCS in industrial process applications (cement, pulp and paper, iron steel, oil and gas refining, chemicals) A E A D D A E E C A A E E A E A A E A B C 
Higher share of useful energy in final energy (e.g., insulation of buildings, lighter weight vehicles, 
combined heat and power generation, district heating, etc.) C E C D A C D D C B B D D A C A A A C D C 

Reduced energy and service demand in industry (e.g., process innovations, better control) C C C D C C C D D B B C C B C C B B C C C 
Reduced energy and service demand in buildings (e.g., via behavioural change, reduced material and floor 
space demand, infrastructure and buildings configuration) C C C D C C C D D C C D D C C C B B C C C 

Reduced energy and service demand in transport (e.g., via behavioural change, new mobility business 
models, modal shift in individual transportation, eco-driving, car/bike-sharing schemes) C C C D C A B D B B C C C C C C B B C C C 

Reduced energy and service demand in international transport (international shipping and aviation) A E A D D A C E B B B C C C C B B A D C C 
Reduced material demand via higher resource efficiency, structural change, behavioural change and 
material substitution (e.g., steel and cement substitution, use of locally available building materials) A E E D D D C E D B B E E B E D B E C C C 
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Levels of Inclusion Model Names  
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  Explicit Implicit  

 Endogenous  A C  

 Exogenous  B D  

     

 E Not represented by model 

     
Urban form (including integrated on-site energy, influence of avoided transport and building energy 
demand) E E E D D E E D E B E D D E E E B E E C E 

Switch from traditional biomass and solid fuel use in the residential sector to modern fuels, or enhanced 
combustion practices, avoiding wood fuel D A A D D B E A A A A E E A E A A B B C A 

Dietary changes, reducing meat consumption A E E D D A E E B E E E B B E B B B B E E 
Substitution of livestock-based products with plant-based products (cultured meat, algae-based fodder) C E E D E E E E E E E E B B E E E E E E E 
Food processing (e.g., use of renewable energies, efficiency improvements, storage or conservation) C E E D E E E E E C C E E E E B B E D E E 
Reduction of food waste (including reuse of food processing refuse for fodder) B E E D E D E E E E E E D B E B B E B E E 
Supply-Side Measures                                           

Decarbonization of Electricity:                                           

Solar photovoltaics (PV) A A A D A A B A A A A A A A A A A A A A A 
Concentrated solar power (CSP) E E A D E A E A E A A A A A A A A A A A A 
Wind (on-shore and off-shore) A A A D A A B A A A A A A A A A A A A A A 
Hydropower A A A D A A B A A A A A A B A A A A A A A 
Bioelectricity, including biomass co-firing  A A A D A A B A A A A A A A A A A A A A A 
Nuclear energy A A A D A A B A A A A A A A A A A A A A A 
Advanced, small modular nuclear reactor designs (SMR) E E A D E A E E E C C E E E A E E E E C E 
Fuel cells (hydrogen) E E A D A A E A A A A E E A A A A A A A A 
CCS at coal- and gas-fired power plants A A A D A A B E A A A A A A A A E A A B A 
Ocean energy (including tidal and current energy) E E E D E E D A E A A E E E E E E A E A E 
High-temperature geothermal heat A B A D A A D E A A A E E B E A A A E C E 
Decarbonization of Non-Electric Fuels:                                           

Hydrogen from biomass or electrolysis E A A D A A E A A A C E E A A A A A A A E 
1st generation biofuels A E A D A A B E A A A C A A A B B A B A A 
Second-generation biofuels (grassy or woody biomass to liquids) A A A D A A B A A A A E A A A A A A A A A 
Algae biofuels E E A D E E E C E E C E E E E E E E E A E 
Power-to-gas, methanization, synthetic fuels E C A D A E E A E E B E E E A A A E E E E 
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Levels of Inclusion Model Names  
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  Explicit Implicit  

 Endogenous  A C  

 Exogenous  B D  

     

 E Not represented by model 

     

Solar and geothermal heating E E A D E E B A E A A E E E E A A A A A E 
Nuclear process heat E E E D E E E E E A A E E E E A A E E C E 
Other Processes:                                           

Fuel switching and replacing fossil fuels by electricity in end-use sectors (partially a demand-side measure) A A C D A A B A A A A C C A C A A A A A A 
Substitution of halocarbons for refrigerants and insulation C E E D E C C E E E E E E A E A A A D E C 
Reduced gas flaring and leakage in extractive industries C E A D D C C E E E A E E C E B B A C D D 
Electrical transmission efficiency improvements, including smart grids B E C D A E E E E B B E E B C E E E E B E 
Grid integration of intermittent renewables E E C D A C E C D A A E E C C C C A A D C 
Electricity storage E E A D A C E A E A C E E C C A A A A E C 

AFOLU Measures                                           

Reduced deforestation, forest protection, avoided forest conversion A E A D B A E E B D D E B B E A A B A D C 
Forest management C E E D E C E E C D D E D B E A A B E D C 
Reduced land degradation, and forest restoration C E D D E E E E C D D E E B E E E B E D E 
Agroforestry and silviculture E E D D E E E E E D D E E E E E E E E E E 
Urban and peri-urban agriculture and forestry E E E D E E E E E D D E E E E E E E E E E 
Fire management and (ecological) pest control C E D D E C E E E D D E E E E E E E E E E 
Changing agricultural practices that enhance soil carbon C E E D E E E E E D D E E E E E E B E D E 
Conservation agriculture E E E D E E E E E D D E E E E A A E E E C 
Increasing agricultural productivity A E A D A B E E B D D E A B E A A E A D C 
Methane reductions in rice paddies C E C D C C C E C D D E C C E A A B C D C 
Nitrogen pollution reductions (e.g., by fertilizer reduction, increasing nitrogen fertilizer efficiency, 
sustainable fertilizers) C E C D C C C E E D D E A C E A A B C D C 

Livestock and grazing management, for example, methane and ammonia reductions in ruminants through 
feeding management or feed additives, or manure management for local biogas production to replace 
traditional biomass use 

C E C D C C C E C D D E A C E A A B C D C 

Manure management C E C D C C C E C D D E C C E A A E C E C 
Influence on land albedo of land-use change E E E D E E E E E D D E E E E E E E D D E 
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  Explicit Implicit  

 Endogenous  A C  

 Exogenous  B D  

     

 E Not represented by model 

     

Carbon Dioxide (Greenhouse Gas) Removal                                           

Biomass use for energy production with carbon capture and sequestration (BECCS) (through combustion, 
gasification, or fermentation) A A A D A A E E A A A A A A A A E A A B A 

Direct air capture and sequestration (DACS) of CO2 using chemical solvents and solid absorbents, with 
subsequent storage E E E D E E E E E E E E E E A E E E A E E 

Mineralization of atmospheric CO2 through enhanced weathering of rocks E E E D E E E E E E E E E E E E E E E E E 
Afforestation/Reforestation A E A C A A E E A E E E B B E A A B A D A 
Restoration of wetlands (e.g., coastal and peat-land restoration, blue carbon) E E E D E E E E E E E E E E E E E E E E E 
Biochar  E E E D E E E E E E E E E E E E E E E E E 
Soil carbon enhancement, enhancing carbon sequestration in biota and soils, e.g. with plants with high 
carbon sequestration potential (also AFOLU measure) E E E D E E E E E E E E D E E A A B C E E 

Carbon capture and usage (CCU); bioplastics (bio-based materials replacing fossil fuel uses as feedstock in 
the production of chemicals and polymers), carbon fibre E E E D E C E E E A B E E A E E E E E A E 

Material substitution of fossil CO2 with bio-CO2 in industrial applications (e.g., the beverage industry) E E E D E C E E E E E E E E E E E E E E E 
Ocean iron fertilization E E E D E E E E E E E E E E E E E E E E E 
Ocean alkalinization E E E D E E E E E E E E E E E E E E E E E 
Removing CH4, N2O and halocarbons via photocatalysis from the atmosphere E E E E E E E E E E E E E E E E E E E E E 

 1 

 2 
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2.SM.1.3 Overview of SR1.5 Scenario Database Collected for the Assessment in the Chapter  

 

The scenario ensemble collected in the context of this report represents an ensemble of opportunity based on 

available published studies. The submitted scenarios cover a wide range of scenario types and thus allow 

exploration of a wide range of questions. For this to be possible, however, critical scenario selection based 

on scenario assumptions and setup is required. For example, as part of the SSP framework, a structured 

exploration of 1.5°C pathways was carried out under different future socioeconomic developments  

(Rogelj et al., 2018). This facilitates determining the fraction of successful (feasible) scenarios per SSPs 

(Table 2.SM.7), an assessment which cannot be carried out with a more arbitrary ensemble of opportunity. 

 
Table 2.SM.7: Summary of models (with scenarios in the database) attempting to create scenarios with an end-of-

century forcing of 1.9W m−2, consistent with limiting warming to below 1.5°C in 2100, and related shared policy 

assumptions (SPAs). Notes: 1 = successful scenario consistent with modelling protocol; 0 = unsuccessful scenario; x = 

not modelled; 0* = not attempted because scenarios for a 2.6 W m−2 target were already found to be unachievable in an 

earlier study. The SSP3-SPA3 scenario for a more stringent 1.9 W m−2 radiative forcing target has thus not been 

attempted anew by many modelling teams. Marker implementations for all forcing targets within each SSP have been 

selected for representing a specific SSP particularly adequately and are indicated in blue. Source: (Rogelj et al., 2018). 

 

Model Methodology 

Reported scenario 

SSP1-
SPA1 

SSP2-
SPA2 

SSP3-
SPA3 

SSP4-
SPA4 

SSP5-
SPA5 

AIM General equilibrium (GE) 1 1 0* 0 0 

GCAM4 Partial equilibrium (PE) 1 1 X 0 1 

IMAGE Hybrid (system dynamic models 
and GE for agriculture) 

1 1 0* X X 

MESSAGE-
GLOBIOM 

Hybrid (systems engineering PE 
model) 

1 1 0* X X 

REMIND-
MAgPIE 

General equilibrium (GE) 1 1 X X 1 

WITCH-
GLOBIOM 

General equilibrium (GE) 1 1 0 1 0 

 

 

2.SM.1.3.1 Configuration of SR1.5 Scenario Database  

 

The Integrated Assessment Modelling Consortium (IAMC), as part of its ongoing cooperation with Working 

Group III of the IPCC, issued a call for submissions of scenarios of 1.5°C global warming and related 

scenarios to facilitate the assessment of mitigation pathways in this special report. This database is hosted by 

the International Institute for Applied Systems Analysis (IIASA) at http://data.ene.iiasa.ac.at/sr1p5/. Upon 

approval of this report, the database of scenarios underlying this assessment will also be published. 

Computer scripts and tools used to conduct the analysis and generate figures will also be available for 

download from that website. 

 

2.SM.1.3.1.1 Criteria for submission to the scenario database 

 

Scenarios submitted to the database were required to either aim at limiting warming to 1.5°C or 2°C in the 

long term, or to provide context for such scenarios, for example, corresponding Nationally Determined 

Contribution (NDC) and baseline scenarios without climate policy. Model results should constitute an 

emissions trajectory over time, with underlying socio‐economic development until at least the year 2050 

generated by a formal model such as a dynamic systems, energy–economy, partial or general equilibrium or 

integrated assessment model. 

 

The end of the 21st century is referred to as “long term” in the context of this scenario compilation. For 

models with time horizons shorter than 2100, authors and/or submitting modelling teams were asked to 

explain how they evaluated their scenario as being consistent with 1.5°C in the long term. Ultimately, 

scenarios that only covered part of the 21st century could only be integrated into the assessment to a very 

http://data.ene.iiasa.ac.at/sr1p5/
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limited degree, as they lacked the longer-term perspective. Submissions of emissions scenarios for individual 

regions and specific sectors were possible, but no such scenarios were received. 

 

Each scenario submission required a supporting publication in a peer‐reviewed journal that was accepted on 

15 May 2018. Alternatively, the scenario must have been published by the same date in a report that has 

been determined by IPCC to be eligible grey literature (see Table 2.SM.9). As part of the submission 

process, the authors of the underlying modelling team agreed to the publication of their model results in this 

scenario database.  

 

 

2.SM.1.3.1.2 Historical consistency analysis of submitted scenarios 

 

Submissions to the scenario database were compared to the following data sources for historical periods to 

identify reporting issues.  

 

Historical emissions database (CEDS) 

Historical emissions imported from the Community Emissions Data System (CEDS) for Historical Emissions 

(http://www.globalchange.umd.edu/ceds/) have been used as a reference and for use in figures (van Marle et 

al., 2017; Hoesly et al., 2018). Historical N2O emissions, which are not included in the CEDS database, are 

compared against the RCP database (http://tntcat.iiasa.ac.at/RcpDb/). 

 

Historical IEA World Energy Balances and Statistics 

Aggregated historical time series of the energy system from the IEA World Energy Balances and Statistics 

(revision 2017) were used as a reference for validation of submitted scenarios and for use in figures. 

 

 

2.SM.1.3.1.3 Verification of completeness and harmonization for climate impact assessment 

 

Categorizing scenarios according to their long-term warming impact requires reported emissions time series 

until the end of the century of the following species: CO2 from energy and industrial processes, methane, 

nitrous oxide and sulphur. The long-term climate impact could not be assessed for scenarios not reporting 

these species, and these scenarios were hence not included in any subsequent analysis. 

 

For the diagnostic assessment of the climate impact of each submitted scenario, reported emissions were 

harmonized to historical values (base year 2010) as provided in the RCP database by applying an additive 

offset, which linearly decreased until 2050. For non-CO2 emissions where this method resulted in negative 

values, a multiplicative offset was used instead. Emissions other than the required species that were not 

reported explicitly in the submitted scenario were filled from RCP2.6 (Meinshausen et al., 2011b; van 

Vuuren et al., 2011) to provide complete emissions profiles to MAGICC and FAIR (see Section 2.SM.1.1). 

 

The harmonization and completion of non-reported emissions was only applied to the diagnostic assessment 

as input for the climate impact using MAGICC and FAIR. All figures and analysis used in the chapter 

analysis are based on emissions as reported by the modelling teams, except for column “Cumulative CO2 

emissions, harmonized” in Table 2.SM.12. 

 

 

2.SM.1.3.1.4 Validity assessment of historical emissions for aggregate Kyoto greenhouse gases 

 

The AR5 WGIII report assessed Kyoto greenhouse gases (GHG) in 2010 to fall in the range of 44.5–53.5 

GtCO2e yr−1 using the GWP100 metric from the IPCC Second Assessment Report (SAR). As part of the 

diagnostics, the Kyoto GHG aggregation was recomputed using GWP100 according to SAR, AR4 and AR5 

for all scenarios that provided sufficient level of detail for their emissions. A total of 33 scenarios from three 

modelling frameworks showed recomputed Kyoto GHG outside the year-2010 range assessed by the AR5 

WGIII report. These scenarios were excluded from all analysis of near-term emissions evolutions, in 

particular in Figures 2.6, 2.7 and 2.8, and Table 2.4. 

 

http://www.globalchange.umd.edu/ceds/
http://tntcat.iiasa.ac.at/RcpDb/
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2.SM.1.3.1.5 Plausibility assessment of near-term development 

 

Submitted scenarios were assessed for the plausibility of their near-term development across a number of 

dimensions. One issue identified were drastic reductions of CO2 emissions from the land-use sector by 2020. 

Given recent trends, this was considered implausible and all scenarios from the ADVANCE and EMF33 

studies reporting negative CO2 emissions from the land-use sector in 2020 were excluded from the analysis 

throughout this chapter. 

 

 

2.SM.1.3.1.6 Missing carbon price information 

 

Out of the 132 scenarios limiting global warming to 2°C throughout the century (see Table 2.SM.8), a total 

of twelve scenarios submitted by three modelling teams reported carbon prices of zero or missing values in 

at least one year. These scenarios were excluded from the analysis.in Section 2.5 and Figure 2.26 in Chapter 

2. 

 

 

2.SM.1.3.2 Contributions to the SR1.5 Database by Modelling Framework 

 

In total, 19 modelling frameworks submitted 529 individual scenarios-based manuscripts that were published 

or accepted for publication by 15 May 2018 (Table 2.SM.8).  
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Table 2.SM.8: Overview of submitted scenarios by modelling framework, including the categorization according to the 

climate impact (cf. Section 2.SM.1.4) and outcomes of validity and near-term plausibility assessment of pathways (cf. 

Section 2.SM.1.3.1). 
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AIM  6 1 24 10 49 90    90 

BET         16  16 

C-ROADS 2 1 2   1 6    6 

DNE21+         21  21 

FARM         13  13 

GCAM  1 2 1 3 16 23   24 47 

GEM-E3        4   4 

GENeSYS-MOD        1   1 

GRAPE         18  18 

IEA ETP        1   1 

IEA World Energy Model     1  1    1 

IMACLIM        7 12  19 

IMAGE  7 4 6 9 35 61    61 

MERGE  1   1 1 3    3 

MESSAGE  6 6 11 13 22 58    58 

POLES 4 7 5 9 3 9 37    37 

REMIND 2 11 17 16 16 31 93    93 

Shell World Energy Model        1   1 

WITCH 1 4  7 2 25 39    39 

Total 9 44 37 74 58 189 411 14 80 24 529 
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2.SM.1.3.3 Overview and Scope of Studies Available in SR1.5 Database 

Table 2.SM.9: Recent studies included in the scenario database that this chapter draws upon and their key foci 

indicating which questions can be explored by the scenarios of each study. The difference between “Scenarios 

Submitted” and “Scenarios Assessed” is due to criteria described in Section 2.SM.1.3.1. The numbers between brackets 

indicate the modelling frameworks assessed.  
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Study/Model Name Key Focus Reference Papers 
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Multimodel Studies 

SSPx-1.9 Development of new community scenarios based on 

the full SSP framework limiting end-of-century 

radiative forcing to 1.9 W m−2.  

Riahi et al. (2017) 

Rogelj et al. (2018) 
6 126 126 

ADVANCE Aggregate effect of the INDCs, comparison to 

optimal 2°C/1.5°C scenarios ratcheting up after 

2020.  

 

Vrontisi et al. (2018) 9 (6) 74 55 

 Decarbonization bottlenecks and the effects of 

following the INDCs until 2030 as opposed to 

ratcheting up to optimal ambition levels after 2020 

in terms of additional emissions locked in. 

Constraint of 400 GtCO2 emissions from energy and 

industry over 2011–2100. 

Luderer et al. (2018)    

CD-LINKS Exploring interactions between climate and 

sustainable development policies, with the aim to 

identify robust integral policy packages to achieve 

all objectives.  

McCollum et al. (2018) 8 (6)  36 36 

 Evaluating implications of short-term policies on the 

mid-century transition in 1.5°C pathways linking the 

national to the global scale. Constraint of 400 GtCO2 

emissions over 2011–2100. 

    

EMF-33 Study of the bioenergy contribution in deep 

mitigation scenarios. Constraint of 400 GtCO2 

emissions from energy and industry over 2011–

2100. 

Bauer et al. (2018) 11 

(5) 

183 86 

Single-Model Studies    

IMAGE 1.5 Understanding the dependency of 1.5°C pathways on 

negative emissions. 

van Vuuren et al. (2018)  8 8 

IIASA LED 

(MESSAGEix) 

A global scenario of low energy demand (LED) for 

sustainable development below 1.5°C without 

negative emission technologies. 

Grubler et al. (2018)  1 1 

GENeSYS-MOD Application of the open-source energy modelling 

system to the question of 1.5°C and 2°C pathways. 

Löffler et al. (2017)  1 0 

IEA WEO World Energy Outlook. OECD/IEA and IRENA 

(2017) 

 1 1 

OECD/IEA ETP Energy Technology Perspectives. IEA (2017)  1 0 

PIK CEMICS 

(REMIND) 

Study of CDR requirements and portfolios in 1.5°C 

pathways. 

Strefler et al. (2018a)  7 7 

PIK PEP 

(REMIND-MAgPIE) 

Exploring short-term policies as entry points to 

global 1.5°C pathways. 

Kriegler et al. (2018)  13 13 

PIK SD 

(REMIND-MAgPIE) 

Targeted policies to compensate risk to sustainable 

development in 1.5°C scenarios. 

Bertram et al. (2018)  12 12 

AIM SFCM Socio-economic factors and future challenges of the 

goal of limiting the increase in global average 

temperature to 1.5°C. 

Liu et al. (2018)  33 33 

C-Roads Interactions between emissions reductions and 

carbon dioxide removal. 

Holz et al. (2018)  6 6 

PIK EMC Exploring how delay closes the door to achieving 

various temperature targets, including limiting 

warming to 1.5°C 

Luderer et al. (2013)  8 8 

MESSAGE GEA Exploring the relative importance of technological, 

societal, geophysical and political uncertainties for 

limiting warming to 1.5°C and 2°C.  

Rogelj et al. (2013a, b, 

2015) 

 10 10 

AIM TERL The contribution of transport policies to the 

mitigation potential and cost of 2 °C and 1.5 °C 

goals 

Zhang et al. (2018)  6 6 

MERGE-ETL The role of direct air capture and storage (DACS) in 

1.5°C pathways. 

Marcucci et al. (2017)  3 3 

Shell SKY A technically possible, but challenging pathway for 

society to achieve the goals of the Paris Agreement. 

Shell International B.V. 

(2018) 

 1 0 
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2.SM.1.3.4 Data Collected  

 

A reporting template was developed to facilitate the collection of standardized scenario results. The template 

was structured in nine categories, and each category was divided into four priority levels: “Mandatory”, 

“High priority (Tier 1)”, “Medium priority (Tier 2)”, and “Other”. In addition, one category was included to 

collect input assumptions on capital costs to facilitate the comparison across engineering-based models. An 

overview and definitions of all variables will be made available as part of the database publication. 

 

 
Table 2.SM.10: Number of variables (time series of scenario results) per category and priority level. 

 

Category Description Mandatory  
(Tier 0) 

High Priority  
(Tier 1) 

Medium Priority 
(Tier 2) 

Other Total 

Energy Configuration of the energy system (for 
the full conversion chain of energy 
supply from primary energy extraction, 
electricity capacity, to final energy use) 

19 91 83 0 193 

Investment Energy system investment expenditure 0 4 22 17 43 

Emissions Emissions by species and source  4 19 55 25 103 

CCS Carbon capture and sequestration 3 10 11 8 32 

Climate Radiative forcing and warming 0 11 2 8 21 

Economy GDP, prices, policy costs 2 15 25 7 49 

SDG Indicators on sustainable development 
goals achievement 

1 9 11 1 22 

Land Agricultural production & demand 0 14 10 5 29 

Water Water consumption & withdrawal 0 0 16 1 17 

Capital costs Major electricity generation and other 
energy conversion technologies  

0 0 0 31 31 

Total  29 173 235 103 540 
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2.SM.1.4 Scenario Classification  

 

A total of 529 scenarios were submitted to the scenario database. Of these, 14 scenarios did not report results 

until the end of the century and an additional 80 scenarios did not report the required emissions species. 

During the validation and diagnostics, 24 scenarios were excluded because of negative CO2 emissions from 

the land-use sector by 2020 (see Section 2.SM.1.3). Therefore, the analysis in this report is based on 411 

scenarios, of which 90 scenarios are consistent with 1.5°C at the end of the century and 132 remain below 

2°C throughout the century (not including the 90 scenarios that are deemed consistent with 1.5°C). Table 

2.SM.11 provides an overview of the number of scenarios per class. Table 2.SM.12 provides an overview of 

geophysical characteristics per class.  

 
Table 2.SM.11: Overview of pathway class specifications 

 

Pathway 
Group 

Class Name Short Name  
Combined Classes 

MAGICC Exceedance 
Probability Filter 

Number of Scenarios 

1.5°C Below 1.5°C - P(1.5°C) ≤ 0.34 0 

Below 1.5°C Below-1.5°C 0.34 < P(1.5°C) ≤ 0.5 9 

1.5°C Return with low 
overshoot (OS) 

1.5°C-low-OS 0.5 < P(1.5°C) ≤ 0.67 
AND P(1.5°C in 2100) ≤ 
0.34 

34 

0.5 < P(1.5°C) ≤ 0.67 
AND 0.34 < P(1.5°C in 
2100) ≤ 0.5 

10 

1.5°C Return with high 
OS 

1.5°C-high-OS 0.67 < P(1.5°C) AND 
P(1.5°C in 2100) ≤ 0.34 

19 

0.67 < P(1.5°C) AND 0.34 
< P(1.5°C in 2100) ≤ 0.5 

18 

2°C Lower 2°C Lower-2°C P(2°C) ≤ 0.34 (excluding 
above) 

74 

Higher 2°C Higher-2°C 0.34 < P(2°C) ≤ 0.5 
(excluding above) 

58 

 Above 2°C - 0.5 < P(2°C) 189 

 

As noted in the chapter text, scenario classification was based on probabilistic temperature outcomes 

assessed using the AR5 assessment of composition, forcing and climate response. These were represented 

within the MAGICC model (Meinshausen et al., 2009, 2011a) which was used in the same setup as AR5 

WGIII analyses. As discussed in Chapter 2, Section 2.2, updates in geophysical understanding would alter 

such results were they incorporated within MAGICC, though central outcomes would remain well within the 

probability distribution of the setup used here (see Section 2.SM.1.1). 
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Table 2.SM.12: Geophysical characteristics of mitigation pathways derived at median peak temperature and at the end of the century (2100). Geophysical characteristics of 

overshoot for mitigation pathways exceeding 1.5°C is given in the last two columns. Overshoot severity is the sum of degree warming years exceeding 1.5°C over the 21st century. 

NA indicates that no mitigation pathways exhibit the given geophysical characteristics. Radiative forcing metrics are: total anthropogenic radiative forcing (RF all), CO2 radiative 

forcing (RF CO2), and non-CO2 radiative forcing (RF non CO2). Cumulative CO2 emissions until peak warming or 2100 are given for submitted and harmonized IAM outputs and 

are rounded at the nearest 10 GtCO2. Values show: median (25th to 75th percentile) across scenarios. “inf” indicates that net zero is not reached before 2100. Scenarios with year-

2010 Kyoto-GHG emissions outside the range assessed by IPCC AR5 WGIII are excluded. 
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Below-1.5°C 5 

1.5 
(1.4, 
1.5) 

2041 
(2040, 
2048) 

423 
(419, 
430) 

2.9 
(2.7, 
2.9) 

2.3 
(2.2, 
2.3) 

0.6 
(0.4, 
0.7) 

2044 
(2037, 
2054) 

480 
(470, 
590) 

470 
(450, 
600) 

45 
(39, 
49) 

5 (4, 
7) 

1 (1, 
1) 

376 
(367, 
386) 

1.8 
(1.8, 
2.1) 

1.6 
(1.5, 
1.8) 

0.3 
(0.2, 
0.4) 

180 (10, 
270) 

150 (5, 
260) 

16 
(12, 
24) 

3 (2, 
6) 

1 (0, 
1) NA NA NA NA NA 

1.5°C-low-OS 37 

1.6 
(1.5, 
1.6) 

2048 
(2039, 
2062) 

431 
(424, 
443) 

3.0 
(2.8, 
3.2) 

2.4 
(2.3, 
2.5) 

0.6 
(0.3, 
0.8) 

2050 
(2038, 
2082) 

620 
(530, 
870) 

630 
(520, 
880) 

60 
(51, 
67) 

10 
(7, 
14) 

1 (1, 
2) 

380 
(357, 
418) 

2.1 
(1.8, 
2.5) 

1.7 
(1.4, 
2.2) 

0.3 
(0.1, 
0.8) 

250 
(−120, 
780) 

260 
(−130, 
790) 

28 
(17, 
45) 

7 (4, 
12) 

1 (1, 
3) NA 

2035 
(2031, 
2049) NA 

1 (0, 
3) 

27 
(14, 
54) 

1.5°C-high-OS 38 

1.7 
(1.6, 
1.9) 

2051 
(2043, 
2058) 

448 
(433, 
465) 

3.2 
(3.0, 
3.5) 

2.6 
(2.4, 
2.8) 

0.6 
(0.4, 
0.8) 

2052 
(2044, 
2066) 

860 
(610, 
1050) 

860 
(620, 
1070) 

75 
(67, 
89) 

18 
(11, 
34) 

3 (1, 
8) 

385 
(354, 
419) 

2.2 
(1.8, 
2.6) 

1.8 
(1.3, 
2.2) 

0.4 
(0.2, 
0.7) 

330 
(−100, 
790) 

340 
(−90, 
820) 

34 
(20, 
50) 

8 (4, 
14) 

2 (1, 
4) NA 

2033 
(2030, 
2035) NA 

6 (2, 
14) 

52 
(31, 
68) 

Lower-2°C 70 

1.7 
(1.5, 
1.8) 

2063 
(2047, 
2100) 

453 
(418, 
475) 

3.1 
(2.7, 
3.5) 

2.6 
(2.2, 
2.9) 

0.5 
(0.2, 
0.9) 

2074 
(2050, 
inf) 

1000 
(540, 
1400) 

990 
(550, 
1430) 

78 
(56, 
86) 

26 
(12, 
34) 

7 (2, 
10) 

429 
(379, 
467) 

2.8 
(2.4, 
3.2) 

2.3 
(1.7, 
2.7) 

0.4 
(0.2, 
0.9) 

880 
(180, 
1400) 

880 
(190, 
1420) 

65 
(51, 
80) 

20 
(13, 
34) 

7 (3, 
11) NA 

2033 
(2030, 
2043) NA NA NA 

Higher-2°C 59 

1.9 
(1.8, 
2.0) 

2075 
(2051, 
2100) 

473 
(444, 
490) 

3.4 
(3.1, 
3.6) 

2.8 
(2.5, 
3.1) 

0.5 
(0.4, 
1.0) 

2082 
(2051, 
inf) 

1320 
(880, 
1690) 

1340 
(890, 
1660) 

87 
(78, 
93) 

40 
(31, 
50) 

13 
(7, 
19) 

452 
(401, 
490) 

3.1 
(2.6, 
3.5) 

2.6 
(1.0, 
3.0) 

0.5 
(0.3, 
1.0) 

1270 
(510, 
1690) 

1270 
(520, 
1660) 

83 
(59, 
89) 

38 
(17, 
50) 

13 
(6, 
19) NA 

2033 
(2030, 
2039) NA NA NA 

Above-2°C 183 

3.1 
(2.0, 
5.4) 

2100 
(2067, 
2100) 

651 
(472, 
1106) 

5.4 
(3.4, 
9.0) 

4.6 
(2.8, 
7.4) 

0.8 
(0.4, 
1.9) 

inf 
(2067, 
inf) 

3510 
(1360, 
8010) 

3520 
(1380, 
8010) 

100 
(89, 
100) 

96 
(50, 
100) 

83 
(17, 
100) 

651 
(438, 
1106) 

5.4 
(2.9, 
9.0) 

4.6 
(2.4, 
7.4) 

0.8 
(0.4, 
1.9) 

3510 
(1090, 
8010) 

3520 
(1090, 
8010) 

100 
(76, 
100) 

96 
(34, 
100) 

83 
(12, 
100) 

35 
(17, 
39) 
[3] 

2032 
(2029, 
2037) 

2051 
(2042, 
2100) NA NA 
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2.SM.1.5 Mitigation and SDG Pathway Synthesis  

 

The Chapter 2 synthesis assessment (see Figure 2.28) of interactions between 1.5°C mitigation pathways and 

sustainable development or Sustainable Development Goals (SDGs) is based on the assessment of 

interactions between mitigation measures and SDGs carried out by Chapter 5 (Section 5.4). To derive a 

synthesis assessment of the interactions between 1.5°C mitigation pathways and SDGs, a set of clear and 

transparent steps are followed, as described below.  

 

 Table 5.2 is at the basis of all interactions considered between mitigation measures and SDGs.  

 A condensed set of mitigation measures, selecting and combining mitigation measures from Table 

5.2, is defined (see Table 2.SM.13).  

 If a measure in the condensed Chapter 2 set is a combination of multiple mitigation measures from 

Table 5.2, the main interaction (synergies, synergy or trade-off, trade-off) is based on all interactions 

with three-star () and four-star () confidence ratings in Table 5.2. If no three-star or 

four-star interactions are available, lower confidence interactions are considered if available. 

 The resulting interaction is defined by the interaction of the majority of cells. 

 If one cell shows a diverging interaction and this interaction has three-star or more confidence level, 

a “synergy or trade-off” interaction is considered.  

 If all interactions for a given mitigation measure and SDG combination are the same, the resulting 

interaction is represented with a bold symbol. 

 If all three-star and four-star interactions are of the same nature, but a lower-confidence interaction is 

opposite, the interaction is represented with a regular symbol.  

 Confidence is defined by the rounded average of all available confidence levels of the predominant 

direction (rounded down; four-star confidence in Table 5.2 is also reported as three-star in the 

Chapter 2 synthesis) 

 If a measure in Table 5.2 is assessed to result in either a neutral effect or a synergy or trade-off, the 

synergy or trade-off is reported in the Chapter 2 synthesis, but the confidence level is reduced by one 

notch.  

To derive relative synergy–risk profiles for the four scenario archetypes used in Chapter 2 (S1, S2, S5, LED, 

see Sections 2.1 and 2.3), the relative deployment of the selected mitigation measures is used. For each 

mitigation measure, a proxy indicator is used (see Table 2.SM.14). The proxy indicator values are displayed 

on a relative scale from zero to one, where the value of the lowest pathway is set to the origin and the values 

of the other pathways scaled so that the maximum is one. The pathways with proxy indicator values that are 

neither 0 nor 1 receive a 0.5 weighting. These 0, 0.5, or 1 values are used to determine the relative 

achievement of specific synergies or trade-offs per SDG in each scenario, by summing each respective 

interaction type (synergy, trade-off, or synergy or trade-off) over all proxy indicators. Ultimately these sums 

are synthesized in one interaction based on the majority of sub-interactions (synergy, trade-off, or synergy or 

trade-off). In cases where both synergies and trade-offs are identified, the ‘synergy or trade-off’ interaction is 

attributed.  

  



 

Do Not Cite, Quote or Distribute 2SM-29 Total pages: 108 

Table 2.SM.13: Mapping of mitigation measures assessed in Table 5.2 of Chapter 5 to the condensed set of mitigation 

measured used for the mitigation-SDG synthesis of Chapter 2.  

 

Table 5.2 Mitigation Measures Set Chapter 2 Condensed Set 

Demand 
  
  
  
  
  
  
  
  

Industry 
  
  

Accelerating energy efficiency 
improvement 

DEMAND: Accelerating energy efficiency improvements in end use 
sectors 

Low-carbon fuel switch  DEMAND: Fuel switch and access to modern low-carbon energy 

Decarbonization/CCS/CCU Not included 

Buildings 
  
  

Behavioural response DEMAND: Behavioural response reducing Building and Transport demand 

Accelerating energy efficiency 
improvement 

DEMAND: Accelerating energy efficiency improvements in end use 
sectors 

Improved access & fuel switch 
to modern low-carbon energy 

DEMAND: Fuel switch and access to modern low-carbon energy 

Transport 
  
  

Behavioural response DEMAND: Behavioural response reducing Building and Transport demand 

Accelerating energy efficiency 
improvement 

DEMAND: Accelerating energy efficiency improvements in end use 
sectors 

Improved access & fuel switch 
to modern low-carbon energy 

DEMAND: Fuel switch and access to modern low-carbon energy 

Supply 
  
  
  
  

Replacing coal 
  
  
  

Non-biomass renewables: solar, 
wind, hydro 

SUPPLY: Non-biomass renewables: solar, wind, hydro 

Increased use of biomass SUPPLY: Increased use of biomass 

Nuclear/advanced nuclear  SUPPLY: Nuclear/advanced nuclear  

CCS: Bio energy  SUPPLY: Bioenergy with carbon capture and storage (BECCS) 

Advanced coal CCS: Fossil SUPPLY: Fossil fuels with carbon capture and storage (fossil-CCS) 

Land & 
Ocean 
  
  
  
  
  
  
  
  

Agriculture & 
Livestock 
  
  

Behavioural response: 
Sustainable healthy diets and 
reduced food waste 

DEMAND: Behavioural response: Sustainable healthy diets and reduced 
food waste 

Land based greenhouse gas 
reduction and soil carbon 
sequestration 

LAND: Land-based greenhouse gas reduction and soil carbon 
sequestration 

Greenhouse gas reduction from 
improved livestock production 
and manure management 
systems 

LAND: Greenhouse gas reduction from improved livestock production and 
manure management systems 

Forest  
  
  

Reduced deforestation, REDD+ LAND: Reduced deforestation, REDD+, afforestation and reforestation  

Afforestation and reforestation  LAND: Reduced deforestation, REDD+, afforestation and reforestation  

Behavioural response 
(responsible sourcing) 

Not included 

Oceans 
  
  

Ocean iron fertilization Not included 

Blue carbon Not included 

Enhanced Weathering Not included 
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Table 2.SM.14: Mitigation measure and proxy indicators reflecting relative deployment of given measure across 

pathway archetypes. Values of Indicators 2, 3, and 4 are inversely related with the deployment of the respective 

measures.  

 
Mitigation Measure Pathway Proxy 

Group Description Number Description 

Demand Accelerating energy efficiency 
improvements in end-use 
sectors 

1 Compound annual growth rate of primary energy (PE) to 
final energy (FE) conversion from 2020 to 2050 

Behavioural response reducing 
Building and Transport 
demand 

2 Percent change in FE between 2010 and 2050 

Fuel switch and access to 
modern low-carbon energy 

3 Year-2050 carbon intensity of FE 

Behavioural response: 
Sustainable healthy diets and 
reduced food waste 

4 Year-2050 share of non-livestock in food energy supply 

Supply 
  
  
  
  

Non-biomass renewables: 
solar, wind, hydro 

5 Year-2050 PE from non-biomass renewables 

Increased use of biomass 6 Year-2050 PE from biomass 

Nuclear/advanced nuclear  7 Year-2050 PE from nuclear 

Bioenergy with carbon capture 
and storage (BECCS) 

8 Year-2050 BECCS deployment in GtCO2 

Fossil fuels with carbon 
capture and storage (fossil-
CCS) 

9 Year-2050 fossil-CCS deployment in GtCO2 

 Land 
  
  

Land based greenhouse gas 
reduction and soil carbon 
sequestration 

10 Cumulative AFOLU CO2 emissions over the 2020–2100 
period 

Greenhouse gas reduction 
from improved livestock 
production and manure 
management systems 

11 CH4 and N2O AFOLU emissions per unit of total food energy 
supply 

Reduced deforestation, 
REDD+, afforestation and 
reforestation 

12 Change in global forest area between 2020 and 2050 
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2.SM.2 Part 2 
 

Contributing Modelling Framework Reference Cards  

For each of the contributing modelling frameworks, a reference card has been created highlighting the key 

features of the model. These reference cards are either based on information received from contributing 

modelling teams upon submission of scenarios to the SR1.5 database, or alternatively are drawn from the 

ADVANCE IAM wiki documentation, available at http://www.fp7-advance.eu/content/model-

documentation, and updated. These reference cards are provided in part 2 of this Supplementary Material.  

 

 

2.SM.2.1 Reference Card – AIM/CGE 

About 
Name and version 

AIM/CGE 

Institution and users 

National Institute for Environmental Studies (NIES), Japan 

Model scope and methods 
Objective 

AIM/CGE is developed to analyse climate mitigation and impacts. The energy system is disaggregated to 
meet this objective on both the energy supply and demand sides. Agricultural sectors have also been 
disaggregated for the appropriate land-use treatment. The model is designed to be flexible in its use for 
global analysis. 
 

Concept 

General equilibrium with technology-explicit modules in power sectors 
 

Solution method 

Solving a mixed complementarity problem 
 

Anticipation 

Myopic 
 

Temporal dimension 

Base year: 2005 
Time steps: Annual 
Horizon: 2100 
 

Spatial dimension 

Number of regions: 17 

Japan 

China 

India 

Southeast Asia 

Rest of Asia 

Oceania 

EU25 

Rest of Europe 

Former Soviet Union 

Turkey 

Canada 

United States 

Brazil 

Rest of South America 

http://www.fp7-advance.eu/content/model-documentation
http://www.fp7-advance.eu/content/model-documentation
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Middle East 

North Africa 

Rest of Africa 

 

Policy implementation 

Climate policies such as emissions targets, emission permit trading and so on. Energy taxes and subsidies 

Socio-economic drivers 
Exogenous drivers 

Total factor productivity 
Note: GDP is endogenous, while TFP is exogenous; but TFP can be calibrated so as to reproduce a given 
GDP pathway  
 
Endogenous drivers 

GDP (Non-baseline scenarios that take into account either climate change mitigation or impacts.) 
 
Development 

GDP per capita 

Macro economy 

 
Economic sectors 

Agriculture 

Industry 
Energy 
Transport 
Services 
 
Cost measures 

GDP loss 

Welfare loss 
Consumption loss 
 
Trade 

Coal 
Oil 
Gas 
Electricity 
Food crops 
Emissions permits 
Non-energy goods 

Energy 
Behaviour 

- 

 

Resource use 

Coal 
Oil 
Gas 
Biomass 
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Electricity technologies 

Coal 
Gas 
Oil 
Nuclear 
Biomass 
Wind 
Solar PV 
CCS 
 

Conversion technologies 

Oil to liquids 

Biomass to liquids 
 
Grid and infrastructure 

- 

 

Energy technology substitution 

Discrete technology choices 
 

Energy service sectors 

Transportation 

Industry 
Residential and commercial 

Land use 
Land cover 

Abandoned land 
Cropland 
Forest 
Grassland 
Extensive Pastures 
 
Note: 6 AEZs (agro-ecological zones) by crop, pasture, forestry, other forest, natural grassland and others. 
There is a land competition under multinomial logit selection. 

Other resources 

- 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

CFCs 

SF6 

 

Pollutants 

NOX 

SOX 

BC 

OC 

VOC 
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CO 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 
Temperature change (°C)  
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2.SM.2.2 Reference Card – BET 

About 
Name and version 

BET EMF33 
 

Institution and users 

CRIEPI 
University of Tokyo 

Role of end-use technologies in long-term GHG reduction scenarios developed with the BET model 

doi: 10.1007/s10584-013-0938-6 

Model scope and methods 
Objective 

The model is used for climate change studies on long-term mitigation scenarios. Typical application is to 
examine the role of electrification and advanced end-use technologies in climate change mitigation in a 
more systematic fashion, ranging from changes in usage of end-use technologies to power generation mix. 
 

Concept 

General equilibrium (closed economy) 
 

Solution method 

Optimization 
 

Anticipation 

Inter-temporal (foresight) 
 

Temporal dimension 

Base year: 2010, time steps: 10, horizon: 2010–2230 
 

Spatial dimension 

Number of regions: 13 

BRA Brazil 
CAZ Canada, Australia, and New Zealand 
CHA China incl. Hong Kong 
EUR EU27+3 (Switzerland, Norway, and Iceland) 
IND India  
JPN Japan 
MNA Middle East and North Africa 
OAS Other Asia 
OLA Other Latin America 
ORF Other Reforming Economies 
RUS Russia 
SSA Sub-Saharan Africa 
USA United States 
 

Policy implementation 

Emission tax/pricing, cap and trade  

Socio-economic drivers 
Exogenous drivers 

Population 

Total factor productivity  
Autonomous energy efficiency improvements  
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Endogenous drivers 

GDP 
End-use service demand 

Macro economy 
Economic sectors 

Aggregated representation (single-sector economy) 

 

Cost measures 

GDP loss 

Consumption loss 
Energy system costs 
 
Trade 

Coal 
Oil 
Gas 
Hydrogen 
Food crops (exogenous) 
Emissions permits 
Non-energy goods 

Energy 
Behaviour 

- 

 

Resource use 

Coal  
Conventional oil 
Unconventional oil 
Conventional gas 
Unconventional gas 
Uranium  
Bioenergy 
 

Electricity technologies 

Coal w/o CCS  
Coal w/ CCS  
Gas w/o CCS  
Gas w/ CCS 
Oil w/o CCS 
Bioenergy w/o CCS  
Bioenergy w/ CCS 
Geothermal power  
Nuclear power  
Solar power (central PV) 
Wind power (onshore)  
Wind power (offshore)  
Hydroelectric power 
Hydrogen fuel  
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Conversion technologies 

Coal to hydrogen w/ CCS  
Electrolysis  
Coal to liquids w/o CCS 
Bioliquids w/o CCS  
Oil refining  
Biomass to gas w/o CCS  
 
Grid and infrastructure 

Electricity. Note: Generalized transmission and distribution costs are included, but not modelled in a 
spatially explicit manner. 
Gas.  
Note: Generalized gas network costs are included, but not modelled in a spatially explicit manner. 
 
Energy technology substitution 

Linear choice (lowest cost, only for the supply side) 
Expansion and decline constraints 
System integration constraints 
 
Energy service sectors 

Transportation 
Industry 
Residential and commercial 

Land use 
Land cover 

Cropland food crops  
Cropland feed crops  
Cropland energy crops  
Managed forest  
Natural forest 
Pasture  

Other resources 

- 

Emissions and climate 
Greenhouse gases 

CO2 

 

Pollutants 

- 

 

Climate indicators 

CO2 concentration (ppm) 
Radiative forcing (W m−2) 
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2.SM.2.3 Reference Card – C-ROADS 

About 
Name and version 

C-ROADS v5.005 
 

Institution and users 

Climate Interactive, US, https://www.climateinteractive.org/.  

Model scope and methods 
Objective 

The purpose of C-ROADS is to improve public and decision-maker understanding of the long-term 
implications of international emissions and sequestration futures with a rapid-iteration, interactive tool as 
a path to effective action that stabilizes the climate. 
 

Concept 

C-ROADS takes future population, economic growth and GHG emissions as scenario inputs specified by the 
user and currently omits the costs of policy options and climate change damage. 
 
Solution method 

Recursive dynamic solution method (myopic) 
 

Anticipation 

Simulation modelling framework, without foresight. 
 

Temporal dimension 

Base year: 1850 
Time steps: 0.25 year time step 
Horizon: 2100 
 

Spatial dimension 

Number of regions: 20 

USA 
European Union (EU) 27 (EU27) (plus Iceland, Norway and Switzerland) 
Russia (includes fraction of former USSR) 
Other Eastern Europe 
Canada 
Japan 
Australia 
New Zealand 
South Korea 
Mexico 
China 
India 
Indonesia 
Philippines, Thailand, Taiwan, Hong Kong, Malaysia, Pakistan, Singapore 
Brazil 
Latin America excluding Mexico and Brazil 
Middle East 
South Africa 
Africa excluding South Africa 
Asia excluding China, India, Indonesia, and those included in Other Large Asia 
 

https://www.climateinteractive.org/
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Policy implementation 

The model includes implicit representation of policies. For each well-mixed GHG, regionally specified socio-
economic drivers, emissions per GDP, and emissions changes relative to a reference year or reference 
scenario determine emissions pathways. 

Socioeconomic drivers 
Exogenous drivers 

Exogenous population 

Exogenous GDP per capita rates and convergence times are used to model GDP over time.  
 
Endogenous drivers 

None 
 

Development 

None 

Macro economy 
Economic sectors 

Not represented by the model 
 

Cost measures 

Not represented by the model 
 

Trade 

Not represented by the model 

Energy 
 

Behaviour 

Not represented by the model 
 

Resource use 

Not represented by the model  
 

Electricity technologies  

Not represented by the model  
 

Conversion technologies  

Not represented by the model  
 

Grid and infrastructure  

Not represented by the model  
 

Energy technology substitution  

Not represented by the model  
 

Energy service sectors  

Not represented by the model  

Land use 
Land cover 

Not represented by the model  
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Other resources 
None 

Emissions and climate 
Greenhouse gases 

CO2 
CH4 
N2O 
HFCs 
CFCs 
SF6 
PFCs 
 
Pollutants 

Not modelled 
Covered by the model in terms of radiative forcing; uses projections of a specified SSP scenario 
 
Climate indicators 

The cycle of each well-mixed greenhouse gas is explicitly modelled.  
CO2 concentration (ppm) 
CH4 concentration (ppb) 
N2O concentration (ppb)  
HFCs concentration (ppt) 
SF6 concentration (ppt) 
PFCs concentration (ppt) 
CO2e concentration (ppm) 
Radiative Forcing (W m−2)  
The model uses the radiative efficiencies and explicitly-modelled concentration over time of each well-
mixed greenhouse to determine its radiative forcing (RF). The model also uses a specified SSP scenario for 
exogenous values of other forcings, which includes those from aerosols, albedo, solar irradiance and 
volcanic activity. The total RF is the sum of these components. 
Temperature change (°C) 
Sea level rise  
Ocean acidification 
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2.SM.2.4 Reference Card – DNE21+ 

About 
Name and version 

DNE21+ V.14C 
 

Institution and users 

Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa-shi, Kyoto 619-
0292 
http://www.rite.or.jp/Japanese/labo/sysken/about-global-warming/download-
data/RITE_GHGMitigationAssessmentModel_20150130.pdf  
https://www.rite.or.jp/system/en/research/new-earth/dne21-model-analyses/climate/ 

Model scope and methods 
Objective 

- 

 

Concept 

Minimizing energy systems cost 
 

Solution method 

Optimization 
 

Anticipation 

Inter-temporal (foresight) 
 

Temporal dimension 

Base year: 2000, 
Time steps: 5 year steps (2000 - 2030); 10 year-steps (2030 - 2050),  
Horizon: 2000-2050 
 

Spatial dimension 

Number of regions: 54 

ARG+ Argentina, Paraguay, Uruguay 
AUS Australia 
BRA Brazil 
CAN Canada 
CHN China 
EU15 EU-15 
EEU Eastern Europe (Other EU-28) 
IND India 
IDN Indonesia 
JPN Japan 
MEX Mexico 
RUS Russia 
SAU Saudi Arabia 
SAF South Africa 
ROK South Korea 
TUR Turkey 
USA United States of America 
OAFR Other Africa 
MEA Middle East & North Africa 
NZL New Zealand 
OAS Other Asia 

http://www.rite.or.jp/Japanese/labo/sysken/about-global-warming/download-data/RITE_GHGMitigationAssessmentModel_20150130.pdf
http://www.rite.or.jp/Japanese/labo/sysken/about-global-warming/download-data/RITE_GHGMitigationAssessmentModel_20150130.pdf


 

Do Not Cite, Quote or Distribute 2SM-50 Total pages: 108 

OFUE Other FUSSR (Eastern Europe) 
OFUA Other FUSSR (Asia) 
OLA Other Latin America 
OWE Other Western Europe 
 
Policy implementation 

Emission tax/pricing, cap and trade; fuel taxes; fuel subsidies; feed-in-tariff; portfolio standard; capacity 
targets; emission standards; energy efficiency standards; land protection; pricing carbon stocks  

Socio-economic drivers 
Exogenous drivers 

Population 

Population age structure 
Education level 
Urbanization rate 
GDP 
Income distribution 
Labour participation rate 
Labour productivity 

Macro economy 
Economic sectors 

Agriculture 

Industry 
Energy 
Services 
 
Cost measures 

Energy system costs 
 

Trade 

Coal 
Oil 
Gas 
Electricity 
Emissions permits 

Energy 
Behaviour 

Transportation  
Industry  
Residential & Commercial  
Technology Adoption  

 
Resource use 

Coal  
Conventional oil  
Unconventional oil 
Conventional gas 
Unconventional gas 
 

Electricity technologies 

Coal w/o CCS  
Coal w/ CCS  
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Gas w/o CCS  
Gas w/ CCS  
Oil w/o CCS  
Oil w/ CCS  
Bioenergy w/o CCS  
Bioenergy w/ CCS 
Geothermal power 
Nuclear power  
Solar power  
Wind power  
Hydroelectric power 
 
Conversion technologies 

Coal to hydrogen w/o CCS 

Coal to hydrogen w/ CCS  
Natural gas to hydrogen w/o CCS 
Natural gas to hydrogen w/ CCS  
Biomass to hydrogen w/o CCS  
Biomass to hydrogen w/ CCS 
Electrolysis  
Coal to liquids w/o CCS  
Bioliquids w/o CCS  
Oil refining 
Coal to gas w/o CCS  
 
Grid and infrastructure 

Electricity 

Gas 
CO2  
H2 

 

Energy technology substitution 

Linear choice (lowest cost) 
System integration constraints 
 

Energy service sectors 

Transportation 

Industry 
Residential and commercial 

Land use 
Land cover 

Cropland food crops  
Cropland feed crops  
Cropland energy crops  
Managed forest  
Natural forest  
Pasture  

Other resources 
Other resources 

Water 
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Emissions and climate 
Greenhouse gases 

CO2 

CH4 
N2O 
HFCs 
CFCs 
SF6 
 
Pollutants 

NOX 
SOX 
BC 
OC 
 
Climate indicators 

CO2e concentration (ppm) 
Radiative forcing (W m−2) 
Temperature change (°C) 
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2.SM.2.5 Reference Card – FARM 3.2 

About 
Name and version 

Future Agricultural Resources Model 3.2 
 
Institution and users 

United States Department of Agriculture, Economic Research Service; Öko-Institut, Germany – 
https://www.ers.usda.gov/webdocs/publications/81903/err-223.pdf?v=42738 

Model scope and methods 
Objective 

The Future Agricultural Resources Model (FARM) was originally designed as a static computable general 
equilibrium (CGE) model to simulate land use and climate impacts at a global scale. It has since been 
extended to simulate energy and agricultural systems through 2100 to enable participation in the energy 
modelling forum (EMF) and the agricultural modelling intercomparison project (AgMIP) model comparison 
studies. 
 
Concept 

FARM models land-use shifts among crops, pasture, and forests in response to population growth; changes 
in agricultural productivity; and policies such as a renewable portfolio standard or greenhouse gas cap-and-
trade. 
 
Solution method 
General equilibrium recursive-dynamic simulation 
 

Anticipation 

Myopic 
 
Temporal dimension 

Base year: 2011 
Time steps: 5 years 
Horizon: 2101 
 

Spatial dimension 

Number of regions: 15 

United States 
Japan 
European Union west (EU-15) 
European Union east 
Other OECD90 
Russian Federation 
Other Reforming Economies 
China region 
India 
Indonesia 
Other Asia 
Middle East and North Africa 
Sub-Saharan Africa 
Brazil 
Other Latin America 
 

https://www.ers.usda.gov/webdocs/publications/81903/err-223.pdf?v=42738


 

Do Not Cite, Quote or Distribute 2SM-54 Total pages: 108 

Policy implementation 

Emissions tax/pricing, cap and trade, fuel taxes and subsidies, portfolio standards, agricultural producer, 
subsidies, agricultural consumer subsidies, land protection 

Socio economic drivers 
Exogenous drivers 

Population 
Labour productivity 
Land productivity 
Autonomous energy efficiency improvements 
Other input-specific productivity 
 
Endogenous drivers 

None 
 
Development 
None 

Macro economy 
Economic sectors 

Agriculture 

Industry 
Energy 
Services 
 
Cost measures 

GDP loss 

Welfare loss 
Equivalent variation 
Consumption loss 
 
Trade 
Coal 
Oil 
Gas 
Electricity 
Food crops 
Non-energy goods 

Energy 

Behaviour 
Substitution between energy and non-energy inputs in response to changes in relative prices 
 

Resource use 

Coal (supply curve) 
Conventional oil (supply curve) 
Conventional gas (supply curve) 
Biomass (supply curve) 

 

Electricity technologies 

Coal (w/o and w/ CCS) 
Gas (w/o and w/ CCS) 
Oil (w/o and w/ CCS) 
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Nuclear 
Biomass (w/o and w/ CCS) 
Wind 
Solar PV 
 
Conversion technologies 

Fuel to liquid, oil refining 
 

Grid and infrastructure 

Electricity (aggregate) 
Gas (aggregate) 
CO2 (aggregate) 
 
Energy technology substitution 

Discrete technology choices with mostly high substitutability through production functions 
 

Energy service sectors 

Transportation (land, water, air) 
Buildings 

Land use 
 

Land cover 

Crop Land 

Food Crops 
Feed Crops 
Energy Crops 
Managed Forest 
Pastures 

Other resources 
Other resources 

None 

Emissions and climate 
Greenhouse gases 

CO2 

Fossil Fuels 
Cement 
Land Use 
 
Pollutants 

None 
 
Climate indicators 

None 
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2.SM.2.6 Reference Card – GCAM 4.2 

About 
Name and version 

Global Change Assessment Model 4.2 
 

Institution and users 

Joint Global Change Research Institute – http://jgcri.github.io/gcam-doc/v4.2/toc.html 

Model scope and methods 
Objective 

GCAM is a global integrated assessment model that represents the behaviour of, and complex interactions 
between five systems: the energy system, water, agriculture and land use, the economy, and the climate. 
 

Concept 

The core operating principle for GCAM is that of market equilibrium. Representative agents in GCAM use 
information on prices, as well as other information that might be relevant, and make decisions about the 
allocation of resources. These representative agents exist throughout the model, representing, for 
example, regional electricity sectors, regional refining sectors, regional energy demand sectors, and land 
users who have to allocate land among competing crops within any given land region. Markets are the 
means by which these representative agents interact with one another. Agents pass goods and services 
along with prices into the markets. Markets exist for physical flows such as electricity or agricultural 
commodities, but they also can exist for other types of goods and services, for example tradable carbon 
permits. 
 

Solution method 

Partial equilibrium (price elastic demand) recursive-dynamic 
 

Anticipation 

Myopic 
 

Temporal dimension 

Base year: 2010 
Time steps: 5 years 
Horizon: 2100 
 

Spatial dimension 

Number of regions: 32 (For CD-Links scenarios, GCAM included 82 regions) 
USA (For CD-Links scenarios, the USA was subdivided into 50 states plus the District of Columbia) 
Eastern Africa 
Northern Africa 
Southern Africa 
Western Africa 
Australia and New Zealand 
Brazil 
Canada 
Central America and Caribbean 
Central Asia 
China 
EU-12 
EU-15 
Eastern Europe 
Non-EU Europe 
European Free Trade Association 

http://jgcri.github.io/gcam-doc/v4.2/toc.html
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India 
Indonesia 
Japan 
Mexico 
Middle East 
Pakistan 
Russia 
South Africa 
Northern South America 
Southern South America 
South Asia 
South Korea 
Southeast Asia 
Taiwan 
Argentina 
Colombia 
 
Policy implementation 

Climate Policies 
Emission tax/pricing 
Cap and trade 
Energy Policies 
Fuel taxes 
Fuel subsidies 
Portfolio standard 
Energy Technology Policies 
Capacity targets 
Energy efficiency standards 
Land-Use Policies 
Land protection 
Afforestation 

Socio-economic drivers 
Exogenous drivers 

Population 

GDP 
Labour participation rate 
Labour productivity 
 
Endogenous drivers 

None 
 
Development 

None 
 

Macro economy 
Economic sectors 

Agriculture 

Industry 
Energy 
Transport 
Services 
Residential and Commercial 
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Cost measures 

Area under marginal abatement cost (MAC) curve 
 

Trade 

Coal 
Oil 
Gas 
Uranium 
Bioenergy crops 
Food crops 
Emissions permits 

Energy 
Behaviour 

None 
 
Resource use 

Coal (supply curve) 
Conventional oil (supply curve) 
Unconventional oil (supply curve) 
Conventional gas (supply curve) 
Unconventional gas (supply curve) 
Uranium (supply curve) 
Biomass (process model) 
Land 
 

Electricity technologies 

Coal (w/ o and w/ CCS) 
Gas (w/o and w/ CCS) 
Oil (w/o and w/ CCS) 
Nuclear 
Biomass (w/o and w/ CCS) 
Wind (onshore) 
Solar PV (central PV, distributed PV, and concentrating solar power)  
CCS 
Conversion technologies 

 

CHP 
Hydrogen from coal, oil, gas, and biomass, w/o and w/ CCS 
Nuclear and solar thermochemical  
Fuel to gas 
Coal to gas w/o CCS 
Biomass (w/o and w/ CCS) 
Fuel to liquid 
Coal to liquids (w/o and w/ CCS) 
Gas to liquids (w/o and w/ CCS) 
Biomass to Liquids (w/o and w/ CCS) 
 

Grid and infrastructure 

None 
 

Energy technology substitution 

Discrete technology choices with usually high substitutability through logit-choice model 
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Energy service sectors 

Transportation 

Residential and commercial 
Industry 

Land use 
Land cover 

Cropland 
Food crops 
Feed crops 
Energy crops 
Forest 
Managed forest 
Natural forest 
Pasture 
Shrubland 
Tundra 
Urban 
Rock, Ice, Desert 

Other resources 
Other resources 

Water 
Cement 

Emissions and climate 
Greenhouse gases 

CO2 (fossil fuels, cement, land use) 
CH4 (energy, land use, other) 
N2O (energy, land use, other) 
HFCs 
CFCs 
SF6 
 
Pollutants 

NOX (energy, land use) 
SOX (energy, land use) 
BC (energy, land use) 
OC (energy, land use) 
NH3 (energy, land use) 
 

Climate indicators 

Kyoto-gases concentration 
Radiative forcing (W m−2) 
Temperature change (°C) 
  



 

Do Not Cite, Quote or Distribute 2SM-60 Total pages: 108 

2.SM.2.7 Reference Card – GEM-E3 

About 
Name and version 

GEM-E3 
 

Institution and users 

Institute of Communication and Computer Systems (ICCS), Greece 
https://ec.europa.eu/jrc/en/gem-e3 

Model scope and methods 
Objective 

The model puts emphasis on: (i) the analysis of market instruments for energy-related environmental 
policy, such as taxes, subsidies, regulations, emission permits etc., at a degree of detail that is sufficient for 
national, sectoral and world-wide policy evaluation; and (ii) the assessment of distributional consequences 
of programmes and policies, including social equity, employment and cohesion for less-developed regions. 
 

Concept 

General equilibrium 

 

Solution method 

The model is formulated as a simultaneous system of equations with an equal number of variables. The 
system is solved for each year following a time-forward path. The model uses the GAMS software and is 
written as a mixed non-linear complementarity problem solved by using the PATH algorithm with the 
standard solver options. 
 

Anticipation 

Myopic 

 

Temporal dimension 

Base year: 2011 
Time steps: Five year time steps 
Horizon: 2050 
 

Spatial dimension 

Different spatial dimension depending on application. Main applications feature one of the two regional 
disaggregation below. 
 

Number of regions: 38 

Austria 
Belgium 
Bulgaria 
Croatia 
Cyprus 
Czech Republic 
Germany 
Denmark 
Spain 
Estonia 
Finland 
France 
United Kingdom 
Greece 
Hungary 
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Ireland 
Italy 
Lithuania 
Luxembourg 
Latvia 
Malta 
Netherlands 
Poland 
Portugal 
Slovakia 
Slovenia 
Sweden 
Romania 
USA 
Japan 
Canada 
Brazil 
China 
India 
Oceania 
Russian federation 
Rest of Annex I 
Rest of the World 
 

Or  
 
Number of regions: 19 
EU28 
USA 
Japan 
Canada 
Brazil 
China 
India 
South Korea 
Indonesia 
Mexico 
Argentina 
Turkey 
Saudi Arabia 
Oceania 
Russian federation 
Rest of energy producing countries 
South Africa 
Rest of Europe 
Rest of the World 
 

Policy implementation 

Taxes, permits trading, subsidies, energy efficiency standards, CO2 standards, emission-reduction targets, 
trade agreements, R&D, adaptation. 

Socio-economic drivers 
Exogenous drivers 

Total factor productivity 
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Labour productivity 
Capital technical progress 
Energy technical progress 
Materials technical progress 
Active population growth 
Endogenous drivers 

Learning-by-doing 

Development 

GDP per capita 

Labour participation rate 

Macro economy 
Economic sectors 

Agriculture 

Industry 
Energy 
Transport 
Services 
Other 
Note: GEM-E3 represents the following sectors: Agriculture, coal, crude oil, oil, gas, electricity supply, 
ferrous metals, non-ferrous metals, chemical products, paper & pulp, non-metallic minerals, electric goods, 
conventional transport equipment, other equipment goods, consumer goods industries, construction, air 
transport, land transport – passenger, land transport – freight, water transport – passenger, water 
transport – freight, biofuel feedstock, biomass, ethanol, biodiesel, advanced electric appliances, electric 
vehicles, equipment for wind, equipment for PV, equipment for CCS, market services, non-market services, 
coal fired, oil fired, gas fired, nuclear, biomass, hydroelectric, wind, PV, CCS coal, CCS gas 

 

Cost measures 

GDP loss 

Welfare loss 
Consumption loss 
 

Trade 

Coal 
Oil 
Gas 
Electricity 
Emissions permits 
Non-energy goods 
Agriculture  
Ferrous and non-ferrous metals 
Chemical products 
Other energy intensive 
Electric goods 
Transport equipment 
Other equipment goods 
Consumer goods industries 

Energy 
Behaviour 

The GEM-E3 model endogenously computes energy consumption, depending on energy prices, realized 
energy efficiency expenditures and autonomous energy efficiency improvements. Each agent decides how 
much energy it will consume in order to optimize its behaviour (i.e., to maximize profits for firms and utility 
for households) subject to technological constraints (i.e., a production function). At a sectoral level, energy 
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consumption is derived from profit maximization under a nested CES (constant elasticity of substitution) 
specification. Energy enters the production function together with other production factors (capital, labour, 
materials). Substitution of energy and the rest of the production factors is imperfect (energy is considered 
an essential input to the production process) and it is induced by changes in the relative prices of each 
input. Residential energy consumption is derived from the utility maximization problem of households. 
Households allocate their income between different consumption categories and savings to maximize their 
utility subject to their budget constraint. Consumption is split between durable (e.g., vehicles, electric 
appliances) and non-durable goods. For durable goods, stock accumulation depends on new purchases and 
scrapping. Durable goods consume (non-durable) goods and services, including energy products. The latter 
are endogenously determined depending on the stock of durable goods and on relative energy prices. 
 

Resource use 

Coal 
Oil 
Gas 
Biomass 
 

Electricity technologies 

Coal 
Gas 
Oil 
Nuclear 
Biomass 
Wind 
Solar PV 
CCS 
 

Conversion technologies 

None 
 

Grid and infrastructure 

Electricity 

 

Energy technology substitution 

Discrete technology choices 

 

Energy service sectors 

Transportation 

Industry 
Residential and commercial 

Land use 
Land cover 

No land use is simulated in the current version of GEM-E3. 

Other resources 
Other resources 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 
N2O 
HFCs 
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CFCs 
SF6 
 

Pollutants 

NOX 

SOX 
 

Climate indicators 

None 
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2.SM.2.8 Reference Card – GENeSYS-MOD 1.0 

About 
Name and version 

GENeSYS-MOD 1.0 

 

Institution and users 

Technische Universität (TU) Berlin, Germany / German Institute for Economic Research (DIW Berlin), 
Germany 

Model scope and methods 
Objective 

The Global Energy System Model (GENeSYS-MOD) is an open-source energy system model, based on the 
Open-Source Energy Modelling System (OSeMOSYS). The aim is to analyse potential pathways and 
scenarios for the future energy system, for example, for an assessment of climate targets. It incorporates 
the power, heat, and transportation sectors and specifically considers sector-coupling aspects between 
these traditionally segregated sectors.  
 

Concept 

The model minimizes the total discounted system costs by choosing the cost-optimal mix of generation and 
sector-coupling technologies for the power, heat, and transportation sectors. 
 

Solution method 

Linear program optimization (minimizing total discounted system costs) 
 

Anticipation 

Perfect foresight 
 

Temporal dimension 

Base year: 2015, time steps: 2015, 2020, 2030, 2035, 2040, 2045, 2050, horizon: 2015–2050 

 

Spatial dimension 

Number of regions: 10 

Europe 

Africa 

North America 

South America 

Oceania 

China and Mongolia 

India 

Middle East 

Former Soviet Union 

Remaining Asian countries (mostly Southeast-Asia) 

Policy implementation 

Emission tax/pricing, emissions budget, fuel taxes, fuel subsidies, capacity targets, emission standards, 
energy efficiency standards 

Socio-economic drivers 
Exogenous drivers 

Technical progress (such as efficiency measures) 
GDP per capita 

Population 
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Endogenous drivers 

None 

 

Development 

- 

 

Macro economy 
Economic sectors 

- 

Cost measures 

- 

Trade 

Energy 
Behaviour 

- 

Resource use 

Coal 
Oil 

Gas 

Uranium 

Biomass 

Electricity technologies 

Coal 
Gas 

Oil 

Nuclear 

Biomass 

Wind (onshore & offshore) 

Solar PV (utility PV & rooftop PV) 

CSP 

Geothermal 

Hydropower 

Wave & tidal power 

 

Conversion technologies 

CHP 

Hydrogen (electrolysis & fuel cells) 

Electricity & gas storages 

 

Grid and infrastructure 

Electricity 
 

Energy technology substitution 

Discrete technology choices 

Expansion and decline constraints 

System integration constraints 

 

Energy service sectors 

Transportation (split up in passenger & freight) 

Total power demand 

Heat (divided up in warm water / space heating & process heat) 
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Land use 
Land cover 

- 

Other resources 
Other resources 

- 

Emissions and climate 
Greenhouse gases 

CO2 

Pollutants 

- 

 

Climate indicators 

- 
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2.SM.2.9 Reference Card – GRAPE-15 1.0 

About 
Name and version 

GRAPE-15 1.0 
 

Institution and users 

The Institute of Applied Energy, Japan – https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-13 

Model scope and methods 
Objective 

GRAPE is an integrated assessment model with an inter-temporal optimization model, which consists of 
modules for energy, macro economy, climate, land use and environmental impacts. 
 

Concept 

- 

 

Solution method 

Partial equilibrium (fixed demand) inter-temporal optimization 

 

Anticipation 

Perfect foresight 
 

Temporal dimension 

Base year: 2005, time steps: 5 years, horizon: 2110 

 

Spatial dimension 

Number of regions: 15 

Canada 

USA 

Western Europe 

Japan 

Oceania 

China 

Southeast Asia 

India 

Middle East 

Sub-Sahara Africa 

Brazil 

Other Latin America 

Central Europe 

Eastern Europe 

Russia 

 

Policy implementation 

Emissions taxes/pricing, cap and trade, land protection 

Socio-economic drivers 
Exogenous drivers 

Population 

Population age structure 

Education level 

Urbanization rate 

GDP 

Income distribution 

https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-13
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Total factor productivity 

Autonomous energy efficiency improvements 

 

Endogenous drivers 

None 
 
Development 

Income distribution in a region (exogenous) 
Urbanization rate (exogenous) 

Education level (exogenous) 

Macro economy 
Economic sectors 

Agriculture 

Industry 

Energy 

Transport 

Services 

 

Cost measures 

GDP loss 

Welfare loss 

Consumption loss 

Energy system costs 

 

Trade 

Coal 
Oil 

Gas 

Electricity 

Bioenergy crops 

Food crops 

Non-energy goods 

Hydrogen 

Energy 
Behaviour 

None 
 
Resource use 

Coal (supply curve) 

Conventional oil (supply curve) 

Unconventional oil (supply curve) 

Conventional gas (supply curve) 

Unconventional gas (supply curve) 

Uranium (supply curve) 

Biomass (supply curve) 

Water (process model) 

Land 

 

Electricity technologies 

Coal (w/o and w/ CCS) 

Gas (w/o and w/ CCS) 

Oil (w/o and w/ CCS) 

Nuclear 
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Biomass (w/o and w/ CCS) 

Wind (onshore and offshore) 

Solar PV (central and distributed) 

Geothermal 

Hydroelectric 

Hydrogen 

 

Conversion technologies 

CHP 

Coal/Oil/Gas/Biomass-to-Heat 

Hydrogen 

Coal to H2 (w/o and w/ CCS) 

Oil to H2 (w/o and w/ CCS) 

Gas to H2 (w/o and w/ CCS) 

Biomass to H2 (w/o CCS) 

Nuclear and solar thermochemical 

Electrolysis 

Fuel to gas 

Coal to gas (w/o and w/ CCS) 

Fuel to liquid 

Coal to liquids (w/o and w/ CCS) 

Gas to liquids (w/o and w/ CCS) 

Biomass to liquids (w/o and w/ CCS) 

Oil Refining 

 

Grid and infrastructure 

Electricity 

Gas 

Heat  

CO2  

H2 

 

Energy technology substitution 

Discrete technology choices with mostly high substitutability through linear choice (lowest cost) 
Expansion and decline constraints 

 

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Land use 
Land cover 

Energy cropland 
Forest 
Pastures 
Built-up area 

Other resources 
Other resources 

Water 

Emissions and climate 
Greenhouse gases 

CO2 
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Fossil fuels 

Land use 

CH4 

Energy 

Land use 

N2O 

Energy 

HFCs 

CFCs 

SF6 

CO 

Energy use 

 

Pollutants 

Only for energy  

NOX 

SOX 

BC 

OC 

Ozone 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 

Temperature change (°C)  
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2.SM.2.10 Reference Card – ETP Model 

About 
Name and version 

ETP Model, version 3 
 

Institution and users 

International Energy Agency – http://www.iea.org/etp/etpmodel/  

Model scope and methods 
Objective 

The analysis and modelling aim to identify an economical way for society to reach the desired outcomes of 
reliable, affordable and clean energy. For a variety of reasons, the scenario results do not necessarily reflect 
the least-cost ideal. The ETP analysis takes into account those policies that have already been implemented 
or decided. In the short term, this means that deployment pathways may differ from what would be most 
cost-effective. In the longer term, the analysis emphasizes a normative approach, and fewer constraints 
governed by current political objectives apply in the modelling. The objective of this methodology is to 
provide a model for a cost-effective transition to a sustainable energy system. 
 

Concept 

Partial equilibrium (fixed energy service and material demands), with the exception for the transport 
sector, where “avoid and shift” policies are being considered. 
 

Solution method 

Optimization for power, other transformation and industry sectors; simulation for agriculture, residential, 
services and transport sectors 

 

Anticipation 

Inter-temporal (foresight) 
 

Temporal dimension 

Base year: 2014 
Time steps: 5 years 
Horizon: 2060 
 

Spatial dimension 

Number of regions: differs between energy sectors (28-39 model regions) 
Asian countries except Japan 

Countries of the Middle East and Africa 

Latin American countries 

OECD90 and EU (and EU candidate) countries 

Countries from the Reforming Economies of the Former Soviet Union 

World 

OECD countries 

Non-OECD countries 

Brazil 

China 

South Africa 

Russia 

India 

ASEAN region countries 

USA 

European Union (28 member countries) 

Mexico 

http://www.iea.org/etp/etpmodel/
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Policy implementation 

Emission tax/pricing, cap and trade, fuel taxes, fuel subsidies, feed-in-tariff, portfolio standards, capacity 
targets, emission standards, energy efficiency standards 

Socio economic drivers 
Exogenous drivers 

Population 

Urbanization rate 

GDP 

Autonomous energy efficiency improvements 

 

Endogenous drivers 

None 
 
Development 

None 
 

Macro economy 
Economic sectors 

Agriculture 

Industry 

Residential 

Services 

Transport 

Power 

Other transformation 

Cost measures 

None 

Trade 

Coal 
Oil  

Gas 

Electricity 

Energy 
Behaviour 

None 
 
Resource use 

Coal (supply curve) 
Conventional oil (process model) 

Unconventional oil (supply curve) 

Conventional gas (process model) 

Unconventional gas (supply curve) 

Bioenergy (supply curve) 

 

Electricity technologies 

Coal (w/o and w/ CCS) 
Gas (w/o and w/ CCS) 

Oil (w/o and w/ CCS) 

Nuclear 

Biomass (w/o and w/ CCS) 

Solar Power (central PV, distributed PV, and CSP) 

Wind power (onshore and offshore) 
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Hydroelectric power 

Ocean power 

 

Conversion technologies 

Coal to hydrogen (w/o CCS and w/ CCS) 

Natural gas to hydrogen (w/o CCS and w/ CCS) 

Oil to hydrogen (w/o CCS) 

Biomass to hydrogen (w/o CCS and w/ CCS) 

Coal to liquids (w/o CCS and w/ CCS) 

Gas to liquids (w/o CCS and w/ CCS) 

Bioliquids (w/o CCS and w/ CCS) 

Oil refining  

Coal to gas (w/o CCS and w/ CCS) 

Oil to gas (w/o CCS and w/ CCS) 

Biomass to gas (w/o CCS and w/ CCS) 

Coal heat 

Natural gas heat 

Oil heat  

Biomass heat  

Geothermal heat  

Solarthermal heat 

CHP (coupled heat and power) 

 

Grid and infrastructure 

Electricity (spatially explicit) 
Gas (aggregate) 

Heat (aggregate) 

Hydrogen (aggregate) 

CO2 (spatially explicit) 

Gas spatially explicit for gas pipelines and LNG infrastructure between model regions 

 

Energy technology substitution 

Lowest cost with adjustment penalties. Discrete technology choices with mostly high substitutability in 
some sectors and mostly low substitutability in other sectors 

Expansion and decline constraints  

System integration constraints 

 

Energy service sectors 

Transportation  
Industry  

Residential and commercial  

Land use 
Land cover 

Not represented by the model 

Other resources 
Other resources 

None 

Emissions and climate 
Greenhouse gases 

CO2 fossil fuels (endogenous & controlled) 
CO2 cement (endogenous & controlled) 
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Pollutants 

None 
 

Climate indicators 

None 
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2.SM.2.11 Reference Card – IEA World Energy Model 

About 
Name and version 

IEA World Energy Model (version 2016) 
 

Institution and users 

International Energy Agency - https://www.iea.org/weo/  
http://www.iea.org/media/weowebsite/2016/WEM_Documentation_WEO2016.pdf 

Model scope and methods 
Objective 

The model is a large-scale simulation model designed to replicate how energy markets function and is the 
principal tool used to generate detailed sector-by-sector and region-by-region projections for the World 
Energy Outlook (WEO) scenarios. 
 

Concept 

Partial equilibrium (price elastic demand) 
 

Solution method 

Simulation 
 

Anticipation 

Mix of “Inter-temporal (foresight)” and “Recursive-dynamic (myopic)” 
 

Temporal dimension 

Base year: 2014 
Time steps: 1 year steps 
Horizon: 2050 
 

Spatial dimension 

Number of regions: 25 

United States 

Canada 

Mexico 

Chile 

Japan 

Korea 

OECD Oceania 

Other OECD Europe 

France, Germany, Italy, United Kingdom 

Europe 21 excluding EUG4 

Europe 7 

Eurasia 

Russia 

Caspian 

China 

India 

Indonesia 

South East Asia (excluding Indonesia) 

Rest of Other Developing Asia 

Brazil 

Other Latin America 

North Africa 

Other Africa 

https://www.iea.org/weo/
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South Africa 

Middle East 

 

Policy implementation 

Emission tax/pricing, cap and trade (global and regional), fuel taxes, fuel subsidies, feed-in-tariff, portfolio 
standard, capacity targets, emission standards, energy efficiency standards  

Socio economic drivers 
Exogenous drivers 

Population (exogenous) 
Urbanization rate (exogenous) 

GDP (exogenous) 

 

Endogenous drivers 

Autonomous energy efficiency improvements (endogenous) 
 

Development 

- 

Macro economy 
Economic sectors 

Agriculture (economic) 
Industry (physical & economic) 

Services (economic) 

Energy (physical & economic) 

 

Cost measures 

Energy system cost mark-up  
 

Trade 

Coal  
Oil  

Gas 

Bioenergy crops  

Emissions permits 

 

Energy 
Behaviour 

Price elasticity 

Resource use 

Coal (process model) 
Conventional oil (process model) 

Unconventional oil (process model) 

Conventional gas (process model) 

Unconventional gas (process model) 

Bioenergy (process model) 

 

Electricity technologies 

Coal 
Gas 

Oil 

Nuclear  
Geothermal 
Bioenergy 
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Wind (onshore and offshore) 

Solar PV (central and distributed) 

CCS 

CSP 

Hydropower 

Ocean power 

Note: CCS can be combined with coal, gas and biomass power generation technologies 

 

Conversion technologies 

Natural gas to hydrogen w/o CCS 

Coal to liquids w/o CCS 

Coal to gas w/o CCS 

Coal heat 

Natural gas heat  

Oil heat  

Bioenergy heat 

Geothermal heat  

Solarthermal heat  

CHP (coupled heat and power)  

 

Grid and infrastructure 

Electricity (aggregate) 
Gas (aggregate) 

 

Energy technology substitution 

Logit choice model 
Weibull function 

Discrete technology choices with mostly high substitutability in some sectors and mostly low substitutability 

in other sectors 

Expansion and decline constraints  

System integration constraints  

 

Energy service sectors 

Transportation 

Industry 

Residential 

Commercial 

Land use 
Land cover 

Not covered by the model 

Other resources 
Other resources 

Emissions and climate 
Greenhouse gases* 

CO2 

CH4 

N2O 

HFCs (exogenous) 

CFCs (exogenous) 

SF6 (exogenous) 

 

Pollutants* 

NOx 
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SOx 

BC 

OC 

CO 

NH3 

VOC 

 

*NOTE: Non-energy CO2, non-energy CH4, non-energy N2O, CFC, HFC, SF6, CO, NOx, VOC, SO2, are 

assumptions-based and not disaggregated (only total emissions are available). 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 

Temperature change (°C) 
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2.SM.2.12 Reference Card – IMACLIM 

About 
Name and version 

IMACLIM 1.1 (Advance), IMACLIM-NLU 1.0 (EMF33) 
 

Institution and users 

Centre International de Recherche sur l’Environnement et le Développement (CIRED), France, 
http://www.centre-cired.fr. 
Société de Mathématiques Appliquées et de Sciences Humaines (SMASH), France, http://www.smash.fr. 

Model scope and methods 
Objective 

Imaclim-R is intended to study the interactions between energy systems and the economy to assess the 
feasibility of low-carbon development strategies and the transition pathway towards a low-carbon future. 
 

Concept 

Hybrid: general equilibrium with technology explicit modules. Recursive dynamics: each year the 
equilibrium is solved (system of non-linear equations), in between years the parameters for the equilibrium 
evolve according to specified functions. 
 

Solution method 

Imaclim-R is implemented in Scilab and uses the function fsolve from a shared C++ library to solve the static 
equilibrium system of non-linear equations. 
 

Anticipation 

Recursive dynamics: each year the equilibrium is solved (system of non-linear equations), in between years, 
the parameters for the equilibrium evolve according to specified functions. 
 

Temporal dimension 

Base year: 2001 
Time steps: annual 
Horizon: 2050 or 2100 
 

Spatial dimension 

Number of regions: 12 

USA 

Canada 

Europe 

China 

India 

Brazil 

Middle East 

Africa 

Commonwealth of Independent States 

OECD Pacific 

Rest of Asia 

Rest of Latin America 

 

Policy implementation 

Baseline does not include explicit climate policies. Climate/energy policies can be implemented in a number 
of ways, depending on the policy. A number of general or specific policy choices can be modelled, 
including: emissions or energy taxes, permit trading, specific technology subsidies, regulations, technology 
and/or resource constraints 

http://www.centre-cired.fr/
http://www.smash.fr/
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Socio economic drivers 
Exogenous drivers 

Labour productivity 

Energy technical progress 

Population 

Active population 

Note: Our model growth engine is composed of exogenous trends of active population growth and 

exogenous trends of labour productivity growth. The two sets of assumptions on demography and labour 

productivity, although exogenous, only prescribe natural growth. Effective growth results endogenously 

from the interaction of these driving forces with short-term constraints: (i) available capital flows for 

investments and (ii) rigidities, such as fixed technologies, immobility of the installed capital across sectors or 

rigidities in real wages, which may lead to partial utilization of production factors (labour and capital). 

 

Endogenous drivers 

- 

Development 

GDP per capita 

Macro economy 
Economic sectors 

Agriculture 

Industry 

Energy 

Transport 

Services 

Construction 

Note: The energy sector is divided into five sub-sectors: oil extraction, gas extraction, coal extraction, 

refinery, power generation. The transport sector is divided into three sub-sectors: terrestrial transport, air 

transport, water transport. The industry sector has one sub-sector: Energy intensive industry. 

 

Cost measures 

GDP loss 

Welfare loss 

Consumption loss 

Energy system costs 

 

Trade 

Coal 
Oil 

Gas 

Electricity 

Bioenergy crops 

Capital 

Emissions permits 

Non-energy goods 

Refined liquid fuels 

Energy 
Behaviour 

Price response (via elasticities), and non-price drivers (infrastructure and urban forms conditioning location 
choices, different asymptotes on industrial goods consumption saturation levels with income rise, speed of 
personal vehicle ownership rate increase, speed of residential area increase). 
 

Resource use 

Coal 
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Oil 

Gas 

Biomass 

 

Electricity technologies 

Coal 
Gas 

Oil 

Nuclear 

Biomass 

Wind 

Solar PV 

CCS 

 

Conversion technologies 

Fuel to liquid 

 

Grid and infrastructure 

Electricity 

 

Energy technology substitution 

Discrete technology choices 

Expansion and decline constraints 

System integration constraints 

 

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Agriculture 

Land use 
Land cover 

Cropland 

Forest 

Extensive pastures 

Intensive pastures 

Inaccessible pastures 

Urban areas 

Unproductive land 

Note: 

IMACLIM 1.1 (Advance): Bioenergy production is determined by the fuel and electricity modules of 

Imaclim-R using supply curves from Hoogwijk et al. (2009) (bioelectricity) and IEA (biofuel). 

IMACLIM-NLU 1.0 (EMF33): In this version the Imaclim-R model is linked to the land-use mode Nexus 

Land use. Bioenergy demand level is determined by the fuel and electricity modules of Imaclim-R. The 

Nexus Land use gives the corresponding price of biomass feedstock, taking into account the land constraints 

and food production The production of biomass for electricity and ligno-cellulosic fuels is located on 

marginal lands (i.e., less fertile or accessible lands). By increasing the demand for land, and spurring 

agricultural intensification, Bioenergy propels land and food prices. 
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Other resources 
Other resources 

- 

Emissions and climate 
Greenhouse gases 

CO2 

 

Pollutants 

- 

 

Climate indicators 

-  
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2.SM.2.13 Reference Card – IMAGE 

About 
Name and version 

IMAGE framework 3.0 
 

Institution and users 

Utrecht University (UU), Netherlands, http://www.uu.nl. 
PBL Netherlands Environmental Assessment Agency (PBL), Netherlands, http://www.pbl.nl. 

Model scope and methods 
Objective 

IMAGE is an ecological–environmental model framework that simulates the environmental consequences 
of human activities worldwide. The objective of the IMAGE model is to explore the long- term dynamics 
and impacts of global changes that result. More specifically, the model aims to analyse interactions 
between human development and the natural environment to gain better insight into the processes of 
global environmental change, to identify response strategies to global environmental change based on 

assessment of options, and to indicate key inter-linkages and associated levels of uncertainty in processes of 

global environmental change. 

 

Concept 

The IMAGE framework can best be described as a geographically explicit integrated assessment simulation 
model, focusing on a detailed representation of relevant processes with respect to human use of energy, 
land and water in relation to relevant environmental processes. 
 

Solution method 

Recursive dynamic solution method 
 

Anticipation 

Simulation modelling framework, without foresight. However, a simplified version of the energy/climate 
part of the model (called FAIR) can be run prior to running the framework to obtain data for climate policy 
simulations. 
 

Temporal dimension 

Base year: 1970 
Time steps: 1-5 year time step 
Horizon: 2100 
 

Spatial dimension 

Number of regions: 26 

Canada 

USA 

Mexico 

Rest of Central America 

Brazil 

Rest of South America 

Northern Africa 

Western Africa 

Eastern Africa 

South Africa 

Western Europe 

Central Europe 

Turkey 

Ukraine + 

Asian-Stan 

http://www.uu.nl/
http://www.pbl.nl/
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Russia + 

Middle East 

India + 

Korea 

China + 

Southeastern Asia 

Indonesia + 

Japan 

Oceania 

Rest of South Asia 

Rest of Southern Africa 

 

Policy implementation 

Key areas where policy responses can be introduced in the model are:  
Climate policy 

Energy policies (air pollution, access and energy security) 

Land use policies (food) 

Specific policies to project biodiversity 

Measures to reduce the imbalance of the nitrogen cycle 

Socio-economic drivers 
Exogenous drivers 

Exogenous GDP 

GDP per capita 

Population 

 

Endogenous drivers 

Energy demand 

Renewable price 

Fossil fuel prices 

Carbon prices 

Technology progress 

Energy intensity 

Preferences 

Learning by doing 

Agricultural demand 

Value added 

 

Development 

GDP per capita 

Income distribution in a region 

Urbanization rate 

Note: GDP per capita and income distribution are exogenous 

Macro economy 
Economic sectors 

Note: No explicit economy representation in monetary units. Explicit economy representation in terms of 
energy is modelled (for the agriculture, industry, energy, transport and built environment sectors) 
 

Cost measures 

Area under MAC 

Energy system costs 

 

Trade 

Coal 
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Oil 

Gas 

Uranium 

Bioenergy crops 

Food crops 

Emissions permits 

Non-energy goods 

Bioenergy products 

Livestock products 

Energy 
Behaviour 

In the energy model, substitution among technologies is described in the model using the multinomial logit 
formulation. The multinomial logit model implies that the market share of a certain technology or fuel type 
depends on costs relative to competing technologies. The option with the lowest costs gets the largest 
market share, but in most cases not the full market. We interpret the latter as a representation of 
heterogeneity in the form of specific market niches for every technology or fuel. 
 

Resource use 

Coal 

Oil 

Gas 

Uranium 

Biomass 

Note: Distinction between traditional and modern biomass 

Electricity technologies 

Coal w/ CCS 

Coal w/o CCS 

Gas w/ CCS 

Gas w/o CCS 

Oil w/ CCS 

Oil w/o CCS 

Nuclear 

Biomass w/ CCS 

Biomass w/o CCS 

Wind 

Solar PV 

CSP 

Hydropower 

Geothermal 

Note: wind: onshore and offshore; coal: conventional, IGCC, IGCC + CCS, IGCC + CHP, IGCC + CHP + 

CCS; oil: conventional, OGCC, OGCC + CCS, OGCC + CHP, OGCC + CHP + CCS); natural gas: 

conventional, CC, CC + CCS, CC + CHP, CC + CHP + CCS; biomass: conventional, CC, CC + CCS, CC + 

CHP, CC + CHP + CCS 

hydropower and geothermal: exogenous 

 

Conversion technologies 

CHP 

Hydrogen 

 

Grid and infrastructure 

Electricity 

 

Energy technology substitution 

Discrete technology choices 

Expansion and decline constraints 
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System integration constraints 

 

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Land use 
Land cover 

Forest 
Cropland 

Grassland 

Abandoned land 

Protected land 

Other resources 
Other resources 

Water 
Metals 

Cement 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

CFCs 

SF6 

PFCs 

 

Pollutants 

NOX 

SOX 

BC 

OC 

Ozone 

VOC 

NH3 

CO 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 

Temperature change (°C) 
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2.SM.2.14 Reference Card – MERGE-ETL 6.0 

About 
Name and version 

MERGE-ETL 6.0 
 

Institution and users 

Paul Scherrer Institut  
https://www.psi.ch/eem/ModelsEN/2012MergeDescription.pdf 
https://www.psi.ch/eem/ModelsEN/2014MergeCalibration.pdf  

 

Model scope and methods 
Objective 

MERGE (Model for Evaluating Regional and Global Effects of GHG reductions policies) is an integrated 
assessment model originally developed by Manne et al. (1995). It divides the world in geopolitical regions, 
each one represented by two coupled submodels describing the energy and economic sectors, respectively. 
MERGE acts as a global social planner with perfect foresight and determines the economic equilibrium in 
each region that maximizes global welfare, defined as a linear combination of the current and future 
regional welfares. Besides these regional energy–economic submodels, and linked to them, MERGE 
includes global submodels of greenhouse gas emissions and the climate to allow the analysis of the 
effectiveness and impacts of climate policies and the role of technologies to realize climate targets. The 
model is sufficiently flexible to explore views on a wide range of contentious issues: costs of abatement, 
damages of climate change, valuation and discounting. 
 

Concept 

The MERGE-ETL model is a hard-linked hybrid model as the energy sectors are fully integrated with the rest 
of the economy. The model combines a bottom-up description of the energy system disaggregated into 
electric and non-electric sectors, a top-down economic model based on macroeconomic production 
functions, and a simplified climate cycle model. The energy sectors endogenously account for technological 
change with explicit representation of two-factor learning curves. 
 

Solution method 

General equilibrium (closed economy). Two different solutions can be produced: a cooperative globally 
optimal solution and a non-cooperative solution equivalent to Nash equilibrium. It is programmed in GAMS 
and uses the CONOPT solver. 
 

Anticipation 

Inter-temporal (foresight) or myopic.  
 

Temporal dimension 

Base year: 2015 
Time steps: 10 years 
Horizon: 2015-2100 
 

Spatial dimension 

Number of regions: 10 

EUP European Union 

RUS Russia 

MEA Middle East 

IND India 

CHI China 

JPN Japan 

CANZ Canada, Australia and New Zealand 

https://www.psi.ch/eem/ModelsEN/2012MergeDescription.pdf
https://www.psi.ch/eem/ModelsEN/2014MergeCalibration.pdf
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USA United States of America 

ROW Rest of the World 

SWI  Switzerland 

 

Policy implementation 

Emission tax/pricing, cap and trade, fuel taxes, fuel subsidies, feed-in-tariff, portfolio standard, capacity 
targets 

Socio economic drivers 
Exogenous drivers 

Population, population age structure, autonomous energy efficiency improvements  
 

Development  

GDP 

Macro economy 
Economic sectors 

One final good 

Electric and non-electric demand sectors  
 
Cost measures 

GDP loss 

Welfare loss 

Consumption loss 

Area under MAC 

Energy system costs 

 

Trade 

Non-Energy goods 

Coal  

Oil  

Gas 

Uranium  

Bioenergy crops  

Emissions permits 

Energy 
Behaviour 

Considered in side-constraints controlling technology deployment rates  
 
Resource use 

Coal  
Conventional oil  

Unconventional oil 

Conventional gas  

Unconventional gas  

Uranium  

Bioenergy  

Note: Cost-supply curves for the different resources are considered 

 

Electricity technologies 

Coal 
Gas 

Oil 

Nuclear 
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Biomass 

Wind 

Solar PV 

Hydrogen  

Note: CCS can be combined with coal, gas and biomass power generation technologies 

 

Conversion technologies 

Hydrogen 

Fuel to liquids 

Note: CCS can be combined with coal, gas and biomass technologies 

 

Grid and infrastructure 

Electricity 

Gas 

CO2  

H2 

 

Energy technology substitution 

Expansion and decline constraints 

System integration constraints 

Early technology retirement 

 

Energy service sectors 

Electric and non-electric demand that is further disaggregated to seven energy sectors/fuels, namely coal, 
oil, gas, biofuels, hydrogen, solar and heat 

Land use 
Land cover 

Other resources 
Other resources 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

SF6 

 

Pollutants 

- 

 

Climate indicators 

CO2e concentration (ppm) 

Radiative Forcing (W m−2) 

Temperature change (°C) 

Climate damages $ or equivalent 
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2.SM.2.15 Reference Card – MESSAGE(ix)-GLOBIOM 

About 
Name and version 

MESSAGE-GLOBIOM 1.0 and MESSAGEix-GLOBIOM 1.0 
 

Institution and users 

International Institute for Applied Systems Analysis (IIASA), Austria, global model description: 
http://data.ene.iiasa.ac.at/message-globiom/. Model documentation and code (MESSAGEix) 
http://messageix.iiasa.ac.at 
Main users: IIASA, the MESSAGE model is distributed via the International Atomic Energy Agency (IAEA) to 
member countries, the new MESSAGEix model is available as an open source tool via GitHub 
(https://github.com/iiasa/message_ix)  

Model scope and methods 
Objective 

MESSAGE-GLOBIOM is an integrated assessment framework designed to assess the transformation of the 
energy and land systems vis-a-vis the challenges of climate change and other sustainability issues. It 
consists of the energy model MESSAGE, the land use model GLOBIOM, the air pollution and GHG model 
GAINS, the aggregated macroeconomic model MACRO and the simple climate model MAGICC. 
 

Concept 

Hybrid model (energy engineering and land use partial equilibrium models soft-linked to macroeconomic 
general equilibrium model) 
 

Solution method 

Hybrid model (linear program optimization for the energy systems and land use modules, non-linear 
program optimization for the macroeconomic module) 
 

Anticipation 

Myopic/Perfect Foresight (MESSAGE can be run both with perfect foresight and myopically, while 
GLOBIOM runs myopically) 
 

Temporal dimension 

Base year: 2010 
Time steps: 1990, 1995, 2000, 2005, 2010, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110 
Horizon: 1990-2110 
 

Spatial dimension 

Number of regions: 11+1 

AFR (Sub-Saharan Africa) 

CPA (Centrally Planned Asia & China) 

EEU (Eastern Europe) 

FSU (Former Soviet Union) 

LAM (Latin America and the Caribbean) 

MEA (Middle East and North Africa) 

NAM (North America) 

PAO (Pacific OECD) 

PAS (Other Pacific Asia) 

SAS (South Asia) 

WEU (Western Europe) 

GLB (international shipping) 

Policy implementation 

GHG and energy taxes; GHG emission cap and permits trading; energy taxes and subsidies; micro-financing 

http://data.ene.iiasa.ac.at/message-globiom/
http://messageix.iiasa.ac.at/
https://github.com/iiasa/message_ix
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(for energy access analysis); regulation: generation capacity, production and share targets 

Socio economic drivers 
Exogenous drivers 

Labour Productivity 

Energy technical progress 

GDP per capita 

Population 

 

Endogenous drivers 

- 

 

Development 

GDP per capita 

Income distribution in a region 

Number of people relying on solid cooking fuels 

Macro economy 
Economic sectors 

Note: MACRO represents the economy in a single sector with the production function including capital, 
labour and energy nests 
 

Cost measures 

GDP loss 

Consumption loss 

Area under marginal abatement cost (MAC) curve 

Energy system costs 

 

Trade 

Coal 
Oil 

Gas 

Uranium 

Electricity 

Food crops 

Emissions permits 

Note: bioenergy is only traded after processing to a secondary fuel (e.g., liquid biofuel) 

Energy 
Behaviour 

Non-monetary factors of decision making (e.g., behavioural impacts) are represented in MESSAGE via so-
called inconvenience costs. These are generally included in the consumer-dominated energy end-use 
sectors (transportation sector, residential and commercial sector) and are particularly relevant in the 
modelling of energy access in developing countries. 
 

Resource use 

Coal 
Oil 

Gas 

Uranium 

Biomass 

Note: modern and traditional applications of biomass are distinguished 

 

Electricity technologies 

Coal w /o CCS 
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Coal w/ CCS 

Gas w/o CCS 

Gas w/ CCS 

Oil w/o CCS 

Biomass w/o CCS 

Biomass w/ CCS 

Nuclear 

Wind onshore 

Wind offshore 

Solar PV 

CSP 

Geothermal 

Hydropower 

Note: CCS can be combined with coal, gas and biomass power generation technologies 

 

Conversion technologies 

CHP 

Hydrogen 

Fuel to gas 

Fuel to liquid 

Note: CHP can be combined with all thermal power plant types; hydrogen can be produced from coal, gas 

and biomass feedstocks and electricity; fuel to liquids is represented for coal, gas and biomass feedstocks; 

and fuel to gas is represented for coal and biomass feedstocks 

 

Grid and infrastructure 

Electricity 

Gas 

Heat 

CO2  

Hydrogen 

 

Energy technology substitution 

Discrete technology choices 

Expansion and decline constraints 

System integration constraints 

 

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Note: non-energy use (feedstock) of energy carriers is separately represented, but generally reported under 

industry 

Land use 
Land cover 

Forest (natural/managed) 
Short-rotation plantations 

Cropland 

Grassland 

Other natural land 

Other resources 
Other resources 

Water 
Cement 

Note: cement is not modelled as a separate commodity, but process emissions from cement production are 
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represented 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

CFCs 

SF6 

 

Pollutants 

NOx 

SOx 

BC 

OC 

CO 

NH3 

VOC 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 

Temperature change (°C)  
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2.SM.2.16 Reference Card – POLES 

About 
Name and version 

POLES ADVANCE (other versions are in use in other applications) 
 

Institution and users 

JRC - Joint Research Centre - European Commission (EC-JRC), Belgium, http://ec.europa.eu/jrc/en/poles. 
Main users: - European Commission JRC; Université de Grenoble UPMF, France - Enerdata 

Model scope and methods 
Objective 

POLES was originally developed to assess energy markets, combining a detailed description of energy 
demand, transformation and primary supply for all energy vectors. It provides full energy balances on a 
yearly basis using frequent data updates so as to deliver robust forecasts for both short- and long-term 
horizons. It has quickly been used, since the late 90s, to assess energy-related CO2 mitigation policies. Over 
time, other GHG emissions have been included (energy and industry non-CO2 from the early 2000s), and 
linkages with agricultural and land use models have been progressively implemented. 
 

Concept 

Partial equilibrium 
 

Solution method 

Recursive simulation 
 

Anticipation 

Myopic 
 

Temporal dimension 

Base year: 1990-2015 (data up to current time −1/−2) 
Time steps: yearly 
Horizon: 2050–2100 
 

Spatial dimension 

Number of regions: 66 
 

Policy implementation 

Energy taxes per sector and fuel, carbon pricing, feed-in-tariffs, green certificates, low interest rates, 
investment subsidies, fuel efficiency standards in vehicles and buildings, white certificates 

Socio economic drivers 
Exogenous drivers 

Exogenous GDP 

Population 

 

Endogenous drivers 

Value added 

Mobility needs 

Fossil fuel prices 

Buildings surfaces 

 

Development 

GDP per capita 

Urbanization rate 

http://ec.europa.eu/jrc/en/poles
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Macro economy 
Economic sectors 

Agriculture 

Industry 

Services 

 

Cost measures 

Area under MAC 

Energy system costs 

Note: Investments: supply-side only 

 

Trade 

Coal 

Oil 

Gas 

Bioenergy crops 

Liquid biofuels 

Energy 
Behaviour 

Activity drivers depend on income per capita and energy prices via elasticities. Energy demand depends on 
activity drivers, energy prices and technology costs. Primary energy supply depends on remaining 
resources, production cost and price effects. 
 

Resource use 

Coal 
Oil 

Gas 

Uranium 

Biomass 

 

Electricity technologies 

Coal 
Gas 

Oil 

Nuclear 

Biomass 

Wind 

Solar PV 

CCS 

Hydropower 

Geothermal 

Solar CSP 

Ocean 

 

Conversion technologies 

CHP 

Hydrogen 

Fuel to liquid 

 

Grid and infrastructure 

Gas 

H2   
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Energy technology substitution 

- 

 

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Land use 
Land cover 

Cropland 

Forest 

Grassland 

Urban areas 

Desert 

Other resources 
Other resources 

Metals 

Note: Steel tons 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

SF6 

PFCs 

 

Pollutants 

- 

 

Climate indicators 

-  
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2.SM.2.17 Reference Card – REMIND - MAgPIE 

About 
Name and version 

REMIND 1.7 – MAgPIE 3.0 
 

Institution and users 

Potsdam Institut für Klimafolgenforschung (PIK), Germany,  
https://www.pik-potsdam.de/research/sustainable-solutions/models/remind 

https://www.pik-potsdam.de/research/projects/activities/land-use-modelling/magpie  

Model scope and methods 
Objective 

REMIND (Regionalized Model of Investment and Development) is a global multiregional model 
incorporating the economy, the climate system and a detailed representation of the energy sector. It allows 
analysing technology options and policy proposals for climate mitigation, and models regional energy 
investments and interregional trade in goods, energy carriers and emissions allowances. 
MAgPIE (Model of Agricultural Production and its Impacts on the Environment) is a global multiregional 

economic land-use optimization model designed for scenario analysis up to the year 2100. MAgPIE provides 

a holistic framework to explore future transformation pathways of the land system, including multiple trade-

offs with ecosystem services and sustainable development.  

 

Concept 

REMIND: Hybrid model that couples an economic growth model with a detailed energy system model and a 
simple climate model. 
MAgPIE:  Gridded land-use optimization model with 10 socio-economic world regions. MAgPIE takes 

regional economic conditions, such as demand for agricultural commodities, technological development, and 

production costs, as well as spatially explicit data on potential crop yields, carbon stocks and water 

constraints (from the dynamic global vegetation model LPJmL), under current and future climatic conditions 

into account. 

 

Solution method 

REMIND: Inter-temporal optimization that maximizes cumulated discounted global welfare: Ramsey-type 
growth model with Negishi approach to regional welfare aggregation. 
MAgPIE: Partial equilibrium model of the agricultural sector with recursive-dynamic optimization. The 

objective function of MAgPIE is the fulfilment of agricultural demand for 10 world regions at minimum 

global costs under consideration of biophysical and socio-economic constraints. Major cost types in MAgPIE 

are factor requirement costs (capital, labor, fertilizer), land conversion costs, transportation costs to the 

closest market, investment costs for yield-increasing technological change (TC) and costs for GHG 

emissions in mitigation scenarios. 

REMIND and MAgPIE are coupled by exchanging greenhouse gas prices and bioenergy demand from 

REMIND to MAgPIE, and bioenergy prices and AFOLU greenhouse gas emissions from MAgPIE to 

REMIND, and iterating until an equilibrium of prices and quantities is established. 

 

Anticipation 
REMIND: Perfect Foresight 
MAgPIE: Myopic 
 
Temporal dimension 

REMIND: 
Base year: 2005 
Time steps: flexible time steps, default is 5-year time steps until 2050 and 10-year time steps until 2100; 
period from 2100–2150 is calculated to avoid distortions due to end effects, but typically only the time 
span 2005–2100 is used for model applications. 
 

https://www.pik-potsdam.de/research/sustainable-solutions/models/remind
https://www.pik-potsdam.de/research/projects/activities/land-use-modelling/magpie
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MAgPIE:  

Base year: 1995 

Time steps: 5 and/or 10 years 

Horizon: 1995–2100 

 

Spatial dimension 

Number of regions: 11 

AFR - Sub-Saharan Africa (excluding South Africa) 

CHN - China 

EUR - European Union 

JPN - Japan 

IND - India 

LAM - Latin America 

MEA - Middle East, North Africa, and Central Asia 

OAS - other Asian countries (mainly Southeast Asia) 

RUS - Russia 

ROW - rest of the World (Australia, Canada, New Zealand, Non-EU Europe, South Africa) 

USA - United States of America 

Note: MAgPIE operates on 10 socio-economic world regions which are mapped into REMIND-defined 

regions.  

 

Policy implementation 

REMIND: Pareto-optimal achievement of policy targets on temperature, radiative forcing, GHG 
concentration, or cumulative carbon budgets. Alternatively, calculation of Nash equilibrium without 
internalized technology spillovers. Possibility to ana lyse changes in expectations about climate policy goals 
as well as pre-specified policy packages until 2030/2050, including, for example, energy capacity and 
efficiency targets, renewable energy quotas, carbon and other taxes, and energy subsidies 
MAgPIE: 1st- and 2nd-generation bioenergy, pricing of GHG emissions from land-use change (CO2) and 

agricultural land use (CH4, N2O), land-use regulation, REDD+ policies, afforestation, agricultural trade 

policies  

Socio economic drivers 
Exogenous drivers 

REMIND: Labour productivity, energy efficiency parameters of the production function, population  
MAgPIE: Demand for bioenergy, food, feed, and material demand from the agricultural sector  
 

Endogenous drivers 

REMIND: Investments in industrial capital stock and specific energy technology capital stocks. Endogenous 

learning-by-doing for wind and solar power as well as electric and fuel cell vehicle technologies (global 

learning curve, internalized spillovers). 

MAgPIE: Investments in agricultural productivity, land conversion and (re)allocation of agricultural 
production.  
 
Development 

REMIND: GDP per capita 
MAgPIE: GDP per capita 

Macro economy (REMIND) 
Economic sectors 

Note: The macroeconomic part contains a single sector representation of the entire economy. A generic 
final good is produced from capital, labour, and different final energy types 
 

Cost measures 

GDP loss 

Welfare loss 
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Consumption loss 

 

Trade 

Coal 
Oil 

Gas 

Uranium 

Bioenergy crops 

Capital 

Emissions permits 

Non-energy goods 

Energy (REMIND) 
Behaviour 

Price response through CES production function. No explicit modelling of behavioural change. Baseline 
energy demands are calibrated in such a way that the energy demand patterns in different regions slowly 
converge when displayed as per capita energy demand over per capita GDP. 
 

Resource use 

Coal 
Oil 

Gas 

Uranium 

Biomass 

 

Electricity technologies 

Coal (with and w/o CCS) 

Gas (with and w/o CCS) 

Oil (with and w/o CCS) 

Nuclear 

Biomass (with and w/o CCS) 

Wind 

Solar PV 

CCS 

Solar CSP 

Hydropower 

Geothermal 

 

Conversion technologies 

CHP 

Heat pumps 

Hydrogen (from fossil fuels and biomass with and w/o CCS; electrolytic hydrogen) 

Fuel to gas 

Fuel to liquid (from fossil fuels and biomass with and w/o CCS) 

Heat plants 

 

Grid and infrastructure 

Electricity 

Gas 

Heat 

CO2 

H2 

Note: Generalized transmission and distribution costs are included, but not modelled on an explicit spatial 

level. Regionalized additional grid and storage costs for renewable integration are included. 
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Energy technology substitution 

Discrete technology choices 

Expansion and decline constraints 

System integration constraints 

Note: Expansion and decline, and system integration are influenced though cost mark-ups rather than 

constraints. 

 

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Note: In older versions of REMIND (REMIND 1.6 and earlier), the industry and residential and commercial 

sectors are not treated separately but represented jointly by one stationary sector (referred to as ‘Other 

Sector’). 

Land use (MAgPIE) 
MAgPIE allocates land use to fulfil competing demands for commodities, feed, carbon storage, land 
conservation and environmental protection. Land use is broadly categorized in cropland, forest land, 
pasture land, and other natural land. Regional food energy demand is defined for an exogenously given 
population in 16 food energy categories, based on regional diets. Future trends in food demand are derived 
from a cross-country regression analysis, based on future scenarios on GDP and population growth. MAgPIE 
takes technological development and production costs as well as spatially explicit data on potential crop 
yields, land and water constraints (from LPJmL) into account. It includes agricultural trade with different 
levels of regional self-sufficiency constraints. Changes in soil and plant carbon from land conversion are 
accounted for. MAgPIE models the full suite of AFOLU emissions. 
 

Other resources 
Other resources 

Cement 
Note: Cement production is not explicitly modelled, but emissions from cement production are accounted 

for. 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

CFCs 

SF6 

 

Pollutants 

NOX 

SOX 

BC 

OC 

Ozone 

CO 

VOC 

Note: Ozone is not modelled as emission but is an endogenous result of atmospheric chemistry. 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 
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Temperature change (°C) 

Note: Different emissions are accounted for with different levels of detail depending on the types and 

sources of emissions (directly by source, via marginal abatement cost (MAC) curves, by econometric 

estimates, exogenous).  
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2.SM.2.18 Reference Card – Shell - World Energy Model 

About 
Name and version 

Shell World Energy Model 2018 
2018 Edition (Version 2.10 series) 
 
Institution and users 

Shell Corporation B.V., www.shell.com/scenariosenergymodels  

Model scope and methods 
Objective 

Exploratory simulations of plausible scenarios, covering both short-term drivers and momentum, together 
with the capability for long-term transformation of the energy system. 
 

Concept 

Partial equilibrium (price elastic demand) 
 

Solution method 

Simulation 
 

Anticipation 

Recursive-dynamic (myopic) 
 

Temporal dimension 

Base year: 2017, time steps: 1 year steps, horizon: 2100 
 

Spatial dimension 

Number of regions: 100 (= 82 top countries + 18 rest of the world regions) 
 

Policy implementation 

Emission tax/pricing, cap and trade, fuel taxes, fuel subsidies, energy efficiency standards 

Socio economic drivers 
Exogenous drivers 

Population  
Autonomous Energy Efficiency Improvements 

 

Endogenous drivers 

- 

Development 

- 

Macro economy 
Economic sectors 

Number of sectors: 14  
Industry  

Services 

Energy  

Energy service (sector-specific) and energy demand (in EJ) for each sector 

 

http://www.shell.com/scenariosenergymodels
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Cost measures  

- 

 

Trade 

Coal 
Oil 

Gas 

Bioenergy crops  

Energy 
Behaviour 

- 

 

Resource use 

Coal 
Conventional oil (process model) 

Unconventional oil (process model) 

Conventional gas (process model) 

Unconventional gas (process model) 

Bioenergy (fixed) 

 

Electricity technologies 

Coal (w/o CCS and w/ CCS) 
Gas (w/o CCS and w/ CCS) 

Oil (w/o CCS and w/ CCS) 

Bioenergy (w/o CCS and w/ CCS) 

Geothermal power  

Nuclear power  

Solar power (central PV, distributed PV, CSP) 

Wind power  

Hydroelectric power  

Ocean power  

 

Conversion technologies 

Coal to hydrogen (w/o CCS and w/ CCS) 
Natural gas to hydrogen (w/o CCS and w/ CCS) 

Oil to hydrogen (w/o CCS and w/ CCS) 

Biomass to hydrogen (w/o CCS and w/ CCS) 

Nuclear thermochemical hydrogen 

Electrolysis 

Coal to liquids (w/o CCS and w/ CCS) 

Gas to liquids (w/o CCS and w/ CCS) 

Bioliquids (w/o CCS and w/ CCS) 

Oil refining  

Coal to gas (w/o CCS and w/ CCS) 

Oil to gas (w/o CCS and w/ CCS) 

Biomass to gas (w/o CCS and w/ CCS) 

Coal heat  

Natural gas heat  

Oil heat 

Biomass heat  

Geothermal heat  

Solarthermal heat  
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Grid and infrastructure 

- 

 

Energy technology substitution 

Logit choice model  
Discrete technology choices with mostly high substitutability 

Mostly a constrained logit model; some derivative choices (e.g., refinery outputs) have pathway dependent 

choices 

Constraints are imposed both endogenously and after off-model analysis  

Energy service sectors 

Transportation 

Industry 

Residential and commercial 

Land use 
Land cover 

- 

Other resources 
Other resources 

Emissions and climate 
Greenhouse gases 

CO2 fossil fuels (endogenous & uncontrolled) 
 

Pollutants 

- 

 

Climate indicators 

-  
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2.SM.2.19 Reference Card – WITCH 

About 
Name and version 

WITCH 
 

Institution and users 

Fondazione Eni Enrico Mattei (FEEM), Italy, http://www.feem.it. 
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy, http://www.cmcc.it. 
http://www.witchmodel.org/ 

Model scope and methods 
Objective 

WITCH evaluates the impacts of climate policies on global and regional economic systems and provides 
information on the optimal responses of these economies to climate change. The model considers the 
positive externalities from leaning-by-doing and learning-by-researching in the technological change. 
 

Concept 

Hybrid: Economic optimal growth model, including a bottom-up energy sector and a simple climate 
model, embedded in a ‘game theory’ framework. 
 

Solution method 

Regional growth models solved by non-linear optimization and game theoretic setup solved by 
tatonnement algorithm (cooperative solution: Negishi welfare aggregation, non-cooperative solution: 
Nash equilibrium) 
 

Anticipation 

Perfect foresight 
 

Temporal dimension 

Base year: 2005 
Time steps: 5 
Horizon: 2150 
 

Spatial dimension 

Number of regions: 14 

cajaz: Canada, Japan, New Zealand 

china: China, including Taiwan 

easia: South East Asia 

india: India 

kosau: South Korea, South Africa, Australia 

laca: Latin America, Mexico and Caribbean 

indo: Indonesia 

mena: Middle East and North Africa 

neweuro: EU new countries + Switzerland + Norway 

oldeuro: EU old countries (EU-15) 

sasia: South Asia 

ssa: Sub Saharan Africa 

te: Non-EU Eastern European countries, including Russia 

usa: United States of America 

 

Policy implementation 

Quantitative climate targets (temperature, radiative forcing, concentration), carbon budgets, emissions 
profiles as optimization constraints. Carbon taxes. Allocation and trading of emission permits, banking 
and borrowing. Subsidies, taxes and penalty on energies sources. 

http://www.feem.it/
http://www.cmcc.it/
http://www.witchmodel.org/
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Socio economic drivers 
Exogenous drivers 

Total factor productivity 

Labour productivity 

Capital technical progress 

 

Development 

- 

Macro economy 
Economic sectors 

Energy 

Other 

Note: A single economy sector is represented. Production inputs are capital, labour and energy services, 

accounting for the energy sector split into 8 energy technologies sectors (coal, oil, gas, wind and solar, 

nuclear, electricity and biofuels). 

 

Cost measures 

GDP loss 

Welfare loss 

Consumption loss 

Energy system costs 

 

Trade 

Coal 
Oil 

Gas 

Emissions permits 

Energy 
Resource use 

Coal 
Oil 

Gas 

Uranium 

Biomass 

 

Electricity technologies 

Coal 
Gas 

Oil 

Nuclear 

Biomass 

Wind 

Solar PV 

CCS 

 

Conversion technologies 

- 

 

Grid and infrastructure 

Electricity 

CO2  
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Energy technology substitution 

Expansion and decline constraints 

System integration constraints 

 

Energy service sectors 

Transportation 

Land use 
Land cover 

Cropland 

Forest 

Note: Bioenergy related cost and emissions are obtained by soft linking with the GLOBIOM model. 

Other resources 
Other resources 

Water 

Emissions and climate 
Greenhouse gases 

CO2 

CH4 

N2O 

HFCs 

CFCs 

SF6 

 

Pollutants 

NOX 

SOX 

BC 

OC 

 

Climate indicators 

CO2e concentration (ppm) 
Radiative Forcing (W m−2) 

Temperature change (°C) 

Climate damages $ or equivalent 
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3.SM.1 Supplementary information to Section 3.2 
 

3.SM.1.1 Climate Models and Associated Simulations Available for the Present Assessment 

 

Climate models allow for policy-relevant calculations such as the assessment of the levels of carbon 

dioxide (CO2) and other greenhouse gas (GHG) emissions compatible with a specified climate 

stabilization target, such as the 1.5°C or 2°C global warming scenarios. Climate models are numerical 

models that can be of varying complexity and resolution (e.g., Le Treut et al. 2007). Presently, global 

climate models are typically Earth System Models (ESMs), in that they entail a comprehensive 

representation of Earth system processes, including biogeochemical processes. 

 

In order to assess the impact and risk of projected climate changes on ecosystems or human systems, 

typical ESM simulations have a resolution that is too coarse – 100 km or more in many cases. 

Different approaches can be used to derive higher-resolution information. In some cases, ESMs can be 

run globally with very-high resolution; however, such simulations are cost-intensive and thus very 

rare. Another approach is to use regional climate models (RCM) to dynamically downscale the ESM 

simulations. RCMs are limited-area models with representations of climate processes comparable to 

those in the atmospheric and land surface components of the global models but with a higher 

resolution than 100 km – generally down to 10–50 km (e.g., Coordinated Regional Climate 

Downscaling Experiment, CORDEX; Giorgi and Gutowski 2015; Jacob et al. 2014; Cloke et al. 2013; 

Erfanian et al. 2016; Barlow et al. 2016) and in some cases even higher (convection permitting models,  

i.e., less than 4 km, e.g., Kendon et al. 2014; Ban et al. 2014; Prein et al. 2015). Statistical downscaling 

is another approach for downscaling information from global climate models to higher resolution. Its 

underlying principle is to develop statistical relationships that link large-scale atmospheric variables 

with local/regional climate variables, and to apply them to coarser-resolution models (Salameh et al. 

2009; Su et al. 2016). Nonetheless, at the time of writing, there are only very few studies for 1.5°C 

climate that use regional climate models or statistical downscaling. One exception is an extension of 

the IMPACT2C project for Europe (see below). 

 

There are various sources of climate model information available for the present assessment. There are 

global simulations that have been used in previous IPCC assessments and which were computed as 

part of the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project 

(CMIP). The IPCC Fourth Assessment Report (AR4) and Special Report on Managing the Risks of 

Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) were mostly based on 

simulations from the CMIP3 experiment, while the AR5 was mostly based on simulations from the 

CMIP5 experiment. Simulations of the CMIP3 and CMIP5 experiments were found to be very similar 

(e.g., Knutti and Sedláček 2012; Mueller and Seneviratne 2014). 

 

In addition to the CMIP3 and CMIP5 experiments, there are results from CORDEX which are 

available for different regions (Giorgi and Gutowski 2015). For instance, assessments based on 

publications from an extension of the IMPACT2C project (Vautard et al. 2014; Jacob and Solman 

2017) have recently become available for projections associated with global warming of 1.5°C. 

 

Simulations from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) 

multimodel experiment have also been run to specifically assess climate changes at 1.5°C versus 2°C 

global warming (Mitchell et al. 2017). The HAPPI protocol consists of coupled land-atmosphere initial 

condition ensemble simulations with prescribed sea surface temperatures (SSTs), sea ice, GHG and 

aerosol concentrations and solar and volcanic activity that coincide with three forced climate states: 

present-day (2006–2015), future (2091–2100) and either with 1.5°C or 2°C global warming 

(prescribed from the modified SST conditions). 

 

Beside climate models, other models are available to assess changes in regional and global climate 

systems (e.g., models for sea level rise, models for floods, droughts and freshwater input to oceans, 

cryosphere/snow models, models for sea ice, as well as models for glaciers and ice sheets). Analyses 
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of impacts in 1.5°C and 2°C warmer climates (relative to the pre-industrial period) using such models 

include, for example, Schleussner et al. (2016) and publications from the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) (Warszawski et al. 2014), which have recently derived new analyses 

dedicated to assessments for responses to 1.5ºC and 2ºC global warming. 

 

3.SM.1.2 Methods for the Attribution of Observed Changes in Climate and Their Relevance for 

Assessing Projected Changes at 1.5°C or 2°C Global Warming 

 

As highlighted in previous IPCC reports, detection and attribution is an approach which is typically 

applied to assess impacts of GHG forcing on observed changes in climate (e.g., Hegerl et al. 2007; 

Seneviratne et al. 2012; Bindoff et al. 2013). For more background on this topic, the reader is referred 

to these past IPCC reports, as well as to the IPCC Good Practice Guidance Paper on Detection and 

Attribution related to Anthropogenic Climate Change (Hegerl et al. 2010). It is noted that in the IPCC 

Working Group I (WGI) framework, ‘attribution’ is focused on the ‘attribution to anthropogenic 

greenhouse gas forcing’ (e.g., Bindoff et al. 2013b). In past IPCC Working Groups II (WGII) reports, 

attribution of observed impacts were also made to regional changes in climate, but without 

consideration of whether the patterns of changes in regional climate had had a detectable influence 

from GHG forcing. As noted in Section 3.2.2, a recent study (Hansen and Stone 2016) shows that most 

of the detected temperature-related impacts that were reported in AR5 (Cramer et al. 2014) can be 

attributed to anthropogenic climate change, while the signals for precipitation-induced responses are 

more ambiguous. 

 

Attribution to anthropogenic GHG forcing is an important field of research for the assessments of 

projected changes at 1.5°C and 2°C global warming in this report (see Section 3.3, and in particular 

Table 3.2). Indeed, observed global warming compared to the pre-industrial conditions up to the 2006–

2015 decade was 0.87°C, and approximately 1ºC at around 2017 (Chapter 1; Section 3.2). Thus, 

‘climate at 1.5°C global warming’ corresponds to the addition of approximately half a degree of global 

warming compared to present-day temperatures, and observed regional climate changes and impacts 

associated with a ca. 0.5°C global warming can be inferred from the historical record (although there 

could be non-linear changes at higher levels of warming, see Sections 3.2.1 and 3.2.2). This means that 

methods applied in the attribution of climate changes to human influences can be relevant for 

assessments of changes in climate with 1.5°C global warming, especially in cases where no climate 

model simulations or analyses are available for the conducted assessments. Indeed, impacts at 1.5°C 

global warming can be assessed in part from regional and global climate changes that have already 

been detected and attributed to human influence (e.g., Schleussner et al. 2017). This is because 

changes that could already be ascribed to anthropogenic GHG forcing pinpoint components of the 

climate system which are most responsive to this forcing, and thus will continue to be under 1.5°C or 

2°C global warming. For this reason, when specific projections are missing for 1.5°C global warming, 

some of the assessments provided in Section 3.3 (in particular in Table 3.2) build upon joint 

assessments of (i) changes that were observed and attributed to human influence up to present, that is, 

for 1°C global warming or less, and (ii) projections for higher levels of warming (e.g., 2°C, 3°C or 

4°C) to assess the most likely changes at 1.5°C. Such assessments are for transient changes only 

(Section 3.2.1). Evidence from attribution analyses can also be considered in the assessment of the 

reliability of climate projections for 1.5°C and 2°C global warming. 

 

3.SM.1.3 The Propagation of Uncertainties from Climate Forcings to Impacts on the Ecosystems 

 

The uncertainties associated with future projections of climate change are calculated using ensembles 

of model simulations (Flato et al. 2013). However, models are not fully independent, and the use of 

model spread as an estimator of uncertainty has been called into question (Annan and Hargreaves 

2017). Many studies have been devoted to this issue, which is highly relevant to policymakers. The 

sources of uncertainty are diverse (Rougier and Goldstein 2014), and they must be identified to better 

determine the limits of predictions. The following list includes several key sources of uncertainty: 
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1. Input uncertainties include a lack of knowledge about the boundary conditions and the noise 

affecting the forcing variables; 

2. Parametric and structural uncertainties are related to the lack of knowledge about some processes 

(i.e., those that are highly complex or operate at very fine scales) and the lack of clear information 

about the parameterisations used in models and the differences among the models. It has also been 

shown that different combinations of parameters can yield plausible simulations (Mauritsen et al. 

2012); 

3. Observational errors include noise and the unknown covariance structure in the data used; 

4. Scale uncertainty originates from the fact that impact studies require a finer scale than ESM outputs 

can provide (Khan and Coulibaly 2010); 

5. The offline coupling of climate-impact models introduces uncertainty because this coupling permits 

only a limited number of linkage variables and does not allow the representation of key feedbacks. 

This procedure may cause a lack of coherence between the linked climate and impact models 

(Meinshausen et al. 2011); 

6. Important biases also include the consequences of tuning using a restricted range of climate states, 

that is, the periods from which climate data are available. Large biases in projections may be 

produced when future forcings are very different to those used for tuning; and 

7. It is also assumed that ESMs yield adequate estimates of climate, except for an unknown translation 

(Rougier and Goldstein 2014). Usually this translation is estimated by performing an anomaly 

correction (the difference between the control simulation and the observed field). Such correction 

represents an additional uncertainty that is often ignored in the final estimate of the error bars. 

 

Due to these uncertainties in the formulation, parametrisation and initial states of models, any 

individual simulation represents only one step in the pathway followed by the climate system (Flato et 

al. 2013). The assessment of these uncertainties must therefore be done in a probabilistic way. It is 

particularly important when the signal to noise ratio is weak, as it could be when assessing the 

difference of risks between 1.5°C and 2°C global warming. 
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3.SM.2 Supplementary Information to Section 3.3 
 

3.SM.2.1 Change in Global Climate 

 

The Global Mean Surface Temperature (GMST) increase reached approximately 1°C above pre-

industrial levels in 2017 (Haustein et al. 2017; see also Chapter 1). At the time of writing the AR5 

WGI report (i.e., for time frames up to 2012; Stocker et al. 2013), Hartmann et al. (2013) assessed that 

the globally averaged combined land and ocean surface temperature data as calculated by a linear trend 

showed a warming of 0.85°C (0.65°C–1.06°C) over the period 1880–2012, when multiple 

independently produced datasets existed, and about 0.72°C (0.49°C –0.89°C) over the period 1951–

2012. Hence most of the global warming has occurred since 1950, and it has continued substantially in 

recent years. The above values are for global mean warming; however, regional trends can be much 

more varied (Figure S3.1). With few exceptions, most land regions display stronger trends in the 

global mean warming, and by 2012, that is, with a warming of about 0.85°C (see above), some land 

regions already displayed warming higher than 1.5°C (Figure 3.SM.1). 

 

It should be noted that more recent evaluations of the observational record suggest that the estimates of 

global warming at the time of the AR5 may have been underestimated (Cowtan and Way, 2014; 

Richardson et al., 2016). Indeed, as highlighted in Section 3.3.1 and also discussed in Chapter 1, 

sampling biases and different approaches to estimate GMST (e.g., using water versus air temperature 

over oceans) can sensibly impact estimates of GMST increase as well as differences between model 

simulations and observations-based estimates (Richardson et al., 2016). It should be noted that studies 

analyzing projected changes in extremes as a function of GMST generally use surface air temperature 

on both land and oceans (e.g., Fischer and Knutti, 2015; Seneviratne et al., 2016; Mitchell et al., 2017; 

Wartenburger et al., 2017; Kharin et al., 2018) rather than a blend of ocean surface temperature and 

surface air temperature over land (Chapter 1). 

 

As highlighted in Chapter 1, an area in which substantial new literature has become available since the 

AR5 is the GMST trend over the period 1998–2012, which has been referred to by some as the ‘global 

warming hiatus’ (Stocker et al., 2013; Karl et al., 2015; Lewandowsky et al., 2016; Medhaug et al., 

2017). This term was used to refer to an apparent slowdown of GMST increase over that time period 

(although other climate variables continued to display unabated changes during that period, including a 

particular intense warming of hot extremes over land; Seneviratne et al. 2014). Medhaug et al. (2017) 

noted that from a climate point of view, with 2015 and 2016 being the two warmest years on record in 

early 2017 (based on GMST), the question of whether ‘global warming has stopped’ was no longer 

present in the public debate. Nonetheless, the related literature is relevant for the assessment of 

changes in climate at 1.5°C global warming, since this event illustrates the possibility that the global 

temperature response may be decoupled from the radiative forcing over short time periods. While this 

may be associated with cooler global temperatures as experienced during the incorrectly labeled hiatus 

period, this implies that there could also be time periods with global warming higher than 1.5°C even 

if the radiative forcing would be consistent with a global warming of 1.5°C in the long-term average. 

Recent publications have highlighted that the ‘slow down’ in global temperature warming that 

occurred in the time frame of the hiatus episode was possibly overestimated at the time of the AR5 due 

to issues with data corrections, in particular related to coverage (Cowtan and Way 2014; Karl et al. 

2015; Figure 3.SM.2). This has some relevance for the definition of a ‘1.5°C climate’ (see Chapter 1 

and Cross-Chapter Box 8 in Chapter 3 on 1.5°C warmer worlds). Overall, the issue of internal climate 

variability is the reason why a 1.5°C warming level needs to be determined in terms of ‘human-

induced warming’ (see Chapter 1 for additional background on this issue). 

 

A large fraction of the detected global warming has been attributed to anthropogenic forcing (Bindoff 

et al., 2013b). The AR5 (Bindoff et al., 2013b) assessed that it is virtually certain that human influence 

has warmed the global climate system and that it is extremely likely that human activities caused more 

than half of the observed increase in GMST from 1951 to 2010 (supplementary Figure 3.SM.3). The 

AR5 (Bindoff et al., 2013b) assessed that GHGs contributed a GMST increase likely to be between 
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0.5°C and 1.3°C over the period 1951–2010, with the contributions from other anthropogenic forcings 

likely to lie between –0.6°C and 0.1°C, from natural forcings likely to be between –0.1°C and 0.1°C, 

and from internal variability likely to be between –0.1°C and 0.1°C. Regarding observed global 

changes in temperature extremes, reports from the AR5 cycle assessed that since 1950 it is very likely 

that there has been an overall decrease in the number of cold days and nights and an overall increase in 

the number of warm days and nights at the global scale, that is, for land areas with sufficient data 

(Seneviratne et al., 2012; Hartmann et al., 2013). This assessment is confirmed as part of the present 

report and highlights that further decreases in cold extremes and increases in hot extremes are 

projected for a global warming of 1.5°C. 

 

Observed global changes in the water cycle, including precipitation, are more uncertain than observed 

changes in temperature (Hartmann et al., 2013; Stocker et al., 2013). The AR5 assessed that it is very 

likely that global near surface and tropospheric air specific humidity have increased since the 1970s 

(Hartmann et al., 2013). However, AR5 also highlighted that during recent years the near surface 

moistening over land has abated (medium confidence), and that as a result, there have been fairly 

widespread decreases in relative humidity near the surface over the land in recent years (Hartmann et 

al., 2013). With respect to precipitation, some regional precipitation trends appear to be robust 

(Stocker et al., 2013), but when virtually all the land area is filled in using a reconstruction method, the 

resulting time series of global mean land precipitation shows little change since 1900. Hartmann et al. 

(2013) highlight that confidence in precipitation change averaged over global land areas since 1901 is 

low for years prior to 1951 and medium after 1951. However, for averages over the mid-latitude land 

areas of the Northern Hemisphere, Hartmann et al. (2013) assessed that precipitation had likely 

increased since 1901 (medium confidence before and high confidence after 1951). For other latitudinal 

zones, area-averaged long-term positive or negative trends have low confidence due to data quality, 

data completeness or disagreement amongst available estimates (Hartmann et al., 2013). For heavy 

precipitation, the AR5 assessed that in land regions where observational coverage was sufficient for 

assessment, there was medium confidence that anthropogenic forcing had contributed to a global-scale 

intensification of heavy precipitation over the second half of the 20th century (Bindoff et al., 2013b). 

 

Figures 3.SM.4 and 3.SM.5 display the same analyses as the left-hand panels of Figures 3.3 and 3.4 in 

the main text, but based on Representative Concentration Pathway (RCP)2.6 simulations instead of 

RCP8.5. 

 

3.SM.2.2 Regional Temperature on Land, Including Extremes 

 

3.SM.2.2.1 Observed and Attributed Changes in Regional Temperature Means and Extremes 

 

While the quality of temperature measurements obtained through ground observational networks tend 

to be high compared to that of measurements for other climate variables (Seneviratne et al., 2012), it 

should be noted that some regions are undersampled. Cowtan and Way (2014) highlighted issues 

regarding undersampling being concentrated at the Poles and over Africa, which may lead to biases in 

estimated changes in GMST (see also Section 3.3.2 and Chapter 1). This undersampling also affects 

the confidence of assessments regarding regional observed and projected changes in both mean and 

extreme temperature. 

 

Despite this partly limited coverage, the attribution chapter of the AR5 (Bindoff et al., 2013b) and 

recent papers (e.g., Sun et al. 2016; Wan et al. 2018) assessed that over every continental region and in 

many sub-continental regions, anthropogenic influence has made a substantial contribution to surface 

temperature increases since the mid-20th century. For Antarctica, while changes are occurring, 

statistical assessment (presumably to 95% confidence) has not been achieved due primarily to the large 

natural variability in the weather that occurs there and the comparatively short observational record. 

 

Regarding observed regional changes in temperature extremes, the AR5 (Hartmann et al. 2013) 

provided the following assessment based in part on the IPCC Special Report on Managing the Risks of 
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Extreme Events and Disasters to Advance Climate Change Adaptation (SREX - Seneviratne et al., 

2012): 

 Likely (high confidence) overall increases in warm days and warm nights, and decreases in 

cold days and cold nights in North America and Central America, Europe and Mediterranean 

region, in Asia, in Southeast Asia and Oceania (including Australia), and in southern Africa 

 Medium confidence overall increases in warm days and warm nights, and decreases in cold 

days and cold nights in South America, and North Africa and Middle East 

 Low to medium confidence in some African regions lacking observations, but locations with 

observations display increases in warm days and warm nights, and decreases in cold days and 

cold nights. 

 

Further, the IPCC SREX (Seneviratne et al. 2012) assessed that globally, in many (but not all) regions 

with sufficient data there is medium confidence that the length and the number of warm spells or heat 

waves has increased since the middle of the 20th century, and that it is likely that anthropogenic 

influences have led to warming of extreme daily minimum and maximum temperatures at the global 

scale. 

 

Hence, observed and attributed changes in both mean and extreme temperature consistently point to a 

widespread influence of human-induced warming in most land regions. Also, there are new 

publications regarding observed trends in temperature and precipitation means and extremes in Africa 

(e.g., Ringard et al. 2016; Moron et al. 2016; Omondi et al. 2013; MacKellar et al. 2014), which may 

allow an increase in the confidence regarding observed changes on this continent. 

 

Specific attribution statements for changes associated with a global warming of 0.5°C are currently not 

available on a regional scale from the literature, unlike global assessments (Schleussner et al. 2017), 

although preliminary results suggest that a 0.5°C global warming can also be identified for temperature 

extremes in a few large regions (Europe, Asia, Russia, North America; see supplementary material of 

Schleussner et al. 2017). 

 

As highlighted in Section 3.2, the observational record can be used to assess past changes associated 

with a global warming of 0.5°C, with this type of assessment being considered as an analogue for the 

difference between a scenario at 1.5°C and at 2°C global warming. This approach has its limitations. 

For example, the methodology does not account for non-linearity in responses, including possible 

regional or global tipping points. Nonetheless, it can provide a first assessment of aspects of the 

climate system that have been identified as being sensitive to a global warming change of this 

magnitude. Schleussner et al. (2017), using this approach, assessed observed changes in extreme 

indices for the 1991–2010 versus the 1960–1979 period, which corresponds to about 0.5°C GMST 

difference in the observed record (based on the Goddard Institute for Space Studies Surface 

Temperature Analysis GISTEMP dataset, Hansen et al. 2010). They found that substantial changes due 

to 0.5°C warming are apparent for indices related to hot and cold extremes, as well as for the Warm 

Spell Duration Indicator (WSDI). Some results are displayed in Figures S3.6 and S3.7. Using two 

well-established observational datasets – Hadley Centre Global Climate Extremes Index 2 (HadEX2) 

and Global Historical Climatology Network (GHCN)-Daily climate Extremes (GHCNDEX); Donat et 

al. (2013a,b) – these analyses show that one quarter of the land has experienced an intensification of 

hot extremes (annual maximum value of daily maximum temperature; TXx) by more than 1°C and a 

reduction of the intensity of cold extremes by at least 2.5°C (annual minimum value of daily minimum 

temperature; TNn). Half of the global land mass has experienced changes in WSDI of more than six 

days, and the emergence of extremes outside the range of natural variability is particularly pronounced 

for this duration-based indicator (Figure 3.7). Results for TXx based on reanalysis products are similar 

for the 20th century reanalysis (20CR) product, but even more pronounced for the European Centre for 

Medium-Range Weather Forecasts (ECMWF) reanalyses (referred to as “ERA”), as noted by 

Schleussner et al. 2017; however, results based on reanalysis products need to be considered with 

caution since they are partly a modelling product, and also assimilate datasets of different length. 

Overall, based on the analysis of Schleussner et al. (2017), the observational record suggests that a 

0.5°C change in global warming has noticeable global impacts on temperature extremes. 
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3.SM.2.2.2 Projected Changes at 1.5°C versus 2°C in Regional Temperature Means and Extremes 

 

This supplementary information provides more detailed material as background for the assessment of 

Section 3.3.2.2. 

 
As noted in Section 3.3.2.2., there is a stronger warming of the regional land-based hot extremes 

compared to the mean global temperature warming in most land regions (also discussed in Seneviratne 

et al. 2016). The regions displaying the stronger contrast are central North America, eastern North 

America, Central Europe, southern Europe/Mediterranean, western Asia, Central Asia and southern 

Africa. As highlighted in Vogel et al. (2017), these regions are characterized by transitional climate 

regimes between dry and wet climates, which are associated with strong soil-moisture–temperature 

coupling (related to a transitional soil-moisture regime; Koster et al. 2004; Seneviratne et al. 2010). 

Several of these regions display enhanced drying under enhanced GHG forcing (see Section 3.3.4), 

which leads to a decrease of evaporative cooling and an additional regional warming compared to the 

global temperature response. In a recent study, Karmalkar and Bradley (2017) also found consistent 

results for the contiguous United States, with all subregions projected to reach 2°C approximately 

between 10 and 20 years before the global mean temperature. 

 

In general, these transitional climate regions also show the largest spread in temperature extremes 

response, likely related to the impact of the soil-moisture–temperature coupling for the overall 

response. This spread is due to both intermodel variations in the representation of drying trends (see 

also Section 3.3.4; Orlowsky and Seneviratne 2013; Greve and Seneviratne 2015) and to differences in 

soil-moisture–temperature coupling in climate models (Seneviratne et al., 2013; Stegehuis et al., 2013; 

Sippel et al., 2016), whereby feedbacks with clouds and surface radiation are also relevant (Cheruy et 

al., 2014). Furthermore, in some regions internal climate variability can also explain the spread in 

projections (Deser et al., 2012). Regions with the most striking spread in projections of hot extremes 

include Central Europe, with projected regional TXx warming at 1.5°C, ranging from 1°C to 5°C 

warming, and central North America, which displays projected changes at 1.5°C global warming, 

ranging from no warming to 4°C warming. 

 

Regarding results from regional studies, Vautard et al. (2014) report that most of Europe will 

experience higher warming than the global average with strong distributional patterns across Europe 

for global warming of 2°C, which is consistent with the present assessment for 1.5°C warming (Jacob 

et al., 2018). For instance, a north–south (west–east) warming gradient is found for summer (winter) 

along with a general increase and summer extreme temperatures. 

 

It should be noted that recent evidence suggests that climate models overestimate the strength of soil-

moisture–temperature coupling in transitional climate regions, although it is not clear if this behaviour 

would lead to an overestimation of projected changes in hot temperatures (Sippel et al., 2016). In 

addition, there are discrepancies in projections from regional versus global climate models in Europe, 

possibly due to differences in prescribed aerosol concentrations (Bartók et al., 2017). 

 

While the above-mentioned hot spots of changes in temperature extremes are located in transitional 

climate regimes between dry and wet climates, a recent study has also performed a separate analysis of 

changes in temperature extremes between ‘drylands’ and ‘humid’ lands, defining the first category 

based on mean precipitation lower than 600 mm and the ratio of mean Precipitation to Potential 

Evapo-Transpiration (P/PET) being lower than 0.65 (Huang et al., 2017). This study identifies that 

warming is much greater in ‘drylands’ compared to ‘humid lands’ (by 44%), although the latter are 

mostly responsible for GHG emissions that underlie this change. 

 

Figure 3.5 in Chapter 3 displays projected changes in the TXx as a function of GMST for the main 

regions as specified in the IPCC SREX (see Figure 3.2 for a description of the regions) using 

Empirical Scaling Relationships (ESR; Section 3.2). The underlying model projections include 
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Coupled Model Intercomparison Project Phase 5 (CMIP5) multimodel global climate simulations 

(based on the analyses of Wartenburger et al. 2017 and Seneviratne et al. 2016) and simulations from 

the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multimodel 

experiments (Mitchell et al. 2017; based on analyses presented in Seneviratne et al. 2018). The CMIP5 

analyses provide continuous estimates of the dependency of the analysed climate extremes as functions 

of GMST, while the HAPPI-derived estimates are only available for the estimation of responses at two 

global warming levels, 1.5°C and 2°C. The CMIP5-based ESR analyses are computed from historical 

and RCP8.5 simulations from 26 CMIP5 global climate models (including up to 10 ensemble members 

per model). For the HAPPI analyses, changes in the indices and in the corresponding global mean 

temperatures (as indicated in the map and in the bar plots shown in the figures) are based on the 100 

first ensemble members (#1 to #100) from five models (following Seneviratne et al. 2018): Canadian 

4th generation Atmospheric global climate Model (CanAM4); Community Atmosphere Model version 

4 (CAM4); European Center Hamburg model version 6-3-Default (Low) Resolution (ECHAM6-3-

LR); Model for Interdisciplinary Research On Climate version 5 (MIROC5); and Norwegian Earth 

System Model version 1-HAPPI (NorESM1-HAPPI). For each of the HAPPI models and the 

two experiments considered (1.5°C relative to pre-industrial and 2°C relative to pre-industrial), 

differences were computed of the indices (scenario period – reference period, consisting of 10 years of 

data each per ensemble member); the reader is referred to the referenced publications for more 

background on the analyses and databases. Note that the ESR analyses are based on land data only for 

all of the considered regions, that is, with a mask being applied to ocean data within the considered 

regions. (Ocean datapoints are, however, included for analyses for island regions provided in this 

Supplementary Material, i.e., a subset of the regions indicated asterisks (*) in Figure 3.2; see e.g., 

Figure 3.SM.9 and similar). 

 

Figure 3.SM.8 displays similar analyses as Figure 3.5 but for TNn. The mean response of these cold 

extremes displays less discrepancy with the global levels of warming (often close to the 1:1 line in 

many regions), however, there is a clear amplified warming in regions with snow and ice cover. This is 

expected given the Arctic warming amplification (Serreze and Barry 2011; see also AR5 overview on 

‘polar amplification’: Masson-Delmotte et al. 2013; IPCC 2013) which is to a large extent due to 

snow-albedo-temperature feedbacks (Hall and Qu, 2006). In some regions and for some model 

simulations, the warming of TNn at 1.5°C global warming can reach up to 8°C regionally (e.g., 

northern Europe, Figure 3.SM.8), and thus be much larger than the global temperature warming. 

 

Figures 3.SM.9 and 3.SM.10 display the same analyses as Figures 3.5 (main text) and 3.SM.8 for the 

regions indicated with asterisks in Figure 3.2. It should be noted that for the island regions, the land 

fraction is often too small to be resolved by standard global climate models. For this reason, as 

mentioned above, the analyses for island regions (indicated with # sign) are based on both land and 

ocean air temperatures and are representative of average climate conditions in the areas in which they 

are located. 

 

Figure 3.SM.13 displays maps of changes in the number of hot days (NHD) and number of frost days 

(NFD) at 1.5°C and 2°C GMST increase. These analyses reveal clear patterns of changes between the 

two warming levels, with decreases in frost days in many regions.  

 

 

3.SM.2.3 Regional Precipitation on Land, Including Heavy Precipitation and Monsoons 

 

3.SM.2.3.1 Observed and Attributed Changes in Regional Precipitation 

 

There is overall low confidence in observed trends for monsoons because of insufficient evidence 

(consistent with a previous assessment in the IPCC SREX, Seneviratne et al. 2012). There are, 

nonetheless, a few new assessments available, although they do not report consistent trends in different 

monsoon regions (Singh et al., 2014; Taylor et al., 2017; Bichet and Diedhiou, 2018). For instance, 

Singh et al. (2014) use precipitation observations (1951–2011) of the South Asian summer monsoon 



 12 

and show that there have been significant decreases in peak-season precipitation over the core-

monsoon region and significant increases in daily-scale precipitation variability. Furthermore, Taylor 

et al. (2017) showed that over the west African Sahel, the frequency of extreme storms tripled since 

1982 in satellite observations and Bichet and Diedhiou (2018) confirm that the region has been wetter 

during the last 30 years but dry spells are shorter and more frequent with a decreasing precipitation 

intensity in the western part (over Senegal). However, there is not sufficient evidence to provide higher 

than low confidence in the assessment of observations in overall trends in monsoons. 

 

3.SM.2.3.2 Projected Changes at 1.5°C and 2°C in Regional Precipitation 

 

The AR5 assessed that the global monsoon, aggregated over all monsoon systems, is likely to 

strengthen (Christensen et al., 2013). There are a few publications that provide more recent evaluations 

on projections of changes in monsoons for high-emissions scenarios. Jiang and Tian (2013), who 

compared the results of 31 and 29 reliable climate models under the Special Report on Emissions 

Scenarios (SRES) A1B scenario or the RCP4.5 scenario, respectively, found weak projected changes 

in the East Asian winter monsoon as a whole relative to the reference period (1980–1999). Regionally, 

they found a weakening north of about 25°N in East Asia and a strengthening south of this latitude, 

which resulted from atmospheric circulation changes over the western north Pacific Ocean and 

northeast Asia. This is linked to the weakening and northward shift of the Aleutian Low, and from 

decreased northwest–southeast thermal and sea level pressure differences across northeast Asia. In 

summer, Jiang and Tian (2013) found a projected strengthening (albeit, slight) of monsoon in east 

China over the 21st century as a consequence of an increased land–sea thermal contrast between the 

East Asian continent and the adjacent western north Pacific Ocean and South China Sea. Using six 

CMIP5 model simulations of the RCP8.5 high-emissions scenario, Jones and Carvalho (2013) found a 

30% increase in the amplitude of the South American Monsoon System (SAMS) from the current level 

by 2045–2050. They also found an ensemble mean onset date of the SAMS which was 17 days earlier, 

and a demise date 17 days later, by 2045–2050. The most consistent CMIP5 projections analysed 

confirmed the increase in the total precipitation over southern Brazil, Uruguay and northern Argentina. 

Given that scenarios at 1.5°C or 2°C would include a substantially smaller radiative forcing than those 

assessed in the studies of Jiang and Tian (2013) and Jones and Carvalho (2013), there is low 

confidence regarding changes in monsoons at these low global warming levels, as well as regarding 

differences in responses at 1.5°C versus 2°C. 

 

Several analyses of global circulation models (GCM-RCM) simulations in the framework of the 

Coordinated Regional Climate Downscaling Experiment for Africa (CORDEX-AFRICA) were 

performed to capture changes in the African climate system in a warmer climate. Sylla et al. (2015, 

2016) analysed the response of the annual cycle of high-intensity daily precipitation events over West 

Africa to anthropogenic GHG for the late 21st century. The late-21st-century projected changes in 

mean precipitation exhibit a delay of the monsoon season and a decrease in frequency, but an increase 

in intensity of very wet events, particularly in the pre-monsoon and early mature monsoon stages, 

more pronounced in RCP8.5 over the Sahel and in RCP4.5 over the Gulf of Guinea. The pre-monsoon 

season also experiences the largest changes in daily precipitation statistics, with increased risk of 

drought associated with a decrease in mean precipitation and frequency of wet days and an increased 

risk of flood associated with very wet events. Weber et al. (2018) assessed the changes in temperature- 

and rainfall-related climate change indices in a 1.5°C, 2°C and 3°C global warming world for the 

Africa continent. The results showed the daily rainfall intensity is also projected to increase for higher 

global warming scenarios, especially for the sub-Saharan coastal regions. 

 

Figure 3.SM.14 displays the same analyses as Figure 3.9 for the regions indicated with asterisks in 

Figure 3.2. For the underlying methodology, a similar approach was used as for Figure 3.5 (see 

Section 3.3.2.2). 

 

3.SM.2.4 Drought and Dryness 
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Figure 3.SM.15 displays the same analyses as Figure 3.12 for the regions indicated with asterisks in 

Figure 3.2. For the underlying methodology, a similar approach was used as for Figure 3.5 (see 

Section 3.SM.3.2.2). 

 

Supplementary Figures 

 

 
Figure 3.SM.1:  Map of the observed surface temperature change from 1901 to 2012 derived from temperature 

trends determined by linear regression from one dataset. Trends have been calculated where data 

availability permits a robust estimate (i.e., only for grid boxes with greater than 70% complete 

records and more than 20% data availability in the first and last 10% of the time period). Other 

areas are white. Grid boxes where the trend is significant at the 10% level are indicated by a + 

sign. From Stocker et al. (2013). 

 

 
Figure 3.SM.2: Global temperature warming using older and newer corrections (Karl et al., 2015). 
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Figure 3.SM.3: Attribution of global warming change (from IPCC AR5, Bindoff et al., 2013)  
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Figure 3.SM.4: Same as left-hand plots of Figure 3.3, but based on Representative Concentration Pathway 

(RCP)2.6 scenarios. 
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Figure 3.SM.5: Same as left-hand plot of Figure 3.4, but based on the Representative Concentration Pathway 

(RCP)2.6 scenarios. 

 

 

 

 
Figure 3.SM.6:  Difference in extreme temperature event indices for 0.5°C warming over the observational 

record. Probability density functions show the globally aggregated land fraction that experienced 

a certain change between the 1991–2010 and 1960–1979 periods for the Hadley Centre Global 

Climate Extremes Index 2 (HadEX2) and Global Historical Climatology Network (GHCN)-Daily 
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climate Extremes (GHCNDEX) datasets. For annual maximum value of daily maximum 

temperature (TXx), the analysis also includes reanalysis data from the European Centre for 

Medium-Range Forecasts (ECMWF) (ECMWF Reanalysis 40 (ERA-40) and Interim (ERA-

Interim), used as a combined dataset including ERA-40 until 1979 and ERA-Interim from 1979 

onward) and the Twentieth Century Reanalysis (20CR) ERA and 20CR over the global land area. 

Light-coloured envelopes illustrate the changes expected by internal variability alone, estimated 

by statistically resampling individual years. From Schleussner et al. (2017). 
 
 

 

 
Figure 3.SM.7: Differences in extreme precipitation event indices for 0.5°C warming over the observational 

record. Probability density functions show the globally aggregated land fraction that experienced 

a certain change between the 1991–2010 and 1960–1979 periods for the HadEX2 and 

GHCNDEX datasets. Light-coloured envelopes illustrate the changes expected by internal 

variability alone, estimated by statistically resampling individual years. From Schleussner et al. 

(2017). 
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Figure 3.SM.8: Same analysis as Figure 3.5, but for the annual minimum value of daily minimum temperature 

(TNn). For more details on computation, see description of computation of Figure 3.5 in the 

present Annex, as well as Wartenburger et al. (2017), Seneviratne et al. (2016) and Seneviratne et 

al. (2018). 

 

 
Figure 3.SM.9: Same analysis as Figure 3.5 (projected changes in annual maximum value of daily maximum 

temperature, TXx, as function of global temperature warming) for additional regions displayed 

with asterisks in Figure 3.2 (island regions, polar regions). Asterisks (*) indicate non-SREX 

reference regions (http://www.ipcc-data.org/guidelines/pages/ar5_regions.html). Hashtag (#) 

indicates island regions; for these regions, the ocean area was not masked out in the analyses. See 

description of computation of Figure 3.5 in the present Annex for more details. 
 

https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
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Figure 3.SM.10:  Same analysis as Figure S3.8 (projected changes in TNn as function of global temperature 

warming) for additional regions displayed with asterisks in Figure 3.2 (island regions, polar 

regions). Asterisks (*) indicate non-SREX reference regions (http://www.ipcc-

data.org/guidelines/pages/ar5_regions.html). Hashtag (#) indicates island regions; for these 

regions, the ocean area was not masked out in the analyses. 

 

 

 

 
Figure 3.SM.11: Same analysis as Figure 3.5, but for the mean surface temperature (Tmean). 

 

https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
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Figure 3.SM.12:  Same analysis as Figure 3.SM.11 (projected in the changes in Tmean as function of the mean 

global temperature) for additional regions displayed with asterisks in Figure 3.2 (island regions, 

polar regions). Asterisks (*) indicate non-SREX reference regions (http://www.ipcc-

data.org/guidelines/pages/ar5_regions.html). Hashtag (#) indicates island regions; for these 

regions, the ocean area was not masked out in the analyses. 

 

 
Figure 3.SM.13:  Projected changes in number of frost days (days with T<0°C, bottom) at 1.5°C (left) and 2°C 

(middle) GMST increase, and their difference (right). Cross-hatching highlights areas in which at 

least 2/3rds of the models agree on the sign of change as a measure of robustness (18 or more out 

of 26). Adapted from Wartenburger et al. (2017). 

 

https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
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Figure 3.SM.14:  Same analysis as Figure 3.9 for additional regions displayed with asterisks in Figure 3.2 

(island regions, polar regions). Asterisks (*) indicate non-SREX reference regions 

(http://www.ipcc-data.org/guidelines/pages/ar5_regions.html). Hashtag (#) indicates island 

regions; for these regions, the ocean area was not masked out in the analyses. 

 

 
 

https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
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Figure 3.SM.15: Same analysis as Figure 3.12 for additional regions displayed with asterisks in Figure 3.2 

(island regions, polar regions). Asterisks (*) indicate non-SREX reference regions 

(http://www.ipcc-data.org/guidelines/pages/ar5_regions.html). Hashtag (#) indicates island 

regions; for these regions, the ocean area was not masked out in the analyses. 

 

 
Figure 3.SM.16: Same as Figure 3.3 but for differences to 1°C global warming instead of pre-industrial 

conditions (left and middle plots). 

 

 

 
Figure 3.SM.17: Same as Figure 3.4 but for differences to 1°C global warming instead of pre-industrial 

conditions (left and middle plots). 

https://mail.ethz.ch/owa/redir.aspx?C=d-aBgMukJ0cv3XEbKTD5Pr3nrZUTvmCDhY1gVkcL568-T4hcYcXVCA..&URL=http%3a%2f%2fwww.ipcc-data.org%2fguidelines%2fpages%2far5_regions.html
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Figure 3.SM.18: Same as Figure 3.7 but for differences to 1°C global warming instead of pre-industrial 

conditions (left and middle plots). 
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3.SM.3_ Supplementary information to Section 3.4 
 

These tables document some of the quantitative projections of projected climate change impacts that are to be found in the literature cited in this report.  

They do not necessarily contain all of the quantitative projections that could be found in the literature, in particular where a single publication contains a large 

number of projections.  
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Table 3.SM.1: 3.4.2 Freshwater resources  
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Table 3.SM.2: 3.4.3 Terrestrial and wetland ecosystems  
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Table 3.SM.3: 3.4.4 Ocean Systems  
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Table 3.SM.4: 3.4.5 Coastal and low-lying areas  
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Table 3.SM.5: 3.4.6 Food security and food production systems  
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3.SM.3.1 Supplementary information to Section 3.4.2 
 

3.SM.3.1.1 Freshwater Resources (Quantity and Quality) 

 

In this section, Arnell and Lloyd-Hughes (2014) assess water scarcity based on the simple indicator of 

average annual runoff per capita called “water resources stress”, and define that watershed as exposed 

to such stress if watershed average annual runoff is less than 1000 m3 cap-1 yr-1. The same condition is 

applied to identify chronic supply-side water scarcity within a given spatial unit in the study by Gerten 

et al. (2013) that refers to Falkenmark and Widstrand (1992), whose index is called Withdrawal to 

Water Resouces (WWR) ratio. With WWR, Hanasaki et al. (2013) indicate a chronic water shortage if 

water withdrawal exceeds 40% of the water resources in a region. A quantitative metric of freshwater 

stress is defined in terms of future projections of population and aridity, where freshwater stress index 

is calculated as a population change index multiplied by an aridity change index (Karnauskas et al. 

2018). Schewe et al. (2014) apply two water scarcity classes: annual blue water availability below 500 

m3 per capita, namely absolute water scarcity, and below 1000 m3 per capita that is referred to as 

chronic water scarcity. 

3.SM.3.1.1.2 Extreme hydrological events (floods and droughts) 

 

Alfieri et al. (2017) assume and estimate potential population affected for any positive flood depth by 

overlaying population density and flood hazard maps. Arnell et al. (2018) define exposure to river 

flooding by the average annual number of people living in major floodplains affected by floods greater 

than the baseline 30-year flood. Arnell and Lloyd-Hughes (2014) use an indicator in which the number 

of flood-prone people living in areas where the frequency of the baseline (1960–1990) 20-year flood 

either doubles (occurs more frequently than one in 10 years) or halves (occurs more rarely than one in 

40 years), although these thresholds are arbitrary. Kinoshita et al. (2018) estimate fatalities due to 

flooding by multiplying exposure (population prone to flooding, defined in the study as gridded 

population) by vulnerability, and numerically calculate flood hazard as the extent and depth of flood, 

while estimating potential affected exposure by superimposing the modelled hazard on the population 

data. In the study, Kinoshita et al. (2018) consider exposure as gridded population whereas historical 

vulnerability is defined as a ratio of the observed flood consequences and potentially affected exposure 

at a national level in equations. 

In the study by Arnell et al. (2018), drought is presented by the standardized runoff index called SRI, 

which is calculated from monthly runoff simulated with the MacPDM.09 global hydrological model 

described in Gosling and Arnell (2011) . The occurrence of a drought is defined as when the SRI is 

less than –1.5; and as for drought frequency for a given time series of monthly runoff, it is determined 

by counting the number of months with SRI less than –1.5. Liu et al. (2018) quantify the changes in 

drought characteristics, adopting Palmer Drought Severity Index (PDSI) that describes the balance 

between water supply (precipitation) and atmospheric evaporative demand required by the 

precipitation estimated under climatically appropriate for existing conditions, which is described by 

Zhang et al. (2016), Wells et al. (2004) and Zhang et al. (2016). Liu et al.’s (2018) study suggests that 

PDSI is commonly applicable as an indication of meteorological drought and a hydrological drought 

for a multi-year time series. Liu et al. (2018) assume a severe drought event when the monthly PDSI is 

< –3, and identify a severe drought year if a severe drought occurs for at least a month in a year, while 

multiplying population by annual frequency of severe drought to quantify the population affected by 

severe drought per grid-cell. 

 

3.SM.3.1.1.3 Groundwater 

 

Portmann et al. (2013) assess groundwater with groundwater recharge (GWR), which is assumed to be 

curbed by a maximum groundwater recharge rate per day. GWR occurs if daily precipitation exceeds 

12.5 mm d-1 in case of medium to coarse grained soils (Portmann et al., 2013). In some regions, 

groundwater is often intensively used to supplement the excess demand, often leading to groundwater 
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depletion; besides climate change, this adds further pressure on water resources and exaggerates 

human water demands due to increasing temperatures over agricultural lands (Wada et al. 2017). 

 

3.SM.3.1.1.4 Water quality 

 

Water temperature directly affects water quality, and most chemical and bacteriological processes are 

accelerated according to the temperature rise (Watts et al. 2015). Hosseini et al. (2017) summarize that 

the main impact on water quality due to climate change is attributed to changing air temperature and 

hydrology; and particularly ambient air temperature directly affects water temperature, that is 

projected to increase due to global warming. Watts et al. (2015) describe water quality as affected by 

many factors, including water temperature, hydrological regime, nutrient status and mobilization of 

toxic substances, as well as point source, diffuse discharge and acidification potential, referring to 

Whitehead et al. (2009). Patiño et al. (2014) reveal that changes in water quality can influence the 

spread of harmful aquatic species, referring to the fact that toxic algae are lethal to some aquatic 

animals and has posed considerable ecological and economic impacts on freshwater and marine 

ecosystems. Bonte and Zwolsman (2010) state that salinization due to rising sea levels as well as poor 

land management and excessive groundwater extractions is putting a strain on freshwater resources 

availability around the world. Attributing changes in river water quality to specific factors is difficult 

since multiple factors act at different temporal and spatial scales, and it often requires examining a 

long-term series of continuous data (Aguilera et al. 2015). 

 

References 

Aguilera, R., R. Marcé, and S. Sabater, 2015: Detection and attribution of global change effects on river nutrient 

dynamics in a large Mediterranean basin. Biogeosciences, 12, 4085–4098, doi:10.5194/bg-12-4085-

2015. 

Alfieri, L., B. Bisselink, F. Dottori, G. Naumann, A. de Roo, P. Salamon, K. Wyser, and L. Feyen, 2017: Global 

projections of river flood risk in a warmer world. Earth’s Futur., 5, 171–182, 

doi:10.1002/2016EF000485. http://doi.wiley.com/10.1002/2016EF000485 (Accessed March 26, 2017). 

Arnell, N. W., and B. Lloyd-Hughes, 2014: The global-scale impacts of climate change on water resources and 

flooding under new climate and socio-economic scenarios. Clim. Change, 122, 127–140, 

doi:10.1007/s10584-013-0948-4. http://link.springer.com/10.1007/s10584-013-0948-4 (Accessed April 

5, 2017). 

Arnell, N. W., J. A. Lowe, B. Lloyd-Hughes, and T. J. Osborn, 2018: The impacts avoided with a 1.5°C climate 

target: a global and regional assessment. Clim. Change, 147, 61–76, doi:10.1007/s10584-017-2115-9. 

https://doi.org/10.1007/s10584-017-2115-9. 

Bonte, M., and J. J. G. Zwolsman, 2010: Climate change induced salinisation of artificial lakes in the 

Netherlands and consequences for drinking water production. Water Res., 44, 4411–4424, 

doi:10.1016/j.watres.2010.06.004. 

http://www.sciencedirect.com/science/article/pii/S0043135410003799 (Accessed April 7, 2017). 

Falkenmark, M., and C. Widstrand, 1992: Population and water resources: a delicate balance. Popul. Bull., 47, 1–

36. http://www.ncbi.nlm.nih.gov/pubmed/12344702 (Accessed September 15, 2018). 

Gerten, D., and Coauthors, 2013: Asynchronous exposure to global warming: freshwater resources and terrestrial 

ecosystems. Environ. Res. Lett., 8, 034032, doi:10.1088/1748-9326/8/3/034032. 

http://stacks.iop.org/1748-9326/8/i=3/a=034032?key=crossref.8f60cb76b3324084849e22201ba879bf 

(Accessed April 7, 2017). 

Gosling, S. N., and N. W. Arnell, 2011: Simulating current global river runoff with a global hydrological model: 

model revisions, validation, and sensitivity analysis. Hydrol. Process., 25, 1129–1145, 

doi:10.1002/hyp.7727. https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.7727. 

Hanasaki, N., and Coauthors, 2013: A global water scarcity assessment under Shared Socio-economic Pathways 

- Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci., 17, 2393–2413, doi:10.5194/hess-17-

2393-2013. http://www.hydrol-earth-syst-sci.net/17/2393/2013/ (Accessed April 7, 2017). 

Hosseini, N., J. Johnston, and K.-E. Lindenschmidt, 2017: Impacts of Climate Change on the Water Quality of a 

Regulated Prairie River. Water, 9, 199, doi:10.3390/w9030199. http://www.mdpi.com/2073-

4441/9/3/199 (Accessed July 15, 2017). 

Karnauskas, K. B., C.-F. Schleussner, J. P. Donnelly, K. J. Anchukaitis, K. Archukaitis, and K. J. Anchukaitis, 

2018: Freshwater Stress on Small Island Developing States: Population Projections and Aridity Changes 

at 1.5°C and 2°C. Reg. Environ. Chang., 1–10, doi:10.1007/s10113-018-1331-9. 



 64 

Kinoshita, Y., M. Tanoue, S. Watanabe, and Y. Hirabayashi, 2018: Quantifying the effect of autonomous 

adaptation to global river flood projections: Application to future flood risk assessments. Environ. Res. 

Lett., 13, 014006, doi:10.1088/1748-9326/aa9401. http://iopscience.iop.org/article/10.1088/1748-

9326/aa9401. 

Liu, W., F. Sun, W. H. Lim, J. Zhang, H. Wang, H. Shiogama, and Y. Zhang, 2018: Global drought and severe 

drought-affected populations in 1.5 and 2&amp;amp;thinsp;&amp;amp;deg;C warmer worlds. Earth 

Syst. Dyn., 9, 267–283, doi:10.5194/esd-9-267-2018. 

Patiño, R., D. Dawson, and M. M. Vanlandeghem, 2014: Retrospective Analysis of Associations between Water 

Quality and Toxic Blooms of Golden Alga (Prymnesium parvum) in Texas Reservoirs: Implications for 

Understanding Dispersal Mechanisms and Impacts of Climate Change. Harmful Algae, 33, 1–11, 

doi:10.1016/j.hal.2013.12.006. 

Portmann, F. T., P. Döll, S. Eisner, and M. Flörke, 2013: Impact of climate change on renewable groundwater 

resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate 

projections. Environ. Res. Lett., 8, 024023, doi:10.1088/1748-9326/8/2/024023. 

http://stacks.iop.org/1748-9326/8/i=2/a=024023?key=crossref.b0a543a479eeff6c76b319c99956a993 

(Accessed April 7, 2017). 

Schewe, J., and Coauthors, 2014: Multimodel assessment of water scarcity under climate change. Proc. Natl. 

Acad. Sci., 111, 3245–3250, doi:10.1073/pnas.1222460110. 

http://www.pnas.org/content/111/9/3245.full.pdf (Accessed April 6, 2017). 

Wada, Y., and Coauthors, 2017: Human–water interface in hydrological modelling: current status and future 

directions. Earth Syst. Sci, 215194, 4169–4193, doi:10.5194/hess-21-4169-2017. 

Watts, G., and Coauthors, 2015: Climate change and water in the UK – past changes and future prospects. Prog. 

Phys. Geogr., 39, 6–28, doi:10.1177/0309133314542957. 

Wells, N., S. Goddard, and M. J. Hayes, 2004: A Self-Calibrating Palmer Drought Severity Index. J. Clim., 17, 

2335–2351, doi:10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2. https://doi.org/10.1175/1520-

0442(2004)017%3C2335:ASPDSI%3E2.0.CO. 

Whitehead, P. G., R. L. Wilby, R. W. Battarbee, M. Kernan, and A. J. Wade, 2009: A review of the potential 

impacts of climate change on surface water quality. Hydrol. Sci. J., 54, 101–123, 

doi:10.1623/hysj.54.1.101. https://doi.org/10.1623/hysj.54.1.101. 

Zhang, F., J. Tong, B. Su, J. Huang, and X. Zhu, 2016: Simulation and projection of climate change in the south 

Asian River basin by CMIP5 multi-model ensembles. J. Trop. Meteorol., 32, 734–742. 

  



 65 

3.SM.3.2 Supplementary Information to Section 3.4.4 
 

Update of Expert Assessment by Gattuso et al. (2015) 

J.-P. Gattuso, A. Magnan, R. Billé, W. W. L. Cheung, E. L. Howes, F. Joos, D. 

Allemand, L. Bopp, S. R. Cooley, C. M. Eakin, O. Hoegh-Guldberg, R. P. Kelly, H.-O. 

Pörtner, A. D. Rogers, J. M. Baxter, D. Laffoley, D. Osborn, A. Rankovic, J. Rochette, U. 

R. Sumaila, S. Treyer, C. Turley 

  

Published 3 July 2015, Science 349, aac4722 (2015) 

DOI: 10.1126/science.aac4722 

 

Risk assessment update: November 18, 2017 (by lead authors and contributing authors of Chapter 3, 

other chapters of the Special Report on Global Warming of 1.5°C, and relevant external experts). 

 

This Section 3.SM.3.2 includes: 

Supplementary Text 

Table 3.SM.6  

Full Reference List 

 

Background Information and Rationale of Expert Judgement on the Risk of Impact Due to 

CO2 Levels by 2100 

 

This supplementary material provides the background information and rationale for the construction of 

the burning embers diagrams used in Figure 3.18 to represent the increase in risk as well as the limits 

to adaptation from rising CO2 levels for keystone marine and coastal organisms and ecosystem 

services. 

 

This is the expert judgement by the group on the overall risk – balancing negative, neutral and positive 

impacts across species and regions using current literature. 

 

Table 3.SM.6: The temperature at which transitions in the level of risk occur in response to climate change, 

from expert judgement by Gattuso et al. (2015) and updated in March 2018 for the following three 

years of scientific literature. [White: No detectable risks from climate change; Yellow: Moderate 

levels of risk; Red: High level of risk; and Purple: Very high level of risk] 

 Note: These data were used to build the burning embers for representative marine organisms, 

ecosystems and sectors.  Note: Red numbers are where the update has resulted in slightly different 

conclusions to those of Gattuso et al. (2015). 

 

    Average Global Sea Surface Temperature (SST, 
°C)  

Component 
Colour 

transition 
 2015 2018 

Seagrasses (mid-latitude) 

White to Yellow 

Begin 0.5 0.5 

End 0.8 0.8 

Yellow to Red 

Begin 1.5 1.5 

End 1.8 1.8 
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    Average Global Sea Surface Temperature (SST, 
°C)  

Component 
Colour 

transition 
 2015 2018 

Red to Purple 

Begin 2.2 2.2 

End 3 3 

Mangroves 

White to Yellow 

Begin 1.8 1.3 

End 3 1.5 (2.5)* 

Yellow to Red 

Begin 3 2.5 

End 3.2 2.7 

Red to Purple 

Begin N/A NA 

End N/A NA 

Warm-water corals 

White to Yellow 

Begin 0.3 0.2 

End 0.4 0.4 

Yellow to Red 

Begin 0.5 0.4 

End 0.8 0.6 

Red to Purple 

Begin 0.8 0.6 

End 1.5 1.2 

Pteropods (high latitude) 

White to Yellow 

Begin 0.7 0.7 

End 0.8 0.8 

Yellow to Red 

Begin 0.8 0.8 

End 1.5 1.5 

Red to Purple 

Begin 1.5 1.5 

End 2 2 

 Bivalves (mid-latitude) 

White to Yellow 

Begin 0.4 0.4 

End 0.6 0.6 

Yellow to Red 

Begin 0.9 0.9 

End 1.1 1.1 

Red to Purple 

Begin 1.3 1.3 

End 1.5 1.5 

 Krill (high latitude) 

White to Yellow 

Begin 0.7 0.7 

End 0.9 0.9 

Yellow to Red 

Begin 1 1 

End 1.6 1.6 

Red to Purple 

Begin 1.8 1.8 

End 3.2 3.2 

Fin fish White to Yellow 
Begin 0.5 0.5 
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    Average Global Sea Surface Temperature (SST, 
°C)  

Component 
Colour 

transition 
 2015 2018 

End 0.7 0.7 

Yellow to Red 

Begin 1.1 1.1 

End 1.3 1.3 

Red to Purple 

Begin 1.4 1.4 

End 1.6 1.6 

 Open-ocean carbon uptake 

White to Yellow 

Begin 1 1 

End 1.5 1.5 

Yellow to Red 

Begin 2 2 

End 3.2 3.2 

Red to Purple 

Begin N/A N/A 

End N/A N/A 

 Coastal protection 

White to Yellow 

Begin 0.5 0.5 

End 0.8 0.8 

Yellow to Red 

Begin 1.5 1.5 

End 1.8 1.8 

Red to Purple 

Begin 2.2 2.2 

End 3.2 3.2 

Recreational services from coral reefs 

White to Yellow 

Begin 0.6 0.6 

End 0.8 0.8 

Yellow to Red 

Begin 1 1 

End 1.5 1.5 

Red to Purple 

Begin 2 2 

End 3.2 3.2 

Bivalve fisheries and aquaculture (mid-

latitude) 

White to Yellow 

Begin 1.1 1.1 

End 1.3 1.3 

Yellow to Red 

Begin 1.7 1.7 

End 1.9 1.9 

Red to Purple 

Begin 2.8 2.8 

End 3.2 3.2 

Fin-fish (small scale) fisheries (low 

latitude) 

White to Yellow 

Begin 0.7  0.5 

End 0.9  0.7 

Yellow to Red 

Begin 1  0.9 

End 1.2  1.1 
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    Average Global Sea Surface Temperature (SST, 
°C)  

Component 
Colour 

transition 
 2015 2018 

Red to Purple 

Begin 2  2 

End 2.5  2.5 

Fin-fish fisheries (mid- and high latitude) 

White to Yellow 

Begin 0.7 0.7 

End 0.9 0.9 

Yellow to Red 

Begin 2.2 2.2 

End 3.2 3.2 

Red to Purple 

Begin N/A N/A 

End N/A N/A 

Note: *Mangrove value differs from table value but is consistent with main text and general expert 

consensus. 

Expert assessment: Original assessment by Gattuso et al. (2015) using the IPCC Fifth Assessment 

Report (AR5) and literature published up to 2014. This current assessment updated the original 

assessment using literature from 2015 to early 2018. References for the current and past assessments 

are listed at the end of this document. This is online supplementary material for the special report on 

the implications of 1.5oC warming. 

 

3.SM.3.2.1 Seagrasses (Mid-Latitude) 

 

Update: Recent literature supports the consensus reached by Gattuso et al. (2015), with increasing 

ocean temperatures being a major threat and projections of the potential loss of key species such as 

Posidonia oceanica in the Mediterranean by mid-century (Jordà et al., 2012). Recent work has shown 

that increasing temperatures is a major threat to the shoot density (Guerrero-Meseguer et al., 2017) 

and quality of the seagrass Zostera marina (Repolho et al., 2017). Other studies on related systems 

reveal subchronic changes to the quality of seagrass shoots and leaves (Unsworth et al., 2014) and 

have speculated on the impact that these changes might have on coastal food webs (York et al. 2016). 

Several studies have speculated on the impact of rising seas, storms and flooding on seagrass 

productivity (Ondiviela et al., 2014; Rasheed et al., 2014; Pergent et al., 2015; Telesca et al., 2015). 

The consensus of the literature for the last two years, examined since AR5, suggests that the current 

risk levels for seagrasses proposed by Gattuso et al. (2015) are appropriate. 

Therefore, seagrasses are already showing responses to climate change; hence the expert consensus 

that the transition from undetectable to moderate risk occurs between 0.5°C and 0.8°C. Given the clear 

sensitivity of seagrass communities to rising sea temperatures, and other aspects of climate change 

such as sea level rise, storms and flooding, these risks transition from moderate to high from 1.5°C to 

1.8°C, and from high to very high risk over the interval from 2.2°C to 3°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Seagrasses, important habitats in coastal waters around the world, will be affected by climate change 

through a number of routes, including: direct effects of temperature on growth rates (Nejrup and 

Pedersen, 2008; Höffle et al., 2011), occurrence of disease (Burge et al., 2013), mortality and 

physiology, changes in light levels arising from sea level changes, changes in exposure to wave action 

(Short and Neckles, 1999), sometimes mediated through effects on adjacent ecosystems (Saunders et 

al., 2014), and also by changes in the frequency and magnitude of extreme weather events. There will 

be changes in the distribution of seagrass communities locally and regionally. Here we take the 

example of temperate seagrasses, including Posidonia oceanica from the Mediterranean and Zostera 

spp from the USA, Europe and Australia, because the information on the effects of ocean warming 

and acidification for these species from several field studies is robust. Results indicate that temperate 
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seagrass meadows have already been negatively impacted by rising sea surface temperatures (SSTs) 

(Marbà and Duarte, 2010). Models based on observations of natural populations indicate that at 

temperature increases of 1.5°C – 3°C mortality of shoots of seagrasses will be such that populations 

will be unsustainable and meadows will decline to the point where their ecological functions as a 

habitat will cease (reduction to 10% of present density of a healthy meadow; Marbà and Duarte 2010; 

Jordà et al. 2012; Carr et al. 2012; York et al. 2013). 

The confidence level is very high under Representative Concentration Pathway (RCP)2.6 because of 

strong agreement in the literature. Confidence declines to high under RCP8.5 due to some uncertainty 

surrounding regional differences. For example, it has been suggested that the balance of effects on 

seagrass populations in the northeast Atlantic could tip to positive due to the hypothetical opening of 

ecological niches with the decline of more sensitive species, and potential reduction of carbon 

limitation by elevated CO2 which may help to ameliorate negative effects of other environmental 

drivers, such as warming, known to impact seagrass growth and survival (Brodie et al., 2014). 

 

3.SM.3.2.2 Mangroves 

 

Update: Recent literature is consistent with previous conclusions regarding the complex changes 

facing mangroves, together with increasing concern regarding the interaction between climate change 

(e.g., elevated air and water temperatures, drought and sea level rise) and local factors (deforestation, 

damming of catchments and reduced sediment and freshwater) as outlined below (Alongi, 2015; Feller 

et al., 2017). Decreases in the supply of sediments to deltas and coastal areas is impeding the ability of 

most mangroves (69% of sites) to keep pace with sea level rise through shoreward migration 

(Lovelock et al., 2015). At the same time, recent extremes associated with El Niño have also had 

large-scale impacts (e.g., extreme low sea level events; Duke et al., 2017; Lovelock et al., 2017). 

Shoreward migration is also challenged by the increasing amounts of coastal infrastructure preventing 

the relocation of mangroves (Di Nitto et al., 2014; Saunders et al., 2014). In some areas, mangroves 

are increasing in distribution (Godoy and De Lacerda, 2015). The total losses projected for mangrove 

loss (10–15%) under a 0.6 m sea level rise continue to be dwarfed by the loss of mangroves to 

deforestation (1–2% per annum). 

However, given the scale of the dieback of mangroves in Australia’s Gulf of Carpentaria (in 2015–

2016), as well as evidence that similar conditions to those of 2015–2016 (extreme heat and low tides) 

and the projection of greater El Niño-Southern Oscillation (ENSO) variability, (Widlansky et al., 

2015; Risser and Wehner, 2017), the risks from climate change for mangroves were judged to be 

higher than assessed by AR5, and subsequently by Gattuso et al. (2015), leading to the transitions 

having greater risk of occurring (Figure 3.18). Formal attribution of recent extreme events on 

mangroves to climate change, however, is at an early stage (medium agreement, limited data, hence 

low-medium confidence).  

Expert assessment by Gattuso et al. (2015; SOM): 

Mangroves are critically important coastal habitats for numerous species. Mangrove responses to 

increasing atmospheric CO2 are complex, with some species thriving while others decline or exhibit 

little or no change (Alongi, 2015). Temperature increase alone is likely to result in faster growth, 

reproduction, photosynthesis and respiration, and changes in community composition, diversity and an 

expansion of latitudinal limits up to a certain point (Tittensor et al., 2010). Mangroves have already 

been observed to retreat with sea level rise (McKee et al., 2012). In many areas, mangroves can adapt 

to sea level rise by landward migration, but these shifts threaten other coastal habitats, such as salt 

marshes, which have other important biogeochemical and ecological roles. It is in areas with steep 

coastal inclines or coastal human infrastructure limiting landward migration that mangroves are most 

at risk. Climate change may lead to a maximum global loss of 10–15% of mangrove forest for a sea 

level rise of 0.6 m (high end of IPCC projections in AR4), but must be considered of secondary 

importance compared with current annual rates of deforestation of 1–2% (Alongi, 2008). A large 

reservoir of below-ground nutrients, rapid rates of nutrient flux microbial decomposition, complex and 

highly efficient biotic controls, self-design and redundancy of keystone species, and numerous 

feedbacks, all contribute to mangrove resilience to various types of disturbance. 
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Mangrove response is species-specific and interacts with temperature, salinity, nutrient availability and 

patterns of precipitation. Many of these parameters are also subject to regional and local variation, as 

well as to human-induced pressures, with changes over the coming decades being difficult to assess. 

Thus, the confidence level decreases from high under RCP2.6 to low under RCP8.5. 

3.SM.3.2.3 Warm-Water Corals 

 

Update: The exceptionally warm conditions of 2015–2017 drove an unprecedented global mass coral 

bleaching and mortality event which affected coral reefs in a large number of countries (information 

still being gathered at time of writing; Normile, 2016). In the case of Australia, 50% of shallow-water 

reef-building corals across the Great Barrier Reef died in unprecedented back-to-back bleaching 

events (Hughes et al., 2017). Elevated sea temperatures and record mortalities were recorded from the 

central to the far northern sectors of the Great Barrier Reef. Similar effects occurred in a range of 

regions, including the Indian Ocean, the western Pacific, Hawaii and the Caribbean Sea (Normile, 

2016). The set of events has increased risk with current conditions being of high risk, and even low 

levels of future climate change having series implications for coral reefs. There continues to be a high 

to very high level of confidence as to where the transitions between risk levels due to climate change 

are located. 

The unprecedented thermal stress along many tropical coastlines over the past three years (2015–

2017) has led to extraordinary changes to coral reefs across the planet (as described above). The 

advent of back-to-back bleaching events, which were projected to occur around mid-century, appear to 

have already begun to occur as demonstrated by impacts on warm-water corals and hence coral reefs. 

While corals were already stressed from climate change, and are in decline in many parts of the world, 

the scale and impact of recent events suggests that risk levels for the transitions between risk 

categories need to be adjusted to represent the current status of corals and coral reefs. For this reason, 

expert consultation since 2015 concluded that the transition from undetectable to moderate risk has 

already occurred (0.2°C to 0.4°C). Similarly, the transition from moderate to high levels of risks for 

warm-water corals occurred approximately from 0.4°C to 0.6°C. In line with these changes, the 

transition from high to very high levels of risk are associated with increases in GMST from 0.6°C to 

1.2°C above the pre-industrial period. 

Expert assessment by Gattuso et al. (2015; SOM): 

Warm-water corals form reefs that harbour great biodiversity and protect the coasts of low-lying land 

masses. There are very high levels of confidence that impacts were undetectable up until the early 

1980s, when coral reefs in the Caribbean and eastern Pacific exhibited mass coral bleaching, as well 

as temperature-related disease outbreaks in the Caribbean Sea (Glynn, 1984). Given a conservative 

lag time of 10 years between the atmospheric concentration of CO2 and changes in SST, the 

atmospheric CO2 level of 325 ppm reached in the early 1970s was sufficient to initiate widespread 

coral bleaching and decline of coral health worldwide (Veron et al., 2009). During the 1980s, visible 

impacts of increasing were seen in a widening number of areas, with the first global event in 1997–

1998 and the loss of 16% of coral reefs (high confidence; C. R. Wilkinson 2000). Further increases in 

atmospheric carbon dioxide and SST have increased the risk to corals (high confidence), with 

multiple widespread bleaching events, including loss of a large fraction of living corals in the 

Caribbean in 2005 (Eakin et al., 2010) and a subsequent global bleaching in 2010 (e.g., Moore et al. 

2012), and current conditions suggesting the development of a third global event in 2015–2016 (C.M. 

Eakin, unpublished observation). If CO2 levels continue to increase, there is a very high risk that 

coral reefs would be negatively affected by doubled pre-industrial CO2 through impacts of both 

warming-induced bleaching and ocean acidification (high confidence), supported by a wide array of 

modelling (e.g., Hoegh-Guldberg et al. 2014, Logan et al. 2014, Hoegh-Guldberg 1999, Donner et al. 

2005, van Hooidonk et al. 2014), experimental (e.g., Dove et al. 2013) and field studies (Silverman et 

al. 2014, De’ath et al. 2012). This leads to a very high level of confidence under RCP2.6 and a high 

level of confidence under RCP8.5. 

 

3.SM.3.2.4 Pteropods (High Latitude) 
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Update: Literature from the last two years is largely consistent with the expert assessment by Gattuso 

et al. (2015). There is increasing evidence of declining aragonite saturation in the open ocean with the 

detection of impacts that are most pronounced closest to the surface, and with the severe biological 

impacts occurring within inshore regions. In this regard, pteropod shell dissolution has increased by 

19–26% in both nearshore and offshore waters since the pre-industrial period (Feely et al., 2016). 

Impacts of ocean acidification are also cumulative with other stresses, such as elevated sea 

temperature and hypoxia (Bednaršek et al., 2016). These changes are consistent with observations of 

large portions of the shelf waters associated with the Washington–Oregon–California coast being 

strongly corrosive, with 53% of onshore and 24% of offshore pteropod individuals showing severe 

damage from dissolution (Bednaršek et al., 2014). Several researchers propose that the pteropod 

condition be used as a biological indicator, which they argue will become increasingly important as 

society attempts to understand the characteristics and rate of change in ocean acidification impacts on 

marine organisms and ecosystems (Bednaršek et al., 2017; Manno et al., 2017). The last two years of 

research has increased confidence in our understanding of the impact of ocean acidification on 

pteropods under field conditions. The question of the genetic adaptation of pteropods to increasing 

ocean acidification remains unresolved, although the observation of increasing damage to pteropods 

from field measurements argues against this being a significant factor in the future. 

As described here and by Gattuso et al. (2015), multiple lines of evidence conclude that pteropods are 

being impacted by climate change and ocean acidification, especially in polar regions. Therefore, the 

transition from undetectable to moderate levels of stress has been judged to occur between 0.7°C and 

0.8°C. The transition from moderate to high levels of risk of impact on these important organisms was 

judged to occur from 0.8°C to 1.5°C, with the transition from high to very high occurring from 1.5°C 

to 2°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Pteropods are key links in ocean food webs between microscopic and larger organisms, including fish, 

birds and whales. Ocean acidification at levels anticipated under RCP8.5 leads to a decrease in 

pteropod shell production (Comeau et al., 2009, 2010; Lischka et al., 2011), an increase in shell 

degradation (Comeau et al., 2012; Lischka and Riebesell, 2012), a decrease in swimming activity 

when ocean acidification is combined with freshening (Mannoa et al., 2012), and an increase in 

mortality that is enhanced at temperature changes smaller than those projected for RCP8.5 (Lischka et 

al., 2011; Lischka and Riebesell, 2012). Shell dissolution has already been observed in high latitude 

populations (Bednaršek et al., 2012). Aragonite saturation (Ωa) levels below 1.4 results in shell 

dissolution, with severe shell dissolution between 0.8 and 1 (Bednaršek and Ohman, 2015). Despite 

high agreement amongst published findings, uncertainty remains surrounding the potential to adapt to 

environmental drivers because long-term laboratory experiments with pteropods are notoriously 

difficult. Hence the confidence level is medium under RCP2.6. However, confidence increases to very 

high under RCP8.5 because it is almost certain that genetic adaptation to such large and rapid changes 

in pH and temperature will not be possible. 

 

3.SM.3.2.5 Bivalves (Mid-Latitude) 

 

Update: Literature has rapidly expanded since 2015, with a large number of studies showing impacts 

of ocean warming and acidification on a wide range of life history stages of bivalve molluscs (e.g., 

Asplund et al., 2014; Castillo et al., 2017; Lemasson et al., 2017; Mackenzie et al., 2014; Ong et al., 

2017; Rodrigues et al., 2015; Shi et al., 2016; Velez et al., 2016; Waldbusser et al., 2014; Wang et al., 

2016; Zhao et al., 2017; Zittier et al., 2015). Impacts on adult bivalves include decreased growth, 

increased respiration and reduced calcification, with larval stages tending to have an increase in 

developmental abnormalities and elevated mortality after exposure (Wang et al., 2016; Lemasson et 

al., 2017; Ong et al., 2017; Zhao et al., 2017). Many recent studies have also identified interactions 

between factors such as increased temperature and ocean acidification, with salinity perturbations as 

well as decreases in oxygen concentrations (Velez et al., 2016; Lemasson et al., 2017; Parker et al., 

2017). Changes in metabolism with increasing ocean acidification has been detected in a number of 

transcriptome studies, suggesting a complex and wide-ranging response by bivalves to increasing CO2 
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and temperature (Li et al., 2016a, 2016b). Observations of reduced immunity may have implications 

for disease management (Castillo et al., 2017). These changes are likely to impact the ecology of 

oysters, and may be important when it comes to the maintenance of oyster reefs, which provide 

important ecological structure for other species. Bivalves, for example, are more susceptible to the 

impacts of temperature and salinity if they have been exposed to high levels of CO2, leading to the 

suggestion that there will be a narrowing of the physiological range and hence distribution of oyster 

species such as Saccostrea glomerata (Parker et al., 2017). The confidence level is adjusted to high 

given the convergence of recent literature. These studies continue to report growing impacts as 

opposed to a reduction under rapid genetic adaptation by bivalve molluscs. The overall levels of risk 

are retained – reflecting the moderate risk that already exists, and the potential for transformation into 

high or very high levels of risk with relatively small amounts of further climate change. 

Recent literature reinforces the conclusions of Gattuso et al. (2015) and confirms the transition of risk 

from low to moderate for the bivalves associated with mid-latitude environments is occurring between 

0.4°C and 0.6°C. The transition for these organisms from moderate to high levels of risk occurs at 

0.9°C and 1.1°C. Subsequent transition from high to very high was judged to occur between 1.3°C and 

1.5°C. 

 

Expert assessment by Gattuso et al. (2015; SOM): 

Both cultured and wild bivalves are an important food source worldwide. Temperate bivalve shellfish, 

such as oysters, clams, mussels and scallops, have already been negatively impacted by ocean 

acidification. In the northwest United States, Pacific oyster larval mortality has been associated with 

upwelling of natural CO2-rich waters acidified by additional fossil fuel CO2 (high confidence; Barton 

et al. 2012). Ocean acidification acts synergistically with deoxygenation (Gobler et al., 2014) and 

warming (Kroeker et al., 2013; Mackenzie et al., 2014a) to heighten physiological stress (Wittmann 

and Pörtner, 2013) on bivalve shellfish (high confidence), suggesting that future ocean conditions that 

include warming, deoxygenation and acidification will be particularly difficult for members of this 

taxon. Archaeological/geological and modelling studies show range shifts of bivalves in response to 

prior and projected warming (Raybaud et al., 2015) and acidification (Lam et al., 2014). Model 

projections also anticipate decreases in mollusc body size under continued harvesting as conditions 

change farther from the present (Cooley et al., 2015). Impacts are expected to be high to very high 

when CO2 concentrations exceed those expected for 2100 in the RCP2.6 and 4.5 levels (medium 

confidence; Lam et al., 2014; Cooley et al., 2015). The confidence level is medium both under RCP2.6 

and RCP8.5 primarily due to the possibility of bivalves adapting over generations (Pespeni et al., 

2013), or for specific species to outcompete other wild species in future conditions (e.g., Miller et al., 

2009). 

 

3.SM.3.2.6 Krill (High Latitude) 

 

Update: Summer sea ice continues to retreat at high rates in polar oceans with both the Artic and 

Antarctica being among the fastest warming regions on the planet (Notz and Stroeve, 2016; Turner et 

al., 2017). In Antarctic waters, a decrease in sea ice represents a loss of critical habitat for krill (David 

et al., 2017). Projected changes of this habitat through increasing temperature and acidification could 

have major impacts on food, reproduction and development, and hence the abundance of this key 

organism for Antarctic food webs. Differences appear to be a consequence of regional dynamics in 

factors such as regional variation in ice, productivity and predation rates, and an array of other factors 

(Steinberg et al., 2015). Other factors such as interactions with factors such as ocean acidification and 

the shoaling of the aragonite saturation horizon are likely to play key roles. (Kawaguchi et al., 2013; 

Piñones and Fedorov, 2016). While factors such as ocean acidification and the loss of sea ice (due to 

increasing temperatures) are unambiguous in their effects, there continues to be considerable 

uncertainty around the details of how krill populations are likely to respond to factors such as 

changing productivity, storms and food web structure. 

While there are considerable gaps in our knowledge about the impacts of climate change on krill, there 

is consensus that direct climate impacts are beginning to be detected at average global SST of around 
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0.7°C to 0.9ºC. With a low level of confidence and hence much uncertainty, expert consensus 

concludes that transition from moderate to high levels of risk is expected to occur between 1.0°C and 

1.6°C. Subsequent transitions from high to very high levels of risk are projected to lie somewhere 

between 1.8°C and 3.2°C, although levels of confidence are low at this time. 

Expert assessment by Gattuso et al. (2015; SOM): 

Krill (euphausid crustaceans) is a critical link in the food web at higher latitudes, supporting mammals 

and birds among many other species. Distributional changes and decreases in krill abundance have 

already been observed associated with temperature increase (Atkinson et al., 2004). The effect of 

changes in the extent of sea ice is considered to be an indirect effect of temperature. Temperature 

effects are predicted to be regional (Hill et al., 2013). If the extent of sea ice is maintained, 

populations in cooler waters may experience positive effects in response to small increases in 

temperature. In contrast, populations in warmer areas may experience some negative temperature 

effects by 2100 under RCP2.6. Since all life stages are associated with sea ice, decreases in krill 

stocks are projected to occur concurrently with the loss of sea ice habitat, potentially outweighing 

possible positive impacts (Flores et al., 2012). Increases in SST of 1°C–2°C have significant impacts 

on krill. From Figure 4 in Flores et al. (2012) severe disruptions of the life cycle are expected at a 

level of 2°C SST rise and 500 µatm pCO2. Therefore, high impact on populations would be reached 

approximately at the CO2 level projected for 2100 by RCP4.5. Conditions in 2100 under the RCP2.6 

scenario would be around the upper limit of the high-risk range. Negative effects of ocean 

acidification on reproduction, larval and early life stages have been observed above 1250 µatm pCO2, 

a value that is likely to be reached in parts of the Southern Ocean by 2100 under RCP8.5 (Kawaguchi 

et al., 2013). Figure 1 in Flores et al. (2012) shows that the area with strongest sea ice decline partly 

overlaps with areas of high krill density (from the peninsula to the South Orkneys). There is also a 

significant warming trend in this area which may force populations southwards into less productive 

regions. Substantial decline in the viability of major krill populations in the Southern Ocean may 

occur within the next 100 years (Kawaguchi et al., 2013), which could have catastrophic consequences 

for dependent marine mammals and birds. The genetic homogeneity of krill suggests that rapid 

adaptation through natural selection of more tolerant genotypes is unlikely (Bortolotto et al., 2011). 

 

3.SM.3.2.7 Fin Fish 

 

Update: Impacts and responses identified in 2015 regarding the relative risk of climate change to fin 

fish have strengthened. In this regard, there are a growing number of studies indicating that different 

stages of development may also be made more complex by fish having different stages of the life-

cycle in different habitats, which may each be influenced by climate change in different ways and to 

different extents, as well as evidence of differing sensitivities to change between different stages (Ong 

et al., 2015, 2017; Esbaugh, 2017). Increasing numbers of fish species have been identified as 

relocating to higher latitudes, with tropical species being found increasingly in temperate zones 

(‘tropicalization’, Horta E Costa et al., 2014; Verges et al., 2014; Vergés et al., 2016) and temperate 

species being found in some polar regions (‘borealization’, Fossheim et al., 2015). Concern has been 

raised that greater numbers of extinctions will occur in the tropics as species are pushed out of low-

latitude areas as conditions become warmer and increasingly unsuitable (Burrows et al., 2014; García 

Molinos et al., 2015; Poloczanska et al., 2016). Changing conditions in polar regions are particularly 

risky due to the rapid rates of warming (Notz and Stroeve, 2016; Turner et al., 2017). One of the 

consequences of this is that an increasing number of fish species are expanding their distributional 

ranges into the Arctic, being followed by large, migratory fish predators. The borealization of fish 

communities in the Arctic is leading to a reorganization of species and ecological processes which is 

not well understood (Fossheim et al., 2015).There is considerable evidence that changes in the 

distribution of fin fish are, and have been, occurring over the last few decades. Evidence of the 

movement of tropical species to higher latitudes is unambiguous, as is the shift in many pelagic 

species of fin fish. Consequently, the distribution and abundance of fin fish is already occurring, and 

based on the updated expert consensus of Gattuso et al. (2015), appears to have transitioned from 

undetectable to moderate levels of risk at average global SSTs of 0.5°C and 0.7°C. There is little 

evidence that these changes are slowing, and therefore risks are estimated as transitioning from 
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moderate to high levels of risk at 1.1°C to 1.3°C, and from high to very high levels of risk at 1.4°C to 

1.6°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Marine fishes are important predators and prey in ocean ecosystems, contributing substantially to 

coastal economies, food security and livelihood. Warming-induced shifts in the abundance, 

geographic distribution, migration patterns and phenology of marine species, including fishes, were 

reported and projected with very high confidence in the IPCC AR5 (Pörtner et al., 2014). 

 

Empirical and theoretical evidence of range shifts in response to temperature gradients are reported 

across various taxa and many geographical locations (Couce et al., 2013; Poloczanska et al., 2013; 

Bates et al., 2014), with observations suggesting that range shifts correspond with the rate and 

directionality of climate shifts or ‘climate velocity’ across landscapes (Pinsky et al., 2013). Observed 

range shifts associated with ocean warming may result in hybridization between native and invasive 

species through overlapping ranges, leading to reduced fitness and thus potentially increasing the risks 

of genetic extinction and reducing the adaptability to environmental changes (Muhlfeld et al., 2014; 

Potts et al., 2014). Some taxa are incapable of keeping pace with climate velocities, as observed with 

benthic invertebrates in the North Sea (Hiddink et al., 2015). The tropicalization of temperate marine 

ecosystems through poleward range shifts of tropical fish grazers increases the grazing rate of 

temperate macroalgae as seen in Japan and the Mediterranean (Verges et al., 2014). Such trophic 

impacts resulting from climate-induced range shifts are expected to affect ecosystem structure and 

dynamic in temperate reefs (Verges et al., 2014). 

 

Projected future changes in temperature and other physical and chemical oceanographic factors are 

expected to affect the distribution and abundance of marine fishes, as elaborated by species 

distribution models with rate of shift at present day rate under the RCP8.5 scenario (Cheung et al., 

2009). Limiting emissions to RCP2.6 is projected to reduce the average rate of range shift by 65% by 

mid-21st century (Jones and Cheung, 2015). Shifts in distribution of some species may be limited by 

the bathymetry or geographic boundaries, potentially resulting in a high risk of local extinction, 

particularly under high CO2 emissions scenarios (Ben Rais Lasram et al., 2010). 

 

While evidence suggests that adult fishes can survive high levels of CO2, behavioural studies have 

found significant changes in species’ responses under levels of CO2 elevated above those of the 

present day level (Munday et al., 2014). Long-term persistence of these phenomena remains unknown. 

Based on the above, fishes already experience moderate risk of impacts at present day (high 

confidence). Risk increases from moderate to high by the end of the 21st century, when emissions 

change from RCP2.6 to RCP4.5 and become very high under RCP8.5, highlighting the potential non-

reversibility of the potential impacts. Some evidence for direct and indirect impacts of ocean 

acidification on fin fish is available but varies substantially between species. Also, understanding 

about the scope of evolutionary adaptation for marine fishes to climate change and ocean acidification 

is limited, although it is unlikely that the majority of the species can fully adapt to expected changes in 

ocean properties without any impacts on their biology and ecology. Overall, we have robust evidence 

and high agreement (thus high confidence) from experimental data, field observations and 

mathematical modelling in detecting and attributing impacts for fin fish in the present day and under 

RCP2.6. The uncertainty about the sensitivity to ocean acidification and scope for evolutionary 

adaptation leads to medium confidence levels for their risk under high emissions scenarios. 

 

3.SM.3.2.8 Open-Ocean Carbon Uptake 

 

Update: Several recent studies have shown a decreasing CO2 flux into the Pacific and Atlantic 

Oceans, Southern Ocean, and oceans in general (Iida et al., 2015). Concern over changes to the 

circulation of the ocean (e.g., Atlantic Meridional Overturning Circulation; AMOC) has grown since 

2015, with the observation of cooling surface areas of the Atlantic (Rahmstorf et al., 2015).  

Recent literature is consistent with the expert assessment of Gattuso et al. (2015) with risks of impact 
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from changing ocean carbon uptake being barely detectable today but transitioning to moderate risk 

between 1°C and 1.5°C. Risks transition from moderate to high levels of risk between 2°C and 3.2°C. 

Higher levels of risk such as a rapid change in the circulation of the MOC are speculative at this point. 

 

Expert assessment by Gattuso et al. (2015; SOM): 

The uptake of anthropogenic carbon by the ocean in the industrial period and in the future is a service 

that is predominantly provided by physico-chemical processes (Prentice and J. T. Houghton et al., 

2001). The sensitivity of ocean carbon uptake to increasing cumulative CO2 emissions, including 

effects of changing ocean chemistry, temperature, circulation and biology, is assessed along the 

following lines of quantitative evidence: (i) the fraction of total cumulative anthropogenic emissions 

taken up by the ocean over the industrial period and the 21st century in CMIP5 Earth System Model 

projections for the four RCPs (Jones et al., 2013) (ii) the fraction of additional (marginal) emissions 

remaining airborne or taken up by the ocean for background atmospheric CO2 following the four RCPs 

(Joos et al., 2013). In addition, the risk of large-scale reorganization of ocean circulation, such as a 

collapse of the North Atlantic overturning circulation and associated reductions in allowable carbon 

emissions towards CO2 stabilization, is increasing with the magnitude and rate of CO2 emissions, in 

particular beyond the year 2100. Confidence level is high for both RCP2.6 and RCP8.5 because the 

underlying physical and chemical processes are well known. 

 

3.SM.3.2.9 Coastal Protection 

 

Update: Sea level rise and intensifying storms are placing increasing stress on coastal environments 

and communities. Coastal protection by ecosystems as well as man-made infrastructure are important 

in terms of mitigating risks ranging from the physical destruction of ecosystems and human 

infrastructure to the salinization of coastal water supplies and direct impacts on human safety (Bosello 

and De Cian, 2014). Risks are particularly high for low-lying areas, such as carbonate atoll islands in 

the tropical Pacific where land for food, dwelling and water are limited, and effects of a rising sea plus 

intensifying storms create circumstances that may make many of these island systems uninhabitable 

within decades (Storlazzi et al., 2015). Even in advantaged countries such as the United States, these 

factors place millions at serious risk from even modest changes in inundation, with over four million 

US-based people at serious risk in response to a 90 cm sea level rise by 2100 (Hauer et al., 2016). 

Both natural and human coastal protection have the potential to reduce the impacts (Fu and Song, 

2017). Coral reefs, for example, provide effective protection by dissipating around 97% of wave 

energy, with 86% of the energy being dissipated by reef crests alone (Ferrario et al., 2014). Natural 

ecosystems, when healthy, also have the ability to repair themselves after being damaged, which sets 

them apart from coastal hardening and other human responses that require constant maintenance 

(Barbier, 2015; Elliff and Silva, 2017). Recognising and restoring coastal ecosystems such as coral 

reefs, mangroves and coastal vegetation in general may be more cost-effective than human remedies in 

terms of seawalls and coastal hardening, where costs of creating and maintaining structures may not 

always be cost-effective (Temmerman et al., 2013). 

The last two years have seen an increase in the number of studies identifying the importance of coastal 

ecosystems as important to the protection of people and property along coastlines against sea level rise 

and storms. Analysis of the role of natural habitats for the protection people and infrastructure in 

Florida, New York and California, for example, has delivered a key insight into the significance of the 

problems and opportunities for the United States (Arkema et al., 2013). Some ecosystems which are 

important to coastal protection can keep pace with sea level rise, but only if other factors such as 

harvesting (e.g., of oysters; Rodriguez et al., 2014) or sediment supply (i.e., to mangroves, Lovelock et 

al., 2015) are managed. Several studies have pointed to the opportunity to reduce risks by promoting 

more holistic approaches to mitigating damage from sea level rise and storms by developing integrated 

coastal plans that ensure that human infrastructure enables the shoreward relocation of coastal 

vegetation, such as mangroves and salt marsh; the latter enhances coastal protection as well as having 

other important ecological functions, such as habitat for fish and the sources of a range of other 

resources (Di Nitto et al., 2014; Lovelock et al., 2015; Mills et al., 2016). 
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Recent studies have increasingly stressed that coastal protection needs to be considered in the context 

of new ways of managing coastal land, including protecting and managing coastal ecosystems as they 

also undergo shifts in their distribution and abundance (Saunders et al., 2014; André et al., 2016). 

These shifts in thinking require new tools in terms of legal and financial instruments, as well as 

integrated planning that involves not only human communities and infrastructure but also ecosystem 

responses. In this regard, the interactions between climate change, sea level rise and coastal disasters 

are being increasingly informed by models (Bosello and De Cian, 2014), with a widening appreciation 

of the role of natural ecosystems as an alternative to hardened coastal structures (Cooper et al., 2016). 

Increased evidence of a rapid decay in ecosystems such as coral reefs and mangroves has increased the 

confidence around the conclusion that risks in coastal areas are increasing. Escalation of coastal 

impacts arising from Super Storm Sandy and Typhoon Haiyan (Long et al., 2016; Villamayor et al., 

2016) have improved understanding of the future of coastal areas in terms of impacts, response and 

mitigation (Rosenzweig and Solecki, 2014; Shults and Galea, 2017). 

Recent assessments of the last couple of years of literature confirm the expert judgement of Gattuso et 

al. (2015), although are emphasised by growing evidence that heat stress, ocean acidification and 

intensifying storms are increasing the breakdown of natural coastal barriers that otherwise provide 

important protection for coastal communities, ecosystems and infrastructure. While there is growing 

evidence of changes in the frequency and intensity of climate change, levels of risk remain similar to 

Gattuso et al. (2015) . Risk of impacts with respect to coastal protection transition from undetectable to 

moderate at 0.5°C and 0.8°C, with the transition from moderate to high levels of risk occurring from 

1.5°C to 1.8°C. Further transition of impact risks from the loss of coastal protection has been judged to 

occur between 2.2°C and 3.2°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Estimating the sensitivity of natural coastal protection to climate change requires combining sensitivity 

across different ecosystems, especially coral reefs, mangrove forests and seagrass beds. Other 

ecosystems provide coastal protection, including salt marshes, macroalgae, oyster and mussel beds, 

and also beaches, dunes and barrier islands (stabilized by organisms; Spalding et al. 2014; Defeo et al. 

2009), but there is less understanding of the level of protection conferred by these other organisms and 

habitats (Spalding et al., 2014). Although studies indicate some of these systems are already impacted 

by the effects of rising CO2, or suggest they will be in the near future, levels of sensitivity are not well 

established, are highly variable, and in some cases their overall influence on coastal protection may be 

uncertain (i.e., species are replaced by functional equivalents in this context; K. B. Gedan 2009). 

We reason that some coastal protection has already been lost – a result of impacts on coral reefs, 

seagrasses and other ecosystems from sea temperature rise. In the case of corals, this began in the late 

1970s. Recent papers demonstrate collapse in the three-dimensional structure of reefs in the Caribbean 

(Alvarez-Filip et al., 2009) and the Seychelles (Sheppard et al., 2005), the second phase of which 

appears to be climate-related. Other studies show that some areas have not recovered from the 1997–

1998 and 2010 bleaching events and that some reefs have collapsed there (e.g., parts of the 

Seychelles). There is thus little doubt that the coastal protection function of some reefs has already 

been reduced. A decreasing protection may also be the case for seagrasses, although such effects have 

not been measured. It should also be noted that other human impacts have already largely destroyed, or 

are progressively destroying, some of these ecosystems through direct action (e.g., 85% oyster reefs 

lost globally and 1–2% of mangrove forests cut down per annum; Beck et al. 2011). It therefore 

appears that some impact on coastal protection has already occurred, but there is a lack of data to 

extrapolate globally, hence the confidence level in the present day is low. 

Confidence in the loss of coastal protection decreases with increasing CO2 emissions because coastal 

protection is conferred by a range of habitats and the co-dependency or interactions between them 

make projections difficult. For example, protection to seagrass beds conferred by coral reefs or the 

replacement of salt marsh with mangrove forest (Saunders et al., 2014; Alongi, 2015). Additionally, 

human-driven pressure on these ecosystems is inherently difficult to forecast decades from now due to 

the possible implementation of new policies. Interacting effects of different symptoms of climate 

change such as increased temperature, decreasing pH, salinity, nutrient availability, patterns of 
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precipitation and occurrence of pathogens will all influence the physiological response of individual 

species and ecosystems, and thus further reduce the predictability of responses at higher emissions.  

3.SM.3.2.10 Recreational Services from Coral Reefs 

 

Update: Tourism is one of the largest industries globally. A significant part of the global tourist 

industry is associated with tropical coastal regions and islands (Spalding et al., 2017). Coastal tourism 

can be a dominant money earner in terms of foreign exchange for many countries, particularly small 

island developing states (SIDS; Weatherdon et al., 2016). The direct relationship between increased 

global temperatures, elevated thermal stress and the loss of coral reefs (Section 3.4.4.10; Box 3.4) has 

raised concern about the risk that climate change poses for local economies and industries based on 

coral reefs and related ecosystems (e.g., mangroves seagrass beds). 

Risks to the recreational services of coral reefs from climate change are considered here. The recent 

heavy loss of coral reefs from tourist locations worldwide has prompted interest in the relationship 

between increasing sea temperatures, declining coral reef ecosystems and tourist revenue (Normile, 

2016). About 30% of the world’s corals support tourism, which generates close to 36 billion USD on 

an annual basis (Spalding et al., 2017). Tourist expenditure, in this case, represents economic activity 

which supports jobs, revenue for business and taxes. Climate change in turn can influence the quality 

of the tourist experience through such aspects, because of changing weather patterns, physical impacts 

such as storms, and coastal erosion, as well as the effects of extremes on biodiversity within a region. 

Recent impacts in the Caribbean in 2017 highlight the impacts of climate change related risks 

associated with coastal tourism, with the prospect that many businesses will take years to recover from 

impacts such as hurricanes Harvey, Irma and Maria (Gewin, 2017; Shults and Galea, 2017). 

A number of projects have attempted to estimate the impact (via economic valuation) of losing key 

coral reef ecosystems such as the Great Barrier Reef (Oxford Economics, 2009; Spalding et al., 2017). 

A recent study by O’Mahony et al.(2017)  revealed that the Great Barrier Reef contributed 6.4 billion 

AUD and 64,000 jobs annually to the Australian economy in 2015–16. In terms of its social, economic 

and iconic value to Australia, the Great Barrier Reef is worth 56 billion AUD. The extreme 

temperatures of 2015–2017 removed 50% of the reef-building corals on the Great Barrier Reef 

(Hughes et al., 2017); there is considerable concern about the growing risk of climate change to the 

Great Barrier Reef, not only for its value biologically but also as part of a series of economic risks at 

local, state and national levels. 

Our understanding of the potential impacts of climate change on tourism within small island and low-

lying coastal areas in tropical and subtropical is made less certain by the flexibility and creativity of 

people. For example, the downturn of coral reefs in countries that are dependent on coral reef tourism 

does not necessarily mean a decline in gross domestic product (GDP), given that many countries may 

have other options for attracting international revenue. In addition, our understanding of future tourist 

expectations and desires are uncertain at this point. 

Additional literature over the past couple of years confirms the risk from climate change to the 

recreational services that are derived from coral reefs, and which are important for a large number of 

coastal communities throughout the tropics. A transition in the risk of impacts to recreational services 

from coral reefs occurs between 0.6°C and 0.8°C, with a further transition from moderate to high 

levels of risk between 1.0°C and 1.5°C. Very high levels of risk occur between 2.0°C and higher as the 

frequency and intensity of extreme events (i.e. storm events, coastal inundation, and/or droughts, 

depending on the region) become increasingly difficult to manage for coastal tourism such as that 

associated with coral reefs. Note, the risks to corals are higher than those to the recreational services 

that corals provide to coastal communities. This highlights the fact that many communities today have 

lost coral but still are able to operate using recreational services from other sources. This difference 

disappears as one goes to higher levels of climate change and hence risk – particularly as the options 

for supporting recreational activities from the remnants of coral reefs are seriously reduced. 

Expert assessment by Gattuso et al. (2015; SOM): 

The impacts of CO2 and SST on the condition of coral reefs ultimately affect the flow of ecosystem 
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goods and services to human communities and businesses. There is an interesting lag between the 

degradation of corals and coral reefs and a detectable effect on human users. For this reason, the risk of 

impacts on human recreation and tourism begins significantly later than ecosystem changes are 

detected by marine scientists. As of 2015, atmospheric CO2 concentration is 400 ppm and average SST 

is 0.8°C above that of the pre-industrial period. Mass bleaching and mortality events have degraded 

coral populations, and this has negatively impacted the recreational choices of a few, but not most, 

clients (high confidence; Hoegh-Guldberg et al. 2007). This impact on tourists’ choice is expected to 

reach moderate to high levels as CO2 approaches 450 ppm, at which point reefs begin net erosion and 

sea level, coral cover, storms and other environmental risks become significant considerations in 

destination attractiveness (medium confidence). By 600 ppm, the breakdown of the structure of most 

reefs becomes obvious, other changes such as reduced coral cover and increased sea level and storm 

damage mean that significant coastal recreation and tourism becomes difficult in most circumstances 

and many operations may be discarded (Hoegh-Guldberg et al., 2007). This will have a very high 

impact on recreational services (medium confidence). Confidence levels under RCP2.6 and RCP8.5 are 

medium because predicting tourists’ expectations several decades from now remains relatively 

uncertain. 

 

3.SM.3.2.11 Bivalve Fisheries and Aquaculture (Mid Latitude) 

 

Update: Aquaculture is one of the fastest growing food sectors and is becoming increasingly essential 

for meeting the demand for protein for the global population (FAO, 2016). Studies published over the 

period 2015–2017 showed a steady increase in the risks associated with bivalve fisheries and 

aquaculture at mid-latitude locations coincident with increases in temperature, ocean acidification, 

introduced species, disease and other associated risks (Lacoue-Labarthe et al., 2016; Clements and 

Chopin, 2017; Clements et al., 2017; Parker et al., 2017). These have been met with a range of 

adaptation responses by bivalve fishing and aquaculture industries (Callaway et al., 2012; Weatherdon 

et al., 2016). 

 

Risks are also likely to increase as a result of sea level rise and intensifying storms which pose a risk 

to hatcheries and other infrastructure (Callaway et al., 2012; Weatherdon et al., 2016). Some of the 

least predictable yet potentially most important risks are associated with the invasion of diseases, 

parasites and pathogens, which may be mitigated to a certain extent by active intervention by humans. 

Many of these have reduced the risks from these factors although costs have increased in at least some 

industries. 

The risk of impact from ocean warming and acidification to bivalve aquaculture and fisheries is 

increasing – although not enough to warrant redefinition of the size and transition of risks from 

climate change. Therefore, literature since 2015 is consistent with the conclusion of how the risk of 

impact changes with greater levels of climate change. Risk to these important industries increases 

from nondetectable to moderate at 1.1°C and 1.3°C, with the transition from moderate to high levels 

of risk occurring from 1.7°C to 1.9°C. The transition from high to very high levels of risk is projected 

to between 2.8°C and 3.2°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Ecosystem services provided by temperate bivalves include marine harvests (both from capture 

fisheries and aquaculture), water quality maintenance and coastal stabilization. Of these, marine 

harvests are easiest to quantify and have been the subject of several assessments. Confidence is high 

that ocean acidification has already jeopardized marine harvest revenues in the northwest United States 

(Washington State Blue Ribbon Panel on Ocean Acidification, 2012). Although the affected hatcheries 

have taken steps to enhance monitoring, alter hatchery water intake and treatment, and diversify 

hatchery locations (Barton et al., 2015), these adaptations will only delay the onset of ocean 

acidification-related problems (high confidence). Wild harvest populations are fully exposed to ocean 

acidification and warming, and societal adaptations such as these are not applicable. Services provided 

by bivalves will continue even if populations migrate, decrease in size, or individuals become smaller, 

so effects are somewhat more delayed than those on shellfish themselves. In 2100, impacts are 
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expected to be moderate under RCP2.6 and very high under RCP8.5. The level of confidence declines 

as a function of increasing CO2 emissions due to the uncertainty about the extent of local adaptation, 

medium under RCP2.6 and low under RCP8.5. 

 

3.SM.3.2.12 Small-Scale Fin-Fish Fisheries at Low Latitude 

 

Update: Small-scale fin-fish fisheries (low latitude) provide food for millions of people along tropical 

coastlines and hence play an important role in the food security of a large number of countries 

(McClanahan et al., 2015; Pauly and Charles, 2015). In many cases, populations are heavily dependent 

on these sources of protein given the lack of alternatives (Cinner et al., 2012, 2016; Pendleton et al., 

2016). The climate-related stresses affecting fin fish (see Section ‘Fin fish’ above), however, are 

producing a number of challenges for small-scale fisheries based on these species (e.g., (Kittinger, 

2013; Pauly and Charles, 2015; Bell et al., 2017).  Recent literature (2015–2017) has continued to 

outline growing threats from the rapid shifts in the biogeography of key species (Poloczanska et al., 

2013, 2016; Burrows et al., 2014; García Molinos et al., 2015) and the ongoing rapid degradation of 

key habitats such as coral reefs, seagrass and mangroves (see Sections above on ‘Seagrasses (mid-

latitude)’, ‘Mangroves’ and ‘Pteropods’, as well as Chapter 3, Box 3.4). As these changes have 

accelerated, so have the risks to the food and livelihoods associated with small-scale fisheries (Cheung 

et al., 2010). These risks have compounded with non-climate-related stresses (e.g., pollution, 

overfishing, unsustainable coastal development) to drive many small-scale fisheries well below the 

sustainable harvesting levels required to keep these resources functioning as a source of food 

(McClanahan et al., 2009, 2015; Pendleton et al., 2016). As a result, projections of climate change and 

the growth in human populations increasingly predict shortages of fish protein for many regions (e.g., 

Pacific, e.g., Bell et al., 2013, 2017; Indian Ocean, e.g., McClanahan et al., 2015). Mitigation of these 

risks involved marine spatial planning, fisheries repair, sustainable aquaculture and the development 

of alternative livelihoods (Kittinger, 2013; McClanahan et al., 2015; Song and Chuenpagdee, 2015; 

Weatherdon et al., 2016). Threats to small-scale fisheries have also come from the increasing 

incidence of alien (nuisance) species as well as an increasing incidence of disease, although the 

literature on these threats is at a low level of development and understanding (Kittinger et al., 2013; 

Weatherdon et al., 2016). 

As assessed by Gattuso et al. (2015), risks of impacts on small-scale fisheries are moderate today, but 

are expected to reach very high levels under scenarios extending beyond RCP2.6. The research 

literature plus the growing evidence that many countries will have trouble adapting to these changes 

place confidence at a high level as to the risks of climate change on low latitude in fisheries. These 

effects are more sensitive, hence the higher risks at lower levels of temperature change. 

Small-scale fisheries are highly dependent on healthy coastal ecosystems. With the growing evidence 

of impacts described above, the loss of habitat for small-scale fisheries is intensifying the risks of 

impact from climate change. For this reason, expert consensus has judged that risks have become 

greater since the assessment of Gattuso et al. (2015). Therefore, the transition from undetectable to 

moderate levels of risk is projected to occur between 0.5°C and 0.7°C, with the transition from 

moderate to high levels of risk occurring between 0.9°C and 1.1°C. The transition from high to very 

high levels of risk of impact is being judged to occur between 2.0°C and 2.5°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Evidence of climate change altering species composition of tropical marine fisheries is already 

apparent globally (Cheung et al., 2013). Simulations suggest that, as a result of range shifts and 

decrease in abundance of fish stocks, fisheries catch is likely to decline in tropical regions (Barange et 

al. 2014, Cheung et al. 2010). Projections also suggest that marine taxa in tropical regions are likely to 

lose critical habitat (e.g., coral reefs), leading to a decrease in fisheries productivity (Bell et al., 2013). 

Because of the magnitude of impacts, capacity for the fisheries to reduce such risks by protection, 

repair or adaptation is expected to be low (Pörtner et al., 2014). Thus, these impacts increase with 

increasing CO2 emissions. Risk of impacts is close to moderate level in present day, and increases to 

high and very high when CO2 concentration reaches the levels expected in 2100 under RCP4.5 and 

RCP8.5, respectively. 
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The scope of adaptation for low latitude fin-fish fisheries is narrow because of the high level of 

impacts on ecosystems and fisheries resources, lack of new fishing opportunities from species range 

shifts to compensate for the impacts, and relatively lower social-economic capacity of many countries 

to adapt to changes. Thus, the confidence level is high on projected impacts on low latitude fin-fish 

fisheries. 

 

3.SM.3.2.13 Fin-Fish Fisheries (Mid- and High Latitude) 

 

Update: While risks and reality of decline are high for low latitude fin fisheries, projections for mid- 

to high latitude fisheries include increases in fishery productivity in many cases (Cheung et al., 2013; 

Hollowed et al., 2013; Lam et al., 2014; FAO, 2016). These changes are associated with the 

biogeographical shift of species towards higher latitudes (‘borealization’, Fossheim et al., 2015) which 

brings benefits as well as challenges (e.g., increased risk of disease and invasive species). Factors 

underpinning the expansion of fisheries production to high latitude locations include warming and 

increase light and mixing due to retreating sea ice (Cheung et al., 2009). As a result of this, fisheries in 

the cold temperate regions of the north Pacific and north Atlantic are undergoing a major increase of 

primary productivity, and consequently in the increased harvest of fish from cod and pollock fisheries 

(Hollowed and Sundby, 2014). At more temperate locations, intensification of some upwelling systems 

is also boosting primary production and fisheries catch (Sydeman et al., 2014; Shepherd et al., 2017), 

although there are increasing threats from deoxygenation as excess biomass falls into the deep ocean, 

fueling higher metabolic rates and oxygen drawdown (Sydeman et al., 2014; Bakun et al., 2015). 

Similar to the assessment by Gattuso et al. (2015), our confidence in understanding risks at higher 

levels of climate change and longer periods diminishes over time. The ability of fishing industries to 

adapt to changes is considerable, although the economic costs of adapting can be high. Complex 

changes in fin fisheries at high latitudes has a number of climate-related risks associated with it (as 

described above and by Gattuso et al. (2015). In this case, risks of climate impacts on fin fisheries at 

high latitudes is projected to transition from undetectable to moderate levels of risk at 0.7°C to 0.9°C. 

The shift from moderate to high levels of risk is projected by the expert consensus to occur between 

2.2°C and 3.2°C. 

Expert assessment by Gattuso et al. (2015; SOM): 

Evidence that climate change effects altering species composition in mid- and high latitude fisheries 

can already be observed globally, with increasing dominance of warmer-water species since the 1970s 

(Cheung et al., 2013). Global-scale projections suggest substantial increases in potential fisheries catch 

in high latitude regions (Cheung et al., 2010; Barange et al., 2014) under RCP8.5 by mid- to end-21st 

century. However, ocean acidification increases uncertainty surrounding the potential fisheries gain, 

because the Arctic is a hotspot of ocean acidification (Lam et al., 2014). Risks of impacts of warming, 

ocean acidification and deoxygenation on mid-latitude regions are variable (Cheung et al., 2013; 

Barange et al., 2014). Overall, existing fish stocks are expected to decrease in catch, while new 

opportunities for fisheries may emerge from range expansion of warmer-water. Declines in catch have 

been projected for fisheries in the northeast Pacific (Ainsworth et al., 2011), northwest Atlantic 

(Guénette et al., 2014) and waters around the UK (Jones et al., 2014) by mid-21st century under SRES 

A1B and A2 scenarios (equivalent to RCP6.0 to 8.5). While it is uncertain whether small-scale 

fisheries will have the mobility to follow shifts in ranges of target species, those with access to 

multiple gears types may be able to adapt more easily to climate-related changes in stock composition. 

Societal adaptation to reduce the risk of impacts is expected to be relatively higher than tropical 

fisheries. Thus, moderate risk is assigned from the present day, and the risk increases to high when 

CO2 concentration is beyond levels expected from RCP4.5. 

Risk to fisheries at mid- and high latitudes depends on how the fishers, fishing industries and fisheries 

management bodies respond and adapt to changes in species composition and distribution. Prediction 

of the scope of such adaptive response is uncertain, particularly under greater changes in fisheries 

resources. Thus, the confidence level is high under RCP2.6 and low under RCP8.5. 

 



 81 

References 

 

Ainsworth, C. H., Samhouri, J. F., Busch, D. S., Cheung, W. W. L., Dunne, J., and Okey, T. A. (2011). 

Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES 

J. Mar. Sci. 68, 1217–1229. Available at: http://dx.doi.org/10.1093/icesjms/fsr043. 

Alongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global 

climate change. Estuar. Coast. Shelf Sci. 76, 1–13. doi:10.1016/j.ecss.2007.08.024. 

Alongi, D. M. (2015). The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. 

Reports 1, 30–39. doi:10.1007/s40641-015-0002-x. 

Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Cote, I. M., and Watkinson, A. R. (2009). Flattening of 

Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B Biol. 

Sci. 276, 3019–3025. doi:10.1098/rspb.2009.0339. 

André, C., Boulet, D., Rey-Valette, H., and Rulleau, B. (2016). Protection by hard defence structures 

or relocation of assets exposed to coastal risks: Contributions and drawbacks of cost-benefit 

analysis for long-term adaptation choices to climate change. Ocean Coast. Manag. 134, 173–

182. doi:10.1016/j.ocecoaman.2016.10.003. 

Arkema, K. K., Guannel, G., Verutes, G., Wood, S. A., Guerry, A., Ruckelshaus, M., et al. (2013). 

Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 

3, 913–918. doi:10.1038/nclimate1944. 

Asplund, M. E., Baden, S. P., Russ, S., Ellis, R. P., Gong, N., and Hernroth, B. E. (2014). Ocean 

acidification and host-pathogen interactions: Blue mussels, Mytilus edulis, encountering 

Vibrio tubiashii. Environ. Microbiol. 16, 1029–1039. doi:10.1111/1462-2920.12307. 

Atkinson, A., Siegel, V., Pakhomov, E., and Rothery, P. (2004). Long-term decline in krill stock and 

increase in salps within the Southern Ocean. Nature 432, 100–103. doi:10.1038/nature02996. 

Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., et al. 

(2015). Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. 

Chang. Reports 1, 85–93. doi:10.1007/s40641-015-0008-4. 

Barange, M., Merino, G., Blanchard, J. L., Scholtens, J., Harle, J., Allison, E. H., et al. (2014). Impacts 

of climate change on marine ecosystem production in societies dependent on fisheries. Nat. 

Clim. Chang. 4, 211–216. doi:10.1038/nclimate2119. 

Barbier, E. B. (2015). Valuing the storm protection service of estuarine and coastal ecosystems. 

Ecosyst. Serv. 11, 32–38. doi:10.1016/j.ecoser.2014.06.010. 

Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., and Feely, R. A. (2012). The Pacific oyster, 

Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: 

Implications for near-term ocean acidification effects. Limnol. Oceanogr. 57, 698–710. 

doi:10.4319/lo.2012.57.3.0698. 

Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., et al. (2015). 

Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation 

strategies implemented in response. Oceanography 28, 146–159. 

doi:10.5670/oceanog.2015.38. 

Bates, A. E., Pecl, G. T., Frusher, S., Hobday, A. J., Wernberg, T., Smale, D. A., et al. (2014). 

Defining and observing stages of climate-mediated range shifts in marine systems. Glob. 

Environ. Chang. 26, 27–38. doi:10.1016/j.gloenvcha.2014.03.009. 

Beck, M. W., Brumbaugh, R. D., Airoldi, L., Carranza, A., Coen, L. D., Crawford, C., et al. (2011). 

Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management. 

Bioscience 61, 107–116. doi:10.1525/bio.2011.61.2.5. 

Bednaršek, N., Feely, R. A., Reum, J. C. P., Peterson, B., Menkel, J., Alin, S. R., et al. (2014). 

Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to 

ocean acidification in the California Current Ecosystem. Proc. R. Soc. B Biol. Sci. 281, 

20140123–20140123. doi:10.1098/rspb.2014.0123. 

Bednaršek, N., Harvey, C. J., Kaplan, I. C., Feely, R. A., and Možina, J. (2016). Pteropods on the 

edge: Cumulative effects of ocean acidification, warming, and deoxygenation. Prog. Oceanogr. 

145, 1–24. doi:10.1016/j.pocean.2016.04.002. 



 82 

Bednaršek, N., Klinger, T., Harvey, C. J., Weisberg, S., McCabe, R. M., Feely, R. A., et al. (2017). 

New ocean, new needs: Application of pteropod shell dissolution as a biological indicator for 

marine resource management. Ecol. Indic. 76, 240–244. doi:10.1016/j.ecolind.2017.01.025. 

Bednaršek, N., and Ohman, M. D. (2015). Changes in pteropod distributions and shell dissolution 

across a frontal system in the California Current System. Mar. Ecol. Prog. Ser. 523, 93–103. 

doi:10.3354/meps11199. 

Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., Jones, E. M., Venables, H. J., et al. 

(2012). Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–

885. doi:10.1038/ngeo1635. 

Bell, J. D., Cisneros-Montemayor, A., Hanich, Q., Johnson, J. E., Lehodey, P., Moore, B. R., et al. 

(2017). Adaptations to maintain the contributions of small-scale fisheries to food security in 

the Pacific Islands. Mar. Policy. doi:10.1016/j.marpol.2017.05.019. 

Bell, J. D., Ganachaud, A., Gehrke, P. C., Griffiths, S. P., Hobday, A. J., Hoegh-Guldberg, O., et al. 

(2013). Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. 

Clim. Chang. 3, 591–599. doi:10.1038/nclimate1838. 

Ben Rais Lasram, F., Guilhaumon, F., Albouy, C., Somot, S., Thuiller, W., and Mouillot, D. (2010). 

The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. 

Chang. Biol. 16, 3233–3245. doi:10.1111/j.1365-2486.2010.02224.x. 

Bortolotto, E., Bucklin, A., Mezzavilla, M., Zane, L., and Patarnello, T. (2011). Gone with the 

currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill 

Euphausia superba. BMC Genet. 12, 32. doi:10.1186/1471-2156-12-32. 

Bosello, F., and De Cian, E. (2014). Climate change, sea level rise, and coastal disasters. A review of 

modeling practices. Energy Econ. 46, 593–605. doi:10.1016/j.eneco.2013.09.002. 

Brodie, J., Williamson, C. J., Smale, D. A., Kamenos, N. A., Mieszkowska, N., Santos, R., et al. 

(2014). The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol. Evol. 4, 

2787–2798. doi:10.1002/ece3.1105. 

Burge, C. A., Kim, C. J. S., Lyles, J. M., and Harvell, C. D. (2013). Special issue Oceans and Humans 

Health: The ecology of marine opportunists. Microb. Ecol. 65, 869–879. doi:10.1007/s00248-

013-0190-7. 

Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., et 

al. (2014). Geographical limits to species-range shifts are suggested by climate velocity. 

Nature 507, 492–495. doi:10.1038/nature12976. 

C. R. Wilkinson (2000). Status of Coral Reefs of the World: 2000. Aust. Inst. Mar. Sci. Townsville, 

Aust., 363. 

Callaway, R., Shinn, A. P., Grenfell, S. E., Bron, J. E., Burnell, G., Cook, E. J., et al. (2012). Review 

of climate change impacts on marine aquaculture in the UK and Ireland. Aquat. Conserv. Mar. 

Freshw. Ecosyst. 22, 389–421. doi:10.1002/aqc.2247. 

Carr, J. A., D’Odorico, P., McGlathery, K. J., and P. L. Wiberg (2012). Modeling the effects of climate 

change on eelgrass stability and resilience: Future scenarios and leading indicators of collapse. 

Mar. Ecol. Prog. Ser. 448, 289–301. 

Castillo, N., Saavedra, L. M., Vargas, C. A., Gallardo-Escárate, C., and Détrée, C. (2017). Ocean 

acidification and pathogen exposure modulate the immune response of the edible mussel 

Mytilus chilensis. Fish Shellfish Immunol. 70, 149–155. doi:10.1016/j.fsi.2017.08.047. 

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., and Pauly, D. (2009). 

Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 

235–251. doi:10.1111/j.1467-2979.2008.00315.x. 

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., et al. (2010). 

Large-scale redistribution of maximum fisheries catch potential in the global ocean under 

climate change. Glob. Chang. Biol. 16, 24–35. doi:10.1111/j.1365-2486.2009.01995.x. 

Cheung, W. W. L., Watson, R., and Pauly, D. (2013). Signature of ocean warming in global fisheries 

catch. Nature 497, 365–368. doi:10.1038/nature12156. 

Cinner, J. E., McClanahan, T. R., Graham, N. A. J., Daw, T. M., Maina, J., Stead, S. M., et al. (2012). 

Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. 

Glob. Environ. Chang. 22, 12–20. doi:10.1016/j.gloenvcha.2011.09.018. 



 83 

Cinner, J. E., Pratchett, M. S., Graham, N. A. J., Messmer, V., Fuentes, M. M. P. B., Ainsworth, T., et 

al. (2016). A framework for understanding climate change impacts on coral reef social–

ecological systems. Reg. Environ. Chang. 16, 1133–1146. doi:10.1007/s10113-015-0832-z. 

Clements, J. C., Bourque, D., McLaughlin, J., Stephenson, M., and Comeau, L. A. (2017). Extreme 

ocean acidification reduces the susceptibility of eastern oyster shells to a polydorid parasite. J. 

Fish Dis. 40, 1573–1585. doi:10.1111/jfd.12626. 

Clements, J. C., and Chopin, T. (2017). Ocean acidification and marine aquaculture in North America: 

Potential impacts and mitigation strategies. Rev. Aquac. 9, 326341. doi:10.1111/raq.12140. 

Comeau, S., Alliouane, S., and Gattuso, J.-P. (2012). Effects of ocean acidification on overwintering 

juvenile Arctic pteropods Limacina helicina. Ecol. Prog. Ser. 456, 279–284. 

doi:10.3354/meps09696. 

Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P. (2009). Impact of ocean 

acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6, 1877–

1882. doi:10.5194/bg-6-1877-2009. 

Comeau, S., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P. (2010). Response of the Arctic pteropod 

Limacina helicina to projected future environmental conditions. PLoS One 5. 

doi:10.1371/journal.pone.0011362. 

Cooley, S. R., Rheuban, J. E., Hart, D. R., Luu, V., Glover, D. M., Hare, J. A., et al. (2015). An 

Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten 

magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming. PLoS One 10, 

e0124145. doi:10.1371/journal.pone.0124145. 

Cooper, J. A. G., O’Connor, M. C., and McIvor, S. (2016). Coastal defences versus coastal 

ecosystems: A regional appraisal. Mar. Policy. doi:10.1016/j.marpol.2016.02.021. 

Couce, E., Ridgwell, A., and Hendy, E. J. (2013). Future habitat suitability for coral reef ecosystems 

under global warming and ocean acidification. Glob. Chang. Biol. 19, 3592–3606. 

doi:10.1111/gcb.12335. 

David, C., Schaafsma, F. L., van Franeker, J. A., Lange, B., Brandt, A., and Flores, H. (2017). 

Community structure of under-ice fauna in relation to winter sea-ice habitat properties from 

the Weddell Sea. Polar Biol. 40, 247–261. doi:10.1007/s00300-016-1948-4. 

De’ath, G., Fabricius, K. E., Sweatman, H., and Puotinen, M. (2012). The 27-year decline of coral 

cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. U. S. A. 109, 17995–9. 

doi:10.1073/pnas.1208909109. 

Defeo, O., McLachlan, A., Schoeman, D. S., Schlacher, T. A., Dugan, J., Jones, A., et al. (2009). 

Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 81, 1–12. 

doi:10.1016/j.ecss.2008.09.022. 

Di Nitto, D., Neukermans, G., Koedam, N., Defever, H., Pattyn, F., Kairo, J. G., et al. (2014). 

Mangroves facing climate change: Landward migration potential in response to projected 

scenarios of sea level rise. Biogeosciences 11, 857–871. doi:10.5194/bg-11-857-2014. 

Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M., and Hoegh-Guldberg, O. (2005). 

Global assessment of coral bleaching and required rates of adaptation under climate change. 

Glob. Chang. Biol. 11, 2251–2265. doi:10.1111/j.1365-2486.2005.01073.x. 

Dove, S. G., Kline, D. I., Pantos, O., Angly, F. E., Tyson, G. W., and Hoegh-Guldberg, O. (2013). 

Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Natl. Acad. 

Sci. U. S. A. 110, 15342–15347. doi:10.1073/pnas.1302701110. 

Duke, N. C., Kovacs, J. M., Griffiths, A. D., Preece, L., Hill, D. J. E., Van Oosterzee, P., et al. (2017). 

Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: A severe ecosystem 

response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–

1829. doi:10.1071/MF16322. 

Eakin, C. M., Morgan, J. A., Heron, S. F., Smith, T. B., Liu, G., Alvarez-Filip, L., et al. (2010). 

Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS One 

5, e13969. doi:10.1371/journal.pone.0013969. 

Elliff, C. I., and Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face 

of climate change. Mar. Environ. Res. 127, 148–154. doi:10.1016/j.marenvres.2017.03.007. 

Esbaugh, A. J. (2017). Physiological implications of ocean acidification for marine fish: emerging 

patterns and new insights. J. Comp. Physiol. B 188, 1–13. doi:10.1007/s00360-017-1105-6. 



 84 

FAO (2016). The State of World Fisheries and Aquaculture 2016. Contributing to food security and 

nutrition for all. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). 

Feely, R. A., Alin, S. R., Carter, B., Bednar??ek, N., Hales, B., Chan, F., et al. (2016). Chemical and 

biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. 

Shelf Sci. 183, 260–270. doi:10.1016/j.ecss.2016.08.043. 

Feller, I. C., Friess, D. A., Krauss, K. W., and Lewis, R. R. (2017). The state of the world’s mangroves 

in the 21st century under climate change. Hydrobiologia 803, 1–12. doi:10.1007/s10750-017-

3331-z. 

Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., and Airoldi, L. (2014). The 

effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 

3794. doi:10.1038/ncomms4794. 

Flores, H., Atkinson, A., Kawaguchi, S., Krafft, B. A., Milinevsky, G., Nicol, S., et al. (2012). Impact 

of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19. doi:10.3354/meps09831. 

Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M., and Dolgov, A. V. 

(2015). Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. 

Clim. Chang. 5, 673–677. doi:10.1038/nclimate2647. 

Fu, X., and Song, J. (2017). Assessing the economic costs of sea level rise and benefits of coastal 

protection: A spatiotemporal approach. Sustainability 9. doi:10.3390/su9081495. 

García Molinos, J., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W., Moore, P. J., et al. 

(2015). Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. 

Chang. 6, 83–88. doi:10.1038/nclimate2769. 

Gattuso, J.-P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., et al. (2015). 

Contrasting futures for ocean and society from different anthropogenic CO2 emissions 

scenarios. Science (80-. ). 349, aac4722. doi:10.1126/science.aac4722. 

Gedan, K. B., and Bertness, M. D. (2009). Experimental warming causes rapid loss of plant diversity 

in New England salt marshes. Ecol. Lett. 12, 842–848. doi:10.1111/j.1461-0248.2009.01337.x. 

Gewin, V. (2017). Scientists hit hard by powerful hurricanes in 2017 share tips for weathering future 

disasters. Nature 551, 401–403. 

Glynn, P. W. (1984). Widespread coral mortality and the 1982-83 El Niño warming event. Environ. 

Conserv. 11, 133–146. doi:10.1017/S0376892900013825. 

Gobler, C. J., DePasquale, E. L., Griffith, A. W., and Baumann, H. (2014). Hypoxia and Acidification 

Have Additive and Synergistic Negative Effects on the Growth, Survival, and Metamorphosis 

of Early Life Stage Bivalves. PLoS One 9, e83648. doi:10.1371/journal.pone.0083648. 

Godoy, M. D. P., and De Lacerda, L. D. (2015). Mangroves Response to Climate Change: A Review 

of Recent Findings on Mangrove Extension and Distribution. An Acad Bras CiencAnnals 

Brazilian Acad. Sci. 87, 651–667. doi:10.1590/0001-3765201520150055. 

Guénette, S., Araújo, J. N., and Bundy, A. (2014). Exploring the potential effects of climate change on 

the Western Scotian Shelf ecosystem, Canada. J. Mar. Syst. 134, 89–100. 

doi:10.1016/j.jmarsys.2014.03.001. 

Guerrero-Meseguer, L., Marín, A., and Sanz-Lázaro, C. (2017). Future heat waves due to climate 

change threaten the survival of P. oceanica seedlings. Environ. Pollut. 230, 40–45. 

doi:10.1016/j.envpol.2017.06.039. 

Hauer, M. E., Evans, J. M., and Mishra, D. R. (2016). Millions projected to be at risk from sea-level 

rise in the continental United States. Nat. Clim. Chang. 6, 691–695. doi:10.1038/nclimate2961. 

Hiddink, J. G., Burrows, M. T., and García Molinos, J. (2015). Temperature tracking by North Sea 

benthic invertebrates in response to climate change. Glob. Chang. Biol. 21, 117–129. 

doi:10.1111/gcb.12726. 

Hill, S. L., Phillips, T., and Atkinson, A. (2013). Potential Climate Change Effects on the Habitat of 

Antarctic Krill in the Weddell Quadrant of the Southern Ocean. PLoS One 8. 

doi:10.1371/journal.pone.0072246. 

Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. 

Mar. Freshw. Res. 50, 839. doi:10.1071/MF99078. 

Hoegh-Guldberg, O., Cai, R., Poloczanska, E. S., Brewer, P. G., Sundby, S., Hilmi, K., et al. (2014). 

“The Ocean,” in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: 

Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 



 85 

Intergovernmental Panel of Climate Change, eds. V. R. Barros, C. B. Field, D. J. Dokken, M. 

D. Mastrandrea, K. J. Mach, T. E. Bilir, et al. (Cambridge, United Kingdom and New York, 

NY, USA, United Kingdom and New York, NY, USA: Cambridge University Press), 1655–

1731. 

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., et al. 

(2007). Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science (80-. ). 

318, 1737–1742. Available at: http://science.sciencemag.org/content/318/5857/1737 

[Accessed April 12, 2017]. 

Höffle, H., Thomsen, M. S., and Holmer, M. (2011). High mortality of Zostera marina under high 

temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. 

doi: Estuar. Coast. Shelf Sci. 92, 35–46. doi:10.1016/j.ecss.2010.12.017e. 

Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K., Drinkwater, K., et al. 

(2013). Projected impacts of climate change on marine fish and fisheries. ICES J. Mar. Sci. 70, 

1023–1037. doi:10.1093/icesjms/fst081. 

Hollowed, A. B., and Sundby, S. (2014). Change is coming to the northern oceans. Science (80-. ). 

344, 1084–1085. doi:10.1126/science.1251166. 

Horta E Costa, B., Assis, J., Franco, G., Erzini, K., Henriques, M., Gonçalves, E. J., et al. (2014). 

Tropicalization of fish assemblages in temperate biogeographic transition zones. Mar. Ecol. 

Prog. Ser. 504, 241–252. doi:10.3354/meps10749. 

Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. 

H., et al. (2017). Global warming and recurrent mass bleaching of corals. Nature 543, 373–

377. doi:10.1038/nature21707. 

Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Sugimoto, H., Midorikawa, T., et al. (2015). Trends in 

pCO2 and sea–air CO2 flux over the global open oceans for the last two decades. J. Oceanogr. 

71, 637–661. doi:10.1007/s10872-015-0306-4. 

Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., et al. (2013). 

Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 

Earth System Models under Four Representative Concentration Pathways. J. Clim. 26, 4398–

4413. doi:10.1175/JCLI-D-12-00554.1. 

Jones, M. C., and Cheung, W. W. L. (2015). Multi-model ensemble projections of climate change 

effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752. 

doi:10.1093/icesjms/fsu172. 

Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R., and Cheung, W. W. (2014). Using scenarios to 

project the changing profitability of fisheries under climate change. Fish Fish. 

doi:10.1111/faf.12081. 

Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., et al. (2013). Carbon 

dioxide and climate impulse response functions for the computation of greenhouse gas 

metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825. doi:10.5194/acp-13-

2793-2013. 

Jordà, G., Marbà, N., and Duarte, C. M. (2012). Mediterranean seagrass vulnerable to regional climate 

warming. Nat. Clim. Chang. 2, 821–824. doi:10.1038/nclimate1533. 

Kawaguchi, S., Ishida, A., King, R., Raymond, B., Waller, N., Constable, A., et al. (2013). Risk maps 

for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Chang. 3, 843–

847. doi:10.1038/nclimate1937. 

Kittinger, J. N. (2013). Human Dimensions of Small-Scale and Traditional Fisheries in the Asia-

Pacific Region. Pacific Sci. 67, 315–325. doi:10.2984/67.3.1. 

Kittinger, J. N., Finkbeiner, E. M., Ban, N. C., Broad, K., Carr, M. H., Cinner, J. E., et al. (2013). 

Emerging frontiers in social-ecological systems research for sustainability of small-scale 

fisheries. Curr. Opin. Environ. Sustain. 5, 352–357. doi:10.1016/j.cosust.2013.06.008. 

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., et al. (2013). Impacts 

of ocean acidification on marine organisms: Quantifying sensitivities and interaction with 

warming. Glob. Chang. Biol. 19, 1884–1896. doi:10.1111/gcb.12179. 

Lacoue-Labarthe, T., Nunes, P. A. L. D., Ziveri, P., Cinar, M., Gazeau, F., Hall-Spencer, J. M., et al. 

(2016). Impacts of ocean acidification in a warming Mediterranean Sea: An overview. Reg. 

Stud. Mar. Sci. 5, 1–11. doi:10.1016/j.rsma.2015.12.005. 



 86 

Lam, V. W. Y., Cheung, W. W. L., and Sumaila, U. R. (2014). Marine capture fisheries in the Arctic: 

Winners or losers under climate change and ocean acidification? Fish Fish. 17, 335–357. 

doi:10.1111/faf.12106. 

Lemasson, A. J., Fletcher, S., Hall-Spencer, J. M., and Knights, A. M. (2017). Linking the biological 

impacts of ocean acidification on oysters to changes in ecosystem services: A review. J. Exp. 

Mar. Bio. Ecol. 492, 49–62. doi:10.1016/j.jembe.2017.01.019. 

Li, S., Huang, J., Liu, C., Liu, Y., Zheng, G., Xie, L., et al. (2016a). Interactive Effects of Seawater 

Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the 

Pearl Oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165. 

doi:10.1021/acs.est.5b05107. 

Li, S., Liu, C., Huang, J., Liu, Y., Zhang, S., Zheng, G., et al. (2016b). Transcriptome and 

biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and 

temperature. Sci. Rep. 6, 18943. doi:10.1038/srep18943. 

Lischka, S., Büdenbender, J., Boxhammer, T., and Riebesell, U. (2011). Impact of ocean acidification 

and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: 

mortality, shell degradation, and shell growth. Biogeosciences 8, 919–932. doi:10.5194/bg-8-

919-2011. 

Lischka, S., and Riebesell, U. (2012). Synergistic effects of ocean acidification and warming on 

overwintering pteropods in the Arctic. Glob. Chang. Biol. 18, 3517–3528. 

doi:10.1111/gcb.12020. 

Logan, C. A., Dunne, J. P., Eakin, C. M., and Donner, S. D. (2014). Incorporating adaptive responses 

into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139. 

doi:10.1111/gcb.12390. 

Long, J., Giri, C., Primavera, J., and Trivedi, M. (2016). Damage and recovery assessment of the 

Philippines’ mangroves following Super Typhoon Haiyan. Mar. Pollut. Bull. 109, 734–743. 

doi:10.1016/j.marpolbul.2016.06.080. 

Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss, K. W., Reef, R., et al. 

(2015). The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–

563. doi:10.1038/nature15538. 

Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S., and Ball, M. C. (2017). Mangrove dieback during 

fluctuating sea levels. Sci. Rep. 7, 1680. doi:10.1038/s41598-017-01927-6. 

Mackenzie, C. L., Lynch, S. A., Culloty, S. C., and Malham, S. K. (2014a). Future oceanic warming 

and acidification alter immune response and disease status in a commercial shellfish species, 

Mytilus edulis L. PLoS One 9. doi:10.1371/journal.pone.0099712. 

 

Mackenzie, C. L., Ormondroyd, G. A., Curling, S. F., Ball, R. J., Whiteley, N. M., and Malham, S. K. 

(2014b). Ocean warming, more than acidification, reduces shell strength in a commercial 

shellfish species during food limitation. PLoS One 9. doi:10.1371/journal.pone.0086764. 

Manno, C., Bednaršek, N., Tarling, G. A., Peck, V. L., Comeau, S., Adhikari, D., et al. (2017). Shelled 

pteropods in peril: Assessing vulnerability in a high CO2 ocean. Earth-Science Rev. 169, 132–

145. doi:10.1016/j.earscirev.2017.04.005. 

Mannoa, C., Morataa, N., and Primiceriob, R. (2012). Limacina retroversa’s response to combined 

effects of ocean acidification and sea water freshening. Estuar. Coast. Shelf Sci. 113, 163–171. 

doi:10.1016/j.ecss.2012.07.019. 

Marbà, N., and Duarte, C. M. (2010). Mediterranean warming triggers seagrass (Posidonia oceanica) 

shoot mortality. Glob. Chang. Biol. 16, 2366–2375. doi:10.1111/j.1365- 2486.2009.02130.x. 

McClanahan, T. R., Allison, E. H., and Cinner, J. E. (2015). Managing fisheries for human and food 

security. Fish Fish. 16, 78–103. doi:10.1111/faf.12045. 

McClanahan, T. R., Castilla, J. C., White, A. T., and Defeo, O. (2009). Healing small-scale fisheries 

by facilitating complex socio-ecological systems. Rev. Fish Biol. Fish. 19, 33–47. 

doi:10.1007/s11160-008-9088-8. 

McKee, K., Rogers, K., and Saintilan, N. (2012). Response of salt marsh and mangrove wetlands to 

changes in atmospheric CO2, climate, and sea level. Glob. Chang. Funct. Distrib. Wetl., 63–

96. 



 87 

Miller, A. W., Reynolds, A. C., Sobrino, C., and Riedel, G. F. (2009). Shellfish face uncertain future in 

high CO2 world: Influence of acidification on oyster larvae calcification and growth in 

estuaries. PLoS One 4. doi:10.1371/journal.pone.0005661. 

Mills, M., Leon, J. X., Saunders, M. I., Bell, J., Liu, Y., O’Mara, J., et al. (2016). Reconciling 

Development and Conservation under Coastal Squeeze from Rising Sea Level. Conserv. Lett. 

9, 361–368. doi:10.1111/conl.12213. 

Moore, J. A. Y., Bellchambers, L. M., Depczynski, M. R., Evans, R. D., Evans, S. N., Field, S. N., et 

al. (2012). Unprecedented mass bleaching and loss of coral across 12° of latitude in Western 

Australia in 2010-11. PLoS One 7. doi:10.1371/journal.pone.0051807. 

Muhlfeld, C. C., Kovach, R. P., Jones, L. A., Al-Chokhachy, R., Boyer, M. C., Leary, R. F., et al. 

(2014). Invasive hybridization in a threatened species is accelerated by climate change. Nat. 

Clim. Chang. 4, 620–624. doi:10.1038/nclimate2252. 

Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L., and Fabricius, K. E. (2014). Behavioural 

impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Chang. 4, 

487–492. doi:10.1038/nclimate2195. 

Nejrup, L. B., and Pedersen, M. F. (2008). Effects of salinity and water temperature on the ecological 

performance of the Zostera marina. Aquat. Bot. 88, 239–246. 

doi:10.1016/j.aquabot.2007.10.006. 

Normile, D. (2016). El Niño’s warmth devastating reefs worldwide. Science 352, 15–16. 

doi:10.1126/science.352.6281.15. 

Notz, D., and Stroeve, J. (2016). Observed Arctic sea-ice loss directly follows anthropogenic CO 2 

emission. Science (80-. ). 354, 747–750. doi:10.1126/science.aag2345. 

O’Mahony, J., Simes, R., Redhill, D., Heaton, K., Atkinson, C., Hayward, E., et al. (2017). At What 

Price? The Economic, Social and Icon Value of the Great Barrier Reef. Brisbane, Australia 

Available at: http://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/3205/1/deloitte-au-

economics-great-barrier-reef-230617.pdf. 

Ondiviela, B., Losada, I. J., Lara, J. L., Maza, M., Galván, C., Bouma, T. J., et al. (2014). The role of 

seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168. 

doi:10.1016/j.coastaleng.2013.11.005. 

Ong, E. Z., Briffa, M., Moens, T., and Van Colen, C. (2017). Physiological responses to ocean 

acidification and warming synergistically reduce condition of the common cockle 

Cerastoderma edule. Mar. Environ. Res. 130, 38–47. doi:10.1016/j.marenvres.2017.07.001. 

Ong, J. J. L., Nicholas Rountrey, A., Jane Meeuwig, J., John Newman, S., Zinke, J., and Gregory 

Meekan, M. (2015). Contrasting environmental drivers of adult and juvenile growth in a 

marine fish: implications for the effects of climate change. Sci. Rep. 5, 10859. 

doi:10.1038/srep10859. 

Oxford Economics (2009). Valuing the Effects of Great Barrier Reef Bleaching. Newstead, QLD, 

Australia: Great Barrier Reef Foundation. 

Parker, L. M., Scanes, E., O’Connor, W. A., Coleman, R. A., Byrne, M., Pörtner, H. O., et al. (2017). 

Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster 

Saccostrea glomerata. Mar. Pollut. Bull. 122, 263–271. doi:10.1016/j.marpolbul.2017.06.052. 

Pauly, D., and Charles, A. (2015). Counting on small-scale fisheries. Science (80-. ). 347, 242–243. 

doi:10.1126/science.347.6219.242-b. 

Pendleton, L., Comte, A., Langdon, C., Ekstrom, J. A., Cooley, S. R., Suatoni, L., et al. (2016). Coral 

reefs and people in a high-CO2 world: Where can science make a difference to people? PLoS 

One 11, 1–21. doi:10.1371/journal.pone.0164699. 

Pergent, G., Pergent-Martini, C., Bein, A., Dedeken, M., Oberti, P., Orsini, A., et al. (2015). Dynamic 

of Posidonia oceanica seagrass meadows in the northwestern Mediterranean: Could climate 

change be to blame? Comptes Rendus - Biol. 338, 484–493. doi:10.1016/j.crvi.2015.04.011. 

Pespeni, M. H., Sanford, E., Gaylord, B., Hill, T. M., Hosfelt, J. D., Jaris, H. K., et al. (2013). 

Evolutionary change during experimental ocean acidification. Proc. Natl. Acad. Sci. 110, 

6937–6942. doi:10.1073/pnas.1220673110. 

Piñones, A., and Fedorov, A. V. (2016). Projected changes of Antarctic krill habitat by the end of the 

21st century. Geophys. Res. Lett. 43, 8580–8589. doi:10.1002/2016GL069656. 



 88 

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A. (2013). Marine Taxa Track 

Local Climate Velocities. Science (80-. ). 341, 1239–1242. doi:10.1126/science.1239352. 

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., et al. 

(2013). Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925. 

doi:10.1038/nclimate1958. 

Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-Guldberg, 

O., et al. (2016). Responses of Marine Organisms to Climate Change across Oceans. Front. 

Mar. Sci. 3, 62. doi:10.3389/fmars.2016.00062. 

Pörtner, H. O., Karl, D. M., Boyd, P. W., Cheung, W. W. L., Lluch-Cota, S. E., Nojiri, Y., et al. 

(2014). “Ocean Systems,” in Climate Change 2014: Impacts, Adaptation, and Vulnerability. 

Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change, eds. C. B. Field, V. R. 

Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Cambridge, United 

Kingdom and New York, NY, USA: Cambridge University Press), 411–484. Available at: 

https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap6_FINAL.pdf. 

Potts, W. M., Henriques, R., Santos, C. V., Munnik, K., Ansorge, I., Dufois, F., et al. (2014). Ocean 

warming, a rapid distributional shift, and the hybridization of a coastal fish species. Glob. 

Chang. Biol. 20, 2765–2777. doi:10.1111/gcb.12612. 

Prentice, C., and J. T. Houghton et al., E. (2001). “The carbon cycle and atmospheric carbon dioxide” 

in Climate Change 2001: the Scientific Basis. Contributions of Working Group I to the Third 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. 

Press, 183–237. 

Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., et al. (2015). 

Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. 

Chang. 5, 475–480. doi:10.1038/nclimate2554. 

Rasheed, M. A., McKenna, S. A., Carter, A. B., and Coles, R. G. (2014). Contrasting recovery of 

shallow and deep water seagrass communities following climate associated losses in tropical 

north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. 

doi:10.1016/j.marpolbul.2014.02.013. 

Raybaud, V., Beaugrand, G., Dewarumez, J.-M., and Luczak, C. (2015). Climate-induced range shifts 

of the American jackknife clam Ensis directus in Europe. Biol. Invasions 17, 725–741. 

doi:10.1007/s10530-014-0764-4. 

Repolho, T., Duarte, B., Dionísio, G., Paula, J. R., Lopes, A. R., Rosa, I. C., et al. (2017). Seagrass 

ecophysiological performance under ocean warming and acidification. Sci. Rep. 7, 41443. 

doi:10.1038/srep41443. 

Risser, M. D., and Wehner, M. F. (2017). Attributable human-induced changes in the likelihood and 

magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. 

Lett., n/a--n/a. doi:10.1002/2017GL075888. 

Rodrigues, L. C., Bergh, J. C. J. M. Van Den, Massa, F., Theodorou, J. A., Ziveri, P., and Gazeau, F. 

(2015). Sensitivity of Mediterranean Bivalve Mollusc Aquaculture to Climate Change, Ocean 

Acidification, and Other Environmental Pressures: Findings from a Producer Survey. J. 

Shellfish Res. 34, 1161–1176. doi:10.2983/035.034.0341. 

Rodriguez, A. B., Fodrie, F. J., Ridge, J. T., Lindquist, N. L., Theuerkauf, E. J., Coleman, S. E., et al. 

(2014). Oyster reefs can outpace sea-level rise. Nat. Clim. Chang. 4, 493–497. 

doi:10.1038/nclimate2216. 

Rosenzweig, C., and Solecki, W. (2014). Hurricane Sandy and adaptation pathways in New York: 

Lessons from a first-responder city. Glob. Environ. Chang. 28, 395–408. 

doi:10.1016/j.gloenvcha.2014.05.003. 

Saunders, M. I., Leon, J. X., Callaghan, D. P., Roelfsema, C. M., Hamylton, S., Brown, C. J., et al. 

(2014). Interdependency of tropical marine ecosystems in response to climate change. Nat. 

Clim. Chang. 4, 724–729. doi:10.1038/NCLIMATE2274. 

Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J. (2017). Ocean ventilation and 

deoxygenation in a warming world: introduction and overview. Philos. Trans. R. Soc. A Math. 

Phys. Eng. Sci. 375, 20170240. doi:10.1098/rsta.2017.0240. 



 89 

Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A., and Payet, R. (2005). Coral mortality increases 

wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuar. 

Coast. Shelf Sci. 64, 223–234. doi:10.1016/j.ecss.2005.02.016. 

Shi, W., Zhao, X., Han, Y., Che, Z., Chai, X., and Liu, G. (2016). Ocean acidification increases 

cadmium accumulation in marine bivalves: a potential threat to seafood safety. Sci. Rep. 6, 

20197. doi:10.1038/srep20197. 

Short, F. T., and Neckles, H. A. (1999). The effects of global climate change on seagrasses. Aquat. 

Bot. 63, 169–196. doi:10.1016/S0304-3770(98)00117-X. 

Shults, J. M., and Galea, S. (2017). Preparing for the Next Harvey, Irma, or Maria — Addressing 

Research Gaps. Perspective 363, 1–3. doi:10.1056/NEJMp1002530. 

Silverman, J., Schneider, K., Kline, D. I., Rivlin, T., Rivlin, A., Hamylton, S., et al. (2014). 

Community calcification in Lizard Island, Great Barrier Reef: A 33year perspective. Geochim. 

Cosmochim. Acta 144, 72–81. doi:https://doi.org/10.1016/j.gca.2014.09.011. 

Song, A. M., and Chuenpagdee, R. (2015). Interactive Governance for Fisheries. Interact. Gov. Small-

Scale Fish. 5, 435–456. doi:10.1007/978-3-319-17034-3. 

Spalding, M. D., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., and zu Ermgassen, P. (2017). 

Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113. 

doi:10.1016/j.marpol.2017.05.014. 

Spalding, M. D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L. Z., Shepard, C. C., et al. (2014). The 

role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. 

Ocean Coast. Manag. 90, 50–57. doi:10.1016/j.ocecoaman.2013.09.007. 

Steinberg, D. K., Ruck, K. E., Gleiber, M. R., Garzio, L. M., Cope, J. S., Bernard, K. S., et al. (2015). 

Long-term (1993-2013) changes in macrozooplankton off the western antarctic peninsula. 

Deep. Res. Part I Oceanogr. Res. Pap. 101, 54–70. doi:10.1016/j.dsr.2015.02.009. 

Storlazzi, C. D., Elias, E. P. L., and Berkowitz, P. (2015). Many Atolls May be Uninhabitable Within 

Decades Due to Climate Change. Sci. Rep. 5, 14546. doi:10.1038/srep14546. 

Sydeman, W. J., Garcia-Reyes, M., Schoeman, D. S., Rykaczewski, R. R., Thompson, S. A., Black, B. 

A., et al. (2014). Climate change and wind intensification in coastal upwelling ecosystems. 

Science (80-. ). 345, 77–80. doi:10.1126/science.1251635. 

Telesca, L., Belluscio, A., Criscoli, A., Ardizzone, G., Apostolaki, E. T., Fraschetti, S., et al. (2015). 

Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 5, 

12505. doi:10.1038/srep12505. 

Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J. (2013). 

Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83. 

doi:10.1038/nature12859. 

Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., et al. (2010). Global 

patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. 

doi:10.1038/nature09329. 

Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., et al. (2017). 

Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 44, 6868–

6875. doi:10.1002/2017GL073656. 

Unsworth, R. K. F., van Keulen, M., and Coles, R. G. (2014). Seagrass meadows in a globally 

changing environment. Mar. Pollut. Bull. 83, 383–386. doi:10.1016/j.marpolbul.2014.02.026. 

van Hooidonk, R., Maynard, J. A., Manzello, D., and Planes, S. (2014). Opposite latitudinal gradients 

in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 

103–112. doi:10.1111/gcb.12394. 

Velez, C., Figueira, E., Soares, A. M. V. M., and Freitas, R. (2016). Combined effects of seawater 

acidification and salinity changes in Ruditapes philippinarum. Aquat. Toxicol. 176, 141–150. 

doi:10.1016/j.aquatox.2016.04.016. 

Vergés, A., Doropoulos, C., Malcolm, H. A., Skye, M., Garcia-Pizá, M., Marzinelli, E. M., et al. 

(2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish 

communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113, 13791–13796. 

doi:10.1073/pnas.1610725113. 

Verges, A., Steinberg, P. D., Hay, M. E., Poore, A. G. B., Campbell, A. H., Ballesteros, E., et al. 

(2014). The tropicalization of temperate marine ecosystems: climate-mediated changes in 



 90 

herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846–20140846. 

doi:10.1098/rspb.2014.0846. 

Veron, J. E., Hoegh-Guldberg, O., Lenton, T. M., Lough, J. M., Obura, D. O., Pearce-Kelly, P., et al. 

(2009). The coral reef crisis: The critical importance of <350 ppm CO2. Mar. Pollut. Bull. 58, 

1428–1436. doi:10.1016/j.marpolbul.2009.09.009. 

Villamayor, B. M. R., Rollon, R. N., Samson, M. S., Albano, G. M. G., and Primavera, J. H. (2016). 

Impact of Haiyan on Philippine mangroves: Implications to the fate of the widespread 

monospecific Rhizophora plantations against strong typhoons. Ocean Coast. Manag. 132, 1–

14. doi:10.1016/j.ocecoaman.2016.07.011. 

Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P., Brunner, E. L., et al. (2014). 

Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang. 

5, 273–280. doi:10.1038/nclimate2479. 

Wang, Q., Cao, R., Ning, X., You, L., Mu, C., Wang, C., et al. (2016). Effects of ocean acidification 

on immune responses of the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol. 49, 24–

33. doi:10.1016/j.fsi.2015.12.025. 

Washington State Blue Ribbon Panel on Ocean Acidification (2012). Ocean Acidification: From 

Knowledge to Action, Washington State’s Strategic Response. Olympia, WA, USA: 

Washington Department of Ecology. 

Weatherdon, L. V., Magnan, A. K., Rogers, A. D., Sumaila, U. R., and Cheung, W. W. L. (2016). 

Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal 

Tourism, and Human Health: An Update. Front. Mar. Sci. 3, 48. 

doi:10.3389/fmars.2016.00048. 

Widlansky, M. J., Timmermann, A., and Cai, W. (2015). Future extreme sea level seesaws in the 

tropical Pacific. Sci. Adv. 1. doi:10.1126/sciadv.1500560. 

Wittmann, A. C., and Pörtner, H.-O. (2013). Sensitivities of extant animal taxa to ocean acidification. 

Nat. Clim. Chang. 3, 995–1001. doi:10.1038/nclimate1982. 

York, P. H., Gruber, R. K., Hill, R., Ralph, P. J., Booth, D. J., and Macreadie, P. I. (2013). 

Physiological and morphological responses of the temperate seagrass Zostera muelleri to 

multiple stressors: Investigating the interactive effects of light and temperature. PLoS One 8. 

doi:10.1371/journal.pone.0076377. 

York, P. H., Smith, T. M., Coles, R. G., McKenna, S. A., Connolly, R. M., Irving, A. D., et al. (2016). 

Identifying knowledge gaps in seagrass research and management: An Australian perspective. 

Mar. Environ. Res., 1–10. doi:10.1016/j.marenvres.2016.06.006. 

Zhao, X., Shi, W., Han, Y., Liu, S., Guo, C., Fu, W., et al. (2017). Ocean acidification adversely 

influences metabolism, extracellular pH and calcification of an economically important marine 

bivalve, Tegillarca granosa. Mar. Environ. Res. 125, 82–89. 

doi:10.1016/j.marenvres.2017.01.007. 

Zittier, Z. M. C., Bock, C., Lannig, G., and Pörtner, H. O. (2015). Impact of ocean acidification on 

thermal tolerance and acid-base regulation of Mytilus edulis (L.) from the North Sea. J. Exp. 

Mar. Bio. Ecol. 473, 16–25. doi:10.1016/j.jembe.2015.08.001. 

 

  



 91 

3.SM.3.3 Supplementary Information to Section 3.4.13 
 

3.SM.3.3.1 Temperature-Related Morbidity and Mortality 

 

Detection and attribution studies show heat-related mortality in some locations has increased because 

of climate change (Ebi et al. 2017), alongside evidence of acclimatization and adaptation reducing 

mortality, particularly in high-income countries (Arbuthnott et al. 2016; Chung et al. 2017; de’ Donato 

et al. 2015; Bobb et al. 2014; Lee et al. 2014) with future adaptation trends uncertain. 

 

The projected risks of heat-related morbidity and mortality are generally higher under warming of 2°C 

than 1.5°C, with projections of greater exposure to high ambient temperatures and increased morbidity 

and mortality (Section 3.4.7). This indicates a transition in risk between 1.5°C and 2°C (medium 

confidence). The extent of the increase will depend on adaptation (until mid-century) and on 

adaptation and mitigation later in the century (Smith et al. 2014). Under 1.5°C, most risks associated 

with exposure to heat could be reduced through adaptation. Risks under warming of 2°C will depend 

on the timing of when temperature targets are met and on development choices, such as modifying 

urban infrastructure to reduce heat islands. The longer the delay in reaching 2°C, and the more resilient 

and sustainable the development pathway, the lower the expected health risks (Sellers and Ebi 2017).  

Confidence in these assessments of risk range from medium to high (Figure 3.20). 
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3.SM.3.3.2 Tourism 

 

Changing weather patterns, extreme weather and climate events, and sea level rise are affecting global 

tourism investments, environment and cultural destination assets, operational and transportation costs, 

and tourist demand patterns (Section 3.4.9.1). Assets being affected include biodiversity, beaches, 

coral reefs, glaciers, and other environmental and cultural assets. ‘Last chance’ tourism markets are 

developing based on observed impacts on environmental and cultural heritage. Available evidence 

suggests that the transistion in risks for tourism have occurred between 0°C and 1ºC (high confidence), 

with medium confidence that risks transition to high risks of impacts somewhere between 1°C to 3°C. 

 

Based on limited analyses, risks to the tourism sector are higher at 2°C than at 1.5°C, with greater 

impacts on climate-sensitive sun, beach and snow sports tourism markets. The degradation or loss of 

coral reef systems will increase the risks for coastal tourism, particularly in sub-tropical and tropical 

regions. 
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3.SM.3.3.3 Coastal Flooding  

 

Sea level rise and coastal flooding have been observed or projected to be defined by all but two (iv, 

viii) of the overarching key risks identified by O’Neill et al. (2017). Even without climate change, 

flooding occurs. Hence it is important to determine the contribution climate change has made to this. 

Furthermore, the severity and extent of coastal flooding is highly dependent on the rate and timing of 

sea level rise based on emissions (and therefore commitment to sea level rise) (Section 3.3.9; Section 

13.4 in Church et al. 2013; AR5;), plus the ability to adapt (Section 3.4.5.7 and 5.4; Wong et al. 2014; 

AR5). 

 

Sea level rise has been occurring naturally for hundreds of years Church et al. 2013;Section 13.2; 

Kopp et al. 2016). It has and will be enhanced by man-made climate change, whilst acknowledging 

rates of decadal change due to natural conditions (e.g., White et al. 2005). Early signs of sea level rise 

departing from Holocene rates were reported since approximately 1900 (Jevrejeva et al. 2014; 

Dangendorf et al. 2015; Kopp et al. 2016), analogous to temperatures approximately 0.1°C above pre-

industrial levels. It is very likely that global mean sea level rise was 1.7 [1.5–1.9] mm yr–1 between 

1901 and 2010, but from 1993 to 2010 the rate was very likely higher at 3.2 [2.8 to 3.6] mm yr–1 

(Church et al. 2013; Sections 13.2.2.1 and Section 13.2.2.2). Climate-change induced sea level rise has 

been detectable and attributable for a few decades (Slangen et al. 2016; Kjeldsen et al. 2015; Rignot et 

al. 2011; Nerem et al. 2018), occurring around 0.3°C rise above pre-industrial levels. 

 

The ability to adapt to changing sea levels is variable between natural and human systems (Nicholls et 

al. 2007; Sections 6.4 and 6.6; Wong et al. 2014; AR5; Section 5.4). Adaptation may happen more 

effectively or be more advanced in some nations or communities over others (Section 3.4.5.7; Araos et 

al. 2016; Ford et al. 2015). Whilst acknowledging that sensitive environments experience the adverse 

effects of climate-change-induced sea level rise today, analysis suggests that impacts could be more 

widespread in sensitive systems and ongoing at 1.7°C of temperature rise with respect to pre-industrial 

levels, even when considering adaptation measures. 

 

Risks of impacts transitioned from non-detectible to moderate between 0.1°C-0.3°C (medium 

confidence), and from moderate to high levels of risk between 0.3oC and 0.7oC (high confidence). The 

transition from high to very high risks is projected to occur between 1.7°C and 2.5°C (high 

confidence). 
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3.SM.3.3.4 Fluvial Flooding 

 

Research shows that flood frequency has increased, although there is limited evidence of a decrease in 

flood magnitude in some regions (Section 3.3.5.1). Tanoue et al. (2016) detected the increase of 

frequency and magnitude of flood that is attributed to climate change, and found that growing 

exposure of people and assets to flood according to the increase of population and economy 

exacerbated flood damage. Therefore, it is concluded that the current status, compared to the pre-

industrial level, should be moderate. 

 

In general, fluvial flooding at 1.5°C is projected to be lower than at 2°C, and at both levels of warming 
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projected changes in the magnitude and frequency of flood create regionally differentiated risks 

(Section 3.4.2). Alfieri et al.’s (2017) study clearly points out a positive correlation between global 

warming and global flood risk. The projected number of the global population exposed to flood risk 

increases quadratically as the temperature rises from 1.5°C to 4°C, in which the population affected by 

river floods is increased by 100% at 1.5°C, 170% at 2°C and 580% at 4.0°C relative to the baseline 

period (1976–2005) (Alfieri et al. 2017). Relative changes in population affected and economic 

damage at 2°C warming are projected to exceed 200% in 20 and in 19 countries, respectively (Alfieri 

et al. 2017). Therefore, it is concluded that the transition to high risk should be at 2°C warming. 

Warming of 4°C from the pre-industrial level is projected to be a threefold increase of the proportion 

of the global population who are exposed to a 20th century 100-year fluvial flood compared to the 

warming of 1.6°C, while the 4.0°C warming is 14 times as high as present-day exposure (Hirabayashi 

et al. 2013).  

 

The above-mentioned assessments assume the population is constant, although the variation between 

socio-economic differences is greater than the variation between the extent of the global warming, 

resulting in a change in the magnitude of the flood risks; however, these changes are not considered in 

this context. 

 

Meanwhile, Kinoshita et al. (2018) indicate that potential economic loss can be halved by autonomous 

adaptation. However, few studies assess quantitative mitigation by adaptation, therefore transition to 

very high risk (red to purple) is not applicable. 
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3.SM.3.3.5 Crop Yields 

 

Scientific literature shows that climate change resulted in changes in the production levels of the main 

agricultural crops. Crop yields showed contrasting patterns depending on cultivar, geographical area 

and response to CO2 fertilization effect, resulting in a transition from no risk (white) to moderate risk 

(yellow) below recent temperatures (high confidence). 

 

The projected risks for several cropping systems are generally higher under warming of 2°C than of 

1.5°C (Section 3.4.6), with different impacts depending on geographical area. The most significant 

crop yield declines are found in West Africa, Southeast Asia, and Central and South America (Section 

3.4.6), whilst less-pronounced yield reductions are expected for northern latitudes. Globally, this 

indicates a different adaptation capacity among the several cropping systems, thus suggesting a 

transition in risk from moderate (yellow) to high risk (red) between 1.5ºC and 2.5°C (medium 

confidence). 
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3.SM.3.3.6 Arctic 

  

High-latitude tundra and boreal forest are particularly at risk, and woody shrubs are already 

encroaching into the tundra (high confidence, Section 3.4.3). These impacts had already been detected 

at recent temperatures (0.7ºC) hence locating transition from undetected to moderate risk between 0ºC 

and 0.7ºC, but further impacts have been detected more recently and risks increase further with 

warming (Section 3.4.2). 

 

Model simulations project that there will be least one sea ice-free Arctic summer per decade at 2°C, 

while this is one per century at 1.5°C. (high confidence) (Sections 3.3.8, 3.4.4.7). Further warming is 

projected to cause greater effects in a 2°C world than a 1.5°C world; for example, limiting warming to 

1.5°C would prevent the loss of an estimated permafrost area of 2 million km2 over future centuries 

compared to 2°C (high confidence) (Sections 3.3.2, 3.4.3, 3.5.5). A transition from high (red) to very 

high (purple) risk is therefore located between 1.5ºC and 2ºC (high confidence). 
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3.SM.3.3.7 Terrestrial Ecosystems 

 

Detection and attribution studies show that impacts of climate change on terrestrial ecosystems have 

been taking place in the last few decades, indicating a transition from no risk (white) to moderate risk 

(yellow) below recent temperatures. 

 

The projected risks to unique and threatened terrestrial ecosystems are generally higher under warming 

of 2°C than 1.5°C (Section 3.4.3; high confidence). Globally, effects on terrestrial biodiversity escalate 

significantly between these two levels of warming. Key examples of this include much more extensive 

shifts of biomes (major ecosystem types) and a doubling or tripling of the number of plants, animals or 

insects losing over half of their climatically determined geographic ranges (Section 3.4.3). This 

indicates a transition in risk from moderate (yellow) to high risk (red) between 1.5°C and 2°C (high 

confidence); however, since some systems and species are unable to adapt to levels of warming below 

2°C, the transition to high risk is located below 2°C. By 3°C, biome shifts and species range losses 

escalate to very high levels and the systems have very little capacity to adapt (Section 3.4.3). 
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3.SM.3.3.8 Mangroves 

 

Recent literature is consistent with previous conclusions regarding the complex changes facing 

mangroves, together with increasing concern regarding the interaction between climate change (e.g., 

elevated air and water temperatures, drought and sea level rise) and local factors (deforestation, 

damming of catchments and reduced sediment and freshwater) as outlined below (Alongi, 2015; Feller 

et al., 2017). Decreases in the supply of sediments to deltas and coastal areas is impeding the ability of 

most mangroves (69% of sites) to keep pace with sea level rise through shoreward migration 

(Lovelock et al., 2015). At the same time, recent extremes associated with El Niño have also had 

large-scale impacts (e.g., extreme low sea level events; Duke et al., 2017; Lovelock et al., 2017). 

Shoreward migration is also challenged by the increasing amounts of coastal infrastructure preventing 

the relocation of mangroves (Di Nitto et al., 2014; Saunders et al., 2014). In some areas, mangroves 

are increasing in distribution (Godoy and De Lacerda, 2015). The total losses projected for mangrove 

loss (10–15%) under a 0.6 m sea level rise continue to be dwarfed by the loss of mangroves to 

deforestation (1–2% per annum). 

However, given the scale of the dieback of mangroves in Australia’s Gulf of Carpentaria (in 2015–

2016), as well as evidence that similar conditions to those of 2015–2016 (extreme heat and low tides) 

and the projection of greater El Niño-Southern Oscillation (ENSO) variability, (Widlansky et al., 

2015; Risser and Wehner, 2017), the risks from climate change for mangroves were judged to be 

higher than assessed by AR5, and subsequently by Gattuso et al. (2015), leading to the transitions 

having greater risk of occurring (Figure 3.18). Formal attribution of recent extreme events on 

mangroves to climate change, however, is at an early stage (medium agreement, limited data, hence 

low-medium confidence).  

See accompanying assessment by Gattuso et al. (2015) in Suplementary Material 3.SM.3.2, 

Supplementary information to Section 3.4.4. 
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3.SM.3.3.9 Warm-Water Corals 

 

The exceptionally warm conditions of 2015–2017 drove an unprecedented global mass coral 

bleaching and mortality event which affected coral reefs in a large number of countries (information 

still being gathered at time of writing; Normile, 2016). In the case of Australia, 50% of shallow-water 

reef-building corals across the Great Barrier Reef died in unprecedented back-to-back bleaching 

events (Hughes et al., 2017). Elevated sea temperatures and record mortalities were recorded from the 

central to the far northern sectors of the Great Barrier Reef. Similar effects occurred in a range of 

regions, including the Indian Ocean, the western Pacific, Hawaii and the Caribbean Sea (Normile, 

2016). The set of events has increased risk with current conditions being of high risk, and even low 

levels of future climate change having series implications for coral reefs. There continues to be a high 

to very high level of confidence as to where the transitions between risk levels due to climate change 

are located. 

The unprecedented thermal stress along many tropical coastlines over the past three years (2015–2017) 

has led to extraordinary changes to coral reefs across the planet (as described above). The advent of 
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back-to-back bleaching events, which were projected to occur around mid-century, appear to have 

already begun to occur as demonstrated by impacts on warm-water corals and hence coral reefs. While 

corals were already stressed from climate change, and are in decline in many parts of the world, the 

scale and impact of recent events suggests that risk levels for the transitions between risk categories 

need to be adjusted to represent the current status of corals and coral reefs. For this reason, expert 

consultation since 2015 concluded that the transition from undetectable to moderate risk has already 

occurred (0.2°C to 0.4°C; high confidence). Similarly, the transition from moderate to high levels of 

risks for warm-water corals occurred approximately from 0.4°C to 0.6°C (high confidence). In line with 

these changes, the transition from high to very high levels of risk are associated with increases in GMST 

from 0.6°C to 1.2°C (high confidence) above the pre-industrial period.See accompanying assessment 

by Gattuso et al. (2015) in Suplementary Material 3.SM.3.2. 

 

Warm-water 

corals 

White to Yellow 
Begin 0.2 

End 0.4 

Yellow to Red 
Begin 0.4 

End 0.6 

Red to Purple 
Begin 0.6 

End 1.2 

 

3.SM.3.3.10 Small-Scale Fin-Fish Fisheries (Low Latitude) 

 

Small-scale fin-fish fisheries (low latitude) provide food for millions of people along tropical 

coastlines and hence play an important role in the food security of a large number of countries 

(McClanahan et al., 2015; Pauly and Charles, 2015). In many cases, populations are heavily dependent 

on these sources of protein given the lack of alternatives (Cinner et al., 2012, 2016; Pendleton et al., 

2016). The climate-related stresses affecting fin fish (see Section ‘Fin fish’ above), however, are 

producing a number of challenges for small-scale fisheries based on these species (e.g., (Kittinger, 

2013; Pauly and Charles, 2015; Bell et al., 2017). Recent literature (2015–2017) has continued to 

outline growing threats from the rapid shifts in the biogeography of key species (Poloczanska et al., 

2013, 2016; Burrows et al., 2014; García Molinos et al., 2015) and the ongoing rapid degradation of 

key habitats such as coral reefs, seagrass and mangroves (see Sections above on ‘Seagrasses (mid-

latitude)’, ‘Mangroves’ and ‘Pteropods’, as well as Chapter 3, Box 3.4). As these changes have 

accelerated, so have the risks to the food and livelihoods associated with small-scale fisheries (Cheung 

et al., 2010). These risks have compounded with non-climate-related stresses (e.g., pollution, 

overfishing, unsustainable coastal development) to drive many small-scale fisheries well below the 

sustainable harvesting levels required to keep these resources functioning as a source of food 

(McClanahan et al., 2009, 2015; Pendleton et al., 2016). As a result, projections of climate change and 

the growth in human populations increasingly predict shortages of fish protein for many regions (e.g., 

Pacific, e.g., Bell et al., 2013, 2017; Indian Ocean, e.g., McClanahan et al., 2015). Mitigation of these 

risks involved marine spatial planning, fisheries repair, sustainable aquaculture and the development 

of alternative livelihoods (Kittinger, 2013; McClanahan et al., 2015; Song and Chuenpagdee, 2015; 

Weatherdon et al., 2016). Threats to small-scale fisheries have also come from the increasing 

incidence of alien (nuisance) species as well as an increasing incidence of disease, although the 

literature on these threats is at a low level of development and understanding (Kittinger et al., 2013; 

Weatherdon et al., 2016). 

As assessed by Gattuso et al. (2015), risks of impacts on small-scale fisheries are moderate today, but 

are expected to reach very high levels under scenarios extending beyond RCP2.6. The research 

literature plus the growing evidence that many countries will have trouble adapting to these changes 

place confidence at a high level as to the risks of climate change on low latitude in fisheries. These 

effects are more sensitive, hence the higher risks at lower levels of temperature change. 



 97 

Small-scale fisheries are highly dependent on healthy coastal ecosystems. With the growing evidence 

of impacts described above, the loss of habitat for small-scale fisheries is intensifying the risks of 

impact from climate change. For this reason, expert consensus has judged that risks have become 

greater since the assessment of Gattuso et al. (2015). Therefore, the transition from undetectable to 

moderate levels of risk is projected to occur between 0.5°C and 0.7°C (high confidence), with the 

transition from moderate to high levels of risk occurring between 0.9°C and 1.1°C (medium 

confidence). The transition from high to very high levels of risk of impact is being judged to occur 

between 2.0°C and 2.5°C (high confidence). 

 

See accompanying assessment by Gattuso et al. (2015) Suplementary Material 3.SM.3.2. 
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Generation Scenario Decade 1.5°C reached Decade 2°C reached dT 2080–2099 dT 2090–2099 

SRES B1 2039–2048 2065–2074 2.18 2.27 

SRES A1b 2029–2038 2045–2054 3.00 3.21 

SRES A2 2032–2041 2048–2057 3.39 3.83 

RCP 2.6 2047–2056 
 
a 1.48 1.49 

RCP 4.5 2031–2040 2055–2064 2.32 2.37 

RCP 6.0 2036–2045 2058–2067 2.63 2.86 

RCP 8.5 2026–2035 2040–2049 3.90 4.39 
a2°C not reached 5 
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Table 3.SM.8:  Projected temperature-related risks at 1.5°C and 2°C. Abbreviations: DALY: Disability adjusted life year; RCP: Representative Concentration Pathway; SSP: 8 

Shared Socio-Economic Pathway; GMST: global mean surface temperature 9 
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Study 
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Projected 
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1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

Global and 

21 regions 

Heat-related 

mortality in 

adults over 

65 years of 

age 

1961–1990 BCM2.0, 

EGMAM1, 

EGMAM2, 

EGMAM3, 

CM4vl 

A1B 2030, 2050  In 2030 

92,207 

additional 

heat-related 

deaths 

without 

adaptation 

(ensemble 

mean) and 

28,055 with 

adaptation 

under BCM2 

scenario; the 

In 2050 

255,486 

additional 

heat-related 

deaths 

without 

adaptation 

and 73,936 

with 

adaptation 

under BCM2 

scenario; the 

same regions 

Population 

growth and 

aging; 

improved 

health in 

elderly due to 

economic 

development; 

three levels of 

adaptation 

(none, partial, 

and full) 

(Hales et al. 

2014) 
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Study 
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Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

Asia Pacific, 

Asia, North 

Africa / 

Middle East, 

Sub-Saharan 

Africa, 

Europe and 

north 

America at 

higher risk. 

are at higher 

risk. 

Global Extremely 

hot summers 

over land 

areas (>3 

standard 

deviations 

anomalies) 

1861–1880 26 models 

from CMIP5 

RCP2.6, 

RCP4.5, 

RCP8.5 

To 2100 Probability 

of an 

extremely 

hot summer 

(>3 standard 

deviations) 

in 1996–

2005 

(compared 

with 1951–

1980) is 

4.3% 

Probability 

of an 

extremely 

hot summer 

is 

approximatel

y 25.5% and 

probability 

of an 

exceedingly 

hot summer 

(>5 standard 

deviations) 

is 

approximatel

y 7.1% 

above pre-

industrial. 

Extremely 

hot summers 

are projected 

to occur over 

nearly 40% 

of the land 

area. 

 (Wang et al. 

2015) 

 

Global  Population 

exposure to 

hot days and 

1961–1990 21 CMIP5 

GCMs 

Temperature 

change 

based on 

Up to 2100 Increasing 

exposure to 

heatwaves 

The 

frequency of 

heatwave 

Overall, 

exposure to 

heatwaves is 

 (Arnell et al. 

2018) 
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Model(S) 
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Interest 

Impacts at 

Study 
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Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

heatwaves pattern 

scaling  

already 

evident 

days 

increases 

dramatically 

as global 

mean 

temperature 

increases, 

although the 

extent of 

increase 

varies by 

region. 

Increases are 

greatest in 

tropical and 

sub-tropical 

regions 

where the 

standard 

deviation of 

warm season 

daily 

maximum 

temperature 

is least, and 

therefore, a 

smaller 

increase in 

temperature 

leads to a 

larger 

reduced by 

more than 

75% in all 

models in 

each region 

if GMSTs do 

not increase 

to 2°C; the 

avoided 

impacts vary 

by region. 
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Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

increase in 

heat wave 

frequency. 

Japan, 

Korea, 

Taiwan, 

USA, Spain, 

France, Italy 

Heat-related 

mortality for 

65+ age 

group  

1961–1990 BCM2 A1B 2030, 2050  In 2030 

heat-related 

excess 

deaths 

increased 

over 

baselines in 

all countries, 

with the 

increase 

dependent 

on the level 

of 

adaptation. 

In 2050 

heat-related 

excess 

deaths are 

higher than 

for 2030, 

with the 

increase 

dependent 

on the level 

of 

adaptation. 

Three 

adaptation 

assumptions: 

0, 50, and 

100% 

(Honda et al. 

2014) 

 

Australia 

(five largest 

cities) and 

UK 

Temperature

-related 

mortality 

1993–2006 UKCP09 

from 

HadCM3, 

OzClim 

2011 

A1B, B1, 

A1FI 

2020s, 

2050s, 2080s 

For England 

and Wales, 

the estimated 

% change in 

mortality 

associated 

with heat 

exposure is 

2.5% (95% 

CI: 1.9–3.1) 

per 1°C rise 

in 

temperature 

above the 

In the 2020s 

heat-related 

deaths 

increase 

from 1503 at 

baseline to 

1511 with a 

constant 

population 

and 1785 

with the 

projected 

population. 

In Australia, 

In the 2050s 

heat-related 

deaths 

further 

increase to 

2866 with a 

constant 

population 

and to 4012 

with the 

projected 

population. 

In Australia, 

the numbers 

Projected 

population 

change 

(Vardoulakis 

et al. 2014) 
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Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

heat 

threshold 

(93rd 

percentile of 

daily mean 

temperature). 

In Australian 

cities, the 

estimated 

overall % 

change in 

mortality is 

2.1% (95% 

CI: 1.3, 2.9). 

the numbers 

of projected 

deaths are 

362 and 475, 

respectively, 

with a 

baseline of 

214 deaths. 

of projected 

deaths are 

615 and 970, 

respectively. 

Australia Temperatur
e-related 
morbidity 
and 
mortality; 
days per 
year above 
35°C 

1971–2000 CSIRO 2030 A1B 
low and 
high; 2070 
A1FI low 
and high 

2030, 2070 4–6 
dangerously 
hot days per 
year for un-
acclimatized 
individuals 

Sydney – 
from 3.5 
days at 
baseline to 
4.1–5.1 days 
in 2030; 
Melbourne – 
from 9 days 
at baseline 
to 11–13 
days in 
2030. 

Sydney – 6–
12 days and 
Melbourne – 
15–26 days 
in 2070. 

 (Hanna et al. 

2011) 

Brisbane, 
Sydney and 
Melbourne, 
Australia 

Temperatur
e-related 
mortality 

1988–2009 62 GCMs, 
with spatial 
downscaling 
and bias 

A2, A1B, B1 2050s, 2090s  In 2030 net 
temperature
-related 
mortality 

In 2050 
there are 
further net 
temperature

 (Guo et al. 

2016) 
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Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

correction (heat/cold) 
increases in 
Brisbane 
under all 
scenarios, 
increases in 
Sydney 
under A2, 
and declines 
in 
Melbourne 
under all 
scenarios. 

-related 
mortality 
(heat/cold) 
increases in 
Brisbane 
under all 
scenarios, 
increases in 
Sydney 
under A2 
and A1B, 
and further 
declines in 
Melbourne 
under all 
scenarios. 

Brisbane, 
Australia 

Years of life 
lost due to 
temperature 
extremes 
(hot and 
cold) 

1996–2003  Added 1–
4°C to 
observed 
daily 
temperature 
to project 
for 2050 

2000, 2050 In 2000, 

3077 

temperature-

related years 

of life lost 

for men, 

with 616 

years of life 

lost due to 

hot 

temperatures 

and 2461 

years of life 

lost due to 

For 1°C 
above 
baseline, 
years of life 
lost increase 
by 1014 (840 
to 1178) for 
hot 
temperature
s and 
decrease by 
1112 (–
1,337 to –

For 2°C 
above 
baseline, 
years of life 
lost increase 
by 2450 
(2049 to 
2845,) for 
hot 
temperature
s and 
decrease by 
2069 (–2484 

 (Huang et al. 

2012) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

cold. The 

numbers for 

women are 

3495 (total), 

903 (hot), 

and 2592 

(cold). 

871) for cold 
temperature
s. 

to –1624) for 
cold 
temperature
s. 

Quebec, 

Canada 

Heat-related 

mortality 

1981–1999 Ouranos 

Consortium; 

SDSM 

downscaled 

HADCM3 

A2 and B2 

(projected 

impacts the 

same) 

2020 (2010–

2039), 2050 

(2040–

2069), 2080 

(2070–2099) 

 2% increase 

in summer 

mortality in 

2020. 

4–6% 

increase in 

summer 

mortality in 

2050. 

 (Doyon et al. 

2008) 

USA, 209 

cities 

Heat- and 

cold-related 

mortality 

1990 (1976–

2005) 

Bias 

corrected 

(BCCA) 

GFDL-CM3, 

MIROC5 

RCP6.0 2030 (2016–

2045), 2050 

(2036–

2065), 2100 

(2086–2100) 

 In 2030 a net 

increase in 

premature 

deaths, with 

decreases in 

temperature-

related 

winter 

mortality 

and 

increases in 

summer 

mortality; 

the 

magnitude 

varied by 

region and 

city with an 

overall 

In 2050 a 

further 

increase in 

premature 

deaths, with 

decreases in 

temperature-

related 

winter 

mortality 

and 

increases in 

summer 

mortality; 

the 

magnitude 

varied by 

region and 

city with an 

Held 

population 

constant at 

2010 levels; 

mortality 

associated 

with high 

temperatures 

decreased 

between 

1973–1977 

and 2003–

2006 

(Schwartz et 

al. 2015) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

increase of 

11,646 heat-

related 

deaths. 

overall 

increase of 

15,229 heat-

related 

deaths.  

Washington 

State, USA 

Heat-related 

mortality 

1970–1999 PCM1, 

HadCM 

Average of 

PCM1-B1 

and 

HadCM-

A1B; 

humidex 

baseline; 

number and 

duration of 

heatwaves 

calculated 

2025, 2045, 

2085 

 Under 

moderate 

warming in 

2025, 96 

excess 

deaths in 

Seattle area. 

Under 

moderate 

warming in 

2045, 156 

excess 

deaths in 

Seattle area. 

Holding 

population 

constant at 

2025 

projections 

(Jackson et 

al. 2010) 

Boston, New 

York and 

Philadelphia, 

USA 

Heat-related 

mortality 

1971–2000 CMIP5 bias 

corrected 

(BCSD) 

RCP4.5, 

RCP8.5 

2010–2039, 

2040–2069, 

2070–2099 

Baseline 

heat-related 

mortality is 

2.9–

4.5/100,000 

across the 

three cities 

In the 2020s 

under both 

RCPs, heat-

related 

mortality 

increased to 

5.9–10/ 

100,000. 

In the 2050s 

heat-related 

mortality 

increased to 

8.8–

14.3/100,000 

under 

RCP4.5 and 

to 11.7 to 

18.9/100,000 

under 

RCP8.5. 

Population 

constant at 

2000 

(Petkova et 

al. 2017) 

Europe Heat-related 
mortality 

1971–2000 SMHI 
RCA4/HadGE

RCP4.5, 
RCP8.5 

2035–2064, 
2071–209 

 2035–2064 
excess heat 

2071–2099 
excess heat 

 (Kendrovski 

et al. 2017) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

M2 ES r1 
(MOHC) 

 

 mortality to 
be 30,867 
and 45,930. 

mortality to 
be 46,690 
and 117,333 
attributable 
deaths/year. 

Europe: 
London, UK 
and Paris, 
France 

Heat-related 
mortality 

Present 
climate 

(HAPPI)  Climate 
stabilization 
at 1.5°C and 
2°C 

 Model of 
2003 heat 
event 
resulted in 
about 735 
excess 
deaths for 
Paris and 
about 315 
for London 

Compared 
with 2°C 
stabilization, 
mortality 
event is 2.4 
times less 
likely in 
London and 
1.6 times 
less likely in 
Paris. 

22% 
increase in 
mortality in 
Paris and 
15% 
increase in 
mortality in 
London, 
compared 
with 1.5°C 
stabilization. 

 (Mitchell 

2018) 

UK Temperature

-related 

mortality 

1993–2006 9 regional 

model 

variants of 

HadRm3-

PPE-UK, 

dynamically 

downscaled 

A1B 2000–2009, 

2020–2029, 

2050–2059, 

2080–2089 

At baseline, 

1974 annual 

heat-related 

deaths and 

41,408 cold-

related 

deaths 

In the 2020s 

in the 

absence of 

adaptation, 

heat-related 

deaths 

projected to  

increase to 

3281 and 

cold-related 

deaths to 

increase to 

42,842. 

In the 2050s 

in the 

absence of 

adaptation, 

heat-related 

deaths 

projected to 

increase 

257% by the 

2050s to 

7040 and 

cold-related 

mortality to 

decline 

Population 

projections to 

2081 

(Hajat et al. 

2014) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

about 2%. 

Netherlands Temperature

-related 

mortality 

1981–2010 KNMI’ 14; 

G-scenario is 

a global 

temperature 

increase of 

1°C and W-

scenario an 

increase of 

2°C 

 2050 (2035–

2065) 

At baseline, 

the 

attributable 

fraction for 

heat is 

1.15% and 

for cold is 

8.9%; or 

1511 deaths 

from heat 

and 11,727 

deaths from 

cold 

Without 

adaptation, 

under the G 

scenario, the 

attributable 

fraction for 

heat is 1.7–

1.9% (3329–

3752 deaths) 

and for cold 

is 7.5–7.9% 

(15,020–

15,733 

deaths). 

Adaptation 

decreases the 

numbers of 

deaths, 

depending 

on the 

scenario. 

Without 

adaptation, 

under the W 

scenario, the 

attributable 

fraction for 

heat is 2.2–

2.5% (4380-

5061 deaths) 

and for cold 

is 6.6–6.8% 

(13,149–

13,699 

deaths). 

Adaptation 

decreases the 

numbers of 

deaths, 

depending 

on the 

scenario. 

Three 

adaptation 

scenarios, 

assuming a 

shift in the 

optimum 

temperature, 

changes in 

temperature 

sensitivity, or 

both; 

population 

growth and 

declining 

mortality risk 

per age group 

(Huynen and 

Martens 

2015) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

Korea Burden of 
disease from 
high 
ambient 
temperature
s 

2011 CMIP5 RCP4.5, 
RCP8.5 

2030, 2050 DALY for all-
cause 
mortality in 
2011 was 
0.49 
(DALY/1000) 

DALY for 
cardio-and 
cerebrovasc
ular disease 
was 1.24 
DALY/1000 

In 2030 
DALY for all-
cause 
mortality, 
0.71 
(DALY/1000) 

DALY for 
cardio-and 
cerebrovasc
ular disease 
is 1.63 (1.82) 
DALY/1000 

In 2050 
DALY for all-
cause 
mortality, 
0.77 (1.72) 
(DALY/1000) 

DALY for 
cardio-and 
cerebrovasc
ular disease 
is 1.76 (3.66) 
DALY/1000 

 

 

(Chung et al. 

2017) 

Beijing, 
China 

Heat-related 
mortality 

1970–1999 Downscaled 
and bias 
corrected 
(BCSD) 31 
GCMs in 
WCRP 
CMIP5; 
monthly 
change 
factors 
applied to 
daily 
weather 
data to 
create a 
projection 

RCP4.5, 
RCP8.5 

2020s 
(2010–
2039), 2050s 
(2040–
2069), 2080s 
(2070–2099) 

Approximate
ly 730 
additional 
annual heat-
related 
deaths in 
1980s 

In the 2020s 
under low 
population 
growth and 
RCP4.5 and 
RCP8.5, 
heat-related 
deaths 
projected to 
increase to 
1012 and 
1019, 
respectively. 
Numbers of 
deaths are 
higher with 

In the 2050s 

under low 

population 

growth and 

RCP4.5 and 

RCP8.5, 

heat-related 

deaths 

projected to 

increase to 

1411 and 

1845, 

respectively. 

Adults 65+ 
years of age; 
no change 
plus low, 
medium and 
high variants 
of population 
growth; 
future 
adaptation 
based on 
Petkova et 
al., (2013) 
 , plus shifted 
mortality 5%, 
15%, 30%, 

(Li et al. 

2016c) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

medium and 
high 
population 
growth. 

50% 

Beijing, 

China 

Cardiovascul

ar and 

respiratory 

heat-related 

mortality 

1971–2000 Access 1.0, 

CSIRO 

Mk3.6.0, 

GFDL-CM3, 

GISS E2R, 

INM-CM4 

RCP4.5, 

RCP8.5 

2020s, 

2050s, 2080s 

Baseline 

cardiovascul

ar mortality 

0.396 per 

100,000; 

baseline 

respiratory 

mortality 

0.085 per 

100,000 

Cardiovascul

ar mortality 

could 

increase by 

an average 

percentage 

of 18.4% in 

the 2020s 

under 

RCP4.5, and 

by 16.6% 

under 

RCP8.5. 

Statistically 

significant 

increases are 

projected for 

respiratory 

mortality. 

Cardiovascul

ar mortality 

could 

increase by 

an average 

percentage 

of 47.8% 

and 69.0% in 

the 2050s 

and 2080s 

under 

RCP4.5, and 

by 73.8% 

and 134% 

under 

RCP8.5. 

Similar 

increases are 

projected for 

respiratory 

mortality. 

 (Li et al. 

2015) 

Africa Five 
thresholds 
for number 
of hot days 
per year 

1961–2000 CCAM 
(CSIRO) 
forced by 
coupled 
GCMs: 

A2 2011–2040, 
2041–2070, 
2071–2100 

In 1961–
1990, 
average 
number of 
hot days 

In 2011–
2040, annual 
average 
number of 
hot days 

In 2041–
2070, annual 
average 
number of 
hot days 

Projected 
population in 
2020 and 
2025 

(Garland et 

al. 2015) 
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Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

when health 
could be 
affected, as 
measured by 
maximum 
apparent 
temperature 

CSIRO, 
GFDL20, 
GFDL 21, 
MIROC, MPI, 
UKMO. 
CCAM was 
then 
downscaled. 
Bias 
corrected 
using CRU 
TS3.1 
dataset 

(maximum 
apparent 
temperature 
> 27°C) 
ranged from 
0 to 365, 
with high 
variability 
across 
regions 

(maximum 
apparent 
temperature 
> 27°C) 
projected to 
increase by 
0–30 in most 
parts of 
Africa, with 
a few 
regions 
projected to 
increase by 
31–50. 

(maximum 
apparent 
temperature 
> 27°C) 
projected to 
increase by 
up to 296, 
with large 
changes 
projected in 
southern 
Africa and 
parts of 
northern 
Africa. 

  1 
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Table 3.SM.9:  Projected air quality-related health risks at 1.5°C and 2°C. Abbreviations: DALY: disability adjusted life year; RCP: Representative Concentration 1 
Pathway; SSP: Shared Socio-Economic Pathway; CV: cardiovascular 2 

Region 

 

Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

and Air 

Pollution 

Models 

Scenario Time 

Periods 

of 

Interest 

Impacts at Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 2°C 

Other 

Factors 

Considered 

Reference 

Global PM 2.5 and O3-
related 
mortality 

2000 14 global 
models 
participating 
in ACCMIP 

CESM 

RCP2.6, 
RCP4.5, 
RCP6.0 
RCP8.5 

2000, 
2030, 
2050, 
2100 

Global O3 
mortality 
382,000 
(121,000–
728,000) deaths 
year -1; global 
mortality burden 
of PM2.5 1.70 
(1.30–2.10) 
million deaths 
year-1 

PM2.5-related 
mortality peaks 
in 2030 (2.4–
2.6 million 
deaths/year – 
except for 
RCP6.0) 

O3-related 
mortality peaks 
in 2050 (1.84–
2.6 million 
deaths per 
year) 

Population 
projected 
from 2010–
2100 

(Silva et 

al. 2016) 

Global and 
Europe and 
France 

PM2.5-related 
CV- and O3-
related 
respiratory 
mortality 

2010 IPSL-cm5-
MR, LDMz-
INCA, 
CHIMERE 

RCP4.5 
(for 
Europe 
and 
France) 

2010,  

2030–
2050 

Global CV 
mortality 
17,243,000 

In 2030 in 
Europe PM2.5-
related CV 
mortality 
decreases by 
3.9% under CLE 
and 7.9% under 
MFR. In 2030 
O3-related 
respiratory 
mortality 
decreases by 
0.3% under 

In 2050 4.5% 
decrease in 
PM2.5-related 
CV mortality 
under CLE and 
8.2% MFR. 

Population 
2030–
sensitivity 
analysis 

(Likhvar 

et al. 

2015) 
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Region 

 

Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

and Air 

Pollution 

Models 

Scenario Time 

Periods 

of 

Interest 

Impacts at Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 2°C 

Other 

Factors 

Considered 

Reference 

MFR. 

UK O3-related 
morbidity and 
mortality 

2003 EMEP-WRF A2, B2 2003, 
2030 

O3-attributable 
mortality and 
morbidity in 
2003: 11,500 
deaths and 
30,700 
hospitalizations 

With no 
threshold for 
O3, increase of 
premature 
mortality and 
hospitalization 
of 28% (under 
B2 + CLE 
scenario) – 
greatest health 
effects; A2 
premature 
morbidity and 
mortality 
projections: 
22%. With 35 
ppbv, 52% 
increase in 
mortality and 
morbidity 
(under B2+CLE). 

Increases in 
temperatures 
by 5°C, 
projected O3 
mortality will 
increase from 
4% (no O3 
threshold) to 
30% (35 ppbv 
O3 threshold). 

 

Population 
projections 
increase, 
+5°C 
scenario 

(Heal et al. 

2013) 

Poland PM2.5 
mortality 

2000 ECHAM5-
RegCM3, 
CAMx 

A1B 1990s 
2040s, 
2090s 

39,800 
premature 
deaths related 
to PM2.5 air 

0.4°C –1°C in 
2040; 6% 
decrease in 
PM2.5-related 

2°C –3°C in the 
2090s; 7% 
decrease in 
PM25-related 

 (Tainio et 

al. 2013) 
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Region 

 

Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

and Air 

Pollution 

Models 

Scenario Time 

Periods 

of 

Interest 

Impacts at Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 2°C 

Other 

Factors 

Considered 

Reference 

pollution mortality in 
2040s. 

mortality in 
2090s. 

Korea O3 summer 
mortality 

2001–
2010 

ICAMS RCP2.6 
RCP4.5, 
RCP6.0, 
RCP8.5 

1996–
2005, 
2016–
2025, 
2046–
2055 

 In the 2020s 
summer 
mortality to 
increase by: 
0.5%, 0.0%, 
0.4%, and 0.4% 
due to 
temperature 
change. 

In the 2020s, 
due to O3 
concentration 
change, 
mortality to 
increase by 
0.0%, and 0.5%. 

In the 2050s 
summer 
mortality to 
increase by: 
1.9%, 1.5%, 
1.2% and 4.4% 
due to 
temperature 
change. 

In the 2050s, 
due to O3 
concentration 
change, 
mortality to 
increase by 
0.2%, 0.4% and 
0.6%. 

Current 
mortality 
trends 
expected to 
increase, 
temperature 
effects 
compared 

(Lee et al. 

2017) 
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Region 

 

Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

and Air 

Pollution 

Models 

Scenario Time 

Periods 

of 

Interest 

Impacts at Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 2°C 

Other 

Factors 

Considered 

Reference 

US (12 
metropolitan 
areas) 

O3 inhalation 
exposures 

2000 APEX, 
CESM, 
MIP5, WRF, 
CMAQ  

RCP4.5, 
RCP6, 
RCP8.5 

1995–
2005, 
2025–
2035 

At least one 
exceedance/year 

Comparing 
2030 to 2000, 
almost 
universal trend 
with at least 
three 
exceedances 
(of DM8H 
exposure above 
the 60 ppb and 
70 bbp 
thresholds). 

Health 
implications 
increase as 
population 
exposures to 
O3 increases 
based on the 
degree of 
radiative 
forcing in 2100. 

Population 
projections 
using IPCC 
SRES and 
adapted for 
US 

(Dionisio 

et al. 

2017) 

  1 
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Table 3.SM.10: Projected vectorborne disease risks at 1.5°C and 2°C. Abbreviations: DALY: disability adjusted life year; RCP: Representative Concentration Pathway; SSP: 1 

Shared Socio-Economic Pathway 2 

Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

Malaria           

China Malaria 
vectors 
Anopheles 
dirus, A. 
minimus, 
A. 
lesteri, A. 
sinensis 

2005–

2008 

BCC-CSM1-

1, 

CCCma_CanE

SM2, CSIRO-

Mk3.6.0 from 

CMIP5  

RCP2.6, 

RCP4.5, 

RCP8.5 

2020–2049, 

2040–2069 

 In the 2030s 

environmen

tally 

suitable 

areas for A. 

dirus and A. 

minimus 

increase by 

an average 

of 49% and 

16%, 

respectively

. 

In the 2050s 

environmen

tally 

suitable 

areas for A. 

dirus and A. 

minimus de

crease 

by 11% and 

16%, 

respectively

. An 

increase of 

36% and 

11%, in 

environmen

tally 

suitable 

area of A.  

lesteri and 

A. sinensis. 

Land use, 

urbanizatio

n 

(Ren et al. 

2016) 

Northern 

China 

Spatial 

distribution 

of malaria 

2004–

2010 

GCMs from 

CMIP3  

B1, A1B, 

A2 

2020, 2030, 

2040, 2050 

Average 

malaria 

incidence 

0.107% per 

annum in 

northern 

China 

In 2020 

malaria 

incidence 

increases 

19–29%, 

and 

increases 

In 2040 

malaria 

incidence 

increases 

33–119% 

and 69–

182% in 

Elevation, 

GDP, water 

density 

index held 

constant 

(Song et al. 

2016) 
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43–73% in 

2030, with 

increased 

spatial 

distribution. 

2050, with 

increased 

spatial 

distribution. 

Sub-

Saharan 

Africa  

Malaria 2006–

2016 

21 CMIP5 

models 

RCP4.5, 

RCP8.5 

2030, 2050, 

2100  

 In 2030 

under 

RCP8.5, 

many parts 

of western 

and central 

Africa will 

have no 

malaria, but 

significant 

malaria 

hotspots 

will be 

along the 

Sahel belt, 

eastern and 

southern 

parts of 

Africa.  

Climate 

change will 

redistribute 

the spatial 

pattern of 

future 

malaria 

hotspots, 

especially 

under 

RCP8.5. 

Various 

environmen

tal variables 

(Semakula 

et al. 2017) 

Aedes           

Global Global 
niche 
models for 
autochtho
nous 
Chikungun
ya virus 
transmissio
n 

Current 

climate 
CESM 1 bcg, 
FIO ESM, GISS 
e2-r, INM 
CM4 and MPI-
ESM-lr 

RCP4.5, 
RCP8.5 

2021–2040, 
2041–2060, 
2061–2080 

Current 
distribution 
of 
Chikunguny
a 
transmissio
n 

In 2021–
2040 
climatically 
suitable 
areas 
projected 
to increase 
in multiple 
regions, 

In 2041–
2060 
greater 
geographic 
expansion. 

 (Tjaden et 

al. 2017) 
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including 
China, sub-
Saharan 
Africa, the 
US and 
continental 
Europe. 

North 
America, 
United 
States 

Climate 
suitability 
for Aedes 
albopictus  
vector for 
dengue, 
Chikungun
ya and 
vectorborn
e 
zoonoses, 
such as 
West Nile 
virus 
(WNV), 
Eastern 
equine 
encephaliti
s virus, Rift 
Valley 
fever virus, 
Cache 
Valley virus 
and 
LaCrosse 

1981–

2010 
8 RCMs: 
CanRCM4, 
CRCM5, CRCM 
4.2.3, 
HIRHAM5, 
RegCM3, 
ECPC, MM5I, 
WRF 

RCP4.5, 
RCP8.5, A2 

2020s 
(2011–
2040), 
2050s 
(2041–
2070) 

Index of 
precipitatio
n and 
temperatur
e suitability 
was highly 
accurate in 
discriminati
ng suitable 
and non-
suitable 
climate 

In 2011–
2040 under 
RCP4.5, 
climate 
suitability 
increases 
across US, 
with the 
magnitude 
and pattern 
dependent 
on 
parameter 
projected 
and RCM. 

In 2041–
2070 under 
RCP4.5, 
areal extent 
larger than 
in earlier 
period; 
under 
RCP8.5, 
areal extent 
larger. 

Climatic 
indicators 
of Ae. 
albopictus 
survival; 
overwinteri
ng 
conditions 
(OW); OW 
combined 
with annual 
air 
temperatur
e (OWAT); 
and an 
index of 
suitability  

(Ogden et 

al. 2014a) 
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virus 

Mexico Dengue 1985–
2007 

National 
Institute of 
Ecology; 
added 
projected 
changes to 
historic 
observations 

A1B, A2, B1 2030, 2050, 
2080 

National: 
1.001/100.0
00 cases 
annually 

 

Nuevo 
Leon: 
1.683/100.0
00 cases 
annually 

 

Queretaro: 
0.042/100.0
00 cases 
annually 

 

Veracruz: 
2.630/100.0
00 cases 
annually 

In 2030 
dengue 
incidence 
increases 
12–18%.  

In 2050 
dengue 
incidence 
increases 
22–31%.  

At baseline, 
population, 
GDP, 
urbanizatio
n, access to 
piped water 

(Colón-

González et 

al. 2013) 

Europe, 
Eurasia and 
the 
Mediterran
ean 

Climatic 
suitability 
for 
Chikungun
ya 
outbreaks  

1995–
2007 

COSMO-CLM, 
building on 
ECHAM5 

A1B and B1 2011–2040, 
2041–2070, 
2071–2100 

Currently, 
climatic 
suitability in 
southern 
Europe. The 
size of 
these 
regions will 
expand 
during the 
21st 
century 

In 2011–
2040 
increases in 
risk are 
projected 
for Western 
Europe in 
the first half 
of the 21st 
century. 

In 2041–
2070 
projected 
increased 
risks for 
Central 
Europe. 

 (Fischer et 

al. 2013) 
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Europe 

 

Potential 
establishm
ent of Ae. 
albopictus  

Current 
bioclimatic 
data 
derived 
from 
monthly 
temperatu
re and 
rainfall 
values  

Regional 
climate model 
COSMO-CLM 

A1B, B1 2011–2040, 
2041–2070, 
2071–2100 

 In 2011–
2040 higher 
values of 
climatic 
suitability 
for Ae. albo
pictus 
increases in 
Western 
and Central 
Europe 

Between 
2011–40 
and 2041–
2070 for 
southern 
Europe, 
only small 
changes in 
climatic 
suitability 
are 
projected. 
Increasing 
suitability 
at higher 
latitudes is 
projected 
for the end 
of the 
century. 

 (Fischer et 

al. 2011) 

 

Europe Dengue 
fever risk 
in 27 EU 
countries 

1961–
1990 

COSMO-CLM 
(CCLM) forced 
with 
ECHAM5/MPI
OM 

A1B 2011–2040, 
2041–2070, 
2071–2100  

Number of 
dengue 
cases are 
between 0 
and 0.6 for 
most 
European 
areas, 
correspondi
ng to an 
incidence of 
less than 2 

In 2011–
2040 
increasing 
risk of 
dengue in 
southern 
parts of 
Europe. 

In 2041–
2070 
increased 
dengue risk 
in many 
parts of 
Europe, 
with higher 
risks 
towards the 
end of the 
century. 

Socio-
economic 
variables, 
population 
density, 
degree of 
urbanizatio
n and log 
population 

(Bouzid et 

al. 2014) 
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per 100,000 
inhabitants  

Greatest 
increased 
risk around 
the 
Mediterran
ean and 
Adriatic 
coasts and 
in northern 
Italy. 

Tanzania Distributio
n of 
infected 
Aedes 
aegypti co-
occurrence 
with 
dengue 
epidemics 
risk 

1950–
2000 

CMIP5  2020, 2050 Currently 
high habitat 
suitability 
for Ae. 
aegypti in 
relation to 
dengue 
epidemic, 
particularly 
near water 
bodies 

Projected 
risk maps 
for 2020 
show risk 
intensificati
on in 
dengue 
epidemic 
risks areas, 
with 
regional 
differences. 

In 2050 
greater risk 
intensificati
on and 
regional 
differences. 

 (Mweya et 

al. 2016) 

West Nile 
virus 

          

Europe, 
Eurasia, and 
the 
Mediterran
ean  

Distributio
n of 
human 
WNV 
infection  

Monthly 
temperatu
re 
anomalies 
relative to 
1980–
1999, 
environme

NCAR CCSM3 A1B 2015–2050   In 2025 
progressive 
expansion 
of areas 
with an 
elevated 
probability 
for WNV 

In 2050 
increases in 
areas with a 
higher 
probability 
of 
expansion. 

Prevalence 
of WNV 
infections in 
the blood 
donor 
population 

(Semenza 

et al. 2016) 
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ntal 
variables 
for 2002–
2013 

infections, 
particularly 
at the 
edges of 
the current 
transmissio
n areas. 

Lyme 

disease and 

other tick-

borne 

diseases 

          

North 
America 
(mainly 
Ontario and 
Quebec, 
Canada, 
and 
northeast 
and 
midwest, 
United 
States) 

Capacity of 
Lyme 
disease 
vector 
(Ixodes 
scapularis) 
to 
reproduce 
under 
different 
environme
ntal 
conditions  

1971–
2010 

CRCM4.2.3, 
WRF, MM5I, 
CGCM3.1, 
CCSM3  

A2 1971–2000, 
2011–2040, 
2041–2070 

In 1971–
2010 
reproductiv
e capacity 
increased in 
North 
America; 
increase 
consistent 
with 
observation 

In 2011–
2040 mean 
reproductiv
e capacity 
increased, 
with 
projected 
increases in 
the 
geographic 
range and 
number of 
ticks. 

In 2041–
2070 
further 
expansion 
and 
numbers of 
ticks 
projected. 
R0 values 
for I. 
scapularis 
are 
projected 
to increase 
1.5–2.3 
times in 
Canada. In 
the US 
values are 
expected to 
double. 

 (Ogden et 

al. 2014b) 
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Southeaster
n New York, 
United 
States 

Emergence 
of I. 
scapularis, 
leading to 
Lyme 
disease 

1994–
2012 

  2050 19 years of 
tick and 
small 
mammal 
data (mice, 
chipmunks) 

In the 
2020s the 
number of 
cumulative 
degree-days 
enough to 
advance the 
average 
nymphal 
peak by 4–6 
days, and 
the mean 
larval peak 
by 5–8 
days, based 
on 1.11°C –
1.67°C 
increase in 
mean 
annual 
temperatur
e.  

In the 
2050s the 
nymphal 
peak 
advances by 
8–11 days, 
and the 
mean larval 
peak by 10–
14 days, 
based on 
2.22°C –
3.06°C 
increase in 
mean 
annual 
temperatur
e. 

 (Levi et al. 

2015) 

Other           

Venezuela Chagas 
disease: 
number of 
people 
exposed to 
changes in 
the 
geographic 

1950–
2000 

CSIRO3.0 A1B, B1 2020, 2060, 
2080 

 In 2020 
decreasing 
population 
vulnerabilit
y. 

In 2060 
effects 
more 
pronounced
, with less 
of a change 
under B1. 

MaxEnt 

model of 

climatic 

niche 

suitability 

(Ceccarelli 

and 

Rabinovich 

2015) 
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range of 
five 
species of 
triatomine 
species  

Colombia Visceral 
leishmania
sis caused 
by the 
trypanoso
matid 
parasite 
Leishmania 
infantum 

Present CSIRO, Hadley A2A, B2A 2020, 2050, 
2080 

 In 2020 
shift in the 
altitudinal 
distribution 
in the 
Caribbean 
coast and 
increase in 
the 
geographic 
area of 
potential 
occupancy 
under 
optimistic 
scenarios. 

In 2050 
even 
greater 
geographic 
area of 
potential 
occupancy, 
with a 
greater 
impact 
under A2. 

MaxEnt 

model; 

three 

topographic

al variables 

(González 

et al. 2014) 
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3.SM.3.5 Supplementary information to Key Economic Sectors 1 

 2 
Table 3.SM.11:  Key Economic Sectors (Energy, Tourism, Transport, Water) 3 

 4 

Projected Risks at 1.5°C and 2°C 5 
 6 

Sector 

(Sub-

Sector) 

Region Metric Baselines 
Climate 

Model(S) 
Scenario 

Time 

Periods 

of 

Interest 

Impacts 

at 

Baselin

e 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

Energy 
(thermal 
and 
hydro 
plants; 
cooling 
demand) 

Global Cooling demand 
(absolute 
growth in 
annual cooling 
degree days; 
CDD); 
hydroclimate 
risk to power 
production 

1971−20
00 

5 GCMS  
GFDL-ESM2M; 
HadGEM2-ES; 
IPSL-CM5A-LR; 
MIROC-ESM-
CHEM; 
NorESM1-M  
 

RCP8.5 

SSP1–3 

1.5°C 
(2002−2
048), 
2.0°C 
(2014−2
065) 

  Increased 
CCD, 
especially in 
tropical 
areas. 
Increased 
risk to 
thermal and 
hydro power 
plants in 
Europe, 
North 
America, 
South and 
Southeast 
Asia, and 
southeast 
Brazil. 

 (Byers et al. 

2018) 

Energy 
(wind)  

Europe Daily wind 
power output 
(transformed 
from daily near 

2006−20
15 

HAPPI  1.5°C 
(2106−2
115 

 Great 
potential for 
wind energy 
in northern 

 Limited 
spatial 
resolution  

(Hosking et 

al. 2018) 
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surface wind 
speeds) 

Europe, 
especially in 
the UK. 

Energy 
(electrici
ty 
demand) 

US Electric sector 
models: GCAM-
USA 

ReEDS 

IPM 

 MIT IGSM-
CAM 

REF CS3 

REF CS6 

POL4.5 
CS3 

POL3.7 
CS3 

TEMP 
3.7 CS3 

2015−20
50 

  Increase in 
electricity 
demand by 
1.6–6.5% in 
2050. 

 (McFarland 

et al. 2015) 

Energy 
(demand
) 

Global Economic and 
end-use energy 
model 
Energy service 
demands for 
space heating 
and cooling 

  RCP2.6 
(2°C) 
RCP8.5 
(4°C) 
RCP8.5 
constant 
after 
2020 
(1.5°) 
SSP1 

SSP2 

SSP3 

2050−21
00 

 Economic 
loss of 0.31% 
in 2050 and 
0.89% in 
2100 globally 

GDP 
negative 
impacts in 
2100 are 
highest 
(median: –
0.94%) 
under 4.0°C 
(RCP8.5) 
scenario 
compared 
with a GDP 
change 
(median: 
−0.05%) 
under 1.5°C 
scenario 

 (Park et al. 

2018) 

Energy 
(heating 
and 
cooling 

Global 
and 
regional 

Degree days 
above or below 
18°C 

1961−19
90 

21 CMIP5  2100  Cooling 
energy 
demand: 
31% impacts 

  (Arnell et al. 

2018) 
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demand)  avoided; 
heating 
energy 
demand: 
27% impacts 
avoided, 
relative to 
2°C. 

Energy 
(hydropo
wer) 

US 
(Florida) 

Conceptual 
rainfall-runoff 
(CRR) model:  
HYMOD 

MOPEX 

 

1971−20
00 

CORDEX (6 
RCMs) 
CMIP5, bias 
corrected 

RCP4.5 2091−21
00 

  Based on a 
min/max 
temperature 
increase of 
1.35°C −2°C, 
overall 
stream flow 
to increase 
by an 
average of 
21% with 
pronounced 
seasonal 
variations, 
resulting in 
increases in 
power 
generation 
(72% winter, 
15% 
autumn) and 
decreasing 
(–14%) in 
summer  

 (Chilkoti et 

al. 2017) 
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Energy 
(hydropo
wer) 

Global  Gross 
hydropower 
potential; global 
mean cooling 
water discharge 

1971–
2000 

5 bias-
corrected 
GCMs 

RCP2.6, 
RCP8.5 

2080   Global gross 
hydropower 
potential 
expected to 
increase 
(+2.4% 
RCP2.6; 
+6.3% 
RCP8.5). 
Strongest 
increases in 
central 
Africa, Asia, 
India and 
northern 
high 
latitudes. 
4.5−15% 
decrease in 
global mean 
cooling 
water 
discharge 
with largest 
reductions 
in US and 
Europe. 

Socio-
economic 
pathways  

(van Vliet et 

al. 2016) 
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Energy 
(hydropo
wer) 

Brazil Hydrological 
model for 
natural water 
inflows (MGB) 

1960−19
90 

HadCM3 

Eta-CPTEC-40 

 2011−21
00 

 A decrease 
in electricity 
generation 
of about 15% 
and 28% for 
existing and 
future 
generation 
systems 
starting in 
2040. 

 Other water 
use and 
economic 
developmen
t scenarios 

(de Queiroz 

et al. 2016) 

Energy 
(hydropo
wer) 

Ecuador  CRU TS v.3.24  
monthly mean 
temperature, 
precipitation 
and potential 
evapotranspirat
ion (PET)  
conceptual 
hydrological 
model assessing 
runoff and 
hydropower 
electricity 
model 

1971−20
00 

CMIP5 bias 
corrected 
using PET  
 

RCP8.5, 
RCP4.5, 
RCP2.6 

2071−21
00 

  Annual 
hydroelectri
c power 
production 
to vary 
between − 
55 and + 
39% of the 
mean 
historical 
output. 
Inter-GCM 
range of 
projections 
is extremely 
large 
(−82%−+277
%). 

ENSO 
impacts 

(Carvajal et 

al. 2017) 
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Energy 
(wind) 

Europe Near surface 
wind data:  
wind energy 
density means; 
intra and inter 
annual 
variability 

1986−20
05 

21 CMIP5 

Euro-CORDEX 

RCP8.5, 
RCP4.5 

2016−20
35, 
2046−20
65, 
2081−21
00 

 No major 
differences 
in large scale 
wind 
energetic 
resources, 
interannual 
or 
intraannual 
variability in 
near term 
future 
(2016−2035). 

Decreases in 
wind energy 
density in 
eastern 
Europe, 
increases in 
Baltic 
regions 
(−30% vs. 
+30%). 
Increase of 
intraannual 
variability in 
northern 
Europe, 
decrease in 
southern. 
Interannual 
variability 
not 
expected to 
change. 

Changes in 
wind 
turbine 
technology 

(Carvalho et 

al. 2017) 

Energy 
(wind)  

Europe Near surface 
wind speed 

wind power 
simulated 
energy mix 
scenario 

 Euro-CORDEX RCP4.5, 
RCP8.5 

2050  Changes in 
the annual 
energy yield 
of the future 
European 
wind farms 
fleet as a 
whole will 
remain 
within ±5%. 

  (Tobin et al. 

2016) 
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Energy 
(wind)  

Europe Potential wind 
power 
generation 

 ENSEMBLES 

15 RCM  
6 GCM 

 

SRES 
A1B  

   In Europe 
changes in 
wind power 
potential 
will remain 
within ±15% 
and ±20%. 

 (Tobin et al. 

2015) 

Energy 
(solar)  

Europe Mean 
photovoltaic 
(PV) power 
generation 
potential 
(PVPot); surface 
wind velocity 
(SWV); 
radiation 
(RSDS); surface 
air temp (TAS) 

1970−19
99 

Euro-CORDEX RCP4.5, 
RCP8.5 

2070−20
99 

  Solar PV 
supply by 
the end of 
2100 should 
range from 
−14_+2% 
with largest 
decreases in 
northern 
countries. 

Solar 
spectrum 
distribution 
and the air 
mass effect 

(Jerez et al. 

2015) 

Energy 
(solar)  

Global Energy yields of 
PV systems 

 CMIP5 

 

RCP8.5 2006−20
49 

 Decreases in 
PV outputs 
in large parts 
of the world, 
but notable 
exceptions 
with positive 
trends in 
large parts of 
Europe, 
southeast of 
North 
America and 
the 

  (Wild et al. 

2015) 
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southeast 
China. 

Energy 
(electrici
ty: wind, 
solar PV, 
hydro, 
thermal) 

Europe Wind power 
production; PV 
power 
generation 
potential; gross 
hydropower 
potential (VIC 
model); 
thermoelectric 
power 
generation (VIC-
RBM models) 

1971−20
00 

Euro-CORDEX 
(ensemble of 3 
RCMs and 3 
GCMs)  

RCP4.5, 
RCP8.5 

+1.5°C 
(2004-
2043) 
+2.0°C 
(2016−2
059) 
+3.0°C 
(2037−2
084) 

 Impacts 
remain 
limited for 
most 
countries. PV 
and wind 
power 
potential 
may reduce 
10%, hydro 
and thermal 
may reduce 
20%. 

At 2.0°C 
impacts 
across sub-
sectors 
remain 
limited, 
negative 
impacts 
double at 
3°C. Impacts 
more severe 
in southern 
Europe. 

No spatial 
distribution 
accounted 
for in 
analysis 

(Tobin et al. 

2018) 

Energy 
(hydropo
wer) 

Surinam
e 

VHM 
hydrological 
model 

1960−19
90 

 

CMIP5 RCP2.6, 
RCP4.5, 
RCP6.0, 
RCP8.5 

1.5°C 
(2070−2
100) 

 40% 
decrease in 
hydropower 
potential 
(RCP2.6). 

50% 
decrease in 
hydropower 
potential 
(RCP4.5); 
80% 
decrease in 
hydropower 
potential at 
3°C GMST 
(RCP8.5). 

 (Donk et al. 

2018) 

Tourism Europe Climate Index 
for Tourism; 
Tourism 
Climatic Index 
(three variants) 

 Euro-CORDEX RCP4.5, 
RCP8.5 

+2°C    Varying 
magnitude 
of change 
across 
different 
indices; 

 (Grillakis et 

al. 2016) 
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improved 
climate 
comfort for 
majority of 
areas for 
May to 
October 
period; June 
to August 
period 
climate 
favourability 
projected to 
reduce in 
Iberian 
peninsula 
due to high 
temperature
s. 

Tourism  Southern 
Ontario, 
Canada 

Weather-
visitation 
models (peak, 
shoulder, off-
season) 

   1°C –5°C 
warmin
g 

 Each 
additional 
degree of 
warming 
experienced 
annual park 
visitation 
could 
increase by 
3.1%, 
annually. 
 

 Social 
variables, 
for example, 
weekends 
or holidays 

(Hewer et al. 

2016) 

Tourism  Europe Natural snow 1971−20 Euro-CORDEX RCP2.6, +2°C   Under a Tourism (Damm et al. 

2017) 
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conditions 
(VIC); 
monthly 
overnight stay; 
weather value 
at risk 

00 RCP4.5, 
RCP8.5 

periods:  
2071−21
00 

2036−20
65 

2026−20
55 

+2°C global 
warming, up 
to 10 million 
overnight 
stays are at 
risk (+7.3 
million 
nights), 
Austria and 
Italy are 
most 
affected. 

trends 
based on 
economic 
conditions 

Tourism Sardinia 
(Italy) 
and the 
Cap Bon 
peninsul
a 
(Tunisia) 

Overnight stays; 
weather/climat
e data (E-OBS) 

1971−20
00 

EU-FP6 
ENSEMBLES  
(ECH-REM, 
ECH-RMO, 
HCH-RCA and 
ECH-RCA) 
 

 

 2041−20
70 

  Climate-
induced 
tourism 
revenue 
gains, 
especially in 
the shoulder 
seasons 
during 
spring and 
autumn; 
threat of 
climate-
induced 
revenue 
losses in the 
summer 
months due 
to increased 
heat stress. 

GDP, prices, 
holidays, 
events 

(Köberl et al. 

2016) 
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Tourism Iran 
(Zayande
hroud 
River 
route) 

Physiologically 
equivalent 
temperature 
(PET) 

1983−20
13 

HADCM3 B1, 
A1B 

2014–
2039 

 The PET 
index shows 
a positive 
trend with a 
reduction in 
number of 
climate 
comfort days 
(18 < PET < 2
9), 
particularly 
in the 
western 
area. 

  (Yazdanpana

h et al. 2016) 

Tourism Portugal Arrivals of 
inbound 
tourists;  
GDP 

     Increasing 
temperature
s are 
projected to 
lead to a 
decrease of 
inbound 
tourism 
arrivals 
between 
2.5% and 
5.2%, which 
is expected 
to reduce 
Portuguese 
GDP 
between 
0.19% and 

  (Pintassilgo 

et al. 2016) 
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0.40%. 

Transpor
tation 
(shipping
)  

Arctic 
Sea 
(North 
Sea 
route; 
NSR) 

Climatic losses;  
gross gains;  
net gains 

 PAGE-ICE RCP4.5, 
RCP8.5 

SSP2 

2013–
2200 

 Large-scale 
commercial 
shipping is 
unlikely 
possible until 
2030 (bulk) 
and 2050 
(container) 
under 
RCP8.5.  
 

The total 
climate 
feedback of 
NSR could 
contribute 
0.05% to 
global mean 
temperature 
rise by 2100 
under 
RCP8.5, 
adding $2.15 

trillion to 
the net 
present 
value of 
total 
impacts of 
climate 
change over 
the period 
until 2200. 
The climatic 
losses offset 
33% of the 
total 
economic 
gains from 
NSR under 
RCP8.5 with 
the biggest 

Business 
restrictions  

(Yumashev 

et al. 2017) 



 

 

 

Internal Draft Chapter 3 IPCC SR1.5 
 

 

 

 3-142 Total pages: 148 

 

 

losses set to 
occur in 

Africa and 
India. 

Transpor
tation 
(shipping
) 

Arctic 
Sea 

Sea ice ship 
speed (in days);  
sea ice 
thickness (SIT)  

1995−20
14 

CMIP5 RCP2.6, 
RCP4.5, 
RCP8.5 

2045−20
59, 
2075−20
89 

  Shipping 
season 4−8 
under 
RCP8.5, 
double that 
of RCP2.6. 
Average 
transit times 
decline to 22 
days 
(RCP2.6) and 
17 days 
(RCP8.5). 

 (Melia et al. 

2016) 

Transpor
tation 
(shipping
)  

Arctic 
Sea 
(NSR)  

Mean time of 
NSR transit 
window;  
sea ice 
concentration 

1980−20
14 

CMIP5 RCP4.5, 
RCP8.5 

2020−21
00 

  Increase in 
transit 
window by 4 
(RCP4.5) and 
6.5 (RCP8.5) 
months. 

 (Khon et al. 

2017) 

Water Europe Runoff 
discharge 

snowpack 
based on 
hydrological 
models:  
E-HYPE 

Lisflood 

WBM  

 CMIP5 

CORDEX (11) 
Bias corrected 
to E-OBS 

RCP2.6, 
RCP4.5, 
RCP8.5 

1.5°C 

2°C 

3°C 

 Increases in 
runoff affect 
the 
Scandinavian 
mountains; 
decreases in 
runoff in 
Portugal. 

Increases in 
runoff in 
Norway, 
Sweden and 
north 
Poland; 
decreases in 
runoff 
around 

 (Donnelly et 

al. 2017) 
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3.SM.4 Supplementary information to Cross-Chapter Box 6 Food Security 1 

 2 

Table 3.SM.12:  Projected health risks of undernutrition and dietary change at 1.5°C and 2°C. Abbreviations: DALY: disability adjusted life year; RCP: Representative 3 
Concentration Pathway; SSP: Shared Socio-Economic Pathway 4 

Region Health 

Outcome 

Metric 

Study 

Baseline 

Climate 

Model(S) 

Scenario Time 

Periods of 

Interest 

Impacts at 

Study 

Baseline 

Projected 

Impacts at 

1.5°C 

Projected 

Impacts at 

2°C 

Other 

Factors 

Considered 

Reference 

Global and 

21 regions 

Undernutriti

on 

1961–1990 BCM2.0, 

EGMAM1, 

EGMAM2, 

EGMAM3, 

CM4vl 

A1B 2030, 2050  In 2030 

95,175 

additional 

undernutritio

n deaths 

without 

adaptation 

and 

(ensemble 

mean) 

131,634 

with 

adaptation 

under the 

low growth 

scenario and 

77,205 

under the 

high growth 

scenario; 

Asia and 

sub-Saharan 

Africa at 

highest risk. 

In 2050 risks 

are generally 

lower in 

most regions 

because of 

underlying 

trends, with 

84,695 

additional 

undernutritio

n deaths 

without 

adaptation, 

101,484 

with 

adaptation 

under the 

low growth 

scenario and 

36,524 

under the 

high growth 

scenario. 

Population 

growth; 

improved 

population 

health; crop 

models 

include 

adaptation 

measures 

(Hales et al. 

2014) 
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Global and 

17 regions 

Undernouris

hed 

population; 

DALY 

(disability) 

caused by 

underweight 

of a child 

under 5 

years of age 

2005–2100 5 models 

from ISIMIP 

(GFDL-

ESM2, 

NorESM1-

M, 

IPSL-

CM5A-LR, 

HadGEM2-

ES, 

MIROC-

ESM-

CHEM) 

RCP2.6 and 

8.5 with 

SSP2 and 

SSP3 

2005–2100  Baseline 

assumed no 

climate 

change (no 

temperature 

increase 

from 

present) 

In 2025 

under SSP3, 

global 

undernouris

hed 

population is 

530–550 

million at 

1.5°C. 

Global mean 

DALYs of 

11.2 per 

1000 

persons at 

1.5°C. 

In 2050 

under SSP3, 

global 

undernouris

hed 

population is 

540–590 

million at 

2.0°C. 

Global mean 

DALYs of 

12.4 per 

1000 

persons at 

2°C. 

Population 

growth and 

aging;  

equity of 

food 

distribution 

(Hasegawa 

et al. 2016) 

Global 

divided into 

17 regions 

DALYs 

from 

stunting 

associated 

with 

undernutritio

n 

1990–2008 12 GCMs 

from CMIP5 
Six 
scenarios: 
RCP2.6 + 
SSP1, 
RCP4.5 + 
SSPs 1–3, 
RCP8.5 + 
SSP2, SSP3 

2005–2050 57.4 million 

DALYs in 

2005 

In 2030 

DALYs 

decrease by 

36.4 million 

(63%), for 

RCP4.5, 

SSP1, and 

by 30.4 

million 

(53%) and 

16.2 million 

(28%) for 

RCP8.5, 

SSP2 and 

SSP3, 

respectively. 

By 2050 

DALYs 

decrease 

further to 

17.0 million 

for RCP4.5, 

SSP1, and to 

11.6 million 

for RCP8.5, 

SSP2. 

DALYs 

increase to 

43.7 million 

under 

RCP8.5, 

SSP3. 

Future 

population 

and per 

capita GDP 

from the 

SSP 

database 

(Ishida et al. 

2014) 
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4.SM.1 Benchmark Indicators for Sectoral Changes in Emissions as Presented in Table 4.1 (Section 4.2.1) 

 

Integrated assessment models (IAMs) and other sector scenarios provide sectoral detail underpinning the declines in greenhouse gas (GHG) emissions by the middle of the century 

(Section 2.3 and Section 2.4). Table 4.SM.1 indicates the pace of the transitions that are deemed necessary in 2020, 2030 and 2050 at the sector level for 1.5°C-consistent pathways, 

and complements this with bottom-up studies from literature that give actionable policy targets (the lines in white). A summary of this table is presented in Section 4.2.1. 

 

Table 4.SM.1: Benchmark indicators indicating the sectoral changes in emissions, fuels and technologies that would need to take place in 1.5°C-consistent pathways, based on 

selected IAM 1.5°C pathways assessed in Chapter 2 (with no, low and high overshoot) (dark grey rows), four archetype scenarios (light grey rows) and bottom-up studies including 

IEA (white rows). The numbers in square brackets in some columns indicate the scenario count for the specific indicator.  
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  Share of Renewables Share of 

Fossil Fuels 

Change in 

Energy 

Demand in 

Buildings 

Direct 

Emissions 

Reductions 

from 

Buildings 

Share of 

Low-

Carbon 

Fuels 

Share of 

Electricity 

Share of 

Biofuels 

Industrial 

Emissions 

Reductions 

  

Median 

(interquartile 

range) 

Scenario 

count 

in primary 

energy (%) 

in 

electricity 

generation 

(%) 

in electricity 

generation 

(%) 

relative to 

2010 (%) 

relative to 

2010 (%) 

in 

transport 

(%) 

in 

transport 

(%) 

in 

transport 

(%) 

relative to 

2010 (%) 
2

0
2

0
 

IA
M

 p
a

th
w

a
y

s 

No or low 

overshoot 1.5 

50 

14.90  

(16.25, 

14.24) 

26.32  

(29.04, 

24.13) 

61.32  

(63.15, 58.64) 

-10.84 (-7.49, 

-11.96) [42] 

-1.47 (6.62, -

7.98) [42] 

4.42 (4.51, 

3.66) [29] 

1.24 (1.75, 

1.10) [49] 

3.03 

(3.23, 

1.69) [37] 

-12.68 (-

0.50, -

15.79) [42] 

Low 

overshoot 1.5 

43 

15.31  

(16.23, 

14.03) 

26.26 

(28.83, 

23.58) 

61.08 (63.17, 

58.74) 

-10.86 (-7.53, 

-14.83) [35] 

-0.83 (6.62, -

9.69) [35] 

4.39 (4.51, 

3.59) [23] 

1.24 (1.79, 

1.09) [42] 

1.97 

(3.17, 

1.55) [31] 

-11.81 (-

1.66, -

17.80) [35] 

High 

overshoot 1.5 

35 

15.08  

(15.84, 

14.44) 

28.37 

(29.24, 

24.33) 

61.58 (63.83, 

59.70) 

-12.49 (-10.75, 

-19.44) [29] 

-3.52 (6.62, -

15.22) [29] 

3.59 (4.45, 

3.27) [23] 

1.40 (1.53, 

1.10) 

2.18 

(2.98, 

1.72) [24] 

-15.50 (-

12.70, -

23.70) [29] 

S1 
 12.46 23.24 63.72 -9.20 -0.83  0.95 1.69 4.46 

S2 
 16.61 27.00 60.11 -16.20 -0.25 2.18 0.97 1.22 -20.61 

S5 
 13.46 17.38 71.03   3.16 0.95 2.20  

LED 
 15.63 24.61 54.11 -8.78 15.11  2.51  -32.87 

S
ec

to
ra

l 

st
u

d
ie

s 

Löffler et al. 

(2017)  13.47 31.41 57.60       
IEA (2017a) 

(ETP)  19.02 29.91 58.63 -1.52 10.25 5.74 1.70 4.03 -9.37 

IEA (2017b) 

(WEM)  16.67 29.32 58.75 -7.44 5.78 4.94 1.21 3.73 -6.51 

2
0

3
0
 

IA
M

 p
a

th
w

a
y

s 

No or low 

overshoot 1.5 

50 

29.08 

(37.06, 

25.73) 

53.68 

(64.80, 

46.74) 

30.04 (37.60, 

20.25) 

0.30 (7.31, -

6.73) [42] 

33.53 (51.77, 

21.47) [42] 

12.07 

(17.83, 

8.55) [29] 

5.20 (7.13, 

3.27) [49] 

6.54 

(10.05, 

2.51) [37] 

42.29 

(54.71, 

34.25) [42] 

Low 

overshoot 1.5 

43 

28.75 

(35.31, 

25.45) 

52.63 

(58.90, 

44.48) 

31.54 (38.14, 

23.14) 

-2.61 (5.41, -

7.73) [35] 

30.11 (43.16, 

20.58) [35] 

9.71 

(15.24, 

8.44) [23] 

4.99 (6.84, 

3.18) [42] 

5.06 

(9.60, 

2.12) [31] 

39.81 

(49.58, 

30.13) [35] 

High 

overshoot 1.5 

35 

23.65 

(27.45, 

20.03) 

42.73 

(53.78, 

36.91) 

42.02 (47.27, 

32.61) 

-16.64 (-12.07, 

-20.01) [29] 

8.15 (23.54, -

0.61) [29] 

6.65 (8.32, 

5.55) [23] 

3.46 (4.68, 

2.54) 

3.54 

(3.85, 

1.38) [24] 

17.67 

(27.65, -

12.81) [29] 
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Notes: Values for no or low, low and high overshoot 1.5 indicate the median and the interquartile ranges for indicators for 1.5°C-consistent pathways distinguishing the level of 

overshoot, collected in the scenario database established for the assessment of this Special Report (see Section 2.1 and Annex 2.3). Four illustrative pathway archetypes were selected 

for comparison: S1 (AIM 2.0, SSP1–19), S2 (MESSAGE-GLOBIOM 1.0, SSP2–19), S5 (REMIND-MAgPIE 1.5, SSP5–19) and low energy demand (MESSAGEix-GLOBIOM 1.0, 

LED) (see Section 2.1). The selected studies indicate mitigation transitions in key sectors consistent with limiting warming to 1.5°C (IEA, 2017a, 2017c; Löffler et al., 2017), 

grounded in published scenarios combined with expert judgement.  

S1 
 28.79 57.89 27.84 -7.68 35.32  3.92 5.06 49.09 

S2 
 28.72 47.89 35.37 -14.12 47.92 5.17 4.46 0.71 19.11 

S5 
 13.78 25.11 57.38   3.43 1.32 1.93  

LED 
 37.42 59.64 17.14 30.42 59.81  20.93  42.10 

S
ec

to
ra

l 

st
u

d
ie

s 

Löffler et al. 

(2017)  45.59 79.25 13.73       
IEA (2017a) 

(ETP)  31.09 46.73 37.92 1.98 46.91 13.80 5.47 8.18 22.39 

IEA (2017b) 

(WEM)  27.24 49.58 34.74 -6.37 32.03 17.12 5.76 11.20 15.28 

2
0

5
0
 

IA
M

 p
a

th
w

a
y

s 

No or low 

overshoot 1.5 

50 

60.24 

(67.09, 

51.77) 

77.12 

(86.43, 

69.23) 

8.61 (13.42, 

3.88) 

-17.19 (3.31, -

36.20) [42] 

70.26 (89.56, 

54.48) [42] 

55.00 

(65.66, 

34.67) [29] 

22.67 

(28.73, 

17.30) [49] 

15.24 

(22.95, 

10.95) 

[37] 

78.75 

(90.79, 

67.33) [42] 

Low 

overshoot 1.5 

43 

58.37 

(66.65, 

49.97) 

75.98 

(85.32, 

68.54) 

8.69 (13.59, 

4.80) 

-19.43 (2.17, -

37.44) [35] 

68.30 (89.48, 

54.32) [35] 

52.95 

(65.14, 

34.10) [23] 

22.63 

(30.20, 

16.74) [42] 

14.71 

(21.73, 

10.11) 

[31] 

78.69 

(89.17, 

70.60) [35] 

High 

overshoot 1.5 

35 

62.16 

(67.51, 

47.48) 

82.39 

(88.34, 

63.65) 

6.33 (16.06, 

2.26) 

-37.41 (-13.37, 

-51.04) [29] 

48.64 (59.49, 

40.82) [29] 

38.38 

(43.62, 

27.01) [23] 

18.49 

(22.88, 

13.67) 

14.96 

(17.78, 

5.10) [24] 

68.12 

(80.61, 

53.62) [29] 

S1 
 58.37 81.26 10.15 -20.54 79.74  33.68 12.95 73.70 

S2 
 52.90 63.08 11.42 -24.59 89.65 25.65 22.67 2.98 72.81 

S5 
 67.04 70.27 6.69   53.36 9.54 35.46  

LED 
 72.51 77.40 0.19 44.67 95.00  59.21  91.38 

S
ec

to
ra

l 

st
u

d
ie

s 

Löffler et al. 

(2017)  100.00 99.76 0.00       
IEA (2017a) 

(ETP)  57.77 74.33 9.72 5.10 82.71 54.83 29.65 24.43 57.26 

IEA (2017b) 

(WEM)  47.02 68.72 13.71 -5.38 73.14 58.18 32.07 25.19 54.61 
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4.SM.2 Enabling Conditions and Constraints of Overarching Adaptation Options as Discussed in Section 4.3.5 

 

Table 4.SM.2: Overarching adaptation options: Enabling conditions and constraints. This table underpins Section 4.3.5. 

 

Adaptation 

Option 
Feasibility Enabling Conditions Constraints Examples 

Disaster risk 

management 

Medium 

evidence 

(high 

agreement) 

Pools resources and expertise for risk 

reduction (Howes et al., 2015; Kelman et al., 

2015; Wallace, 2017). 

 

Integrates adaptation into existing 

management (Howes et al., 2015). 

 

Supports post-disaster recovery and 

reconstruction (Kelman et al., 2015; Kull et 

al., 2016). 

 

Engages local and indigenous knowledge to 

improve preparedness and response 

(McNamara and Prasad, 2014; Mawere and 

Mubaya, 2015; Kaya and Koitsiwe, 2016; 

Chambers et al., 2017; Granderson, 2017). 

Uncertainty over projected climate impacts 

and absence of downscaled climate 

projections (van der Keur et al., 2016; de 

Leon and Pittock, 2017; Wallace, 2017). 

 

Limited institutional, technical and 

financial capacity in frontline agencies (de 

Leon and Pittock, 2017; Kita, 2017; 

Wallace, 2017). 

 

Adaptation and disaster risk management 

communities operate separately (Kelman 

et al., 2015; Serrao-Neumann et al., 2015; 

de Leon and Pittock, 2017). 

Glacial lake outburst floods (GLOFs) 

1.5°C will increase risk of GLOFs (Cogley, 2017; 

Kraaijenbrink et al., 2017). 

 

Infrastructural measures technically and 

economically unfeasible in many regions (Muñoz et 

al., 2016; Schwanghart et al., 2016; Watanabe et al., 

2016; Haeberli et al., 2017). 

 

Early warning systems (Anacona et al., 2015) and 

monitoring of dangerous lakes and surrounding 

slopes (including using remote sensing) offer disaster 

risk management opportunities (Emmer et al., 2016; 

Milner et al., 2017). 

 

Institutional leadership and community engagement 

essential for effectiveness (Anacona et al., 2015; 

Watanabe et al., 2016). 

Risk sharing 

and 

spreading: 

insurance  

 

Medium 

evidence 

(medium 

agreement) 

Buffers climate risk (Wolfrom and Yokoi-

Arai, 2015; O’Hare et al., 2016; Glaas et al., 

2017; Jenkins et al., 2017; Patel et al., 2017). 

 

Shifts the mobilization of financial resources 

towards strategic approaches (Surminski et 

al., 2016). 

 

Incentivizes investments and behaviour that 

reduce exposure (Linnerooth-Bayer and 

Hochrainer-Stigler, 2015; Shapiro, 2016; 

Jenkins et al., 2017). 

Can provide disincentives for reducing risk 

and can distort incentives for adaptation 

strategies (Annan and Schlenker, 2015; de 

Nicola, 2015). 

 

Underwrites a return to the ‘status quo’ 

rather than enabling adaptive behaviour 

(O’Hare et al., 2016). 

 

Financial, social and institutional barriers 

to implementation and uptake, especially 

in low-income nations (García Romero 

and Molina, 2015; Joyette et al., 2015; 

Crop insurance  

In Kenya during the 2011 drought, index-based 

insurance payouts for livestock reduced distress sales 

by 64% among better-off pastoralist households and 

reduced the likelihood of rationing food intake by 

43% among poorer households (Hansen et al., 2017). 

 

In USA Annan and Schlenker (2015) found insured 

crops were significantly more sensitive to extreme 

heat because insured farmers were disincentivized 

from investing in costly adaptation strategies since 

their insurance compensated for potential losses 
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Lashley and Warner, 2015; Jin et al., 

2016). 

In Bangladesh low institutional trust and financial 

literacy mean that fewer women enrol in weather-

based crop insurance (Akter et al., 2016). 

 

World Bank ‘cat bond’ issuance in Caribbean 

In 2007 the Caribbean Catastrophe Risk Insurance 

Facility (CCRIF) was formed to pool risk from 

tropical cyclones, earthquakes and excess rainfalls 

(Murphy et al., 2012; CCRIF, 2017). 

 

36 payouts have been made to 13 governments, 

totalling 130.5 million USD and partially funded by 

CCRIF, within 14 days of the event (CCRIF, 2017). 

Speed of payment allows countries to finance 

immediate needs (Murphy et al., 2012). 

 

Though widely perceived to be successful, evidence 

of success remains limited (Teh, 2015). 

Risk sharing 

and 

spreading: 

social 

protection 

programmes 

 

Medium 

evidence 

(medium 

agreement) 

 

 

Builds generic adaptive capacity and reduces 

social vulnerability (Weldegebriel and 

Prowse, 2013; Eakin et al., 2014; Lemos et 

al., 2016; Schwan and Yu, 2017). 

 

Must be complemented with a 

comprehensive climate risk management 

approach (Schwan and Yu, 2017) that also 

takes into account disaster risk management, 

adaptation and vulnerability reduction goals 

(Davies et al., 2013). 

Inadequate targeting, leakages and lack of 

institutional architecture, especially in 

Least Developed Countries (Ravi and 

Engler, 2015; Schwan and Yu, 2017). 

 

Uncertainties about effectiveness of 

processes of delivering social protection 

(e.g., cash or ‘in kind’). 

 

Necessary but insufficient to decrease 

households’ vulnerability if stand-alone 

(Lemos et al., 2016). 

 

When delivered without emphasis on 

vulnerability reduction, investments may 

be maladaptive in long run (Nelson et al., 

2016). 

Cash transfer programmes 

In sub-Saharan Africa cash transfer programmes 

targeting poor communities have proven successful 

in smoothing household welfare and food security 

during droughts, strengthening community ties and 

reducing debt levels (del Ninno et al., 2016; Asfaw et 

al., 2017; Asfaw and Davis, 2018). 

 

In Brazil higher levels of income due to cash transfer 

programmes have been linked to food security, as 

households are able to invest in irrigation, but there 

have been limited long-term investments in reducing 

vulnerability among the poorest households (Lemos 

et al., 2016; Mesquita and Bursztyn, 2016; Nelson et 

al., 2016). 

Education 

and learning 

Medium 

evidence 

(high 

agreement) 

Co-production of solutions strengthens 

adaptation implementation (Butler et al., 

2016a; Thi Hong Phuong et al., 2017; Ford 

et al., 2018). 

Not appropriate in all circumstances (e.g., 

highly marginalized locations) (Ford et al., 

2016, 2018). 

 

Participatory scenario planning (PSP) 

PSP is a process by which multiple stakeholders 

work together to envision future scenarios under a 

range of climatic conditions (Flynn et al., 2018). 
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Social learning strengthens adaptation and 

affects longer-term change (Clemens et al., 

2015; Ensor and Harvey, 2015; Henly-

Shepard et al., 2015). 

 

International learning and cooperation 

mechanisms, supranational organizations 

(Vinke-de Kruijf and Pahl-Wostl, 2016) and 

international, collaborative projects 

(Cochrane et al., 2017; Harvey et al., 2017) 

can build adaptive capacity. 

Education and learning on their own may 

not provide ‘enough adaptive capacity to 

respond to climate change’ (Thi Hong 

Phuong et al., 2017). 

 

Participation in and of itself does not 

necessarily build capacity (Ford et al., 

2016). 

 

PSP has been observed to facilitate the interaction of 

multiple knowledge systems, resulting in learning 

and the co-production of knowledge on adaptation 

(Tschakert et al., 2014; Oteros-Rozas et al., 2015; 

Star et al., 2016; Flynn et al., 2018). 

 

 

 

 

Population 

health and 

health 

systems 

Medium 

evidence 

(high 

agreement) 

1.5 C will primarily exacerbate existing 

health challenges (K.R. Smith et al., 2014), 

which can be targeted by enhancing health 

services. 

 

Age, pre-existing medical conditions and 

social deprivation are found to be the key 

(but not the only) factors that make people 

vulnerable and lead to more adverse health 

outcomes related to climate change impacts. 

Interventions to reduce climate change-

driven health impacts can be mainstreamed 

through existing health programming and 

service delivery (WHO, 2015; Paavola, 

2017). 

 

Needs to be combined with iterative 

management involving regular monitoring of 

effectiveness in the light of climate impacts 

(Hess and Ebi, 2016; Ebi and Otmani del 

Barrio, 2017). 

 

Collaboration with local stakeholders, public 

education campaigns and the tailoring of 

communication to local needs are essential 

(Berry and Richardson, 2016; van Loenhout 

et al., 2016). 

Governance challenges: for example, 

absence of coordination across scales, lack 

of mandate for action on adaptation 

(Austin et al., 2016; Ebi and Otmani del 

Barrio, 2017; Shimamoto and McCormick, 

2017). 

 

Absence of information and understanding 

on climate impacts (Nigatu et al., 2014; 

Xiao et al., 2016; Sheehan et al., 2017). 

 

Many health services currently do not 

consider climate change (Hess and Ebi, 

2016). 

 

Adaptation strategies based on individual 

preparedness, action and behaviour change 

may aggravate health and social 

inequalities due to their selective uptake, 

unless they are coupled with broad public 

information campaigns and financial 

support for undertaking adaptive measures 

(Paavola, 2017). 

Heat wave early warning and response systems 

Heat wave early warning and response systems 

coordinate the implementation of multiple measures 

in response to predicted extreme temperatures (e.g., 

public announcements, opening public cooling 

shelters, distributing information on heat stress 

symptoms) and have been shown to be effective in a 

wide variety of contexts (Knowlton et al., 2014; 

Takahashi et al., 2015; Nitschke et al., 2016, 2017). 
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Indigenous 

knowledge  

Medium 

evidence 

(high 

agreement) 

Indigenous knowledge underpins the 

adaptive capacity of indigenous 

communities through the diversity and 

flexibility of indigenous agro-ecological 

systems, collective social memory, 

repository of accumulated experience and 

from social networks that are essential for 

disaster response and recovery (Hiwasaki et 

al., 2015; Pearce et al., 2015; Mapfumo et 

al., 2016; Sherman et al., 2016; Ingty, 2017; 

Ruiz-Mallén et al., 2017). 

 

Knowledge of environmental conditions 

helps communities detect and monitor 

change (Johnson et al., 2015; Mistry and 

Berardi, 2016; Williams et al., 2017). 

 

 

 

Acculturation, dispossession of land rights 

and land grabbing, colonization and social 

change are challenging indigenous 

knowledge systems (Ford, 2012; 

Nakashima et al., 2012; McNamara and 

Prasad, 2014; Pearce et al., 2015). 

 

Broader structural challenges, systemic 

inequality and dominant governance 

systems prevent indigenous epistemologies 

and worldviews from meaningfully being 

integrated into adaptation (Thornton and 

Manasfi, 2010; Mistry et al., 2016; 

Russell-Smith et al., 2017). 

 

Can promote conservative attitudes, limit 

uptake of new information and practices 

and may not be sustainable in all 

circumstances given socio-cultural 

changes experienced (Granderson, 2017; 

Kihila, 2017; Mccubbin et al., 2017). 

 

Cultural programming 

Options such as integration of indigenous knowledge 

into resource management systems and school 

curricula, digital storytelling and filmmaking, cultural 

events, web-based knowledge banks, radio dramas 

and documentation of knowledge are identified as 

potential adaptations (Cunsolo Willox et al., 2013; 

McNamara and Prasad, 2014; MacDonald et al., 

2015b; Pearce et al., 2015; Chambers et al., 2017; 

Inamara and Thomas, 2017), but need to be carefully 

analysed for their potential to reduce vulnerability, 

including potential trade-offs (Granderson, 2017). 

Human 

migration 

Low 

evidence (but 

rapidly 

growing, low 

agreement) 

 

 

Revising and adopting migration issues in 

national disaster risk reduction policies, 

national action plans, and intended 

nationally determined contributions 

(INDCs)/NDCs (Kuruppu and Willie, 2015; 

Yamamoto et al., 2017). 

 

Utilizing existing social protection 

programmes to manage climate-induced 

migration (Schwan and Yu, 2017). 

 

Moving away from ad hoc approaches to 

migration and displacement (Thomas and 

Benjamin, 2018). 

 

Research conducted on a ‘case by case’ 

approach fails to provide the effective 

scaling of policy to national or 

international levels (Gemenne and 

Blocher, 2017; Grecequet et al., 2017). 

 

Few policies on migration exist at the 

national or sub-national scales (Yamamoto 

et al., 2017). 

 

Financial, social and ecological costs 

(Grecequet et al., 2017). 

 

Stress on urban system resources and 

services (Bhagat, 2017). 

 

Autonomous and planned relocation in small island 

developing states and semi-arid regions 

Migration is improving access to financial and social 

capital and reducing risk exposure in some locations 

(e.g., in the Solomon Islands; Birk and Rasmussen, 

2014). The ad hoc nature of migration and 

displacement can be overcome by integrating disaster 

risk reduction and climate change adaptation into 

national sustainable development plans (Thomas and 

Benjamin, 2018). 

 

In semi-arid India, populations in rural regions 

already experiencing 1.5°C warming are migrating to 

cities (Gajjar et al., 2018) but are inadequately 

covered by existing policies (Bhagat, 2017). 
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Migration can serve as an important risk 

management strategy, leading to increased 

incomes (Cattaneo and Peri, 2016). 

 

Migration might become the only feasible 

adaptation option in highly vulnerable areas 

(Betzold, 2015; Wilkinson et al., 2016). 

Migrants at risk of insecure tenure, unsafe 

living conditions and exclusion in their 

destinations (Gioli et al., 2016; Bettini et 

al., 2017; Bhagat, 2017; Schwan and Yu, 

2017). 

 

Climate 

services 

Medium 

evidence 

(high 

agreement)  

Rapid technical development, due to 

increased financial inputs and growing 

demand, is enabling improved quality of 

climate information (Rogers and Tsirkunov, 

2010; Clements et al., 2013; Perrels et al., 

2013; Gasc et al., 2014; WMO, 2015; 

Roudier et al., 2016). 

 

Multiple stakeholder engagement and 

participatory processes to interpret climate 

information are effective to improve uptake 

and use (Mantilla et al., 2014; Sivakumar et 

al., 2014; Coulibaly et al., 2015; Gebru et 

al., 2015; Brasseur and Gallardo, 2016; 

Lourenço et al., 2016; Singh et al., 2016; 

Vaughan et al., 2016; Kihila, 2017; Lobo et 

al., 2017). 

 

Scaling climate services may occur through: 

leveraging capacities of project champions, 

knowledge brokers, and intermediaries 

(Mantilla et al., 2014; Coulibaly et al., 

2015); co-production of knowledge 

(Kirchhoff et al., 2013) that enables users to 

actively participate in adaptation decisions 

(Vaughan and Dessai, 2014); developing 

clear financial models to ensure 

sustainability (Webber and Donner, 2017), 

which includes multi-stakeholder 

engagement through iterative participatory 

processes (Girvetz et al., 2014; Dorward et 

al., 2015); and leveraging appropriate 

Issues of timing of information provision 

and scale of information remain barriers 

(Dinku et al., 2014; Jancloes et al., 2014; 

Gebru et al., 2015; Weisse et al., 2015; 

Brasseur and Gallardo, 2016; Cortekar et 

al., 2016; Singh et al., 2016; Snow et al., 

2016; Vaughan et al., 2016; Kihila, 2017). 

 

Lower uptake by women, remote 

communities and those without technical 

support (Singh et al., 2017; Carr and 

Onzere, 2018). 

 

Issues of trust and usability of information 

provided (L. Jones et al., 2016; Singh et 

al., 2017; C.J. White et al., 2017). 

 

Continued focus on supply-driven 

provision of climate information rather 

than specific needs of end users (Lourenço 

et al., 2016). 

Semi-arid regions in India and sub-Saharan Africa 

facing 1.5°C warming are seeing benefits of climate 

services in agriculture planning, drought management 

and flood warning (Vincent et al., 2015; Lobo et al., 

2017; Singh et al., 2017; C. Vaughan et al., 2018). 

 

Climate services are being widely applied in sectors 

such as agriculture, health, disaster management and 

insurance (Lourenço et al., 2016; C. Vaughan et al., 

2018), with implications for adaptation decision-

making. 

 

Several programmes aimed at using climate services 

for better decision-making are showing signs of 

success: from various actors, at various scales, using 

different forms of information delivery and uptake. 

These involve: participatory analysis of seasonal 

forecasts in East Africa (Dorward et al., 2015); non-

governmental organization-driven weather advisories 

in India (Lobo et al., 2017); innovations in 

government agriculture extension services in various 

countries across sub-Saharan Africa and South Asia 

(Singh et al., 2016); and broadening the scope of 

climate services to directly inform spatial planning 

and adaptation interventions in the Netherlands 

(Goosen et al., 2013). 
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communication channels such as mobile 

technology (Hampson et al., 2014; Gebru et 

al., 2015). 
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4.SM.3 Carbon Dioxide Removal Costs, Deployment and Side Effects: Literature Basis for Figure 4.2 (Section 4.3.7) 

 

Table 4.SM.3: References supporting Figure 4.2 in Section 4.3.7. Evidence on Carbon Dioxide Removal (CDR) abatement costs, 2050 deployment potentials and side effects. Based 

on systematic review (Fuss et al., 2018). 

 

Technology Costs Potentials 

Afforestation and 

reforestation (AR) 

Myers and Goreau, 1991; van Kooten et al., 1992, 1999; Winjum et al., 

1992, 1993; Dixon et al., 1993; Swisher, 1994; Brown et al., 1995; 

Chang, 1999; Plantinga et al., 1999; Sohngen and Alig, 2000; van 

Kooten, 2000; Plantinga and Mauldin, 2001; Ravindranath et al., 2001; 

Sohngen and Mendelsohn, 2003; van Vliet et al., 2003; Baral and 

Guha, 2004; Richards and Stokes, 2004; Koning et al., 2005; Lakyda et 

al., 2005; Lee et al., 2005; Olschewski and Benítez, 2005; Richards and 

Stavins, 2005; Yemshanov et al., 2005; Benítez and Obersteiner, 2006; 

Han et al., 2007; Ahn, 2008; Hedenus and Azar, 2009; Dominy et al., 

2010; Rootzén et al., 2010; Ryan et al., 2010; Torres et al., 2010; 

Winsten et al., 2011; Paterson and Bryan, 2012; Townsend et al., 2012; 

Nijnik et al., 2013; Paul et al., 2013; Polglase et al., 2013; Carwardine 

et al., 2015; Evans et al., 2015; Maraseni and Cockfield, 2015; Haim et 

al., 2016 

Dixon et al., 1994; Nilsson and Schopfhauser, 1995; Cannell, 2003; 

Richards and Stokes, 2004; Houghton et al., 2015; Houghton and 

Nassikas, 2018 

Bioenergy with carbon 

dioxide capture and storage 

(BECCS) 

Möllersten et al., 2003, 2004, 2006; Keith et al., 2006; Azar et al., 

2006; Luckow et al., 2010; Abanades et al., 2011; Gough and Upham, 

2011; Laude and Ricci, 2011; Laude et al., 2011; Ranjan and Herzog, 

2011; Carbo et al., 2011; De Visser et al., 2011; Fabbri et al., 2011; 

Koornneef et al., 2012b; Kärki et al., 2013; Fornell et al., 2013; Akgul 

et al., 2014; N. Johnson et al., 2014; Arasto et al., 2014; Al-Qayim et 

al., 2015; Onarheim et al., 2015; Creutzig et al., 2015; Moreira et al., 

2016; Rochedo et al., 2016; Sanchez and Callaway, 2016 

 

Fischer and Schrattenholzer, 2001; Yamamoto et al., 2001; Hoogwijk 

et al., 2005, 2009; Moreira, 2006; Obersteiner et al., 2006; Smeets et 

al., 2007; Smeets and Faaij, 2007; Hakala et al., 2008; van Vuuren et 

al., 2009; Dornburg et al., 2010; Gregg and Smith, 2010; Thrän et al., 

2010; Beringer et al., 2011; Haberl et al., 2011; Cornelissen et al., 

2012; Erb et al., 2012; Rogner et al., 2012; W.K. Smith et al., 2012; 

Lauri et al., 2014; Kraxner and Nordström, 2015; Searle and Malins, 

2015; Buchholz et al., 2016; Calvin et al., 2016; Tokimatsu et al., 2017 

Biochar McCarl et al., 2009; Smith, 2016 

 

Lehmann et al., 2006; Laird et al., 2009; Lee et al., 2010; Moore et al., 

2010; Pratt and Moran, 2010; Woolf et al., 2010; Powell and Lenton, 

2012; Hamilton et al., 2015; Lomax et al., 2015; Smith, 2016 

Soil carbon sequestration Smith et al., 2008; Smith, 2016 Batjes, 1998; Metting et al., 2001; Lal, 2003a, b, 2004a, c, 2010, 2011, 

2013; Lal et al., 2007; Smith et al., 2008; Salati et al., 2010; Conant, 

2011; Smith, 2012, 2016; Benbi, 2013; Lorenz and Lal, 2014; Powlson 

et al., 2014; Sommer and Bossio, 2014; Henderson et al., 2015; 

Lassaletta and Aguilera, 2015; Smith, 2016; Minasny et al., 2017; 

Zomer et al., 2017 
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Direct air carbon dioxide 

capture and storage (DACCS) 

Zeman, 2003, 2014; Keith et al., 2006; Nikulshina et al., 2006; 

Stolaroff et al., 2008; Lackner, 2009; House et al., 2011; Simon et al., 

2011; Socolow et al., 2011; Holmes and Keith, 2012; Kulkarni and 

Sholl, 2012; Mazzotti et al., 2013; W. Zhang et al., 2014; Geng et al., 

2016; Sakwa-Novak et al., 2016; SEAB, 2016; Sinha et al., 2017; van 

der Giesen et al., 2017 

 

Enhanced weathering (EW) Schuiling and Krijgsman, 2006; Hartmann and Kempe, 2008; Köhler et 

al., 2010; Renforth, 2012; Taylor et al., 2016; Strefler et al., 2018a 

Hartmann and Kempe, 2008; Köhler et al., 2010, 2013; Renforth et al., 

2011; Hauck et al., 2016; Taylor et al., 2016; Strefler et al., 2018a 

Ocean alkalinization (OA) Rau and Caldeira, 1999; Rau et al., 2007; Harvey, 2008; Rau, 2008; 

Paquay and Zeebe, 2013; Renforth et al., 2013; Renforth and Kruger, 

2013; Renforth and Henderson, 2017 

Harvey, 2008; Paquay and Zeebe, 2013; González and Ilyina, 2016 

Reviews Lenton, 2010, 2014; McGlashan et al., 2012; McLaren, 2012; Caldecott et al., 2015; NRC, 2015; UNEP, 2017b 
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4.SM.4 Guidance and Assessment for Feasibility Assessment 

 

4.SM.4.1 Guidance for Feasibility Assessment in Section 4.5.1 

 

Table 4.SM.4: Guidance for conducting the feasibility assessment of mitigation and adaptation options. See 4.SM.4.2 for the assessment and literature basis of the assessment of 

mitigation options and 4.SM.4.3 for the assessment and literature basis of adaptation options. 

 

Entry for Indicator-Option 

Combination 

Guidance for Conducting the Feasibility Assessment of Mitigation and Adaptation Options 

NA (not applicable) The indicator is not relevant to the option 

NE (no evidence)  No peer-reviewed literature could be located supporting an assessment of whether this indicator would limit the option’s feasibility 

 The peer-reviewed literature that mentions the issue is not robust enough 

LE (limited evidence)  One or two papers make statements/present research that could be a basis for the assessment, but this evidence is considered too 

limited 

 Two or more papers provide a basis for the assessment as a side issue in the paper, not as a core issue 

A A feasibility assessment can be made:  

 

 If there are one or two robust papers (or more) that contain 

references which also support the assessment  

 If literature is plentiful 

 If one or a number of meta-studies and reviews provide 

extensive treatment of the indicator-option combination 

A = The indicator could block the feasibility of this option 

B B = The indicator does not have a positive nor a negative effect on 

the feasibility of the option 

C C = The indicator does not pose any barrier to the feasibility of this 

option 

 

Table 4.SM.5: Parameters used for the calculation of the overall feasibility of the dimension-option combinations. 

 

#𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 Number of indicators used to assess the overall feasibility of a dimension, typically two to five 

#𝑁𝐴 Number of indicators that are not applicable (NA) to the option 

#𝑁𝐸&𝐿𝐸 Total number of indicators for which there is no evidence (NE) or limited evidence (LE) 

#𝐴 Number of indicators assessed as A 

#𝐵 Number of indicators assessed as B 

#𝐶 Number of indicators assessed as C 
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#𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 #𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 = #𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 − #𝑁𝐴 

𝐴𝑉𝐺 (1*#A +2*#B+3*#C)⁄(#effective indicators - #NE&LE) 

 

Table 4.SM.6: Legend criteria for the overall feasibility of the dimension-option combinations as shown in Table 4.11 for mitigation options and Table 4.12 for adaptation options. 

 

Legend of Table 4.11 and Table 

4.12 

Legend Criteria for the Overall Feasibility of each of the Dimension-Option Combinations 

NA #𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 = #𝑁𝐴 

 #𝑁𝐸&𝐿𝐸 > 0.5 ∗ #𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 

 𝐴𝑉𝐺 ≤ 1.5 

#𝑁𝐸&𝐿𝐸 ≤ 0.5 ∗ #𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 

 1.5 < 𝐴𝑉𝐺 ≤ 2.5 

#𝑁𝐸&𝐿𝐸 ≤ 0.5 ∗ #𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 

 𝐴𝑉𝐺 >  2.5 

#𝑁𝐸&𝐿𝐸 ≤ 0.5 ∗ #𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 
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4.SM.4.2 Feasibility Assessment of Mitigation Options as Presented in Section 4.5.2 

 

4.SM.4.2.1 Feasibility Assessment of Mitigation Options in Energy System Transitions 

 

Table 4.SM.7: Feasibility assessment of energy system transition mitigation options: wind (on-shore and off-shore), solar photovoltaic (PV), and bioenergy. For methodology, see 

4.SM.4.1. 

 

  Wind (On-shore and Off-shore) Solar PV Bioenergy 

 Evidence Robust Robust Robust 

 Agreement Medium High Medium 

E
co

n
o

m
ic

 

Cost-effectiveness  
IRENA, 2015, 2016; Shafiee et al., 

2016; Silva Herran et al., 2016; 

Voormolen et al., 2016; WEC, 2016 

 

 

Cengiz and Mamiş, 2015; IRENA, 

2015, 2016; Climate Council, 

2017a 

 

 

Brown, 2015; Creutzig et al., 2015; 

Patel et al., 2016 

 

Absence of 

distributional effects 
 

Corfee-Morlot et al., 2012; Greene 

and Geisken, 2013 

 

 

Corfee-Morlot et al., 2012; Toovey 

and Malin, 2016 

 

 

 Agoramoorthy et al., 2009; Ewing 

and Msangi, 2009; Arndt et al., 

2011a; Schoneveld et al., 2011; 

German and Schoneveld, 2012; 

Creutzig et al., 2013; Hunsberger et 

al., 2014; Popp et al., 2014; Persson, 

2015; Buck, 2016; Kline et al., 2017; 

Robledo-Abad et al., 2017; 

Stevanović et al., 2017  

Employment and 

productivity 

enhancement potential 

 
Clean Energy Council, 2012; 

Climate Council, 2016; IEA, 2017; 

IRENA, 2017 

 

 
Climate Council, 2016, 2017b; 

IEA, 2017d; IRENA, 2017b  
 

Parcell and Westhoff, 2006; Gohin, 

2008; Wicke et al., 2009; Arndt et al., 

2011a; Rathmann et al., 2012; 

Silalertruksa et al., 2012; Augusto 

Horta Nogueira and Silva Capaz, 

2013; Ribeiro, 2013 

T
ec

h
n

o
l

o
g

ic
a

l 

Technical scalability   

Al-Maghalseh and Maharmeh, 2016; 

Silva Herran et al., 2016; IRENA, 

2017a, b 

 IRENA, 2017a  

Soccol et al., 2009; Fiorese et al., 

2014; Vimmerstedt et al., 2015; 

Humpenöder et al., 2017 
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Maturity  
IRENA, 2017a; UNEP, 2017a 

 

 
Despotou, 2012 

 
 

Soccol et al., 2009; Corsatea, 2014; 

Fiorese et al., 2014; Creutzig et al., 

2015; Strzalka et al., 2017 

 

Simplicity  IRENA, 2016 

 

 
IRENA, 2016 

 
 

Demirbas and Demirbas, 2007; 

Surendra et al., 2014 

 

Absence of risk  
UNEP, 2017a 

 
 

Bahill and Chaves, 2013; UNEP 

2017a 
 

Carbon neutrality debate (Buchholz et 

al., 2016; Liu et al., 2018) 

In
st

it
u

ti
o

n
a

l 

Political acceptability  
Borch et al., 2014; Baker, 2015; 

Furtado and Perrot, 2015; Kar and 

Sharma, 2015; WEC, 2016; Bistline, 

2017; UNEP, 2017a 

 

 
Baker, 2015; UNEP, 2017a; Shukla 

et al., 2018  
 

Longstaff et al., 2015; Favretto et al., 

2017; Goetz et al., 2017 

 

(Timilsina et al., 2012; Broch et al., 

2013; Montefrio and Sonnenfeld, 

2013; Stattman et al., 2013; Aha and 

Ayitey, 2017) 

 

Legal and administrative 

acceptability 
 

Kar and Sharma, 2015; Bistline, 

2017; Comello et al., 2017; UNEP, 

2017a 

 

Shrimali and Rohra, 2012; Comello 

et al., 2017; UNEP, 2017a; Shukla 

et al., 2018 

 

 

Gamborg et al., 2014; Amos, 2016; 

Naiki, 2016 

 

Institutional capacity  

Corfee-Morlot et al., 2012; Kar and 

Sharma, 2015; Goodale and Milman, 

2016; Bistline, 2017; Comello et al., 

2017; UNEP, 2017a 

 

Corfee-Morlot et al., 2012; 

Shrimali and Rohra, 2012; Comello 

et al., 2017; UNEP, 2017a; Shukla 

et al., 2018 

LE 

Gamborg et al., 2014; Favretto et al., 

2017 

 

Transparency and 

accountability potential 
 

Eberhard et al., 2014; Furtado and 

Perrot, 2015; Swilling et al., 2016; 

Bistline, 2017; UNEP, 2017a 

 

 
Eberhard et al., 2014; Swilling et 

al., 2016; UNEP, 2017a 
 

Plevin et al., 2010; Schulze et al., 

2012; Zanchi et al., 2012; Pyörälä et 

al., 2014; Buchholz et al., 2014; Repo 

et al., 2015; Röder et al., 2015; 

Creutzig et al., 2015; Hammar et al., 

2015; Harris et al., 2015; Qin et al., 

2016; Röder and Thornley, 2016; 

Torssonen et al., 2016; DeCicco et al., 

2016; Baul et al., 2017; Robledo-

Abad et al., 2017; Daioglou et al., 

2017; Kilpeläinen et al., 2017; Booth, 

2018; Sterman et al., 2018 
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S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits 

(health, education) 
 

Silva Herran et al., 2016; Geels et 

al., 2017; IEA, 2017d; UNEP, 

2017a, b 

 

 

Geels et al., 2017; IEA, 2017d; 

UNEP, 2017a, b 

 

 

Kar et al., 2012; Anenberg et al., 

2013; Knoblauch et al., 2014; Porter 

et al., 2015; Weldu et al., 2017 

Public acceptance  

Kondili and Kaldellis, 2012; Borch 

et al., 2014; Heidenreich, 2015; 

Geraint and Gianluca, 2016; 

Brennan et al., 2017; Geels et al., 

2017; IEA, 2017d; Sütterlin and 

Siegrist, 2017; UNEP, 2017a, b 

 

Brennan et al., 2017; Geels et al., 

2017; IEA, 2017d; Sütterlin and 

Siegrist, 2017; UNEP, 2017a, b  

 

Khanal et al., 2010; Delshad and 

Raymond, 2013; Dragojlovic and 

Einsiedel, 2015; Fytili and 

Zabaniotou, 2017; Goetz et al., 2017; 

Moula et al., 2017 

 

Social and regional 

inclusiveness 
 

Geels et al., 2017; IEA 2017d; 

UNEP,. 2017a, b 

 

 

Geels et al., 2017; IEA 2017d; 

UNEP, 2017a, b 

 

 

Creutzig et al., 2013, 2015; Favretto 

et al., 2017; Robledo-Abad et al., 

2017 

 

Intergenerational equity  
Geels et al., 2017; IEA, 2017d; 

UNEP, 2017a, b 
 

Geels et al., 2017; IEA 2017d; 

UNEP, 2017a, b 
NE 

 

Human capabilities   

Bistline, 2017; Geels et al., 2017; 

IEA, 2017d; UNEP, 2017a, b 

 

 

Shrimali and Rohra, 2012; Geels et 

al., 2017; IEA, 2017d; UNEP, 

2017a, b; Shukla et al., 2018 

NE 

 

E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l 

Reduction of air 

pollution 
 

Clean Energy Council, 2012; 

Kondili and Kaldellis, 2012; UNEP, 

2017a, b   

 
UNEP, 2017a, b 

 
LE 

Kar et al., 2012; Anenberg et al., 

2013; Knoblauch et al., 2014; Porter 

et al., 2015; Weldu et al., 2017 

 

Reduction of toxic waste  
UNEP, 2017a, b 

 
 

UNEP, 2017a, b 

 
NE 

 

Reduction of water use  

UNEP, 2017a, b; Kondili & 

Kaldellis 2012 

 

 
UNEP, 2017a, b 

 
 

Gerbens-Leenes et al., 2009; 

Gheewala et al., 2011; Smith and 

Torn, 2013; Bonsch et al., 2016; 

Lampert et al., 2016; Mouratiadou et 

al., 2016; Smith et al., 2016; Wei et 

al., 2016; Mathioudakis et al., 2017 

 

Improved biodiversity  

UNEP, 2017a, b 

 

 
UNEP, 2017a, b 

 
 

Immerzeel et al., 2014; Dale et al., 

2015; Holland et al., 2015; Kline et 

al., 2015; Santangeli et al., 2016; Tarr 

et al., 2017 

  

 



 

 4SM-18 Total pages: 180 

G
eo

p
h

y
si

ca
l 

Physical feasibility 

(physical potentials) 
 

Al-Maghalseh & Maharmeh, 2016; 

UNEP, 2017a, b  

  

 
UNEP, 2017a, b 

 
 

Beringer et al., 2011; Klein et al., 

2014; Slade et al., 2014; Creutzig et 

al., 2015; Kraxner and Nordström, 

2015; Searle and Malins, 2015; Smith 

et al., 2016; Boysen et al., 2017b; 

Tokimatsu et al., 2017; Heck et al., 

2018 

Limited use of land  Silva Herran et al., 2016; Mohan, 

2017; UNEP, 2017a, b 

 

 
Mohan, 2017; UNEP, 2017a, b  

 
 

Popp et al., 2014; Creutzig et al., 

2015; Bonsch et al., 2016; Hammond 

and Li, 2016; Williamson, 2016; 

Robledo-Abad et al., 2017 

 

Limited use of scarce 

(geo)physical resources 
 

UNEP, 2017a, b 

 
 

UNEP, 2017a, b 

 
NA 

 

Global spread  UNEP, 2017a, b 

 

 
UNEP, 2017a, b 

 
 

Deng et al., 2015; Daioglou et al., 

2017; Robledo-Abad et al., 2017  
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Table 4.SM.8: Feasibility assessment of energy system transition mitigation options: electricity storage, power sector carbon capture and storage (CCS) and nuclear energy. For 

methodology, see 4.SM.4.1. 

 

  Electricity Storage Power Sector CCS Nuclear Energy 

 Evidence Robust  Robust Robust 

 Agreement Medium High High 

E
co

n
o

m
ic

 

Cost-effectiveness  
ACOLA, 2017; IRENA, 2015; 

Schmidt et al., 2017; Quann, 2017 
 

Studies indicate that CCS in the 

power sector is somewhere in the 

middle range of mitigation options. 

It is a significant additional cost 

but the scale is usually large, so 

much carbon dioxide is reduced 

(Rubin et al., 2015; Global CCS 

Institute, 2017; IEA, 2017a; 

Castrejón et al., 2018) 

 

Finon and Roques, 2013; 

Bruckner et al., 2014; Lovering 

et al., 2016; Koomey et al., 2017 

Absence of distributional 

effects 
 

Corfee-Morlot et al., 2012; ACOLA, 

2017 
NE 

 
NE  

Employment and productivity 

enhancement potential 
 

ACOLA, 2017; Climate Council, 

2017a; IEA, 2017d; IRENA, 2017b 
 

Higher than coal/gas without CCS, 

on par with wind, geothermal and 

nuclear (Wei et al., 2010; Koelbl et 

al., 2016; IEA, 2017a) 

 
Kenley et al., 2009; Wei et al., 

2010 

T
ec

h
n

o
lo

g
ic

a
l 

Technical scalability   ACOLA, 2017; IRENA, 2017a  

IPCC, 2005; de Coninck and 

Benson, 2014; Aminu et al., 2017  

Bruckner et al., 2014; IAEA, 

2018 (for current-generation 

plants) 

Maturity  ACOLA, 2017; IRENA, 2017a  

Zheng and Xu, 2014; Abanades et 

al., 2015; Bui et al., 2018; Qiu and 

Yang, 2018 

 Bruckner et al., 2014 

Simplicity  IRENA, 2016; ACOLA, 2017 LE 
Wei et al., 2010; IEA GHG, 2012 

 
 

Esteban and Portugal-Pereira, 

2014 

Absence of risk  ACOLA, 2017; UNEP, 2017a  

IPCC, 2005; Boot-Handford et al., 

2014; de Coninck and Benson, 

2014; Aminu et al., 2017 

 

 

Hirschberg et al., 2016; Rose 

and Sweeting, 2016; Wheatley 

et al., 2016 
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In
st

it
u

ti
o

n
a

l 
Political acceptability  

ACOLA, 2017; Nguyen et al., 2017; 

UNEP, 2017a 
 

de Coninck and Benson, 2014; 

Boot-Handford et al., 2014; Aminu 

et al., 2017 

 
Bruckner et al., 2014; IAEA, 

2017 

Legal and administrative 

acceptability 
 

ACOLA, 2017; Nguyen et al., 2017; 

UNEP, 2017a 
 

Boot-Handford et al., 2014; de 

Coninck and Benson, 2014; Dixon 

et al., 2015 

 

NE 

 
 

Institutional capacity  

Corfee-Morlot et al., 2012; ACOLA, 

2017; IEA, 2017a; Nguyen et al., 

2017; UNEP, 2017a 

LE 

Ashworth et al., 2015 

  

Tosa, 2015; Vivoda and Graetz, 

2015; Figueroa, 2016; Juraku, 

2016; Taebi and Mayer, 2017;  

Transparency and 

accountability potential 
 

ACOLA, 2017; Nguyen et al., 2017; 

UNEP, 2017a 
NE 

 
 Figueroa, 2016 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits (health, 

education) 
 

ACOLA, 2017; Geels et al., 2017; 

IEA, 2017c; UNEP, 2017a, b 
NE 

 

 

WHO, 2011; Endo et al., 2012; 

Nagataki et al., 2013; Bruckner 

et al., 2014; Ishikawa, 2014; 

Nakayachi et al., 2015; 

Beresford et al., 2016; Fridman 

et al., 2016; Hirschberg et al., 

2016; Oe et al., 2016; Suzuki et 

al., 2016; Kawaguchi and 

Yukutake, 2017 

Public acceptance  

ACOLA, 2017; Climate Council, 

2017a; Geels et al., 2017; IEA, 

2017c; UNEP, 2017a, b 

 

Seigo et al., 2014; Ashworth et al., 

2015; Aminu et al., 2017 

 

 

Bruckner et al., 2014; Kim et al., 

2014; Diaz-Maurin and 

Kovacic, 2015; Murakami et al., 

2015; Nishikawa et al., 2016; 

Tsujikawa et al., 2016; Huhtala 

and Remes, 2017; IAEA, 2017; 

Wu, 2017; Ho et al., 2018 

Social and regional 

inclusiveness 
 

ACOLA, 2017; Geels et al., 2017; 

IEA, 2017d; UNEP, 2017a, b 

 

NA 

 

NE  

Intergenerational equity  
ACOLA, 2017; Geels et al., 2017; 

IEA, 2017c; UNEP, 2017a, b 
 

Alcalde et al., 2018 

 
 Bruckner et al., 2014 

Human capabilities   

ACOLA, 2017; Geels et al., 2017; 

IEA, 2017d; Newman et al., 2017; 

UNEP, 2017a, b 

 

Shackley et al., 2009; IEA GHG, 

2012 

 

NE  

E
n

v
i

ro
n

m
en

t

a
l/

ec

o
lo

g
i

ca
l 

Reduction of air pollution  
ACOLA, 2017; UNEP, 2017a, b 

 
 

Koornneef et al., 2008; Odeh and 

Cockerill, 2008; Pehnt and Henkel, 
 Cheng and Hammond, 2017 
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2009; Korre et al., 2010; Nie et al., 

2011; Modahl et al., 2012; Corsten 

et al., 2013; Cuéllar-Franca and 

Azapagic, 2015; Gibon et al., 2017 

Reduction of toxic waste  ACOLA, 2017; UNEP, 2017a, b  

Koornneef et al., 2008; Odeh and 

Cockerill, 2008; Pehnt and Henkel, 

2009; Korre et al., 2010; Nie et al., 

2011; Modahl et al., 2012; Corsten 

et al., 2013; Cuéllar-Franca and 

Azapagic, 2015; Gibon et al., 2017 

 Bruckner et al., 2014 

Reduction of water use  ACOLA, 2017; UNEP, 2017a, b  

Koornneef et al., 2008, 2012a; 

Odeh and Cockerill, 2008; Pehnt 

and Henkel, 2009; Korre et al., 

2010; Nie et al., 2011; Modahl et 

al., 2012; Corsten et al., 2013; 

Cooney et al., 2015; Cuéllar-

Franca and Azapagic, 2015; Gibon 

et al., 2017 

 

Bailly du Bois et al., 2012; Kato 

et al., 2012; Sakaguchi et al., 

2012; Tsumune et al., 2012; 

Ueda et al., 2013; Bruckner et 

al., 2014 

Improved biodiversity NA   

Koornneef et al., 2008, 2012a; 

Odeh and Cockerill, 2008; Pehnt 

and Henkel, 2009; Korre et al., 

2010; Nie et al., 2011; Modahl et 

al., 2012; Corsten et al., 2013; 

Cuéllar-Franca and Azapagic, 

2015; Gibon et al., 2017 

 Cheng and Hammond, 2017 

G
eo

p
h

y
si

ca
l 

Physical feasibility (physical 

potentials) 
 

ACOLA, 2017; UNEP, 2017a, b 

 
 

IPCC, 2005; de Coninck and 

Benson, 2014; Scott et al., 2015 
 Bruckner et al., 2014 

Limited use of land  ACOLA, 2017; UNEP, 2017a, b  
Non-controversial so not 

investigated 
 Cheng and Hammond, 2017 

Limited use of scarce 

(geo)physical resources 
 

ACOLA, 2017; Newman et al., 

2017; UNEP, 2017a, b 
 

IPCC, 2005; de Coninck and 

Benson, 2014; Scott et al., 2015 

 

On storage capacity, otherwise no 

issues 

 
Bruckner et al., 2014; NEA, 

2016 

Global spread  
ACOLA, 2017; UNEP, 2017a, b 

 
 

IPCC, 2005; de Coninck and 

Benson, 2014 
 IAEA, 2017 
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4.SM.4.2.2 Feasibility Assessment of Mitigation Options in Land and Ecosystem Transitions 

 
Table 4.SM.9: Feasibility assessment of the land and ecosystem transition mitigation options: reduced food wastage and efficient food production, dietary shifts, sustainable 

intensification of agriculture and ecosystems restoration. For methodology, see 4.SM.4.1. 

 

  
Reduced Food Wastage and  

Efficient Food Production 
Dietary Shifts 

Sustainable Intensification of 

Agriculture 
Ecosystems Restoration 

 Evidence 
Robust Medium Medium Medium 

 Agreement 
High High High High 

E
co

n
o

m
ic

 

Cost-effectiveness  

FAO, 2013a; Thyberg and 

Tonjes, 2016; Hebrok and 

Boks, 2017 

LE FAO, 2013b LE Havlik et al., 2014  

Kindermann et al., 2008; 

Dang Phan et al., 2014; 

Overmars et al., 2014; 

Griscom et al., 2017; 

Ickowitz et al., 2017; Phan 

et al., 2017; Rakatama et 

al., 2017 

Absence of 

distributional effects 
 

Porpino et al., 2015; 

Thyberg and Tonjes, 2016; 

Alexander et al., 2017; 

Hebrok and Boks, 2017 

LE 
Żukiewicz-Sobczak et al., 

2014 
LE A. Smith et al., 2017  

Caplow et al., 2011; 

German and Schoneveld, 

2012; Atela et al., 2014; 

Sunderlin et al., 2014; 

Howson and Kindon, 2015; 

Erb et al., 2016; Poudyal et 

al., 2016 

Employment and 

productivity 

enhancement potential 

 

Shepon et al., 2016; 

Thyberg and Tonjes, 2016; 

Alexander et al., 2017; 

Popp et al., 2017 

 

Haggblade et al., 2015; 

Tschirley et al., 2015; 

Berti and Mulligan, 2016; 

Blay-Palmer et al., 2016; 

Shepon et al., 2016; 

Alexander et al., 2017; 

Clark and Tilman, 2017 

 

 

Foley et al., 2011; 

Harvey et al., 2014; 

Clark and Tilman, 2017; 

Griscom et al., 2017 

 

Brander et al., 2013; 

Neimark et al., 2016; 

Fenger et al., 2017; Jena et 

al., 2017, but are not 

uncontested (Blackman and 

Rivera, 2011; Hidayat et 

al., 2015; Oya et al., 2017) 

T
ec

h
n

o
lo

g
ic

a

l Technical scalability   

Högy et al., 2009; 

DaMatta et al., 2010; Lin 

et al., 2013; Challinor et 

al., 2014; 

Papargyropoulou et al., 

 

Hallström et al., 2015; 

Alexander et al., 2017; 

Clark and Tilman, 2017 

 

Harvey et al., 2014; 

Pretty and Bharucha, 

2014; Petersen and 

Snapp, 2015; Clark and 

Tilman, 2017; Griscom 

 

P. Smith et al., 2014, Table 

11.22; Houghton et al., 

2015; Griscom et al., 2017; 

Houghton and Nassikas, 

2018 
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2014; De Souza et al., 

2015; Hebrok and Boks, 

2017 

et al., 2017; Waldron et 

al., 2017; P. Adhikari et 

al., 2018; Ramankutty et 

al., 2018 

Maturity NE  NE  LE 

Pretty and Bharucha, 

2014; Petersen and 

Snapp, 2015 

 

McLaren, 2012; P. Smith et 

al., 2012; Goetz et al., 2015 

Simplicity NE  NE  NE   

(P. Smith et al., 2014; Erb 

et al., 2017; Griscom et al., 

2017) 

 

 

Absence of risk  

Lin et al., 2013; 

Papargyropoulou et al., 

2014; Hebrok and Boks, 

2017 

 

Hallström et al., 2015; 

Alexander et al., 2017; 

Clark and Tilman, 2017; 

Röös et al., 2017 

 

Harvey et al., 2014; 

Clark and Tilman, 2017; 

Griscom et al., 2017; 

Waldron et al., 2017; P. 

Adhikari et al., 2018; 

Ramankutty et al., 2018; 

Sparovek et al., 2018 

 

P. Smith et al., 2014 

Table 11.9  

*No major breakthroughs 

since AR5 

In
st

it
u

ti
o

n
a

l 

Political acceptability  

Refsgaard and Magnussen, 

2009; Lin et al., 2013; 

Thornton and Herrero, 

2014; L. Jones et al., 2016; 

Thyberg and Tonjes, 2016; 

Singh et al., 2017; C.J. 

White et al., 2017 

NE   

Smith and Gregory, 

2013; Godfray and 

Garnett, 2014; Harvey et 

al., 2014; Sparovek et 

al., 2018 

 

Cronin et al., 2016; Di 

Gregorio et al., 2017; 

Nantongo, 2017 

Legal and 

administrative 

acceptability 

NE  NE   

Smith and Gregory, 

2013; Harvey et al., 

2014 

 

 Sunderlin et al., 2014 

 

Institutional capacity  

Refsgaard and Magnussen, 

2009; Thornton and 

Herrero, 2014; Briley et 

al., 2015; L. Jones et al., 

2016; Thyberg and Tonjes, 

2016; Singh et al., 2017; 

C.J. White et al., 2017 

NE   

Smith and Gregory, 

2013; Harvey et al., 

2014; Lu et al., 2015; 

Petersen and Snapp, 

2015; Mungai et al., 

2016; P. Adhikari et al., 

2018; Sparovek et al., 

2018 

 

Unruh, 2011; Marion 

Suiseeya and Caplow, 

2013; Wylie et al., 2016 
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Transparency and 

accountability potential 
 

Briley et al., 2015; L. 

Jones et al., 2016; Thyberg 

and Tonjes, 2016; Singh et 

al., 2017; C.J. White et al., 

2017 

NE  NE   

Strassburg et al., 2014; 

Neimark et al., 2016 

 
S

o
ci

o
-c

u
lt

u
ra

l 

Social co-benefits 

(health, education) 
 

Lin et al., 2013; Tilman 

and Clark, 2014; 

Wellesley et al., 2015; 

Thyberg and Tonjes, 2016; 

Hebrok and Boks, 2017; 

Popp et al., 2017 

 

Alexander et al., 2016, 

2017; Stoll-Kleemann and 

Schmidt, 2017; Ritchie et 

al., 2018 

 

Pretty et al., 2011; Jones 

et al., 2012; Smith and 

Gregory, 2013; Harvey 

et al., 2014; Falconnier 

et al., 2018; Ramankutty 

et al., 2018; Sparovek et 

al., 2018 

 

Caplow et al., 2011; 

Spencer et al., 2017 

 

Public acceptance  
Lin et al., 2013; Popp et 

al., 2017 
 

Alexander et al., 2016, 

2017; Stoll-Kleemann and 

Schmidt, 2017 

 

Smith and Gregory, 

2013; Godfray and 

Garnett, 2014; Harvey et 

al., 2014; P. Adhikari et 

al., 2018; Ramankutty et 

al., 2018; Sparovek et 

al., 2018 

 

Lin et al., 2012; Kragt et 

al., 2016; Scholte et al., 

2016; Thompson et al., 

2016; Braun et al., 2017 

 

Social and regional 

inclusiveness 
 

Lin et al., 2013; Tilman 

and Clark, 2014; Hebrok 

and Boks, 2017; Popp et 

al., 2017 

 

Khoury et al., 2014; 

Tilman and Clark, 2014; 

Alexander et al., 2016, 

2017; Stoll-Kleemann and 

Schmidt, 2017; Ritchie et 

al., 2018 

 

Pretty et al., 2011; Smith 

and Gregory, 2013; 

Franke et al., 2014; 

Harvey et al., 2014; 

Pretty and Bharucha, 

2014; Petersen and 

Snapp, 2015; Struik and 

Kuyper, 2017; 

Ramankutty et al., 2018; 

Sparovek et al., 2018 

 

Ribot and Larson, 2012; 

Jagger et al., 2014; Lyons 

and Westoby, 2014; 

Brimont et al., 2015; 

Howson and Kindon, 2015 

 

Intergenerational equity NE  LE  Bajželj et al., 2014 NE   

Pascuala et al., 2010; 

Unruh, 2011 

*No major breakthroughs 

since AR5  

Human capabilities   

Tilman and Clark, 2014; 

Thyberg and Tonjes, 2016; 

Hebrok and Boks, 2017 

 
Tilman and Clark, 2014; 

Ritchie et al., 2018 
LE 

Baltenweck et al., 2003; 

Pretty and Bharucha, 

2014; Mungai et al., 

2016 

LE 

P. Smith et al., 2014 

Table 11.5  

*No major breakthroughs 

since AR5  
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E
n

v
ir

o
n

m
e
n

ta
l/

 e
co

lo
g

ic
a

l 
Reduction of air 

pollution 
LE Thyberg and Tonjes, 2016  

Tilman and Clark, 2014; 

Hallström et al., 2015; 

Ritchie et al., 2018 

NE  NE 

 

Reduction of toxic 

waste 
NE  NE   

Stevens and Quinton, 

2009; Tilman et al., 

2011a; Pretty and 

Bharucha, 2014; 

Soussana and Lemaire, 

2014; Lu et al., 2015; 

Ramankutty et al., 2018 

NE 

 

Reduction of water use  

Bajželj et al., 2014; West 

et al., 2014; Westhoek et 

al., 2014; Thyberg and 

Tonjes, 2016 

 

Bajželj et al., 2014; West 

et al., 2014; Westhoek et 

al., 2014 

LE 
Pretty and Bharucha, 

2014 
 

Brander et al., 2013; 

Devaraju et al., 2015; van 

Noordwijk et al., 2016; 

Ellison et al., 2017 

Improved biodiversity  
J.A. Johnson et al., 2014; 

Ramankutty et al., 2018 
 

Tilman and Clark, 2014; 

Hallström et al., 2015; 

Clark and Tilman, 2017; 

Ramankutty et al., 2018 

 

Pretty and Bharucha, 

2014; Waldron et al., 

2017 

 

Rey Benayas et al., 2009; 

Bullock et al., 2011; Jantz 

et al., 2014; Veldman et al., 

2015; Jantke et al., 2016; 

Kaiser-Bunbury et al., 2017 

G
eo

p
h

y
si

ca
l 

Physical feasibility 

(physical potentials) 
 

Cherubin et al., 2015; Ivy 

et al., 2017 
NE  NE   

Canadell and Schulze, 

2014; Houghton et al., 

2015; Erb et al., 2016, 

2017; Griscom et al., 2017; 

Houghton and Nassikas, 

2018 

 

REDD+ (Canadell and 

Raupach, 2008; Strassburg 

et al., 2014)  

Limited use of land  

Thyberg and Tonjes, 2016; 

Ramankutty et al., 2018; 

Sparovek et al., 2018 

LE 

Shepon et al., 2016; 

Benton et al., 2018; 

Ramankutty et al., 2018 

 
Harvey et al., 2014; 

Clark and Tilman, 2017 
 

Strassburg et al., 2014; 

Humpenöder et al., 2015; 

Erb et al., 2016; 

Kreidenweis et al., 2016 

 

Limited use of scarce 

(geo)physical resources 
NE  NE   Foley et al., 2011 NE 

 

Global spread LE Thyberg and Tonjes, 2016 NE  LE 
Tilman et al., 2011b; 

Havlik et al., 2014; 
 

(Strassburg et al., 2014; 

Erb et al., 2017) 
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Petersen and Snapp, 

2015; Mungai et al., 

2016 
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4.SM.4.2.3 Feasibility Assessment of Mitigation Options in Urban and Infrastructure System Transitions 

 

Table 4.SM.10: Feasibility assessment of urban and infrastructure system transition mitigation options: land use and urban planning; electric cars and buses; and sharing schemes. 

For methodology, see 4.SM.4.1. 

 
 Land Use and Urban Planning Electric Cars and Buses 

 

Sharing Schemes 

 

 Evidence 
Robust Medium Limited 

 Agreement 
Medium High Medium 

E
co

n
o

m
ic

 

Cost-effectiveness 

 

Trubka et al., 2010; Nahlika and 

Chester, 2014; Ahlfeldt and 

Pietrostefani, 2017; Lee and 

Erickson, 2017; Sharma, 2018 

 

Peterson and Michalek, 2013; 

IEA, 2017b 

 
 

Ambrosino et al., 2016; Cheyne 

and Imran, 2016; Kent and 

Dowling, 2016 

 

Absence of distributional 

effects 

 

Colenbrander et al., 2015; Lwasa, 

2017; Broekhoff et al., 2018; Teferi 

and Newman, 2018; Wiktorowicz et 

al., 2018 

 

Glazebrook and Newman, 2018; 

Sivak and Schoettle, 2018 

 
 

Gomez et al., 2015; Ambrosino 

et al., 2016; Kent and Dowling, 

2016 

 

Employment and 

productivity enhancement 

potential 

 

Ambrosino et al., 2016; Ahlfeldt and 

Pietrostefani, 2017; Broto, 2017; 

Gao and Newman, 2018; Han et al., 

2018 

 

Whitelegg, 2016; IEA, 2017b 

 
 

Sweet, 2014; Cheyne and Imran, 

2016 

 

T
ec

h
n

o
lo

g
ic

a
l Technical scalability  

 

Broekhoff et al., 2018; Sharma, 

2018; R. Zhang et al., 2018 

 

 

Brown et al., 2010; IEA, 2017b 

   

Broch et al., 2013; Ambrosino et 

al., 2016; Kent and Dowling, 

2016; Reis et al., 2016 

Maturity 

 

Parnell, 2015; Newman et al., 2017 

  

Whitelegg, 2016; IEA, 2017b 

  

Le Vine et al., 2014; Kent and 

Dowling, 2016 

 

Simplicity 
 

Lilford et al., 2017; Newman et al., 

2017 
 

IEA, 2017b; Glazebrook and 

Newman, 2018 
 

Ambrosino et al., 2016; Giuliano 

and Hanson, 2017  

Absence of risk 
LE 

Newman et al., 2017 

 
 

Whitelegg, 2016; IEA, 2017b 

 
 

Ambrosino et al., 2016; Kent and 

Dowling, 2016 

In
st

it
u

ti
o

n
a

l 

Political acceptability  

Broekhoff et al., 2018; Grandin et 

al., 2018  

Bakker and Trip, 2013; IEA, 

2017b 

 

 

Le Vine et al., 2014; Ambrosino 

et al., 2016 

Legal and administrative 

acceptability 
 

Broekhoff et al., 2018; Grandin et 

al., 2018 
 

Wirasingha et al., 2008; IEA, 

2017b 
 

Cannon and Summers, 2014; Le 

Vine et al., 2014 
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Institutional capacity  
Geneletti et al., 2017; Chau et al., 

2018 
 

Wirasingha et al., 2008; IEA, 

2017b 
 

Kent and Dowling, 2016; 

Glazebrook and Newman, 2018 

Transparency and 

accountability potential 
 

Moglia et al., 2018   

 
 

Wirasingha et al., 2008; IEA, 

2017b 
 

Newman et al., 2017; Glazebrook 

and Newman, 2018  

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits (health, 

education) 

 

Nahlika and Chester, 2014; Jillella 

et al., 2015; Chava and Newman, 

2016; Su et al., 2016; Chava et al., 

2018a, b 

 

IEA, 2017b; Newman et al., 2017 

 
 

de Groot and Steg, 2007; Rojas-

Rueda et al., 2012; Cheyne and 

Imran, 2016; Kent and Dowling, 

2016 

Public acceptance 

 

Jillella et al., 2015; Chava and 

Newman, 2016; Chava et al., 2018a, 

b; Moglia et al., 2018 
 

Zhang et al., 2011; Bockarjova 

and Steg, 2014; Liao et al., 2017 

 
 

de Groot and Steg, 2007; Le Vine 

et al., 2014; Ambrosino et al., 

2016; Kent and Dowling, 2016; 

Reis et al., 2016  

Social and regional 

inclusiveness 

 

Jillella et al., 2015; Chava and 

Newman, 2016; Colenbrander et al., 

2017; Endo et al., 2017; Lwasa, 

2017; Broekhoff et al., 2018; Chava 

et al., 2018a, b; Teferi and Newman, 

2018 

LE 

Newman et al., 2017 

 

 

Cheyne and Imran, 2016; Kent 

and Dowling, 2016 

 

Intergenerational equity 

LE 

Newman et al., 2017 

  

Newman et al., 2017; Kenworthy 

and Schiller, 2018 

 

 

Le Vine et al., 2014; Cheyne and 

Imran, 2016; Glazebrook and 

Newman, 2018 

Human capabilities  
 

Moglia et al., 2018 

 
 

Wirasingha et al., 2008; Newman 

et al., 2017 
 

Reis et al., 2016; Newman et al., 

2017 

E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l 

Reduction of air pollution 

 

Zubelzu et al., 2015; Glazebrook 

and Newman, 2018; Sharma, 2018; 

Thomson and Newman, 2018; R. 

Zang et al., 2018 

 

 

Sioshansi and Denholm, 2009; 

Kenworthy and Schiller, 2018 

  

Le Vine et al., 2014; Newman 

and Kenworthy, 2015; Nijland 

and van Meerkerk, 2017; 

Glazebrook and Newman, 2018 

 

Reduction of toxic waste 

LE 

Thomson and Newman, 2018 

 LE 

 Hawkins et al., 2013 

  

Newman and Kenworthy, 2015; 

Newman et al., 2017; Glazebrook 

and Newman, 2018 

Reduction of water use 

 

Serrao-Neumann et al., 2017 

 LE 

Glazebrook and Newman, 2018 

   

Stephan and Crawford, 2016; 

Newman et al., 2017 

 

Improved biodiversity 

 

Huang et al., 2018 

 LE 

Glazebrook and Newman, 2018 

   

Newman and Kenworthy, 2015; 

Newman et al., 2017; Glazebrook 

and Newman, 2018 
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G
eo

p
h

y
si

ca
l 

Physical feasibility (physical 

potentials) 
 

Hsieh et al., 2017; Wiktorowicz et 

al., 2018 
 

Glazebrook and Newman, 2018; 

Kenworthy and Schiller, 2018  
 

Kent and Dowling, 2016; 

Newman et al., 2017 

Limited use of land 

 

Hsieh et al., 2017 

 
 

Glazebrook and Newman, 2018; 

Kenworthy and Schiller, 2018 

  

Kent and Dowling, 2016; 

Newman et al., 2017; Hamilton 

and Wichman, 2018 

 

Limited use of scarce 

(geo)physical resources 

LE 

Thomson and Newman, 2018 

 
 

Newman et al., 2017; Kenworthy 

and Schiller, 2018 

 
 

Newman and Kenworthy, 2015; 

Newman et al., 2017; Glazebrook 

and Newman, 2018 

 

Global spread 
 

Pacheco-Torres et al., 2017; 

Glazebrook and Newman, 2018 
 

Dhar et al., 2017, 2018; Newman 

et al., 2017 
 

Le Vine et al., 2014; Kent and 

Dowling, 2016 
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Table 4.SM.11: Feasibility assessment of urban and infrastructure system transition mitigation options: public transport, non-motorised transport, and aviation and shipping. For 

methodology, see 4.SM.4.1. 

  
Public Transport Non-motorised Transport Aviation and Shipping 

 Evidence 
Robust Robust Medium 

 Agreement 
Medium High Medium 

E
co

n
o

m
ic

 

Cost-effectiveness  

Nahlika and Chester, 2014; Bouf 

and Faivre D’arcier, 2015; Lee 

and Erickson, 2017; Lin and Du, 

2017; Glazebrook and Newman, 

2018; Kenworthy and Schiller, 

2018 

 

 

Deenihan and Caulfield, 2014; 

Gössling and Choi, 2015; 

MacDonald Gibson et al., 2015; 

V. Brown et al., 2016; Matan and 

Newman, 2016; Rajé and 

Saffrey, 2016; Litman, 2017, 

2018 

 

Corbett et al., 2009; Dessens et 

al., 2014; Cames et al., 2015a, b 

 

Absence of distributional 

effects 
 

Kenworthy and Schiller, 2018; 

Linovski et al., 2018; Yangka and 

Newman, 2018 

 

 

Newman and Kenworthy, 2015; 

Matan and Newman, 2016; 

Jensen et al., 2017; Lohmann and 

Gasparini, 2017; Litman, 2018 

LE 

Cames et al., 2015a 

 

Employment and productivity 

enhancement potential 
 

Hazledine et al., 2017; Gao and 

Newman, 2018; Kenworthy and 

Schiller, 2018 

 

Matan and Newman, 2016; 

Litman, 2017, 2018; Rohani and 

Lawrence, 2017 

 

Cames et al., 2015a; Gencsü and 

Hino, 2015 

 

T
ec

h
n

o
lo

g
ic

a
l 

Technical scalability   

Kenworthy and Schiller, 2018; 

Yangka and Newman, 2018; R. 

Zhang et al., 2018 

 

 

Newman and Kenworthy, 2015; 

Matan and Newman, 2016; Reis 

et al., 2016; Stevenson et al., 

2016 

 

Dessens et al., 2014; Gencsü and 

Hino, 2015 

 

Maturity  

Newman et al., 2017; Kenworthy 

and Schiller, 2018 

 
 

Newman et al., 2015, 2017; 

Matan and Newman, 2016; 

Stevenson et al., 2016; Jensen et 

al., 2017 

 

Corbett et al., 2009; Cames et al., 

2015b 

Simplicity  

Newman et al., 2017; Kenworthy 

and Schiller, 2018 

 

 

Matan and Newman, 2016; Rajé 

and Saffrey, 2016; Stevenson et 

al., 2016; Litman, 2017, 2018 

LE 

Dessens et al., 2014 

 

Absence of risk  

Mohamed et al., 2017; 

Kenworthy and Schiller, 2018 

 

 

Matan and Newman, 2016; 

Stevenson et al., 2016; Lohmann 

and Gasparini, 2017 

LE 

Dessens et al., 2014 
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In
st

it
u

ti
o

n
a

l 
Political acceptability  

Mohamed et al., 2017; Wijaya et 

al., 2017; Gao and Newman, 

2018; Glazebrook and Newman, 

2018; Kenworthy and Schiller, 

2018; Sharma, 2018; Yangka and 

Newman, 2018 

 

Newman and Kenworthy, 2015; 

Giles-Corti et al., 2016; Matan 

and Newman, 2016; Jensen et al., 

2017; Litman, 2017, 2018; 

McCosker et al., 2018 

 

 

Smale et al., 2012; Bows-Larkin, 

2015; Sikorska, 2015; Shi, 2016; 

Zhang, 2016 

 

Legal and administrative 

acceptability 
 

Kenworthy and Schiller, 2018; 

Yangka and Newman, 2018 

 
 

Lohmann and Gasparini, 2017; 

Litman, 2018 

 
 

Smale et al., 2012; Bows-Larkin, 

2015; Sikorska, 2015; Shi, 2016; 

Zhang, 2016 

 

Institutional capacity  

Newman et al., 2017; Kenworthy 

and Schiller, 2018; Sharma, 2018 

 
 

Reis et al., 2016; Litman, 2018 

 
 

Smale et al., 2012; Bows-Larkin, 

2015; Sikorska, 2015; Shi, 2016; 

Zhang, 2016 

 

Transparency and 

accountability potential 
LE 

Bouf and Faivre D’arcier, 2015; 

Kenworthy and Schiller, 2018  

Newman and Kenworthy, 2015; 

Matan and Newman, 2016; Lah, 

2017 

 

Smale et al., 2012; Bows-Larkin, 

2015; Sikorska, 2015; Shi, 2016; 

Zhang, 2016 

S
o

ci
o

-c
u

lt
u

ra
l Social co-benefits (health, 

education) 
 

Steg, 2003; Gatersleben and 

Uzzell, 2007; Nahlika and 

Chester, 2014; Lin and Du, 2017; 

Yangka and Newman, 2018 

 

 

Woodcock et al., 2009; Maibach 

et al., 2009; Deenihan and 

Caulfield, 2014; Mansfield and 

Gibson, 2015; Matan et al., 2015; 

Gilderbloom et al., 2015; 

MacDonald Gibson et al., 2015; 

V. Brown et al., 2016; Matan and 

Newman, 2016; Rajé and 

Saffrey, 2016; Stevenson et al., 

2016; Giles-Corti et al., 2016; 

Maizlish et al., 2017; Jensen et 

al., 2017; Lah, 2017; Lohmann 

and Gasparini, 2017; Litman, 

2018 

LE 

EEA, 2017 

 

Public acceptance  

Steg, 2003; Wijaya et al., 2017 

 

 

Gatersleben and Uzzell, 2007; 

Matan and Newman, 2016; 

Jensen et al., 2017; Lohmann and 

Gasparini, 2017; Newman et al., 

2017 

 

Bows-Larkin, 2015; Sikorska, 

2015; EEA, 2017 

 



 

 4SM-32 Total pages: 180 

Social and regional 

inclusiveness 
 

Nahlika and Chester, 2014; 

Yangka and Newman, 2018 

 

 

Gilderbloom et al., 2015; 

Stevenson et al., 2016; Jensen et 

al., 2017 

LE 

EEA, 2017 

 

Intergenerational equity  

Newman et al., 2017; Kenworthy 

and Schiller, 2018; Yangka and 

Newman, 2018 

 

Rajé and Saffrey, 2016; Litman, 

2018 

 

LE 

Gencsü and Hino, 2015 

 

Human capabilities   

Newman et al., 2017; Kenworthy 

and Schiller, 2018 

 

 

Reis et al., 2016; Newman et al., 

2017 

 

 

Bows-Larkin, 2015; Sikorska, 

2015; EEA, 2017b 

E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l 

Reduction of air pollution  

Glazebrook and Newman, 2018; 

Kenworthy and Schiller, 2018; 

Yangka and Newman, 2018; R. 

Zhang et al., 2018 

 

Woodcock et al., 2009; 

Stevenson et al., 2016; Maizlish 

et al., 2017 

 

 

Dessens et al., 2014; Cames et al., 

2015a; Bouman et al., 2017; 

EEA, 2017 

 

Reduction of toxic waste LE 
Newman et al., 2017 

 
LE 

Newman et al., 2017 

 
 

Maragkogianni et al., 2016; EEA, 

2017 

Reduction of water use LE 

Newman et al., 2017 

LE 

Newman et al., 2017 

 

Maragkogianni et al., 2016; EEA, 

2017 

Improved biodiversity  
Newman et al., 2017; Kenworthy 

and Schiller, 2018 
LE 

Newman et al., 2017 

 
 

Maragkogianni et al., 2016; EEA, 

2017 

G
eo

p
h

y
si

ca
l 

Physical feasibility (physical 

potentials) 
 

Kenworthy and Schiller, 2018; 

Yangka and Newman, 2018 
 

Panter et al., 2016; Lah, 2017 

 
 

Bows-Larkin, 2015; Sikorska, 

2015; EEA, 2017 

Limited use of land  

Ahmad et al., 2016; Kenworthy 

and Schiller, 2018 

 
 

McCormack and Shiell, 2011; 

Stevenson et al., 2016; Litman, 

2017; Newman et al., 2017; Ye et 

al., 2018 

LE 

EEA, 2017 

 

Limited use of scarce 

(geo)physical resources 
 

Lin and Du, 2017; Kenworthy 

and Schiller, 2018 
 

Newman et al., 2017; Ye et al., 

2018 
 

de Jong et al., 2017; EEA, 2017 

 

Global spread  

Bouf and Faivre D’arcier, 2015; 

Glazebrook and Newman, 2018; 

Kenworthy and Schiller, 2018 

 

Stevenson et al., 2016; Litman, 

2017; Lohmann and Gasparini, 

2017 

 

Maragkogianni et al., 2016; EEA, 

2017 
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Table 4.SM.12: Feasibility assessment of urban and infrastructure system transition mitigation options: smart grids, efficient appliances and low/zero-energy buildings. For 

methodology, see 4.SM.4.1. 

 

  
Smart Grids Efficient Appliances Low/Zero-energy Buildings 

 Evidence 
Medium Medium Medium 

 Agreement 
Medium High High 

E
co

n
o

m
ic

 

Cost-effectiveness  

Crispim et al., 2014; Hall and 

Foxon, 2014; Marques et al., 2014; 

Muench et al., 2014; Foxon et al., 

2015; Bigerna et al., 2016; Ramos et 

al., 2016; Schachter and Mancarella, 

2016 

 

 

McNeil and Bojda, 2012; Garg et al., 

2017; Gerke et al., 2017 

 

 

Neroutsou and Croxford, 2016; 

Balaban and Puppim de Oliveira, 

2017; Ballarini et al., 2017; Stocker 

and Koch, 2017; Carlson and 

Pressnail, 2018 

 

Absence of distributional 

effects 
 

Green and Newman, 2017; 

Neureiter, 2017; Wiktorowicz et al., 

2018 

 

Rao, 2013; Rao et al., 2016; McInnes, 

2017; Rao and Ummel, 2017 

 

 

Figus et al., 2017; McInnes, 2017 

 

Employment and 

productivity enhancement 

potential 

 

Naus et al., 2014; Foxon et al., 2015; 

Shomali and Pinkse, 2016 

 

 

 

 

Ryan and Campbell, 2012; Cambridge 

Econometrics, 2015; Garrett-Peltier, 

2017; Hartwig et al., 2017 
 

Scott et al., 2008; Ryan and 

Campbell, 2012; Urge-Vorsatz et al., 

2012; Mirasgedis et al., 2014; 

Cambridge Econometrics, 2015; 

Hartwig et al., 2017; Krarti and 

Dubey, 2018 

T
ec

h
n

o
lo

g
ic

a
l 

Technical scalability   

Connor et al., 2014; Crispim et al., 

2014; Zheng et al., 2014; 

Derakhshan et al., 2016; Ramos et 

al., 2016 

 

Roland and Wood, 2009; Parikh and 

Parikh, 2016; Rao et al., 2016; Rao 

and Ummel, 2017; Salleh et al., 2018 

 

 

Hartwig et al., 2017; Krarti et al., 

2017 

 

Maturity  

Abi Ghanem and Mander, 2014; 

Crispim et al., 2014; Zheng et al., 

2014; Clerici et al., 2015; 

Derakhshan et al., 2016; Ramos et 

al., 2016; Otuoze et al., 2018 

 

Zogg et al., 2009; Diczfalusy and 

Taylor, 2011; Rao et al., 2016; Rao 

and Ummel, 2017 

 

 

Diczfalusy and Taylor, 2011; 

González et al., 2017; Jain et al., 

2017b 

 

Simplicity  

Abi Ghanem and Mander, 2014; 

Crispim et al., 2014; Giannantoni, 

2014; Zheng et al., 2014; Clerici et 

al., 2015; Derakhshan et al., 2016; 

 

Reyna and Chester, 2017 

 
LE 

Salvalai et al., 2017 
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Ramos et al., 2016; Otuoze et al., 

2018 

Absence of risk  

Crispim et al., 2014; Naus et al., 

2014; Clerici et al., 2015; Bigerna et 

al., 2016; Ramos et al., 2016; 

Otuoze et al., 2018 

NE 

 

NE 

 

In
st

it
u

ti
o

n
a

l 

Political acceptability  

Crispim et al., 2014; Hall and 

Foxon, 2014; Marques et al., 2014; 

Naus et al., 2014; Bulkeley et al., 

2016; Shomali and Pinkse, 2016; 

Vesnic-Alujevic et al., 2016; 

Meadowcroft et al., 2018 

 

Pereira and da Silva, 2017; Ringel, 

2017 

 
 

Pereira and da Silva, 2017; Ringel, 

2017 

 

Legal and administrative 

acceptability 
 

Crispim et al., 2014; Marques et al., 

2014; Foxon et al., 2015; Bigerna et 

al., 2016 

 

Pereira and da Silva, 2017 

  

Chandel et al., 2016; Jain et al., 

2017a; Pereira and da Silva, 2017 

 

Institutional capacity  

Crispim et al., 2014; Marques et al., 

2014; Muench et al., 2014; Clerici et 

al., 2015; Foxon et al., 2015; Ramos 

et al., 2016; Meadowcroft et al., 

2018; Otuoze et al., 2018 

 

Shah et al., 2015; Pereira and da Silva, 

2017 

  

Pereira and da Silva, 2017; Yu et al., 

2017 

 

Transparency and 

accountability potential 
 

Hall and Foxon, 2014; Naus et al., 

2014; Bigerna et al., 2016; Hansen 

and Hauge, 2017; Otuoze et al., 

2018 

LE 

Gentile et al., 2015 

 
LE 

Meyers and Kromer, 2008 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits (health, 

education) 
 

Naus et al., 2014; Foxon et al., 2015; 

Shomali and Pinkse, 2016; Hansen 

and Hauge, 2017; Meadowcroft et 

al., 2018; Otuoze et al., 2018 

 

Ryan and Campbell, 2012; Payne et 

al., 2015 

 
 

Ryan and Campbell, 2012; Payne et 

al., 2015; Xiong et al., 2015; 

Balaban and Puppim de Oliveira, 

2017 

Public acceptance  

Hall and Foxon, 2014; Naus et al., 

2014; Bigerna et al., 2016; Green 

and Newman, 2017; Hansen and 

Hauge, 2017 

 

Winward et al., 1998; Boardman, 

2004; Swim et al., 2014; Reyna and 

Chester, 2017; Jain et al., 2018 
NE 

 

Social and regional 

inclusiveness 
 

Green and Newman, 2017; 

Neureiter, 2017; Wiktorowicz et al., 

2018 

 

 

Rao et al., 2016; Rao and Pachauri, 

2017; Rao and Ummel, 2017 

NE 

 

Intergenerational equity  

Schlör et al., 2015; Green and 

Newman, 2017 

 

NA 

Energy efficiency saves natural 

resources and therefore it is fair for 

future generations 

NA 

Energy efficiency saves natural 

resources and therefore it is fair for 

future generations 
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Human capabilities   
Naus et al., 2014; Hansen and 

Hauge, 2017 
NA 

 
NE 

 
E

n
v

ir
o

n
m

e
n

ta
l/

ec
o

lo
g

ic
a

l 

Reduction of air pollution  

Clerici et al., 2015; Newman et al., 

2017 

 

 

Ryan and Campbell, 2012; Zhou et al., 

2018 

 

 

Ryan and Campbell, 2012; Xiong et 

al., 2015; Balaban and Puppim de 

Oliveira, 2017; Zhou et al., 2018 

Reduction of toxic waste  

Foxon et al., 2015; Newman et al., 

2017 

 

 

Ryan and Campbell, 2012 

 

Ryan and Campbell, 2012 

Reduction of water use  

Newman et al., 2017; Wiktorowicz 

et al., 2018  

Zhou et al., 2018 

  

Loiola et al., 2018 

Improved biodiversity  
Newman et al., 2017; Wiktorowicz 

et al., 2018 
NA 

 
NA 

 

G
eo

p
h

y
si

ca
l 

Physical feasibility 

physical potentials) 
 

Foxon et al., 2015; Green and 

Newman, 2017; Wiktorowicz et al., 

2018 

 

Laitner, 2013; Heidari et al., 2018 

  

Laitner, 2013 

Limited use of land NA 

 

NA 

 Energy efficient appliances do not 

take up more land than inefficient 

appliances 
NA 

Existing buildings refurbishment do 

not use additional land 

New buildings use more land if not 

rebuilt over demolished buildings 

Limited use of scarce 

(geo)physical resources 
 

Newman et al., 2017; Wiktorowicz 

et al., 2018 

 

LE 

Needhidasan et al., 2014  

Possible that upgrades lead to landfill 

contamination 

NA 

 Limited impact and limited use of 

scarce resources 

Global spread  

Crispim et al., 2014; Foxon et al., 

2015; Ramos et al., 2016 NA 

Efficient appliances available 

everywhere where access to electricity 

or energy is available 

NA 
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4.SM.4.2.4 Feasibility Assessment of Mitigation Options in Industrial System Transitions 

 

Table 4.SM.13: Feasibility assessment of industrial system transition mitigation options: energy efficiency; bio-based and circularity; electrification and hydrogen; and industrial 

carbon capture, utilization and storage (CCUS). For methodology, see 4.SM.4.1. 

 

  Energy Efficiency Bio-based and Circularity Electrification and Hydrogen Industrial CCUS  

 Evidence Robust Medium Medium Robust 

 Agreement High Medium High High 

E
co

n
o

m
ic

 

Cost-effectiveness  

Hasanbeigi et al., 2014; 

Napp et al., 2014; Forman 

et al., 2016; Wesseling et 

al., 2017 

 

Taibi et al., 2012; Ali et 

al., 2017; Wesseling et al., 

2017 

 

Åhman et al., 2016; 

Philibert, 2017; 

Wesseling et al., 2017; 

Bataille et al., 2018 

 

Mikunda et al., 2014; 

Rubin et al., 2015; Irlam, 

2017 

Absence of 

distributional effects 
LE Zha and Ding, 2015 NE  LE Nabernegg et al., 2017 NE  

Employment and 

productivity 

enhancement potential 

 

He et al., 2013; Zhang et 

al., 2015; Henriques and 

Catarino, 2016; Färe et al., 

2018 

 

Fuentes-Saguar et al., 

2017; Nabernegg et al., 

2017 

LE Nabernegg et al., 2017  Koelbl et al., 2016 

T
ec

h
n

o
lo

g
ic

a
l 

Technical scalability   
Fischedick et al., 2014; 

Bataille et al., 2018 
 

de Besi and McCormick, 

2015; Wesseling et al., 

2017 

 

Fischedick et al., 2014; J. 

Wang et al., 2017; 

Bataille et al., 2018 

 

Boot-Handford et al., 

2014; Global CCS 

Institute, 2017; Bui et al., 

2018 

Maturity  

Hasanbeigi et al., 2014; 

Napp et al., 2014; Forman 

et al., 2016; Wesseling et 

al., 2017 

 
Quader et al., 2016; 

Wesseling et al., 2017 
 

Quader et al., 2016; 

Philibert, 2017 
 

Boot-Handford et al., 

2014; Mikunda et al., 

2014; Abanades et al., 

2015; Global CCS 

Institute, 2017; Bui et al., 

2018 

Simplicity  
Fernández-Viñé et al., 

2010; Wakabayashi, 2013 
 

Henry et al., 2006; 

Wesseling et al., 2017 
NE   IEA GHG, 2012 

Absence of risk NA  LE Ali et al., 2017 NE   

IPCC, 2005; Boot-

Handford et al., 2014; de 

Coninck and Benson, 

2014; Aminu et al., 2017 
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In
st

it
u

ti
o

n
a

l 
Political acceptability  

Zhang et al., 2015; Åhman 

et al., 2016; Henriques and 

Catarino, 2016 

LE 

Longstaff et al., 2015; 

Sleenhoff and Osseweijer, 

2016; Goetz et al., 2017 

 

Åhman et al., 2016; 

Philibert, 2017; 

Wesseling et al., 2017; 

Bataille et al., 2018 

 
Mikunda et al., 2014; 

Aminu et al., 2017 

Legal and 

administrative 

acceptability 

 

Zhang et al., 2015; Åhman 

et al., 2016; Henriques and 

Catarino, 2016 

 Wesseling et al., 2017 NE   

de Coninck and Benson, 

2014; Dixon et al., 2015; 

Bui et al., 2018 

Institutional capacity  

Fernández-Viñé et al., 

2010; Wakabayashi, 2013; 

Henriques and Catarino, 

2016 

 
Henry et al., 2006; 

Lewandowski, 2016 
NE   

Boot-Handford et al., 

2014; de Coninck and 

Benson, 2014; Dixon et 

al., 2015; Bui et al., 2018 

Transparency and 

accountability potential 
NA  LE 

Schulze et al., 2012; 

Harris et al., 2015; 

Lewandowski, 2015; 

Repo et al., 2015; 

DeCicco et al., 2016; Qin 

et al., 2016 

NA  NE  

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits 

(health, education) 
NA  NE  NA  NA  

Public acceptance  Fischedick et al., 2014  

Khanal et al., 2010; 

Delshad and Raymond, 

2013; Pfau et al., 2014; 

Dragojlovic and Einsiedel, 

2015; Lewandowski, 

2015; Sleenhoff and 

Osseweijer, 2016; Moula 

et al., 2017 

LE 
Åhman et al., 2016; 

Wesseling et al., 2017 
 

Wallquist et al., 2012; 

Seigo et al., 2014; 

Ashworth et al., 2015; 

Aminu et al., 2017 

Social and regional 

inclusiveness 
NA   

Creutzig et al., 2013, 

2015; Knoblauch et al., 

2014; Porter et al., 2015; 

Robledo-Abad et al., 2017 

NA  NE  

Intergenerational equity NA  NE  NA  NE  

Human capabilities   

Cagno et al., 2013; Brunke 

et al., 2014; Wesseling et 

al., 2017 

LE Henry et al., 2006 NE  LE IEA GHG, 2012 
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E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l Reduction of air 

pollution 
 

Brunke et al., 2014; 

Rasmussen, 2017; S. 

Zhang et al., 2018 

NE  NE   
IPCC, 2005; Koornneef 

et al., 2012a 

Reduction of toxic 

waste 
NE  NE  NE  NE  

Reduction of water use  

Walker et al., 2013; Gu et 

al., 2014; Kubule et al., 

2016 

NE  NE   
Koornneef et al., 2012a; 

Hylkema and Rand, 2014 

Improved biodiversity NE  NE  NE  LE Koornneef et al., 2012a 

G
eo

p
h

y
si

ca
l 

Physical feasibility 

(physical potentials) 
 

Napp et al., 2014; Åhman 

et al., 2016; Wesseling et 

al., 2017 

 

Beringer et al., 2011; 

Klein et al., 2014; Slade et 

al., 2014; Creutzig et al., 

2015; Kraxner and 

Nordström, 2015; Searle 

and Malins, 2015; Smith 

et al., 2016; Boysen et al., 

2017b; Tokimatsu et al., 

2017; Heck et al., 2018 

 Philibert, 2017  

IPCC, 2005; de Coninck 

and Benson, 2014; Scott 

et al., 2015 

Limited use of land NA   

Popp et al., 2014; Creutzig 

et al., 2015; Bonsch et al., 

2016; Hammond and Li, 

2016; Williamson, 2016; 

Robledo-Abad et al., 

2017; Henry et al., 2018 

NE  NE  

Limited use of scarce 

(geo)physical resources 
 

S. Zhang et al., 2014; 

Rasmussen, 2017 
NE  NE  NE  

Global spread  

Worrell et al., 2008; 

Fischedick et al., 2014; 

Åhman et al., 2016; 

Bataille et al., 2018 

 

Taibi et al., 2012; 

Fischedick et al., 2014; 

Wesseling et al., 2017 

 

Taibi et al., 2012; 

Fischedick et al., 2014; 

Wesseling et al., 2017 

 

Kuramochi et al., 2012; 

Mikunda et al., 2014; Bui 

et al., 2018 
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4.SM.4.2.5 Feasibility Assessment of Carbon Dioxide Removal Mitigation Options 

 

Table 4.SM.14: Feasibility assessment of carbon dioxide removal mitigation options: bioenergy with carbon dioxide capture and storage (BECCS), and direct air carbon dioxide 

capture and storage (DACCS). For methodology, see 4.SM.4.1. 

 

  BECCS DACCS 

 Evidence Robust Medium 

 Agreement Medium Medium 

E
co

n
o

m
ic

 

Cost-effectiveness  

Luckow et al., 2010; De Visser et al., 

2011; Fabbri et al., 2011; Koornneef et 

al., 2012; McLaren, 2012; Kärki et al., 

2013; Fornell et al., 2013; Akgul et al., 

2014; Johnson et al., 2014; Arasto et 

al., 2014; Al-Qayim et al., 2015; NRC, 

2015; Onarheim et al., 2015; Caldecott 

et al., 2015; Rochedo et al., 2016; 

Sanchez and Callaway, 2016; Bhave et 

al., 2017; Fuss et al., 2018; Honegger 

and Reiner, 2018 

 

Keith et al., 2006; Pielke, 2009; House 

et al., 2011; Ranjan and Herzog, 2011; 

Simon et al., 2011; Holmes and Keith, 

2012; Zeman, 2014; Sanz-Pérez et al., 

2016; Sinha et al., 2017 

 

 

 

Absence of distributional 

effects 
 

Arndt et al., 2011; German and 

Schoneveld, 2012; Creutzig et al., 

2013, 2015; Hunsberger et al., 2014; 

Popp et al., 2014; Persson, 2015; Buck, 

2016; Searchinger et al., 2017; 

Stevanović et al., 2017; Kline et al., 

2017; Robledo-Abad et al., 2017 

NA 

 

Employment and productivity 

enhancement potential 
NE 

 
NA 

 

T
ec

h
n

o
lo

g
ic

a
l 

Technical scalability   

Azar et al., 2010, 2013; Gough and 

Upham, 2011; Nemet et al., 2018 

 
 

Lackner, 2009; Pielke, 2009; Lackner 

et al., 2012; Nemet and Brandt, 2012; 

Pritchard et al., 2015; Nemet et al., 

2018 

Maturity  

McGlashan et al., 2012; McLaren, 

2012; Boucher et al., 2014; Fuss et al., 

2014; Kemper, 2015; Anderson and 

 

McLaren, 2012; Holmes et al., 2013; 

Rau et al., 2013; Boot-Handford et al., 

2014; NRC, 2015; Agee et al., 2016; 
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Peters, 2016; Vaughan and Gough, 

2016; Minx et al., 2017; Pang et al., 

2017; N.E. Vaughan et al., 2018; 

Nemet et al., 2018; Strefler et al., 

2018c 

Nemet et al., 2018 

 

Simplicity  
Möllersten et al., 2003;  

 
Niche markets: Lackner et al., 2012; 

Hou et al., 2017; Ishimoto et al., 2017  

Absence of risk  

IPCC, 2005; Boot-Handford et al., 

2014; de Coninck and Benson, 2014; 

Anderson and Peters, 2016; Vaughan 

and Gough, 2016; Aminu et al., 2017; 

Boysen et al., 2017b 

 

IPCC, 2005; Boot-Handford et al., 

2014; de Coninck and Benson, 2014; 

Aminu et al., 2017 

In
st

it
u

ti
o

n
a

l 

Political acceptability  

BECCS features rarely in policy 

debates 

(Boysen et al., 2017a; Fridahl, 2017)  

NE 

 

Legal and administrative 

acceptability 
LE 

Kemper, 2015; Honegger and Reiner, 

2018 

 

 

Boot-Handford et al., 2014; de 

Coninck and Benson, 2014; Dixon et 

al., 2015 

Institutional capacity  

McLaren, 2012; Frank et al., 2013; 

Kemper, 2015; Burns and Nicholson, 

2017 

NE 

McLaren, 2012 

 

Transparency and 

accountability potential 
LE 

McLaren, 2012; NRC, 2015; Nemet et 

al., 2018 

 

LE 

McGlashan et al., 2012; McLaren, 

2012; Nemet et al., 2018 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits (health, 

education) 
 

Knoblauch et al., 2014; Porter et al., 

2015; Weldu et al., 2017 

 

NA 

 

Public acceptance  

Thornley et al., 2009; Gough and 

Upham, 2011; Wallquist et al., 2012; 

Mabon et al., 2013; Boot-Handford et 

al., 2014; Gough et al., 2014; Dowd et 

al., 2015; Lomax et al., 2015; Boysen 

et al., 2017b; Fridahl, 2017; Robledo-

Abad et al., 2017 

 

Lackner and Brennan, 2009; Mabon et 

al., 2013; Boot-Handford et al., 2014; 

Gough et al., 2014; Lomax et al., 2015 

Social and regional 

inclusiveness 
LE 

Creutzig et al., 2013, 2015; Robledo-

Abad et al., 2017 
NE 

 

Intergenerational equity NE 
 

NE 
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Human capabilities  LE 
IEA GHG, 2012 

LE 
IEA GHG, 2012 

Impact on landscapes NE 
 

NE 
 

E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l 

Reduction of air pollution  

Knoblauch et al., 2014; Porter et al., 

2015; Weldu et al., 2017 

 

NA 

 

Reduction of toxic waste NA 
 

NA 
 

Reduction of water use  

Gerbens-Leenes et al., 2009; Gheewala 

et al., 2011; Koornneef et al., 2012a; 

Smith and Torn, 2013; Hylkema and 

Rand, 2014; Bonsch et al., 2016; Smith 

et al., 2016; Wei et al., 2016; Lampert 

et al., 2016; Mouratiadou et al., 2016; 

Fajardy and Mac Dowell, 2017; 

Mathioudakis et al., 2017 

 

NE 

 

Improved biodiversity  

Lindenmayer and Hobbs, 2004; Barlow 

et al., 2007; Immerzeel et al., 2014; 

Creutzig et al., 2015; Dale et al., 2015; 

Holland et al., 2015; Kline et al., 2015; 

Santangeli et al., 2016; Tarr et al., 2017 

 

NA 

 

G
eo

p
h

y
si

ca
l Physical feasibility (physical 

potentials) 
 

Bioenergy: Beringer et al., 2011; Klein 

et al., 2014; Creutzig et al., 2015; 

Kraxner and Nordström, 2015; Searle 

and Malins, 2015; Smith et al., 2016; 

Boysen et al., 2017b; Tokimatsu et al., 

2017; Heck et al., 2018) 

 

CCS: Dooley, 2013; Selosse and Ricci, 

2017 

 

McLaren, 2012; Dooley, 2013; NRC, 

2015; Smith et al., 2016; Selosse and 

Ricci, 2017; Fuss et al., 2018 

Limited use of land  

Beringer et al., 2011; Creutzig et al., 

2015; NRC, 2015; Smith et al., 2016; 

Heck et al., 2018 

 

 

Keith, 2009; Holmes and Keith, 2012; 

Lackner et al., 2012; NRC, 2015  
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Limited use of scarce 

(geo)physical resources 
NE 

 
NE 

 

Global spread  
Bright et al., 2015; Robledo-Abad et 

al., 2017 
 

Clarke et al., 2014 
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Table 4.SM.15: Feasibility assessment of carbon dioxide removal mitigation options: afforestation and reforestation, soil carbon sequestration and biochar, and enhanced 

weathering. For methodology, see 4.SM.4.1. 

 

  Afforestation and Reforestation Soil Carbon Sequestration and Biochar Enhanced Weathering 

 Evidence Robust Robust Medium 

 Agreement High High Low 

E
co

n
o

m
ic

 

Cost-effectiveness  

Sohngen and Mendelsohn, 2003; 

Richards and Stokes, 2004; 

Richards and Stavins, 2005; 

Nijnik and Halder, 2013; 

Humpenöder et al., 2014 

 

McLaren, 2012; Caldecott et al., 

2015; NRC, 2015 

 

 

 

McGlashan et al., 2012; 

McLaren, 2012; Caldecott et al., 

2015; Smith et al., 2016; Fuss et 

al., 2018 

 

 

Biochar: Roberts et al., 2010; 

Shackley et al., 2011; Smith, 

2016 

 

Soil carbon sequestration: Smith, 

2016 

 

Schuiling and Krijgsman, 2006; 

Hartmann and Kempe, 2008; 

Köhler et al., 2010; McLaren, 

2012; Renforth, 2012; Hartmann 

et al., 2013; NRC, 2015; Taylor 

et al., 2016; Strefler et al., 2018a 

 

Ocean alkalinisation: Renforth 

and Henderson, 2017 

Absence of distributional 

effects 
 

Lyons and Westoby, 2014; 

Locatelli et al., 2015 
 

Stringer et al., 2012 

 
NE 

 

Employment and productivity 

enhancement potential 
 

P. Smith et al., 2014 

  

Lal, 2004c; Van Straaten, 2006; 

Pan et al., 2009; Jeffery et al., 

2011 

NE 

 

T
ec

h
n

o
lo

g
ic

a
l Technical scalability   

Shvidenko et al., 1997; Polglase 

et al., 2013; Cunningham et al., 

2015; Zhang and Yan, 2015; 

Nemet et al., 2018 

 

 

Jiang et al., 2014; Novak et al., 

2016; Kammann et al., 2017; 

Nemet et al., 2018 

 

Biochar: Roberts et al., 2010; 

Shackley et al., 2011  

 

 

Hangx and Spiers, 2009; Taylor 

et al., 2016; Nemet et al., 2018 

 

Maturity  

McLaren, 2012; Gong et al., 

2013; NRC, 2015; Zinda et al., 

2017; Nemet et al., 2018 

 

 

McLaren, 2012; Olson, 2013; 

Olson et al., 2014; Piccoli et al., 

2016; Triberti et al., 2016; 

Vochozka et al., 2016; Nemet et 

al., 2018 

 

McLaren, 2012; Hartmann et al., 

2013; NRC, 2015; Nemet et al., 

2018 
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Simplicity NE 
 

NE 
 

NE 
 

Absence of risk NE 
 

NE 
 

NE 
 

In
st

it
u

ti
o

n
a

l 

Political acceptability NE 
 

NE 
 

NE 
 

Legal and administrative 

acceptability 
NE 

 
NE 

 
NA 

 

Institutional capacity  

McLaren, 2012; Wang et al., 

2016; Wehkamp et al., 2018b 

 

Meta analysis until February 2016 

(Wehkamp et al., 2018a)  

LE 

Whitman and Lehmann, 2009; 

Dilling and Failey, 2013; Stavi 

and Lal, 2013 

 

LE 

McLaren, 2012; Moosdorf et al., 

2014; Buck, 2016  

Transparency and 

accountability potential 
LE 

McLaren, 2012 

 

Sanderman and Baldock, 2010; 

McLaren, 2012; Smith et al., 

2012; Downie et al., 2014; Jandl 

et al., 2014; Nemet et al., 2018 

NE 

McLaren, 2012 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits (health, 

education) 
 

Genesio et al., 2016; Ravi et al., 

2016 NE 

 

NE 

Schuiling and Krijgsman, 2006; 

Taylor et al., 2016 

 

Public acceptance  

Private landholders: Nijnik and 

Halder, 2013; Schirmer and Bull, 

2014; Trevisan et al., 2016  

 

Glenk and Colombo, 2011; 

Lomax et al., 2015; Jørgensen 

and Termansen, 2016 

LE 

M..J. Wright et al., 2014 

Social and regional 

inclusiveness 
 

Atela et al., 2014; Sunderlin et al., 

2014; Brugnach et al., 2017; 

Ngendakumana et al., 2017; 

Turnhout et al., 2017 

NE 

 

NE 

 

Intergenerational equity LE 
P. Smith et al., 2014 

 
NE 

 
NE 

 

Human capabilities  NE 
 

NE 
 

NE 
 

E
n

v
ir

o
n

m
e
n

t

a
l/

ec
o

lo
g

ic
a

l 

Reduction of air pollution NA 

 

NA 

 

 

Schuiling and Krijgsman, 2006; 

Taylor et al., 2016 

 

Reduction of toxic waste NA 
 

NE 
 

LE 
Schuiling and Krijgsman, 2006; 

Hartmann et al., 2013 
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Reduction of water use  

Jackson et al., 2005; Smith and 

Torn, 2013; Deng et al., 2017 

 
 

Lal, 2004b; Bamminger et al., 

2016; Smith, 2016 LE 

Kheshgi, 1995; Rau and 

Caldeira, 1999; Harvey, 2008; 

Köhler et al., 2013; NRC, 2015 

Improved biodiversity  

Díaz et al., 2009; McKinley et al., 

2011; Hall et al., 2012; Venter et 

al., 2012; Greve et al., 2013; 

Cunningham et al., 2015; 

Locatelli et al., 2015b; Paul et al., 

2016 

NE 

 

NA 

 

G
eo

p
h

y
si

ca
l 

Physical feasibility (physical 

potentials) 
 

Sohngen and Mendelsohn, 2003; 

Canadell and Raupach, 2008; 

Strengers et al., 2008; Thomson et 

al., 2008; van Minnen et al., 2008; 

Houghton et al., 2015; Sonntag et 

al., 2016; Griscom et al., 2017 

 

 

Biochar: Lehmann et al., 2006; 

Laird et al., 2009; Lee et al., 

2010; Woolf et al., 2010; Lenton, 

2010; Moore et al., 2010; Pratt 

and Moran, 2010; McLaren, 

2012; Powell and Lenton, 2012; 

Lomax et al., 2015; Smith, 2016; 

Paustian et al., 2016 

 

 Soil carbon sequestration: 

Batjes, 1998; Metting et al., 

2001; Lal, 2003a, b, 2004a, c, 

2010, 2011, 2013; Lal et al., 

2007; Smith et al., 2008; Salati et 

al., 2010; Conant, 2011; Smith, 

2012, 2016; Benbi, 2013; Lorenz 

and Lal, 2014; Powlson et al., 

2014; Sommer and Bossio, 2014; 

Henderson et al., 2015; Lassaletta 

and Aguilera, 2015; Minasny et 

al., 2017; Zomer et al., 2017 

 

House et al., 2007; Hartmann 

and Kempe, 2008; Hangx and 

Spiers, 2009; Wilson et al., 2009; 

Köhler et al., 2010, 2013; 

Morales-Florez et al., 2011; 

Renforth et al., 2011; Manning 

and Renforth, 2013; Taylor et al., 

2016; Hauck et al., 2016; Strefler 

et al., 2018a 

Limited use of land  

Smith and Torn, 2013; Houghton 

et al., 2015 

  

 

Smith, 2016; Fuss et al., 2018 

 

Hartmann et al., 2013; Strefler et 

al., 2018b 

 

Could enhance yields reducing 

land competition pressure 

(Edwards et al., 2017; Kantola et 

al., 2017)   
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Limited use of scarce 

(geo)physical resources 
LE 

Smith and Torn, 2013 
NA 

 
LE 

NRC, 2015 

Global spread  

Anderson et al., 2011; Arora and 

Montenegro, 2011; Wang et al., 

2014 

 

Biochar:  Zimmermann et al., 

2012; Sheng et al., 2016  

Garcia et al., 2018; Strefler et al., 

2018a  
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4.SM.4.3 Feasibility Assessment of Adaptation Options as Presented in Section 4.5.3 

 

4.SM.4.3.1 Feasibility Assessment of Adaptation Options in Energy System Transitions 

 

Table 4.SM.16: Feasibility assessment of energy system transition adaptation option: power infrastructure, including water. For methodology, see 4.SM.4.1. 

 

  Power Infrastructure, Including Water 

 Evidence Medium 

 Agreement High  

E
co

n
o

m
ic

 

Microeconomic viability 
 

Kopytko and Perkins, 2011; Inderberg and Løchen, 2012; Brouwer et al., 2015 

Macroeconomic viability  

 

Koch and Vögele, 2009; Kopytko and Perkins, 2011; Soito and Freitas, 2011; Inderberg and Løchen, 2012; Schaeffer et al., 

2012; Jahandideh-Tehrani et al., 2014; Brouwer et al., 2015; Cortekar and Groth, 2015; Panteli and Mancarella, 2015; van 

Vliet et al., 2016 

Socio-economic vulnerability 

reduction potential 
 

Koch and Vögele, 2009; Soito and Freitas, 2011; Cortekar and Groth, 2015; van Vliet et al., 2016 

Employment and productivity 

enhancement potential 
 Inderberg and Løchen, 2012; Cortekar and Groth, 2015; Panteli and Mancarella, 2015; van Vliet et al., 2016 

T
ec

h
n

o
lo

g
ic

a

l 

Technical resource availability  
Koch and Vögele, 2009; Soito and Freitas, 2011; Inderberg and Løchen, 2012; Jahandideh-Tehrani et al., 2014; Cortekar and 

Groth, 2015; Murrant et al., 2015; Panteli and Mancarella, 2015; Parkinson and Djilali, 2015; van Vliet et al., 2016 

Risks mitigation potential 

(stranded assets, unforeseen 

impacts) 

 
Koch and Vögele, 2009; Inderberg and Løchen, 2012; Schaeffer et al., 2012; Jahandideh-Tehrani et al., 2014; Cortekar and 

Groth, 2015; Murrant et al., 2015; Panteli and Mancarella, 2015; Parkinson and Djilali, 2015; van Vliet et al., 2016 

In
st

it
u

ti
o

n
a

l 

Political acceptability  
Soito and Freitas, 2011; Inderberg and Løchen, 2012; Cortekar and Groth, 2015; Murrant et al., 2015 

Legal and regulatory 

acceptability 
 

Soito and Freitas, 2011; Inderberg and Løchen, 2012; Cortekar and Groth, 2015; Benson, 2018 

Institutional capacity and 

administrative feasibility 
 

Eisenack and Stecker, 2012; Inderberg and Løchen, 2012; Cortekar and Groth, 2015; Murrant et al., 2015 

Transparency and 

accountability potential 
LE 

Inderberg and Løchen, 2012; Cortekar and Groth, 2015 
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S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits health, 

education) 
NA 

Soito and Freitas, 2011 

Socio-cultural acceptability NE 
Soito and Freitas, 2011; Inderberg and Løchen, 2012 

Social and regional 

inclusiveness 
LE 

Soito and Freitas, 2011 

Intergenerational equity LE 
Soito and Freitas, 2011 

E
n

v
ir

o
n

m

en
ta

l/
ec

o
lo

g
ic

al
 Ecological capacity  

Koch and Vögele, 2009; Soito and Freitas, 2011; Inderberg and Løchen, 2012; Schaeffer et al., 2012; Jahandideh-Tehrani et 

al., 2014; Murrant et al., 2015; Parkinson and Djilali, 2015 

Adaptive capacity/resilience  
Koch and Vögele, 2009; Soito and Freitas, 2011; Inderberg and Løchen, 2012; Schaeffer et al., 2012; Jahandideh-Tehrani et 

al., 2014; Cortekar and Groth, 2015; Murrant et al., 2015; Parkinson and Djilali, 2015; van Vliet et al., 2016 

G
eo

p
h

y
si

ca
l Physical feasibility  

Koch and Vögele, 2009; Eisenack and Stecker, 2012; Schaeffer et al., 2012; Jahandideh-Tehrani et al., 2014; Brouwer et al., 

2015; Cortekar and Groth, 2015; Murrant et al., 2015; Panteli and Mancarella, 2015; Parkinson and Djilali, 2015; van Vliet et 

al., 2016 

Land use change enhancement 

potential 
 

Schaeffer et al., 2012; Jahandideh-Tehrani et al., 2014; Parkinson and Djilali, 2015 

Hazard risk reduction 

potential 
 

Inderberg and Løchen, 2012; Schaeffer et al., 2012; Jahandideh-Tehrani et al., 2014; Brouwer et al., 2015; Cortekar and 

Groth, 2015; Murrant et al., 2015; Panteli and Mancarella, 2015; Parkinson and Djilali, 2015; van Vliet et al., 2016 
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4.SM.4.3.2 Feasibility Assessment of Adaptation Options in Land and Ecosystem Transitions 

 

Table 4.SM.17: Feasibility assessment of land and ecosystem transition adaptation options: conservation agriculture, efficient irrigation, efficient livestock systems, agroforestry and 

community-based adaptation. For methodology, see 4.SM.4.1. 

 

  Conservation Agriculture Efficient Irrigation 
Efficient Livestock 

Systems 
Agroforestry 

Community-based 

Adaptation 

 Evidence Medium  Medium  Limited Medium  Medium  

 Agreement Medium  Medium  High High High 

E
co

n
o

m
ic

 

Microeconomi

c viability  
 

Grabowski and Kerr, 

2014; Jat et al., 2014; 

Pittelkow et al., 2014; 

Thierfelder et al., 

2015, 2017; H. Smith 

et al., 2017 

 

Olmstead, 2014; Roco et 

al., 2014; Venot et al., 

2014; Varela-Ortega et al., 

2016; Bjornlund et al., 

2017; Herwehe and Scott, 

2017; Mdemu et al., 2017 

 

Thornton and 

Herrero, 2014; 

Herrero et al., 

2015; Weindl et 

al., 2015; 

Ghahramani and 

Bowran, 2018 

 

Valdivia et al., 2012; K 

Murthy, 2013; Lasco et 

al., 2014; Mbow et al., 

2014a, b; Brockington et 

al., 2016; Iiyama et al., 

2017; Jacobi et al., 

2017; Hernández-

Morcillo et al., 2018 

 

Mannke, 2011; Archer 

et al., 2014; H. Wright 

et al., 2014; Fernández-

Giménez et al., 2015; 

Dodman et al., 2017a 

Macroeconom

ic viability  
 

Ndah et al., 2015; 

Thierfelder et al., 

2015; H. Smith et al., 

2017 

 

Elliott et al., 2014; Kirby 

et al., 2014; Olmstead, 

2014; Girard et al., 2015; 

Kahil et al., 2015; Varela-

Ortega et al., 2016; 

Bjornlund et al., 2017; 

Herwehe and Scott, 2017 

 

Herrero et al., 

2015; Weindl et 

al., 2015; García 

de Jalón et al., 

2017  

 

Valdivia et al., 2012; 

Lasco et al., 2014; 

Jacobi et al., 2017; 

Hernández-Morcillo et 

al., 2018 

 

NE  

Socio-

economic 

vulnerability 

reduction 

potential 

 

Bhan and Behera, 

2014; Pittelkow et al., 

2014; Stevenson et al., 

2014; Prosdocimi et 

al., 2016; H. Smith et 

al., 2017 

 

Burney and Naylor, 2012; 

Levidow et al., 2014; Roco 

et al., 2014; Venot et al., 

2014; Ashofteh et al., 

2017; Bjornlund et al., 

2017 

 

Herrero et al., 

2015; García de 

Jalón et al., 2017; 

Thornton et al., 

2018 

 

Valdivia et al., 2012; 

Brockington et al., 2016; 

Coq-Huelva et al., 2017; 

Coulibaly et al., 2017; 

Iiyama et al., 2017; 

Jacobi et al., 2017; 

Quandt et al., 2017 

 

 

Mannke, 2011; Archer 

et al., 2014; Reid and 

Huq, 2014; H. Wright 

et al., 2014; Fernández-

Giménez et al., 2015; 

Ensor et al., 2016, 

2018; Ford et al., 2018 

Employment 

and 

productivity 

 

Bhan and Behera, 

2014; Grabowski and 

Kerr, 2014; 

Kirkegaard et al., 

 

Burney and Naylor, 2012; 

Burney et al., 2014; Kirby 

et al., 2014; Levidow et 

al., 2014 

 

Briske et al., 

2015; García de 

Jalón et al., 2017 

LE 

Verchot et al., 2007; 

Buckeridge et al., 2012 

 

 

Mannke, 2011; Reid 

and Huq, 2014; 

Fernández-Giménez et 

al., 2015 
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enhancement 

potential 

2014; Pittelkow et al., 

2014; Stevenson et al., 

2014 

T
ec

h
n

o
lo

g
ic

a
l 

Technical 

resource 

availability 

 

Palm et al., 2014; 

Stevenson et al., 2014; 

Adenle et al., 2015; H. 

Smith et al., 2017 

 

Venot et al., 2014; Esteve 

et al., 2015; Fishman et al., 

2015; Azhoni et al., 2017; 

Mdemu et al., 2017 

 

Descheemaeker et 

al., 2016; 

Thornton et al., 

2018   

 

Verchot et al., 2007; 

Valdivia et al., 2012; 

Mbow et al., 2014a; 

Iiyama et al., 2017; 

Jacobi et al., 2017; 

Hernández-Morcillo et 

al., 2018 

LE 

H. Wright et al., 2014; 

Fernández-Giménez et 

al., 2015 

Risks 

mitigation 

potential 

 

Bhan and Behera, 

2014; Palm et al., 

2014; Pittelkow et al., 

2014 

 

Burney et al., 2014; 

Fishman et al., 2015; 

Jägermeyr et al., 2015; 

Blanc et al., 2017 

 

Briske et al., 

2015; Thornton 

and Herrero, 

2015; Thornton et 

al., 2018 

 

Verchot et al., 2007; 

Jacobi et al., 2017; 

Abdulai et al., 2018; 

Hernández-Morcillo et 

al., 2018; Sida et al., 

2018 

NA  

In
st

it
u

ti
o

n
a

l 

Political 

acceptability 
 

Adenle et al., 2015; 

Dougill et al., 2017; 

Westengen et al., 

2018 

 
Burney and Naylor, 2012; 

Esteve et al., 2015 
NE   

Buckeridge et al., 2012; 

Mbow et al., 2014b; 

Jacobi et al., 2017 

NA  

Legal and 

regulatory 

acceptability 

NE  NA  NE   

Place et al., 2012; Mbow 

et al., 2014a, b; Jacobi et 

al., 2017; Hernández-

Morcillo et al., 2018 

NA  

Institutional 

capacity and 

administrative 

feasibility 

 

Bhan and Behera, 

2014; Harvey et al., 

2014; Kassam et al., 

2014; Adenle et al., 

2015; Baudron et al., 

2015; Ndah et al., 

2015; Li et al., 2016; 

Dougill et al., 2017; 

H. Smith et al., 2017 

 

Burney and Naylor, 2012; 

Burney et al., 2014; 

Levidow et al., 2014; 

Venot et al., 2014; Kahil et 

al., 2015; Azhoni et al., 

2017; Mdemu et al., 2017 

 

Herrero et al., 

2015; 

Descheemaeker et 

al., 2016 

 

Buckeridge et al., 2012; 

Place et al., 2012; Jacobi 

et al., 2017; Hernández-

Morcillo et al., 2018 

 

Mannke, 2011; Archer 

et al., 2014; Ayers et 

al., 2014; H. Wright et 

al., 2014; Reid and 

Huq, 2014; Sovacool et 

al., 2015; Fernández-

Giménez et al., 2015; 

Scolobig et al., 2015; 

Ensor et al., 2016, 

2018; Reid, 2016; Ford 

et al., 2018  

Transparency 

and 
LE 

Brouder and Gomez-

Macpherson, 2014; 
 

Levidow et al., 2014; 

Azhoni et al., 2017 
NA  NE   

Archer et al., 2014; 

Reid and Huq, 2014; 

Fernández-Giménez et 
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accountability 

potential 

Palm et al., 2014; 

Challinor et al., 2018 

al., 2015; Sovacool et 

al., 2015 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-

benefits 

(health, 

education) 

 

Pittelkow et al., 2014; 

H. Smith et al., 2017; 

Pradhan et al., 2018 

LE 
Venot et al., 2014; Mdemu 

et al., 2017 
 

Herrero et al., 

2015; Thornton 

and Herrero, 

2015; Thornton et 

al., 2018 

 

Brockington et al., 2016; 

Varela-Ortega et al., 

2016; Clark and Tilman, 

2017; Coq-Huelva et al., 

2017; Coulibaly et al., 

2017; Jacobi et al., 

2017; Quandt et al., 

2017; Thierfelder et al., 

2017; Hernández-

Morcillo et al., 2018 

 

Mannke, 2011; Archer 

et al., 2014; Ayers et 

al., 2014; Wise et al., 

2014; H. Wright et al., 

2014; Fernández-

Giménez et al., 2015; 

Sovacool et al., 2015; 

Ensor et al., 2016, 

2018; Ford et al., 2018 

Socio-cultural 

acceptability 
 

Giller et al., 2015; 

Ndah et al., 2015; 

Thierfelder et al., 

2015 

 

Roco et al., 2014; Venot et 

al., 2014; Girard et al., 

2015; Mdemu et al., 2017  

 

Herrero et al., 

2015; 

Ghahramani and 

Bowran, 2018; 

Thornton et al., 

2018  

 

Jarvis et al., 2008; 

Valdivia et al., 2012; 

Coq-Huelva et al., 2017; 

Iiyama et al., 2017; 

Jacobi et al., 2017; 

Hernández-Morcillo et 

al., 2018  

 

 

Mannke, 2011; Green 

et al., 2014; Reid and 

Huq, 2014; Wise et al., 

2014; H. Wright et al., 

2014; Fernández-

Giménez et al., 2015; 

Ensor et al., 2016, 

2018; Ford et al., 2018  

Social and 

regional 

inclusiveness 

 

Brouder and Gomez-

Macpherson, 2014; 

Pittelkow et al., 2014; 

Ndah et al., 2015; H. 

Smith et al., 2017 

 
Burney and Naylor, 2012; 

Jägermeyr et al., 2015  
 

Briske et al., 

2015; García de 

Jalón et al., 2017; 

Thornton et al., 

2018 

 

Valdivia et al., 2012; 

Iiyama et al., 2017; 

Jacobi et al., 2017 

 

Archer et al., 2014; H. 

Wright et al., 2014; 

Fernández-Giménez et 

al., 2015; Sovacool et 

al., 2015; Ensor et al., 

2016, 2018; Ford et al., 

2018 

Intergeneratio

nal equity 
NA  NA  NA  NE   

H. Wright et al., 2014; 

Fernández-Giménez et 

al., 2015 

E
n

v
ir

o
n

m
e
n

ta
l/

 

ec
o

lo
g

ic
a

l 

Ecological 

capacity 
 

Bhan and Behera, 

2014; Palm et al., 

2014; Thierfelder et 

al., 2015; Prosdocimi 

et al., 2016 

 

Kirby et al., 2014; Pfeiffer 

and Lin, 2014; Fishman et 

al., 2015; Jägermeyr et al., 

2015 

 

Lemaire et al., 

2014; Herrero et 

al., 2015; 

Thornton et al., 

2018 

 

Lusiana et al., 2012; K 

Murthy, 2013; Lasco et 

al., 2014; Barral et al., 

2015; Coq-Huelva et al., 

2017; Quandt et al., 

2017; Hernández-

Morcillo et al., 2018; 

Sida et al., 2018 

LE 

H. Wright et al., 2014; 

Fernández-Giménez et 

al., 2015 
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Adaptive 

capacity/resili

ence 

 

Aleksandrova et al., 

2014; Grabowski and 

Kerr, 2014; 

Kirkegaard et al., 

2014; Pittelkow et al., 

2014; Stevenson et al., 

2014; Thierfelder et 

al., 2015; Li et al., 

2016; H. Smith et al., 

2017; Pradhan et al., 

2018 

 

Burney and Naylor, 2012; 

Burney et al., 2014; 

Levidow et al., 2014; 

Jägermeyr et al., 2015; 

Fader et al., 2016; Varela-

Ortega et al., 2016; 

Ashofteh et al., 2017; 

Hong and Yabe, 2017 

 

Bell et al., 2014; 

Havet et al., 2014; 

Lemaire et al., 

2014; Thornton 

and Herrero, 

2014; Briske et 

al., 2015; Herrero 

et al., 2015; 

Weindl et al., 

2015; 

Ghahramani and 

Bowran, 2018 

 

Sendzimir et al., 2011; 

Lusiana et al., 2012; K 

Murthy, 2013; Lasco et 

al., 2014; Mbow et al., 

2014a; Varela-Ortega et 

al., 2016; Clark and 

Tilman, 2017; Coq-

Huelva et al., 2017; 

Thierfelder et al., 2017; 

Coulibaly et al., 2017; 

Quandt et al., 2017; 

Hernández-Morcillo et 

al., 2018  

 

Mannke, 2011; Archer 

et al., 2014; Ayers et 

al., 2014; H. Wright et 

al., 2014; Reid and 

Huq, 2014; Wise et al., 

2014; Fernández-

Giménez et al., 2015; 

Ensor et al., 2016, 

2018; Ford et al., 2018; 

Singh, 2018 

G
eo

p
h

y
si

ca
l 

Physical 

feasibility 
 

Stevenson et al., 2014; 

Giller et al., 2015; 

Thierfelder et al., 

2017 

 

Levidow et al., 2014; 

Fishman et al., 2015; 

Jägermeyr et al., 2015 

 

Weindl et al., 

2015; Thornton et 

al., 2018 

 

Coulibaly et al., 2017; 

Hernández-Morcillo et 

al., 2018 

 

NA  

Land use 

change 

enhancement 

potential 

 

Grabowski and Kerr, 

2014; Stevenson et al., 

2014; Giller et al., 

2015; Prosdocimi et 

al., 2016; Cui et al., 

2018; Pradhan et al., 

2018 

 Fader et al., 2016  

Briske et al., 

2015; Weindl et 

al., 2015 

 

Lasco et al., 2014; 

Mbow et al., 2014a; 

Coulibaly et al., 2017; 

Hernández-Morcillo et 

al., 2018 

LE H. Wright et al., 2014 

Hazard risk 

reduction 

potential 

NE  NA  NA   

Lasco et al., 2014; 

Mbow et al., 2014a; 

Coulibaly et al., 2017; 

Abdulai et al., 2018; 

Hernández-Morcillo et 

al., 2018 

 

Mannke, 2011; Archer 

et al., 2014; H. Wright 

et al., 2014; Fernández-

Giménez et al., 2015; 

Ensor et al., 2016, 

2018; Ford et al., 2018  
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Table 4.SM.18: Feasibility assessment of land and ecosystem transition adaptation options: ecosystem restoration and avoided deforestation, biodiversity management, coastal 

defence and hardening, and sustainable aquaculture. For methodology, see 4.SM.4.1. 

 

  
Ecosystem Restoration and 

Avoided Deforestation 
Biodiversity Management Coastal Defence and Hardening Sustainable Aquaculture 

 Evidence Robust Medium Robust  Limited 

 Agreement Medium Medium Medium Medium 

E
co

n
o

m
ic

 

Microeconomic 

viability  
 

Dang Phan et al., 2014; 

Ingalls and Dwyer, 2016; 

Rakatama et al., 2017; 

Spencer et al., 2017 

 

Rodrigues et al., 2009; 

Alagador et al., 2014; 

Mantyka-Pringle et al., 

2016; Gómez-Aíza et al., 

2017; Reside et al., 2017b; 

Monahan and Theobald, 

2018 

 

Firth et al., 2014; Barbier, 2015a; 

Elliott and Wolanski, 2015; Diaz, 

2016; Betzold and Mohamed, 

2017 

 

Boonstra and Hanh, 2015; 

Joffre et al., 2015; FAO, 

2016; FAO et al., 2017; 

Pérez-Escamilla, 2017 

Macroeconomic 

viability  
 

Dang Phan et al., 2014; 

Rakatama et al., 2017; 

Spencer et al., 2017; 

Turnhout et al., 2017; Well 

and Carrapatoso, 2017 

NE  LE 
Hinkel et al., 2014; Estrada et al., 

2017 
LE 

UNEP, 2013; Edwards, 

2015; Moffat, 2017 

Socio-economic 

vulnerability 

reduction 

potential 

 

Atela et al., 2015; Elmqvist 

et al., 2015; Camps-Calvet 

et al., 2016; Ingalls and 

Dwyer, 2016; McPhearson 

et al., 2016; Collas et al., 

2017; Ngendakumana et al., 

2017; Spencer et al., 2017 

 

Rodrigues et al., 2009; 

Berrang-Ford et al., 2012; 

Pullin et al., 2013; 

Brockington and Wilkie, 

2015; Newbold et al., 2015; 

Oldekop et al., 2016; 

Griscom et al., 2017; 

Milman and Jagannathan, 

2017; Terraube et al., 2017; 

Essl and Mauerhofer, 2018 

 

Rabbani et al., 2010a, b; 

Gutiérrez et al., 2012; Arkema et 

al., 2013, 2017; Neumann et al., 

2015; Sovacool et al., 2015; 

Sutton-Grier et al., 2015; Betzold 

and Mohamed, 2017  

 

Bell et al., 2011; Smith et 

al., 2013; Orchard et al., 

2015; Béné et al., 2016; 

Jennings et al., 2016; 

Mycoo, 2017; Ahmed et 

al., 2018 

Employment 

and productivity 

enhancement 

potential 

 

Ingalls and Dwyer, 2016; 

Spencer et al., 2017; 

Turnhout et al., 2017 

NE  NE   

Sánchez et al., 2002; De 

Silva and Davy, 2010; 

Ahmed et al., 2014; 

Boonstra and Hanh, 2015; 

Lacoue-Labarthe et al., 

2016; Asiedu et al., 2017a 
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T
ec

h
n

o
lo

g
ic

a
l 

Technical 

resource 

availability 

 

Ingalls and Dwyer, 2016; 

Spencer et al., 2017; 

Turnhout et al., 2017 

 

Nadeau et al., 2015; 

Schmitz et al., 2015; 

Thomas and Gillingham, 

2015; K.R. Jones et al., 

2016; Urban et al., 2016; 

Milman and Jagannathan, 

2017; Reside et al., 2017b 

 

Arkema et al., 2013; Bosello and 

De Cian, 2014; Smajgl et al., 

2015; Hauer et al., 2016; Betzold 

and Mohamed, 2017; Williams et 

al., 2018  

 

UNEP, 2013; Ahmed et al., 

2014, 2018; Brillant, 2014; 

Edwards, 2015; Lucas, 

2015; Fidelman et al., 2017 

Risks mitigation 

potential 
LE 

Spencer et al., 2017; 

Turnhout et al., 2017 
LE   

Firth et al., 2014; Sovacool et al., 

2015; André et al., 2016; 

Cashman and Nagdee, 2017; 

Brown et al., 2018; Storlazzi et 

al., 2018; Williams et al., 2018  

 
Boonstra and Hanh, 2015; 

Blanchard et al., 2017 

In
st

it
u

ti
o

n
a

l 

Political 

acceptability 
 

Sunderlin et al., 2014; 

Ingalls and Dwyer, 2016; 

Ngendakumana et al., 2017 

LE 

Milman and Jagannathan, 

2017; Essl and Mauerhofer, 

2018 

 

Duvat, 2013; Nordstrom, 2014; 

Sovacool et al., 2015; Betzold 

and Mohamed, 2017 

 

Brander, 2007; Bell et al., 

2011; Bell and Taylor, 

2015; FAO, 2016; 

Weatherdon et al., 2016; 

Asiedu et al., 2017a; Ertör 

and Ortega-Cerdà, 2017 

Legal and 

regulatory 

acceptability 

LE 
Sunderlin et al., 2014; 

Turnhout et al., 2017 
 

Dallimer and Strange, 2015; 

K.R. Jones et al., 2016; 

Drielsma et al., 2017; Essl 

and Mauerhofer, 2018; 

Monahan and Theobald, 

2018; Triviño et al., 2018 

NE  LE 

Broitman et al., 2017; 

Fidelman et al., 2017 

 

Institutional 

capacity and 

administrative 

feasibility 

 

Jagger et al., 2014; 

Sunderlin et al., 2014; 

Wallbott, 2014; Atela et al., 

2015; Ingalls and Dwyer, 

2016; Ngendakumana et al., 

2017; Spencer et al., 2017; 

Turnhout et al., 2017; Well 

and Carrapatoso, 2017; 

Wehkamp et al., 2018a 

 

Dallimer and Strange, 2015; 

Thomas and Gillingham, 

2015; K.R. Jones et al., 

2016; Essl and Mauerhofer, 

2018; Monahan and 

Theobald, 2018 

 

Hallegatte et al., 2013; Spalding 

et al., 2014; Mills et al., 2016; 

Estrada et al., 2017 

LE 

Ahmed et al., 2014; 

Broitman et al., 2017; 

Fidelman et al., 2017  

Transparency 

and 

accountability 

potential 

 

Jagger et al., 2014; 

Sunderlin et al., 2014; Atela 

et al., 2015; Ingalls and 

Dwyer, 2016; 

Ngendakumana et al., 2017; 

LE  NE  NE  
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Turnhout et al., 2017; Well 

and Carrapatoso, 2017; 

Wehkamp et al., 2018a 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-

benefits (health, 

education) 

 

Sunderlin et al., 2014; 

Jagger et al., 2014; Atela et 

al., 2015; Elmqvist et al., 

2015; Camps-Calvet et al., 

2016; Ingalls and Dwyer, 

2016; McPhearson et al., 

2016; Turnhout et al., 2017; 

Collas et al., 2017; Li et al., 

2017; Ngendakumana et al., 

2017; Spencer et al., 2017  

 

Rodrigues et al., 2009; 

Berrang-Ford et al., 2012; 

Pullin et al., 2013; 

Brockington and Wilkie, 

2015; Oldekop et al., 2016; 

Clark and Tilman, 2017; 

Terraube et al., 2017; Essl 

and Mauerhofer, 2018 

 

Sovacool et al., 2015; Sutton-

Grier et al., 2015; Arkema et al., 

2017; Betzold and Mohamed, 

2017 

LE 
Weatherdon et al., 2016; 

Fidelman et al., 2017  

Socio-cultural 

acceptability 
 

Sunderlin et al., 2014; 

Wallbott, 2014; Atela et al., 

2015; Ingalls and Dwyer, 

2016; Ngendakumana et al., 

2017; Spencer et al., 2017 

 

Pullin et al., 2013; 

Brockington and Wilkie, 

2015; Oldekop et al., 2016; 

Milman and Jagannathan, 

2017 

 

Sovacool et al., 2015; Gibbs, 

2016; Morris et al., 2016; 

Betzold and Mohamed, 2017; 

Marengo et al., 2017 

 

LE 
Asiedu et al., 2017a; 

Fidelman et al., 2017  

Social and 

regional 

inclusiveness 

LE 
Ingalls and Dwyer, 2016; 

Spencer et al., 2017 
 

Pullin et al., 2013; 

Brockington and Wilkie, 

2015; Oldekop et al., 2016; 

Milman and Jagannathan, 

2017; Terraube et al., 2017 

NA  NE  

Intergenerationa

l equity 
 

Ingalls and Dwyer, 2016; 

Ngendakumana et al., 2017; 

Spencer et al., 2017 

NE  NE  NA  

E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l 

Ecological 

capacity 
 

Sunderlin et al., 2014; 

Spencer et al., 2017; 

Turnhout et al., 2017 

 

Rodrigues et al., 2009; 

Virkkala et al., 2014; 

Thomas and Gillingham, 

2015; Gillingham et al., 

2015; Nadeau et al., 2015; 

Schmitz et al., 2015; Feeley 

and Silman, 2016; Gaüzère 

et al., 2016; Greenwood et 

al., 2016; Gómez-Aíza et 

al., 2017; Mingarro and 

Lobo, 2018; Monahan and 

Theobald, 2018 

 

Bilkovic and Mitchell, 2013; 

Spalding et al., 2014; Joffre et 

al., 2015; Sutton-Grier et al., 

2015 

 

David et al., 2015; Joffre et 

al., 2015; Blanchard et al., 

2017; Broitman et al., 

2017; Ahmed et al., 2018 
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Adaptive 

capacity/resilien

ce 

 

Sunderlin et al., 2014; 

Ingalls and Dwyer, 2016; 

Ngendakumana et al., 2017; 

Spencer et al., 2017; 

Turnhout et al., 2017 

 

 

Rodrigues et al., 2009; 

Pullin et al., 2013; Oldekop 

et al., 2016; Gómez-Aíza et 

al., 2017; Terraube et al., 

2017; Monahan and 

Theobald, 2018 

LE 
Spalding et al., 2014; Orchard et 

al., 2015; Fidelman et al., 2017 
 

Boonstra and Hanh, 2015; 

Orchard et al., 2015; 

Blanchard et al., 2017; 

Fidelman et al., 2017; 

Cinner et al., 2018 

G
eo

p
h

y
si

ca
l 

Physical 

feasibility 
 

Dang Phan et al., 2014; 

Sunderlin et al., 2014; 

Ngendakumana et al., 2017; 

Spencer et al., 2017; 

Turnhout et al., 2017 

NE   

Duvat, 2013; Hinkel et al., 2014; 

Smith et al., 2015; André et al., 

2016; Cooper et al., 2016; 

Vousdoukas et al., 2016; Arkema 

et al., 2017 

 

David et al., 2015; S. 

Adhikari et al., 2018; 

Ahmed et al., 2018 

Land use 

change 

enhancement 

potential 

 

Dang Phan et al., 2014; 

Sunderlin et al., 2014; 

Ingalls and Dwyer, 2016; 

Ngendakumana et al., 2017; 

Turnhout et al., 2017; 

Houghton and Nassikas, 

2018; Wehkamp et al., 

2018a 

LE 
Schmitz et al., 2015; Reside 

et al., 2017a, b 
LE Sutton-Grier et al., 2015 LE Mialhe et al., 2016 

Hazard risk 

reduction 

potential 

 
Ingalls and Dwyer, 2016; 

Spencer et al., 2017 
NE   

Luisetti et al., 2013; Firth et al., 

2014; Spalding et al., 2014; 

Barbier, 2015b; Sutton-Grier et 

al., 2015; André et al., 2016; 

Narayan et al., 2016; Arkema et 

al., 2017; Fu and Song, 2017 

 

Joffre et al., 2015; 

Blanchard et al., 2017; 

Daly et al., 2017; Hung et 

al., 2018 
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4.SM.4.3.3 Feasibility Assessment of Adaptation Options in Urban and Infrastructure System Transitions 

 

Table 4.SM.19: Feasibility assessment of urban and infrastructure transition adaptation options: sustainable land use and urban planning, and sustainable water management. For 

methodology, see 4.SM.4.1. 

 

  Sustainable Land Use and Urban Planning Sustainable Water Management 

 Evidence Medium  Robust  

 Agreement Medium  Medium  

E
co

n
o

m
ic

 

Microecono

mic viability  
 

Eberhard et al., 2011, 2016; Kiunsi, 2013; Watkins, 2015; 

Archer, 2016; Eisenberg, 2016; Ewing et al., 2016; Ziervogel 

et al., 2016a, 2017; Hess and Kelman, 2017; Mavhura et al., 

2017 

 

Liu et al., 2014; Lamond et al., 2015; Voskamp and Van de Ven, 

2015; Xue et al., 2015; Costa et al., 2016; Mguni et al., 2016; Poff et 

al., 2016; Ossa-Moreno et al., 2017; Vincent et al., 2017; Xie et al., 

2017 

Macroecono

mic viability  
 

Eberhard et al., 2011, 2016; Measham et al., 2011; Aerts et al., 

2014; Jaglin, 2014; Beccali et al., 2015; Boughedir, 2015; 

Watkins, 2015; Ziervogel et al., 2016a, 2017; Chu et al., 2017; 

Hess and Kelman, 2017 

NE  

Socio-

economic 

vulnerability 

reduction 

potential 

 

Measham et al., 2011; Eberhard et al., 2011, 2016; Kiunsi, 

2013; Aerts et al., 2014; Jaglin, 2014; Boughedir, 2015; Broto 

et al., 2015; Carter et al., 2015; Archer, 2016; Shi et al., 2016; 

Ziervogel et al., 2016a, 2017; Hetz, 2016; Mavhura et al., 2017 

 

Villarroel Walker et al., 2014; Ziervogel and Joubert, 2014; Brown 

and McGranahan, 2016; Chu et al., 2016; Chant et al., 2017; Dodman 

et al., 2017a, b; Ossa-Moreno et al., 2017; Gunasekara et al., 2018 

Employment 

and 

productivity 

enhancement 

potential 

 
Eberhard et al., 2011, 2016; Measham et al., 2011; Watkins, 

2015; Archer, 2016; Ziervogel et al., 2016a 
NE  

T
ec

h
n

o
lo

g
ic

a
l 

 

Technical 

resource 

availability 

 

Aerts et al., 2014; Kettle et al., 2014; Beccali et al., 2015; 

Boughedir, 2015; Archer, 2016; Woodruff and Stults, 2016; 

Mavhura et al., 2017; Siders, 2017; Stults and Woodruff, 2017 

 

Liu et al., 2014; Lamond et al., 2015; Voskamp and Van de Ven, 

2015; Costa et al., 2016; Mguni et al., 2016; Soz et al., 2016; Xie et 

al., 2017 

Risks 

mitigation 

potential  

 

Measham et al., 2011; Kiunsi, 2013; Aerts et al., 2014; 

Boughedir, 2015; Eisenberg, 2016; Siders, 2017; Stults and 

Woodruff, 2017 

 

Liu et al., 2014; Lamond et al., 2015; Voskamp and Van de Ven, 

2015; Costa et al., 2016; Mguni et al., 2016; Xie et al., 2017; 

Gunasekara et al., 2018 

In
st

it
u

ti

o
n

a
l Political 

acceptability 
 

Measham et al., 2011; Aerts et al., 2014; Rivera and Wamsler, 

2014; Boughedir, 2015; Carter et al., 2015; Landauer et al., 

2015; Araos et al., 2016b; Woodruff and Stults, 2016; Hetz, 

 
Leck et al., 2015; Padawangi and Douglass, 2015; Chen and Chen, 

2016; Mguni et al., 2016 
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2016; Siders, 2017; Chu et al., 2017; Di Gregorio et al., 2017b; 

Mahlkow and Donner, 2017 

Legal and 

regulatory 

acceptability 

 

Measham et al., 2011; Eberhard et al., 2011, 2016; Aerts et al., 

2014; Rivera and Wamsler, 2014; Boughedir, 2015; Landauer 

et al., 2015; Carter et al., 2015; King et al., 2016; Eisenberg, 

2016; Dhar and Khirfan, 2017; Di Gregorio et al., 2017b; 

Francesch-Huidobro et al., 2017; Hess and Kelman, 2017 

 

Bettini et al., 2015; Deng and Zhao, 2015; Hill Clarvis and Engle, 

2015; Leck et al., 2015; Lemos, 2015; Margerum and Robinson, 

2015; Padawangi and Douglass, 2015; Chen and Chen, 2016 

Institutional 

capacity and 

administrativ

e feasibility 

 

Eberhard et al., 2011, 2016; Measham et al., 2011; Kiunsi, 

2013; Aerts et al., 2014; Jaglin, 2014; Rivera and Wamsler, 

2014; Archer et al., 2014; Landauer et al., 2015; Boughedir, 

2015; Broto et al., 2015; Carter et al., 2015; Araos et al., 

2016b; Hetz, 2016; Archer, 2016; Shi et al., 2016; Woodruff 

and Stults, 2016; Ziervogel et al., 2016a; Campos et al., 2016; 

Di Gregorio et al., 2017b; Francesch-Huidobro et al., 2017; 

Mahlkow and Donner, 2017; Mavhura et al., 2017; Siders, 

2017; Tait and Euston-Brown, 2017; Chu et al., 2017; Dhar 

and Khirfan, 2017 

 

Ziervogel and Joubert, 2014; Bettini et al., 2015; Deng and Zhao, 

2015; Hill Clarvis and Engle, 2015; Lamond et al., 2015; Lemos, 

2015; Margerum and Robinson, 2015) 

Transparenc

y and 

accountabilit

y potential 

 

Eberhard et al., 2011, 2016; Measham et al., 2011; Kettle et al., 

2014; Broto et al., 2015; Landauer et al., 2015; Shi et al., 2016; 

Woodruff and Stults, 2016; Chu et al., 2017; Stults and 

Woodruff, 2017 

NE  

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-

benefits 

(health, 

education) 

 

Eberhard et al., 2011, 2016; Archer et al., 2014; Kettle et al., 

2014; Parnell, 2015; Watkins, 2015; Beccali et al., 2015; 

Landauer et al., 2015; Archer, 2016; Ziervogel et al., 2016a, 

2017; Campos et al., 2016; Hess and Kelman, 2017; Chu et al., 

2018 

 

Liu et al., 2014; Lamond et al., 2015; Leck et al., 2015; Padawangi 

and Douglass, 2015; Voskamp and Van de Ven, 2015; Costa et al., 

2016; Mguni et al., 2016; Nur and Shrestha, 2017; Xie et al., 2017; 

Gunasekara et al., 2018 

Socio-

cultural 

acceptability 

 

Kiunsi, 2013; Aerts et al., 2014; Jaglin, 2014; Kettle et al., 

2014; Archer et al., 2014; Parnell, 2015; Watkins, 2015; Broto 

et al., 2015; Carter et al., 2015; Archer, 2016; Newman et al., 

2016; Shi et al., 2016; Ziervogel et al., 2016a, 2017; Campos et 

al., 2016; Eberhard et al., 2016; Ewing et al., 2016; Siders, 

2017; Stults and Woodruff, 2017; Chu et al., 2017, 2018 

 
Lamond et al., 2015; Leck et al., 2015; Padawangi and Douglass, 

2015; Nur and Shrestha, 2017; Xie et al., 2017 

Social and 

regional 

inclusiveness 

 

Eberhard et al., 2011, 2016; Jaglin, 2014; Kettle et al., 2014; 

Archer et al., 2014; Parnell, 2015; Watkins, 2015; Broto et al., 

2015; Araos et al., 2016b; Archer, 2016; King et al., 2016; Shi 

et al., 2016; Ziervogel et al., 2016a, 2017; Campos et al., 2016; 

Mahlkow and Donner, 2017; Mavhura et al., 2017; Chu et al., 

2017, 2018; Dhar and Khirfan, 2017 

 Rasul and Sharma, 2016 
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Intergenerati

onal equity 
 

Parnell, 2015; King et al., 2016; Shi et al., 2016; Chu et al., 

2017; Ziervogel et al., 2017 
 Tacoli et al., 2013; Xue et al., 2015; Poff et al., 2016 

E
n

v
ir

o
n

m
e
n

ta
l/

 

ec
o

lo
g

ic
a

l 
Ecological 

capacity 
 

Kiunsi, 2013; Aerts et al., 2014; Kettle et al., 2014; King et al., 

2016; Ziervogel et al., 2016a; Mavhura et al., 2017 
 Ziervogel and Joubert, 2014; Lamond et al., 2015; Soz et al., 2016 

Adaptive 

capacity/ 

resilience 

 

Eberhard et al., 2011, 2016; Kiunsi, 2013; Aerts et al., 2014; 

Kettle et al., 2014; Rivera and Wamsler, 2014; Archer et al., 

2014; Jaglin, 2014; Parnell, 2015; Watkins, 2015; Carter et al., 

2015; Archer, 2016; King et al., 2016; Shi et al., 2016; 

Ziervogel et al., 2016a, 2017; Hetz, 2016; Stults and Woodruff, 

2017; Chu et al., 2017; Hess and Kelman, 2017 

 

Angotti, 2015; Bell et al., 2015; Biggs et al., 2015; Gwedla and 

Shackleton, 2015; Lwasa et al., 2015; Chen and Chen, 2016; Yang et 

al., 2016; Sanesi et al., 2017; Gunasekara et al., 2018  

G
eo

p
h

y
si

ca
l 

Physical 

feasibility 
 

Aerts et al., 2014; Boughedir, 2015; Hetz, 2016; King et al., 

2016; Newman et al., 2016; Woodruff and Stults, 2016; 

Ziervogel et al., 2016a; Stults and Woodruff, 2017 

 Ziervogel and Joubert, 2014; Lamond et al., 2015; Soz et al., 2016 

Land use 

change 

enhancement 

potential 

 

Kiunsi, 2013; Landauer et al., 2015; Parnell, 2015; Hetz, 2016; 

Newman et al., 2016; Mavhura et al., 2017 
 

Lamond et al., 2015; Leck et al., 2015; Padawangi and Douglass, 

2015; Rasul and Sharma, 2016; Soz et al., 2016 

Hazard risk 

reduction 

potential 

 

Kiunsi, 2013; Aerts et al., 2014; Watkins, 2015; Boughedir, 

2015; Archer, 2016; Woodruff and Stults, 2016; Eisenberg, 

2016; Hetz, 2016; King et al., 2016; Mahlkow and Donner, 

2017; Mavhura et al., 2017; Stults and Woodruff, 2017 

 

Liu et al., 2014; Angotti, 2015; Bell et al., 2015; Voskamp and Van 

de Ven, 2015; Biggs et al., 2015; Gwedla and Shackleton, 2015; 

Lamond et al., 2015; Lwasa et al., 2015; Mguni et al., 2016; Yang et 

al., 2016; Chen and Chen, 2016; Costa et al., 2016; Sanesi et al., 

2017; Xie et al., 2017; Gunasekara et al., 2018 
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Table 4.SM.20: Feasibility assessment of urban and infrastructure transition adaptation options: green infrastructure and ecosystem services, and building codes and standards. For 

methodology, see 4.SM.4.1. 

 

  Green Infrastructure and Ecosystem Services Building Codes and Standards 

 Evidence Medium  Limited 

 Agreement High  Medium  

E
co

n
o

m
ic

 

Microeconomic 

viability 
 

Elmqvist et al., 2015; Soderlund and Newman, 2015; 

McPhearson et al., 2016; Zinia and McShane, 2018 
 

Steenhof and Sparling, 2011; Bendito and Barrios, 2016; 

Ruparathna et al., 2016; Mavhura et al., 2017; Wells et al., 2018 

Macroeconomic 

viability 
LE Culwick and Bobbins, 2016  

Steenhof and Sparling, 2011; Aerts et al., 2014; Späth and 

Rohracher, 2015; Chandel et al., 2016; Shapiro, 2016; Hess and 

Kelman, 2017; Wells et al., 2018 

Socio-economic 

vulnerability 

reduction potential 

 

Tallis et al., 2011; Elmqvist et al., 2015; Soderlund and 

Newman, 2015; Camps-Calvet et al., 2016; McPhearson et al., 

2016; Panagopoulos et al., 2016; Stevenson et al., 2016; Li et 

al., 2017; R. White et al., 2017; Zinia and McShane, 2018 

 

Steenhof and Sparling, 2011; FEMA, 2014; Bendito and Barrios, 

2016; Hess and Kelman, 2017; Reckien et al., 2017 

Employment and 

productivity 

enhancement 

potential 

NE  NE  

T
ec

h
n

o
lo

g
ic

a
l 

 Technical resource 

availability 
NA   

Steenhof and Sparling, 2011; Aerts et al., 2014; Bendito and 

Barrios, 2016; Chandel et al., 2016; Ruparathna et al., 2016; 

Garsaball and Markov, 2017; Tait and Euston-Brown, 2017; Wells 

et al., 2018 

Risks mitigation 

potential (stranded 

assets, unforeseen 

impacts) 

 

Tallis et al., 2011; Elmqvist et al., 2013b, 2015; Buckeridge, 

2015; Soderlund and Newman, 2015; Camps-Calvet et al., 

2016; McPhearson et al., 2016; Panagopoulos et al., 2016; 

Stevenson et al., 2016; R. White et al., 2017; Li et al., 2017; 

Zinia and McShane, 2018 

 

Aerts et al., 2014; Ruparathna et al., 2016 

In
st

it
u

ti
o

n
a

l Political 

acceptability 
LE Brown and McGranahan, 2016; Ziervogel et al., 2016b  

Aerts et al., 2014; Späth and Rohracher, 2015; Chandel et al., 

2016; Eisenberg, 2016; Shapiro, 2016; Tait and Euston-Brown, 

2017; Wells et al., 2018 

Legal and regulatory 

acceptability 
 

Brown and McGranahan, 2016; Ziervogel et al., 2016b; 

Collas et al., 2017; Li et al., 2017; Sirakaya et al., 2018 
 

Steenhof and Sparling, 2011; Burch et al., 2014; Späth and 

Rohracher, 2015; Eisenberg, 2016; Ruparathna et al., 2016; 

Shapiro, 2016; Hess and Kelman, 2017; Stults and Woodruff, 

2017 
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Institutional 

capacity and 

administrative 

feasibility 

 

Brown and McGranahan, 2016; Culwick and Bobbins, 2016; 

Ziervogel et al., 2016b; Collas et al., 2017; Li et al., 2017; 

Prudencio and Null, 2018 

 

Aerts et al., 2014; Chandel et al., 2016; Eisenberg, 2016; Shapiro, 

2016; Garsaball and Markov, 2017; Hess and Kelman, 2017; 

Mavhura et al., 2017; Stults and Woodruff, 2017; Tait and Euston-

Brown, 2017 

Transparency and 

accountability 

potential 

LE Li et al., 2017  

Steenhof and Sparling, 2011; Aerts et al., 2014; Späth and 

Rohracher, 2015; Chandel et al., 2016; Shapiro, 2016 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits 

(health, education) 
 

Beatley, 2011; Tallis et al., 2011; Elmqvist et al., 2013b, 

2015; Liu et al., 2014; Demuzere et al., 2014; Lamond et al., 

2015; Mullaney et al., 2015; Norton et al., 2015; Skougaard 

Kaspersen et al., 2015; Soderlund and Newman, 2015; 

Voskamp and Van de Ven, 2015; Buckeridge, 2015; 

Beaudoin and Gosselin, 2016; Green et al., 2016; McPhearson 

et al., 2016; Mguni et al., 2016; Brown and McGranahan, 

2016; Panagopoulos et al., 2016; Stevenson et al., 2016; 

Camps-Calvet et al., 2016; Costa et al., 2016; Culwick and 

Bobbins, 2016; Li et al., 2017; Lin et al., 2017; Xie et al., 

2017; Collas et al., 2017; Zinia and McShane, 2018 

NE 

 

Socio-cultural 

acceptability 
 

Beatley, 2011; Elmqvist et al., 2015; Beaudoin and Gosselin, 

2016; Brown and McGranahan, 2016; Camps-Calvet et al., 

2016; McPhearson et al., 2016; Ziervogel et al., 2016b; Collas 

et al., 2017; Li et al., 2017; Zinia and McShane, 2018 

 

Späth and Rohracher, 2015; Bendito and Barrios, 2016; Eisenberg, 

2016; Tait and Euston-Brown, 2017 

Social and regional 

inclusiveness 
 

Tallis et al., 2011; Elmqvist et al., 2013b, 2015; Buckeridge, 

2015; Beaudoin and Gosselin, 2016; Brown and McGranahan, 

2016; Panagopoulos et al., 2016; Stevenson et al., 2016; 

Ziervogel et al., 2016b; Camps-Calvet et al., 2016; Culwick 

and Bobbins, 2016; McPhearson et al., 2016; R. White et al., 

2017; Collas et al., 2017; Li et al., 2017; Prudencio and Null, 

2018 

 

Parnell, 2015; Shapiro, 2016; Mavhura et al., 2017; Reckien et al., 

2017 

Intergenerational 

equity 
 

Elmqvist et al., 2013b, 2015; Liu et al., 2014; Lamond et al., 

2015; Skougaard Kaspersen et al., 2015; Voskamp and Van 

de Ven, 2015; Costa et al., 2016; McPhearson et al., 2016; 

Mguni et al., 2016; Xie et al., 2017 

NE 

 

E
n

v
ir

o
n

m
e
n

t

a
l/

ec
o

lo
g

ic
a

l 

Ecological capacity  

Liu et al., 2014; Lamond et al., 2015; Skougaard Kaspersen et 

al., 2015; Costa et al., 2016; Mguni et al., 2016; Xie et al., 

2017 

NE 

 

Adaptive capacity/ 

resilience 
 

Beatley, 2011; Elmqvist et al., 2013b, 2015; Voskamp and 

Van de Ven, 2015; Beaudoin and Gosselin, 2016; Brown and 
 

Steenhof and Sparling, 2011; Aerts et al., 2014; Bendito and 

Barrios, 2016 
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McGranahan, 2016; Camps-Calvet et al., 2016; McPhearson 

et al., 2016; Panagopoulos et al., 2016; Collas et al., 2017; Li 

et al., 2017; Zinia and McShane, 2018 

G
eo

p
h

y
si

ca
l 

Physical feasibility  

Liu et al., 2014; Lamond et al., 2015; Skougaard Kaspersen et 

al., 2015; Voskamp and Van de Ven, 2015; Costa et al., 2016; 

Mguni et al., 2016; Collas et al., 2017; Xie et al., 2017 

NE 

 

Land use change 

enhancement 

potential 

 

Tallis et al., 2011; Elmqvist et al., 2013b; Buckeridge, 2015; 

Culwick and Bobbins, 2016; Panagopoulos et al., 2016; 

Stevenson et al., 2016; Collas et al., 2017; R. White et al., 

2017 

 

Bendito and Barrios, 2016; Reckien et al., 2017 

Hazard risk 

reduction potential 
 

Nowak et al., 2006; Tallis et al., 2011; Elmqvist et al., 2013b, 

2015; Buckeridge, 2015; Soderlund and Newman, 2015; 

Brown and McGranahan, 2016; Panagopoulos et al., 2016; 

Stevenson et al., 2016; Ziervogel et al., 2016b; Camps-Calvet 

et al., 2016; Culwick and Bobbins, 2016; McPhearson et al., 

2016; R. White et al., 2017; Collas et al., 2017; Li et al., 2017; 

Zinia and McShane, 2018 

 

Steenhof and Sparling, 2011; FEMA, 2014; Bendito and Barrios, 

2016; Garsaball and Markov, 2017; Reckien et al., 2017 
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4.SM.4.3.4 Feasibility Assessment of Adaptation Options in Industrial System Transitions 

 

Table 4.SM.21: Feasibility assessment of industrial system transition adaptation option: intensive industry infrastructure resilience and water management. For methodology, see 

4.SM.4.1. 

 

  Intensive Industry Infrastructure Resilience and Water Management 

 Evidence Limited 

 Agreement High  

E
co

n
o

m
ic

 

Microeconomic viability 
NE  

Macroeconomic viability 
NE  

Socio-economic vulnerability reduction 

potential 
  

Employment and productivity 

enhancement potential 
NE  

T
ec

h
n

o
lo

g

ic
a

l Technical resource availability  
Koch and Vögele, 2009; Jahandideh-Tehrani et al., 2014; Murrant et al., 2015; Parkinson and 

Djilali, 2015 

Risks mitigation potential  Jahandideh-Tehrani et al., 2014; Murrant et al., 2015; Parkinson and Djilali, 2015 

In
st

it
u

ti
o

n
a

l 

Political acceptability LE Murrant et al., 2015 

Legal and regulatory acceptability NE  

Institutional capacity and administrative 

feasibility 
LE Eisenack and Stecker, 2012; Murrant et al., 2015 

Transparency and accountability potential NE  

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits (health, education) NA  

Socio-cultural acceptability NE  

Social and regional inclusiveness NA  
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Intergenerational equity NA  

E
n

v
ir

o
n

m

en
ta

l/
ec

o
l

o
g

ic
a

l Ecological capacity  Jahandideh-Tehrani et al., 2014; Murrant et al., 2015; Parkinson and Djilali, 2015 

Adaptive capacity/resilience  Jahandideh-Tehrani et al., 2014; Murrant et al., 2015; Parkinson and Djilali, 2015 
G

eo
p

h
y

si
ca

l Physical feasibility  
Eisenack and Stecker, 2012; Jahandideh-Tehrani et al., 2014; Murrant et al., 2015; Parkinson and 

Djilali, 2015 

Land use change enhancement potential LE Jahandideh-Tehrani et al., 2014; Parkinson and Djilali, 2015 

Hazard risk reduction potential  Jahandideh-Tehrani et al., 2014; Murrant et al., 2015; Parkinson and Djilali, 2015 
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4.SM.4.3.5 Feasibility Assessment of Overarching Adaptation Options 

 

Table 4.SM.22: Feasibility assessment of overarching adaptation options: disaster risk management, risk spreading and sharing, climate services and indigenous knowledge. For 

methodology, see 4.SM.4.1. 

 

  Disaster Risk Management 
Risk Spreading and 

Sharing 
Climate Services Indigenous Knowledge 

 Evidence Medium  Medium Medium  Medium  

 Agreement High  Medium High  High  

E
co

n
o

m
ic

 

Microeconomic 

viability 
 

IPCC, 2012; Mavhura et 

al., 2013; Yu and Gillis, 

2014; Johnson and Abe, 

2015; Mawere and 

Mubaya, 2015; Archer, 

2016; Kull et al., 2016; 

Rose, 2016; Watanabe et 

al., 2016 

 

Panda et al., 2013; 

Weinhofer and 

Busch, 2013; 

Thornton and 

Herrero, 2014; Falco 

et al., 2014; Lashley 

and Warner, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Nicola, 2015; 

Annan and Schlenker, 

2015; Bogale, 2015; 

García Romero and 

Molina, 2015; 

Greatrex et al., 2015; 

Akter et al., 2016, 

2017; Jin et al., 2016; 

Surminski et al., 

2016; Patel et al., 

2017; Shively, 2017; 

Farzaneh et al., 2017; 

Glaas et al., 2017; 

Jensen and Barrett, 

2017 

 

Vaughan and 

Dessai, 2014; Snow 

et al., 2016; 

Lechthaler and 

Vinogradova, 2017; 

Webber, 2017; 

Ouédraogo et al., 

2018 

 

Berkes et al., 2000; 

Nakashima et al., 

2012; Leonard et al., 

2013; McNamara and 

Prasad, 2014; Pearce 

et al., 2015; Mapfumo 

et al., 2016; Altieri 

and Nicholls, 2017; 

Nunn et al., 2017; 

Ruiz-Mallén et al., 

2017; Crate et al., 

2017; Ingty, 2017; 

Kihila, 2017; Magni, 

2017 

Macroeconomic 

viability 
 

IPCC, 2012; Hinkel et 

al., 2014; Anacona et al., 

2015; Johnson and Abe, 

2015; Boughedir, 2015; 

 

Cook and 

Dowlatabadi, 2011; 

Falco et al., 2014; 

García Romero and 

 

Brasseur and 

Gallardo, 2016; 

Rodrigues et al., 

2016 

 

Berkes et al., 2000; 

Leonard et al., 2013; 

Mapfumo et al., 2016; 

Ingty, 2017; Magni, 
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Howes et al., 2015; 

Archer, 2016; Kull et al., 

2016; Rose, 2016; Diaz, 

2016; Haeberli et al., 

2016, 2017; Kelman, 

2017; de Leon and 

Pittock, 2017 

Molina, 2015; Joyette 

et al., 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Wolfrom and 

Yokoi-Arai, 2015; 

Surminski et al., 

2016; Glaas et al., 

2017; Jenkins et al., 

2017; Jensen and 

Barrett, 2017 

2017; Nunn et al., 

2017; Ruiz-Mallén et 

al., 2017 

Socio-economic 

vulnerability 

reduction 

potential 

 

IPCC, 2012; Mavhura et 

al., 2013; McNamara 

and Prasad, 2014; 

Boeckmann and Rohn, 

2014; Anacona et al., 

2015; Howes et al., 

2015; Johnson and Abe, 

2015; Kelman et al., 

2015; Mawere and 

Mubaya, 2015; 

Boughedir, 2015; 

Archer, 2016; Kull et al., 

2016; Muñoz et al., 

2016; Rose, 2016; 

Watanabe et al., 2016; 

Diaz, 2016; Haeberli et 

al., 2016, 2017; Wallace, 

2017; de Leon and 

Pittock, 2017; 

Granderson, 2017; 

Nahayo et al., 2018; 

Brundiers, 2018 

 

Mills, 2007; Panda et 

al., 2013; Thornton 

and Herrero, 2014; 

Falco et al., 2014; 

Annan and Schlenker, 

2015; Lashley and 

Warner, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Nicola, 2015; 

Bogale, 2015; 

Wolfrom and Yokoi-

Arai, 2015; García 

Romero and Molina, 

2015; Greatrex et al., 

2015; Jin et al., 2016; 

O’Hare et al., 2016; 

Surminski et al., 

2016; Akter et al., 

2017; Patel et al., 

2017; Surminski and 

Thieken, 2017; 

Farzaneh et al., 2017; 

Glaas et al., 2017; 

Hansen et al., 2017; 

Jensen and Barrett, 

2017 

 

Kadi et al., 2011; 

Jancloes et al., 

2014; Vaughan and 

Dessai, 2014; Lobo 

et al., 2017 

 

Berkes and Jolly, 

2002; Forbes et al., 

2009; Nakashima et 

al., 2012; Leonard et 

al., 2013; McNamara 

and Prasad, 2014; 

Ford et al., 2014; 

MacDonald et al., 

2015b; Pearce et al., 

2015; Harper et al., 

2015; Mapfumo et al., 

2016; Mistry and 

Berardi, 2016; Clark 

et al., 2016; Altieri 

and Nicholls, 2017; 

Archer et al., 2017; 

Magni, 2017; Nunn et 

al., 2017; Ruiz-

Mallén et al., 2017; 

Russell-Smith et al., 

2017; Thornton and 

Comberti, 2017; 

Williams et al., 2017; 

Ingty, 2017; Kihila, 

2017 



 

 4SM-67 Total pages: 180 

Employment 

and productivity 

enhancement 

potential 

 

Terrier et al., 2011, 

2015; IPCC, 2012; 

Mavhura et al., 2013; Yu 

and Gillis, 2014; 

Johnson and Abe, 2015; 

Mawere and Mubaya, 

2015; Archer, 2016; 

Haeberli et al., 2016, 

2017; Kull et al., 2016; 

Rose, 2016 

 

Panda et al., 2013; 

Falco et al., 2014; 

Thornton and 

Herrero, 2014; 

Bogale, 2015; 

Greatrex et al., 2015; 

Lashley and Warner, 

2015; Linnerooth-

Bayer and 

Hochrainer-Stigler, 

2015; Nicola, 2015; 

Hansen et al., 2017; 

Jensen and Barrett, 

2017 

NE   

Berkes et al., 2000; 

Nakashima et al., 

2012; Leonard et al., 

2013; Pearce et al., 

2015; Harper et al., 

2015; Clark et al., 

2016; Altieri and 

Nicholls, 2017; 

Archer et al., 2017; 

Ruiz-Mallén et al., 

2017; Russell-Smith 

et al., 2017; Ingty, 

2017; Kihila, 2017; 

Magni, 2017 

T
ec

h
n

o
lo

g
ic

a
l 

 

Technical 

resource 

availability 

 

IPCC, 2012; Mavhura et 

al., 2013; McNamara 

and Prasad, 2014; Yu 

and Gillis, 2014; 

Boeckmann and Rohn, 

2014; Anacona et al., 

2015; Johnson and Abe, 

2015; Mawere and 

Mubaya, 2015; 

Boughedir, 2015; Howes 

et al., 2015; Allen et al., 

2016; Kaya et al., 2016; 

Kull et al., 2016; Muñoz 

et al., 2016; Archer, 

2016; Diaz, 2016; 

Haeberli et al., 2016, 

2017; Wang et al., 2018 

 

Falco et al., 2014; 

García Romero and 

Molina, 2015; Joyette 

et al., 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Akter et al., 

2016; Surminski et 

al., 2016; Adiku et 

al., 2017; Jensen and 

Barrett, 2017 

 

Dinku et al., 2014; 

Jancloes et al., 

2014; Gebru et al., 

2015; Weisse et al., 

2015; Brasseur and 

Gallardo, 2016; 

Cortekar et al., 

2016; Singh et al., 

2016; Snow et al., 

2016; Vaughan et 

al., 2016; Kihila, 

2017 

 

Berkes et al., 2000; 

Ford et al., 2010; 

Nakashima et al., 

2012; Cunsolo Willox 

et al., 2013; Leonard 

et al., 2013; Pearce et 

al., 2015; Johnson et 

al., 2015; MacDonald 

et al., 2015a; Sherman 

et al., 2016; Altieri 

and Nicholls, 2017; 

Magni, 2017; Nunn et 

al., 2017; Russell-

Smith et al., 2017; 

Inamara and Thomas, 

2017; Ingty, 2017; 

Kihila, 2017 

Risks mitigation 

potential 
 

IPCC, 2012; Mavhura et 

al., 2013; Yu and Gillis, 

2014; Boughedir, 2015; 

Mawere and Mubaya, 

2015; Howes et al., 

2015; Johnson and Abe, 

2015; Kelman et al., 

 

Mills, 2007; Cook 

and Dowlatabadi, 

2011; Panda et al., 

2013; Weinhofer and 

Busch, 2013; 

Thornton and 

Herrero, 2014; Falco 

 

Rogers and 

Tsirkunov, 2010; 

WMO, 2015 

 

Nakashima et al., 

2012; McNamara and 

Prasad, 2014; 

Mapfumo et al., 2016; 

Kihila, 2017; Magni, 

2017 
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2015; Archer, 2016; 

Muñoz et al., 2016; 

Rose, 2016; Haeberli et 

al., 2016, 2017; Kull et 

al., 2016; Wallace, 2017; 

Kita, 2017 

et al., 2014; Annan 

and Schlenker, 2015; 

Lashley and Warner, 

2015; Linnerooth-

Bayer and 

Hochrainer-Stigler, 

2015; Nicola, 2015; 

Fabian, 2015; 

Wolfrom and Yokoi-

Arai, 2015; García 

Romero and Molina, 

2015; Greatrex et al., 

2015; Surminski et 

al., 2016; Jin et al., 

2016; Surminski and 

Eldridge, 2017; 

Surminski and 

Thieken, 2017; 

Farzaneh et al., 2017; 

Hansen et al., 2017; 

Jensen and Barrett, 

2017 

In
st

it
u

ti
o

n
a

l Political 

acceptability 
 

Carey, 2005, 2008; 

IPCC, 2012; Boughedir, 

2015; Johnson and Abe, 

2015; Archer, 2016; Kull 

et al., 2016; Muñoz et 

al., 2016; Haeberli et al., 

2016; Ruiz-Rivera and 

Lucatello, 2017; 

Granderson, 2017; 

Kelman, 2017; Kita, 

2017; Rosendo et al., 

2018 

 

García Romero and 

Molina, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Glaas et al., 

2017; Jenkins et al., 

2017; Jensen and 

Barrett, 2017 

 

Gebru et al., 2015; 

Vincent et al., 

2015; Cortekar et 

al., 2016; Singh et 

al., 2016; Snow et 

al., 2016; Harjanne, 

2017; Webber, 

2017 

 

Nakashima et al., 

2012; Leonard et al., 

2013; Ford et al., 

2015; Hooli, 2016; 

Mistry and Berardi, 

2016; Fernández-

Llamazares et al., 

2017; Russell-Smith 

et al., 2017; Williams 

et al., 2017; Ingty, 

2017; Kihila, 2017; 

Magni, 2017; Ruiz-

Mallén et al., 2017 

Legal and 

regulatory 

acceptability 

 

IPCC, 2012; Boughedir, 

2015; Howes et al., 

2015; Johnson and Abe, 

 

Falco et al., 2014; 

Thornton and 

Herrero, 2014; 

 
Mantilla et al., 

2014; Coulibaly et 
 

Berkes et al., 2000; 

Nakashima et al., 

2012; Leonard et al., 
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2015; Kelman et al., 

2015; Kull et al., 2016; 

Muñoz et al., 2016; van 

der Keur et al., 2016; 

Haeberli et al., 2016, 

2017; Kaya et al., 2016; 

de Leon and Pittock, 

2017; Kita, 2017; Ruiz-

Rivera and Lucatello, 

2017; Serrao-Neumann 

et al., 2017; Wallace, 

2017; Kelman, 2017; 

Rosendo et al., 2018 

Wolfrom and Yokoi-

Arai, 2015; García 

Romero and Molina, 

2015; Joyette et al., 

2015; Linnerooth-

Bayer and 

Hochrainer-Stigler, 

2015; Surminski et 

al., 2016; Adiku et 

al., 2017; Glaas et al., 

2017; Hansen et al., 

2017; Jenkins et al., 

2017; Jensen and 

Barrett, 2017 

al., 2015; Lobo et 

al., 2017 

2013; Hiwasaki et al., 

2014; Ford et al., 

2015; Hooli, 2016; 

Ruiz-Mallén et al., 

2017; Russell-Smith 

et al., 2017; Ingty, 

2017; Kihila, 2017; 

Magni, 2017; 

Mccubbin et al., 2017 

Institutional 

capacity and 

administrative 

feasibility 

 

Carey, 2008; IPCC, 

2012; Mavhura et al., 

2013; McNamara and 

Prasad, 2014; 

Boughedir, 2015; 

Kelman et al., 2015; 

Mawere and Mubaya, 

2015; Howes et al., 

2015; Johnson and Abe, 

2015; Archer, 2016; Kull 

et al., 2016; Muñoz et 

al., 2016; Rose, 2016; 

van der Keur et al., 

2016; Watanabe et al., 

2016; Haeberli et al., 

2016, 2017; Kita, 2017; 

Ruiz-Rivera and 

Lucatello, 2017; Serrao-

Neumann et al., 2017; 

Wallace, 2017; 

Granderson, 2017; 

Kelman, 2017; Nahayo 

et al., 2018; Rosendo et 

al., 2018 

 

Cook and 

Dowlatabadi, 2011; 

Weinhofer and 

Busch, 2013; 

Thornton and 

Herrero, 2014; Falco 

et al., 2014; Joyette et 

al., 2015; Lashley and 

Warner, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Wolfrom and 

Yokoi-Arai, 2015; 

García Romero and 

Molina, 2015; 

Greatrex et al., 2015; 

Akter et al., 2016; 

Surminski et al., 

2016; Adiku et al., 

2017; Surminski and 

Eldridge, 2017; Glaas 

et al., 2017; Hansen 

et al., 2017; Jenkins 

 

Dinku et al., 2014; 

Wood et al., 2014; 

Jancloes et al., 

2014; Vaughan and 

Dessai, 2014; 

Vincent et al., 

2015; Brasseur and 

Gallardo, 2016; 

Vaughan et al., 

2016; Lourenço et 

al., 2016; Snow et 

al., 2016; Trenberth 

et al., 2016; 

Harjanne, 2017; 

Räsänen et al., 

2017; Singh et al., 

2017 

 

Berkes et al., 2000; 

Nakashima et al., 

2012; Hiwasaki et al., 

2014, 2015; Oteros-

Rozas et al., 2015; 

Ford et al., 2015; 

Johnson et al., 2015; 

Sherman et al., 2016; 

Mistry and Berardi, 

2016; Fernández-

Llamazares et al., 

2017; Ruiz-Mallén et 

al., 2017; Russell-

Smith et al., 2017; 

Williams et al., 2017; 

Granderson, 2017; 

Kihila, 2017; Magni, 

2017 



 

 4SM-70 Total pages: 180 

et al., 2017; Jensen 

and Barrett, 2017 

Transparency 

and 

accountability 

potential 

 

Carey, 2005; IPCC, 

2012; Howes et al., 

2015; Johnson and Abe, 

2015; Kaya et al., 2016; 

Kita, 2017; Ruiz-Rivera 

and Lucatello, 2017; 

Rosendo et al., 2018 

 

Thornton and 

Herrero, 2014; García 

Romero and Molina, 

2015; Greatrex et al., 

2015; Joyette et al., 

2015; Lashley and 

Warner, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Jin et al., 2016; 

Adiku et al., 2017; 

Hansen et al., 2017; 

Jensen and Barrett, 

2017 

 

Vaughan and 

Dessai, 2014; 

Harjanne, 2017; 

Hewitson et al., 

2017 

 

Berkes et al., 2000; 

Nakashima et al., 

2012; Leonard et al., 

2013; Green and 

Minchin, 2014; 

Hiwasaki et al., 2014; 

Ford et al., 2015; 

Johnson et al., 2015; 

Oteros-Rozas et al., 

2015; Mistry and 

Berardi, 2016; 

Russell-Smith et al., 

2017; Magni, 2017; 

Rapinski et al., 2018 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-

benefits (health, 

education) 

 

IPCC, 2012; Mavhura et 

al., 2013; McNamara 

and Prasad, 2014; 

Samaddar et al., 2015; 

Mawere and Mubaya, 

2015; Archer, 2016; 

Watanabe et al., 2016; 

Haeberli et al., 2016; 

Kull et al., 2016; Rose, 

2016; Brundiers, 2018; 

Nahayo et al., 2018 

 

Panda et al., 2013; 

Thornton and 

Herrero, 2014; 

Greatrex et al., 2015; 

Lashley and Warner, 

2015; Linnerooth-

Bayer and 

Hochrainer-Stigler, 

2015; Adiku et al., 

2017; Glaas et al., 

2017; Hansen et al., 

2017; Jensen and 

Barrett, 2017 

 

Rogers and 

Tsirkunov, 2010; 

Kadi et al., 2011; 

Hunt et al., 2017 

 

Ford, 2012; Leonard 

et al., 2013; 

McNamara and 

Prasad, 2014; Ford et 

al., 2014; Green and 

Minchin, 2014; 

Cunsolo Willox et al., 

2015; Durkalec et al., 

2015; MacDonald et 

al., 2015a, b; Harper 

et al., 2015; Hiwasaki 

et al., 2015; Mapfumo 

et al., 2016; Mistry 

and Berardi, 2016; 

Hooli, 2016; Magni, 

2017; Kihila, 2017 

Socio-cultural 

acceptability 
 

Carey, 2005; IPCC, 

2012; Mavhura et al., 

2013; McNamara and 

Prasad, 2014; Anacona 

et al., 2015; Mawere and 

Mubaya, 2015; 

 

Lashley and Warner, 

2015; Linnerooth-

Bayer and 

Hochrainer-Stigler, 

2015; Bogale, 2015; 

García Romero and 

 

Sivakumar et al., 

2014; Vincent et 

al., 2015; Brasseur 

and Gallardo, 2016; 

Cortekar et al., 

2016; Carr and 

 

Natcher et al., 2007; 

Ford et al., 2010; 

Cunsolo Willox et al., 

2012; Nakashima et 

al., 2012; Adger et al., 

2013; Leonard et al., 
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Samaddar et al., 2015; 

Archer, 2016; Muñoz et 

al., 2016; Rose, 2016; 

van der Keur et al., 

2016; Watanabe et al., 

2016; Kaya et al., 2016; 

Kull et al., 2016; Serrao-

Neumann et al., 2017; de 

Leon and Pittock, 2017; 

Granderson, 2017; Kita, 

2017 

Molina, 2015; 

Greatrex et al., 2015; 

Jin et al., 2016; Adiku 

et al., 2017; Akter et 

al., 2017; Farzaneh et 

al., 2017; Glaas et al., 

2017; Hansen et al., 

2017; Jensen and 

Barrett, 2017 

Onzere, 2017; 

Singh et al., 2017; 

Webber and 

Donner, 2017; 

Guido et al., 2018  

2013; Green and 

Minchin, 2014; 

MacDonald et al., 

2015a; Hiwasaki et 

al., 2015; Johnson et 

al., 2015; Mapfumo et 

al., 2016; Hooli, 

2016; Tschakert et al., 

2017; Kihila, 2017; 

Flynn et al., 2018 

Social and 

regional 

inclusiveness 

 

Carey, 2005; IPCC, 

2012; Mavhura et al., 

2013; McNamara and 

Prasad, 2014; Samaddar 

et al., 2015; Mawere and 

Mubaya, 2015; Archer, 

2016; Rose, 2016; 

Watanabe et al., 2016; 

Kaya et al., 2016; Kull et 

al., 2016; de Leon and 

Pittock, 2017; 

Granderson, 2017; Kita, 

2017; Nahayo et al., 

2018 

 

Falco et al., 2014; 

Bogale, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; García Romero 

and Molina, 2015; 

Greatrex et al., 2015; 

Joyette et al., 2015; 

Akter et al., 2016; 

Surminski et al., 

2016; Jin et al., 2016; 

Shively, 2017; 

Farzaneh et al., 2017; 

Hansen et al., 2017; 

Jensen and Barrett, 

2017 

 

Expert judgement 

Sivakumar et al., 

2014; Carr and 

Onzere, 2017; 

Webber and 

Donner, 2017 

 

Berkes et al., 2000; 

Nakashima et al., 

2012; Adger et al., 

2013; Leonard et al., 

2013; Green and 

Minchin, 2014; 

McNamara and 

Prasad, 2014; 

MacDonald et al., 

2015a; Mistry and 

Berardi, 2016; Hooli, 

2016; Nunn et al., 

2017; Ruiz-Mallén et 

al., 2017; Ingty, 2017; 

Magni, 2017; Flynn et 

al., 2018 

Intergenerational 

equity 
 

IPCC, 2012; Mavhura et 

al., 2013; McNamara 

and Prasad, 2014; 

Mawere and Mubaya, 

2015; Archer, 2016; 

Kaya et al., 2016; 

Granderson, 2017; 

Nahayo et al., 2018 

 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; O’Hare et al., 

2016; Jensen and 

Barrett, 2017  

NA   

Berkes et al., 2000; 

Ford et al., 2010; 

Nakashima et al., 

2012; Leonard et al., 

2013; McNamara and 

Prasad, 2014; 

Hiwasaki et al., 2015; 

MacDonald et al., 

2015a; Tschakert et 

al., 2017; Kihila, 
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2017; Magni, 2017; 

Nunn et al., 2017 

E
n

v
ir

o
n

m
e
n

ta
l/

ec
o

lo
g

ic
a

l 

Ecological 

capacity 
 

IPCC, 2012; Mavhura et 

al., 2013; McNamara 

and Prasad, 2014; 

Kelman et al., 2015; 

Mawere and Mubaya, 

2015; Archer, 2016; 

Haeberli et al., 2016; 

Kull et al., 2016 

NA  NA   

Berkes et al., 2000; 

Forbes et al., 2009; 

Leonard et al., 2013; 

McNamara and 

Prasad, 2014; 

MacDonald et al., 

2015b; Altieri and 

Nicholls, 2017; 

Russell-Smith et al., 

2017; Tschakert et al., 

2017; Ingty, 2017; 

Kihila, 2017; Magni, 

2017; Nunn et al., 

2017 

Adaptive 

capacity/ 

resilience 

 

IPCC, 2012; Mavhura et 

al., 2013; McNamara 

and Prasad, 2014; 

Boeckmann and Rohn, 

2014; Yu and Gillis, 

2014; Anacona et al., 

2015; Johnson and Abe, 

2015; Kelman et al., 

2015; Mawere and 

Mubaya, 2015; Howes et 

al., 2015; Archer, 2016; 

Kaya et al., 2016; Kull et 

al., 2016; Muñoz et al., 

2016; Rose, 2016; 

Watanabe et al., 2016; 

Haeberli et al., 2016, 

2017; Kelman, 2017; 

Wallace, 2017; de Leon 

and Pittock, 2017; 

Granderson, 2017; 

Brundiers, 2018 

 

Mills, 2007; Panda et 

al., 2013; Thornton 

and Herrero, 2014; 

Falco et al., 2014; 

Bogale, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Nicola, 2015; 

Wolfrom and Yokoi-

Arai, 2015; García 

Romero and Molina, 

2015; Greatrex et al., 

2015; Lashley and 

Warner, 2015; 

O’Hare et al., 2016; 

Surminski et al., 

2016; Jin et al., 2016; 

Adiku et al., 2017; 

Hansen et al., 2017; 

Jenkins et al., 2017; 

Jensen and Barrett, 

2017 

 

L. Jones et al., 

2016; Lourenço et 

al., 2016; Singh et 

al., 2017; C.J. 

White et al., 2017 

 

Berkes et al., 2000; 

Forbes et al., 2009; 

Ford et al., 2010; 

Nakashima et al., 

2012; Leonard et al., 

2013; McNamara and 

Prasad, 2014; Pearce 

et al., 2015; Hiwasaki 

et al., 2015; Savo et 

al., 2016; Sherman et 

al., 2016; Mapfumo et 

al., 2016; Altieri and 

Nicholls, 2017; Nunn 

et al., 2017; Russell-

Smith et al., 2017; 

Kihila, 2017; Magni, 

2017; Mccubbin et 

al., 2017 
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G
eo

p
h

y
si

ca
l 

Physical 

feasibility 
 

IPCC, 2012; Yu and 

Gillis, 2014; McNamara 

and Prasad, 2014; 

Anacona et al., 2015; 

Boughedir, 2015; 

Kelman et al., 2015; 

Archer, 2016; Muñoz et 

al., 2016; Diaz, 2016; 

Haeberli et al., 2016, 

2017; Kull et al., 2016 

NA   

Sivakumar et al., 

2014; Snow et al., 

2016; C.J. White et 

al., 2017 

NE  

Land use change 

enhancement 

potential 

NA   

Panda et al., 2013; 

Annan and Schlenker, 

2015; Greatrex et al., 

2015; Linnerooth-

Bayer and 

Hochrainer-Stigler, 

2015; Hansen et al., 

2017; Jenkins et al., 

2017; Jensen and 

Barrett, 2017 

NA   

Berkes et al., 2000; 

Nakashima et al., 

2012; Leonard et al., 

2013; McNamara and 

Prasad, 2014; Pearce 

et al., 2015; Hiwasaki 

et al., 2015; 

MacDonald et al., 

2015b; Reyes-García 

et al., 2016; Mistry 

and Berardi, 2016; 

Altieri and Nicholls, 

2017; Kihila, 2017; 

Magni, 2017 

Hazard risk 

reduction 

potential 

 

Carey, 2005, 2008; 

IPCC, 2012; Mavhura et 

al., 2013; Boeckmann 

and Rohn, 2014; 

McNamara and Prasad, 

2014; Yu and Gillis, 

2014; Anacona et al., 

2015; Howes et al., 

2015; Johnson and Abe, 

2015; Kelman et al., 

2015; Mawere and 

Mubaya, 2015; 

Boughedir, 2015; 

Archer, 2016; Kaya et 

 

Mills, 2007; Falco et 

al., 2014; Annan and 

Schlenker, 2015; 

Linnerooth-Bayer and 

Hochrainer-Stigler, 

2015; Wolfrom and 

Yokoi-Arai, 2015; 

García Romero and 

Molina, 2015; 

Greatrex et al., 2015; 

Lashley and Warner, 

2015; Surminski et 

al., 2016; Jin et al., 

2016; Patel et al., 

 

Rogers and 

Tsirkunov, 2010; 

Lourenço et al., 

2016; Singh et al., 

2017 

 

Berkes et al., 2000; 

Nakashima et al., 

2012; Leonard et al., 

2013; Mistry and 

Berardi, 2016; Altieri 

and Nicholls, 2017; 

Magni, 2017; Nunn et 

al., 2017; Russell-

Smith et al., 2017 
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al., 2016; Kull et al., 

2016; Muñoz et al., 

2016; Rose, 2016; 

Watanabe et al., 2016; 

Diaz, 2016; Haeberli et 

al., 2016, 2017; Kelman, 

2017; Kita, 2017; Milner 

et al., 2017; Wallace, 

2017; Brundiers, 2018 

2017; Surminski and 

Eldridge, 2017; 

Surminski and 

Thieken, 2017; 

Farzaneh et al., 2017; 

Glaas et al., 2017; 

Hansen et al., 2017; 

Jensen and Barrett, 

2017 
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Table 4.SM.23: Feasibility assessment of overarching adaptation options: education and learning, population health and health system adaptation, social safety nets and human 

migration. For methodology, see 4.SM.4.1. 

 

  Education and Learning 
Population Health and Health System 

Adaptation 
Social Safety Nets Human Migration 

 Evidence Medium  Medium  Medium  Medium  

 Agreement High  High  Medium  Low  

E
co

n
o

m
ic

 

Microeconomic 

viability 
 

Rumore et al., 2016; Lutz and 

Muttarak, 2017 
 

Toloo et al., 2013; Burton et al., 

2014; Hoy et al., 2014; Paterson et 

al., 2014; K.R. Smith et al., 2014; 

Confalonieri et al., 2015; Araos et 

al., 2016a; Hess and Ebi, 2016; Ebi 

and del Barrio, 2017; Gilfillan et al., 

2017; Paavola, 2017 

 
Shiferaw et al., 2014; 

Devereux et al., 2015 
 

Birk and Rasmussen, 2014; 

Betzold, 2015; Ionesco et 

al., 2016; Musah-Surugu et 

al., 2018 

Macroeconomic 

viability 
 

Hoffmann and Muttarak, 

2017; Lutz and Muttarak, 

2017 

 

Ebi et al., 2004; Hess et al., 2012; 

Hosking and Campbell-Lendrum, 

2012; Lesnikowski et al., 2013; 

Toloo et al., 2013; Bowen et al., 

2013; K.R. Smith et al., 2014; Hoy et 

al., 2014; Austin et al., 2015; Watts 

et al., 2015; WHO, 2015; Araos et 

al., 2016a; Paz et al., 2016; Hess and 

Ebi, 2016; Nitschke et al., 2017; 

Paavola, 2017; Ebi and del Barrio, 

2017; Gilfillan et al., 2017 

 Devereux et al., 2015  
Grecequet et al., 2017; Hino 

et al., 2017 

Socio-economic 

vulnerability 

reduction potential 

 

Frankenberg et al., 2013; 

K.C., 2013; Striessnig et al., 

2013; van der Land and 

Hummel, 2013; Muttarak and 

Lutz, 2014; Rumore et al., 

2016; Hoffmann and 

Muttarak, 2017; Lutz and 

Muttarak, 2017 

 

Ebi et al., 2004, 2016; Hess et al., 

2012; Hosking and Campbell-

Lendrum, 2012; Panic and Ford, 

2013; Toloo et al., 2013; Bowen et 

al., 2013; K.R. Smith et al., 2014; 

Boeckmann and Rohn, 2014; Austin 

et al., 2015; Watts et al., 2015; 

WHO, 2015; Confalonieri et al., 

2015; Araos et al., 2016a; Hess and 

Ebi, 2016; Paz et al., 2016; 

Benmarhnia et al., 2016; Gilfillan et 

al., 2017; Nitschke et al., 2017; 

 

Davies et al., 2013; 

Weldegebriel and 

Prowse, 2013; Berhane et 

al., 2014; Eakin et al., 

2014; Leichenko and 

Silva, 2014; Devereux, 

2016; Lemos et al., 2016; 

Godfrey-Wood and 

Flower, 2017; Schwan 

and Yu, 2017 

 

Birk and Rasmussen, 2014; 

Adger et al., 2015; Betzold, 

2015; Grecequet et al., 

2017; Melde et al., 2017; 

World Bank, 2017 
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Paavola, 2017; Sen et al., 2017; Ebi 

and del Barrio, 2017; Ebi and Hess, 

2017 

Employment and 

productivity 

enhancement 

potential 

 

van der Land and Hummel, 

2013; Muttarak and Lutz, 

2014; Lutz and Muttarak, 

2017 

 

Bowen et al., 2013; Toloo et al., 

2013; Burton et al., 2014; Hoy et al., 

2014; K.R. Smith et al., 2014; 

Benmarhnia et al., 2016; Paz et al., 

2016; Gilfillan et al., 2017; Nitschke 

et al., 2017 

 

Davies et al., 2013; 

Berhane et al., 2014; 

Shiferaw et al., 2014 

NA  

          

T
ec

h
n

o
lo

g
ic

a
l 

 

Technical resource 

availability 
 

Chaudhury et al., 2013; Baird 

et al., 2014; Cloutier et al., 

2015; Rumore et al., 2016 

 

Hess et al., 2012; Lesnikowski et al., 

2013; Panic and Ford, 2013; Toloo et 

al., 2013; Bowen et al., 2013; Hoy et 

al., 2014; Paterson et al., 2014; 

Rumsey et al., 2014; K.R. Smith et 

al., 2014; Burton et al., 2014; Austin 

et al., 2015; WHO, 2015; 

Confalonieri et al., 2015; Araos et 

al., 2016a; Paz et al., 2016; 

Benmarhnia et al., 2016; Ebi et al., 

2016; Hess and Ebi, 2016; Nitschke 

et al., 2017; Paavola, 2017; Sheehan 

et al., 2017; Ebi and del Barrio, 

2017; Ebi and Hess, 2017 

 Kim and Yoo, 2015  

Birk and Rasmussen, 2014; 

Gemenne and Blocher, 

2017; Melde et al., 2017 

Risks mitigation 

potential  
 

Wamsler et al., 2012; 

Frankenberg et al., 2013; 

K.C., 2013; Striessnig et al., 

2013; van der Land and 

Hummel, 2013; Muttarak and 

Lutz, 2014; Harteveld and 

Suarez, 2015; Lutz and 

Muttarak, 2017 

 

Boeckmann and Rohn, 2014; 

Paterson et al., 2014; Benmarhnia et 

al., 2016; Hess and Ebi, 2016; 

Nitschke et al., 2016; Ebi and del 

Barrio, 2017; Ebi and Hess, 2017 

 

Davies et al., 2013; 

Rurinda et al., 2014; 

Shiferaw et al., 2014; 

Devereux, 2016 

 

Adger et al., 2015; 

Grecequet et al., 2017; 

Tadgell et al., 2017 

In
st

it
u

ti
o

n
a

l 

Political 

acceptability 
LE 

Butler et al., 2015, 2016b; 

Cloutier et al., 2015 
 

Hess et al., 2012; Lesnikowski et al., 

2013; Bowen et al., 2013; Hoy et al., 

2014; Rumsey et al., 2014; K.R. 

Smith et al., 2014; Burton et al., 

2014; Austin et al., 2015; Watts et 

 

Porter et al., 2014; 

Rurinda et al., 2014; 

Wilhite et al., 2014; 

Brooks, 2015; Kim and 

Yoo, 2015; Ravi and 

 

Kothari, 2014; Methmann 

and Oels, 2015; Brzoska 

and Fröhlich, 2016; 

Gemenne and Blocher, 

2017; Grecequet et al., 
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al., 2015; WHO, 2015; Confalonieri 

et al., 2015; Araos et al., 2016a; Hess 

and Ebi, 2016; Benmarhnia et al., 

2016; Ebi et al., 2016; Sen et al., 

2017; Ebi and del Barrio, 2017; 

Gilfillan et al., 2017; Green et al., 

2017 

Engler, 2015; Schwan 

and Yu, 2017) 

2017; Yamamoto et al., 

2017; Matthews and Potts, 

2018 

Legal and 

regulatory 

acceptability 

NE   

Hess et al., 2012; Lesnikowski et al., 

2013; Burton et al., 2014; Austin et 

al., 2015; Watts et al., 2015; WHO, 

2015; Araos et al., 2016a; Ebi et al., 

2016; Hess and Ebi, 2016; Paz et al., 

2016; Shimamoto and McCormick, 

2017; Ebi and del Barrio, 2017; 

Gilfillan et al., 2017 

 
Rurinda et al., 2014; 

Devereux et al., 2015 
 

Wilmsen and Webber, 

2015; Tadgell et al., 2017; 

Ahmed, 2018; World Bank, 

2018 

Institutional 

capacity and 

administrative 

feasibility 

 

Wamsler et al., 2012; 

Chaudhury et al., 2013; 

Odemerho, 2014; Cloutier et 

al., 2015; Butler et al., 2016a, 

b 

 

Ebi et al., 2004, 2016; Hess et al., 

2012; Lesnikowski et al., 2013; 

Panic and Ford, 2013; Toloo et al., 

2013; Bowen et al., 2013; Hoy et al., 

2014; Nigatu et al., 2014; Paterson et 

al., 2014; Rumsey et al., 2014; 

Burton et al., 2014; Austin et al., 

2015; Watts et al., 2015; WHO, 

2015; Confalonieri et al., 2015; 

Araos et al., 2016a; Hess and Ebi, 

2016; Benmarhnia et al., 2016; Paz 

et al., 2016; Xiao et al., 2016; 

Gilfillan et al., 2017; Green et al., 

2017; Nitschke et al., 2017; Sheehan 

et al., 2017; Shimamoto and 

McCormick, 2017; Ebi and del 

Barrio, 2017; Ebi and Hess, 2017 

 

Davies et al., 2013; 

Rurinda et al., 2014; 

Wilhite et al., 2014; Ravi 

and Engler, 2015; 

Schwan and Yu, 2017 

 

Betzold, 2015; Methmann 

and Oels, 2015; Brzoska 

and Fröhlich, 2016; 

Gemenne and Blocher, 

2017; Grecequet et al., 

2017; Yamamoto et al., 

2017; Matthews and Potts, 

2018; Thomas and 

Benjamin, 2018 

Transparency and 

accountability 

potential 

 

Chaudhury et al., 2013; 

Odemerho, 2014; Ensor and 

Harvey, 2015; Harteveld and 

Suarez, 2015; Chung Tiam 

Fook, 2017; Myers et al., 

2017; Flynn et al., 2018 

 

Hess et al., 2012; Hosking and 

Campbell-Lendrum, 2012; 

Lesnikowski et al., 2013; Panic and 

Ford, 2013; Hoy et al., 2014; 

Boeckmann and Rohn, 2014; Austin 

et al., 2015; Araos et al., 2016a; 

 

Masud-All-Kamal and 

Saha, 2014; Devereux et 

al., 2015; Masiero, 2015; 

Ravi and Engler, 2015; 

Schwan and Yu, 2017 

 

Methmann and Oels, 2015; 

Brzoska and Fröhlich, 2016; 

Tadgell et al., 2017 
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Benmarhnia et al., 2016; Ebi et al., 

2016; Sheehan et al., 2017; Ebi and 

del Barrio, 2017; Ebi and Hess, 

2017; Gilfillan et al., 2017 

S
o

ci
o

-c
u

lt
u

ra
l 

Social co-benefits 

(health, education) 
 

Wamsler et al., 2012; 

Frankenberg et al., 2013; 

K.C., 2013; van der Land and 

Hummel, 2013; Muttarak and 

Lutz, 2014; Chung Tiam 

Fook, 2017; Hoffmann and 

Muttarak, 2017; Lutz and 

Muttarak, 2017 

 

Bowen et al., 2013; K.R. Smith et 

al., 2014; Hoy et al., 2014; Austin et 

al., 2015; Watts et al., 2015; 

Confalonieri et al., 2015; Ebi et al., 

2016; Hess and Ebi, 2016; Paz et al., 

2016; Ebi and del Barrio, 2017; 

Paavola, 2017; Shimamoto and 

McCormick, 2017 

 

Berhane et al., 2014; 

Leichenko and Silva, 

2014; Rurinda et al., 

2014; Shiferaw et al., 

2014; Verguet et al., 

2015; Devereux, 2016; 

Lemos et al., 2016 

 

Kothari, 2014; Bettini et al., 

2016; Gioli et al., 2016; 

Bhagat, 2017; Melde et al., 

2017; Schwan and Yu, 

2017; World Bank, 2018 

Socio-cultural 

acceptability 
 

Chaudhury et al., 2013; 

Sharma et al., 2013; 

Demuzere et al., 2014; 

Odemerho, 2014; Ensor and 

Harvey, 2015; Butler et al., 

2016a; Myers et al., 2017; 

Flynn et al., 2018 

 

Hess et al., 2012; Bowen et al., 2013; 

Toloo et al., 2013; K.R. Smith et al., 

2014; Hoy et al., 2014; Confalonieri 

et al., 2015; Watts et al., 2015; 

WHO, 2015; Ebi et al., 2016; Hess 

and Ebi, 2016; Paz et al., 2016; Ebi 

and del Barrio, 2017; Nitschke et al., 

2017; Sen et al., 2017 

LE 
Rurinda et al., 2014; 

Wilhite et al., 2014 
 

Martin et al., 2014; Brzoska 

and Fröhlich, 2016; Jha et 

al., 2017; Kelman et al., 

2017; Huntington et al., 

2018 

Social and regional 

inclusiveness 
 

Wamsler et al., 2012; 

Muttarak and Lutz, 2014; 

Suarez et al., 2014; Ensor and 

Harvey, 2015; Ford et al., 

2016, 2018 

 

Hosking and Campbell-Lendrum, 

2012; Bowen et al., 2013; Panic and 

Ford, 2013; Toloo et al., 2013; K.R. 

Smith et al., 2014; Burton et al., 

2014; Hoy et al., 2014; Watts et al., 

2015; WHO, 2015; Confalonieri et 

al., 2015; Benmarhnia et al., 2016; 

Paz et al., 2016; Ebi et al., 2016; 

Hess and Ebi, 2016; Sen et al., 2017; 

Ebi and del Barrio, 2017; Paavola, 

2017 

NA   

Kothari, 2014; Kelman, 

2015; Schwan and Yu, 

2017; Matthews and Potts, 

2018; World Bank, 2018 

Intergenerational 

equity 
LE Striessnig et al., 2013  

Ebi et al., 2004; Confalonieri et al., 

2015; Benmarhnia et al., 2016; Ebi 

and del Barrio, 2017; Paavola, 2017)  

NA   
Wilmsen and Webber, 2015 

 

E
n

v
ir

o
n

m

en
ta

l/
 

ec
o

lo
g

ic
a

l 

Ecological capacity NA  NA  NA   
Niven and Bardsley, 2013; 

Birk and Rasmussen, 2014 

Adaptive 

capacity/resilience 
 

K.C., 2013; Sharma et al., 

2013; Striessnig et al., 2013; 
 

Hess et al., 2012; Toloo et al., 2013; 

K.R. Smith et al., 2014; Confalonieri 
 

Davies et al., 2013; 

Weldegebriel and 
 

Birk and Rasmussen, 2014; 

Adger et al., 2015; 
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Frankenberg et al., 2013; 

Baird et al., 2014; Lutz et al., 

2014; Muttarak and Lutz, 

2014; Suarez et al., 2014; 

Tschakert et al., 2014; Butler 

and Adamowski, 2015; 

Oteros-Rozas et al., 2015; 

Pearce et al., 2015; Ensor and 

Harvey, 2015; Janif et al., 

2016; Butler et al., 2016a, b; 

Star et al., 2016; Vinke-de 

Kruijf and Pahl-Wostl, 2016; 

Harvey et al., 2017; Hoffmann 

and Muttarak, 2017; Lutz and 

Muttarak, 2017; Myers et al., 

2017; Chung Tiam Fook, 

2017; Cochrane et al., 2017; 

Flynn et al., 2018; Ford et al., 

2018 

et al., 2015; Watts et al., 2015; 

WHO, 2015; Benmarhnia et al., 

2016; Hess and Ebi, 2016; Paz et al., 

2016; Ebi and del Barrio, 2017; 

Nitschke et al., 2017; Paavola, 2017; 

Sen et al., 2017 

 

Prowse, 2013; Eakin et 

al., 2014; Rurinda et al., 

2014; Shiferaw et al., 

2014; Lemos et al., 2016; 

Schwan and Yu, 2017 

 

Grecequet et al., 2017; 

Melde et al., 2017; Tadgell 

et al., 2017; World Bank, 

2018 

 

G
eo

p
h

y
si

ca
l 

Physical feasibility NA  NA  NA   

Niven and Bardsley, 2013; 

Hino et al., 2017; Matthews 

and Potts, 2018 

Land use change 

enhancement 

potential 

NA  NA  NA  LE Matthews and Potts, 2018 

Hazard risk 

reduction potential 
 

Wamsler et al., 2012; 

Frankenberg et al., 2013; 

K.C., 2013; Striessnig et al., 

2013; Muttarak and Lutz, 

2014; Suarez et al., 2014; 

Harteveld and Suarez, 2015; 

Hoffmann and Muttarak, 

2017; Lutz and Muttarak, 

2017 

NA   
Jones et al., 2010; Davies 

et al., 2013 
 

Birk and Rasmussen, 2014; 

Cattaneo and Peri, 2016; 

Grecequet et al., 2017; 

Tadgell et al., 2017; 

Crnčević and Orlović 

Lovren, 2018; World Bank, 

2018 
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4.SM.5 Adaptation and Mitigation Synergies and Trade-offs as Discussed in Section 4.5.4 

 

Mitigation options may affect the feasibility of adaptation options, and the other way around. Table 4.SM.24 provides examples of possible positive impacts (synergies) and negative 

impacts (trade-offs) of mitigation options for adaptation. Table 4.SM.25 lists examples of synergies and trade-offs of adaptation options for mitigation. 

4.SM.5.1 Mitigation Options with Adaptation Synergies and Trade-offs 

 

Table 4.SM.24: Mitigation options with adaptation synergies and trade-offs identified. 

 

System 
Mitigation 

Option 
Synergies Trade-offs 

Energy 

system 

transitions 

Wind energy 

(on-shore and 

off-shore) 

Resilience can be increased by wind, solar and bioenergy due to 

distributed grids (Parkinson and Djilali, 2015), given that energy 

security standards are in place (Almeida Prado et al., 2016). The use of 

residential batteries can increase resilience, especially after extreme 

weather events (Qazi and Young Jr., 2014; Liu et al., 2017). 

 

A shift from coal-generated to natural gas-generated electricity could 

decrease water consumption (DeNooyer et al., 2016). 

Renewable energy infrastructure that does not follow security 

standards can increase vulnerability (Ley, 2017). 

 

 

Solar 

photovoltaic 

(PV) 

Bioenergy 

Electricity 

storage 

Power sector 

CCS 
NE 

Some renewable energy technologies, carbon dioxide capture 

and storage (CCS), and concentrating solar power technologies 

have substantial water demand associated with their operation 

(Fricko et al., 2016). In particular, lower power plant efficiency 

due to CCS increases the vulnerability to water constraints in 

most regions (McCollum et al., 2013; van Vliet et al., 2016). 

Nuclear energy 
Increased safety and protection standards can improve the climate risk 

profiles (Schneider et al., 2017). 

Increased safety and protection standards will increase costs, 

making some electricity systems less reliable (Jacobson and 

Delucchi, 2009; Lovins et al., 2018). 

Land and 

ecosystem 

transitions 

Reduced food 

wastage and 

efficient food 

production 

Reducing food loss and waste can decrease pressure of deforestation 

(FAO, 2013a), pressure on land use for agriculture (Foley et al., 2011; 

Hiç et al., 2016), and provide long-term food security (Bajželj et al., 

2014). 

NA 

Dietary shifts 

Shift from animal- to plant-related diets can significantly decrease land 

use and biodiversity loss due to a decrease in pressure on land use by 

livestock production (Newbold et al., 2015; Ramankutty et al., 2018; 

Sparovek et al., 2018) along with health benefits (Tilman and Clark, 

Shift from animal- to plant-related diets will require 

improvement of mixed crop-livestock systems, which are more 

difficult to manage well and need higher capital to be established 

(Ramankutty et al., 2018). 
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2014; Westhoek et al., 2014; Hallström et al., 2017; Song et al., 2017). 

Sustainable 

intensification 

of agriculture 

Agroforestry practices increase soil carbon stocks and above-ground 

biomass as well as diversify incomes, reducing financial risk, and 

provide shade for protection from rising temperatures (Harvey et al., 

2014). 

 

Agroforestry can sustain or increase food production in some systems, 

increasing farmers’ resilience to climate change (Jones et al., 2012). 

 

Mixed agroforestry systems may simultaneously meet the water, food, 

energy and income needs of densely populated rural and peri-urban 

areas (van Noordwijk et al., 2016). 

 

Sustainable intensification can increase offsite impacts from 

fertilizer, herbicide and pesticide use (Stevens and Quinton 

2009), increase costs and increase climate risk. No-tillage 

without pairing with other agronomic practices can reduce crop 

yields. 

 

No-till agriculture can reduce GHG emissions but increase 

pesticide concentrations (Stevens and Quinton, 2009). 

 

Adaptation gains made through improved irrigation efficiency 

can be undermined by shifts to water-intensive crops for 

mitigation (e.g., shifting to bioenergy crops) (Chaturvedi et al., 

2015). 

 

Conservation agriculture reduces yields 3–5 years after adoption, 

but enhances productivity and carbon sequestration over longer 

periods (Harvey et al., 2014). 

 

Agroforestry can, in some dry environments, increase 

competition with crops and pastures, decreasing productivity, 

and reduce catchment water yield (Schrobback et al., 2011). 

 

Fast-growing tree monocultures or biofuel crops may enhance 

carbon stocks but reduce downstream water availability and 

decrease availability of agricultural land (Harvey et al., 2014). 

 

Agricultural intensification that improves crop productivity can 

increase incomes but undermine local livelihoods and well-being 

as seen in shifts to intensified sugarcane production in Ethiopia 

or more intensive land use in Southeast Asia (Liao and Brown, 

2018). 

Ecosystem 

restoration 

Sustainable water management – restored/healthy ecosystems provide 

water storage and filtration services (Jones et al., 2012). 

 

Restoration of mangroves and coastal wetlands to sequester (blue) 

carbon increases carbon sinks, reduces coastal erosion and protects from 

storm surges, and otherwise mitigates impacts of sea level rise and 

extreme weather along the coast line (Alongi, 2008; Siikamäki et al., 

A focus on mitigation, for example, through REDD+, can result 

in conservation-priority sites with lower carbon densities to end 

up without REDD+ protection (Phelps et al., 2012; Murray et al., 

2015; Turnhout et al., 2017; Reside et al., 2018). 

 

Potential conflict with biodiversity goals in habitat restoration 

and forest production efforts (Felton et al., 2016). 
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2012; Romañach et al., 2018).  

 

Blue biofuels do not compete for land and water and are not global food 

staples (posing less of a food security issue). Most farms do not use 

fertilizer and could even remove excess nutrients, decreasing 

eutrophication (Turner et al., 2009; Duarte et al., 2013). 

 

Stabilization and support of fisheries can add value to marine 

biodiversity (Turner et al., 2009). 

 

Carbon offset funds provide opportunities for protection and restoration 

of native ecosystems, with corresponding gains for biodiversity and 

reductions in carbon (Reside et al., 2017). 

 

Coupled with biodiversity and conservation interventions, ecosystem 

restoration and avoided deforestation can complement habitat provision 

(Felton et al., 2016). 

 

Forests (through REDD+) can support economies dependent on climate-

sensitive sectors including agriculture, fisheries and energy (Somorin et 

al., 2016; Few et al., 2017). 

 

REDD+ has the potential to promote sustainable development activities 

through the cash-flow from donors/international funds to local forest 

stakeholders (West, 2016). 

 

Tropical reforestation for climate change mitigation can help to protect 

rural economies from impacts of climate variation, reduce impacts of 

climatic variation on water cycle and associated human uses, reduce 

local impacts of extreme weather events and reduce climate impacts on 

biodiversity (Locatelli et al., 2015b). 

 

Some projects worldwide do not target REDD+ projects on 

adaptation or resilience, nor local contexts, in some cases leaving 

negative livelihoods impacts (McElwee et al., 2016; Few et al., 

2017). 

 

In some cases, there is a perception of the inability to reconcile 

development and environmental interests (Pham et al., 2017). 

 

Local benefits, especially for indigenous communities, will only 

be accrued if land tenure is respected and legally protected, 

which is not often the case for indigenous 

communities (Brugnach et al., 2017). 

 

 
Novel 

technologies 

Breeding animals with lower emissions per unit of dry matter intake can 

reduce GHG emissions; when integrated within broader breeding 

programmes, this can offer synergies with breeding for improved 

adaptation to local conditions (Pickering et al., 2015; Nguyen et al., 

2016). 

May have consumer health concerns that need evaluation and 

addressing (Barrows et al., 2014; Fraser et al., 2016). 
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Urban and 

infrastructure 

system 

transitions 

Land-use and 

urban planning 

Potential for synergies in urban planning at policy, organizational and 

practical levels (e.g., urban regeneration, retrofitting, urban greening) 

(Landauer et al., 2015). 

Spatial planning can enhance adaptation, mitigation and sustainable 

development (Hurlimann and March, 2012; Davidse et al., 2015; King 

et al., 2016; Francesch-Huidobro et al., 2017). 

Through the use of integrated approaches there is potential synergy in 

land-use planning (e.g., maintenance of urban forests, urban greening) 

(Newman et al., 2017). 

Urban densification to reduce emissions can go along with regenerative 

qualities for green spaces and reduced urban heat islands and flooding 

impacts by employing biophilic urbanism design (Beatley, 2011; 

Newman et al., 2017). 

Potential conflicts include urban densification to reduce 

emissions which can intensify heat island effects and increase 

surface run-off, and may compete with a desire to expand green 

space and restore local ecosystems (Landauer et al., 2015; Di 

Gregorio et al., 2017b; Endo et al., 2017; Ürge-Vorsatz et al., 

2018), though demonstrations of biophilic urbanism show this 

can be managed (Beatley, 2011; Newman et al., 2017). 

 

In water-scarce regions, there may be trade-offs between 

mitigation measures that require water – such as localized 

cooling – and the population’s water needs (Georgescu et al., 

2015). 

 

Sustainable 

and resilient 

transport 

systems  

 

Cities can re-urbanize in ways that promote transport sector adaptation 

and mitigation (Newman et al., 2017; Salvo et al., 2017; Gota et al., 

2018). 

 

Cities that reduce the use of private cars and develop sustainable 

transport systems can simultaneously benefit from reduced air pollution, 

congestion and road fatalities while reducing overall energy intensity in 

the urban transport sector (Goodwin and Van Dender, 2013; Newman 

and Kenworthy, 2015; Wee, 2015). 

 

Non-motorized transport use is associated with lower emissions and 

better public health in cities. Urbanization and improved access to basic 

services correlate with lower short-term morbidity, such as fever, cough 

and diarrhea (Ahmad et al., 2017). 

 

Promoting energy-efficient mobility systems, for instance by a 10% 

increase in bicycling, could lower chronic conditions like diabetes and 

cardio-vascular diseases for 0.3 million people while also abating 

emissions (Ahmad et al., 2017). 

In middle and low income countries urban density of informal 

settlements is typically associated with a range of water and 

vector-borne health risks that undermine benefits of energy 

efficiency; these may provide a notable exception to the adaptive 

advantages of urban density (Mitlin and Satterthwaite, 2013; 

Lilford et al., 2017) unless new approaches using leapfrog 

technology are used to upgrade slums in situ (Teferi and 

Newman, 2017). 

Sharing 

schemes in 

transportation 

Greater use of sharing schemes can make transportation from 

vulnerable areas more equitable and ordered (Gomez et al., 2015; 

Ambrosino et al., 2016; Kent and Dowling, 2016). 

Highly ICT-dependent sharing schemes may not be resilient 

during disasters, but this can be managed via local shared 
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mobility systems related to local social capital (Mathbor, 2007; 

Bhakta Bhandari, 2014; McCloud et al., 2014). 

Public 

transport 

Greater use of public transport enables more mass exit strategies from 

disasters (Wolshon et al., 2013). 

Highly ICT-dependent public transport may not be resilient 

during disasters but this can be managed via local shared 

mobility systems related to local social capital (Mathbor, 2007; 

Bhakta Bhandari, 2014; McCloud et al., 2014). 

Smart grids 

Greater resilience in electricity due to system feedback to damaged 

areas and other grid enhancements due to more localised data 

(Blaabjerg et al., 2004; IRENA, 2013; IEA, 2017c; Majzoobi and 

Khodaei, 2017). 

NA 

Efficient 

appliances 

Energy efficiency appliances (including lighting and ICT) reduce 

energy consumption and improve grid reliability (Chaturvedi and 

Shukla, 2014). They can provide demand response to absorb variation 

in the electricity supply due to disruption. In addition, when coupled 

with PV and storage, efficient appliances can secure energy supply 

when energy networks are down due to storms, hurricanes and other 

climate-induced events. 

NA  

Low/zero-

energy 

buildings 

Building codes not only improve energy efficiency through insulation 

and air-tightness in buildings but also make them more capable of 

maintaining an indoor temperature during heat waves or power losses, 

to shelter people from heat waves and provide structural capability to 

withstand extreme weather and flooding (Houghton, 2011; King et al., 

2016). Other examples of synergies are green roofs that provide 

insulation, cooling and rain water harvesting (Razzaghmanesh et al., 

2016). 

NE 

Industrial 

system 

transitions 

Energy 

efficiency 
Reduced competition for resources (Hennessey et al., 2017). 

Water-energy trade-offs exist in the production process 

adjustment, which is conventionally promoted as a key energy-

saving measure in the iron and steel industry (C. Wang et al., 

2017). 

Bio-based and 

circularity 

Reduced competition for resources (Hennessey et al., 2017). 

 

Biomass production for industry, if well-managed, can diversify local 

livelihoods, enhance incomes and strengthen local institutions (Locatelli 

et al., 2015b). 

NE 

Electrification 

and hydrogen 
NA 

Greater reliance on variable and weather-dependent sources of 

electricity (Philibert, 2017). 

Industrial 

CCUS 
NA 

Cooling requirements for carbon dioxide capture put pressure on 

adaptation (Magneschi et al., 2017). 
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Carbon 

dioxide 

removal 

Bioenergy 

with CCS 

(BECCS) 

Bioenergy, if well-managed, can diversify local livelihoods, enhance 

incomes and strengthen local institutions (Locatelli et al., 2015b). 

 

Combining BECCS with soil carbon management, agroforestry and 

afforestation can remove carbon dioxide, while limiting adverse impacts 

on water, food and biodiversity (Burns and Nicholson, 2017; Stoy et al., 

2018). 

Bioenergy plantations can decrease food security, compete for 

land and provide short-term benefits for only a few stakeholders 

(Locatelli et al., 2015a). 

Afforestation 

and 

reforestation 

Reforestation connecting fragmented forests reduces exposure to 

forest edge disturbances (Pütz et al., 2014). 

 

Reforestation and coastal restoration are associated with improved 

water filtration, ground water recharge and flood control (Ellison et al., 

2017; Griscom et al., 2017). 

 

Reduce flooding through decreased peak river flow, improved water 

quality and groundwater recharge (Berry et al., 2015). 

  

Increase diversity and habitat availability (when properly managed) 

(Berry et al., 2015). 

 

Tree planting led to more resilient livestock by providing shade and 

shelter (Hayman et al., 2012). 

 

Forestry, if well-managed, can diversify local livelihoods, enhance 

incomes and strengthen local institutions (Locatelli et al., 2015a). 

 

Afforestation of degraded areas can produce large synergies between 

mitigation and adaptation through their impact on farmer livelihoods 

(Rahn et al., 2014). 

Water: increases water demand, reducing catchment yield (Berry 

et al., 2015). 

 

Biodiversity: species and habitat loss due to monocultures, 

chemical inputs or forest management (Berry et al., 2015). 

 

Loss of agricultural land (Berry et al., 2015). 

 

Forest plantations can decrease food security, compete for land 

and provide short-term benefits for only a few stakeholders 

(Locatelli et al., 2015a). 

 

Local benefits, especially for indigenous communities, will only 

be accrued if land tenure is respected and legally protected, 

which is not often the case for indigenous 

communities (Brugnach et al., 2017). 

Soil carbon 

sequestration 

and biochar 

With agroforestry, carbon dioxide is sequestered through the additional 

trees planted, and tree products provide livelihood to communities 

(Verchot et al., 2007; Nair et al., 2009; Branca et al., 2013; Lasco et al., 

2014; Mbow et al., 2014a; P. Smith et al., 2014). 

 

Soil organic carbon may foster crop resilience to climate change  

(Aguilera et al., 2013). 

 

Biochar application to soil sequesters carbon dioxide and at the same 

time increases crop productivity by up to 10% (Jeffery et al., 2011) and 

Biochar amendments lead to plant growth and thus may down-

regulate plant defence genes, increasing the vulnerability against 

insects, pathogens and drought (Viger et al., 2015). 
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can improve the soil’s water balance (Bamminger et al., 2016). 

Enhanced 

weathering 
NE  

Potential adverse health effects because of air particles (Taylor et 

al., 2016). 

 

4.SM.5.2 Adaptation Options with Mitigation Synergies and Trade-Offs 

 

Table 4.SM.25: Adaptation options with mitigation synergies and trade-offs identified. 

 

System 
Adaptation 

Option 
Synergies Trade-offs 

Energy 

system 

transitions 

Power 

infrastructure, 

including 

water 

Some adaptation options can help improve system efficiency and reliability 

(Cortekar and Groth, 2015; van Vliet et al., 2016). 

 

Synergies with Sustainable Development Goals, poverty and well-being 

(Dagnachew et al., 2018; Fuso Nerini et al., 2018; Gi et al., 2018). 

A shift from open-loop to closed-loop cooling technologies could 

decrease withdrawals, with the trade-off of increasing water 

consumption for power generation (DeNooyer et al., 2016). 

 

 

Land and 

ecosystem 

transitions 

Conservation 

agriculture 

Agroecological practices can reduce farm-scale carbon footprint significantly 

(Rakotovao et al., 2017). 

 

Practices, such as improved soil conservation practices in coffee agroforestry 

systems and improved slash and mulch agroforestry in bean-maize cultivation, 

have low carbon footprint reduction potential and medium carbon 

sequestration potential (Rahn et al., 2014). 

 

Land and water management adaptation measures have mitigation co-benefits 

through soil/atmospheric carbon sequestration, reduced emissions, soil 

nitrification and reduced use of inorganic fertilisers (Chandra et al., 2016). 

 

Conservation agriculture reduces yields 3–5 years after adoption, but enhances 

productivity and carbon sequestration over longer periods (Harvey et al., 

2014).  

 

For conservation agriculture and efficient irrigation, synergies are regionally 

differentiated (Lobell et al., 2013). 

Technologies enhancing farm productivity (such as adding 

fertilizers) might improve adaptive capacity through higher 

incomes but at the same time drive GHG emissions (Harvey et al., 

2014; Thornton et al., 2017). 

 

 

In some cases, conservation agriculture practices can increase 

emissions (Gupta et al., 2016). 

 

 

Efficient 

irrigation 

Improving irrigation efficiency has adaptation and mitigation co-benefits (Zou 

et al., 2012; Adenle et al., 2015; Suckall et al., 2015; Win et al., 2015).  

 

Efficient irrigation practices such as drip irrigation have, on average, 80% 

lower N2O emissions than sprinkler systems. Drip irrigation combined with 

optimized fertilization reduces direct N2O emissions by up to 50% (Sanz-

Micro-irrigation technologies such as drip and sprinkler irrigation 

increase irrigation efficiency but increase energy demand (Rasul 

and Sharma, 2016). 

 

Biomass production for biofuels may contribute to regional water 

shortages, salinization and water logging (Beringer et al., 2011). 
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Cobena et al., 2017). 

 

Solar-powered drip irrigation significantly increases household income and 

nutritional intake, enables households to meet daily water needs and saves 

0.86 tons of carbon emissions each year against a liquid fuel (e.g., kerosene) 

alternative (Suckall et al., 2015). 

Efficient 

livestock 

systems 

Strong synergies between climate change adaptation and mitigation in the 

livestock sector (Weindl et al., 2015; Rivera-Ferre et al., 2016) but these are 

differentiated by region and type of livestock system (Locatelli et al., 2015a; 

Thornton et al., 2017). For example, shifting from grazing to mixed livestock 

systems increase productivity while reducing GHG emissions, by gains in 

feed and forage productivity through more intensive inputs and management 

(Rivera-Ferre et al., 2016). 

 

Shifting towards mixed crop-livestock systems is a resource- and cost-

efficient option (Herrero et al., 2015; Weindl et al., 2015; Thornton et al., 

2018). 

 

Reducing livestock diseases can improve the productivity of livestock systems 

and increase their resilience to stresses while reducing the emissions intensity 

of livestock production (Bartley et al., 2016; FAO and NZAGRC, 2017). 

 

Adaptation through livestock supplementation and reducing stocking densities 

can reduce methane emissions (Locatelli et al., 2015a). 

 

Improved grassland management and appropriate stocking density can help to 

increase soil carbon stocks (Rivera-Ferre et al., 2016; Thornton et al., 2017). 

Increased productivity of livestock systems generally increases 

overall food production and absolute GHG emissions, albeit at 

lower emissions per unit of food (Gerber et al., 2013; FAO and 

NZAGRC, 2017). 

 

Shifting to rangeland for feed can strongly increase tropical 

deforestation (Weindl et al., 2015). 

 

Shifting to mixed crop-livestock systems is expected to cause 

additional GHG emissions (Weindl et al., 2015). 

 

Providing cooling and ventilation systems for livestock (as an 

adaptation to higher temperatures) can increase GHG emissions 

(Locatelli et al., 2015a). 

 

Some adaptation options such as interregional livestock trading 

can increase carbon dioxide emissions through transportation 

(Rivera-Ferre et al., 2016). 

Agroforestry 

Sequesters carbon through accumulation in woody biomass and soil (Lasco et 

al., 2014). 

 

Reduces GHG emissions through reduced deforestation and fossil fuel 

consumption (Lasco et al., 2014). 

 

Coupling native forest regeneration in concert with sugarcane bioethanol 

production can significantly increase carbon storage in the bioenergy 

production system and preserve biodiversity (Rodrigues et al., 2009; 

Buckeridge et al., 2012). 

 

The use of fertilizer-fixing trees can improve soil fertility through nitrogen 

Lower carbon sequestration potential compared with natural forest 

and secondary forest (Lasco et al., 2014). 
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fixation, by increasing supply of nutrients for crop production (Coulibaly et 

al., 2017). 

 

Integrating crop, livestock and forestry systems, such as in Brazil (Gil et al., 

2015), can come with significant benefits for local farmers and ecosystems, 

for example, by rehabilitation of degraded pasturelands, which can also 

decrease emissions. 

Food loss and 

waste 

management 

Waste materials can be transformed into products with marketable value 

(Papargyropoulou et al., 2014), improving economic gain and stimulating 

decrease of food waste and loss. 

NA 

Community-

based 

adaptation 

NE. Most literature addresses synergies with sustainable development, 

poverty and equity. 

NE. Most literature addresses trade-offs with sustainable 

development, poverty and equity. 

Ecosystem 

restoration 

and avoided 

deforestation 

Tropical reforestation as an adaptation measure can also result in significant 

carbon storage under climate-smart strategies (Locatelli et al., 2015b). 

 

Habitat restoration, afforestation and reforestation and urban trees and 

greenspace all lead to carbon sequestration (Berry et al., 2015). 

Failure to consider mitigation in adaptation initiatives may lead to 

adaptation measures that increase GHG emissions, which is one 

type of maladaptation (Porter et al., 2014b; Kongsager et al., 

2016). 

Biodiversity 

management 

Biodiversity has value in terms of ecosystem services as well as 

protection/defence against invading species and disease organisms.  

Maintaining for high levels of biodiversity also recognises the fact that many 

species, biological processes and molecules in nature are as yet unexplored, 

yet have potential to provide enormous benefits to human beings (Knowlton et 

al., 2010; Pereira et al., 2010; Onaindia et al., 2013; Pistorious and Kiff, 2017; 

Price et al., 2018). 

Areas with greatest potential for protecting biodiversity may not 

overlap with areas with most potential for carbon sequestration 

(Phelps et al., 2012; Essl and Mauerhofer, 2018). 

 

 

Coastal 

defence and 

hardening 

NE 

An alternative strategy is not to ‘defend’ using hardening 

structures along coastlines, but rather to retreat as sea levels rise 

and storm surges go further inland. The strategy of ‘retreat’ tends 

to make economic sense while at the same time accommodating 

the transition from terrestrial to marine systems (e.g., migration of 

salt marsh, mangroves and seagrass towards the land as sea levels 

rise) (C.J. Brown et al., 2016; Mills et al., 2016). There has been 

an increasing focus on natural barriers to storm surge and erosion, 

such as mangroves, oyster banks, coral reefs and seagrass 

meadows. 

 

Within these broad options, there are trade-offs that involve direct 

human intervention (e.g., coastal hardening, seawalls and artificial 

reefs) (Rinkevich, 2014, 2015; André et al., 2016; Cooper et al., 
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2016; Narayan et al., 2016), while there are others that exploit the 

opportunities for increasing coastal protection by involving 

naturally occurring oyster banks, coral reefs, mangroves, seagrass 

and other ecosystems (UNEP-WCMC, 2006; Scyphers et al., 

2011; Zhang et al., 2012; Ferrario et al., 2014; Cooper et al., 

2016).  

 

Protection using materials such as concrete to provide a barrier 

against the ocean. These structures can be installed quickly but the 

trade-off is that they have a range of negative consequences such 

as being expensive, interrupting natural ecosystems (Mills et al., 

2016; Wernberg et al., 2016), being short-term solutions to the 

long-term problem of sea level rise and intensifying storm systems 

(Brooke et al., 1992; Building Futures and ICE, 2010; Mills et al., 

2016). 

Sustainable 

aquaculture 
NE 

Regulating and avoiding loss of coastal ecosystems such as 

mangroves and seagrass, while at the same time developing food 

materials that have much lower impact on the environment 

(Schlag, 2010; Asiedu et al., 2017a, b). 

Fisheries 

restoration 

Development of more sustainable practices also has benefits for ocean 

ecosystems in general. Fish play a crucial role in everything from maintaining 

ecological balances through their feeding habits to playing important roles 

within nutrient cycles in a range of habitats (Holmlund and Hammer, 1999). 

NE 

Coastal and 

marine 

biodiversity 

management 

NE 

Planning for multiple objectives (e.g., biodiversity protection and 

carbon sequestration) increases the complexity of planning 

processes and data needs, accompanied by an increase in technical 

capacity by planners . 

Integrated 

coastal zone 

management 

Mangroves serve as sinks for carbon, through accumulation of living biomass 

and through litter and dead wood deposition, including the trapping of 

sediments delivered from the uplands (Romañach et al., 2018). 

 

NE 

Urban and 

infrastructure 

system 

transitions 

Sustainable 

land-use and 

urban 

planning 

Potential for synergies in urban planning at policy, organizational and 

practical levels, for example, urban regeneration or retrofitting policies and 

urban greening (Landauer et al., 2015; Ürge-Vorsatz et al., 2018), including 

generating a shared sense of risks and promoting local participation (Archer et 

al., 2014; Kettle et al., 2014; Campos et al., 2016; Siders, 2017). 

Promotion of green spaces to reduce flood risk and heat island 

effects may reduce potential for the promotion of urban 

densification (Landauer et al., 2015; Di Gregorio et al., 2017b; 

Endo et al., 2017; Ürge-Vorsatz et al., 2018). 
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Urban planning can enhance adaptation, mitigation and sustainable 

development (Hurlimann and March, 2012; Davidse et al., 2015; King et al., 

2016; Francesch-Huidobro et al., 2017). 

Land-use management for co-benefits can result in carbon sequestration 

(Duguma et al., 2014; Woolf et al., 2018). 

Sustainable 

water 

management 

Strong co-benefits to the implementation of demand-side management 

measures, such as reducing leakages and water loss (Wang et al., 2011; Deng 

and Zhao, 2015), while minimizing the need to address the environmental and 

energy implications of supply measures such as desalination (Miller et al., 

2015). 

Increasing water quality is linked to increasing energy use in the 

water sector (Rothausen and Conway, 2011; Mamais et al., 2015).  

Green 

infrastructure 

and 

ecosystem 

services  

 

Urban canopy is a cooling mechanism that can help decrease heat and water 

stress (Hines, 2017). 

Not considering the role green cover and vegetation has within the 

heat-water-vegetation nexus can worsen heat and water stress 

(Hines, 2017). 

Building 

codes and 

standards 

Sustainable construction materials, reduced building energy consumption and 

construction designed to reduce the urban heat island effects can have 

adaptation and mitigation benefits (Steenhof and Sparling, 2011; Aerts et al., 

2014; Stewart, 2015; Shapiro, 2016; Ürge-Vorsatz et al., 2018). 

 

NE 

 

Industrial 

system 

transitions 

Intensive 

industry 

infrastructure 

resilience and 

water 

management 

Some adaptation options can help improve system efficiency when 

implementing water management and cooling practices. 
NE 

Overarching 

adaptation 

options 

Disaster risk 

management 

Incorporating environmental considerations into recovery decision-making 

(Amin Hosseini et al., 2016), implementing disaster risk management plans 

and increasing ex-ante resilience to disasters are important to reduce the extent 

of rebuilding following disasters, and the emissions associated with recovery. 

 

Post-disaster recovery can help rebuild in a more resilient way with less GHG 

emissions, or to ‘build back better’, particularly where immediate impact is 

substantial but not overwhelming (Guarnacci, 2012; Mochizuki and Chang, 

2017). 

 

Effective disaster risk management may reduce the need for international 

The urgency of recovery and the surge in demand for construction 

materials have been observed to promote unsustainable 

behaviours, including deforestation (Nazara and Resosudarmo, 

2007; Chang et al., 2010) or uncontrolled extraction of sand and 

gravel (Abrahams, 2014). 

 

‘Build back better’ requires capacity, time and mechanisms for 

balancing competing desires and perspectives that are not 

necessarily available after severe disasters, and may be challenged 

by both local and external influences in the rebuilding process 

(Abrahams, 2014; O’Hare et al., 2016; Paidakaki and Moulaert, 
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transport of materials and other forms of aid, which can be emissions-

intensive (Abrahams, 2014). 

2017). 

Risk 

spreading and 

sharing 

In response to the substantial risk posed to the insurance industry by climate 

change (Bank of England, 2015; Glaas et al., 2017), insurance companies are 

mobilizing their role as investment managers to promote climate mitigation; 

for example, in 2014, insurance companies pledged to invest 420 billion USD 

over five years in renewable energy, energy efficiency and sustainable 

agriculture projects (Fabian, 2015; Webster and Clarke, 2017). 

Agricultural insurance may have unintended impacts, promoting 

the intensification of land use in some cases (Annan and 

Schlenker, 2015; Müller and Kreuer, 2016; Müller et al., 2017). 

 

 

Climate 

services 

Climate services aid adaptation decision-making and can help mitigate GHGs 

through improving farm practices (e.g., matching fertilizer use with existing 

weather conditions so that less GHGs are emitted) (Thornton et al., 2017). 

NE 

Indigenous 

knowledge 

Revitalization of traditional management of agriculture may simultaneously 

increase resilience, improve biodiversity and reduce emissions by eliminating 

agrochemical inputs production to food production (Nyong et al., 2007; Niggli 

et al., 2009; Altieri and Nicholls, 2017). 

 

Recognizing and supporting indigenous management of blue carbon habitats 

(Vierros, 2017) and grasslands (Dong, 2017; Russell-Smith et al., 2017) and 

utilizing new technologies to revitalize traditional forms of energy provision 

(Thornton and Comberti, 2017) can provide mitigation and adaptation 

benefits. 

Projects that use a single dimension of indigenous knowledge 

(e.g., savannah burning for carbon sequestration) without 

considering the full context of that knowledge risk limiting 

associated adaptation-mitigation synergies and losing the 

complexities of indigenous knowledge systems (Mistry et al., 

2016). 

Population 

health and 

health system 

Forest retention and urban agricultural land are forms of urban green 

infrastructure that can simultaneously mediate floods, promote healthy 

lifestyles and reduce emissions and air pollution. (Nowak et al., 2006; Tallis et 

al., 2011; Elmqvist et al., 2013a; Buckeridge, 2015; Culwick and Bobbins, 

2016; Panagopoulos et al., 2016; Stevenson et al., 2016; R. White et al., 

2017). 

The use of air conditioners to meet health standards could result in 

increased emissions (Ürge-Vorsatz et al., 2018). 

Social safety 

nets 

 

Public work programmes structured to address climate risks; for example, 

Ethiopia’s Productive Safety Net Programme has been used to employ locals 

suffering from food insecurity to work on watershed management 

interventions, sequestering carbon in the soil and reducing GHG emissions 

(Jirka et al., 2015). 

Where cash transfers to households to build adaptive capacity are 

not conditional, limited increases in purchasing power can prompt 

families to invest in additional consumption, transport or 

agricultural equipment as part of a general risk reduction strategy 

(Lemos et al., 2016; Nelson et al., 2016); aggregated, these 

individual investments could lead to increased emissions. 
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