Working Group III Mitigation of Climate Change Chapter 1 Introductory Chapter   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft     Chapter:  Title:  Author(s):        Chapter 1  IPCC WGIII AR5    1  Introductory Chapter CLAs:  LAs:  CAs:  REs:  David Victor, Dadi Zhou  Essam  Hassan  Mohamed  Ahmed,  Pradeep  Kumar  Dadhich,  Jos  Olivier,  H Holger Rogner, Kamel Sheikho, Mitsutsune Yamaguchi  Giovanni Baiocchi, Yacob Mulugetta, Linda Wong Arnulf Grübler, Alick Muvundika         1 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Introductory Chapter  Contents  Executive Summary ............................................................................................................................ 3 1.1 Introduction .................................................................................................................................. 6 1.2 Main messages and changes from previous assessment ............................................................. 6 1.2.1 Sustainable Development ..................................................................................................... 6 1.2.2 The World Macroeconomic Situation ................................................................................... 8 1.2.3 The Availability, Cost and Performance of Energy Systems ................................................ 11 1.2.4 International Institutions and Agreements ......................................................................... 14 1.2.5 Understanding the roles of emissions other than fossil fuel CO2 ....................................... 16 1.2.6 Emissions Trajectories and Implications for Article 2 ......................................................... 18 1.3 Historical, Current and Future Trends ........................................................................................ 19 1.3.1 Review of four decades of greenhouse gas emissions ........................................................ 19 1.3.2 Perspectives on Mitigation  ................................................................................................. 27 . 1.3.3 Scale of the Future Mitigation Challenge ............................................................................ 33 1.4 Mitigation Challenges and Strategies ......................................................................................... 38 1.4.1 Reconciling priorities and achieving sustainable development .......................................... 38 1.4.2 Uncertainty and Risk Management ..................................................................................... 40 1.4.3 Encouraging international collective action ........................................................................ 41 1.4.4 Promoting Investment and Technological Change ............................................................. 41 1.4.5 Rising Attention to Adaptation............................................................................................ 42 1.5 Roadmap for WG III report ......................................................................................................... 43 1.6 Frequently Asked Questions ....................................................................................................... 45 References ........................................................................................................................................ 46     2 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Executive Summary  Since the first Intergovernmental Panel on Climate Change (IPCC) assessment report (IPCC, 1990a),  the quantity and depth of scientific research on climate change mitigation has grown enormously. In  tandem with scholarship on this issue, the last two decades have seen relatively active efforts  around the world to design and adopt policies that control ( mitigate ) the emissions of pollutants  that affect the climate. The effects of those emissions are felt globally; mitigation thus involves  managing the global commons and requires a measure of international coordination among nations.   But the actual policies that lead to mitigation arise at the local and national levels as well as  internationally.  Those policies have included, among others, market based approaches such as  emission trading systems along with regulation and voluntary initiatives; they encompass many  diverse economic development strategies that countries have adopted with the goal of promoting  human welfare and jobs while also achieving other goals such as mitigating emissions of climate  pollutants. These policies also include other efforts to address market failures, such as public  investments in research and development (R&D) needed to increase the public good of knowledge  about new less emission intensive technologies and practices. International diplomacy leading to  agreements such as the United Nations Framework Convention on Climate Change (UNFCCC) and  the Kyoto Protocol as well as various complementary initiatives such as the commitments pledged at  the Copenhagen and Cancun Conferences of the Parties has played a substantial role in focusing  attention on mitigation of greenhouse gases (GHGs).  The field of scientific research in this area has evolved in parallel with actual policy experience  allowing, in theory, insights from each domain to inform the other. Since the 4th assessment report  (AR4) of IPCC (2007a; b) there have been numerous important developments in both the science and  practical policy experience related to mitigation. There is growing insight into how climate change  mitigation policies interact with other important social goals from the local to the national and  international levels. There is also growing practical experience and scholarly research concerning a  wide array of policy instruments. Scholars have developed much more sophisticated information on  how public opinion influences the design and stringency of climate change mitigation policies.   Meanwhile, events in the world have had a large impact on how scientific researchers have seen the  scale of the mitigation challenge and its practical policy outcomes. For example, a worldwide  economic recession beginning around 2008 has affected patterns of emissions and investment in the  world economy and in many countries has affected political priorities on matters related to climate  change mitigation.  The present chapter identifies six conclusions. Where appropriate, we indicate not only the major  findings but also our confidence in the finding and the level of supporting evidence. (For an overview  of the language on agreement and confidence see Mastrandrea et al. (2011).  First, since AR4, annual global GHG emissions have continued to grow and reached 49.5 billion  tonnes (gigatonnes or Gt) of carbon dioxide equivalents (CO2eq) in the year 2010, higher than any  level prior to that date, with an uncertainty estimate at +/-10% for the 90% confidence interval. On  a per capita basis, emissions from industrialized countries that are listed in Annex I of the UNFCCC  are on average 2.5 times of those from developing countries. However, since AR4, total emissions  from countries not listed in Annex I have overtaken total emissions from the Annex I industrialized  countries (see glossary for Annex I countries). Treating the 27 members of the EU as a single country,  about ten large countries from the industrialized and developing worlds account for 70% of world  emissions. (robust evidence, high agreement) [Section 1.3]. The dominant driving forces for  anthropogenic emissions include population, the structure of the economy, income and income  distribution, policy, patterns of consumption, investment decisions, individual and societal behaviour,  the state of technology, availability of energy resources, and land use change. In nearly all countries  it is very likely that the main short term driver of changes in the level of emissions is the overall state      3 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    of the economy. In some countries there is also a significant role for climate policies focused on  controlling emissions. (medium evidence, medium agreement) [1.3]  Second, national governments are addressing climate change in the context of other national  priorities, such as energy security and alleviation of poverty. In nearly all countries the most  important driving forces for climate policy are not solely the concern about climate change. (medium  evidence, medium agreement) [1.2 and 1.4]. Studies on policy implementation show that  improvements to climate policy programs need to engage these broader national priorities. Despite  the variety of existing policy efforts and the existence of the UNFCCC and the Kyoto Protocol, GHG  emissions have grown at about twice the rate in the recent decade (2000 2010) than any other  decade since 1970. (robust evidence, high agreement) [1.3.1]  Third, the current trajectory of global annual and cumulative emissions of GHGs is inconsistent  with widely discussed goals of limiting global warming at 1.5 to 2 degrees Celsius above the pre industrial level. (medium evidence, medium agreement) [1.2.1.6 and 1.3.3] The ability to link  research on mitigation of emissions to actual climate outcomes, such as average temperature, has  not substantially changed since AR4 due to a large number of uncertainties in scientific  understanding of the physical sensitivity of the climate to the build up of GHGs discussed in Working  Group I of the IPCC.  Those physical uncertainties are multiplied by the many socioeconomic  uncertainties that affect how societies would respond to emission control policies (low evidence,  high agreement). Acknowledging these uncertainties, mitigating emissions along a pathway that  would be cost effective and consistent with likely avoiding warming of more than 2 degrees implies  that nearly all governments promptly engage in international cooperation, adopt stringent national  and international emission control policies, and deploy rapidly a wide array of low  and zero emission technologies.  Modelling studies that adopt assumptions that are less ideal for example,  with international cooperation that emerges slowly or only restricted availability of some  technologies show that achieving this 2 degree goal is much more costly and requires deployments  of technology that are substantially more aggressive than the least cost strategies (robust evidence,  medium agreement) [1.3.3]. The assumptions needed to have a likely chance of limiting warming to  2 degrees are very difficult to satisfy in real world conditions (medium evidence; low agreement).  The tenor of modelling research since AR4 suggests that the goal of stabilizing warming at 1.5  degrees Celsius is so challenging to achieve that relatively few modelling studies have even  examined it in requisite detail; (low evidence, medium agreement) [1.3.3].   Fourth, deep cuts in emissions will require a diverse portfolio of policies, institutions, and  technologies as well as changes in human behaviour and consumption patterns (high evidence;  high agreement). There are many different development trajectories capable of substantially  mitigating emissions; the ability to meet those trajectories will be constrained if particular  technologies are removed from consideration. It is virtually certain that the most appropriate  policies will vary by sector and country, suggesting the need for flexibility rather than a singular set  of policy tools. In most countries the actors that are relevant to controlling emissions aren t just  national governments. Many diverse actors participate in climate policy from the local to the global  levels   including a wide array of nongovernmental organizations representing different  environmental, social, business and other interests. (robust evidence, medium agreement) [1.4]  Fifth, policies to mitigate emissions are extremely complex and arise in the context of many  different forms of uncertainty. While there has been much public attention to uncertainties in the  underlying science of climate change a topic addressed in detail in IPCC s Working Group I and II  reports profound uncertainties arise in the socioeconomic factors addressed here in Working  Group III. Those uncertainties include the development and deployment of technologies, prices for  major primary energy sources, average rates of economic growth and the distribution of benefits  and costs within societies, emission patterns, and a wide array of institutional factors such as  whether and how countries cooperate effectively at the international level. In general, these  uncertainties and complexities multiply those already identified in climate science by Working      4 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Groups I and II. The pervasive complexities and uncertainties suggest that there is a need to  emphasize policy strategies that are robust over many criteria, adaptive to new information, and  able to respond to unexpected events. (medium evidence, medium agreement) [1.2].    Sixth, there are many important knowledge gaps that additional research could address.  This  report points to at least two of them.  First is that the scholarship has developed increasingly  sophisticated techniques for assessing risks, but so far those risk management techniques have not  spread into widespread use in actual mitigation strategies.  Risk management requires drawing  attention to the interactions between mitigation and other kinds of policy responses such as  adaptation to climate change; they require more sophisticated understanding of how humans  perceive risk and respond to different kinds of risks.  And such strategies require preparing for  possible extreme climate risks that may implicate the use of geoengineering technologies as a last  resort in response to climate emergencies (limited evidence, low agreement). Second, the  community of analysts studying mitigation has just begun the process of examining how mitigation  costs and feasibility are affected by  real world  assumptions such as possible limited availability of  certain technologies.  Improving this line of research could radically improve the utility of studies on  mitigation and will require integration of insights from a wide array of social science disciplines,  including economics, psychology, political science, sociology and others.          5 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    1.1   Introduction  Working Group III of the Intergovernmental Panel on Climate Change (IPCC) is charged with  assessing scientific research related to the mitigation of climate change.  Mitigation  is the effort to  control the human sources of climate change and their cumulative impacts, notably the emission of  greenhouse gases (GHGs) and other pollutants, such as black carbon particles, that also affect the  planet s energy balance.  Mitigation also includes efforts to enhance the processes that remove  GHGs from the atmosphere, known as sinks (see glossary (Annex I) for definition).  Because  mitigation lowers the anticipated effects of climate change as well as the risks of extreme impacts, it  is part of a broader policy strategy that includes adaptation to climate impacts   a topic addressed in  more detail in IPCC s Working Group II. There is a special role for international cooperation on  mitigation policies because most GHGs have long atmospheric lifetimes and mix throughout the  global atmosphere. The effects of mitigation policies on economic growth, innovation, and spread of  technologies and other important social goals also implicate international concern because nations  are increasingly inter linked through global trade and economic competition.  The economic effects  of action by one nation depend, in part, on the action of others as well.  Yet, while climate change is  fundamentally a global issue, the institutions needed for mitigation exist at many different domains  of government, including the local and national level.   This chapter introduces the major issues that arise in mitigation policy and also frames the rest of  the Working Group III volume. First we focus on the main messages since the publication of AR4 in  2007 (Section 1.2). Then we look at the historical and future trends in emissions and driving forces,  noting that the scale of the mitigation challenge has grown enormously since 2007 due to rapid  growth of the world economy and the continued lack of much overt effort to control emissions. This  trend raises questions about the viability of widely discussed goals such as limiting climate warming  to 2 degrees Celsius since the pre industrial period (Section 1.3). Then we look at the conceptual  issues such as sustainable development, green growth, and risk management that frame the  mitigation challenge and how those concepts are used in practice (Section 1.4). Finally, we offer a  roadmap for the rest of the volume (Section 1.5).  1.2   Main messages and changes from previous assessment  Since AR4, there have been many developments in the world economy, emissions, and policies  related to climate change. Here we review six of the most consequential trends and then examine  their implications for this Fifth assessment report by the IPCC (AR5).    1.2.1    Sustainable Development  Since AR4 there has been a substantial increase in awareness of how climate change interacts with  the goal of sustainable development (see Chapter 4 in this volume and WGII Chapter 20).  While  there is no single widely accepted definition of sustainable development, the concept implies  integrating economic growth with other goals such as eradication of poverty, environmental  protection, job creation, security, and justice (World Commission on Environment and Development,  1987; UNDP, 2009; ADB et al., 2012; OECD, 2012; ILO, 2012; United Nations, 2012).  Countries differ  enormously in which of these elements they emphasize, and for decades even when policymakers  and scientific analysts have all embraced the concept of sustainable development they have implied  many different particular goals. Since AR4, new concepts have emerged that are consistent with this  broader paradigm, such as  green growth  and  green economy    concepts that also reflect the  reality that policy is designed to maximize multiple objectives. The practical implications of  sustainable development are defined by societies themselves. In many respects, this multi faceted  understanding of sustainable development is not new as it reflects the effort in the social sciences  over the last century to develop techniques for measuring and responding to the many positive and      6 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    negative externalities that arise as economies evolve   concepts discussed in more detail in Chapter  3 of this volume.    New developments since AR4 have been the emergence of quantitative modelling frameworks that  explore the synergies and tradeoffs between the different components of sustainable development  including climate change (e.g., McCollum et al., 2011; Riahi et al., 2012; Howells et al., 2013).  Scientific research has examined at least three major implications of sustainable development for  the mitigation of emissions.  First, since AR4 there have been an exceptionally large number of  studies that have focused on how policies contribute to particular elements of sustainable  development.  Examples include:   The ways that biofuel programs have an impact on poverty alleviation, employment, air  quality, rural development, and energy/ food security (see 11.13), such as in Brazil (La  Rovere et al., 2011) and the United States (Leiby and Rubin, 2013).    The socioeconomic implications of climate and energy policies in the EU (Böhringer and  Keller, 2013; Boussena and Locatelli, 2013).  The impacts of Chinese energy efficiency targets on the country s emissions of warming  gases (Hu and Rodriguez Monroy, 2012; Paltsev et al., 2012) and the evolution of energy  technologies (Xie, 2009; Zhang, 2010; Guo, 2011; Ye, 2011; IEA, 2013).   The government of India s Jawaharlal Nehru National Solar Mission (JNNSM) that utilizes a  wide array of policies with the goal of making solar power competitive with conventional  grid power by 2022 (Government of India, 2009).   The Kyoto Protocol s Clean Development Mechanism (CDM), which was explicitly designed  to encourage investment in projects that mitigate GHG emissions while also advancing  sustainable development (UNFCCC, 2012d; Wang et al., 2013).  Since AR4, researchers have  examined the extent to which the CDM has actually yielded such dividends for job creation,  rural development, and other elements of sustainable development (Rogger et al., 2011;  Subbarao and Lloyd, 2011).  Chapters in this report that cover the major economic sectors (Chapters 7 11) as well as spatial  development (chapter 12) examine such policies. The sheer number of policies relevant to mitigation  has made it impractical to develop a complete inventory of such policies let alone a complete  systematic evaluation of their impacts.  Since AR4, real world experimentation with policies has  evolved more rapidly than careful scholarship can evaluate the design and impact of such policies.   A second consequence of new research on sustainable development has been closer examination of  the interaction between different policy instruments.  Since the concept of sustainable development  implies a multiplicity of goals and governments aim to advance those goals with a multiplicity of  policies, the interactions between policy interventions can have a large impact on the extent to  which goals are actually achieved.  Those interactions can also affect how policy is designed,  implemented, and evaluated   a matter that is examined in several places in this report (Chapters 3 4, 14 15).  For example, the European Union (EU) has implemented an Emission Trading Scheme (ETS) that  covers about half of the EU s emissions, along with an array of other policy instruments. Since AR4  the EU has expanded the ETS to cover aviation within the EU territory. Some other EU policies cover  the same sectors that are included in the ETS (e.g., the deployment of renewable energy supplies) as  well as sectors that are outside the ETS (e.g., energy efficiency regulations that affect buildings or  agricultural policies aimed at promoting carbon sinks).  Many of these policies adopted in tandem  with the ETS are motivated by policy goals, such as energy security or rural economic development,  beyond just concern about climate change. Even as the price of emission credits under the ETS      7 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    declined since AR4 implying that the ETS itself was having a less binding impact on emissions the  many other mitigation related policies have remained in place (Chapters 14 and 15).    Such interactions make it impossible to evaluate individual policies in isolation from other policies  that have overlapping effects.  It has also given rise to a literature that has grown substantially since  AR4 that explores how policies and measures adopted for one purpose might have the  co benefit   of advancing other goals as well.  Most of that literature has looked at non monetary co benefits  (see Sections 5.7, 7.9, 8.7, 9.7, 10.8, 11.7, 11.A.6)   for example, an energy efficiency policy adopted  principally with the goal of advancing energy security might also lead to lower emissions of GHGs or  other pollutants.  The concept of co benefits, however, has also raised many challenges for  economic evaluation of policies, and since AR4 there have been substantial efforts to clarify how the  interactions between policies influence economic welfare.  Such research has underscored that  while the concept of  co benefits  is widely used to create the impression that policies adopted for  one goal yield costless improvements in other goals, the interactions can also yield adverse side effects (see Sections 3.6.3, 4.2 and 6.6).   Third, the continued interest in how climate change mitigation interacts with goals of sustainable  development has also led to challenging new perspectives on how most countries mobilize the  political, financial, and administrative resources needed to mitigate emissions.  More than two  decades ago when the topic of climate change was first extensively debated by policymakers around  the world, most scholarship treated GHG emissions as an externality that would require new policies  designed explicitly with the goal of controlling emissions.  Concerns about climate change would  lead to policy outcomes tailored for the purpose of mitigation, and those outcomes would interact  with the many other goals of sustainable development.  Since AR4 policy experience and scholarship  have focused on a different perspective   that for most countries a substantial portion of  climate  policy  would emerge as a derivative of other policies aimed at the many facets of sustainable  development.  A range of policy interventions were identified in theory to enable integration and  optimization of climate change policies with other priorities such as land use planning and protection  of water resources (Muller, 2012; Pittock et al., 2013; Dulal and Akbar, 2013). Similarly, many of the  policies that would reduce emissions of GHGs could also have large beneficial effects on public  health (Ganten et al., 2010; Li and Crawford Brown, 2011; Groosman et al., 2011; Haines, 2012) (see  Sections 6.6, 7.9.2 and WGII 11.9).  These new perspectives on the interactions between climate change and sustainable development  policies have led to a more realistic view of how most governments are addressing the challenges of  mitigation. However, since AR4 it has also become clear that the totality of the global effort remains  inconsistent with widely discussed goals for protecting the climate, such as limiting warming to 1.5  or 2 degrees Celsius.  Despite the slowing down of emissions growth rate in the wake of the global  financial crisis, annual volume of total emissions from emerging countries has been surging from the  new century (see Section 1.3 for more details). And the mitigation progress in the developed world is  slower than expectation, especially when carbon emissions embodied in trade is considered  (Steinberger et al., 2012; Aichele and Felbermayr, 2012).  Moreover, per capita energy consumption  and emissions of some developing countries remain far lower than that of developed countries,  suggesting that per capita emissions will rise as economies converge (Olivier et al., 2012).   1.2.2    The World Macroeconomic Situation   Shortly after the publication of AR4 in 2007, the world encountered a severe and deep financial crisis  (Sornette and Woodard, 2010). The crisis, which spread rapidly in the second half of 2008,  destabilized many of the largest financial institutions in the United States, Europe, and Japan, and  shocked public confidence in the global financial system. The crisis also wiped out an estimated USD  25 trillion in value from the world s publicly traded companies, with particularly severe effects on  banks (Naudé, 2009; IMF, 2009). The effects of the crisis are evident in economic growth   shown in      8 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Figure 1.1. The year 2009 witnessed the first contraction in global GDP since the Second World War  (Garrett, 2010). International trade of goods and services had grown rapidly since the turn of the  millennium   from 18% of world GDP in 2000 to 28% in 2008 (WTO, 2011). The crises caused global  trade to drop to 22% in 2009 before rebounding to 25% in 2010. The effects of the recent economic  crisis have been concentrated in the advanced industrialized countries (te Velde, 2008; Lin, 2008;  ADB, 2009, 2010). While this particular crisis has been large, studies have shown that these events  often recur, suggesting that there is pervasive over confidence that policy and investment strategies  can eliminate such cyclic behaviour (Reinhart and Rogoff, 2011).   Figure 1.1 reveals that countries were affected by the global economic crisis in different ways.  The  recessions were generally most severe in the advanced industrialized countries, but the contagion of  recessions centred on the high income countries has spread, especially to countries with small, open,  and export oriented economies   in large part due to the decline in exports, commodity prices, and  associated revenues. The crisis has also affected foreign direct investment (FDI) and official  development assistance (ODA) (IMF, 2009, 2011) with few exceptions such as in the area of climate  change where ODA for climate mitigation and adaptation increased substantially until 2010 before a  decline in 2011 (OECD, 2013). The crisis also had substantial effects on unemployment across most  of the major economies and on public budgets. The slow recovery and deceleration of import  demand from key advanced economies continued to contribute to the noticeable slowdown in the  emerging market and developing economies during 2012 (IMF, 2013). As well, some of the major  emerging market economies suffered from the end of their national investment booms (IMF, 2013).     Figure 1.1. Annual real growth rates of GDP by decade (left panel) and since 2000 (right panel) for four groups of countries as defined by the World Bank (World Bank, 2013): high-income, mature industrialized countries (HIC), upper-middle-income countries (UMC), lower-middle-income (LMC), and low-income countries (LIC) and globally. The category of 49 least developed countries (LDCs) as defined according to the United Nations (United Nations, 2013b) overlaps heavily with the 36 countries that the World Bank classifies as low-income . Estimates weighted by economic size and variations to one standard deviation are shown. Growth rates weighted by size of the economy; whiskers on the decadal averages (left panel) show variation to one standard deviation within each category and decade. Sources: MER converted real growth rates from World Bank World Development Indicators and IMF International Financial Statistics.     9 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    The continued growth of developing economies, albeit at a slower pace than before the crisis, helps  to explain why global commodity prices, such as for oil and metals, have quickly rebounded (see  Figure 1.2). Another factor that helps explain continued high prices for some commodities are  reductions in supply in response to weakening demand.  Among the many implications of high and  volatile commodity prices are continued concerns about the availability and security of energy and  food supply, especially in the least developed countries. Those concerns have also reshaped, to  some degree, how problems such as global climate change are viewed in many countries and  societies. Where climate change mitigation has linked to these broader economic and energy  security concerns it has proven politically easier to mobilize action; where they are seen in conflict  the other economic and security priorities have often dominated (Chandler et al. 2002; IEA 2007;  ADB 2009).   Figure 1.2 Price indices for four major baskets of commodities: agricultural raw materials, food, crude oil, and metals. Source: IMF International Financial Statistics database.   The implications of these macroeconomic patterns are many, but at least five are germane to the  challenges of climate change mitigation:   First, the momentum in global economic growth has shifted to the emerging economies   a  pattern that was already evident in the 2000s before the crisis hit. Although accelerated by the  recent financial crisis, this shift in production, investment, and technology to emerging  economies is a phenomenon that is consistent with the expectation that in a globalized world  economy capital resources will shift to emerging economies if they can be used with greater  marginal productivity commensurate with associated risks (Zhu, 2011). With that shift has been  a shift in the growth of greenhouse gas emissions to these emerging economies as well.   Second, much of this shift has arisen in the context of globalization in investment and trade,  leading to higher emissions that are  embodied  in traded goods and services, suggesting the  need for additional or complementary accounting systems that reflect the ultimate consumption  of manufacturing goods that cause emissions rather than just the territorial place where  emissions occurred during manufacturing (Houser et al., 2008; Davis and Caldeira, 2010; Peters  et al., 2011, 2012a) (see also Chapter 5).   Third, economic troubles affect political priorities. As a general rule, hard economic times tend  to focus public opinion on policies that yield immediate economic benefits that are realized close  to home (Kahler and Lake, 2013). Long term goals, such as global climate protection, suffer  10 of 63         Final Draft   Chapter 1  IPCC WGIII AR5    unless they are framed to resonate with these other, immediate goals. Chapter 2 of this volume  looks in more detail at the wider array of factors that affect how humans perceive and manage  risks that are spread out over long time horizons.   Fourth, economic slowdown may also reduce the rate of technological progress that contributes  to addressing climate change, such as in energy efficiency (Bowen et al., 2009), but for  alternative views, see (Peters et al., 2012b). The crisis also has accelerated shifts in the global  landscape for innovation (Gnamus, 2009). The largest emerging economies have all built  effective systems for innovation and deployment of new technologies   including low emission  technologies. Thus  technology transfer  now includes  South South  although a central role  remains for  North South  diffusion of technologies as part of a global effort to mitigate  emissions (see also Chapters 5 and 16).   Fifth, commodity prices remain high and volatile despite sluggish economic growth in major  parts of the world economy. High costs for food have amplified concerns about competition  between food production and efforts to mitigate emissions, notably through the growing of  bioenergy crops (see 11.13). High prices for fossil fuels along with steel and other commodities  affect the cost of building and operating different energy systems, which could in turn affect  mitigation since many of the options for cutting emissions (e.g., power plants with carbon  capture and storage technology) are relatively intensive users of steel and concrete. Relatively  expensive energy will, as well, encourage conservation and efficiency. Since AR4 there have  been substantial changes in the availability, cost, and performance of energy systems   a topic  to which we now turn.    1.2.3    The Availability, Cost and Performance of Energy Systems  The purpose of energy systems from resource extraction to refining and other forms of conversion,  to distribution of energy services for final consumption is to provide affordable energy services  that can catalyze economic and social development. The choice of energy systems depends on a  wide array of investment and operating costs, the relative performance of different systems,  infrastructures, and lifestyles. These choices are affected by many factors, such as access to  information, status, access to technology, culture, price, and performance (Garnaut, 2011). The  assessment of different energy options depends critically on how externalities, such as pollution, are  included in the calculations.  Following a decade of price stability at low levels, since 2004 energy prices have been high and  volatile (see Figure 1.2). Those prices have gone hand in hand with substantial geopolitical  consequences that have included a growing number of oil importing countries focusing on policies  surrounding energy security (e.g., Yergin, 2011). Some analysts interpret these high prices as a sign  of imminent  peak production  of exhaustible resources with subsequent steady decline, while  others have argued that the global fossil and fissile resource endowment is plentiful (Rogner, 2012).  Concerns about the scarcity of resources have traditionally focused on oil (Aleklett et al., 2010), but  more recently the notions of peak coal (Heinberg and Fridley, 2010), peak gas, and peak uranium  (EWG, 2006) have also entered the debate (see 7.4).  Sustained high prices have encouraged a series of technological innovations that have created the  possibility of large new supplies from unconventional resources (e.g., oil sands, shale oil, extra heavy  oil, deep gas, coal bed methane (CBM), shale gas, gas hydrates). By some estimates, these  unconventional oil and gas sources have pushed the  peak  out to the second half of the 21st century  (GEA, 2012), and they are a reminder that  peak  is not a static concept. These unconventional  sources have raised a number of important questions and challenges, such as their high capital  intensity, high energy intensity (and cost), large demands on other resources such as water for  production and other potential environmental consequences. Consequently, there are many      11 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    contrasting viewpoints about the future of these unconventional resources (e.g., Hirsch et al., 2006;  Smil, 2011; IEA, 2012a; Jordaan, 2012; Rogner et al., 2012).   The importance of these new resources is underscored by the rapid rise of unconventional shale gas  supplies in North America   a technology that had barely any impact on gas supplies at the time that  the AR4 report was being finalized in 2006, but that by 2010 accounted for one fifth of North  American gas supply with exploratory drilling elsewhere in the world now under way. This potential  for large new gas supplies not only from shale gas but also coal bed methane, deep gas, and other  sources could lower emissions where gas competes with coal if gas losses and additional energy  requirements for the fracturing process can be kept relatively small. (A modern gas fired power  plant emits about half the CO2 per unit of electricity than a comparable coal fired unit.) In the United  States, 49% of net electricity generation came from coal in 2006; by 2011 that share had declined to  43% and by 2012 that share had declined to 37% and could decline further as tradition coal plants  face new environmental regulations as well as the competition from inexpensive natural gas (EIA,  2013a; b; d). Worldwide, however, most baseline projections still envision robust growth in the  utilization of coal, which already is one of the fastest growing fuels with total consumption rising  50% between 2000 and 2010 (IEA, 2011a). The future of coal hinges, in particular, on large emerging  economies such as China and India as well as the diffusion of technologies that allow coal  combustion with lower emissions (GEA, 2012).  An option of particular interest for mitigating emissions is carbon dioxide capture and storage (CCS),  which would allow for the utilization of coal while cutting emissions. Without CCS or some other  advanced coal combustion system, coal is the most emission intensive of all the major fossil fuels yet,  as we discuss below, consumption of coal is expanding rapidly. Thus, since AR4, CCS has figured  prominently in many studies that look at the potential for large cuts in global emissions (IEA, 2010a,  2011b; GEA, 2012). However, CCS still has not attracted much tangible investment. By mid 2012  there were eight large scale projects in operation globally and a further eight under construction.  The total CO2 emissions avoided by all 16 projects in operation or under construction will be about  36 million tonnes a year by 2015, which is less than 0.1% of total expected world emissions that year  (Global CCS Institute, 2012). CCS is much discussed as an option for mitigation but not much  deployed.  The fuller implementation of large scale CCS systems generally requires extensive funding  and an array of complementary institutional arrangements such as legal frameworks for assigning  liability for long term storage of CO2. Since AR4, studies have underscored a growing number of  practical challenges to commercial investment in CCS (IEA 2010b) (see also Chapter 7).   Since AR4, innovation and deployment of renewable energy supplies has been particularly notable  (IEA, 2012a; GEA, 2012). The IPCC Special Report on Renewable Energy Sources and Climate Change  Mitigation (IPCC, 2011) provides a comprehensive assessment of the potential role of renewables in  reducing GHG emissions. Globally wind electricity generating capacity has, for example, experienced  double digit annual growth rates since 2005 with an increasing share in developing countries. While  still being only a small part of the world energy system, renewable technology capacities, especially  wind but also solar, are growing so rapidly that their potential for large scale growth is hard to assess  but could be very large (IEA, 2011b; GEA, 2012). Renewable energy potentials exist not only for  stationary users via electricity but also for transportation through biofuels and electric powered  vehicles (see 11.13). Renewable energy technologies appear to hold great promise, but like all major  sources of energy they also come with an array of concerns. Many renewable sources of electricity  are variable and intermittent, which can make them difficult to integrate into electric grids at scale  (see Chapter 7; Chapter 8 in IPCC, 2011). Some biofuels are contested due to fears for food security  and high lifecycle greenhouse gas emissions of some fuel types (see Chapter 2 in IPCC, 2011;  Delucchi, 2010). Other concerns are financial, since nearly every major market for renewable energy  has relied heavily on a variety of policy support such as subsidies, leading investors and analysts alike  to wonder whether and how these energy sources will continue to be viable for investors if subsidies      12 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    are curtailed.  Indeed, some governments concerned about the size of public budgets have pared  back subsidies and claimed that additional cutbacks will be forthcoming.  Since AR4, there have also been substantial advances in the technological possibilities for making  energy systems more efficient and responsive. The use of energy efficient devices, plants, and  equipment has been legislated in many jurisdictions (RISO, 2011). Integrating information and  communication technology (ICT) into energy networks offers the potential to deliver and use energy  more efficiently and flexibly, which could make it much easier to integrate variable and intermittent  renewable power sources into existing electric grids. (Improved energy storage technologies could  also play a central role.) This interconnection offers the promise of energy systems especially in  electricity, where the potential for pervasive use of ICT is often called a  smart grid that integrate  demand response with supplies, allowing for smooth and reliable operation of grids even with  fluctuating renewable supplies (EPRI, 2011). Innovations of this type may also interact with  behavioural changes that can have large effects on emissions as well. For example, greater flexibility  and efficiency could encourage consumers to use more energy, partially offsetting the benefits of  these investments in smarter energy supply networks.  Or, close attention to energy supplies could  encourage shifts in behaviour that are much more frugal with energy (see Chapter 7).  A central challenge in shifting to clean energy supplies and to creating much more efficient end use  of energy is that many energy technologies require large capital costs with long time horizons. Thus,  even when such technologies are cost effective they may face barriers to entry if investors and users  are not confident that needed policy and market support will be reliable. Innovations in financing for example, mechanisms that allow households to lease solar panels rather than pay the full cost up  front can play a role in addressing such issues, as can public schemes to fund initial deployment of  new technologies. Such arrangements are part of a broader effort often called  market  transformation  that, if implemented well, can lead to new trajectories for deployment of  technologies that otherwise would face many barriers to entry (IEA, 2010c).   Since AR4, a large number of governments have begun to explore the expansion or introduction of  nuclear power. They have also faced many challenges in the deployment and management of this  technology. Countries with active nuclear power programmes have been contemplating replacing  aging plants with new builds or expanding the share of nuclear power in their electricity mix for  reasons of economics, supply security, and mitigation climate change. In addition, more than 20  countries, currently, that have never had commercial reactors have launched national programmes  in preparation for the introduction of the technology, and several newcomer countries have entered  contractual arrangements with vendors (IAEA, 2011).   After the Fukushima accident in March 2011, an event that forced Japan to review its energy policy  substantially, the future patterns in nuclear power investment have become more difficult to parse.  Some countries have scaled back nuclear investment plans or ruled out new build (e.g., Switzerland,  Belgium); some, notably Germany, have decided to close existing reactors. In the United States,  since AR4, several reactors have been slated for closure and owners have announced that still more  closures are possible   mainly for reasons of economic competitiveness since aging reactors can be  costly to maintain in the face of less expensive gas fired electricity.  At the same time, in 2013  construction began on four new reactors in the USA.   the first new construction in that country in  three decades.  Several countries preparing the introduction of nuclear power have extended the  time frame for the final go ahead decisions; only few in a very early stage of preparation for the  introduction stopped their activities altogether. In other countries, including all the countries that  have been most active in building new reactors (e.g., China, India, Russia, and South Korea), there  aren t many noticeable effects from Fukushima and the investment in this energy source is  accelerating, despite some scale back in the wake of Fukushima (IEA, 2012a). These countries   massive investments in nuclear were much less evident, especially in China, India and South Korea,  at the time of AR4.       13 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    The Fukushima accident has also increased investment in deployment of new, safer reactor designs  such as so called  Generation III  reactors and small modular reactors (see Chapter 7.5.4).  Despite all  of these new investment activities, standard baseline projections for the world energy system see  nuclear power declining slightly in share as total demand rises and other electric power sources are  more competitive (IEA, 2012a; EIA, 2013c).  In many countries, the future competitiveness of nuclear  power hinges on the adoption of policies that account for the climate change and energy security  advantages of the technology.  1.2.4    International Institutions and Agreements  For more than two decades formal intergovernmental institutions have existed with the task of  promoting coordination of national policies on the mitigation of emissions. In 1992, diplomats  finalized the United Nations Framework Convention on Climate Change (UNFCCC), which entered  into force in 1994. The first session of the Conference of the Parties (COP) to that Convention met in  Berlin in 1995 and outlined a plan for new talks leading to the Kyoto Protocol in 1997, which entered  into force in 2005. The main regulatory provisions of the Kyoto Protocol concerned numerical  emission targets for industrialized countries (listed in Annex B of the Protocol1) during the years  2008 to 2012. When AR4 concluded in 2007, diplomats were in the early stages of negotiations for  possible amendment of the Kyoto treaty while also exploring other mechanisms to encourage  additional long term cooperation on mitigation. The regulatory targets of the original Kyoto treaty  would expire at the end of 2012. Those negotiations had been expected to finish at the COP 15  meeting in Copenhagen in 2009, but a wide number of disagreements made that impossible. Instead,  talks continued while, in tandem, governments made an array of pledges that they solidified at the  2010 COP meeting in Cancun.  These  Cancun pledges  concern the policies they would adopt to  mitigate emissions and other related actions on the management of climate risks; some of those  pledges are contingent upon actions by other countries. The 91 countries that adopted these  pledges account for the vast majority (about 80%) of world emissions (UNFCCC, 2011, 2012a; b;  UNEP, 2012). If fully implemented, the pledges might reduce emissions in 2020 about one tenth  below the emissions level that would have existed otherwise not quite enough to return emissions  to 2005 levels   and it would be very hard to attain widely discussed goals of stabilizing warming at  1.5 or 2 degrees without almost immediate and full participation in international agreements that  coordinate substantial emission reductions (Figure 1.9). International agreements are discussed in  detail in Chapter 13 of this report.  At this writing, diplomatic talks are focused on the goal of adopting a new agreement that would  raise the level of ambition in mitigation and be in effect by 2020 (UNFCCC, 2012c). In tandem,  governments have also made a number of important decisions, in particular the adoption at Doha in  2012 of the second commitment period of the Kyoto Protocol, from 2013 to 2020. However, five  developed countries originally listed in Annex B of the Kyoto Protocol are not participating in the  second commitment period: Canada, Japan, New Zealand, Russia, and the United States (UNFCCC,  2013b).  The growing complexity of international diplomacy on climate change mitigation, which has been  evident especially since AR4 and the Copenhagen meeting, has led policymakers and scholars alike  to look at many other institutional forms that could complement the UN based process. Some of  these initiatives imply diplomatic efforts on separate parallel tracks (see Chapter 13). Proposals exist  within the Montreal Protocol on Substances that Deplete the Ozone Layer to regulate some of the  gases that have replaced ozone destroying chemicals yet have proved to have strong impacts on the                                                                In this chapter, Annex B countries are categorized as: countries that are members of Annex B; countries  originally listed in Annex B but which are not members of the Kyoto Protocol (non members are USA and  Canada); countries not listed in Annex B are referred to as non Annex B.  1     14 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    climate. A wide array of other institutions has become engaged with the climate change issue. The  G8 the group of Canada, France, Germany, Italy, Japan, Russia, the UK, and the USA that convenes  regularly to address a wide array of global economic challenges has repeatedly underscored the  importance of limiting warming to 2 degrees and implored its members to take further actions. The  G20, a much broader group of economies has put climate change matters on its large agenda; the  G20 has also helped to organize active efforts to reform fossil fuel subsidies and to implement green  growth strategies. The UN, itself, has a large number of complementary diplomatic efforts on related  topics, such as the  Rio+20  process.   Many other institutions are now actively addressing particular aspects of climate change mitigation,  such as the International Renewable Energy Agency (IRENA), which focuses on renewable energy;  the Climate and Clean Air Coalition (CCAC), which focuses on how limits on short lived pollutants  such as black carbon can help slow climate change, the International Atomic Energy Agency (IAEA),  which focuses on nuclear power, the International Civil Aviation Organization (ICAO) and the  International Maritime Organization (IMO) that have focused on emissions from bunker fuels, and  many others with expertise in particular domains. The International Energy Agency (IEA) is now  extensively engaged in analyzing how developments in the energy sector could affect patterns of  emissions (e.g., IEA, 2012). Looking across these many different activities, international institutions  that have engaged the climate change topic are highly decentralized rather than hierarchically  organized around a single regulatory framework (Keohane and Victor, 2011). Since AR4, research on  decentralized international institutions has risen sharply (Alter and Meunier, 2009; Zelli et al., 2010;  Johnson and Urpelainen, 2012), building in part on similar concepts that have emerged in other  areas of research on collective action (e.g., McGinnis, 1999; Ostrom, 2010).  Since AR4, there has been a sharp increase in scholarly and practical attention to how climate  change mitigation could interact with other important international institutions such as the World  Trade Organization (WTO) (see also Chapter 13 of this volume) (Brewer, 2010). Relationships  between international trade agreements and climate change have been a matter of long standing  interest in climate diplomacy and are closely related to a larger debate about how differences in  environmental regulation might affect economic competitiveness as well as the spread of mitigation  and adaptation technology (Gunther et al., 2012). A potential role for the WTO and other trade  agreements also arises because the fraction of emissions embodied in internationally traded goods  and services is rising with the globalization of manufacturing (see 1.2.1.2 above and 1.3.1 below).  Trade agreements might also play a role in managing (or allowing the use of) trade sanctions that  could help enforce compliance with mitigation commitments   a function that raises many legal  questions as well as numerous risks that could lead to trade wars and an erosion of political support  that is essential to the sustainability of an open trading system (Bacchus et al., 2010). For example,  Article 3 of the UNFCCC requires that  [m]easures taken to combat climate change, including  unilateral ones, should not constitute a means of arbitrary or unjustifiable discrimination or a  disguised restriction on international trade.  (UNFCCC, 1992). The impacts of mitigation on trade  issues are also related to concerns that have been raised about how emission controls could reduce  national employment and income (ILO, 2012, 2013).  Since the IPCC AR4 in 2007, the scholarly community has analyzed the potentials, design, and  practices of international cooperation extensively. A body of research has emerged to explain why  negotiations on complex topics such as climate change are prone to gridlock (Murase, 2011; Victor,  2011; Yamaguchi, 2012). There is also a large and vibrant research program by political scientists and  international lawyers on institutional design, looking at issues such as how choices about the  number of countries, type of commitments, the presence of enforcement mechanisms, schemes to  reduce cost and increase flexibility, and other attributes of international agreements can influence  their appeal to governments and their practical effect on behaviour (see e.g., the comprehensive  reviews and assessment on these topics by Hafner Burton, Victor, and Lupu, 2012 as well as earlier  research of Abbott et al., 2000; and Koremenos, Lipson, and Snidal, 2001). Much of that research      15 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    program has sought to explain when and how international institutions, such as treaties, actually  help solve common problems. Such research is part of a rich tradition of scholarship aimed at  explaining whether and how countries comply with their international commitments (Downs et al.,  1996; Simmons, 2010). Some of that research focuses on policy strategies that do not involve formal  legalization but, instead, rely more heavily on setting norms through industry organizations, NGOs,  and other groups (Vogel, 2008; Buthe and Mattli, 2011). The experience with voluntary industry  standards has been mixed; in some settings these standards have led to large changes in behaviour  and proved highly flexible while in others they have little or no impact or even divert attention  (Rezessy and Bertoldi, 2011).   One of the many challenges in developing and analyzing climate change policy is that there are long  chains of action between international institutions such as the UNFCCC and the ultimate actors  whose behaviour might be affected, such as individuals and firms. We note that there have been  very important efforts to engage the business community on mitigation as well as adaptation to  facilitate the market transformations needed for new emission technologies and business practices  to become widespread (WEF, 2009; UN Global Compact and UNEP, 2012) (see Chapter 15). While  there are diverse efforts to engage these many different actors, measuring the practical impact on  emissions has been extremely difficult and much of the scholarship in this area is therefore highly  descriptive.  1.2.5    Understanding the roles of emissions other than fossil fuel CO2  Much policy analysis has focused on CO2 from burning fossil fuels, which comprise about 60% of  total global greenhouse gas emissions in 2010 (see Section 1.3.1 below). However, the UNFCCC and  the Kyoto Protocol cover a wider array of CO2 sources and of warming substances   including  methane (CH4), nitrous oxide (N2O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs) and sulphur  hexafluoride (SF6). Nitrogen trifluoride (NF3) was added as a GHG under the Kyoto Protocol for its  second commitment period. This large list was included, in part, to create opportunities for firms  and governments to optimize their mitigation efforts flexibly across different substances. The effects  of different activities on the climate varies because the total level of emissions and the composition  of those emissions varies. For example, at current levels the industrial and power sectors have much  larger impacts on climate than agriculture (Figure 1.3).   A variety of studies have shown that allowing for trading across these different gases will reduce the  overall costs of action; however, many studies also point to the complexity in agreeing on the  correct time horizons and strategies for policy efforts that cover gases with such different properties  (Reilly et al., 2003; Ramanathan and Xu, 2010; Shindell et al., 2012). In addition to the gases  regulated under the Kyoto Protocol, many of the gases that deplete the ozone layer and are  regulated under the Montreal Protocol on Substances that Deplete the Ozone Layer are also strong  greenhouse gases (Velders et al., 2007).  Since AR4 a variety of short lived climate pollutants (SLCPs)  have come under scrutiny (UNEP, 2011a; Shindell et al., 2012; Victor et al., 2012; Smith and Mizrahi,  2013). Those include tropospheric ozone (originating from air pollutant emissions of nitrogen oxides  and various forms of incompletely oxidized carbon) and aerosols (such as black carbon and organic  carbon and secondary such as sulphates) that affect climate forcing (see Chapter 8, Section 8.2.2 and  Section 5.2). This remains an area of active research, not least because some studies suggest that  the climate impacts of short lived pollutants like black carbon could be much larger or smaller  (Ramanathan and Carmichael, 2008; Bond et al., 2013) (Working Group 1, Chapters 7 and 8). Such  pollutants could have a large role in mitigation strategies since they have a relatively swift impact on  the climate   combined with mitigation of long lived gases like CO2 such strategies could make it  more easily feasible to reach near term temperature goals, but there are still many debates over the  right balance of mitigation effort on short lived and long lived pollutants (Ramanathan and Xu, 2010;  Penner et al., 2010; Victor et al., 2012; Smith and Mizrahi, 2013).  By contrast, other aerosols notably the sulphate aerosol formed from SO2 emissions from the industrial and power sectors,      16 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    shipping, and large scale biomass burning have a net cooling effect because they interact with  clouds to reflect sunlight back to space (see Section 5.2 and Working Group I, Chapter 7.4;  (Fuglestvedt et al., 2009).   Table 1.1: Implications of the choice of Global Warming Potential (GWP) for mitigation strategy. Table shows the main geophysical properties of the major Kyoto gases and the implications of the choice of values for GWPs with different time horizons (20, 100, or 500 years) on the share of weighted total emissions for 2010; other IPCC chapters report detail on alternative indexes such as Global Temperature change Potential (GTP) (Chapter 3, this volume; IPCC Working Group I, Chapter 8). At present, the 100-year GWPs are used most widely, and we show those values as reported in the IPCC Second Assessment Report (SAR) in 1995 and subsequently used in the Kyoto Protocol. Note that CO2 is removed by multiple processes and thus has no single lifetime (see WGI Box 6.1). We show CF4 as one example of the class of perfluorocarbons (PFCs) and HFC-134a and HFC-23 as examples of hydrofluorocarbons (HFCs). All other industrial fluorinated gases listed in the Kyoto Protocol ( F-gases ) are summed. We do not show warming agents that are not included in the Kyoto Protocol, such as black carbon. Emissions reported in JRC/PBL (2011) using GWPs reported in IPCC s second, fourth and fifth assessment report (IPCC, 1995, 2007c, 2013a). The fourth report was used for GWP-500 data; interpretation of long time horizon GWPs is particularly difficult due to uncertainties in carbon uptake and climate response differences that are apparent in how different models respond to different pulses and scenarios for CO2 and the many nonlinearities in the climate system (see WG I, Supplemental Material 8.SM.11.4 and (Joos et al., 2013) and thus IPCC no longer reports 500 year GWPs. Due to changes in the GWP values from AR4 to AR5 the 500-year shares are not precisely comparable with the other GWPs reported here. Geophysical properties of the gases drawn from IPCC Working Group I, Appendix 8.A, Table 8.A.1 final draft data) GWP weighted share of global GHG emissions Geophysical properties  in 2010     Working  Group I   (20 and 100  year from  AR5 & 500  year from  AR4)    100 years  73%  20%  5.0%  2.1%  0.4%  0.4%  0.1%  0.3%  0.0%  0.8%  Kyoto gases  CO2  CH4  N2O  F gases:  HFC 134a  HFC 23  CF4  SF6  NF3 *  Other F gases **  Atmospheric  lifetime (year)   various            12.4         121             13.4         222   50,000     3,200        500  various  Instantaneous   forcing   2 (W/m /ppb)  1.37 x 10   3.63 x 10 4  3.00 x 10 3    0.16  0.18  0.09  0.57  0.20  various  5   SAR (Kyoto)    100 years  76%  16%  6.2%  2.0%  0.5%  0.4%  0.1%  0.3%  not applicable  0.7%  20 years  52%  42%  3.6%  2.3%  0.9%  0.3%  0.1%  0.2%  0.0%  0.9%  500 years  88%   7%  3.5%  1.8%  0.2%  0.5%  0.2%  0.5%  0.0%  0.4%  * NF3 was added for the second commitment period of the Kyoto period, NF3 is included here but contributes much less than 0.1%. ** Other HFCs, PFCs and SF6 included in the Kyoto Protocol s first commitment period. For more details see the Glossary (Annex I). Starting with the first assessment report, the IPCC has calculated global warming potentials (GWPs)  to convert climate pollutants into common units over 20, 100, and 500 year time horizons (Chapter 2,  (IPCC, 1990b). Indeed, when GWPs were first presented by IPCC the analysis included the statement      17 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    that  [t]hese three different time horizons are presented as candidates for discussion and should not  be considered as having any special significance  (see Chapter 2, page 59 in IPCC, 1990b). In the  Kyoto Protocol, diplomats chose the middle value 100 years despite the lack of any published  conclusive basis for that choice (Shine, 2009). That approach emphasizes long lived pollutants such  as CO2, which are essential to stopping climate warming over many decades to centuries. As shown  in Table 1.1, when GWPs are computed with a short time horizon the share of short lived gases,  notably methane, in total warming is much larger and that of CO2 becomes proportionally smaller.   The uncertainty in the GWPs of non CO2 substances increases with time horizon and for GWP100 the  uncertainty is about 30% to 40% (90% confidence interval) (IPCC, 2013a). If policy decisions are  taken to emphasize SLCPs as a means of altering short term rates of climate change rises then  alternative GWPs or other metrics and mitigation strategies may be needed (IPCC, 2009; Fuglestvedt  et al., 2010; Victor et al., 2012; Daniel et al., 2012; Smith et al., 2012).  Additional accounting systems  may also be needed.   1.2.6    Emissions Trajectories and Implications for Article 2  Chapter 1 of the Working Group III report in AR4 found that, without major policy changes, the  totality of policy efforts do not put the planet on track for meeting the objectives of Article 2 of the  United Nations Framework Convention on Climate Change (UNFCCC) (IPCC, 2007a). Since then,  emissions have continued to grow   a topic we examine in more detail below. Article 2 of the  UNFCCC describes the ultimate objective of the Convention. It states:  The ultimate objective of this Convention and any related legal instruments that the  Conference of the Parties may adopt is to achieve, in accordance with the relevant  provisions of the Convention, stabilization of greenhouse gas concentrations in the  atmosphere at a level that would prevent dangerous anthropogenic interference with the  climate system. Such a level should be achieved within a time frame sufficient to allow  ecosystems to adapt naturally to climate change, to ensure that food production is not  threatened and to enable economic development to proceed in a sustainable manner.  (UNFCCC, 1992).   Interpreting the UNFCCC goal is difficult. The first part of Article 2, which calls for stabilization of  GHG concentration at levels that are not  dangerous,  requires examining scientific climate impact  assessments as well as normative judgments   points that are explored in detail in the IPCC Working  Group II report. The second part of Article 2 is laden with conditions whose interpretation is even  less amenable to scientific analysis. In light of the enormous variations in vulnerability to climate  change across regions and ecosystems, it is unlikely that scientific evidence will conclude on a single  such goal as  dangerous . Variations in what different societies mean by  dangerous  and the risks  they are willing to endure further amplify that observation. Article 2 requires that societies balance a  variety of risks and benefits   some rooted in the dangers of climate change itself and others in the  potential costs and benefits of mitigation and adaptation.   Since the publication of AR4 a series of high level political events have sought to create clarity about  what Article 2 means in practice. For example, the Bali Action Plan, adopted at COP 13 held in Bali,  Indonesia, in December 2007, cited AR4 as a guide for negotiations over long term cooperation to  manage climate change. At the L Aquila G8 Summit in 2009, five months before the COP15 meeting  in Copenhagen, leaders  recognized the broad scientific view that the increase in global average  temperature above pre industrial levels ought not to exceed 2°C,  and they also supported a goal of  cutting emissions at least 80% by 2050 (G8 Leaders, 2009). Later that year, an COP 15, delegates  took note  of the Copenhagen Accord which recognized  the scientific view that the increase in  global temperature should be below 2 degree Celsius,  and later meetings arrived at similar  conclusions (Decision1/CP.16). Ever since the 2009 Copenhagen Conference the goal of 1.5 degrees  has also appeared in official UN documents, and some delegations have suggested that a 1 degree      18 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    target be adopted. Some scholars suggest that these goals can create focal points that facilitate  policy coordination, although there is a variety of perspectives about whether these particular goals  are playing that role, in part because of growing evidence that they will be extremely difficult or  impossible to attain (Schneider and Lane, 2006; National Research Council of the National  Academies, 2011; Victor, 2011; Helm, 2012). Readers should note that each major IPCC assessment  has examined the impacts of multiplicity of temperature changes but has left political processes to  make decisions on which thresholds may be appropriate (AR4 Chapter 1).   At present, emissions are not on track for stabilization let alone deep cuts (see Section 1.3 below).  This reality has led to growing research on possible extreme effects of climate change and  appropriate policy responses. For example, Weitzman (2009) raised the concern that standard policy  decision tools such as cost benefit analysis and expected utility theory have difficulty dealing with  climate change decisions, owing to the difficulty in assessing the probability of catastrophic impacts.  Partly driven by these concerns, the literature on geoengineering options to manage solar radiation  and possibly offset climate change along with technologies that allow removal of CO2 and other  climate altering gases from the atmosphere has been increasing exponentially (see 6.9). Because  they have theoretically high leverage on climate, geoengineering schemes to alter the planet s  radiation balance have attracted particular attention; however, because they also create many risks  that are difficult if not impossible to forecast, only a small but growing number of scientists have  considered them seriously (Rickels et al. 2011; Gardiner 2010; IPCC 2012; Keith, Parson, and Morgan  2010).   1.3   Historical, Current and Future Trends  Since AR4 there have been new insights into the scale of the mitigation challenge and the patterns in  emissions. Notably, there has been a large shift in industrial economic activity toward the emerging  countries especially China that has affected those nations  emission patterns. At the same time,  emissions across the industrialized world are largely unchanged from previous levels. Many  countries have adopted policies to encourage shifts to lower GHG emissions from the energy system,  such as through improved energy efficiency and greater use of renewable energy technologies.   1.3.1    Review of four decades of greenhouse gas emissions   While there are several sources of data, the analysis here relies on the EDGAR data set (JRC/PBL,  2011) [see Annex II.9 Methods and Metrics for a complete delineation of emission categories]. We  focus here on all major direct greenhouse gases (GHGs) related to human activities   including  carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), perfluorocarbons (PFCs),  hydrofluorocarbons (HFCs), and sulphur hexafluoride (SF6). We also examine various ozone depleting substances (ODS), which are regulated under the Montreal Protocol due to their effects on  the ozone layer but also act as long lived GHG: chlorofluorocarbons (CFCs),  hydrochlorofluorocarbons (HCFCs), and halons. Due to lack of comparable data we do not here  examine black carbon, tropospheric ozone precursors, cooling aerosols, and nitrogen trifluoride  (NF3.) For the analyses that follow we use 100 year GWPs from the IPCC Second Assessment Report  because they are widely used by governments, but we are mindful that other time horizons and  other global warming metrics also merit attention (see 1.2.5 above).      19 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Figure 1.3. Panel A (top left): Allocation of total GHG emissions in 2010 (49.5 GtCO2eq/yr) across the five sectors examined in detail in this report (see Chapters 7 11). Pullout from panel A allocates indirect CO2 emission shares from electricity and heat production to the sectors of final energy use. Panel B (top right): Allocates that same total emissions (49.5 GtCO2eq/yr) to reveal how each sector s total increases or decreases when adjusted for indirect emissions. Panel C (lower panel): Total annual GHG emissions by groups of gases 1970 2010, along with estimated uncertainties illustrated for 2010 (whiskers). The uncertainty ranges provided by the whiskers for 2010 are illustrative given the limited literature on GHG emission uncertainties. Sources: Historic Emission Database IEA/EDGAR dataset (JRC/PBL, 2012, IEA, 2012a), see Annex II.9. Data shown for direct emissions on Panels A and B represents land-based CO2 emissions from forest and peat fires and decay that approximate to CO2 flux from anthropogenic emissions sources in the FOLU (Forestry and Other Land Use) subsector additional detail on Agriculture and FOLU ( AFOLU , together) fluxes is in Chapter 11, Section 11.2 and Figure 11.2 and 11.6. Emissions weighted with 100-year GWPs as used in the original Kyoto Protocol (i.e., values from the second IPCC report as those values are now widely used in policy discussions) and, in general, sectoral and national/regional allocations as recommended by the 1996 IPCC guidelines (IPCC, 1996). Using the most recent GWP-100 values from the Fifth       20 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Assessment Report (see Working Group I, 8.6) global GHG emission totals would be slightly higher (52 GtCO2eq) and non-CO2 emission shares are 20% for CH4, 5% for N2O and 2% for F-gases. Error bars in panel 1.3c show the 90% confidence interval of the emission estimates based on these sources: CO2 from fossil fuel and industrial processes +/-8.4% (Andres et al., 2012; Kirschke et al., 2013) CO2 from FOLU +/-2.9 GtCO2/y (estimates from WGI table 6.1 with central value shown on figure 1.3c is per EDGAR/IEA); Methane +/-20% (Kirschke et al. 2013); Nitrous oxide +/-60% (WGI, table 6.9); F-gases +/-20% (UNEP, 2012). Readers are cautioned, however, that the literature basis for all of these uncertainty figures is very weak. There have been very few formal, documented analysis of emissions uncertainty for any gas. Indicative uncertainty for total emissions is from summing the squares of the weighted uncertainty of individual gases (see 5.2.3.4 for more detail), which yields a total uncertainty of +/- 9% for a 90% confidence interval in 2010. We note, however, that there is insufficient published information to make a rigorous assessment of global uncertainty and other estimates suggest different uncertainties. The calculation leading to 9% assumes complete independence of the individual gas-based estimates; if, instead, it is assumed that extreme values for the individual gases are correlated then the uncertainty range may be 19%. Moreover, the 9% reported here does not include uncertainties related to the choice of index (see table 1.1) and Section 1.2.5. By sector, the largest sources of greenhouse gases were the sectors of energy production (34%,  mainly CO2 from fossil fuel combustion), and agriculture, forestry and land use (AFOLU) (24%, mainly  CH4 and N2O) (Figure 1.3.a). Within the energy sector, most emissions originate from generation of  electricity that is, in turn, used in other sectors.  Thus, accounting systems in other sectors often  refer to direct emissions from the sector (e.g., CO2 emissions caused in industry during the  production of cement) as well as  indirect  emissions that arise outside the boundaries of that  particular economic sector (e.g., the consumption of electric power in buildings causes indirect  emissions in the energy supply sector (Figure 1.3a and 1.3b).  Looking at the total source of  greenhouse gases at present CO2 contributes 76%; CH4 about 16%, N2O about 6% and the combined  F gases about 2% (figure 1.3c).  Following the breakdown in sectors discussed in this report (Chapters 7 to 11), Figure 1.3c looks at  emissions over time by gas and sector. Figure 1.4 looks at those patterns over time according to  different groups of countries, which reveals the effects of periodic economic slowdowns and  contractions on emissions. Globally, emissions of all greenhouse gases increased by about 75% since  1970. Over the last two decades, a particularly striking pattern has been the globalization of  production and trade of manufactured goods (see Section 1.2.1.2 above). In effect, high income  countries are importing large embodied emissions from the rest of the world, mainly the upper  middle income countries (Figure 1.5).   Overall, per capita emissions in the highly industrialized countries are roughly flat over time and  remain, on average, about 5 times higher than those of the lowest income countries whose per capita emissions are also roughly flat. Per capita emissions from upper middle income countries  have been rising steadily over the last decade (see inset to Figure 1.4).  There are substantial  differences between mean and median per capita emissions, reflecting the huge variation within  these categories.  Some very low income countries have extremely low per capita emissions while  some upper middle income developing countries have per capita emissions comparable with those  of some industrialized nations.  Emissions from the energy sector (mainly electricity production) and from transportation dominate  the global trends. Worldwide power sector emissions have tripled since 1970 (see Figure 7.3), and  transport has doubled (see Figure 8.1). Since 1990 emissions from electricity and heat production  increased by 27% for the group of OECD countries; in the rest of the world the rise has been 64%  (see Figure 7.5). Over the same period, emissions from road transport increased by 29% in OECD  countries and 61% in the other countries (see Figure 8.3). Emissions from these systems depend on  infrastructures such as power grids and roads, and thus there is also large inertia as those  infrastructures are slow to change (Davis et al., 2010).       21 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Forest related GHG emissions are due to biomass burning and decay of biomass remaining after  forest burning and after logging. In addition, the data shown includes CO2 emissions from  decomposition of drained peatland and from peat fires (Olivier and Janssens Maenhout, 2012). The  forest related figures presented here are in line with the synthesis paper by Houghton et al. (2012)  on recent estimates of carbon fluxes from land use and land cover change.   There has been a large effort to quantify the uncertainties in the historical emissions since AR4 was  published.  Such efforts have been difficult due to the small number of truly independent data  sources, especially at the finest level of resolution such as emissions from particular sectors and  countries.  Uncertainties are particularly large for greenhouse gas emissions associated with  agriculture and changes in land use.  By contrast, recent estimates of emissions from fossil fuel  combustion varied by only 2.7% across the most widely used data sources (Macknick, 2011).  In  addition to variations in the total quantity of fossil fuel combusted, the coefficients used by IPCC to  calculate emissions also vary from 7.2% for coal use in industry to 1.5% for diesel used in road  transport (Olivier et al., 2010).  Emissions from agriculture and land use change are estimated to  vary by 50% (Tubiello et al., 2013), and a recent study by that compared 13 different estimates of  total emissions from changes in land use found broadly comparable results (Houghton et al., 2012).   Since land use is a small fraction of total CO2 emissions the total estimate of anthropogenic CO2  emissions has uncertainty of only +/-10% (UNEP, 2012). Looking beyond CO2, estimates for all other  warming gases are generally more uncertain. Estimated uncertainties for global emissions of  methane, nitrous oxide, and fluorine based gases are +/-25%, +/-30%, and +/-20% respectively (UNEP,  2012).  Statistically significant uncertainty quantifications require large independent and consistent data  sets or estimates, which generally do not exist for historical GHG emission data. In such cases,  uncertainty is referred to as  indicative uncertainty  based on the limited information available that  does not meet the standard of a rigorous statistical analysis (see 5.2.3).      22 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Figure 1.4. Global growth in emissions of GHGs by economic region. Main figure shows world total (top line) and growth rates per decade, as well as the World Bank s four economic regions (see Figure 1.1 caption for more detail). Inset shows trends in annual per capita mean (solid lines) and median (dotted lines) GHG emissions by region 1970 2010 in tonnes of CO2eq (t/cap/yr) (United Nations, 2013a). Global totals include bunker fuels; regional totals do not. The data used is from the same sources reported in Figure 1.3c. Error bars are approximated confidence interval of 1 standard deviation, derived by aggregating individual country estimates by gas and sector of the 16th and 84th emission percentiles provided by the MATCH analysis (Höhne et al., 2011); data also available at http://www.match-info.net/. However, we note that this probably over-states actual uncertainty in the totals, since individual country uncertainty estimates under this method are implicitly taken to be completely correlated. Thus, for the global totals we estimate a 90% percentile uncertainty range using the same method as discussed for Figure 1.3c. While in 2010 the uncertainty using that method is 9%, over the full time period of Figure 1.4 the value varies from 9% to 12% with an average value of 10%. We caution that multi-country and global uncertainty estimates remain an evolving area of research (see caption 1.3c and Section 5.2.3). Uncertainties shown on this chart are at best indicative of the unknowns but are not a definitive assessment.       23 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Figure 1.5. CO2 emissions from fossil fuel combustion for the four economic regions attributed on the basis of territory (solid line) and final consumption (dotted line) in gigatonnes of CO2 per year (Gt/yr). The shaded areas are the net CO2 trade balance (difference) between each of the four country groupings (see Figure 1.1) and the rest of the world. Blue shading indicates that the region is a net importer of emissions, leading to consumption-based CO2 emission estimates that are higher than traditional territory-based emission estimates. Yellow indicates the reverse situation net exporters of embodied emissions. Low-income countries, because they are not major players in the global trade of manufactured products, have essentially no difference between territory and consumption based estimates. For high-income countries and upper-middle-income countries, embodied emissions have grown over time. Figures based on Caldeira and Davis (2011) and Peters et al.(2012b), but with data from Eora, a global multi-regional input-output model (Lenzen et al., 2012, 2013).     24 of 63     Final Draft   Chapter 1  IPCC WGIII AR5      Figure 1.6. Greenhouse gas emissions measured in gigatonnes of CO2eq per year (Gt/yr) in 1970, 1990 and 2010 by five economic sectors (Energy supply, Transport, Buildings, Industry, as well as Agriculture, Forestry and Other Land Use (AFOLU) and four economic regions (see caption to Figure 1.1). Bunkers refer to emissions from international transportation and thus not, under current accounting systems, allocated to any particular nation's territory. Note: The direct emission data from JRC/PBL (2012) (see Annex II.9) represents land-based CO2 emissions from forest and peat fires and decay that approximate to CO2 flux from anthropogenic emissions sources in the FOLU (Forestry and Other Land Use) sub-sector. For a more detailed representation of AFOLU GHG flux (Agriculture and FOLU) see Chapter 11, Section 11.2 and Figure 11.2 and 11.6. Source: same sources as reported for Figure 1.3c. We do not report uncertainties because there isn t a reliable way to estimate uncertainties resolved by regional group and sector simultaneously. When adjusting emission statistics to assign indirect GHG emissions from electricity and heat  consumption to end use sectors, as is done in panel 1.3b, the main sectors affected are the  industrial and buildings sectors.  Those sectors  shares in global GHG emissions then increase by 11%  and 12% to reach levels of 31% (industry) and 19% (buildings). The addition of these so called  Scope  2  emissions is sometimes done to show or analyze the more comprehensive impact of total energy  consumption of these end use sectors to total energy related emissions.  Figure 1.4 looks at these patterns from the global perspective over time. The AR4 report worked  with the most recent data available at the time (2004). Since then, the world has seen sustained  accelerated annual growth of emissions   driven by CO2 emissions from fossil fuel combustion. There  was a temporary levelling off in 2008 linked to high fuel prices and the gathering global economic  crisis, but the sustained economic growth in the emerging economies has since fuelled continued  growth in world emissions. This is particularly evident in the economic data (Figure 1.1) showing that  the large group of countries other than the highly industrialized nations continue to grow despite  the world economic crisis.  However, growth rates globally, including in these rapidly rising countries,  have been slower than the levels seen in the 1990s, which portends less rapid growth in world  emissions.       25 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Figure 1.6 shows global GHG emissions since 1970 in 20 year intervals for the five economic sectors  covered in Chapters 7 11, i.e., Energy Systems, Transport, Buildings, Industry and Agriculture,  Forestry and Other Land Use (AFOLU). International transport ( bunkers ) are shown separately as  these can neither be attributed to any of these economic sectors or country grouping. In every  country grouping except low income countries, total emissions have risen since 1970 with the  largest increases evident in energy systems.  The only major sector that does not display these  globally rising trends is AFOLU as a growing number of countries adopt policies that lead to better  protection of forests, improved yields in agriculture reduce pressure to convert natural forests to  cropland, and other trends allow for a  great restoration  of previously degraded lands (Ausubel et al.,  2013).  In low income countries total emissions are dominated by trends in AFOLU; in all other  country groupings the energy system plays the central role in emissions.     It is possible to decompose the trends in CO2 emissions into the various factors that  drive  these  outcomes   an exercise discussed in more detail in Chapter 5. One way to decompose the factors  contributing to total emissions is by the product of population, GDP per capita, energy intensity  (total primary energy supply per GDP) and the carbon intensity of the energy system (carbon  emitted per unit energy). This approach is also known as the  Kaya Identity  (Kaya, 1990) and  resonates with similar earlier work (Holdren and Ehrlich, 1974). A variety of studies have done these  decompositions (Raupach et al., 2007; Steckel et al., 2011; Cline, 2011; Akimoto et al., 2013). Figure  1.7 shows such an analysis for the global level, and Chapter 5 in this report offers more detailed  decompositions.  The analysis reveals enhanced growth in the 2000s of global income, which drove higher primary  energy consumption and CO2 emissions. (That pattern levelled around 2009 when the global  recession began to have its largest effects on the world economy.) Also notable is carbon intensity:  the ratio of CO2 emissions to primary energy. On average, since 1970 the world s energy system has  decarbonized. However, in the most recent decade there has been a slight re carbonization.  In the  portions of the global economy that have grown most rapidly, low carbon and zero carbon fuels  such as gas, nuclear power and renewables have not expanded as rapidly as relatively high carbon  coal.  Interpreting the Kaya Identity using global data masks important regional and local differences in  these drivers. For example, the demographic transition in China is essentially completed while in  Africa population growth remains a sizable driver. Technology   a critical factor in improving energy  and carbon intensities as well as access to energy resources   varies greatly between regions (see  Chapters 5 and 7). The recent re carbonization is largely the result of expanded coal combustion in  developing countries driven by high rates of economic growth, while across the highly industrialized  world carbon intensity has been declining due to the shift away from high carbon fuels (notably coal)  to natural gas, renewables, and also to nuclear in some countries. The simple Kaya identity relies on  broad, composite indicators that neither explain causalities nor explicitly account for economic  structures, behavioural patterns, or policy factors, which again vary greatly across regions.  Technological change might allow for radically lower emissions in the future, but the pattern over  this four decade history suggests that the most important global driver of emissions is economic  growth.   Although the average per capita income levels in the large emerging economies in 2010 were  approximately 30% or less of the per capita income levels of OECD countries in 1980, their levels of  carbon intensity and energy intensity are comparable with those of North America in the early 1980s  (IEA, 2012b).       26 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Figure 1.7. Decomposition of decadal absolute changes in global energy-related CO2 emissions by Kaya factors; population (light blue), GDP per capita (dark blue), energy intensity of GDP (yellow) and carbon intensity of energy (red orange). The bar segments show the changes associated with each factor alone, holding the respective other factors constant. Total decadal changes are indicated by a white triangle. Changes are measures in gigatonnes (Gt) of CO2 emissions; economic output is converted into common units using purchasing power parities; the use of market exchange rates would lower the share associated with economic output although that would still be the largest single factor. Source: updated from Steckel et al. (2011) using data from IEA (2012c; d). 1.3.2    Perspectives on Mitigation   Looking to the future, it is important to be mindful that the energy system, which accounts for the  majority of GHG emissions, is slow to change even in the face of concerted policy efforts (Davis et al.,  2010; WEF, 2012; GEA, 2012). For example, many countries have tried to alter trends in CO2  emissions with policies that would make the energy supply system more efficient and shift to low  emission fuels, including renewables and nuclear power (Chapter 7).    There are many different perspectives on which countries and peoples are accoun for the climate  change problem, which should make the largest efforts, and which policy instruments are most  practical and effective. Many of these decisions are political, but scientific analysis can help frame  some of the options. Here we look at six different perspectives on the sources and possible  mitigation obligations for world emissions   illustrated in Figure 1.8 and elsewhere in the chapter.  This discussion engages questions of burden sharing in international cooperation to mitigate climate  change, a topic addressed in more detail in Chapter 4.  One perspective, shown in panel A of Figure 1.8, concerns total emissions and the countries that  account for that total. Twenty countries account for 75% of world emissions; just five countries  account for about half. This perspective suggests that while all countries have important roles to  play, the overall impact of mitigation efforts are highly concentrated in a few.   A second perspective, shown in panel B of Figure 1.8, concerns the accumulation of emissions over  time.  The climate change problem is fundamentally due to the  stock  of emissions that builds up in  the atmosphere. Because of the long atmospheric lifetime of CO2, a fraction of the CO2 emitted to  the atmosphere from James Watt s steam engine that in the late 18th century helped trigger the  Industrial Revolution still remains in the atmosphere. Several studies have accounted in detail for  the sources of emissions from different countries over time, taking into account the geophysical  processes that remove these gases (Botzen et al., 2008; Höhne et al., 2011; Wei et al., 2012).  Attributing past cumulative emissions to countries is fraught with uncertainty and depends on  method applied and emissions sources included.  Because the uncertainties differ by source of      27 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    emissions, panel B first shows just cumulative emissions from industrial sources (left bar) and then  adds the lowest and highest estimates for emissions related to changes in land use (middle two  bars).  Many studies on the concept of  historical responsibility  look at cumulative emissions since  1751, but that approach ignores the fact that widespread knowledge of the potential harms of  climate change is only a more recent phenomenon   dating, perhaps, to around 1990 when global  diplomatic talks that led to the UNFCCC were fully under way.  Thus the right bar in panel B shows  cumulative emissions for all sources of CO2 (including a central estimate for sources related to  changes in land use) from 1990 to 2010.  Each of these different methods leads to a different  assignment of responsible shares and somewhat different rankings.   Other studies have examined  other time horizons (e.g., Le Quéré et al., 2012).  Many scholars who use this approach to analysing  historical responsibility and similar approaches to assessing possible future contributions often refer  to a fixed  carbon budget  and identify the  gap  between that fixed budget and allowable future  emissions (e.g., IPCC, 2013b; UNEP, 2011b; Chapter 6).    A few studies have extended the concepts of historical responsibility to include other gases as well  (den Elzen et al., 2013; Smith et al., 2013).  For simplicity, however, in panel B we report total  cumulative emissions of just CO2, the long lived gas that accounts for the vast majority of long term  climate warming.  Adding other gases requires a model that can account for the different  atmospheric lifetimes of those gases, which introduces yet more uncertainty and complexity in the  analysis of historical responsibility. The results of such analysis are highly sensitive to choices made  in the calculation. For example, the share of developed countries can be almost 80% when excluding  non CO2 GHGs, Land Use, Land Change, and Forestry, and recent emissions (until 2010) or about  47% when including these emissions (den Elzen et al., 2013).  As a general rule, because emissions of  long lived gases are rising, while emissions of the distant past are highly uncertain, their influence is  overshadowed by the dominance of the much higher emissions of recent decades (Höhne et al.,  2011).   A third perspective concerns the effects of international trade. So far, nearly all of the statistics  presented in this chapter have been organized according to the national territory where the  emissions are released into the atmosphere. In reality, of course, some emissions are  embodied  in  products that are exported and discussed in more detail in Section 1.2.2. A tonne of steel produced  in China but exported to the United States results in emissions in China when the fundamental  demand for the steel originated in the United States. Comparing the emissions estimated from  consumption and production (left and right bars of panel A) shows that the total current accounting  for world emissions varies considerably with the largest effects on China and the United States although the overall ranking does not change much when these trade effects are included.  Figure  1.5 earlier in this chapter as well as Section 1.2.1.2 present much more detailed information on this  perspective.   A fourth perspective looks at per capita emissions, shown in panel C of Figure 1.8. This perspective  draws attention to fundamental differences in the patterns of development of countries.  This panel  shows the variation in per capita emissions for each of the four country groupings.  The large  variation in emissions in low income country reflects the large role for changes in land use, such as  deforestation and degradation.  There are some low income countries with per capita emissions  that are higher than high income nations.  Some studies have suggested that debates over concepts  such as  common but differentiated responsibility the guiding principle for allocating mitigation  efforts in talks under the UNFCCC should focus on individuals rather than nations and assign equal  per capita emission rights to individuals (Chakravarty et al., 2009). Still other studies have looked at  the historical cumulative per capita emissions, thus combining two of the different perspectives  discussed here (Teng et al., 2012). Looking within the categories of countries shown in panel C, some  developing countries already have higher per capita emissions than some industrialized nations.      28 of 63     Final Draft   Chapter 1  IPCC WGIII AR5          29 of 63     Final Draft     Chapter 1  IPCC WGIII AR5            30 of 63     Final Draft   Chapter 1  IPCC WGIII AR5            31 of 63     Final Draft   Chapter 1  IPCC WGIII AR5      Figure 1.8. Multiple perspectives on climate change mitigation. Panel A: 2010 emission, ranked in order for the top 75% of global total. Left bar shows ranking with consumption-based statistics, and right bar shows territorial-based (see Figure 1.5 for more detail). Panel B: Cumulative emissions since 1750 (left three bars) and since 1990 (right bar) for four different methods of emission accounting. The first method looks just at industrial sources of CO2 (left bar); the second method adds to those industrial sources the lowest plausible estimate for emissions related to changes in land use (second bar), the third uses the highest plausible estimate for land use (third bar) and the final method uses median estimates for land use emissions along with median industrial emissions. (We focus here on uncertainty in land use emissions because those have higher variation than industrial sources.) Panel C: ranking of per-capita emissions by country as well as (inset) for the four groupings of countries Shadings show the 10th to 90th percentile range (light) as well as the 25th to 75th percentile range (dark); horizontal bars identify the median and diamonds the mean. Panel D: Ranking of carbon intensity of economies (emissions per unit GDP, weighted with purchasing power parity) as a function of total size of the economy as well as (inset) for the four groupings of countries Shadings show the 10th to 90th percentile range (light) as well as the 25th to 75th percentile range (dark); horizontal bars identify the median and diamonds the mean. Country names are abbreviated using the three letter standardization maintained by the International Organization for Standardization (ISO, standard 3166). Panel E: Emissions changes from 1990 to 2012 divided into Annex B of the Kyoto Protocol (countries with quantified emission targets, red orange), countries that were eligible for Annex B but are not members (Canada and the United States, yellow) and non-Annex B countries (blue). Sources: Panel A: based on Peters et al., 2011 data; Panel B: based on MATCH data (Höhne et al., 2011). High and low plausible values for land use emissions are two different datasets provided in the MATCH analysis (see Figure 1.4 for more detail and caveat); since the MATCH analysis is based on actual emission data up to 2005, the last four years are were taken from the Historic Emission Database EDGAR/IEA emission data (JRC/PBL, 2012, IEA, 2012a, See Annex II.9). Panel C: JRC/PBL, 2013 and United Nations, 2013a; Panel D: emissions from JRC/PBL, 2013 and national income PPP-adjusted from World Bank World Development Indicators; Panel E: JRC/PBL, 2013. A fifth perspective is the carbon efficiency of different economies.  Economies vary in how they  convert inputs such as energy (and thus emissions associated with energy consumption) into  economic value.  This efficiency is commonly measured as the ratio of emission to unit economic  output (CO2/GDP) and illustrated in panel D of Figure 1.8. Typically, economies at an earlier stage of  development rely heavily on extractive industries and primary processing using energy intensive  methods often reinforced with subsidies that encourage excessive consumption of energy. As the  economy matures it becomes more efficient and shifts to higher value added industries, such as      32 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    services, that yield low emissions but high economic output. This shift also often includes a change  from higher carbon primary fuels to less carbon intensive fuels.  From this perspective, emission  obligations might be adjusted to reflect each country s state of economic development while  creating incentives for countries to transition to higher economic output without concomitant  increases in emissions.  A sixth perspective (panel E of Figure 1.8) looks at the change of emissions between 1990 and 2010.  1990 is a base year for most of the Annex B countries in the Kyoto Protocol. That panel divides the  world into three groups   the countries (listed in Annex B) that agreed to targets under the Kyoto  Protocol and which formally ratified the Protocol; countries listed in Annex B but which never  ratified the treaty (United States) or withdrew (Canada); and countries that joined the Kyoto  Protocol but had no formal quantitative emission control targets under the treaty. If all countries  listed in Annex B had joined and remained members of the Protocol those countries, on average,  would have reduced emissions more than 5% between 1990 and the compliance period of 2008 2012. From 1990 to 2008 2011, the Annex B nations have reduced their collective emissions by 20%  excluding the United States and Canada and by 9% if including them, even without obtaining  emission credits through the Kyoto Protocol s Clean Development Mechanism (CDM) (UNFCCC,  2013a). (As already noted, the United States never ratified the Kyoto Protocol; Canada ratified but  later withdrew.) However, some individual countries will not meet their national target without the  CDM or other forms of flexibility that allow them to assure compliance.  The trends on this panel  reflect many distinct underlying forces. The big decline in Ukraine, Russia, the 12 new members of  the EU (EU+12) and one of the original EU members (Germany, which now includes East Germany)  reflect restructuring of those economies in the midst of a large shift away from central planning.  Some of those restructuring economies used base years other than 1990, a process allowed under  the Kyoto Protocol, because they had higher emissions in earlier years and a high base year  arithmetically leads to larger percentage reductions. The relatively flat emissions patterns across  most of the industrialized world reflect the normal growth patterns of mature economies. The sharp  rise in emerging markets, notably China and India, reflect their rapid industrialization   a  combination of their stage of development and pro growth economic reforms.   There are many ways to interpret the message from this sixth perspective, which is that all countries  collectively are likely to comply with the Kyoto Protocol. One interpretation is that treaties such as  the Kyoto Protocol have had some impacts on emissions by setting clear standards as well as  institutional reforms that have led countries to adjust their national laws. From that perspective, the  presence of the Kyoto obligations is why nearly all the countries that ratified the Kyoto obligations  are likely to comply. Another interpretation is that the Kyoto Protocol is a fitting illustration of the  concept of  common but differentiated responsibility , which holds that countries should undertake  different efforts and that those most responsible for the underlying problem should do the most.  Still another interpretation is that choice of Kyoto obligations largely reveals  selection effects   through which countries, in effect, select which international commitments to honour. Countries  that could readily comply adopted and ratified binding limits; the others avoided such obligations a  phenomenon that, according to this perspective, is evident not just in climate change agreements  but other areas of international cooperation as well (e.g., Downs, Rocke, and Barsoom, 1996; Victor  2011).   Still other interpretations are possible as well, with varied implications for policy strategies and the  allocation of burdens and benefits among peoples and nations.  1.3.3    Scale of the Future Mitigation Challenge   Future emission volumes and their trajectories are hard to estimate, and there have been several  intensive efforts to make these projections. Most such studies start with one or more  business as usual (BAU)  projections that show futures without further policy interventions, along with scenarios      33 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    that explore the effects of policies and sensitivities to key variables. Chapter 5 looks in more detail at  the long term historical trends in such emissions, and Chapter 6 examines the varied models that are  widely used to make emission projections. Using the AR5 Scenario Database, comprised of those  models described in Chapter 6 (See Annex II.10), Figure 1.9 also shows the emission trajectories over  the long sweep of history from 1750 through the present and then projections out to 2100.   The long term scenarios shown on Figure 1.9 illustrate the emissions trajectories that would be  needed to stabilize atmospheric concentrations of greenhouse gases at the equivalent of around  450ppm (430 480) and 550ppm (530 580) CO2eq by 2100.  The scenarios centered on 450ppm  CO2eq are likely (>66% chance) to avoid a rise in temperature that exceeds 2 degrees above pre industrial levels. Scenarios reaching 550ppm CO2eq have less than a 50% chance of avoiding  warming more than 2 degrees, and the probability of limiting warming to 2 degrees further declines  if there is significant overshoot of the 550ppm CO2eq concentration.  It is important to note that  there is no precise relationship between such temperature goals and the accumulation of emissions  in the atmosphere largely because the sensitivity of the climate system to changes in atmospheric  concentrations is not known with precision. There is also uncertainty in the speed at which future  emissions will be net removed from the atmosphere by natural processes since those processes are  not perfectly understood. If removal processes are relatively rapid and climate sensitivity is low, then  a relatively large quantity of emissions might lead to small changes in global climate. If those  parameters prove to have less favourable values then even modest increases in emissions could  have big impacts on climate.  These uncertainties are addressed in much more detail in Chapter 12  of Working Group I and discussed in Chapter 6 of this report as well.  While these uncertainties in  how the natural system will respond are important, recent research suggests that a wide range of  uncertainties in social systems such as the design of policies and other institutional factors are  likely to be a much larger factor in determining ultimate impacts on warming from human emissions  (Rogelj et al., 2013a; b).  Figure 1.9 underscores the scale of effort that would be needed to move from BAU emissions to  goals such as limiting warming to 2 degrees. The rapid rise in emissions since 1970 (left inset) is in  stark contrast with the rapid decline that would be needed over the coming century. Because it is  practically difficult to orient policy around very long term goals, the middle inset examines the  coming few decades   the period during which emissions would need to peak and then decline if  stabilization concentrations such as 450 or 550 ppm CO2eq are to be achieved.   A variety of studies have probed whether national emission reduction pledges, such as those made  in the aftermath of the Copenhagen conference, would be sufficient to put the planet on track to  meet the 2 degree target (Den Elzen et al., 2011; Rogelj et al., 2011). For example, Den Elzen et al.  (2011) found the gap between allowable emissions to maintain a  medium  chance (50 66%) of  meeting the 2 degree target and the total reduction estimated based on the pledges made at and  after COP 15, are as big as 2.6 7.7 GtCO2e in 2020; that analysis assumed that countries would adopt  least cost strategies for mitigation emissions, but if less idealized scenarios are followed, then the  gap would be even larger. A large number of other studies also look at the size of the gap between  emission trajectories and the levels needed to reach goals such as 2 degrees (Clarke et al., 2009;  Cline, 2011; Yamaguchi, 2012). By logical extension, limiting warming to 1.5 degrees (or even 1  degree, as some governments and analysts suggest should be the goal) is even more challenging.  In  a major inter comparison of energy models, eight of 14 scenarios found that stabilizing  concentrations at 450ppm CO2eq (which would be broadly consistent with stabilizing warming at 2  degrees) would be achievable under optimal conditions in which all countries participated  immediately in global regulation of emissions and if a temporary overshooting of the 450ppm goal  were allowed (Clarke et al., 2009).  As a general rule, it is still difficult to assess scientifically whether  the Cancun pledges (which mainly concern the year 2020) are consistent with most long term  stabilization scenarios because a wide range of long term scenarios is compatible with a wide range  of 2020 emissions; as time progresses to 2030 and beyond, there is a tighter constraining      34 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    relationship between allowable emissions and long term stabilization (Riahi et al., 2013).  The middle  inset in figure 1.9 shows those pledges and suggests that they may be consistent with some  scenarios that stabilize concentrations at around 550ppm CO2 eq but are inconsistent with the least  cost scenarios that would stabilize concentrations at 450ppm CO2 eq.     There is no simple relationship between the next few decades and long term stabilization because  lack of much mitigation in the next decades can, in theory, be compensated by much more  aggressive mitigation later in the century   if new zero  and negative emission technologies become  available for widespread use.  That point is illustrated in the upper right inset which shows how  assumptions about the timing of mitigation and the availability of technologies affects a subset of  scenarios that stabilize concentrations between 450ppm CO2 eq and 550ppm CO2 eq.  Least cost,  optimal scenarios depart immediately from BAU trajectories.  However, such goals can be reached  even if there are delays in mitigation over the next two decades provided that new technologies  become available that allow for extremely rapid reductions globally in the decades immediately after  the delay.     Determining the exact cost required to achieve any particular goal is difficult because the models  that are used to analyze emissions must contend with many uncertainties about how the real world  will evolve. While the list of those uncertainties is long, the model outcomes are particularly  sensitive to five that are discussed in much more detail in Chapter 6:   Participation. Studies typically analyze scenarios in which all nations participate with the same  timing and level of effort, which also probably leads to the least costly total level of effort.  However, a variety of  delayed participation  scenarios are also analyzed, and with delays it  becomes more difficult (and costly) to meet mitigation goals (Bertram et al., 2013; Riahi et al.,  2013; Rogelj et al., 2013b; Luderer et al., 2013).   International institutions. Outcomes such as global participation will require effective  institutions, such as international agreements on emission reductions and schemes like  international trading of emission offsets and financial transfers. If those institutions prove  difficult to create or less than optimally effective then global mitigation goals are harder to  reach.  Technology. The least cost outcomes (and greatest ease in meeting mitigation goals) require  that all emission control technologies be available as quickly as possible. In many models,  meeting aggressive goals also requires the availability of negative emission technologies   for  example, power plants fired with biomass and including carbon dioxide capture and storage. No  such plant actually exists in the world today and with pessimistic assumptions about the  availability of such technologies it becomes much harder or impossible to reach aggressive  mitigation goals (Edenhofer et al., 2010; Tavoni et al., 2012; Eom et al., 2013; Kriegler et al.,  2013).   Economic growth. Typically, these models assume that if economic growth is high then so are  emissions (and, in some models, so is the rate of technological innovation). Of course, in the  real world, countries can delink economic output and emissions, such as through mitigation  policy. More pessimistic assumptions about growth can make emission goals easier to reach  (because there is a smaller gap between likely and desired emissions) or harder to reach  (because technologies will not be invented as quickly).   Peak timing. Because long term climate change is driven by the accumulation of long lived  gases in the atmosphere (notably CO2), these models are sensitive to the exact year at which  emissions peak before emission reductions slow and then stop accumulation of carbon in the  atmosphere. Models that allow for early peaks create more flexibility for future years, but that  early peak also requires the early appearance of mitigation technologies. Later peak years allow  for delayed appearance of new technologies but also require more aggressive efforts after the  35 of 63         Final Draft   Chapter 1  IPCC WGIII AR5    peak. Some models also allow for an  overshoot  of peak concentrations, which makes it easier  for the model to reach long term stabilization but lowers the odds that stabilization will limit  actual warming to a particular target.   Figure 1.9. The scale of the mitigation effort needed. Main figure shows the sweep of history from 1750 to 2010 (actual emission estimates) and published projections out to the future. Projections include baseline scenarios that do not assume new mitigation policies (grey shading), baseline scenarios that assume aggressive spread of energy efficiency technologies and changes in behaviour (purple shading), mitigation scenarios that reach concentration levels of about 550ppm CO2eq (yellow) and 450 ppm CO2eq (blue). (The mitigation scenarios include those that assume optimal regulation over time and those with delays to 2030). The bottom left inset shows recent historical emissions and is the same as Figure 1.3c. The top left inset shows the same scenarios from the main figure, but with more detail over the next few decades, including the relationship between the Cancun pledges and the various stabilization scenarios. The top right panel looks instead at long-term patterns in emissions and explores the effects of delays to 2030. It focuses on a subset of the mitigation scenarios from the main panel that are consistent with limiting atmospheric concentrations of CO2 to about 450 ppm CO2eq to 500 ppm CO2eq a goal broadly consistent with limiting warming to about 2 degrees above pre-industrial levels by 2100 and thus a topic that many models have examined in some detail. The dark green fans show model estimates for optimal least cost strategies for stabilization; light green fans show least cost mitigation with emissions that track baseline scenarios until 2030 and then make deep cuts with the assumption that new technologies come into place. Chart also shows in light black a subset of scenarios based on the premise that very large quantities of net negative emissions (about 40 GtCO2eq/yr by 2100) can be achieved and thus illustrate how assumptions of negative emissions technology may influence the expected time path of     36 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    emissions. The black scenarios, the output of just one model, entail substantial overshoot of concentrations before stabilization is achieved and unlikely to limit warming to 2 degrees (see Chapter 6). Sources: Historical data drawn from EDGAR/IEA databases reported in IEA, 2012a See Annex II.9; projections drawn from the IPCC WG III AR5 Scenarios Database described in greater detail in Annex II.10; estimates of the impact of the Copenhagen pledges reported in Chapter 13.   In general, only when the most flexible assumptions are made such as permission for some  temporary overshooting of goals and allowing models the maximum flexibility in the technologies  that are utilized is the result a least cost outcome. Since AR4, the modeling community has  devoted much more attention to varying those assumptions to allow for less flexible assumptions  that are typically better tuned to real world difficulties. These more realistic assumptions are often  called  second best  or  less idealized . At present, with the most flexible idealized assumptions  several models suggest that the goal of reaching 2 degrees is feasible. With a variety of less ideal but more realistic assumptions that goal is much more difficult to reach, and many models find the  goal infeasible or exceptionally expensive. These practical difficulties suggest that while optimal  analyses are interesting, the real world may follow pathways that are probably more costly and less  environmentally effective than optimal outcomes. They are also a reminder that such models are a  portrayal of the world that is necessarily simplified and highly dependent on assumptions. There can  be many unforeseen changes that make such goals easier or more difficult to reach. For example,  unexpectedly high economic growth and expansion of coal fired electricity has raised emissions and  made goals harder to reach; unexpected innovations in renewables, energy efficiency and natural  gas are possibly making climate goals easier to reach.  The importance of these real world approaches to analysis is illustrated in Figure 1.10, which shows  how different assumptions about energy intensity (which is related to human behaviour) and the  availability of technologies affect the estimated total cost.  Compared with costs under default  technology assumption, if energy intensity is assumed to improve rapidly (Low EI) the total cost for  mitigating to 430 480 ppm CO2eq (rightmost boxplot) or 530 580 ppm CO2eq (leftmost boxplot) then  costs are cut in half.  (These low EI scenarios are shown, as well, in purple on Figure 1.9 they lead,  systematically, to emissions that are significantly lower than standard BAU scenarios.)  Most studies  that look at technological and behavioural assumptions conclude that real world costs could be  higher than typical, optimal estimates.  For example, if CCS technologies are not available then the  cost of meeting 450ppm stabilization could be 1.5 times to 4 times greater than compared to full CCS  availability.  Similarly, if there is limited bioenergy supply then costs could be dramatically higher  than standard least cost estimates.       37 of 63     Final Draft   Chapter 1  IPCC WGIII AR5      Figure 1.10. The effects of real world assumptions on mitigation costs. Relative mitigation cost increase in case of technology portfolio variations compared to a scenario with default technology assumptions for stabilizing atmospheric GHG concentrations centered on 450ppm (430-480 ppm, right) and 550ppm (530-580 ppm, left) CO2eq in the year 2100. Boxplots show the 25% to 75% percentile range with median value (heavy line) and unshaded area the total range across all reported scenarios, with the caveat that the numbers of scenarios used in such analyses is relatively small. Scenario names on x-axis indicate the technology variation relative to the default assumptions: Low Energy Intensity= energy intensity rising at less than standard values, such as due to extensive use of energy efficiency programs and technologies (N=7, 12); No CCS = CCS technologies excluded (N=3, 11); Limited Bioenergy = maximum of 100 EJ/yr bioenergy supply (N=7, 12). Source: redrawn from Figure 5 in Kriegler et al. (2013) and Figure 6.24. 1.4   Mitigation Challenges and Strategies  While this report addresses a wide array of subjects related to climate change, our central purpose is  to discuss mitigation of emissions. The chapters that follow will examine the challenges for  mitigation in more detail, but five are particularly notable. These challenges, in many respects, are  themes that will weave through this report and appear in various chapters.   1.4.1    Reconciling priorities and achieving sustainable development   Climate change is definitely one of the most serious challenges human beings face. However, it is not  the only challenge. For example, a survey of the Millennium Development Goals (MDGs) offers  examples of the wider array of urgent priorities that governments face. These goals, worked out in  the context of the United Nations Millennium Declaration in September 2000, cover eight broad  areas of development that span eradicating extreme poverty and hunger, reducing child mortality,  combating HIV/AIDS, malaria and other diseases.  Within those broad areas the MDGs include 18  specific targets. For example, halving, between 1990 and 2015, the proportion of people whose  income is less than $1 a day, and halving, between 1990 and 2015, the proportion of people who  suffer from hunger, are among targets under the goal of eradicate extreme poverty and hunger.  (Since then, the official poverty level has been revise upwards to $1.25/day by the World Bank.)  MDGs are unquestionably the urgent issues human beings should cope with immediately and  globally. Achieving such goals along with an even broader array of human aspirations is what many      38 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    governments mean by  sustainable development  as echoed in many multilateral statements such as  the declaration from the Rio +20 conference in 2012 (United Nations, 2012).   All countries, in different ways, seek sustainable development. Each puts its priorities in different  places. The need to make tradeoffs and find synergies among priorities may be especially acute in  the least developed countries where resources are particularly scarce and vulnerabilities to climate  change are systematically higher than in the rest of the world (see box 1.1).  Those priorities also  vary over time   something evident as immediate goals such as job creation and economic growth  have risen in salience in the wake of the global financial crisis of the late 2000s. Moreover,  sustainable development requires tradeoffs and choices because resources are finite. There have  been many efforts to frame priorities and determine which of the many topics on global agendas are  most worthy. Making such choices, which is a highly political process, requires looking not only at  the present but also posterity (Summers, 2007). Applying standard techniques for making  tradeoffs for example, cost benefit analysis (CBA) is extremely difficult in such settings, though  importance of CBA itself is well recognized (Sachs, 2004) (See Section 3.6). Important goals, such as  equity, are difficult to evaluate alongside other goals that can more readily be monetized. Moreover,  with climate change there are additional difficulties such as accounting for low probability but high  impact catastrophic damages and estimating the monetary value of non market damages  (Nussbaum, 2000; Weitzman, 2009).  Box 1.1. Least Developed Countries: mitigation challenges and opportunities The Least Developed Countries (LDCs) consist of 49 countries and over 850 million people, located  primarily in Africa and Asia   with 34 LDCs in Africa alone (UNFPA, 2011). These countries are  characterised by low income (three year average gross national income per capita of less than USD  992), weak human assets index (nutrition, health, school enrolment, and literacy), and high  economic vulnerability criterion (UNCTAD, 2012a). Despite their continued marginalization in the  global economy, these countries  economies grew at about 6% per year from 2000 to 2008, largely  stimulated by the strong pull effect of the Asian emerging economies (Cornia, 2011). However, the  global economic downturn and the worsening Eurozone crisis have had an effect on most LDC  economies. In 2011, LDCs grew by 4.2%, 1.4 percentage lower than the preceding year, hence  mirroring the slowdown of growth worldwide (UNCTAD, 2012a). Many of the traditional domestic  handicaps remain as LDC economies continue to be locked into highly volatile external transactions  of commodities and low productivity informal activities, having neither the reserves nor the  resources needed to cushion their economies and adjust easily to negative shocks.   Regarding the social trends, LDCs as a group have registered encouraging progress towards achieving  some of the Millennium Development Goals (MDGs), especially in primary school enrolment, gender  parity in primary school enrolment, HIV/AIDS prevalence rates and the share of women in non agricultural wage employment (Sachs, 2012). However, poverty reduction has been less successful;  only four (of 33) LDCs are on track to cut the incidence of extreme poverty to half 1990 levels by  2015 (UNCTAD, 2011). In line with this, the Istanbul Programme of Action, adopted at the 4th UN  Conference on the Least Developed Countries (LDC IV) highlighted the importance of building the  productive base of LDCs  economies and promoting the process of structural transformation  involving an increase in the share of high productivity manufacturing and an increase in agricultural  productivity (UNCTAD, 2012b).  The LDCs  continued reliance on climate sensitive activities such as agriculture means that adapting  to climate change remains a central focus of economic development.  If climate changes become  acute the additional burden of adaptation could draw resources away from other activities, such as  mitigation.  Alternatively, more acute attention to adaptation could help mobilize additional efforts  for mitigation within these countries and other countries that are the world s largest emitters.  The  scientific literature has not been able to determine exactly when and how adaptation and mitigation  are complementary or competing activities in LDCs; what is clear, however, is that meeting the      39 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    climate and development challenge entails integrating mitigation and adaptation actions in the  context of sustainable development (Ayers and Huq, 2009; Martens et al., 2009; Moomaw and Papa,  2012). In LDCs, like all other countries, investment in new infrastructures offers the opportunity to  avoid future GHG emissions and lower mitigation costs (Bowen and Fankhauser, 2011). Other  emissions avoidance options are also available for LDCs in areas of innovative urban development,  improvements in material productivity (Dittrich et al., 2012) and the application of enhanced land  use efficiency through intensified agricultural practices and sustainable livestock management  (Burney et al., 2010).   There could be significant additional costs associated with the expansion of infrastructure in LDCs  aimed at decoupling GHG emissions and development. Paying these costs in countries with  extremely scarce resources could be a challenge (Krausmann et al., 2009). Moreover, the additional  costs could deter private investors in low carbon interventions, leaving the public sector with  additional burdens, at least in the short term (UN DESA, 2009; Collier and Venables, 2012). For most  LDC governments, creating the conditions for accelerated economic growth and broad based  improvements in human well being will remain the main driver national development policies and  could lead to the perception if not the reality that development and mitigation are conflicting  goals.   1.4.2    Uncertainty and Risk Management   The policy challenge in global climate change is one of risk management under uncertainty. The  control of emissions will impose costs on national economies, but the exact amount is uncertain.  Those costs could prove much higher if, for example, policy instruments are not designed to allow  for flexibility. Or they could be much lower if technological innovation leads to much improved  energy systems. Mindful of these uncertainties, there is a substantial literature on how policy design  can help contain compliance costs, allowing policymakers to adopt emission controls with greater  confidence in their cost (Metcalf, 2009).   Perhaps even more uncertain than the costs of mitigation are the potential consequences of climate  change. As reviewed elsewhere in the IPCC assessment, there is growing recognition of the  importance of considering outcomes at high magnitudes of climate change, which could lead to  strong feedbacks and very large impacts   for example, higher sea levels and substantial impacts on  natural ecosystems (IPCC, 2014) (forthcoming); see also IPCC WG I, Chapters 11 14 and Annex I).  Investments in adaptation, which vary in their feasibility, can help reduce exposure to climate  impacts and may also lessen uncertainty in the assessment of possible and probable impacts (World  Bank, 2010).   Since risks arise on both fronts on the damages of climate change and on the costs of mitigation  responses scholars often call this a  risk risk  problem. In the case of climate change, management  in this context of risk and uncertainty must contend with another large challenge. Mitigation actions  and effects of climate change involve a multitude of actors working at many different levels, from  individual firms and NGOs to national policy to international coordination. The interest of those  different actors in undertaking climate change mitigation also varies. Moreover, this multitude faces  a large array of decisions and can deploy many different instruments that interact in complex ways.  Chapter 2 explores the issues involved with this multitude of actors and instruments. And Chapter 3  introduces a framework for analysing the varied policy instruments that are deployed and assessing  their economic, ecological, ethical and other outcomes.   Scientific research on risk management has several implications for managing the climate change  problem. One is the need to invest in research and assessment that can help reduce uncertainties. In  relation to climate change these uncertainties are pervasive and they involve investments across  many intellectual disciplines and activities, such as engineering (related to controlling emissions) and  the many fields of climate science (related to understanding the risks of climate change). In turn,      40 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    these knowledge generating and assessment processes must be linked to policy action in an iterative  way so that policymakers can act, learn, and adjust while implementing policy measures that are  robust  across a variety of scenarios (McJeon et al., 2011). Another major implication is the need to  examine the possibilities of extreme climate impacts. These so called  tail  risks in climate impacts  could include relatively rapid changes in sea level, feedbacks from melting permafrost that amplify  the concentrations of greenhouse gases in the atmosphere, or possibly a range of so far barely  analyzed outcomes (see generally Weitzman 2011). There are many options that could play a role in  these risk management strategies such as adaptation, rapid deployment of low or negative emission  technologies (e.g., nuclear, advanced renewables, or bioenergy plants that store their emissions  underground) and geoengineering. Many of these options raise governance and risk management  challenges of their own.  1.4.3    Encouraging international collective action  Unlike many matters of national policy, a defining characteristic of the climate change issue is that  most of its sources are truly global. Nearly all climate altering gases have atmospheric lifetimes  sufficiently long that it does not matter where on the planet they are emitted. They spread  worldwide and affect the climate everywhere. Thus, national governments develop their own  individual policies with an eye to what other nations are likely to do and how they might react  (Victor, 2011). Even the biggest emitters are mostly affected by emissions from other countries  rather than principally their own pollution. International collective action is unavoidable.   As the level of ambition to manage the risks of climate change rises, collective action can help  governments achieve efficient and effective outcomes in many ways.  Those include not just  coordination on policies to control emissions but also collective efforts to promote adaptation to  climate change. International coordination is also needed to share information about best practices  in many areas. For example, many of the promising options for reducing emissions involve changes  in behaviour; governments are learning which policies are most effective in promoting those  changes and sharing that information more widely can yield practical leverage on emissions (Aldy  and Stavins, 2007; Dubash and Florini, 2011) (see also Chapter 13). Coordination is also essential on  matters of finance since many international goals seek action by countries that are unwilling or  unable to pay the cost fully themselves (see Chapter 16) (WEF, 2011). Extremely short lived  pollutants, such as soot, do not mix globally yet these, too, entrain many issues of international  cooperation.  Often this pollution moves across regional borders.  And coordination across borders  can also help promote diffusion of best practices to limit these pollution sources.   International cooperation, including financial transfers, can also help diffuse knowledge and  capabilities to countries as they adapt to the effects of climate change (UNFCCC, 2008, 2012c; World  Bank, 2010).  Indeed, in response to these many logics for international cooperation on mitigation  and adaptation extensive intergovernmental and other coordinating efforts are under way (see  Section 1.2.1.4 and also Chapter 13).   One of the central challenges in international cooperation is that while national governments play  central roles   for example, negotiating, and implementing treaties   effective cooperation must also  engage a large number of other actors, notably in the private sector. Moreover, governments and  other actors cooperate not only at the global level through universal forums such as the United  Nations but also in a wide array of regional forums.  One result of these multiple processes that  entrain public institutions as well as private actors is decentralized and overlapping systems for  government (see Chapter 13).  1.4.4    Promoting Investment and Technological Change   Radical delinking of GDP growth with emissions will probably require massive changes in technology.  Achieving those changes will require closer attention to policies that affect technology innovation      41 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    and deployment. Technologies vary in many ways   they have different maturity stages and  potential for improvement through  learning ; they have different mitigation potentials and require  different policy responses in developing and developed countries. Many studies have looked in  detail at how this diversity of technology policy approaches might influence emissions and climate  policy in the future (UN DESA, 2009, 2011; WBCSD, 2009; IEA, 2012d).   Nearly all low GHG technology options share one commonality   a shift in the cost structure of  supplying energy services from operating/fuel costs to upfront capital costs. Thus policy options are  particularly focused on how to create credible assurances for investors who pay these capital costs.   Policies that reduce demand for energy notably those that mobilize investments in energy  efficiency in both end use and supply can play pivotal roles by limiting the total cost needed to  transform energy supplies. The rate at which these changes in energy systems can occur is an  important area of research.  The high fixed cost of infrastructures also create  lock in  effects that  help explain why it is difficult to change real world emission patterns quickly (Davis et al., 2010; IEA,  2012a).  International cooperation, finance, and technology transfer all have important roles to play as a  catalyst to accelerate technology progress at each stage in the lifecycle of a technology (see Chapter  13 on international cooperation). Business plays a central role in this process of innovation and  diffusion of technologies.  For example, massive improvements in wind turbine technology have  arisen through cooperation between innovators and manufacturers in many different markets.   Similarly, business has played central roles in innovating and applying energy efficiency technologies  and practices that can help cut costs and allow higher profits and additional employment  opportunities. (ILO, 2012, 2013). Numerous studies indicate that it will be difficult to achieve widely  discussed goals such as limiting warming to 2 degrees at least without drastic efficiency  improvements (but also life style changes) (UNECE, 2010; Huntington and Smith, 2011; OECD, 2011;  IEA, 2012d; Riahi et al., 2012).  Innovations are needed not just in technology but also lifestyles and  business practices that often evolve in tandem with technology.  For example, after the Fukushima  Daiichi accident in March 2011, changes in Japanese life style and behaviour curbed nationwide  domestic household electricity demand by 5% during the winter 2011/12 compared with the  previous year after accounting for degree day differences (Ministry of Environment, Japan, 2012).  Similarly, electricity demand in the Tokyo area was around 10 % lower in the summer 2011 than in  2010 and about 40% of the reduction of demand resulted from behavioural changes that allowed for  greater conservation of electricity used for air conditioning (Nishio and Ofuji, 2012).   As a practical matter, strategies for innovating and deploying new technologies imply shifts in policy  on many different fronts.  In addition to the role for businesses, the public sector has a large role to  play in affecting the underlying conditions that affect where and how firms actually make long lived  and at times financially risky investments.  Those conditions include respect for contracts, a  predictable and credible scheme for public policy, protection of intellectual property, and relatively  efficient mechanisms for creating contracts and resolving disputes.  These issues, explored in more  detail in Chapter 16, are hardly unique to climate change.  In addition, there may be large roles for  the public sector in making public investments in basic technology that the private sector, on its own,  would not adequately provide   a topic covered in more detail in Chapters 3.11 and 15.6.    1.4.5    Rising Attention to Adaptation   For a long time, nearly all climate policy has focused on mitigation. Now, with some change in  climate inevitable (and a lot more likely) there has been a shift in emphasis to adaptation. While  adaptation is primarily the scope of IPCC s Working Group II, there are important interactions  between mitigation and adaptation in the development of a mitigation strategy. If it is expected that  global mitigation efforts will be limited, then adaptation will play a larger role in overall policy      42 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    strategy. If it is expected that countries (and natural ecosystems) will find adaptation particularly  difficult, then societies should become more heavily invested in the efforts to mitigate emissions.   Mitigation and adaptation also have quite different implications for collective action by nations. A  strategy that relies heavily on mitigation requires collective action because no nation, acting alone,  can have much impact on the global concentration of GHGs. Even the biggest nations account for  only about one quarter of global emissions. By contrast, most activities relevant for adaptation are  local   while they may rely, at times, on international funding and know how they imply local  expenditures and local benefits. The need for (and difficulty of) achieving international collective  action is perhaps less daunting than for mitigation (Victor, 2011).   Developing the right balance between mitigation and adaptation requires many tradeoffs and  difficult choices (See WG II Chapter 17 for a more detailed discussion). In general, societies most at  risk from climate change and thus most in need of active adaptation are those that are least  responsible for emissions. That insight arises, in part, from the fact that as economies mature they  yield much higher emissions but they also shift to activities that are less sensitive to vagaries of the  climate. Other tradeoffs in striking the mitigation/adaptation balance concern the allocation of  resources among quite different policy strategies. The world has spent more than 20 years of  diplomatic debate on questions of mitigation and has only more recently begun extensive  discussions and policy planning on the strategies needed for adaptation. As a practical matter, the  relevant policymakers also differ. For mitigation many of the key actions hinge on international  coordination and diplomacy. For adaptation the policymakers on the front lines are, to a much  greater degree, regional and local officials such as managers of infrastructures that are vulnerable to  extreme weather and changes in sea level.  1.5   Roadmap for WG III report  The rest of this report is organized into five major sections.  First, Chapters 2 4 introduce fundamental concepts and framing issues. Chapter 2 focuses on risk  and uncertainty. Almost every aspect of climate change from the projection of emissions to  impacts on climate and human responses is marked by a degree of uncertainty and requires a  strategy for managing risks; since AR4, a large number of studies has focused on how risk  management might be managed where policies have effects at many different levels and on a  diverse array of actors. Scholars have also been able to tap into a rich literature on how humans  perceive (and respond to) different types of risks and opportunities. Chapter 3 introduces major  social, economic, and ethical concepts. Responding to the dangers of unchecked climate change  requires tradeoffs and thus demands clear metrics for identifying and weighing different priorities of  individuals and societies. Chapter 3 examines the many different cost and benefit metrics that are  used for this purpose along with varied ethical frameworks that are essential to any full assessment.  Chapter 4 continues that analysis by focusing on the concept of  sustainable development . The  varied definitions and practices surrounding this concept reflect the many distinct efforts by  societies and the international community to manage tradeoffs and synergies involved with  economic growth, protection of the environment, social equity, justice and other goals.  Second, Chapters 5 6 put the sources of emissions and the scale of the mitigation challenge into  perspective. Chapter 5 evaluates the factors that determine patterns of anthropogenic emissions of  GHGs and particulate pollutants that affect climate. Chapter 6 looks at the suite of computer models  that simulate how these underlying driving forces may change over time. Those models make it  possible to project future emission levels and assess the certainty of those projections; they also  allow evaluation of whether and how changes in technology, economy, behaviour and other factors  could lower emissions as needed to meet policy goals.       43 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Third, Chapters 7 11 look in detail at the five sectors of economic activity that are responsible for  nearly all emissions. These sectors include energy supply systems (Chapter 7), such as the systems  that extract primary energy and convert it into useful forms such as electricity and refined  petroleum products. While energy systems are ultimately responsible for the largest share of  anthropogenic emissions of climate gases, most of those emissions ultimately come from other  sectors, such as transportation, that make final use of energy carriers. Chapter 8 looks at  transportation, including passenger and freight systems. Chapter 9 examines buildings and Chapter  10 is devoted to industry. Together, Chapters 7 10 cover the energy system as a whole. Chapter 11  focuses on agriculture, forestry, and other land use (AFOLU), the only sector examined in this study  for which the majority of emissions are not rooted in the energy system. Chapter 11 includes an  appendix that delves in more detail into the special issues related to bioenergy systems (Section  11.13).  Looking across Chapters 7 11 one major common theme is the consideration and quantification of  co benefits  and  adverse side effects  of mitigating climate change, i.e., effects that a policy or  measure aimed at one objective might have on other objectives. Measures limiting emissions of  GHGs or enhancing sinks often also yield other benefits such as lowering the harmful health effects  of local air pollution or regional acidification when firms and individuals switch to less polluting  combustion technologies and fuels. But fuel switching from coal to gas can have adverse side effects  on the jobs in the coal mining industry. Although difficult to quantify, these co benefits and adverse  side effects often play a large role in evaluating the costs and benefits of mitigation policies (see also  Sections 3.6.3, 4.2, 4.8 and 6.6).   Often, this approach of looking sector by sector (and within each sector at individual technologies,  processes, and practices) is called  bottom up . That perspective, which is evident in Chapters 7 11  complements the  top down  perspective of Chapters 5 6 in which emissions are analyzed by looking  at the whole economy of a nation or the planet.   Fourth, Chapter 12 looks at spatial planning since many emissions are rooted in how humans live,  such as the density of population and the infrastructure of cities. Matters of spatial planning are  treated distinctly in this report because they are so fundamental to patterns of emissions and the  design and implementation of policy options.  Fifth, Chapters 13 16 look at the design and implementation of policy options from a variety of  perspectives. Chapter 13 concentrates on the special issues that arise with international cooperation.  Since no nation accounts for more than about one quarter of world emissions, and economies are  increasingly linked through trade and competition, a large body of research has examined how  national policies could be coordinated through international agreements like the UN Framework  Convention on Climate Change and other mechanisms for cooperation. Chapter 14 continues that  analysis by focusing on regional cooperation and development patterns.   Chapter 15 looks at what has been learned within countries about the design and implementation of  policies. Nearly every chapter in this study looks at an array of mitigation policies, including policies  that work through market forces as well as those that rely on other mechanisms such as direct  regulation. Chapter 15 looks across that experience at what has been learned.   Chapter 16, finally, looks at issues related to investment and finance. The questions of who pays for  mitigation and the mechanisms that can mobilize needed investment capital are rising in  prominence in international and national discussions about mitigation. Chapter 16 examines one of  the most rapidly growing areas of scholarship and explores the interaction between public  institutions such as governments and private firms and individuals that will ultimately make most  decisions that affect climate change mitigation. Among its themes is the central role that financial  risk management plays in determining the level and allocation of investment financing.       44 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    1.6   Frequently Asked Questions  FAQ 1.1. What is climate change mitigation?  The Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as:  a change of climate which is attributed directly or indirectly to human activity that alters the  composition of the global atmosphere and which is in addition to natural climate variability observed  over comparable time periods . The UNFCCC thereby makes a distinction between climate change  attributable to human activities altering the atmospheric composition, and climate variability  attributable to natural causes. The IPCC, in contrast, defines climate change as  a change in the state  of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or  the variability of its properties, and that persists for an extended period, typically decades or longer ,  making no such distinction.    Climate Change Mitigation is a  human intervention to reduce the sources or enhance the sinks of  greenhouse gases  (GHG) (See Glossary (Annex I)). The ultimate goal of mitigation (per Article 2 of  the UNFCCC) is preventing dangerous anthropogenic interference with the climate system within a  time frame to allow ecosystems to adapt, to ensure food production is not threatened and to enable  economic development to proceed in a sustainable manner.  FAQ 1.2. What causes GHG emissions?  Anthropogenic GHGs come from many sources of carbon dioxide (CO2), methane (CH4), nitrous oxide  (N2O), and fluorinated gases (HFCs, PFCs and SF6).  CO2 makes the largest contribution to global GHG  emissions; fluorinated gases (F gases) contribute only a few per cent. The largest source of CO2 is  combustion of fossil fuels in energy conversion systems like boilers in electric power plants, engines  in aircraft and automobiles, and in cooking and heating within homes and businesses. While most  GHGs come from fossil fuel combustion, about one third comes from other activities like agriculture  (mainly CH4 and N2O), deforestation (mainly CO2), fossil fuel production (mainly CH4) industrial  processes (mainly CO2, N2O and F gases) and municipal waste and wastewater (mainly CH4). (See  1.3.1)          45 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    References  Abbott K.W., R.O. Keohane, A. Moravcsik, A. M. Slaughter, and D. Snidal (2000). The concept of  legalization, International Organization 54 401 419 pp. (DOI: 10.1162/002081800551271).  ADB (2009). Improving Energy Security and Reducing Carbon Intensity in Asia and the Pacific. Asian  Development Bank, Manila, Philippines, (ISBN: 978 971 561 843 4). .  ADB (2010). Asian Development Outlook 2010 Update: The Future of Growth in Asia. Asian  Development Bank, Mandaluyong City, Philippines, (ISBN: 978 92 9092 156 1). .  ADB, UNEP, and UNESCAP (2012). Green Growth, Resources and Resilience: Environmental  Sustainability in Asia and the Pacific. United Nations and Asian Development Bank, Bangkok,  Thailand, (ISBN: 978 92 1 120635 7). .  Aichele R., and G. Felbermayr (2012). Kyoto and the carbon footprint of nations, Journal of  Environmental Economics and Management 63 336 354 pp. (DOI: 10.1016/j.jeem.2011.10.005),  (ISSN: 0095 0696).  Akimoto K., F. Sano, T. Homma, K. Tokushige, M. Nagashima, and T. Tomoda (2013). Assessment of  the emission reduction target of halving CO2 emissions by 2050: macro factors analysis and model  analysis under newly developed socio economic scenarios, Energy Strategy Review forthcoming  (DOI: 10.1016/ j.esr.2013.06.002).  Aldy J.E., and R.N. Stavins (Eds.) (2007). Architectures for Agreement. Cambridge University Press,  Cambridge, UK, (ISBN: 9780521871631). .  Aleklett K., M. Höök, K. Jakobsson, M. Lardelli, S. Snowden, and B. Söderbergh (2010). The peak of  the oil age   Analyzing the world oil production reference scenario in World Energy Outlook 2008,  Energy 38 1398 1414 pp. (DOI: 10.1016/j.enpol.2009.11.021).  Alter K.J., and S. Meunier (2009). The politics of international regime complexity, Perspectives on  Politics 7 13 24 pp. (DOI: 10.1017/S1537592709090033).  Andres R.J., T.A. Boden, F.M. Breon, P. Ciais, S. Davis, D. Erickson, J.S. Gregg, A. Jacobson, G.  Marland, J. Miller, T. Oda, J.G.J. Olivier, M.R. Raupach, P. Rayner, and K. Treanton (2012). A  synthesis of carbon dioxide emissions from fossil fuel combustion, Biogeosciences 9 1845 1871 pp.  (DOI: 10.5194/bg 9 1845 2012).  Ausubel J.H., I.K. Wernick, and P.E. Waggoner (2013). Peak farmland and the prospect for land  sparing, Population and Development Review 38 221 242 pp. (DOI: 10.1111/j.1728 4457.2013.00561.x), (ISSN: 1728 4457).  Ayers J.M., and S. Huq (2009). The value of linking mitigation and adaptation: A case study of  Bangladesh., Environmental Management 43 753 764 pp. (DOI: 10.1007/s00267 008 9223 2).  Bacchus J., D. Esty, G.C. Hufbauer, R. Lawrence, J.P. Lehman, B. Leycegui, R. Melendez Ortiz, and D.  Victor (2010). From Collision to Vision: Climate Change and World Trade. Ad Hoc Working Group on  Trade and Climate Change, World Economic Forum, Geneva, Switzerland. . Available at:  www3.weforum.org/docs/WEF_ClimateChange_WorldTradeDiscussionPaper_2010.pdf.      46 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Bertram C., N. Johnson, G. Luderer, K. Riahi, M. Isaac, and J. Eom (2013). Carbon lock in through  capital stock inertia associated with weak near term climate policies, Technological Forecasting and  Social Change forthcoming (DOI: 10.1016/j.techfore.2013.10.001), (ISSN: 0040 1625).  Böhringer C., and A. Keller (2013). Energy Security: An Impact Assessment of the EU Climate and  Energy Package. Copenhagen Consensus Center, (ISBN: 978 87 92795 02 1). .  Bond T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S.  Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C.  Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W.  Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, and C.S.  Zender (2013). Bounding the role of black carbon in the climate system: A scientific assessment,  Journal of Geophysical Research: Atmospheres 118 5380 5552 pp. (DOI: 10.1002/jgrd.50171), (ISSN:  2169 8996).  Botzen W.J.W., J.M. Gowdy, and J.C.J.M. van den Bergh (2008). Cumulative CO2 emissions: Shifting  international responsibilities for climate debt, Climate Policy 8 569 576 pp. (DOI:  10.3763/cpol.2008.0539).  Boussena S., and C. Locatelli (2013). Energy institutional and organisational changes in EU and  Russia: Revisiting gas relations, Energy Policy 55 180 189 pp. (DOI: 10.1016/j.enpol.2012.11.052),  (ISSN: 0301 4215).  Bowen A., and S. Fankhauser (2011). Low carbon development for Least Developed Countries,  World Economics 12 145 162 pp. (ISSN: 1468 1838).  Bowen A., P.M. Forster, A. Gouldson, K. Hubacek, R. Martin, D.W. O Neill, A. Rap, and J. Alexandru  (2009). The Implications of the Economic Slowdown for Greenhouse Gas Emissions and Targets.  Centre for Climate Change Economics and Policy, London, UK. . Available at:  https://www.lse.ac.uk/collections/CCCEP/pdf/Working%20Paper%2011%20 %20Bowen%20et%20al.%202009x.pdf.  Brewer T.L. (2010). Trade policies and climate change policies: a rapidly expanding joint agenda, The  World Economy 33 799 809 pp. (DOI: 10.1111/j.1467 9701.2010.01284.x).  Burney J.A., S.J. Davis, and D.B. Lobell (2010). Greenhouse gas mitigation by agricultural  intensification, Proceedings of the National Academy of Sciences 107 12052 12057 pp. (DOI:  10.1073/pnas.0914216107).  Buthe T., and W. Mattli (2011). The New Global Rulers:  The Privatization of Regulation in the World  Economy. Princeton University Press, Princeton, New Jersey, (ISBN: 9780691157979). .  Caldeira K., and S.J. Davis (2011). Accounting for carbon dioxide emissions: A matter of time,  Proceedings of the National Academy of Sciences of the United States of America 108 8533 8534 pp.  (DOI: 10.1073/pnas.1106517108).  Chakravarty S., A. Chikkatur, H. de Coninck, S. Pacala, R. Socolow, and M. Tavoni (2009). Sharing  global  CO2 emissions reductions among one billion high emitters, Proceedings of the National  Academy of Sciences 106 11884 11888 pp. (DOI: 10.1073/pnas.0905232106).  Chandler W., T.J. Secrest, J. Logan, R. Schaeffer, A.S. Szklo, M.E. Schuler, D. Zhou, K. Zhang, Y. Zhu,  H. Xu, P.R. Shukla, F. Tudela, O. Davidson, S. Mwakasonda, R. Spalding Fecher, H. Winkler, P.  Mukheibir, and S. Alpan Atamer (2002). Climate Change Mitigation in Developing Countries: Brazil,      47 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    China, India, Mexico, South Africa, and Turkey. Center for Climate and Energy Solutions, Arlington,  VA. . Available at: http://www.c2es.org/docUploads/dev_mitigation.pdf.  Clarke L., J. Edmonds, V. Krey, R. Richels, S. Rose, and M. Tavoni (2009). International climate policy  architectures: Overview of the EMF 22 International Scenarios, Energy Economics 31 S64 S81 pp.  (DOI: 10.1016/j.eneco.2009.10.013).  Cline W.R. (2011). Carbon Abatement Costs and Climate Change Finance. Peterson Institute for  International Economics, Washington, DC, (ISBN: 978 0 88132 607 9). .  Collier P., and A.J. Venables (2012). Greening Africa? Technologies, endowments and the latecomer  effect, Energy Economics 34 S75 S84 pp. (DOI: 10.1016/j.eneco.2012.08.035).  Cornia G. (2011). Developing the poorest countries: ney ideas from the 2010 UNCTAD LDC Report,  European Journal of Development Research 23 12 16 pp. (DOI: 10.1057/ejdr.2010.60).  Daniel J.S., S. Solomon, T.J. Sanford, M. McFarland, J.S. Fuglestvedt, and P. Friedlingstein (2012).  Limitations of single basket trading: Lessons from the Montreal Protocol for climate policy, Climatic  Change 111 241 248 pp. (DOI: 10.1007/s10584 011 0136 3), (ISSN: 0165 0009, 1573 1480).  Davis S.J., and K. Caldeira (2010). Consumption Based accounting of CO2 emissions, Proceedings of  the National Academy of Sciences 107 5687 5692 pp. (DOI: 10.1073/pnas.0906974107).  Davis S.J., K. Caldeira, and H.D. Matthews (2010). Future CO2 emissions and climate change from  existing energy infrastructure, Science 329 1330 1333 pp. (DOI: 10.1126/science.1188566), (ISSN:  0036 8075, 1095 9203).  Delucchi M.A. (2010). Impact of biofuels on climate change, water use, and land use, Annals of the  New York Academy of Sciences 1195 28 45 pp. (DOI: 10.1111/j.1749 6632.2010.05457.x).  Dittrich M., S. Bringezu, and H. Schütz (2012). The physical dimension of international trade, part 2:  Indirect global resource flows between 1962 and 2005, Ecological Economics 79 32 43 pp. (DOI:  10.1016/j.ecolecon.2012.04.014).  Downs G.W., D.M. Rocke, and P.N. Barsoom (1996). Is the good news about compliance good neys  about cooperation?, International Organization 50 379 406 pp. (DOI: 10.1017/S0020818300033427).  Dubash N.K., and A. Florini (2011). Mapping global energy governance, Global Policy 2 6 18 pp.  (DOI: 10.1111/j.1758 5899.2011.00119.x), (ISSN: 1758 5899).  Dulal H.B., and S. Akbar (2013). Greenhouse gas emission reduction options for cities: Finding the  Coincidence of Agendas  between local priorities and climate change mitigation objectives, Habitat  International 38 100 105 pp. (DOI: 10.1016/j.habitatint.2012.05.001), (ISSN: 0197 3975).  Edenhofer O., B. Knopf, T. Barker, L. Baumstark, E. Bellevrat, B. Chateau, P. Criqui, M. Isaac, A.  Kitous, S. Kypreos, M. Leimbach, K. Lessmann, B. Magne, S. Scrieciu, H. Turton, and D.P. van  Vuuren (2010). The economics of low stabilization: Model comparison of mitigation strategies and  costs, The Energy Journal 31 11 48 pp. (DOI: 10.5547/ISSN0195 6574 EJ Vol31 NoSI 2), (ISSN:  01956574).  EIA (2013a). Electric Power Annual 2011   Table 1.1 Total Electric Power Industry Summary Statistics.  U.S. Department of Energy, Washington, DC. . Available at:  http://www.eia.gov/electricity/annual/html/epa_01_01.html.      48 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    EIA (2013b). Electric Power Annual 2011   Table 1.2 Summary Statistics for the United States. U.S.  Department of Energy, Washington, DC. . Available at:  http://www.eia.gov/electricity/annual/html/epa_01_02.html.  EIA (2013c). Annual Energy Outlook 2013. U.S. Department of Energy, Washington, DC.  EIA (2013d). Short Term Energy and Winter Fuels Outlook. U.S. Department of Energy, Washington,  DC. . Available at: http://www.eia.gov/forecasts/steo/pdf/steo_full.pdf.  Den Elzen M.G.J., A.F. Hof, and M. Roelfsema (2011). The emissions gap between the Copenhagen  pledges and the 2°C climate goal: options for closing and risks that could widen the gap, Global  Environmental Change 21 733 743 pp. (DOI: 10.1016/j.gloenvcha.2011.01.006).  Den Elzen M.G.J., J.G.J. Olivier, N. Höhne, and G. Janssens Maenhout (2013). Countries   contributions to climate change: effect of accounting for all greenhouse gases, recent trends, basic  needs and technological progress, Climatic Change 1 16 pp. (DOI: 10.1007/s10584 013 0865 6),  (ISSN: 0165 0009, 1573 1480).  Eom J., J. Edmonds, V. Krey, N. Johnson, T. Longden, G. Luderer, K. Riahi, and D.P.V. Vuuren (2013).  The impact of near term climate policy choices on technology and emissions transition pathways,  Technological Forecasting and Social Change.  EPRI (2011). Estimating the Costs and Benefits of the Smart Grid: A Preliminary Estimate of the  Investment Requirements and the Resultant Benefits of a Fully Functioning Smart Grid. Electric Power  Research Institute, Palo Alto, CA. . Available at:  http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001022519.  EWG (Energy Watch Group) (2006). Uranium Resources and Nuclear Energy. Ludwig Bölkow  Systemtechnik GmbH, Ottobrunn/Achen, Germany. . Available at:  http://www.lbst.de/ressources/docs2006/EWG paper_1 06_Uranium Resources Nuclear Energy_03DEC2006.pdf.  Fuglestvedt J., T. Berntsen, V. Eyring, I. Isaksen, D.S. Lee, and R. Sausen (2009). Shipping emissions:  from cooling to warming of climate   and reducing impacts on health, Environmental Science &  Technology 43 9057 9062 pp. (DOI: 10.1021/es901944r), (ISSN: 0013 936X).  Fuglestvedt J.S., K.P. Shine, T. Berntsen, J. Cook, D.S. Lee, A. Stenke, R.B. Skeie, G.J.M. Velders, and  I.A. Waitz (2010). Metrics transport impacts on atmosphere and climate, Atmospheric Environment  44 4648 4677 pp. (DOI: 10.1016/j.atmosenv.2009.04.044).  G8 Leaders (2009). Responsible Leadership for a Sustainable Future. G8 Summit, L Aquila, Italy. .  Available at: http://www.g8.utoronto.ca/summit/2009laquila/.  Ganten D., A. Haines, and R. Souhami (2010). Health co benefits of policies to tackle climate change,  The Lancet 376 1802 1804 pp. (DOI: 10.1016/S0140 6736(10)62139 3), (ISSN: 01406736).  Gardiner S.M. (2010). Is  arming the future  with geoengineering really the lesser evil? Some doubts  about the ethics of intentionally manipulating the climate system. In: Climate Ethics: Essential  Readings. S. Gardiner, S. Caney, D. Jamieson, H. Shue, (eds.), Oxford University Press, New York, NY  pp.284 314(ISBN: 978 0 19 539961 5).  Garnaut R. (2011). Weighing The Cost and Benefits of Climate Change Action. Ministry for Climate  Change and Energy Efficiency, Melbourne, Australia. . Available at:      49 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    http://www.garnautreview.org.au/update 2011/update papers/up1 weighing costs benefits climate change action.pdf.  Garrett G. (2010). G2 in G20: China, the United States and the world after the global financial crisis,  Global Policy 1 29 39 pp. (DOI: 10.1111/j.1758 5899.2009.00014.x).  GEA (2012). Global Energy Assessment: Toward a Sustainable Future. Cambridge University Press  and the International Institute for Applied Systems Analysis, Cambridge, UK and New York, NY USA  and Laxenburg, Austria, 1882 pp., (ISBN: 9781107005198). .  Global CCS Institute (2012). The Global Status of CCS: 2012. Global CCS Institute, Canberra, Australia,  (ISBN: 978 0 9871863 1 7). .  Gnamus A. (2009). Comparative Report on S&T Cooperation of the ERA Countries with Brazil, India  and Russia. European Commission, Joint Research Centre   Institute for Prospective Technological  Studies, Luxembourg, (ISBN: 978 92 79 21877 4). .  Government of India (2009). Jawaharlal Nehru National Solar Mission: Towards Building SOLAR  INDIA. Government of India. . Available at: http://www.mnre.gov.in/file manager/UserFiles/mission_document_JNNSM.pdf.  Groosman B., N.Z. Muller, and E. O Neill Toy (2011). The ancillary benefits from climate policy in  the United States, Environmental and Resource Economics 50 585 603 pp. (DOI: 10.1007/s10640 011 9483 9), (ISSN: 0924 6460, 1573 1502).  Gunther E., H. Hoppe, and K. Laitenberger (2012). Competitiveness of Nations and Environmental  Protection. (DOI: 10.2139/ssrn.2145420).  Guo J. (2011). On China s energy saving and emission reduction and international law analysis about  global climate change, Energy Procedia 5 2568 2575 pp. (DOI: 10.1016/j.egypro.2011.03.441).  Hafner Burton E.M., D.G. Victor, and Y. Lupu (2012). Political science research on international law:  the state of the field, American Journal of International Law 106 47 97 pp. (DOI:  10.5305/amerjintelaw.106.1.0047).  Haines A. (2012). Health benefits of a low carbon economy, Public Health 126, Supplement 1 S33 S39 pp. (DOI: 10.1016/j.puhe.2012.05.020), (ISSN: 0033 3506).  Heinberg R., and D. Fridley (2010). The end of cheap coal, Nature 468 367 369 pp. (DOI:  10.1038/468367a).  Helm D. (2012). The Carbon Crunch: How We re Getting Climate Change Wrong and How to Fix It.  Yale University Press, New Haven and London, (ISBN: 9780300186598). .  Hirsch R.L., R. Bezdek, and R. Wendling (2006). Peaking of World Oil Production: Impacts, Mitigation,  & Risk Management. Nova Science Publishers, New York, NY, 105 pp., (ISBN: 9781600210532). .  Höhne N., H. Blum, J. Fuglestvedt, R.B. Skeie, A. Kurosawa, G. Hu, J. Lowe, L. Gohar, B. Matthews,  A.C. Nioac de Salles, and C. Ellermann (2011). Contributions of Individual Countries  Emissions to  Climate Change and Their Uncertainty, Climatic Change 106 359 391 pp. (DOI: 10.1007/s10584 010 9930 6), (ISSN: 0165 0009, 1573 1480).      50 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Holdren J.P., and P.R. Ehrlich (1974). Human population and the global environment, American  Scientist 62 282 292 pp. . Available at: http://www.jstor.org/stable/27844882.  Houghton R., J.I. House, J. Pongratz, G.R. van der Werf, R.S. DeFries, M.C. Hansen, C. Le Quere, and  N. Ramankutty (2012). Carbon emissions from land use and land cover change, Biogeosciences 9  5125 5142 pp. (DOI: 10.5194/bg 9 5125 2012).  Houser T., R. Bradley, B. Childs, J. Werksman, and R. Heilmayr (2008). Leveling The Carbon Playing  Field: International Competition and U.S. Climate Policy Design. Peterson Institute for International  Economics & World Resources Institute, Washington, DC, (ISBN: 978 0 88132 420 4). .  Howells M., S. Hermann, M. Welsch, M. Bazilian, R. Segerström, T. Alfstad, D. Gielen, H. Rogner, G.  Fischer, H. van Velthuizen, D. Wiberg, C. Young, R.A. Roehrl, A. Mueller, P. Steduto, and I. Ramma  (2013). Integrated analysis of climate change, land use, energy and water strategies, Nature Climate  Change 3 621 626 pp. (DOI: 10.1038/nclimate1789), (ISSN: 1758 678X).  Hu Y., and C. Rodriguez Monroy (2012). Chinese Energy and Climate Policies After Durban: Save the  Kyoto Protocol, Renewable and Sustainable Energy Reviews 16 3243 3250 pp. (DOI:  10.1016/j.rser.2012.02.048).  Huntington H., and E. Smith (2011). Strategies for Mitigating Climate Change Through Energy  Efficiency: A Multi Model Perspective . Mitigation climate change through energy efficiency: an  introduction and overviey, The Energy Journal 32 1 6 pp. (DOI: 10.5547/ISSN0195 6574 EJ Vol33 SI1 1).  IAEA (2011). Nuclear Technology Review 2011. International Atomic Energy Agency, Vienna, Austria.  102 pp. Available at: http://www.iaea.org/Publications/Reports/ntr2011.pdf.  IEA (2007). Energy Security and Climate Policy: Assessing Interactions. IEA/OECD, Paris, France,  (ISBN: 92 64 10993 5   2007). .  IEA (2010a). World Energy Outlook 2010. IEA/OECD, Paris, France, (ISBN: 978 92 64 08624 1). .  IEA (2010b). Energy Technology Perspectives 2010   Scenarios & Strategies to 2050. IEA/OECD, Paris,  France, (ISBN: 978 92 64 08597 8). .  IEA (2010c). Transforming Global Markets for Clean Energy Products: Energy Efficient Equipment,  Vehicles and Solar Photovoltaics. IEA/OECD, Paris, France. . Available at:  http://www.iea.org/publications/freepublications/publication/global_market_transformation.pdf.  IEA (2011a). World Energy Outlook 2011. IEA/OECD, Paris, France, (ISBN: 978 92 64 12413 4). .  IEA (2011b). Climate & Electricity Annual 2011   Data and Analyses. IEA/OECD, Paris, France, (ISBN:  978 92 64 11154 7). .  IEA (2012a). World Energy Outlook 2012. IEA/OECD, Paris, France, (ISBN: 9789264181342). .  IEA (2012b). CO2 Emissions from Fuel Combustion, 2012 Edition. OECD/IEA, Paris, France. 136 pp.  Available at:  http://www.iea.org/publications/freepublications/publication/CO2emissionfromfuelcombustionHIG HLIGHTS.pdf.      51 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    IEA (2012c). World Energy Statistics and Balances (October 2012 edition), IEA World Energy Statistics  and Balances (database) (DOI: 10.1787/enestats data en), (ISSN: 1683 4240).  IEA (2012d). Energy Technology Perspectives 2012: Pathways to a Clean Energy System. IEA/OECD,  Paris, France, (ISBN: 978 92 64 17488 7). .  IEA (2013). Redrawing the Energy Climate Map: World Energy Outlook Special Report. OECD/IEA,  Paris, 132 pp.  ILO (2012). Working towards Sustainable Development: Opportunities for Decent Work and Social  Inclusion in a Green Economy. International Labour Organization, Geneva, Switzerland, (ISBN: 978 92 2 126379 1). .  ILO (2013). Report V   Sustainable development, decent work and green jobs, International Labour  Conference, 102nd Session. International Labour Organization, Geneva, Switzerland, (ISBN: 978 92 2 126868 0). 15 March  2013, .  IMF (2009). Global Financial Stability Report: Responding to the Financial Crisis and Measuring  Systemic Risk. International Monetary Fund, Washington, DC, (ISBN: 78 1 58906 809 4). .  IMF (2011). World Economic Outlook Database September 2011, World Economic and Financial  Surveys . Available at: http://www.imf.org/external/pubs/ft/weo/2011/02/weodata/index.aspx.  IMF (2013). World Economic Outlook   Hopes, Realities, Risks. International Monetary Fund,  Washington, DC, 204 pp., (ISBN: 978 1 61635 555 5). .  IPCC (1990a). Climate Change: The IPCC Response Strategies   Intergovernmental Panel on Climate  Change First Assessment Report, Working Group III. Cambridge University Press, Cambridge, UK and  New York, NY USA, 330 pp. Available at:  http://www.ipcc.ch/ipccreports/far/wg_III/ipcc_far_wg_III_full_report.pdf.  IPCC (1990b). Climate Change: The IPCC Scientific  Assessment   Intergovernmental Panel on Climate  Change First Assessment Report, Working Group I [J.T. Houghton, G.J. Jenkins and J.J. Ephraums  (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY USA, 410 pp., (ISBN:  0521407206). .  IPCC (1995). Climate Change 1995: The Science of Climate Change   Contribution of Working Group I  to the Second Assessment Report of the Intergovernmental Panel on Climate Change [J.T. Houghton,  L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, K. Maskell (eds)]. Cambridge University  Press, Cambridge, UK and New York, NY USA, (ISBN: 0 521 56436 0). .  IPCC (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories [J.T. Houghton,  L.G. Meira Filho, B. Lim, K. Treanton, I. Mamaty, Y. Bonduki, D.J. Griggs, B.A. Callender (eds)]. IPCC,  Geneva, Switzerland. . Available at: http://www.ipcc nggip.iges.or.jp/public/gl/invs1.html.  IPCC (2007a). Climate Change 2007: Mitigation of Climate Change   Contribution of Working Group  III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R.  Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge University Press, Cambridge, UK and  New York, NY USA, (ISBN: 978 0521 70598 1). .  IPCC (2007b). Climate Change 2007: Impacts, Adaptation and Vulnerability   Contribution of Working  Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M.L.      52 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Parry, O.F. Canziani, J.P. Palutikof, P.J. van Der Linden and C.E. Hanson (eds)]. Cambridge University  Press, Cambridge, UK and New York, NY USA, 976 pp., (ISBN: 978 0521 70597 4). .  IPCC (2007c). Climate Change 2007: The Physical Science Basis   Contribution of Working Group I to  the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D.  Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds)]. Cambridge  University Press, Cambridge, UK and New York, NY USA, (ISBN: 978 0521 70596 7). .  IPCC (2009). In: Plattner G K, Stocker T, Midgley P, Tignor M, eds. Meeting Report of the Expert  Meeting on the Science of Alternative Metrics (G. K. Plattner, T. Stocker, P. Midgley, and M. Tignor,  Eds.). , 75. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, (ISBN:  978 92 9169 126 5). .  IPCC (2011). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation    Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R.  Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen,  S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, UK and New York, NY,  USA, 1075 pp., (ISBN: 978 1 107 02340 6). .  IPCC (2012). In: Edenhofer O, Pichs Madruga R, Sokona Y, Field C, Barros V, Stocker TF, Dahe Q, Minx  J, Mach K, Plattner G K, Schlömer S, Hansen G, Mastrandrea M, eds. Meeting Report of the  Intergovernmental Panel on Climate Change Expert Meeting on Geoengineering (O. Edenhofer, R.  Pichs Madruga, Y. Sokona, C. Field, V. Barros, T.F. Stocker, Q. Dahe, J. Minx, K. Mach, G. K. Plattner, S.  Schlömer, G. Hansen, and M. Mastrandrea, Eds.). , 99. IPCC Working Group III Technical Support Unit,  Potsdam Institute for Climate Impact Research, Potsdam, Germany, (ISBN: 978 92 9169 136 4). .  IPCC (2013a). Climate Change 2013: The Physical Science Basis   Working Group I Contribution to the  IPCC Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T.F. Stocker, D. Qin,  G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. 40 Xia, V. Bex, P.M. Midgley, (eds.)].  Cambridge University Press, Cambridge, UK and New York, NY USA.  IPCC (2013b). Summary for Policy Makers. In: Climate Change 2013: The Physical Science Basis    Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on  Climate Change [T.F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y.  40 Xia, V. Bex, P.M. Midgley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY  USA.  IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability   Working Group II  Contribution to the Fifth Assessment Report. Cambridge University Press, Cambridge, UK and New  York, NY USA.  Johnson T., and J. Urpelainen (2012). A strategic theory of regime integration and separation,  International Organization 66 645 677 pp. (DOI: 10.1017/S0020818312000264).  Joos F., R. Roth, J.S. Fuglestvedt, G.P. Peters, I.G. Enting, W. von Bloh, V. Brovkin, E.J. Burke, M.  Eby, N.R. Edwards, T. Friedrich, T.L. Frölicher, P.R. Halloran, P.B. Holden, C. Jones, T. Kleinen, F.T.  Mackenzie, K. Matsumoto, M. Meinshausen, G. K. Plattner, A. Reisinger, J. Segschneider, G.  Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A.J. Weaver (2013). Carbon  dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a  multi model analysis, Atmospheric Chemistry and Physics 13 2793 2825 pp. (DOI: 10.5194/acp 13 2793 2013), (ISSN: 1680 7324).      53 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Jordaan S.M. (2012). Land and Water Impacts of Oil Sands Production in Alberta, Environmental  Science & Technology 46 3611 3617 pp. (DOI: 10.1021/es203682m).  JRC/PBL (2011). Emission Database for Global Atmospheric Research (EDGAR), version 4.2., Joint  Research Centre of the European Commission/PBL Netherlands Environmental Assessment Agency .  Available at: http://edgar.jrc.ec.europa.eu/overview.php?v=42.  JRC/PBL (2012). EDGAR version 4.2 FT2010, Joint Research Centre of the European Commission/PBL  Netherlands Environmental Assessment Agency . Available at:  http://edgar.jrc.ec.europa.eu/overview.php?v=42.  JRC/PBL (2013). EDGAR version 4.2 FT2010, Joint Research Centre of the European Commission/PBL  Netherlands Environmental Assessment Agency . Available at:  http://edgar.jrc.ec.europa.eu/overview.php?v=42.  Kahler M., and D.A. Lake (Eds.) (2013). Politics in the New Hard Times: The Great Recession in  Comparative Perspective. Cornell University Press, Ithaca, NY, 320 pp., (ISBN: 978 0 8014 5151 5). .  Kaya Y. (1990). Impact of carbon dioxide emission control on GNP Growth: interpretation of  proposed scenarios, Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies  Working Group mimeo Paris, France.  Keith D.W., E. Parson, and M.G. Morgan (2010). Research on global sun block needed now, Nature  463 426 427 pp. (DOI: 10.1038/463426a).  Keohane R.O., and D. Victor (2011). The regime complex for climate change, Perspectives on Politics  9 7 23 pp. (DOI: 10.1017/S1537592710004068).  Kirschke S., P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D.  Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser,  M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J. F. Lamarque, R.L.  Langenfelds, C. Le Quéré, V. Naik, S. O Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G.  Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P.  Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. van der Werf, A. Voulgarakis, M. van Weele, R.F. Weiss,  J.E. Williams, and G. Zeng (2013). Three decades of global methane sources and sinks, Nature  Geoscience 6 813 823 pp. (DOI: 10.1038/ngeo1955), (ISSN: 1752 0894).  Koremenos B., C. Lipson, and D. Snidal (2001). The rational design of international institutions,  International Organization 55 761 799 pp. (DOI: 10.1162/002081801317193592).  Krausmann F., S. Gingrich, N. Eisenmenger, K. H. Erb, H. Haberl, and M. Fischer Kowalski (2009).  Growth in global materials use, GDP and population during the 20th century, Ecological Economics  68 2696 2705 pp. (DOI: 10.1016/j.ecolecon.2009.05.007).  Kriegler E., J. Weyant, G. Blanford, L. Clarke, M. Tavoni, V. Krey, K. Riahi, A. Fawcett, R. Richels,  and J. Edmonds (2013). The role of technology for achieving climate policy objectives: overview of  the EMF 27 study on global technology and climate policy strategies, Climatic Change (DOI:  10.1007/s10584 013 0953 7).  Leiby P.N., and J. Rubin (2013). Energy security implications of a national low carbon fuel standard,  Energy Policy 56 29 40 pp. (DOI: 10.1016/j.enpol.2012.06.058), (ISSN: 0301 4215).      54 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Lenzen M., K. Kanemoto, D. Moran, and A. Geschke (2012). Mapping the structure of the world  economy, Environmental Science & Technology 46 8374 8381 pp. (DOI: DOI:10.1021/es300171x).  Lenzen M., D. Moran, K. Kanemoto, and A. Geschke (2013). Building eora: A global multi regional  input output database at high country and sector resolution, Economic Systems Research 25 20 49  pp. (DOI: 10.1080/09535314.2013.769 938).  Li Y., and D.J. Crawford Brown (2011). Assessing the co benefits of greenhouse gas reduction:  Health benefits of particulate matter related inspection and maintenance programs in Bangkok,  Thailand, Science of The Total Environment 409 1774 1785 pp. (DOI:  10.1016/j.scitotenv.2011.01.051), (ISSN: 0048 9697).  Lin J.Y. (2008). The Impact of the Financial Crisis on Developing Countries , The World Bank. Seoul, S.  Korea. 31 October  2008,  Available at:  http://siteresources.worldbank.org/ROMANIAEXTN/Resources/Oct_31_JustinLin_KDI_remarks.pdf.  Luderer G., R.C. Pietzcker, C. Bertram, E. Kriegler, M. Meinshausen, and O. Edenhofer (2013).  Economic mitigation challenges: how further delay closes the door for achieving climate targets,  Environmental Research Letters 8 034033 pp. (DOI: 10.1088/1748 9326/8/3/034033), (ISSN: 1748 9326).  Macknick J. (2011). Energy and CO2 emission data uncertainties, Carbon Management 2 189 205 pp.  (DOI: 10.4155/cmt.11.10), (ISSN: 1758 3004).  Martens P., D. McEvoy, and C. Chang (2009). The climate change challenge: Linking vulnerabilitz,  adaptation, and mitigation, Current Opinion in Environmental Sustainability 1 14 18 pp. (DOI:  10.1016/j.cosust.2009.07.010).  Mastrandrea M.D., K.J. Mach, G. K. Plattner, O. Edenhofer, T.F. Stocker, C.B. Field, K.L. Ebi, and P.R.  Matschoss (2011). The IPCC AR5 guidance note on consistent treatment of uncertainties: a common  approach across the working groups, Climatic Change 108 675 691 pp. (DOI: 10.1007/s10584 011 0178 6), (ISSN: 0165 0009, 1573 1480).  McCollum D.L., V. Krey, and K. Riahi (2011). An integrated approach to energy sustainability, Nature  Climate Change 1 428 429 pp. (DOI: 10.1038/nclimate1297), (ISSN: 1758 678X).  McGinnis M.D. (Ed.) (1999). Polycentricity and Local Public Economies: Readings from the Workshop  in Political Theory and Policy Analysis. University of Michigan Press, Ann Arbor, MI, 424 pp., (ISBN:  978 0 472 08622 1). .  McJeon H.C., L. Clarke, P. Kyle, M. Wise, A. Hackbarth, B.P. Bryant, and R.J. Lembert (2011). Special  issue on the economics of technologies to combat global warming . Technology interactions among  low carbon energy technologies: what can we learn from a large number of scenarios?, Energy  Economics 33 619 631 pp. (DOI: 10.1016/j.eneco.2010.10.007).  Metcalf G.E. (2009). Cost Containment in Climate Change Policy: Alternative Approaches to  Mitigating Price Volatility, University of Virginia Tax Law Review . Available at:  http://works.bepress.com/cgi/viewcontent.cgi?article=1083&context=gilbert_metcalf.  Ministry of Environment, Japan (2012). Outcome of The Survey on Household Behavior on Power  Savings and CO2 Reduction. Ministry of Environment, Japan (in Japanese), Tokyo, Japan. . Available  at: http://www.env.go.jp/press/press.php?serial=15892.      55 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Moomaw W., and M. Papa (2012). Creating a mutual gains climate regime through universal clean  energy services, Climate Policy 12 505 520 pp. (DOI: 10.1080/14693062.2011.644072).  Muller N.Z. (2012). The design of optimal climate policy with air pollution co benefits, Resource and  Energy Economics 34 696 722 pp. (DOI: 10.1016/j.reseneeco.2012.07.002), (ISSN: 0928 7655).  Murase S. (2011). International Law: An Integrative Perspective on Transboundary Issues. Sophia  University Press, Tokyo, Japan, (ISBN: 978 4 324 09051 0). .  National Research Council of the National Academies (2011). Climate Stabilization Targets:  Emissions, Concentrations, and Impacts over Decades to Millennia. The National Academies Press,  Washington, DC, 298 pp., (ISBN: 978 0 309 15176 4). .  Naudé W. (2009). The Financial Crisis of 2008 and the Developing Countries. United Nations  University, Helsinki, Finland. . Available at: http://www.wider.unu.edu/publications/working papers/discussion papers/2009/en_GB/dp2009 01/_files/80843373967769699/default/dp2009 01.pdf.  Nishio K., and K. Ofuji (2012). Behavior change and driving forces to save electricity in the electricity  crisis in Japan, International Energy Program Evaluation Conference. Rome, Italy. 12 June  2012,   Available at: http://www.iepec.org/conf docs/papers/2012PapersTOC/papers/020.pdf#page=1.  Nussbaum M.C. (2000). The costs of tragedy: some moral limites of cost benefits analysis, The  Journal of Legal Studies 29 1005 1036 pp. (DOI: 10.1086/468103).  OECD (2011). OECD Green Growth Studies: Energy. OECD/IEA, Paris, France, (ISBN: 978 92 64 11510 1). .  OECD (2012). Making Green Growth Deliver. OECD, Paris, France. . Available at:  www.oecd.org/dataoecd/43/8/49998342.pdf.  OECD (2013). OECD DAC Statistics on Climate Related Aid. OECD, Paris, France. . Available at:  http://www.oecd.org/dac/stats/factsheet%20on%20climate%20change_update%202013.pdf.  Olivier J.G.J., J.A. van Aardenne, S. Monni, U.M. Döring, J.A.H.W. Peters, and G. Janssens Maenhout (2010). Application of the IPCC uncertainty methods to EDGAR 4.1 global greenhouse gas  inventories, Proceedings from the Third International Workshop on Uncertainty in Greenhouse Gas  Inventories (ISSN: 978 966 8460 81 4).  Olivier J.G.J., and G. Janssens Maenhout (2012). Part III: Greenhouse Gas Emissions. In: CO2  emissions from fuel combustion, 2012 Edition. IEA, Paris, France pp.III.1 III.51(ISBN: 978 92 64 17475 7).  Olivier J.G.J., G. Janssens Maenhout, and J.A.H.W. Peters (2012). Trends in Global CO2 Emissions;  2012 Report. PBL Netherlands Environmental Assessment Agency, Institute for Environment and  Sustainability (IES) of the European Commission s Joint Research Centre (JRC), The Hague,  Netherlands, 42 pp., (ISBN: 978 92 79 25381 2). .  Ostrom E. (2010). Beyond markets and states: polycentric governance of complex economic systems,  American Economic Review 100 641 672 pp. (DOI: 10.1257/aer.100.3.641), (ISSN: 0002 8282).  Paltsev S., J. Morris, Y. Cai, V. Karplus, and H. Jacoby (2012). The role of Chinage in mitigating  climate change, Energy Economics 34 S444 S450 pp. (DOI: 10.1016/j.eneco.2012.04.007).      56 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Penner J.E., M.J. Prather, I.S.A. Isaksen, J.S. Fuglestvedt, Z. Klimont, and D.S. Stevenson (2010).  Short lived uncertainty?, Nature Geoscience 3 587 588 pp. (DOI: 10.1038/ngeo932), (ISSN: 1752 0894).  Peters G.P., S.J. Davis, and R. Andrew (2012a). A synthesis of carbon in international trade,  Biogeosciences 9 3247 3276 pp. (DOI: 10.5194/bg 9 3247 2012).  Peters G.P., G. Marland, C. Le Quéré, T. Boden, J.G. Canadell, and M.R. Raupach (2012b). Rapid  growth in CO2 emissions after the 2008 2009 global financial crisis, Nature Climate Change 2 2 4 pp.  (DOI: 10.1038/nclimate1332), (ISSN: 1758 678X).  Peters G.P., J.C. Minx, C.L. Weber, and O. Edenhofer (2011). Growth in emission transfers via  international trade from 1990 to 2008, Proceedings of the National Academy of Sciences 108 8903 8908 pp. (DOI: 10.1073/pnas.1006388108).  Pittock J., K. Hussey, and S. McGlennon (2013). Australian climate, energy and water policies:  conflicts and synergies, Australian Geographer 44 3 22 pp. (DOI: 10.1080/00049182.2013.765345),  (ISSN: 0004 9182).  Le Quéré C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters,  G. van der Werf, A. Ahlström, R.M. Andrew, L. Bopp, J.G. Canadell, P. Ciais, S.C. Doney, C. Enright,  P. Friedlingstein, C. Huntingford, A.K. Jain, C. Jourdain, E. Kato, R.F. Keeling, K. Klein Goldewijk, S.  Levis, P. Levy, M. Lomas, B. Poulter, M.R. Raupach, J. Schwinger, S. Sitch, B.D. Stocker, N. Viovy, S.  Zaehle, and N. Zeng (2012). The global carbon budget 1959 2011, Earth System Science Data  Discussions 5 1107 1157 pp. (DOI: 10.5194/essdd 5 1107 2012), (ISSN: 1866 3591).  Ramanathan V., and G. Carmichael (2008). Global and regional climate changes due to black carbon,  Nature Geoscience 1 221 227 pp. (DOI: 10.1038/ngeo156).  Ramanathan V., and Y. Xu (2010). The Copenhagen Accord for Limiting Global Warming: Criteria,  Constraints, and Available Avenues, Proceedings of the National Academy of Sciences 107 8055 8062 pp. (DOI: 10.1073/pnas.1002293107).  Raupach M.R., G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell, G. Klepper, and C.B. Field (2007).  Global and regional drivers of accelerating CO2 emissions, Proceedings of the National Academy of  Sciences 104 10288 10293 pp. (DOI: 10.1073/pnas.0700609104).  Reilly J.M., H.D. Jacoby, and R.G. Prinn (2003). Multi Gas Contributors to Global Climate Change:  Climate Impacts and Mitigation Costs of Non CO2 Gases. Pew Center on Global Climate Change,  Arlington, VA. . Available at:  http://globalchange.mit.edu/files/document/PewCtr_MIT_Rpt_Reilly.pdf.  Reinhart C.M., and K.S. Rogoff (2011). This Time Is Different: Eight Centuries of Financial Folly.  Princeton University Press, Princeton, New Jersey, 512 pp., (ISBN: 9780691152646). .  Rezessy S., and P. Bertoldi (2011). Voluntary agreements in the field of energy efficiency and  emission reduction: review and analysis of experiences in the European Union, Energy Policy 39  7121 7129 pp. (DOI: 10.1016/j.enpol.2011.08.030).  Riahi K., F. Dentener, D. Gielen, A. Grubler, J. Jewell, Z. Klimont, V. Krey, D. McCollum, S. Pachauri,  S. Rao, B. van Ruijven, D.P. van Vuuren, and C. Wilson (2012). Energy Pathways for Sustainable  Development. In: Global Energy Assessment   Toward a Sustainable Future. Cambridge University      57 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Press and the International Institute for Applied Systems Analysis, Cambridge, UK and New York, NY  USA and Laxenburg, Austria pp.1203 1306(ISBN: 9781107005198).  Riahi K., E. Kriegler, N. Johnson, C. Bertram, M. den Elzen, J. Eom, M. Schaeffer, J. Edmonds, M.  Isaac, V. Krey, T. Longden, G. Luderer, A. Méjean, D.L. McCollum, S. Mima, H. Turton, D.P. van  Vuuren, K. Wada, V. Bosetti, P. Capros, P. Criqui, and M. Kainuma (2013). Locked into Copenhagen  pledges   Implications of short term emission targets for the cost and feasibility of long term climate  goals, Technological Forecasting and Social Change Accepted pp. .  Rickels W., G. Klepper, J. Dovern, G. Betz, N. Brachatzek, S. Cacean, K. Güssow, J. Heintzenberg, S.  Hiller, C. Hoose, T. Leisner, A. Oschlies, U. Platt, A. Proelß, O. Renn, S. Schäfer, and M. Zürn (2011).  Large Scale Intentional Interventions into the Climate System? Assessing the Climate Engineering  Debate. Kiel Earth Insitute, Kiel, Germany. . Available at:  http://www.fona.de/mediathek/pdf/Climate_Engineering_engl.pdf.  RISO (2011). Ris Energy Report 10. Energy for Smart Cities in an Urbanised World. RISO, Roskilde,  Denmark, (ISBN: 978 87 550 3906 3). .  Rogelj J., W. Hare, C. Chen, and M. Meinshausen (2011). Discrepancies in historical emissions point  to a wider 2020 gap between 2 °C benchmarks and aggregated national mitigation pledges,  Environmental Research Letters 6 1 9 pp. (DOI: 10.1088/1748 9326/6/2/024002).  Rogelj J., D. McCollum, B.C. O Neill, and K. Riahi (2013a). 2020 emissions levels required to limit  warming to below 2 °C, Nature Climate Change 3 405 412 pp. (DOI: 10.1038/nclimate1758).  Rogelj J., D. McCollum, A. Reisinger, M. Meinshausen, and K. Riahi (2013b). Probabilistic cost  estimates for climate change mitigation, Nature 493 79 83 pp. (DOI: 10.1038/nature11787), (ISSN:  0028 0836).  Rogger C., F. Beaurain, and T.S. Schmidt (2011). Composting projects under the Clean Development  Mechanism: Sustainable contribution to mitigate climate change, Waste Management 31 138 146  pp. (DOI: 10.1016/j.wasman.2010.09.007), (ISSN: 0956 053X).  Rogner H. H. (2012). Energy resources. In: Energy for Development: Resources, Technologies,  Environment. F.L. Toth, (ed.), Springer, Dordrecht, Netherlands pp.149 160(ISBN: 978 9400741614).  Rogner H. H., R.F. Aguilera, R. Bertani, S.C. Bhattacharya, M.B. Dusseault, L. Gagnon, H. Haberl, M.  Hoogwijk, A. Johnson, M.L. Rogner, H. Wagner, and V. Yakushev (2012). Energy resources and  potentials. In: Global Energy Assessment   Toward a Sustainable Future. Cambridge University Press  and the International Institute for Applied Systems Analysis, Cambridge, UK and New York, NY USA  and Laxenburg, Austria pp.423 512(ISBN: 9781107005198).  La Rovere E.L., A.S. Pereira, and A.F. Simoes (2011). Biofuels and sustainable energy development in  Brazil, World Development 39 1026 1036 pp. (DOI: 10.1016/j.worlddev.2010.01.004), (ISSN: 0305 750X).  Sachs J.D. (2004). Seeking a global solution, Nature 430 725 726 pp. (DOI: 10.1038/430725a).  Sachs J.D. (2012). From Millennium Development Goals to Sustainable Development Goals, Lancet  379 2206 2211 pp. (DOI: 10.1016/S0140 6736(12)60685 0).      58 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Schneider S.H., and J. Lane (2006). An Overview of  Dangerous  Climate Change. In: Avoiding  Dangerous Climate Change. H.J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley, G. Yohe, (eds.),  Cambridge University Press, New York, NY pp.7 24(ISBN: 9780521864718).  Shindell D.T., J.C.I. Kuylenstierna, E. Vignati, R. van Dingenen, M. Amann, Z. Klimont, S.C.  Anenberg, N. Muller, G. Janssens Maenhout, J. Schwartz, G. Faluvegi, L. Pozzoli, K. Kupiainen, L.  Höglund Isaksson, L. Emberson, D. Streets, V. Ramanathan, K. Hicks, N.T.K. Oanh, G. Milly, M.  Williams, V. Demkine, F. Raes, and D. Fowler (2012). Simultaneously mitigating near term climate  change and improving human health and food security, Science 335 183 189 pp. (DOI:  10.1126/science.1210026).  Shine K.P. (2009). The global warming potential   The need for an interdisciplinary retrial: An  editorial comment, Climatic Change 96 467 472 pp. (DOI: 10.1007/s10584 009 9647 6).  Simmons B. (2010). Treaty compliance and violation, Annual Review of Political Science 13 273 296  pp. (DOI: 10.1146/annurev.polisci.12.040907.132713).  Smil V. (2011). Energy: Burning desires, Nature 477 403 pp. (DOI: 10.1038/477403a).  Smith K.R., M.A. Desai, J.V. Rogers, and R.A. Houghton (2013). Joint CO2 and CH4 accountability for  global warming, Proceedings of the National Academy of Sciences 201308004 pp. (DOI:  10.1073/pnas.1308004110), (ISSN: 0027 8424, 1091 6490).  Smith S.M., J.A. Lowe, N.H.A. Bowerman, L.K. Gohar, C. Huntingford, and M.R. Allen (2012).  Equivalence of greenhouse gas emissions for peak temperature limits, Nature Climate Change 2  535 538 pp. (DOI: 10.1038/nclimate1496), (ISSN: 1758 678X).  Smith S.J., and A. Mizrahi (2013). Near term climate mitigation by short lived forcers, Proceedings of  the National Academy of Sciences 110 14202 14206 pp. (DOI: 10.1073/pnas.1308470110), (ISSN:  0027 8424, 1091 6490).  Sornette D., and R. Woodard (2010). Financial bubbles, real estate bubbles, derivative bubbles, and  the financial and economic crisis. In: Econophysics Approaches to Large Scale Business Data and  Financial Crisis. M. Takayasu, T. Watanabe, H. Takayasu, (eds.), Springer Japan, Tokyo, Japan pp.101 148(ISBN: 978 4 431 53852 3).  Steckel J.C., M. Jakob, R. Marschinski, and G. Luderer (2011). From carbonization to  decarbonization? Past trends and future scenarios for China s CO2 emissions, Energy Policy 39 3443 3455 pp. (DOI: 10.1016/j.enpol.2011.03.042).  Steinberger J.K., J. Timmons Roberts, G.P. Peters, and G. Baiocchi (2012). Pathways of human  development and carbon emissions embodied in trade, Nature Climate Change 2 81 85 pp. (DOI:  10.1038/nclimate1371), (ISSN: 1758 678X).  Subbarao S., and B. Lloyd (2011). Can the Clean Development Mechanism (CDM) deliver?, Energy  Policy 39 1600 1611 pp. (DOI: 10.1016/j.enpol.2010.12.036), (ISSN: 0301 4215).  Summers L. (2007). Foreword. In: Architectures for Agreement: Addressing Global Climate Change in  the Post Kyoto World. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK and  New York, NY USA pp.xviii xxvii(ISBN: 9780521692175).      59 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    Tavoni M., E.D. Cian, G. Luderer, J.C. Steckel, and H. Waisman (2012). The value of technology and  of its evolution towards a low carbon economy, Climatic Change 114 39 57 pp. (DOI:  10.1007/s10584 011 0294 3), (ISSN: 0165 0009, 1573 1480).  Teng F., J. He, X. Pan, and C. Zhang (2012). Metric of carbon equity: Carbon Gini index based on  historical cumulative emission per capita, Advances in Climate Change Research 2 134 140 pp. (DOI:  10.3724/SP.J.1248.2011.00134), (ISSN: 1674 9278).  Tubiello F.N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith (2013). The FAOSTAT  database of greenhouse gas emissions from agriculture, Environmental Research Letters 8 015009 pp.  (DOI: 10.1088/1748 9326/8/1/015009), (ISSN: 1748 9326).  UN DESA (2009). World Economic and Social Survey 2009: Promoting Development, Saving the  Planet. United Nations Department of Economic and Social Affairs, New York, (ISBN: 978 92 1 109159 5). .  UN DESA (2011). World Economic and Social Survey 2011: The Great Green Technological  Transformation. United Nations Department of Economic and Social Affairs, New York. . Available at:  http://www.un.org/en/development/desa/policy/wess/wess_current/2011wess.pdf.  UN Global Compact, and UNEP (2012). Business and Climate Change Adaptation: Toward Resilient  Companies and Communities. UN Global Compact, New York. . Available at:  http://www.unglobalcompact.org/docs/issues_doc/Environment/climate/Business_and_Climate_Ch ange_Adaptation.pdf.  UNCTAD (2011). Poverty Reduction and Progress Towards MDGs in LDCs: Encouraging Signs But  Much Remains to Be Done. United Nations Conference on Trade and Development. . Available at:  http://unctad.org/en/Docs/presspb20118_en.pdf.  UNCTAD (2012a). The Least Developed Countries Report 2012: Harnessing Remittances and Diaspora  Knowledge to Build Productive Capacities. United Nations Conference on Trade and Development,  Geneva, Switzerland and New York, New York, (ISBN: 978 92 1 112861 1). .  UNCTAD (2012b). Economic Development in Africa: Structural Transformation and Sustainable  Development in Africa. United Nations Conference on Trade and Development, Geneva, Switzerland,  161 pp., (ISBN: 978 92 1 055595 1). .  UNDP (2009). Human Development Report 2009. Overcoming Barriers: Human Mobility and  Development. Palgrave Macmillan, New York, NY, (ISBN: 978 0 230 23904 3). .  UNECE (2010). United Nations Economic Commission for Europe: Report 2010. United Nations  Economic Commission for Europe, New York, NY and Geneva Switzerland. . Available at:  http://www.unece.org/fileadmin/DAM/publications/Annual%20Reports/topics/Annual_Report_201 0_web.pdf.  UNEP (2011a). Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for  Decision Makers. United Nations Environment Programme and World Meteorological Organization,  Nairobi, Kenya, 38 pp., (ISBN: 978 92 807 3142 2). .  UNEP (2011b). Bridging the Emissions Gap: A UNEP Synthesis Report. United Nations Environment  Programme, Nairobi, Kenya, (ISBN: 978 92 807 3229 0). .      60 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    UNEP (2012). The Emissions Gap Report 2012. United Nations Environment Programme, Nairobi,  Kenya, (ISBN: 978 92 807 3303 7). .  UNFCCC (1992). United Nations Framework Convention on Climate Change. United Nations, Bonn,  Germany. . Available at:  http://unfccc.int/essential_background/convention/background/items/1350.php.  UNFCCC (2008). Report of the Conference of the Parties on Its Thirteenth Session, Held in Bali from 3  to 15 December 2007. United Nations Framework Convention on Climate Change, Bali. . Available at:  http://unfccc.int/resource/docs/2007/cop13/eng/06a01.pdf.  UNFCCC (2011). Compilation of Information on Nationally Appropriate Mitigation Actions to Be  Implemented by Parties Not Included in Annex I to the Convention. United Nations Framework  Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2011/awglca14/eng/inf01.pdf.  UNFCCC (2012a). Appendix I   Quantified Economy Wide Emissions Targets for 2020. United Nations  Framework Convention on Climate Change. . Available at:  http://unfccc.int/meetings/copenhagen_dec_2009/items/5264.php.  UNFCCC (2012b). Appendix II   Nationally Appropriate Mitigation Actions of Developing Country  Parties. United Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/meetings/cop_15/copenhagen_accord/items/5265.php.  UNFCCC (2012c). Report of the Conference of the Parties on Its Seventeenth Session, Held in Durban  from 28 November to 11 December 2011. United Nations Framework Convention on Climate Change,  Durban. . Available at: http://unfccc.int/resource/docs/2011/cop17/eng/09a01.pdf.  UNFCCC (2012d). Benefits of the Clean Development Mechanism 2012. UNFCCC, 96 pp., (ISBN: 92 9219 097 0). .  UNFCCC (2013a). National Inventory Submissions 2013. . Available at:  http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/item s/7383.php.  UNFCCC (2013b). Report of the Conference of the Parties Serving as the Meeting of the Parties to the  Kyoto Protocol on Its Eighth Session, Held in Doha from 26 November to 8 December 2012. United  Nations Framework Convention on Climate Change, Doha. . Available at:  http://unfccc.int/resource/docs/2012/cmp8/eng/13a01.pdf.  UNFPA (2011). Population Dynamics in the Least Developed Countries: Challenges and Opportunities  for Development and Poverty Reduction. United Nations Population Fund, New York, 40 pp., (ISBN:  978 0 89714 981 5). .  United Nations (2012). The future we want, Rio+20: United Nations Conference on Sustainable  Development United Nations, Rio de Janeiro, Brazil . Available at:  http://www.stakeholderforum.org/fileadmin/files/FWWEnglish.pdf.  United Nations (2013a). World Population Prospects: The 2012 Revision. UN Department of  Economic and Social Affairs, Population Division, (ISBN: (POP/DB/WPP/Rev.2012/POP/F01 1)). .      61 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    United Nations (2013b). UN DESA, DPAD, CDP, Least Developed Countries Data Sources and  Definitions, UN Development Policy and Analysis Division . Available at:  http://www.un.org/en/development/desa/policy/cdp/ldc/ldc_data.shtml.  Te Velde D.W. (2008). Background Note: The Global Financial Crisis and Developing Countries.  Overseas Development Institute, London, UK. . Available at:  http://www.odi.org.uk/sites/odi.org.uk/files/odi assets/publications opinion files/3339.pdf.  Velders G.J.M., S.O. Andersen, J.S. Daniel, D.W. Fahey, and M. McFarland (2007). The importance  of the Montreal Protocol in protecting climate, Proceedings of the National Academy of Sciences 104  4814 4819 pp. (DOI: 10.1073/pnas.0610328104).  Victor D.G. (2011). Global Warming Gridlock: Creating More Effective Strategies for Protecting the  Planet. Cambridge University Press, Cambridge, UK and New York, NY USA, (ISBN: 9780521865012). .  Victor D.G., C.F. Kennel, and V. Ramanathan (2012). The climate threat we can beat: What it is and  how to deal with it, Foreign Affairs May/June . Available at:  http://www.foreignaffairs.com/articles/137523/david g victor charles f kennel veerabhadran ramanathan/the climate threat we can beat.  Vogel D. (2008). Private Global Business Regulation, Annual Review of Political Science 11 261 282  pp. (DOI: 10.1146/annurev.polisci.11.053106.141706).  Wang C., W. Zhang, W. Cai, and X. Xie (2013). Employment impacts of CDM projects in China s  power sector, Energy Policy 59 481 491 pp. (DOI: 10.1016/j.enpol.2013.04.010), (ISSN: 0301 4215).  WBCSD (2009). Towards a Low Carbon Economy: A Business Contribution to the International Energy  & Climate Debate. World Business Council for Sustainable Development, Geneva, Switzerland, 24 pp.,  (ISBN: 978 3 940388 43 8). .  WEF (2009). Task Force on Low Carbon Prosperity: Recommendations. World Economic Forum,  Geneva, Switzerland. . Available at:  http://www3.weforum.org/docs/WEF_TaskForceLowCarbonProsperity_Recommendations_2009.pd f.  WEF (2011). Scaling Up Low Carbon Infrastructure Investments in Developing Countries. World  Economic Forum, Geneva, Switzerland. . Available at: http://www.weforum.org/reports/scaling low carbon infrastructure investments developing countries.  WEF (2012). White Paper on Energy Security and Global Warming. World Economic Forum, Geneva,  Switzerland.  Wei T., S. Yang, J.C. Moore, P. Shi, X. Cui, Q. Duan, B. Xu, Y. Dai, W. Yuan, X. Wei, Z. Yang, T. Wen,  and F. Teng (2012). Developed and developing world responsibilities for historical climate change  and CO2 mitigation, Proceedings of the National Academy of Sciences 109 12911 12915 pp. (DOI:  10.1073/pnas.1203282109).  Weitzman M.L. (2009). On modeling and interpreting the economics of catastrophic climate change,  The Review of Economics and Statistics 91 1 19 pp. . Available at:  http://www.mitpressjournals.org/doi/pdf/10.1162/rest.91.1.1.  Weitzman M.L. (2011). Fat tailed uncertainty in the economics of catastrophic climate change,  Review of Environmental Economics and Policy 5 275 292 pp. (DOI: 10.1093/reep/rer006).      62 of 63     Final Draft   Chapter 1  IPCC WGIII AR5    World Bank (2010). Economics of Adaptation to Climate Change   Synthesis Report. The International  Bank for Reconstruction and Development/The World Bank, Washington, DC. 136 pp. Available at:  http://documents.worldbank.org/curated/en/2010/01/16436675/economics adaptation climate change synthesis report.  World Bank (2013). World Development Indicators 2013. The World Bank, Washington, DC, (ISBN:  978 0 8213 9825 8). .  World Commission on Environment and Development (1987). Our Common Future. UN World  Commission on Environment and Development, Geneva, Switzerland, 416 pp., (ISBN: 978 0 19 282080 8). .  WTO (2011). WTO scales back its trade forecast to 5.8% as downside risks build. World Trade  Organization. . Available at: http://www.wto.org/english/news_e/pres11_e/pr641_e.htm.  Xie Z. (2009). China s Policies and Actions for Addressing Climate Change: The Progress Report 2009.  National Development and Reform Commission, Beijing, China. . Available at:  http://www.ccchina.gov.cn/WebSite/CCChina/UpFile/File571.pdf.  Yamaguchi M. (2012). The ultimate objective of climate response strategies, and a desirable and  feasible international framework. In: Climate Change Mitigation, A Balanced Approach to Climate  Change. M. Yamaguchi, (ed.), Springer Publishing Company, London, UK pp.7 42(ISBN: 978 1447142270).  Ye Q. (2011). Review of Low Carbon Development in China: 2010 Report. Climate Policy Initiative at  Tsinghua University, Beijing, China. . Available at: http://climatepolicyinitiative.org/wp content/uploads/2011/12/Review of LCD in China 2010.pdf.  Yergin D. (2011). The Quest: Energy, Security, and the Remaking of the Modern World. Penguin Press,  New York, NY, 816 pp., (ISBN: 9781594202834). .  Zelli F., F. Biermann, P. Pattberg, and H. van Asselt (2010). The consequences of a fragmented  climate change governance architecture: A policy appraisal. In: Global Climate Governance Beyond  2012: Architecture, Agency and Adaptation. F. Biermann, P. Pattberg, F. Zelli, (eds.), Cambridge  University Press, Cambridge, UK pp.25 34(ISBN: 9780521190114).  Zhang Z. (2010). Is it fair to treat China as a Christmas tree to hang everybody s complaints? Putting  its own energy saving into perspective, Energy Economics 32, Supplement 1 S47 S56 pp. (DOI:  10.1016/j.eneco.2009.03.012), (ISSN: 0140 9883).  Zhu M. (2011). Emerging challenges, Finance & Development 48 . Available at:  http://www.imf.org/external/pubs/ft/fandd/2011/06/straight.htm.        63 of 63     Working Group III Mitigation of Climate Change Chapter 2 Integrated Risk and Uncertainty Assessment of Climate Change Response Policies   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft     Chapter:  Title:  Author(s):          2  Chapter 2  IPCC WGIII AR5  Integrated Risk and Uncertainty Assessment of Climate Change Response Policies  CLAs:  LAs: CAs:  REs:  CSAs:  Howard Kunreuther and Shreekant Gupta  Valentina Bosetti, Roger Cooke, Varun Dutt, Minh Ha Duong, Hermann  Held, Juan Llanes Regueiro, Anthony Patt, Ekundayo Shittu, Elke Weber  Hannes Böttcher, Heidi Cullen, Sheila Jasanoff Ismail Elgizouli, Joanne Linnerooth Bayer  Siri Lena Chrobog, Carol Heller    1 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Chapter 2:    Integrated Risk and Uncertainty Assessment of Climate Change  Response Policies  Contents    Executive Summary ............................................................................................................................. 4  2.1 Introduction .................................................................................................................................. 6  2.2 Metrics of uncertainty and risk ..................................................................................................... 8  2.3 Risk and uncertainty in climate change ........................................................................................ 9  2.3.1 Uncertainties that Matter for Climate Policy Choices ........................................................... 9  2.3.2 What is New on Risk and Uncertainty in AR5 ...................................................................... 11  2.4 Risk perception and responses to risk and uncertainty .............................................................. 12  2.4.1 Considerations for Design of Climate Change Risk Reduction Policies ................................ 12  2.4.2 Intuitive and Deliberative Judgment and Choice ................................................................. 13  2.4.3 Consequences of Intuitive Decision Making ........................................................................ 14  2.4.3.1 Importance of the status quo ....................................................................................... 14  2.4.3.2 Focus on the short term and the here and now .......................................................... 16  2.4.3.3 Aversion to risk, uncertainty, and ambiguity ................................................................ 17  2.4.4 Learning  ............................................................................................................................... 18  . 2.4.5 Linkages between different levels of decision making ........................................................ 20  2.4.6 Perceptions of climate change risk and uncertainties ......................................................... 22  2.5 Tools and decision aids for analysing uncertainty and risk  ........................................................ 24  . 2.5.1 Expected utility theory ......................................................................................................... 25  2.5.1.1 Elements of the theory ................................................................................................. 25  2.5.1.2 How can expected utility improve decision making under uncertainty? ..................... 25  2.5.2 Decision analysis .................................................................................................................. 26  2.5.2.1 Elements of the theory ................................................................................................. 26  2.5.2.2 How can decision analysis improve decision making under uncertainty? ................... 26  2.5.3 Cost benefit analysis and uncertainty ................................................................................. 27  2.5.3.1 Elements of the theory ................................................................................................. 27  2.5.3.2 How CBA can improve decision making under risk and uncertainty ............................ 27  2.5.3.3 Advantages and limitations of CBA ............................................................................... 28  2.5.4 Cost effectiveness analysis and uncertainty ........................................................................ 29  2.5.4.1 Elements of the theory ................................................................................................. 29  2.5.4.2 How can CEA improve decision making under uncertainty? ........................................ 29    2 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  2.5.4.3 Advantages and limitations of CEA over CBA ............................................................... 30  2.5.5 The precautionary principle and robust decision making ................................................... 30  2.5.5.1 Elements of the theory ................................................................................................. 30  2.5.6 Adaptive Management ........................................................................................................ 31  2.5.7 Uncertainty Analysis Techniques ......................................................................................... 32  2.5.7.1 Structured expert judgment ......................................................................................... 33  2.5.7.2 Scenario analysis and ensembles .................................................................................. 34  2.6 Managing uncertainty, risk and learning .................................................................................... 37  2.6.1 Guidelines for developing policies ....................................................................................... 37  2.6.2 Uncertainty and the science policy interface ...................................................................... 38  2.6.3  Optimal or efficient stabilization pathways (social planner perspective) under  uncertainty .................................................................................................................................... 39  2.6.3.1  Analyses predominantly addressing climate or damage response uncertainty ....... 42  . 2.6.3.2  Analyses predominantly addressing policy response uncertainty  ........................... 43  2.6.4  International negotiations and agreements under uncertainty ................................... 44  2.6.4.1  Treaty formation ....................................................................................................... 44  2.6.4.2  Strength and form of national commitments ........................................................... 45  2.6.4.3  Design of measurement, verification regimes, and treaty compliance .................... 45  2.6.5  Choice and design of policy instruments under uncertainty ........................................ 46  2.6.5.1  Instruments creating market penalties for GHG emissions ...................................... 47  2.6.5.2  Instruments promoting technological RDD&D ......................................................... 48  2.6.5.3  Energy efficiency and behavioural change ............................................................... 50  2.6.5.4  Adaptation and vulnerability reduction .................................................................... 51  2.6.6  Public support and opposition to climate policy under uncertainty ............................ 52  . 2.6.6.1  Popular support for climate policy  ........................................................................... 52  2.6.6.2  Local support and opposition to infrastructure projects .......................................... 53  2.7  2.8  Gaps in knowledge and data ................................................................................................. 54  Frequently Asked Questions ................................................................................................. 56  References ........................................................................................................................................ 58    3 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Executive Summary  The scientific understanding of climate change and the impact it has on different levels of decision making and policy options has increased since the publication of the Fourth Assessment Report  (AR4). In addition, there is a growing recognition that decision makers often rely on intuitive thinking  processes rather than undertaking a systematic analysis of options in a deliberative fashion. It is  appropriate that climate change risk management strategies take into account both forms of  thinking when considering policy choices where there is uncertainty and risk.   Consideration of risk perception and decision processes can improve risk communication, leading  to more effective policies for dealing with climate change. By understanding the systematic biases  that individuals utilize in dealing with climate change problems, one can more effectively  communicate the nature of the climate change risk. An understanding of the simplified decision  rules employed by decision makers in making choices may be helpful in designing policies that  encourage the adoption of mitigation and adaptation measures. [Section 2.4]  Decision processes often include both deliberative and intuitive thinking. When making mitigation  and adaptation choices, decision makers sometimes calculate the costs and benefits of their  alternatives (deliberative thinking). They are also likely to utilize emotion  and rule based responses  that are conditioned by personal past experience, social context, and cultural factors (intuitive  thinking). [2.4.2]  Laypersons tend to judge risks differently than experts. Laypersons  perceptions of climate change  risks and uncertainties are often influenced by past experience, as well as by emotional processes  that characterize intuitive thinking. This may lead them to overestimate or underestimate the risk.  Experts engage in more deliberative thinking than laypersons by utilizing scientific data to estimate  the likelihood and consequences of climate change. [2.4.6]  Cost benefit analysis (CBA) and cost effectiveness analysis (CEA) can enable decision makers to  examine costs and benefits, but these methodologies also have their limitations. Both approaches  highlight the importance of considering the likelihood of events over time and the importance of  focusing on long term horizons when evaluating climate change mitigation and adaptation policies.  CBA enables governments and other collective decision making units to compare the social costs and  benefits of different alternatives. However, CBA cannot deal well with infinite (negative) expected  utilities arising from low probability, catastrophic events often referred to as  fat tails . CEA can  generate cost estimates for stabilizing greenhouse gas (GHG) concentrations without having to take  into account the uncertainties associated with cost estimates for climate change impacts. A  limitation of CEA is that it takes the long term stabilization as given without considering the  economic efficiency of the target level. [2.5.3, 2.5.4]  Formalized expert judgment and elicitation processes improve the characterization of uncertainty  for designing climate change strategies (high confidence). Experts can quantify uncertainty through  formal elicitation processes. Their judgments can characterize the uncertainties associated with a  risk but not reduce them. The expert judgment process highlights the importance of undertaking  more detailed analyses to design prudent climate policies. [2.5.6]  Individuals and organizations that link science with policy grapple with several different forms of  uncertainty. These uncertainties include absence of prior agreement on framing of problems and  ways to scientifically investigate them (paradigmatic uncertainty), lack of information or knowledge  for characterizing phenomena (epistemic uncertainty), and incomplete or conflicting scientific  findings (translational uncertainty). [2.6.2]  The social benefit from investments in mitigation tends to increase when uncertainty in the  factors relating GHG emissions to climate change impacts are considered (medium confidence). If    4 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  one sets a global mean temperature (GMT) target, then normative analyses that include uncertainty  on the climate response to elevated GHG concentration, suggest that investments in mitigation  measures should be accelerated. Under the assumption of nonlinear impacts of a GMT rise, inclusion  of uncertainty along the causal chain from emissions to impacts suggests enhancing mitigation.  [2.6.3]  The desirability of climate policies and instruments are affected by decision makers  responses to  key uncertainties. At the national level, uncertainties in market behaviour and future regulatory  actions have been shown to impact the performance of policy instruments designed to influence  investment patterns. Both modelling and empirical studies have shown that uncertainty as to future  regulatory and market conditions adversely affects the performance of emission allowance trading  markets [2.6.5.1]. Other studies have shown that subsidy programmes (e.g., feed in tariffs, tax  credits) are relatively immune to market uncertainties, but that uncertainties with respect to the  duration and level of the subsidy program can have adverse effects [2.6.5.2]. In both cases, the  adverse effects of uncertainty include diminishing investment in low carbon infrastructure,  increasing consumer prices, and reducing the pressure for technological development.  Decision makers in developing countries often face a particular set of challenges associated with  implementing mitigation policies under risk and uncertainty (medium confidence). Managing  uncertainty and risk in the context of climate policy is of particular importance to developing  countries that are resource constrained and face other pressing development goals.  In addition,  institutional capacity in these countries may be less developed compared to advanced economies.  Therefore, decision makers in these countries (governments and economic agents such as firms,  farmers, households, to name a few) have less room for  error  (uncertain outcomes and/or wrong  or poorly implemented policies). The same applies to national, regional and local governments in  developed countries who can ill afford to waste scarce resources through policy errors. [Box 2.1]   5 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  2.1   Introduction  This framing chapter considers ways in which uncertainty and risk can affect the process and  outcome of strategic choices in responding to the threat of climate change.   Uncertainty  denotes a cognitive state of incomplete knowledge that results from a lack of  information and/or from disagreement about what is known or even knowable. It has many sources  ranging from quantifiable errors in the data to ambiguously defined concepts or terminology to  uncertain projections of human behaviour. The Guidance Note for Lead Authors of the IPCC Fifth  Assessment Report on Consistent Treatment of Uncertainties (Mastrandrea et al., 2010) summarizes  alternative ways of representing uncertainty. Probability density functions and parameter intervals  are among the most common tools for characterizing uncertainty.  Risk  refers to the potential for adverse effects on lives, livelihoods, health status, economic, social  and cultural assets, services (including environmental), and infrastructure due to uncertain states of  the world. To the extent that there is a detailed understanding of the characteristics of a specific  event, experts will normally be in agreement regarding estimates of the likelihood of its occurrence  and its resulting consequences. Risk can also be subjective in the sense that the likelihood and  outcomes are based on the knowledge or perception that a person has about a given situation.  There may also be risks associated with the outcomes of different climate policies, such as the harm  arising from a change in regulations.  There is a growing recognition that today s policy choices are highly sensitive to uncertainties and  risk associated with the climate system and the actions of other decision makers. The choice of  climate policies can thus be viewed as an exercise in risk management (Kunreuther et al., 2013a).  Figure 2.1 suggests a Risk Management Framework that serves as the structure of the chapter.    Figure 2.1. A risk management framework. Numbers in brackets refer to sections where more information on these topics can be found. After defining risk and uncertainty and their relevant metrics (Section 2.2), we consider how choices  with respect to climate change policy options are sensitive to risk and uncertainty (Section 2.3). A    6 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  taxonomy depicts the levels of decision making ranging from international agreements to actions  undertaken by individuals in relation to climate change policy options under conditions of risk and  uncertainty that range from long term global temperature targets to lifestyle choices. The goals and  values of the different stakeholders given their immediate and long term agendas will also influence  the relative attractiveness of different climate change policies in the face of risk and uncertainty.  Sections 2.4 to 2.6 characterize descriptive and normative theories of decision making and models of  choice for dealing with risk and uncertainty and their implications for prescriptive analysis.  Descriptive refers to theories of actual behaviour, based on experimental evidence and field studies  that characterize the perception of risk and decision processes. Normative in the context of this  chapter refers to theories of choice under risk and uncertainty based on abstract models and axioms  that serve as benchmarks as to how decision makers should ideally make their choices. Prescriptive  refers to ways of improving the decision process and making final choices (Kleindorfer et al., 1993).  A large empirical literature has revealed that individuals, small groups and organizations often do  not make decisions in the analytic or rational way envisioned by normative models of choice in the  economics and management science literature. People frequently perceive risk in ways that differ  from expert judgments, posing challenges for risk communication and response. There is a tendency  to focus on short time horizons, utilize simple heuristics in choosing between alternatives, and  selectively attend to subsets of goals and objectives.  To illustrate, the voting public in some countries may have a wait and see attitude toward climate  change, leading their governments to postpone mitigation measures designed to meet specified  climate targets (Sterman, 2008; Dutt and Gonzalez, 2011). A coastal village may decide not to  undertake measures for reducing future flood risks due to sea level rise (SLR), because their  perceived likelihood that SLR will cause problems to their village is below the community council s  level of concern.   Section 2.4 provides empirical evidence on behavioural responses to risk and uncertainty by  examining the types of biases that influence individuals  perception of the likelihood of an event  (e.g., availability, learning from personal experience), the role that emotional, social, and cultural  factors play in influencing the perception of climate change risks and strategies for encouraging  decision makers to undertake cost effective measures to mitigate and adapt to the impacts of  climate change.  A wide range of decision tools have been developed for evaluating alternative options and making  choices in a systematic manner even when probabilities are difficult to characterize and/or  outcomes are uncertain. The relevance of these tools for making more informed decisions depends  on how the problem is formulated and framed, the nature of the institutional arrangements, and the  interactions between stakeholders (Hammond et al., 1999; Schoemaker and Russo, 2001).  Governments debating the merits of a carbon tax may turn to cost benefit analysis or cost effectiveness analysis to justify their positions. They may need to take into account that firms who  utilize formal approaches, such as decision analysis, may not reduce their emissions if they feel that  they are unlikely to be penalized because the carbon tax will not be well enforced. Households and  individuals may find the expected utility model or decision analysis to be useful tools for evaluating  the costs and benefits of adopting energy efficient measures given the trajectory of future energy  prices.  Section 2.5 delineates formal methodologies and decision aids for analysing risk and uncertainty  when individuals, households, firms, communities and nations are making choices that impact their  own well being and those of others. These tools encompass variants of expected utility theory,  decision analysis, cost benefit analyses or cost effectiveness analyses that are implemented in  integrated assessment models (IAMs). Decision aids include adaptive management, robust decision  making and uncertainty analysis techniques such as structured expert judgment and scenario    7 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  analysis. The chapter highlights the importance of selecting different methodologies for addressing  different problems.  Developing robust policy response strategies and instruments should take into account how the  relevant stakeholders perceive risk and their behavioural responses to uncertain information and  data (descriptive analysis). The policy design process also needs to consider the methodologies and  decision aids for systematically addressing issues of risk and uncertainty (normative analysis) that  suggest strategies for improving outcomes at the individual and societal level (prescriptive analysis).  Section 2.6 examines how the outcomes of particular options, in terms of their efficiency or equity,  are sensitive to risks and uncertainties and affect policy choices. After examining the role of  uncertainty in the science/policy interface, it examines the role of integrated assessment models  (IAMs) from the perspective of the social planner operating at a global level and the structuring of  international negotiations and paths to reach agreement. Integrated assessment models combined  with an understanding of the negotiation process for reaching international agreements may prove  useful to delegates for justifying the positions of their country at a global climate conference. The  section also examines the role that uncertainty plays in the performance of different technologies  now and in the future as well as how lifestyle decisions such as investing in energy efficient  measures can be improved. The section concludes by examining the roles that risk and uncertainty  play in support of or opposition to climate policies.  The way climate change is managed will have an impact on policy choices as shown by the feedback  loop in Figure 2.1, suggesting that the risk management process for addressing climate change is  iterative. The nature of this feedback can be illustrated by the following examples. Individuals may  be willing to invest in solar panels if they are able to spread the upfront cost over time through a  long term loan. Firms may be willing to promote new energy technologies that provide social  benefits with respect to climate change if they are given a grant to assist them in their efforts.  National governments are more likely to implement carbon markets or international treaties if they  perceive the short term benefits of these measures to be greater than the perceived costs.   Education and learning can play key roles in how climate change is managed through a  reconsideration of policies for managing the risks and uncertainties associated with climate change.  2.2   Metrics of uncertainty and risk  The IPCC strives for a treatment of uncertainty and risk that is consistent across all three Working  Groups based the Guidance Note (GN) for Lead Authors of the IPCC Fifth Assessment Report on  Consistent Treatment of Uncertainties (Mastrandrea et al., 2010). This section summarizes key  aspects of the GN that frames the discussion in this chapter.  The GN indicates that author teams should evaluate the associated evidence and agreement with  respect to specific findings that involve risk and uncertainty.  The amount of evidence available can  range from small to large, and can vary in quality and consistency. The GN recommends reporting  the degree of certainty and/or uncertainty of a given topic as a measure of the consensus or  agreement across the scientific community. Confidence expresses the extent to which the IPCC  authors do in fact support a key finding. If confidence is sufficiently high, the GN suggests specifying  the key finding in terms of probability. The evaluation of evidence and degree of agreement of any  key finding is labelled a traceable account in the GN.  The GN also recommends taking a risk management perspective by stating that  sound decision  making that anticipates, prepares for, and responds to climate change depends on information  about the full range of possible consequences and associated probabilities.  The GN also notes that,  low probability outcomes can have significant impacts, particularly when characterized by large  magnitude, long persistence, broad prevalence, and/or irreversibility.  For this reason, the GN  encourages the presentation of information on the extremes of the probability distributions of key    8 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  variables, reporting quantitative estimates when possible and supplying qualitative assessments and  evaluations when appropriate.  2.3   Risk and uncertainty in climate change  Since the publication of AR4, political scientists have documented the many choices of climate policy  and the range of interested parties concerned with them (Moser, 2007; Andonova et al., 2009;  Bulkeley, 2010; Betsill and Hoffmann, 2011; Cabré, 2011; Hoffmann, 2011; Meckling, 2011; Victor,  2011).  There continues to be a concern about global targets for mean surface temperature and GHG  concentrations that are discussed in Chapter 6 of this report. This choice is normally made at the  global level with some regions, countries, and sub national political regions setting their own targets  consistent with what they believe the global ones should be. Policymakers at all levels of decision  making face a second order set of choices as to how to achieve the desired targets. Choices in this  vein that are assessed in Chapters 7 12 of this report, include transition pathways for various drivers  of emissions, such as fossil fuels within the energy system, energy efficiency and energy intensive  behavioural patterns, issues associated with land use and spatial planning, and/or the emissions of  non  CO2 greenhouse gases.  The drivers influencing climate change policy options are discussed in more detail in chapters 13 16  of this report. These options include information provision, economic instruments (taxes, subsidies,  fines), direct regulations and standards, and public investments. At the same time, individuals,  groups and firms decide what actions to take on their own. These choices, some of which may be in  response to governmental policy, include investments, lifestyle and behaviour.  Decisions for mitigating climate change are complemented by climate adaptation options and reflect  existing environmental trends and drivers. The policy options are likely to be evaluated with a set of  criteria that include economic impacts and costs, equity and distributional considerations,  sustainable development, risks to individuals and society and co benefits. Many of these issues are  discussed in chapters 3 and 4.  2.3.1    Uncertainties that Matter for Climate Policy Choices  The range and number of interested parties who are involved in climate policy choices have  increased significantly in recent years. There has been a widening of the governance forums within  which climate policies and international agreements are negotiated at the global level (Victor, 2011),  across multiple networks within national governments (Andonova et al., 2009; Hoffmann, 2011), and  at the local, regional and/or interest group level (Moser, 2007; Bulkeley, 2010). At the same time the  number of different policy instruments under active discussion has increased, from an initial focus  on cap and trade and carbon tax instruments (Betsill and Hoffmann, 2011; Hoffmann, 2011), to feed in tariffs or quotas for renewable energy (Wiser et al., 2005; Mendonça, 2007), investments in  research and development (Sagar and van der Zwaan, 2006; De Coninck et al., 2008; Grubler and  Riahi, 2010), or reform of intellectual property laws (Dechezlepretre et al., 2011; Percival and Miller,  2011).  Choices are sensitive to the degree of uncertainty with respect to a set of parameters that are often  of specific importance to particular climate policy decisions. Here, we group these uncertainties into  six broad classes, consistent with the approach taken in Patt and Weber (in press):  Climate responses to greenhouse gas (GHG) emissions, and their associated impacts. The large  number of key uncertainties with respect to the climate system are discussed in WGI. There are  even greater uncertainties with respect to the impacts of changes in the climate system on  humans and the ecological system as well as their costs to society. These impacts are assessed in  WGII.    9 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Stocks and flows of carbon and other GHGs. The large uncertainties with respect to both  historical and current GHG sources and sinks from energy use, industry, and land use changes  are assessed in Chapter 5. Knowledge gaps make it especially difficult to estimate how the flows  of greenhouse gases will evolve in the future under conditions of elevated atmospheric CO2  concentrations and their impact on climatic and ecological processes.  Technological systems. The deployment of technologies is likely to be the main driver of GHG  emissions and a major driver of climate vulnerability. Future deployment of new technologies  will depend on how their price, availability, and reliability evolve over time as a result of  technological learning. There are uncertainties as to how fast the learning will take place, what  policies can accelerate learning and the effects of accelerated learning on deployment rates of  new technologies. Technological deployment also depends on the degree of public acceptance,  which in turn is typically sensitive to perceptions of health and safety risks.  Market behaviour. Public policies can create incentives for private sector actors to alter their  investment behaviour, often in the presence of other overlapping regulations. The extent to  which firms change their behaviour in response to the policy, however, often depends on their  expectations about other highly uncertain market factors, such as fossil fuel prices. There are  also uncertainties concerning the macro economic effects of the aggregated behavioural  changes.  Regulatory actions. An additional factor influencing the importance of any proposed or existing  policy driven incentive is the likelihood with which regulations will be enacted and enforced over  the lifetime of firms  investment cycles.   Individual and firm perceptions. The choices undertaken by key decision makers with respect to  mitigation and adaptation measures are impacted by their perceptions of risk and uncertainties,  as well as their perceptions of the relevant costs and expected benefits over time. Their  decisions may also be influenced by the actions undertaken by others.  Section 2.6 assesses the effects of uncertainties of these different parameters on a wide range of  policy choices, drawing from both empirical studies and the modelling literature. The following three  examples illustrate how uncertainties in one or more of the above factors can influence choices  between alternative options.  Example 1: Designing a regional emissions trading system (ETS). Over the past decade, a number of  political jurisdictions have designed and implemented ETSs, with the European ETS being the one  most studied. In designing the European system, policymakers took as their starting point pre defined emissions reduction targets. It was unclear whether these targets would be met, due to  uncertainties with respect to national baseline emissions. The stocks and flows of greenhouse gas  emissions were partly determined by the uncertainty of the performance of the technological  systems that were deployed. Uncertainties in market behaviour could also influence target prices  and the number of emissions permits allocated to different countries (Betsill and Hoffmann, 2011).  Example 2: Supporting scientific research into solar radiation management (SRM). SRM may help  avert potentially catastrophic temperature increases, but may have other negative impacts with  respect to global and regional climatic conditions (Rasch et al., 2008). Research could reduce the  uncertainties as to these other consequences (Robock et al., 2010). The decision to invest in specific  research activities requires an assessment as to what impact SRM will have on avoiding catastrophic  temperature increases. Temperature will be sensitive to uncertainties in the stocks and flows of  greenhouse gases (GHG) and the responses by key decision makers to the impacts of GHG emissions.  The decision to invest in specific research activities is likely to be influenced by the perceived  uncertainty in the actions undertaken by individuals and firms (Blackstock and Long, 2010).  Example 3: Renting an apartment in the city versus buying a house in the suburbs. When families and  households face this choice, it is likely to be driven by factors other than climate change concerns.    10 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  The decision, however, can have major consequences on CO2 emissions as well as on the impacts of  climate change on future disasters such as damage from flooding due to sea level rise. Hence,  governments may seek to influence these decisions as part of their portfolio of climate change  policies through measures such as land use regulations or the pricing of local transportation options.  The final choice is thus likely to be sensitive to uncertainties in market behaviour as well as actions  undertaken by individuals and firms.  To add structure and clarity to the many uncertainties that different actors face for different types of  problems, we introduce a taxonomy shown in Figure 2.2 that focuses on levels of decision making  (the rows) that range from international organizations to individuals and households) and climate  policy options (the columns) that include long term targets, transition pathways, policy instruments,  resource allocation and lifestyle options. The circles that overlay the cells in Figure 2.2 highlight the  principal uncertainties relevant to decision making levels and climate policy choices that appear  prominently in the literature associated with particular policies. These are reviewed in section 2.6 of  this chapter and in many of the following chapters of WGIII. The literature appraises the effects of a  wide range of uncertainties, which we group according to the six types described above.    Figure 2.2. Taxonomy of levels of decision making and climate policy choices. Circles show type and extent of uncertainty sources as they are covered by the literature. Numbers in brackets refer to Sections where more information on these uncertainty sources can be found. 2.3.2    What is New on Risk and Uncertainty in AR5  Chapter 2 in AR4 WGIII on risk and uncertainty, which also served as a framing chapter, illuminated  the relationship of risk and uncertainty to decision making and reviewed the literature on  catastrophic or abrupt climate change and its irreversible nature. It examined three pillars for  dealing with deep uncertainties: precaution, risk hedging, and crisis prevention and management.  The report also summarized the debate in the economic literature about the limits of cost benefit  analysis in situations of deep uncertainty.  Since the publication of AR4, a growing number of studies have considered additional sources of risk  and uncertainties, such as regulatory and technological risks and examined the role they play in  influencing climate policy. There is also growing awareness that risks in the extremes or tail of the  distribution make it problematic to rely on historical averages. As the number of political  jurisdictions implementing climate policies has increased, there are now empirical findings to    11 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  supplement earlier model based studies on the effects of such risks. At the local level, adaptation  studies using scenario based methods have been developed (ECLACS, 2011).  This chapter extends previous reports in four ways. First, rather than focusing solely at the global  level, this chapter expands climate related decisions to other levels of decision making as shown in  Figure 2.2. Second, compared to AR4, where judgment and choice were primarily framed in rational economic terms, this chapter reviews the psychological and behavioural literature on perceptions  and responses to risk and uncertainty. Third, the chapter considers the pros and cons of alternative  methodologies and decision aids from the point of view of practitioners. Finally, the chapter expands  the scope of the challenges associated with developing risk management strategies in relation to  AR4 that requires reviewing a much larger body of published research. To illustrate this point, the  chapter references more than 50 publications on decision making under uncertainty with respect to  integrated assessment models (IAMs), the first time such a detailed examination of this literature  has been undertaken.  2.4   Risk perception and responses to risk and uncertainty  2.4.1    Considerations for Design of Climate Change Risk Reduction Policies  When stakeholders are given information about mitigation and adaptation measures to reduce  climate change risks, they make the following judgments and choice: How serious is the risk? Is any  action required? Which options are ruled out because the costs seem prohibitive? Which option  offers the greatest net expected benefits? In designing such measures and in deciding how to  present them to stakeholders, one needs to recognize both the strengths and limitations of decision  makers at the different levels delineated in Figure 2.2. Decision makers often have insufficient or  imperfect knowledge about climate risks, a deficit that can and needs to be addressed by better data  and public education. However, cognitive and motivational barriers are equally or more important in  this regard (Weber and Stern, 2011).  Normative models of choice described in Section 2.5 indicate how decisions under risk and  uncertainty should be made to achieve efficiency and consistency, but these approaches do not  characterize how choices are actually made. Since decision makers have limitations in their ability to  process information and are boundedly rational (Simon, 1955), they often use simple heuristics and  rules of thumb (Payne et al., 1988). Their choices are guided not only by external reality (objective  outcomes and their likelihood) but also by the decision makers  internal states (e.g., needs and  goals) and their mental representation of outcomes and likelihood, often shaped by previous  experience.  In other words, a descriptive model of choice needs to consider cognitive and  motivational biases and decisions rules as well as factors that are considered when engaging in  deliberative thinking. Another complicating factor is that when groups or organizations make  decisions, there is the potential for disagreement and conflict among individuals that may require  interpersonal and organizational facilitation by a third party.  Mitigation and adaptation decisions are shaped also by existing economic and political institutional  arrangements. Policy tools for addressing climate change, such as insurance, may not be feasible in  developing countries that have no history of this type of protection; however, this option may be  viewed as desirable in a country with an active insurance sector. Another important determinant of  decisions is the status quo, because there is a tendency to give more weight to the negative impacts  of undertaking change than the equivalent positive impacts (Johnson et al., 2007). For example,  proposing a carbon tax to reduce GHG emissions may elicit much more concern from affected  stakeholders as to how this measure will impact on their current activities than the expected climate  change benefits from reducing carbon emissions. Choices are also affected by cultural differences in  values and needs (Maslow, 1954), in beliefs about the existence and causes of climate change  (Leiserowitz et al., 2008), and in the role of informal social networks for cushioning catastrophic  losses (Weber and Hsee, 1998). By considering actual judgment and choice processes, policymakers    12 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  can more accurately characterize the effectiveness and acceptability of alternative mitigation  policies and new technologies. Descriptive models also provide insights into ways of framing  mitigation or adaptation options so as to increase the likelihood that desirable climate policy choices  are adopted. Descriptive models with their broader assumptions about goals and processes also  allow for the design of behavioural interventions that capitalize on noneconomic motivations such as  equity and fairness.   2.4.2    Intuitive and Deliberative Judgment and Choice  The characterization of judgment and choice that distinguishes intuitive processes from deliberative  processes builds on a large body of cognitive psychology and behavioural decision research that can  be traced to William James (1878) in psychology and to Friedrich Nietzsche (2008) and Martin  Heidegger (1962) in philosophy. A recent summary has been provided by Kahneman (2003; 2011) as  detailed in Table 2.1:  Table 2.1: Intuitive and deliberative process characteristics Intuitive Thinking (System 1)  Operates automatically and quickly, with little or no effort and no voluntary control.  Uses simple and concrete associations, including emotional reactions or simple rules of conduct that  have been acquired by personal experience with events and their consequences.  Deliberative Thinking (System 2)  Initiates and executes effortful and intentional abstract cognitive operations when these are seen as  needed.  These cognitive operations include simple or complex computations or formal logic.    Even though the operations of these two types of processes do not map cleanly onto distinct brain  regions, and the two systems often operate cooperatively and in parallel (Weber & Johnson, 2009),  the distinction between System 1 and 2 helps to clarify the tension in the human mind between the  automatic and largely involuntary processes of intuitive decisions and the effortful and more  deliberate processes of analytic decisions (Kahneman, 2011).  Many of the simplified decision rules that characterize human judgment and choice under  uncertainty utilize intuitive (System 1) processes. Simplification is achieved by utilizing the  experiences, expectations, beliefs, and goals of the interested parties involved in the decision. Such  shortcuts require much less time and effort than a more detailed analysis of the tradeoffs between  options and often leads to reasonable outcomes. If one takes into account the constraints on time  and attention and processing capacity of decision makers, these decisions may be the best we can  do left to our own devices for many choices under uncertainty (Simon, 1955). Intuitive processes are  utilized not only by the general public, but also by technical experts such as insurers and regulators  (Kunreuther et al., 2013c) and by groups and organizations (Cyert and March, 1963; Cohen et al.,  1972; Barreto and Patient, 2013).  Intuitive processes work well when decision makers have copious data on the outcomes of different  decisions and recent experience is a meaningful guide for the future, as would be the case in  stationary environments (Feltovich et al., 2006). These processes do not work well, however, for  low probability high consequence events for which the decision maker has limited or no past  experience because disasters are few and far between (Weber, 2011). In such situations, reliance on  intuitive processes for making decisions will most likely lead to maintaining the status quo and  focusing on the recent past. This suggests that intuitive decisions may be problematic in dealing with  climate change risks such as increased flooding and storm surge due to sea level rise, or a surge in  fossil fuel prices as a result of an unexpected political conflict. These are risks for which there is    13 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  limited or no personal experience or historical data and considerable disagreement and uncertainty  among experts with respect to their risk assessments (Taleb, 2007).  The formal models and tools that characterize deliberative (System 2) thinking require stakeholders  to make choices in a more abstract and systematic manner. A deliberative process focuses on  potential short  and long term consequences and their likelihoods, and evaluates the options under  consideration evenly, not favouring the status quo. For the low probability high consequence  situations for which decision makers have limited experience with outcomes, alternative decision  frameworks that do not depend on precise specification of probabilities should be considered in  designing risk management strategies for climate change (Charlesworth and Okereke, 2010;  Kunreuther et al., 2013a).  The remainder of this section is organized as follows. Section 2.4.3 describes some important  consequences of the intuitive processes utilized by individuals, groups, and organizations in making  decisions. The predicted effectiveness of economic or technological climate change mitigation  solutions typically presuppose rational deliberative thinking and evaluation without considering how  perceptions and reactions to climate risks impose on these policy options. Section 2.4.4 discusses  biases and heuristics that suggest that individuals learn in ways that differ significantly from  deliberative Bayesian updating. Section 2.4.5 addresses how behaviour is affected by social  amplification of risk and considers the different levels of decision making in Figure 2.2 by discussing  the role of social norms, social comparisons, and social networks in the choice process. Section 2.4.6  characterizes the general public s perceptions of climate change risks and uncertainty and their  implications for communicating relevant information.  Empirical evidence for the biases associated with climate change response decisions triggered by  intuitive processes exists mostly at the level of the individual. As discussed in Sections 2.5 and 2.6,  intuitive judgment and choice processes at other levels of decision making, such as those specified in  Figure 2.2, need to be acknowledged and understood.    2.4.3    Consequences of Intuitive Decision Making  The behaviour of individuals are captured by descriptive models of choice such as prospect theory  (Kahneman and Tversky, 1979) for decisions under risk and uncertainty and the beta   delta model  (Laibson, 1997) for characterizing how future costs and benefits are evaluated. While individual  variation exists, the patterns of responding to potential outcomes over time and the probabilities of  their occurrence have an empirical foundation based on controlled experiments and well designed  field studies examining the behaviour of technical experts and the general public (Loewenstein and  Elster, 1992; Camerer, 2000).  2.4.3.1    Importance of the status quo  The tendency to maintain the current situation is a broadly observed phenomenon in climate change  response contexts (e.g., inertia in switching to a non carbon economy or in switching to cost effective energy efficient products) (Swim et al., 2011). Sticking with the current state of affairs is the  easy option, favoured by emotional responses in situations of uncertainty ( better the devil you  know than the devil you don't ), by many proverbs or rules ( when in doubt, do nothing ), and  observed biases in the accumulation of arguments for different choice options (Weber et al., 2007).  Overriding the status quo requires commitment to change and effort (Fleming et al., 2010).  Loss aversion and reference points  Loss aversion is an important property that distinguishes prospect theory (Tversky and Kahneman,  1992) from expected utility theory (von Neumann and Morgenstern, 1944) by introducing a  reference dependent valuation of outcomes, with a steeper slope for perceived losses than for  perceived gains. In other words, people experience more pain from a loss than they get pleasure  from an equivalent gain. The status quo is often the relevant reference point that distinguishes  outcomes perceived as losses from those perceived as gains. Given loss aversion, the potential    14 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  negative consequences of moving away from the current state of affairs are weighted much more  heavily than the potential gains, often leading the decision maker not to take action. This behaviour  is referred to as the status quo bias (Samuelson and Zeckhauser, 1988).  Loss aversion explains a broad range of decisions in controlled laboratory experiments and real  world choices that deviate from the predictions of rational models like expected utility theory  (Camerer, 2000). Letson et al. (2009) show that adapting to seasonal and inter annual climate  variability in the Argentine Pampas by allocating land to different crops depends not only on existing  institutional arrangements (e.g., whether the farmer is renting the land or owns it), but also on  individual differences in farmers  degree of loss aversion and risk aversion. Greene et al. (2009) show  that loss aversion combined with uncertainty about future cost savings can explain why consumers  frequently appear to be unwilling to invest in energy efficient technology such as a more expensive  but more fuel efficient car that has positive expected utility. Weber and Johnson (2009) distinguish  between perceptions of risk, attitudes towards risk, and loss aversion that have different  determinants, but are characterized by a single  risk attitude  parameter in expected utility models.  Distinguishing and measuring these psychologically distinct components of individual differences in  risk taking (e.g., by using prospect theory and adaptive ways of eliciting its model parameters  (Toubia et al., 2013) provides better targeted entry points for policy interventions.  Loss aversion influences the choices of experienced decision makers in high stake risky choice  contexts, including professional financial markets traders (Haigh and List, 2005) and professional  golfers (Pope and Schweitzer, 2011). Some contexts fail to elicit loss aversion (e.g., the decisions by  dealers in baseball cards) (List, 2003) and the failure of much of the global general public to be  alarmed by the prospect of climate change (Weber, 2006). In these and other contexts, loss aversion  does not arise because decision makers are not emotionally involved (Loewenstein et al., 2001).  Use of framing and default options for the design of decision aids and interventions  Descriptive models not only help explain behaviours that deviate from the predictions of normative  models of choice but also provide entry points for the design of decision aids and interventions  collectively referred to as choice architecture, that is, ways to encourage choices that decisions  makers will be glad they made in the long run (Thaler and Sunstein, 2008). Prospect theory suggests  that changing decision makers  reference points can impact on how they evaluate outcomes of  different options and hence their final choice. Patt & Zeckhauser (2000) show, for example, how  information about the status quo and other choice options can be presented differently to create an  action bias with respect to addressing the climate change problem.  More generally, choice  architecture often involves changing the description of choice options and the context of a decision  to overcome the pitfalls of intuitive (System 1) processes without requiring decision makers to  switch to effortful (System 2) thinking (Thaler and Sunstein, 2008).  One important choice architecture tool comes in the form of behavioural defaults, that is,  recommended options that will be implemented if no active decision is made (Johnson and  Goldstein, 2013). Default options serve as a reference point so that decision makers normally stick  with this option due to loss aversion (Johnson et al., 2007; Weber et al., 2007). Green defaults have  been found to be very effective in lab studies involving choices between different lighting technology  (Dinner et al., 2011), suggesting that environmental friendly and cost effective energy efficient  technology will find greater deployment if it were to show up as the default option in building codes  and other regulatory contexts.  Green defaults are desirable policy options because they guide  decision makers towards individual and social welfare maximizing options without reducing choice  autonomy. In a field study, German utility customers adopted green energy defaults, a passive  choice that persisted over time and was not changed by price feedback (Pichert and Katsikopoulos,  2008). Moser (2010) provides other ways to frame climate change information and response options  in ways consistent with the communication goal and characteristics of the audience.    15 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  2.4.3.2    Focus on the short term and the here and now  Finite attention and processing capacity imply that unaided intuitive choices are restricted in their  scope. This makes individuals susceptible to different types of myopia or short sightedness with  respect to their decisions on whether to invest in measures that would consider to be cost effective  if they engaged in deliberative thinking (Weber and Johnson, 2009; Kunreuther et al., 2013b).  Present bias and quasi hyperbolic time discounting   Normative models suggest that future costs and benefits should be evaluated using an exponential  discount function, that is, a constant discount rate per time period (i.e., exponentially), where the  discount rate should reflect the decision maker s opportunity cost of money (for more details see  Section 3.6.2). In reality, people discount future costs or benefits much more sharply and at a non constant rate (i.e., hyperbolically), so that delaying an immediate receipt of a benefit is viewed much  more negatively than if a similar time delay occurs at a future point in time (Loewenstein and Elster,  1992). Laibson (1997) characterized this pattern by a quasi hyperbolic discount function, with two  parameters:  (present bias, i.e., a discount applied to all non immediate outcomes regardless how  far into the future they occur) and  (a rational discounting parameter). The model retains much of  the analytical tractability of exponential discounting, while capturing the key qualitative feature of  hyperbolic discounting.  Failure to invest in protective measures   In the management of climate related natural hazards such as flooding, an extensive empirical  literature reveals that adoption rates of protective measures by the general public are much lower  than if individuals had engaged in deliberative thinking by making relevant tradeoffs between  expected costs and benefits. Thus, few people living in flood prone areas in the United States  voluntarily purchase subsidized flood insurance, even when it is offered at highly subsidized  premiums under the National Flood Insurance Program (NFIP) (Kunreuther et al., 1978). In the  context of climate change mitigation, many efficient responses like investments in household energy  efficiency are not adopted because decision makers focus unduly on the upfront costs of these  measures (due to hyperbolic discounting amplified by loss aversion) and weight the future benefits  of these investments less than predicted by normative models (see Sections 2.6.4.3 and 3.10). The  failure of consumers to buy fuel efficient cars because of their higher upfront costs (Section 8.3.5) is  another example of this behaviour.  At a country or community level, the upfront costs of mitigating CO2 emissions or of building  seawalls to reduce the effects of sea level rise loom large due to loss aversion, while the uncertain  and future benefits of such actions are more heavily discounted than predicted by normative  models. Such intuitive accounting of present and future costs and benefits on the part of consumers  and policymakers might make it difficult for them to justify these investments today and arrive at  long term sustainable decisions (Weber, 2013).  Focus on short term goals  Krantz and Kunreuther (2007) emphasize the importance of goals and plans as a basis for making  decisions. In the context of climate change, protective or mitigating actions often require sacrificing  short term goals that are highly weighted in people s choices in order to meet more abstract, distant  goals that are typically given very low weight. A strong focus on short term goals (e.g., immediate  survival) may have been helpful as humans evolved, but may have negative consequences in the  current environment where risks and challenges are more complex and solutions to problems such  as climate change require a focus on long time horizons. Weber et al. (2007) succeeded in drastically  reducing people s discounting of future rewards by prompting them to first generate arguments for  deferring consumption, contrary to their natural inclination to focus initially on rationales for  immediate consumption. To deal with uncertainty about future objective circumstances as well as  subjective evaluations, one can adopt multiple points of view (Jones and Preston, 2011) or multiple  frames of reference (De Boer et al., 2010); a generalization of the IPCC s scenario approach to an  uncertain climate future is discussed in Chapter 6.    16 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Mental accounting as a protection against short term focus  People often set up separate  mental  accounts for different classes of expenditures and do not treat  money as fungible between these accounts (Thaler, 1999). Mental accounts for different  expenditures serve as effective budgeting and self control devices for decision makers with limited  processing capacity and self control. A focus on short term needs and goals can easily deplete  financial resources, leaving not enough for long(er) term goals. Placing a limit on short term  spending prevents this from happening. But such a heuristic also has a downside by unduly limiting  people s willingness to invest in climate change mitigation or adaptation measures (e.g., flood  proofing or solar panels) that exceed their allocated budget for this account, regardless of future  benefits. Such constraints (real or mental) often lead to the use of lexicographic (rather than  compensatory) choice processes, where option sets are created or eliminated sequentially, based on  a series of criteria of decreasing importance (Payne et al., 1988).  Mental accounting at a nonfinancial level may also be responsible for rebound effects of a more  psychological nature, in addition to the economically based rebound effects discussed in Section  8.3.5. Rebound effects describe the increase in energy usage that sometimes follows improvements  in household, vehicle, or appliance efficiency. For example, households who weatherize their homes  tend to increase their thermostat settings during the winter afterwards, resulting in a decrease in  energy savings relative to what is technologically achievable (Hirst et al., 1985). While rebound  effects on average equal only 10 30% of the achievable savings, and therefore do not cancel out the  benefits of efficiency upgrades (Ehrhardt Martinez and Laitner, 2010), they are significant and may  result from fixed mental accounts that people have for environmentally responsible behaviour.  Having fulfilled their self imposed quota by a particular action allows decision makers to move on to  other goals, a behaviour also sometimes referred to as the single action bias (Weber, 2006).  2.4.3.3    Aversion to risk, uncertainty, and ambiguity  Most people are averse to risk and to uncertainty and ambiguity when making choices. More  familiar options tend to be seen as less risky, all other things being equal, and thus more likely to be  selected (Figner and Weber, 2011).  Certainty effect or uncertainty aversion  Prospect theory formalizes a regularity related to people s perceptions of certain vs. probabilistic  prospects. People overweight outcomes they consider certain, relative to outcomes that are merely  probable a phenomenon labelled the certainty effect (Kahneman and Tversky, 1979). This  frequently observed behaviour can explain why the certain upfront costs of adaptation or mitigation  actions are viewed as unattractive when compared to the uncertain future benefits of undertaking  such actions (Kunreuther et al., 2013b).  Ambiguity aversion  Given that most forecasts of future climate change impacts and the effects of different mitigation or  adaptation strategies have high degrees of uncertainty or ambiguity, it is important to consider not  only decision makers  risk attitudes, but also attitudes towards ambiguous outcomes. The Ellsberg  paradox (Ellsberg, 1961) revealed that, in addition to being risk averse, most decision makers are  also ambiguity averse, that is, they prefer choice options with well specified probabilities over  options where the probabilities are uncertain. Heath and Tversky (1991) demonstrated, however,  that ambiguity aversion is not present when decision makers believe they have expertise in the  domain of choice. For example, in contrast to the many members of the general public who consider  themselves to be experts in sports or the stock market, relatively few people believe themselves to  be highly competent in environmentally relevant technical domains such as the tradeoffs between  hybrid electric vs. conventional gasoline engines in cars, so they are likely to be ambiguity averse.  Farmers  who feel less competent with respect to their understanding of new technology are more  ambiguity averse and less likely to adopt farming innovations in Peru (Engle Warnick and Laszlo,  2006) and in the USA (Barham et al., 2011). With respect to the likelihood of extreme events, such as    17 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  natural disasters, insurers feel they do not have special expertise in estimating the likelihood of  these events so they also tend to be ambiguity averse and set premiums that are considerably higher  than if they had more certainty with respect to the likelihood of their occurrence (Kunreuther et al.,  1993; Cabantous et al., 2011).  2.4.4    Learning  The ability to change expectations and behaviour in response to new information is an important  survival skill, especially in uncertain and non stationary environments. Bayesian updating  characterizes learning when one engages in deliberative thinking. Individuals who engage in intuitive  thinking are also highly responsive to new and especially recent feedback and information, but treat  the data differently than that implied by Bayesian updating (Weber et al., 2004).  Availability bias and the role of salience  People s intuitive assessment of the likelihood of an uncertain event is often based on the ease with  which instances of its occurrence can be brought to mind, a mechanism called availability by Tversky  and Kahneman (1973). Sunstein (2006) discusses the use of the availability heuristics in response to  climate change risks and how it differs among groups, cultures, and nations. Availability is strongly  influenced by recent personal experience and can lead to an underestimation of low probability  events (e.g., typhoons, floods, or droughts) before they occur, and their overestimation after an  extreme event has occurred. The resulting availability bias can explain why individuals first purchase  insurance after a disaster has occurred and cancel their policies several years later, as observed for  earthquake and flood insurance (Kunreuther et al., 1978) and an analysis of the National Flood  Insurance Program (NFIP) database from 2001 2009 (Michel Kerjan et al., 2012). It is likely that most  of these individuals had not suffered any losses during this period and considered the insurance to  be a poor investment. It is difficult to convince insured individuals that the best return on their policy  is no return at all. They should celebrate not having suffered a loss (Kunreuther et al., 2013c).  Linear thinking  A majority of people perceive climate in a linear fashion that reflect two common biases (Sterman  and Sweeney, 2007; Cronin et al., 2009; Dutt and Gonzalez, 2011). First, people often rely on the  correlation heuristic, which means that people wrongly infer that an accumulation (CO2  concentration) follows the same path as the inflow (CO2 emissions). This implies that cutting  emissions will quickly reduce the concentration and damages from climate change (Sterman and  Sweeney, 2007). According to Dutt (Dutt, 2011)(2011)(2011), people who rely on this heuristic likely  demonstrate wait and see behaviour on policies that mitigate climate change because they  significantly underestimate the delay between reductions in CO2 emissions and in the CO2  concentration. Sterman and Booth Sweeny (2007) show that people s wait and see behaviour on  mitigation policies is also related to a second bias whereby people incorrectly infer that atmospheric  CO2 concentration can be stabilized even when emissions exceeds absorption.  Linear thinking also leads people to draw incorrect conclusions from nonlinear metrics, like the  miles per gallon (MPG) ratings of vehicles gasoline consumption, used in North America (Larrick and  Soll, 2008). When given a choice between upgrading to a 15 mpg car from a 12 mpg car, or to a 50 mpg car from a 29 mpg car, most people choose the latter option. However, for 100 miles driven  under both options, it is easily shown that the first upgrade option saves more fuel (1.6 gallons for  every 100 miles driven) than the second upgrade option (1.4 gallons for every 100 miles driven).  Effects of personal experience  Learning from personal experience is well predicted by reinforcement learning models (Weber et al.,  2004). Such models describe and predict why the general public is less concerned about low probability high impact climate risks than climate scientists would suggest is warranted by the  evidence (Gonzalez and Dutt, 2011). These learning models also capture the volatility of the public s  concern about climate change over time, for example in reaction to the personal experience of local    18 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  weather abnormalities (an abnormal cold spell or heat wave) that have been shown to influence  belief in climate change (Li et al., 2011).  Most people do not differentiate very carefully between weather, climate (average weather over  time), and climate variability (variations in weather over time). People confound climate and  weather in part because they have personal experience with weather and weather abnormalities but  little experience with climate change, an abstract statistical concept. They thus utilize weather  events in making judgments about climate change (Whitmarsh, 2008). This confusion has been  observed in countries as diverse as the United States (Bostrom et al., 1994; Cullen, 2010) and  Ethiopia (BBC World Service Trust, 2009).  Personal experience can differ between individuals as a function of their location, history, and/or  socio economic circumstances (Figner and Weber, 2011). Greater familiarity with climate risks,  unless accompanied by alarming negative consequences, could actually lead to a reduction rather  than an increase in the perceptions of its riskiness (Kloeckner, 2011). On the other hand, people s  experience can make climate a more salient issue. For example, changes in the timing and extent of  freezing and melting (and associated effects on sea ice, flora, and fauna) have been experienced  since the 1990s in the American and Canadian Arctic and especially indigenous communities (Laidler,  2006), leading to increased concern with climate change because traditional prediction mechanisms  no longer can explain these phenomena (Turner and Clifton, 2009).  People s expectations of change (or stability) in climate variables also affect their ability to detect  trends in probabilistic environments. For instance, farmers in Illinois were asked to recall growing  season temperature or precipitation statistics for seven preceding years. Farmers who believed that  their region was affected by climate change recalled precipitation and temperature trends  consistent with this expectation, whereas farmers who believed in a constant climate, recalled  precipitations and temperatures consistent with that belief (Weber, 1997). Recognizing that beliefs  shape perception and memory provides insight into why climate change expectations and concerns  vary between segments of the US population with different political ideologies (Leiserowitz et al.,  2008).  The evidence is mixed when we examine whether individuals learn from past experience with  respect to investing in adaptation or mitigation measures that are likely to be cost effective. Even  after the devastating 2004 and 2005 hurricane seasons in the United States, a large number of  residents in high risk areas had still not invested in relatively inexpensive loss reduction measures,  nor had they undertaken emergency preparedness measures (Goodnough, 2006). Surveys  conducted in Alaska and Florida, regions where residents have been exposed more regularly to  physical evidence of climate change, show greater concern and willingness to take action  (Assessment, 2004; Leiserowitz and Broad, 2008; Mozumder et al., 2011).  A recent study assessed perceptions and beliefs about climate change of a representative sample of  the Britain public (some of whom had experienced recent flooding in their local area). It also asked  whether they would reduce personal energy use to reduce greenhouse gas emission (Spence et al.,  2011). Concern about climate change and willingness to take action was greater in the group of  residents who had experienced recent flooding. Even though the flooding was only a single and local  data point, this group also reported less uncertainty about whether climate change was really  happening than those who did not experience flooding recently, illustrating the strong influence of  personal experience. Other studies fail to find a direct effect of personal experience with flooding  generating concern about climate risks (Whitmarsh, 2008).  Some researchers find that personal experience with ill health from air pollution affects their  perceptions of and behavioural responses to climate risks (Bord et al., 2000; Whitmarsh, 2008), with  the negative effects from air pollution creating stronger pro environmental values. Myers et al.  (2012) looked at the role of experiential learning versus motivated reasoning among highly engaged  individuals and those less engaged in the issue of climate change. Low engaged individuals were    19 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  more likely to be influenced by their perceived personal experience of climate change than by their  prior beliefs, while those highly engaged in the issue (on both sides of the climate issue) were more  likely to interpret their perceived personal experience in a manner that strengthens their pre existing beliefs.  Indigenous climate change knowledge contributions from Australia (Green et al., 2010), African  (Orlove et al., 2009), the Pacific Islands (Lefale, 2010), or the Arctic (Gearheard et al., 2009) derive  from accumulated and transmitted experience and focus mostly on predicting seasonal or  interannual climate variability. Indigenous knowledge can supplement scientific knowledge in  geographic areas with a paucity of data (Green and Raygorodetsky, 2010) and can guide knowledge  generation that reduces uncertainty in areas that matter for human responses (Assessment, 2004).  Traditional ecological knowledge is embedded in value institutions and belief systems related to  historical modes of experimentation and is transferred from generation to generation (Pierotti,  2011).  Underweighting of probabilities and threshold models of choice  The probability weighting function of prospect theory indicates that low probabilities tend to be  overweighted relative to their objective probability unless they are perceived as being so low that  they are ignored because they are below the decision maker s threshold level of concern. Prior to a  disaster, people often perceive the likelihood of catastrophic events occurring as below their  threshold level of concern, a form of intuitive thinking in the sense that one doesn t have to reflect  on the consequences of a catastrophic event (Camerer and Kunreuther, 1989). The need to take  steps today to deal with future climate change presents a challenge to individuals who are myopic.  They are likely to deal with this challenge by using a threshold model that does not require any  action for risks below this level. The problem is compounded by the inability of individuals to  distinguish between low likelihoods that differ by one or even two orders of magnitude (e.g.,  between 1 in 100 and 1 in 10,000) (Kunreuther et al., 2001).  2.4.5    Linkages between different levels of decision making  Social amplification of risk  Hazards interact with psychological, social, institutional, and cultural processes in ways that may  amplify or attenuate public responses to the risk or risk event by generating emotional responses  and other biases associated with intuitive thinking. Amplification may occur when scientists, news  media, cultural groups, interpersonal networks, and other forms of communication provide risk  information. The amplified risk leads to behavioural responses, which, in turn, may result in  secondary impacts such as the stigmatization of a place that has experienced an adverse event  (Kasperson et al., 1988; Flynn et al., 2001). The general public s overall concern about climate  change is moderated, in part, by the amount of media coverage the issue receives as well as the  personal and collective experience of extreme weather in a given place (Leiserowitz et al., 2012;  Brulle et al., 2012).  Social norms and social comparisons  Individuals  choices are often influenced by other people s behaviour, especially under conditions of  uncertainty. Adhering to formal rules (e.g., standard operating procedures or best practices in  organizations) or informal rules of conduct is an important intuitive way in which we decide between  different courses of action (Weber and Lindemann, 2007).  When in doubt, copy what the majority  is doing  is not a bad rule to follow in many situations, as choices adopted by others are assumed to  be beneficial and safe (Weber, 2013). In fact, such social imitation can lead to social norms. Section  3.10.2 describes the effects of social norms in greater detail. Goldstein et al. (2008) demonstrate the  effectiveness of providing descriptive norms ( this is what most people do ) vs. injunctive norms  ( this is what you should be doing ) to reduce energy use in US hotels. The application of social  norms to encourage investment in energy efficient products and technology is discussed in Section  2.6.5.3.    20 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Social comparisons are another effective way to evaluate and learn about the quality of obtained  outcomes (Weber, 2004). It helps, for example, to compare one s own energy consumption to that  of neighbours in similar sized apartments or houses to see how effective efforts at energy  conservation have been. Such non price interventions can substantially change consumer behaviour,  with effects equivalent to that of a short run electricity price increase of 11% to 20% (Alcott, 2011).  Social comparisons, imitation, and norms may be necessary to bring about lifestyle changes that are  identified in Chapter 9 as reducing GHG emissions from the current levels (Sanquist et al., 2012).  Social learning and cultural transmission  Section 9.3.10 suggests that indigenous building practices in many parts of the world provide  important lessons for affordable low energy housing design and that developed countries can learn  from traditional building practices, transmitted over generations, the social scale equivalent of  intuitive  processing and learning at the individual level.  Risk protection by formal (e.g., insurance) and informal institutions (e.g., social networks)  Depending on their cultural and institutional context, people can protect themselves against worst case and/or potentially catastrophic economic outcomes either by purchasing insurance (Kunreuther  et al., 2013c) or by developing social networks that will help bail them out or assist them in the  recovery process (Weber and Hsee, 1998). Individualist cultures favour formal insurance contracts,  whereas collectivist societies make more use of informal mutual insurance via social networks.  This  distinction between risk protection by either formal or informal means exists at the individual level  and also at the firm level, e.g., the chaebols in Korea or the keiretsus in Japan (Gilson and Roe, 1993).  Impact of uncertainty on coordination and competition  Adaptation and especially mitigation responses require coordination and cooperation between  individuals, groups, or countries for many of the choices associated with climate change. The  possible outcomes often can be viewed as a game between players who are concerned with their  own payoffs but who may still be mindful of social goals and objectives. In this sense they can be  viewed in the context of a prisoners  dilemma (PD) or social dilemma. Recent experimental research  on two person PD games reveals that individuals are more likely to be cooperative when payoffs are  deterministic than when the outcomes are probabilistic. A key factor explaining this difference is  that in a deterministic PD game, the losses of both persons will always be greater when they both do  not cooperate than when they do. When outcomes are probabilistic there is some chance that the  losses will be smaller when both parties do not cooperate than when they do, even though the  expected losses to both players will be greater if they both decide not to cooperate than if they both  cooperate (Kunreuther et al., 2009).  In a related set of experiments, Gong et al. (2009) found that groups are less cooperative than  individuals in a two person deterministic PD game; however, in a stochastic PD game, where  defection increased uncertainty for both players, groups became more cooperative than they were  in a deterministic PD game and more cooperative than individuals in the stochastic PD game. These  findings have relevance to behaviour with respect to climate change where future outcomes of  specific policies are uncertain. Consider decisions made by groups of individuals, such as when  delegations from countries are negotiating at the Conference of Parties (COP) to make commitments  for reducing GHG emissions where the impacts on climate change are uncertain. These findings  suggest that there is likely to be more cooperation between governmental delegations than if each  country was represented by a single decision maker.  Cooperation also plays a crucial role in international climate agreements. There is a growing body of  experimental literature that looks at individuals  cooperation when there is uncertainty associated  with others adopting climate change mitigation measures. Tavoni et al. (2011) found that  communication across individuals improves the likelihood of cooperation. Milinski et al. (2008)  observed that the higher the risky losses associated with the failure to cooperate in the provision of  a public good, the higher the likelihood of cooperation. If the target for reducing CO2 is uncertain,    21 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Dannenberg and Barrett (2012) show in an experimental setting that cooperation is less likely than if  the target is well specified.  2.4.6    Perceptions of climate change risk and uncertainties  Empirical social science research shows that the perceptions of climate change risks and  uncertainties depend not only on external reality but also on the observers  internal states, needs,  and the cognitive and emotional processes that characterize intuitive thinking. Psychological  research has documented the prevalence of affective processes in the intuitive assessment of risk,  depicting them as essentially effort free inputs that orient and motivate adaptive behaviour,  especially under conditions of uncertainty that are informed and shaped by personal experience  over time (Finucane et al., 2000; Loewenstein et al., 2001; Peters et al., 2006).  Two important psychological risk dimensions have been shown to influence people s intuitive  perceptions of health and safety risks across numerous studies in multiple countries (Slovic, 1987).  The first factor, dread risk, captures emotional reactions to hazards like nuclear reactor accidents, or  nerve gas accidents, that is, things that make people anxious because of a perceived lack of control  over exposure to the risks and because consequences may be catastrophic.  The second factor,  unknown risk, refers to the degree to which a risk (e.g., DNA technology) is perceived as new, with  unforeseeable consequences and with exposures not easily detectable.  Perceptions of the risks associated with a given event or hazard are also strongly influenced by  personal experience and can therefore differ between individuals as a function of their location,  history, and/or socio economic circumstances (Figner and Weber, 2011). Whereas personal  exposure to adverse consequences increases fear and perceptions of risk, familiarity with a risk that  does not have adverse consequences can lower perceptions of its risk. This suggests that greater  familiarity with climate risks, unless accompanied by alarming negative consequences, could actually  lead to a reduction rather than an increase in the perceptions of its riskiness (Kloeckner, 2011).  Seeing climate change as a simple and gradual change from current to future average temperatures  and precipitation may make it seem controllable   the non immediacy of the danger seems to  provide time to plan and execute protective responses (Weber, 2006). These factors suggest that  laypersons differ in their perception of climate risks more than experts who engage in deliberative  thinking and estimate the likelihood and consequences of climate change utilizing scientific data.  Impact of uncertainties in communicating risk  If the uncertainties associated with climate change and its future impact on the physical and social  system are not communicated accurately, the general public may misperceive them (Corner and  Hahn, 2009). Krosnick et al. (2006) found that perceptions of the seriousness of global warming as a  national issue in the United States depended on the degree of certainty of respondents as to  whether global warming is occurring and will have negative consequences coupled with their belief  that humans are causing the problem and have the ability to solve it. Accurately communicating the  degree of uncertainty in both climate risks and policy responses is therefore a critically important  challenge for climate scientists and policymakers (Pidgeon and Fischhoff, 2011).  Roser Renouf et al. (2011), building upon the work of Krosnick et al. (2006), apply social cognitive  theory to develop a model of climate advocacy to increase the attention given to climate change in  the spirit of social amplification of risk. They found that campaigns looking to increase the number of  citizens contacting elected officials to advocate climate policy action should focus on increasing the  belief that global warming is real, human caused, a serious risk, and solvable. These four key  elements, coupled with the understanding that there is strong scientific agreement on global  warming (Ding et al., 2011), are likely to build issue involvement and support for action to reduce  the impacts of climate change.  The significant time lags within the climate system and a focus on short term outcomes lead many  people to believe global warming will have only moderately negative impacts. This view is reinforced    22 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  because adverse consequences are currently experienced only in some regions of the world or are  not easily attributed to climate change. For example, despite the fact that  climate change currently  contributes to the global burden of disease and premature deaths  (IPCC, 2007) relatively few  people make the connection between climate change and human health risks.  One challenge is how to facilitate correct inferences about the role of climate change as a function of  extreme event frequency and severity. Many parts of the world have seen increases in the frequency  and magnitude of heat waves and heavy precipitation events (IPCC, 2012). In the United States, a  large majority of Americans believe that climate change exacerbated extreme weather events  (Leiserowitz et al., 2012). That said, the perception that the impact of climate change is neither  immediate nor local persists (Leiserowitz et al., 2008), leading many to think it rational to advocate a  wait and see approach to emissions reductions (Sterman, 2008; Dutt and Gonzalez, 2013).  Differences in education and numeracy  Individual and group differences in education and training and the resulting different cognitive and  affective processes have additional implications for risk communication. It may help to supplement  the use of words to characterize the likelihood of an outcome recommended by current IPCC  Guidance Note (GN) with numeric probability ranges (Budescu et al., 2009). Patt and Dessai (2005)  show that in the IPCC Third Assessment Report (TAR), words that characterized numerical  probabilities were interpreted by decision makers in inconsistent and often context specific ways, a  phenomenon with a long history in cognitive psychology (Wallsten et al., 1986; Weber and Hilton,  1990). These context specific interpretations of probability words are deeply rooted, as evidenced  by the fact that the likelihood of using the intended interpretation of IPCC TAR probability words did  not differ with level of expertise (attendees of a UN COP conference vs. students) or as a function of  whether respondents had read the IPCC TAR instructions that specify how the probability words  characterized numerical probabilities (Patt and Dessai, 2005).  Numeracy, the ability to reason with numbers and other mathematical concepts, is a particularly  important individual and group difference in this context as it has implications for the presentation  of likelihood information using either numbers (for example, 90%) or words (for example,  very  likely  or  likely ) or different graphs or diagrams (Peters et al., 2006; Mastrandrea et al., 2011).  Using personal experience with climate variables has been shown to be effective in communicating  the impact of probabilities (e.g., of below , about , and above normal rainfall in an El Nino year) to  decision makers with low levels of numeracy, for example subsistence farmers in Zimbabwe (Patt et  al., 2005).      23 of 90     Final Draft       Chapter 2  IPCC WGIII AR5  Box 2.1. Challenges facing developing countries One of the key findings on developing countries is that non state actors such as tribes, clans, castes,  or guilds may be of substantial influence on how climate policy choices are made and diffused rather  than having the locus of decision making at the level of the individual or governmental unit. For  instance, a farming tribe/caste may address the climate risks and uncertainties faced by their  community and opt for a system of crop rotation to retain soil fertility or shift cultivation to preserve  the nutritious state of farmlands. Research in African developing countries has shown that people  may understand probabilistic information better when it is presented to and discussed in a group  where members have a chance to discuss it (Patt et al., 2005; Roncoli, 2006). This underscores why  the risks and uncertainty associated with climate change has shifted governmental responsibility to  non state actors (Rayner, 2007).  In this context, methodologies and decision aids used in individual centred western societies for  making choices that rely on uncertain probabilities and uncertain outcomes may not apply to  developing countries. Furthermore methodologies, such as expected utility theory, assume an  individual decision maker whereas in developing countries, decisions are often made by clans or  tribes. In addition, tools such as cost benefit analysis, cost effectiveness analysis and robust decision  making may not always be relevant for developing countries since decisions are often based on  social norms, traditions, and customs  The adverse effects of climate change on food, water, security, and incidences of temperature influenced diseases (Shah et al. 2011), are further fuelled by a general lack of awareness about  climate change in developing countries (UNDP, 2007); consequently, policymakers in these countries  support a wait and see attitude toward climate change (Dutt, 2011). Resource allocation and  investment constraints may also lead policy makers to postpone policy decisions to deal with climate  change, as is the case with respect to integration of future energy systems in small island states  (UNFCCC, 2007). The delay may prevent opportunities for learning and increase future  vulnerabilities. It may also lock in countries into infrastructure and technologies that may be difficult  to alter.  The tension between short  and long term priorities in low income countries is often accentuated by  uncertainties in political culture and regulatory policies (Rayner, 1993). This may lead to policies that  are flawed in design and/or implementation or those that have unintended negative consequences.  For example, subsidies for clean fuels such as liquefied petroleum gas (LPG) in a country like India  often do not reach their intended beneficiaries (the poor), and at the same time add a large burden  to the exchequer (Government of India, Ministry of Finance, 2012; IISD, 2012).  Other institutional and governance factors impede effective climate change risk management in  developing countries. These include lack of experience with insurance (Patt et al., 2010), dearth of  data, and analytical capacity. A more transparent and effective civil service would also be helpful, for  instance in stimulating investments in renewable energy generation capacities (Komendantova et al.,  2012). Financial constraints suggest the importance of international assistance and private sector  contribution to implement adaptation and mitigation strategies for dealing with climate change in  developing countries.  2.5   Tools and decision aids for analysing uncertainty and risk  This section examines how more formal approaches can assist decision makers in engaging in more  deliberative thinking with respect to climate change policies when faced with the risks and  uncertainties characterized in Section 2.3.    24 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  2.5.1    Expected utility theory  Expected utility [E(U)] theory (Ramsey, 1926; von Neumann and Morgenstern, 1944; Savage, 1954);  remains the standard approach for providing normative guidelines against which other theories of  individual decision making under risk and uncertainty are benchmarked. According to the E(U)  model, the solution to a decision problem under uncertainty is reached by the following four steps:  1. Define a set of possible decision alternatives.  2. Quantify uncertainties on possible states of the world.  3. Value possible outcomes of the decision alternatives as utilities.  4. Choose the alternative with the highest expected utility.  This section clarifies the applicability of expected utility theory to the climate change problem,  highlighting its potentials and limitations.  2.5.1.1    Elements of the theory  E(U) theory is based on a set of axioms that are claimed to have normative rather than descriptive  validity. Based on these axioms, a person s subjective probability and utility function can be  determined by observing preferences in structured choice situations. These axioms have been  debated, strengthened, and relaxed by economists, psychologists, and other social scientists over  the years. The axioms have been challenged by controlled laboratory experiments and field studies  discussed in Section 2.4 but they remain the basis for parsing decision problems and recommending  options that maximize expected utility.  2.5.1.2    How can expected utility improve decision making under uncertainty?  E(U) theory provides guidelines for individual choice, such as a farmer deciding what crops to plant  or an entrepreneur deciding whether to invest in wind technology. These decision makers would  apply E(U) theory by following the four steps above. The perceptions and responses to risk and  uncertainty discussed in Section 2.5 provide a rationale for undertaking deliberative thinking before  making final choices. More specifically, a structured approach, such as the E(U) model, can reduce  the impact of probabilistic biases and simplified decision rules that characterize intuitive thinking. At  the same time the limitations of E(U) must be clearly understood, as the procedures for determining  an optimal choice do not capture the full range of information about outcomes and their risks and  uncertainties.  Subjective versus objective probability   In the standard E(U) model, each individual has his/her own subjective probability estimates.  When  there is uncertainty on the scientific evidence, experts  personal probabilities may diverge from each  other, sometimes significantly. With respect to climate change, observed relative frequencies are  always preferred when suitable sets of observations are accessible. When these data are not  available, one may want to utilize structured expert judgment for quantifying uncertainty (see  Section 2.5.7).  Individual versus social choice   In applying E(U) theory to problems of social choice, a number of issues arise.  Condorcet s voting  paradox shows that groups of rational individuals deciding by majority rule do not exhibit rational  preferences. Unlike eliciting probabilities, however, there is no formal mechanism to induce  agreement on utilities. Using a social utility or social welfare function to determine an optimal  course of action for society requires some method of measuring society s preferences. In the  absence of these data the social choice problem is not a simple problem of maximizing expected  utility. In this case, a plurality of approaches involving different aggregations of individual utilities  and probabilities may best aid decision makers. The basis and use of the social welfare function are  discussed in Section 3.4.6.    25 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Normative versus descriptive  As noted above, the rationality axioms of E(U) are claimed to have normative as opposed to  descriptive validity. The paradoxes of Allais (1953) and Ellsberg (1961) reveal choice behaviour  incompatible with E(U); whether this requires modifications of the normative theory is a subject of  debate. McCrimmon (1968) found that business executives willingly corrected violations of the  axioms when they were made aware of them. Other authors (Kahneman and Tversky, 1979;  Schmeidler, 1989; Quiggin, 1993; Wakker, 2010) account for such paradoxical choice behaviour by  transforming the probabilities of outcomes into decision weight probabilities that play the role of  likelihood in computing optimal choices but do not obey the laws of probability. Wakker (2010, p.  350) notes that decision weighting also fails to describe some empirically observed behavioural  patterns. Whether decision makers should evaluate emission scenarios with decision weight  probabilities is a case that has not yet been made.  2.5.2    Decision analysis  2.5.2.1    Elements of the theory  Decision analysis is a formal approach for choosing between alternatives under conditions of risk  and uncertainty that are too complex for relying on intuitive thinking. The foundations of decision  analysis are provided by the axioms of expected utility theory. The methodology for choosing  between alternatives consists of the following elements that are described in more detail in Keeney  (1993):  1. Structure the decision problem by generating alternatives and specifying values and objectives  or criteria that are important to the decision maker.  2. Assess the possible impacts of different alternatives by determining the set of possible  consequences and the probability of each occurring.  3. Determine preferences of the relevant decision maker by developing an objective function that  considers attitudes toward risk and aggregates the weighted objectives.  4. Evaluate and compare alternatives by computing the expected utility associated with each  alternative. The alternative with the highest expected utility is the most preferred one.  To illustrate the application of decision analysis, consider a homeowner that is considering whether  to invest in energy efficient technology as part of their livelihood options as depicted in Figure 2.2. :  1. The person focuses on two alternatives: (A1) Maintain the status quo, and (A2) Invest in solar  panels, and has two objectives: (O1) Minimize cost, and (O2) Assist in reducing global warming.  2. The homeowner would then determine the impacts of A1 and A2 on the objectives O1 and O2  given the risks and uncertainties associated with the impact of climate change on energy usage  as well as the price of energy.  3. The homeowner would then consider his or her attitude toward risks and then combine O1 and  O2 into a multiattribute utility function.  4. The homeowner would then compare the expected utility of A1 and A2, choosing the one that  had the highest expected utility.  2.5.2.2    How can decision analysis improve decision making under uncertainty?  Decision analysis enables one to undertake sensitivity analyses with respect to the uncertainties  associated with the various consequences and to different value structures.  Suppose alternative A1  had the highest expected utility. The homeowner could determine when the decision to invest in  solar panels would be preferred to maintaining the status quo by asking questions such as:     26 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  What would the minimum annual savings in energy expenses have to be over the next 10 years  to justify investing in solar panels?  What is the fewest number of years one would have to reside in the house to justify investing in  solar panels?  What impact will different levels of global warming have on the expected costs of energy over  the next 10 years for the homeowner to want to invest in solar panels?  How will changing the relative weights placed on minimizing cost (O1) and assisting in reducing  global warming (O2) affect the expected utility of A1 and A2?  2.5.3    Cost benefit analysis and uncertainty   2.5.3.1    Elements of the theory   Cost benefit analysis (CBA) compares the costs and benefits of different alternatives with the broad  purpose of facilitating more efficient allocation of society s resources. When applied to government  decisions, CBA is designed to select the alternative that has the highest social net present value  based on a discount rate, normally constant over time, that converts future benefits and costs to  their present values [(Boardman et al., 2005); see also the extensive discussion in Section 3.6].  Social, rather than private, costs and benefits are compared, including those affecting future  generations (Brent, 2006). In this regard, benefits across individuals are assumed to be additive.  Distributional issues may be addressed by putting different weights on specific groups to reflect their  relative importance. Under conditions of risk and uncertainty, one determines expected costs and  benefits by weighting outcomes by their likelihoods of occurrence. In this sense, the analysis is  similar to expected utility theory and decision analysis discussed in Sections 2.5.1 and 2.5.2.  CBA can be extremely useful when dealing with well defined problems that involve a limited number  of actors who make choices among different mitigation or adaptation options. For example, a region  could examine the benefits and costs over the next fifty years of building levees to reduce the  likelihood and consequences of flooding given projected sea level rise due to climate change.  CBA can also provide a framework for defining a range of global long term targets on which to base  negotiations across countries (see for example Stern, 2007). However, CBA faces major challenges  when defining the optimal level of global mitigation actions for the following three reasons: (1) the  need to determine and aggregate individual welfare, (2) the presence of distributional and  intertemporal issues, and (3) the difficulty in assigning probabilities to uncertain climate change  impacts. The limits of CBA in the context of climate change are discussed at length in Sections 3.6  and 3.9. The discussion that follows focuses on challenges posed by risk and uncertainty.  2.5.3.2    How can CBA improve decision making under risk and uncertainty?  Although cost benefit analysis focuses on how specific policies impact different stakeholders, it  assumes that the decision maker(s) will eventually choose between well specified alternatives. To  illustrate this point, consider a region that is considering ways for coastal villages in hazard prone  areas to undertake measures for reducing future flood risks that are expected to increase in part due  to sea level rise.  The different options range from building a levee (at the community level) to  providing low interest loans to encourage residents and businesses in the community to invest in  adaptation measures to reduce future damage to their property (at the level of an individual or  household).  The heuristics and resulting biases discussed in the context of expected utility theory also apply to  cost benefit analysis under uncertainty. For example, the key decision maker, the mayor, may utilize  a threshold model of choice by assuming that the region will not be subject to flooding because  there have been no floods or hurricanes during the past 25 years. By relying solely on intuitive  processes there would be no way to correct this behaviour until the next disaster occurred, at which    27 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  time the mayor would belatedly want to protect the community. The mayor and his advisors may  also focus on short time horizons, and hence do not incur the high upfront costs associated with  building flood protection measures such as dams or levees. They are unconvinced that that such an  investment will bring significant enough benefits over the first few years when these city officials are  likely to be held accountable for the expenditures associated with a decision to go forward on the  project.  Cost benefit analysis can help overcome such a short run focus by highlighting the importance of  considering the likelihood of events over time and the need to discount impacts exponentially rather  than hyperbolically, so that future time periods are given more weight in the decision process. In  addition, CBA can highlight the tradeoffs between efficient resource allocation and distributional  issues as a function of the relative weights assigned to different stakeholders (e.g., low income and  well to do households in flood prone areas).  2.5.3.3    Advantages and limitations of CBA  The main advantage of CBA in the context of climate change is that it is internally coherent and  based on the axioms of expected utility theory. As the prices used to aggregate costs and benefits  are the outcomes of market activity, CBA is, at least in principle, a tool reflecting people's  preferences. Although this is one of the main arguments in favour of CBA (Tol, 2003), this line of  reasoning can also be the basis for recommending that this approach not be employed for making  choices if market prices are unavailable. Indeed, many impacts associated with climate change are  not valued in any market and are therefore hard to measure in monetary terms. Omitting these  impacts distorts the cost benefit relationship.  Several ethical and methodological critiques have been put forward with respect to the application  of CBA to climate policy (Charlesworth and Okereke, 2010; Caney, 2011). For example, the  uncertainty surrounding the potential impacts of climate change, including possible irreversible and  catastrophic effects on ecosystems, and their asymmetric distribution around the planet, suggests  CBA may be inappropriate for assessing optimal responses to climate change in these circumstances.  A strong and recurrent argument against CBA (Azar and Lindgren, 2003; Tol, 2003; Weitzman, 2009,  2011) relates to its failure in dealing with infinite (negative) expected utilities arising from low  probability, catastrophic events often referred to as  fat tails . In these situations, CBA is unable to  produce meaningful results, and thus more robust techniques are required. The debate concerning  whether fat tails are indeed relevant to the problem at hand is still unsettled (see for example  Pindyck, 2011). Box 3.9 in Chapter 3 addresses the fat tail problem and suggests the importance of  understanding the impacts associated with low probability, high climate change scenarios in  evaluating alternative mitigation strategies.  One way to address the fat tail problem would be to focus on the potential catastrophic  consequences of low probability, high impact events in developing GHG emissions targets and to  specify a threshold probability and a threshold loss. One can then remove events from consideration  that are below these critical values in determining what mitigation and/or adaptation to adopt as  part of a risk management strategy for dealing with climate change (Kunreuther et al., 2013c).  Insurers and reinsurers specify these thresholds and use them to determine the amount of coverage  that they are willing to offer against a particular risk. They then diversify their portfolio of policies so  the annual probability of a major loss is below a pre specified threshold level of concern (e.g., 1 in  1000) (Kunreuther et al., 2013c). This approach is in the spirit of a classic paper by (Roy, 1952) on  safety first behaviour and can be interpreted as an application of probabilistic cost effectiveness  analysis (i.e., chance constrained programming) discussed in the next section. It was applied in a  somewhat different manner to environmental policy by Ciriacy Wantrup (1971) who contended that  a safe minimum standard is frequently a valid and relevant criterion for conservation policy.      28 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  One could also view uncertainty or risk associated with different options as one of the many criteria  on which alternatives should be evaluated. Multi criteria analysis (MCA) is sometimes proposed to  overcome some of the limitations of CBA (see more on its basic features in Chapter 3 and for  applications in Chapter 6). MCA implies that the different criteria or attributes should not be  aggregated by converting all of them into monetary units. MCA techniques commonly apply  numerical analysis in two stages:  Scoring: for each option and criterion, the expected consequences of each option are assigned a  numerical score on a strength of preference scale. More (less) preferred options score higher  (lower) on the scale. In practice, scales often extend from 0 to 100, where 0 is assigned to a real  or hypothetical least preferred option, and 100 is assigned to a real or hypothetical most  preferred option. All options considered in the MCA would then fall between 0 and 100.  Weighting: numerical weights are assigned to define their relative performance on a chosen  scale that will often range from 0 (no importance) to 1 (highest importance) (Department for  Communities and Local Government, 2009).  2.5.4    Cost effectiveness analysis and uncertainty  2.5.4.1    Elements of the theory  Cost effectiveness analysis (CEA) is a tool based on constrained optimization for comparing policies  designed to meet a pre specified target. The target can be defined through CBA, by applying a  specific guideline such as the precautionary principle (see Section 2.5.5), or by specifying a threshold  level of concern or environmental standard in the spirit of the safety first models discussed above.  The target could be chosen without the need to formally specify impacts and their respective  probabilities. It could also be based on an ethical principle such as minimizing the worst outcome, in  the spirit of a Rawlsian fair agreement, or as a result of political and societal negotiation processes.  Cost effectiveness analysis does not evaluate benefits in monetary terms. Rather, it is used as  anattempts to find the least cost option that achieves a desired quantifiable outcome. In one sense  CEA can be seen as a special case of CBA in that the technique replaces the criterion of choosing a  climate policy based on expected costs and benefits with the objective of selecting the option that  minimizes the cost of meeting an exogenous target (e.g., equilibrium temperature, concentration, or  emission trajectory).  Like CBA, CEA can be generalized to include uncertainty. One solution concept requires the  externally set target to be specified with certainty. The option chosen is the one that minimizes  expected costs. Since temperature targets cannot be met with certainty (den Elzen and van Vuuren,  2007; Held et al., 2009), a variation of this solution concept requires that the likelihood that an  exogenous target (e.g., equilibrium temperature) will be exceeded is below a pre defined threshold  probability. This solution procedure, equivalent to chance constrained programming (CCP) (Charnes  and Cooper, 1959), enables one to use stochastic programming to examine the impacts of  uncertainty with respect to the cost of meeting a pre specified target. Chance constrained  programming is a conceptually valid decision analytic framework for examining the likelihood of  attaining climate targets when the probability distributions characterizing the decision maker s state  of knowledge is held constant over time (Held et al., 2009).  2.5.4.2    How can CEA improve decision making under uncertainty?  To illustrate how CEA can be useful, consider a national government that wants to set a target for  reducing greenhouse gas (GHG) emissions in preparation for a meeting of delegates from different  countries at the Conference of Parties (COP). It knows there is uncertainty as to whether specific  policy measures will achieve the desired objectives. The uncertainties may be related to the  outcomes of the forthcoming negotiation process at the COP and/or to the uncertain impacts of  proposed technological innovations in reducing GHG emissions. Cost effectiveness analysis could    29 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  enable the government to assess alternative mitigation strategies (or energy investment policies) for  reducing GHG emissions in the face of these uncertainties by specifying a threshold probability that  aggregate GHG emissions will not be greater than a pre specified target level.  2.5.4.3    Advantages and limitations of CEA over CBA  Cost effectiveness analysis has an advantage over CBA in tackling the climate problem in that it does  not require formalized knowledge about global warming impact functions (Pindyck, 2013). The focus  of CEA is on more tangible elements, such as energy alternatives, where scientific understanding is  more established (Stern, 2007). Still, CEA does require scientific input on potential risks associated  with climate change. National and international political processes specify temperature targets and  threshold probabilities that incorporate the preferences of different actors guided by data from the  scientific community.  The corresponding drawback of CEA is that the choice of the target is specified  without considering its impact on economic efficiency. Once costs to society are assessed and a  range of temperature targets is considered, one can assess people's preferences by considering the  potential benefits and costs associated with different targets. However, if costs of a desirable action  turn out to be regarded as  too high , then CEA may not provide sufficient information to support  taking action now. In this case additional knowledge on the mitigation benefit side would be  required.  An important application of CEA in the context of climate change is evaluating alternative transition  pathways that do not violate a pre defined temperature target. Since a specific temperature target  cannot be attained with certainty, formulating probabilistic targets as a CCP problem is an  appropriate solution technique to use. However, introducing anticipated future learning so that  probability distributions change over time can lead to infeasible solutions (Eisner et al., 1971). Since  this is a problem with respect to specifying temperature targets, Schmidt et al. (2011) proposed an  approach that that combines CEA and CBA. The properties of this hybrid model (labelled  cost risk  analysis ) require further investigation. At this time, CEA through the use of CCP represents an  informative concept for deriving mitigation costs for the case where there is no learning over time.  With learning, society would be no worse off than the proposed CEA solution.  2.5.5    The precautionary principle and robust decision making  2.5.5.1    Elements of the theory  In the 1970s and 1980s, the precautionary principle (PP) was proposed for dealing with serious  uncertain risks to the natural environment and to public health (Vlek, 2010). In its strongest form the  PP implies that if an action or policy is suspected of having a risk that causes harm to the public or to  the environment, precautionary measures should be taken even if some cause and effect  relationships are not established.  The burden of proof that the activity is not harmful falls on the  proponent of the activity rather than on the public. A consensus statement to this effect was issued  at the Wingspread Conference on the Precautionary Principle on 26 January 1998.  The PP allows policymakers to ban products or substances in situations where there is the possibility  of their causing harm and/or where extensive scientific knowledge on their risks is lacking. These  actions can be relaxed only if further scientific findings emerge that provide sound evidence that no  harm will result. An influential statement of the PP with respect to climate change is principle 15 of  the 1992 Rio Declaration on Environment and Development:  where there are threats of serious or  irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost effective measures to prevent environmental degradation.   Robust decision making (RDM) is a particular set of methods developed over the last decade to  address the PP in a systematic manner. RDM uses ranges or, more formally, sets of plausible  probability distributions to describe deep uncertainty and to evaluate how well different policies  perform with respect to different outcomes arising from these probability distributions. RDM  provides decision makers with tradeoff curves that allow them to debate how much expected    30 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  performance they are willing to sacrifice in order to improve outcomes in worst case scenarios.   RDM thus captures the spirit of the precautionary principle in a way that illuminates the risks and  benefits of different policies. Lempert et al. (2006) and Hall et al. (2012) review the application of  robust approaches to decisions with respect to mitigating or adapting to climate change.  The tolerable windows approach (TWA) can also be regarded as a  robust method . Temperature  targets are specified and the bundle of decision paths compatible with the targets is characterized.  Mathematically, TWA incorporates the features of CEA or CCP without optimization. The selection of  the relevant targets and the paths to achieving it are left to those making the decision (see Bruckner  and Zickfeld, 2008) for an introduction and an overview to peer reviewed literature on TWA.   2.5.6    Adaptive Management  Adaptive management is an approach to governance that that grew out of the field of conservation  ecology in the 1970s and incorporates mechanisms for reducing uncertainty over time (Holling,  1978; Walters and Hilborn, 1978). Paraphrasing the IPCC Special Report on Extreme Events (2012),  adaptive management represents structured processes for improving decision making and policy  over time, by incorporating lessons learned. From the theoretical literature, two strands of adaptive  management have been developed for improving decision making under uncertainty: passive and  active.  Passive adaptive management (PAM) involves carefully designing monitoring systems, at the  relevant spatial scales, so as to be able to track the performance of policy interventions and improve  them over time in response to what has been learned. Active adaptive management (AAM) extends  PAM by designing the interventions themselves as controlled experiments, so as to generate new  knowledge. For example, if a number of political jurisdictions were seeking to implement support  mechanisms for technology deployment, in an AAM approach they would deliberately design  separate mechanisms that are likely to differ across jurisdictions. By introducing such variance into  the management regime, however, one would collectively learn more about how industry and  investors respond to a range of interventions. All jurisdictions could then use this knowledge in a  later round of policy making, reflecting the public goods character of institutional knowledge.  With respect to the application of PAM, Nilsson(2005)  reports on a case study of Sweden, in which  policymakers engaged in repetitive ex post analyses of national climate policy, and then responded  to the lessons learned by modifying their goals and strategies. There are many documented cases of  PAM applications in the area of climate change adaptation (Lawler et al.; Berkes et al., 2000; Berkes  and Jolly, 2001; Joyce et al., 2009; Armitage, 2011). The information gathering and reporting  requirements of the UNFCCC are also in the spirit of PAM with respect to policy design, as are the  diversity of approaches implemented for renewable energy support across the states and provinces  of North America and the countries in Europe. The combination of the variance in action with data  gathered about the consequences of these actions by government agencies has allowed for robust  analysis on the relative effectiveness of different instruments (Blok, 2006; Mendonça, 2007; Butler  and Neuhoff, 2008).   Individuals utilizing intuitive thinking are unlikely to undertake experimentation that lead to new  knowledge due to a status quo bias, as discussed in Section 2.4.3.1. In theory, adaptive management  ought to correct this problem by making the goal of learning through experimentation an explicit  policy goal. Lee (1993) illustrates this point by presenting a paradigmatic case of AAM designed to  increase salmon stocks in the Columbia River watershed in the western United States and Canada. In  this case, there was the opportunity to introduce a number of different management regimes on the  individual river tributaries, and to reduce uncertainty about salmon population dynamics. As Lee  (1993) documented, policymakers on the Columbia River were ultimately not able to carry through  with AAM: local constituencies, valuing their own immediate interests over long term learning in the  entire region, played a crucial role in blocking it. One could imagine such political and institutional  issues hindering the application of AAM at a global scale with respect to climate change policies.    31 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  To date, there are no cases in the literature specifically documenting climate change policies  explicitly incorporating AAM. However, there are a number of examples where policy interventions  implicitly follow AAM principles. One of these is promotion of energy research and development  (R&D). In this case the government invests in a large number of potential new technologies, with the  expectation that some technologies will not prove practical, while others will be successful and be  supported by funding in the form of incentives such as subsidies (Fischer and Newell, 2008).  2.5.7    Uncertainty Analysis Techniques  Uncertainty analysis consists of both qualitative and quantitative methodologies (see Box 2.2 for  more details). A Qualitative Uncertainty Analysis (QLUA) helps improve the choice process of  decision makers by providing data in a form that individuals can easily understand. QLUA normally  does not require complex calculations so that it can be useful in helping to overcome judgmental  biases that characterize intuitive thinking. QLUA assembles arguments and evidence and provides a  verbal assessment of plausibility, frequently incorporated in a Weight of Evidence (WoE) narrative.  A Quantitative Uncertainty Analysis (QNUA) assigns a joint distribution to uncertain parameters of a  specific model used to characterize different phenomena.  Quantitative Uncertainty Analysis was  pioneered in the nuclear sector in 1975 to determine the risks associated with nuclear power plants  (Rasmussen, 1975). The development of QNUA and its prospects for applications to climate change  are reviewed by Cooke (2012).      32 of 90     Final Draft       Box 2.2. Quantifying uncertainty Chapter 2  IPCC WGIII AR5  Natural language is not adequate for propagating and communicating uncertainty. To illustrate,  consider the U.S. National Research Council 2010 report Advancing the Science of Climate Change  (America s Climate Choices: Panel on Advancing the Science of Climate Change; National Research  Council, 2010). Using the IPCC AR4 calibrated uncertainty language, the NRC is highly confident that  (1) the Earth is warming and that (2) most of the recent warming is due to human activities.  What does the second statement mean? Does it mean the NRC are highly confident that the Earth is  warming and the recent warming is anthropogenic or that, given the Earth is warming, are they  highly confident humans cause this warming? The latter seems most natural, as the warming is  asserted in the first statement. In that case the  high confidence  applies to a conditional statement.  The probability of both statements being true is the probability of the condition (Earth is warming)  multiplied by the probability of this warming being caused by humans, given that warming is taking  place. If both statements enjoy high confidence, then in the calibrated language of AR4 where high  confidence implies a probability of 0.8, the statement that both are true would only be  more likely  than not  (0.8 x 0.8=0.64).  Qualitative uncertainty analysis easily leads the unwary to erroneous conclusions. Interval analysis is  a semi qualitative method in which ranges are assigned to uncertain variables without distributions  and can mask the complexities of propagation, as attested by the following statement in an early  handbook on risk analysis:  The simplest quantitative measure of variability in a parameter or a  measurable quantity is given by an assessed range of the values the parameter or quantity can take.  This measure may be adequate for certain purposes (e.g., as input to a sensitivity analysis), but in  general it is not a complete representation of the analyst's knowledge or state of confidence and  generally will lead to an unrealistic range of results if such measures are propagated through an  analysis , (U.S. NRC, 1983, chap. 12, p.12).  The sum of 10 independent variables each ranging between zero and ten, can assume any value  between zero and 100. The upper (lower) bound can be attained only if ALL variables take their  maximal (minimal) values, whereas values near 50 can arise through many combinations. Simply  stating the interval [0, 100] conceals the fact that very high (low) values are much more exceptional  than central values. These same concepts are widely represented throughout the uncertainty  analysis literature. According to Morgan and Henrion (1990): Uncertainty analysis is the  computation of the total uncertainty induced in the output by quantified uncertainty in the inputs  and models [ ] Failure to engage in systematic sensitivity and uncertainty analysis leaves both  analysts and users unable to judge the adequacy of the analysis and the conclusions reached ,  (Morgan and Henrion, 1990, p. 39).  2.5.7.1    Structured expert judgment  Structured expert judgment designates methods in which experts quantify their uncertainties to  build probabilistic input for complex decision problems (Morgan and Henrion, 1990; Cooke, 1991;  O Hagan et al., 2006). A wide variety of activities fall under the heading expert judgment that  includes blue ribbon panels, Delphi surveys, and decision conferencing.  Elements  Structured expert judgment such as science based uncertainty quantification was pioneered in the  Rasmussen Report on risks of nuclear power plants (Rasmussen, 1975). The methodology was  further elaborated in successive studies and involves protocols for expert selection and training,  elicitation procedures and performance based combinations that are described in more detail in  Goossens et al. (2000). In large studies, multiple expert panels provide inputs to computer models  with no practical alternative for combining expert judgments except to use equal weighting. Hora  (2004) has shown that equal weight combinations of statistically accurate ( well calibrated ) experts    33 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  loses statistical accuracy. Combinations based on experts' statistical accuracy have consistently given  more accurate and informative results (see for example Cooke and Goossens, 2008; Aspinall, 2010).  How can this tool improve decision making under uncertainty?  Structured expert judgment can provide insights into the nature of the uncertainties associated with  a specific risk and the importance of undertaking more detailed analyses to design meaningful  strategies and policies for dealing with climate change in the spirit of deliberative thinking. In  addition to climate change (Morgan and Keith, 1995; Zickfeld et al., 2010), structured expert  judgment has migrated into many fields such as volcanology (Aspinall, 1996, 2010), dam dyke/safety  (Aspinall, 2010), seismicity (Klügel, 2008), civil aviation (Ale et al., 2009), ecology (Martin et al., 2012;  Rothlisberger et al., 2012), toxicology (Tyshenko et al., 2011), security (Ryan et al., 2012), and  epidemiology (Tuomisto et al., 2008).  The general conclusions emerging from experience with structured expert judgments to date are: (1)  formalizing the expert judgment process and adhering to a strict protocol adds substantial value to  understanding the importance of characterizing uncertainty; (2) experts differ greatly in their ability  to provide statistically accurate and informative quantifications of uncertainty; and (3) if expert  judgments must be combined to support complex decision problems, the combination method  should be subjected to the following quality controls: statistical accuracy and informativeness  (Aspinall, 2010).  As attested by a number of governmental guidelines, structured expert judgment is increasingly  accepted as quality science that is applicable when other methods are unavailable (U.S.  Environmental Protection Agency, 2005). Some expert surveys of economists concerned with  climate change examine damages (Nordhaus, 1994) and appropriate discount rates (Weitzman,  2001). Structured expert judgments of climate scientists were recently used to quantify uncertainty  in the ice sheet contribution to sea level rise, revealing that experts' uncertainty regarding the 2100  contribution to sea level rise from ice sheets increased between 2010 and 2012 (Bamber and  Aspinall, 2013).  Damages or benefits to ecosystems from invasions of non indigenous species are difficult to quantify  and monetize on the basis of historical data. However ecologists, biologists and conservation  economists have substantial knowledge regarding the possible impacts of invasive species. Recent  studies applied structured expert judgment with a performance based combination and validation to  quantify the costs and benefits of the invasive species introduced since 1959 into the U.S. Great  Lakes by opening the St. Lawrence Seaway (Rothlisberger et al., 2009, 2012). Lessons from studies  such as this one reveal that experts may have applicable knowledge that can be captured in a  structured elicitation when historical data have large uncertainties associated with them.  Advantages and limitations of structured expert judgment   Expert judgment studies do not reduce uncertainty; they merely quantify it. If the uncertainties are  large, as indeed they often are, then decision makers cannot expect science to relieve them of the  burden of deciding under conditions of ambiguity. Since its inception, structured expert judgment  has been met with scepticism in some quarters; it is, after all, just opinions and not hard facts. Its  steady growth and widening acceptance over 35 years correlates with the growth of complex  decision support models. The use of structured expert judgment must never justify a diminution of  effort in collecting hard data.  2.5.7.2    Scenario analysis and ensembles  Scenario analysis develops a set of possible futures based on extrapolating current trends and  varying key parameters, without sampling in a systematic manner from an uncertainty distribution.  Utilizing sufficiently long time horizons ensures that structural changes in the system are considered.   The futurist Herman Kahn and colleagues at the RAND Corporation are usually credited with  inventing scenario analysis (Kahn and Wiener, 1967). In the climate change arena, scenarios are    34 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  currently presented as different emission pathways or Representative Concentration Pathways  (RCPs). Predicting the effects of such pathways involves modelling the earth s response to changes in  GHG concentrations from natural and anthropogenic sources. Different climate models will yield  different projections for the same emissions scenario. Model Intercomparison studies generate sets  of projections termed ensembles (van Vuuren et al., 2011).  Elements of the theory  Currently, RCPs are carefully constructed on the bases of plausible storylines while insuring (1) they  are based on a representative set of peer reviewed scientific publications by independent groups, (2)  they provide climate and atmospheric models as inputs, (3) they are harmonized to agree on a  common base year, and (4) they extend to the year 2100. The four RCP scenarios, shown in Figure  2.3 relative to the range of baseline scenarios in the literature, roughly span the entire scenario  literature, which includes control scenarios reaching 430 ppm CO2eq or lower by 2100. The scenarios  underlying the RCPs were originally developed by four independent integrated assessment models,  each with their own carbon cycle. To provide the climate community with four harmonized  scenarios, they were run through the same carbon cycle/climate model (Meinshausen M et al.,  2011). Note that a representative set is not a random sample from the scenarios as they do not  represent independent samples from some underlying uncertainty distribution over unknown  parameters.    Figure 2.3. Total radiative forcing (left panel) and cumulative carbon emissions since 1751 (right panel) in baseline scenario literature compared to RCP scenarios. Forcing was estimated ex-post from models with full coverage the median output from the MAGICC results. Secondary axis in the left panel expresses forcing in CO2eq concentrations. Scenarios are depicted as ranges with median emboldened; shading reflects interquartile range (darkest), 5th 95th percentile range (lighter), and full extremes (lightest). Source: Figure 6.6 from WGIII AR5 Chapter 6.   35 of 90     Final Draft     Chapter 2  IPCC WGIII AR5    Figure 2.4. Solid lines are multi-model global averages of surface warming (relative to 1980 1999) for the scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Shading denotes the +/-1 standard deviation range of individual model annual averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right indicate the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assessment of the best estimate and likely ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as results from a hierarchy of independent models and observational constraints. Source: Figure SPM.5 from WGI AR4 SPM. Ensembles of model runs generated by different models, called multimodel ensembles or super   ensembles, convey the scatter of the climate response and natural internal climate variability around  reference scenarios as sampled by a set of models, but cannot be interpreted probabilistically  without an assessment of model biases, model interdependence, and how the ensemble was  constructed (see AR5 WGI Section 12.2; (Knutti et al., 2010). In many cases the assessed uncertainty  is larger than the raw model spread, as illustrated in Figure 2.4. The shaded areas (+/  one standard  deviation) around the time series do not imply that 68% certain to fall in the shaded areas, but the  modelers  assessed uncertainty (likely ranges, vertical bars on the right) are larger. These larger  ranges reflect uncertainty in the carbon cycle and the full range of climate sensitivity (AR4 WGI  Section 10.5.4.6 and Box 10.3; (Knutti et al., 2008) but to do not reflect other possible sources of  uncertainty (e.g., ice sheet dynamics, permafrost, or changes in future solar and volcanic forcings).  Moreover, many of these models have common ancestors and share parameterizations or code  (Knutti et al., 2013) creating dependences between different model runs. Probability statements on  global surface warming require estimating the models  bias and interdependence (see AR5 WGI  Sections 12.2 and 12.4.1.2). AR5 WGI assigns likelihood statements (calibrated language) to global  temperature ranges for the RCP scenarios (AR5 WGI Table SPM.2) but does not provide probability  density functions (PDFs), as there is no established formal method to generate PDFs based on results  from different published studies.  Advantages and limitation of scenario and ensemble analyses  Scenario/ensemble analyses are an essential step in scoping the range of effects of human actions  and climate change. If the scenarios span the range of possible outcomes, they may be seen as    36 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  providing the support for uncertainty distributions in a formal uncertainty analysis. If specific  assumptions are imposed when generating the scenarios, then the support is conditional on these  assumptions (see Section 6.2.3). The advantage of scenario/ensemble analyses is that they can be  performed without quantifying the uncertainty of the underlying unknown parameters. On the  downside, it is easy to read more into these analyses than is justified. Analysts often forget that  scenarios are illustrative possible futures along a continuum. They tend to use one of those scenarios  in a deterministic fashion without recognizing that they have a low probability of occurrence and are  only one of many possible outcomes. The use of probabilistic language in describing the swaths of  scenarios (such as standard deviations in Figure 2.4) may also encourage the misunderstandings that  these represent science based ranges of confidence.  The study of representative scenarios based on probabilistic forecasts have been shown to facilitate  strategic planning by professional groups such as military commanders, oil company managers, and  policymakers (Schoemaker, 1995; Bradfield et al., 2005). Recent work on ice sheet modelling,  sometimes called expert informed modelling (Little et al., 2013), points in this direction. Using  modelling assumptions and prior distributions on model coefficients, Monte Carlo simulations are  used to produce probabilistic predictions. Expert informed modelling is methodologically  intermediate between structured expert judgment (Bamber and Aspinall, 2013) and non probabilistic scenario sweeps. Structured expert judgment leaves the modelling assumptions to the  experts who quantify their uncertainty on future observables.  2.6   Managing uncertainty, risk and learning  2.6.1    Guidelines for developing policies  This section assesses how the risks and uncertainties associated with climate change can affect  choices with respect to policy responses, strategies, and instruments. At the time of the AR4, there  was some modelling based literature on how uncertainties affected policy design, but very few  empirical studies. In the intervening years, international negotiations failed to establish clear  national emissions reductions targets, but established a set of normative principles, such as limiting  global warming to 2°C. These are now reflected in international, national, and subnational planning  processes and have affected the risks and uncertainties that matter for new climate policy  development. Greater attention and effort has been given to finding synergies between climate  policy and other policy objectives, so that it is now important to consider multiple benefits of a  single policy instrument. For example, efforts to protect tropical rainforests (McDermott et al.,  2011), rural livelihoods (Lawlor et al., 2010), biodiversity (Jinnah, 2011), public health (Stevenson,  2010), fisheries (Axelrod, 2011), arable land (Conliffe, 2011), energy security Battaglini (2009), and  job creation(Barry et al., 2008) have been framed as issues that should be considered when  evaluating climate policies.  The treatment here complements the examination of policies and instruments in later chapters of  this report, such as Chapter 6 (which assesses the results of IAMs) and Chapters 13 15 (which assess  policy instruments at a range of scales). Those later chapters provide greater details on the overall  tradeoffs to be made in designing policies. The focus here is on the special effects of various  uncertainties and risks on those tradeoffs.   Section 2.6.2 discusses how institutions that link science with policy grapple with several  different forms of uncertainty so that they meet both scientific and political standards of  accountability.  Section 2.6.3 presents the results of integrated assessment models (IAMs) that address the  choice of a climate change temperature target or the optimal transition pathway to achieve a  particular target. IAMS normally focus on a social planner operating at the global level.    37 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Section 2.6.4 summarizes the findings from modelling and empirical studies that examine the  processes and architecture of international treaties.  Section 2.6.5 presents the results of modelling studies and the few empirical analyses that  examine the choice of particular policy instruments at the sovereign state level for reducing GHG  emissions. It also examines how the adoption of energy efficiency products and technologies can  be promoted at the firm and household levels. Special attention is given to how uncertainties  affect the performance and effectiveness of these policy instruments.  Section 2.6.6 discusses empirical studies of people s support or opposition with respect to  changes in investment patterns and livelihood or lifestyles that climate policies will bring about.  These studies show people s sensitivity to the impact that climate change will have on their  personal health or safety risks and their perceptions of the health and safety risks associated  with the new technologies addressing the climate change problem.   Linking intuitive thinking and deliberative thinking processes for dealing with uncertainties  associated with climate change and climate policy should increase the likelihood that instruments  and robust policies will be implemented. In this sense, the concepts presented in this section should  be viewed as a starting point for integrating descriptive models with normative models of choice for  developing risk management strategies.  2.6.2    Uncertainty and the science policy interface   Science policy interfaces are defined as social processes which encompass relationships between  scientists and other actors in the policy process, and which allow for exchanges, co evolution, and  joint construction of knowledge with the aim of enriching decision making (Van den Hove, 2007).  Analysts have called attention to several different forms of uncertainty affecting the science policy  relationship that can be summarized as follows:  Paradigmatic uncertainty results from the absence of prior agreement on the framing of  problems, on methods for scientifically investigating them, and on how to combine knowledge  from disparate research traditions. Such uncertainties are especially common in cross disciplinary, application oriented research and assessment for meeting policy objectives  (Gibbons, 1994; Nowotny et al., 2001).  Epistemic uncertainty results from lack of information or knowledge for characterizing  phenomena. Stirling (2007) further distinguishes between uncertainty (insufficient knowledge to  assess probabilities), ambiguity (insufficient knowledge about possible outcomes), and ignorance  (insufficient knowledge of likely outcomes and their probabilities). Others have noted that  producing more knowledge may exacerbate uncertainty, especially when actors disagree about  how to frame a problem for scientific investigation (Beck, 1992; Gross, 2010).  Translational uncertainty results from scientific findings that are incomplete or conflicting, so  that they can be invoked to support divergent policy positions (Sarewitz, 2010). In such  circumstances, protracted controversy often occurs, as each side challenges the methodological  foundations of the other s claims in a process called  experimenters  regress  (Collins, 1985).  Institutions that link science to policy must grapple with all of the above forms of uncertainty, often  simultaneously. Because their work cuts across conventional lines between science and politics,  these institutions have been called  boundary organizations  (Guston, 2001) and their function has  been termed  hybrid management  (Miller, 2001). Straddling multiple worlds, science policy  institutions are required to meet both scientific and political standards of accountability. Whereas  achieving scientific consensus frequently calls for bounding and closing down disagreements,  achieving political legitimacy requires opening up areas of conflict in order to give voice to divergent  perspectives.    38 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  The task of resolving conflicts in policy relevant science is generally entrusted to multidisciplinary  expert bodies. These organizations are best suited to addressing the paradigmatic uncertainties that  arise when problems are novel or when synthesis is required across fields with different standards of  good scientific practice. Bridging epistemic and translational uncertainties, however, imposes added  demands. For expert advisory bodies to be viewed as legitimate they must represent all relevant  viewpoints in a politically acceptable manner (Jasanoff, 1990; Jasanoff, 2005). What counts as  acceptable varies to some degree across national decision making cultures. Each culture may place  different weights on experts  personal integrity, the reliability of their disciplinary judgments, and  their ability to forge agreement across competing values (Jasanoff, 2005, pp. 209 224).  To achieve legitimacy, institutions charged with linking science to policy must also open themselves  up to public input at one or more stages in their deliberations. This process of  extended peer  review  (Funtowicz and Ravetz, 1992) is regarded as necessary, though insufficient, for the  production of  socially robust knowledge , that is, knowledge that can withstand public scrutiny and  scepticism (Gibbons, 1994). Procedures that are sufficient to produce public trust in one political  context may not work in others because national political cultures are characterized by different  civic epistemologies , i.e., culturally specific modes of generating and publicly testing policy relevant knowledge (Jasanoff, 2005).  International and global scientific assessment bodies confront additional problems of legitimacy  because they operate outside long established national decision making cultures and are  accountable to publics subscribing to different civic epistemologies (Jasanoff, 2010). The temptation  for such bodies has been to seek refuge in the linear model in the hope that the strength of their  internal scientific consensus will be sufficient to win wide political buy in. The recent research on  linking science to policy suggests otherwise.  2.6.3 Optimal or efficient stabilization pathways (social planner perspective) under  uncertainty  Integrated assessment models (IAMs) vary widely in their underlying structure and decision making  processes. IAMs designed for cost benefit analysis typically simulate the choices of an idealized  social planner , who by definition is someone who makes decisions on behalf of society, in order to  achieve the highest social welfare by weighting the benefits and cost of mitigation measures. In  contrast, many IAMs designed for cost effectiveness analysis (CEA) specify the social planner s  objective as identifying the transformation pathway that achieves a pre defined climate goal at the  lowest discounted aggregated costs to society. In both cases, the analyses do not consider  distributional effects of policies on different income groups, but instead focus on the effect on total  macroeconomic costs. Hence, with these types of IAMs, negotiators that are part of the political  process are able to rank the relative desirability of alternative policies to the extent that they share  the definition of social welfare embedded in the model (e.g., discounted aggregate cost  minimization), and believe that those implementing the policy will do so cooperatively.  Chapter 6 describes in more detail important structural characteristics of a set of IAMs used to  generate transformation pathways.  The modelling analyses highlighted in Chapter 6 utilize the  scenario approach to represent uncertainty. In this section we instead focus on IAM results where  uncertainty is an integral part of the decision analytic framework.  Climate policy assessment should be considered in the light of uncertainties associated with climate  or damage response functions, the costs of mitigation technology and the uncertainty in climate  change policy instruments. A key question these analyses address is how uncertainty with respect to  the above factors alters the optimal social planner s short term reactions to climate change. A  subset also asks whether adjusting behaviour to uncertainty and designing more flexible policies and  technology solutions would induce a significant welfare gain.     39 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Table 2.2 provides an overview of the existing literature on IAMs that examine mitigation actions.  The rows classify the literature on the basis of the type of uncertainty: upstream, associated with  emission baseline drivers, such as economic and population growth; downstream continuous,  associated with climate feedbacks and damages; downstream strongly nonlinear, associated with the  possibility of thresholds and irreversibilities; policy responses, associated with the uncertain  adoption of policy tools; and multiple sources, when more than one of the sources above are  considered simultaneously. The three columns categorize the literature according to the ways  introducing uncertainty influence the findings. The theoretical economic literature shows that the  effect of including uncertainty in decision making on near term mitigation is ambiguous (for an  overview see e.g. Lange and Treich, 2008; De Zeeuw and Zemel, 2012). However, for most studies  that assume downstream strongly nonlinear uncertainties under a social welfare maximization or  downstream uncertainties in combination with a temperature target, including uncertainty in the  analysis leads to an optimal or efficient level of mitigation that is greater and/or accelerated than  under conditions of certainty.  The literature on IAMs incorporating uncertainty uses either Monte Carlo simulations or fully  stochastic programming techniques. Monte Carlo studies provide insights regarding the order of magnitude effect of multiple model parameter uncertainties for model output (Nordhaus and Popp,  1997; Tol, 1999; Webster et al., 2002; Hope, 2008, p. 200; Ackerman et al., 2010; Dietz, 2011; Pycroft  et al., 2011). In this sense they can be interpreted as a preparatory step towards a full fledged  decision analysis under uncertainty.  Table 2.2 also characterizes the effect of the inclusion of uncertainty on early period mitigation  efforts. A decision analysis is generally compared to a baseline case represented by a deterministic  study utilizing average values of uncertain parameters.1 The few studies highlighted by  *  use non probabilistic decision criteria under uncertainty (e.g., minimax regret or maximin).                                                                 1  In some studies the  baseline case  is a decision analysis based on a reduced form of uncertainty.    40 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Table 2.2: Overview of literature on integrated assessment models examining mitigation actions. (cea) indicates: analysis based on a probabilistic generalization of CEA. Papers that appear several times report different scenarios or assumptions.   Effect on Mitigation Action  Accelerates / Increases  Mitigation Action  Up Stream  (emission  drivers)  Down Stream  (climate and  damages)    mildly nonlinear  damages  (Reilly et al., 1987; Webster et al., 2002;  O Neill and Sanderson, 2008a;  Rozenberg et al., 2010)  (Chichilnisky and Heal, 1993; Peck and  Teisberg, 1994; Ha Duong and Treich,  2004; Syri et al., 2008a; Athanassoglou  and Xepapadeas, 2011; Kaufman, 2012;  Ackerman et al., 2013)    Delays / Decreases  Mitigation Action  Ambiguous Effect  (O Neill and Sanderson, 2008b)  (Kolstad, 1994, 1996a;  Baranzini et al., 2003)  Type of Uncertainty Considered  (Clarke and Reed, 1994; Kolstad,  1996b; Tsur and Zemel, 1996;  Gollier et al., 2000; Fisher and  Narain, 2003; Ha Duong and  Treich, 2004; Baker et al., 2006;  Lange and Treich, 2008; Lorenz et  al., 2012b; Ulph and Ulph, 2012;  Ackerman et al., 2013)  (Gollier and Treich, 2003)  Down Stream  (climate and  damages)    strongly  nonlinear event  or temperature  target  Uncertainty on  Policy Response  (Ha Duong, 1998; Gjerde et al., 1999;  O Neill and Oppenheimer, 2002;  Baranzini et al., 2003; Dumas and Ha Duong, 2005; Syri et al., 2008a(cea);  Johansson et al., 2008(cea); Hope, 2008;  Webster, 2008; Tsur and Zemel, 2009;  Schmidt et al., 2011(cea); Funke and  Paetz, 2011; Iverson and Perrings,  2012*; Lorenz et al., 2012b; de Zeeuw  and Zemel, 2012)  (Ha Duong et al., 1997a; Blanford, 2009;  Bosetti and Tavoni, 2009; Bosetti et al.,  2009; Durand Lasserve et al., 2010(cea))  (Peck and Teisberg,  1995)  (Baudry, 2000; Baker  2  and Shittu, 2006(cea)) (Farzin and Kort, 2000(cea))  Multiple Sources  (Nordhaus and Popp, 1997; Grubb,  of Uncertainty  1997; Pizer, 1999; Tol, 1999;  (Scott et al., 1999)  Obersteiner et al., 2001; Yohe et al.,  2004; Keller et al., 2004; Baker and  Shittu, 2008; Baker and Adu Bonnah,  2008; Bahn et al., 2008b; Held et al.,  2009; Hope, 2009; Labriet et al.,  2012(cea), 2010; Hof et al., 2010* ;  Funke and Paetz, 2011*)   (Manne and Richels, 1991; Baker  and Shittu, 2008(4); Baker and  3 Adu Bonnah, 2008).     It should be noted that, although IAMs mimic decision makers who utilize deliberative processes, in  reality social planners might resort to intuitive thinking to simplify their decision processes, leading  to biases and inferior choices. To date there is no research that considers such behaviour by decision  makers and how it affects the projections of IAMs. We discuss the need for such studies in the  concluding section on Gaps in Knowledge.                                                                The impact on R&D investments depend on technology; the most common result is, however, that  uncertainty decreases the optimal level of R&D investments.   In the sense of: increasing damage uncertainty would lead to higher investments in less risky programmes,  but the effect depends on the type of technology.  3 2   41 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  2.6.3.1 Analyses predominantly addressing climate or damage response uncertainty  Although studies differ in their approaches, the case against accelerated or increased mitigation  action is the possibility that irreversible sunk cost investments in abatement options outweigh the  irreversible effects of climate change. This has been an infrequent finding, with the exception of  those studies that have not included catastrophic/threshold damage and give no consideration to  the non climate related benefits of these investments, such as enhancing energy security or local  pollution benefits. Indeed, the one set of papers that finds a need for increased or accelerated  mitigation action is ambiguous when the social welfare optimum is examined under downstream  continuous/mildly nonlinear damages uncertainty. Lorenz et al. (2012a) show that this is due  primarily to the fact that damage nonlinearities are often compensated by other nonlinearities such  as a concave4 concentration temperature relation.  Studies that cluster in the first column (accelerated or increased mitigation action) assumed strongly  non linear damage functions or temperature targets (3rd row). Cost effectiveness analysis has been  applied to reflect targets when the models have been generalized to include uncertainty. In this  regard, Held et al. (2009), utilizing chance constrained programming (CCP) (see Section 2.5.4.1),  examine uncertainty in climate and technology response properties. As their reference case they  calculated the mitigation effort needed to achieve a 2°C temperature target, assuming average  values for all uncertain parameters. Given uncertainty, however, it is clear that any given mitigation  effort will exceed the target with some probability; for the reference case this is approximately 50%.  As the required probability for meeting the target increases, a greater level of mitigation effort is  required.5 If the required probability is 66.6% rather than 50%, investments in mitigation  technologies need to occur in earlier decades.  The effects on investment in mitigation also depend on whether uncertainty is expected to be  reduced. Is a reduction of uncertainty on climate sensitivity and related climate response properties  realistic? In an early paper, Kelly and Kolstad (1999) evaluated the amount of time needed to  significantly reduce uncertainty about the parameters influencing climate sensitivity by observing  global warming. They found the required time to be 90 to 160 years. Leach (2007) conducted a  similar analysis that allowed two rather than one independent sources of downstream uncertainty.  In that case, the time required to resolve the climate sensitivity parameters is likely to be even  longer. These kind of studies assumed that our basic understanding of atmospheric chemistry and  physics would remain unchanged over time. If one were to relax this constraint, then one could  imagine that learning would progress more rapidly.  Another set of papers examine the  anticipation effect , namely what it means if we believe we will  learn in the future, rather than that our knowledge will remain constant. Lange and Treich (2008)  showed that the sign and magnitude of mitigation depend on the particular numerical model and  type of uncertainty when introducing the anticipation effect. Using CBA, for example, Lorenz et al.  (2012b), Peck and Teisberg (1993), Webster et al. (2008), and Yohe and Wallace (1996)showed the  anticipation effect to be negligible when assuming continuous and only weakly non linear damages.  However, Lorenz (2012b) showed slightly less immediate mitigation (compared to no learning) if one  anticipates learning within a given, narrow, time window with respect to threshold type impacts.  Such a mild reduction of early mitigation in response to anticipation was also reported in Keller et al.  (2004) in accordance with Ulph and Ulph (1997).  When CEA is used to represent temperature targets in combination with climate response  uncertainty, it is difficult to evaluate learning effects (see the discussion in Section 2.5.4.3). One way  to allow for numerical solutions in this case is to assume an upper limit on the distribution of climate  sensitivity to examine the effect of learning in the presence of a climate target. Under this                                                               4 5  i.e., sub linear   An analogous argument holds for tipping point derived targets (McInerney and Keller, 2008).    42 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  assumption, more mitigation is called for (Bahn et al., 2008a; Syri et al., 2008b; Fouquet and  Johansson, 2008; Webster, 2008).  A further set of papers considers the impossibility of specifying a precise probability density function  for characterizing climate sensitivity as suggested by many climate scientists. This implies that these  probabilities are difficult to estimate and decisions have to be made under conditions of ambiguity.  Funke and Paetz (2011) account for model structure uncertainty by employing a robust control  approach based on a maxmin principle. When considering uncertainty on the ecological side of the  balance, they conclude that model uncertainty implies a need for more aggressive near term  emissions reductions. Athanassoglou and Xepapadeas (2011) extend this approach to include  adaptation. Iverson and Perrings (2012) apply combinations of maximin and/or minimax decision  criteria, examining the effects of widening the range of climate sensitivity. Hof et al. (2010), contrast  a CBA with a minimax regret approach and find that the minimax regret approach leads to more  stringent and robust climate targets for relatively low discount rates if both a high climate sensitivity  and high damage estimates are assumed. What remains unresearched is the possibility of using non probabilistic methods to evaluate the effects of an unbounded, or  fat tails , distribution for climate  responses and climate impacts.  Finally, a potentially path breaking development in economics is the effort of Ackerman et al. (2013),  Crost and Traeger (2013), and Kaufman (2012) to disentangle risk aversion (a static effect) from  consumption smoothing (an intertemporal effect6) in an Integrated Assessment Model. Compared to  the results of a standard discounted expected utility model that relates risk aversion to consumption  smoothing, Ackerman (2013) as well as Crost and Traeger (2013) find optimal mitigation to be twice  as great. Since these are the first papers on this topic, it is too early to tell whether their results  represent a robust result that captures society s risk preferences.  2.6.3.2 Analyses predominantly addressing policy response uncertainty  In this area there are two strands of research. The first has focused on examining how the extent  and timing of mitigation investments are affected by the uncertainty on the effectiveness of  Research, Development, and Demonstration (RD&D) and/or the future cost of technologies for  reducing the impact of climate change. An example of this would be optimal investment in energy  technologies that a social planner should undertake, knowing that there might be a nuclear power  ban in the near future. Another strand of research looks at how uncertainty concerning future  climate policy instruments in combination with climate and/or damage uncertainty affects a  mitigation strategy. An example would be the optimal technological mix in the power sector to  hedge future climate regulatory uncertainty.  With respect to the first strand, the main challenge is to quantify uncertainty related to the future  costs and/or availability of mitigation technologies. Indeed, there does not appear to be a single  stochastic process that underlies all (RD&D) programmes  effectiveness or innovation processes.  Thus elicitation of expert judgment on the probabilistic improvements in technology performance  and cost becomes a crucial input for numerical analysis. A literature is emerging that uses expert  elicitation to investigate the uncertain effects of RD&D investments on the prospect of success of  mitigation technologies  (see for example Baker et al., 2008; Curtright et al., 2008; Chan et al., 2010;  Baker and Keisler, 2011). In future years, this new body of research will allow the emergence of a  literature studying the probabilistic relationship between R&D and the future cost of energy  technologies in IAMs.  The few existing papers reported in Table 2.2 under the Policy Response uncertainty column (see  Blanford, 2009; Bosetti and Tavoni, 2009) point to increased investments in energy RD&D and in  early deployment of carbon free energy technologies in response to uncertainty. An interesting  analysis has been performed in Goeschl and Perino (2009), where the potential for technological                                                               6  For a conceptual discussion see (Ha Duong and Treich, 2004).    43 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  boomerangs  is considered. Indeed, while studies cited above consider an innovation failure an R&D  project that does not deliver a clean technology at a competitive cost, Goeschl and Perino (2009)  define R&D failure when it brings about a new, environmentally harmful, technology. Under such  characterization they find that short term R&D investments are negatively affected.  Turning to the second strand of literature reported in the Policy Response or in the Multiple  Uncertainty columns of Table 2.2 (see Ha Duong et al., 1997b; Baker and Shittu, 2006; Durand Lasserve et al., 2010), most analyses imply increased mitigation in the short term when there is  uncertainty about future climate policy due to the asymmetry of future states of nature. In the event  of the realization of the  no climate policy  state, investment in carbon free capital has low or zero  value. Conversely, if a  stringent climate policy  state of nature is realized, it will be necessary to  rapidly ramp up mitigation to reduce the amount of carbon in the atmosphere. This cost is  consistently higher, thus implying higher mitigation prior to the realization of the uncertain policy  state.  2.6.4 International negotiations and agreements under uncertainty  Social planner studies, as reviewed in the previous sub sections, consider the appropriate magnitude  and pace of aggregate global emissions reduction. These issues have been the subject of  negotiations about long term strategic issues at the international level along with the structuring of  national commitments and the design of mechanisms for compliance, monitoring, and enforcement.  2.6.4.1 Treaty formation  A vast literature looks at international treaties in general and how they might be affected by  uncertainties. Cooper (1989) examined two centuries of international agreements that aimed to  control the spread of communicable diseases and concludes that it is only when uncertainty is  largely resolved that countries will enter into agreements. Young (1994), on the other hand, suggests  that it may be easier to enter into agreements when parties are uncertain over their individual net  benefits from an agreement than when that uncertainty has been resolved. Coalition theory predicts  that for international negotiations related to a global externality such as climate change, stable  coalitions will generally be small and/or ineffective (Barrett, 1994). Recently, De Canio and Fremstad  (2013) show how the recognition of the seriousness of a climate catastrophe on the part of leading  governments which increases the incentives for reaching an agreement could transform a  prisoner's dilemma game into a coordination game leading to an increased likelihood of reaching an  international agreement to limit emissions.  Relatively little research has been undertaken on how uncertainty affects the stability of multilateral  environmental agreements (MEAs) and when uncertainty and learning has the potential to unravel  agreements. Kolstad (2007), using a game theoretic model, looks specifically at environmental  agreements and investigates the extent to which the size of the largest stable coalition changes as a  result of learning and systematic uncertainty.  He finds that systematic uncertainty by itself  decreases the size of an MEA. Kolstad and Ulph (2011) show that partial or complete learning has a  negative impact on the formation of an MEA because as outcomes become more certain, some  countries also learn the MEA will reduce their own welfare benefits, which deters them from joining  the coalition. Baker (2005), using a model of the impacts of uncertainty and learning in a non cooperative game, shows that the level of correlation of damages across countries is a crucial  determinant of outcome.  Barrett (2011) has investigated the role of catastrophic, low probability events on the likelihood of  cooperation with respect to a global climate agreement. By comparing a cooperative agreement  with the Nash equilibrium it is possible to assess a country s incentives for participating in such an  agreement. Looking at stratospheric ozone as an analogy for climate, Heal and Kunreuther (2011)  observed that the signing of the Montreal Protocol by the United States led many other countries to  follow suit. The authors in turn suggest how it could be applied to foster an international treaty on    44 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  greenhouse gas emissions by tipping a non cooperative game from an inefficient to an efficient  equilibrium.  Several analyses, including Victor (2011) and Hafner Burton et al. (2012), contend that the likelihood  of a successful comprehensive international agreement for climate change is low because of the  sensitivity of negotiations to uncertain factors, such as the precise alignment and actions of  participants. Keohane and Victor (2011), in turn, suggest that the chances of a positive outcome  would be higher in the case of numerous, more limited agreements. Developing countries have been  unlikely to agree to binding targets in the context of international agreements due in part to the  interests of developed countries dominating the negotiation process. For the situation to change,  the developing countries would have to enhance their negotiating power in international climate  change discussions by highlighting their concerns (Rayner and Malone, 2001).  The above analyses all assume that the agents are deliberative thinkers, each of whom has the same  information on the likelihood and consequences of climate change. Section 2.7 indicates the need  for future research that examines the impact of intuitive thinking on behaviour on international  negotiations and processes for improving the chances of reaching an agreement on treaties.  2.6.4.2 Strength and form of national commitments  Buys et al. (2009) construct a model to predict national level support for a strong global treaty based  on both the climatic and economic risks that parties to the treaty face domestically; however Buys et  al. do not test the model empirically. Their model distinguishes between vulnerabilities to climate  impacts and climate policy restrictions with respect to carbon emissions and implies that countries  would be most supportive of strong national commitments when they are highly vulnerable to  climate impacts and their emitting sectors are not greatly affected by stringent policy measures.  Victor (2011) analyzes the structure of the commitments themselves, or what Hafner Burton et al.  (2012) call rational design choices. Victor suggests that while policymakers have considerable control  over the carbon intensity of their economies, they have much less control over the underlying  economic growth of their country. As a result, there is greater uncertainty on the magnitude of  emissions reductions, which depends on both factors, than on the reductions in carbon intensity.  Victor suggests that this could account for the reluctance by many countries to make binding  commitments with respect to emissions reductions. Consistent with this reasoning, Thompson  (2010) examined negotiations within the UNFCCC and found that greater uncertainty with respect to  national emissions was associated with a decrease in support for a national commitment to a global  treaty.  Webster et al. (2010) examined whether uncertainty with respect to national emissions increases  the potential for individual countries to hedge by joining an international trade agreement. They  found that hedging had a minor impact compared to the other effects of international trade, namely  burden sharing and wealth transfer. These findings may have relevance for structuring a carbon  market to reduce emissions by taking advantage of disparities in marginal abatement costs across  different countries. In theory, the right to trade emission permits or credits could lessen the  uncertainties associated with any given country s compliance costs compared to the case where no  trading were possible. Under a trading scheme, if a country discovered its own compliance costs to  be exceptionally high, for example, it could purchase credits on the market.  2.6.4.3 Design of measurement, verification regimes, and treaty compliance  A particularly important issue in climate treaty formation and compliance is uncertainty with respect  to actual emissions from industry and land use. Measurement, reporting, and verification (MRV)  regimes have the potential to set incentives for participation in a treaty and still be stringent, robust,  and credible with respect to compliance. The effects of strategies for managing GHG emissions are  uncertain because the magnitude of the emissions of carbon dioxide and other GHG gases, such as    45 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  methane, often cannot be detected given the error bounds associated with the measurement  process. This is especially the case in the agriculture, forestry, and land use (AFOLU) sectors.  In the near term, an MRV regime that met the highest standards could require stock and flow data  for carbon and other GHGs. These data are currently available only in wealthy countries, thus  precluding developing countries from participating (Oliveira et al., 2007). By contrast, there are  design options for MRV regimes that are less accurate, but which still provide data on the drivers of  emissions so that the developing countries could be part of the system. By being more inclusive,  these options could be a more effective way to actually reduce aggregate emissions, at least in the  near term (Bucki et al., 2012). In the longer term, robust and harmonized estimation of GHG flows emissions and their removal in agriculture and forestry requires investment in monitoring and  reporting capacity, especially in developing countries (Böttcher et al., 2009; Romijn et al., 2012).  Reflecting this need for an evolving MRV regime to match data availability, the 2006 Guidelines for  National Greenhouse Gas Inventories, prepared by an IPCC working group, suggested three  hierarchical tiers of data for emission and carbon stock change factors with increasing levels of data  requirements and analytical complexity. Tier 1 uses IPCC default values of high uncertainty; Tier 2  uses country specific data; and Tier 3 uses higher spatial resolution, models, and inventories. In  2008, only Mexico, India, and Brazil had the capacity to use Tier 2 and no developing country was  able to use tier 3 (Hardcastle and Baird, 2008). Romijn et al. (2012) focused on 52 tropical countries  and found that four of them had a very small capacity gap regarding the monitoring of their forests  through inventories, while the remaining 48 had limited or no ability to undertake this monitoring  process.  In order to overcome the gaps and uncertainties associated with lower tier approaches, different  principles can be applied to form pools (Böttcher et al., 2008). For example, a higher level of  aggregation by including soil and litter, harvested products in addition to a biomass pool as part of  the MRV regime decreases relative uncertainty: the losses in one pool (e.g., biomass) are likely to be  offset by gains in other pools (e.g., harvested products) (Böttcher et al., 2008). Researchers have  suggested that the exclusion of a pool (e.g., soil) in an MRV regime should be allowed only if there is  adequate documentation that the exclusion provides a more conservative estimate of emissions  (Grassi et al., 2008). They also suggest that an international framework needs to create incentives  for investments. In this respect, overcoming initialization costs and unequal access to monitoring  technologies would be crucial for implementation of an integrated monitoring system, and fostering  international cooperation (Böttcher et al., 2009).  2.6.5 Choice and design of policy instruments under uncertainty  Whether motivated primarily by a binding multilateral climate treaty or by some other set of factors,  there is a growing set of policy instruments that countries have implemented or are considering to  deal with climate change. Typically, these instruments will influence the decisions of firms and  private individuals, so that policy makers try to anticipate how these agents will react to them.  Some policy instruments operate by mandating particular kinds of behaviour, such as the installation  of pollution control technology or limits on emissions from particular sources. There is an extensive  literature in political science demonstrating that the effects of these instruments are fairly  predictable (Shapiro and McGarity, 1991) and are insensitive to market or regulatory uncertainties,  simply because they prescribe particular technologies or practices which must be strictly adhered to.  There is a literature in economics, however, suggesting that their very inflexibility makes them  inefficient (Malueg, 1990; Jaffe and Stavins, 1995).  In the presence of substantial technological uncertainty, no matter what policy instrument is  employed, interventions that shift investment behaviour from currently low cost to currently high  cost technologies run the risk of increasing short term costs and energy security concerns for  consumers (Del Rio and Gual, 2007; Frondel et al., 2008, 2010). In some cases, long term costs may  be higher or lower, depending on how different technologies evolve over time (Williges et al., 2010;    46 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Reichenbach and Requate, 2012). This section is structured by considering two broad classes of  interventions for targeting the energy supply: interventions that focus on emissions, by placing a  market price or tax on CO2 or other greenhouse gases; and interventions that promote Research,  Development, Deployment, and Diffusion (RDD&D) of particular technologies. In both types of  interventions, policy choices can be sensitive to uncertainties in technology costs, markets, and the  state of regulation in other jurisdictions and over time. In the case of technology oriented policy,  choices are also sensitive to the risks that particular technologies present. We then describe  instruments for reducing energy demand by focusing on lifestyle choice and energy efficient  products and technologies. Finally, we briefly contrast the effects of uncertainties in the realm of  climate change adaptation with climate change mitigation, recognizing that more detail on  adaptation can be found in the report from Working Group II.  2.6.5.1  Instruments creating market penalties for GHG emissions  Market based instruments increase the cost of energy derived from fossil fuels, potentially leading  firms involved in the production and conversion of energy to invest in low carbon technologies.  Considerable research prior to AR4 identified the differences between two such instruments carbon taxes and cap and trade regimes with respect to uncertainty. Since AR4, research has  examined the effects of regulatory risk and market uncertainty on one instrument or the other by  addressing the following question: how is the mitigation investment decision affected by uncertainty  with respect to whether and to what extent a market instrument and well enforced regulations will  be in place in the future?  Much of this research has focused on uncertainty with respect to carbon prices under a cap and  trade system. A number of factors influence the relationship between the size of the cap and the  market price that includes fossil fuel prices, consumer demand for energy, and economic growth  more generally. Each of these factors can lead to volatility in carbon market prices (Alberola et al.,  2008; Carraro et al., 2009; Chevallier, 2009). Vasa and Michaelowa (2011) assessed the impact of  policy uncertainty on carbon markets and found that the possibility of easily creating and destroying  carbon markets leads to extreme short term rent seeking behaviour and high volatility in market  prices. Experience so far with the most developed carbon market the European Emissions Trading  System (ETS) reveals high volatility marked by not infrequent decreases of the price of carbon to  very low values (Feng et al., 2011).  Numerous modelling studies have shown that regulatory uncertainty reduces the effectiveness of  market based instruments. More specifically, a current or expected carbon price induces a decrease  in investment into lower carbon infrastructure and hence less technological learning, when there is  uncertainty as to future market conditions, compared to the case where future conditions are  known (Yang et al., 2008; Fuss et al., 2009; Oda and Akimoto, 2011). In order to compensate and  maintain a prescribed level of change in the presence of uncertainty, carbon prices would need to be  higher. Estimates of the additional macro economic costs range from 16 37% (Blyth et al., 2007) to  as much as 50% (Reinelt and Keith, 2007), depending on the particular type of investment under  consideration. The precise instrument design details can affect investment behaviour. Patino Echeverri et al. (2007, 2009), for example, found that less frequent but larger regulatory policy  changes had less of a negative interactive effect with uncertainty, while Zhao (2003) found a greater  impact of uncertainty on the performance of a carbon tax than on a cap and trade system. Fan et al.  (2010) added to this analysis by examining the sensitivity of these results to increasing risk aversion,  under two alternative carbon market designs: one in which carbon allowances were auctioned by  the government to firms, and a second in which existing firms received free allowances due to a  grandfathering rule.  Under an auctioned system for carbon allowances, increasing risk aversion leads to greater  investments in low carbon technologies. In contrast, under a grandfathered market design,  increasing risk aversion combined with uncertainty pushes investment behaviour closer to what it    47 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  would be in the absence of the carbon market: more investment in coal. The intuition behind this  finding is that the grandfathered scheme would create a situation of windfall profits (since the freely  allocated permits have a value to the firms receiving them), and risk averse investors would be more  influenced by the other, less desirable state of the world, the absence of carbon markets. Fan et al.,  (2012) replicated these results using a broader range of technological choices than in their earlier  paper. Whereas these latter two papers used a game theoretic model, Fuss et al., (2012) employed a  real options theory model to arrive at qualitatively the same conclusions.  One option for reducing carbon price volatility is to set a cap or floor for that price to stabilize  investment expectations (Jacoby and Ellerman, 2004; Philibert, 2009). Wood and Jotzo (2011) found  that setting a price floor increased the effectiveness of the carbon price in stimulating investments in  low carbon technologies, given a particular expectation of macroeconomic drivers (e.g., economic  growth and fossil fuel prices that influence the degree to which a carbon cap is a constraint on  emissions). Szolgayova et al., (2008), using a real options model to examined the value of waiting for  information, found the cap stabilized expectations. In the process, the cap lessened the  effectiveness of an expected carbon price at altering investment behaviour, as many investments in  low carbon technologies are undertaken only because of the possibility of very high carbon prices in  the future. In another study assuming rational actor behaviour, Burtraw et al. (2010) found that a  symmetric safety valve that sets both a floor and a ceiling price outperforms a single sided safety  valve in terms of both emissions reduction and economic efficiency. Murray et al. (2009) suggested  that a reserve allowance for permits outperforms a simple safety valve in this regard.  Empirical research on the influence of uncertainty on carbon market performance has been  constrained by the small number of functioning markets, thus making it difficult to infer the effects  of differences in market design. The few studies to date suggest that the details of market design can  influence the perception of uncertainty, and in turn the performance of the market. More  specifically, investment behaviour into the Clean Development Mechanism (CDM) has been  influenced by uncertainties in terms of what types of projects are eligible (Castro and Michaelowa,  2011), as well as the actual number of Certified Emissions Reductions (CERs) that can be acquired  from a given project (Richardson, 2008).   Looking at the European Union s Emission Trading System (ETS), researchers have observed that  expected carbon prices do affect investment behaviour, but primarily for investments with very  short amortization periods. High uncertainty with respect to the longer term market price of carbon  has limited the ETS from having an impact on longer term investments such as R&D or new power  plant construction (Hoffmann, 2007). Blyth and Bunn (2011) found that uncertainty for post 2012  targets was a major driver of ETS prices, with an effect of suppressing those prices. The literature  suggests that prices have not been high enough to drive renewable energy investment in the  absence of feed in tariffs (Blanco and Rodrigues, 2008). Barbose et al. (2008) examined a region the western United States where no ETS was functioning but many believed that it would, and  found that most utilities did consider the possibility of carbon prices in the range of USD 4 to USD 22  a ton. At the same time, the researchers could not determine whether this projection of carbon  prices would have an actual effect on utilities  decisions, were an actual ETS in place, because they  were unable to document the analysis underlying the utilities  investment decisions.  2.6.5.2 Instruments promoting technological RDD&D  Several researchers suggest that future pathways for RDD&D will be the determining factor for  emissions reductions (Prins and Rayner, 2007; Lilliestam et al., 2012). Policy instruments can provide  an incentive for firms not only to alter their investment portfolio towards low carbon technologies,  but also to devote resources towards innovation (Baker et al., 2008). Because instruments differ in  terms of how they influence behaviour, such as whether or not they create an immediate incentive  or one that accrues over the lifetime of the investment, their relative effectiveness can be sensitive  to relevant market uncertainties.    48 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  The literature reviewed in the previous section reveals that in the presence of substantial regulatory  uncertainty, market based instruments do a poor job of promoting RDD&D. This has given rise to  policy proposals to supplement a pure market system with another instrument such as a cap, floor,  or escape valve to reduce price volatility and stabilize expectations. By contrast, combining a  market based instrument with specific technology support can lead to greater volatility in the  carbon price, even when there is very little uncertainty about which technologies will be assisted in  the coming years (Blyth et al., 2009).  Several empirical studies with a focus on risk and uncertainty have compared the effectiveness of  market instruments with other instruments such as feed in tariffs or renewable quota systems, in  stimulating low carbon investments and R&D. Butler and Neuhoff (2008) compared the feed in tariff  in Germany with the quota system in the United Kingdom, and found the German system  outperformed the UK system on two dimensions: stimulating overall investment quantity, and  reducing costs to consumers. The primary driver was the effectiveness of the feed in tariff in  reducing risks associated with future revenues from the project investment, therefore making it  possible to lower the cost of project financing. Other researchers replicate this finding using other  case studies (Mitchell et al., 2006; Fouquet and Johansson, 2008). Lüthi and Wüstenhagen (2012)  surveyed investors with access to a number of markets, and found that they steered their new  projects to those markets with feed in tariff systems, as it was more likely than other policy  instruments to reduce their risks. Lüthi (2010) compared policy effectiveness across a number of  jurisdictions with feed in tariffs, and found that above a certain level of return, risk related factors  did more to influence investment than return related factors.  Looking at the early stages in the technology development process, Bürer and Wüstenhagen (2009)  surveyed green tech venture capitalists in the United States and Europe using a stated preference  approach to identify which policy instrument or instruments would reduce the perceived risks of  investment in a particular technology. They identified a strong preference in both continents, but  particularly Europe, for feed in tariffs over cap and trade and renewable quota systems, because of  the lower risks to return on investment associated with the former policy instrument. Moreover,  venture capital investors typically look for short  to medium term returns on their investment, for  which the presence of feed in tariffs has the greatest positive effect.  Held et al. (2006) identified patterns of success across a wide variety of policy instruments to  stimulate investment in renewable energy technologies in Europe. They found that long term  regulatory consistency was vital for new technology development. Other studies have shown that  regulatory inconsistency with respect to subsidy programs such as feed in tariffs in Spain or tax  credits in the United States can lead to temporarily overheated markets, pushing up investment  costs and consumer prices, and reducing the pressure for technological development (Del Rio and  Gual, 2007; Sáenz de Miera et al., 2008; Barradale, 2010).  In contrast to the large literature looking at the overall effects of uncertainty, there have only been a  few empirical papers documenting the particular risks that concern investors the most. Leary and  Esteban (2009) found regulatory uncertainty particularly with respect to issues of siting to  concern investors in wave  and tide based energy projects. Komendantova et al. (2012) examined  perceptions among European investors in solar projects in North Africa, and found concerns about  regulatory change and corruption were much greater than concerns about terrorism and technology  risks. The same researchers modelled the sensitivity of required state subsidies for project  development in response to these risks, and found the subsidies required to stimulate a given level  of solar investment rose by a factor of three, suggesting large benefits from stemming corruption  and stabilizing regulations (Komendantova et al., 2011). Meijer et al. (2007) examined the perceived  risks for biogas project developers in the Netherlands, and found technological, resource, and  political uncertainty to be their most important concerns. These studies are useful by documenting  policymakers  concerns so they can address these issues in the future.     49 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Table 2.3 synthesizes the modelling and empirical results on renewable quota systems and feed in  tariffs, as well as with results for cap and trade systems from the previous sub section. The table  highlights the effects of three of the classes of uncertainties identified earlier in this chapter, namely  with respect to technological systems, market behaviour, and the future regulatory actions of  governments.  Table 2.3: Uncertainties affecting the effectiveness of alternative policy instruments Effect on low  Instrument  Uncertainty  Investor fears  carbon  technology  Technological   systems  Allowance  trading  market  Market behaviour  Market behaviour  Regulatory actions  Technological   systems  Market behaviour  Regulatory actions  Other low carbon technologies will prove   more cost effective  Growth in energy   demand will decline  Fossil fuel   prices will fall  Governments will increase   the number of allowances  Other low carbon technologies will prove   more cost effective  Supply for renewable energy   will rise faster than the quota  Subsidy for this particular  technology will decline  Dampened  investment  Dampened  investment  Dampened  investment  Dampened  investment  Dampened  investment  Dampened  investment  Overheated  market  Renewable  quotas  Subsidies  and feed in  tariffs    2.6.5.3 Energy efficiency and behavioural change  As pointed out in Section 2.6.5.2 and earlier sections, one way to mitigate climate risk is to  encourage RD&D with respect to providing energy from renewable sources, such as wind and solar,  as well as to promote low energy use products. For firms to undertake these investments, there  needs to be some guarantee that a market for their products will exist. Currently consumers are  reluctant to adopt energy efficient measures, such as compact fluorescent bulbs, energy efficient  refrigerators, boilers and cooling systems, as well as new technologies such as solar installations and  wind power. This can be attributed to the uncertainties associated with future energy prices and  consumption of energy coupled with misperceptions of the products  benefits and an unwillingness  to incur the upfront costs of these measures as discussed in Section 2.4.3.2.  Gardner and Stern (2008) identified a list of energy efficient measures that could reduce North  American consumers  energy consumption by almost 30% but found that individuals were not willing  to invest in them because they have misconceptions about the measures  effectiveness. Other  studies show that the general public has a poor understanding of energy consumption associated  with familiar activities (Sterman and Sweeney, 2007). A national online survey of 505 participants by  Attari et al. (2010) revealed that most respondents felt that measures such as turning off the lights  or driving less were much more effective as energy efficient improvements than experts  viewed  them to be.   There are both behavioural and economic factors described in Section 2.4.3.2 that can explain the  reluctance of households to incur the upfront costs of these energy efficient measures. Due to a  focus on short term horizons, individuals may underestimate the savings in energy costs from  investing in energy efficient measures. In addition they are likely to discount the future  hyperbolically so that the upfront cost is perceived to be greater than expected discounted    50 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  reduction in energy costs (Dietz et al., 2013; Kunreuther et al., 2013b). Coupled with these  descriptive models or choices that are triggered by intuitive thinking, households may have severe  budget constraints that discourage them from investing in these energy efficient measures. If they  intend to move in several years and feel that the investment in the energy efficient measure will not  be adequately reflected in an increase in their property value, then it is inappropriate for them not  to invest in these measures if they undertake deliberative thinking.  To encourage households to invest in energy efficient measures, messages that communicate  information on energy use and savings from undertaking these investments need to be conveyed  (Abrahamse et al., 2005). Recent research has indicated the importance of highlighting indirect and  direct benefits (e.g., being  green , energy independence, saving money) in people s adoption of  energy efficiency measures to address the broad range and heterogeneity in people s goals and  values that contribute to the subjective utility of different courses of action (Jakob, 2006). One also  needs to recognize the importance of political identity considerations when choosing the nature of  these messages, as different constituencies have different associations to options that mitigate  climate change and labels that convene potential benefits from adopting energy efficient measures  (Hardisty et al., 2010; Gromet et al., 2013).  The advent of the smart grid in Western countries, with its smart metering of household energy  consumption and the development of smart appliances will make it feasible to provide appliance specific feedback about energy use and energy savings to a significant number of consumers within a  few years. A field study involving more than 1,500 households in Linz, Austria revealed that feedback  on electricity consumption corresponded with electricity savings of 4.5% for the average household  in this pilot group (Schleich et al., 2013).  To deal with budget constraints, the upfront cost of these measures need to be spread over time so  the measures are viewed as economically viable and attractive. The Property Assessed Clean Energy  (PACE) programme in the United States is designed to address the budget constraint problem.  Participants in this programme receive financing for improvements that is repaid through an  assessment on their property taxes for up to 20 years. Financing spreads the cost of energy  improvements over the expected life of measures such as weather sealing, energy efficient boilers  and cooling systems, and solar installations and allows for the repayment obligation to transfer  automatically to the next property owner if the property is sold. The program addresses two  important barriers to increased adoption of energy efficiency and small scale renewable energy:  high upfront costs and fear that project costs will not be recovered prior to a future sale of the  property (Kunreuther and Michel Kerjan, 2011).  Social norms that encourage greater use of energy efficient technology at the household level can  also encourage manufacturers to invest in the R&D for developing new energy efficient technologies  and public sector actions such as well enforced standards of energy efficiency as part of building sale  requirements,(Dietz et al., 2013).  2.6.5.4 Adaptation and vulnerability reduction  Compared to mitigation measures, investments in adaptation appear to be more sensitive to  uncertainties in the local impacts associated with the damage costs of climate change. This is not  surprising for two reasons. First, while both mitigation and adaptation may result in lower local  damage costs associated with climate impacts, the benefits of adaptation flow directly and locally  from the actions taken (Prato, 2008). Mitigation measures in one region or country, by contrast,  deliver benefits that are global; however, they are contingent on the actions of people in other  places and in the future, rendering their local benefits more uncertain. One cannot simply equate  marginal local damage costs with marginal mitigation costs, and hence the importance of  uncertainty with respect to the local damage costs is diminished (Webster et al., 2003).    51 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Second, politically negotiated mitigation targets, such as the 2°C threshold appear to have been  determined by what is feasible and affordable in terms of the pace of technological diffusion, rather  than by an optimization of mitigation costs and benefits (Hasselmann et al., 2003; Baker et al., 2008;  Hasselmann and Barker, 2008). Hence, mitigation actions taken to achieve a temperature target  would not be changed if the damage costs (local or global) were found to be somewhat higher or  lower. This implies that mitigation measures will be insensitive to uncertainty of these costs  associated with climate change. Adaptation decisions, in contrast, face fewer political and technical  constraints, and hence can more closely track what is needed in order to minimize local expected  costs and hence will be more sensitive to the uncertainties surrounding future damage costs from  climate change (Patt et al., 2007, 2009).  There are two situations where decisions on adaptation policies and actions may be largely  insensitive to uncertainties in climate on damages. The first is where adaptation is constrained by  the availability of finance, such as international development assistance. Studies by the World Bank,  OECD, and other international organizations have estimated the financing needs for adaptation in  developing countries to be far larger than funds currently available (Agrawala and Fankhauser, 2008;  World Bank, 2010; Patt et al., 2010). In this case, adaptation actions are determined by decisions  with respect to the allocation of available funds in competing regions rather than the local impacts  of climate change on future damage (Klein et al., 2007; Hulme et al., 2011). Funding decisions and  political constraints at the national level can also constrain adaptation so that choices no longer are  sensitive to uncertainties with respects to local impacts (Dessai and Hulme, 2004, 2007).  The other situation is where adaptation is severely constrained by cultural norms and/or a lack of  local knowledge and analytic skill as to what actions can be taken (Brooks et al., 2005; Füssel and  Klein, 2006; O Brien, 2009; Jones and Boyd, 2011). In this case, adaptive capacity could be improved  through investments in education, development of local financial institutions and property rights  systems, women s rights, and other broad based forms of poverty alleviation. There is a growing  literature to suggest that such policies bring substantial benefits in the face of climate change that  are relatively insensitive to the precise nature and extent of local climate impacts (Folke et al., 2002;  World Bank, 2010; Polasky et al., 2011). These policies are designed to reduce these countries   vulnerability to a wide range of potential risks rather than focusing on the impacts of climate change  (Thornton et al., 2008; Eakin and Patt, 2011).  2.6.6 Public support and opposition to climate policy under uncertainty  In this section, we review what is known about public support or opposition to climate policy,  climate related infrastructure, and climate science. In all three cases, a critical issue is the role that  perceptions of risks and uncertainties play in shaping support or opposition. Hence, the material  presented here complements the discussion of perceptions of climate change risks and uncertainties  (see Section 2.4.6). Policy discussions on particular technologies often revolve around the health and  safety risks associated with technology options, transition pathways, and systems such as nuclear  energy (Pidgeon et al., 2008; Whitfield et al., 2009), coal combustion (Carmichael et al., 2009; Hill et  al., 2009), and underground carbon storage (Itaoka et al., 2009; Shackley et al., 2009). There are also  risks to national energy security that have given rise to political discussions advocating the  substitution of domestically produced renewable energy for imported fossil fuels (Eaves and Eaves,  2007; Lilliestam and Ellenbeck, 2011).  2.6.6.1 Popular support for climate policy  There is substantial empirical evidence that people s support or opposition to proposed climate  policy measures is determined primarily by emotional factors and their past experience rather than  explicit calculations as to whether the personal benefits outweigh the personal costs. A national  survey in the United States found that people s support for climate policy also depended on cultural  factors, with regionally differentiated worldviews playing an important role (Leiserowitz, 2006), as    52 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  did a cross national comparison of Britain and the United States (Lorenzoni and Pidgeon, 2006), and  studies comparing developing with developed countries (Vignola et al., 2012).  One of the major determinants of popular support for climate policy is whether people have an  underlying belief that climate change is dangerous. This concern can be influenced by both cultural  factors and the methods of communication (Smith, 2005; Pidgeon and Fischhoff, 2011). Leiserowitz  (2005) found a great deal of heterogeneity linked to cultural effects with respect to the perception  of climate change in the United States. The use of language used to describe climate change such  as the distinction between  climate change  and  global warming  play a role in influencing  perceptions of risk, as well as considerations of immediate and local impacts (Lorenzoni et al., 2006).  The portrayal of uncertainties and disagreements with respect to climate impacts was found to have  a weak effect on whether people perceived the impacts as serious, but a strong effect on whether  they felt that the impacts deserved policy intervention (Patt, 2007). Studies in China (Wang et al.,  2012) and Austria (Damm et al., 2013) found that people s acceptance of climate related policies  was related to their underlying perceptions of risk but also to their beliefs about government  responsibility.  An important question related to climate change communication is whether the popular reporting of  climate change through disaster scenarios has the effect of energizing people to support aggressive  policy intervention, or to become dismissive of the problem. A study examining responses to  fictionalized disaster scenarios found them to have differential effects on perceptions and support  for policy. They reduced people s expectation of the local impacts, while increasing their support for  global intervention (Lowe et al., 2006). Other studies found interactive effects: those with a low  awareness of climate change became concerned about being exposed to disaster scenarios, while  those with a high awareness of climate change were dismissive of the possible impacts (Schiermeier,  2004).  Finally, the extent to which people believe it is possible to actually influence the future appears to be  a major determinant of their support for both individual and collective actions to respond to climate  change. In the case of local climate adaptation, psychological variables associated with self empowerment were found to have played a much larger role in influencing individual behaviour  than variables associated with economic and financial ability (Grothmann and Patt, 2005;  Grothmann and Reusswig, 2006). With respect to mitigation policy, perceptions concerning the  barriers to effective mitigation and beliefs that it was possible to respond to climate change were  found to be important determinants of popular support (Lorenzoni et al., 2007).  2.6.6.2 Local support and opposition to infrastructure projects  The issue of local support or opposition to infrastructure projects in implementing climate policy is  related to the role that perceived technological risks play in the process. This has been especially  important with respect to nuclear energy, but is of increasing concern for carbon storage and  renewable energy projects, and has become a major issue when considering expansion of low  carbon energy technologies (Ellis et al., 2007; Van Alphen et al., 2007; Zoellner et al., 2008).  In the case of renewable energy technologies, a number of factors appear to influence the level of  public support or opposition, factors that align well with a behavioural model in which emotional  responses are highly contextual. One such factor is the relationship between project developers and  local residents. Musall and Kuik (2011) compared two wind projects, where residents feared  negative visual impacts. They found that their fear diminished, and public support for the projects  increased when there was co ownership of the development by the local community. A second  factor is the degree of transparency surrounding project development. Dowd et al. (2011)  investigated perceived risks associated with geothermal projects in Australia. Using a survey  instrument, they found that early, transparent communication of geothermal technology and risks  tended to increase levels of public support.    53 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  A third such factor is the perception of economic costs and benefits that go hand in hand with the  perceived environmental risks. Zoellner et al. (2008) examined public acceptance of three renewable  technologies (grid connected PV, biomass, and wind) and found that perceived economic risks  associated with higher energy prices were the largest predictor of acceptance. Concerns over local  environmental impacts, including visual impacts, were of concern where the perceived economic  risks were high. Breukers and Wolsink (2007) also found that that the visual impact of wind turbines  was the dominant factor in explaining opposition against wind farms. Their study suggests that  public animosity towards a wind farm is partly reinforced by the planning procedure itself, such as  when stakeholders perceive that norms of procedural justice are not being followed.  Many studies have assessed the risks and examining local support for carbon dioxide capture and  storage (CCS). According to Ha Duong et al. (1997b), the health and safety risks associated with  carbon dioxide capture and transportation technologies differ across causal pathways but are similar  in magnitude to technologies currently supported by the fossil fuel industry. Using natural  analogues, Roberts et al. (2011) concluded that the health risks of natural CO2 seepage in Italy was  significantly lower than many socially accepted risks. For example, it was three orders of magnitude  lower than the probability of being struck by lightning.   Despite these risk assessments, there is mixed evidence of public acceptance of CO2 storage. For  example, a storage research project was authorized in Lacq, France, but another was halted in  Barendreich, The Netherlands due to public opposition. On the other hand, Van Alphen et al. (2007)  evaluated the concerns with CCS among important stakeholders, including government, industry,  and NGO representatives and found support if the facility could be shown to have a low probability  of leakage and was viewed as a temporary measure.  Wallquist et al. (2012) used conjoint analysis to interpret a Swiss survey on the acceptability of CCS  and found that concerns over local risks and impacts dominated the fears of the long term climate  impacts of leakage. The local concerns were less severe, and the public acceptance higher, for CCS  projects combined with biomass combustion, suggesting that positive feelings about removing CO2  from the atmosphere, rather than simply preventing its emission into the atmosphere, influences  perceptions of local risks. Terwel et al. (2011) found that support for CCS varied as a function of the  stakeholders promoting and opposing it, in a manner similar to the debate on renewable energy.  Hence, there was greater support of CCS when its promoters were perceived to be acting in the  public interest rather than purely for profit. Those opposing CCS were less likely to succeed when  they were perceived to be acting to protect their own economic interests, such as property values,  rather than focusing on environmental quality and the public good.  In the period between the publication of AR4 and the accident at the Fukushima power plant in  Japan in March 2011, the riskiness of nuclear power as a climate mitigation option has received  increasing attention. Socolow and Glaser (2009) highlight the urgency of taking steps to reduce these  risks, primarily by ensuring that nuclear fuels and waste materials are not used for weapons  production. A number of papers examine the perceived risks of nuclear power among the public. In  the United States, Whitfield et al. (2009) found risk perceptions to be fairly stable over time, with  those people expressing confidence in  traditional values  perceiving nuclear power to be less risky  than others. In the United Kingdom, Pidgeon et al. (2008) found a willingness to accept the risks of  nuclear power when it was framed as a means of reducing the risks of climate change, but that this  willingness largely dissipated when nuclear power was suggested as an alternative to renewable  energy for accomplishing this same objective.  2.7 Gaps in knowledge and data  The interface between science and policy is affected by epistemic uncertainty or uncertainty due to  lack of information or knowledge for characterizing phenomena. Below we characterize suggested  areas for future research that may enable us to reduce epistemic uncertainty.    54 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Perceptions and responses to risk and uncertainty:  Examine cross cultural differences in human perception and reaction to climate change and  response options.  Understand the rebound effect induced by adopting mitigation measures for reducing the  impact of climate change (e.g., increased driving when switching to a more fuel efficient car).  Consider the design of long term mitigation and adaptation strategies coupled with short term  economic incentives to overcome myopic behaviour (e.g., loans for investing in energy efficient  technologies so yearly payments are lower than the reduction in the annual energy bill).  Encourage deliberative thinking in the design of policies to overcome biases such as a preference  for the current state of affairs or business as usual.  Understand judgment and choice processes of key decision makers in firms and policymakers,  especially in a climate change response context.  Use descriptive models and empirical studies to design strategies for climate change  negotiations and implementation of treaties.  Tools and decision aids for improving choices related to climate change:  Characterize the likelihood of extreme events and examine their impact on the design of climate  change policies.  Study how robust decision making can be used in designing climate policy options when there is  deep uncertainty with respect to the likelihood of climate change and its impacts.  Examine how integrated assessment models can quantify the value of new climate observing  systems.  Empirically study how decision makers could employ intuitive and deliberative thinking to  improve decisions and climate policy choices.  Study the effectiveness of experiential methods like simulations, games, and movies in  improving public understanding and perception of climate change processes.  Consider the role of structured expert judgment in characterizing the nature of uncertainties  associated with climate change and the design of mitigation and adaptation policies for  addressing this risk.  Managing uncertainty risk and learning:  Exploit the effectiveness of social norms in promoting mitigation and adaptation.   Quantify the environmental and social risks associated with new technologies.  Consider the special challenges faced by developing countries in dealing with risk and  uncertainty with respect to climate change policies.  Measure investor rankings of different risks associated with new technologies.  Examine impact of government policy on mitigation decisions by firms and households.  Determine what risks and uncertainties matter the most in developing policy instruments for  dealing with climate change.   Examine the risks to energy systems, energy markets, and the security of energy supply  stemming from mitigation policies.  Integrate analysis of the effects of interrelated policy decisions, such as how much to mitigate,  what policy instruments to use for promoting climate change mitigation, and adaptation  investment under conditions of risk and uncertainty.    55 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  2.8 Frequently Asked Questions  FAQ 2.1 When is uncertainty a reason to wait and learn rather than acting now in relation  to climate policy and risk management strategies? [Section 2.6.3]  Faced with uncertainty, policymakers may have a reason to wait and learn before taking a particular  action rather than taking the action now. Waiting and learning is desirable when external events are  likely to generate new information of sufficient importance as to suggest that the planned action  would be unwise. Uncertainty may not be a reason to delay when the action itself generates new  information and knowledge.   Uncertainty may also be a reason to avoid actions that are irreversible and/or have lock in effects,  such as making long term investments in fossil fuel based energy systems when climate outcomes  are uncertain. This behaviour would reflect the precautionary principle for not undertaking some  measures or activities.  While the above criteria are fairly easy to understand, their application can be complicated because  a number of uncertainties relevant to a given decision may reinforce each other or may partially  cancel each other out (e.g., optimistic estimates of technological change may offset pessimistic  estimates of climate damages). Different interested parties may reach different conclusions as to  whether external information is likely or not to be of sufficient importance as to render the original  action/inaction regrettable.  A large number of studies examine the act now or wait and see question in the context of climate  change mitigation. So far, most of these analyses have used integrated assessment models (IAMs).  At the national level, these studies examine policy strategies and instruments to achieve mitigation  targets; at the firm or individual level the studies examine whether one should invest in a particular  technology.  A truly integrated analysis of the effects of multiple types of uncertainty on interrelated policy  decisions, such as how much to mitigate, with what policy instruments, promoting what  investments, has yet to be conducted. The probabilistic information needed to support such an  analysis is currently not available.  FAQ 2.2 How can behavioural responses and tools for improving decision impact on  climate change policy? [Section 2.4]  The choice of climate change policies can benefit from examining the perceptions and responses of  relevant stakeholders. Empirical evidence indicates decision makers such as firms and households  tend to place undue weight on short run outcomes. Thus, high upfront costs make them reluctant to  invest in mitigation or adaptation measures. Consistent with the theory of loss aversion, investment  costs and their associated risks have been shown to be of greater importance in decisions to fund  projects that mitigate climate change than focusing on the expected returns associated with the  investment.   Policy instruments (e.g., long term loans) that acknowledge these behavioural biases and spread  upfront costs over time so that they yield net benefits in the short run have been shown to perform  quite well. In this context, policies that make investments relatively risk free, such as feed in tariffs,  are more likely to stimulate new technology than those that focus on increasing the expected price  such as cap and trade systems.  Human responses to climate change risks and uncertainties can also indicate a failure to put  adequate weight on worst case scenarios. Consideration of the full range of behavioural responses  to information will enable policymakers to more effectively communicate climate change risks to  stakeholders and to design decision aids and climate change policies that are more likely to be  accepted and implemented.    56 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  FAQ 2.3 How does the presence of uncertainty affect the choice of policy instruments?  [Section 2.6.5]  Many climate policy instruments are designed to provide decision makers at different levels (e.g.,  households, firms, industry associations, guilds) with positive incentives (e.g., subsidies) or penalties  (e.g., fines) to incentivize them to take mitigation actions. The impact of these incentives on the  behaviour of the relevant decision makers depends on the form and timing of these policy  instruments.  Instruments such as carbon taxes that are designed to increase the cost of burning fossil fuels rely on  decision makers to develop expectations about future trajectories of fuel prices and other economic  conditions. As uncertainty in these conditions increases, the responsiveness of economic agents  decreases. On the other hand, investment subsidies and technology standards provide immediate  incentives to change behaviour, and are less sensitive to long term market uncertainty. Feed in  tariffs allow investors to lock in to a given return on investment, and so may be effective even when  market uncertainty is high.  FAQ 2.4 What are the uncertainties and risks that are of particular importance to climate  policy in developing countries? [Box 2.1]  Developing countries are often more sensitive to climate risks, such as drought or coastal flooding,  because of their greater economic reliance on climate sensitive primary activities, and because of  inadequate infrastructure, finance, and other enablers of successful adaptation and mitigation. Since  AR4, research on relevant risks and uncertainties in developing countries has progressed  substantially, offering results in two main areas.  Studies have demonstrated how uncertainties often place low carbon energy sources at an  economic disadvantage, especially in developing countries. The performance and reliability of new  technologies may be less certain in developing countries than in industrialized countries because  they could be unsuited to the local context and needs. Other reasons for uncertain performance and  reliability could be due to poor manufacturing, a lack of adequate testing in hot or dusty  environments, or limited local capacity to maintain and repair equipment. Moreover, a number of  factors associated with economic, political, and regulatory uncertainty result in much higher real  interest rates in developing countries than in the developed world. This creates a disincentive to  invest in technologies with high up front but lower operating costs, such as renewable energy,  compared to fossil fuel based energy infrastructure.  Given the economic disadvantage of low carbon energy sources, important risk tradeoffs often need  to be considered. On the one hand, low carbon technologies can reduce risks to health, safety, and  the environment, such as when people replace the burning of biomass for cooking with modern and  efficient cooking stoves. But on the other hand, low carbon modern energy is often more expensive  than its higher carbon alternatives. There are however, some opportunities for win win outcomes  on economic and risk grounds, such as in the case of off grid solar power.      57 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  References  Abrahamse W., L. Steg, C. Vlek, and T. Rothengatter (2005). A review of intervention studies aimed  at household energy conservation, Journal of Environmental Psychology 25 273 291 pp. .  Ackerman F., E.A. Stanton, and R. Bueno (2010). Fat tails, exponents, extreme uncertainty:  Simulating catastrophe in DICE, Ecological Economics 69 1657 1665 pp. .  Ackerman F., E.A. Stanton, and R. Bueno (2013). Epstein Zin Utility in DICE: Is Risk Aversion  Irrelevant to Climate Policy?, Environmental and Resource Economics 56 73 84 pp. (DOI:  10.1007/s10640 013 9645 z), (ISSN: 0924 6460, 1573 1502).  Agrawala S., and S. Fankhauser (2008). Economic Aspects of Adaptation to Climate Change: Costs,  Benefits and Policy Instruments. OECD Publishing, 139 pp., (ISBN: 9789264046030). .  Alberola E., J. Chevallier, and B. Cheze (2008). Price drivers and structural breaks in European  carbon prices 2005 2007, Energy Policy 36 787 797 pp. (DOI: 10.1016/j.enpol.2007.10.029).  Alcott H. (2011). Social norms and energy conservation, Journal of Public Economics 95 1082 1095  pp. .  Ale B.J.M., L.J. Bellamy, R. Van der Boom, J. Cooper, R.M. Cooke, L.H.J. Goossens, A.R. Hale, D.  Kurowicka, O. Morales, A.L.C. Roelen, and others (2009). Further development of a Causal model  for Air Transport Safety (CATS): Building the mathematical heart, Reliability Engineering & System  Safety 94 1433 1441 pp. .  Allais M. (1953). Le comportement de l homme rationel devant le risque, Econometrica 21 503 546  pp. .  Van Alphen K., Q. Van Voorst Tot Voorst, M.P. Hekkert, and R.E.H.. Smits (2007). Societal  acceptance of carbon capture and storage technologies, Energy Policy 35 4368 4380 pp. .  America s Climate Choices: Panel on Advancing the Science of Climate Change; National Research  Council (2010). Advancing the Science of Climate Change. The National Academies Press,  Washington, D.C., 528 pp., (ISBN: 0309145880). .  Andonova L., M. Betsill, and H. Bulkeley (2009). Transnational climate governance, Global  Environmental Politics 9 52 73 pp. (DOI: 10.1162/glep.2009.9.2.52.).  Armitage D. (2011). Co management and the co production of knowledge: Learning to adapt in  Canada s Arctic, Symposium on Social Theory and the Environment in the New World (dis)Order,  21(3) 995 1004 pp. .  Aspinall W.P. (1996). Structured elicitation of expert judgment for probabilistic hazard and risk  assessment in volcanic eruptions. In: Mader, H.M., Coles, S.G., Connor, C.B. & Connor, L.J. (eds)   Statistics in Volcanology. Special Publications of IAVCEI. Geological Society, London pp.15 30.  Aspinall W.P. (2010). A route to more tractable expert advice, Nature 463 294 295 pp. (DOI:  10.1038/463294a), (ISSN: 0028 0836).  Assessment A.C.I. (2004). Impacts of a Warming Arctic   Arctic Climate Impact Assessment, Impacts  of a Warming Arctic   Arctic Climate Impact Assessment, by Arctic Climate Impact Assessment, pp.    58 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  144. ISBN 0521617782. Cambridge, UK: Cambridge University Press, December 2004.  1 . Available  at: http://adsabs.harvard.edu/abs/2004iwaa.book.....A%EF%BF%BD%C3%9C.  Athanassoglou S., and A. Xepapadeas (2011). Pollution control with uncertain stock dynamics:  When, and how, to be precautious, Journal of Environmental Economics and Management 63 304 320 pp. .  Attari S.Z., M.L. DeKay, C.I. Davidson, and W.B. de Bruin (2010). Public perceptions of energy  consumption and savings, Proceedings of the National Academy of Sciences 107 16054 16059 pp. .  Axelrod M. (2011). Climate Change and Global Fisheries Management: Linking Issues to Protect  Ecosystems or to Save Political Interests?, Global Environmental Politics 11 64 84 pp. (DOI:  10.1162/GLEP_a_00069).  Azar C., and K. Lindgren (2003). Catastrophic Events and Stochastic Cost benefit Analysis of Climate  Change, Climatic Change 56 245 255 pp. (DOI: 10.1023/A:1021743622080), (ISSN: 0165 0009).  Bahn O., A. Haurie, and R. Malhamé (2008a). A stochastic control model for optimal timing of  climate policies, Automatica 44 1545 1558 pp. .  Bahn O., A. Haurie, and R. Malhamé (2008b). A stochastic control model for optimal timing of  climate policies, Automatica 44 1545 1558 pp. (DOI: 10.1016/j.automatica.2008.03.004), (ISSN:  0005 1098).  Baker E. (2005). Uncertainty and learning in a strategic environment: Global climate change,  Resource and Energy Economics 27 19 40 pp. .  Baker E., and K. Adu Bonnah (2008). Investment in risky R&D programs in the face of climate  uncertainty, Energy Economics 30 465 486 pp. (DOI: 10.1016/j.eneco.2006.10.003), (ISSN: 0140 9883).  Baker E., L. Clarke, and E. Shittu (2008). Technical change and the marginal cost of abatement,  Energy Economics 30 2799 2816 pp. .  Baker E., L. Clarke, and J. Weyant (2006). Optimal Technology R&D in the Face of Climate  Uncertainty, Climatic Change 78 157 179 pp. (DOI: 10.1007/s10584 006 9092 8), (ISSN: 0165 0009).  Baker E., and J.M. Keisler (2011). Cellulosic biofuels: Expert views on prospects for advancement,  Energy 36 595 605 pp. .  Baker E., and E. Shittu (2006). Profit maximizing R&D in response to a random carbon tax, Resource  and Energy Economics 28 160 180 pp. (DOI: 10.1016/j.reseneeco.2005.08.002), (ISSN: 0928 7655).  Baker E., and E. Shittu (2008). Uncertainty and endogenous technical change in climate policy  models, Energy Economics 30 2817 2828 pp. .  Bamber J., and W. Aspinall (2013). An expert judgement assessment of future sea level rise from the  ice sheets, Nature Climate Change 3 424 427 pp. . Available at:  http://cat.inist.fr/?aModele=afficheN&cpsidt=27221118.  Baranzini A., M. Chesney, and J. Morisset (2003). The impact of possible climate catastrophes on  global warming policy, Energy Policy 31 691 701 pp. (DOI: 10.1016/S0301 4215(02)00101 5), (ISSN:  0301 4215).    59 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Barbose G., R. Wiser, A. Phadke, and C. Goldman (2008). Managing carbon regulatory risk in utility  resource planning: Current practices in the Western United States, Energy Policy 36 3300 3311 pp.  (DOI: 10.1016/j.enpol.2008.04.023), (ISSN: 0301 4215).  Barham B., J.P. Chavas, D. Fitz, V. Rios Salas, and L. Schechter (2011). The Roles of Risk and  Ambiguity in Technology Adoption, Available at SSRN 1937849 . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1937849.  Barradale M.J. (2010). Impact of public policy uncertainty on renewable energy investment: Wind  power and the production tax credit, Energy Policy 38 7698 7709 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421510006361.  Barreto I., and D. Patient (2013). Toward a theory of intraorganizational attention based on  desirability and feasibility factors, Strategic Management Journal.  Barrett S. (1994). Self enforcing international environmental agreements, Oxford Economic Papers  46 878 894 pp. .  Barrett S. (2011). Climate Treaties and Approaching Catastrophes. Working Paper, Columbia  University.  Barrett S., and A. Dannenberg (2012). Climate negotiations under scientific uncertainty, Proceedings  of the National Academy of Sciences 109 17372 17376 pp. (DOI: 10.1073/pnas.1208417109), (ISSN:  0027 8424, 1091 6490).  Barry J., G. Ellis, and C. Robinson (2008). Cool Rationalities and Hot Air: A Rhetorical Approach to  Understanding Debates on Renewable Energy, Global Environmental Politics 8 67 98 pp. (DOI:  10.1162/glep.2008.8.2.67), (ISSN: 1526 3800).  Battaglini A., J. Lilliestam, A. Haas, and A. Patt (2009). Development of SuperSmart Grids for a more  efficient utilisation of electricity from renewable sources, Journal of Cleaner Production 17 911 918  pp. .  Baudry M. (2000). Joint management of emission abatement and technological innovation for stock  externalities, Environmental and Resource Economics 16 161 183 pp. (DOI:  10.1023/A:1008363207732), (ISSN: 0924 6460).  BBC World Service Trust (2009). Research Briefing Ethiopia. BBC World Service Trust, London, UK. .  Available at: http://r4d.dfid.gov.uk/PDF/Outputs/MediaBroad/climatebrief ethopia_web.pdf.  Beck U. (1992). Risk Society: Towards a New Modernity. Sage Publications Ltd, 272 pp., (ISBN:  0803983468). .  Berkes F., Fikret, Colding, and Folke (2000). Rediscovery of traditional ecological knowledge as  adaptive management, Ecological Applications, 10(5) 1251 1262 pp. .  Berkes F., and D. Jolly (2001). Adapting to climate change: social ecological resilience in a Canadian  western Arctic community., Conservation Ecology, 5(2) 18 pp. .  Betsill M., and M.J. Hoffmann (2011). The contours of  cap and trade : the evolution of emissions  trading systems for greenhouse gases, Review of Policy Research 28 83 106 pp. .    60 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Blackstock J.J., and J.C. Long (2010). The politics of geoengineering, Science 327 527 527 pp. .  Available at: http://www.sciencemag.org/content/327/5965/527.short.  Blanco M.I., and G. Rodrigues (2008). Can the future EU ETS support wind energy investments?,  Energy Policy 36.4 1509 1520 pp. .  Blanford G.J. (2009). R&D investment strategy for climate change, Energy Economics 31,  Supplement 1 S27 S36 pp. (DOI: 10.1016/j.eneco.2008.03.010), (ISSN: 0140 9883).  Blok K. (2006). Special issue: Renewable energy policies in the European Union, Energy Policy 34  251 375 pp. .  Blyth W., R. Bradley, D. Bunn, C. Clarke, T. Wilson, and M. Yang (2007). Investment risks under  uncertain climate change policy, Energy Policy 35 5766 5773 pp. (DOI: 16/j.enpol.2007.05.030),  (ISSN: 0301 4215).  Blyth W., and D. Bunn (2011). Coevolution of policy, market and technical price risks in the EU ETS.,  Energy Policy 39.8 4578 4593 pp. .  Blyth W., D. Bunn, J. Kettunen, and T. Wilson (2009). Policy interactions, risk and price formation in  carbon markets, Energy Policy 37 5192 5207 pp. (DOI: 10.1016/j.enpol.2009.07.042), (ISSN: 0301 4215).  Boardman A.E., D.H. Greenberg, A.R. Vining, and D.L. Weimer (2005). Cost Benefit Analysis:  Concepts and Practice. Prentice Hall, (ISBN: 0131435833). .  De Boer J., J.A. Wardekker, and J.P. Van Der Sluijs (2010). Frame based guide to situated decision making on climate change, Global Environmental Change 20 502 510 pp. .  Bord R.J., R.E. O Connor, and A. Fisher (2000). In what sense does the public need to understand  global climate change?, Public Understanding of Science 9 205 218 pp. . Available at:  http://pus.sagepub.com/content/9/3/205.short.  Bosetti V., C. Carraro, A. Sgobbi, and M. Tavoni (2009). Delayed action and uncertain stabilisation  targets. How much will the delay cost?, Climatic Change 96 299 312 pp. (DOI: 10.1007/s10584 009 9630 2), (ISSN: 0165 0009).  Bosetti V., and M. Tavoni (2009). Uncertain R&D, backstop technology and GHGs stabilization,  Energy Economics 31 S18 S26 pp. .  Bostrom A., M.G. Morgan, B. Fischhoff, and D. Read (1994). What do people know about global  climate change? 1. Mental models, Risk Analysis 14 959 970 pp. (DOI: 10.1111/j.1539 6924.1994.tb00065.x), (ISSN: 1539 6924).  Böttcher H., K. Eisbrenner, S. Fritz, G. Kindermann, F. Kraxner, I. McCallum, and M. Obersteiner  (2009). An assessment of monitoring requirements and costs of  Reduced Emissions from  Deforestation and Degradation , Carbon Balance and Management 4 7 pp. .  Böttcher H., A. Freibauer, M. Obersteiner, and E.D. Schulze (2008). Uncertainty analysis of climate  change mitigation options in the forestry sector using a generic carbon budget model, Ecological  Modelling 213 45 62 pp. .    61 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Bradfield R., G. Wright, G. Burt, G. Cairns, and K. Van Der Heijden (2005). The origins and evolution  of scenario techniques in long range business planning, Futures 37 795 812 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0016328705000042.  Brent R.J. (2006). Applied Cost Benefit Analysis. Edward Elgar Publishing.  Breukers S., and M. Wolsink (2007). Wind power implementation in changing institutional  landscapes: An international comparison, Energy Policy 35 2737 2750 pp. (ISSN: 0301 4215).  Brooks N., W. Neil Adger, and P. Mick Kelly (2005). The determinants of vulnerability and adaptive  capacity at the national level and the implications for adaptation, Global Environmental Change Part  A 15 151 163 pp. .  Bruckner T., and K. Zickfeld (2008). Inverse Integrated Assessment of Climate Change: the Guard rail  Approach, International Conference on Policy Modeling (EcoMod2008).  Brulle R.J., J. Carmichael, and J.C. Jenkins (2012). Shifting public opinion on climate change: an  empirical assessment of factors influencing concern over climate change in the U.S., 2002 2010,  Climatic Change 114 169 188 pp. (DOI: 10.1007/s10584 012 0403 y), (ISSN: 0165 0009, 1573 1480).  Bucki M., D. Cuypers, P. Mayaux, F. Achard, C. Estreguil, and G. Grassi (2012). Assessing REDD+  performance of countries with low monitoring capacities: the matrix approach, Environmental  Research Letters 7 014031 pp. (DOI: 10.1088/1748 9326/7/1/014031), (ISSN: 1748 9326).  Budescu D.V., S. Broomell, and H. H. Por (2009). Improving communication of uncertainty in the  reports of the Intergovernmental Panel on Climate Change, Psychological Science 20 299  308 pp.  (DOI: 10.1111/j.1467 9280.2009.02284.x).  Bulkeley H. (2010). Cities and the governing of climate change, Annual Review of Environment and  Resources 35 229 253 pp. .  Bürer M.J., and R. Wüstenhagen (2009). Which renewable energy policy is a venture capitalist s best  friend? Empirical evidence from a survey of international cleantech investors, Energy Policy 37 4997 5006 pp. (DOI: 10.1016/j.enpol.2009.06.071), (ISSN: 0301 4215).  Burtraw D., K. Palmer, and D. Kahn (2010). A symmetric safety valve, Energy Policy 38 4921 4932  pp. (DOI: 10.1016/j.enpol.2010.03.068), (ISSN: 0301 4215).  Butler L., and K. Neuhoff (2008). Comparison of feed in tariff, quota and auction mechanisms to  support wind power development, Renewable Energy 33 1854 1867 pp. (DOI:  10.1016/j.renene.2007.10.008), (ISSN: 0960 1481).  Buys P., U. Deichmann, C. Meisner, T.O.N.. THAO, and D. Wheeler (2009). Country stakes in climate  change negotiations: two dimensions of vulnerability, Climate Policy 9 288 305 pp. .  Cabantous L., D. Hilton, H. Kunreuther, and E. Michel Kerjan (2011). Is imprecise knowledge better  than conflicting expertise? Evidence from insurers  decisions in the United States, Journal of Risk and  Uncertainty 42 211 232 pp. . Available at: http://link.springer.com/article/10.1007/s11166 011 9117 1.  Cabré M.M. (2011). Issue linkages to climate change measured through NGO participation in the  UNFCCC, Global Environmental Politics 11 10 22 pp. (DOI: 10.1162/GLEP_a_00066), (ISSN: 1526 3800).    62 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Camerer C.F. (2000). Prospect Theory in the wild. In: Choice, Values, and Frames. D. Kahneman, A.  Tversky, eds. Cambridge University Press, New York.  Camerer C.F., and H. Kunreuther (1989). Decision processes for low probability events: Policy  implications, Journal of Policy Analysis and Management 8 565 592 pp. (DOI: 10.2307/3325045),  (ISSN: 1520 6688).  Caney S. (2011). Climate Change, Energy Rights and Equality. Climate Change. In: The Ethics of Global  Climate Change. D. Arnold, (ed.), Cambridge University Press, pp.77 103.  De Canio S.J., and A. Fremstad (2013). Game theory and climate diplomacy, Ecological Economics 85  177 187 pp. . Available at: http://www.sciencedirect.com/science/article/pii/S0921800911001698.  Carmichael G.R., B. Adhikary, S. Kulkarni, A. D Allura, Y. Tang, D. Streets, Q. Zhang, T.C. Bond, V.  Ramanathan, A. Jamroensan, and P. Marrapu (2009). Asian aerosols: Current and year 2030  distributions and implications to human health and regional climate change, Environ. Sci. Technol. 43  5811 5817 pp. (DOI: 10.1021/es8036803), (ISSN: 0013 936X).  Carraro C., V. Bosetti, E. De Cian, R. Duval, E. Massetti, and M. Tavoni (2009). The incentives to  participate in and the stability of international climate coalitions: a game theoretic approach using  the WITCH Model, Working Papers.  Castro P., and A. Michaelowa (2011). Would preferential access measures be sufficient to overcome  current barriers to CDM projects in least developed countries?, Climate and Development 3 123 142  pp. .  Chan G.L., L. Diaz Anadon, M. Chan, and A. Lee (2010). Expert Elicitation of Cost, Performance, and  RD&D Budgets for Coal Power with CCS, Working Paper, Energy Technology Innovation Policy  research group, Belfer Center for Science and International Affairs, Harvard Kennedy School.  Charlesworth M., and C. Okereke (2010). Policy responses to rapid climate change: An  epistemological critique of dominant approaches, Global Environmental Change 20 121 129 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S0959378009000727.  Charnes A., and W.W. Cooper (1959). Chance Constrained Programming, Management Science 6 73  79 pp. (DOI: 10.1287/mnsc.6.1.73).  Chevallier J. (2009). Carbon futures and macroeconomic risk factors: A view from the EU ETS, Energy  Economics 31 614 625 pp. (DOI: 10.1016/j.eneco.2009.02.008), (ISSN: 0140 9883).  Chichilnisky G., and G. Heal (1993). Global environmental risks, The Journal of Economic  Perspectives 7 65 86 pp. (ISSN: 0895 3309).  Ciriacy Wantrup S.V. (1971). The economics of environmental policy, Land Economics 47 36 45 pp. .  Clarke H.R., and W.J. Reed (1994). Consumption/pollution tradeoffs in an environment vulnerable  to pollution related catastrophic collapse, Journal of Economic Dynamics and Control 18 991 1010  pp. (DOI: 10.1016/0165 1889(94)90042 6), (ISSN: 0165 1889).  Cohen M.D., J.G. March, and J.P. Olsen (1972). A garbage can model of organizational choice,  Administrative Science Quarterly 17 1 25 pp. (DOI: 10.2307/2392088), (ISSN: 0001 8392).    63 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Collins H.M. (1985). Changing Order: Replication and Induction in Scientific Practice. Sage  Publications, 208 pp., (ISBN: 9780803997578). .  De Coninck H., C. Fischer, R.G. Newell, and T. Ueno (2008). International technology oriented  agreements to address climate change, Energy Policy 36 335 356 pp. .  Conliffe A. (2011). Combating ineffectiveness: climate change bandwagoning and the UN  Convention to Combat Desertification, Global Environmental Politics 11 44 63 pp. .  Cooke R.M. (1991). Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford  University Press, USA, 321 pp.  Cooke R.M. (2012). Model uncertainty in economic impacts of climate change: Bernoulli versus  Lotka Volterra dynamics, Integrated Environmental Assessment and Management n/a n/a pp. (DOI:  10.1002/ieam.1316), (ISSN: 1551 3793).  Cooke R.M., and L.L.H.J. Goossens (2008). TU Delft expert judgment data base, Reliability  Engineering & System Safety 93 657 674 pp. .  Cooper R.N. (1989). International cooperation in public health as a prologue to macroeconomic  cooperation. In: Can Nations Agree? R.N. Cooper, et al. (eds.). Brookings Institution, Washington, DC  pp.178 254.  Corner A., and U. Hahn (2009). Evaluating science arguments: Evidence, uncertainty, and argument  strength., Journal of Experimental Psychology: Applied 15 199 pp. . Available at:  http://psycnet.apa.org/journals/xap/15/3/199/.  Cronin M., C. Gonzalez, and J. Sterman (2009). Why don t well educated adults understand  accumulation? A challenge to researchers, educators and citizens., Organizational Behavior and  Human Decision Processes 108 116 130 pp. .  Crost B., and C.P. Traeger (2013). Optimal climate policy: Uncertainty vs Monte Carlo, Economics  Letters 120 552 558 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0165176513002565.  Cullen H. (2010). The Weather of the Future: Heat Waves, Extreme Storms, and Other Scenes from a  Climate Changed Planet. HarperCollins, 358 pp., (ISBN: 9780061726880). .  Curtright A.E., M.G. Morgan, and D.W. Keith (2008). Expert assessments of future photovoltaic  technologies, Environmental Science and Technology 42 9031 9038 pp. .  Cyert R., and J. March (1963). A Behavioral Theory of the Firm. Prentice Hall, Englewood Cliffs.  Damm A., K. Eberhard, J. Sendzimir, and A. Patt (2013). Perception of landslides risk and  responsibility: a case study in eastern Styria, Austria, Natural Hazards 1 19 pp. (DOI:  10.1007/s11069 013 0694 y), (ISSN: 0921 030X).  Dechezlepretre A., M. Glachant, I. Ha¹èiè, N. Johnstone, and Y. Méniere (2011). Invention and  transfer of climate change mitigation technologies: A global analysis, Review of Environmental  Economics and Policy 5 109 130 pp. .  Department for Communities and Local Government (2009). Multi Multi criteria analysis: a manual.    64 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Dessai S., and M. Hulme (2004). Does climate adaptation policy need probabilities, Climate Policy 4  107 128 pp. .  Dessai S., and M. Hulme (2007). Assessing the robustness of adaptation decisions to climate change  uncertainties: A case study on water resources management in the East of England, Global  Environmental Change 17 59 72 pp. (DOI: 16/j.gloenvcha.2006.11.005), (ISSN: 0959 3780).  Dietz S. (2011). High impact, low probability? An empirical analysis of risk in the economics of  climate change., Climate Change 108 (3) 519 541 pp. .  Dietz T., P. Stern, and E.U. Weber (2013). Reducing carbon based energy consumption through  changes in household behavior., Daedalus 1 12 pp. . Available at:  http://scholar.google.com/scholar?q=Dietz%2C+T.%2C+Stern%2C+P.%2C+%26+Weber%2C+E.+U.+% 282013%29.+Reducing+carbon based+energy+consumption+through+changes+in+household+behavior.&btnG=&hl=en&as_sdt=1% 2C39.  Ding D., E.W. Maibach, X. Zhao, C. Roser Renouf, and A. Leiserowitz (2011). Support for climate  policy and societal action are linked to perceptions about scientific agreement, Nature Climate  Change 1 462 466 pp. . Available at:  http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1295.html.  Dinner I., E.J. Johnson, D.G. Goldstein, and K. Liu (2011). Partitioning default effects: Why people  choose not to choose., Journal of Experimental Psychology: Applied 17 332 pp. . Available at:  http://psycnet.apa.org/journals/xap/17/4/332/.  Dowd A.M., N. Boughen, P. Ashworth, and S. Carr Cornish (2011). Geothermal technology in  Australia: Investigating social acceptance, Energy Policy 39 6301 6307 pp. .  Dumas P., and M. Ha Duong (2005). An Abrupt Stochastic Damage Function to Analyze Climate  Policy Benefits. Advances in Global Change Research. In: The Coupling of Climate and Economic  Dynamics. A. Haurie, L. Viguier, (eds.), Springer Netherlands, pp.97 111(ISBN: 978 1 4020 3425 1).  Durand Lasserve O., A. Pierru, and Y. Smeers (2010). Uncertain long run emissions targets, CO<  sub> 2 price and global energy transition: A general equilibrium approach, Energy Policy 38  5108 5122 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421510003150.  Dutt V. (2011). Why do we want to defer actions on climate change? A psychological perspective.  Carnegie Mellon University. . Available at:  http://www.hss.cmu.edu/departments/sds/ddmlab/papers/GonzalezDutt2011_psychreview.pdf.  Dutt V., and C. Gonzalez (2011). Human control of climate change, Climatic change 111 497 518  pp. . Available at: http://www.springerlink.com/index/835l601768q73873.pdf.  Dutt V., and C. Gonzalez (2013). Climate Risk Communication: Effects of cost, timing, and probability  of climate consequences in decisions from description and experience. In: Psychology of Policy  Making. Nova Science Publishers, Hauppauge, New York.  Eakin H.C., and A. Patt (2011). Are adaptation studies effective, and what can enhance their  practical impact?, Wiley Interdisciplinary Reviews: Climate Change 2 141 153 pp. .    65 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Eaves J., and S. Eaves (2007). Renewable corn ethanol and energy security, Energy Policy 35 5958 5963 pp. (DOI: 10.1016/j.enpol.2007.06.026), (ISSN: 0301 4215).  ECLACS (2011). The Economics of Climate Change in the Caribbean. Summary Report 2011.  UNECLAC/ POS.  Ehrhardt Martinez K., and J.A. Laitner (2010). Rebound, technology and people: Mitigating the  rebound effect with energy resource management and people centered initiatives, Proceedings of  the 2010 ACEEE Summer Study on Energy Efficiency in Buildings 76 91 pp. . Available at:  http://rste040vlmp01.blackmesh.com/files/proceedings/2010/data/papers/2142.pdf.  Eisner M.J., R.S. Kaplan, and J.V. Soden (1971). Admissible Decision Rules for the E Model of  Chance Constrained Programming, Management Science 17 337 353 pp. (ISSN: 0025 1909).  Ellis G., J. Barry, and C. Robinson (2007). Many ways to say no, different ways to say yes: Applying  Q Methodology to understand public acceptance of wind farm proposals, Journal of Environmental  Planning and Management 50 517 551 pp. (ISSN: 0964 0568).  Ellsberg D. (1961). Risk, Ambiguity, and the Savage Axioms, The Quarterly Journal of Economics 75  643 669 pp. (DOI: 10.2307/1884324), (ISSN: 0033 5533).  Den Elzen M., and D. van Vuuren (2007). Peaking profiles for achieving long term temperature  targets with more likelihood at lower costs, Proceedings of the National Academy of Sciences 104  17931  17936 pp. (DOI: 10.1073/pnas.0701598104).  Engle Warnick J., and S. Laszlo (2006). Learning by Doing in an Ambiguous Environment, CIRANO  Working Papers 2006s 29, CIRANO.  Fan L., B.F. Hobbs, and C.S. Norman (2010). Risk aversion and CO2 regulatory uncertainty in power  generation investment: Policy and modeling implications, Journal of Environmental Economics and  Management 60 193 208 pp. (DOI: 10.1016/j.jeem.2010.08.001), (ISSN: 0095 0696).  Fan L., C.S. Norman, and A. Patt (2012). Electricity capacity investment under risk aversion: A case  study of coal, gas, and concentrated solar power, Energy Economics 34 54 61 pp. (DOI:  10.1016/j.eneco.2011.10.010), (ISSN: 0140 9883).  Farzin Y.H., and P.M. Kort (2000). Pollution Abatement Investment When Environmental Regulation  Is Uncertain, Journal of Public Economic Theory 2 183 212 pp. . Available at:  http://ideas.repec.org/a/bla/jpbect/v2y2000i2p183 212.html.  Feltovich P.J., M.J. Prietula, and K.A. Ericsson (2006). Studies of expertise from psychological  perspectives. In: The Cambridge Handbook of Expertise and Expert Performance. K.A. Ericsson, N.  Charness, P.J. Feltovich, R.R. Hoffman, (eds.), Cambridge University Press, . Available at:  http://psycnet.apa.org/psycinfo/2006 10094 004.  Feng Z.H., L.L. Zou, and Y.M. Wei (2011). Carbon price volatility: Evidence from EU ETS, Applied  Energy 88 590 598 pp. .  Figner B., and E.U. Weber (2011). Who takes risks when and why?, Current Directions in  Psychological Science 20 211 216 pp. .  Finucane M.L., A. Alhakami, P. Slovic, and S.M. Johnson (2000). The affect heuristic in judgments of  risks and benefits, Journal of Behavioral Decision Making 13 1 17 pp. .    66 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Fischer C., and R.G. Newell (2008). Environmental and technology policies for climate mitigation,  Journal of Environmental Economics and Management 55 142 162 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0095069607001064.  Fisher A.C., and U. Narain (2003). Global warming, endogenous risk, and irreversibility,  Environmental and Resource Economics 25 395 416 pp. (DOI: 10.1023/A:1025056530035), (ISSN:  0924 6460).  Fleming S.M., C.L. Thomas, and R.J. Dolan (2010). Overcoming status quo bias in the human brain,  Proceedings of the National Academy of Sciences 107 6005 6009 pp. . Available at:  http://www.pnas.org/content/107/13/6005.short.  Flynn J., P. Slovic, and H. Kunreuther (2001). Risk Media and Stigma: Understanding Public  Challenges to Modern Science and Technology. Earthscan.  Folke C., S. Carpenter, T. Elmqvist, L. Gunderson, C.S. Holling, and B. Walker (2002). Resilience and  sustainable development: building adaptive capacity in a world of transformations, AMBIO: A Journal  of the Human Environment 31 437 440 pp. .  Fouquet D., and T.B. Johansson (2008). European renewable energy policy at crossroads Focus on  electricity support mechanisms, Energy Policy 36 4079 4092 pp. (DOI: 10.1016/j.enpol.2008.06.023),  (ISSN: 0301 4215).  Frondel M., N. Ritter, and C.M. Schmidt (2008). Germany s solar cell promotion: Dark clouds on the  horizon, Energy Policy Energy Policy 36 4198 4204 pp. (ISSN: 0301 4215).  Frondel M., N. Ritter, C.. Schmidt, and C. Vance (2010). Economic impacts from the promotion of  renewable energy technologies: The German experience, Energy Policy 38 4048 4056 pp. (ISSN:  0301 4215).  Funke M., and M. Paetz (2011). Environmental policy under model uncertainty: a robust optimal  control approach, Climatic Change 107 225 239 pp. (DOI: 10.1007/s10584 010 9943 1), (ISSN: 0165 0009).  Funtowicz S.O., and J.R. Ravetz (1992). Three Types of Risk Assessment and the Emergence of Post  Normal Science. In: Social Theories of Risk. S. Krimsky, D. Golding, (eds.),Westport pp.251 273.  Fuss S., D. Johansson, J. Szolgayova, and M. Obersteiner (2009). Impact of climate policy  uncertainty on the adoption of electricity generating technologies, Energy Policy 37 733 743 pp.  (DOI: 10.1016/j.enpol.2008.10.022), (ISSN: 0301 4215).  Fuss S., J. Szolgayová, N. Khabarov, and M. Obersteiner (2012). Renewables and climate change  mitigation: Irreversible energy investment under uncertainty and portfolio effects, Energy Policy 40  59 68 pp. (ISSN: 0301 4215).  Füssel H.M., and R.J.. Klein (2006). Climate change vulnerability assessments: an evolution of  conceptual thinking, Climatic Change 75 301 329 pp. .  Gardner G.T., and P.C. Stern (2008). The short list: The most effective actions US households can  take to curb climate change, Environment: Science and Policy for Sustainable Development 50 12 25  pp. .    67 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Gearheard S., M. Pocernich, R. Stewart, J. Sanguya, and H.P. Huntington (2009). Linking Inuit  knowledge and meteorological station observations to understand changing wind patterns at Clyde  River, Nunavut, Climatic Change 100 267 294 pp. . Available at:  http://www.springerlink.com/index/337542v57l5m32k5.pdf.  Gibbons M. (1994). The New Production of Knowledge: The Dynamics of Science and Research in  Contemporary Societies. SAGE, 196 pp., (ISBN: 9780803977945). .  Gilson R.J., and M.J. Roe (1993). Understanding the Japanese keiretsu: Overlaps between corporate  governance and industrial organization, Yale Law Journal 871 906 pp. . Available at:  http://www.jstor.org/stable/10.2307/796835.  Gjerde J., S. Grepperud, and S. Kverndokk (1999). Optimal climate policy under the possibility of a  catastrophe, Resource and Energy Economics 21 289 317 pp. (DOI: 10.1016/S0928 7655(99)00006 8), (ISSN: 0928 7655).  Goeschl T., and G. Perino (2009). On backstops and boomerangs: Environmental R&D under  technological uncertainty, Energy Economics 31 800 809 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S014098830900036X.  Goldstein N.J., R.B. Cialdini, and V. Griskevicius (2008). A room with a viewpoint: Using social norms  to motivate environmental conservation in hotels, Journal of Consumer Research 35 472 482 pp. .  Available at: http://www.jstor.org/stable/10.1086/586910.  Gollier C., B. Jullien, and N. Treich (2000). Scientific progress and irreversibility: an economic  interpretation of the  Precautionary Principle , Journal of Public Economics 75 229 253 pp. (DOI:  10.1016/S0047 2727(99)00052 3), (ISSN: 0047 2727).  Gollier C., and N. Treich (2003). Decision making under scientific uncertainty: the economics of the  precautionary principle, Journal of Risk and Uncertainty 27 77 103 pp. .  Gong M., J. Baron, and H. Kunreuther (2009). Group cooperation under uncertainty, Journal of Risk  and Uncertainty 39 251 270 pp. .  Gonzalez C., and V. Dutt (2011). Instance based learning: Integrating sampling and repeated  decisions from experience., Psychological Review 118 523 551 pp. . Available at:  http://psycnet.apa.org/journals/rev/118/4/523/.  Goodnough A. (2006). As hurricane season looms, state aim to scare, The New York Times . Available  at: http://www.nytimes.com/2006/05/31/us/31prepare.html?pagewanted=print&_r=0.  Goossens L.H.J., F.T. Harper, B.C.P. Kraan, and H. Métivier (INVITED) (2000). Expert judgement for a  probabilistic accident consequence uncertainty analysis, Radiation Protection Dosimetry 90 295  301  pp. . Available at: http://rpd.oxfordjournals.org/content/90/3/295.abstract.  Government of India, Ministry of Finance (2012). Economic Survey 2012 13.  Grassi G., S. Monni, S. Federici, F. Achard, and D. Mollicone (2008). Applying the conservativeness  principle to REDD to deal with the uncertainties of the estimates, Environmental Research Letters 3  035005 pp. .    68 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Green D., J. Billy, and A. Tapim (2010). Indigenous Australians  knowledge of weather and climate,  Climatic Change 100 337 354 pp. . Available at:  http://www.springerlink.com/index/u04024q252848663.pdf.  Green D., and G. Raygorodetsky (2010). Indigenous knowledge of a changing climate, Climatic  Change 100 239 242 pp. . Available at: http://www.springerlink.com/index/27kg6682148j0670.pdf.  Greene D.L., J. German, and M.A. Delucchi (2009). Fuel economy: The case for market failure. In:  Reducing climate impacts in the transportation sector. Springer, pp.181 205. Available at:  http://link.springer.com/chapter/10.1007/978 1 4020 6979 6_11/fulltext.html.  Gromet D.M., H. Kunreuther, and R.P. Larrick (2013). Political ideology affects energy efficiency  attitudes and choices, Proceedings of the National Academy of Sciences 110 9314 9319 pp. .  Available at: http://www.pnas.org/content/110/23/9314.short.  Gross M. (2010). Ignorance and Surprise: Science, Society, and Ecological Design. MIT Press, 255 pp.,  (ISBN: 9780262013482). .  Grothmann T., and A. Patt (2005). Adaptive capacity and human cognition: the process of individual  adaptation to climate change, Global Environmental Change Part A 15 199 213 pp. .  Grothmann T., and F. Reusswig (2006). People at risk of flooding: Why some residents take  precautionary action while others do not, Natural hazards 38 101 120 pp. .  Grubb M. (1997). Technologies, energy systems and the timing of CO2  emissions abatement: An  overview of economic issues, Energy Policy 25 159 172 pp. (DOI: 10.1016/S0301 4215(96)00106 1),  (ISSN: 0301 4215).  Grubler A., and K. Riahi (2010). Do governments have the right mix in their energy R&D portfolios?,  Carbon 1 79 87 pp. .  Guston D.H. (2001). Boundary Organizations in Environmental Policy and Science. Sage Publications,  133 pp.  Ha Duong M. (1998). Quasi option value and climate policy choices, Energy Economics 20 599 620  pp. (DOI: 10.1016/S0140 9883(98)00011 5), (ISSN: 0140 9883).  Ha Duong M., M.J. Grubb, and J. C. Hourcade (1997a). Influence of socioeconomic inertia and  uncertainty on optimal CO2  emission abatement, Nature, Nature 390 270 273 pp. . Available at:  http://halshs.archives ouvertes.fr/halshs 00002452.  Ha Duong M., M.J. Grubb, and J.C. Hourcade (1997b). Influence of socioeconomic inertia and  uncertainty on optimal CO2  emission abatement, Nature 389 270 273 pp. .  Ha Duong M., and N. Treich (2004). Risk aversion, intergenerational equity and climate change,  Environmental and Resource Economics 28 195 207 pp. (DOI:  10.1023/B:EARE.0000029915.04325.25), (ISSN: 0924 6460).  Hafner Burton E.M., D.G. Victor, and Y. Lupu (2012). Political science research on International Law,  American Journal of International Law 106 47 97 pp. .    69 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Haigh M.S., and J.A. List (2005). Do professional traders exhibit myopic loss aversion? An  experimental analysis, The Journal of Finance 60 523 534 pp. . Available at:  http://onlinelibrary.wiley.com/doi/10.1111/j.1540 6261.2005.00737.x/full.  Hall J.W., R.J. Lempert, K. Keller, A. Hackbarth, C. Mijere, and D.J. McInerney (2012). Robust  climate policies under uncertainty: A comparison of robust decision making and info gap methods,  Risk Analysis 32 1657 72 pp. . Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1539 6924.2012.01802.x/full.  Hammond J.S., R.L. Keeney, and H. Raiffa (1999). Smart Choices: A Practical Guide to Making Better  Decisions. Harvard Business Press, 244 pp.  Hardcastle P.D., and D. Baird (2008). Capability and Cost Assessment of the Major Forest Nations to  Measure and Monitor Their Forest Carbon. LTS International, Penicuick, UK.  Hardisty D.J., E.J. Johnson, and E.U. Weber (2010). A dirty word or a dirty world? Attribute framing,  political affiliation, and query theory, Psychological Science 21 86 92 pp. . Available at:  http://pss.sagepub.com/content/21/1/86.short.  Hasselmann K., and T. Barker (2008). The Stern Review and the IPCC fourth assessment report:  implications for interaction between policymakers and climate experts. An editorial essay, Climatic  Change 89 219 229 pp. .  Hasselmann K., M. Latif, G. Hooss, C. Azar, O. Edenhofer, C.C. Jaeger, O.M. Johannessen, C.  Kemfert, M. Welp, and A. Wokaun (2003). The challenge of long term climate change, Science 302  1923 1925 pp. .  Heal G.M., and H. Kunreuther (2011). Tipping Climate Negotiations, SSRN eLibrary . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1810308.  Heath C., and A. Tversky (1991). Preference and belief: Ambiguity and competence in choice under  uncertainty, Journal of Risk and Uncertainty 4 5 28 pp. (DOI: 10.1007/BF00057884), (ISSN: 0895 5646, 1573 0476).  Heidegger M. (1962). Being and Time (J. Macquarrie and E. Robinson, Trans.). Harper & Row, New  York.  Held H., E. Kriegler, K. Lessmann, and O. Edenhofer (2009). Efficient climate policies under  technology and climate uncertainty, Energy Economics 31 S50 S61 pp. .  Held H., M. Ragwitz, and R. Haas (2006). On the success of policy strategies for the promotion of  electricity from renewable energy sources in the EU, Energy & Environment 17 849 868 pp. .  Hill J., S. Polasky, E. Nelson, D. Tilman, H. Huo, L. Ludwig, J. Neumann, H. Zheng, and D. Bonta  (2009). Climate change and health costs of air emissions from biofuels and gasoline, Proceedings of  the National Academy of Sciences 106 2077  2082 pp. (DOI: 10.1073/pnas.0812835106).  Hirst E., D. White, and R. Goeltz (1985). Indoor temperature changes in retrofit homes, Energy 10  861 870 pp. . Available at: http://www.sciencedirect.com/science/article/pii/0360544285901197.  Hof A.F., D.P. van Vuuren, and M.G.J. den Elzen (2010). A quantitative minimax regret approach to  climate change: Does discounting still matter?, Ecological Economics 70 43 51 pp. (DOI:  16/j.ecolecon.2010.03.023), (ISSN: 0921 8009).    70 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Hoffmann V.H. (2007). EU ETS and investment decisions: The case of the german electricity industry,  European Management Journal 25 464 474 pp. .  Hoffmann M.J. (2011). Climate Governance at the Crossroads. Experimenting with a Global Response  after Kyoto. Oxford Univiversity Press.  Holling C.S. (Ed.) (1978). Adaptive Environmental Assessment and Management. Wiley & Sons.  Hope C.W. (2008). Optimal carbon emissions and the social cost of carbon over time under  uncertainty, Integrated Assessment 8 107 122 pp. (ISSN: 1389 5176).  Hope C.W. (2009). How deep should the deep cuts be? Optimal CO2 emissions over time under  uncertainty, Climate Policy 9 3 8 pp. (DOI: 10.3763/cpol.2008.0583a), (ISSN: 1469 3062).  Hora S.C. (2004). Probability judgments for continuous quantities: Linear combinations and  calibration, Management Science 50 597 604 pp. .  Van den Hove S. (2007). A rationale for science policy interfaces, Futures 39 807 826 pp. . Available  at: http://www.sciencedirect.com/science/article/pii/S0016328706002060.  Hulme M., S.J. O Neill, and S. Dessai (2011). Is weather event attribution necessary for adaptation  funding?, Science 334 764 765 pp. .  IISD (2012). Fossil Fuel Subsidy Reform in India: Cash Transfers for PDS Kerosene and Domestic LPG.  International Institute for Sustainable Development. . Available at:  http://www.iisd.org/gsi/sites/default/files/ffs_india_teri_rev.pdf.  IPCC I.P. on C. (2007). Summary for Policymakers. In: Climate Change 2007: The Physical Science  Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental  Panel on Climate Change [S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H.  L. Miller, Z. Chen (eds.)]. Cambridge University Press,, Cambridge, United Kingdom and New York, NY,  USA. 18 pp. Available at: http://www.ipcc.ch/pdf/assessment report/ar4/wg1/ar4 wg1 spm.pdf.  IPCC (2012). Managing the Risks of Extreme Events an Disasters to Advance Climate Change  Adaption [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J.  Mach, G. K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (Eds.)]. Special Report of Working  Groups I and II of the Intergovernmental Panel on Climate Change.  Itaoka K., Y. Okuda, A. Saito, and M. Akai (2009). Influential information and factors for social  acceptance of CCS: The 2nd round survey of public opinion in Japan, Energy Procedia 1 4803 4810  pp. (DOI: 10.1016/j.egypro.2009.02.307), (ISSN: 1876 6102).  Iverson T., and C. Perrings (2012). Precaution and proportionality in the management of global  environmental change, Global Environmental Change 22 161 177 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0959378011001440.  Jacoby H.D., and A.D. Ellerman (2004). The safety valve and climate policy, Energy Policy 32 481 491 pp. (DOI: 10.1016/S0301 4215(03)00150 2), (ISSN: 0301 4215).  Jaffe A., and R. Stavins (1995). Dynamic incentives of environmental regulations: The effects of  alternative policy instruments on technology diffusion., Journal of Environmental Economics and  Management 29 43 63 pp. .    71 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Jakob M. (2006). Marginal costs and co benefits of energy efficiency investments: The case of the  Swiss residential sector, Energy Policy 34 172 187 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S030142150400271X.  James W. (1878). Remarks on Spencer s Definition of Mind as Correspondence, The Journal of  Speculative Philosophy XII 1 18 pp. . Available at: http://www.jstor.org/stable/25666067?seq=1.  Jasanoff S. (1990). The Fifth Branch: Science Advisers As Policymakers. Harvard University Press,  Cambridge, 322 pp., (ISBN: 9780674300620). .  Jasanoff S. (2005a). Designs on Nature: Science And Democracy in Europe And the United States.  Princeton University Press, New York, 392 pp., (ISBN: 9780691130422). .  Jasanoff S. (2005b). Judgment under Siege: The Three Body Problem of Expert Legitimacy. In:  Democratization of Expertise?: Exploring Novel Forms of Scientific Advice in Political Decision Making  (S. Maasen and peter weingart, Eds.). Springer Science & Business, 256 pp., (ISBN:  9781402037535). .  Jasanoff S. (2010). Testing time for climate science, Science 328 695 696 pp. (DOI:  10.1126/science.1189420), (ISSN: 0036 8075, 1095 9203).  Jinnah S. (2011). Marketing linkages: Secretariat governance of the climate biodiversity interface,  Global Environmental Politics 11 23 43 pp. .  Johansson D.J.A., U.M. Persson, and C. Azar (2008). Uncertainty and learning: implications for the  trade off between short lived and long lived greenhouse gases, Climatic Change 88 293 308 pp. .  Available at: http://www.springerlink.com/index/K2052K4611313K26.pdf.  Johnson E.J., and D.G. Goldstein (2013). Decisions By Default. In: Behavioral Foundations of Policy.  E. Shafir, (ed.), Princeton University Press, Princeton, NJ.  Johnson E.J., G. Häubl, and A. Keinan (2007). Aspects of endowment: a query theory of value  construction., Journal of Experimental Psychology: Learning, Memory, and Cognition 33 461 pp. .  Available at: http://psycnet.apa.org/journals/xlm/33/3/461/.  Jones L., and E. Boyd (2011). Exploring social barriers to adaptation: Insights from Western Nepal,  Global Environmental Change 21 1262 1274 pp. .  Jones R.N., and B.L. Preston (2011). Adaptation and risk management, Wiley Interdisciplinary  Reviews: Climate Change 2 296 308 pp. .  Joyce L.A., G.M. Blate, S.G. McNulty, C.I. Millar, R.P. Neilson, R.P. Neilson, and D.L. Peterson  (2009). Managing for multiple resources under climate change: National forests, Environmental  Management 44 1022 1032 pp. (ISSN: 0364 152X).  Kahn H., and A.J. Wiener (1967). The Year 2000: A Framework for Speculation on the Next Thirty Three Years, New York.  Kahneman D. (2011). Thinking, Fast and Slow. Macmillan, 511 pp., (ISBN: 9780374275631). .  Kahneman D., and A. Tversky (1979). Prospect theory: An analysis of decision under risk,  Econometrica 47 263 291 pp. (DOI: 10.2307/1914185), (ISSN: 0012 9682).    72 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Kahnemann D. (2003). A psychological perspective on economics. 93, 162 168.  Kasperson R.E., O. Renn, P. Slovic, H.S. Brown, J. Emel, R. Goble, J.X. Kasperson, and S. Ratick  (1988). The social amplification of risk: A conceptual framework, Risk Analysis 8 177 187 pp. .  Kaufman N. (2012). The bias of integrated assessment models that ignore climate catastrophes,  Climatic Change 110 575 595 pp. . Available at: http://link.springer.com/article/10.1007/s10584 011 0140 7.  Keeney R.L. (1993). Decision analysis: An overview, Operations Research 30 803 838 pp. .  Keller K., B.M. Bolker, and D.F. Bradford (2004). Uncertain climate thresholds and optimal economic  growth, Journal of Environmental Economics and Management 48 723 741 pp. (DOI:  10.1016/j.jeem.2003.10.003), (ISSN: 0095 0696).  Kelly D.L., and C.D. Kolstad (1999). Bayesian learning, growth, and pollution, Journal of Economic  Dynamics and Control 23 491 518 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0165188998000347.  Klein R.J.., S.E.. Eriksen, L.O. Naess, A. Hammill, T.M. Tanner, C. Robledo, and K.L. O Brien (2007).  Portfolio screening to support the mainstreaming of adaptation to climate change into development  assistance, Climatic Change 84 23 44 pp. .  Kleindorfer P.R., H.C. Kunreuther, and P. Schoemaker (1993). Decision Sciences: An Integrative  Perspective. Cambridge University Press. . Available at:  http://books.google.com/books?hl=en&lr=&id=lN4fXDap37MC&oi=fnd&pg=PR7&dq=Decision+Scien ces,+An+Integrated+Perspective+(with+Paul+Kleindorfer+and+Paul+Schoemaker).+Cambridge+Univ ersity+Press.+(1993).&ots=ipLgqDwpfM&sig=sjUix58NuM3Xpqu0d r35wRCZyY.  Kloeckner C.A. (2011). Towards a psychology of climate change. Climate Change Management. In:  The Economic, Social and Political Elements of Climate Change. pp.153 173. Available at:  http://www.springerlink.com/index/K17H385232021072.pdf.  Klügel J.U. (2008). Seismic hazard analysis Quo vadis?, Earth Science Reviews 88 1 32 pp. .  Knutti R., G. Abramowitz, M. Collins, V. Eyring, P.. Glecker, B. Hewitson, and L. Mearns (2010).  Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections. In:  Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and  Combining Multi Model Climate Projections. T.F. Stocker, D. Qin, G. K. Plattner, M. Tignor, P.M.  Midgley, (eds.), IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland.  Knutti R., M.R. Allen, P. Friedlingstein, J.M. Gregory, G.C. Hegerl, G. Meehl, M. Meinshausen, J.M.  Murphy, G. K. Plattner, S.C.B. Raper, T.F. Stocker, P.A. Stott, H. Teng, and T.M.L. Wigley (2008). A  review of uncertainties in global temperature projections over the twenty first century, Journal of  Climate 21 2651 2663 pp. .  Knutti R., D. Masson, and A. Gettelman (2013). Climate model genealogy: Generation CMIP5 and  how we got there, Geophysical Research Letters 40 1194 1199 pp. (DOI: 10.1002/grl.50256).  Kolstad C.D. (1994). George Bush versus Al Gore: Irreversibilities in greenhouse gas accumulation  and emission control investment, Energy Policy 22 771 778 pp. (DOI: 10.1016/0301 4215(94)90053 1), (ISSN: 0301 4215).    73 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Kolstad C.D. (1996a). Fundamental irreversibilities in stock externalities, Journal of Public Economics  60 221 233 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/0047272795015213.  Kolstad C.D. (1996b). Learning and stock effects in environmental regulation: the case of  greenhouse gas emissions, Journal of Environmental Economics and Management 31 1 18 pp. .  Available at:  http://are.berkeley.edu/courses/ARE263/fall2008/paper/Learning/KolstadLearning%20JEEM.pdf.  Kolstad C.D. (2007). Journal of Environmental Economics and Management . Systematic uncertainty  in self enforcing international environmental agreements, Journal of Environmental Economics and  Management 53 68 79 pp. . Available at: http://ideas.repec.org/a/eee/jeeman/v53y2007i1p68 79.html.  Kolstad C.D., and A. Ulph (2011). Uncertainty, learning and heterogeneity in international  environmental agreements, Environmental and Resource Economics 50 389 403 pp. .  Komendantova N., A. Patt, L. Barras, and A. Battaglini (2012). Perception of risks in renewable  energy projects: The case of concentrated solar power in North Africa, Energy Policy 40 103 109  pp. . Available at: http://www.sciencedirect.com/science/article/pii/S0301421509009458.  Komendantova N., A. Patt, and K. Williges (2011). Solar power investment in North Africa: Reducing  perceived risks, Renewable and Sustainable Energy Reviews.  Krantz D.H., and H.C. Kunreuther (2007). Goals and plans in decision making, Judgment and Decision  Making 2 137 168 pp. .  Krosnick J.A., A.L. Holbrook, L. Lowe, and P.S. Visser (2006). The origins and consequences of  democratic citizens  policy agendas: A study of popular concern about global warming, Climatic  Change 77 7 43 pp. . Available at: http://www.springerlink.com/index/WU4K81W185X1V576.pdf.  Kunreuther H., R. Ginsberg, L. Miller, P. Sagi, P. Slovic, B. Borkin, and N. Katz (1978). Disaster  Insurance Protection: Public Policy Lessons. Wiley and Sons, New York, 400 pp.  Kunreuther H., G. Heal, M. Allen, O. Edenhofer, C.B. Field, and G. Yohe (2013a). Risk management  and climate change, Nature Climate Change 3 447 450 pp. . Available at:  http://www.nber.org/papers/w18607.  Kunreuther H., R. Hogarth, and J. Meszaros (1993). Insurer ambiguity and market failure, Journal of  Risk and Uncertainty 7 71 87 pp. .  Kunreuther H., R. Meyer, and E. Michel Kerjan (2013b). Overcoming Decision Biases to Reduce  Losses from Natural Catastrophes. In: The Behavioral Foundations of Policy, E. Shafir (ed.). Princeton  University Press, New Jersey / United States pp.398 425(ISBN: 9780691137568).  Kunreuther H., and E. Michel Kerjan (2011). People get ready: Disaster preparedness, Issues in  Science and Technology XXVIII 1 7 pp. . Available at: http://www.issues.org/28.1/kunreuther.html.  Kunreuther H., N. Novemsky, and D. Kahneman (2001). Making low probabilities useful, Journal of  Risk and Uncertainty 23 103 20 pp. . Available at:  http://econpapers.repec.org/article/kapjrisku/v_3a23_3ay_3a2001_3ai_3a2_3ap_3a103 20.htm.    74 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Kunreuther H., M. Pauly, and S. McMorrow (2013c). Insurance and Behavioral Economics:  Improving Decisions in the Most Misunderstood Industry. New York: Cambridge University Press.  Kunreuther H., G. Silvasi, E.T. Bradlow, and D. Small (2009). Bayesian analysis of deterministic and  stochastic prisoner s dilemma games, Judgment and Decision Making 4 363 384 pp. .  Labriet M., A. Kanudia, and R. Loulou (2012). Climate mitigation under an uncertain technology  future: a TIAM WORLD analysis, Energy Economics 34 S366 S377 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0140988312000461.  Labriet M., R. Loulou, and A. Kanudia (2010). Modeling uncertainty in a large scale integrated  energy climate model. International Series in Operations Research & Management Science. In:  Uncertainty and Environmental Decision Making. Springer, pp.51 77. Available at:  http://link.springer.com/chapter/10.1007/978 1 4419 1129 2_2.  Laibson D. (1997). Golden eggs and hyperbolic discounting, The Quarterly Journal of Economics 112  443 478 pp. .  Laidler G.J. (2006). Inuit and scientific perspectives on the relationship between sea ice and climate  change: the ideal complement?, Climatic Change 78 407 444 pp. . Available at:  http://www.springerlink.com/index/M72813263P4U2380.pdf.  Lange A., and N. Treich (2008). Uncertainty, learning and ambiguity in economic models on climate  policy: some classical results and new directions, Climatic Change 89 7 21 pp. .  Larrick R.P., and J.B. Soll (2008). The MPG illusion, Science 320 1593 1594 pp. .  Lawler J.J., T.H. Tear, C. Pyke, R.M. Shaw, P. Gonzales, P. Kareiva, L. Hansen, L. Hannah, K.  Klausmeyer, A. Aldous, C. Bienz, and S. Pearsall. Resource management in a changing and uncertain  climate, Frontiers in Ecology and the Environment 8 35 43 pp. .  Lawlor K., E. Weinthal, and L. Olander (2010). Institutions and policies to protect rural livelihoods in  REDD+ regimes, Global Environmental Politics 10 1 11 pp. .  Leach A.J. (2007). The climate change learning curve, Journal of Economic Dynamics and Control 31  1728 1752 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0165188906001266.  Leary D., and M. Esteban (2009). Climate Change and renewable energy from the ocean and tides:  Calming the sea of regulatory uncertainty, The International Journal of Marine and Coastal Law 24  617 651 pp. (DOI: 10.1163/092735209X12499043518269).  Lee K.N. (1993). Compass and Gyroscope: Integrating Science and Politics for the Environment. Island  Press. Washington, DC, USA, 255 pp.  Lefale P. (2010). Ua  afa le Aso Stormy weather today: traditional ecological knowledge of weather  and climate. The Samoa experience, Climatic Change 100 317 335 pp. (DOI: 10.1007/s10584 009 9722 z).  Leiserowitz A. (2005). American risk perceptions: Is climate change dangerous?, Risk Analysis 25  1433 1442 pp. .    75 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Leiserowitz A. (2006). Climate change risk perception and policy preferences: The role of affect,  imagery, and values, Climatic Change 77 45 72 pp. .  Leiserowitz A., and K. Broad (2008). Florida: Public Opinion on Climate Change. A Yale  University/University of Miami/Columbia University Poll. New Haven, CT: Yale Project on Climate  Change.  Leiserowitz A., E. Maibach, C. Roser Renouf, Y.U.S. of Forestry, E. Studies, Y.P. on C. Change, and  G.M.U.C. for C.C. Communication (2008). Global Warming s  Six America : An Audience  Segmentation. Yale School of Forestry & Environmental Studies.  Leiserowitz A., E. Maibach, C. Roser Renouf, and J. Hmielowski (2012). Extreme, weather, climate  and preparedness in the American mind, Yale Project on Climate Change Communication.  Lempert R.J., D.G. Groves, S.W. Popper, and S.C. Bankes (2006). A General, Analytic Method for  Generating Robust Strategies and Narrative Scenarios, Management Science 52 514 528 pp. (DOI: 

10.1287/mnsc.1050.0472

).  Letson D., C.E. Laciana, F.E. Bert, E.U. Weber, R.W. Katz, X.I. Gonzalez, and G.P. Podestá (2009).  Value of perfect ENSO phase predictions for agriculture: evaluating the impact of land tenure and  decision objectives, Climatic Change 97 145 170 pp. .  Li Y., E.J. Johnson, and L. Zaval (2011). Local warming, Psychological Science 22 454  459 pp. (DOI:  10.1177/0956797611400913).  Lilliestam J., A. Battaglini, C. Finlay, D. Fürstenwerth, A. Patt, G. Schellekens, and P. Schmidt  (2012). An alternative to a global climate deal may be unfolding before our eyes, Climate and  Development 4 1 4 pp. .  Lilliestam J., and S. Ellenbeck (2011). Energy security and renewable electricity trade Will Desertec  make Europe vulnerable to the  energy weapon ?, Energy Policy 39 3380 3391 pp. (DOI:  10.1016/j.enpol.2011.03.035), (ISSN: 0301 4215).  List J.A. (2003). Does market experience eliminate market anomalies?, The Quarterly Journal of  Economics 118 41 71 pp. . Available at: http://qje.oxfordjournals.org/content/118/1/41.short.  Little C.M., N.M. Urban, and M. Oppenheimer (2013). Probabilistic framework for assessing the ice  sheet contribution to sea level change, Proceedings of the National Academy of Sciences 110 3264 3269 pp. . Available at: http://www.pnas.org/content/110/9/3264.short.  Loewenstein G., and J. Elster (1992). Choice Over Time. Russell Sage Foundation, 434 pp., (ISBN:  9780871545589). .  Loewenstein G.F., E.U. Weber, C.K. Hsee, and N. Welch (2001). Risk as feelings, Psychological  Bulletin 127 267 pp. .  Lorenz A., E. Kriegler, H. Held, and M.G. Schmidt (2012a). How to measure the importance of  climate risk for determining optimal global abatement policies?, Climate Change Economics 3 01 28  pp. . Available at: http://www.worldscientific.com/doi/pdf/10.1142/S2010007812500042.  Lorenz A., M. Schmidt, E. Kriegler, and H. Held (2012b). Anticipating Climate Threshold Damages,  Environmental Modeling and Assessment 17 163 175 pp. (DOI: 10.1007/s10666 011 9282 2), (ISSN:  1420 2026).    76 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Lorenzoni I., A. Leiserowitz, M.D.. Doria, W. Poortinga, and N.F. Pidgeon (2006). Cross national  comparisons of image associations with  global warming  and  climate change  among laypeople in  the United States of America and Great Britain, Journal of Risk Research 9 265 281 pp. .  Lorenzoni I., S. Nicholson Cole, and L. Whitmarsh (2007). Barriers perceived to engaging with  climate change among the UK public and their policy implications, Global Environmental Change 17  445 459 pp. .  Lorenzoni I., and N.F. Pidgeon (2006). Public views on climate change: European and USA  perspectives, Climatic Change 77 73 95 pp. .  Lowe T., K. Brown, S. Dessai, M. de França Doria, K. Haynes, and K. Vincent (2006). Does tomorrow  ever come? Disaster narrative and public perceptions of climate change, Public Understanding of  Science 15 435 457 pp. .  Lüthi S. (2010). Effective deployment of photovoltaics in the Mediterranean countries: Balancing  policy risk and return, Solar Energy 84 1059 1071 pp. .  Lüthi S., and R. Wüstenhagen (2012). The price of policy risk   Empirical insights from choice  experiments with European photovoltaic project developers, Energy Economics 34 1001 1011 pp. .  Malueg D.A. (1990). Welfare consequences of emission credit trading programs, Journal of  Environmental Economics and Management 18 66 77 pp. (ISSN: 0095 0696).  Manne A.S., and R.G. Richels (1991). Buying greenhouse insurance, Energy Policy 19 543 552 pp.  (DOI: 10.1016/0301 4215(91)90034 L), (ISSN: 0301 4215).  Martin T.G., M.A. Burgmann, F. Fidler, P.M. Kuhnert, S. Low Choy, M. McBride, and K. Mengersen  (2012). Eliciting expert knowledge in conservation science, Conservation Biology 26 29 38 pp. .  Maslow A.H. (1954). Motivation and Personality. Harper (New York). . Available at:  http://www.getcited.org/pub/101181741.  Mastrandrea M., C. Field, T. Stocker, O. Edenhofer, K. Ebi, D. Frame, H. Held, E. Kriegler, K. Mach,  P. Matschoss, and others (2010). Guidance note for lead authors of the IPCC fifth assessment report  on consistent treatment of uncertainties, Intergovernmental Panel on Climate Change, Geneva 5  pp. .  Mastrandrea M.D., K.J. Mach, G. K. Plattner, O. Edenhofer, T.F. Stocker, C.B. Field, K.L. Ebi, and  P.R. Matschoss (2011). The IPCC AR5 guidance note on consistent treatment of uncertainties: a  common approach across the working groups, Climatic Change 108 675 691 pp. (DOI:  10.1007/s10584 011 0178 6), (ISSN: 0165 0009, 1573 1480).  McCrimmon K.R. (1968). Descriptive and normative implications of the decision theory postulates.  In: Risk and Uncertainty. MacMillan, London pp.3 24.  McDermott C.L., K. Levin, and B. Cashore (2011). Building the forest climate bandwagon: REDD+  and the logic of problem amelioration, Global Environmental Politics 11 85 103 pp. .  McInerney D., and K. Keller (2008). Economically optimal risk reduction strategies in the face of  uncertain climate thresholds, Climatic Change 91 29 41 pp. (DOI: 10.1007/s10584 006 9137 z),  (ISSN: 0165 0009, 1573 1480).    77 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Meckling J. (2011). The globalization of carbon trading: transnational business coalitions in climate  politics, Global Environmental Politics 11 26 50 pp. .  Meijer I.S.M., M.P. Hekkert, and J.F.M. Koppenjan (2007). The influence of perceived uncertainty  on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in  the Netherlands, Energy Policy 35 5836 5854 pp. (DOI: 10.1016/j.enpol.2007.07.009), (ISSN: 0301 4215).  Meinshausen M, Smith S.J, Calvin K, Thomson A, Daniel J.S, Kainuma M.L.T, Matsumoto K,  Lamarque J, Raper S.C.B, Riahi K, Velders G.J.M, van Vuuren D.P.P, and Montzka S.A (2011). The  RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change 109  213 241 pp. (ISSN: 0165 0009).  Mendonça M. (2007). Feed in Tariffs: Accelerating the Deployment of Renewable Energy. Earthscan,  173 pp., (ISBN: 9781844074662). .  Michel Kerjan E., S. Lemoyne de Forges, and H. Kunreuther (2012). Policy tenure under the U.S.  National Flood Insurance Program (NFIP), Risk Analysis 32(4) 644 658 pp. (DOI: 10.1111/j.1539 6924.2011.01671.x), (ISSN: 1539 6924).  Milinski M., R.D. Sommerfeld, H.J. Krambeck, F.A. Reed, and J. Marotzke (2008). The collective risk  social dilemma and the prevention of simulated dangerous climate change, Proceedings of the  National Academy of Sciences 105 2291 pp. .  Miller C. (2001). Hybrid management: boundary organizations, science policy, and environmental  governance in the climate regime, Science, Technology & Human Values 26 478 500 pp. . Available  at: http://sth.sagepub.com/content/26/4/478.short.  Mitchell C., D. Bauknecht, and P.M. Connor (2006). Effectiveness through risk reduction: a  comparison of the renewable obligation in England and Wales and the feed in system in Germany,  Energy Policy 34 297 305 pp. (DOI: 10.1016/j.enpol.2004.08.004), (ISSN: 0301 4215).  Morgan M.G., and M. Henrion (1990). Uncertainty: A Guide to Dealing with Uncertainty in  Quantitative Risk and Policy Analysis. Cambridge University Press, 354 pp., (ISBN: 9780521427449  paperback, 0 521 36542 2 hardback). .  Morgan M.G., and D.W. Keith (1995). Subjective judgements by climate experts, Environmental  Science & Technology 29 468 476 pp. .  Moser S.C. (2007). In the long shadows of inaction: The quiet building of a climate protection  movement in the United States, Global Environmental Politics 7 124 144 pp. .  Moser S.C. (2010). Communicating climate change: history, challenges, process and future  directions, Wiley Interdisciplinary Reviews: Climate Change 1 31 53 pp. . Available at:  http://onlinelibrary.wiley.com/doi/10.1002/wcc.11/full.  Mozumder P., E. Flugman, and T. Randhir (2011). Adaptation behavior in the face of global climate  change: Survey responses from experts and decision makers serving the Florida Keys, Ocean &  Coastal Management 54 37 44 pp. .  Murray B.C., R.G. Newell, and W.A. Pizer (2009). Balancing cost and emissions certainty: An  allowance reserve for cap and trade, Review of Environmental Economics and Policy 3 84 103 pp. .    78 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Musall F.D., and O. Kuik (2011). Local acceptance of renewable energy A case study from southeast  Germany, Energy Policy.  Myers T.A., M.C. Nisbet, E.W. Maibach, and A.A. Leiserowitz (2012). A public health frame arouses  hopeful emotions about climate change, Climatic Change 113 1105 1112 pp. . Available at:  http://www.springerlink.com/index/B0072M7777772K7R.pdf.  Von Neumann J., and O. Morgenstern (1944). Theory of Games and Economic Behavior. Princeton  University Press, Princeton, NJ.  Nietzsche F. (2008). The Birth of Tragedy. Oxford University Press, 224 pp.  Nilsson M. (2005). The role of assessments and institutions for policy learning: a study on Swedish  climate and nuclear policy formation, Policy Sciences 38 225 249 pp. . Available at:  http://link.springer.com/article/10.1007/s11077 006 9006 7.  Nordhaus W.D. (1994). Expert opinion on climatic change, American Scientist 82 45 51 pp. .  Nordhaus W.D., and D. Popp (1997). What is the value of scientific knowledge? An application to  global warming using the PRICE model, The Energy Journal 1 45 pp. . Available at:  http://www.jstor.org/stable/10.2307/41322716.  Nowotny H., P. Scott, and M. Gibbons (2001). Re Thinking Science: Knowledge and the Public in an  Age of Uncertainty. Polity, 292 pp., (ISBN: 9780745626086). .  O Brien K. (2009). Do values subjectively define the limits to climate change adaptation? In:  Adapting to Climate Change. W. Adger, I. Lorenzoni, K. O Brien, (eds.), Cambridge University Press.,  Cambridge, UK pp.164 180.  O Hagan A., E. Caitlin, C.E. Buck, A. Daneshkhah, J.R. Eiser, P.H. Garthwaite, D.J. Jenkinson, J.E.  Oakley, and T. Rakow (2006). Uncertainty Judgements: Eliciting Experts  Probabilities. John Wiley &  Sons Inc, (ISBN: 0 470 02999 4). .  O Neill B.C., and M. Oppenheimer (2002). Dangerous climate impacts and the Kyoto Protocol,  Science 296 1971 1972 pp. . Available at:  http://www.sciencemag.org/content/296/5575/1971.short.  O Neill B., and W. Sanderson (2008a). Population, uncertainty, and learning in climate change  decision analysis, Climatic Change 89 87 123 pp. (DOI: 10.1007/s10584 008 9419 8), (ISSN: 0165 0009).  O Neill B.C., and W. Sanderson (2008b). Population, uncertainty, and learning in climate change  decision analysis, Climatic Change 89 87 123 pp. .  Obersteiner M., C. Azar, P. Kauppi, K. Möllersten, J. Moreira, S. Nilsson, P. Read, K. Riahi, B.  Schlamadinger, and Y. Yamagata (2001). Managing climate risk, Science 294 786 787 pp. . Available  at: http://webarchive.iiasa.ac.at/Admin/PUB/Documents/IR 01 051.pdf.  Oda J., and K. Akimoto (2011). An analysis of CCS investment under uncertainty, Energy Procedia 4  1997 2004 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1876610211002785.    79 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Oliveira P.J.., G.P. Asner, D.E. Knapp, A. Almeyda, R. Galván Gildemeister, S. Keene, R.F. Raybin,  and R.C. Smith (2007). Land use allocation protects the Peruvian Amazon, Science 317 1233 1236  pp. .  Orlove B., C. Roncoli, and A. Majugu (2009). Indigenous climate knowledge in Southern Uganda: the  multiple components of a dynamic regional system., Climatic Change (DOI: doi:10.1007/s10584 009 9586 2).  Patino Echeverri D., P. Fischbeck, and E. Kriegler (2009). Economic and environmental costs of  regulatory uncertainty for coal fired power plants, Environmental Science and Technology 43 578 584 pp. (DOI: 10.1021/es800094h), (ISSN: 0013 936X).  Patino Echeverri D., B. Morel, J. Apt, and C. Chen (2007). Should a coal fired power plant be  replaced or retrofitted?, Environmental Science and Technology 41 7980 7986 pp. (DOI:  10.1021/es0711009), (ISSN: 0013 936X).  Patt A. (2007). Assessing model based and conflict based uncertainty, Global Environmental Change  17 37 46 pp. .  Patt A., and S. Dessai (2005). Communicating uncertainty: lessons learned and suggestions for  climate change assessment, Comptes Rendus Geoscience 337 425 441 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1631071304002822.  Patt A., R.J.. Klein, and A. de la Vega Leinert (2005). Taking the uncertainty in climate change  vulnerability assessment seriously, Comptes Rendus Geosciences 337 411 424 pp. .  Patt A., L. Ogallo, and M. Hellmuth (2007). Learning from 10 years of climate outlook forums in  Africa, Science 318 49 50 pp. (DOI: 10.1126/science.1147909), (ISSN: 0036 8075, 1095 9203).  Patt A., M. Tadross, P. Nussbaumer, K. Asante, M. Metzger, J. Rafael, A. Goujon, and G. Brundrit  (2010). Estimating least developed countries  vulnerability to climate related extreme events over  the next 50 years, Proceedings of the National Academy of Sciences 107 1333 1337 pp. (DOI:  10.1073/pnas.0910253107), (ISSN: 0027 8424, 1091 6490).  Patt A., D.P. van Vuuren, F. Berkhout, A. Aaheim, A.F. Hof, M. Isaac, and R. Mechler (2009).  Adaptation in integrated assessment modeling: where do we stand?, Climatic Change 99 383 402  pp. (DOI: 10.1007/s10584 009 9687 y), (ISSN: 0165 0009, 1573 1480).  Patt A., and E.U. Weber (in press). Perceptions and communications strategies for the many  uncertainty relevant for climate policy., WIREs: Climate Change.  Patt A., and R. Zeckhauser (2000). Action bias and environmental decisions, Journal of Risk and  Uncertainty 21 45 72 pp. .  Payne J.W., J.R. Bettman, and E.J. Johnson (1988). Adaptive strategy selection in decision making.,  Journal of Experimental Psychology: Learning, Memory, and Cognition 14 534 pp. .  Peck S.C., and T.J. Teisberg (1993). Global warming uncertainties and the value of information: an  analysis using CETA, Resource and Energy Economics 15 71 97 pp. .  Peck S.C., and T.J. Teisberg (1994). Optimal carbon emissions trajectories when damages depend on  the rate or level of global warming, Climatic Change 28 289 314 pp. (DOI: 10.1007/BF01104138),  (ISSN: 0165 0009).    80 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Peck S.C., and T.J. Teisberg (1995). Optimal CO2 control policy with stochastic losses from  temperature rise, Climatic Change 31 19 34 pp. (DOI: 10.1007/BF01092979), (ISSN: 0165 0009).  Percival R.V., and A. Miller (2011). Resolving conflicts between green technology transfer and  intellectual property law, University of Maryland School of Law Working Paper No. 2011 27.  Peters E., P. Slovic, J.H. Hibbard, and M. Tusler (2006). Why worry? Worry, risk perceptions, and  willingness to act to reduce medical errors., Health Psychology; Health Psychology 25 144 pp. .  Available at: http://psycnet.apa.org/journals/hea/25/2/144/.  Philibert C. (2009). Assessing the value of price caps and floors, Climate Policy 9 612 633 pp. .  Pichert D., and K.V. Katsikopoulos (2008). Green defaults: Information presentation and pro environmental behaviour, Journal of Environmental Psychology 28 63 73 pp. .  Pidgeon N., and B. Fischhoff (2011). The role of social and decision sciences in communicating  uncertain climate risks, Nature Climate Change 1 35 41 pp. . Available at:  http://www.nature.com/nclimate/journal/v1/n1/full/nclimate1080.html?WT.ec_id=NCLIMATE 201104.  Pidgeon N., I. Lorenzoni, and W. Poortinga (2008). Climate change or nuclear power No thanks! A  quantitative study of public perceptions and risk framing in Britain, Global Environmental Change 18  69 85 pp. (DOI: 10.1016/j.gloenvcha.2007.09.005), (ISSN: 09593780).  Pierotti R. (2011). In Ethnobiology, E.A. Anderson and N.J. Turner, eds. . The World According to Is a:  Combining Empiricism and Spiritual Understanding in Indigenous Ways of Knowing., Wiley Blackwell  Press.  Pindyck R.S. (2011). Fat tails, thin tails, and climate change policy, Review of Environmental  Economics and Policy 5 258 274 pp. .  Pindyck R.S. (2013). Climate Change Policy: What Do the Models Tell Us? National Bureau of  Economic Research. . Available at: http://www.nber.org/papers/w19244.  Pizer W.A. (1999). The optimal choice of climate change policy in the presence of uncertainty,  Resource and Energy Economics 21 255 287 pp. (DOI: 10.1016/S0928 7655(99)00005 6).  Polasky S., S.R. Carpenter, C. Folke, and B. Keeler (2011). Decision making under great uncertainty:  Environmental management in an era of global change, Trends in Ecology & Evolution 26 398 404  pp. (DOI: 10.1016/j.tree.2011.04.007), (ISSN: 01695347).  Pope D.G., and M.E. Schweitzer (2011). Is Tiger Woods loss averse? Persistent bias in the face of  experience, competition, and high stakes, The American Economic Review 101 129 157 pp. .  Available at:  http://www.ingentaconnect.com/content/aea/aer/2011/00000101/00000001/art00009.  Prato T. (2008). Accounting for risk and uncertainty in determining preferred strategies for adapting  to future climate change, Mitigation and Adaptation Strategies for Global Change 13 47 60 pp. .  Prins G., and S. Rayner (2007). Time to ditch Kyoto, Nature 449 973 975 pp. .    81 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Pycroft J., L. Vergano, C. Hope, D. Paci, and J.C. Ciscar (2011). A tale of tails: Uncertainty and the  social cost of carbon dioxide, Economics: The Open Access, Open Assessment E Journal (DOI:  10.5018/economics ejournal.ja.2011 22), (ISSN: 1864 6042).  Quiggin J. (1993). Generalized Expected Utility Theory: The Rank Dependent Model. Springer.  Ramsey F.P. (1926). Truth and probability. In: The Foundations of Mathematics and Other Logical  Essays. Kegan, Paul, Trench, Trubner & Co, London pp.156 198.  Rasch P.J., S. Tilmes, R.P. Turco, A. Robock, L. Oman, C. C. (Jack) Chen, G.L. Stenchikov, and R.R.  Garcia (2008). An overview of geoengineering of climate using stratospheric sulphate aerosols,  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences  366 4007  4037 pp. (DOI: 10.1098/rsta.2008.0131).  Rasmussen N. (1975). Reactor Safety Study. U.S. Nuclear Regulatory Commission, Washington, DC.  Rayner S. (1993). Introduction, Global Environmental Change 3 7 11 pp. (DOI: 10.1016/0959 3780(93)90011 9), (ISSN: 0959 3780).  Rayner S. (2007). The rise of risk and the decline of politics, Environmental Hazards 7 165 172 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S1747789107000142.  Rayner S., and E.L. Malone (2001). Climate change, poverty, and intragenerational equity:the  national level, International Journal of Global Environmental Issues 1 175 202 pp. . Available at:  http://inderscience.metapress.com/index/vhdj0r6pbgr09fqe.pdf.  Reichenbach J., and T. Requate (2012). Subsidies for renewable energies in the presence of learning  effects and market power, Resource and Energy Economics 34 236 254 pp. (ISSN: 0928 7655).  Reilly J.M., J.A. Edmonds, R.H. Gardner, and A.L. Brenkert (1987). Uncertainty analysis of the  IEA/ORAU CO  emissions model, The Energy Journal 8 1 29 pp. (ISSN: 0195 6574).  Reinelt P.S., and D.W. Keith (2007). Carbon capture retrofits and the cost of regulatory uncertainty,  The Energy Journal 28 101 pp. .  Richardson J. (2008). Needful things, Trading Carbon 2 30 32 pp. .  Del Rio P., and M.. Gual (2007). An integrated assessment of the feed in tariff system in Spain,  Energy Policy 35 994 1012 pp. (ISSN: 0301 4215).  Roberts J.J., R.A. Wood, and R.S. Haszeldine (2011). Assessing the health risks of natural CO2 seeps  in Italy, Proceedings of the National Academy of Sciences 108 16545  16548 pp. (DOI:  10.1073/pnas.1018590108).  Robock A., M. Bunzl, B. Kravitz, and G.L. Stenchikov (2010). A test for geoengineering?, Science 327  530  531 pp. (DOI: 10.1126/science.1186237).  Romijn E., M. Herold, L. Kooistra, D. Murdiyarso, and L. Verchot (2012). Assessing capacities of non Annex I countries for national forest monitoring in the context of REDD+, Environmental Science &  Policy 19 20 33 48 pp. (DOI: 10.1016/j.envsci.2012.01.005), (ISSN: 1462 9011).    82 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Roncoli C. (2006). Ethnographic and participatory approaches to research on farmers  responses to  climate predictions, Climate Research 33 81 pp. . Available at: http://www.int res.com/abstracts/cr/v33/n1/p81 99/.  Roser Renouf C., E.W. Maibach, A. Leiserowitz, and X. Zhao (2011). The genesis of climate change  activism: From key beliefs to political advocacy, in press.  Rothlisberger J.D., D.C. Finnoff, R.M. Cooke, and D.M. Lodge (2012). Ship borne nonindigenous  species diminish great lakes ecosystem services, Ecosystems 15 1 15 pp. .  Rothlisberger J.D., D.M. Lodge, R.M. Cooke, and D.C. Finnoff (2009). Future declines of the  binational Laurentian Great Lakes fisheries: the importance of environmental and cultural change,  Frontiers in Ecology and the Environment 8 239 244 pp. .  Roy A.D. (1952). Safety first and the holding of assets, Econometrica: Journal of the Econometric  Society 20 431 449 pp. .  Rozenberg J., S. Hallegatte, A. Vogt Schilb, O. Sassi, C. Guivarch, H. Waisman, and J. C. Hourcade  (2010). Climate policies as a hedge against the uncertainty on future oil supply, Climatic Change 101  663 668 pp. (DOI: 10.1007/s10584 010 9868 8), (ISSN: 0165 0009).  Ryan J.J.C.H., T.A. Mazzuchi, D.J. Ryan, J. Lopez de la Cruz, and R.M. Cooke (2012). Quantifying  information security risks using expert judgment elicitation, Computers & Operations Research 39  774 784 pp. (DOI: 10.1016/j.cor.2010.11.013), (ISSN: 0305 0548).  Sáenz de Miera G., P. del Río González, and I. Vizcaíno (2008). Analysing the impact of renewable  electricity support schemes on power prices: The case of wind electricity in Spain, Energy Policy 36  3345 3359 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421508001882.  Sagar A.D., and B. van der Zwaan (2006). Technological innovation in the energy sector: R&D,  deployment, and learning by doing, Energy Policy 34 2601 2608 pp. (DOI:  10.1016/j.enpol.2005.04.012), (ISSN: 0301 4215).  Samuelson W., and R. Zeckhauser (1988). Status quo bias in decision making, Journal of Risk and  Uncertainty 1 7 59 pp. .  Sarewitz D. (2010). Curing climate backlash, Nature 464 28 pp. (DOI: 10.1038/464028a), (ISSN: 1476 4687).  Savage L.J. (1954). The Foundations of Statistics. Courier Dover Publications, 356 pp., (ISBN:  9780486623498). .  Schiermeier Q. (2004). Disaster movie highlights transatlantic divide, Nature 431 4 4 pp. .  Schleich J., M. Klobasa, S. Gölz, and M. Brunner (2013). Effects of feedback on residential electricity  demand Findings from a field trial in Austria, Energy Policy 61 1097 1106 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421513003443.  Schmeidler D. (1989). Subjective probability and expected utility without additivity, Econometrica:  Journal of the Econometric Society 57 571 587 pp. .    83 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Schmidt M.G.W., A. Lorenz, H. Held, and E. Kriegler (2011). Climate targets under uncertainty:  challenges and remedies, Climatic Change 104 783 791 pp. . Available at:  http://www.springerlink.com/index/607010683813VU36.pdf.  Schoemaker P. (1995). Scenario planning: A tool for strategic thinking, Sloan Management Review 4  25 40 pp. .  Schoemaker P.J.H., and J.E. Russo (2001). Winning Decisions: Getting It Right the First Time. Crown  Business, 352 pp. Available at:  http://books.google.com/books?hl=en&lr=&id=iHG_2i4Z0wYC&oi=fnd&pg=PR7&dq=Russo,+J.+Edwa rd+%26+Paul+Schoemaker.+Winning+Decisions:+Getting+it+Right+the+First+Time&ots=th9D5OnH3f &sig=ULqGHHsV4kDFyfOMZUdIfskMT14.  Scott M.J., R.D. Sands, J. Edmonds, A.M. Liebetrau, and D.W. Engel (1999). Uncertainty in  integrated assessment models: modeling with MiniCAM 1.0, Energy Policy 27 855 879 pp. (DOI:  10.1016/S0301 4215(99)00057 9), (ISSN: 0301 4215).  Shackley S., D. Reiner, P. Upham, H. de Coninck, G. Sigurthorsson, and J. Anderson (2009). The  acceptability of CO2  capture and storage (CCS) in Europe: An assessment of the key determining  factors: Part 2. The social acceptability of CCS and the wider impacts and repercussions of its  implementation, International Journal of Greenhouse Gas Control 3 344 356 pp. (DOI:  10.1016/j.ijggc.2008.09.004), (ISSN: 1750 5836).  Shah T., U. Lele, and GWP (2011). Climate Change, Food and Water Security in South Asia: Critical  Issues and Cooperative Strategies in an Age of Increased Risk and Uncertainty. Stockholm, Sweden.  1 47 pp. Available at:  http://www.gwp.org/Global/About%20GWP/Publications/Colombo%20Synthesis%20Report%20Cli mate%20Change%20Food%20and%20Water%20Security%20in%20South%20Asia,%20final.pdf.  Shapiro S.A., and T.O. McGarity (1991). Not So Paradoxical: The Rationale for Technology Based  Regulation, Duke LJ 729 pp. . Available at: http://heinonlinebackup.com/hol cgi bin/get_pdf.cgi?handle=hein.journals/duklr1991§ion=30.  Simon H.A. (1955). A Behavioral Model of Rational Choice, The Quarterly Journal of Economics 69  99 118 pp. (DOI: 10.2307/1884852), (ISSN: 0033 5533).  Slovic P. (1987). Perception of risk, Science 236 280  285 pp. (DOI: 10.1126/science.3563507).  Smith J. (2005). Dangerous news: Media decision making about climate change risk, Risk Analysis 25  1471 1482 pp. .  Socolow R.H., and A. Glaser (2009). Balancing risks: nuclear energy & climate change, Daedalus 138  31 44 pp. (DOI: 10.1162/daed.2009.138.4.31), (ISSN: 0011 5266).  Spence A., W. Poortinga, C. Butler, and N.F. Pidgeon (2011). Perceptions of climate change and  willingness to save energy related to flood experience, Nature Climate Change 1 46 49 pp. (DOI:  10.1038/nclimate1059), (ISSN: 1758 678X).  Sterman J.D. (2008). Risk communication on climate: Mental models and Mass Balance, Science 322  532 533 pp. (DOI: 10.1126/science.1162574), (ISSN: 0036 8075, 1095 9203).    84 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Sterman J.D., and L.B. Sweeney (2007). Understanding public complacency about climate change:  Adults  mental models of climate change violate conservation of matter, Climatic Change 80 213 238 pp. (DOI: 10.1007/s10584 006 9107 5), (ISSN: 0165 0009, 1573 1480).  Stern N.H. (2007). The Economics of Climate Change: The Stern Review. Cambridge University Press,  713 pp., (ISBN: 9780521700801). .  Stevenson M.A. (2010). Framing anthropogenic environmental change in public health terms, Global  Environmental Politics 10 152 157 pp. (DOI: 10.1162/glep.2010.10.1.152), (ISSN: 1526 3800).  Stirling A. (2007). Risk, precaution and science: towards a more constructive policy debate. Talking  point on the precautionary principle, EMBO Reports 8 309 315 pp. (DOI:  10.1038/sj.embor.7400953), (ISSN: 1469 221X).  Sunstein C.R. (2006). The availability heuristic, intuitive cost benefit analysis, and climate change,  Climatic Change 77 195 210 pp. (DOI: 10.1007/s10584 006 9073 y), (ISSN: 0165 0009, 1573 1480).  Swim J.K., P.C. Stern, T.J. Doherty, S. Clayton, J.P. Reser, E.U. Weber, R. Gifford, and G.S. Howard  (2011). Psychology s contributions to understanding and addressing global climate change.,  American Psychologist 66 241 pp. . Available at: http://psycnet.apa.org/journals/amp/66/4/241/.  Syri S., A. Lehtilä, T. Ekholm, I. Savolainen, H. Holttinen, and E. Peltola (2008a). Global energy and  emissions scenarios for effective climate change mitigation Deterministic and stochastic scenarios  with the TIAM model, International Journal of Greenhouse Gas Control 2 274 285 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1750583608000029.  Syri S., A. Lehtilä, T. Ekholm, I. Savolainen, H. Holttinen, and E. Peltola (2008b). Global energy and  emissions scenarios for effective climate change mitigation Deterministic and stochastic scenarios  with the TIAM model, International Journal of Greenhouse Gas Control 2 274 285 pp. (DOI:  16/j.ijggc.2008.01.001), (ISSN: 1750 5836).  Szolgayova J., S. Fuss, and M. Obersteiner (2008). Assessing the effects of CO2  price caps on  electricity investments A real options analysis, Energy Policy 36 3974 3981 pp. (DOI:  10.1016/j.enpol.2008.07.006), (ISSN: 0301 4215).  Taleb N.N. (2007). The Black Swan: The Impact of the Highly Improbable. Random House Publishing  Group, 481 pp., (ISBN: 9781588365835). .  Tavoni A., A. Dannenberg, G. Kallis, and A. Löschel (2011). Inequality, communication, and the  avoidance of disastrous climate change in a public goods game, Proceedings of the National  Academy of Sciences (DOI: 10.1073/pnas.1102493108).  Terwel B.W., F. Harinck, N. Ellemers, and D.D. Daamen (2011). Going beyond the properties of CO<  sub> 2 capture and storage (CCS) technology: How trust in stakeholders affects public  acceptance of CCS, International Journal of Greenhouse Gas Control 5 181 188 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1750583610001507.  Thaler R.H. (1999). Mental accounting matters, Journal of Behavioral Decision Making 12 183 206  pp. (DOI: 10.1002/(SICI)1099 0771(199909)12:3<183::AID BDM318>3.0.CO;2 F), (ISSN: 1099 0771).  Thaler R.H., and C.R. Sunstein (2008). Nudge: Improving Decisions About Health, Wealth, and  Happiness. Yale Univ Press. . Available at:    85 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  http://books.google.com/books?hl=en&lr=&id=dSJQn8egXvUC&oi=fnd&pg=PA17&dq=thaler+sunste in+nudge&ots=0cJNMCGnRt&sig=W0TkD9mBUvN68xjgj5sFwpaW NU.  Thompson A. (2010). Rational design in motion: Uncertainty and flexibility in the global climate  regime, European Journal of International Relations 16 269 296 pp. .  Thornton P.K., P.G. Jones, T. Owiyo, R.L. Kruska, M. Herrero, V. Orindi, S. Bhadwal, P. Kristjanson,  A. Notenbaert, N. Bekele, and others (2008). Climate change and poverty in Africa: Mapping  hotspots of vulnerability, African Journal of Agriculture and Resource Economics 2 24 44 pp. .  Tol R.S.J. (1999). Safe policies in an uncertain climate: an application of FUND, Global Environmental  Change, Part A: Human and Policy Dimensions 9 221 232 pp. .  Tol R.S.J. (2003). Is the uncertainty about climate change too large for expected cost benefit  analysis?, Climatic Change 56 265 289 pp. .  Toubia O., E. Johnson, T. Evgeniou, and P. Delquié (2013). Dynamic experiments for estimating  preferences: An adaptive method of eliciting time and risk parameters, Management Science 59  613 640 pp. . Available at: http://mansci.journal.informs.org/content/59/3/613.short.  Tsur Y., and A. Zemel (1996). Accounting for global warming risks: Resource management under  event uncertainty, Journal of Economic Dynamics and Control 20 1289 1305 pp. (DOI: 10.1016/0165 1889(95)00900 0), (ISSN: 0165 1889).  Tsur Y., and A. Zemel (2009). Endogenous discounting and climate policy, Environmental and  Resource Economics 44 507 520 pp. (DOI: 10.1007/s10640 009 9298 0), (ISSN: 0924 6460).  Tuomisto J.T., A. Wilson, J.S. Evans, and M. Tainio (2008). Uncertainty in mortality response to  airborne fine particulate matter: Combining European air pollution experts, Reliability Engineering &  System Safety 93 732 744 pp. .  Turner N.J., and H. Clifton (2009).  It s so different today : Climate change and indigenous lifeways in  British Columbia, Canada, Global Environmental Change 19 180 190 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0959378009000223.  Tversky A., and D. Kahneman (1973). Availability: A heuristic for judging frequency and probability,  Cognitive Psychology 5 207 232 pp. (DOI: 10.1016/0010 0285(73)90033 9), (ISSN: 0010 0285).  Tversky A., and D. Kahneman (1992). Advances in prospect theory: Cumulative representation of  uncertainty, Journal of Risk and Uncertainty 5 297 323 pp. (DOI: 10.1007/BF00122574), (ISSN: 0895 5646, 1573 0476).  Tyshenko M.G., S. ElSaadany, T. Oraby, S. Darshan, W. Aspinall, R.M. Cooke, A. Catford, and D.  Krewski (2011). Expert elicitation for the judgment of prion disease risk uncertainties, Journal of  Toxicology and Environmental Health, Part A 74 261 285 pp. .  U.S. Environmental Protection Agency (2005). Guidelines for Carcinogen Risk Assessment.  Washington, DC. . Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=116283.  U.S. NRC (1983). PRA Procedures Guide. A Guide to the Performance of Probabilistic Risk  Assessments for Nuclear Power Plants. Final Report. NUREG/CR 2300. U.S. NRC (U.S. Nuclear  Regulatory Commission). . Available at: Available from: http://www.nrc.gov/reading rm/doc ollections/nuregs/contract/cr2300/vol2/cr2300v2 a.pdf.p. 12 12).    86 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Ulph A., and D. Ulph (1997). Global warming, irreversibility and learning, The Economic Journal 107  636 650 pp. .  Ulph A., and D. Ulph (2012). Global warming, irreversibility and learning, The Economic Journal 107  636 650 pp. (DOI: 10.1111/j.1468 0297.1997.tb00031.x), (ISSN: 1468 0297).  UNDP (2007). Human Development Report 2007/2008: Fighting Climate Change: Human Solidarity in  a Divided World. United Nations Development Programme, New York. 384 pp. Available at:  http://hdr.undp.org/en/media/HDR_20072008_EN_Complete.pdf.  UNFCCC (2007). Vulnerability and Adaptation To Climate Change In Small Island Developing States.  UNFCC. 38 pp. Available at:  http://unfccc.int/files/adaptation/adverse_effects_and_response_measures_art_48/application/pdf /200702_sids_adaptation_bg.pdf.  Vasa A., and A. Michaelowa (2011). Uncertainty in Climate Policy   Impacts on Market Mechanisms.  In: Climate Change and Policy. G. Gramelsberger, J. Feichter, (eds.), Springer Berlin Heidelberg,  pp.127 144(ISBN: 978 3 642 17699 9, 978 3 642 17700 2).  Victor D.G. (2011). Global Warming Gridlock: Creating More Effective Strategies for Protecting the  Planet. Cambridge University Press, Cambridge, UK, 392 pp., (ISBN: 9780521865012 0521865018). .  Vignola R., S. Klinsky, J. Tam, and T. McDaniels (2012). Public perception, knowledge and policy  support for mitigation and adaption to Climate Change in Costa Rica: Comparisons with North  American and European studies, Mitigation and Adaptation Strategies for Global Change 18 1 21  pp. (DOI: 10.1007/s11027 012 9364 8), (ISSN: 1381 2386).  Vlek C. (2010). Judicious management of uncertain risks: I. Developments and criticisms of risk  analysis and precautionary reasoning, Journal of Risk Research 13 517 543 pp. . Available at:  http://www.tandfonline.com/doi/abs/10.1080/13669871003629887.  Van Vuuren D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram,  V. Krey, J.F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S.J. Smith, and S.K. Rose (2011).  The representative concentration pathways: An overview, Climatic Change 109 5 31 pp. .  Wakker P.P. (2010). Prospect Theory: For Risk and Ambiguity. Cambridge University Press,  Cambridge; New York, 606 pp., (ISBN: 9780521765015  0521765013  9780521748681   0521748682). .  Wallquist L., S.L. Seigo, V.H.. Visschers, and M. Siegrist (2012). Public acceptance of CCS system  elements: A conjoint measurement, International Journal of Greenhouse Gas Control 6 77 83 pp. .  Wallsten T.S., D.V. Budescu, A. Rapoport, R. Zwick, and B. Forsyth (1986). Measuring the vague  meanings of probability terms., Journal of Experimental Psychology: General 115 348 pp. . Available  at: http://psycnet.apa.org/journals/xge/115/4/348/.  Walters C.J., and R. Hilborn (1978). Ecological optimization and adaptive management, Annual  Review of Ecology and Systematics 9 157 188 pp. .  Wang M., C. Liao, S. Yang, W. Zhao, M. Liu, and P. Shi (2012). Are People Willing to Buy Natural  Disaster Insurance in China? Risk Awareness, Insurance Acceptance, and Willingness to Pay, Risk  Analysis 32 1717 1740 pp. (DOI: 10.1111/j.1539 6924.2012.01797.x), (ISSN: 1539 6924).    87 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Weber E.U. (1997). Perception and expectation of climate change: Precondition for economic and  technological adaptation. In: M. Bazerman, D. Messick, A. Tenbrunsel, & K. Wade Benzoni (eds.),  Psychological Perspectives to Environmental and Ethical Issues in Management. Jossey Bass, San  Francisco, CA pp.314 341.  Weber E.U. (2006). Experience based and description based perceptions of long term risk: Why  global warming does not scare us (yet), Climatic Change 77 103 120 pp. (DOI: 10.1007/s10584 006 9060 3), (ISSN: 0165 0009, 1573 1480).  Weber E.U. (2011). Climate change hits home, Nature Climate Change 1 25 26 pp. (DOI:  doi:10.1038/nclimate1070).  Weber E.U. (2013). Doing the right thing willingly: Behavioral decision theory and environmental  policy. In: The Behavioral Foundations of Policy. E. Shafir, (ed.), Princeton University Press.,  Princeton, NJ pp.pp. 380 397.  Weber E.U., and D.J. Hilton (1990). Contextual effects in the interpretations of probability words:  Perceived base rate and severity of events., Journal of Experimental Psychology: Human Perception  and Performance 16 781 pp. . Available at: http://psycnet.apa.org/journals/xhp/16/4/781/.  Weber E.U., and C. Hsee (1998). Cross cultural differences in risk perception, but cross cultural  similarities in attitudes towards perceived risk, Management Science 1205 1217 pp. .  Weber E.U., and E.J. Johnson (2009). Decisions under uncertainty: Psychological, economic, and  neuroeconomic explanations of risk preference. In: Neuroeconomics: Decision Making and the Brain.  P. Glimcher, C.F. Camerer, E. Fehr, R. Poldrack, (eds.), Elsevier, New York pp.127 144.  Weber E.U., E.J. Johnson, K.F. Milch, H. Chang, J.C. Brodscholl, and D.G. Goldstein (2007).  Asymmetric discounting in intertemporal choice, Psychological Science 18 516  523 pp. (DOI:  10.1111/j.1467 9280.2007.01932.x).  Weber E.U., and P.G. Lindemann (2007). From intuition to analysis: Making decisions with our head,  our heart, or by the book. In: Intuition in Judgment and Decision Making. H. Plessner, C. Betsch, T.  Betsch, (eds.), Lawrence Erlbaum, Mahwah, NJ pp.191 208.  Weber E.U., S. Shafir, and A. R. Blais (2004). Predicting risk sensitivity in humans and lower animals:  Risk as variance or coefficient of variation, Psychological Review 111 430 445 pp. (DOI:  10.1037/0033 295X.111.2.430), (ISSN: 1939 1471 (ELECTRONIC); 0033 295X (PRINT)).  Weber E.U., and P.C. Stern (2011). Public understanding of climate change in the United States.,  American Psychologist 66 315 328 pp. (DOI: 10.1037/a0023253), (ISSN: 1935 990X, 0003 066X).  Webster M.D. (2008). Uncertainty and the IPCC. An editorial comment, Climatic Change 92 37 40  pp. (DOI: 10.1007/s10584 008 9533 7), (ISSN: 0165 0009).  Webster M.D., M. Babiker, M. Mayer, J.M. Reilly, J. Harnisch, R. Hyman, M.C. Sarofim, and C.  Wang (2002). Uncertainty in emissions projections for climate models, Atmospheric Environment 36  3659 3670 pp. (DOI: 10.1016/S1352 2310(02)00245 5), (ISSN: 1352 2310).  Webster M.D., C. Forest, J. Reilly, M. Babiker, D. Kicklighter, M. Mayer, R. Prinn, M. Sarofim, A.  Sokolov, P. Stone, and C. Wang (2003). Uncertainty analysis of climate change and policy response,  Climatic Change 61 295 320 pp. (DOI: 10.1023/B:CLIM.0000004564.09961.9f), (ISSN: 0165 0009).    88 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  Webster M.D., S. Paltsev, and J. Reilly (2010). The hedge value of international emissions trading  under uncertainty, Energy Policy 38 1787 1796 pp. (DOI: 10.1016/j.enpol.2009.11.054), (ISSN: 0301 4215).  Weitzman M.L. (2001). Gamma discounting, American Economic Review 91 260 271 pp. .  Weitzman M.L. (2009). On modeling and interpreting the economics of catastrophic climate change,  The Review of Economics and Statistics 91 1 19 pp. .  Weitzman M.L. (2011). Fat tailed uncertainty in the economics of catastrophic climate change,  Review of Environmental Economics and Policy 5 275 292 pp. .  Whitfield S.C., E.A. Rosa, A. Dan, and T. Dietz (2009). The Future of nuclear power: Value  orientations and risk perception, Risk Analysis 29 425 437 pp. (DOI: 10.1111/j.1539 6924.2008.01155.x), (ISSN: 1539 6924).  Whitmarsh L. (2008). Are flood victims more concerned about climate change than other people?  The role of direct experience in risk perception and behavioural response, Journal of Risk Research  11 351 374 pp. . Available at: http://www.tandfonline.com/doi/abs/10.1080/13669870701552235.  Williges K., J. Lilliestam, and A. Patt (2010). Making concentrated solar power competitive with coal:  The costs of a European feed in tariff, Energy Policy 38 3089 3097 pp. .  Wiser R., K. Porter, and R. Grace (2005). Evaluating experience with renewables portfolio standards  in the United States, Mitigation and Adaptation Strategies for Global Change 10 237 263 pp. (DOI:  10.1007/s11027 005 6573 4), (ISSN: 1381 2386, 1573 1596).  Wood P.J., and F. Jotzo (2011). Price floors for emissions trading, Energy Policy 39 1746 1753 pp.  (DOI: 10.1016/j.enpol.2011.01.004), (ISSN: 0301 4215).  World Bank (2010). Economics of Adaptation to Climate Change: Social Synthesis Report. World  Bank. The International Bank for Reconstruction and Development.  Yang M., W. Blyth, R. Bradley, D. Bunn, C. Clarke, and T. Wilson (2008). Evaluating the power  investment options with uncertainty in climate policy, Energy Economics 30 1933 1950 pp. (DOI:  10.1016/j.eneco.2007.06.004), (ISSN: 0140 9883).  Yohe G., N. Andronova, and M. Schlesinger (2004). To hedge or not against an uncertain climate  future?, Science 306 416  417 pp. (DOI: 10.1126/science.1101170).  Yohe G., and R. Wallace (1996). Near term mitigation policy for global change under uncertainty:  Minimizing the expected cost of meeting unknown concentration thresholds, Environmental  Modeling & Assessment 1 47 57 pp. . Available at:  http://link.springer.com/article/10.1007/BF01874846.  Young O.R. (1994). International Governance: Protecting the Environment in a Stateless Society.  Cornell University Press, 244 pp., (ISBN: 9780801481765). .  De Zeeuw A., and A. Zemel (2012). Regime shifts and uncertainty in pollution control, Journal of  Economic Dynamics and Control 36 939 950 pp. (DOI: 10.1016/j.jedc.2012.01.006), (ISSN: 0165 1889).    89 of 90     Final Draft     Chapter 2  IPCC WGIII AR5  De Zeeuw A., and A. Zemel (2012). Regime shifts and uncertainty in pollution control, Journal of  Economic Dynamics and Control.  Zhao J. (2003). Irreversible abatement investment under cost uncertainties: tradable emission  permits and emissions charges, Journal of Public Economics 87 2765 2789 pp. .  Zickfeld K., M.G. Morgan, D.J. Frame, and D.W. Keith (2010). Expert judgments about transient  climate response to alternative future trajectories of radiative forcing, Proceedings of the National  Academy of Sciences (DOI: 10.1073/pnas.0908906107).  Zoellner J., P. Schweizer Ries, and C. Wemheuer (2008). Public acceptance of renewable energies:  Results from case studies in Germany, Energy Policy 36 4136 4141 pp. .      90 of 90     Working Group III Mitigation of Climate Change Chapter 3 Social, Economic and Ethical Concepts and Methods   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft    Chapter:  Title:  Authors:    3  Chapter 3  IPCC WGIII AR5  Social, Economic, and Ethical Concepts and Methods  CLAs:  LAs:  Charles Kolstad, Kevin Urama  John Broome, Annegrete Bruvoll, Micheline Carino Olvera, Don  Fullerton, Christian Gollier, William Michael Hanemann, Rashid  Hassan, Frank Jotzo, Mizan R. Khan, Lukas Meyer, Luis Mundaca  Philippe Aghion, Hunt Allcott, Gregor Betz, Severin Borenstein,  Andrew Brennan, Simon Caney, Dan Farber, Adam Jaffe, Gunnar  Luderer, Axel Ockenfels, David Popp   Marlene Attzs, Daniel Bouille, Snorre Kverndokk   Sheena Katai, Katy Maher, Lindsey Sarquilla   CAs:       REs:  CSAs:      1 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Chapter 3:    Social, Economic, and Ethical Concepts and Methods   Contents    Executive Summary ............................................................................................................................ 5  3.1 Introduction .................................................................................................................................. 9  3.2 Ethical and socio economic concepts and principles ................................................................. 10  3.3 Justice, equity and responsibility ................................................................................................ 12  3.3.1 Causal and moral responsibility .......................................................................................... 12  3.3.2 Intergenerational justice and rights of future people ......................................................... 12  3.3.3 Intergenerational justice: distributive justice ..................................................................... 13  3.3.4 Historical responsibility and distributive justice ................................................................. 14  3.3.5 Intra generational justice: compensatory justice and historical responsibility .................. 15  3.3.6 Legal concepts of historical responsibility .......................................................................... 16  3.3.7 Geoengineering, ethics, and justice .................................................................................... 17  3.4 Values and wellbeing .................................................................................................................. 18  3.4.1 Non human values .............................................................................................................. 19  3.4.2 Cultural and social values .................................................................................................... 20  3.4.3 Wellbeing ............................................................................................................................ 20  3.4.4 Aggregation of wellbeing .................................................................................................... 21  3.4.5 Lifetime wellbeing ............................................................................................................... 21  3.4.6 Social welfare functions ...................................................................................................... 21  3.4.7 Valuing population .............................................................................................................. 23  3.5 Economics, rights, and duties ..................................................................................................... 24  3.5.1 Limits of economics in guiding decision making ................................................................. 25  3.6 Aggregation of costs and benefits .............................................................................................. 26  3.6.1 Aggregating individual wellbeing ........................................................................................ 26  3.6.1.1 Monetary values .......................................................................................................... 27  3.6.2 Aggregating costs and benefits across time  ....................................................................... 30  . 3.6.3 Co benefits and adverse side effects .................................................................................. 36  3.6.3.1 A general framework for evaluation of co benefits and adverse side effects ............ 36  3.6.3.2 The valuation of co benefits and adverse side effects ................................................ 37  3.6.3.3 The double dividend hypothesis .................................................................................. 39  3.7 Assessing methods of policy choice ........................................................................................... 40  . 3.7.1 Policy objectives and evaluation criteria  ............................................................................ 40  .     2 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.7.1.1 Economic objectives .................................................................................................... 41  3.7.1.2 Distributional objectives .............................................................................................. 42  3.7.1.3 Environmental objectives ............................................................................................ 43  3.7.1.4 Institutional and political feasibility ............................................................................. 44  3.7.2 Analytical methods for decision support ............................................................................ 44  3.7.2.1 Quantitative oriented approaches .............................................................................. 44  3.7.2.2 Qualitative approaches ................................................................................................ 46  3.8 Policy instruments and regulations ............................................................................................ 46  3.8.1 Economic incentives ............................................................................................................ 46  3.8.1.1 Emissions taxes and permit trading ............................................................................. 46  3.8.1.2 Subsidies ...................................................................................................................... 47  3.8.2 Direct regulatory approaches  ............................................................................................. 48  . 3.8.3 Information programmes .................................................................................................... 48  3.8.4 Government provision of public goods and services, and procurement ............................ 48  3.8.5 Voluntary actions ................................................................................................................ 48  3.8.6 Policy interactions and complementarity ........................................................................... 48  3.8.7 Government failure and policy failure ................................................................................ 49  3.8.7.1 Rent seeking ................................................................................................................ 49  3.8.7.2 Policy uncertainty ........................................................................................................ 49  3.9 Metrics of costs and benefits ..................................................................................................... 50  3.9.1 The damages from climate change ..................................................................................... 51  3.9.2 Aggregate climate damages ................................................................................................ 54  3.9.3 The aggregate costs of mitigation ....................................................................................... 57  3.9.4 Social cost of carbon ........................................................................................................... 60  3.9.5 The Rebound effect ............................................................................................................. 60  3.9.6 Greenhouse gas emissions metrics ..................................................................................... 61  3.10 Behavioural economics and culture ......................................................................................... 64  3.10.1 Behavioural economics and the cost of emissions reduction ........................................... 65  3.10.1.1 Consumer undervaluation of energy costs ................................................................ 65  3.10.1.2 Firm behaviour ........................................................................................................... 66  3.10.1.3 Non price interventions to induce behavioural change ............................................ 66  3.10.1.4 Altruistic reductions of carbon emissions  ................................................................. 66  . 3.10.1.5 Human ability to understand climate change  ........................................................... 67  . 3.10.2 Social and cultural issues................................................................................................... 68  3.10.2.1 Customs ..................................................................................................................... 68  3.10.2.2 Indigenous peoples .................................................................................................... 68      3 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.10.2.3 Women and Climate Change ..................................................................................... 69  3.10.2.4 Social institutions for collective action ...................................................................... 69  3.11 Technological change ............................................................................................................... 70  3.11.1 Market provision of TC ...................................................................................................... 70  3.11.2 Induced innovation ........................................................................................................... 70  3.11.3 Learning by doing and other structural models of TC ...................................................... 71  3.11.4 Endogenous and exogenous TC and growth ..................................................................... 71  3.11.5 Policy measures for inducing R&D .................................................................................... 72  3.11.6 Technology transfer (TT) ................................................................................................... 72  3.12 Gaps in knowledge and data .................................................................................................... 73  3.13 Frequently Asked Questions ..................................................................................................... 74  References ........................................................................................................................................ 76      4 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Executive Summary  This framing chapter describes the strengths and limitations of the most widely used concepts and  methods in economics, ethics, and other social sciences that are relevant to climate change. It also  provides a reference resource for the other chapters in the Fifth Assessment Report (AR5), as well as  for decision makers.  The significance of the social dimension and the role of ethics and economics is underscored by  Article 2 of the United Nations Framework Convention on Climate Change, which indicates that an  ultimate objective of the Convention is to avoid dangerous anthropogenic interference with the  climate system. Two main issues confronting society (and the IPCC) are: what constitutes  dangerous  interference  with the climate system and how to deal with that interference. Determining what is  dangerous is not a matter for natural science alone; it also involves value judgements   a subject  matter of the theory of value, which is treated in several disciplines, including ethics, economics, and  other social sciences.  Ethics involves questions of justice and value. Justice is concerned with equity and fairness, and, in  general, with the rights to which people are entitled. Value is a matter of worth, benefit, or good.  Value can sometimes be measured quantitatively, for instance, through a social welfare function or  an index of human development.  Economic tools and methods can be used in assessing the positive and negative values that result  from particular decisions, policies, and measures. They can also be essential in determining the  mitigation and adaptation actions to be undertaken as public policy, as well as the consequences of  different mitigation and adaptation strategies. Economic tools and methods have strengths and  limitations, both of which are detailed in this chapter.  Economic tools can be useful in designing climate change mitigation policies (very high confidence).  While the limitations of economics and social welfare analysis, including cost benefit analysis, are  widely documented, economics nevertheless provides useful tools for assessing the pros and cons of  taking, or not taking, action on climate change mitigation, as well as of adaptation measures, in  achieving competing societal goals. Understanding these pros and cons can help in making policy  decisions on climate change mitigation and can influence the actions taken by countries, institutions  and individuals. [Section 3.2]  Mitigation is a public good; climate change is a case of  the tragedy of the commons  (high  confidence). Effective climate change mitigation will not be achieved if each agent (individual,  institution or country) acts independently in its own selfish interest, suggesting the need for  collective action. Some adaptation actions, on the other hand, have characteristics of a private good  as benefits of actions may accrue more directly to the individuals, regions, or countries that  undertake them, at least in the short term. Nevertheless, financing such adaptive activities remains  an issue, particularly for poor individuals and countries. [3.1]  Analysis contained in the literature of moral and political philosophy can contribute to resolving  ethical questions that are raised by climate change (medium confidence). These questions include  how much overall climate mitigation is needed to avoid  dangerous interference , how the effort or  cost of mitigating climate change should be shared among countries and between the present and  future, how to account for such factors as historical responsibility for emissions, and how to choose  among alternative policies for mitigation and adaptation. Ethical issues of wellbeing, justice, fairness,  and rights are all involved. [3.2, 3.3, 3.4]  Duties to pay for some climate damages can be grounded in compensatory justice and distributive  justice (medium confidence). If compensatory duties to pay for climate damages and adaptation  costs are not due from agents who have acted blamelessly, then principles of compensatory justice  will apply to only some of the harmful emissions [3.3.5]. This finding is also reflected in the      5 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  predominant global legal practice of attributing liability for harmful emissions [3.3.6]. Duties to pay  for climate damages can, however, also be grounded in distributive justice [3.3.4, 3.3.5].  Distributional weights may be advisable in cost benefit analysis (medium confidence). Ethical  theories of value commonly imply that distributional weights should be applied to monetary  measures of benefits and harms when they are aggregated to derive ethical conclusions [3.6.1]. Such  weighting contrasts with much of the practice of cost benefit analysis.  The use of a temporal discount rate has a crucial impact on the evaluation of mitigation policies  and measures. The social discount rate is the minimum rate of expected social return that  compensates for the increased intergenerational inequalities and the potential increased collective  risk that an action generates. Even with disagreement on the level of the discount rate, a consensus  favours using declining risk free discount rates over longer time horizons (high confidence). [3.6.2]  An appropriate social risk free discount rate for consumption is between one and three times the  anticipated growth rate in real per capita consumption (medium confidence). This judgement is  based on an application of the Ramsey rule using typical values in the literature of normative  parameters in the rule. Ultimately, however, these are normative choices. [3.6.2]  Co benefits may complement the direct benefits of mitigation (medium confidence). While some  direct benefits of mitigation are reductions in adverse climate change impacts, co benefits can  include a broad range of environmental, economic, and social effects, such as reductions in local air  pollution, less acid rain, and increased energy security. However, whether co benefits are net  positive or negative in terms of wellbeing (welfare) can be difficult to determine because of  interaction between climate policies and pre existing non climate policies. The same results apply to  adverse side effects. [3.6.3]  Tax distortions change the cost of all abatement policies (high confidence). A carbon tax or a  tradable emissions permit system can exacerbate tax distortions, or, in some cases, alleviate them;  carbon tax or permit revenue can be used to moderate adverse effects by cutting other taxes.  However, regulations that forgo revenue (e.g., by giving permits away) implicitly have higher social  costs because of the tax interaction effect. [3.6.3]  Many different analytic methods are available for evaluating policies. Methods may be  quantitative (for example, cost benefit analysis, integrated assessment modelling, and multi criteria  analysis) or qualitative (for example, sociological and participatory approaches). However, no single best method can provide a comprehensive analysis of policies. A mix of methods is often needed to  understand the broad effects, attributes, trade offs, and complexities of policy choices; moreover,  policies often address multiple objectives. [3.7]  Four main criteria are frequently used in evaluating and choosing a mitigation policy (medium  confidence). They are: cost effectiveness and economic efficiency (excluding environmental benefits,  but including transaction costs); environmental effectiveness (the extent to which the environmental  targets are achieved); distributional effects (impact on different subgroups within society); and  institutional feasibility, including political feasibility. [3.7.1]  A broad range of policy instruments for climate change mitigation is available to policymakers.  These include: economic incentives, direct regulatory approaches, information programmes,  government provision, and voluntary actions. Interactions between policy instruments can enhance  or reduce the effectiveness and cost of mitigation action. Economic incentives will generally be more  cost effective than direct regulatory interventions. However, the performance and suitability of  policies depends on numerous conditions, including institutional capacity, the influence of rent seeking, and predictability or uncertainty about future policy settings. The enabling environment  may differ between countries, including between low income and high income countries. These  differences can have implications for the suitability and performance of policy instruments. [3.8]      6 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Impacts of extreme events may be more important economically than impacts of average climate  change (high confidence). Risks associated with the entire probability distribution of outcomes in  terms of climate response [WGI] and climate impacts [WGII] are relevant to the assessment of  mitigation. Impacts from more extreme climate change may be more important economically (in  terms of the expected value of impacts) than impacts of average climate change, particularly if the  damage from extreme climate change increases more rapidly than the probability of such change  declines. This is important in economic analysis, where the expected benefit of mitigation may be  traded off against mitigation costs. [3.9.2]  Impacts from climate change are both market and non market. Market effects (where market  prices and quantities are observed) include impacts of storm damage on infrastructure, tourism, and  increased energy demand. Non market effects include many ecological impacts, as well as changed  cultural values, none of which are generally captured through market prices. The economic measure  of the value of either kind of impact is  willingness to pay  to avoid damage, which can be estimated  using methods of revealed preference and stated preference. [3.9]  Substitutability reduces the size of damages from climate change (high confidence). The monetary  damage from a change in the climate will be lower if individuals can easily substitute for what is  damaged, compared to cases where such substitution is more difficult. [3.9]  Damage functions in existing Integrated Assessment Models (IAMs) are of low reliability (high  confidence). The economic assessments of damages from climate change as embodied in the  damage functions used by some existing IAMs (though not in the analysis embodied in WGIII) are  highly stylized with a weak empirical foundation. The empirical literature on monetized impacts is  growing but remains limited and often geographically narrow. This suggests that such damage  functions should be used with caution and that there may be significant value in undertaking  research to improve the precision of damage estimates. [3.9, 3.12]  Negative private costs of mitigation arise in some cases, although they are sometimes overstated  in the literature (medium confidence). Sometimes mitigation can lower the private costs of  production and thus raise profits; for individuals, mitigation can raise wellbeing. Ex post evidence  suggests that such  negative cost opportunities  do indeed exist but are sometimes overstated in  engineering analyses. [3.9]  Exchange rates between GHGs with different atmospheric lifetimes are very sensitive to the choice  of emission metric. The choice of an emission metric depends on the potential application and  involves explicit or implicit value judgements; no consensus surrounds the question of which metric  is both conceptually best and practical to implement (high confidence). In terms of aggregate  mitigation costs alone, the Global Warming Potential (GWP), with a 100 year time horizon, may  perform similarly to selected other metrics (such as the time dependent Global Temperature Change  Potential or the Global Cost Potential) of reaching a prescribed climate target; however, various  metrics may differ significantly in terms of the implied distribution of costs across sectors, regions,  and over time (limited evidence, medium agreement). [3.9]  The behaviour of energy users and producers exhibits a variety of anomalies (high confidence).  Understanding climate change as a physical phenomenon with links to societal causes and impacts is  a very complex process. To be fully effective, the conceptual frameworks and methodological tools  used in mitigation assessments need to take into account cognitive limitations and other regarding  preferences that frame the processes of economic decision making by people and firms. [3.10]  Perceived fairness can facilitate cooperation among individuals (high confidence). Experimental  evidence suggests that reciprocal behaviour and perceptions of fair outcomes and procedures  facilitate voluntary cooperation among individual people in providing public goods; this finding may  have implications for the design of international agreements to coordinate climate change  mitigation. [3.10]      7 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Social institutions and culture can facilitate mitigation and adaptation (medium confidence). Social  institutions and culture can shape individual actions on mitigation and adaptation and be  complementary to more conventional methods for inducing mitigation and adaptation. They can  promote trust and reciprocity and contribute to the evolution of common rules. They also provide  structures for acting collectively to deal with common challenges. [3.10]  Technological change that reduces mitigation costs can be encouraged by institutions and  economic incentives (high confidence). As pollution is not fully priced by the market, private  individuals and firms lack incentives to invest sufficiently in the development and use of emissions reducing technologies in the absence of appropriate policy interventions. Moreover, imperfect  appropriability of the benefits of innovation further reduces incentives to develop new technologies.  [3.11]      8 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.1   Introduction  This framing chapter has two primary purposes: to provide a framework for viewing and  understanding the human (social) perspective on climate change, focusing on ethics and economics;  and to define and discuss key concepts used in other chapters. It complements the two other  framing chapters: Chapter 2 on risk and uncertainty and Chapter 4 on sustainability. The audience  for this chapter (indeed for this entire volume) is decision makers at many different levels.  The significance of the social dimension and the role of ethics and economics is underscored by  Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC), which indicates  that the ultimate objective of the Convention is to avoid dangerous anthropogenic interference with  the climate system. Two main issues confronting society are: what constitutes  dangerous  interference  with the climate system and how to deal with that interference. Providing information  to answer these inter related questions is a primary purpose of the IPCC. Although natural science  helps us understand how emissions can change the climate, and, in turn, generate physical impacts  on ecosystems, people, and the physical environment, determining what is dangerous involves  judging the level of adverse consequences, the steps necessary to mitigate these consequences, and  the risk that humanity is willing to tolerate. These are questions requiring value judgement.  Although economics is essential to evaluating the consequences and trade offs associating with  climate change, how society interprets and values them is an ethical question.    Box 3.1 Dangerous interference with the climate system Article 2 of the United Nations Framework Convention on Climate Change states that  the ultimate  objective of the Convention . . . is to achieve . . . stabilization of greenhouse gas concentrations in  the atmosphere at a level that would prevent dangerous anthropogenic interference with the  climate system.  Judging whether our interference in the climate system is dangerous, i.e., risks  causing a very bad outcome, involves two tasks: estimating the physical consequences of our  interference and their likelihood; and assessing their significance for people. The first falls to science,  but, as the Synthesis Report of the IPCC Fourth Assessment Report (AR4) states,  Determining what  constitutes  dangerous anthropogenic interference with the climate system  in relation to Article 2 of  the UNFCCC involves value judgements  (IPCC, 2007, p. 42). Value judgements are governed by the  theory of value. In particular, valuing risk is covered by decision theory and is dealt with in Chapter 2.  Central questions of value that come within the scope of ethics, as well as economic methods for  measuring certain values are examined in this chapter.  Our discussion of ethics centres on two main considerations: justice and value. Justice requires that  people and nations should receive what they are due, or have a right to. For some, an outcome is  just if the process that generated it is just. Others view justice in terms of the actual outcomes  enjoyed by different people and groups and the values they place on those outcomes. Outcome based justice can range from maximizing economic measures of aggregate welfare to rights based  views of justice, for example, believing that all countries have a right to clean air. Different views  have been expressed about what is valuable. All values may be anthropocentric or there may be  non human values. Economic analysis can help to guide policy action, provided that appropriate,  adequate, and transparent ethical assumptions are built into the economic methods.  The significance of economics in tackling climate change is widely recognized. For instance, central  to the politics of taking action on climate change are disagreements over how much mitigation the  world should undertake, and the economic costs of action (the costs of mitigation) and inaction (the  costs of adaptation and residual damage from a changed climate). Uncertainty remains about (1) the  costs of reducing emissions of greenhouse gases (GHGs), (2) the damage caused by a change in the  climate, and (3) the cost, practicality, and effectiveness of adaptation measures (and, potentially,      9 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  geoengineering). Prioritizing action on climate change over other significant social goals with more  near term payoffs is particularly difficult in developing countries. Because social concerns and  objectives, such as the preservation of traditional values, cannot always be easily quantified or  monetized, economic costs and benefits are not the only input into decision making about climate  change. But even where costs and benefits can be quantified and monetized, using methods of  economic analysis to steer social action implicitly involves significant ethical assumptions. This  chapter explains the ethical assumptions that must be made for economic methods, including cost benefit analysis (CBA), to be valid, as well as the ethical assumptions that are implicitly being made  where economic analysis is used to inform a policy choice.  The perspective of economics can improve our understanding of the challenges of acting on  mitigation. For an individual or firm, mitigation involves real costs, while the benefits to themselves  of their own mitigation efforts are small and intangible. This reduces the incentives for individuals or  countries to unilaterally reduce emissions; free riding on the actions of others is a dominant  strategy. Mitigating greenhouse gas (GHG) emissions is a public good, which inhibits mitigation. This  also partly explains the failure of nations to agree on how to solve the problem.  In contrast, adaptation tends not to suffer from free riding. Gains to climate change from  adaptation, such as planting more heat tolerant crops, are mainly realized by the parties who incur  the costs. Associated externalities tend to be more localized and contemporaneous than for GHG  mitigation. From a public goods perspective, global coordination may be less important for many  forms of adaptation than for mitigation. For autonomous adaptation in particular, the gains from  adaptation accrue to the party incurring the cost. However, public adaptation requires local or  regional coordination. Financial and other constraints may restrict the pursuit of attractive  adaptation opportunities, particularly in developing countries and for poorer individuals.  This chapter addresses two questions: what should be done about action to mitigate climate change  (a normative issue) and how the world works in the multifaceted context of climate change (a  descriptive or positive issue). Typically, ethics deals with normative questions and economics with  descriptive or normative questions. Descriptive questions are primarily value neutral, for example,  how firms have reacted to cap and trade programmes to limit emissions, or how societies have dealt  with responsibility for actions that were not known to be harmful when they were taken. Normative  questions use economics and ethics to decide what should be done, for example, determining the  appropriate level of burden sharing among countries for current and future mitigation. In making  decisions about issues with normative dimensions, it is important to understand the implicit  assumptions involved. Most normative analyses of solutions to the climate problem implicitly  involve contestable ethical assumptions.  This chapter does not attempt to answer ethical questions, but rather provides policymakers with  the tools (concepts, principles, arguments, and methods) to make decisions. Summarizing the role of  economics and ethics in climate change in a single chapter necessitates several caveats. While  recognizing the importance of certain non economic social dimensions of the climate change  problem and solutions to it, space limitations and our mandate necessitated focusing primarily on  ethics and economics. Furthermore, many of the issues raised have already been addressed in  previous IPCC assessments, particularly AR2 (published in 1995). In the past, ethics has received less  attention than economics, although aspects of both subjects are covered in AR2. The literature  reviewed here includes pre AR4 literature in order to provide a more comprehensive understanding  of the concepts and methods. We highlight  new  developments in the field since the last IPCC  assessment in 2007.  3.2   Ethical and socio economic concepts and principles  When a country emits GHGs, its emissions cause harm around the globe. The country itself suffers  only a part of the harm it causes. It is therefore rarely in the interests of a single country to reduce      10 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  its own emissions, even though a reduction in global emissions could benefit every country. That is  to say, the problem of climate change is a  tragedy of the commons  (Hardin, 1968). Effective  mitigation of climate change will not be achieved if each person or country acts independently in its  own interest.  Consequently, efforts are continuing to reach effective international agreement on mitigation. They  raise an ethical question that is widely recognized and much debated, namely,  burden sharing  or  effort sharing . How should the burden of mitigating climate change be divided among countries? It  raises difficult issues of justice, fairness, and rights, all of which lie within the sphere of ethics.  Burden sharing is only one of the ethical questions that climate change raises.1 Another is the  question of how much overall mitigation should take place. UNFCCC sets the aim of  avoiding  dangerous anthropogenic interference with the climate system , and judging what is dangerous is  partly a task for ethics (see Box 3.1). Besides justice, fairness, and rights, a central concern of ethics  is value. Judgements of value underlie the question of what interference with the climate system  would be dangerous.  Indeed, ethical judgements of value underlie almost every decision that is connected with climate  change, including decisions made by individuals, public and private organizations, governments, and  groupings of governments. Some of these decisions are deliberately aimed at mitigating climate  change or adapting to it. Many others influence the progress of climate change or its impacts, so  they need to take climate change into account.  Ethics may be broadly divided into two branches: justice and value. Justice is concerned with  ensuring that people get what is due to them. If justice requires that a person should not be treated  in a particular way uprooted from her home by climate change, for example then the person has  a right not to be treated that way. Justice and rights are correlative concepts. On the other hand,  criteria of value are concerned with improving the world: making it a better place. Synonyms for  value  in this context are  good ,  goodness  and  benefit . Antonyms are  bad ,  harm  and  cost .  To see the difference between justice and value, think of a transfer of wealth made by a rich country  to a poor one. This may be an act of restitution. For example, it may be intended to compensate the  poor country for harm that has been done to it by the rich country s emissions of GHG. In this case,  the transfer is made on grounds of justice. The payment is taken to be due to the poor country, and  to satisfy a right that the poor country has to compensation. Alternatively, the rich country may  make the transfer to support the poor country s mitigation effort, because this is beneficial to  people in the poor country, the rich country, and elsewhere. The rich country may not believe the  poor country has a right to the support, but makes the payment simply because it does  good . This  transfer is made on grounds of value. What would be good to do is not necessarily required as a  matter of justice. Justice is concerned with what people are entitled to as a matter of their rights.  The division between justice and value is contested within moral philosophy, and so is the nature of  the interaction between the two. Some authors treat justice as inviolable (Nozick, 1974): justice sets  limits on what we may do and we may promote value only within those limits. An opposite view called  teleological  by Rawls (1971) is that the right decision to make is always determined by the  value of the alternatives, so justice has no role. But despite the complexity of their relationship and  the controversies it raises, the division between justice and value provides a useful basis for  organizing the discussion of ethical concepts and principles. We have adopted it in this chapter:  sections 3.3  and 3.4  cover justice and value, respectively. One topic appears in both sections  because it bridges the divide: this topic is distributive justice viewed one way and the value of  equality viewed the other. Section 3.3.7   on geoengineering is also in an intermediate position                                                               1  A survey of the ethics of climate change is Gardiner (2004), pp. 555 600.      11 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  because it raises ethical issues of both sorts. Section 3.6  explains how some ethical values can be  measured by economic methods of valuation. Section 3.5  describes the scope and limitations of  these methods. Later sections develop the concepts and methods of economics in more detail.  Practical ways to take account of different values in policy making are discussed in Section 3.7.1   .  3.3   Justice, equity and responsibility   Justice, fairness, equity, and responsibility are important in international climate negotiations, as  well as in climate related political decision making within countries and for individuals.  In this section we examine distributive justice, which, for the purpose of this review, is about  outcomes, and procedural justice or the way in which outcomes are brought about. We also discuss  compensation for damage and historic responsibility for harm. In the context of climate change,  considerations of justice, equity, and responsibility concern the relations between individuals, as  well as groups of individuals (e.g., countries), both at a single point in time and across time.  Accordingly, we distinguish intra generational from intergenerational justice. The literature has no  agreement on a correct answer to the question, what is just? We indicate where opinions differ.  3.3.1    Causal and moral responsibility   From the perspective of countries rather than individuals or groups of individuals, historic emissions  can help determine causal responsibility for climate change (den Elzen et al., 2005; Lamarque et al.,  2010; Höhne et al., 2011). Many developed countries are expected to suffer relatively modest  physical damage and some are even expected to realize benefits from future climate change (see  Tol, 2002a; b). On the other hand, some developing countries bear less causal responsibility, but  could suffer significant physical damage from climate change (IPCC, 2007 WG II AR4 SPM). This  asymmetry gives rise to the following questions of justice and moral responsibility: do considerations  of justice provide guidance in determining the appropriate level of present and future global  emissions; the distribution of emissions among those presently living; and the role of historical  emissions in distributing global obligations? The question also arises of who might be considered  morally responsible for achieving justice, and, thus, a bearer of duties towards others. The question  of moral responsibility is also key to determining whether anyone owes compensation for the  damage caused by emissions.  3.3.2    Intergenerational justice and rights of future people  Intergenerational justice encompasses some of the moral duties owed by present to future people  and the rights that future people hold against present people.2 A legitimate acknowledgment that  future or past generations have rights relative to present generations is indicative of a broad  understanding of justice.3 While justice considerations so understood are relevant, they cannot  cover all our concerns regarding future and past people, including the continued existence of  humankind and with a high level of wellbeing.4  What duties do present generations owe future generations given that current emissions will affect  their quality of life? Some justice theorists have offered the following argument to justify a cap on                                                                In the philosophical literature,  justice between generations  typically refers to the relations between people  whose lifetimes do not overlap (Barry, 1977). In contrast,  justice between age groups  refers to the relations  of people whose lifetimes do overlap (Laslett and Fishkin, 1992). See also Gardiner (2011), pp. 145 48.   See Rawls (1971, 1999), Barry (1977), Sikora and Barry (1978), Partridge (1981), Parfit (1986), Birnbacher  (1988), and Heyd (1992).   See Baier (1981), De Shalit (1995), Meyer (2005), and for African philosophical perspectives see, Behrens  (2012). See Section 3.4   on the wellbeing of future people.  4 3 2     12 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  emissions (Shue, 1993, 1999; Caney, 2006a; Meyer and Roser, 2009; Wolf, 2009). If future people s  basic rights include the right to survival, health, and subsistence, these basic rights are likely to be  violated when temperatures rise above a certain level. However, currently living people can slow the  rise in temperature by limiting their emissions at a reasonable cost to themselves. Therefore, living  people should reduce their emissions in order to fulfil their minimal duties of justice to future  generations. Normative theorists dispute the standard of living that corresponds to people s basic  rights (Page, 2007; Huseby, 2010). Also in dispute is what level of harm imposed on future people is  morally objectionable. Some argue that currently living people wrongfully harm future people if they  cause them to have a lower level of wellbeing than their own (e.g., Barry, 1999); others that  currently living people owe future people a decent level of wellbeing, which might be lower than  their own (Wolf, 2009). This argument raises objections on grounds of justice since it presupposes  that present people can violate the rights of future people, and that the protection of future  people s rights is practically relevant for how present people ought to act.  Some theorists claim that future people cannot hold rights against present people, owing to special  features of intergenerational relations: some claim that future people cannot have rights because  they cannot exercise them today (Steiner, 1983; Wellman, 1995, ch. 4). Others point out that  interaction between non contemporaries is impossible (Barry, 1977, pp. 243 244, 1989, p. 189).  However, some justice theorists argue that neither the ability to, nor the possibility of, mutual  interaction are necessary in attributing rights to people (Barry, 1989; Buchanan, 2004). They hold  that rights are attributed to beings whose interests are important enough to justify imposing duties  on others.  The main source of scepticism about the rights of future people and the duties we owe them is the  so called  non identity problem . Actions we take to reduce our emissions will change people s way  of life and so affect new people born. They alter the identities of future people. Consequently, our  emissions do not make future people worse off than they would otherwise have been, since those  future people would not exist if we took action to prevent our emissions. This makes it hard to claim  that our emissions harm future people, or that we owe it to them as a matter of their rights to  reduce our emissions.5  It is often argued that the non identity problem can be overcome (McMahan, 1998; Shiffrin, 1999;  Kumar, 2003; Meyer, 2003; Harman, 2004; Reiman, 2007; Shue, 2010). In any case, duties of justice  do not include all the moral concerns we should have for future people. Other concerns are matters  of value rather than justice, and they too can be understood in such a way that they are not affected  by the non identity problem. They are considered in Section 3.4  .  If present people have a duty to protect future people s basic rights, this duty is complicated by  uncertainty. Present people s actions or omissions do not necessarily violate future people s rights;  they create a risk of their rights being violated (Bell, 2011). To determine what currently living  people owe future people, one has to weigh such uncertain consequences against other  consequences of their actions, including the certain or likely violation of the rights of currently living  people (Oberdiek, 2012; Temkin, 2012). This is important in assessing many long term policies,  including on geoengineering (see Section 3.3.7   ), that risk violating the rights of many generations  of people (Crutzen, 2006; Schneider, 2008; Victor et al., 2009; Baer, 2010; Ott, 2012).  3.3.3    Intergenerational justice: distributive justice  Suppose that a global emissions ceiling that is intergenerationally just has been determined  (recognizing that a ceiling is not the only way to deal with climate change), the question then arises  of how the ceiling ought to be divided among states (and, ultimately, their individual members)                                                                For an overview of the issue see Meyer (2010). See also Schwartz (1978), Parfit (1986), and Heyd (1992). For a  different perspective see Perrett (2003).  5     13 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  (Jamieson, 2001; Singer, 2002; Meyer and Roser, 2006; Caney, 2006a). Distributing emission permits  is a way of arriving at a globally just division. Among the widely discussed views on distributive  justice are strict egalitarianism (Temkin, 1993), indirect egalitarian views including prioritarianism  (Parfit, 1997), and sufficientarianism (Frankfurt, 1999). Strict egalitarianism holds that equality has  value in itself. Prioritarianism gives greater weight to a person s wellbeing the less well off she is, as  described in Section 3.4  . Sufficientarianism recommends that everyone should be able to enjoy a  particular level of wellbeing.  For example, two options can help apply prioritarianism to the distribution of freely allocated and  globally tradeable emission permits. The first is to ignore the distribution of other goods. Then strict  egalitarianism or prioritarianism will require emission permits to be distributed equally, since they  will have one price and are thus equivalent to income. The second is to take into account the  unequal distribution of other assets. Since people in the developing world are less well off than in  the developed world, strict egalitarianism or prioritarianism would require most or all permits to go  to the developing world. However, it is questionable whether it is appropriate to bring the overall  distribution of goods closer to the prioritarian ideal through the distribution of just one good (Wolff  and de Shalit, 2007; Caney, 2009, 2012).  3.3.4    Historical responsibility and distributive justice  Historical responsibility for climate change depends on countries  contributions to the stock of  GHGs. The UNFCCC refers to  common but differentiated responsibilities  among countries of the  world.6 This is sometimes taken to imply that current and historical causal responsibility for climate  change should play a role in determining the obligations of different countries in reducing emissions  and paying for adaptation measures globally (Rajamani, 2000; Rive et al., 2006; Friman, 2007).  A number of objections have been raised against the view that historical emissions should play a role  (see, e.g., Gosseries, 2004; Caney, 2005; Meyer and Roser, 2006; Posner and Weisbach, 2010). First,  as currently living people had no influence over the actions of their ancestors, they cannot be held  responsible for them. Second, previously living people may be excused from responsibility on the  grounds that they could not be expected to know that their emissions would have harmful  consequences. Thirdly, present individuals with their particular identities are not worse or better off  as a result of the emission generating activities of earlier generations because, owing to the non identity problem, they would not exist as the individuals they are had earlier generations not acted  as they did.  From the perspective of distributive justice, however, these objections need not prevent past  emissions and their consequences being taken into account (Meyer and Roser, 2010; Meyer, 2013).  If we are only concerned with the distribution of benefits from emission generating activities during  an individual s lifespan, we should include the benefits present people have received from their own  emission generating activities. Furthermore, present people have benefited since birth or  conception from past people s emission producing actions. They are therefore better off as a result  of past emissions, and any principle of distributive justice should take that into account. Some  suggest that taking account of the consequences of some past emissions in this way should not be  subject to the objections mentioned in the previous paragraph (see Shue, 2010). Other concepts  associated with historical responsibility are discussed in Chapter 4.   Specifically, Article 3 of the UNFCCC includes the sentence:  The Parties should protect the climate system for  the benefit of present and future generations of humankind, on the basis of equity and in accordance with  their common but differentiated responsibilities and respective capabilities.   6                                                                  14 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.3.5    Intra generational justice: compensatory justice and historical responsibility  Do those who suffer disproportionately from the consequences of climate change have just claims to  compensation against the main perpetrators or beneficiaries of climate change (see, e.g., Neumayer,  2000; Gosseries, 2004; Caney, 2006b)?  One way of distinguishing compensatory from distributive claims is to rely on the idea of a just  baseline distribution that is determined by a criterion of distributive justice. Under this approach,  compensation for climate damage and adaptation costs is owed only by people who have acted  wrongfully according to normative theory (Feinberg, 1984; Coleman, 1992; McKinnon, 2011). Other  deviations from the baseline may warrant redistributive measures to redress undeserved benefits or  harms, but not as compensation. Some deviations, such as those that result from free choice, may  not call for any redistribution at all.  The duty to make compensatory payments (Gosseries, 2004; Caney, 2006b) may fall on those who  emit or benefit from wrongful emissions or who belong to a community that produced such  emissions. Accordingly, three principles of compensatory justice have been suggested: the polluter  pays principle (PPP), the beneficiary pays principle (BPP), and the community pays principle (CPP)  (Meyer and Roser, 2010; Meyer, 2013). None of the three measures is generally accepted, though  the PPP is more widely accepted than the others. The PPP requires the emitter to pay compensation  if the agent emitted more than its fair share (determined as outlined in Section 3.3.2   ) and it either  knew, or could reasonably be expected to know, that its emissions were harmful. The victim should  be able to show that the emissions either made the victim worse off than before or pushed  below a  specified threshold of harm, or both.   The right to compensatory payments for wrongful emissions under PPP has at least three basic  limitations. Two have already been mentioned in Section 3.3.4   . Emissions that took place while it  was permissible to be ignorant of climate change (when people neither did know nor could be  reasonably be expected to know about the harmful consequences of emissions) may be excused  (Gosseries, 2004, pp. 39 41). See also Section 3.3.6   . The non identity problem (see Section 3.3.2   )  implies that earlier emissions do not harm many of the people who come into existence later.  Potential duty bearers may be dead and cannot therefore have a duty to supply compensatory  measures. It may therefore be difficult to use PPP in ascribing compensatory duties and identifying  wronged persons. The first and third limitations restrict the assignment of duties of compensation to  currently living people for their most recent emissions, even though many more people are causally  responsible for the harmful effects of climate change. For future emissions, the third limitation could  be overcome through a climate change compensation fund into which agents pay levies for imposing  the risk of harm on future people (McKinnon, 2011).  According to BPP, a person who is wrongfully better off relative to a just baseline is required to  compensate those who are worse off. Past emissions benefit some and impose costs on others. If  currently living people accept the benefits of wrongful past emissions, it has been argued that they  take on some of the past wrongdoer s duty of compensation (Gosseries, 2004). Also, we have a duty  to condemn injustice, which may entail a duty not to benefit from an injustice that causes harm to  others (Butt, 2007). However, BPP is open to at least two objections. First, duties of compensation  arise only from past emissions that have benefited present people; no compensation is owed for  other past emissions. Second, if voluntary acceptance of benefits is a condition of their giving rise to  compensatory duties, the bearers of the duties must be able to forgo the benefits in question at a  reasonable cost.  Under CPP, moral duties can be attributed to people as members of groups whose identity persists  over generations (De Shalit, 1995; Thompson, 2009). The principle claims that members of a  community, including a country, can have collective responsibility for the wrongful actions of other  past and present members of the community, even though they are not morally or causally  responsible for those actions (Thompson, 2001; Miller, 2004; Meyer, 2005). It is a matter of debate      15 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  under what conditions present people can be said to have inherited compensatory duties. Although  CPP purports to overcome the problem that a polluter might be dead, it can justify compensatory  measures only for emissions that are made wrongfully. It does not cover emissions caused by agents  who were permissibly ignorant of their harmfulness. (The agent in this case may be the community  or state).  The practical relevance of principles of compensatory justice is limited. Insofar as the harms and  benefits of climate change are undeserved, distributive justice will require them to be evened out,  independently of compensatory justice. Duties of distributive justice do not presuppose any  wrongdoing (see Section 3.3.4   ). For example, it has been suggested on grounds of distributive  justice that the duty to pay for adaptation should be allocated on the basis of people s ability to pay,  which partly reflects the benefit they have received from past emissions (Jamieson, 1997; Shue,  1999; Caney, 2010; Gardiner, 2011). However, present people and governments can be said to know  about both the seriously harmful consequences of their emission generating activities for future  people and effective measures to prevent those consequences. If so and if they can implement these  measures at a reasonable cost to themselves to protect future people s basic rights (see, e.g.,  Birnbacher, 2009; Gardiner, 2011), they might be viewed as owing intergenerational duties of justice  to future people (see Section 3.3.2   ).  3.3.6    Legal concepts of historical responsibility  Legal systems have struggled to define the boundaries of responsibility for harmful actions and are  only now beginning to do so for climate change. It remains unclear whether national courts will  accept lawsuits against GHG emitters, and legal scholars vigorously debate whether liability exists  under current law (Mank, 2007; Burns and Osofsky, 2009; Faure and Peeters, 2011; Haritz, 2011;  Kosolapova, 2011; Kysar, 2011; Gerrard and Wannier, 2012). This section is concerned with moral  responsibility, which is not the same as legal responsibility. But moral thinking can draw useful  lessons from legal ideas.  Harmful conduct is generally a basis for liability only if it breaches some legal norm (Tunc, 1983),  such as negligence, or if it interferes unreasonably with the rights of either the public or property  owners (Mank, 2007; Grossman, 2009; Kysar, 2011; Brunée et al., 2012; Goldberg and Lord, 2012;  Koch et al., 2012). Liability for nuisance does not exist if the agent did not know, or have reason to  know, the effects of its conduct (Antolini and Rechtschaffen, 2008). The law in connection with  liability for environmental damage still has to be settled. The European Union, but not the United  States, recognizes exemption from liability for lack of scientific knowledge (United States Congress,  1980; European Union, 2004). Under European law, and in some US states, defendants are not  responsible if a product defect had not yet been discovered (European Commission, 1985; Dana,  2009). Some legal scholars suggest that assigning blame for GHG emissions dates back to 1990 when  the harmfulness of such emissions was established internationally, but others argue in favour of an  earlier date (Faure and Nollkaemper, 2007; Hunter and Salzman, 2007; Haritz, 2011). Legal systems  also require a causal link between a defendant s conduct and some identified harm to the plaintiff,  in this case from climate change (Tunc, 1983; Faure and Nollkaemper, 2007; Kosolapova, 2011;  Kysar, 2011; Brunée et al., 2012; Ewing and Kysar, 2012; Goldberg and Lord, 2012). A causal link  might be easier to establish between emissions and adaptation costs (Farber, 2007). Legal systems  generally also require causal foreseeability or directness (Mank, 2007; Kosolapova, 2011; van Dijk,  2011; Ewing and Kysar, 2012), although some statutes relax this requirement in specific cases (such  as the US Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA),  commonly known as Superfund. Emitters might argue that their contribution to GHG levels was too  small and the harmful effects too indirect and diffuse to satisfy the legal requirements (Sinnot Armstrong, 2010; Faure and Peeters, 2011; Hiller, 2011; Kysar, 2011; van Dijk, 2011; Gerrard and  Wannier, 2012).      16 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Climate change claims could also be classified as unjust enrichment (Kull, 1995; Birks, 2005), but  legal systems do not remedy all forms of enrichment that might be regarded as ethically unjust  (Zimmermann, 1995; American Law Institute, 2011; Laycock, 2012). Under some legal systems,  liability depends on whether benefits were conferred without legal obligation or through a  transaction with no clear change of ownership (Zimmermann, 1995; American Law Institute, 2011;  Laycock, 2012). It is not clear that these principles apply to climate change.  As indicated, legal systems do not recognize liability just because a positive or negative externality  exists. Their response depends on the behaviour that caused the externality and the nature of the  causal link between the agent s behaviour and the resulting gain or loss to another.  3.3.7    Geoengineering, ethics, and justice  Geoengineering (also known as climate engineering [CE]), is large scale technical intervention in the  climate system that aims to cancel some of the effects of GHG emissions (for more details see WGI  6.5 and WGIII 6.9). Geoengineering represents a third kind of response to climate change, besides  mitigation and adaptation. Various options for geoengineering have been proposed, including  different types of solar radiation management (SRM) and carbon dioxide removal (CDR). This section  reviews the major moral arguments for and against geoengineering technologies (for surveys see  Robock, 2008; Corner and Pidgeon, 2010; Gardiner, 2010; Ott, 2010; Betz and Cacean, 2012;  Preston, 2013). These moral arguments do not apply equally to all proposed geoengineering  methods and have to be assessed on a case specific basis.7  Three lines of argument support the view that geoengineering technologies might be desirable to  deploy at some point in the future. First, that humanity could end up in a situation where deploying  geoengineering, particularly SRM, appears as a lesser evil than unmitigated climate change (Crutzen,  2006; Gardiner, 2010; Keith et al., 2010; Svoboda, 2012a; Betz, 2012). Second, that geoengineering  could be a more cost effective response to climate change than mitigation or adaptation (Barrett,  2008). Such efficiency arguments have been criticized in the ethical literature for neglecting issues  such as side effects, uncertainties, or fairness (Gardiner, 2010, 2011; Buck, 2012). Third, that some  aggressive climate stabilization targets cannot be achieved through mitigation measures alone and  thus must be complemented by either CDR or SRM (Greene et al., 2010; Sandler, 2012).  Geoengineering technologies face several distinct sets of objections. Some authors have stressed the  substantial uncertainties of large scale deployment (for overviews of geoengineering risks see also  Schneider (2008) and Sardemann and Grunwald (2010)), while others have argued that some  intended and unintended effects of both CDR and SRM could be irreversible (Jamieson, 1996) and  that some current uncertainties are unresolvable (Bunzl, 2009). Furthermore, it has been pointed  out that geoengineering could make the situation worse rather than better (Hegerl and Solomon,  2009; Fleming, 2010; Hamilton, 2013) and that several technologies lack a viable exit option: SRM in  particular would have to be maintained as long as GHG concentrations remain elevated (The Royal  Society, 2009).   Arguments against geoengineering on the basis of fairness and justice deal with the intra generational and intergenerational distributional effects. SRM schemes could aggravate some  inequalities if, as expected, they modify regional precipitation and temperature patterns with  unequal social impacts (Bunzl, 2008; The Royal Society, 2009; Svoboda et al., 2011; Preston, 2012).  Furthermore, some CDR methods would require large scale land transformations, potentially                                                                While the literature typically associates some arguments with particular types of methods (e.g., the  termination problem with SRM), it is not clear that there are two groups of moral arguments: those applicable  to all SRM methods on the one side and those applicable to all CDR methods on the other side. In other words,  the moral assessment hinges on aspects of geoengineering that are not connected to the distinction between  SRM and CDR.  7     17 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  competing with agricultural land use, with uncertain distributive consequences. Other arguments  against geoengineering deal with issues including the geopolitics of SRM, such as international  conflicts that may arise from the ability to control the  global thermostat  (e.g., Schelling, 1996;  Hulme, 2009), ethics (Hale and Grundy, 2009; Preston, 2011; Hale and Dilling, 2011; Svoboda, 2012b;  Hale, 2012b), and a critical assessment of technology and modern civilization in general (Fleming,  2010; Scott, 2012).  One of the most prominent arguments against geoengineering suggests that geoengineering  research activities might hamper mitigation efforts (e.g., Jamieson, 1996; Keith, 2000; Gardiner,  2010), which presumes that geoengineering should not be considered an acceptable substitute for  mitigation. The central idea is that research increases the prospect of geoengineering being  regarded as a serious alternative to emission reduction (for a discussion of different versions of this  argument see Hale, 2012a; Hourdequin, 2012). Other authors have argued, based on historical  evidence and analogies to other technologies, that geoengineering research might make deployment  inevitable (Jamieson, 1996; Bunzl, 2009), or that large scale field tests could amount to full fledged  deployment (Robock et al., 2010). It has also been argued that geoengineering would constitute an  unjust imposition of risks on future generations, because the underlying problem would not be  solved but only counteracted with risky technologies (Gardiner, 2010; Ott, 2012; Smith, 2012). The  latter argument is particularly relevant to SRM technologies that would not affect greenhouse gas  concentrations, but it would also apply to some CDR methods, as there may be issues of long term  safety and capacity of storage.  Arguments in favour of research on geoengineering point out that research does not necessarily  prepare for future deployment, but can, on the contrary, uncover major flaws in proposed schemes,  avoid premature CE deployment, and eventually foster mitigation efforts (e.g., Keith et al., 2010).  Another justification for Research and Development (R&D) is that it is required to help decision makers take informed decisions (Leisner and Müller Klieser, 2010).  3.4   Values and wellbeing  One branch of ethics is the theory of value. Many different sorts of value can arise, and climate  change impinges on many of them. Value affects nature and many aspects of human life. This  section surveys some of the values at stake in climate change, and examines how far these values  can be measured, combined, or weighed against each other. Each value is subject to debate and  disagreement. For example, it is debatable whether nature has value in its own right, apart from the  benefit it brings to human beings. Decision making about climate change is therefore likely to be  contentious.  Since values constitute only one part of ethics, if an action will increase value overall it by no means  follows that it should be done. Many actions benefit some people at the cost of harming others. This  raises a question of justice even if the benefits in total exceed the costs. Whereas a cost to a person  can be compensated for by a benefit to that same person, a cost to a person cannot be  compensated for by a benefit to someone else. To suppose it can is not to  take seriously the  distinction between persons , as John Rawls puts it (1971, p. 27). Harming a person may infringe  their rights, or it may be unfair to them. For example, when a nation s economic activities emit GHG,  they may benefit the nation itself, but may harm people in other nations. Even if the benefits are  greater in value than the harms, these activities may infringe other nations  rights. Other nations  may therefore be entitled to object to them on grounds of justice.  Any decision about climate change is likely to promote some values and damage others. These may  be values of very different sorts. In decision making, different values must therefore be put together  or balanced against each other. Some pairs of values differ so radically from each other that they  cannot be determinately weighed together. For example, it may be impossible to weigh the value of  preserving a traditional culture against the material income of the people whose culture it is, or to      18 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  weigh the value of biodiversity against human wellbeing. Some economists claim that one person s  wellbeing cannot be weighed against another s (Robbins, 1937; Arrow, 1963). When values cannot  be determinately weighed, they are said to be  incommensurable  or  incomparable  (Chang, 1997).  Multi Criteria Analysis (MCA) (discussed in Section 3.7.2.1   ) is a technique that is designed to take  account of several incommensurable values (De Montis et al., 2005; Zeleny and Cochrane, 1982).  3.4.1    Non human values  Nature provides great benefits to human beings in ways that range from absorbing our waste, to  beautifying the world we inhabit. An increasing number of philosophers have argued in recent years  that nature also has value in its own right, independently of its benefits to human beings (Leopold,  1949; Palmer, 2011). They have argued that we should recognize animal values, the value of life  itself, and even the value of natural systems and nature itself.  In moral theory, rational adult humans, who are self conscious subjects of a life, are often taken  (following Kant, 1956) to have a kind of unconditional moral worth sometimes called  dignity that is not found elsewhere on earth. Others believe that moral worth can be found elsewhere  (Dryzek, 1997). Many human beings themselves lack rationality or subjectivity, yet still have moral  worth   the very young, the very old and people with various kinds of impairment among them.  Given that, why deny moral worth to those animals that are to some extent subjects of a life, who  show emotional sophistication (Regan, 2004), and who experience pleasure, pain, suffering, and joy  (Singer, 1993)?  An argument for recognizing value in plants as well as animals was proposed by Richard Routley  (1973). Routley gives the name  human chauvinism  to the view that humans are the sole possessors  of intrinsic value. He asks us to imagine that the last man on earth sets out to destroy every living  thing, animal or plant. Most people believe this would be wrong, but human chauvinists are unable  to explain why. Human chauvinism appears to be simply a prejudice in favour of the human species  (Routley and Routley, 1980). In contrast, some philosophers argue that value exists in the lives of all  organisms, to the extent that they have the capacity to flourish (Taylor, 1986; Agar, 2001).  Going further, other philosophers have argued that biological communities and holistic ecological  entities also have value in their own right. Some have argued that a species has more value than all  of its individuals have together, and that an ecosystem has still more value (Rolston, 1988, 1999;  compare discussion in Brennan and Lo, 2010). It has further been proposed that, just as domination  of one human group by another is a moral evil, showing disrespect for the value of others, then so is  the domination of nature by humans in general. If nature and its systems have moral worth, then the  domination of nature is also a kind of disrespect (Jamieson, 2010).  If animals, plants, species, and ecosystems do have value in their own right, then the moral impact of  climate change cannot be gauged by its effects on human beings alone. If climate change leads to  the loss of environmental diversity, the extinction of plant and animal species, and the suffering of  animal populations, then it will cause great harms beyond those it does to human beings. Its effects  on species numbers, biodiversity, and ecosystems may persist for a very long time, perhaps even  longer than the lifetime of the human species (Nolt, 2011).  It is very difficult to measure non human values in a way that makes them commensurate with  human values. Economists address this issue by dividing value into use value (associated with actual  use of nature   instrumental value) and nonuse or existence value (intrinsic value of nature). As an  example, biodiversity might have value because of the medical drugs that might be discovered  among the diverse biota (use value). Or biodiversity might be valued by individuals simply because  they believe that biologic diversity is important, over and above any use to people that might occur.  The total amount people are willing to pay has sometimes been used as an economic measure of the  total value (instrumental and intrinsic) of these features (Aldred, 1994). As the discussion of the past      19 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  few paragraphs has suggested, nature may have additional value, over and above the values placed  by individual humans (Broome, 2009; Spash et al., 2009).  3.4.2    Cultural and social values  The value of human wellbeing is considered in Section 3.4.3   , but the human world may also  possess other values that do not form part of the wellbeing of individual humans. Living in a  flourishing culture and society contributes to a person s wellbeing (Kymlicka, 1995; Appiah, 2010),  but some authors claim that cultures and societies also possess values in their own right, over and  above the contribution they make to wellbeing (Taylor, 1995). Climate change threatens damage to  cultural artefacts and to cultures themselves (Adger et al., 2012). Evidence suggests that it may  already be damaging the culture of Arctic indigenous peoples (Ford et al., 2006, 2008; Crate, 2008;  Hassol, 2004; see also WGII Chapter 12). Cultural values and indigenous peoples are discussed in  Section 3.10.2   .  The degree of equality in a society may also be treated as a value that belongs to a society as a  whole, rather than to any of the individuals who make up the society. Various measures of this value  are available, including the Gini coefficient and the Atkinson measure (Gini, 1912; Atkinson, 1970);  for an assessment see (Sen, 1973). Section 3.5  explains that the value of equality can alternatively  be treated as a feature of the aggregation of individual people s wellbeings, rather than as social  value separate from wellbeing.  3.4.3    Wellbeing  Most policy concerned with climate change aims ultimately at making the world better for people to  live in. That is to say, it aims to promote people s wellbeing. A person s wellbeing, as the term is  used here, includes everything that is good or bad for the person   everything that contributes to  making their life go well or badly. What things are those   what constitutes a person s wellbeing?  This question has been the subject of an extensive literature since ancient times.8 One view is that a  person s wellbeing is the satisfaction of their preferences. Another is that it consists in good feelings  such as pleasure. A third is that wellbeing consists in possessing the ordinary good things of life, such  as health, wealth, a long life, and participating well in a good community. The  capabilities approach   in economics (Sen, 1999) embodies this last view. It treats the good things of life as  functionings   and  capabilities    things that a person does and things that they have a real opportunity of doing,  such as living to old age, having a good job, and having freedom of choice.  A person s wellbeing will be affected by many of the other values that are mentioned above, and by  many of the considerations of justice mentioned in Section 3.3  . It is bad for a person to have their  rights infringed or to be treated unfairly, and it is good for a person to live within a healthy culture  and society, surrounded by flourishing nature.  Various concrete measures of wellbeing are in use (Fleurbaey, 2009; Stiglitz et al., 2009). Each  reflects a particular view about what wellbeing consists in. For example, many measures of  subjective wellbeing  (Oswald and Wu, 2010; Kahneman and Deaton, 2010) assume that wellbeing  consists in good feelings. Monetary measures of wellbeing, which are considered in Section 3.6  ,  assume that wellbeing consists in the satisfaction of preferences. Other measures assume wellbeing  consists in possessing a number of specific good things. The Human Development Index (HDI) is  intended to be an approximate measure of wellbeing understood as capabilities and functionings  (UNDP, 2010). It is based on three components: life expectancy, education, and income. The  capabilities approach has inspired other measures of wellbeing too (Dervis and Klugman, 2011). In  the context of climate change, many different metrics of value are intended to measure particular                                                               8 For example: Aristotle, Nicomachean Ethics. Recent work includes: Griffin (1986); Sumner (1999); Kraut  (2007).      20 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  components of wellbeing: among them are the numbers of people at risk from hunger, infectious  diseases, coastal flooding, or water scarcity. These metrics may be combined to create a more  general measure. Schneider et al. (2000) advocates the use of a suite of five metrics: (1) monetary  loss, (2) loss of life, (3) quality of life (taking account of forced migration, conflict over resources,  cultural diversity, and loss of cultural heritage sites), (4) species or biodiversity loss, and (5)  distribution and equity.  3.4.4    Aggregation of wellbeing  Whatever wellbeing consists of, policy making must take into account the wellbeing of everyone in  the society. So the wellbeings of different people have somehow to be aggregated together. How do  they combine to make up an aggregate value of wellbeing for a society as a whole? Social choice  theory takes up this problem (Arrow, 1963; Sen, 1970). Section 3.6  will explain that the aim of  economic valuation is to measure aggregate wellbeing.  Assume that each person has a level of wellbeing at each time they are alive, and call this their  temporal wellbeing  at that time. In a society, temporal wellbeing is distributed across times and  across the people. When a choice is to be made, each of the options leads to a particular distribution  of wellbeing. Our aim is to assess the value of such distributions. Doing so involves aggregating  wellbeings across times and across people, to arrive at an overall, social value for the distribution.  3.4.5    Lifetime wellbeing  Next let us assume that each person s temporal wellbeings can be aggregated to determine a  lifetime wellbeing  for the person, and that the social value of the distribution of wellbeing depends  only on these lifetime wellbeings. This is the assumption that each person s wellbeing is  separable ,  to use a technical term. It allows us to split aggregation into two steps. First, we aggregate each  person s temporal wellbeings across the times in their life in order to determine their lifetime  wellbeing. The second step in the next section is to aggregate across individuals using a social  welfare function.  On one account, a person s lifetime wellbeing is simply the total of their temporal wellbeings at each  time they are alive. If a person s wellbeing depended only on the state of their health, this formula  would be equivalent to  qalys  or  dalys  (quality adjusted life years or disability adjusted life years),  which are commonly used in the analysis of public health (Murray, 1994; Sassi, 2006). These  measures take a person s lifetime wellbeing to be the total number of years they live, adjusted for  their health in each year. Since wellbeing actually depends on other things as well as health, qalys or  dalys provide at best an approximate measure of lifetime wellbeing. If they are aggregated across  people by simple addition, it assumes implicitly that a year of healthy life is equally as valuable to  one person as it is to another. That may be an acceptable approximation for the broad evaluation of  climate change impacts and policies, especially for evaluating their effects on health (Nord et al.,  1999; Mathers et al., 2009; but also see Currie et al., 2008).  Other accounts give either increasing, (Velleman, 1991) or alternatively decreasing, (Kaplow et al.,  2010) weight to wellbeing that comes in later years of life, in determining a person s lifetime  wellbeing.  3.4.6    Social welfare functions  Once we have a lifetime wellbeing for each person, the next step is to aggregate these lifetime  wellbeings across people, to determine an overall value for society. This involves comparing one  person s wellbeing with another s. Many economists have claimed that interpersonal comparisons of  wellbeing are impossible.9 If they are right, the wellbeings of different people are incommensurable                                                                Examples are: Robbins (1937), Archibald (1959), Arrow (1963). A survey and discussion of this sceptical view  appears in Hammond (1993).  9     21 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  and cannot be aggregated. In this section we set this view aside, and assume that temporal  wellbeings are measured in a way that is comparable across people.10 This allows us to aggregate  different people s lifetime wellbeings through a social welfare function (SWF) to arrive at an overall  value or  social welfare .11  We shall first consider SWFs under the simplifying but unrealistic assumption that the decisions that  are to be made do not affect how many people exist or which people exist: all the options contain  the same people. A theorem of Harsanyi s (1955) gives some grounds for thinking that, given this  assumption, the SWF is additively separable between people. This means it has the form:  Equation 3.4.1.   V = v1(w1) + v2(w2) +   + vJ(wJ).  Here wi is person i s lifetime wellbeing. This formula says that each person s wellbeing can be  assigned a value vi(wi), and all these values one for each person are added up to determine the  social value of the distribution.  The proof of Harsanyi s Theorem depends on assumptions that can be challenged (Diamond, 1967;  Broome, 2004; Fleurbaey, 2010). So, although the additively separable form shown in Equation 3.4.1  is commonly assumed in economic valuations, it is not entirely secure. In particular, this form makes  it impossible to give any value to equality except indirectly through prioritarianism, which was  introduced in Section 3.3.2   and is defined below. The value of inequality cannot be measured by  the Gini coefficient, for example, since this measure is not additively separable (Sen, 1973).  It is often assumed that the functions vi() all have the same form, which means that each person s  wellbeing is valued in the same way:  Equation 3.4.2.   V = v(w1) + v(w2) +   + v(wJ)  Alternatively, the wellbeing of people who live later is sometimes discounted relative to the  wellbeing of people who live earlier; this implies that the functional form of vi() varies according to  the date when people live. Discounting of later wellbeing is often called  pure  discounting. It is  discussed in Section 3.6.2   .  Even if we accept Equation 3.4.2, different ethical theories imply different SWFs. Utilitarianism  values only the total of people s wellbeing. The SWF may be written:  Equation 3.4.3.   V = w1 + w2 +   + wJ  Utilitarianism gives no value to equality in the distribution of wellbeing: a given total of wellbeing  has the same value however unequally it is distributed among people.  But the idea of distributive justice mentioned in Section 3.3.3    suggests that equality of wellbeing  does have value. Equation 3.4.2 will give value to equality if the function v() is strictly concave. This  means the graph of v() curves downwards, as Figure 3.1 illustrates. (Section 3.6.1.1    explains that a  person s wellbeing wi is commonly assumed to be a strictly concave function of her consumption,  but this is a different point.) The resulting ethical theory is called prioritarianism. As Figure 3.1  shows, according to prioritarianism, improving a person s wellbeing contributes more to social  welfare if the person is badly off than if they are well off. The prioritarian slogan is  priority to the  worse off . Prioritarianism indirectly gives value to equality: it implies that a given total of wellbeing  is more valuable the more equally it is distributed (Sen, 1973; Weirich, 1983; Parfit, 1997). In                                                               10  Potential bases of interpersonal comparisons are examined in: Fleurbaey and Hammond (2004); Sen (1982);  Elster and Roemer (1993); Mirrlees (1982); Broome, (2004); Arrow (1977); Harsanyi (1977); Adler (2011).   A recent major study is Adler (2011).  11     22 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  judgements about climate change, a prioritarian function will give relatively more importance to the  interests of poorer people and poorer countries.      Figure 3.1. The prioritarian view of social welfare. The figure compares the social values of increases in wellbeing for a better-off and a worse-off person. 3.4.7    Valuing population  The next problem in aggregating wellbeing is to take account of changes in population. Climate  change can be expected to affect the world s human population. Severe climate change might even  lead to a catastrophic collapse of the population (Weitzman, 2009), and even to the extinction of  human beings. Any valuation of the impact of climate change and of policies to mitigate climate  change should therefore take changes in population into account.  The utilitarian and prioritarian SWFs for a fixed population may be extended in a variety of ways to a  variable population. For example, the utilitarian function may be extended to  average utilitarianism   (Hurka, 1982), whose SWF is the average of people s wellbeing. Average utilitarianism gives no value  to increasing numbers of people. The implicit or explicit goal of a great deal of policy making is to  promote per capita wellbeing (Hardin, 1968). This is to adopt average utilitarianism. This goal tends  to favour anti natalist policies, aimed at limiting population. It would strongly favour population  control as a means of mitigating climate change, and it would not take a collapse of population to  be, in itself, a bad thing.  The utilitarian function may alternatively be extended to  critical level utilitarianism , whose SWF is  the total of the amount by which each person s wellbeing exceeds some fixed critical level. It is  Equation 3.4.4.   V = (w1   c) + (w2   c) +   + (wJ   c)   where c is the critical level (Broome, 2004; Blackorby et al., 2005). Other things being equal, critical level utilitarianism favours adding people to the population if their wellbeing is above the critical  level.  Total utilitarianism  (Sidgwick, 1907) is critical level utilitarianism with the critical level set to zero.  Its SWF is the total of people s wellbeing. Total utilitarianism is implicit in many Integrated  Assessment Models (IAMs) of climate change (e.g., Nordhaus, 2008). Its meaning is indeterminate  until it is settled which level of lifetime wellbeing to count as zero. Many total utilitarians set the  zero at the level of a life that has no good or bad experiences   that is lived in a coma throughout,  for instance (Arrhenius, forthcoming). Since people on average lead better lives than this, total      23 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  utilitarianism with this zero tends to be less anti natalist than average utilitarianism. However, it  does not necessarily favour increasing population. Each new person damages the wellbeing of  existing people, through their emissions of GHG, their other demands on Earth s limited resources,  and the emissions of their progeny. If the damage an average person does to others in total exceeds  their own wellbeing, total utilitarianism, like average utilitarianism, favours population control as a  means of mitigating climate change.12  Each of the existing ethical theories about the value of population has intuitively unattractive  implications (Parfit, 1986). Average utilitarianism is subject to particularly severe objections.  Arrhenius (forthcoming) crystallizes the problems of population ethics in the form of impossibility  theorems. So far, no consensus has emerged about the value of population. Yet climate change  policies are expected to affect the size of the world s population, and different theories of value  imply very different conclusions about the value of these policies. This is a serious difficulty for  evaluating policies aimed at mitigating climate change, which has largely been ignored in the  literature (Broome, 2012).  3.5   Economics, rights, and duties   Sections 3.2  , 3.3  and 3.4  have outlined some of the ethical principles that can guide decision  making for climate change. The remainder of this chapter is largely concerned with the concepts and  methods of economics. They can be used to aggregate values at different times and places, and  weigh aggregate value for different policy actions. They can also be used to draw information about  value from the data provided by prices and markets. Economics can measure diverse benefits and  harms, taking account of uncertainty, to arrive at overall judgements of value. It also has much to  contribute to the choice and design of policy mechanisms, as Section 3.8  and later chapters show.  Valuations provided by economics can be used on a large scale: IAMs can be used to simulate the  evolution of the world's economy under different climate regimes and determine an economically  efficient reduction in GHG emissions. On a smaller scale, economic methods of CBA can be used in  choosing between particular policies and technologies for mitigation.  Economics is much more than a method of valuation. For example, it shows how decision making  can be decentralized through market mechanisms. This has important applications in policy  instruments for mitigation with potential for cost effectiveness and efficiency (Chapters 6 and 15).  Economic analysis can also give guidance on how policy mechanisms for international cooperation  on mitigation can be designed to overcome free rider problems (Chapters 13 and 14). However, the  methods of economics are limited in what they can do. They can be based on ethical principles, as  Section 3.6  explains. But they cannot take account of every ethical principle. They are suited to  measuring and aggregating the wellbeing of humans, but not to taking account of justice and rights  (with the exception of distributive justice   see below), or other values apart from human wellbeing.  Moreover, even in measuring and aggregating wellbeing, they depend on certain specific ethical  assumptions. This section describes the limits of economic methods.  Because of their limitations, economic valuations are often not on their own a good basis for  decision making. They frequently need to be supplemented by other ethical considerations. It may  then be appropriate to apply techniques of multi criteria analysis (MCA), discussed in Section 3.7.2.1    (Zeleny and Cochrane, 1982; Keeney and Raiffa, 1993; De Montis et al., 2005).                                                                Harford (1998) shows that an additional person causes damage from her own emissions and the emissions  of her children (and of their children, etc.). Kelly and Kolstad (2001) examine this issue in the specific context  of climate change.  12     24 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.5.1    Limits of economics in guiding decision making  Economics can measure and aggregate human wellbeing, but Sections 3.2  , 3.3  and 3.4  explain that  wellbeing may be only one of several criteria for choosing among alternative mitigation policies.  Other ethical considerations are not reflected in economic valuations, and those considerations may  be extremely important for particular decisions that have to be made. For example, some have  contended that countries that have emitted a great deal of GHG in the past owe restitution to  countries that have been harmed by their emissions. If so, this is an important consideration in  determining how much finance rich countries should provide to poorer countries to help with their  mitigation efforts. It suggests that economics alone cannot be used to determine who should bear  the burden of mitigation.  What ethical considerations can economics cover satisfactorily? Since the methods of economics are  concerned with value, they do not take account of justice and rights in general. However,  distributive justice can be accommodated within economics, because it can be understood as a  value: specifically the value of equality. The theory of fairness within economics (Fleurbaey, 2008) is  an account of distributive justice. It assumes that the level of distributive justice within a society is a  function of the wellbeings of individuals, which means it can be reflected in the aggregation of  wellbeing. In particular, it may be measured by the degree of inequality in wellbeing, using one of  the standard measures of inequality such as the Gini coefficient (Gini, 1912), as discussed in the  previous section. The Atkinson measure of inequality (Atkinson, 1970) is based on an additively  separable SWF, and is therefore particularly appropriate for representing the prioritarian theory  described in Section 3.4.6   . Furthermore, distributive justice can be reflected in weights  incorporated into economic evaluations as Section 3.6  explains.  Economics is not well suited to taking into account many other aspects of justice, including  compensatory justice. For example, a CBA might not show the drowning of a Pacific island as a big  loss, since the island has few inhabitants and relatively little economic activity. It might conclude  that more good would be done in total by allowing the island to drown: the cost of the radical action  that would be required to save the island by mitigating climate change globally would be much  greater than the benefit of saving the island. This might be the correct conclusion in terms of overall  aggregation of costs and benefits. But the island's inhabitants might have a right not to have their  homes and livelihoods destroyed as a result of the GHG emissions of richer nations far away. If that  is so, their right may override the conclusions of CBA. It may give those nations who emit GHG a duty  to protect the people who suffer from it, or at least to make restitution to them for any harms they  suffer.  Even in areas where the methods of economics can be applied in principle, they cannot be accepted  without question (Jamieson, 1992; Sagoff, 2008). Particular simplifying assumptions are always  required, as shown throughout this chapter. These assumptions are not always accurate or  appropriate, and decision makers need to keep in mind the resulting limitations of the economic  analyses. For example, climate change will shorten many people s lives. This harm may in principle  be included within a CBA, but it remains highly contentious how that should be done. Another  problem is that, because economics can provide concrete, quantitative estimates of some but not all  values, less quantifiable considerations may receive less attention than they deserve.  The extraordinary scope and scale of climate change raises particular difficulties for economic  methods (Stern, forthcoming). First, many of the common methods of valuation in economics are  best designed for marginal changes, whereas some of the impacts of climate change and efforts at  mitigation are not marginal (Howarth and Norgaard, 1992). Second, the very long time scale of  climate change makes the discount rate crucial at the same time as it makes it highly controversial  (see Section 3.6.2   ). Third, the scope of the problem means it encompasses the world's extremes of  wealth and poverty, so questions of distribution become especially important and especially difficult.  Fourth, measuring non market values such as the existence of species, natural environments, or  traditional ways of life of local societies is fraught with difficulty. Fifth, the uncertainty that      25 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  surrounds climate change is very great. It includes the likelihood of irreversible changes to societies  and to nature, and even a small chance of catastrophe. This degree of uncertainty sets special  problems for economics (Nelson, 2013).    Box 3.2 Who mitigates versus who pays? To mitigate climate change, emissions of GHG will need to be reduced to varying degrees worldwide.  Economic analysis tells us that, for the sake of cost effectiveness, the greatest reductions should be  made where they can be made most cheaply. Ideally, emissions should be reduced in each place to  just the extent that makes the marginal cost of further reductions the same everywhere. One way of  achieving this result is to have a carbon price that is uniform across the world; or it might be  approximated by a mix of policy instruments (see Section 3.8  ).  Since, for efficiency, mitigation should take place where it is cheapest, emissions of GHG should be  reduced in many developing countries, as well as in rich ones. However, it does not follow that  mitigation must be paid for by those developing countries; rich countries may pay for mitigation that  takes place in poor countries. Financial flows between countries make it possible to separate the  question of where mitigation should take place from the question of who should pay for it. Because  mitigating climate change demands very large scale action, if put in place these transfers might  become a significant factor in the international distribution of wealth. Provided appropriate financial  transfers are made, the question of where mitigation should take place is largely a matter for the  economic theory of efficiency, tempered by ethical considerations. But the distribution of wealth is a  matter of justice among countries, and a major issue in the politics of climate change (Stanton,  2011).  It is partly a matter of distributive justice, which economics can take into account, but  compensatory justice may also be involved, which is an issue for ethics (Section 3.3  ).  3.6   Aggregation of costs and benefits  3.6.1    Aggregating individual wellbeing  Policies that respond to climate change almost always have some good and some bad effects; we say  they have  benefits  and  costs . In choosing a policy, we may treat one of the available options as a  standard of comparison   for instance, the status quo. Other options will have costs and benefits  relative to this standard. Most mitigation strategies have costs in the present and yield benefits in  the future. Policy making involves assessing the values of these benefits and costs and weighing  them against each other. Chapter 6 contains an example in which different mitigation strategies  yielding different temporal allocations of climate impacts are compared. The weighing of costs and  benefits need not be a precise process. Sections 3.2  and 3.4  explain that costs and benefits may be  values of very different sorts, which cannot be precisely weighed against each other. They may also  be very uncertain.  Nevertheless, the discipline of economics has developed methods for measuring numerically values  of one particular sort: human wellbeing. In this section, we describe these methods; Section 3.5   explains their serious limitations. Economists often use money as their unit of measurement for  values, but not always. In health economics, for example, the unit of benefit for health care is often  the  quality adjusted life year  (qaly) (see Box 3.3). In economics, monetary measures of value are  used in cost effectiveness analysis (see Weimer and Vining, 2010), in estimating the social cost of  carbon (see Section 3.9.4   ), in inter temporal optimization within IAMs (e.g., Stern, 2007; Nordhaus,  2008), in CBA and elsewhere.  Generally the overall value of aggregate wellbeing needs to be measured, and not merely the  wellbeing of each individual. A numerical measure of overall wellbeing may be based on ethical  analysis, through a SWF of the sort introduced in Section 3.4  . This basis of valuation is described      26 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  here. The literature contains a putative alternative basis built on the  potential Pareto criterion , but  this is subject to severe objections (De Scitovszky, 1941; Gorman, 1955; Arrow, 1963, ch. 4; Boadway  and Bruce, 1984; Blackorby and Donaldson, 1990).  We take as our point of departure the formulation of the SWF in Equation 3.4.2, which is based on  assumptions described in Section 3.4.6. To these we now add a further assumption that times are  separable, meaning that the distribution of wellbeing can be evaluated at each time separately and  its overall value is an aggregate of these separate  snap shot  values. A theorem of Gorman s (1968)  ensures that social welfare then takes the fully additively separable form:  Equation 3.6.1.   V = 1V1 + 2V2 + . . . + TVT  where each Vt is the value of wellbeing at time t and is the total of the values of individual wellbeings  at that time. That is:  Equation 3.6.2.   Vt = v(w1t) + v(w2t) + . . . + v(wIt).  Each wit is the temporal wellbeing of person i at time t. Each t is a  discount factor , which shows  how wellbeing at time t is valued relative to wellbeing at other times.  The assumption that times are separable has some unsatisfactory consequences. First, it cannot give  value to equality between people s lives taken as a whole, but only to equality at each particular  time. Second, Equation 3.6.1 is inconsistent with average utilitarianism, or with valuing per capita  temporal wellbeing at any time, whereas per capita wellbeing is a common object of climate change  policy. Third, Equation 3.6.1 makes no distinction between discounting within a single person s life  and intergenerational discounting. Yet a case can be made for treating these two sorts of  discounting differently (Kaplow et al., 2010). Nevertheless, this assumption and the resulting  equation Equation 3.6.1 underlies the usual practice of economists when making valuations. First  they aggregate temporal wellbeing across people at each time to determine a snapshot social value  for each time. Then all these values are aggregated across times. This section and the next describe  the usual practice based on these equations.13 The second step aggregation across time is  considered in Section 3.6.1   . The rest of this section considers the first step   aggregation at time.  3.6.1.1    Monetary values  Climate policies affect the wellbeing of individuals by changing their environment and their  individual consumption. The first step in a practical economic valuation is to assign a monetary value  to the costs and benefits that come to each person at each time from the change. This value may be  either the amount of money the person is willing to pay for the change, or the amount they are  willing to accept as compensation for it. If the change is a marginal increase or decrease in the  person s consumption of a marketed commodity, it will be equal to the price of the commodity.  The effect of a change on the person s wellbeing is the monetary value of the change multiplied by  the rate at which money contributes to the person s wellbeing. This rate is the marginal benefit of  money or marginal utility of money to the person. It is generally assumed to diminish with increasing  income (Marshall, 1890; Dalton, 1920; Pigou, 1932, p. 89; Atkinson, 1970).  The effects of the change on each person s wellbeing at each time must next be aggregated across  people to determine the effect on social value. Equation 3.6.2 shows how each person s wellbeing  contributes to social value through the value function v(). The change in wellbeing must therefore be  multiplied by the marginal social value of wellbeing, which is the first derivative of this function. It is                                                                An alternative approach does not assume separability of times. First it determines a lifetime wellbeing for  each person in the way described in Section 3.4.5   . For instance, i s lifetime wellbeing might be a discounted  total of her temporal wellbeings. Then this approach aggregates across people using Equation 3.4.2. See  Fullerton and Rogers (1993), Murphy and Topel (2006) and Kaplow et al. (2010).  13     27 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  an ethical parameter. According to utilitarianism, that marginal social value is constant and the same  for everyone; according to prioritarianism, it diminishes with increasing wellbeing.  In sum, the effect of a change in social value at a particular time is calculated by aggregating the  monetary value of the change to each person, weighted by the social marginal value of money to the  person, which is the product of the marginal benefit of money to that person and the marginal social  value of their wellbeing (Fleurbaey, 2009). Since the marginal benefit of money is generally assumed  to diminish with increasing income, the marginal social value of money can be assumed to do the  same.  Many practical CBAs value costs and benefits according to aggregated monetary values without any  weighting. The implicit assumption is that the marginal social value of money is the same for each  person. The consequence of omitting weights is particularly marked when applying CBA to climate  change, where extreme differences in wealth between rich and poor countries need to be taken into  account. An example appeared in the Second Assessment Report of the IPCC (1995), where it  considered the value of human life. The report showed that the effect of ignoring weighting factors  would be to assign perhaps twenty times more value to an American life than to an Indian life. (See  also Box 3.3). Even within a single country, weighting makes a big difference. Dreze (1998) examined  the benefits of reducing pollution in Delhi and contrasts New Delhi, which is relatively rich, with  Delhi, which is relatively poorer. If the criterion is reducing pollution for the greatest number of  people, then projects in Delhi will be favoured; whereas projects in New Delhi will be favoured if the  criterion is unweighted net benefits.     Box 3.3 The value of life. Climate change may shorten many people s lives, and mitigating climate change may extend many  people s lives. Lives must therefore be included in any CBA that is concerned with climate change.  The literature contains two different approaches to valuing a person s life. One is based on the  length of time the person gains if their life is saved, adjusted according to the quality of their life  during that time (qaly), an approach widely used to value lives in health economics and public  health. For assessing the impact of climate on human health and longevity, the World Health  Organization uses the  disability adjusted life year  (daly), which is similar (Mathers et al., 2009; for  dalys see, Murray, 1994).  The other approach values the extension of a person s life on the basis of what they would be willing  to pay for it. In practice, this figure is usually derived from what the person would be willing to pay  for an increased chance of having an extended life. If, say, a person is willing to pay $100 to reduce  her chance of dying in a road accident from 2 in 10,000 to 1 in 10,000, then her willingness to pay  (WTP) for extending her life is $100 x 10,000 = $1 million. A WTP measure of the value of life is  widely used in environmental economics (e.g., U.S. Environmental Protection Agency, 2010  Appendix B); it is often known as a  value of statistical life  (Viscusi and Aldy, 2003).  The main differences between these approaches are:  1. Since WTP is measured in money, it is immediately comparable with other values measured in  money. Qalys need to be assigned a monetary value to make them comparable (Mason et al.,  2009).  2. The use of qalys implies a theoretical assumption about the value of extending a life that it is  proportional to the length of the extension, adjusted for quality whereas WTP methods  generally leave it entirely to the individual to set a value on extending their own life (Broome,  1994).  3. Each measure implies a different basis for interpersonal comparisons of value. When qalys are  aggregated across people by addition, the implicit assumption is that a year of healthy life has      28 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  the same value for each person. When WTP is aggregated across people by addition (without  distributional weights), the implicit assumption is that a dollar has the same value for each  person. Neither assumption is accurate, but for comparisons involving very rich countries and  very poor ones, the former assumption seems nearer the truth (Broome, 2012, ch. 9).  The two approaches can converge. The text explains that distributional weights should be applied to  monetary values before they are aggregated, and this is true of WTP for extending life. If appropriate  weights are applied, WTP becomes more nearly proportional to qalys. Indeed, if we adopt the  assumption that a qaly has the same value for each person, we may use it to give us a basis for  calculating distributional weights to apply to money values (Somanathan, 2006). For example,  suppose WTP for a 30 year extension to healthy life in the United States is USD 5 million, and in India  it is USD 250,000; then, on this assumption, USD 1 to an Indian has the same social value as USD 20  to an American.  Another example of a monetary measure of value that does not incorporate distributional weights is  Gross Domestic Product (GDP). To evaluate changes by their effect on GDP is, once again, to assume  that the value of a dollar to a rich person is the same as its value to a poor person (Schneider et al.,  2000).  It is sometimes assumed that CBA is conducted against the background of efficient markets and an  optimal redistributive taxation system, so that the distribution of income can be taken as ideal from  society s point of view. If that were true, it might reduce the need for distributional weights. But this  is not an acceptable assumption for most projects aimed at climate change. Credit and risk sharing  markets are imperfect at the world level, global coordination is limited by agency problems,  information is asymmetric, and no supra national tax authority can reduce worldwide inequalities.  Furthermore, intergenerational transfers are difficult. In any case, the power of taxation to  redistribute income is limited because redistributive taxes create inefficiency (Mirrlees, 1971). Even  optimal taxation would therefore not remove the need for distributional weights. Thus, the  assumption that incomes are (second best) optimally redistributed does not neutralize the argument  for welfare weights in aggregating costs and benefits.  The need for weights makes valuation more complicated in practice. The data available for costs and  benefits is generally aggregated across people, rather than separated for particular individuals. This  means that weights cannot be applied directly to individuals  costs and benefits, as they ideally  should be. This difficulty can be overcome by applying suitably calculated weights to the prices of  commodities, calculated on the basis of income distribution of each commodity s consumers.14    Box 3.4 Optimality versus Pareto improvement in climate change The assessment of a change normally requires benefits to be weighed against costs. An exception is  a change   known as a  Pareto improvement    that benefits some people without harming anyone.  Climate change provides one possible example. GHG is an externality: a person whose activities emit  GHG does not bear the full cost of their activities; some of the costs are borne by those who are  harmed by the emissions. Consequently, climate change causes Pareto inefficiency, which means  that a Pareto improvement would in principle be possible. Indeed it would be possible to remove the  inefficiency in a way that requires no sacrifice by anyone in any generation, compared to business as usual (BAU). To achieve this result, the present generation must reallocate investment towards  projects that reduce emissions of GHG, while maintaining its own consumption. Because it maintains  its own consumption, the present generation makes no sacrifice. Because it reduces its conventional                                                                The method is presented in Dreze and Stern (1989, pp. 909 989). Applications of distributional weights to  climate change appear in Azar and Sterner (1996); and Fankhauser et al. (1997).  14     29 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  investment, this generation bequeaths less conventional capital to future generations. Other things  being equal, this reallocation would make future generations less well off, but the reduction in  emissions will more than compensate them for that loss (Stern, forthcoming; Foley, 2009; Rezai et  al., 2011).  It is commonly assumed that climate change calls for sacrifices by the present generation for the  sake of future generations. Figure 3.2 illustrates why. The possibility frontier shows what  combinations of consumption are possible for present and future generations. Because of the  externality, Business as usual lies below this frontier. The frontier can be reached by a Pareto  improvement. Contours of two different SWFs are shown: one SWF places more value than the  other on future consumption relative to present consumption. The two contours reflect in a purely  illustrative way SWFs that are implicit in Stern (2007) and Nordhaus (2008) respectively. The point  where a contour touches the possibility frontier is the social optimum according to that function.  Neither optimum is a Pareto improvement on business as usual. Although the inefficiency could be  removed without any sacrifices, the best outcomes described by both Stern and Nordhaus do  require a sacrifice by the present generation.  From an international rather than an intergenerational perspective, it is also true on the same  grounds that the inefficiency of climate change can be removed without any nation making a  sacrifice (Posner and Weisbach, 2010). But it does not follow that this would be the best outcome.   Figure 3.2. Illustrating optimality versus Pareto improvement in climate change.  3.6.2    Aggregating costs and benefits across time  In climate change decisions, aggregating the pros and cons of alternative actions is particularly  difficult because most benefits of mitigation will materialize only in the distant future. On the other  hand, the costs of mitigation are borne today. Using a discount rate can therefore make a big  difference in evaluating long term projects or investments for climate change mitigation. For  example, a benefit of $1 million occurring in 100 years has a present value of $369,000 if the  discount rate is 1%, $52,000 if it is 3%, and $ 1,152 if it is 7%. An important debate in economics  since AR4, spawned in part by the Stern (2007) Review, has centred on the discount rate that should  be applied in evaluating climate change impacts and mitigation costs (Nordhaus, 2007; Stern, 2008;  Dasgupta, 2008; Smith, 2010; see also Quiggin, 2008).      30 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  A descriptive approach to discounting examines how human beings trade off the present against  their own futures. It focuses on how individuals and markets make inter temporal financial  decisions, as revealed by the market interest rate. A simple arbitrage argument favours using the  interest rate as the discount rate for climate policy decisions: if one reallocates capital from a safe  but marginal project (whose return must be equal to the interest rate) to a safe project with the  same maturity whose return is smaller than the interest rate, the net impact is null for the current  generation, and is negative for future generations. Thus, when projects are financed by a  reallocation of capital rather than an increase in aggregate saving (reducing consumption), the  discount rate should be equal to the shadow cost of capital.   Table 3.1 documents real returns on different classes of assets in western countries, including  government bonds, which are usually considered to be the safest, most risk free assets. As can be  seen, these rates are close to zero.   Table 3.1: Real returns of financial assets. Source: Updated data from (Dimson, 2002), in Gollier (2012). Government Bills Government Bonds Equity (maturity <1 year) (maturity =10 years) Australia France Japan United Kingdom USA 1900-2006 1971-2006 1900-2006 1971-2006 0.6% 2.5% 1.3% 2.8% -2.9% 1.2% -0.3% 6.6% -2.0% 0.4% -1.3% 3.9% 1.0% 1.9% 1.3% 3.9% 1.0% 1.3% 1.9% 4.0% 1900-2006 7.8% 3.7% 4.5% 5.6% 6.6% 1971-2006 6.3% 7.8% 5.0% 7.1% 6.6% The same arbitrage argument could be used to discount risky projects. In that case, the discount rate  should be equal to the expected rate of return of traded assets with the same risk profile. For  example, if the project has the same risk profile as a diversified portfolio of equity, one should use  the expected rate of return of equity, as documented in   Table 3.1. It contains a relatively large equity premium.  This descriptive approach to the discount rate has many drawbacks. First, we should not expect  markets to aggregate preferences efficiently when some agents are not able to trade, as is the case  for future generations (Diamond, 1977). Second, current interest rates are driven by the potentially  impatient attitude of current consumers towards transferring their own consumption to the future.  But climate change is about transferring consumption across different people and generations, so  that determining the appropriate social discount rate is mostly a normative problem. Thirdly, we do  not observe safe assets with maturities similar to those of climate impacts, so the arbitrage  argument cannot be applied.  We now examine the problem of a social policy maker who must make climate policy choices using a  SWF discussed earlier. In aggregating damages and costs over time, in order to make things  comparable across long periods we value consumption changes in the future by equivalent changes  in consumption today. These changes in the structure of consumption should be evaluated in  monetary terms using values described in Section 3.6.1.1   . The incorporation of the  intergenerational equity objective has challenged the traditional CBA approach for the evaluation of  climate change policies. Practitioners of CBA and evaluators are expected to use discount rates that  are consistent with the pre specified SWF that represents the society s intergenerational values, as  in AR2 (1995). We simplify the model used in Section 3.6.1.1    by assuming only one generation per  period and only one consumer good. In an uncertain context, an action is socially desirable if it raises  the SWF given by Equation 3.6.1:  Equation 3.6.3.   V ,      31 of 128       Final Draft    Chapter 3  IPCC WGIII AR5   is the contribution to the SWF of generation t consuming  . Because    where  is uncertain, one should take the expectation   of this uncertain contribution. The concavity of  function u combines prioritarism (inequality aversion) and risk aversion. Parameter  measures our  collective pure preference for the present, so that the discount factor   decreases  exponentially.  is an ethical parameter that is not related to the level of impatience shown by  individuals in weighting their own future wellbeing (Frederick et al., 2002). Many authors have  argued for a rate of zero or near zero (Ramsey, 1928; Pigou, 1932; Harrod, 1949; Parfit, 1986;  Cowen, 1992; Schelling, 1995; Broome, 2004; Stern, 2008). Assuming >0 would penalize future  generations just because they are born later. Many regard such  datism  to be as ethically  unacceptable as sexism or racism. Cowen (1992) points out that discounting violates the Pareto  principle for a person who might live either at one time or at a later time. Some have argued for a  positive rate (Dasgupta and Heal, 1980; Arrow, 1999). A traditional argument against a zero rate is  that it places an extremely heavy moral burden on the current generation (see, e.g., Dasgupta,  2007). But even when  , as we see below, we still end up with a discount rate of about 4%, which  is higher than it was during the last century. Stern (2008) used  =0.1% to account for risk of  extinction. We conclude that a broad consensus is for a zero or near zero pure rate of time  preference for the present.  In a growing economy ( , investing for the future in a safe project has the undesirable effect  of transferring consumption from the poor (current generations) to the wealthy (future  generations). Thus, investing in safe projects raises intergenerational inequalities. The discount rate  can then be interpreted as the minimum rate of return that is necessary to compensate for this  adverse effect on the SWF of investing for the future. This is summarized by the Ramsey rule (i.e.,  the consumption approach to discounting) (Ramsey, 1928). Assuming a standard constant elasticity  in the consumption utility function (e.g., u(c)=c1 /(1 )), and no uncertainty,15 the minimum rate of  return  t of a project that marginally transfers consumption from 0 to t and that guarantees an  increase of intergenerational welfare V is defined as follows:   Equation 3.6.4.   t =  +  gt where  represents the pure rate at which society discounts the utility of future generations, and gt  is the annualized growth rate of monetized consumption anticipated at date t, and  >0 measures  inequality aversion. The greater the anticipated economic growth rate gt, the higher the social  discount rate  t. The growth rate gt is an empirical variable that represents our collective beliefs  about prospective economic growth. In Box 3.5, we discuss plausible values for the inequality  aversion parameter  .                                                               15  For alternative assumptions, see Gollier (2002) .      32 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Box 3.5 Plausible values for collective inequality aversion ( ) Consider the following thought experiment. A country has two equally populated social groups. The  wealthy group consumes twice as many goods and services as the poor group. Consider also an  economic policy whose aim is to increase consumption by 1 unit for every person in the poor group.  This implies a reduction of consumption for every wealthy person by x units, which may not be equal  to 1 owing to inherent inefficiencies in the tax system. If one is neutral about inequalities, one would  not accept this policy if x is larger than 1. Inequality aversion justifies accepting some productive  inefficiency, so that an x larger than 1 may be allowed. What is the maximum value of x that one  would accept to implement the policy? Answering this question tells us something about inequality  aversion, with a large x being associated with a larger  . If one is collectively ready to sacrifice as  much as x=2 units of consumption from the rich to provide one unit of consumption to the poor, this  is compatible with an inequality aversion index  =1. An x of 4 or 8 would correspond to an index of  inequality aversion of 2 and 3, respectively.  Behind the veil of ignorance (Rawls, 1971), our collective preferences towards inequality should be  identified as our individual risk aversion. The economic literature in finance and macroeconomics usually assumes a   between 1 and 5 to explain observed behaviours towards risk, as well as asset  prices (Kocherlakota, 1996). By using a near zero time discount rate, Stern (2007, see also 2008) advanced the debate in the  literature. Despite disagreement on the empirical approach to estimating the discount rate, the  literature suggests consensus for using declining discount rates over time. Different prominent  authors and committees have taken different positions on the values of ,   and g, making different  recommendations for the social discount rate  . We summarize them in Table 3.2.  Table 3.2. Calibration of the discount rate based on the Ramsey rule (Equation 3.6.4.) Author Cline (1992) IPCC (1996) Arrow (1999) UK: Green Book (HM Treasury, 2003) US UMB (2003)** France: Rapport Lebegue (2005) Stern (2007) Arrow (2007) Dasgupta (2007) Weitzman (2007a) Nordhaus (2008) Rate of pure preference for present 0% 0% 0% 1.5% 0% 0.1% 0.1% 2% 1% Inequality aversion 1.5 1.5-2 2 1 2 1 2-3 2-4 2 2 Anticipated Growth rate 1% 1.6% - 8% 2% 2% 2% 1.3% 2% 2% Implied social discount rate 1.5% 2.4% - 16% 4% 3.5%* 3% - 7% 4%* 1.4% 6% 5% *Decreasing with the time horizon. **OMB uses a descriptive approach.  In Table 3.2, the Ramsey formula can be seen to yield a wide range of discount rates, although most  or all of the estimates reflect developed country experience. From this table and Box 3.5, a relative  consensus emerges in favour of =0 and   between 1 and 3, although they are prescriptive  parameters. This means that the normative Ramsey rule leads to a recommendation for a social  discount rate of between one and three times the estimated growth rate in consumption between  today and the relevant safe benefit or cost to be discounted. The social discount rate is normative  because it relies on the intensity of our collective inequality aversion. However, the practical  coherence of our ethical principles requires that if one has high inequality aversion, one should also  redistribute wealth more assiduously from the currently rich to the currently poor. Furthermore, it is  ultimately a judgement by the policymaker on the appropriate value of the parameters of the  Ramsey rule, and thus the social discount rate.      33 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  The discount rate described here should be used to discount risk free costs and benefits (Anthoff et  al., 2009). The rates that appear in Table 3.2 are higher than real interest rates observed on financial  markets, as documented in   Table 3.1. This discrepancy defines the risk free rate puzzle (Weil, 1989). The recent literature on  discounting has tried to solve this puzzle by taking into account the uncertainty surrounding  economic growth. Prudent agents should care more about the future if the future is more uncertain,  in line with the concept of sustainable development. Assuming a random walk for the growth rate of  consumption per capita, this argument applied to Equation 3.6.4 leads to an extended Ramsey rule  in which a negative precautionary effect is added:  Equation 3.6.5.   t =  +  gt   0.5  ( +1)t2  where t is the annualized volatility of the growth rate of GDP/cap, and gt is now the expected  annualized growth rate until time horizon t. In Table 3.3, we calibrate this formula for different  countries by using the estimation of the trend and volatility parameters of observed growth rates of  consumption per capita over the period 1969 2010, using  =2. We learn from this Table that the  Ramsey rule (Equation 3.4.1) often provides a good approximation of the social discount rate to be  applied to consumption. It also shows that because of differences in growth expectations, nations  may have different attitudes towards reducing present consumption for the benefit of future  generations. This is also a further source of international disagreement on the strength of GHG  mitigation efforts. The global discount rate for evaluating global actions will therefore depend on  how costs and benefits are allocated across countries.16  Table 3.3. Country-specific discount rate computed from the Ramsey rule (Equation 3.6.5) using the historical mean g and standard deviation of growth rates of real GDP/cap 1969-2010, together with 0, and 2. (Source: Gollier, 2012)  Discount rate Ramsey rule Equation Extended Ramsey rule 3.6.4 Equation 3.6.5 3.48% 3.72% 4.68% 15.20% 6.68% 3.08% 2.58% -5.52% -1.38% -0.52% 3.35% 3.58% 4.48% 14.83% 6.40% 2.14% -0.20% -6.37% -1.86% -1.79% Country United States OECD countries United Kingdom Japan China Economies in India transition Russia Gabon Africa Zaire (RDC) Zambia Zimbabwe g 1.74% 1.86% 2.34% 7.60% 3.34% 1.54% 1.29% -2.76% -0.69% -0.26% 2.11% 2.18% 2.61% 3.53% 3.03% 5.59% 9.63% 5.31% 4.01% 6.50% A prudent society should favour actions that generate more benefits for the generations that face  greater uncertainty, which justifies a decreasing term structure for risk free discount rates (Gollier,                                                                Table 3.3 is based on the assumption that the growth process is a random walk, so that the average growth  rate converges to its mean in the very long run. It would be more realistic to recognize that economic growth  has a much more uncertain nature in the long run: shocks on growth rates are often persistent, economies  faces long term cycles of uncertain length, and some parameters of the growth process are uncertain. Because  these phenomena generate a positive correlation in future annual growth rates, they tend to magnify the  uncertainty affecting the wellbeing of distant generations, compared to the random walk hypothesis of the  extended Ramsey rule (Equation 3.6.5).  16     34 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  2012; Arrow et al., 2013; Weitzman, 2013). These results are related to the literature on Gamma  discounting (Weitzman, 1998, 2001, 2010b; Newell and Pizer, 2003; Gollier and Weitzman, 2010). A  simple guideline emerging from this literature is that the long maturity discount rate is equal to the  smallest discount rate computed from Equation 3.6.5 with the different plausible levels of its  parameters. For example, assuming  =2, if the trend of growth gt is unknown but somewhere  between 1% and 3%, a discount rate around 2 x mean (1%, 3%)=4% is socially desirable in the short  term, although a discount rate of only 2 x min (1%, 3%) =2% is desirable for very long maturities.  Assuming a constant rate of pure preference for the present (actually =0), these recommendations  yield a perfectly time consistent valuation strategy, although the resulting discount rates decrease  with maturity. A time inconsistency problem arises only if we assume that the rate of pure  preference for the present varies according to the time horizon. Economists have tended to focus on  hyperbolic discounting and time inconsistency (Laibson, 1997) and the separation between risk  aversion and consumption aversion fluctuations over time (Epstein and Zin, 1991). See Section  3.10.1   and Chapter 2.  The literature deals mainly with the rate at which safe projects should be discounted. In most cases,  however, actions with long lasting impacts are highly uncertain, something that must be taken into  account in their evaluation. Actions that reduce the aggregated risk borne by individuals should be  rewarded and those that increase risk should be penalized. This has traditionally been done by  raising the discount rate of a project by a risk premium =g that is equal to the project specific risk  measure  times a global risk premium g. The project specific beta is defined as the expected  increase in the benefit of the project when the consumption per capita increases by 1%. It measures  the additional risk that the action imposes on the community. On average, it should be around 1. As  we see from Table 3.3, the risk premium as measured by the difference between the rate of return  on bonds and the rate of return on equity is between 3% and 6%. A more normative approach  described by the consumption based capital asset pricing model (Cochrane, 2001) would lead to a   if calibrated on the volatility of growth in western  much smaller risk premium equalling  economies.17 However, Barro (2006, 2009) and Martin (2013) recently showed that the introduction  of rare catastrophic events similar to those observed in some developing countries during the last  century can justify using a low safe discount rate of around 1% and a large aggregate risk premium  of around 4% at the same time. The true discount rate to be used in the context of climate change  will then rely heavily on the climate beta. So far, almost no research has been conducted on the  value of the climate beta, that is, the statistical relationship between the level of climate damage  and the level of consumption per capita in the future. The exception is Sandsmark and Vennemo  (2006), who suggest that it is almost zero. But existing Integrated Assessment Models (IAMs) show  that more climate damage is incurred in scenarios with higher economic growth, suggesting that  combating climate change does not provide a hedge against the global risk borne by future  generations. Nordhaus (2011b) assumes that the actual damages borne by future generations are  increasing, so that the climate beta is positive, and the discount rate for climate change should be  larger than just applying the extended Ramsey rule.  Several authors (Malinvaud, 1953; Guesnerie, 2004; Weikard and Zhu, 2005; Hoel and Sterner, 2007;  Sterner and Persson, 2008; Gollier, 2010; Traeger, 2011; Guéant et al., 2012) emphasize the need to  take into account the evolution of relative prices in CBAs involving the distant future. In a growing  economy, non reproducible goods like environmental assets will become relatively scarcer in the  future, thereby implying an increasing social value.                                                                With a volatility in the growth rate of consumption per capita around  4% (see Table 3.3), and a degree  0.32%.  of inequality aversion of , 2, we obtain a risk premium of only  17     35 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.6.3    Co benefits and adverse side effects  This section defines the concept of co benefits and provides a general framework for analysis in  other chapters (a negative co benefit is labelled an  adverse side effect ). A good example of a co benefit in the literature is the reduction of local pollutants resulting from a carbon policy that  reduces the use of fossil fuels and fossil fuel related local pollutants (see Sections 5.7 and 6.6.2.1). It  is also important to distinguish between co benefits and the societal welfare consequences of  generated co benefits. To use the same example, if local pollutants are already heavily regulated,  then the net welfare benefits of further reductions in local pollutants may be small or even negative.  3.6.3.1    A general framework for evaluation of co benefits and adverse side effects  As a simple example, suppose social welfare   is a function of different goods or objectives    ( 1, , ), and that each of those objectives might be influenced by some policy instrument,  .18  The policy may have an impact on several objectives at the same time. Now consider a marginal  change   in the policy. The welfare effect is given by:  Equation 3.6.6.     > 0 is additional GHG abatement (tightening the cap on CO2 emissions).  For example, suppose  Then the  direct  benefits of that climate policy might include effects on climate objectives, such as  mean global temperature  , sea level rise  , agricultural productivity  , biodiversity  ,  and health effects of global warming  . The  co benefits  of that climate policy might include  changes in a set of objectives such as SO2 emissions  , energy security  , labour supply and  employment  , the distribution of income  , the degree of urban sprawl  , and the  sustainability of the growth of developing countries  . See Table 15.1 for an overview of  objectives discussed in the sector chapters in the context of co benefits and adverse side effects.  The few studies that attempt a full evaluation of the global welfare effects of mitigation co benefits  focus only on a few objectives because of methodological challenges (as assessed in Section 6.6). For  discussion of income distribution objectives, see the  social welfare functions  in Section 3.4.6   .  Because this problem inherently involves multiple objectives, it can be analysed using Multi Criteria  Analysis (MCA) that  requires policymakers to state explicit reasons for choosing policies, with  reference to the multiple objectives that each policy seeks to achieve  (Dubash et al., 2013, p. 47).  See also Section 3.7.2.1, Section 6.6 and (McCollum et al., 2012).  Even external effects on public health could turn out to be either direct benefits of climate policy or  co benefits. The social cost of carbon includes the increased future incidence of heat stroke, heart  attacks, malaria, and other warm climate diseases. Any reduction in such health related costs of  climate change is therefore a direct benefit of climate policy. The definition of a co benefit is limited  to the effect of reductions in health effects caused by non climate impacts of mitigation efforts.  Use of the terminology should be clear and consistent. CBAs need to include all gains and losses  from the climate policy being analysed as shown in Equation 3.6.6 the sum of welfare effects  from direct benefits net of costs, plus the welfare effects of co benefits and adverse side effects.  / , leaving aside  Here, the co benefit is defined as the effect on a non climate objective  social welfare (not multiplied by  / ). In contrast, the  value  of the co benefit is the effect on  social welfare  / , which could be evaluated by economists using valuation methods discussed  elsewhere in this chapter.19 It may require use of a  second best  analysis that accounts for multiple                                                                This V is a loose interpretation of a social welfare function, such as defined in Equation 3.6.2, insofar as  welfare is not usually represented a function of policy objectives or aggregate quantities of goods.  19 18  We distinguish here between the welfare effect of the co benefit ( ).  / ) and the welfare effect of the  policy operating through a particular co benefit (     36 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  /  may  market distortions (Lipsey and Lancaster, 1956). This is not a minor issue. In particular,  be positive or negative.  The full evaluation of   in the equation above involves four steps: first, identify the various  multiple objectives   ( 1, ,  (see, e.g., Table 4.8.1 for a particular climate policy such as a CO2  emissions cap); second, identify all significant effects on all those objectives (direct effects and co effects  , for  1, , ) (see Chapters 7 12); third, evaluate each effect on social welfare   by  / ); and fourth, aggregate them as in Equation 3.6.6. Of course,  (multiply each  / computing social welfare also has normative dimensions (see Section 3.4.6   ).  3.6.3.2    The valuation of co benefits and adverse side effects  The list of goods or objectives   ( 1, , ) could include any commodity, but some formulations  allow the omission of goods sold in markets with no market failure or distortion, where the social  marginal benefit (all to the consumer) is equal to the social marginal cost (all on the producer). With  no distortion in a market for good i, a small change in quantity has no net effect on welfare  ( / 0). The effect on welfare is not zero, however, if climate policy affects the quantity of a  good sold in a market with a  market failure , such as non competitive market power, an externality,  or any pre existing tax. In general, either monopoly power or a tax would raise the price paid by  consumers relative to the marginal cost faced by producers. In such cases, any increase in the  commodity would have a social marginal benefit higher than social marginal cost (a net gain in  welfare).  We now describe a set of studies that have evaluated some co benefits and adverse side effects  (many more studies are reviewed in Sections 5.7, 7.9, 8.7, 9.7, 10.8, 11.7, 12.8 and synthesized in  Section 6.6). First, oligopolies may exert market power and raise prices above marginal cost in large  industries such as natural resource extraction, iron and steel, or cement. And climate policy may  affect that market power. Ryan (2012) finds that a prominent environmental policy in the United  States actually increased the market power of incumbent cement manufactures, because it  decreased competition from potential entrants that faced higher sunk costs. That is, it created  barriers to entry. That effect led to a significant loss in consumer surplus that was not incorporated  in the policy s initial benefit cost analysis.  Second, Ren et al. (2011) point out that a climate policy to reduce CO2 emissions may increase the  use of biofuels, but that  corn based ethanol production discharges nitrogen into the water  environment   [which]   can cause respiratory problems in infants and exacerbate algae growth  and hypoxia in water bodies  (p. 498). In other words, a change in climate policy ( ) affects the  use of nitrogen fertilizer and its runoff  / . The effect is an  adverse side effect.  If nitrogen  runoff regulation is less than optimal, the effect on social welfare is negative ( / <0).  Third, arguably the most studied co benefits of climate policy are the effects on local air pollutant  emissions, air quality, and health effects of ground level ozone (see Section 6.6 for a synthesis of  findings from scenario literature and sector specific measures). Burtraw et al. (2003) conclude that a  USD 25 per tonne carbon tax in the United States would reduce NOX emissions and thereby provide  health improvements. Further, the researchers valued these health co benefits at USD1997 8 (USD2010  10,50) per tonne of carbon reduction in the year 2010. More recently, Groosman et al. (2011) model  a specific U.S. climate policy proposal (Warner Lieberman (S.2191)). They calculate effects on health  from changes in local flow pollutants (a co benefit). These health co benefits mainly come from  reductions in particulates and ozone, attributable to reductions in use of coal fired power plants  (Burtraw et al., 2003; Groosman et al., 2011).20 The authors also value that co benefit at USD2006 103                                                                Both of the cited studies estimate the dollar value of health improvements, but these are  gross  benefits  that may or may not correctly account for the offsetting effects of existing controls on these local pollution  emissions, which is necessary to determine the net welfare effects.  20     37 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  billion to USD2006 1.2 trillion (USD2010 111 billion to USD2010 1,3 billion) for the years 2010 2030. That  total amount corresponds to USD 1 to USD 77 per tonne of CO2 (depending on model assumptions  and year; see Section 5.7 for a review of a broader set of studies with higher values particularly for  developing countries).  Researchers have calculated climate policy co benefits in many other countries; for instance,  Sweden (Riekkola et al., 2011), China (Aunan et al., 2004), and Chile (Dessus and O Connor, 2003).  ) while  A complete analysis of climate policy would measure all such direct or side effects ( / recognizing that other markets may be functioning properly or be partially regulated (for optimal  regulation,  /  = 0). If the externality from SO2 is already partly corrected by a tax or permit  price that is less than the marginal environmental damage (MED) of SO2, for example, then the  welfare gain from a small reduction in SO2 may be less than its MED. Or, if the price per tonne of SO2  is equal to its MED, and climate policy causes a small reduction in SO2, then the social value of that  co benefit is zero.21 Similarly, if the labour market is functioning properly with no involuntary  unemployment, then climate policy may have direct costs from use of that labour but no welfare  gain from changes in employment. In other words, in measuring the welfare effects of co benefits, it  is not generally appropriate simply to use the gross marginal value associated with a co benefit.  In the context of externalities and taxes, this point can be formalized by the following extension of  Fullerton and Metcalf (2001):  Equation 3.6.7.   dV   On the right side of the equation,   is the MED from the   commodity; and   is its tax rate (or  permit price, or the effect of a mandate that makes an input such as emissions more costly). The  effect of each good on welfare ( /  in Equation 3.6.6 above) is reduced in this model to just  . The intuition is simple:   is the buyer s social marginal benefit minus the seller s cost; the  externality   is the social marginal cost minus the seller s cost. Therefore,   is the social  marginal benefit minus social marginal cost. It is the net effect on welfare from a change in that  commodity. If every externality   is corrected by a tax rate or price exactly equal to  , then the  outcome is  first best . In that case, dV in Equation 3.6.7 is equal to zero, which means welfare  cannot be improved by any change in any policy. If any   is not equal to  , however, then the  outcome is not optimal, and a  second best  policy might improve welfare if it has any direct or  indirect effect on the amount of that good.  Although the model underlying Equation 3.6.7 is static and climate change is inherently dynamic, the  concepts represented in the static model can be used to understand the application to climate.  Climate policy reduces carbon emissions, but Equation 3.6.7 shows that this  direct  effect does not  add to social welfare unless the damage per tonne of carbon ( ) exceeds the tax on carbon ( ).  The social cost of carbon is discussed in Section 3.9.4   . To see a co benefit in this equation, suppose   is the quantity of SO2 emissions,   is the tax per tonne, and   is the MED of additional SO2. If the  tax on SO2 is too small to correct for the externality ( 0), then the market provides  too  much  of it, and any policy such as a carbon tax that reduces the amount of SO2 ( / 0)  would increase economic welfare. The equation sums over all such effects in all markets for all other  inputs, outputs, and pollutants.  If those local pollution externalities are already completely corrected by a tax or other policy  ( ), however, then a reduction in SO2 adds nothing to welfare. The existing policy raises the  firm s cost of SO2 emissions by exactly the MED. That firm s consumers reap the full social marginal  benefit per tonne of SO2 through consumption of the output, but those consumers also pay the full                                                                This  marginal  analysis contemplates a small change in either CO2 or SO2. If either of those changes is large,  however, then the analysis is somewhat different.  21     38 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  social marginal cost per tonne of SO2. In that case, one additional tonne of SO2 has social costs  exactly equal to social benefits, so any small increase or decrease in SO2 emissions caused by climate  policy provides no net social gain. In fact, if  , then those emissions are already over corrected, and any decrease in SO2 would reduce welfare.  3.6.3.3    The double dividend hypothesis  Another good example of a co benefit arises from the interaction between carbon policies and other  policies (Parry, 1997; Parry and Williams, 1999). Though enacted to reduce GHG emissions, a climate  policy may also raise product prices and thus interact with other taxes that also raise product prices.  Since the excess burden of taxation rises more than proportionately with the size of the overall  effective marginal tax rate, the carbon policy s addition to excess burden may be much larger if it is  added into a system with high taxes on output or inputs.  This logic has given rise to the  double dividend hypothesis  that an emissions tax can both improve  the environment and provide revenue to reduce other distorting taxes and thus improve efficiency  of the tax system (e.g., Oates and Schwab, 1988; Pearce, 1991; Parry, 1995; Stern, 2009).22 Parry  (1997) and Goulder et al. (1997) conclude that the implementation of a carbon tax or emissions  trading can increase the deadweight loss of pre existing labour tax distortions (the  tax interaction  effect ), but revenue can be used to offset distortionary taxes (the  revenue recycling effect ). Parry  and Williams (1999) investigate the impacts of existing tax distortions in the labour market for eight  climate policy instruments (including energy taxes and performance standards) for the United States  in 1995. They conclude that pre existing tax distortions raise the costs of all abatement policies, so  the co benefits of carbon taxes or emissions trading depend on whether generated revenues can be  directed to reduce other distortionary taxes. A lesson is that forgoing revenue raising opportunities  from a GHG regulation can significantly increase inefficiencies. The European Union is auctioning an  increasing share of permits with revenue going to Member States (see 14.4.2). Australia is using a  large share of carbon pricing revenue to reduce income tax (Jotzo, 2012).  To put this discussion into the context of co benefits, note that Fullerton and Metcalf (2001) use  their version of Equation 3.6.7 to consider labour ( ), taxed at a pre existing rate   (with marginal  external damages of zero, so  0). Suppose the only other distortion is from carbon emissions  ( ), with MED of  . Thus the economy has  too little  labour supply, and  too much  pollution. The  combination  policy change  is a small carbon tax with revenue used to cut the tax rate  . Other  taxes and damages are zero ( 0) for all goods other than   and  . Thus, Equation 3.6.7  above simplifies further, to show that the two key outcomes are just the net effect on pollution  ( ) and the net effect on labour ( ):  Equation 3.6.8.   dV   0) has a direct benefit of  Therefore, an increase in the carbon tax that reduces emissions ( increased economic welfare through the second term, but only to the extent that emissions  damages exceed the tax rate ( ). If the labour tax cut increases labour supply, then the first  term also increases welfare (a double dividend). But the carbon tax also raises the cost of production  and the equilibrium output price, which itself reduces the real net wage (the tax interaction effect).  If that effect dominates the reduction in the labour tax rate (from the revenue recycling effect), then  labour supply may fall ( 0). In that case, the first term has a negative effect on wellbeing. In  other words, the double dividend is possible under some circumstances and not others. If the                                                                The literature contains two versions of the double dividend hypothesis. A  strong  version says that  efficiency gains from diminishing distortionary taxes can more than compensate the costs of pollution taxes.  Another  weak  version says that those gains compensate only part of the costs of pollution taxes (Goulder,  1995).  22     39 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  revenue is not used to cut the labour tax rate, then the real net wage does fall, and the labour supply  may fall.   3.7   Assessing methods of policy choice  Specific climate policies are discussed in Section 3.8; in this section, we discuss methods for  evaluating the relative merits of different policies. See also Alkin (2004), Pawson and Tilley (1997),  Bardach (2005), Majchrzak (1984), Scriven (1991) Rossi et al. (2005), and Chen (1990). The design  and choice of a specific climate policy instrument (or mix of instruments) depends on many  economic, social, cultural, ethical, institutional, and political contexts. Different methods for ex ante  and ex post analysis are available and different types of analytical approaches may be used in  tandem to provide perspectives to policymakers.  3.7.1    Policy objectives and evaluation criteria  In addition to reducing GHG emissions, climate policy may have other objectives. Following AR4  (Gupta et al., 2007), these objectives are organized below in four broad categories: economic,  distributional/fairness, environmental, and institutional/political feasibility.23 The relative  importance of these policy objectives differs among countries, especially between developed and  developing countries.  In this section we discuss elements of these four categories and expand on recent policy evaluation  studies (e.g., Opschoor and Turner, 1994; Ostrom, 1999; Faure and Skogh, 2003; Sterner, 2003;  Mickwitz, 2003; Blok, 2007), leaving details of applications and evidence to Chapters 8 11 and 13 15.  The basic economic framework for policy analysis is depicted in Figure 3.3 (adapted from Fullerton  (2011)). This diagram illustrates both the impacts of policies and the criteria for evaluating them in  the context of the production of a polluting good (i.e., emissions associated with producing a good).  The focus is stylized, but we note that many  non economic  values can still be incorporated, to the  extent that values can be placed on other considerations, such as effects on nature, culture,  biodiversity and  dignity  (see Sections 3.4.1   and 3.4.2   ).  As shown in Figure 3.3, the quantity of GHG emissions from producing a good, such as electricity, is  shown on the horizontal axis, and the price or cost per unit of that good is shown on the vertical axis.  The demand for the emissions is derived from the demand for electricity, as shown by the curve  called Private Marginal Benefit (PMB). The private market supply curve is the Private Marginal Cost  (PMC) of production, and so the unfettered equilibrium quantity would be Q0 at equilibrium price P0.  This polluting activity generates external costs, however, and so each unit of output has a Social  Marginal Cost (SMC) measured by the vertical sum of PMC plus Marginal External Cost (MEC). With  no externalities on the demand side, PMB=SMB.                                                                Political factors have often been more important than economic factors in explaining instrument choice  (Hepburn, 2006). Redistribution to low income households is an important feature in Australia s emissions  pricing policy (Jotzo and Hatfield Dodds, 2011).  23     40 of 128       Final Draft    Chapter 3  IPCC WGIII AR5    Figure 3.3. A partial equilibrium model of the costs and benefits of a market output, assuming perfect competition, perfect information, perfect mobility, full employment, and many identical consumers (so all individuals equally benefit from production and they equally bear the external cost of pollution).  Under the stated simplifying assumptions, the social optimum is where SMC=PMB, at Q . The first  point here, then, is that the optimal quantity can be achieved by several different policies under  these simple conditions. A simple regulatory quota could restrict output from Q0 to Q , or a fixed  number of tradeable permits could restrict pollution to the quantity Q . In that case, Pn is the  equilibrium price net of permit cost (the price received by the firm), while Pg is the price gross of  permit cost (paid by the consumer). The permit price is the difference, Pg   Pn. Alternatively, a tax of  (Pg   Pn) per unit of pollution would raise the firm s cost to SMC and result in equilibrium quantity Q .  The diagram in Figure 3.3 will be used below to show how the equivalence of these instruments  breaks down under more general circumstances, as well as gains and losses to various groups. In  other words, we use this diagram to discuss economic as well as distributional, other environmental  and cultural objectives, and institutional/political feasibility.  3.7.1.1    Economic objectives  Economic efficiency. Consider an economy's allocation of resources (goods, services, inputs, and  productive activities). An allocation is efficient if it is not possible to reallocate resources so as to  make at least one person better off without making someone else worse off. This is also known as  the Pareto criterion for efficiency (discussed in Section 3.6.1   ) (see e.g., Sterner, 2003; Harrington et  al., 2004; Tietenberg, 2006). In Figure 3.3, any reduction in output from Q0 improves efficiency  because it saves costs (height of SMC) that exceed the benefits of that output (height of PMB).24 This  reduction can be achieved by a tax levied on the externality (a carbon tax), or by tradeable emission  permits. Further reductions in output generate further net gains, by the extent to which SMC  exceeds SMB, until output is reduced to Q  (where SMC=SMB). Hence, the gain in economic  efficiency is area C. Perfect efficiency is difficult to achieve, for practical reasons, but initial steps  from Q0 achieve a larger gain (SMC>SMB) than the last step to Q  (because SMCSMB near the left  point of triangle C).                                                               24  Other approaches are discussed in Section 3.11  .      41 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  An aspect of economic efficiency over time is the extent to which a carbon policy encourages the  right amount of investment in research, innovation, and technological change, in order to reduce  GHG emissions more cheaply (Jung et al., 1996; Mundaca and Neij, 2009). See Section 3.11  .  Cost effectiveness. Pollution per unit of output in Figure 3.3 is fixed, but actual technologies provide  different ways of reducing pollution per unit of output. A policy is cost effective if it reduces  pollution (given a climate target) at lowest cost. An important condition of cost effectiveness is that  marginal compliance costs should be equal among parties (ignoring other distortions such as  regulations) (Babiker et al., 2004).  Transaction costs. In addition to the price paid or received, market actors face other costs in  initiating and completing transactions. These costs alter the performance and relative effectiveness  of different policies and need to be considered in their design, implementation, and assessment  (Mundaca et al., 2013; see also Matthews, 1986, p. 906).  3.7.1.2    Distributional objectives  Six distributional effects. A policy may generate gains to some and losses to others. The fairness or  overall welfare consequences of these distributional effects is important to many people and can be  evaluated using a SWF, as discussed in Section 3.4.6   . These effects fall into six categories  (Fullerton, 2011), and are illustrated in Box 3.6 below. In Figure 3.3, any policy instrument might  reduce the quantity of polluting output, such as from Q0 to Q , which reduces emissions, raises the  equilibrium price paid by consumers (from P0 to Pg), and reduces the price received by firms (from P0  to Pn). The six effects are illustrated in Box 3.6. The framework can be applied to any environmental  problem and any policy to correct it.    Box 3.6 Six distributional effects of climate policy, illustrated for a permit obligation or emissions tax on coal-fired electricity, under the assumption of perfectly competitive electricity markets. First, the policy raises the cost of generating electricity and if cost increases are passed through to  consumers, for example through competitive markets or changes in regulated prices, the consumer s  price increases (from P0 to Pg), so it reduces consumer surplus. In Figure 3.3, the loss to consumers is  the sum of areas A+D. Losses are greater for those who spend more on electricity.  Second, the policy reduces the net price received by the firm (from P0 to Pn), so it reduces producer  surplus by the sum of areas B+E. The effect is reduced payments to factors of production, such as  labour and capital. Losses are greater for those who receive more income from the displaced factor.  Third, pollution and output are restricted, so the policy generates  scarcity rents  such as the value of  a restricted number of permits (areas A+B). If the permits are given to firms, these rents accrue to  shareholders. The government could partly or fully capture the rents by selling the permits or by a  tax per unit of emissions (Fullerton and Metcalf, 2001).  Fourth, because the policy restricts GHG emissions, it confers benefits on those who would  otherwise suffer from climate change. The value of those benefits is areas C+D+E.  Fifth, the electricity sector uses less labour, capital and other resources. It no longer pays them  (areas E+F). With perfect mobility, these factors are immediately redeployed elsewhere, with no  loss. In practice however, social costs may be substantial, including transaction costs of shifting to  other industries or regions, transitional or permanent unemployment, and social and psychological  displacement.  Sixth, any gain or loss described above can be capitalized into asset prices, with substantial  immediate effects for current owners. For example, the value of a corporation that owns coal fired  generation assets may fall, in line with the expected present value of the policy change, while the  value of corporations that own low emissions generation technologies may rise.      42 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  The connection between these distributional effects and  economic efficiency  is revealed by adding  up all the gains and losses just described: the consumer surplus loss is A+D; producer surplus loss is  B+E; the gain in scarcity rents is A+B; and the environmental gain is C+D+E, assuming the gainers and  losers receive equal weights. The net sum of the gains and losses is area C, described above as the  net gain in economic efficiency.  In many cases, a distributional implication of imposing efficient externality pricing (e.g., area A+B) is  much larger than the efficiency gains (area C). This illustrates the importance of distributional  considerations in discussions on emissions reducing policies, and it indicates why distributional  considerations often loom large in debates about climate policy.  With reference to Box 3.6, the first effect of a carbon policy on consumers is generally regressive  (though most analyses are for developed countries), because the higher price of electricity imposes a  heavier burden on lower income groups who spend more of their income on electricity (Metcalf,  1999; Grainger and Kolstad, 2010). However, fuel taxes tend to be progressive in developing  countries (Sterner, 2011). The sign of the second effect, on factors of production, is generally  ambiguous. The third effect is regressive if permits are given to firms, because then profits accrue to  shareholders who tend to be in high income brackets (Parry, 2004). But if government captures the  scarcity rents by selling permits or through a carbon tax, the funds can be used to offset burdens on  low income consumers and make the overall effect progressive instead of regressive. Other effects  are quite difficult to measure.  Much of the literature on  environmental justice  discusses the potential effects of a pollution policy  on neighbourhoods with residents from different income or ethnic groups (Sieg et al., 2004). Climate  policies affect both GHG emissions and other local pollutants such as SO2 or NOX, whose  concentrations vary widely. Furthermore, the cost of mitigation may not be shared equally among all  income or ethnic groups. And even  global  climate change can have different temperature impacts  on different areas, or other differential effects (e.g., on coastal areas via rise in sea level).  The distributional impacts of policies include aspects such as fairness/ equity (Gupta et al., 2007). A  perceived unfair distribution of costs and benefits could prove politically challenging (see below),  since efficiency may be gained at the expense of equity objectives.  3.7.1.3    Environmental objectives  Environmental effectiveness. A policy is environmentally effective if it achieves its expected  environmental target (e.g., GHG emission reduction). The simple policies mentioned above might be  equally effective in reducing pollution (from Q0 to Q  in Figure 3.3), but actual policies differ in terms  of ambition levels, enforcement and compliance.  Co benefits. Climate policy may reduce both GHG emissions and local pollutants, such as SO2  emissions that cause acid rain, or NOX emissions that contribute to ground level ozone. As described  in Section 3.6.3, reductions in other pollutants may not yield any net gain to society if they are  already optimally regulated (where their marginal abatement costs and their marginal damages are  equal). If pollutants are inefficiently regulated, however, climate regulations can yield positive or  negative net social gains by reducing them.  Climate policy is also likely to affect other national objectives, such as energy security. For countries  that want to reduce their dependence on imported fossil fuels, climate policy can bolster energy  efficiency and the domestic renewable energy supply, while cutting GHG emissions. See Section  3.6.3   on co benefits.  Carbon leakage. The effectiveness of a national policy to reduce emissions can be undermined if it  results in increased emissions in other countries, for example, because of trading advantages in  countries with more relaxed policies (see Section 3.9.5   ). Another type of leakage occurs within      43 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  emission trading systems. Unilateral emission reductions by one party will release emission permits  and be outweighed by new emissions within the trading regime.  3.7.1.4    Institutional and political feasibility  Administrative burden. This depends on how a policy is implemented, monitored, and enforced  (Nordhaus and Danish, 2003). The size of the burden reflects, inter alia, the institutional framework,  human and financial costs and policy objectives (Nordhaus and Danish, 2003; Mundaca et al., 2010).  Administrative costs in public policy are often overlooked (Tietenberg, 2006)  Political feasibility is the likelihood of a policy gaining acceptance and being adopted and  implemented (Gupta et al., 2007, p. 785). It covers the obstacles faced and key design features that  can generate or reduce resistance among political parties (Nordhaus and Danish, 2003). Political  feasibility may also depend on environmental effectiveness and whether regulatory and other costs  are equitably distributed across society (Rist, 1998). The ability of governments to implement  political decisions may be hampered by interest groups; policies will be more feasible if the benefits  can be used to buy the support of a winning coalition (Compston, 2010). Ex ante, these criteria can  be used in assessing and improving policies. Ex post, they can be used to verify results, withdraw  inefficient policies and correct policy performance. For specific applications, see Chapters 7-15.  3.7.2    Analytical methods for decision support  Previous IPCC Assessment Reports have addressed analytical methods to support decision making,  including both numerical and case based methods. Bruce et al. (1996, chap. 2 and 10) focus heavily  on quantitative methods and IAMs. Metz et al. (2001) provide a wider review of approaches,  including emerging participatory forms of decision making. Metz et al. (2007) briefly elaborate on  quantitative methods and list sociological analytical frameworks. In this section, we summarize the  core information on methodologies separated into quantitative  and qualitative oriented  approaches.  3.7.2.1    Quantitative oriented approaches  In decision making, quantitative methods can be used to organize and manage numerical  information, provide structured analytical frameworks, and generate alternative scenarios   with  different levels of uncertainty (Majchrzak, 1984). An approach that attempts to estimate and  aggregate monetized values of all costs and benefits that could result from a policy is CBA. It may  require estimating non market values, and choosing a discount rate to express all costs and benefits  in present value. When benefits are difficult to estimate in monetary terms, a Cost Effectiveness  Analysis (CEA) may be preferable. A CEA can be used to compare the costs of different policy options  (Tietenberg, 2006) for achieving a well defined goal. It can also estimate and identify the lowest  possible compliance costs, thereby generating a ranking of policy alternatives (Levin and McEwan,  2001). Both CEA and CBA are similarly limited in their ability to generate data, measure and value  future intangible costs.  Various types of model can provide information for CBA, including energy economy environment  models that study energy systems and transitions towards more sustainable technology. A common  classification of model methodologies includes  bottom up  and  top down  approaches. Hybrids of  the two can compensate for some known limitations and inherent uncertainties (Rivers and Jaccard,  2006):25                                                                The literature acknowledges that it is difficult to make a clear classification among modelling approaches, as  variations among categories and also alternative simulation methodologies do exist (e.g., macroeconometric  Keynesian models, agent based approaches) (Hourcade et al., 2006; Mundaca et al., 2010; Scrieciu et al.,  2013).  25     44 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Given exogenously defined macroeconomic and demographic scenarios, bottom up models can  provide detailed representations of supply  and demand side technology paths that combine  both cost and performance data. Conventional bottom up models may lack a realistic  representation of behaviour (e.g., heterogeneity) and may overlook critical market  imperfections, such as transaction costs and information asymmetries (e.g., Craig et al., 2002;  DeCanio, 2003; Greening and Bernow, 2004).  By contrast, top down models, such as computable general equilibrium (CGE), represent  technology and behaviour using an aggregate production function for each sector to analyze  effects of policies on economic growth, trade, employment, and public revenues (see, e.g.,  DeCanio, 2003). They are often calibrated on real data from the economy. However, such  models may not represent all markets, all separate policies, all technological flexibility, and all  market imperfections (Laitner et al., 2003). Parameters are estimated from historical data, so  forecasts may not predict a future that is fundamentally different from past experience (i.e.,  path dependency) (Scheraga, 1994; Hourcade et al., 2006). For potential technology change,  many models use sub models of specific supply or end use devices based on engineering data  (Jacoby et al., 2006; Richels and Blanford, 2008; Lüken et al., 2011; Karplus et al., 2013).  With CBA, it is difficult to reduce all social objectives to a single metric. One approach to dealing with  the multiple evaluation criteria is Multi Criteria Analysis, or MCA (Keeney and Raiffa, 1993; Greening  and Bernow, 2004). Some argue that analyzing environmental and energy policies is a multi criteria  problem, involving numerous decision makers with diverse objectives and levels of understanding of  the science and complexity of analytical tools (Sterner, 2003; Greening and Bernow, 2004). The  advantage of MCA is that the analyst does not have to determine how outcomes are traded off by  the policymaker. For instance, costs can be separated from ecosystem losses. But even with MCA,  one must ultimately determine the appropriate trade off rates among the different objectives.  Nevertheless, it can be a useful way of analyzing problems where being restricted to one metric is  problematic, either politically or practically. CGE models can specify consumer and producer  behaviour and  simulate  effects of climate policy on various outcomes, including real gains and  losses to different groups (e.g., households that differ in income, region or demographic  characteristics). With behavioural reactions, direct burdens are shifted from one taxpayer to another  through changes in prices paid for various outputs and received for various inputs. A significant  challenge is the definition of a  welfare baseline  (i.e., identifying each welfare level without a  specific policy).  Integrated Assessment Models (IAMs) or simply Integrated Models (IAs) combine some or all of the  relevant components necessary to evaluate the consequences of mitigation policies on economic  activity, the global climate, the impacts of associated climate change, and the relevance of that  change to people, societies, and economies. Some models may only be able to represent how the  economy responds to mitigation policy and no more; some models may include a physical model of  the climate and be able to translate changes in emissions into changes in global temperature; some  models may also include a representation of the impacts of climate change; and some models may  translate those impacts into damage to society and economies. Models can be highly aggregate (top down) or detailed process analysis models (bottom up), or a combination of both (see also Chapter  6). Some IAMs relate climate change variables with other physical and biological variables like crop  yield, food prices, premature death, flooding or drought events, or land use change (Reilly et al.,  2013). Computational limits may preclude the scales required for some climate processes (Donner  and Large, 2008),26 but recent attempts are directed towards integrating human activities with full  Earth System models (Jones et al., 2013). All of the models used in WGIII (primarily Chapter 6) focus                                                                Stanton et al. (2009) also place climate change models into categories (welfare maximization, general  equilibrium, partial equilibrium, cost minimization, and simulation models).  26     45 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  on how mitigation policies translate into emissions; none of those models have a representation of  climate damages. IAMs have been criticized in recent years (e.g., Ackerman et al., 2009; Pindyck,  2013). Much of the most recent criticism is directed at models that include a representation of  climate damage; none of the models used in Chapter 6 fall into this category. Refer to Chapter 6 for  more detail in this regard.  Other quantitative oriented approaches to support policy evaluation include tolerable windows  (Bruckner et al., 1999), safe landing/guard rail (Alcamo and Kreileman, 1996), and portfolio theory  (Howarth, 1996). Outside economics, those who study decision sciences emphasize the importance  of facing difficult value based trade offs across objectives, and the relevance of various techniques  to help stakeholders address trade offs (see, e.g., Keeney and Raiffa, 1993).  3.7.2.2    Qualitative approaches  Various qualitative policy evaluation approaches focus on the social, ethical, and cultural dimensions  of climate policy. They sometimes complement quantitative approaches by considering contextual  differences, multiple decision makers, bounded rationality, information asymmetries, and political  and negotiation processes (Toth et al., 2001; Halsnaes et al., 2007). Sociological analytical  approaches examine human behaviour and climate change (Blumer, 1956), including beliefs,  attitudes, values, norms, and social structures (Rosa and Dietz, 1998). Focus groups can capture the  fact that  people often need to listen to others  opinions and understandings to form their own   (Marshall and Rossman, 2006, p. 114). Participatory approaches focus on process, involving the  active participation of various actors in a given decision making process (van den Hove, 2000).  Participatory approaches in support of decision making include appreciation influence control, goal  oriented project planning, participatory rural appraisal, and beneficiary assessment. MCA can also  take a purely qualitative form. For the pros and cons of participatory approaches, see Toth et al.  (2001, p. 652). Other qualitative oriented approaches include systematic client consultation, social  assessment and team up (Toth et al., 2001; Halsnaes et al., 2007).  3.8   Policy instruments and regulations   A broad range of policy instruments for climate change mitigation is available to policymakers. These  include economic incentives, such as taxes, tradeable allowances, and subsidies; direct regulatory  approaches, such as technology or performance standards; information programs; government  provision, of technologies or products; and voluntary actions.  Chapter 13 of AR4 provided a typology and definition of mitigation policy instruments. Here we  present an update on the basis of new research on the design, applicability, interaction, and political  economy of policy instruments, as well as on applicability of policy instruments in developed and  developing countries. For details about applications and empirical assessments of mitigation policy  instruments, see Chapters 7 12 (sectoral level), Chapter 13 (international cooperation), Chapter 14  (regional cooperation), and Chapter 15 (national and sub national policies).  3.8.1    Economic incentives  Economic (or market) instruments include incentives that alter the conditions or behaviour of target  participants and lead to a reduction in aggregate emissions. In economic policy instruments, a  distinction is made between  price  and  quantity . A tradeable allowance or permit system  represents a quantity policy whereby the total quantity of pollution (a cap) is defined, and trading in  emission rights under that cap is allowed. A price instrument requires polluters to pay a fixed price  per unit of emissions (tax or charge), regardless of the quantity of emissions.  3.8.1.1    Emissions taxes and permit trading  Both the approaches described above create a price signal as an incentive to reducing emissions,  which can extend throughout the economy. Economic instruments will tend to be more cost     46 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  effective than regulatory interventions and may be less susceptible to rent seeking by interest  groups. The empirical evidence is that economic instruments have, on the whole, performed better  than regulatory instruments, but that in many cases improvements could have been made through  better policy design (Hahn, 1989; Anthoff and Hahn, 2010).    Box 3.7 Equivalence of emissions taxes and permit trading schemes Price based and quantity based instruments are equivalent under certainty, but differ in the extent  of mitigation and costs if emissions and abatement costs are uncertain to the regulator (Weitzman,  1974) . Hybrid instruments, where a quantity constraint can be overridden if the price is higher or  lower than a threshold, have been shown to be more efficient under uncertainty (Roberts and  Spence, 1976; McKibbin and Wilcoxen, 2002; Pizer, 2002). Variants of hybrid approaches featuring  price ceilings and price floors have been implemented in recent emissions trading schemes  (Chapters 14 and 15). The possibility of periodic adjustments to tax rates and caps and their  implementation under permit schemes further breaks down the distinction between price based  and quantity based market based instruments.  Equivalence also exists for fiscal effects and the costs imposed on emitters. Until recently, most of  the literature has assumed that emissions taxes and permit trading differ in the revenue they yield  for governments and the costs imposed on emitters, assuming that emissions tax revenue fully  accrues to governments while under emissions trading schemes permits are given freely to emitters.  This was also the case in early policy practice (Chapters 14 and 15). It has been widely assumed that  permit schemes are easier to implement politically because permits are allocated free to emitters.  However, recognition has grown that permits can be wholly or partly auctioned, and that an  emissions tax need not apply to the total amount of emissions covered (e.g., Aldy J.E et al., 2010;  Goulder, 2013). Tax thresholds could exempt part of the overall amount of an emitter s liabilities,  while charging the full tax rate on any extra emissions, analogous to free permits (Pezzey, 2003;  Pezzey and Jotzo, 2012). Conversely, governments could auction some or all permits in an emissions  trading scheme, and use the revenue to reduce other more distorting taxes and charges (Section  3.6.3.3   ), assist consumers, or pay for complementary policies.  3.8.1.2    Subsidies   Subsidies can be used as an instrument of mitigation policy by correcting market failures in the  provision of low carbon technologies and products. They have a particular role in supporting new  technologies. Empirical research has shown that social rates of return on R&D can be higher than  private rates of return, since spillovers are not fully internalized by the firms (see 3.11  ).  Subsidies are also used to stimulate energy efficiency and renewable energy production. Such  subsidies do generally not fully correct negative externalities but rather support the alternatives, and  are less efficient alternatives to carbon taxes and emission trading for inducing mitigation. Energy  subsidies are often provided for fossil fuel production or consumption, and prove to increase  emissions and put heavy burdens on public budgets (Lin and Jiang, 2011; Arze del Granado et al.,  2012; Gunningham, 2013). Lowering or removing such subsidies would contribute to global  mitigation, but this has proved difficult (IEA et al., 2011).  Subsidies to renewable energy and other forms of government expenditure on mitigation also have  other drawbacks. First, public funds need to be raised to finance the expenditures, with well known  economic inefficiencies arising from taxation (Ballard and Fullerton, 1992). Second, subsidies, if not  correcting market failures, can lead to excessive entry into, or insufficient exit from, an industry  (Stigler, 1971). Third, subsidies can become politically entrenched, with the beneficiaries lobbying  governments for their retention at the expense of society overall (Tullock, 1975).      47 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Hybrids of fees and subsidies are also in use. A renewable energy certificate system can be viewed as  a hybrid with a fee on energy consumption and a subsidy to renewable production (e.g., Amundsen  and Mortensen, 2001). Feebates (Greene et al., 2005) involve setting an objective, such as average  vehicle fuel economy; then firms or individuals that under perform pay a fee per unit of under performance and over performers receive a subsidy. The incentives may be structured to generate  no net revenue   the fees collected finance the subsidy.  3.8.2    Direct regulatory approaches  Prescriptive regulation involves rules that must be fulfilled by polluters who face a penalty in case of  non-compliance. Examples are performance standards that specify the maximum allowable GHG  emissions from particular processes or activities; technology standards that mandate specific  pollution abatement technologies or production methods; and product standards that define the  characteristics of potentially polluting products, including labelling of appliances in buildings,  industry, and the transport sector (Freeman and Kolstad, 2006).  These regulatory approaches will tend to be more suitable in circumstances where the reach or  effectiveness of market based instruments is constrained because of institutional factors, including  lack of markets in emissions intensive sectors such as energy. In  mixed economies , where parts of  the economy are based on command and control approaches while others rely on markets, effective  climate change mitigation policy will generally require a mix of market and non market instruments.  3.8.3    Information programmes  Reductions in GHG emissions can also be achieved by providing accurate and comprehensive  information to producers and consumers on the costs and benefits of alternative options.  Information instruments include governmental financing of research and public statistics, and  awareness raising campaigns on consumption and production choices (Mont and Dalhammar, 2005).  3.8.4    Government provision of public goods and services, and procurement  Government funding of public goods and services may be aimed directly at reducing GHG emissions,  for example, by providing infrastructures and public transport services that use energy more  efficiently; promoting R&D on innovative approaches to mitigation; and removing legal barriers  (Creutzig et al., 2011).  3.8.5    Voluntary actions  Voluntary agreements can be made between governments and private parties in order to achieve  environmental objectives or improve environmental performance beyond compliance with  regulatory obligations. They include industry agreements, self certification, environmental  management systems, and self imposed targets. The literature is ambiguous about whether any  additional environmental gains are obtained through voluntary agreements (Koehler, 2007; Lyon and  Maxwell, 2007; Borck and Coglianese, 2009).  3.8.6    Policy interactions and complementarity   Most of the literature deals with the use and assessment of one instrument, or compares alternative  options, whereas, in reality, numerous, often overlapping instruments are in operation (see Chapters  7 16). Multiple objectives in addition to climate change mitigation, such as energy security and  affordability and technological and industrial development, may call for multiple policy instruments.  Another question is whether and to what extent emissions pricing policies need to be  complemented by regulatory and other instruments to achieve cost effective mitigation, for  example, because of additional market failures, as in the case of energy efficiency (Box 3.10) and  technological development (3.11.1   ).  However, the coexistence of different instruments creates synergies, overlaps and interactions that  may influence the effectiveness and costs of policies relative to a theoretical optimum (Kolstad et al.,      48 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  1990; see also Section 3.6 above). Recent studies have analyzed interactions between tradeable  quotas or certificates for renewable energy and emission trading (e.g., Möst and Fichtner, 2010;  Böhringer and Rosendahl, 2010) and emissions trading and tradeable certificates for energy  efficiency improvements (e.g., Mundaca, 2008; Sorrell et al., 2009) (see also Chapters 9 and 15).  Similar effects occur in the overlay of other selective policy instruments with comprehensive pricing  instruments. Policy interactions can also create implementation and enforcement challenges when  policies are concurrently pursued by different legal or administrative jurisdictions (Goulder and  Parry, 2008; Goulder and Stavins, 2011).  3.8.7    Government failure and policy failure  To achieve large emissions reductions, policy interventions will be needed. But failure is always a  possibility, as shown by recent experiences involving mitigation policies (Chapters 13 16). The  literature is beginning to reflect this. The failure of such policies tends to be associated with the  translation of individual preferences into government action.  3.8.7.1    Rent seeking  Policy interventions create rents, including subsidies, price changes arising from taxation or  regulation, and emissions permits. Private interests lobby governments for policies that maximize  the value of their assets and profits. The sums involved in mitigating climate change provide  incentives to the owners of assets in GHG intensive industries or technologies for low carbon  production to engage in rent seeking.27  The political economy of interest group lobbying (Olson, 1971) is apparent in the implementation of  climate change mitigation policies. Examples include lobbying for allocations of free permits under  the emissions trading schemes in Europe (Hepburn et al., 2006; Sijm et al., 2006; Ellerman, 2010)  and Australia (Pezzey et al., 2010) as well as renewable energy support policies in several countries  (Helm, 2010).  To minimize the influence of rent seeking and the risk of regulatory capture, two basic approaches  have been identified (Helm, 2010). One is to give independent institutions a strong role, for example,  the United Kingdom s Committee on Climate Change (McGregor et al., 2012) and Australia s Climate  Change Authority (Keenan R.J et al., 2012) (see also Chapter 15).  Another approach to reducing rent seeking is to rely less on regulatory approaches and more on  market mechanisms, which are less prone to capture by special interests because the value and  distribution of rents is more transparent. This may of course lead to other problems associated with  regulatory design.  3.8.7.2    Policy uncertainty  One aim of climate change mitigation policy is to promote emissions reducing investments in sectors  where assets have a long economic lifespan, such as energy (Chapter 7), buildings (Chapter 9) and  transport (Chapter 8). Investment decisions are mainly based on expectations about future costs and  revenues. Therefore, expectations about future policy settings can be more important than current  policies in determining the nature and extent of investment for mitigation (Ulph, 2013).  Uncertainty over future policy directions, including changes in existing policies arising from, say,  political change, can affect investment decisions and inhibit mitigation, as well as create economic  costs (Weitzman, 1980; see also Chapter 2). To achieve cost effective mitigation actions, a stable and  predictable policy framework is required.                                                                CBA takes into account that governments are social profit maximizers, which may not necessarily be the  case.   27     49 of 128       Final Draft      Chapter 3  IPCC WGIII AR5  Box 3.8 Different conditions in developed and developing countries and implications for suitability of policy instruments Differences in economic structure, institutions, and policy objectives between low income and high income countries can mean differences in the suitability and performance of policy instruments.  Overriding policy objectives in most developing countries tend to be strongly oriented towards  facilitating development (Kok et al., 2008), increasing access to energy and alleviating poverty (see  Chapters 4 and 14). In general, they have fewer human and financial resources, less advanced  technology, and poorer institutional and administrative capacity than developed countries. This may  constrain their ability to evaluate, implement, and enforce policies. Further, the prerequisites for  effectiveness, such as liberalized energy markets to underpin price based emissions reduction  instruments, are often lacking. Thus, the use of some policy instruments, including carbon trading  schemes, can pose greater institutional hurdles and implementation costs, or not be feasible.  Capacity building is therefore critical in creating mechanisms to support policy choices and  implementation. Economic reform may also be needed in order to remove distortions in regulatory  and pricing mechanisms and enable effective mitigation policies to be devised and implemented.  The opportunity cost of capital, and of government resources in particular, may be higher in  developing countries than in developed countries. Consequently, the payoff from mitigation policies  needs to be higher than in developed countries in order for mitigation investment to be judged  worthwhile. Thus, developing countries may require international financial assistance in order to  support their mitigation activities or make them economically viable.  3.9   Metrics of costs and benefits  This section focuses on conceptual issues that arise in the quantification and measurement, using a  common metric, of the pros and cons associated with mitigation and adaptation (i.e., benefits and  costs). How costs are balanced against benefits in evaluating a climate policy is a matter for ethics,  as has repeatedly been emphasized in this chapter. The discussion is largely based on the economic  paradigm of balancing costs against benefits, with both measured in monetary units. But leaving  aside how benefits and costs are monetized or balanced to develop policy, the underlying  information can be helpful for policy makers who adopt other ethical perspectives. This section is  also relevant for methods that reduce performance to a small number of metrics rather than a single  one (such as MCA).  We begin with the chain of cause and effect. The chain starts with human activity that generates  emissions that may be reduced with mitigation (recognizing that nature also contributes to  emissions of GHGs). The global emissions of GHGs lead to changes in atmospheric concentrations,  then to changes in radiative forcing, and finally to changes in climate. The latter affect biological and  physical systems in good as well as bad ways (including through impacts on agriculture, forests,  ecosystems, energy generation, fire, and floods). These changes in turn affect human wellbeing,  negatively or positively, with both monetary and other consequences.28 Each link in the chain has a  time dimension, since emissions at a particular point in time lead to radiative forcing at future points  in time, which later lead to more impacts and damages. The links also have spatial dimensions.  Models play a key role in defining the relationships between the links in the chain. Global Climate  Models (GCMs) translate emissions through atmospheric concentrations and radiative forcing into                                                               28  We refer to effects on biological and physical systems as  impacts , and effects of those impacts on human  wellbeing as  damages , whether positive or negative. These effects may include non human impacts that are  of concern to humans (see also Sections 3.4.1    and 3.4.3   ).      50 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  changes in climate. Other models including crop, forest growth and hydrology models translate  changes in climate into physical impacts. Economic models translate those impacts into measures  that reflect a human perspective, typically monetary measures of welfare loss or gain. GCMs  aggregate emissions of various gases into an overall level of radiative forcing; hydrology models  aggregate precipitation at multiple locations within a watershed into stream flow at a given location;  economic models aggregate impacts into an overall measure of welfare loss.  Much of the literature on impacts focuses on particular types of impacts at particular locations.  Another aspect involves metrics that allow differential regulation of different GHGs, for instance, the  relative weight that regulators should place on CH4 and CO2 in mitigation strategies. Because impacts  and damages are so poorly known it has proved surprisingly difficult to provide a rigorous answer to  that question.   3.9.1    The damages from climate change  The impacts of climate change may benefit some people and harm others. It can affect their  livelihood, health, access to food, water and other amenities, and natural environment. While many  non monetary metrics can be used to characterize components of impacts, they provide no  unambiguous aggregation methods for characterizing overall changes in welfare. In principle, the  economic theory of monetary valuation provides a way, albeit an imperfect one, of performing this  aggregation and supporting associated policy making processes.  Changes that affect human wellbeing can be  market  or  non market  changes. Market effects  involve changes in prices, revenue and net income, as well as in the quantity, quality, or availability  of market commodities. Key is the ability to observe both prices and how people respond to them  when choosing quantities to consume. Non market changes involve the quantity, quality, or  availability of things that matter to people and which are not obtained through the market (e.g.,  quality of life, culture, and environmental quality). A change in a physical or biological system can  generate both market and non market damage to human wellbeing. For example, an episode of  extreme heat in a rural area may generate heat stress in farm labourers  and may dry up a wetland  that serves as a refuge for migratory birds, while killing some crops and impairing the quality of  others. From an economic perspective, damages would be conceptualized as a loss of income for  farmers and farm workers, an increase in crop prices for consumers and a reduction in their quality;  and non market impacts might include the impairment of the ecosystem and human health (though  some health effects may be captured in the wages of farm workers).  Economists define value in terms of a  trade off . As discussed in Section 3.6.1   , the economic value  of an item, measured in money terms, is defined as the amount of income that would make a person  whole, either in lieu of the environmental change or in conjunction with the environmental change;  that is, its  income equivalent . This equivalence is evaluated through the Willingness To Pay (WTP)  and Willingness To Accept (WTA) compensation measures (see also Willig, 1976; Hanemann, 1991).  The item in question may or may not be a marketed commodity: it can be anything that the person  values. Thus, the economic value of an item is not in general the same as its price or the total  expenditure on it. The economic concept of value based on a trade off has some critics. The item  being valued may be seen as incommensurable with money, such that no trade off is possible. Or,  the trade off may be deemed inappropriate or unethical (e.g., Kelman, 1981; see also Jamieson,  1992; Sagoff, 2008). In addition, while the economic concept of value is defined for an individual, it is  typically measured for aggregates of individuals, and the issue of equity weighting is often  disregarded (Nyborg, 2012 see also Subsection 3.5.1.3).29  29                                                               The use of the term  willingness  in WTP and WTA should not be taken literally. For instance, individuals  may have a willingness to pay for cleaner air (the reduction in income that would be equivalent in welfare        51 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  The methods used to measure WTP and WTA fall into two categories, known as  revealed  preference  and  stated preference  methods. For a marketed item, an individual s purchase  behaviour reveals information about their value of it. Observation of purchase behaviour in the  marketplace is the basis of the revealed preference approaches. One can estimate a demand  function from data on observed choice behaviour. Then, from the estimated demand function, one  can infer the purchaser s WTP or WTA values for changes in the price, quantity, quality, or  availability of the commodity. Another revealed preference approach, known as the hedonic pricing  method, is based on finding an observed relationship between the quality characteristics of  marketed items and the price at which they are sold (e.g., between the price of farmland and the  condition and location of the farmland). From this approach, one can infer the  marginal  value of a  change in characteristics.30 For instance, some have attempted to measure climate damages using  an hedonic approach based on the correlation of residential house prices and climate in different  areas (Cragg and Kahn, 1997; Maddison, 2001, 2003; Maddison and Bigano, 2003; Rehdanz and  Maddison, 2009). The primary limitation of revealed preference methods is the frequent lack of a  market associated with the environmental good being valued.  With stated preference, the analyst employs a survey or experiment through which subjects are  confronted with a trade off. With contingent valuation, for example, they are asked to choose  whether or not to make a payment, such as a tax increase that allows the government to undertake  an action that accomplishes a specific outcome (e.g., protecting a particular ecosystem). By varying  the cost across subjects and then correlating the cost offered with the percentage of  yes  responses,  the analyst traces out a form of demand function from which the WTP (or WTA) measure can be  derived. With choice experiments, subjects are asked to make repeated choices among alternative  options that combine different outcomes with different levels of cost.31 Although a growing number  of researchers use stated preference studies to measure the public s WTP for climate change  mitigation, one prominent criticism is the hypothetical nature of the choices involved.32  All these methods have been applied to valuing the damages from climate change.33 AR2 contained a  review of the literature on the economic valuation of climate change impacts. Since then, the  literature has grown exponentially. The economic methodology has changed little (except for more  coverage of non market impacts and more use of stated preference). The main change is in the  spatial representation of climate change impacts; whereas the older literature tended to measure  the economic consequences of a uniform increase of, say 2.5oC across the United States, the recent  literature uses downscaling to measure impacts on a fine spatial scale. Most of the recent literature                                                                                                                                                                                            terms to an increase in air quality) but they may be very unwilling to make that payment, believing that clean  air is a right that should not have to be purchased.   Details of these methods can be found in Becht (1995), chapters by McConnell and Bockstael (2006),  Palmquist (2006), Phaneuf and Smith (2006), Mäler and Vincent (2005), or in textbooks such as Kolstad (2010),  Champ, Boyle and Brown (2003), Haab and McConnell (2002) or Bockstael and McConnell (2007).  31 30  Details can be found in Carson and Hanemann (2005), or in textbooks such as Champ, Boyle and Brown  (2003), Haab and McConnell (2002), and Bennett and Blamey (2001).  Examples include Berrens et al. (2004), Lee and Cameron (2008), Solomon and Johnson (2009), and Aldy et al.  (2012) for the U.S.; Akter and Bennett (2011) for Australia; Longo et al. (2012) for Spain; Lee et al. (2010) for  Korea; Adaman et al. (2011) for Turkey; and Carlsson et al. (2012) for a comparative study of WTP in China,  Sweden and the US.   Other economic measures of damage are sometimes used that may not be appropriate. The economic  damage is, in principle, the lesser of the value of what was lost or the cost of replacing it (assuming a suitable  and appropriate replacement exists). Therefore, the replacement cost itself may or may not be a relevant  measure. Similarly, if the cost of mitigation is actually incurred, it is a lower bound on the value placed on the  damage avoided. Otherwise, the mitigation cost is irrelevant if nobody is willing to incur it.  33 32     52 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  on the economic valuations of climate change has focused on market impacts, especially impacts on  agriculture, forestry, sea level, energy, water, and tourism. 34  The most extensive economic literature pertains to agriculture. The demand for many such  commodities is often inelastic, so the short run consequence of a negative supply shock is a price  increase; while a benefit to producers, it is harmful for consumers (Roberts and Schlenker, 2010;  Lobell et al., 2011). Some studies measure the effect of weather on current profits, rather than that  of climate on long term profitability (e.g., Deschenes and Greenstone, 2007), and some explore the  effect of both weather and climate on current profits (Kelly et al., 2005). Examining weather and  climate simultaneously leads to difficulties in identifying the separate effects of weather and climate  (Deschenes and Kolstad, 2011), as well as in dealing with the confounding effects of price changes  (Fisher et al., 2012). While some recent studies have found that extreme climate events have a  disproportionate impact on agricultural systems (Schlenker and Roberts, 2009; Lobell et al., 2011;  Deschenes and Kolstad, 2011; see also WGII, Section 7.3.2.1), the relatively high degree of spatial or  temporal aggregation means that those events are not well captured in many existing economic  analyses. Another difficulty is the welfare significance of shifts in location of agricultural production  caused by climate. Markets for agricultural commodities are national or international in scope, so  some economic analyses focus on aggregate international producer and consumer welfare. Under  the potential Pareto criterion, transfers of income from one region to another are of no welfare  significance, though of real policy significance.35  With other market sectors, the literature is both sparse and highly fragmented, but includes some  estimates of economic impacts of climate change on energy, water, sea level rise, tourism, and  health in particular locations. With regard to energy, climate change is expected to reduce demand  for heating and increase demand for cooling (see WGII AR5, Chapter 10). Even if those two effects  offset one another, the economic cost need not be negligible. With water supply, what matters in  many cases is not total annual precipitation but the match between the timing of precipitation and  the timing of water use (Strzepek and Boehlert, 2010). Those questions require analysis on a finer  temporal or spatial scale than has typically been employed in the economic damage literature.  Estimates of the economic costs of a rise in sea level generally focus on either the property damage  from flooding or on the economic costs of prevention, for example, sea wall construction (Hallegatte  et al., 2007; Hallegatte, 2008; 2012). They sometimes include costs associated with the temporary  disruption of economic activity. Estimates typically do not measure the loss of wellbeing for people  harmed or displaced by flooding.36 Similarly, the economic analyses of climate change impacts on  tourism have focused on changes, for example, in the choice of destination and the income from  tourism activities attributable to an increase in temperature, but not on the impacts on participants   wellbeing.37                                                               While there is a large literature covering physical and biological impacts, except for agriculture and forestry  only a tiny portion of the literature carries the analysis to the point of measuring an economic value. However,  the literature is expanding. A Web of Knowledge search on the terms ( climate change  or  global warming )  and  damage  and  economic impacts  returns 39 papers for pre 2000, 136 papers for 2000 2009 and 209  papers for 2010 through September 2013.  35 34 The same issue arises with the effects on timber production in a global timber market; see for example,  Sohngen et al. (2001).  36  Exceptions include Daniel et al. (2009) and Botzen and van den Bergh (2012). Cardoso and Benhin (2011)  provide a stated preference valuation of protecting the Columbian Caribbean coast from sea level rise.   Exceptions include Pendleton and Mendelsohn (1998); Loomis and Richardson (2006); Richardson and  Loomis (2004); Pendleton et al., (2011); Tseng and Chen (2008); and for commercial fishing, Narita et al (2012).  37     53 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  The economic metrics conventionally used in the assessment of non climate health outcomes have  also been used to measure the impact of climate on health (e.g., Deschenes and Greenstone, 2011;  Watkiss and Hunt, 2012). Measures to reduce GHGs may also reduce other pollutants associated  with fossil fuel combustion, such as NOx and particulates, which lead to time lost from work and  reduced productivity (Östblom and Samakovlis, 2007). Exposure to high ambient temperatures is  known to diminish work capacity and reduce labour productivity.38  3.9.2    Aggregate climate damages  This section focuses on the aggregate regional and global economic damages from climate change as  used in IAMs to balance the benefits and costs of mitigation on a global scale.  The first estimates of the economic damage associated with a specific degree of climate change  were made for the United States (Smith and Tirpak, 1989; Nordhaus, 1991; Cline, 1992; Titus, 1992;  Fankhauser, 1994). These studies involved static analyses estimating the damage associated with a  particular climate end point, variously taken to be a 1oC, 2.5oC, or 3oC increase in global average  annual temperature. This approach gave way to dynamic analyses in IAMs that track economic  output, emissions, atmospheric CO2 concentration, and damages. Because some IAMs examine costs  and benefits for different levels of emissions, they need damage  functions  rather than point  estimates.  Three IAMs have received most attention in the literature, all initially developed in the 1990s. The  DICE model was first published in Nordhaus (1993a; b) but had its genesis in Nordhaus (1977); its  regionally disaggregated sibling RICE was first published by Nordhaus and Yang (1996).39 The FUND  model was first published in Tol (1995). And the PAGE model, developed for European decision  makers, was first published in Hope et al. (1993) and was used in the Stern (2007) review.40 The  models have undergone various refinements and updates.41 While details have changed, their  general structure has stayed the same, and questions remain about the validity of their damage  functions (see Pindyck, 2013).  The IAMs use a highly aggregated representation of damages. The spatial unit of analysis in DICE is  the entire world, whereas the worldis divided into 12 broad regions in RICE, 16 regions in FUND, and  eight in PAGE. DICE and RICE have a single aggregate damage function for the change in global or  regional GDP as a function of the increase in global average temperature, here denoted Tt, and sea level rise (which in turn is modelled as a function of Tt). PAGE has four separate damage functions  for different types of damages in each region: economic, non economic, sea level rise, and climate  discontinuity (as a function of Tt and the derivative rise in sea level). FUND has eight sectoral  damage functions for each region, with each damage dependent on the regional Tt and, in some                                                                See Kjellstrom et al. (2009), Zivin and Neidell (2010), or Dunne et al (2013). Some recent studies have  focused on the correlation between high temperatures and poverty (Nordhaus, 2006), the link between  fluctuations in temperature, cyclones and fluctuations in economic activity (Dell et al., 2009, 2012; Hsiang,  2010), and the connection between climate change and human conflict (Hsiang et al., 2013).   There are many extensions of DICE, including AD DICE (de Bruin et al., 2009), with a more explicit treatment  of adaptation.   Some other IAMs have damage functions, including the MERGE Model (Manne and Richels, 1992, 1995,  2004a); the CETA model (Peck and Teisberg, 1992, 1994); and, more recently, several IAMs developed by  European researchers including the WITCH model (Bosetti et al., 2006), its extension the AD WITCH model  (Bosello et al., 2010), the ENVISAGE model (Roson and Mensbrugghe, 2012), and a model developed by Eboli  et al. (2010) and Bosello et al. (2012).    The most recent versions are: DICE2013 (Nordhaus and Sztorc, 2013); RICE2010 (Nordhaus, 2010); PAGE  2009 (Hope, 2011, 2013); FUND 3.7 (Anthoff and Tol, 2013).  41 40 39 38     54 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  cases, the rate of change in Tt. Adaptation and catastrophic damage are included in a very simple  way in some models (Greenstone et al., 2013) .  Let Djkt denote damages of type j in year t and region k, expressed as a proportion of per capita GDP  in that year and region, Ykt. The damage functions, say Djkt = Djkt(Tt) are calibrated based on: (1) the  modeller s choice of a particular algebraic formula for Djkt(Tt): (2) the common assumption of zero  damage at the origin [Djkt(0)=0]; and (3) the modeller s estimate of damages at a benchmark change  in global average temperature, T* (typically associated with a doubling of atmospheric CO2). For  example, in the original versions of PAGE and DICE the damage function resolves into a power  function:  Equation 3.9.1.   Djt =aj[Tt/T*]bYt  where b is a coefficient estimated or specified by the modeller, and aj is the modeller s estimate of  the economic damage for the benchmark temperature change.42 In DICE, b = 2 is chosen.43 In PAGE,  b is a random variable between 1.5 and 3. In FUND, the damage functions are deterministic but have  a slightly more complicated structure and calibration than in Equation 3.9.1.  Because each damage function is convex (with increasing marginal damage), the high degree of  spatial and temporal aggregation causes the model to understate aggregate damages. This can be  seen by representing the spatial or temporal distribution of warming by a mean and variance, and  writing expected damages in a second order expansion around the mean.  A concern may be whether the curvature reflected in Equation 3.9.1 is adequate. The functions are  calibrated to the typical warming associated with a doubling of CO2 concentration, along with  associated damage. The aggregate damage is based on heroic extrapolations to a regional or global  scale from a sparse set of studies (some from the 1990s) done at particular geographic locations. The  impacts literature is now paying somewhat more attention to higher levels of warming (New et al.  (2011), World Bank (2012), and WGII Section 19.5.1), though estimates of monetary damage remain  scarce (however, the literature is expanding rapidly). Another concern is the possibility of tipping  points and extreme events (Lenton et al., 2008), possibly including increases in global temperature  as large as 10 12oC that are not always reflected in the calibration (Sherwood and Huber, 2010).  The economic loss or gain from warming in a given year typically depends on the level of warming in  that same year, with no lagged effects (at least for damages other than sea level rise in DICE, the  non catastrophe component of damages in PAGE, and some sectors of FUND). Thus, impacts are (a)  reversible, and (b) independent of the prior trajectory of temperatures. This assumption simplifies  the computations, but some impacts and damages may actually depend on the rate of increase in  temperature.44 The optimal trajectory of mitigation and the level of damages could also depend on  the cumulative amount of warming in previous years (measured, say, in degree years).  DICE, FUND and PAGE represent damage as equivalent to a change in production of market  commodities that is proportional to output (a  multiplicative  formulation). Weitzman (2010a) finds  that this specification matters with high levels of warming because an additive formulation leads to  more drastic emission reduction. Besides affecting current market production, climate change could  damage natural, human, or physical capital (e.g., through wildfires or floods). Damage to capital  stocks may last beyond a year and have lingering impacts that are not captured in current  formulations (Wu et al., 2011). Economic consequences depend on what is assumed about the                                                               42 43 44  Typically, T* is 2.5 or 3 C. When Tt = T* in this equation, then Djt = ajYt.   This formulation is also used by Kandlikar (1996a) and Hammitt et al. (1996a) with b = 1, 2 or 3.   o  This rate of change was considered by Manne and Richels (2004a) in MERGE and by Peck and Teisberg  (1994) in CETA. The latter found that it can have quite a large effect on the size of the optimal carbon tax.      55 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  elasticity of substitution in the utility function between market commodities and non market climate  impacts. An elasticity of substitution of unity is equivalent to the conventional multiplicative  formulation, but a value less than unity, generates a more drastic trajectory of emission reductions  (Krutilla, 1967; Sterner and Persson, 2008).  The utility function in these three IAMs does not distinguish between the welfare gains deriving from  risk reduction when people are risk averse versus the gains from smoothing consumption over time  when people have declining marginal utility of income: both preferences are captured by the  curvature of the utility function as measured by  , in Equation 3.6.4. However, Kreps and Porteus  (1978) and Epstein and Zin (1991) show that two separate functions can have separate parameters  for risk aversion and inter temporal substitution. This formulation is used successfully in the finance  literature to explain anomalies in the market pricing of financial assets, including the equity premium  (Campbell, 1996; Bansal and Yaron, 2004). The insight from this literature is that the standard model  of discounted expected utility, used in DICE, FUND and PAGE, sets the risk premium too low and the  discount rate too high, a result confirmed by Ackerman et al. (2013) and Crost and Traeger (2013).  Our general conclusion is that the reliability of damage functions in current IAMs is low. Users should  be cautious in relying on them for policy analysis: some damages are omitted, and some estimates  may not reflect the most recent information on physical impacts; the empirical basis of estimates is  sparse and not necessarily up to date; and adaptation is difficult to properly represent.  Furthermore, the literature on economic impacts has been growing rapidly and is often not  fullyrepresented in damage functions used in IAMs. Some authors (e.g., WGII Chapter 19) conclude  these damage functions are biased downwards. It should be underscored that most IAMs used in  Chapter 6 of this volume do not consider damage functions so this particular criticism does not apply  to Chapter 6 analyses.    Box 3.9 Uncertainty and damages: the fat tails problem Weitzman (2009, 2011) has drawn attention to what has become known as the fat tails problem. He  emphasized the existence of a chain of structural uncertainties affecting both the climate system  response to radiative forcing and the possibility of some resulting impacts on human wellbeing that  could be catastrophic. Uncertainties relate to both means of distributions and higher moments. The  resulting compounded probability distribution of possible economic damage could have a fat bad  tail: i.e., the likelihood of an extremely large reduction in wellbeing does not go quickly to zero.45  With or without risk aversion, the expected marginal reduction in wellbeing associated with an  increment in emissions today could be very large, even infinite.46 See also Section 2.5.3.3.  A policy implication of the conditions described in the previous paragraph is that tail events can  become much more important in determining expected damage than would be the case with  probability distributions with thinner tails. Weitzman (2011) illustrates this for the distribution of  temperature consequences of a doubling of atmospheric CO2 (climate sensitivity), using IPCC WGI  estimates to calibrate two distributions, one fat tailed and one thin tailed, to have a median                                                                Weitzman (2009) defines a fat tailed distribution as one with an infinite moment generating function (a thin tailed distribution has a finite moment generating function); more intuitively, for a fat tailed distribution, the  tail probability approaches zero more slowly than exponentially.  For example, the normal (and any  distribution with finite support) would be thin tailed whereas the Pareto distribution (a power law  distribution) would be fat tailed.   Weitzman (2007b, 2009) argued that the expected marginal reduction in wellbeing could be infinite. His  results have been challenged by some as too pessimistic, e.g., Nordhaus (2011a), Pindyck (2011) and Costello  et al. (2010).  46 45     56 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  temperature change of 3oC and a 15% probability of a temperature change in excess of 4.5oC. With  this calibration, the probability of temperatures in excess of 8oC is nearly ten times greater with the  fat tailed distribution than the thin tailed distribution. If high consequence, low probability events  become more likely at higher temperatures, then tail events can dominate the computation of  expected damages from climate change, depending on the nature of the probability distribution and  other features of the problem (including timing and discounting).  At a more technical level, with some fat tailed distributions and certain types of utility functions  (constant relative risk aversion), the expectation of a marginal reduction in wellbeing associated with  an increment in emissions is infinite. This is because in these cases, marginal utility becomes infinite  as consumption goes to zero. This is a troubling result since infinite marginal damage implies all  available resources should be dedicated to reducing the effects of climate change. But as Weitzman  himself and other authors have pointed out, this extreme result is primarily a technical problem that  can be solved by bounding the utility function or using a different functional form.   The primary conclusion from this debate is the importance of understanding the impacts associated  with low probability, high climate change scenarios. These may in fact dominate the expected  benefits of mitigation.  The policy implication of this conclusion is that the nature of uncertainty can profoundly change how  climate policy is framed and analyzed with respect to the benefits of mitigation. Specifically, fatter  tails on probability distributions of climate outcomes increase the importance in understanding and  quantifying the impacts and economic value associated with tail events (such as 8oC warming). It is  natural to focus research attention on most likely outcomes (such as a 3oC warming from a CO2  doubling), but it may be that less likely outcomes will dominate the expected value of mitigation.   3.9.3    The aggregate costs of mitigation  Reductions in GHG emission often impose costs on firms, households, and governments as a result  of changes in prices, revenues and net income, and in the availability or quality of commodities. GHG  reduction requires not only technological but also behavioural and institutional changes, which may  affect wellbeing. The changes in wellbeing are measured in monetary terms through a change in  income that is equivalent to the impact on wellbeing. Changes in prices and incomes are often  projected through economic models (see Chapter 6). In many cases, mitigation primarily involves  improvements in energy efficiency or changes in the generation and use of energy from fossil fuels  in order to reduce GHG emissions.   The models assessed in Chapter 6 are called IAMs (or Integrated Models   IMs) because they couple  several systems together (such as the economy and the climate) in an integrated fashion, tracking  the impact of changes in economic production on GHG emissions, as well as of emissions on global  temperatures and the effect of mitigation policies on emissions. As discussed in Section 6.2, the  IAMs used in Chapter 6 are heterogeneous. However, for most of the Chapter 6 IAMs, climate  change has no feedback effects on market supply and demand, and most do not include damage  functions.47 The calculation of cost depends on assumptions made (1) in specifying the model s  structure and (2) in calibrating its parameters. The models are calibrated to actual economic data.  While more validation is required, some models are validated by making and testing predictions of  the response to observed changes (Valenzuela et al., 2007; Beckman et al., 2011; Baldos and Hertel,  2013). While some models do not address either the speed or cost of adjustment, many models  incorporate adjustment costs and additional constraints to reflect deviations from full optimization  (see Jacoby et al., 2006; Babiker et al., 2009; van Vuuren et al., 2009). Most models allow little scope  47                                                               Climate is assumed to be separable from market goods in the models  utility functions. If that assumption is  incorrect, Carbone and Smith (2013) show that the welfare calculation may have significant error.      57 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  for endogenous (price induced) technical change (3.11.4) or endogenous non price behavioural  factors (3.10.1). It is a matter of debate how well the models accurately represent underlying  economic processes (see Burtraw, 1996; Burtraw et al., 2005; Hanemann, 2010).   Besides estimating total cost, the models can be used to estimate Marginal Abatement Cost (MAC),  the private cost of abating one additional unit of emissions. With a cap and trade system, emissions  would theoretically be abated up to the point where MAC equals the permit price; with an emissions  tax, they would be abated to the point where MAC equals the tax rate. It is common to graph the  MAC associated with different levels of abatement. Under simplified conditions, the area under the  MAC curve measures the total economic cost of emissions reduction, but not if it fails to capture  some of the economy wide effects associated with large existing distortions (Klepper and Peterson,  2006; Paltsev et al., 2007; Kesicki and Ekins, 2012; Morris et al., 2012). However, a MAC is a static  approximation to the dynamic process involved in pollution abatement; it thus has its limitations.    Box 3.10 Could mitigation have a negative private cost? A persistent issue in the analysis of mitigation options and costs is whether available mitigation  opportunities can be privately profitable that is, generate benefits to the consumer or firm that are  in excess of their own cost of implementation but which are not voluntarily undertaken. Absent  another explanation, a negative private cost implies that a person is not fully pursuing his own  interest. (By contrast, a negative social cost arises when the total of everybody s benefits exceeds  costs, suggesting that some private decision maker is not maximizing the interests of others.) The  notion that available mitigation opportunities may have negative costs recently received attention  because of analyses by McKinsey & Company (2009), Enkvist et al. (2007) and others that focused  especially on energy use for lighting and heating in residential and commercial buildings, and on  some agricultural and industrial processes. Much of this literature is in the context of the  energy  efficiency gap, 48 which dates to the 1970s, and the  Porter hypothesis .49   The literature suggesting that available opportunities may have negative cost often points to  institutional, political, or social barriers as the cause. But other literature suggests economic  explanations. In addition, however, evidence indicates that the extent of such negative cost  opportunities can be overstated, particularly in purely engineering studies.  Engineering studies may overestimate the energy savings, for example because they assume perfect  installation and maintenance of the equipment (Dubin et al., 1986; Nadel and Keating, 1991) or they  fail to account for interactions among different investments such as efficient lighting and cooling  (Huntington, 2011). Engineering studies also may fail to account for all costs actually incurred,  including time costs, scarce managerial attention and the opportunity cost of the money, time, or  attention devoted to energy efficiency.50 In some cases, the engineering analysis may not account                                                                The efficiency gap is defined as the difference between the socially desirable amount of energy efficiency  (however defined) and what firms and consumers are willing to undertake voluntarily (see Meier and Whittier,  1983; Joskow and Marron, 1992, 1993; Jaffe and Stavins, 1994).    Porter (1991) and Porter and van der Linde (1995) argued that unilateral reductions in pollution could  stimulate innovation and improve firms  competitiveness as a by product; see also Lanoie et al (2008); Jaffe  and Palmer (1997). The subsequent literature has obtained mixed finding (Ambec and Barla, 2006; Ambec et  al., 2013).   For example, Anderson and Newell (2004) examined energy audits for manufacturing plants and found that  roughly half of the projects recommended by auditors were not adopted despite extremely short payback  periods. When asked, plant managers responded that as much as 93 percent of the projects were rejected for  economic reasons, many of which related to high opportunity costs. Joskow and Marron (1992, 1993) show  some engineering estimates understated actual costs.  50 49 48     58 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  for reductions in quality (e.g., CFL lighting is perceived as providing less attractive lighting services).  Choices may also be influenced by uncertainty (e.g., this is an unfamiliar product, one doesn t know  how well it will work, or what future energy prices will be). Another consideration sometimes  overlooked in engineering analyses is the rebound effect   the cost saving induces a higher rate of  equipment usage (see Section 3.9.5   ). The analyses may overlook heterogeneity among consumers:  what appears attractive for the average consumer may not be attractive for all (or many) consumers,  based on differences in their circumstances and preferences. One approach to validation is to  examine energy efficiency programs and compare ex ante estimates of efficiency opportunities with  ex post accomplishment; the evidence from such comparisons appears to be inconclusive, though  more analysis may be fruitful.51  Economic explanations for the apparent failure to pursue profitable mitigation/energy saving  opportunities include the following.52 Given uncertainty and risk aversion, consumers may rationally  desire a higher return as compensation. Price uncertainty and the irreversibility of investment may  also pose additional economic barriers to the timing of adoption   it may pay to wait before making  the investment (Hassett and Metcalf, 1993; Metcalf, 1994). Mitigation investments take time to pay  off, and consumers act as if they are employing high discount rates when evaluating such  investments (Hausman, 1979). These consumer discount rates might be much higher than those of  commercial businesses, reflecting liquidity and credit constraints. The durability of the existing  capital stock can be a barrier to rapid deployment of otherwise profitable new technologies. Also, a  principal agent problem arises when the party that pays for an energy efficiency investment doesn t  capture all the benefits, or vice versa. For example a tenant installs an efficient refrigerator, but the  landlord retains ownership when the tenant leaves (split incentives). Or the landlord buys a  refrigerator but doesn t care about its energy efficiency. Such problems can also arise in  organizations where different actors are responsible, say, for energy bills and investment accounts.53  Finally, energy users, especially residential users, may be uninformed, or poorly informed, about the  energy savings they are forgoing. In some cases, the seller of the product has better information  than the potential buyer (asymmetric information) and may fail to convey that information credibly  (Bardhan et al., 2013).  Recently, some economists have suggested that systematic behavioral biases in decision making can  cause a failure to make otherwise profitable investment. These have been classified as non standard  beliefs (e.g., incorrect assessments of fuel savings   Allcott, 2013), non standard preferences (e.g.,  loss aversion   Greene et al., 2009), and non standard decision making (e.g., tax salience   Chetty et  al., 2009). Such phenomena can give rise to what might be considered  misoptimization  by decision  makers, which in turn could create a role for efficiency improving policy not motivated by  conventional market failures (Allcott et al., forthcoming); see Section 3.10.1   for a fuller account.  In summary, whether opportunities for mitigation at negative private cost exist is ultimately an  empirical question. Both economic and non economic reasons can explain why they might exist, as  noted in recent reviews (Huntington, 2011; Murphy and Jaccard, 2011; Allcott and Greenstone,  2012; Gillingham and Palmer, 2014). But, evidence also suggests that the occurrence of negative  51                                                               Arimura et al (2012) review US electricity industry conservation programmes (demand side management    DSM) and conclude that programmes saved energy at a mean cost of USD 0.05 per kWh, with a 90%  confidence interval of USD 0.003 to USD 0.010. Allcott and Greenstone (2012) conclude that this average cost  is barely profitable. Although this may be true, one cannot conclude that on this evidence alone that ex ante  engineering estimates of costs were too optimistic.  52 53 Allcott and Greenstone (2012) and Gillingham and Palmer (2014) provide excellent reviews.   Davis (2011) and Gillingham et al (2012) provide evidence of principal agent problems in residential energy,  although amount of energy lost as a result was not large in the cases examined.      59 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  private costs is sometimes overstated, for reasons identified above. This remains an active area of  research and debate. 3.9.4    Social cost of carbon  Although estimates of aggregate damages from climate change are useful in formulating GHG  mitigation policies (despite the caveats listed in Section 3.9.2   ), they are often needed for more  mundane policy reasons. Governments have to make decisions about regulation when implementing  energy policies, such as on fuel or EE standards for vehicles and appliances. The social cost of carbon  emissions can be factored into such decisions.  To calculate the social cost, consider a baseline trajectory of emissions (E0, ,Et) that results in a  trajectory of temperature changes, Tt. Suppose a damage function for year t is discounted to the  present and called D(Tt), as discussed in Equation 3.9.2. These trajectories result in a discounted  present value of damages:   Equation 3.9.2.   PVD D ( Tt ) dt   0 Then take the derivative with respect to a small change in emissions at t=0, E0, to measure the extra  cost associated with a one tonne increase in emissions at time 0 (that is, the increment in PVD):   Equation 3.9.3.   MDCC PVD .  E0 When applied to CO2 this equation gives the marginal damage from the change in climate that  results from an extra tonne of carbon. It is also called the social cost of carbon (SCC). It should be  emphasized that the calculation of SCC is highly sensitive to the projected future trajectory of  emissions and also any current or future regulatory regime.54   Because of its potential use in formulating climate or energy regulatory policy, governments have  commissioned estimates of SCC. Since 2002, an SCC value has been used in policy analysis and  regulatory impact assessment in the United Kingdom (Clarkson and Deyes, 2002). It was revised in  2007 and 2010. In 2010, a standardized range of SCC values based on simulations with DICE, FUND,  and PAGE using alternative projections of emissions and alternative discount rates, was made  available to all U.S. Government agencies.55 It was updated in 2013 (US Interagency Working Group,  2013).  3.9.5    The Rebound effect  Technological improvements in energy efficiency (EE) have direct effects on energy consumption and  thus GHG emissions, but can cause other changes in consumption, production, and prices that will,  in turn, affect GHG emissions. These changes are generally called  rebound  or  takeback  because in  most cases they reduce the net energy or emissions reduction associated with the efficiency  improvement. The size of rebound is controversial, with some research papers suggesting little or no  rebound and others concluding that it offsets most or all reductions from EE policies (Greening et al.,  2000; Binswanger, 2001; Gillingham et al., 2013, summarize the empirical research). Total EE                                                               54  Some ambiguity regards the definition of the SCC and the correct way to calculate it in the context of an  equilibrium IAM (in terms of distinguishing between a marginal change in welfare vs. a marginal change in  damage only). See, for instance, an account of the initial U.S. Government effort (Greenstone et al., 2013).    Obviously, estimates of the SCC are sensitive to the structural and data assumptions in the models used to  compute the SCC. Weitzman (2013), for instance, demonstrates the significance of the discount rate in the  calculation.   55     60 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  rebound can be broken down into three distinct parts: substitution effect, income effect, and  economy wide.  In end use consumption, substitution effect rebound, or  direct rebound  assumes that a consumer  will make more use of a device if it becomes more energy efficient because it will be cheaper to use.  Substitution effect rebound extends to innovations triggered by the improved EE that results in new  ways of using the device. To pay for that extra use, the individual must still consume less of  something else, so net substitution effect rebound is the difference between the energy expended  in using more of the device and the energy saved from using whatever was previously used less (see  Thomas and Azevedo, 2013).  Income effect rebound or  indirect rebound , arises if the improvement in EE makes the consumer  wealthier and leads them to consume additional products that require energy. Even if energy  efficient light bulbs lead to no substitution effect rebound (more lighting), income effect rebound  would result if the consumer spends the net savings from installing the bulbs on new consumption  that uses energy. The income effect rebound will reflect the size of the income savings from the EE  improvement and the energy intensity of marginal income expenditures.  Analogous rebound effects for EE improvements in production are substitution towards an input  with improved energy efficiency, and substitution among products by consumers when an EE  improvement changes the relative prices of goods, as well as an income effect when an EE  improvement lowers production costs and creates greater wealth.  Economy wide rebound refers to impacts beyond the behaviour of the entity benefiting directly  from the EE improvement, such as the impact of EE on the price of energy. For example, improved  fuel economy lowers vehicle oil demand and prices leading some consumers to raise their  consumption of oil products. The size of this energy price effect will be greater with less elastic  supply and more elastic demand. Some argue that the macroeconomic multiplier effects of a wealth  shock from EE improvement also create economy wide rebound.  Rebound is sometimes confused with the concept of economic leakage, which describes the  incentive for emissions intensive economic activity to migrate away from a region that restricts  GHGs (or other pollutants) towards areas with fewer or no restrictions on such emissions. Energy  efficiency rebound will occur regardless of how broadly or narrowly the policy change is adopted. As  with leakage, however, the potential for significant rebound illustrates the importance of  considering the full equilibrium effects of a policy designed to address climate change.  3.9.6    Greenhouse gas emissions metrics  The purpose of emissions metrics is to establish an exchange rate, that is, to assign relative values  between physically and chemically different GHGs and radiative forcing agents (Fuglestvedt et al.,  2003; Plattner et al., 2009). For instance, per unit mass, CH4 is a more potent GHG than CO2 in terms  of instantaneous radiative forcing, yet it operates on a shorter time scale. In a purely temporal  sense, the impacts are different. Therefore, how should mitigation efforts be apportioned for  emissions of different GHGs?56   GHG emissions metrics are required for generating aggregate GHG emissions inventories; to  determine the relative prices of different GHGs in a multi gas emissions trading system; for designing  multi gas mitigation strategies; or for undertaking life cycle assessment (e.g., Peters et al., 2011b).  Since metrics quantify the trade offs between different GHGs, any metric used for mitigation  strategies explicitly or implicitly evaluates the climate impact of different gases relative to each  other.                                                                56  This issue is discussed in Chapter 8 of WGI.      61 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  The most prominent GHG emissions metric is the Global Warming Potential (GWP), which calculates  the integrated radiative forcing from the emission of one kilogram of a component j out to a time  horizon T:  Equation 3.9.4.   ,  The AGWP is an absolute metric. The corresponding relative metric is then defined as GWPj = AGWPj  / AGWPCO2.  The GWP with a finite time horizon T was introduced by the IPCC (1990). With a 100 year time  horizon, the GWP is used in the Kyoto Protocol and many other scientific and policy applications for  converting emissions of various GHGs into  CO2 equivalents . As pointed out in WGI, no scientific  argument favours selecting 100 years compared with other choices. Conceptual shortcomings of the  GWP include: (a) the choice of a finite time horizon is arbitrary, yet has strong effects on metric  value (IPCC, 1990); (b) the same CO2 equivalent amount of different gases may have different  physical climate implications (Fuglestvedt et al., 2000b; O Neill, 2000; Smith and Wigley, 2000); (c)  physical impacts and impacts to humans (well being) are missing; and (d) temporal aggregation of  forcing does not capture important differences in temporal behaviour. Limitations and  inconsistencies also relate to the treatment of indirect effects and feedbacks (see WGI, Chapter 8).  Many alternative metrics have been proposed in the scientific literature. It can be argued that the  net impacts from different gases should be compared (when measured in the same units) and the  relative impact used for the exchange rate. The Global Damage Potential (GDamP) follows this  approach by using climate damages as an impact proxy, and exponential discounting for inter temporal aggregation of impacts (Hammitt et al., 1996b; Kandlikar, 1996b). Since marginal damages  depend on the time at which GHGs are emitted, the GDamP is a time variant metric. The GDamP  accounts for the full causal chain from emissions to impacts. One advantage of the framework is that  relevant normative judgements, such as the choice of inter temporal discounting and the valuation  of impacts, are explicit (Deuber et al., 2013). In practice, however, the GDamP is difficult to  operationalize. The difficulties in calculating the GDamP and SCC are closely related (see Section  3.9.4).  The Global Cost Potential (GCP) calculates the time varying ratio of marginal abatement costs of  alternative gases arising in a cost effective multi gas mitigation strategy given a prescribed climate  target (Manne and Richels, 2001), such as a cap on temperature change or on GHG concentrations.  While the GCP avoids the problems associated with damage functions, it still requires complex  integrated energy economy climate models to calculate GHG price ratios, and is therefore less  transparent to stakeholders than physical metrics.57  The time dependant Global Temperature Change Potential (GTP) is a physical metric that does not  involve integration of the chosen impact parameter over time (Shine et al., 2007). It is defined as the  relative effect of different gases on temperature at a predefined future date from a unit impulse of  those gases. Typically these are normalized to a base, such as same mass of CO2 emitted. While the  GWP and GTP were not constructed with a specific policy target in mind, the GCP is conceptually  more consistent with a policy approach aiming at achieving climate objectives in a cost effective way  (Fuglestvedt et al., 2003; Manning and Reisinger, 2011; Tol et al., 2012).  Virtually all absolute metrics (AMj) can be expressed in terms of a generalization of Equation 3.9.4.  (Kandlikar, 1996b; Forster et al., 2007):  Equation 3.9.5.                                                                57 , , ,   In the context of a multi gas integrated assessment model which seeks to minimize the cost of meeting a  climate target.      62 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  where the impact function Ij links the metric to the change in a physical climate parameter, typically  the global mean radiative forcing RF (e.g., in the case of the GWP) or the change in global mean  temperature  T (e.g., GTP and most formulations of the GDamP). In some cases, the impact function  also considers the rate of change of a physical climate parameter (Manne and Richels, 2001;  Johansson et al., 2006).  The temporal  weighting function, W(t) , determines how the metric aggregates impacts over time. It  can prescribe a finite time horizon (GWP), evaluation at a discrete point in time (GTP), or exponential  discounting over an infinite time horizon (GDamP), which is consistent with the standard approach  to inter temporal aggregation used in economics (see Section 3.6.2   ). The weighting used in the  GWP is a weight equal to one up to the time horizon and zero thereafter.  The categorization according to their choice of impact and temporal weighting function (Table 3.4)  serves to expose underlying explicit and implicit assumptions, which, in turn, may reflect normative  judgements. It also helps to identify relationships between different metric concepts (Tol et al.,  2012; Deuber et al., 2013). In essence, the choice of an appropriate metric for policy applications  involves a trade off between completeness, simplicity, measurability, and transparency (Fuglestvedt  et al., 2003; Plattner et al., 2009; Deuber et al., 2013). The GDP and GCP are cost effective in  implementing multi gas mitigation policies, but are subject to large measurability, value based, and  scientific uncertainties. Simple physical metrics, such as the GWP, are easier to calculate and  produce a more transparent result, but are inaccurate in representing the relevant impact trade offs  between different GHGs (Fuglestvedt et al., 2003; Deuber et al., 2013).  The choice of metric can have a strong effect on the numerical value of GHG exchange rates. This is  particularly relevant for CH4, which operates on a much shorter timescale than CO2. In WGI, Section  8.7, an exchange ratio of CH4 to CO2 of 28 is given for GWP and of 4 for a time horizon of 100 years  for GTP.58 For a quadratic damage function and a discount rate of 2%, Boucher (2012) obtained a  median estimate of the GDamP exchange ratios of 24.3. This exchange rate obviously has very  significant implications for relative emphasis a country may place on methane mitigation vs. carbon  dioxide mitigation.  A small but increasing body of literature relates to the economic implications of metric choice. A  limited number of model based examinations find that, despite its conceptual short comings, the  GWP 100 performs roughly similarly to GTP or a cost optimizing metric (such as the GCP) in terms of  aggregate costs of reaching a prescribed climate target, although regional and sectoral differences  may be significant (Godal and Fuglestvedt, 2002; Johansson et al., 2006; Reisinger et al., 2013; Smith  et al., 2013; Ekholm et al., 2013). In other words, based on these few studies, the scope for reducing  aggregate mitigation costs of reaching a particular climate target by switching to a metric other than  the currently used GWP 100 may be limited, although there may be significant differences in terms  of regional costs.  In the Kyoto Protocol, emission reductions of one GHG can be traded with reductions in all other  GHGs. Such  single basket  approaches implicitly assume that the GHGs can linearly substitute each  other in the mitigation effort. However, the same CO2 equivalent amount of different GHGs can  result in climate responses that are very different for transitional and long term temperature  change, chiefly due to different life times of the substances (Fuglestvedt et al., 2000a; Smith and  Wigley, 2000). As an alternative, multi basket approaches have been proposed, which only allow  trading within groups of forcing agents with similar physical and chemical properties (Rypdal et al.,  2005; Jackson, 2009; Daniel et al., 2012; Smith et al., 2013). Smith et al. (2013) propose a  methodology for categorizing GHGs into two baskets of (a) long lived species, for which the  cumulative emissions determine the long term temperature response, and (b) shorter lived species                                                               58  See WGI Chapter 8, Appendix 8A for GWP and GTP values for an extensive list of components.      63 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  for which sustained emissions matter. Applying separate emission equivalence metrics and  regulations to each of the two baskets can effectively control the maximum peak temperature  reached under a global climate policy regime. However, further research on the institutional  requirements and economic implications of such an approach is needed, as it requires regulators to  agree on separate caps for each basket and reduces the flexibility of emission trading systems to  harvest the cheapest mitigation options.  Table 3.4. Overview and classification of different metrics from the scientific literature  Impact Atmospheric Name of metric Time dimension Reference function background GWP Global Warming Potential RF Constant Constant temporal weighting over fixed time horizon IPCC (1990) Lashof and Ahuja (1990) Fuglestvedt et al., (2010), Shine et al. (2005) Shine et al. (2007) Johannson (2012) Gillet and Mathews (2010), Peters et al (2011a) Manne and Richels (2001) Kandlikar (1996a), Hammit et al. (1996a) Global Warming GWP-LA Potential (discounting) GTP-H RF Constant, average of Exponential future conditions discounting Evaluation at a fixed time T after emission Evaluation at a fixed end point time in the future complex function of time when climate threshold is reached Constant temporal weighting over fixed time horizon Exponential discounting Exponential discounting Global Temperature Change Potential T (fixed time horizon) Time-dependent global temperature change potential Cost Effective Temperature Potential Mean Global Temperature Change Potential Global Cost Potential T Constant GTP(t) Time-varying CETP T Exogenous scenario MGTP T Time-varying GCP Infinite damage above climate Time-varying target D(T) Time-varying Global Damage GDamP Potential   3.10   Behavioural economics and culture  This section summarizes behavioural economics related to climate change mitigation. We focus on  systematic deviations from the traditional neoclassical economic model, which assumes that  preferences are complete, consistent, transitive, and non altruistic, and that humans have  unbounded computational capacity and rational expectations. In this context, social and cultural  issues and conditions that frame our attitudes, as well as living conditions, are also addressed.  Chapter 2 also considers behavioural questions, though primarily in the context of risk and  uncertainty.  Although the focus is on the behaviour of individuals, some firms and organizations also take actions  that appear to be inconsistent with the standard neoclassical model of the profit maximizing firm  (Lyon and Maxwell, 2007).      64 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.10.1    Behavioural economics and the cost of emissions reduction  Behavioural economics deals with cognitive limitations (and abilities) that affect people s economic  decision making processes. Choices can be affected and/or framed by perceived fairness, social  norms, cooperation, selfishness, and so on.59 Behavioural economics emphasizes the cognitive,  social, and emotional factors that lead to apparently irrational choices. A growing number of  documented systematic deviations from the neoclassical model help explain people s behaviour, but  here we focus on several that we see as most relevant to climate change mitigation.60   3.10.1.1    Consumer undervaluation of energy costs  Consumers may undervalue energy costs when they purchase energy using durables, such as  vehicles, or make other investment decisions related to energy use.61 By  undervalue , we mean that  consumers  choices systematically fail to maximize the utility they experience when the choices are  implemented ( experienced  utility) (Kahneman and Sugden, 2005; see also, e.g., Fleurbaey, 2009).  This misoptimization reduces demand for EE. Three potential mechanisms of undervaluation may be  most influential (see also Box 3.10). First, when considering a choice with multiple attributes,  evidence suggests that consumers are inattentive to add on costs and ancillary attributes, such as  shipping and handling charges or sales taxes (Hossain and Morgan, 2006; Chetty et al., 2009). It  could be that EE is a similar type of ancillary product attribute and is thus less salient at the time of  purchase. Second, significant evidence across many contexts also suggests that humans are  present  biased  (DellaVigna, 2009). If energy costs affect consumption in the future while purchase prices  affect consumption in the present, this would lead consumers to be less energy efficient. Third,  people s beliefs about the implications of different choices may be systematically biased (Jensen,  2010; Bollinger et al., 2011; Kling et al., 2012; McKenzie et al., 2013). Attari et al. (2010) show that  people systematically underestimate the energy savings from a set of household energy conserving  activities, and Allcott (2013) shows that the average consumer either correctly estimates or  systematically slightly underestimates the financial savings from more fuel efficient vehicles. Each of  these three mechanisms of undervaluation appears plausible based on results from other contexts.  However, rigorous evidence of misoptimization is limited in the specific context of energy demand  (Allcott and Greenstone, 2012).  Three implications arise for climate and energy policy if the average consumer who is marginal to a  policy does, in fact, undervalue energy costs. The first is an  internality dividend  from carbon taxes  (or other policies that internalize the carbon externality into energy prices): a carbon tax can actually  increase consumer welfare when consumers undervalue energy costs (Allcott et al., forthcoming).  This occurs because undervaluation would be a pre existing distortion that reduces demand for EE  below consumers  private optima, and one that increasing carbon taxes helps to correct. Second, in  addition to carbon taxes, other tax or subsidy policies that raise the relative purchase price of  energy inefficient durable goods can improve welfare (Cropper and Laibson, 1999; O Donoghue and  Rabin, 2008; Fullerton et al., 2011). Third, welfare gains are largest from policies that preferentially  target consumers who undervalue energy costs the most. This effect is related to the broader  philosophies of libertarian paternalism (Sunstein and Thaler, 2003) and asymmetric paternalism  (Camerer et al., 2003), which advocate policies that do not infringe on freedom of choice but could  improve choices by the subset of people who misoptimize. In the context of energy demand, such                                                               59 See, e.g., Babcock and Loewenstein (1997), Shiv and Fedorikhin (1999), Asheim et al. (2006), Barrett (2007),  Levati et al. (2007), Potters et al. (2007), Shogren and Taylor (2008) and Dannenberg et al. (2010).  See Rachlinksi (2000), Brekke and Johansson Stenmann (2008), Gowdy (2008) and the American  Psychological Association (2010).  60  This can even apply to cases that use sophisticated methods to support decisions (e.g., Korpi and Ala Risku,  2008).  61     65 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  policies might include labels or programmes that provide information about, and attract attention  to, energy use by durable goods.  3.10.1.2    Firm behaviour  Some of the phenomena described above may also apply to firms. Lyon and Maxwell (2004, 2008)  examine in detail the tendency of firms to undertake pro environment actions, such as mitigation,  without being prompted by regulation. Taking a neoclassical approach to the problem, they find that  firms view a variety of pro environment actions as being to their advantage. However, evidence of a  compliance norm has been found in other contexts where firms  responses to regulation have been  studied (Ayres and Braithwaite, 1992; Gunningham et al., 2003).  The conventional economic model represents the firm as a single, unitary decision maker, with a  single objective, namely, profit maximization. As an alternative to this  black box  model of the firm  (Malloy, 2002), the firm may be seen as an organization with a multiplicity of actors, perhaps with  different goals, and with certain distinctive internal features (Coase, 1937; Cyert and March, 1963;  Williamson, 1975).  3.10.1.3    Non price interventions to induce behavioural change  Besides carbon taxes and other policies that affect relative prices, other non price policy instruments  can reduce energy demand, and, therefore, carbon emissions. Such interventions include supplying  information on potential savings from energy efficient investment, drawing attention to energy use,  and providing concrete examples of energy saving measures and activities (e.g., Stern, 1992;  Abrahamse et al., 2005). They also include providing feedback on historical energy consumption  (Fischer, 2008) and information on how personal energy use compares to a social norm (Allcott,  2011).62  In some cases, non price energy conservation and efficiency programmes may have low costs to the  programme operator, and it is therefore argued that they are potential substitutes if carbon taxes  are not politically feasible (Gupta et al., 2007). However, it is questionable whether such  interventions are appropriate substitutes for carbon taxes, for example, in terms of environmental  and cost effectiveness, because their impact may be small (Gillingham et al., 2006) and unaccounted  costs may reduce the true welfare gains. For example, consumers  expenditures on energy efficient  technologies and time spent turning lights off may not be observed.  Research in other domains (e.g., Bertrand et al., 2010) has shown that a person s choices are  sometimes not consistent. They may be malleable by  ancillary conditions    non informational  factors that do not affect experienced utility. In the context of EE, this could imply that energy  demand may be reduced with relatively low welfare costs through publicity aimed at changing  consumer preferences. However, publicly funded persuasion campaigns bring up important ethical  and political concerns, and the effectiveness of awareness raising programmes on energy and  carbon will depend on how consumers actually use the information and the mix of policy  instruments (Gillingham et al., 2006; Gupta et al., 2007; also Worrell et al., 2004; Mundaca et al.,  2010).  3.10.1.4    Altruistic reductions of carbon emissions  In many contexts, people are altruistic, being willing to reduce their own welfare to increase that of  others. For example, in laboratory  dictator games , people voluntarily give money to others  (Forsythe et al., 1994), and participants in public goods games regularly contribute more than the  privately optimal amount (Dawes and Thaler, 1988; Ledyard, 1993). Charitable donations in the                                                               62 The efficacy of these interventions can often be explained within neoclassical economic models. From an  expositional perspective, it is still relevant to cover them in this section.      66 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  United States amount to more than 2% of GDP (List, 2011). Similarly, many individuals voluntarily  contribute to environmental public goods, such as reduced carbon emissions. For example, USD 387  million were spent in the U.S. on voluntary carbon offset purchases in 2009 (Bloomberg, 2010).  Pre existing altruistic voluntary carbon emission reductions could moderate the effects of a new  carbon tax on energy demand because the introduction of monetary incentives can  crowd out   altruistic motivations (Titmuss, 1970; Frey and Oberholzer Gee, 1997; Gneezy and Rustichini, 2000).  Thus, a carbon tax could reduce voluntary carbon emission reductions even as it increases  financially motivated reductions. While this effect might not weaken the welfare argument for a  carbon tax, it does reduce the elasticity of carbon emissions with respect to a carbon tax.   Reciprocity, understood as the practice of people rewarding generosity and castigating cruelty  towards them, has been found to be a key driver of voluntary contributions to public goods. Positive  reciprocity comes in the form of conditional cooperation, which is a tendency to cooperate when  others do so too (Axelrod, 1984; Fischbacher et al., 2001; Frey and Meier, 2004). However,  cooperation based on positive reciprocity is often fragile and is declining over time (Bolton et al.,  2004; Fischbacher and Gächter, 2010). Incentives and penalties are fundamental to maintaining  cooperation in environmental treaties (Barrett, 2003). Adding a strategic option to punish defectors  often stabilizes cooperation, even when punishment comes at a cost to punishers (Ostrom et al.,  1992; Fehr and Gächter, 2002). Yet, if agents are allowed to counter punish, the effectiveness of  reciprocity to promote cooperation might be mitigated (Nikiforakis, 2008). However, most  laboratory studies have been conducted under symmetric conditions and little is known about  human cooperation in asymmetric settings, which tend to impose more serious normative conflicts  (Nikiforakis et al., 2012).  Experiments also reveal a paradox: actors can agree to a combined negotiated climate goal for  reducing the risk of catastrophe, but behave as if they were blind to the risks (Barrett and  Dannenberg, 2012). People are also often motivated by concerns about the fairness of outcomes  and procedures; in particular, many do not like falling behind others (Fehr and Schmidt, 1999; Bolton  and Ockenfels, 2000; Charness and Rabin, 2002; Bolton et al., 2005). Such concerns can both  promote and hamper the effectiveness of negotiations, including climate negotiations, in  overcoming cooperation and distributional problems (Güth et al., 1982; Lange and Vogt, 2003; Lange  et al., 2007; Dannenberg et al., 2010).  Uncertainty about outcomes and behaviours also tends to hamper cooperation (Gangadharan and  Nemes, 2009; Ambrus and Greiner, 2012). As a result, the information given to, and exchanged by,  decision makers may affect social comparison processes and reciprocal interaction, and thus the  effectiveness of mechanisms to resolve conflicts (Goldstein et al., 2008; Chen et al., 2010; Bolton et  al., 2013). In particular, face to face communication has been proved to significantly promote  cooperation (Ostrom, 1990; Brosig et al., 2003). Concerns about free riding are perceived as a  barrier to engaging in mitigation actions (Lorenzoni et al., 2007). The importance of fairness in  promoting international cooperation (see also Chapter 4) is one of the few non normative  justifications for fairness in climate policy.  3.10.1.5    Human ability to understand climate change  So far, we have covered deviations from the neoclassical model that affect energy demand. Such  deviations can also affect the policy making process. The understanding of climate change as a  physical phenomenon with links to societal causes and impacts is highly complex (Weber and Stern,  2011). Some deviations are behavioural and affect perceptions and decision making in various  settings besides climate change. (See Section 2.4 for a fuller discussion). For example, perceptions  of, and reactions to, uncertainty and risk can depend not only on external reality, as assumed in the  neoclassical model, but also on cognitive and emotional processes (Section 2.4.2). When making  decisions, people tend to overweight outcomes that are especially  available  or salient (Kahneman  and Tversky, 1974, 1979). They are more averse to losses than they are interested in gains relative to      67 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  a reference point (Kahneman and Tversky, 1979). Because climate change involves a loss of existing  environmental amenities, this can increase its perceived costs. However, if the costs of abatement  are seen as a reduction relative to a reference rate of future economic growth, this can increase the  perceived costs of climate change mitigation.  Some factors make it hard for people to think about climate change and lead them to underweight  it: change happens gradually; the major effects are likely to occur in the distant future; the effects  will be felt elsewhere; and their nature is uncertain. Furthermore, weather is naturally variable, and  the distinction between weather and climate is often misunderstood (Reynolds et al., 2010).  People s perceptions and understanding of climate change do not necessarily correspond to  scientific knowledge (Section 2.4.3) because they are more vulnerable to emotions, values, views,  and (unreliable) sources (Weber and Stern, 2011). People are likely to be misled if they apply their  conventional modes of understanding to climate change (Bostrom et al., 1994).  3.10.2    Social and cultural issues  In recent years, the orientation of social processes and norms towards mitigation efforts has been  seen as an alternative or complement to traditional mitigation actions, such as incentives and  regulation. We address some of the concepts discussed in the literature, which, from a social and  cultural perspective, contribute to strengthening climate change actions and policies.  3.10.2.1    Customs  In both developed and developing countries, governments, social organizations, and individuals have  tried to change cultural attitudes towards emissions, energy use, and lifestyles (European  Commission, 2009). For example, household energy use patterns for space and water heating differ  significantly between Japan and Norway because of lifestyle differences (Wilhite et al., 1996; Gram Hanssen, 2010). Some have argued that the bio cultural heritage of indigenous peoples is a resource  that should be valued and preserved as it constitutes an irreplaceable bundle of teachings on the  practices of mitigation and sustainability (Sheridan and Longboat, 2006; Russell Smith et al., 2009;  Kronik and Verner, 2010). Sometimes local strategies and indices have metamorphosed into national  policies, as in the case of  Buen Vivir  in Ecuador (Choquehuanca, 2010; Gudynas, 2011) and  Gross  National Happiness  (GNH), described in Box 3.11. In rich countries, and among social groups with  high levels of environmental awareness, interest in sustainability has given rise to cultural  movements promoting change in modes of thought, production, and consumption. Including the  cultural dimension in mitigation policies facilitates social acceptability.    Box 3.11 Gross National Happiness (GNH) The Kingdom of Bhutan has adopted an index of GNH as a tool for assessing national welfare and  planning development (Kingdom of Bhutan, 2008). According to this concept, happiness does not  derive from consumption, but rather from factors such as the ability to live in harmony with nature  (Taplin et al., 2013). Thus, GNH is both a critique of, and an alternative to, the conventional global  development model (Taplin et al., 2013). The GNH Index measures wellbeing and progress according  to nine key domains (and 72 core indicators) (Uddin et al., 2007). The intention is to increase access  to health, education, clean water, and electrical power (Pennock and Ura, 2011) while maintaining a  balance between economic growth, environmental protection, and the preservation of local culture  and traditions. This is seen as a  Middle Way  aimed at tempering the environmental and social costs  of unchecked economic development (Frame, 2005; Taplin et al., 2013).  3.10.2.2    Indigenous peoples  Indigenous peoples number millions across the globe (Daes, 1996). Land and the natural  environment are integral to their sense of identity and belonging and to their culture, and are  essential for their survival (Gilbert, 2006; Xanthaki, 2007). The ancestral lands of indigenous peoples      68 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  contain 80% of the earth s remaining healthy ecosystems and global biodiversity priority areas,  including the largest tropical forests (Sobrevila, 2008). Because they depend on natural resources  and inhabit biodiversity rich but fragile ecosystems, indigenous peoples are particularly vulnerable  to climate change and have only limited means of coping with such change (Henriksen, 2007;  Permanent Forum on Indigenous Issues, 2008). They are often marginalized in decision making and  unable to participate adequately in local, national, regional, and international climate change  mechanisms. Yet, it is increasingly being recognized that indigenous peoples can impart valuable  insights into ways of managing mitigation and adaptation (Nakashima et al., 2012), including forest  governance and conserving ecosystems (Nepstad et al., 2006; Hayes and Murtinho, 2008; Persha et  al., 2011).  3.10.2.3    Women and Climate Change  Women often have more restricted access to, and control of, the resources on which they depend  than men. In many developing countries, most small scale food producers are women. They are  usually the ones responsible for collecting water and fuel and for looking after the sick. If climate  change adversely affects crop production and the availability of fuel and water, or increases ill  health, women may bear a disproportionate burden of those consequences (Dankelman, 2002;  UNEP, 2011).63 On the other hand, they may be better at adapting to climate change, both at home  and in the community. But given their traditional vulnerability, the role of women across society will  need to be re examined in a gender sensitive manner to ensure they have equal access to all types  of resources (Agostino and Lizarde, 2012).  3.10.2.4    Social institutions for collective action   Social institutions shape individual actions in ways that can help in both mitigation and adaptation.  They promote trust and reciprocity, establish networks, and contribute to the evolution of common  rules. They also provide structures through which individuals can share information and knowledge,  motivate and coordinate behaviour, and act collectively to deal with common challenges. Collective  action is reinforced when social actors understand they can participate in local solutions to a global  problem that directly concerns them.  As noted in Sections 3.10.1.5   and 2.4, public perceptions of the cause and effect of climate change  vary, in both developed and developing countries, with some erroneous ideas persisting even among  well educated people. Studies of perceptions (O Connor et al., 1999; Corner et al., 2012)  demonstrate that the public is often unaware of the roles that individuals and society can play in  both mitigation and adaptation. The concepts of social and policy learning can be used in stimulating  and organizing collective action. Social learning involves participation by members of a group in  discourse, imitation, and shared collective or individual actions. The concept of policy learning  describes the process of adaptation by organizations to external change while retaining or  strengthening their own objectives and domination over existing socio economic structures (Adger  and Kelly, 1999). The task of an educational programme in mitigating and adapting to climate change  is to represent a collective global problem in individual and social terms. This will require the  strategies for disseminating scientific information to be reinforced and the practical implications  advertised in ways that are understandable to diverse populations (González Gaudiano and Meira  Cartea, 2009).                                                                Natural disasters over the period 1981 2002 revealed evidence of a gender gap: natural disasters lowered  women s life expectancy more than men s: the worse the disaster and the lower the woman s socio economic  status the bigger the disparity (Neumayer and Plümper, 2007).  63     69 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  3.11   Technological change  Mitigation scenarios aim at significant reductions in current emission levels that will be both difficult  and costly to achieve with existing technological options. However, cost reducing technological  innovations are plausible. The global externality caused by climate change compounds market  failures common to private sector innovations. Appropriate policy interventions are accordingly  needed to encourage the type and amount of climate friendly technological change (TC) that would  lead to sizable reductions in the costs of reducing carbon emissions. This section reviews theories,  concepts, and principles used in the study of environmentally oriented TC, and highlights key lessons  from the literature, in particular, the potential of policy to encourage TC. Examples of success and  failure in promoting low carbon energy production and consumption technologies are further  evaluated in Chapters 6 16.  3.11.1    Market provision of TC  As pollution is not fully priced by the market, private individuals lack incentives to invest in the  development and use of emissions reducing technologies in the absence of appropriate policy  interventions. Market failures other than environmental pollution include what is known as the  appropriability problem . This occurs when inventors copy and build on existing innovations, and  reap part of the social returns on them. While the negative climate change externality leads to over  use of the environment, the positive  appropriability  externality leads to an under supply of  technological innovation.64 Indeed, empirical research provides ample evidence that social rates of  return on R&D are higher than private rates of return (Griliches, 1992). Thus, the benefits of new  knowledge may be considered as a public good (see, e.g., Geroski, 1995).  Imperfections in capital markets often distort the structure of incentives for financing technological  development. Information about the potential of a new technology may be asymmetrically held,  creating adverse selection (Hall and Lerner, 2010). This may be particularly acute in developing  countries. The issue of path dependence, acknowledged in evolutionary models of TC, points to the  importance of transformative events in generating or diverting technological trajectories (see  Chapters 4 and 5). Even endogenously induced transformative events may not follow a smooth or  predictable path in responding to changing economic incentives, suggesting that carbon price policy  alone may not promote the desired transformative events.  3.11.2    Induced innovation  The concept of  induced innovation  postulates that investment in R&D is profit motivated and  responds positively to changes in relative prices65 (Hicks, 1932; Binswanger and Ruttan, 1978;  Acemoglu, 2002).66 Initial evidence of induced TC focused on the links between energy prices and  innovation and revealed the lag between induced responses and the time when price changes came  into effect, which is estimated at five years by Newell et al. (1999) and Popp (2002) (see Chapter 5).  Policy also plays an important role in inducing innovation, as demonstrated by the increase in  applications for renewable energy patents within the European Union in response to incentives for  innovation provided by both national policies and international efforts to combat climate change                                                                For incremental innovations, the net technology externality can be negative. Depending on market structure  and intellectual property rules, the inventor of an incremental improvement on an existing technology may be  able to appropriate the entire market, thereby earning profits that exceed the incremental value of the  improvement.   It should be pointed out that in economics,  induced innovation  typically means innovation induced by  relative price differences. The IPCC uses a different definition: innovation induced by policy.   In economics,  induced innovation  typically means innovation induced by relative price differences. The  IPCC uses a different definition: innovation induced by policy.  66 65 64     70 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  (Johnstone et al., 2010). Recent evidence also suggests that international environmental agreements  provide policy signals that encourage both innovation (Dekker et al., 2012) and diffusion (Popp et al.,  2011). With the exception of China, most climate friendly innovation occurred in developed  countries (Dechezlepretre et al., 2011).67  3.11.3    Learning by doing and other structural models of TC  An extensive literature relates to rates of energy cost reduction based on the concept of  experience   curves (see Chapter 6). In economics, this concept is often described as learning by doing (LBD) to  describe the decrease in costs to manufacturers as a function of cumulative output or  learning by using , reflecting the reduction in costs (and/or increase in benefits) to consumers as a function  using a technology. While learning curves are relatively easy to incorporate into most climate  integrated assessment models (IAMs), the application of LBD has limitations as a model of TC (Ferioli  et al., 2009). Learning curves ignore potential physical constraints. For example, while costs may  initially fall as cumulative output expands, if renewable energy is scaled up, the use of suboptimal  locations for production would increase costs. Ferioli et al. (2009) also provide evidence that  learning can be specific to individual components, so that the savings from learning may not fully  transfer from one generation of equipment to the next. They therefore suggest caution when  extrapolating cost savings from learning curves to long term frames or large scale expansions.  Similarly, in a study on cost reductions associated with photovoltaic cells, Nemet (2006) finds that  most efficiency gains come from universities, which have little traditional LBD through production  experience. Hendry and Harborne (2011) provide examples of the interaction of experience and R&D  in the development of wind technology.  3.11.4    Endogenous and exogenous TC and growth  Within climate policy models, TC is either treated as exogenous or endogenous. Köhler et al. (2006),  Gillingham et al. (2008) and Popp et al. (2010) provide reviews of the literature on TC in climate  models.  Exogenous TC (most common in models) progresses at a steady rate over time, independently of  changes in market incentives. One drawback of exogenous TC is that it ignores potential feedback  between climate policy and the development of new technologies. Models with endogenous TC  address this limitation by relating technological improvements in the energy sector to changes in  energy prices and policy. These models demonstrate that ignoring induced innovation overstates the  costs of climate control.  The Nordhaus (1977, 1994) DICE model is the pioneering example of a climate policy model  incorporating TC into IAMs. In most implementations of DICE, TC is exogenous. Efforts to endogenize  TC have been difficult, mainly because market based spillovers from R&D are not taken into account  when deciding how much R&D to undertake. Recent attempts to endogenize TC include WITCH  model (Bosetti et al., 2006)and Popp s (2004) ENTICE model. Popp (2004) shows that models that  ignore directed TC do indeed significantly overstate the costs of environmental regulation (more  detailed discussion on TC in these and more recent models is provided in Chapter 6).  An alternative approach builds on new growth theories, where TC is by its nature endogenous, in  order to look at the interactions between growth and the environment. Policies like R&D subsidies  or carbon taxes affect aggregate growth by affecting entrepreneurs  incentives to innovate.  Factoring in firms  innovations dramatically changes our view of the relationship between growth  and the environment. More recent work by Acemoglu et al. (2012) extends the endogenous growth                                                                Global R&D expenditures amounted to USD 1.107 trillion in 2007, with OECD nations accounting for 80%,  and the U.S. and Japan together accounting for 46% (National Science Board, 2010).  67     71 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  literature to the case where firms can choose the direction of innovation (i.e., they can decide  whether to innovate in more or less carbon intensive technologies or sectors).68  In contrast, LBD models use learning curve estimates to simulate falling costs for alternative energy  technologies as cumulative experience with the technology increases. One criticism of these models  is that learning curve estimates provide evidence of correlation, but not causation. While LBD is easy  to implement, it is difficult to identify the mechanisms through which learning occurs. Goulder and  Mathai (2000) provide a theoretical model that explores the implications of modelling technological  change through R&D or LBD (several empirical studies on this are reviewed in more detail in Chapter  6).  3.11.5    Policy measures for inducing R&D  Correcting the environmental externality or correcting knowledge market failures present two key  options for policy intervention to encourage development of climate friendly technologies. Patent  protection, R&D tax credits, and rewarding innovation are good examples of correcting failures in  knowledge markets and promoting higher rates of innovation. On the other hand, policies regulating  environmental externalities, such as a carbon tax or a cap and trade system, influence the direction  of innovation.  Chapter 15 discusses in more detail how environmental and technology policies work best in tandem  (e.g., Popp, 2006; Fischer, 2008; Acemoglu et al., 2012). For instance, in evaluating a broad set of  policies to reduce CO2 emissions and promote innovation and diffusion of renewable energy in the  United States electricity sector, Fischer & Newell (2008) find that a portfolio of policies (including  emission pricing and R&D) achieves emission reductions at significantly lower cost than any single  policy (see Chapters 7 to 13). However, Gerlagh and van der Zwaan (2006) note the importance of  evaluating the trade off between cost savings from innovation and Fischer and Newell (2008)  assumptions of decreasing returns to scale due to space limitations for new solar and wind  installations.  3.11.6    Technology transfer (TT)  Technology transfer (TT) has been at the centre of the scholarly debate on climate change and  equity in economic development as a way for developed countries to assist developing countries  access new low carbon technologies. Modes of TT include, trade in products, knowledge and  technology, direct foreign investment, and international movement of people (Hoekman et al.,  2005). Phases and steps for TT involve absorption and learning, adaptation to the local environment  and needs, assimilation of subsequent improvements, and generalization. Technological learning or  catch up thus proceeds in stages: importing foreign technologies; local diffusion and incremental  improvements in process and product design; and marketing, with different policy measures suited  to different stages of the catch up process.  Leapfrogging , or the skipping of some generations of technology or stages of development, is a  useful concept in the climate change mitigation literature for enabling developing countries to avoid  the more emissions intensive stages of development (Watson and Sauter, 2011). Examples of  successful low carbon leapfrogging are discussed in more detail in Chapter 14.  Whether proprietary rights affect transfers of climate technologies has become a subject of  significant debate. Some technologies are in the public domain; they are not patented or their  patents have expired. Much of the debate on patented technologies centres on whether the                                                                Other works investigating the response of technology to environment regulations include Grübler and  Messner (1998), Manne and Richels (2004b), Messner (1997), Buonanno et al. (2003), Nordhaus (2002), Di  Maria and Valente (2008), Bosetti et al. (2008), Massetti et al. (2009), Grimaud and Rouge (2008), and Aghion  et al. (2009).  68     72 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  temporary monopoly conferred by patents has hampered access to technology. Proponents of  strong intellectual property (IP) rights believe that patents enhance TT as applicants have to disclose  information on their inventions. Some climate technology sectors, for example, those producing  renewable energy, have easily available substitutes and sufficient competition, so that patents on  these technologies do not make them costly or prevent their spread (Barton, 2007). In other climate related technology sectors, IP protection could be a barrier to TT (Lewis, 2007). (The subject is  further discussed in Chapters 13 and 15.)  Various international agreements on climate change, trade, and intellectual property include  provisions for facilitating the transfer of technology to developing countries. Climate change  agreements encourage participation by developing countries and address barriers to the adoption of  technologies, including financing. However, some scholars have found these agreements to be  ineffective because they do not incorporate mechanisms for ensuring technology transfers to  developing countries (Moon, 2008). (The literature on international cooperation on TT is further  discussed in Chapters 13, 14 and 16.)  3.12   Gaps in knowledge and data  As this chapter makes clear, many questions are not completely answered by the literature. So it is  prudent to end our assessment with our findings on where research might be directed over the  coming decade so that the AR6 (should there be one) may be able to say more about the ethics and  economics of climate change.  To plan an appropriate response to climate change, it is important to evaluate each of the  alternative responses that are available. How can we take into account changes in the  world's population? Should society aim to promote the total of people's wellbeing in the  world, or their average wellbeing, or something else? The answer to this question will make  a great difference to the conclusions we reach.  The economics and ethics of geoengineering is an emerging field that could become of the  utmost importance to policymakers. Deeper analysis of the ethics of this topic is needed, as  well as more research on the economic aspects of different possible geoengineering  approaches and their potential effects and side effects.  To develop better estimates of the social cost of carbon and to better evaluate mitigation  options, it would be helpful to have more realistic estimates of the components of the  damage function, more closely connected to WGII assessments of physical impacts.  Quantifying non market values, that is, measuring valuations placed by humans on nature  and culture, is highly uncertain and could be improved through more and better methods  and empirical studies. As discussed in Section 3.9  , the aggregate damage functions used in  many IAMs are generated from a remarkable paucity of data and are thus of low reliability.  The development of regulatory mechanisms for mitigation would be helped by more ex post  evaluation of existing regulations, addressing the effectiveness of different regulatory  approaches, both singly and jointly. For instance, understanding, retrospectively, the  effectiveness of the European Union Emissions Trading Scheme (EU ETS), the California cap and trade system, or the interplay between renewable standards and carbon regulations in  a variety of countries.  Energy models need to provide a more realistic portrait of microeconomic decision making  frameworks for technology choice (energy economy models).  A literature is emerging in economics and ethics on the risk of catastrophic climate change  impacts, but much more probing into the ethical dimensions is needed to inform future  economic analysis.  73 of 128           Final Draft    Chapter 3  IPCC WGIII AR5  More research that incorporates behavioural economics into climate change mitigation is  needed. For instance, more work on understanding how individuals and their social  preferences respond to (ambitious) policy instruments and make decisions relevant to  climate change is critical.  Despite the importance of the cost of mitigation, the aggregate cost of mitigating x tonnes of  carbon globally is poorly understood. To put it differently, a global carbon tax of x dollars per  tonne would yield y(t) tonnes of carbon abatement at time, t. We do not understand the  relationship between x and y(t).  The choice of the rate at which future uncertain climate damages are discounted depends  on their risk profile in relation to other risks in the economy. By how much does mitigating  climate change reduce the aggregate uncertainty faced by future generations?   As has been recently underscored by several authors (Pindyck, 2013; Stern, 2013) as well as  this review, integrated assessment models have very significant shortcomings for CBA, as  they do not fully represent climate damages, yet remain important tools for investigating  climate policy. They have been widely and successfully applied for CEA analysis (Paltsev et  al., 2008; Clarke et al., 2009; Krey and Clarke, 2011; Fawcett et al., 2013). Research into  improving the state of the art of such models (beyond just updating) can have high payoff.  3.13   Frequently Asked Questions  FAQ 3.1 The IPCC is charged with providing the world with a clear scientific view of the  current state of knowledge on climate change. Why does it need to consider ethics?  The IPCC aims to provide information that can be used by governments and other agents when they  are considering what they should do about climate change. The question of what they should do is a  normative one and thus has ethical dimensions because it generally involves the conflicting interests  of different people. The answer rests implicitly or explicitly on ethical judgements. For instance, an  answer may depend on a judgement about the responsibility of the present generation towards  people who will live in the future or on a judgement about how this responsibility should be  distributed among different groups in the present generation. The methods of ethical theory  investigate the basis and logic of judgements such as these.  FAQ 3.2 Do the terms justice, fairness and equity mean the same thing?  The terms  justice ,  fairness  and  equity  are used with subtly different meanings in different  disciplines and by different authors.  Justice  and  equity  commonly have much the same meaning:  justice  is used more frequently in philosophy;  equity  in social science. Many authors use  fairness   as also synonymous with these two. In reporting on the literature, the IPCC assessment does not  impose a strictly uniform usage on these terms. All three are often used synonymously. Section 3.3   describes what they refer to, generally using the term  justice .  Whereas justice is broadly concerned with a person receiving their due,  fairness  is sometimes used  in the narrower sense of receiving one s due (or  fair share ) in comparison with what others receive.  So it is unfair if people do not all accept an appropriate share of the burden of reducing emissions,  whereas on this narrow interpretation it is not unfair   though it may be unjust   for one person s  emissions to harm another person. Fairness is concerned with the distribution of goods and harms  among people.  Distributive justice described in Section 3.3   falls under fairness on the narrow  interpretation.  FAQ 3.3 What factors are relevant in considering responsibility for future measures that  would mitigate climate change?  It is difficult to indicate unambiguously how much responsibility different parties should take for  mitigating future emissions. Income and capacity are relevant, as are ethical perceptions of rights      74 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  and justice. One might also investigate how similar issues have been dealt with in the past in non climate contexts. Under both common law and civil law systems, those responsible for harmful  actions can only be held liable if their actions infringe a legal standard, such as negligence or  nuisance. Negligence is based on the standard of the reasonable person. On the other hand, liability  for causing a nuisance does not exist if the actor did not know or have reason to know the effects of  its conduct. If it were established that the emission of GHGs constituted wrongful conduct within the  terms of the law, the nature of the causal link to the resulting harm would then have to be  demonstrated.      75 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  References  Abrahamse W., L. Steg, C. Vlek, and T. Rothengatter (2005). A review of intervention studies aimed  at household energy conservation, Journal of Environmental Psychology 25 273 291 pp. (DOI:  10.1016/j.jenvp.2005.08.002), (ISSN: 02724944).  Acemoglu D. (2002). Directed technical change, The Review of Economic Studies 69 781 809 pp. .  Available at: http://www.jstor.org/stable/1556722.  Acemoglu D., P. Aghion, L. Bursztyn, and D. Hemous (2012). The environment and directed  technical change, American Economic Review 102 131 166 pp. (DOI: 10.1257/aer.102.1.131), (ISSN:  0002 8282).  Ackerman F., S.J. DeCanio, R.. Howarth, and K. Sheeran (2009). Limitations of integrated  assessment models of climate change, Climatic Change 95 297 315 pp. (DOI: 10.1007/s10584 009 9570 x), (ISSN: 0165 0009, 1573 1480).  Ackerman F., E.A. Stanton, and R. Bueno (2013). Epstein Zin Utility in DICE: Is Risk Aversion  Irrelevant to Climate Policy?, Environmental and Resource Economics 56 73 84 pp. (DOI:  10.1007/s10640 013 9645 z), (ISSN: 0924 6460, 1573 1502).  Adaman F., N. Karal , G. Kumbaro lu, I. Or, B. Özkaynak, and Ü. Zenginobuz (2011). What  determines urban households  willingness to pay for CO2 emission reductions in Turkey: A  contingent valuation survey, Energy Policy 39 689 698 pp. (DOI: 10.1016/j.enpol.2010.10.042),  (ISSN: 0301 4215).  Adger W.N., J. Barnett, K. Brown, N. Marshall, and K. O Brien (2012). Cultural dimensions of climate  change impacts and adaptation, Nature Climate Change 3 112 117 pp. . Available at:  http://www.nature.com.proxy.library.ucsb.edu:2048/nclimate/journal/v3/n2/full/nclimate1666.htm l.  Adger W.N., and P.M. Kelly (1999). Social Vulnerability to Climate Change and the Architecture of  Entitlements, Mitigation and Adaptation Strategies for Global Change 4 253 266 pp. (DOI:  10.1023/A:1009601904210), (ISSN: 1381 2386, 1573 1596).  Adler M. (2011). Well Being and Fair Distribution: Beyond Cost Benefit Analysis. Oxford University  Press, USA, 656 pp., (ISBN: 0195384997). .  Agar N. (2001). Life s Intrinsic Value: Science, Ethics, and Nature. Columbia University Press, 220 pp.,  (ISBN: 9780231117876). .  Aghion P., R. Blundell, R. Griffith, P. Howitt, and S. Prantl (2009). The effects of entry on incumbent  innovation and productivity, Review of Economics and Statistics 91 20 32 pp. (DOI:  10.1162/rest.91.1.20), (ISSN: 0034 6535, 1530 9142).  Agostino A., and R. Lizarde (2012). Gender and climate justice, Development 55 90 95 pp. (DOI:  10.1057/dev.2011.99), (ISSN: 1011 6370, 1461 7072).  Akter S., and J. Bennett (2011). Household perceptions of climate change and preferences for  mitigation action: the case of the Carbon Pollution Reduction Scheme in Australia, Climatic Change  109 417 436 pp. (DOI: 10.1007/s10584 011 0034 8), (ISSN: 0165 0009, 1573 1480).      76 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Alcamo J., and E. Kreileman (1996). Emission scenarios and global climate protection, Global  Environmental Change 6 305 334 pp. (DOI: 10.1016/S0959 3780(96)00030 1), (ISSN: 0959 3780).  Aldred J. (1994). Existence value, welfare and altruism, Environmental Values 3 381 402 pp. (DOI:  10.3197/096327194776679665), (ISSN: 09632719, 17527015).  Aldy J.E, Krupnick A.J, Parry I.W.H, Newell R.G, and Pizer W.A (2010). Designing climate mitigation  policy, J. Econ. Lit. Journal of Economic Literature 48 903 934 pp. (ISSN: 0022 0515).  Aldy J.E., M.J. Kotchen, and A.A. Leiserowitz (2012). Willingness to pay and political support for a  US national clean energy standard, Nature Climate Change 2 596 599 pp. (DOI:  10.1038/nclimate1527), (ISSN: 1758 678X).  Alkin M. (2004). Evaluation Roots : Tracing Theorists  Views and Influences. Sage Publications,  Thousand Oaks  Calif., (ISBN: 9780761928935). .  Allcott H. (2011). Social norms and energy conservation, Journal of Public Economics 95 1082 1095  pp. (DOI: 10.1016/j.jpubeco.2011.03.003), (ISSN: 00472727).  Allcott H. (2013). The welfare effects of misperceived product costs: Data and calibrations from the  automobile market, American Economic Journal: Economic Policy 5 30 66 pp. (ISSN: 1945 7731).  Allcott H., and M. Greenstone (2012). Is there an energy efficiency gap?, Journal of Economic  Perspectives 26 3 28 pp. (DOI: 10.1257/jep.26.1.3), (ISSN: 0895 3309).  Allcott H., S. Mullainathan, and D. Taubinsky (forthcoming). Energy policy with externalities and  internalities, Journal of Public Economics.  Ambec S., and P. Barla (2006). Can Environmental Regulations be Good for Business? An Assessment  of the Porter Hypothesis, Energy Studies Review 14 . Available at:  http://digitalcommons.mcmaster.ca/esr/vol14/iss2/1.  Ambec S., M.A. Cohen, S. Elgie, and P. Lanoie (2013). The Porter Hypothesis at 20: Can  Environmental Regulation Enhance Innovation and Competitiveness?, Review of Environmental  Economics and Policy 1 22 pp. (DOI: 10.1093/reep/res016), (ISSN: 1750 6816, 1750 6824).  Ambrus A., and B. Greiner (2012). Imperfect Public Monitoring with Costly Punishment: An  Experimental Study, The American Economic Review 102 3317 3332 pp. . Available at:  http://www.ingentaconnect.com.proxy.library.ucsb.edu:2048/content/aea/aer/2012/00000102/000 00007/art00007.  American Law Institute (2011). Restatement of the Law (third): Restitution and Unjust Enrichment.  American Law Institute Publishers, St. Paul, MN.  American Psychological Association (2010). Psychology and Global Climate Change: Addressing a  Multi Faceted Phenomenon and Set of Challenges. . Available at:  http://www.apa.org/science/about/publications/climate change.aspx.  Amundsen E.S., and J.B. Mortensen (2001). The Danish Green Certificate System: some simple  analytical results, Energy Economics 23 489 509 pp. (DOI: 10.1016/S0140 9883(01)00079 2), (ISSN:  0140 9883).      77 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Anderson S.T., and R.G. Newell (2004). Information programs for technology adoption: the case of  energy efficiency audits, Resource and Energy Economics 26 27 50 pp. (DOI:  10.1016/j.reseneeco.2003.07.001), (ISSN: 09287655).  Anthoff D., and R. Hahn (2010). Government failure and market failure: on the inefficiency of  environmental and energy policy, Oxford Review of Economic Policy 26 197 224 pp. (DOI:  10.1093/oxrep/grq004), (ISSN: 0266 903X, 1460 2121).  Anthoff D., C. Hepburn, and R.S.J. Tol (2009). Equity weighting and the marginal damage costs of  climate change, Ecological Economics 68 836 849 pp. (DOI: 10.1016/j.ecolecon.2008.06.017), (ISSN:  0921 8009).  Anthoff D., and R.S.J. Tol (2013). The uncertainty about the social cost of carbon: A decomposition  analysis using FUND, Climatic Change 117 515 530 pp. (DOI: 10.1007/s10584 013 0706 7), (ISSN:  0165 0009, 1573 1480).  Antolini D.E., and C.L. Rechtschaffen (2008). Common law remedies: a refresher, Environmental Law  Reporter News and Analysis 38 10114 10127 pp. .  Appiah K.A. (2010). The Ethics of Identity. Princeton University Press. . Available at:  http://press.princeton.edu/titles/7806.html.  Archibald G.C. (1959). Welfare economics, ethics, and essentialism, Economica 26 316 327 pp. .  Arimura T.H., S. Li, R.G. Newell, and K. Palmer (2012). Cost effectiveness of electricity energy  efficiency programs, The Energy Journal 33 63 99 pp. .  Arrhenius G. (forthcoming). Population Ethics: The Challenge of Future Generations. Oxford  University Press, Oxford.  Arrow K.J. (1963). Social Choice and Individual Values. Yale University Press, New Haven, (ISBN:  9780300013641). .  Arrow K.J. (1977). Extended sympathy and the possibility of social choice, American Economic  Review 67 219 225 pp. .  Arrow K.J. (1999). Discounting, morality, and gaming. In: Discounting and Intergenerational Equity.  P.R. Portney, J.J.. Weyant, (eds.), Resources for the Future, Washington, D.C. pp.13 21(ISBN:  0915707896).  Arrow K.J. (2007). Global climate change: a challenge to policy, The Economists  Voice 4 . Available  at:  http://www.degruyter.com/view/j/ev.2007.4.3/ev.2007.4.3.1270/ev.2007.4.3.1270.xml?format=INT .  Arrow K., M. Cropper, C. Gollier, B. Groom, G. Heal, R. Newell, W. Nordhaus, R. Pindyck, W. Pizer,  P. Portney, T. Sterner, R.S.J. Tol, and M. Weitzman (2013). Determining Benefits and Costs for  Future Generations, Science 341 349 350 pp. (DOI: 10.1126/science.1235665), (ISSN: 0036 8075,  1095 9203).  Arze del Granado F.J., D. Coady, and R. Gillingham (2012). The Unequal Benefits of Fuel Subsidies: A  Review of Evidence for Developing Countries, World Development 40 2234 2248 pp. (DOI:  10.1016/j.worlddev.2012.05.005), (ISSN: 0305750X).      78 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Asheim G.B., C.B. Froyn, J. Hovi, and F.C. Menz (2006). Regional versus global cooperation for  climate control, Journal of Environmental Economics and Management 51 93 109 pp. (DOI:  10.1016/j.jeem.2005.04.004), (ISSN: 0095 0696).  Atkinson A.B. (1970). On the measurement of inequality, Journal of Economic Theory 2 244 263  pp. .  Attari S.Z., M.L. DeKay, C.I. Davidson, and W. Bruine de Bruin (2010). Public perceptions of energy  consumption and savings, Proceedings of the National Academy of Sciences 107 16054 16059 pp.  (DOI: 10.1073/pnas.1001509107), (ISSN: 0027 8424, 1091 6490).  Aunan K., J. Fang, H. Vennemo, K. Oye, and H.M. Seip (2004). Co benefits of climate policy lessons  learned from a study in Shanxi, China, Energy Policy 32 567 581 pp. (DOI: 10.1016/S0301 4215(03)00156 3), (ISSN: 0301 4215).  Axelrod R.M. (1984). The Evolution of Cooperation. Basic Books, New York.  Ayres I., and J. Braithwaite (1992). Responsive Regulation:Transcending the Deregulation Debate.  Oxford University Press, 218 pp., (ISBN: 9780199879953). .  Azar C., and T. Sterner (1996). Discounting and distributional considerations in the context of global  warming, Ecological Economics 19 169 184 pp. (DOI: 10.1016/0921 8009(96)00065 1), (ISSN:  09218009).  Babcock L., and G. Loewenstein (1997). Explaining Bargaining Impasse: The Role of Self Serving  Biases, The Journal of Economic Perspectives 11 109 126 pp. (DOI: 10.2307/2138254), (ISSN: 0895 3309).  Babiker M., A. Gurgel, S. Paltsev, and J. Reilly (2009). Forward looking versus recursive dynamic  modeling in climate policy analysis: A comparison, Economic Modelling 26 1341 1354 pp. . Available  at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0264999309001035.  Babiker M., J. Reilly, and L. Viguier (2004). Is International Emissions Trading Always Beneficial?, The  Energy Journal 25 33 56 pp. (ISSN: 0195 6574).  Baer P. (2010). Greenhouse Development Rights: A Framework for Climate Protection That is  More  Fair  Than Equal Per Capita Emissions Rights. In: Climate Ethics: Essential Readings. S.M. Gardiner, S.  Caney, D. Jamieson, H. Shue, (eds.), Oxford University Press, pp.215 230.  Baier A. (1981). The Rights of Past and Future Persons. In: Responsibilities to Future Generations:  Environmental Ethics. E. Partridge, (ed.), Prometheus Books, pp.171 183.  Baldos U.L.C., and T.W. Hertel (2013). Looking back to move forward on model validation: insights  from a global model of agricultural land use, Environmental Research Letters 8 034024 pp. . Available  at: http://iopscience.iop.org.proxy.library.ucsb.edu:2048/1748 9326/8/3/034024.  Ballard C.L., and D. Fullerton (1992). Distortionary Taxes and the Provision of Public Goods, The  Journal of Economic Perspectives 6 117 131 pp. .  Bansal R., and A. Yaron (2004). Risks for the Long Run: A Potential Resolution of Asset Pricing  Puzzles, The Journal of Finance 59 1481 1509 pp. (DOI: 10.1111/j.1540 6261.2004.00670.x), (ISSN:  1540 6261).      79 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Bardach E. (2005). A Practical Guide for Policy Analysis : The Eightfold Path to More Effective  Problem Solving. Sage; CQ Press, Los Angeles; Thousand Oaks, (ISBN: 9781608718429). .  Bardhan A., D. Jaffee, C. Kroll, and N. Wallace (2013). Energy ef ciency retro ts for U.S. housing:  Removing the bottlenecks, Regional Science and Urban  Economics.  Barrett S. (2003). Environment and Statecraft: The Strategy of Environmental Treaty Making: The  Strategy of Environmental Treaty Making. Oxford University Press, 456 pp. Available at:  http://www.amazon.de/Environment Statecraft Strategy Environmental Treaty Making/dp/0199286094.  Barrett S. (2007). Why Cooperate?:The Incentive to Supply Global Public Goods: The Incentive to  Supply Global Public Goods. Oxford University Press, Oxford, UK, 276 pp., (ISBN: 9780199211890). .  Barrett S. (2008). The incredible economics of geoengineering, Environmental and Resource  Economics 39 45 54 pp. . Available at: http://www.springerlink.com/index/a91294x25w065vk3.pdf.  Barrett S., and A. Dannenberg (2012). Climate negotiations under scientific uncertainty, Proceedings  of the National Academy of Sciences 109 17372 17376 pp. (DOI: 10.1073/pnas.1208417109), (ISSN:  0027 8424, 1091 6490).  Barro R.J. (2006). Rare Disasters and Asset Markets in the Twentieth Century, The Quarterly Journal  of Economics 121 823 866 pp. (DOI: 10.2307/25098810), (ISSN: 0033 5533).  Barro R.J. (2009). Rare Disasters, Asset Prices, and Welfare Costs, American Economic Review 99  243 264 pp. (DOI: 10.1257/aer.99.1.243), (ISSN: 0002 8282).  Barry B. (1977). Justice between generations. In: Law, Morality and Society. Essays in Honor of H. L.  A. Hart, P.M.S. Hacker and Joseph Raz (eds.). Clarendon Press, Oxford pp.268 284.  Barry B. (1989). A Treatise on Social Justice, Volume 1: Theories of Justice. Harvester Wheatsheaf,  London, 443 pp., (ISBN: 9780520076495). .  Barry B. (1999). Sustainability and intergenerational justice. In: Fairness and Futurity. Essays on  Environmental Sustainability. A. Dobson, (ed.), Oxford University Press, Oxford pp.93 117.  Barton J.H. (2007). Intellectual Property and Access to Clean Energy Technologies in Developing  Countries: An Analysis of Solar Photovoltaic, Biofuels and Wind Technologies. ICTSD Trade and  Sustainable Energy Series Issue Paper No. 2. International Centre for Trade and Sustainable  Development, Geneva, Switzerland.  Becht M. (1995). The theory and estimation of individual and social welfare measures, Journal of  Economic Surveys 9 53 87 pp. .  Beckman J., T. Hertel, and W. Tyner (2011). Validating energy oriented CGE models, Energy  Economics 33 799 806 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0140988311000259.  Behrens K.G. (2012). Moral obligations towards future generations in African thought, Journal of  Global Ethics 8 179 191 pp. (DOI: 10.1080/17449626.2012.705786), (ISSN: 1744 9626).      80 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Bell D. (2011). Does anthropogenic climate change violate human rights?, Critical Review of  International Social and Political Philosophy 14 99 124 pp. (DOI: 10.1080/13698230.2011.529703),  (ISSN: 1369 8230).  Bennett J., and R. Blamey (2001). The Choice Modelling Approach to Environmental Valuation.  Edward Elgar Publishing, 288 pp., (ISBN: 9781840643046). .  Berrens R.P., A.K. Bohara, H.C. Jenkins Smith, C.L. Silva, and D.L. Weimer (2004). Information and  effort in contingent valuation surveys: application to global climate change using national internet  samples, Journal of Environmental Economics and Management 47 331 363 pp. (DOI:  10.1016/S0095 0696(03)00094 9), (ISSN: 0095 0696).  Bertrand M., D. Karlan, S. Mullainathan, E. Shafir, and J. Zinman (2010). What s advertising content  worth? evidence from a consumer credit marketing field experiment, Quarterly Journal of Economics  125 263 305 pp. (DOI: 10.1162/qjec.2010.125.1.263), (ISSN: 0033 5533, 1531 4650).  Betz G. (2012). The case for climate engineering research: an analysis of the  arm the future   argument, Climatic Change 111 473 485 pp. (DOI: 10.1007/s10584 011 0207 5), (ISSN: 0165 0009,  1573 1480).  Betz G., and S. Cacean (2012). Ethical Aspects of Climate Engineering. KIT Scientific Publishing, 170  pp., (ISBN: 9783866448568). .  Binswanger M. (2001). Technological progress and sustainable development: what about the  rebound effect?, Ecological Economics 36 119 132 pp. (DOI: 10.1016/S0921 8009(00)00214 7),  (ISSN: 0921 8009).  Binswanger H., and V. Ruttan (1978). Induced Innovation: Technology Institutions and Development.  Johns Hopkins University Press, Baltimore, M.D.  Birks P. (2005). Unjust Enrichment (second Edition). Oxford University Press, New York, 360 pp.  Birnbacher D. (1988). Verantwortung Für Zukünftige Generationen. Ph. Reclam, Stuttgart, 297 pp.,  (ISBN: 3150284473). .  Birnbacher D. (2009). What motivates us to care for the (distant) future? In: Intergenerational  Justice. Oxford University Press, Oxford.  Blackorby C., W. Bossert, and D. Donaldson (2005). Population Issues in Social Choice Theory,  Welfare Economics and Ethics. Cambridge University Press, Cambridge, 378 pp., (ISBN:  9780521825511). .  Blackorby C., and D. Donaldson (1990). A review article: The case against the use of the sum of  compensating variations in cost benefit analysis, Canadian Journal of Economics 471 494 pp. .  Blok K. (2007). Introduction to Energy Analysis. Techne Press, Amsterdam, 256 pp., (ISBN:  9789085940166). .  Bloomberg (2010). Building Bridges: State of the Voluntary Carbon Markets 2010. . Available at:  http://www.forest trends.org/documents/files/doc_2433.pdf.  Blumer H. (1956). Sociological analysis and the  variable , American Sociological Review 21 683 90  pp. . Available at: http://www.jstor.org/stable/2088418.      81 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Boadway R.W., and N. Bruce (1984). Welfare Economics. B. Blackwell. . Available at:  http://www.econ.cam.ac.uk/faculty/edwards/Prelim/Outline.pdf.  Bockstael N.E., and K.E. McConnell (2007). Environmental Valuation with Revealed Preferences : A  Theoretical Guide to Empirical Models. Springer Netherland, Dordrecht, 389 pp., (ISBN: 0792365011   9780792365013). .  Böhringer C., and K.E. Rosendahl (2010). Green promotes the dirtiest: on the interaction between  black and green quotas in energy markets, Journal of Regulatory Economics 37 316 325 pp. (DOI:  10.1007/s11149 010 9116 1), (ISSN: 0922 680X, 1573 0468).  Bollinger B., P. Leslie, and A. Sorensen (2011). Calorie posting in chain restaurants, American  Economic Journal: Economic Policy 3 91 128 pp. (DOI: 10.1257/pol.3.1.91), (ISSN: 1945 7731, 1945 774X).  Bolton G.E., J. Brandts, and A. Ockenfels (2005). Fair procedures: Evidence from games involving  lotteries, The Economic Journal 115 1054 1076 pp. . Available at:  http://onlinelibrary.wiley.com.proxy.library.ucsb.edu:2048/doi/10.1111/j.1468 0297.2005.01032.x/full.  Bolton G., B. Greiner, and A. Ockenfels (2013). Engineering trust: reciprocity in the production of  reputation information, Management Science 59 265 285 pp. . Available at:  http://mansci.journal.informs.org/content/59/2/265.short.  Bolton G.E., E. Katok, and A. Ockenfels (2004). How effective are electronic reputation  mechanisms? An experimental investigation, Management science 50 1587 1602 pp. . Available at:  http://mansci.journal.informs.org/content/50/11/1587.short.  Bolton G.E., and A. Ockenfels (2000). ERC: A theory of equity, reciprocity, and competition,  American economic review 90 166 193 pp. . Available at: http://www.jstor.org/stable/117286.  Borck J.C., and C. Coglianese (2009). Voluntary environmental programs: assessing their  effectiveness, Annual Review of Environment and Resources 34 305 324 pp. (DOI:  10.1146/annurev.environ.032908.091450).  Bosello F., C. Carraro, and E. De Cian (2010). Climate Policy and the Optimal Balance between  Mitigation, Adaptation and Unavoided Damage, Climate Change Economics 01 71 92 pp. (DOI:  10.1142/S201000781000008X), (ISSN: 2010 0078, 2010 0086).  Bosello F., F. Eboli, and R. Pierfederici (2012). Assessing the Economic Impacts of Climate Change,  Review of Environment Energy and Economics   Re3 . Available at:  http://re3.feem.it/getpage.aspx?id=4569.  Bosetti V., C. Carraro, M. Galeotti, E. Massetti, and M. Tavoni (2006). WITCH   A World Induced  Technical Change Hybrid model, Energy Journal 27 13 37 pp. (ISSN: 0195 6574).  Bosetti V., C. Carraro, E. Massetti, and M. Tavoni (2008). International energy R&D spillovers and  the economics of greenhouse gas atmospheric stabilization, Energy Economics 30 2912 2929 pp.  (DOI: 10.1016/j.eneco.2008.04.008), (ISSN: 01409883).  Bostrom A., M.G. Morgan, B. Fischhoff, and D. Read (1994). What Do People Know About Global  Climate Change? 1. Mental Models, Risk Analysis 14 959 970 pp. (DOI: 10.1111/j.1539 6924.1994.tb00065.x), (ISSN: 1539 6924).      82 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Botzen W.J.W., and J.C.J.M. van den Bergh (2012). Risk attitudes to low probability climate change  risks: WTP for flood insurance, Journal of Economic Behavior & Organization 82 151 166 pp. (DOI:  10.1016/j.jebo.2012.01.005), (ISSN: 0167 2681).  Boucher O. (2012). Comparison of physically  and economically based CO<sub>2</sub> equivalences for methane, Earth System Dynamics 3 49 61 pp. (DOI: 10.5194/esd 3 49 2012), (ISSN:  2190 4987).  Brekke K.A., and O. Johansson Stenman (2008). The behavioural economics of climate change,  Oxford Review of Economic Policy 24 280 297 pp. (DOI: 10.1093/oxrep/grn012), (ISSN: 0266 903X,  1460 2121).  Brennan A., and Y.S. Lo (2010). Understanding Environmental Philosophy. Acumen, Durham.  Broome J. (1994). Structured and unstructured valuation, Analyse & Kritik 16 121 132 pp. .  Broome J. (2004). Weighing Lives. Oxford University Press, Oxford, (ISBN: 9780199297702). .  Broome J. (2009). Why economics needs ethical theory. In: Arguments for a Better World: Essays in  Honour of Amartya Sen. K. Basu, R. Kanbur, (eds.), Oxford University Press, Oxford pp.7 14.  Broome J. (2012). Climate Matters: Ethics in a Warming World (Amnesty International Global Ethics  Series). WW Norton & Company, 224 pp., (ISBN: 978 0393063363). .  Brosig J., J. Weimann, and A. Ockenfels (2003). The effect of communication media on cooperation,  German Economic Review 4 217 241 pp. . Available at:  http://onlinelibrary.wiley.com.proxy.library.ucsb.edu:2048/doi/10.1111/1468 0475.00080/full.  Bruce J.P., H. Lee, and E.F. Haites (1996). Climate Change 1995: Economic and Social Dimensions of  Climate Change: Contribution of Working Group III to the Second Assessment Report of the  Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 448 pp.  Bruckner T., G. Petschel Held, F.L. Toth, H.M. Füssel, C. Helm, M. Leimbach, and H.J. Schellnhuber  (1999). Climate change decision support and the tolerable windows approach, Environmental  Modeling and Assessment 4 217 234 pp. .  De Bruin K.C., R.B. Dellink, and R.S.J. Tol (2009). AD DICE: an implementation of adaptation in the  DICE model, Climatic Change 95 63 81 pp. (DOI: 10.1007/s10584 008 9535 5), (ISSN: 0165 0009,  1573 1480).  Brunée J., S. Goldberg, R. Lord, and L. Rajamani (2012). Overview of legal issues relevant to climate  change. In: Climate Change Liability: Transnational Theory and Practice. R. Lord, S. Goldberg, L.  Rajamani, J. Brunée, (eds.), Cambridge University Press, Cambridge UK pp.23 49.  Buchanan A.E. (2004). Justice, Legitimacy, and Self Determination Moral Foundations for  International Law. Oxford University Press, Oxford, 520 pp., (ISBN: 0198295359 9780198295358). .  Buck H.J. (2012). Climate Remediation to Address Social Development Challenges: Going Beyond  Cost Benefit and Risk Approaches to Assessing Solar Radiation Management. In: Engineering the  Climate: The Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington Books, (ISBN:  0739175408).      83 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Bunzl M. (2008). An Ethical Assessment of Geoengineering, Bulletin of the Atomic Scientists 64 18  pp. .  Bunzl M. (2009). Researching geoengineering: should not or could not?, Environmental Research  Letters 4 045104 pp. . Available at: http://iopscience.iop.org/1748 9326/4/4/045104.  Buonanno P., C. Carraro, and M. Galeotti (2003). Endogenous induced technical change and the  costs of Kyoto, Resource and Energy Economics 25 11 34 pp. (DOI: 10.1016/S0928 7655(02)00015 5), (ISSN: 09287655).  Burns W.C.G., and H.M. Osofsky (2009). Overview: The Exigencies That Drive Potential Causes of  Action for Climate Change. In: Adjudicating Climate Change: State, National, and International  Approaches. W.C.G. Burns, H.M. Osofsky, (eds.), Cambridge University Press, pp.1 27.  Burtraw D. (1996). The SO2 emissions trading program: cost savings without allowance trades,  Contemporary Economic Policy 14 79 94 pp. (DOI: 10.1111/j.1465 7287.1996.tb00615.x), (ISSN:  10743529, 14657287).  Burtraw D., D.A. Evans, A. Krupnick, K. Palmer, and R. Toth (2005). Economics of pollution trading  for SO2 and NOx, Annual Review of Environment and Resources 30 253 289 pp. (DOI:  10.1146/annurev.energy.30.081804.121028), (ISSN: 1543 5938, 1545 2050).  Burtraw D., A. Krupnick, K. Palmer, A. Paul, M. Toman, and C. Bloyd (2003). Ancillary benefits of  reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity  sector, Journal of Environmental Economics and Management 45 650 673 pp. (DOI: 10.1016/S0095 0696(02)00022 0), (ISSN: 0095 0696).  Butt D. (2007). On benefiting from injustice, Canadian Journal of Philosophy 37 129 152 pp. (DOI:  10.1353/cjp.2007.0010), (ISSN: 1911 0820).  Camerer C.F., S. Issacharoff, G.F. Loewenstein, T. O Donoghue, and M. Rabin (2003). Regulation for  conservatives: behavioral economics and the case for  asymmetric paternalism , University of  Pennsylvania Law Review 151 1211 pp. . Available at: http://ssrn.com/abstract=399501.  Campbell J.Y. (1996). Understanding Risk and Return, Journal of Political Economy 104 298 345 pp.  (DOI: 10.2307/2138928), (ISSN: 0022 3808).  Caney S. (2005). Cosmopolitan justice, responsibility, and global climate change, Leiden Journal of  International Law 18 747 775 pp. (DOI: 10.1017/S0922156505002992), (ISSN: 0922 1565, 1478 9698).  Caney S. (2006a). Cosmopolitan justice, rights and global climate change, Canadian Journal of Law  and Jurisprudence XIX 255 278 pp. . Available at:  http://heinonline.org/HOL/LandingPage?collection=journals&handle=hein.journals/caljp19&div=18 &id=&page=.  Caney S. (2006b). Environmental degradation, reparations, and the moral significance of history,  Journal of Social Philosophy 37 464 482 pp. (DOI: 10.1111/j.1467 9833.2006.00348.x), (ISSN: 0047 2786, 1467 9833).  Caney S. (2009). Justice and the distribution of greenhouse gas emissions, Journal of Global Ethics 5  125 146 pp. (DOI: 10.1080/17449620903110300), (ISSN: 1744 9626).      84 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Caney S. (2010). Climate change and the duties of the advantaged, Critical Review of International  Social and Political Philosophy 13 203 228 pp. (DOI: 10.1080/13698230903326331), (ISSN: 1369 8230, 1743 8772).  Caney S. (2012). Just Emissions, Philosophy & Public Affairs 40 255 300 pp. (DOI:  10.1111/papa.12005), (ISSN: 1088 4963).  Carbone J.C., and V.K. Smith (2013). Valuing Nature in a General Equilibrium, Journal of  Environmental Economics and Management 66 72 89 pp. .  Cardoso A., and J. Benhin (2011). Assessing the viability of protecting Colombian Caribbean coast  from sea level rise: An economic valuationg approach, Semestre Económico 14 13 30 pp. (ISSN:  0120 6346).  Carlsson F., M. Kataria, A. Krupnick, E. Lampi, A. Löfgren, P. Qin, S. Chung, and T. Sterner (2012).  Paying for Mitigation: A Multiple Country Study, Land Economics 88 326 340 pp. (ISSN: 0023 7639,  1543 8325).  Carson R.T., and W.M. Hanemann (2005). Contingent Valuation. In: Handbook of Environmental  Economics. K. G. Mäler, J.R. Vincent, (eds.), Elsevier, pp.821 936(ISBN: 1574 0099).  Champ P.., K.J. Boyle, and T.C. Brown (2003). A Primer on Nonmarket Valuation. Kluwer Academic  Publishers, Dordrecht; Boston, 592 pp., (ISBN: 1402014309  9781402014307  0792364988   9780792364986  1402014457 9781402014451). .  Chang R. (1997). Incommensurability, Incomparability, and Practical Reason. Harvard University  Press, Cambridge Mass., (ISBN: 9780674447561). .  Charness G., and M. Rabin (2002). Understanding social preferences with simple tests, The  Quarterly Journal of Economics 117 817 869 pp. . Available at:  http://qje.oxfordjournals.org.proxy.library.ucsb.edu:2048/content/117/3/817.short.  Chen H. (1990). Theory Driven Evaluations. Sage Publications, Newbury Park Calif., (ISBN:  9780803935327). .  Chen Y., M. Harper, J. Konstan, and S. Xin Li (2010). Social comparisons and contributions to online  communities: A field experiment on movielens, The American Economic Review 1358 1398 pp. .  Available at: http://www.jstor.org.proxy.library.ucsb.edu:2048/stable/10.2307/27871259.  Chetty R., A. Looney, and K. Kroft (2009). Salience and taxation: theory and evidence, American  Economic Review 99 1145 1177 pp. (DOI: 10.1257/aer.99.4.1145), (ISSN: 0002 8282).  Choquehuanca C. D. (2010). Hacia la reconstrucción del Vivir Bien, América Latina en Movimiento,  ALAI 452 6 13 pp. . Available at: http://alainet.org/publica/452.phtml.  Clarke L., J. Edmonds, V. Krey, R. Richels, S. Rose, and M. Tavoni (2009). International climate policy  architectures: Overview of the EMF 22 International Scenarios, Energy Economics 31 S64 S81 pp. .  Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0140988309001960.  Clarkson R., and K. Deyes (2002). Estimating the Social Cost of Carbon Emissions. Department of  Environment, Food and Rural Affairs: London.      85 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Cline W.R. (1992). The Economics of Global Warming. Institute for International Economics, (ISBN:  9780881321326). .  Coase R.H. (1937). The Nature of the Firm, Economica 4 386 405 pp. (DOI: 10.1111/j.1468 0335.1937.tb00002.x), (ISSN: 1468 0335).  Cochrane J. (2001). Asset Pricing. Princeton University Press, (ISBN: 0691074984). .  Coleman J.L. (1992). Risks and Wrongs: Philosophical Analysis. Cambridge University Press Archive,  532 pp., (ISBN: 9780521428613). .  Compston H. (2010). The politics of climate policy: Strategic options for national governments, The  Political Quarterly 81 107 115 pp. . Available at:  http://onlinelibrary.wiley.com.proxy.library.ucsb.edu:2048/doi/10.1111/j.1467 923X.2009.02070.x/full.  Corner A., and N. Pidgeon (2010). Geoengineering the Climate: The Social and Ethical Implications,  Environment: Science and Policy for Sustainable Development 52 24 37 pp. (DOI:  10.1080/00139150903479563), (ISSN: 0013 9157).  Corner A., N. Pidgeon, and K. Parkhill (2012). Perceptions of geoengineering: public attitudes,  stakeholder perspectives, and the challenge of  upstream  engagement, Wiley Interdisciplinary  Reviews: Climate Change 3 451 466 pp. (DOI: 10.1002/wcc.176), (ISSN: 1757 7799).  Costello C.J., M.G. Neubert, S.A. Polasky, and A.R. Solow (2010). Bounded uncertainty and climate  change economics, Proceedings of the National Academy of Sciences 107 8108 8110 pp. (DOI:  10.1073/pnas.0911488107), (ISSN: 0027 8424, 1091 6490).  Cowen T. (1992). Consequentialism implies a zero rate of intergenerational discount. In: Philosophy,  Politics, and Society. Yale University Press, New Haven, CT pp.162 168.  Cragg M., and M. Kahn (1997). New Estimates of Climate Demand: Evidence from Location Choice,  Journal of Urban Economics 42 261 284 pp. (DOI: 10.1006/juec.1996.2027), (ISSN: 0094 1190).  Craig P.P., A. Gadgil, and J.G. Koomey (2002). What can history teach us? A retrospective  examination of long term energy forecasts for the United States, Annual Review of Energy and the  Environment 27 83 118 pp. (DOI: 10.1146/annurev.energy.27.122001.083425), (ISSN: 1056 3466,  1056 3466).  Crate S.A. (2008). Gone the Bull of Winter? Grappling with the Cultural Implications of and  Anthropology s Role(s) in Global Climate Change, Current Anthropology 49 569 595 pp. (DOI:  10.1086/529543), (ISSN: 0011 3204).  Creutzig F., E. McGlynn, J. Minx, and O. Edenhofer (2011). Climate policies for road transport  revisited (I): Evaluation of the current framework, Energy Policy 39 2396 2406 pp. (DOI:  10.1016/j.enpol.2011.01.062), (ISSN: 0301 4215).  Cropper M., and D. Laibson (1999). The Implications of Hyperbolic Discounting for Project  Evaluation. In: Discounting Intergenerational Equity. P.R. Portney, J. Weyant, (eds.), Resources for  the Future, Washington D.C.  Crost B., and C. Traeger (2013). Optimal climate policy: Uncertainty versus Monte Carlo, Economic  Letters 120 552 558 pp. .      86 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Crutzen P.J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to  Resolve a Policy Dilemma?, Climatic Change 77 211 220 pp. (DOI: 10.1007/s10584 006 9101 y),  (ISSN: 0165 0009, 1573 1480).  Currie C., S.N. Gabhainn, E. Godeau, C. Roberts, R. Smith, D. Currie, W. Picket, M. Richter, A.  Morgan, and V. Barnekow Rasmussen (2008). Global Health Risks: Mortality and  the Burden of  Disease Attributable to Selected Major Risks. World Health Organization.  Cyert R.M., and J.G. March (1963). A Behavioral Theory of the Firm. Prentice Hall, Englewood Cliffs,  NJ, 352 pp.  Daes I. (1996). Supplementary Report of the Special Rapporteur on the Protection of the Heritage of  Indigenous Peoples. United Nations Sub Commission on Prevention of Discrimination and Protection  of Minorities.  Dalton H. (1920). The measurement of the inequality of incomes, The Economic Journal 30 348 361  pp. . Available at: http://www.jstor.org/stable/2223525.  Dana D. (2009). The contextual rationality of the precautionary principle, Queen s Law Journal 35  67 96 pp. .  Daniel V.E., R.J.G.M. Florax, and P. Rietveld (2009). Flooding risk and housing values: An economic  assessment of environmental hazard, Ecological Economics 69 355 365 pp. (DOI:  10.1016/j.ecolecon.2009.08.018), (ISSN: 0921 8009).  Daniel J.S., S. Solomon, M. McFarland, and P. Friedlingstein (2012). Limitations of single basket  trading: lessons from the Montreal Protocol for climate policy, Climatic Change Climatic Change 111  241 248 pp. (ISSN: 0165 0009).  Dankelman I. (2002). Climate change: learning from gender analysis and women s experiences of  organising for sustainable development, Gender and Development 10 21 29 pp. . Available at:  http://www.jstor.org/stable/4030570.  Dannenberg A., B. Sturm, and C. Vogt (2010). Do equity preferences matter for climate negotiators?  An experimental investigation, Environmental and Resource Economics 47 91 109 pp. . Available at:  http://link.springer.com.proxy.library.ucsb.edu:2048/article/10.1007/s10640 010 9366 5.  Dasgupta P. (2007). Comments on the Stern Review s economics of climate change, National  Institute Economic Review 199 4 7 pp. (DOI: 10.1177/002795010719900102), (ISSN: 0027 9501).  Dasgupta P. (2008). Discounting climate change, Journal of Risk and Uncertainty 37 141 169 pp.  (DOI: 10.1007/s11166 008 9049 6), (ISSN: 0895 5646, 1573 0476).  Dasgupta P., and G.M. Heal (1980). Economic Theory and Exhaustible Resources. Cambridge  University Press, Cambridge, 516 pp., (ISBN: 9780521297615). .  Davis L.W. (2011). Evaluating the Slow Adoption of Energy Efficient Investments: Are Renters Less  Likely to Have Energy Efficient Appliances? National Bureau of Economic Research, Inc. 301 316 pp.  Available at: http://ideas.repec.org/h/nbr/nberch/12130.html.  Dawes R.M., and R.H. Thaler (1988). Anomalies: cooperation, The Journal of Economic Perspectives  2 187 197 pp. . Available at:  http://www.jstor.org.proxy.library.ucsb.edu:2048/stable/10.2307/1942822.      87 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  DeCanio S.J. (2003). Economic Models of Climate Change: A Critique. Palgrave Macmillan, New York,  224 pp., (ISBN: 978 1403963369). .  Dechezlepretre A., M. Glachant, I. Hascic, N. Johnstone, and Y. Meniere (2011). Invention and  transfer of climate change mitigation technologies: a global analysis, Review of Environmental  Economics and Policy 5 109 130 pp. (DOI: 10.1093/reep/req023), (ISSN: 1750 6816, 1750 6824).  Dekker T., H.R.J. Vollebergh, F.P. de Vries, and C. Withagen (2012). Inciting protocols, Journal of  Environmental Economics and Management 64 45 67 pp. .  Dell M., B.F. Jones, and B.A. Olken (2009). Temperature and Income: Reconciling New Cross Sectional and Panel Estimates, American Economic Review 99 198 204 pp. (DOI:  10.1257/aer.99.2.198), (ISSN: 0002 8282).  Dell M., B.F. Jones, and B.A. Olken (2012). Temperature Shocks and Economic Growth: Evidence  from the Last Half Century, American Economic Journal: Macroeconomics 4 66 95 pp. (DOI:  10.1257/mac.4.3.66), (ISSN: 1945 7707, 1945 7715).  DellaVigna S. (2009). Psychology and economics: evidence from the field, Journal of Economic  Literature 47 315 372 pp. (DOI: 10.1257/jel.47.2.315), (ISSN: 0022 0515).  Dervis K., and J. Klugman (2011). Measuring human progress: the contribution of the Human  Development Index and related indices, Revue d économie politique 121 73 92 pp. .  Deschenes O., and M. Greenstone (2007). The Economic Impacts of Climate Change: Evidence from  Agricultural Output and Random Fluctuations in Weather, American Economic Review 97 354 385  pp. (DOI: 10.1257/aer.97.1.354), (ISSN: 0002 8282).  Deschenes O., and M. Greenstone (2011). Climate Change, Mortality, and Adaptation: Evidence  from Annual Fluctuations in Weather in the US, American Economic Journal: Applied Economics 3  152 185 pp. (DOI: 10.1257/app.3.4.152).  Deschenes O., and C. Kolstad (2011). Economic impacts of climate change on California agriculture,  Climatic Change 109 365 386 pp. (DOI: 10.1007/s10584 011 0322 3), (ISSN: 0165 0009, 1573 1480).  Dessus S., and D. O Connor (2003). Climate Policy without Tears CGE Based Ancillary Benefits  Estimates for Chile, Environmental and Resource Economics 25 287 317 pp. (DOI:  10.1023/A:1024469430532), (ISSN: 0924 6460, 1573 1502).  Deuber O., G. Luderer, and O. Edenhofer (2013). Physico economic evaluation of climate metrics: A  conceptual framework, Environmental Science and Policy 29 37 45 pp. (ISSN: 1462 9011).  Diamond P.A. (1967). Cardinal welfare, individualistic ethics, and interpersonal comparison of utility:  Comment, The Journal of Political Economy 75 765 pp. .  Diamond P.A. (1977). A framework for social security analysis, Journal of Public Economics 8 275 298 pp. (DOI: 10.1016/0047 2727(77)90002 0), (ISSN: 0047 2727).  Van Dijk C. (2011). Civil liability for global warming in the Netherlands. In: Climate Change Liability.  M. Faure, M. Peeters, (eds.), Edward Elgar Publishing Ltd., Cheltenham UK pp.206 226.  Dimson E. (2002). Triumph of the Optimists: 101 Years of Global Investment Returns. Princeton  University Press, Princeton, N.J, 339 pp., (ISBN: 0691091943). .      88 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Donner L.J., and W.G. Large (2008). Climate modeling, Annual Review of Environment and Resources  33 1 17 pp. (DOI: 10.1146/annurev.environ.33.020707.160752), (ISSN: 1543 5938, 1545 2050).  Dreze J. (1998). Distribution matters in cost benefit analysis: a comment on K.A. Brekke, The Journal  of Public Economics 70 485 488 pp. .  Dreze J., and N. Stern (1989). The Theory of Cost Benefit Analysis. In: Handbook of Public Economics.  A. Auerbach, M. Feldstein, (eds.), North Holland, Amsterdam pp.909 989.  Dryzek J.S. (1997). The Politics of the Earth: Environmental Discourses. Oxford University Press,  Oxford; New York, (ISBN: 0198781601  9780198781608  0198781598  9780198781592). .  Dubash N.K., D. Raghunandan, G. Sant, and A. Sreenivas (2013). Indian Climate Change Policy,  Economic & Political Weekly 48 47 pp. . Available at:  http://www.epw.in/system/files/pdf/2013_48/22/Indian_Climate_Change_Policy.pdf.  Dubin J., A. Miedema, and R. Chandran (1986). Price effects of energy efficient technologies: a  study of residential demand for heating and cooling, RAND Journal of Economics 17 310 325 pp. .  Dunne J.P., R.J. Stouffer, and J.G. John (2013). Reductions in labour capacity from heat stress under  climate warming, Nature Climate Change 3 563 566 pp. . Available at:  http://www.nature.com.proxy.library.ucsb.edu:2048/nclimate/journal/vaop/ncurrent/full/nclimate1 827.html.  Eboli F., R. Parrado, and R. Roson (2010). Climate change feedback on economic growth:  explorations with a dynamic general equilibrium model, Environment and Development Economics  15 515 533 pp. (DOI: 10.1017/S1355770X10000252).  Ekholm T., T.J. Lindroos, and I. Savolainen (2013). Robustness of climate metrics under climate  policy ambiguity, Environmental Science & Policy 31 44 52 pp. (DOI: 10.1016/j.envsci.2013.03.006),  (ISSN: 1462 9011).  Ellerman A.D. (2010). Pricing Carbon: The European Union Emissions Trading Scheme. Cambridge  University Press, 390 pp., (ISBN: 9780521196475). .  Elster J., and J.E. Roemer (1993). Interpersonal Comparisons of Well Being. Cambridge University  Press, Cambridge, (ISBN: 9780521457224). .  Den Elzen M., J. Fuglestvedt, N. Höhne, C. Trudinger, J. Lowe, B. Matthews, B. Romstad, C.P. de  Campos, and N. Andronova (2005). Analysing countries  contribution to climate change: scientific  and policy related choices, Environmental Science & Policy 8 614 636 pp. (DOI:  10.1016/j.envsci.2005.06.007), (ISSN: 1462 9011).  Enkvist P. A., T. Nauclér, and J. Rosander (2007). A cost curve for greenhouse gas reduction, The  McKinsey Quarterly . Available at:  http://www.mckinseyquarterly.com/A_cost_curve_for_greenhouse_gas_reduction_1911.  Epstein L.G., and S.E. Zin (1991). Substitution, Risk Aversion, and the Temporal Behavior of  Consumption and Asset Returns: An Empirical Analysis, Journal of Political Economy 99 263 286 pp.  (DOI: 10.2307/2937681), (ISSN: 0022 3808).  European Commission (1985). Council Directive of 25 July 1985 on the approximation of the laws,  regulations and administrative provisions of the member states concerning liability for defective      89 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  products. . Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31985L0374:en:HTML.  European Commission (2009). Europeans  Attitudes towards Climate Change. European  Commission. . Available at: http://ec.europa.eu/public_opinion/archives/ebs/ebs_322_en.pdf.  European Union (2004). Directive 2004/35/CE of the European Parliament and the Council on  environmental liability with regard to the prevention and remedying of environmental damage.  Ewing B., and D. Kysar (2012). Prods and pleas: limited government in an era of unlimited harm,  Yale Law Journal 131 350 424 pp. .  Fankhauser S. (1994). The economic costs of global warming damage: A survey, Global  Environmental Change 4 301 309 pp. (DOI: 10.1016/0959 3780(94)90030 2), (ISSN: 09593780).  Fankhauser S., R.S.J. Tol, and D.W. Pearce (1997). The aggregation of climate change damages: a  welfare theoretic approach, Environmental and Resource Economics 10 249 266 pp. .  Farber D. (2007). Basic compensation for victims of climate change, University of Pennsylvania Law  Review 155 1605 1655 pp. .  Faure M., and A. Nollkaemper (2007). International liability as an instrument to prevent and  compensate for climate change, Stanford Journal of International Law 26A 123 179 pp. .  Faure M., and M. Peeters (2011). Concluding remarks. In: Climate Change Liability. M. Faure, M.  Peeters, (eds.), Edward Elgar Publishing Ltd., Cheltenham UK pp.255 274.  Faure M., and G. Skogh (2003). The Economic Analysis of Environmental Policy and Law: An  Introduction. Edward Elgar, Northampton MA, 354 pp.  Fawcett A., L. Clarke, S. Rausch, and J. Weyant (2013). Policy Overview of the EMF24 Study, The  Energy Journal.  Fehr E., and S. Gächter (2002). Altruistic punishment in humans, Nature 415 137 140 pp. . Available  at:  http://www.nature.com.proxy.library.ucsb.edu:2048/nature/journal/v415/n6868/abs/415137a.html .  Fehr E., and K.M. Schmidt (1999). A theory of fairness, competition, and cooperation, The quarterly  journal of economics 114 817 868 pp. . Available at:  http://qje.oxfordjournals.org.proxy.library.ucsb.edu:2048/content/114/3/817.short.  Feinberg J. (1984). Harm to Others (The Moral Limits of the Criminal Law). Oxford University Press,  USA, 284 pp., (ISBN: 0195034090). .  Ferioli F., K. Schoots, and B.C.C. van der Zwaan (2009). Use and limitations of learning curves for  energy technology policy: a component learning hypothesis, Energy Policy 37 2525 2535 pp. (DOI:  10.1016/j.enpol.2008.10.043), (ISSN: 03014215).  Fischbacher U., and S. Gächter (2010). Social preferences, beliefs, and the dynamics of free riding in  public good experiments, American Economic Review 100 541 556 pp. . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1314687.      90 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Fischbacher U., S. Gächter, and E. Fehr (2001). Are people conditionally cooperative? Evidence from  a public goods experiment, Economics Letters 71 397 404 pp. (DOI: 10.1016/S0165 1765(01)00394 9), (ISSN: 0165 1765).  Fischer C. (2008). Feedback on household electricity consumption: a tool for saving energy?, Energy  Efficiency 1 79 104 pp. (DOI: 10.1007/s12053 008 9009 7), (ISSN: 1570 646X, 1570 6478).  Fischer C., and R.G. Newell (2008). Environmental and technology policies for climate mitigation,  Journal of Environmental Economics and Management 55 142 162 pp. (DOI:  10.1016/j.jeem.2007.11.001), (ISSN: 00950696).  Fisher A.C., W.M. Hanemann, M.J. Roberts, and W. Schlenker (2012). The Economic Impacts of  Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment,  American Economic Review 102 3749 3760 pp. (DOI: 10.1257/aer.102.7.3749), (ISSN: 0002 8282).  Fleming J.R. (2010). Fixing the Sky: The Checkered History of Weather and Climate Control. Columbia  University Press, 344 pp., (ISBN: 978 0 231 14412 4). .  Fleurbaey M. (2008). Fairness, Responsibility, and Welfare. Oxford University Press, 307 pp., (ISBN:  9780191607578). .  Fleurbaey M. (2009). Beyond GDP: The Quest for a Measure of Social Welfare, Journal of Economic  Literature 47 1029 1075 pp. (DOI: 10.1257/jel.47.4.1029).  Fleurbaey M. (2010). Assessing risky social situations, The Journal of Political Economy 118 649 680  pp. (DOI: 10.1086/656513), (ISSN: 00223808, 1537534X).  Fleurbaey M., and P. Hammond (2004). Interpersonally comparable utility. In: Handbook of Utility  Theory. S. Barbera, P.J. Hammond, C. Seidl, (eds.), Kluwer Academic Publishers, Dordrecht  [Netherlands].  Foley D. (2009). The economic fundamentals of global warming. In: Twenty First Century  Macroeconomics: Responding to the Climate Challenge. J.M. Harris, N.. Goodwin, (eds.), Edward  Elgar, Northampton, MA pp.115 126.  Ford J.D., B. Smit, and J. Wandel (2006). Vulnerability to climate change in the Arctic: A case study  from Arctic Bay, Canada, Global Environmental Change 16 145 160 pp. (DOI:  10.1016/j.gloenvcha.2005.11.007), (ISSN: 0959 3780).  Ford J.D., B. Smit, J. Wandel, M. Allurut, K. Shappa, H. Ittusarjuat, and K. Qrunnut (2008). Climate  change in the Arctic: current and future vulnerability in two Inuit communities in Canada, The  Geographical Journal 174 45 62 pp. (DOI: 10.1111/j.1475 4959.2007.00249.x), (ISSN: 0016 7398,  1475 4959).  Forster P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, and J. Lean  (2007). Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The  Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the  Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis,  et. al, (eds.), Cambridge University Press, Cambridge, United Kingdom and New York.  Forsythe R., J.L. Horowitz, N.E. Savin, and M. Sefton (1994). Fairness in simple bargaining  experiments, Games and Economic Behavior 6 347 369 pp. (DOI: 10.1006/game.1994.1021), (ISSN:  08998256).      91 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Frame B. (2005). Bhutan: a review of its approach to sustainable development, Development in  Practice 15 216 221 pp. (DOI: 10.1080/09614520500041963), (ISSN: 0961 4524).  Frankfurt H. (1999). Equality and respect, Social Research 64 3 15 pp. .  Frederick S., G. Loewenstein, and T. O donoghue (2002). Time discounting and time preference: a  critical review, Journal of economic literature 40 351 401 pp. .  Freeman J., and C.D. Kolstad (2006). Moving to Markets in Environmental Regulation: Lessons from  Twenty Years of Experience. Oxford University Press, Oxford ; New York, 488 pp., (ISBN:  0195189655). .  Frey B.S., and S. Meier (2004). Social comparisons and pro social behavior: Testing  conditional  cooperation  in a field experiment, The American Economic Review 94 1717 1722 pp. . Available at:  http://www.jstor.org.proxy.library.ucsb.edu:2048/stable/10.2307/3592843.  Frey B.S., and F. Oberholzer Gee (1997). The cost of price incentives: an empirical analysis of  motivation crowding out, The American Economic Review 87 746 755 pp. . Available at:  http://www.jstor.org/stable/2951373.  Friman M. (2007). Historical Responsibility in the UNFCCC. Centre for Climate Science and Policy  Research, Linkopings Universitet. 70 pp.  Fuglestvedt J.W., T.K. Bernstsen, O. Godal, and T. Skodvin (2000a). Climate implications of GWP based reductions in greenhouse gas emissions, Geophysical Research Letters 27 409 412 pp. (ISSN:  0094 8276).  Fuglestvedt J.S., T.K. Berntsen, O. Godal, R. Sausen, K.P. Shine, and T. Skodvin (2003). Metrics of  climate change: assessing radiative forcing and emission indices, Climatic Change 58 267 331 pp.  (DOI: 10.1023/A:1023905326842).  Fuglestvedt J.S., T.K. Berntsen, O. Godal, and T. Skodvin (2000b). Climate implications of GWP based reductions in greenhouse gas emissions, Geophysical Research Letters 27 409 412 pp. (DOI:  10.1029/1999GL010939), (ISSN: 1944 8007).  Fuglestvedt J.S., K.P. Shine, T. Berntsen, J. Cook, D.S. Lee, A. Stenke, R.B. Skeie, G.J.M. Velders, and  I.A. Waitz (2010). Transport impacts on atmosphere and climate: Metrics, Atmospheric Environment  44 4648 4677 pp. (DOI: 10.1016/j.atmosenv.2009.04.044), (ISSN: 1352 2310).  Fullerton D. (2011). Six distributional effects of environmental policy, Risk Analysis 31 923 29 pp. .  Fullerton D., G. Heutel, and G.E. Metcalf (2011). Does the Indexing of Government Transfers Make  Carbon Pricing Progressive?, American Journal of Agricultural Economics.  Fullerton D., and G.E. Metcalf (2001). Environmental controls, scarcity rents, and pre existing  distortions, Journal of Public Economics 80 249 267 pp. (DOI: 10.1016/S0047 2727(00)00087 6),  (ISSN: 0047 2727).  Fullerton D., and D.L. Rogers (1993). Who Bears the Lifetime Tax Burden? Brookings Institution  Press, 264 pp., (ISBN: 9780815729938). .  Gangadharan L., and V. Nemes (2009). Experimental analysis of risk and uncertainty in provisioning  private and public goods, Economic Inquiry 47 146 164 pp. . Available at:      92 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  http://onlinelibrary.wiley.com.proxy.library.ucsb.edu:2048/doi/10.1111/j.1465 7295.2007.00118.x/full.  Gardiner S.M. (2004). Ethics and Global Climate Change, Ethics 114 555 600 pp. (DOI:  10.1086/382247), (ISSN: 0014 1704).  Gardiner S.M. (2010). Is  Arming the Future  with Geoengineering Really the Lesser Evil?: Some  Doubts about the Ethics of Intentionally Manipulating the Climate System. In: Climate Ethics:  Essential Readings. S.M. Gardiner, (ed.), Oxford University Press, pp.284 314.  Gardiner S.M. (2011). A Perfect Moral Storm: The Ethical Tragedy of Climate Change. Oxford  University Press, USA, 512 pp., (ISBN: 0195379446). .  Gerlagh R., and B. Van der Zwaan (2006). Options and instruments for a deep cut in CO2 emissions:  carbon dioxide capture or renewables, taxes or subsidies?, Energy Journal 27 25 48 pp. .  Geroski P. (1995). Markets for technology: knowledge, innovation, and appropriability. In: Handbook  of the economics of innovation and technological change. P. Stoneman, (ed.), Blackwell, Oxford  pp.90 131(ISBN: 0631177736 9780631177739 0631197745 9780631197744).  Gerrard M., and G. Wannier (2012). United States. In: Climate Change Liability: Transnational  Theory and Practice. R. Lord, S. Goldberg, L. Rajamani, J. Brunée, (eds.), Cambridge University Press,  Cambridge UK pp.556 603.  Gilbert J. (2006). Indigenous Peoples  Land Rights Under International Law: From Victims to Actors.  BRILL, 352 pp., (ISBN: 9781571053695). .  Gillett N.P., and H.D. Matthews (2010). Accounting for carbon cycle feedbacks in a comparison of  the global warming effects of greenhouse gases, Environmental Research Letters 5 034011 pp. (DOI:  10.1088/1748 9326/5/3/034011), (ISSN: 1748 9326).  Gillingham K., M. Harding, and D. Rapson (2012). Split incentives in residential energy consumption,  Energy Journal 33 37 62 pp. . Available at:  http://www.econ.ucdavis.edu/faculty/dsrapson/GillinghamHardingRapson_v4.pdf.  Gillingham K., M.J. Kotchen, D.S. Rapson, and G. Wagner (2013). Energy policy: The rebound effect  is overplayed, Nature 493 475 476 pp. (DOI: 10.1038/493475a), (ISSN: 0028 0836, 1476 4687).  Gillingham K., R. Newell, and K. Palmer (2006). Energy efficiency policies: A retrospective  examination, Annual Review of Environment and Resources 31 161 192 pp. . Available at:  http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.energy.31.020105.100157.  Gillingham K., R.G. Newell, and W.A. Pizer (2008). Modeling endogenous technological change for  climate policy analysis, Energy Economics 30 2734 2753 pp. (DOI: 10.1016/j.eneco.2008.03.001),  (ISSN: 01409883).  Gillingham K., and K. Palmer (2014). Bridging the Energy Efficiency Gap: Insights for Policy from  Economic Theory and Empirical Analysis, Review of Environmental Economics and Policy 8 18 38  pp. . Available at: http://reep.oxfordjournals.org/content/8/1/18.abstract.  Gini C. (1912). Variabilita e mutabilita. In: Memorie di metodologica statistica. E. Pizetti, T. Salvemini,  (eds.), Libreria Eredi Virgilio Veschi, Rome. Available at:      93 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  http://books.google.de/books/about/Variabilit%C3%A0_e_mutabilit%C3%A0.html?id=fqjaBPMxB9k C&redir_esc=y.  Gneezy U., and A. Rustichini (2000). A fine is a price, The Journal of Legal Studies 29 1 pp. (DOI:  10.1086/468061), (ISSN: 0047 2530, 1537 5366).  Godal O., and J.S. Fuglestvedt (2002). Testing 100 year global warming potentials: impacts on  compliance costs and abatement profile, Climatic Change 52 93 127 pp. .  Goldberg S., and R. Lord (2012). England. In: Climate Change Liability: Transnational Theory and  Practice. R. Lord, S. Goldberg, L. Rajamani, J. Brunée, (eds.), Cambridge University Press, Cambridge  UK pp.445 488.  Goldstein N.J., R.B. Cialdini, and V. Griskevicius (2008). A room with a viewpoint: Using social norms  to motivate environmental conservation in hotels, Journal of Consumer Research 35 472 482 pp. .  Available at: http://www.jstor.org.proxy.library.ucsb.edu:2048/stable/10.1086/586910.  Gollier C. (2002). Time Horizon and the Discount Rate, Journal of Economic Theory 107 463 473 pp.  (DOI: 10.1006/jeth.2001.2952), (ISSN: 0022 0531).  Gollier C. (2010). Ecological discounting, Journal of Economic Theory 145 812 829 pp. (DOI:  10.1016/j.jet.2009.10.001), (ISSN: 00220531).  Gollier C. (2012). Pricing The Planet s Future: The Economics of Discounting in an Uncertain World.  Princeton University Press, 246 pp., (ISBN: 9780691148762). .  Gollier C., and M.L. Weitzman (2010). How should the distant future be discounted when discount  rates are uncertain?, Economics Letters 107 350 353 pp. (DOI: 10.1016/j.econlet.2010.03.001),  (ISSN: 0165 1765).  González Gaudiano E., and P. Meira Cartea (2009). Educación, comunicación y cambio climático.  Resistencias para la acción social responsable, Trayectorias 11 6 38 pp. .  Gorman W.M. (1955). The intransitivity of certain criteria used in welfare economics, Oxford  Economic Papers 7 25 35 pp. . Available at: http://ezproxy.ouls.ox.ac.uk:2073/stable/info/2662000.  Gorman W.M. (1968). The structure of utility functions, The Review of Economic Studies 35 367 390  pp. . Available at: http://ezproxy.ouls.ox.ac.uk:2073/stable/2296766.  Gosseries A. (2004). Historical emissions and free riding, Ethical Perspectives 11 36 60 pp. .  Goulder L.H. (1995). Environmental taxation and the double dividend: a reader s guide, International  Tax and Public Finance 2 157 183 pp. (DOI: 10.1007/BF00877495), (ISSN: 0927 5940, 1573 6970).  Goulder L.H. (2013). Markets for Pollution Allowances: What Are the (New) Lessons?, Journal of  Economic Perspectives 27 87 102 pp. (ISSN: 0895 3309).  Goulder L.H., and K. Mathai (2000). Optimal CO2 abatement in the presence of induced  technological change, Journal of Environmental Economics and Management 39 1 38 pp. (DOI:  10.1006/jeem.1999.1089), (ISSN: 00950696).  Goulder L.H., and I.W.H. Parry (2008). Instrument choice in environmental policy, Review of  Environmental Economics and Policy 2 152  174 pp. (DOI: 10.1093/reep/ren005).      94 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Goulder L.H., I.W.. Parry, and D. Burtraw (1997). Revenue raising versus other approaches to  environmental protection: the critical significance of preexisting tax distortions, RAND Journal of  Economics 28 708 731 pp. . Available at: http://www.jstor.org/stable/2555783.  Goulder L.H., and R.N. Stavins (2011). Challenges from state federal interactions in us climate  change policy, American Economic Review 101 253 257 pp. .  Gowdy J.M. (2008). Behavioral economics and climate change policy, Journal of Economic Behavior  & Organization 68 632 644 pp. (DOI: 10.1016/j.jebo.2008.06.011), (ISSN: 01672681).  Grainger C.A., and C.D. Kolstad (2010). Who pays a price on carbon?, Environmental and Resource  Economics 46 359 376 pp. (DOI: 10.1007/s10640 010 9345 x), (ISSN: 0924 6460, 1573 1502).  Gram Hanssen K. (2010). Residential heat comfort practices: understanding users, Building Research  & Information 38 175 186 pp. (DOI: 10.1080/09613210903541527), (ISSN: 0961 3218).  Greene D.L., J. German, and M.A. Delucchi (2009). Fuel economy: The case for market failure. In:  Reducing climate impacts in the transportation sector. Springer, pp.181 205. Available at:  http://link.springer.com.proxy.library.ucsb.edu:2048/chapter/10.1007/978 1 4020 6979 6_11/fulltext.html.  Greene C., B. Monger, and M. Huntley (2010). Geoengineering: The Inescapable Truth of Getting to  350, Solutions 1 57 66 pp. . Available at: http://www.thesolutionsjournal.com/node/771.  Greene D.L., P.D. Patterson, M. Singh, and J. Li (2005). Feebates, rebates and gas guzzler taxes: a  study of incentives for increased fuel economy, Energy Policy 33 757 775 pp. (DOI:  10.1016/j.enpol.2003.10.003), (ISSN: 0301 4215).  Greening L.A., and S. Bernow (2004). Design of coordinated energy and environmental policies: use  of multi criteria decision making, Energy Policy 32 721 735 pp. (DOI: 10.1016/j.enpol.2003.08.017),  (ISSN: 03014215).  Greening L., D. Greene, and C. Difiglio (2000). Energy efficiency and consumption: The rebound  effect   a survey., Energy Policy 28 389 401 pp. .  Greenstone M., E. Kopits, and A. Wolverton (2013). Developing a Social Cost of Carbon for US  Regulatory Analysis: A Methodology and Interpretation, Review of Environmental Economics and  Policy 7 23 46 pp. (DOI: 10.1093/reep/res015), (ISSN: 1750 6816, 1750 6824).  Griffin J. (1986). Well Being: Its Meaning, Measurement, and Moral Importance. Clarendon Press,  Oxford, (ISBN: 9780198248439). .  Griliches Z. (1992). The search for R&D spillovers, Scandinavian Journal of Economics 94 S29 47 pp. .  Grimaud A., and L. Rouge (2008). Environment, directed technical change and economic policy,  Environmental and Resource Economics 41 439 463 pp. (DOI: 10.1007/s10640 008 9201 4), (ISSN:  0924 6460, 1573 1502).  Groosman B., N.Z. Muller, and E. O Neill Toy (2011). The Ancillary Benefits from Climate Policy in  the United States, Environmental and Resource Economics 50 585 603 pp. (DOI: 10.1007/s10640 011 9483 9), (ISSN: 0924 6460, 1573 1502).      95 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Grossman D.A. (2009). Tort Based Climate Litigation. In: Adjudicating Climate Change: State,  National, and International Approaches. Cambridge University Press, pp.193 229.  Grübler A., and S. Messner (1998). Technological change and the timing of mitigation measures,  Energy Economics 20 495 512 pp. (DOI: 10.1016/S0140 9883(98)00010 3), (ISSN: 01409883).  Gudynas E. (2011). Buen Vivir: Today s tomorrow, Development 54 441 447 pp. (DOI:  10.1057/dev.2011.86), (ISSN: 1011 6370, 1461 7072).  Guéant O., R. Guesnerie, and J. M. Lasry (2012). Ecological Intuition versus Economic  Reason ,  Journal of Public Economic Theory 14 245 272 pp. (DOI: 10.1111/j.1467 9779.2011.01541.x), (ISSN:  1467 9779).  Guesnerie R. (2004). Calcul économique et développement durable, Revue économique 55 363 382  pp. (DOI: 10.3917/reco.553.0363), (ISSN: 0035 2764, 1950 6694).  Gunningham N. (2013). Managing the energy trilemma: The case of Indonesia, Energy Policy 54 184 193 pp. (DOI: 10.1016/j.enpol.2012.11.018), (ISSN: 03014215).  Gunningham N., R.A. Kagan, and D. Thornton (2003). Shades of Green: Business, Regulation, and  Environment. Stanford University Press, 228 pp., (ISBN: 9780804748520). .  Gupta S., D.A. Tirpak, N. Burger, J. Gupta, J. Höhne, I.A. Boncheva, G.M. Kanoan, C. Kolstad, J.A.  Kruger, A. Michaelowa, S. Murase, J. Pershing, T. Saijo, and A. Sari (2007). Policies, instruments and  co operative arrangements. In: Climate Change 2007: Mitigation. Contribution of Working Group III  to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, O.  Davidson, P.R. Bosch, R. Dave, L.A. Meyer, (eds.), Cambridge University Press, Cambridge, United  Kingdom and New York, NY, USA. pp.745 807.  Güth W., R. Schmittberger, and B. Schwarze (1982). An experimental analysis of ultimatum  bargaining, Journal of Economic Behavior & Organization 3 367 388 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/0167268182900117.  Haab T.C., and K.E. McConnell (2002). Valuing Environmental and Natural Resources: The  Econometrics of Non Market Valuation. E. Elgar Pub., Cheltenham, U.K.; Northampton, Mass., USA,  352 pp., (ISBN: 1840647043 9781840647044 1843763885 9781843763888). .  Hahn R.W. (1989). Economic Prescriptions for Environmental Problems: How the Patient Followed  the Doctor s Orders, Journal of Economic Perspectives 3 95 114 pp. (DOI: 10.1257/jep.3.2.95), (ISSN:  0895 3309).  Hale B. (2012a). The world that would have been: moral hazard arguments against geoengineering.  In: Engineering the Climate: The Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington  Books, Lanham, Md pp.113 131(ISBN: 9780739175408  0739175408  9780739175415  0739175416).  Hale B. (2012b). Getting the Bad Out: Remediation Technologies and Respect for Others. In: The  Environment: Philosophy, Science, and Ethics. MIT Press, (ISBN: 9780262017404).  Hale B., and L. Dilling (2011). Geoengineering, Ocean Fertilization, and the Problem of Permissible  Pollution, Science, Technology & Human Values 36 190 212 pp. (DOI: 10.1177/0162243910366150),  (ISSN: 0162 2439, 1552 8251).      96 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Hale B., and W.P. Grundy (2009). Remediation and Respect: Do Remediation Technologies Alter Our  Responsibility?, Environmental Values 18 397 415 pp. (DOI: 10.3197/096327109X12532653285696).  Hall B., and J. Lerner (2010). The financing of R&D and innovation. In: Handbook of the economics of  innovation. B.H. Hall, N. Rosenberg, (eds.), Elsevier, Amsterdam pp.610 638.  Hallegatte S. (2008). An Adaptive Regional Input Output Model and its Application to the  Assessment of the Economic Cost of Katrina, Risk Analysis 28 779 799 pp. (DOI: 10.1111/j.1539 6924.2008.01046.x), (ISSN: 1539 6924).  Hallegatte S., J. C. Hourcade, and P. Dumas (2007). Why economic dynamics matter in assessing  climate change damages: Illustration on extreme events, Ecological Economics 62 330 340 pp. (DOI:  10.1016/j.ecolecon.2006.06.006), (ISSN: 0921 8009).  Halsnaes K., P.R. Shukla, D. Ahuja, G. Akumu, R. Beale, J. Edmonds, C. Gollier, A. Grübler, M.H.  Duong, A. Markandya, M. McFarland, E. Nikitina, T. Sugiyama, A. Villavicencio, and J. Zou (2007).  Framing issues. In: Climate Change 2007: Mitigation. Contribution of Working III to the Fourth  Assessment Report to the Intergovernmental Panel on Climate Change. B. Metz, O. Davidson, P.  Bosch, R. Dave, L. Meyer, (eds.), Cambridge University Press, New York pp.117 167.  Hamilton C. (2013). Earthmasters: The Dawn of the Age of Climate Engineering. Yale University  Press. . Available at:  http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=x61F2HkKtVEC&oi=fnd& pg=PR9&dq=Earthmasters:+The+Dawn+of+the+Age+of+Climate+Engineering&ots=2qQ5X_cZU4&sig =wDVMtf23TRPQ 0CQWJzmTQCrGlc.  Hammitt J.K., A.K. Jain, J.L. Adams, and D.J. Wuebbles (1996a). A welfare based index for assessing  environmental effects of greenhouse gas emissions, Nature 381 301 303 pp. (DOI:  10.1038/381301a0), (ISSN: 0028 0836).  Hammitt J.K., A.K. Jain, J.L. Adams, and D.J. Wuebbles (1996b). A welfare based index for assessing  environmental effects of greenhouse gas emissions, Nature 381 301 303 pp. (DOI:  10.1038/381301a0).  Hammond P.J. (1993). Interpersonal comparisons of utility: Why and how they are and should be  made. In: Interpersonal comparisons of well being. J. Elster, J. Roemer, (eds.), Cambride University  Press, Cambridge pp.200 254.  Hanemann W.M. (1991). Willingness to pay and willingness to accept: how much can they differ?,  The American Economic Review 81 635 647 pp. .  Hanemann W.M. (2010). Cap and trade: a sufficient or necessary condition for emission reduction?,  Oxford Review of Economic Policy 26 225 252 pp. (DOI: 10.1093/oxrep/grq015), (ISSN: 0266 903X,  1460 2121).  Hardin G. (1968). The tragedy of the commons, Science 162 1243 1248 pp. .  Harford J.D. (1998). The Ultimate Externality, The American Economic Review 88 260 265 pp. (DOI:  10.2307/116828), (ISSN: 0002 8282).  Haritz M. (2011). Liability with and liability from the precautionary principle in climate change cases.  In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing Ltd., Cheltenham  UK pp.255 274.      97 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Harman E. (2004). Can we harm and benefit in creating?, Philosophical Perspectives 18 89 113 pp.  (DOI: 10.1111/j.1520 8583.2004.00022.x), (ISSN: 15208583).  Harrington W., R. Morgenstern, and T. Sterner (2004). Choosing Environmental Policy: Comparing  Instruments and Outcomes in the United States and Europe. Resources for the Future, Washington   DC, 296 pp., (ISBN: 9781891853876). .  Harrod H.R.. (1949). Towards a Dynamic Economics: Some Recent Developments of Economic Theory  and Their Application to Policy. Macmillan and Co., London. . Available at:  http://books.google.com/books?id=6BtZPAAACAAJ.  Harsanyi J.C. (1955). Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility,  Journal of Political Economy 63 309 321 pp. .  Harsanyi J.C. (1977). Rational Behavior and Bargaining Equilibrium in Games and Social Situations.  Cambridge University Press, 314 pp.  Hassett K.A., and G.E. Metcalf (1993). Energy conservation investment: Do consumers discount the  future correctly?, Energy Policy 21 710 716 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/030142159390294P.  Hassol S. (2004). Impacts of a Warming Arctic   Arctic Climate Impact Assessment. Cambridge  University Press, 139 pp., (ISBN: 0 521 61778 2). .  Hausman J.A. (1979). Individual Discount Rates and the Purchase and Utilization of Energy Using  Durables, The Bell Journal of Economics 10 33 54 pp. (DOI: 10.2307/3003318), (ISSN: 0361 915X).  Hayes T.M., and F. Murtinho (2008). Are indigenous forest reserves sustainable? An analysis of  present and future land use trends in Bosawas, Nicaragua, International Journal of Sustainable  Development & World Ecology 15 497 511 pp. (DOI: 10.1080/13504500809469845), (ISSN: 1350 4509).  Hegerl G.C., and S. Solomon (2009). Risks of Climate Engineering, Science 325 955 956 pp. (DOI:  10.1126/science.1178530), (ISSN: 0036 8075, 1095 9203).  Helm D. (2010). Government failure, rent seeking, and capture: the design of climate change policy,  Oxford Review of Economic Policy 26 182 196 pp. (ISSN: 0266 903X).  Hendry C., and P. Harborne (2011). Changing the view of wind power development: More than  bricolage , Research Policy 40 778 789 pp. (DOI: 10.1016/j.respol.2011.03.001), (ISSN: 00487333).  Henriksen J.B. (2007). Highly Vulnerable Indigenous and Local Communities, Inter Alia, of the Arctic,  Small Island States and High Altitudes, Concerning the Impacts of Climate Change and Accelerated  Threats, such as Pollution, Drought and Desertification, to Traditional Knowledge and Practices with  a Focus of Causes and Solution. UNEP. 36 pp. Available at:  http://www.cbd.int/doc/meetings/tk/emccilc 01/other/emccilc 01 wg8j 05 inf 18 en.pdf.  Hepburn C. (2006). Regulation by prices, quantities, or both: a review of instrument choice, Oxford  Review of Economic Policy 22 226 247 pp. (DOI: 10.1093/oxrep/grj014), (ISSN: 0266 903X, 1460 2121).  Hepburn C., M. Grubb, K. Neuhoff, F. Matthes, and M. Tse (2006). Auctioning of EU ETS phase II  allowances: how and why?, Climate Policy 6 137 160 pp. . Available at:      98 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  http://www.tandfonline.com.proxy.library.ucsb.edu:2048/doi/abs/10.1080/14693062.2006.968559 2.  Heyd D. (1992). Genethics: Moral Issues in the Creation of People. University of California Press,  Berkeley, (ISBN: 9780520077140). .  Hicks J.R. (1932). The Theory of Wages. Macmillan, London.  Hiller A. (2011). Climate Change and Individual Responsibility, The Monist 94 349 368 pp. .  HM Treasury (2003). The Green Book   Appraisal and Evaluation in Central Government. London,  114 pp.  Hoekman B., K. Maskus, and K. Saggi (2005). Transfer of technology to developing countries:  Unilateral and multilateral policy options, World Development 33 1587 1602 pp. (DOI:  10.1016/j.worlddev.2005.05.005), (ISSN: 0305750X).  Hoel M., and T. Sterner (2007). Discounting and relative prices, Climatic Change 84 265 280 pp.  (DOI: 10.1007/s10584 007 9255 2), (ISSN: 0165 0009, 1573 1480).  Höhne N., H. Blum, J. Fuglestvedt, R.B. Skeie, A. Kurosawa, G. Hu, J. Lowe, L. Gohar, B. Matthews,  A.C.N. de Salles, and C. Ellermann (2011). Contributions of individual countries  emissions to climate  change and their uncertainty, Climatic Change 106 359 391 pp. (DOI: 10.1007/s10584 010 9930 6),  (ISSN: 0165 0009, 1573 1480).  Hope C. (2011). The Social Cost of CO2 from the PAGE09 Model. Social Science Research Network,  Rochester, NY. . Available at: http://papers.ssrn.com/abstract=1973863.  Hope C. (2013). Critical issues for the calculation of the social cost of CO2: why the estimates from  PAGE09 are higher than those from PAGE2002, Climatic Change 117 531 543 pp. (DOI:  10.1007/s10584 012 0633 z), (ISSN: 0165 0009, 1573 1480).  Hope C., J. Anderson, and P. Wenman (1993). Policy analysis of the greenhouse effect: An  application of the PAGE model, Energy Policy 21 327 338 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/030142159390253C.  Hossain T., and J. Morgan (2006). ...plus shipping and handling: revenue (non) equivalence in field  experiments on eBay, Advances in Economic Analysis & Policy 5 (DOI: 10.2202/1538 0637.1429),  (ISSN: 1538 0637).  Hourcade J.C., M. Jaccard, C. Bataille, and F. Ghersi (2006). Hybrid Modeling: New Answers to Old  Challenges, The Energy Journal 2 1 12 pp. .  Hourdequin M. (2012). Geoengineering, solidarity, and moral risk. In: Engineering the Climate: The  Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington Books, Lanham, Md pp.15 32(ISBN: 9780739175408  0739175408  9780739175415  0739175416).  Van den Hove S. (2000). Participatory approaches to environmental policy making: the European  Commission Climate Policy Process as a case study, Ecological Economics 33 457 472 pp. (DOI:  10.1016/S0921 8009(99)00165 2), (ISSN: 09218009).  Howarth R.B. (1996). Climate change and overlapping generations, Contemporary Economic Policy  14 100 111 pp. .      99 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Howarth R.B., and R.B. Norgaard (1992). Environmental Valuation under Sustainable Development,  The American Economic Review 82 473 477 pp. (DOI: 10.2307/2117447), (ISSN: 0002 8282).  Hsiang S.M. (2010). Temperatures and cyclones strongly associated with economic production in the  Caribbean and Central America, Proceedings of the National Academy of Sciences 107 15367 15372  pp. (DOI: 10.1073/pnas.1009510107), (ISSN: 0027 8424, 1091 6490).  Hsiang S.M., M. Burke, and E. Miguel (2013). Quantifying the influence of climate on human  conflict, Science 1237557 pp. . Available at:  http://www.seas.harvard.edu.proxy.library.ucsb.edu:2048/climate/eli/Courses/global change debates/Sources/21 Social upheaval/Hsiang etal 2013.pdf.  Hulme M. (2009). Why We Disagree About Climate Change. Cambridge University Press, 432 pp.,  (ISBN: 9780521727327). .  Hunter D., and J. Salzman (2007). Negligence in the air: the duty of care in climate change litigation,  University of Pennsylvania Law Review 155 1741 1794 pp. .  Huntington H.G. (2011). The Policy Implications of Energy Efficiency Cost Curves, The Energy Journal  Volume 32 7 22 pp. . Available at: http://ideas.repec.org/a/aen/journl/32si1 a02.html.  Hurka T. (1982). Average utilitarianisms, Analysis 42 65 69 pp. .  Huseby R. (2010). Sufficiency: restated and defended, Journal of Political Philosophy 18 178 197 pp.  (DOI: 10.1111/j.1467 9760.2009.00338.x), (ISSN: 09638016, 14679760).  IEA, OPEC, OECD, and The World Bank (2011). Joint Report by IEA, OPEC, OECD and World Bank on  Fossil Fuel and Other Energy Subsidies: An Update of the G20 Pittsburgh and Toronto Commitments. .  Available at: http://www.oecd.org/env/49090716.pdf.  IPCC (1990). Climate Change: The Intergovernmental Panel on Climate Change Scientific Assessment  [J.T. Houghton, G.J. Jenkins, J.J. Ephraums (eds)]. Cambridge University Press, Cambridge.  IPCC (1995). Second Assessment Report. Intergovernmental Panel on Climate Change. . Available at:  http://www.ipcc.ch/pdf/climate changes 1995/ipcc 2nd assessment/2nd assessment en.pdf.  IPCC (2007). Synthesis Report. Cambridge University Press, Cambridge, UK, 52 pp. Available at:  www.ipcc.ch.  Jackson S.C. (2009). Parallel Pursuit of Near Term and Long Term Climate Mitigation, Science 326  526 527 pp. (ISSN: 0036 8075).  Jacoby H.D., J.M. Reilly, J.R. McFarland, and S. Paltsev (2006). Technology and technical change in  the MIT EPPA model, Energy Economics 28 610 631 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0140988306000624.  Jaffe A.B., and K. Palmer (1997). Environmental Regulation and Innovation: A Panel Data Study,  Review of Economics and Statistics 79 610 619 pp. (DOI: 10.1162/003465397557196), (ISSN: 0034 6535).  Jaffe A.B., and R.N. Stavins (1994). The energy efficient gap: What does it mean?, Energy Policy 22  804 pp. (ISSN: 03014215).      100 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Jamieson D. (1992). Ethics, Public Policy, and Global Warming, Science, Technology, & Human Values  17 139 153 pp. (ISSN: 0162 2439).  Jamieson D. (1996). Ethics and intentional climate change, Climatic Change 33 323 336 pp. (DOI:  10.1007/BF00142580), (ISSN: 0165 0009, 1573 1480).  Jamieson D. (1997). Symposium: The Public s Health in the Global Era: Challenges, Responses, and  Responsibilities . Global Responsibilities: Ethics, Public Health, and Global Environmental Change,  Indiana Journal of Global Legal Studies 5 99 119 pp. .  Jamieson D. (2001). Climate Change and Global Environmental Justice. In: Changing the Atmosphere:  Expert Knowledge and Environmental Governance. C.A. Miller, P.N. Edwards, (eds.), MIT Press,  pp.287 307(ISBN: 9780262632195).  Jamieson D. (2010). Climate Change, Responsibility, and Justice, Science and Engineering Ethics 16  431 445 pp. (DOI: 10.1007/s11948 009 9174 x), (ISSN: 1353 3452, 1471 5546).  Jensen R. (2010). The (perceived) returns to education and the demand for schooling, Quarterly  Journal of Economics 125 515 548 pp. (DOI: 10.1162/qjec.2010.125.2.515), (ISSN: 0033 5533, 1531 4650).  Johansson D.J.A. (2012). Economics  and physical based metrics for comparing greenhouse gases,  Climatic Change 110 123 141 pp. (DOI: 10.1007/s10584 011 0072 2), (ISSN: 0165 0009, 1573 1480).  Johansson D.J.A., U.M. Persson, and C. Azar (2006). The cost of using global warming potentials:  analysing the trade off between CO2, CH4 and N2O, Climatic Change 77 291 309 pp. (DOI:  10.1007/s10584 006 9054 1), (ISSN: 0165 0009, 1573 1480).  Johnstone N., I. Ha¹èiè, and D. Popp (2010). Renewable energy policies and technological  innovation: evidence based on patent counts, Environmental and Resource Economics 45 133 155  pp. (DOI: 10.1007/s10640 009 9309 1), (ISSN: 0924 6460, 1573 1502).  Jones A.D., W.D. Collins, J. Edmonds, M.S. Torn, A. Janetos, K.V. Calvin, A. Thomson, L.P. Chini, J.  Mao, X. Shi, P. Thornton, G.C. Hurtt, and M. Wise (2013). Greenhouse Gas Policy Influences Climate  via Direct Effects of Land Use Change, Journal of Climate 26 3657 3670 pp. (DOI: 10.1175/JCLI D 12 00377.1), (ISSN: 0894 8755, 1520 0442).  Joskow P.L., and D.B. Marron (1992). What Does a Negawatt Really Cost? Evidence from Utility  Conservation Programs, The Energy Journal 13 41 74 pp. (DOI: 10.2307/41322467), (ISSN: 0195 6574).  Joskow P.L., and D.B. Marron (1993). What Does Utility Subsidized Energy Efficiency Really Cost,  Science 260 281 +370 pp. . Available at:  http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6353064.  Jotzo F. (2012). Australia s carbon price, Nature Climate Change 2 475 476 pp. (DOI:  10.1038/nclimate1607), (ISSN: 1758 678X).  Jotzo F., and S. Hatfield Dodds (2011). Price Floors in Emissions Trading to Reduce Policy Related  Investment Risks: an Australian View. Working Paper 1105, Crawford School Center for Climate  Economics and Policy . Available at: http://ideas.repec.org/p/een/ccepwp/1105.html.      101 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Jung C., K. Krutilla, and R. Boyd (1996). Incentives for advanced pollution abatement technology at  the industry level: an evaluation of policy alternatives, Journal of environmental economics and  management 30 95 111 pp. .  Kahneman D., and A. Deaton (2010). High income improves evaluation of life but not emotional  well being, Proceedings of the National Academy of Sciences 107 16489 16493 pp. (DOI:  10.1073/pnas.1011492107), (ISSN: 0027 8424, 1091 6490).  Kahneman D., and R. Sugden (2005). Experienced Utility as a Standard of Policy Evaluation,  Environmental and Resource Economics 32 161 181 pp. (DOI: 10.1007/s10640 005 6032 4), (ISSN:  0924 6460, 1573 1502).  Kahneman D., and A. Tversky (1974). Judgment under uncertainty: heuristics and biases, Science  185 1124 1131 pp. (DOI: 10.1126/science.185.4157.1124), (ISSN: 0036 8075, 1095 9203).  Kahneman D., and A. Tversky (1979). Prospect theory: an analysis of decision under risk,  Econometrica 47 263 292 pp. . Available at: http://www.jstor.org/stable/1914185 Prospect Theory:  An Analysis of Decision under Risk Daniel Kahneman and Amos Tversky Econometrica , Vol. 47, No. 2  (Mar., 1979), pp. 263 292 Published by: The Econometric Society Article Stable URL:  http://www.jstor.org/stable/1914185.  Kandlikar M. (1996a). Indices for comparing greenhouse gas emissions: integrating science and  economics, Energy Economics 18 265 281 pp. (DOI: 10.1016/S0140 9883(96)00021 7), (ISSN:  01409883).  Kandlikar M. (1996b). Indices for comparing greenhouse gas emissions: integrating science and  economics, Energy Economics 18 265 281 pp. (DOI: 10.1016/S0140 9883(96)00021 7), (ISSN: 0140 9883).  Kant I. (1956). Critique of Practical Reason (L.W. Beck, Tran.). Bobbs Merrill, Indianapolis.  Kaplow L., E. Moyer, and D.A. Weisbach (2010). The Social Evaluation of Intergenerational Policies  and Its Application to Integrated Assessment Models of Climate Change, The B.E. Journal of  Economic Analysis & Policy 10 (DOI: 10.2202/1935 1682.2519), (ISSN: 1935 1682).  Karplus V.J., S. Paltsev, M. Babiker, and J.M. Reilly (2013). Applying engineering and fleet detail to  represent passenger vehicle transport in a computable general equilibrium model, Economic  Modelling 30 295 305 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0264999312002611.  Keenan R.J, Caripis L, Foerster A, Godden L, and Peel J (2012). Science and the governance of  Australia s climate regime, Nature Climate Change 2 477 478 pp. (ISSN: 1758 678X).  Keeney R.L., and H. Raiffa (1993). Decisions with Multiple Objectives: Preferences and Value Trade Offs. Cambridge University Press, 596 pp., (ISBN: 9780521438834). .  Keith D.W. (2000). Geoengineering the Climate: History and Prospect, Annual Review of Energy and  the Environment 25 245 284 pp. (DOI: 10.1146/annurev.energy.25.1.245).  Keith D.W., E. Parson, and M.G. Morgan (2010). Research on global sun block needed now, Nature  463 426 427 pp. (DOI: 10.1038/463426a), (ISSN: 0028 0836).      102 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Kelly D.L., and C.D. Kolstad (2001). Malthus and Climate Change: Betting on a Stable Population,  Journal of Environmental Economics and Management 41 135 161 pp. (DOI:  10.1006/jeem.2000.1130), (ISSN: 0095 0696).  Kelly D.L., C.D. Kolstad, and G.T. Mitchell (2005). Adjustment costs from environmental change,  Journal of Environmental Economics and Management 50 468 495 pp. (DOI:  10.1016/j.jeem.2005.02.003), (ISSN: 0095 0696).  Kelman S. (1981). Cost Benefit Analysis: An Ethical Critique, Regulation 5 33 pp. . Available at:  http://heinonline.org/HOL/Page?handle=hein.journals/rcatorbg5&id=35&div=&collection=journals.  Kesicki F., and P. Ekins (2012). Marginal abatement cost curves: a call for caution, Climate Policy 12  219 236 pp. . Available at:  http://www.tandfonline.com.proxy.library.ucsb.edu:2048/doi/abs/10.1080/14693062.2011.582347.  Kingdom of Bhutan (2008). The Constitution of the Kingdom of Bhutan. Thim phu, 262 pp., (ISBN:  9993675407). .  Kjellstrom T., R.S. Kovats, S.J. Lloyd, T. Holt, and R.S.J. Tol (2009). The Direct Impact of Climate  Change on Regional Labor Productivity, Archives of Environmental & Occupational Health 64 217 227 pp. (DOI: 10.1080/19338240903352776), (ISSN: 1933 8244).  Klepper G., and S. Peterson (2006). Marginal abatement cost curves in general equilibrium: The  influence of world energy prices, Resource and Energy Economics 28 1 23 pp. (DOI:  10.1016/j.reseneeco.2005.04.001), (ISSN: 09287655).  Kling J.R., S. Mullainathan, E. Shafir, L.C. Vermeulen, and M.V. Wrobel (2012). Comparison friction:  experimental evidence from medicare drug plans, The Quarterly Journal of Economics 127 199 235  pp. (DOI: 10.1093/qje/qjr055), (ISSN: 0033 5533, 1531 4650).  Koch H., M. Lührs, and R. Verheyen (2012). Germany. In: Climate Change Liability: Transnational  Theory and Practice. R. Lord, S. Goldberg, L. Rajamani, J. Brunée, (eds.), Cambridge University Press,  Cambridge UK pp.376 416.  Kocherlakota N.R. (1996). The Equity Premium: It s Still a Puzzle, Journal of Economic Literature 34  42 71 pp. (DOI: 10.2307/2729409), (ISSN: 0022 0515).  Koehler D.A. (2007). The effectiveness of voluntary environmental programs a policy at a  crossroads?, Policy Studies Journal 35 689 722 pp. (DOI: 10.1111/j.1541 0072.2007.00244.x).  Köhler J., M. Grubb, D. Popp, and O. Edenhofer (2006). The transition to endogenous technical  change in climate economy models: a technical overview to the innovation modeling comparison  project, The Energy Journal 17 55 pp. .  Kok M., B. Metz, J. Verhagen, and S. Van Rooijen (2008). Integrating development and climate  policies: national and international benefits, Climate Policy 8 103 118 pp. (DOI:  10.3763/cpol.2007.0436), (ISSN: 14693062, 17527457).  Kolstad C.D. (2010). Environmental Economics. Oxford University Press, New York, 480 pp., (ISBN:  9780199732647). .      103 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Kolstad C.D., T.S. Ulen, and G.V. Johnson (1990). Ex Post Liability for Harm vs. Ex Ante Safety  Regulation: Substitutes or Complements?, The American Economic Review 80 888 901 pp. (DOI:  10.2307/2006714), (ISSN: 0002 8282).  Korpi E., and T. Ala Risku (2008). Life cycle costing: a review of published case studies, Managerial  Auditing Journal 23 240 261 pp. (DOI: 10.1108/02686900810857703), (ISSN: 0268 6902).  Kosolapova E. (2011). Liability for climate change related damage in domestic courts: claims for  compensation in the USA. In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar  Publishing Ltd., Cheltenham UK pp.189 205.  Kraut R. (2007). What Is Good, and Why. Harvard University Press, Cambridge, Mass.  Kreps D.M., and E.L. Porteus (1978). Temporal Resolution of Uncertainty and Dynamic Choice  Theory, Econometrica 46 185 200 pp. (DOI: 10.2307/1913656), (ISSN: 0012 9682).  Krey V., and L. Clarke (2011). Role of renewable energy in climate mitigation: a synthesis of recent  scenarios, Climate Policy 11 1131 1158 pp. . Available at:  http://www.tandfonline.com.proxy.library.ucsb.edu:2048/doi/abs/10.1080/14693062.2011.579308.  Kronik J., and D. Verner (2010). The Role of Indigenous Knowledge in Crafting Adaptation and  Mitigation Strategies for Climate Change in Latin America. In: The Social Dimensions of Climate  Change: Equity and Vulnerability in a Warming World. World Bank Publications, pp.145 169(ISBN:  9780821378878).  Krutilla J.V. (1967). Conservation Reconsidered, The American Economic Review 57 777 786 pp.  (DOI: 10.2307/1815368), (ISSN: 0002 8282).  Kull A. (1995). Rationalizing restitution, California Law Review 83 1191 1242 pp. .  Kumar R. (2003). Who Can Be Wronged?, Philosophy & Public Affairs 31 99 118 pp. (DOI:  10.1111/j.1088 4963.2003.00099.x), (ISSN: 1088 4963).  Kymlicka W. (1995). Multicultural Citizenship: A Liberal Theory of Minority Rights. Cambridge  University Press, 290 pp. Available at:  http://journals.cambridge.org.proxy.library.ucsb.edu:2048/production/action/cjoGetFulltext?fulltext id=6258800.  Kysar D. (2011). What climate change can do about tort law, Environmental Law 41 1 41 pp. .  Laibson D. (1997). Golden Eggs and Hyperbolic Discounting, The Quarterly Journal of Economics 112  443 478 pp. (DOI: 10.1162/003355397555253), (ISSN: 0033 5533, 1531 4650).  Laitner J., S.J. De Canio, J.G. Koomey, and A.H. Sanstad (2003). Room for improvement: increasing  the value of energy modeling for policy analysis, Utilities Policy 11 87 94 pp. (DOI: 10.1016/S0957 1787(03)00020 1), (ISSN: 09571787).  Lamarque J. F., T.C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B.  Owen, M.G. Schultz, D. Shindell, S.J. Smith, E. Stehfest, J. Van Aardenne, O.R. Cooper, M. Kainuma,  N. Mahowald, J.R. McConnell, V. Naik, K. Riahi, and D.P. van Vuuren (2010). Historical (1850 2000)  gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology  and application, Atmospheric Chemistry and Physics 10 7017 7039 pp. (DOI: 10.5194/acp 10 7017 2010), (ISSN: 1680 7324).      104 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Lange A., and C. Vogt (2003). Cooperation in international environmental negotiations due to a  preference for equity, Journal of Public Economics 87 2049 2067 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0047272702000440.  Lange A., C. Vogt, and A. Ziegler (2007). On the importance of equity in international climate policy:  An empirical analysis, Energy Economics 29 545 562 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0140988306001137.  Lanoie P., M. Patry, and R. Lajeunesse (2008). Environmental regulation and productivity: testing  the porter hypothesis, Journal of Productivity Analysis 30 121 128 pp. (DOI: 10.1007/s11123 008 0108 4), (ISSN: 0895 562X, 1573 0441).  Lashof D.A., and D.R. Ahuja (1990). Relative contributions of greenhouse gas emissions to global  warming, Nature 344 529 531 pp. (DOI: 10.1038/344529a0).  Laslett P., and J.S. Fishkin (1992). Justice between Age Groups and Generations. Yale University  Press, New Haven.  Laycock D. (2012). Restoring restitution to the canon, Michigan Law Review 110 929 952 pp. .  Ledyard J.O. (1993). Public Goods: A Survey of Experimental Research. Division of the Humanities  and Social Sciences, California Institute of Technology, Pasadena, Calif.  Lee J.J., and T.A. Cameron (2008). Popular Support for Climate Change Mitigation: Evidence from a  General Population Mail Survey, Environmental and Resource Economics 41 223 248 pp. (DOI:  10.1007/s10640 007 9189 1), (ISSN: 0924 6460, 1573 1502).  Lee J. S., S. H. Yoo, and S. J. Kwak (2010). Public s willingness to pay for preventing climate change,  Applied Economics Letters 17 619 622 pp. (DOI: 10.1080/13504850802277113), (ISSN: 1350 4851).  Leisner T., and S. Müller Klieser (2010). Aerosolbasierte Methoden des Climate Engineering: Eine  Bewertung, Technikfolgenabschätzung   Theorie und Praxis 19 25 32 pp. . Available at:  http://www.itas.fzk.de/tatup/102/lemk10a.htm.  Lenton T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber (2008).  Tipping elements in the Earth s climate system, Proceedings of the National Academy of Sciences 105  1786 1793 pp. (DOI: 10.1073/pnas.0705414105), (ISSN: 0027 8424, 1091 6490).  Leopold A. (1949). A Sand County Almanac, and Sketches Here and There. Oxford University Press,  New York, (ISBN: 0195007778 9780195007770). .  Levati M.V., M. Sutter, and E. van der Heijden (2007). Leading by Example in a Public Goods  Experiment with Heterogeneity and Incomplete Information, Journal of Conflict Resolution 51 793 818 pp. (DOI: 10.1177/0022002707302796), (ISSN: 0022 0027, 1552 8766).  Levin H., and P. McEwan (2001). Cost Effectiveness Analysis: Methods and Applications. Sage  Publications, Thousand Oaks  Calif., 328 pp., (ISBN: 9780761919339). .  Lewis J.I. (2007). Technology acquisition and innovation in the developing world: wind turbine  development in china and india, studies in comparative international development, Studies in  comparative international development 42 208 232 pp. .      105 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Lin B., and Z. Jiang (2011). Estimates of energy subsidies in China and impact of energy subsidy  reform, Energy Economics 33 273 283 pp. (DOI: 10.1016/j.eneco.2010.07.005), (ISSN: 01409883).  Lipsey R.G., and K. Lancaster (1956). The General Theory of Second Best, The Review of Economic  Studies 24 11 pp. (DOI: 10.2307/2296233), (ISSN: 00346527).  List J.A. (2011). The market for charitable giving, Journal of Economic Perspectives 25 157 180 pp.  (DOI: 10.1257/jep.25.2.157), (ISSN: 0895 3309).  Lobell D.B., W. Schlenker, and J. Costa Roberts (2011). Climate Trends and Global Crop Production  Since 1980, Science 333 616 620 pp. (DOI: 10.1126/science.1204531), (ISSN: 0036 8075, 1095 9203).  Longo A., D. Hoyos, and A. Markandya (2012). Willingness to Pay for Ancillary Benefits of Climate  Change Mitigation, Environmental and Resource Economics 51 119 140 pp. (DOI: 10.1007/s10640 011 9491 9), (ISSN: 0924 6460, 1573 1502).  Loomis J.B., and R.B. Richardson (2006). An external validity test of intended behavior: Comparing  revealed preference and intended visitation in response to climate change, Journal of Environmental  Planning and Management 49 621 630 pp. (DOI: 10.1080/09640560600747562), (ISSN: 0964 0568).  Lorenzoni I., S. Nicholson Cole, and L. Whitmarsh (2007). Barriers perceived to engaging with  climate change among the UK public and their policy implications, Global Environmental Change 17  445 459 pp. (DOI: 10.1016/j.gloenvcha.2007.01.004), (ISSN: 0959 3780).  Lüken M., O. Edenhofer, B. Knopf, M. Leimbach, G. Luderer, and N. Bauer (2011). The role of  technological availability for the distributive impacts of climate change mitigation policy, Energy  Policy 39 6030 6039 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0301421511005258.  Lyon T.P., and J.W. Maxwell (2004). Corporate Environmentalism and Public Policy. Cambridge  University Press, 316 pp., (ISBN: 9780521603768). .  Lyon T.P., and J.W. Maxwell (2007). Environmental public voluntary programs reconsidered, Policy  Studies Journal 35 723 750 pp. (DOI: 10.1111/j.1541 0072.2007.00245.x).  Lyon T.P., and J.W. Maxwell (2008). Corporate Social Responsibility and the Environment: A  Theoretical Perspective, Review of Environmental Economics and Policy 2 240 260 pp. (DOI:  10.1093/reep/ren004), (ISSN: 1750 6816, 1750 6824).  Maddison D. (2001). The Amenity Value of the Global Climate. Earthscan, 164 pp., (ISBN:  9781853836770). .  Maddison D. (2003). The amenity value of the climate: the household production function approach,  Resource and Energy Economics 25 155 175 pp. . Available at:  http://ideas.repec.org/a/eee/resene/v25y2003i2p155 175.html.  Maddison D., and A. Bigano (2003). The amenity value of the Italian climate, Journal of  Environmental Economics and Management 45 319 332 pp. (DOI: 10.1016/S0095 0696(02)00052 9),  (ISSN: 0095 0696).  Majchrzak A. (1984). Methods for Policy Research. Sage Publications, Beverly Hills, 111 pp. Available  at:      106 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  http://books.google.de/books/about/Methods_for_Policy_Research.html?id=eSqbl3o7gBIC&redir_e sc=y.  Mäler K. G., and J.R. Vincent (2005). Handbook of Environmental Economics: Valuing Environmental  Changes. Elsevier, 647 pp., (ISBN: 9780444511454). .  Malinvaud E. (1953). Capital accumulation and efficient allocation of resources, Econometrica 21  233 268 pp. . Available at: http://www.jstor.org/stable/1905538.  Malloy T.F. (2002). Regulating by Incentives: Myths, Models and Micromarkets, Texas Law Review  80 531 605 pp. .  Mank B. (2007). Civil remedies. In: Global climate change and U.S. law. M. Gerrard, Energy American  Bar Association. Section of Environment, (eds.), American Bar Association, Section of Environment,  Energy, and Resources, Chicago, Ill. pp.183 258(ISBN: 9781590318164 1590318161).  Manne A.S., and R.G. Richels (1992). Buying Greenhouse Insurance: The Economic Costs of CO2  Emission Limits. The MIT Press, 194 pp., (ISBN: 026213280X). .  Manne A.S., and R.G. Richels (1995). The Greenhouse Debate: Economic Efficiency, Burden Sharing  and Hedging Strategies, The Energy Journal 16 1 37 pp. (DOI: 10.2307/41322615), (ISSN: 0195 6574).  Manne A.S., and R.G. Richels (2001). An alternative approach to establishing trade offs among  greenhouse gases, Nature 410 675 677 pp. (DOI: 10.1038/35070541), (ISSN: 0028 0836).  Manne A.S., and R.G. Richels (2004a). MERGE: An Integrated Assessment Model for Global Climate  Change. Stanford University. . Available at: http://www.stanford.edu/group/MERGE/GERAD1.pdf.  Manne A.S., and R.G. Richels (2004b). The impact of learning by doing on the timing and costs of  CO2 abatement, Energy Economics 26 603 619 pp. (DOI: 10.1016/j.eneco.2004.04.033), (ISSN:  01409883).  Manning M., and A. Reisinger (2011). Broader perspectives for comparing different greenhouse  gases, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering  Sciences 369 1891 1905 pp. (DOI: 10.1098/rsta.2010.0349), (ISSN: 1364 503X, 1471 2962).  Di Maria C., and S. Valente (2008). Hicks meets Hotelling: the direction of technical change in  capital resource economies, Environment and Development Economics 13 691 pp. (DOI:  10.1017/S1355770X08004567), (ISSN: 1355 770X, 1469 4395).  Marshall A. (1890). Principles of Economics (C. Cuillebaud, Ed.). Macmillan and Co., London, (ISBN:  9781573921404). .  Marshall C., and G.B. Rossman (2006). Designing Qualitative Research. SAGE, London, (ISBN:  9781412924887). .  Martin I.R (2013). Consumption Based asset pricing with higher cumulants, Review of Economic  Studies 80 745 773 pp. (ISSN: 0034 6527).  Mason H., M. Jones Lee, and C. Donaldson (2009). Modelling the monetary value of a QALY: a new  approach based on UK data, Health Economics 18 933 950 pp. (DOI: 10.1002/hec.1416), (ISSN:  10579230, 10991050).      107 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Massetti E., C. Carraro, and L. Nicita (2009). How does climate policy affect technical change? An  analysis of the direction and pace of technical progress in a climate economy model, Energy Journal  30 7 38 pp. .  Mathers C., G. Stevens, and M. Mascarenhas (2009). Global Health Risks: Mortality and Burden of  Disease Attributable to Selected Major Risks. World Health Organization. . Available at:  http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf.  Matthews R.C. (1986). The economics of institutions and the sources of growth, The Economic  Journal 96 903 918 pp. .  McCollum D.L., V. Krey, K. Riahi, P. Kolp, A. Grubler, M. Makowski, and N. Nakicenovic (2012).  Climate policies can help resolve energy security and air pollution challenges, Climatic Change 119  479 494 pp. . Available at: http://link.springer.com/article/10.1007/s10584 013 0710 y.  McConnell K.E., and N.E. Bockstael (2006). Valuing the environment as a factor of production. In:  Handbook of environmental economics. K. G. Mäler, J.R. Vincent, (eds.), Elsevier, Amsterdam; Boston  pp.621 669(ISBN: 0444500634  9780444500632  0444511458  9780444511454  0444511466   9780444511461).  McGregor P.G., J. Kim Swales, and M.A. Winning (2012). A review of the role and remit of the  committee on climate change, Energy Policy Energy Policy 41 466 473 pp. (ISSN: 0301 4215).  McKenzie D., J. Gibson, and S. Stillman (2013). A land of milk and honey with streets paved with  gold: Do emigrants have over optimistic expectations about incomes abroad?, Journal of  Development Economics 102 116 127 pp. (DOI: 10.1016/j.jdeveco.2012.01.001), (ISSN: 03043878).  McKibbin W.J., and P.J. Wilcoxen (2002). The role of economics in climate change policy, Journal of  Economic Perspectives 16 107 129 pp. (DOI: 10.1257/0895330027283), (ISSN: 0895 3309).  McKinnon C. (2011). Climate Change and Future Justice: Precaution, Compensation and Triage.  Routledge, 192 pp., (ISBN: 0415461251). .  McKinsey & Company (2009). Pathways to a Low Carbon Economy: Version 2 of the Global  Greenhouse Gas Abatement Cost Curve. 17 pp. Available at:  http://www.epa.gov/statelocalclimate/documents/pdf/mckinsey_summary_11 19 09.pdf.  McMahan J. (1998). Wrongful life: paradoxes in the morality of causing people to exist. In: Rational  commitment and social justice. J.L. Coleman, C.W. Morris, J.L. Coleman, C.W. Morris, (eds.),  Cambridge University Press, Cambridge pp.208 248(ISBN: 9780511527364, 9780521631792,  9780521042024).  Meier A.K., and J. Whittier (1983). Consumer discount rates implied by purchases of energy efficient  refrigerators, Energy 8 957 962 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/0360544283900944.  Messner S. (1997). Endogenized technological learning in an energy systems model, Journal of  Evolutionary Economics 7 291 313 pp. (DOI: 10.1007/s001910050045), (ISSN: 0936 9937, 1432 1386).  Metcalf G.E. (1994). Economics and rational conservation policy, Energy Policy 22 819 825 pp. (DOI:  10.1016/0301 4215(94)90140 6), (ISSN: 0301 4215).      108 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Metcalf G.E. (1999). A distributional analysis of an environmental tax shift, National Tax Journal 52  655 681 pp. .  Metz B., O. Davidson, P. Bosch, R. Dave, and L. Meyer (2007). Climate Change 2007: Mitigation.  Contribution of Working Group III to the Fourth Assessment Report to the Intergovernmental Panel  on Climate Change. Cambridge University Press, New York, 691 743 pp.  Metz B., O. Davidson, R. Swart, and J. Pan (2001). Climate Change 2001: Mitigation. Contribution of  Working Group III to the Third Assessment Report to the Intergovernmental Panel on Climate  Change. Cambridge University Press, Cambridge; New York, 753 pp., (ISBN: 9780521807692). .  Meyer L.H. (2003). Past and Future: The Case for an Identity Independent Notion of Harm. In:  Rights, culture, and the law: themes from the legal and political philosophy of Joseph Raz. L.H.  Meyer, S.L. Paulson, T.W.M. Pogge, (eds.), Oxford University Press, Oxford ; New York pp.143 159(ISBN: 0199248257).  Meyer L.H. (2005). Historische Gerechtigkeit. Walter de Gruyter, Berlin and New York, 458 pp.,  (ISBN: 978 3 11 092749 8). .  Meyer L. (2010). Intergenerational justice, The Stanford Encyclopedia of Philosophy . Available at:  http://plato.stanford.edu/archives/spr2010/entries/justice intergenerational/.  Meyer L.H. (2013). Why Historical Emissions Should Count, Chicago Journal of International Law 13  597 685 pp. . Available at: https://litigation essentials lexisnexis com.proxy.library.ucsb.edu:9443/webcd/app?action=DocumentDisplay&crawlid=1&doctype=cite&d ocid=13+Chi.+J.+Int l+L.+597&srctype=smi&srcid=3B15&key=a323d8488719017cbfe18173cc744a32.  Meyer L., and D. Roser (2006). Distributive justice and climate change: the allocation of emission  rights, Analyse & Kritik 28 223 249 pp. . Available at: http://www.analyse und kritik.net/2006 2/abstracts.htm.  Meyer L., and D. Roser (2009). Enough for the future. In: Intergenerational justice. A. Gosseries, L.  Meyer, (eds.), Oxford University Press, Oxford; New York pp.219 248(ISBN: 9780199282951  0199282951).  Meyer L.H., and D. Roser (2010). Climate justice and historical emissions, Critical Review of  International Social and Political Philosophy 13 229 253 pp. (DOI: 10.1080/13698230903326349),  (ISSN: 1369 8230).  Mickwitz P. (2003). A framework for evaluating environmental policy instruments, Evaluation 9 415  436 pp. (DOI: 10.1177/1356389003094004).  Miller D. (2004). Holding nations responsible, Ethics 114 240 268 pp. (DOI: 10.1086/379353), (ISSN:  0014 1704, 1539 297X).  Mirrlees J.A. (1971). An exploration in the theory of optimum income taxation, The Review of  Economic Studies 38 175 208 pp. . Available at: http://www.jstor.org/stable/2296779.  Mirrlees J.A. (1982). The economic uses of utilitarianism. In: Utilitarianism and Beyond. Amartya  Sen, Bernard Arthur Owen Williams, (eds.), Cambridge University Press, .      109 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Mont O., and C. Dalhammar (2005). Sustainable consumption: at the cross road of environmental  and consumer policies, International Journal of Sustainable Development 8 258 279 pp. . Available  at: http://inderscience.metapress.com/content/B6T1D5G0K878AVFC.  De Montis A., P. De Toro, B. Droste Franke, I. Omann, and S. Stagl (2005). Assessing the quality of  different MCDA methods. In: Alternatives for Environmental Valuation. Routledge, pp.99 133.  Moon S. (2008). Does TRIPS Art. 66.2 Encourage Technology Transfer to LDCs? An Analysis of Country  Submissions to the TRIPS Council (1999 2007). UNCTAD   ICTSD Project on IPRs and Sustainable  Development.  Morris J., S. Paltsev, and J. Reilly (2012). Marginal Abatement Costs and Marginal Welfare Costs for  Greenhouse Gas Emissions Reductions: Results from the EPPA Model, Environmental Modeling &  Assessment 17 325 336 pp. (DOI: 10.1007/s10666 011 9298 7), (ISSN: 1420 2026, 1573 2967).  Möst D., and W. Fichtner (2010). Renewable energy sources in European energy supply and  interactions with emission trading, Energy Policy 38 2898 2910 pp. (DOI:  10.1016/j.enpol.2010.01.023), (ISSN: 0301 4215).  Mundaca L. (2008). Markets for energy efficiency: Exploring the implications of an EU wide  Tradable White Certificate scheme, Energy Economics 30 3016 3043 pp. .  Mundaca L., M. Mansoz, L. Neij, and G.R. Timilsina (2013). Transaction costs analysis of low carbon  technologies, Climate Policy 13 490 513 pp. (DOI: 10.1080/14693062.2013.781452), (ISSN: 1469 3062).  Mundaca L., and L. Neij (2009). A multi criteria evaluation framework for tradable white certificate  schemes, Energy Policy 37 4557 4573 pp. (DOI: 10.1016/j.enpol.2009.06.011), (ISSN: 03014215).  Mundaca L., L. Neij, E. Worrell, and M. McNeil (2010). Evaluating Energy Efficiency Policies with  Energy Economy Models, Annual Review of Environment and Resources 35 305 344 pp. (DOI:  10.1146/annurev environ 052810 164840), (ISSN: 1543 5938, 1545 2050).  Murphy R., and M. Jaccard (2011). Energy efficiency and the cost of GHG abatement: A comparison  of bottom up and hybrid models for the US, Energy Policy 39 7146 7155 pp. (DOI:  10.1016/j.enpol.2011.08.033), (ISSN: 03014215).  Murphy K.M., and R.H. Topel (2006). The value of health and longevity, Journal of Political Economy  114 871 904 pp. (DOI: 10.1086/508033), (ISSN: 0022 3808, 1537 534X).  Murray C.J. (1994). Quantifying the burden of disease: the technical basis for disability adjusted life  years., Bulletin of the World Health Organization 72 429 445 pp. . Available at:  http://www.ncbi.nlm.nih.gov.proxy.library.ucsb.edu:2048/pmc/articles/PMC2486718/.  Nadel S., and K. Keating (1991). Engineering Estimates vs. Impact Evaluation Results: How Do They  Compare and Why? American Council for an Energy Efficient Economy. . Available at:  http://www.aceee.org/research report/u915.  Nakashima D.J., United Nations University. Institute of Advanced Studies. Traditional Knowledge  Initiative, and S. and C.O. United Nations. Educational (2012). Weathering Uncertainity : Traditional  Knowledge for Climate Change Assessment and Adaptation. UNESCO ; UNU IAS, Paris; Darwin, 120  pp., (ISBN: 9789230010683  9230010685  9780980708486  0980708486). .      110 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Narita D., K. Rehdanz, and R.S.J. Tol (2012). Economic costs of ocean acidification: a look into the  impacts on global shellfish production, Climatic Change 113 1049 1063 pp. (DOI: 10.1007/s10584 011 0383 3), (ISSN: 0165 0009, 1573 1480).  National Science Board (2010). Research and Development: Funds and Technology Linkages. In:  Science and Engineering Indicators 2010. National Science Foundation, Arlington, VA. . Available at:  http://www.nsf.gov/statistics/seind10/c4/c4h.htm.  Nelson J.A. (2013). Ethics and the economist: What climate change demands of us, Ecological  Economics 85 145 154 pp. (DOI: 10.1016/j.ecolecon.2011.07.029), (ISSN: 0921 8009).  Nemet G.F. (2006). Beyond the learning curve: factors influencing cost reductions in photovoltaics,  Energy Policy 34 3218 3232 pp. (DOI: 10.1016/j.enpol.2005.06.020), (ISSN: 03014215).  Nepstad D., S. Schwartzman, B. Bamberger, M. Santilli, D. Ray, P. Schlesinger, P. Lefebvre, A.  Alencar, E. Prinz, G. Fiske, and A. Rolla (2006). Inhibition of Amazon deforestation and fire by parks  and indigenous lands, Conservation Biology 20 65 73 pp. (DOI: 10.1111/j.1523 1739.2006.00351.x),  (ISSN: 1523 1739).  Neumayer E. (2000). In defence of historical accountability for greenhouse gas emissions, Ecological  Economics 33 185 192 pp. (DOI: 10.1016/S0921 8009(00)00135 X), (ISSN: 09218009).  Neumayer E., and T. Plümper (2007). The Gendered Nature of Natural Disasters: The Impact of  Catastrophic Events on the Gender Gap in Life Expectancy, 1981 2002, Annals of the Association of  American Geographers Annals of the Association of American Geographers 97 551 566 pp. (ISSN:  0004 5608).  New M., D. Liverman, H. Schroder, and K. Anderson (2011). Four degrees and beyond: the potential  for a global temperature increase of four degrees and its implications, Philosophical Transactions of  the Royal Society A: Mathematical, Physical and Engineering Sciences 369 6 19 pp. (DOI:  10.1098/rsta.2010.0303), (ISSN: 1364 503X, 1471 2962).  Newell R.G., A.B. Jaffe, and R.N. Stavins (1999). The induced innovation hypothesis and energy saving technological change, The Quarterly Journal of Economics 114 941 975 pp. (DOI:  10.1162/003355399556188), (ISSN: 0033 5533, 1531 4650).  Newell R.G., and W.A. Pizer (2003). Discounting the distant future: how much do uncertain rates  increase valuations?, Journal of Environmental Economics and Management 46 52 71 pp. (ISSN:  0095 0696).  Nikiforakis N. (2008). Punishment and counter punishment in public good games: Can we really  govern ourselves?, Journal of Public Economics 92 91 112 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0047272707000643.  Nikiforakis N., C.N. Noussair, and T. Wilkening (2012). Normative conflict and feuds: The limits of  self enforcement, Journal of Public Economics 96 797 807 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0047272712000631.  Nolt J. (2011). Nonanthropocentric climate ethics, Wiley Interdisciplinary Reviews: Climate Change 2  701 711 pp. (DOI: 10.1002/wcc.131), (ISSN: 1757 7799).  Nord E., J.L. Pinto, J. Richardson, P. Menzel, and P. Ubel (1999). Incorporating societal concerns for  fairness in numerical valuations of health programmes, Health Economics 8 25 39 pp. . Available at:      111 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099 1050(199902)8:1%3C25::AID HEC398%3E3.0.CO;2 H/pdf.  Nordhaus W.D. (1977). Economic growth and climate: the carbon dioxide problem, The American  Economic Review 67 341 346 pp. . Available at: http://links.jstor.org/sici?sici=0002 8282%28197702%2967%3A1%3C341%3AEGACTC%3E2.0.CO%3B2 R.  Nordhaus W.D. (1991). To slow or not to slow: the economics of the greenhouse effect, The  Economic Journal 101 920 937 pp. .  Nordhaus W.D. (1993a). Rolling the  DICE : an optimal transition path for controlling greenhouse  gases, Resource and Energy Economics 15 27 50 pp. (DOI: 10.1016/0928 7655(93)90017 O), (ISSN:  0928 7655).  Nordhaus W.D. (1993b). Optimal Greenhouse Gas Reductions and Tax Policy in the  DICE  Model,  The American Economic Review 83 313 317 pp. (DOI: 10.2307/2117683), (ISSN: 0002 8282).  Nordhaus W.D. (1994). Managing the Global Commons: The Economics of Climate Change. MIT  Press, Cambridge, MA, 213 pp., (ISBN: 0262140551 9780262140553). .  Nordhaus W.D. (2002). Modeling induced innovation in climate change policy. In: Technological  change and the environment. A. Grübler, N. Nakiæenoviæ, W.D. Nordhaus, (eds.), Resources for the  Future, Washington D.C.  Nordhaus W.D. (2006). Geography and macroeconomics: New data and new findings, Proceedings  of the National Academy of Sciences of the United States of America 103 3510 3517 pp. (DOI:  10.1073/pnas.0509842103), (ISSN: 0027 8424, 1091 6490).  Nordhaus W.D. (2007). A review of the  Stern Review on the Economics of Climate Change , Journal  of Economic Literature 45 686 702 pp. (DOI: 10.2307/27646843), (ISSN: 0022 0515).  Nordhaus W.D. (2008). A Question of Balance: Weighing the Options on Global Warming Policies.  Yale University Press, New Haven, CT, (ISBN: 9780300137484). .  Nordhaus W.D. (2010). Economic aspects of global warming in a post Copenhagen environment,  Proceedings of the National Academy of Sciences 107 11721 11726 pp. (DOI:  10.1073/pnas.1005985107), (ISSN: 0027 8424, 1091 6490).  Nordhaus W.D. (2011a). The Economics of Tail Events with an Application to Climate Change,  Review of Environmental Economics and Policy 5 240 257 pp. (DOI: 10.1093/reep/rer004), (ISSN:  1750 6816, 1750 6824).  Nordhaus W.D. (2011b). Estimates of the Social Cost of Carbon: Background and Results from the  RICE 2011 Model. Cowles Foundation Discussion Paper No. 1826. . Available at:  http://dido.econ.yale.edu/P/cd/d18a/d1826.pdf.  Nordhaus R.R., and K.W. Danish (2003). Designing a Mandatory Greenhouse Gas Reduction  Program for the US. Pew Center on Global Climate Change. 66 pp. Available at:  http://www.pewclimate.org/docUploads/USGas.pdf.  Nordhaus W., and P. Sztorc (2013). DICE 2013: Introduction and User s Manual.      112 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Nordhaus W.D., and Z. Yang (1996). RICE: A Regional Dynamic General Equilibrium Model of Optimal  Climate Change Policy. National Science Foundations, U.S. Environmental Protection Agency, 29 pp.  Nozick R. (1974). Anarchy, State, and Utopia: Robert Nozick. Basic Books, 388 pp., (ISBN:  9780465097203). .  Nyborg K. (2012). The Ethics and Politics of Environmental Cost Benefit Analysis. Routledge, 144 pp.,  (ISBN: 041558650X). .  O Connor R.E., R.J. Bard, and A. Fisher (1999). Risk perceptions, general environmental beliefs, and  willingness to address climate change, Risk Analysis 19 461 471 pp. (DOI: 10.1111/j.1539 6924.1999.tb00421.x), (ISSN: 0272 4332, 1539 6924).  O Donoghue T., and M. Rabin (2008). Procrastination on long term projects, Journal of Economic  Behavior & Organization 66 161 175 pp. .  O Neill B.C. (2000). The Jury Is Still Out on Global Warming Potentials., Climatic Change 44 (ISSN:  0165 0009).  Oates W.E., and R.M. Schwab (1988). Economic competition among jurisdictions: efficiency  enhancing or distortion inducing?, Journal of Public Economics 35 333 354 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/0047272788900369.  Oberdiek J. (2012). The Moral Significance of Risking, Legal Theory 18 339 356 pp. (DOI:  10.1017/S1352325212000018).  Olson M. (1971). The Logic of Collective Action: Public Goods and the Theory of Groups. Harvard  University Press, Cambridge, MA, 208 pp., (ISBN: 9780674537514). .  Opschoor J.B., and R.K. Turner (1994). Economic Incentives and Environmental Policies: Principles  and Practice. Kluwer Academic Publishers, Dordrecht, 309 pp., (ISBN: 978 94 011 0856 0). .  Östblom G., and E. Samakovlis (2007). Linking health and productivity impacts to climate policy  costs: a general equilibrium analysis, Climate Policy 7 379 391 pp. (DOI:  10.1080/14693062.2007.9685663), (ISSN: 1469 3062).  Ostrom E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action.  Cambridge University Press, 298 pp., (ISBN: 978 0521405997). .  Ostrom E. (1999). Institutional rational choice: an assessment of the institutional analysis and  development framework. In: Theories of the policy process. Westview Press, Boulder, CO pp.21 64(ISBN: 9780813399850).  Ostrom E., J. Walker, and R. Gardner (1992). Covenants with and without a sword: Self governance  is possible, The American Political Science Review 86 404 417 pp. . Available at:  http://www.jstor.org.proxy.library.ucsb.edu:2048/stable/10.2307/1964229.  Oswald A.J., and S. Wu (2010). Objective confirmation of subjective measures of human well being:  evidence from the U.S.A., Science 327 576 579 pp. (DOI: 10.1126/science.1180606), (ISSN: 0036 8075, 1095 9203).  Ott K. (2010). Kartierung der Argumente zum Geoengineering. In: Jahrbuch Ökologie 2011. S. Hirzel,  Stuttgart pp.20 32.      113 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Ott K. (2012). Might Solar Radiation Management Constitute a Dilemma? In: Engineering the  Climate: The Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington Books, Lanham,  MD pp.35 42(ISBN: 9780739175408  0739175408  9780739175415  0739175416).  Page E.A. (2007). Justice between generations: investigating a sufficientarian approach, Journal of  Global Ethics 3 3 20 pp. (DOI: 10.1080/17449620600991960), (ISSN: 1744 9626, 1744 9634).  Palmer C. (2011). Does nature matter? The place of the nonhuman in the ethics of climate change.  In: The Ethics of Global Climate Change. D.G. Arnold, (ed.), Cambridge University Press, Cambridge  pp.272 279(ISBN: 9781107000698).  Palmquist R.B. (2006). Property Value Models. In: The Handbook of Environmental Economics.  Elsevier, Amsterdam.  Paltsev S., J.M. Reilly, H.D. Jacoby, A.C. Gurgel, G.E. Metcalf, A.P. Sokolov, and J.F. Holak (2008).  Assessment of US GHG cap and trade proposals, Climate Policy 8 395 420 pp. . Available at:  http://www.tandfonline.com.proxy.library.ucsb.edu:2048/doi/abs/10.3763/cpol.2007.0437.  Paltsev S., J.M. Reilly, H.D. Jacoby, and K.H. Tay (2007). How (and why) do climate policy costs differ  among countries? In: Human induced climate change: an interdisciplinary assessment. M.  Schlesinger, H. Kheshgi, J. Smith, F. de la Chesnaye, J.M. Reilly, T. Wilson, C. Kolstad, (eds.),  Cambridge University Press, Cambridge pp.282 293.  Parfit D. (1986). Reasons and Persons. Oxford University Press, Oxford, UK, 560 pp., (ISBN:  9780191519840). .  Parfit D. (1997). Equality and priority, Ratio 10 202 221 pp. .  Parry I.W.H. (1995). Pollution taxes and revenue recycling, Journal of Environmental Economics and  Management 29 64 77 pp. .  Parry I.W.H. (1997). Environmental taxes and quotas in the presence of distorting taxes in factor  markets, Resources and Energy Economics 19 203 220 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0928765596000127.  Parry I.W.H. (2004). Are emissions permits regressive?, Journal of Environmental Economics and  Management 47 364 387 pp. (DOI: 10.1016/j.jeem.2003.07.001), (ISSN: 00950696).  Parry I.W.H., and R.C. Williams (1999). A second best evaluation of eight policy instruments to  reduce carbon emissions, Resource and Energy Economics 21 347 373 pp. .  Partridge E. (1981). Responsibilities to Future Generations: Environmental Ethics. Prometheus Books,  Buffalo, N.Y, 319 pp., (ISBN: 0879751428). .  Pawson R., and N. Tilley (1997). Realistic Evaluation. Sage Ltd., Thousand Oaks, CA, 256 pp., (ISBN:  978 0761950097). .  Pearce D. (1991). The role of carbon taxes in adjusting to global warming, The Economic Journal 101  938 948 pp. .  Peck S.C., and T.J. Teisberg (1992). CETA: A model for Carbon Emissions Trajectory Assessment, The  Energy Journal 13 55 77 pp. (DOI: 10.2307/41322454), (ISSN: 0195 6574).      114 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Peck S.C., and T.J. Teisberg (1994). Optimal carbon emissions trajectories when damages depend on  the rate or level of global warming, Climatic Change 28 289 314 pp. (DOI: 10.1007/BF01104138),  (ISSN: 0165 0009, 1573 1480).  Pendleton L.H., P. King, C. Mohn, D.G. Webster, R. Vaughn, and P.N. Adams (2011). Estimating the  potential economic impacts of climate change on Southern California beaches, Climatic Change 109  277 298 pp. (DOI: 10.1007/s10584 011 0309 0), (ISSN: 0165 0009, 1573 1480).  Pendleton L.H., and R. Mendelsohn (1998). Estimating the Economic Impact of Climate Change on  the Freshwater Sportsfisheries of the Northeastern U.S., Land Economics 74 483 pp. (DOI:  10.2307/3146880), (ISSN: 00237639).  Pennock M., and K. Ura (2011). Gross national happiness as a framework for health impact  assessment, Environmental Impact Assessment Review 31 61 65 pp. (DOI:  10.1016/j.eiar.2010.04.003), (ISSN: 0195 9255).  Permanent Forum on Indigenous Issues (2008). Inter Agency Support Group on Indigenous Peoples   Issues: Collated Paper on Indigenous Peoples and Climate Change. Permanent Forum on Indigenous  Issues. . Available at: http://www.cbd.int/doc/meetings/tk/emccilc 01/other/emccilc 01 ipcc en.pdf.  Perrett R.W. (2003). Future Generations and the Metaphysics of the Self: Western and Indian  philosophical perspectives, Asian Philosophy 13 29 37 pp. (DOI: 10.1080/09552360301664), (ISSN:  0955 2367).  Persha L., A. Agrawal, and A. Chhatre (2011). Social and Ecological Synergy: Local Rulemaking,  Forest Livelihoods, and Biodiversity Conservation, Science 331 1606 1608 pp. (DOI:  10.1126/science.1199343), (ISSN: 0036 8075, 1095 9203).  Peters G.P., B. Aamaas, T. Berntsen, and J.S. Fuglestvedt (2011a). The integrated global  temperature change potential (iGTP) and relationships between emission metrics, Environmental  Research Letters 6 044021 pp. (DOI: 10.1088/1748 9326/6/4/044021), (ISSN: 1748 9326).  Peters G.P., B. Aamaas, T. Lund, C. Solli, and J.S. Fuglestvedt (2011b). Alternative  global warming   metrics in life cycle assessment: a case study with existing transportation data., Environmental  science & technology 45 8633 41 pp. (ISSN: 0013 936X).  Pezzey J.C.V. (2003). Emission Taxes and Tradeable Permits A Comparison of Views on Long Run  Efficiency, Environmental and Resource Economics 26 329 342 pp. .  Pezzey J.C.V., and F. Jotzo (2012). Tax versus trading and efficient revenue recycling as issues for  greenhouse gas abatement, Journal of Environmental Economics and Management Forthcoming  (DOI: 10.1016/j.jeem.2012.02.006), (ISSN: 00950696).  Pezzey J.C.V., S. Mazouz, and F. Jotzo (2010). The logic of collective action and Australia s climate  policy, Australian Journal of Agricultural and Resource Economics 54 185 202 pp. (DOI:  10.1111/j.1467 8489.2010.00489.x), (ISSN: 1364985X, 14678489).  Phaneuf D.J., and V.K. Smith (2006). Recreation demand models. In: Handbook of environmental  economics. K. G. Mäler, J.R. Vincent, (eds.), Elsevier, Amsterdam; Boston pp.671 761(ISBN:  0444500634  9780444500632  0444511458  9780444511454  0444511466  9780444511461).  Pigou A.C. (1932). The Economics of Welfare. Macmillan and Co., London, 1392 pp.      115 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Pindyck R.S. (2011). Fat Tails, Thin Tails, and Climate Change Policy, Review of Environmental  Economics and Policy 5 258 274 pp. .  Pindyck R.S. (2013). Climate Change Policy: What Do the Models Tell Us?, Journal of Economic  Literature 51 860 872 pp. . Available at:  http://www.nber.org.proxy.library.ucsb.edu:2048/papers/w19244.  Pizer W.A. (2002). Combining price and quantity controls to mitigate global climate change, Journal  of Public Economics 85 409 434 pp. (DOI: 10.1016/S0047 2727(01)00118 9), (ISSN: 0047 2727).  Plattner G.K., T. Stocker, P. Midgley, and M. Tignor (2009). IPCC Expert Meeting on the Science of  Alternative Metrics: Meeting Report. Intergovernmental Panel on Climate Change.  Popp D. (2002). Induced innovation and energy prices, The American Economic Review 92 160 180  pp. . Available at: http://www.jstor.org/stable/3083326.  Popp D. (2004). ENTICE: endogenous technological change in the DICE model of global warming,  Journal of Environmental Economics and Management 48 742 768 pp. (DOI:  10.1016/j.jeem.2003.09.002), (ISSN: 00950696).  Popp D. (2006). R&D subsidies and climate policy: is there a  free lunch ?, Climatic Change 77 311 341 pp. (DOI: 10.1007/s10584 006 9056 z), (ISSN: 0165 0009, 1573 1480).  Popp D., I. Hascic, and N. Medhi (2011). Technology and the diffusion of renewable energy, Energy  Economics 33 648 662 pp. (DOI: 10.1016/j.eneco.2010.08.007), (ISSN: 01409883).  Popp D., R.G. Newell, and A.B. Jaffe (2010). Energy, the environment, and technological change. In:  Handbook of the economics of innovation. B. Hall, N. Rosenberg, (eds.), Academic Press/Elsevier,  Burlington pp.873 937.  Porter M.E. (1991). Towards a Dynamic Theory of Strategy, Strategic Management Journal 12 95 117 pp. (DOI: 10.2307/2486436), (ISSN: 0143 2095).  Porter M.E., and C. van der Linde (1995). Toward a New Conception of the Environment Competitiveness Relationship, The Journal of Economic Perspectives 9 97 118 pp. (DOI:  10.2307/2138392), (ISSN: 0895 3309).  Posner E.A., and D. Weisbach (2010). Climate Change Justice. Princeton University Press, Princeton,   N.J., (ISBN: 9780691137759). .  Potters J., M. Sefton, and L. Vesterlund (2007). Leading by example and signaling in voluntary  contribution games: an experimental study, Economic Theory 33 169 182 pp. (DOI: 10.1007/s00199 006 0186 3), (ISSN: 0938 2259, 1432 0479).  Preston C.J. (2011). Re Thinking the Unthinkable: Environmental Ethics and the Presumptive  Argument Against Geoengineering, Environmental Values 20 457 479 pp. (DOI:  10.3197/096327111X13150367351212).  Preston C.J. (2012). Solar Radiation Management and Vulnerable Populations: The Moral Deficit and  its Prospects. In: Engineering the Climate: The Ethics of Solar Radiation Management. C.J. Preston,  (ed.), Lexington Books, pp.77 94(ISBN: 0739175408).      116 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Preston C.J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation  management and carbon dioxide removal, Wiley Interdisciplinary Reviews: Climate Change 4 23 37  pp. (DOI: 10.1002/wcc.198), (ISSN: 1757 7799).  Quiggin J. (2008). Stern and his critics on discounting and climate change: an editorial essay, Climatic  Change 89 195 205 pp. (DOI: 10.1007/s10584 008 9434 9), (ISSN: 0165 0009, 1573 1480).  Rachlinski J. (2000). Symposium: Innovations in Environmental Policy . The psychology of global  climate change, University of Illinois Law Review 2000 . Available at:  http://illinoislawreview.org/article/the psychology of global climate change/.  Rajamani L. (2000). The principle of common but differentiated responsibility and the balance of  commitments under the climate regime, Review of European Community and International  Environmental Law 9 120 131 pp. (DOI: 10.1111/1467 9388.00243), (ISSN: 0962 8797, 1467 9388).  Ramsey F.P. (1928). A mathematical theory of saving, The Economic Journal 38 543 559 pp. .  Rapport Lebegue (2005). Révision Du Taux D actualisation Des Investissements Publics. Rapport Du  Groupe Présidé Par Daniel Lebegue. Commissariat Général Au Plan, Paris. . Available at:  http://www.plan.gouv.fr/intranet/upload/actualite/Rapport%20Lebegue%20Taux%20actualisation% 2024 01 05.pdf.  Rawls J. (1971). A Theory of Justice. Belknap Press of Harvard University Press, Cambridge, MA, 607  pp.  Rawls J. (1999). The Law of Peoples, with the Idea of Public Reason Revisited. Harvard University  Press, Cambridge, MA, 208 pp., (ISBN: 9780674000797). .  Regan T. (2004). The Case for Animal Rights. University of California Press, Berkeley, 450 pp., (ISBN:  978 0520243866). .  Rehdanz K., and D.J. Maddison (2009). The amenity value of climate to households in Germany,  Oxford Economic Papers 61 150 167 pp. (DOI: 10.1093/oep/gpn028), (ISSN: 0030 7653, 1464 3812).  Reilly J., S. Paltsev, K. Strzepek, N.E. Selin, Y. Cai, K. M. Nam, E. Monier, S. Dutkiewicz, J. Scott, and  M. Webster (2013). Valuing climate impacts in integrated assessment models: the MIT IGSM,  Climatic Change 117 561 573 pp. (DOI: 10.1007/s10584 012 0635 x).  Reiman J. (2007). Being Fair to Future People: The Non Identity Problem in the Original Position,  Philosophy & Public Affairs 35 69 92 pp. (DOI: 10.1111/j.1088 4963.2007.00099.x), (ISSN: 1088 4963).  Reisinger A., P. Havlik, K. Riahi, O. Vliet, M. Obersteiner, and M. Herrero (2013). Implications of  alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture.,  Climatic Change 117 677 690 pp. (ISSN: 0165 0009).  Ren X., D. Fullerton, and J.B. Braden (2011). Optimal taxation of externalities interacting through  markets: A theoretical general equilibrium analysis, Resource and Energy Economics 33 496 514 pp.  (DOI: 10.1016/j.reseneeco.2010.10.002), (ISSN: 0928 7655).  Reynolds T.W., A. Bostrom, D. Read, and M.G. Morgan (2010). Now What Do People Know About  Global Climate Change? Survey Studies of Educated Laypeople, Risk Analysis 30 1520 1538 pp. (DOI:  10.1111/j.1539 6924.2010.01448.x), (ISSN: 1539 6924).      117 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Rezai A., D.K. Foley, and L. Taylor (2011). Global warming and economic externalities, Economic  Theory 49 329 351 pp. (DOI: 10.1007/s00199 010 0592 4), (ISSN: 0938 2259, 1432 0479).  Richardson R.B., and J.B. Loomis (2004). Adaptive recreation planning and climate change: a  contingent visitation approach, Ecological Economics 50 83 99 pp. (DOI:  10.1016/j.ecolecon.2004.02.010), (ISSN: 0921 8009).  Richels R.G., and G.J. Blanford (2008). The value of technological advance in decarbonizing the US  economy, Energy Economics 30 2930 2946 pp. . Available at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S014098830800087X.  Riekkola A.K., E.O. Ahlgren, and P. Söderholm (2011). Ancillary benefits of climate policy in a small  open economy: The case of Sweden, Energy Policy 39 4985 4998 pp. (DOI:  10.1016/j.enpol.2011.06.015), (ISSN: 0301 4215).  Rist R.C. (1998). Choosing the right policy instruments at the right time: the contextual challenges of  selection and implementation. In: Carrots, sticks and sermons. Transaction Publishers, New  Brunswick NJ pp.149 163.  Rive N., A. Torvanger, and J.S. Fuglestvedt (2006). Climate agreements based on responsibility for  global warming: Periodic updating, policy choices, and regional costs, Global Environmental Change  16 182 194 pp. (DOI: 10.1016/j.gloenvcha.2006.01.002), (ISSN: 0959 3780).  Rivers N., and M. Jaccard (2006). Useful models for simulating policies to induce technological  change, Energy Policy 34 2038 2047 pp. (DOI: 10.1016/j.enpol.2005.02.003), (ISSN: 03014215).  Robbins L. (1937). An Essay on the Nature and Significance of Economic Science. Macmillan, London;  New York, (ISBN: 9781610160391). .  Roberts M.J., and W. Schlenker (2010). Identifying Supply and Demand Elasticities of Agricultural  Commodities: Implications for the US Ethanol Mandate. National Bureau of Economic Research. .  Available at: http://www.nber.org/papers/w15921.  Roberts M.J., and M. Spence (1976). Effluent charges and licenses under uncertainty, Journal of  Public Economics 5 193 208 pp. . Available at:  http://econpapers.repec.org/article/eeepubeco/default6.htm.  Robock A. (2008). 20 reasons why geoengineering may be a bad idea, Bulletin of the Atomic  Scientists 64 14 18, 59 pp. . Available at:  http://www.atmos.washington.edu/academics/classes/2012Q1/111/20Reasons.pdf.  Robock A., M. Bunzl, B. Kravitz, and G.L. Stenchikov (2010). A Test for Geoengineering?, Science 327  530 531 pp. (DOI: 10.1126/science.1186237), (ISSN: 0036 8075, 1095 9203).  Rolston H. (1988). Environmental Ethics: Duties to and Values in the Natural World. Temple  University Press, Philadelphia, (ISBN: 087722501X  9780877225010  0877226288 9780877226284). .  Rolston H. (1999). Genes, Genesis and God: Values and Their Origins in Natural and Human History:  The Gifford Lectures, University of Edinburgh, 1997   1998. Cambridge University Press, Cambridge  UK, 400 pp., (ISBN: 052164108X 9780521641081 052164674X 9780521646741). .      118 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Rosa E.A., and T. Dietz (1998). Climate change and society: speculation, construction and scientific  investigation, International Sociology 13 421 455 pp. (DOI: 10.1177/026858098013004002), (ISSN:  0268 5809).  Roson R., and D.V. der Mensbrugghe (2012). Climate change and economic growth: impacts and  interactions, International Journal of Sustainable Economy 4 270 285 pp. (DOI:  10.1504/IJSE.2012.047933).  Rossi P.H., M.W. Lipsey, and H.E. Freeman (2005). Evaluation : A Systematic Approach. Sage  Publications, Thousand Oaks, CA, 480 pp., (ISBN: 0761908943 9780761908944). .  Routley R. (1973). Is there a need for a new, an environmental, ethic?, Proceedings of the XVth  World Congress of Philosophy Varna 1 205 210 pp. .  Routley R., and V. Routley (1980). Human chauvinism and environmental ethics. In: Environmental  philosophy. D. Mannison, M.A. McRobbie, R. Routley, (eds.), Australian National University, Research  School of Social Sciences, Canberra pp.96 189.  Russell Smith J., P. Whitehead, and P. Cooke (2009). Culture, Ecology and Economy of Fire  Management in North Australian Savannas: Rekindling the Wurrk Tradition. Csiro Publishing, 417  pp., (ISBN: 9780643099999). .  Ryan S.P. (2012). The Costs of Environmental Regulation in a Concentrated Industry, Econometrica  80 1019 1061 pp. (DOI: 10.3982/ECTA6750), (ISSN: 1468 0262).  Rypdal K., T. Berntsen, J.S. Fuglestvedt, K. Aunan, A. Torvanger, F. Stordal, J.M. Pacyna, and L.P.  Nygaard (2005). Tropospheric ozone and aerosols in climate agreements: scientific and political  challenges, Environmental Science & Policy Environmental Science & Policy 8 29 43 pp. (ISSN: 1462 9011).  Sagoff M. (2008). The Economy of the Earth: Philosophy, Law, and the Environment. Cambridge  University Press, Cambridge ; New York, 266 pp., (ISBN: 9780521867559). .  Sandler R.L. (2012). Solar Radiation Management and Nonhuman Species. In: Engineering the  Climate: The Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington Books, Lanham,  MD pp.95 110.  Sandsmark M., and H. Vennemo (2006). A portfolio approach to climate investments: CAPM and  endogenous risk, Environmental and Resource Economics 37 681 695 pp. (DOI: 10.1007/s10640 006 9049 4), (ISSN: 0924 6460, 1573 1502).  Sardemann G., and A. Grunwald (2010). Einführung in den Schwerpunkt, Technikfolgenabschätzung   Theorie und Praxis 2 4 7 pp. .  Sassi F. (2006). Calculating QALYs, comparing QALY and DALY calculations, Health Policy and  Planning 21 402 408 pp. (DOI: 10.1093/heapol/czl018), (ISSN: 0268 1080, 1460 2237).  Schelling T.C. (1995). Intergenerational Discounting, Energy Policy 23 395 401 pp. (DOI: 16/0301 4215(95)90164 3), (ISSN: 0301 4215).  Schelling T.C. (1996). The economic diplomacy of geoengineering, Climatic Change 33 303 307 pp.  (DOI: 10.1007/BF00142578), (ISSN: 0165 0009, 1573 1480).      119 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Scheraga J.D. (1994). Energy and the environment Something new under the sun?, Energy Policy 22  798 803 pp. (DOI: 10.1016/0301 4215(94)90137 6), (ISSN: 03014215).  Schlenker W., and M.J. Roberts (2009). Nonlinear temperature effects indicate severe damages to  U.S. crop yields under climate change, Proceedings of the National Academy of Sciences 106 15594 15598 pp. (DOI: 10.1073/pnas.0906865106), (ISSN: 0027 8424, 1091 6490).  Schneider S.H. (2008). Geoengineering: could we or should we make it work?, Philosophical  Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366 3843 3862  pp. (DOI: 10.1098/rsta.2008.0145), (ISSN: 1364 503X, 1471 2962).  Schneider S.H., K. Kuntz Duriseti, and C. Azar (2000). Costing non linearities, surprises, and  irreversible events, Pacific and Asian Journal of Energy 10 81 106 pp. .  Schwartz T. (1978). Obligations to Posterity. In: Obligations to Future Generations. R.I. Sikora, B.  Barry, (eds.), Temple University Press, Philadelphia pp.3 13.  De Scitovszky T. (1941). A note on welfare propositions in economics, The Review of Economic  Studies 9 77 88 pp. .  Scott D. (2012). Insurance Policy or Technological Fix? The Ethical Implications of Framing Solar  Radiation Management. In: Engineering the Climate: The Ethics of Solar Radiation Management. C.J.  Preston, (ed.), Lexington Books, Lanham, MD pp.151 168.  Scrieciu S., A. Rezai, and R. Mechler (2013). On the economic foundations of green growth  discourses: the case of climate change mitigation and macroeconomic dynamics in economic  modeling, Wiley Interdisciplinary Reviews: Energy and Environment 2 251 268 pp. (DOI:  10.1002/wene.57), (ISSN: 2041 840X).  Scriven M. (1991). Evaluation Thesaurus. Sage Publications, Newbury Park, CA, 391 pp., (ISBN:  0803943636 9780803943636 0803943644 9780803943643). .  Sen A. (1970). Collective Choice and Social Welfare. North Holland Publishing Co., 225 pp., (ISBN:  0816277656). .  Sen A.K. (1973). On Economic Inequality. Clarendon Press, Oxford, 118 pp., (ISBN: 9780198281931). .  Sen A.K. (1982). Interpersonal comparisons of welfare. Blackwell, Oxford.  Sen A.K. (1999). Development as Freedom. Oxford University Press, New York, 366 pp.  De Shalit A. (1995). Why Posterity Matters: Environmental Policies and Future Generations.  Routledge, 174 pp., (ISBN: 9780415100182). .  Sheridan J., and R. "He C. the S. Longboat (2006). The Haudenosaunee Imagination and the Ecology  of the Sacred, Space and Culture 9 365 381 pp. (ISSN: 1206 3312).  Sherwood S.C., and M. Huber (2010). An adaptability limit to climate change due to heat stress,  Proceedings of the National Academy of Sciences 107 9552 9555 pp. (DOI:  10.1073/pnas.0913352107), (ISSN: 0027 8424, 1091 6490).  Shiffrin S.V. (1999). Wrongful life, procreative responsibility, and the significance of harm, Legal  Theory 5 (DOI: 10.1017/S1352325299052015), (ISSN: 1352 3252, 1469 8048).      120 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Shine K.P., T.K. Berntsen, J.S. Fuglestvedt, R.B. Skeie, and N. Stuber (2007). Comparing the climate  effect of emissions of short  and long lived climate agents, Philosophical Transactions of the Royal  Society A: Mathematical, Physical and Engineering Sciences 365 1903 1914 pp. (DOI:  10.1098/rsta.2007.2050), (ISSN: 1364 503X, 1471 2962).  Shine K.P., J.S. Fuglestvedt, K. Hailemariam, and N. Stuber (2005). Alternatives to the global  warming potential for comparing climate impacts of emissions of greenhouse gases, Climatic Change  68 281 302 pp. (DOI: 10.1007/s10584 005 1146 9), (ISSN: 0165 0009, 1573 1480).  Shiv B., and A. Fedorikhin (1999). Heart and Mind in Conflict: The Interplay of Affect and Cognition  in Consumer Decision Making, Journal of Consumer Research 26 278 292 pp. (DOI:  10.1086/209563), (ISSN: 0093 5301).  Shogren J.F., and L.O. Taylor (2008). On Behavioral Environmental Economics, Review of  Environmental Economics and Policy 2 26 44 pp. (DOI: 10.1093/reep/rem027), (ISSN: 1750 6816,  1750 6824).  Shue H. (1993). Subsistence Emissions and Luxury Emissions, Law & Policy 15 39 60 pp. (DOI:  10.1111/j.1467 9930.1993.tb00093.x), (ISSN: 0265 8240, 1467 9930).  Shue H. (1999). Global environment and international inequality, International Affairs 75 531 545  pp. (DOI: 10.1111/1468 2346.00092), (ISSN: 0020 5850, 1468 2346).  Shue H. (2010). Deadly delays, saving opportunities: creating a more dangerous world? In: Climate  ethics essential readings. S.M. Gardiner, S. Caney, D. Jamieson, H. Shue, (eds.), Oxford University  Press, Oxford; New York pp.146 162(ISBN: 9780199750580  0199750580  9780195399615   0195399617  9780195399622  0195399625).  Sidgwick H. (1907). The Methods of Ethics. Hackett Pub. Co., Indianapolis, (ISBN: 9780915145287). .  Sieg H., V.K. Smith, H.S. Banzhaf, and R. Walsh (2004). Estimating the general equilibrium benefits  of large changes in spatially delineated public goods, International Economic Review 45 1047 1077  pp. . Available at: http://www.jstor.org/stable/3663619.  Sijm J., K. Neuhoff, and Y. Chen (2006). CO2 cost pass through and windfall profits in the power  sector, Climate Policy 6 49 72 pp. . Available at:  http://www.tandfonline.com.proxy.library.ucsb.edu:2048/doi/abs/10.1080/14693062.2006.968558 8.  Sikora R.I., and B. Barry (1978). Obligations to Future Generations. Temple University Press,  Philadelphia, 250 pp., (ISBN: 0877221324). .  Singer P. (1993). Practical Ethics. Cambridge University Press, Cambridge, 411 pp., (ISBN:  9780521439718). .  Singer P. (2002). One World: The Ethics of Globalization. Yale University Press, New Haven, 235 pp.,  (ISBN: 0300096860). .  Sinnot Armstrong W. (2010). It s Not My Fault: Global Warming and Individual Moral Obligations. In:  Climate Ethics: essential readings. S.M. Gardner, S. Caney, D. Jamieson, H. Shue, (eds.), Oxford  University Press, pp.332 346.      121 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Smith K. (2010). Stern, climate policy and saving rates, Climate Policy 10 289 297 pp. (DOI:  10.3763/cpol.2009.0044), (ISSN: 1469 3062).  Smith P.T. (2012). Domination and the Ethics of Solar Radiation Management. In: Engineering the  Climate: The Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington Books, Lanham,  Md pp.43 61.  Smith S., K. Joseph, E. Jae, E. Jiyong, and A. Mizrahi (2013). Sensitivity of multi gas climate policy to  emission metrics., Climatic Change 117 (ISSN: 0165 0009).  Smith J.B., and D.A. Tirpak (1989). The Potential Effects of Global Climate Change on the United  States: Report to Congress. U.S. Environmental Protection Agency, Office of Policy, Planning, and  Evaluation, Office of Research and Development, 480 pp.  Smith S.J., and M.L. Wigley (2000). Global Warming Potentials: 1. Climatic Implications of Emissions  Reductions, Climatic Change 44 445 457 pp. (DOI: 10.1023/A:1005584914078), (ISSN: 0165 0009,  1573 1480).  Sobrevila C. (2008). The Role of Indigenous Peoples in Biodiversity Conservation: The Natural but  Often Forgotten Partners. The International Bank for Reconstruction and Development, The World  Bank. 84 pp. Available at:  http://siteresources.worldbank.org/INTBIODIVERSITY/Resources/RoleofIndigenousPeoplesinBiodive rsityConservation.pdf.  Sohngen B., R. Mendelsohn, and R.A. Sedjo (2001). A global model of climate change impacts on  timber markets, Journal of Agricultural and Resource Economics 26 326 343 pp. .  Solomon B.D., and N.H. Johnson (2009). Valuing climate protection through willingness to pay for  biomass ethanol, Ecological Economics 68 2137 2144 pp. (DOI: 10.1016/j.ecolecon.2009.02.010),  (ISSN: 0921 8009).  Somanathan E. (2006). Valuing lives equally: distributional weights for welfare analysis, Economics  Letters 90 122 125 pp. (DOI: 10.1016/j.econlet.2005.07.015), (ISSN: 01651765).  Sorrell S., D. Harrison, D. Radov, P. Klevnas, and A. Foss (2009). White certificate schemes:  Economic analysis and interactions with the EU ETS, Energy Policy 37 29 42 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S030142150800400X.  Spash C.L., K. Urama, R. Burton, W. Kenyon, P. Shannon, and G. Hill (2009). Motives behind  willingness to pay for improving biodiversity in a water ecosystem: Economics, ethics and social  psychology, Ecological Economics 68 955 964 pp. (DOI: 10.1016/j.ecolecon.2006.09.013), (ISSN:  09218009).  Stanton E.A. (2011). Negishi welfare weights in integrated assessment models: the mathematics of  global inequality, Climatic Change 107 417 432 pp. (DOI: 10.1007/s10584 010 9967 6), (ISSN: 0165 0009, 1573 1480).  Stanton E.A., F. Ackerman, and S. Kartha (2009). Inside the integrated assessment models: Four  issues in climate economics, Climate and Development 1 166 184 pp. (DOI:  10.3763/cdev.2009.0015), (ISSN: 1756 5529).  Steiner H. (1983). The rights of future generations. In: Energy and the Future. D. MacLean, P.G.  Brown, (eds.), Rowman & Littlefield, Totowa, New Jersey pp.151 165.      122 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Stern N. (forthcoming). Ethics, equity and the economics of climate change, Economics and  Philosophy . Available at:  http://www.lse.ac.uk/GranthamInstitute/publications/WorkingPapers/Papers/80 89/WP84a Ethics, equity and the economics of climate change Paper 1 science and philosophy.pdf.  Stern P.C. (1992). What psychology knows about energy conservation., American Psychologist 47  1224 1232 pp. (DOI: 10.1037/0003 066X.47.10.1224), (ISSN: 0003 066X).  Stern N. (2007). The Economics of Climate Change. The Stern Review. Cambridge University Press,  New York, 712 pp., (ISBN: 978 0521700801). .  Stern N. (2008). The economics of climate change, The American Economic Review 98 1 37 pp. .  Stern N. (2009). The Global Deal: Climate Change and the Creation of a New Era of Progress and  Prosperity. Public Affairs, New York, 246 pp., (ISBN: 1458758818). .  Stern N. (2013). The Structure of Economic Modeling of the Potential Impacts of Climate Change:  Grafting Gross Underestimation of Risk onto Already Narrow Science Models, Journal of Economic  Literature 51 838 859 pp. (DOI: 10.1257/jel.51.3.838), (ISSN: 0022 0515).  Sterner T. (2003). Policy Instruments for Environmental and Natural Resource Management.  Resources for the Future : World Bank ; Swedish International Development Cooperation Agency,  Washington, DC; Stockholm, 504 pp., (ISBN: 1891853120 9781891853128). .  Sterner T. (Ed.) (2011). Fuel Taxes and the Poor. Resources for the Future Press (RFF Press),  Washington, USA, 384 pp., (ISBN: 978 1 61726 092 6). .  Sterner T., and U.M. Persson (2008). An even sterner review: introducing relative prices into the  discounting debate, Review of Environmental Economics and Policy 2 61 76 pp. (DOI:  10.1093/reep/rem024), (ISSN: 1750 6816, 1750 6824).  Stigler G.J. (1971). The theory of economic regulation., Bell Journal of Economics & Management  Science 2 3 21 pp. (ISSN: 0005 8556).  Stiglitz J., A. Sen, and J. P. Fitoussi (2009). Report by the Commission on the Measurement of  Economic Performance and Social Progress. . Available at: http://www.stiglitz sen fitoussi.fr/documents/rapport_anglais.pdf.  Strzepek K., and B. Boehlert (2010). Competition for water for the food system, Philosophical  Transactions of the Royal Society B: Biological Sciences 365 2927 2940 pp. (DOI:  10.1098/rstb.2010.0152), (ISSN: 0962 8436, 1471 2970).  Sumner L.W. (1999). Welfare, Happiness, and Ethics. Oxford University Press, USA, 252 pp., (ISBN:  9780198238782). .  Sunstein C.R., and R.H. Thaler (2003). Libertarian paternalism is not an oxymoron, University of  Chicago Law Review; SSRN Electronic Journal 70 1159 1202 pp. (DOI: 10.2139/ssrn.405940), (ISSN:  1556 5068).  Svoboda T. (2012a). Is Aerosol Geoengineering Ethically Preferable to Other Climate Change  Strategies?, Ethics & the Environment 17 111 135 pp. (ISSN: 1535 5306).      123 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Svoboda T. (2012b). The Ethics of Geoengineering: Moral Considerability and the Convergence  Hypothesis, Journal of Applied Philosophy 29 243 256 pp. (DOI: 10.1111/j.1468 5930.2012.00568.x),  (ISSN: 1468 5930).  Svoboda T., K. Keller, and N. Tuana (2011). Sulfate Aerosol Geoengineering: The Question of Justice,  Public Affairs Quarterly 25 157 180 pp. . Available at:  http://paq.press.illinois.edu/25/3/svoboda.html.  Taplin R., S.N. Uddin, and K. Pibalsook (2013). In: Sustainable Development: Asia Pacific  Perspectives. P.S. Low, (ed.), Cambridge University Press, (ISBN: 9780521897174).  Taylor P. (1986). Respect for Nature. Princeton University Press, Princeton, N.J., 329 pp.  Taylor C. (1995). Philosophical Arguments. Harvard University Press, Cambridge, Mass., 318 pp.,  (ISBN: 0674664760  9780674664760). .  Temkin L.S. (1993). Inequality. Oxford University Press, New York, 352 pp., (ISBN: 0195078608  9780195078602 0195111494 9780195111491). .  Temkin L.S. (2012). Rethinking the Good: Moral Ideals and the Nature of Practical Reasoning. Oxford  University Press, 640 pp., (ISBN: 9780199759446). .  The Royal Society (2009). Geoengineering the Climate: Science, Governance and Uncertainty. The  Royal Society. . Available at: http://royalsociety.org/policy/publications/2009/geoengineering climate/.  The World Bank (2012). Turn Down the Heat: Why a 4°C Warmer World Must Be Avoided.  International Bank for Reconstruction and Development / The World Bank, Washington DC.  Thomas B.A., and I.L. Azevedo (2013). Estimating direct and indirect rebound effects for U.S.  households with input output analysis Part 1: Theoretical framework, Ecological Economics 86 199 210 pp. (DOI: 10.1016/j.ecolecon.2012.12.003), (ISSN: 0921 8009).  Thompson J. (2001). Historical Injustice and Reparation: Justifying Claims of Descendants, Ethics 112  114 135 pp. (DOI: 10.1086/339139), (ISSN: 0014 1704, 1539 297X).  Thompson J. (2009). Intergenerational Justice: Rights and Responsibilities in an Intergenerational  Polity. Taylor & Francis US, 189 pp., (ISBN: 978 0415996280). .  Tietenberg T.H. (2006). Emissions Trading: Principles and Practice. Resources for the Future,  Washington, DC, 248 pp., (ISBN: 1933115300 9781933115306 1933115319 9781933115313). .  Titmuss R.M. (1970). The Gift Relationship: From Human Blood to Social Policy (A. Oakley and J.  Ashton, Eds.). New Press, New York, (ISBN: 1565844033 9781565844032). .  Titus J.G. (1992). The costs of climate change to the United States. In: Global Climate Change:  Implications, Challenges and Mitigation Measures. S.K. Majumdar, (ed.), Pennsylvania Academy of  Science, Easton, Pennsylvania pp.384 409(ISBN: 0945809077).  Tol R.S.J. (1995). The damage costs of climate change toward more comprehensive calculations,  Environmental and Resource Economics 5 353 374 pp. .      124 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Tol R.S.J. (2002a). Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates,  Environmental and Resource Economics 21 47 73 pp. (DOI: 10.1023/A:1014500930521), (ISSN: 0924 6460, 1573 1502).  Tol R.S.J. (2002b). Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates,  Environmental and Resource Economics 21 135 160 pp. (DOI: 10.1023/A:1014539414591), (ISSN:  0924 6460, 1573 1502).  Tol R.S.J., K.B. Terje, C.O.N. Brian, S.F. Jan, and P.S. Keith (2012). A unifying framework for metrics  for aggregating the climate effect of different emissions, Environmental Research Letters 7 (ISSN:  1748 9326).  Toth F.L., C. Carraro, J. Christensen, A. Edmonds, B. Flannery, C. Gay Garcia, H. Lee, K.M. Meyer Abich, E. Nikitina, A. Rahman, R. Richels, Y. Ruqiu, A. Villavicencio, Y. Wake, and J. Weyant (2001).  Decision making frameworks. In: Climate Change 2001: Mitigation. B. Metz, O. Davidson, R. Swart,  M. Pallemaerts, (eds.), Cambridge University Press, Cambridge UK and New York pp.601 688.  Traeger C.. (2011). Sustainability, limited substitutability, and non constant social discount rates,  Journal of Environmental Economics and Management 62 215 228 pp. (ISSN: 0095 0696).  Tseng W. C., and C. C. Chen (2008). Valuing the potential economic impact of climate change on the  Taiwan trout, Ecological Economics 65 282 291 pp. (DOI: 10.1016/j.ecolecon.2007.06.015), (ISSN:  0921 8009).  Tullock G. (1975). The transitional gains trap, Bell Journal of Economics 6 671 678 pp. (ISSN: 0361 915X).  Tunc A. (1983). International Encyclopedia of Comparative Law: Volume XI, Torts. Martinus Nijhoff  Publishers, The Hague, 766 pp., (ISBN: 3166445420 9783166445427 9024727871 9789024727872). .  U.S. Environmental Protection Agency (2010). Guidelines for Preparing Economic Analyses. National  Center for Environmental Economics. Appendix B pp. Available at:  http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/homepage.  Uddin S.N., R. Taplin, and X. Yu (2007). Energy, environment and development in Bhutan,  Renewable and Sustainable Energy Reviews 11 2083 2103 pp. (DOI: 10.1016/j.rser.2006.03.008),  (ISSN: 1364 0321).  Ulph A. (2013). Optimal Climate Change Policies When Governments Cannot Commit, Environmental  and Resource Economics (ISSN: 0924 6460).  UNDP (2010). Human Development Report. The Real Wealth of Nations: Pathways to Human  Development. United Nations Development Programme, New York. . Available at:  http://hdr.undp.org/en/reports/global/hdr2010/chapters/.  UNEP (2011). Women at the Frontline of Climate Change: Gender Risks and Hopes. United Nations  Environment Programme, GRID Arendal.  United States Congress (1980). Comprehensive Environmental Response, Compensation, and  Liability Act.  US Interagency Working Group (2013). Technical Update of the Social Cost of Carbon for Regulatory  Impact Analysis Under Executive Order 12866.      125 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  US Office of Management and Budget (2003). Circular N. A 4 To the Heads of Executive Department  Establishments, Subject: Regulatory Analysis. Executive Office of the President, Washington  D.C.  Available at: http://www.whitehouse.gov/omb/circulars_a004_a 4.  Valenzuela E., T.W. Hertel, R. Keeney, and J.J. Reimer (2007). Assessing global computable general  equilibrium model validity using agricultural price volatility, American Journal of Agricultural  Economics 89 383 397 pp. . Available at:  http://ajae.oxfordjournals.org.proxy.library.ucsb.edu:2048/content/89/2/383.short.  Velleman D. (1991). Well being and time, Pacific Philosophical Quarterly 72 48 77 pp. .  Victor D.G., M.G. Morgan, F. Apt, and J. Steinbruner (2009). The Geoengineering Option   A Last  Resort against Global Warming, Foreign Affairs 88 64 pp. . Available at:  http://heinonline.org/HOL/Page?handle=hein.journals/fora88&id=278&div=&collection=journals.  Viscusi W.K., and J.E. Aldy (2003). The Value of a Statistical Life: A Critical Review of Market  Estimates Throughout the World, Journal of Risk and Uncertainty 27 5 76 pp. .  Van Vuuren D.P., M. Hoogwijk, T. Barker, K. Riahi, S. Boeters, J. Chateau, S. Scrieciu, J. van Vliet, T.  Masui, and K. Blok (2009). Comparison of top down and bottom up estimates of sectoral and  regional greenhouse gas emission reduction potentials, Energy Policy 37 5125 5139 pp. . Available  at:  http://www.sciencedirect.com.proxy.library.ucsb.edu:2048/science/article/pii/S0301421509005394.  Watkiss P., and A. Hunt (2012). Projection of economic impacts of climate change in sectors of  Europe based on bottom up analysis: human health, Climatic Change 112 101 126 pp. (ISSN: 0165 0009).  Watson J., and R. Sauter (2011). Sustainable innovation through leapfrogging: a review of the  evidence, International Journal of Technology and Globalisation 5 170 189 pp. (DOI:  10.1504/IJTG.2011.039763).  Weber E.U., and P.C. Stern (2011). Public understanding of climate change in the United States,  American Psychologist 66 315 328 pp. (DOI: 10.1037/a0023253), (ISSN: 1935 990X(Electronic);0003 066X(Print)).  Weikard H. P., and X. Zhu (2005). Discounting and environmental quality: When should dual rates  be used?, Economic Modelling 22 868 878 pp. (ISSN: 0264 9993).  Weil P. (1989). The equity premium puzzle and the risk free rate puzzle, Journal of Monetary  Economics 24 401 421 pp. (DOI: 10.1016/0304 3932(89)90028 7), (ISSN: 03043932).  Weimer D.L., and A.R. Vining (2010). Policy Analysis: Concepts and Practice. Pearson, Boston, 496  pp., (ISBN: 9780205781300  0205781306). .  Weirich P. (1983). Utility tempered with equality, Nous 17 423 439 pp. .  Weitzman M.L. (1974). Prices vs. quantities, The Review of Economic Studies 41 477 491 pp. .  Available at: http://www.jstor.org/stable/2296698.  Weitzman M.L. (1980). The  Ratchet Principle  and Performance Incentives, The Bell Journal of  Economics 11 302 308 pp. (DOI: 10.2307/3003414), (ISSN: 0361 915X).      126 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Weitzman M.L. (1998). Why the Far Distant Future Should Be Discounted at Its Lowest Possible  Rate, Journal of Environmental Economics and Management 36 201 208 pp. (DOI:  10.1006/jeem.1998.1052), (ISSN: 0095 0696).  Weitzman M.L. (2001). Gamma Discounting, American Economic Review 91 260 271 pp. (DOI:  10.1257/aer.91.1.260), (ISSN: 0002 8282).  Weitzman M.L. (2007a). Subjective expectations and asset return puzzles, The American Economic  Review 97 1102 1130 pp. . Available at:  http://www.ingentaconnect.com/content/aea/aer/2007/00000097/00000004/art00003.  Weitzman M.L. (2007b). A Review of The Stern Review on the Economics of Climate Change, Journal  of Economic Literature 45 703 724 pp. (DOI: 10.1257/002205107783217861).  Weitzman M.L. (2009). On modeling and interpreting the economics of catastrophic climate change,  Review of Economics and Statistics 91 1 19 pp. (DOI: 10.1162/rest.91.1.1), (ISSN: 0034 6535).  Weitzman M.L. (2010a). What is the  damages function  for global warming   and what difference  might it make?, Climate Change Economics 01 57 69 pp. (DOI: 10.1142/S2010007810000042), (ISSN:  2010 0078, 2010 0086).  Weitzman M.L. (2010b). Risk adjusted gamma discounting, Journal of Environmental Economics and  Management 60 1 13 pp. (DOI: 10.1016/j.jeem.2010.03.002), (ISSN: 0095 0696).  Weitzman M.L. (2011). Fat tailed uncertainty in the economics of catastrophic climate change,  Review of Environmental Economics and Policy 5 275 292 pp. (DOI: 10.1093/reep/rer006), (ISSN:  1750 6816, 1750 6824).  Weitzman M.L. (2013). Tail Hedge Discounting and the Social Cost of Carbon, Journal of Economic  Literature 51 873 882 pp. (DOI: 10.1257/jel.51.3.873), (ISSN: 0022 0515).  Wellman C. (1995). Real Rights. Oxford University Press New York, 288 pp., (ISBN: 978 0195095005). .  Wilhite H., H. Nakagami, T. Masuda, Y. Yamaga, and H. Haneda (1996). A cross cultural analysis of  household energy use behaviour in Japan and Norway, Energy Policy 24 795 803 pp. (DOI:  10.1016/0301 4215(96)00061 4), (ISSN: 0301 4215).  Williamson O.E. (1975). Markets and Hierarchies, Analysis and Antitrust Implications: A Study in the  Economics of Internal Organization. Free Press, 312 pp., (ISBN: 9780029353608). .  Willig R.D. (1976). Consumer s surplus without apology, The American Economic Review 66 589 597  pp. .  Wolf C. (2009). Intergenerational justice, human needs, and climate policy. A. Gosseries, L.H. Meyer,  (eds.), Oxford University Press, Oxford pp.347 76.  Wolff J., and A. de Shalit (2007). Disadvantage. Oxford University Press, USA, 224 pp., (ISBN:  0199278261). .  Worrell E., S. Ramesohl, and G. Boyd (2004). Advances in Energy Forecasting Models Based on  Engineering Economics*, Annual Review of Environment and Resources 29 345 381 pp. (DOI:  10.1146/annurev.energy.29.062403.102042), (ISSN: 1543 5938, 1545 2050).      127 of 128       Final Draft    Chapter 3  IPCC WGIII AR5  Wu J., N. Li, S. Hallegatte, P. Shi, A. Hu, and X. Liu (2011). Regional indirect economic impact  evaluation of the 2008 Wenchuan Earthquake, Environmental Earth Sciences 65 161 172 pp. (DOI:  10.1007/s12665 011 1078 9), (ISSN: 1866 6280, 1866 6299).  Xanthaki A. (2007). Indigenous Rights and United Nations Standards: Self Determination, Culture  and Land. Cambridge University Press, Cambridge, UK ; New York, 314 pp., (ISBN: 9780521835749). .  Zeleny M., and J.L. Cochrane (1982). Multiple Criteria Decision Making. McGraw Hill New York, 563  pp., (ISBN: 978 0670727957). .  Zimmermann R. (1995). Unjustified enrichment: the modern civilian approach, Oxford Journal of  Legal Studies 15 403 429 pp. (DOI: 10.1093/ojls/15.3.403), (ISSN: 0143 6503, 1464 3820).  Zivin J.G., and M.J. Neidell (2010). Temperature and the Allocation of Time: Implications for Climate  Change. National Bureau of Economic Research. . Available at:  http://www.nber.org/papers/w15717.        128 of 128       Working Group III Mitigation of Climate Change Chapter 4 Sustainable Development and Equity   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft       Chapter:  Title:  Author(s):    Chapter 4  IPCC WGIII AR5   4  Sustainable Development and Equity  CLAs:  LAs:  Marc Fleurbaey and Sivan Kartha  Simon Bolwig, Yoke Ling Chee, Ying Chen, Esteve Corbera, Franck  Lecocq, Wolfgang Lutz, Maria Silvia Muylaert, Richard B. Norgaard,  Chukwumerije Okereke, Ambuj Sagar   Paul Baer, Donald A. Brown, Josefa Francisco, Michael Zwicky  Hauschild, Michael Jakob, Heike Schroeder, John Thgersen, Kevin  Urama  Luiz Pinguelli Rosa, Matthias Ruth, Jayant Sathaye    CAs:    REs:      1 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   Sustainable Development and Equity  Contents    Executive Summary ............................................................................................................................ 4  4.1 Introduction .................................................................................................................................. 7  4.1.1 Key messages of previous IPCC reports ................................................................................ 7  4.1.2 Narrative focus and key messages ........................................................................................ 8  4.1.2.1 Consumption, disparities and well being ...................................................................... 9  4.1.2.2 Equity at the national and international scales ............................................................. 9  4.1.2.3 Building institutions and capacity for effective governance ....................................... 10  4.2 Approaches and indicators ......................................................................................................... 11  4.2.1 Sustainability and sustainable development (SD) ............................................................... 11  4.2.1.1 Defining and measuring sustainability ......................................................................... 11  4.2.1.2 Links with climate change and climate policy .............................................................. 13  4.2.2 Equity and its relation to sustainable development and climate change ........................... 13  4.3 Determinants, drivers and barriers ............................................................................................ 18  4.3.1 Legacy of development relations ........................................................................................ 18  4.3.2 Governance and political economy ..................................................................................... 19  4.3.3 Population and demography ............................................................................................... 22  4.3.4 Values and behaviours ........................................................................................................ 23  4.3.5 Human and social capital .................................................................................................... 24  4.3.6 Technology .......................................................................................................................... 25  4.3.7 Natural resources ................................................................................................................ 27  4.3.8 Finance and investment ...................................................................................................... 28  4.4 Production, trade, consumption and waste patterns ................................................................ 29  4.4.1 Consumption patterns, inequality and environmental impact ........................................... 29  4.4.1.1 Trends in resource consumption ................................................................................. 29  4.4.1.2 Consumerism and unequal consumption levels .......................................................... 30  4.4.1.3 Effect of non income factors on per capita carbon footprint ..................................... 30  4.4.2 Consumption patterns and carbon accounting ................................................................... 31  4.4.2.1 Choice of GHG accounting method ............................................................................. 31  4.4.2.2 Carbon footprinting (consumption based GHG emissions accounting) ...................... 31  4.4.2.3 Product carbon footprinting ........................................................................................ 32  4.4.2.4 Consumption based and territorial approaches to GHG accounting .......................... 32      2 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     4.4.3 Sustainable consumption and production   SCP ................................................................ 34  4.4.3.1 Sustainable consumption and lifestyle ........................................................................ 34  4.4.3.2 Consumer sustainability attitudes and the relation to behaviour ............................... 35  4.4.3.3 Sustainable production ................................................................................................ 36  4.4.4 Relationship between consumption and well being ........................................................... 38  4.5 Development pathways .............................................................................................................. 39  . 4.5.1 Definition and examples  ..................................................................................................... 39  4.5.2 Transition between pathways ............................................................................................. 41  4.5.2.1 Path dependence and lock ins ..................................................................................... 41  4.5.2.2 Examples and lessons from the technology transition literature ................................ 42  4.5.2.3 Economic modelling of transitions between pathways ............................................... 43  4.6 Mitigative capacity and mitigation, and links to adaptive capacity and adaptation .................. 45  4.6.1 Mitigation and adaptation measures, capacities, and development pathways ................. 45  4.6.2 Equity and burden sharing in the context of international cooperation on climate .......... 48  4.6.2.1 Equity principles pertinent to burden sharing in an international climate regime ..... 48  4.6.2.2 Frameworks for equitable burden sharing .................................................................. 51  4.7 Integration of framing issues in the context of sustainable development ................................ 53  4.7.1 Risk and uncertainty in sustainability evaluation ................................................................ 53  4.7.2 Socio economic evaluation ................................................................................................. 54  4.8 Implications for subsequent chapters ........................................................................................ 55  4.8.1 Three levels of analysis of sustainability consequences of climate policy options ............. 55  4.8.2 Sustainability and equity issues in subsequent chapters .................................................... 56  4.9 Gaps in knowledge and data ...................................................................................................... 61  4.10 Frequently Asked Questions ..................................................................................................... 63  References ........................................................................................................................................ 64        3 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   Executive Summary   Since the first assessment report, the IPCC has considered issues of sustainable development (SD)  and equity: acknowledging the importance to climate decision making, and progressively expanding  the scope to include: the co benefits of climate actions for SD and equity, the relevance of lifestyle  and behaviour, the relevance of technological choices, the relevance of procedural equity to  effective decision making, and the relevance of ethical frameworks and equitable burden sharing in  assessing climate responses. This Assessment Report further explores key dimensions of SD and  equity, highlighting the significance of disparities across different regions and groups, and the ways  in which designing a climate policy is a component of a wide ranging societal choice of a  development path [Section 4.1, 4.2].  Sustainable development, a central framing issue in this Assessment Report, is intimately  connected to climate change (high confidence). SD is variably conceived as development that  preserves the interests of future generations, that preserves the ecosystem services on which  continued human flourishing depends, or that harmonizes the co evolution of three pillars  (economic, social, environmental)  [4.2]. First, the climate threat constrains possible development  paths, and sufficiently disruptive climate change could preclude any prospect for a sustainable  future (medium evidence, high agreement). Thus, a stable climate is one component of SD. Second,  there are synergies and tradeoffs between climate responses and broader SD goals, because some  climate responses generate co benefits for human and economic development, while others can  have adverse side effects and generate risks (robust evidence, high agreement). These co benefits  and risks are studied in the sector chapters of this report, along with measures and strategies to  optimize them. Options for equitable burden sharing can reduce the potential for the costs of  climate action to constrain development (medium evidence, high agreement).  Third, at a more  fundamental level, the capacities underlying an effective climate response overlap strongly with  capacities for SD (medium evidence, high agreement) and designing an effective climate policy  involves  mainstreaming  climate in the design of comprehensive SD strategies and thinking through  the general orientation of development (medium evidence, medium agreement) [4.2, 4.5].  Equity is an integral dimension of SD (high confidence). First, intergenerational equity underlies the  concept of sustainability. Intra generational equity is also often considered an intrinsic component  of SD. In the particular context of international climate policy discussions, several arguments support  giving equity an important role: a moral justification that draws upon ethical principles; a legal  justification that appeals to existing treaty commitments and soft law agreements to cooperate on  the basis of stated equity principles; and an effectiveness justification that argues that a fair  arrangement is more likely to be agreed internationally and successfully implemented domestically  (medium evidence, medium agreement). A relatively small set of core equity principles serve as the  basis for most discussions of equitable burden sharing in a climate regime: responsibility (for GHG  emissions), capacity (ability to pay for mitigation, but sometimes other dimensions of mitigative  capacity), the right to development, and equality (often interpreted as an equal entitlement to emit)  [4.2, 4.6].  While it is possible to envision an evolution toward equitable and sustainable development, its  underlying determinants are also deeply embedded in existing societal patterns that are  unsustainable and highly inertial (high confidence). A useful set of determinants from which to  examine the prospects for and impediments to SD and equity are: the legacy of development  relations; governance and political economy; population and demography; values and behaviour;  human and social capital; technology; natural resource endowments; and finance and investment.  The evolution of each of these determinants as a driver (rather than barrier) to a SD transition is  conceivable, but also poses profound challenges (medium evidence, medium agreement) [4.3].      4 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Governing a transition toward an effective climate response and SD pathway is a challenge  involving rethinking our relation to nature, accounting for multiple generations and interests  (including those based on endowments in natural resources), overlapping environmental issues,  among actors with widely unequal capacities, resources, and political power, and divergent  conceptions of justice (high confidence). Key debated issues include articulating top down and  bottom up approaches, engaging participation of diverse countries and actors, creating procedurally  equitable forms of decentralization and combining market mechanisms with government action, all  in a particular political economic context (robust evidence, high agreement) [4.3].  Technology and finance both are strong determinants of future societal paths, and while society s  current systems of allocating resources and prioritizing efforts toward investment and innovation  are in many ways robust and dynamic, there are also some fundamental tensions with the  underlying objectives of SD (high confidence). First, the technological innovation and financial  systems are highly responsive to short term motivations, and are sensitive to broader social and  environmental costs and benefits only to the often limited extent that these costs and benefits  are internalized by regulation, taxation, laws and social norms.  Second, while these systems are  quite responsive to market demand that is supported by purchasing power, they are only indirectly  responsive to needs, particularly of those of the world's poor, and they operate with a time horizon  that disregards potential needs of future generations (medium evidence, medium agreement) [4.3].  Enhancing human capital based on individual knowledge and skills, and social capital based on  mutually beneficial formal and informal relationships is important for facilitating a transition  toward sustainable development (medium evidence, high agreement).  Social dilemmas  arise in  which short term individual interests conflict with long term social interests, with altruistic values  being favourable to SD. However, the formation of values and their translation into behaviours is  mediated by many factors, including the available set of market choices and lifestyles, the tenor of  dominant information sources (including advertisements and popular culture), the culture and  priorities of formal and civil institutions, and prevailing governance mode (medium evidence,  medium agreement). The demographic transition toward low fertility rates is usually viewed  favorably, though an ageing population creates economic and social challenges, and migrations due  to climate impacts may exacerbate tensions (medium evidence, medium agreement) [4.3, 4.4].  The global consumption of goods and services has increased dramatically over the last decades, in  both absolute and per capita terms, and is a key driver of environmental degradation, including  global warming (high confidence). This trend involves the spread of high consumption lifestyles in  some countries and sub regions, while in other parts of the world large populations continue to live  in poverty. There are high disparities in consumption both between and within countries (robust  evidence, high agreement) [4.4].  Two basic types of decoupling often arise in the context of a transition toward sustainable  development: the decoupling of material resource consumption (including fossil fuels) and  environmental impact (including climate change) from economic growth, and the decoupling of  economic growth from human well being (high confidence). The first type the dematerialization of  the economy, i.e., of consumption and production is generally considered crucial for meeting SD  and equity goals, including mitigation of climate change. Production based (territorial) accounting  suggests that some decoupling of impacts from economic growth has occurred, especially in  industrialized countries, but its extent is significantly diminished based on a consumption based  accounting (robust evidence, medium agreement). Consumption based emissions are more strongly  associated with Gross Domestic Product (GDP) than production based emissions, because wealthier  countries generally satisfy a higher share of their final consumption of products through net imports  compared to poorer countries. Ultimately, absolute levels of resource use and environmental  impact including GHG emissions generally continue to rise with GDP (robust evidence, high  agreement), though great variations between countries highlight the importance of other factors      5 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     such as geography, energy system, production methods, waste management, household size, diet  and lifestyle. The second type of decoupling of human well being from economic growth is a  more controversial goal than the first. There are ethical controversies about the measure of well being and the use of subjective data for this purpose (robust evidence, medium agreement). There  are also empirical controversies about the relationship between subjective well being and income,  with some recent studies across countries finding a clear relationship between average levels of life  satisfaction and per capita income, while the evidence about the long term relationship between  satisfaction and income is less conclusive and quite diverse among countries (medium evidence,  medium agreement). Studies of emotional well being do identify clear satiation points beyond which  further increases in income no longer enhance emotional well being (medium evidence, medium  agreement). Furthermore, income inequality has been found to have a marked negative effect on  average subjective well being, due to perceived unfairness and undermined trust of institutions  among low income groups (medium evidence, medium agreement) [4.4].  Understanding the impact of development paths on emissions and mitigative capacity, and, more  generally, how development paths can be made more sustainable and more equitable in the  future requires in depth analysis of the mechanisms that underpin these paths (high confidence).  Of particular importance are the processes that may generate path dependence and lock ins,  notably  increasing returns  but also use of scarce resources, switching costs, negative externalities  or complementarities between outcomes (robust evidence, high agreement) [4.5, 4.6]. The study of  transitions between pathways is an emerging field, notably in the context of technology transitions.  Yet analyzing how to transition to a sustainable, low emission pathway remains a major scientific  challenge. It would be aided by models with a holistic framework encompassing the economy,  society (in particular the distribution of resources and well being), and the environment, take  account of relevant technical constraints and trends, and explore a long term horizon while  simultaneously capturing processes relevant for the short term and the key uncertainties (medium  evidence, medium agreement) [4.5, 4.7].  Mitigation and adaptation measures can strongly affect broader SD and equity objectives, and it is  thus useful to understand their broader implications (high confidence). Building both mitigative  capacity and adaptive capacity relies to a profound extent on the same factors as those that are  integral to equitable and sustainable development (medium evidence, high agreement), and  equitable burden sharing can enhance these capacities where they are most fragile [4.6]. This  chapter focuses on examining ways in which the broader objectives of equitable and sustainable  development provide a policy frame for an effective, robust, and long term response to the climate  problem. [4.8].      6 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   4.1   Introduction   4.1.1    Key messages of previous IPCC reports  This chapter seeks to place climate change, and climate change mitigation in particular, in the  context of equity and SD. Prior IPCC assessments have sought to do this as well, progressively  expanding the scope of assessment to include broader and more insightful reflections on the policy relevant contributions of academic literature.  The IPCC First Assessment Report (FAR) (IPCC, 1990) underscored the relevance of equity and SD to  climate policy. Mandated to identify  possible elements for inclusion in a framework convention on  climate change , the IPCC prominently put forward the  endorsement and elaboration of the  concept of sustainable development  for negotiators to consider as part of the Convention s  Preamble. It noted as key issues  how to address equitably the consequences for all  and  whether  obligations should be equitably differentiated according to countries  respective responsibilities for  causing and combating climate change and their level of development . This set the stage for the  ensuing United Nations Framework Convention on Climate Change (UNFCCC) negotiations, which  ultimately included explicit appeals to equity and SD, including in its Preamble, its Principles (Article  2), its Objective (Article 3), and its Commitments (Article 4).   The IPCC Second Assessment Report (SAR) (IPCC, 1995), published after the UNFCCC was signed,  maintained this focus on equity and SD. It reflected a growing appreciation for the prospects for SD  co benefits and reiterated the policy relevance of equity and SD. It did this most visibly in a special  section of the Summary for Policymakers presenting  Information Relevant to Interpreting Article 2  of the UNFCCC , including  Equity and social considerations  and  Economic development to  proceed in a sustainable manner . Notably, the SAR added an emphasis on procedural equity  through a legitimate process that empowers all actors to effectively participate, and on the need to  build capacities and strengthen institutions, particularly in developing countries.   The IPCC Special Report on Emission Scenarios (SRES) (Nakicenovic et al., 2000) demonstrated that  broader SD goals can contribute indirectly, yet substantially, to reducing emissions. This IPCC  contribution reflected a change in the scientific literature, which had in recent years expanded its  discussion of SD to encompass analyses of lifestyles, culture, and behaviour, complementing its  traditional techno economic analyses. It also reflected a recognition that economic growth  (especially as currently measured) is not the sole goal of societies. The SRES thus provided insights  into how policy intervention can decouple economic growth from emissions and well being from  economic growth, showing that both forms of decoupling are important elements of a transition to a  world with low greenhouse gas (GHG) emissions.  The IPCC Third Assessment Report (TAR) (IPCC, 2001) deepened the consideration of broader SD  objectives in assessing response strategies. Perhaps owing to a growing appreciation for the severity  of the climate challenge, the TAR stressed the need for an ambitious and encompassing response,  and was thus more attentive to the risk of climate focused measures conflicting with basic  development aspirations. It thus articulated the fundamental equity challenge of climate change as  ensuring  that neither the impact of climate change nor that of mitigation policies exacerbates  existing inequities both within and across nations , specifically because  restrictions on emissions  will continue to be viewed by many people in developing countries as yet another constraint on the  development process  (See Box 4.1 for further discussion of the relationship between climate  change and development challenges in developing countries.). The TAR recognized the need to  deepen the analysis of equitable burden sharing in order to avoid undermining prospects for SD in  developing countries. More generally, the TAR observed that equitable burden sharing is not solely  an ethical matter. Even from a rational actor game theoretic perspective, an agreement in which the  burden is equitably shared is more likely to be signed by a large number of countries, and thus to be  more effective and efficient.       7 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     The IPCC Fourth Assessment Report (AR4) (IPCC, 2007) further expanded the consideration of  broader SD objectives. It stressed the importance of civil society and other non government actors in  designing climate policy and equitable SD strategies generally. The AR4 focused more strongly on the  distributional implications of climate policies, noting that conventional climate policy analysis that is  based too narrowly on traditional utilitarian or cost benefit frameworks will neglect critical equity  issues. These oversights include human rights implications and moral imperatives; the distribution of  costs and benefits of a given set of policies, and the further distributional inequities that arise when  the poor have limited scope to influence policy. This is particularly problematic, the AR4 notes, in  integrated assessment model (IAM) analyses of  optimal  mitigation pathways, because climate  impacts do not affect the poor exclusively through changes in incomes. Nor do they satisfactorily  account for uncertainty and risk, which the poor treat differently than the rich. The poor have higher  risk aversion and lower access to assets and financial mechanisms that buffer against shocks. The  AR4 went on to outline alternative ethical frameworks including rights based and capabilities based  approaches, suggesting how they can inform climate policy decisions. In particular, the AR4  discussed the implications of these different frameworks for equitable international burden sharing.   The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) (IPCC,  2011) deepened the consideration of broader SD objectives in assessing renewable energy options,  noting particularly that while synergies can arise (for example, helping to expand access to energy  services, increase energy security, and reduce some environmental pressures), there can also be  tradeoffs (such as increased pressure on land resources, and affordability) and these must be  negotiated in a manner sensitive to equity considerations.   The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate  Change Adaptation (SREX) (IPCC 2012a) highlighted key further dimensions of SD and equity,  including the distinction and interplay between incremental and transformative changes   both of  which are necessary for an effective climate policy response, and emphasized the diversity of values  that underlie decision making, e.g., a human rights framework vs. utilitarian cost benefit analysis.   4.1.2    Narrative focus and key messages   In keeping with the previous IPCC assessments, this chapter considers SD and equity as matters of  policy relevance for climate change decision makers. The chapter examines the ways in which  climate change is in fact inextricably linked with SD and equity, and it does so with the aim of  drawing policy relevant conclusions regarding equitable and sustainable responses to climate  change.   In one direction, the link is self evident: an effective climate response is necessary for equitable and  sustainable development to occur. The disruptions that climate change would cause in the absence  of an effective societal response are sufficiently severe (see AR5 WGI and WGII) to severely  compromise development, even taking into account future societies  ability to adapt (Shalizi and  Lecocq, 2010). Nor is this development likely to be equitable, as an increasingly inhospitable climate  will most seriously undermine the future prospects of those nations, communities, and individuals  that are in greatest need of development. Without an effective response to climate change,  including both timely mitigation and proactive adaptation, development can be neither sustainable  nor equitable.   In recent years, the academic community has come increasingly to appreciate the extent to which SD  and equity are also needed as frameworks for assessing and prioritizing climate responses: given the  strong tradeoffs and synergies between the options for a climate response and SD, the design of an  effective climate response must accord with the objectives for development and equity and exploit  the synergies. A climate strategy that does not do so runs the risk either of being ineffective for lack  of consensus and earnest implementation or of jeopardizing SD just as would unabated climate      8 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     change. Therefore, a shift toward more equitable and sustainable modes of development may  provide the only context in which an effective climate response can be realized.   The scientific community is coming to understand that climate change is but one example of how  humankind is pressing up against its planetary limits (Millennium Ecosystem Assessment, 2005;  Rockström et al., 2009a). Technical measures can certainly help in the near term to alleviate climate  change. However, the comprehensive and durable strategies society needs are those that recognize  that climate change shares its root causes with other dimensions of the global sustainability crisis,  and that without addressing these root causes, robust solutions may not be accessible.   This chapter, and many parts of this report, uncovers ways in which a broader agenda of SD and  equity may support and enable an effective societal response to the climate challenge, by  establishing the basis by which mitigative and adaptive capacity can be built and sustained. In  examining this perspective, this chapter focuses on several broad themes.   4.1.2.1    Consumption, disparities, and well being  The first theme relates to well being and consumption. The relationship between consumption  levels and environmental pressures, including GHG emissions, has long been a key concern for SD,  with a growing focus on high consumption lifestyles in particular and consumption disparities. A  significant part of the literature develops methodologies for assessing the environmental impacts  across national boundaries of consumption, through consumption based accounting and GHG  footprint analysis. Important research is now also emerging on the relationship between well being  and consumption, and how to moderate consumption and its impacts without hindering well being    and indeed, while enhancing it. More research is now available on the importance of behaviour,  lifestyles, and culture, and their relationship to over consumption (Sections 4.3, 4.4).  Research is emerging to help understand  under consumption , i.e., poverty and deprivation, and its  impacts on well being more broadly, and specifically on the means by which it undermines  mitigative and adaptive capacity (WGII Chapter 20). Energy poverty is one critical example, linked  directly to climate change, of under consumption that is well correlated with weakened livelihoods,  lack of resilience, and limited mitigative and adaptive capacity. Overcoming under consumption and  reversing over consumption, while maintaining and advancing human well being, are fundamental  dimensions of SD, and are equally critical to resolving the climate problem (Sections 4.5, 4.6).   4.1.2.2    Equity at the national and international scales  Given the disparities evident in consumption patterns, the distributional implications of climate  response strategies are critically important. As recent history shows, understanding how policies  affect different segments of the population is essential to designing and implementing politically  acceptable and effective national climate response strategies. A transition perceived as just would  attract a greater level of public support for the substantial techno economic, institutional, and  lifestyle shifts needed to reduce emissions substantially and enable adaptive responses.  At the international level, an equitable regime with fair burden sharing is likely to be a key condition  for an effective global response (Sections 4.2, 4.6). Given the urgency of the climate challenge, a  rather rapid transition will be required if the global temperature rise is to remain below the  politically discussed targets, such as 1.5°C or 2°C over pre industrial levels, with global emissions  possibly peaking as soon as 2020 (see WGI, Figure 6.25). Particularly in a situation calling for a  concerted global effort, the most promising response is a cooperative approach  that would quickly  require humanity to think like a society of people, not like a collection of individual states  (Victor,  1998).   While scientific assessments cannot define what equity is and how equitable burden sharing should  be implementing the Convention and climate policies in general, they can help illuminate the      9 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     implications of alternative choices and their ethical basis (Section 4.6, also Sections 3.2, 3.3, 6.3.6,  13.4.3).  4.1.2.3    Building institutions and capacity for effective governance  While there is strong evidence that a transition to a sustainable and equitable path is technically  feasible (see Sections 6.1.2, 6.3), charting an effective and viable course through the climate  challenge is not merely a technical exercise. It will involve myriad and sequential decisions, among  states and civil society actors, supported by the broadest possible constituencies (Section 4.3). Such  a process benefits from the education and empowerment of diverse actors to participate in systems  of decision making that are designed and implemented with procedural equity as a deliberate  objective. This applies at the national as well as international levels, where effective governance  relating to global common resources, in particular, is not yet mature.   Any given approach to addressing the climate challenge has potential winners and losers. The  political feasibility of that approach will depend strongly on the distribution of power, resources, and  decision making authority among the potential winners and losers.  In a world characterized by  profound disparities, procedurally equitable systems of engagement, decision making, and  governance appear needed to enable a polity to come to equitable and sustainable solutions to the  sustainable development challenge.  Box 4.1 Sustainable development and climate change mitigation in developing countries The interconnectedness of climate change, sustainable development, and equity poses serious  challenges for developing countries but it also presents opportunities.  Developing countries are confronted by a daunting mitigation challenge in the midst of pressing  development needs. Developing country emissions comprised more than half of global emissions in  2010, and grew during the preceding decade by an amount that accounted for the total global  emissions rise (JRC/PBL (2012), IEA (2012), see Annex II.9; see Section 5.3). In the absence of  concerted mitigation actions, the coming decades would see this trend prolonged, with a continued  growth in global emissions driven predominantly by developing countries  rising emissions (see  Section 6.3). This trend is the unsurprising outcome of the recent economic growth in many  developing countries. The increase in emissions coincided with a number of positive developments:  over the past decade, the overall poverty rate has declined, maternal and child mortality have fallen,  the prevalence of several preventable diseases has decreased, and access to safe drinking water and  sanitation has expanded, while the Human Development Index (HDI) across nations has risen and its  convergence has become more pronounced. This  rise of the South  has been termed  unprecedented in its speed and scale [...] affecting a hundred times as many people as the  Industrial Revolution  and setting in motion a  dramatic rebalancing  of economic and geopolitical  forces (United Nations, 2011a; United Nations Development Programme, 2013).   Notwithstanding these gains, further developmental progress is urgently needed throughout the  developing world. More than 1.5 billion people remain in multi dimensional poverty, energy  insecurity is still widespread, inequality of income and access to social services is persistently high,  and the environmental resource base on which humans rely is deteriorating in multiple ways  (Millennium Ecosystem Assessment, 2005; Bazilian et al., 2010; United Nations Development  Programme, 2013). Moreover, unavoidable climate change will amplify the challenges of  development: climate impacts are expected to slow economic growth and exacerbate poverty, and  current failures to address emerging impacts are already eroding the basis for sustainable  development (WGII SPM).   Thus, the challenge confronting developing countries is to preserve and build on the developmental  achievements to date, sharing them broadly and equitably across their populations, but to do so via  a sustainable development pathway that does not reproduce the fossil fuel based and emissions     10 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     intensive conventional pathway by which the developed world moved from poverty to prosperity.  Faced with this dilemma, developing countries have sought evidence that such alternative  development pathways exist, looking in particular to developed countries to take the lead during the  two decades since the UNFCCC was negotiated. Some such evidence has emerged, in the form of a  variety of incipient climate policy experiments (see Section 15.6, 15.7) that appear to have  generated some innovation in low carbon technologies (see Section 4.4) and modestly curbed  emissions in some countries (see Section 5.3).  Developing countries have stepped forward with significant actions to address climate change, but  will need to build mitigative and adaptive capacity if they are to respond yet more effectively (see  Section 4.6). More broadly, the underlying determinants of development pathways in developing  countries are often not aligned toward a sustainable pathway (see Sections 4.3, 4.5). At the same  time, developing countries are in some ways well positioned to shift toward sustainable pathways:  most developing countries are still in the process of building their urban and industrial infrastructure  and can avoid lock in (see Sections 4.5, 5.6). Many are also in the process of establishing the cultural  norms and lifestyles of an emerging middle class, and can do so without reproducing the  consumerist values of many developed countries (4.3, 4.4). Some barriers, such as lack of access to  financial and technological resources, can be overcome through international cooperation based on  principles of equity and fair burden sharing (see Sections 4.6, 6.3).  4.2   Approaches and indicators  This section maps out the various conceptual approaches to the issues of SD (4.2.1), equity (4.2.2),  and their linkages to climate change and climate policy.  4.2.1    Sustainability and sustainable development (SD)   4.2.1.1    Defining and measuring sustainability  The most frequently quoted definition of SD is  development that meets the needs of the present  without compromising the ability of future generations to meet their own needs , from the  Brundtland Report (World Commission on Environment and Development, 1987). This definition  acknowledges a tension between sustainability and development (Jabareen, 2006), and that  development objectives aim at meeting basic needs for all citizens and securing them in a  sustainable manner (Murdiyarso, 2010). One of the first definitions of SD (Prescott Allen, 1980)  refers to a development process that is compatible with the preservation of ecosystems and species.   A popular conceptualization of SD goes beyond securing needs and preserving the environment and  involves three  pillars  or three  bottom lines  of sustainability: environmental, economic, and social  aspects (Dobson, 1991; Elkington, 1998; Flint and Danner, 2001; Pope et al., 2004; Sneddon et al.,  2006; Murdiyarso, 2010; Okereke, 2011). There is some variation in the articulation of the three  spheres, with some scholars  arguing for an equal appraisal of their co evolution and mutual  interactions, and others positing a hierarchy with economic activities embedded in the social matrix,  which is itself grounded in the ecosphere (Levin, 2000; Fischer et al., 2007). This broad SD framework  is equally relevant for rich countries concerned with growth, well being, human development, and  lifestyles.  A well known distinction opposes weak sustainability to strong sustainability approaches  (Neumayer, 2010). The former relies on the assumption that human made capital can replace  natural resources and ecosystem services with a high degree of substitutability. Strong sustainability,  in contrast, takes the view that certain critical natural stocks such as the climate system and  biodiversity cannot be replaced by human made capital and must be maintained. Weak  sustainability is often believed to be inherent to economic modelling that aggregates all forms of  capital together (Dietz and Neumayer, 2007), but economic models and indicators can accommodate      11 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     any degree of substitutability between different forms of capital (Fleurbaey and Blanchet, 2013). The  linkage between strong sustainability and IAMs is discussed in Sathaye et al. (2011). A different but  related issue is whether one should evaluate development paths only in terms of human well being,  which depends on the environment services (Millennium Ecosystem Assessment, 2005), or also  account for natural systems as intrinsically valuable (McShane, 2007; Attfield, 2008).   Sustainability is closely related to resilience (AR5 WII 2.5 and 20.2 20.6, Folke et al., (2010), Gallopin,  (2006), Goerner et al., (2009)) and vulnerability (Kates, 2001; Clark and Dickson, 2003;  Intergovernmental Panel on Climate Change, 2012a). A key premise of this direction of research is  that social and biophysical processes are interdependent and co evolving (Polsky and Eakin, 2011).  The biosphere itself is a complex adaptive system, the monitoring of which is still perfectible (Levin,  2000; Thuiller, 2007). Critical perspectives on these concepts, when applied to SD analysis, can be  found in Turner (2010) and Cannon and Müller Mahn (2010).   Although there are various conceptions of sustainability in the literature, there are internationally  agreed principles of SD adopted by heads of states and governments at the 1992 UN Conference on  Environment and Development (UNCED) and reaffirmed at subsequent review and implementation  conferences (United Nations, 1992a, 1997, 2002, 2012a). A key guiding principle is:  The right to  development must be fulfilled so as to equitably meet developmental and environmental needs of  present and future generations  (1992 Rio Declaration Principle 3). The Rio principles were  reaffirmed at the June 2012 summit level UN Conference on SD.    Box 4.2 Sustainable development indicators (SDI) When SD became a prominent consideration in policymaking in the early 1990s, SDI initiatives  flourished. Pressure state response (PSR) and capital accounting based (CAB) frameworks, in  particular, were widely used to assess sustainability. The PSR approach was further modified as  driving force state response (DSR) by the United Nations Conference on Sustainable Development  (UNCSD) (2001) and driving force pressure state impact response (DPSIR) by the United Nations  Environment Programme (UNEP) (UNEP, 1997, 2000, 2002). The System of Integrated  Environmental Economic Accounting (SEEA) of the United Nations offers a wealth of information  about the state of ecosystems and is currently under revision and expansion.1 The CAB approach is  embodied in the Adjusted Net Savings indicator of the World Bank (2003, 2011), which is mentioned  in Section 4.3 and 14.1 of this report. It is based on the economic theory of  genuine savings   (understood as the variation of all natural and man made capital stocks, evaluated at certain specific  accounting prices), which shows that on a path that maximizes the discounted utilitarian sum, a  negative value for genuine savings implies that the current level of well being is not sustainable  (Hamilton and Clemens, 1999; Pezzey, 2004).  General presentations and critical assessments of SDIs can be found in a large literature (Daly, 1996;  Aronsson et al., 1997; Pezzey and Toman, 2002; Lawn, 2003; Hamilton and Atkinson, 2006; Asheim,  2007; Dietz and Neumayer, 2007; Neumayer, 2010; Martinet, 2012; Mori and Christodoulou, 2012;  Fleurbaey and Blanchet, 2013). This literature is pervaded by a concern for comprehensiveness i.e.,  recording all important aspects of well being, equity, and nature preservation for current and future  generations and accuracy i.e., avoiding arbitrary or unreliable weighting of the relevant  dimensions when synthesizing multidimensional information. The general conclusion of this  literature is that there is currently no satisfactory empirical indicator of sustainability.   A limitation of the PSR model is that it fails to identify causal relations, and it oversimplifies the links  between dimensions. It is moreover based upon aggregate indices, which lose much information  contained in the underlying indicators. An important limitation of the SEEA is that social and                                                               1  Documentation is available at http://unstats.un.org/unsd/envaccounting/seea.asp.      12 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     institutional issues are essentially left out, and its stock and flow approach is problematic with  respect to environmental and social aspects that do not have a market price. Similarly, computing  CAB indicators compounds the difficulty of comprehensively estimating the evolution of capital  stocks with the difficulty of computing the accounting prices. Market prices do provide relevant  information for valuing capital stocks in a perfectly managed economy (as shown by Weitzman  (1976)), but may be very misleading in actual conditions (Dasgupta and Mäler, 2000; Arrow et al.,  2012).  4.2.1.2    Links with climate change and climate policy  The literature on the complex relations between climate change, climate policies, and SD is large  (Swart et al., 2003; Robinson et al., 2006; Bizikova et al., 2007; Sathaye et al., 2007; Thuiller, 2007;  Akimoto et al., 2012; Janetos et al., 2012). The links between SD and climate issues are examined in  detail in WGII Chapter 20. Mapping out these links is also important in this WGIII report, and is done  in this section.  Three main linkages can be identified, each of which contains many elements. First, the climate  threat constrains possible development paths, and sufficiently disruptive climate change could  preclude any prospect for sustainable future (WGII Chapter 19). In this perspective, an effective  climate response is necessarily an integral objective of an SD strategy.   Second, there are tradeoffs between climate responses and broader SD goals, because some climate  responses can impose other environmental pressures, have adverse distributional effects, draw  resources away from other developmental priorities, or otherwise impose limitations on growth and  development (Sections 4.6, 7.11, 8.9, 9.8, 10.10, 11.9, 12.8). Section 4.4 examines how to avoid such  tradeoffs by changing behavioural patterns and decoupling emissions and growth, and/or  decoupling growth and well being.  Third, there are multiple potential synergies between climate responses and broader SD objectives.  Climate responses may generate co benefits for human and economic development (Sections 3.6,  4.8, 6.6, 7.9, 8.7, 9.6, 10.8, 11.7). At a more fundamental level, capacities underlying an effective  climate response overlap strongly with capacities for SD (Section 4.6, 5.3).  A key message of this report is that designing a successful climate policy may require going beyond a  narrow focus on mitigation and adaptation, beyond the analysis of a few co benefits of climate  policy, and may instead require  mainstreaming  climate issues into the design of comprehensive SD  strategies, including at local and regional levels. Figure 4.1 illustrates the different perspectives from  which climate policy can be envisioned. In the broadest, boldest perspective, the choice of the  development path (see Sections 4.5, 6.1) is at stake.  4.2.2    Equity and its relation to sustainable development and climate change  Equity is prominent in research and policy debates about SD and climate, both as distributive equity  (distribution of resources in contexts such as burden sharing, distribution of well being in the  broader context of social justice, see Sections 3.3, 4.4, 4.6) and procedural equity (participation in  decision making, see Section 4.3). Various aspects of the general concept, as developed in social  ethics, are introduced in Section 3.2 under the name of fairness and justice. (In this chapter the  terms equity, fairness, and justice are not distinguished but are used according to common usage  depending on context). The aim of this subsection is to analyze the links between equity, SD, and  climate issues.      13 of 114     Final Draft       Chapter 4  IPCC WGIII AR5     Figure 4.1. Three frameworks for thinking about mitigation Equity between generations underlies the very notion of SD. Figure 4.2, a variant of a figure from  Howarth and Norgaard (1992), illustrates sustainability as the possibility for future generations to  reach at least the same level of well being as the current generation. It shows in particular that  sustainability is a matter of distributive equity, not of efficiency, even if eliminating inefficiencies  affecting future sustainable well being may improve sustainability, as stressed in Grubb et al. (2013).  There has been a recent surge of research on intergenerational equity, motivated by dissatisfaction  with the tradition of discounting the utility of future generations in the analysis of growth paths (see,  e.g., Asheim (2007), Roemer and Suzumura (2002) for recent syntheses). The debate on discounting  is reviewed in Section 3.6.2. Recent literature presents new arguments deriving the imperative of  sustaining well being across generations from more basic equity principles (Asheim et al., 2001,  2012).        14 of 114     Final Draft       Chapter 4  IPCC WGIII AR5     Figure 4.2. The well-being level of the current generation is sustainable if it does not exceed the maximum sustainable well-being level of the future generations independently of whether one is or is not on the possibility frontier. Modified from Howarth and Norgaard (1992). Equity within every generation is often considered an intrinsic component of SD linked to the social  pillar. The Millennium Development Goals (MDGs) may be seen as one indication of a more explicit  global commitment to the social pillar (United Nations, 2000). Yet, the relation between equity  within generations and SD is complex.  Attempting to meet the needs of the world s poor by  proliferating the consumption patterns and production processes of the world s richest populations  would be unsustainable (Millennium Ecosystem Assessment, 2005; Rockström et al., 2009b; Steffen  et al., 2011; Intergovernmental Panel on Climate Change, 2014). Such a scenario would not likely  play out well for the world s poor. Environmental issues are interwoven with the fabric of racial,  social, and economic injustice. Environmental costs and benefits are often distributed so that those  who already suffer other socio economic disadvantages tend to bear the greatest burden (Okereke,  2011).   Figure 4.3 illustrates the normative framework in which a SD path can be grounded on certain values  (well being, equity) and interrelated goals (development and conservation), and the synergies and  tradeoffs between SD and climate policy, with procedural equity and iterative learning nurturing  each step, from conceptualization to implementation.       15 of 114     Final Draft       Chapter 4  IPCC WGIII AR5     Figure 4.3. Links between SD, equity, and climate policy In the rest of this section, we focus on one key dimension of equity that is of central importance to  international negotiations toward an effective global response to climate change.  As in many other  contexts, fundamental questions of resource allocation and burden sharing arise in climate change,  and therefore equity principles are invoked and debated. Three lines of argument have been put  forward to justify a reference to equity in this context (Section 4.6 examines the details of burden  sharing principles and frameworks in a climate regime.)  The first justification is the normative claim that it is morally proper to allocate burdens associated  with our common global climate challenge according to ethical principles. The broad set of ethical  arguments for ascribing moral obligations to individual nations has been reviewed in Section 3.3,  drawing implicitly upon a cosmopolitan view of justice, which posits that some of the basic rights  and duties that arise between people within nations also hold between people of different nations.   The second justification is the legal claim that countries have accepted treaty commitments to act  against climate change that include the commitment to share the burden of action equitably. This  claim derives from the fact that signatories to the UNFCCC have agreed that:  Parties should protect  the climate system for the benefit of present and future generations of humankind, on the basis of  equity and in accordance with their common but differentiated responsibilities and respective  capabilities  (UNFCCC, 2002). These commitments are consistent with a body of soft law and norms  such as the no harm rule according to which a state must prevent, reduce or control the risk of  serious environmental harm to other states (Stockholm Convention (UNEP, 1972), Rio declaration   (United Nations, 1992b), Stone (2004)). In addition, it has been noted that climate change adversely  affects a range of human rights that are incorporated in widely ratified treaties (Aminzadeh, 2006;  Humphreys, 2009; Knox, 2009; Wewerinke and Yu III, 2010; Bodansky, 2010).   The third justification is the positive claim that equitable burden sharing will be necessary if the  climate challenge is to be effectively met. This claim derives from the fact that climate change is a  classic commons problem (Hardin, 1968; Soroos, 1997; Buck, 1998; Folke, 2007) (also see Section  13.2.2.4). As with any commons problem, the solution lies in collective action (Ostrom, 1990). This is  true at the global scale as well as the local, only more challenging to achieve (Ostrom et al., 1999).      16 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Inducing cooperation relies, to an important degree, on convincing others that one is doing one s fair  share. This is why notions of equitable burden sharing are considered important in motivating actors  to effectively respond to climate change. They are even more important given that actors are not as  equal as the proverbial  commoners , where the very name asserts homogeneity (Milanoviæ et al.,  2007).  To the contrary, there are important asymmetries or inequalities between stakeholders  (Okereke et al., 2009; Okereke, 2010): asymmetry in contribution to climate change (past and  present), in vulnerability to the impacts of climate change, in capacity to mitigate the problem, and  in power to decide on solutions. Other aspects of the relation between intragenerational equity and  climate response include the gender issues noted in 4.2.1.2, and the role of virtue ethics and citizen  attitudes in changing lifestyles and behaviours (Dobson, 2007; Lane, 2012), a topic analyzed in  Section 4.4.  Young (2013) has identified three general conditions which apply to the climate context under  which the successful formation and eventual effectiveness of a collective action regime may hinge  on equitable burden sharing: the absence of actors who are powerful enough to coercively impose  their preferred burden sharing arrangements; the inapplicability of standard utilitarian methods of  calculating costs and benefits; and the fact that regime effectiveness depends on a long term  commitment of members to implement its terms. With respect to climate change, it has long been  noted that a regime that many members find unfair will be face severe challenges to its adoption or  be vulnerable to festering tensions that jeopardize its effectiveness (Harris, 1996; Müller, 1999;  Young, 2012). Specifically, any attempt to protect the climate by keeping living standards low for a  large part of the world population will face strong political resistance, and will almost certainly fail  (Roberts and Parks, 2007; Baer et al., 2009). While costs of participation may provide incentives for  non cooperation or defection in the short term, the climate negotiations are not a one shot game,  and they are embedded in a much broader global context; climate change is only one of many global  problems environmental, economic, and social that will require effective cooperative global  governance if development and indeed human welfare is to be sustained in the long term  (Singer, 2004; Jasanoff, 2004; Speth and Haas, 2006; Kjellen, 2008).   Despite these three lines of justification, the question of the role that equity does or should play in  the establishment of global climate policy and burden sharing in particular is nonetheless  controversial (Victor, 1998). The fact that there is no universally accepted global authority to enforce  participation is taken by some to mean that sovereignty, not equity is the prevailing principle. Such a  conception implies that the bottom line criterion for a self enforcing (Barrett, 2005) cooperative  agreement would be simply that everyone is no worse off than the status quo. This has been termed  International Paretianism  (Posner and Weisbach, 2010), and its ironic, even perverse results have  been pointed out:  an optimal climate treaty could well require side payments to rich countries like  the United States and rising countries like China, and indeed possibly from very poor countries which  are extremely vulnerable to climate change   such as Bangladesh." (Posner and Weisbach, 2010).   However, both critics and advocates of the importance of equity in the climate negotiations  acknowledge that governments can choose to act on moral rather than purely self interested  principles (DeCanio and Fremstad, 2010; Posner and Weisbach, 2010, 2012; Baer, 2013; Jamieson,  2013) (see also Section 3.10). Whether or not states behave as rational actors, given the significant  global gains to be had from cooperation, this leaves ample room for discussion of the role of equity  in the distribution of those global gains, while still leaving all parties better off (Stone, 2004).  While the above discussion focuses on equity among nations, equally relevant concerns regarding  equity within nations also arise, and indeed can be overriding determinants of the prospects for  climate policy to be adopted. Demands for equity have been articulated by labour communities  primarily in terms of a just transition (International Labour Office, 2010; Newell and Mulvaney,  2013), and often by marginalized populations and racial minorities in terms of environmental justice  and just sustainability (Agyeman and Evans, 2004; Walker and Bulkeley, 2006; Shiva, 2008). While      17 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     the particular demands are highly location   and context specific, the broad concerns are procedural  and distributive justice with reduced power asymmetries, as underscored throughout this chapter.   4.3   Determinants, drivers and barriers   This section explores the determinants of SD, emphasizing how each influences the extent to which  societies can balance the economic, social, and environmental pillars of SD, while highlighting  potential synergies and tradeoffs for the building of mitigative and adaptive capacity and the  realization of effective and equitable mitigation and adaptation strategies. Determinants refer to  social processes, properties, and artefacts, as well as natural resources, which together condition  and mediate the course of societal development, and thus the prospects for SD. When determinants  facilitate SD they act drivers and when they constrain it they act as barriers.   The determinants discussed include: the legacy of development relations; governance and political  economy; population and demography; human and social capital; behaviour, culture, and values;  technology and innovation processes; natural resources; and finance and investment. These  determinants are interdependent, characterized by feedbacks that blur the distinction between  cause and effect, and their relative importance depends on context   see analogous discussion in the  context of GHG emission drivers in 5.3. They are not unique, and other determinants such as  leadership (Jones and Olken, 2005), randomness (Holling, 1973; Arthur, 1989), or human nature  (Wilson, 1978) could be added to the list, but they are less amenable to deliberate intervention by  policy makers and other decision makers and have therefore been excluded. What follows lays the  foundations for understanding concepts that recur throughout this chapter and those that follow.  4.3.1    Legacy of development relations  Following World War II, security, economic, and humanitarian relations between rich nations and  poor nations were comingled and addressed under the umbrella of  development  (Truman, 1949;  Sachs, Wolfgang, 1999). Differing perspectives on the mixed outcomes of six decades of  development, and what the outcomes may indicate about underlying intentions and capabilities,  inform different actors in different ways as to what will work to address climate change and the  transition to SD. During the 1950s and 1960s, for example, expectations were that poverty would be  reduced dramatically by the end of the century (Rist, 2003). It was widely believed that economic  development could be instigated through aid from richer nations, both financial and in kind.  Development was seen as a process of going through stages starting with transforming traditional  agriculture through education, the introduction of new agricultural technologies, improved access to  capital for farm improvements, and the construction of transportation infrastructure to facilitate  markets. Improved agriculture would release workers for an industrial stage and thereby increase  opportunities for education and commercial development in cities. As development proceeded,  nations would increasingly acquire their own scientific capabilities and, later, sophisticated  governance structures to regulate finance and industry in the public good, becoming well rounded,  well governed economies comparable to those of rich nations.  By the 1970s, however, it was clear that development was not on a path to fulfilling these linear  expectations because: 1) contributions of aid from the rich nations were not at levels anticipated; 2)  technological and institutional changes were only partially successful, proved inappropriate, or had  unpredicted, unfortunate consequences; 3) requests for military aid and the security and economic  objectives of richer nations in the context of the Cold War were frequently given priority over  poverty reduction; and 4) graft, patronage, and the favouring of special interests diverted funds  from poverty reduction. The general belief that nations naturally went through stages of  development to become well rounded economies faded by the early 1980s. Greater participation in  global trade, with its implied specialization, was invoked as the path to economic growth. Diverse  other efforts were made to improve how development worked, but with only modest success,      18 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     leaving many in rich and poor nations concerned about development process and prospects (United  Nations, 2011a).   Layering the goal of environmental sustainability onto the goal of poverty reduction further  compounded the legacy of unmet expectations (World Commission on Environment and  Development, 1987). There have been difficulties determining, shifting to, and governing for  sustainable pathways (Sanwal, 2010)   see 4.3.2 below. The negotiation of new rules for the mobility  of private capital and the drive for globalization of the economy also came with new expectations for  development (Stiglitz, 2002). The Millennium Development Goals (MDG) established in 2000 to be  met by 2015 are an example of how such expectations were thought to be realizable in the rapidly  evolving times of the global financial economy. In retrospect and after the 2008 financial sector  induced recession, significant improvements are largely in China and India where economic growth  accelerated through private capital flows independent of the MDG process. Excluding these  countries, the record is mixed at best and still poor in most of Africa (Keyzer and Wesenbeeck, 2007;  Easterly, 2009; United Nations, 2011a). Additionally, since the 1990s, greenhouse gas emissions  became another focus of contention (Roberts and Parks, 2007; Penetrante, 2011; Dryzek et al.,  2011). The developed nations became rich through the early use of fossil fuels and land  transformations that put GHGs in the atmosphere, imposing costs on all people, rich and poor,  through climate impacts that will persist over centuries (Srinivasan et al., 2008). Connections  between causal and moral responsibility arose, complicating the legacy of development.  Such legacy of unmet development and sustainability expectations is open to multiple  interpretations. In richer nations, the evidence can be interpreted to support the views of fiscal  conservatives who oppose aid, libertarians who oppose humanitarian and environmental  interventions, progressives who urge that more needs to be done to reach social and environmental  goals, and some environmentalists who urge dematerialization and degrowth among the rich as  necessary to meet the needs of the poor. In poorer nations, the legacy similarly supports various  views including a distrust of rich nations for not delivering development and environmental  assistance as promised, cynicism toward the intentions and conceptual rationales when it is  provided, and also a wariness of development s unpredicted outcomes.   In both developed and developing nations these diverse sentiments among the public, policy  makers, and climate negotiators contribute to what philosopher Gardiner (2011b) refers to as the  perfect moral storm  of climate policy. Some analysts argue that the legacy of development and  interrelated issues of equity so cloud global climate negotiations that ad hoc agreements and  voluntary pledges are the most that can be achieved (Victor, 2004) and considerations of  development and equity are better left aside (Posner and Weisbach, 2010), although this leaves  open whether such arrangements could provide an adequately ambitious climate response  consistent with the UNFCCC s objectives. (See Section 4.6.2 for further discussion of perspectives on  equity in a climate regime, and Section 13.4.3 for further discussion of regime architectures).   4.3.2    Governance and political economy   Governance and political economy are critical determinants for SD, equity, and climate change  mitigation because they circumscribe the process through which these goals and how to attain them  are articulated and contested. The quest for equity and climate change mitigation in the context of  SD thus necessitates an improved understanding and practice of governance (Biermann et al., 2009;  Okereke et al., 2009). Governance in the broadest sense refers to the processes of interaction and  decision making among actors involved in a common problem (Kooiman, 2003; Hufty, 2011). It goes  beyond notions of formal government or political authority and integrates other actors, networks,  informal institutions, and incentive structures operating at various levels of social organization  (Rosenau, 1990; Chotray and Stoker, 2009). In turn, climate governance has been defined as the  mechanisms and measures "aimed at steering social systems towards preventing, mitigating or  adapting to the risks posed by climate change  (Jagers and Stripple, 2003). From this definition, it      19 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     can be seen as a broad phenomenon encompassing not only formal policymaking by states, but all  the processes through which authority is generated and exerted to affect climate change and  sustainability. This includes policymaking by states but also by many other actors  NGOs, TNCs,  municipalities, for example   operating across various scales (Okereke et al., 2009).   Many scholars have highlighted the challenges associated with governing for SD and climate change  (Adger and Jordan, 2009; Levin et al., 2012). First, it involves rethinking the ways society relates to  nature and the underlying biophysical systems. This is relevant in the context of the growing  evidence of the impact of human activity on the planet and the understanding that extraordinary  degrees of irreversible damage and harm are distinct possibilities if the right measures are not taken  within an adequate timescale (Millennium Ecosystem Assessment, 2005; Rockström et al., 2009a).  Second, governing climate change involves complex intergenerational considerations. On the one  hand, cause and effect of some environmental impacts and climate change are separated by  decades, often generations, and on the other hand, those who bear the costs of remediation and  mitigation may not be the ones to reap the benefits of avoided harm (Biermann, 2007).  Third, effective response to climate change may require a fundamental restructuring of the global  economic and social systems, which in turn would involve overcoming vested multiple interests and  the inertia associated with behavioural patterns and crafting new institutions that promote  sustainability (Meadows et al., 2004; Millennium Ecosystem Assessment, 2005). This challenge is  exacerbated by the huge mismatch between the planning horizon needed to address global  environmental problems and climate change and the tenure of decision makers (Hovi et al., 2009).   Fourth, and finally, SD governance cuts across several realms of policy and organization. Particularly,  the governance of mitigation and adaptation is an element of a complex and evolving arena of global  environmental governance, which deals with other, and often overlapping, issues such as  biodiversity loss, desertification, water management, trade, energy security, and health, among  others (Adger and Jordan, 2009; Brown, 2009; Bell et al., 2010; Balsiger and Debarbieux, 2011; da  Fonseca et al., 2012; Bark et al., 2012). Sites of climate change governance and policymaking are  thus multiple and are not confined to the UNFCCC and national rule making processes, a situation  which raises challenges in relation to coordination, linkages, and synergies (Ostrom, 2010; Zelli,  2011; Jinnah, 2011)   see Sections 13.4, 13.13, 14.1, 15.2, notably Figure 13.1 for a visual summary.   These considerations explain why climate governance has attracted more political controversy than  other issues in relation to global sustainability and its equity considerations. Some of the main  aspects of this controversy include: who should participate in decision making; how to modulate  power asymmetry among stakeholders; how to share responsibility among actors; what ideas and  institutions should govern response measures; and where should interventions focus? Questions of  justice are embedded throughout, aggravated by the high stakes involved and the stark asymmetry  among states and others actors in terms of cause, effect, and capability to respond to the problem  (Okereke and Dooley, 2010; Okereke, 2010; Schroeder et al., 2012).   Scholars have long analyzed the above issues within climate governance, offering a multitude of  possible solutions. Concerning participation, a departure from the top down approach implied in the  Kyoto Protocol towards a more voluntary and bottom up approach has been suggested (Rayner,  2010). Some argue that limiting participation to the "most capable, responsible and vulnerable"  countries can foster progress toward more stringent mitigation policy (Eckersley, 2012). However,  the latter has been opposed on the basis that it would further exacerbate issues of inequity (Aitken,  2012; Stevenson and Dryzek, 2012). Others have discussed the need to create spaces for  collaborative learning to debate, legitimize, and potentially overcome knowledge divides between  experts and lay people in sectoral climate policy development (Swanson et al., 2010; Armitage et al.,  2011; Colfer, 2011; Larsen et al., 2012)   see Section 13.13 for further detail. On allocation of  responsibility, a global agreement has been elusive not merely because parties and other key actors  have differing conceptions of a fair allocation (Okereke, 2008), but because the pertinent policies are      20 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     highly contentious given the combination of factors at play, prominent among which are finance,  politics, ineffective institutions, and vested interests.   A defining image of the climate governance landscape is that key actors have vastly disproportionate  capacities and resources, including the political, financial, and cognitive resources that are necessary  to steer the behaviour of the collective within and across territorial boundaries (Dingwerth and  Pattberg, 2009). A central element of governance therefore relates to huge asymmetry in such  resources and the ability to exercise power or influence outcomes. Some actors, including  governments, make use of negotiation power and/or lobbying activities to influence policy decisions  at multiple scales and, by doing so, affect the design and the subsequent allocation and distribution  of benefits and costs resulting from such decisions (Markussen and Svendsen, 2005; Benvenisti and  Downs, 2007; Schäfer, 2009; Sandler, 2010)   see e.g., Section 15.5.2. The problem, however, also  resides in the fact that those that wield the greatest power either consider it against their interest to  facilitate rapid progress towards a global low carbon economy or insist that the accepted solutions  must be aligned to increase their power and material gains (Saeverud and Skjaerseth, 2007; Giddens,  2009; Hulme, 2009; Lohmann, 2009, 2010; Okereke and McDaniels, 2012; Wittneben et al., 2012).  The most notable effect of this is that despite some exceptions, the prevailing organization of the  global economy, which confers significant power on actors associated with fossil fuel interests and  with the financial sector, has provided the context for the sorts of governance practices of climate  change that have dominated to date (Newell and Paterson, 2010).   Many specific governance initiatives, described in Sections 13.13 and 15.3, whether organized by  states or among novel configurations of actors, have focused on creating new markets or investment  opportunities. This applies, for example, to carbon markets (Paterson, 2009), carbon offsetting  (Bumpus and Liverman, 2008; Lovell et al., 2009; Corbera and Schroeder, 2011; Corbera, 2012),  investor led governance initiatives such as the Carbon Disclosure Project (CDP) (Kolk et al., 2008) or  partnerships such as the Renewable Energy and Energy Efficiency Partnership (REEEP) (Parthan et  al., 2010). Some scholars find that carbon markets can contribute to achieving a low fossil carbon  transition, but require careful designs to achieve environmental and welfare gains (Wood and Jotzo,  2011; Pezzey and Jotzo, 2012; Springmann, 2012; Bakam et al., 2012). Others note that such  mechanisms are vulnerable to  capture  by special interests and against the original purposes for  which they are conceived. Several authors have discussed this problem in the context of the Clean  Development Mechanism (CDM) and the European Union Emissions Trading Scheme (EU ETS)  (Lohmann, 2008; Clo, 2010; Okereke and McDaniels, 2012; Böhm et al., 2012).   Governing for SD and climate change requires close attention to three key issues. First, there is a  need to understand current governance as encompassing more than the actors within formal  government structures, and to understand how choices are driven by more than optimal decision  making theory. Second effective governance requires understanding the dynamics that determine  whether and how policy options are legitimized, and then formally deliberated and adopted (or not).  Consequently, it is necessary to examine how these modes of governance are defined and  established in the first place, by whom and for whose benefit, thus illuminating the relationship and  tensions between effective governance and existing trends in political economy. Third, there is a  need to explore how different modes of governance translate into outcomes, affecting the decisions  and actions of actors at multiple scales, and to draw lessons about their environmental effectiveness  and distributional implications. While some argue that states should still be regarded as key agents  in steering such transitions (Eckersley, 2004; Weale, 2009), most decision making relevant to SD and  climate remains fundamentally decentralized. A key challenge of governance is thus to recognize the  political economy context of these decision makers, to ensure procedurally equitable processes that  address the allocation of responsibilities and ensure transparency and accountability in any  transition towards SD.        21 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   4.3.3    Population and demography   Population variables, including size, density, and growth rate, as well as age, sex, education, and  settlement structures, play a determinant role in countries  SD trajectories. Their drivers, in  particular fertility, mortality, and migration, are reciprocally influenced by development pathways,  including evolving policies, socio cultural trends, as well as by changes in the economy (Bloom,  2011). In the climate change context, population trends have been shown to matter both for  mitigation efforts as well as for societies  adaptive capacities to climate change (O Neill et al., 2001).   Current demographic trends show distinct patterns in different parts of the world. While population  sizes are on a declining trajectory in Eastern Europe and Japan, they are set for significant further  increase in many developing countries (particularly in Africa and south western Asia) due to a very  young population age structure and continued high levels of fertility. As most recent projections  show, the world s population is almost certain to increase to between 8 and 10 billion by mid century. After that period, uncertainty increases significantly, with the future trend in birth rates  being the key determinant, but it is also amplified by the uncertainty about future infectious disease  mortality and the still uncertain consequences of climate change on future mortality trajectories  (O Neill et al., 2001; Lutz and KC, 2010; United Nations, 2011b; Lee, 2011; Scherbov et al., 2011). The  population of Sub Saharan Africa will almost certainly double and could still increase by a factor of  three or more depending on the course of fertility over the coming decades, which depends  primarily on progress in female education and the availability of reproductive health services  (Bongaarts, 2009; Bloom, 2011; Bongaarts and Sinding, 2011).   Declining fertility rates, together with continued increases in life expectancy, result in significant  population ageing around the world, with the current low fertility countries being most advanced in  this process. Population ageing is considered a major challenge for the solvency of social security  systems. For populations still in the process of fertility decline, the expected burden of ageing is a  more distant prospect, and the declining birth rates are expected to bring some near term benefits.  This phase in the universal process of any demographic transition, when the ratio of children to  adults is already declining and the proportion of elderly has not yet increased, is considered a  window of opportunity for economic development, which may also result in an economic rebound  effect leading to higher per capita consumption and emissions (Bloom and Canning, 2000).   Low development is widely understood to contribute to high population growth, which declines only  after the appearance of widespread access to key developmental needs such as perinatal and  maternal healthcare, and female education and empowerment. Conversely, high population growth  is widely regarded as an obstacle to SD because it tends to make efforts such as the provision of  clean drinking water and agricultural goods and the expansion of health services and school  enrolment rates difficult (Dyson, 2006; Potts, 2007; Pimentel and Paoletti, 2009). This has given rise  to the fear of a vicious circle of underdevelopment and gender inequity yielding high population  growth and environmental degradation, in turn inhibiting the development necessary to bring down  fertility (Caole and Hoover, 1958; Ehrlich and Holdren, 1971; Dasgupta, 1993). However, history  shows that countries can break this vicious circle with the right social policies, with an early  emphasis on education and family planning; prominent examples include South Korea and  Mauritius, which were used in the 1950s as textbook examples of countries trapped in such a vicious  circle (Meade, 1967).   With respect to adaptation to climate change, the literature on population and environment has  begun to explore more closely people s vulnerability to climate stressors, including variability and  extreme events, and to analyze their adaptive capacity and reliance on environmental resources to  cope with adversities and adapt to gradual changes and shocks (Bankoff et al., 2004; Adger et al.,  2009)   see also 4.6.1 and AR5 WGII. Generally speaking, not only does the number of people  matter, but so does their composition by age, gender, place of residence, and level of education, as  well as the institutional context that influences people s decision making and development      22 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     opportunities (Dyson, 2006). One widely and controversially discussed form of adaptation can be  international migration induced by climate change. There is often public concern that massive  migration of this sort could contribute to political instability and possibly conflict. However, a major  recent review of our knowledge in this field has concluded that much environmentally induced  migration is likely to be internal migration and there is very little science based evidence for  assessing possible consequences of environmental change on large international migration streams  (UK Government Office for Science, 2011).  4.3.4    Values and behaviours  Research has identified a range of individual and contextual predictors of behaviours in favour or  against climate change mitigation, ranging from individuals' psychological needs to cultural and  social orientations towards time and nature (Swim et al., 2009)   see Sections 2.4, 3.10, and 5.5.  Below we discuss some of these factors, focusing on human values that influence individual and  collective behaviours and affect our priorities and actions concerning the pursuit of SD, equity goals,  and climate mitigation. Values have been defined as  enduring beliefs that pertain to desirable end  states or behaviours, transcend specific situations, guide selection or evaluation of behaviour and  events and are ordered by importance  (citing Schwartz and Bilsky, 1987, p. 551; Pepper et al., 2009,  p. 127). Values provide  guides for living the best way possible for individuals, social groups and  cultures  (citing Rohan, 2000, p. 263; Pepper et al., 2009, p. 127) and so influence actions at all levels  of society   including the individual, the household, the firm, civil society, and government.  Individuals acquire values through socialization and learning experience (Pepper et al., 2009) and  values thus relate to many of the other determinants discussed in this section. Values may be rooted  in cultural, religious, and other belief systems, which may sometimes conflict with scientific  understandings of environmental risks. In particular, distinct values may influence perceptions and  interpretations of climate impacts and hence climate responses (Wolf et al., 2013).  The relevance of values to SD and, particularly, to ecologically conscious (consumer) behaviour, is  related to the nature of environmental issues as  social dilemmas , where short term narrow  individual interests conflict with the longer term social interest (Pepper et al., 2009). Researchers  have highlighted the role of non selfish values that promote the welfare of others (including nature),  noting that some but not all indigenous societies are known to focus on  collective  as opposed to  individual  interests and values, which often result in positive resource conservation strategies and  wellbeing (Gadgil et al., 1993; Sobrevila, 2008; Watson et al., 2011). However, it is well known that a  range of factors also mediate the impact of values on behaviour such that the link from values to  ecologically conscious behaviour is often loose (Pepper et al., 2009).   In fact, this  value action  gap suggests that pursuing climate change mitigation and SD globally may  require substantial changes in behaviour in the short term along with a transformation of human  values in the long term, e.g., progressively changing conceptions and attitudes toward biophysical  systems and human interaction (Gladwin et al., 1995; Leiserowitz et al., 2005; Vlek and Steg, 2007;  Folke et al., 2011a). Changing human values would require a better understanding of cross cultural  behavioural differences that in turn relate to environmental, economic, and political histories  (Norenzayan, 2011).  Behavioural change can be induced by changes in formal and civil institutions and governance,  human values (Jackson, 2005a; Folke et al., 2011a; Fischer et al., 2012), perceptions of risk and  causality, and economic incentives. Removing perverse subsidies for environmentally harmful  products, favouring greener consumption and technologies, adopting more comprehensive forms of  biophysical and economic accounting, and providing safer working conditions are considered central  for achieving pro SD behavioural change (Lebel and Lorek, 2008; Thgersen, 2010; Le Blanc, 2010).  Yet behaviour experiments (Osbaldiston and Schott, 2012) suggest there is no  silver bullet  for  fostering ecologically conscious behaviour, as favourable actions (e.g., to conserve energy) are  triggered by different stimuli, including information, regulation or economic rewards, and influenced      23 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     by the nature of the issue itself. Furthermore, people are able to  express both relatively high levels  of environmental concern and relatively high levels of materialism simultaneously  (Gatersleben et  al., 2010). This suggests the need to be issue, context, and culturally aware when designing specific  actions to foster pro SD behaviour, as both environmental and materialistic concerns must be  addressed. These complexities underscore the challenges in changing beliefs, preferences, habits,  and routines (Southerton, 2012)   see Sections 4.4 and 5.5.2.   4.3.5    Human and social capital  Levels of human and social capital also critically influence a transition toward SD and the design and  implementation of mitigation and adaptation strategies. Human capital results from individual and  collective investments in acquiring knowledge and skills that become useful for improving wellbeing  (Iyer, 2006). Such knowledge and skills can be acquired through formal schooling and training, as  well as informally through customary practices and institutions, including communities and families.  Human capital can thus be viewed as a critical component of a broader encompassing human  capability, i.e., a person s ability to achieve a given list of  functionings  or achievements, which  depend on a range of personal and social factors, including education, age, gender, health, income,  nutritional knowledge, and environmental conditions, among others (Sen, 1997, 2001). See Clark  (2009) and Schokkaert (2009) for a review of Sen's capability approach and its critiques.  Economists have long considered improvements in human capital a key explanatory reason behind  the evolution of economic systems, in terms of growth and constant innovation (Schultz, 1961; Healy  and Cote, 2001). Macro economic research shows a strong correlation between levels of economic  development and levels of human capital and vice versa (Schultz, 2003; Iyer, 2006), while micro economic studies reveal a positive relationship between increases in the quantity and quality of  formal education and future earnings (Duflo, 2001). Gains in human capital can be positively  correlated to economic growth and efficiency, but also to nutritional, health, and education  standards (Schultz, 1995). As such, improvements in human capital provide a basis for SD, as they  shape countries  socio economic systems and influence people s ability to make informed choices.  Seemingly, human capital often also explains the development and survival of business ventures  (Colombo and Grilli, 2005; Patzelt, 2010; Gimmon and Levie, 2010), which are an important source of  innovation and diffusion of principles and technologies that can contribute to SD and to ambitious  mitigation and adaptation goals (Marvel and Lumpkin, 2007; Terjesen, 2007).   Additionally, a growing body of literature in economics, geography, and psychology (reviewed in  Sections 2.4, 2.6.6 and 3.10 as well as in WGII Chapter 2) has shown that the diversity of  environmental, socio economic, educational and cultural contexts in which individuals make  decisions shape their willingness and/or ability to engage in mitigation and adaptation action  (Lorenzoni et al., 2007). It is important to distinguish between formally acquired knowledge on  climate change often based on scientific developments and traditional knowledge on climate related issues (Smith and Sharp, 2012), as well as to recognize that the relative validity of both types  of knowledge to different audiences, and the meaning and relevance of personal engagement, will  be influenced by individual perceptions, preferences, values, and beliefs. Therefore, knowledge on  climate issues does not alone explain individual and collective responses to the climate challenge  (Whitmarsh, 2009; Sarewitz, 2011; Wolf and Moser, 2011; Berkhout, 2012). There is evidence of  cognitive dissonance and strategic behaviour in both mitigation and adaptation. Denial mechanisms  that overrate the costs of changing lifestyles, blame others, and that cast doubt on the effectiveness  of individual action or the soundness of scientific knowledge are well documented (Stoll Kleemann  et al., 2001; Norgaard, 2011; McCright and Dunlap, 2011), as is the concerted effort by opponents of  climate action to seed and amplify those doubts (Jacques et al., 2008; Kolmes, 2011; Conway and  Oreskes, 2011).  Among the different definitions of social capital, one of the most influential was proposed by  Fukuyama (2002): the shared norms or values that promote social cooperation, which are founded      24 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     in turn on actual social relationships, including trust and reciprocity. Social capital appears in the  form of family bonds, friendship and collective networks, associations, and other more or less  institutionalized forms of collective action. Social capital is thus generally perceived as an asset for  both the individuals that recognize and participate in such norms and networks and for the  respective group/society, insofar as they derive benefits from information, participating in decision  making and belonging to the group. Social capital can be linked to successful outcomes in education,  employment, family relationships, and health (Gamarnikow and Green, 1999), as well as to  economic development and participatory, democratic governance (Woolcock, 1998; Fukuyama,  2002; Doh and McNeely, 2012). Indeed, social capital can also be sustained on unfair social norms  and institutions that perpetuate an inequitable access to the benefits provided by social organization  (Woolcock and Narayan, 2000), through social networks of corruption or criminal organizations, for  example, that perpetuate the uneven distribution of public resources, and undermine societies   cohesion and physical security.  Scholarship suggests that social capital is supportive for SD (Rudd, 2000; Bridger and Luloff, 2001;  Tsai, 2008; Ostrom, 2008; Jones et al., 2011), having shown that it can be instrumental to address  collective action problems (Ostrom, 1998; Rothstein, 2005), combat injustices and conditions of  poverty and vulnerability (Woolcock and Narayan, 2000), and benefit from resources (Bebbington,  1999; Diaz et al., 2002), and to foster mitigation and adaptation (Adger, 2003; Wolf et al., 2010).   4.3.6    Technology  Technology has been a central element of human, social, and economic development since ancient  times (Jonas, 1985; Mokyr, 1992). It can be a means to achieving equitable SD, by enabling economic  and social development while using environmental resources more efficiently. The development and  deployment of the overwhelming majority of technologies is mediated by markets, responding to  effective demand of purchasers (Baumol, 2002), and carried out by private firms, where the pre requisites of technological capacity and investment resources tend to be found. However, this  process does not necessarily address the basic needs of those members of society with insufficient  market demand to influence the decisions of innovators and investors, nor does it provide an  incentive to reduce externalized costs, such as the costs of GHG pollution (Jaffe et al., 2005).  Fundamental objectives of equity and SD are still unmet. For example, the basic energy and  nutritional needs of large parts of the world s population remain unfulfilled. An estimated 1.3 billion  people lacked access to electricity in 2011 and about 3 billion people worldwide relied on highly  polluting and unhealthy traditional solid fuels for household cooking and heating (Pachauri et al.;  IEA, 2012b) (see Section 14.3.2.1). Similarly, the Food and Agricultural Organization (FAO) indicates  that almost 870 million people (mostly in developing countries) were chronically undernourished in  2010 12 (FAO, 2012). Achieving the objectives of equitable SD demands the fulfilment of such basic  and other developmental needs. The challenge is therefore to design, implement, and provide  support for technology innovation and diffusion processes that respond to social and environmental  goals, which at present do not receive adequate incentives through conventional markets.  Scholars of technological change have, in recent years, begun to highlight the  systemic  nature of  innovation processes as well as the fundamental importance of social and technical interactions in  shaping technological change (see Section 4.5.2.2). Accordingly, as a first step toward understanding  how innovation could help meet social and environmental goals, a systematic assessment of the  adequacy and performance of the relevant innovation systems would be helpful, including an  examination of the scale of innovation investments, the allocation among various objectives and  options, the efficiency by which investments yield outputs, and how effectively the outputs are  utilized for meeting the diffusion objectives (Sagar and Holdren, 2002; Sanwal, 2011; Aitken, 2012).  For example, many reports and analyses have suggested that investments in innovation for public  goods such as clean energy and energy access are not commensurate with the nature and scale of  these challenges (Nemet and Kammen, 2007; AEIC, 2010; Bazilian et al., 2010). Innovation in and      25 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     diffusion of new technologies also require skills and knowledge from both developers and users, as  well as different combinations of enabling policies, institutions, markets, social capital, and financial  means depending on the type of technology and the application being considered (Bretschger, 2005;  Dinica, 2009; Blalock and Gertler, 2009; Rao and Kishore, 2010; Weyant, 2011; Jänicke, 2012).  Appropriately harnessing these kinds of capabilities and processes may themselves require novel  mechanisms and institutional forms (Bonvillian and Weiss, 2009; Sagar et al., 2009).  At the same time, the role of public policy in creating demand for technologies that have a public  goods nature cannot be overstated (see also Section 3.11), although these policies need to be  designed carefully to be effective. In the case of renewables, for example, it has been shown that  intermittent policy subsidies, governments  changing R&D support, misalignments between policy  levels, sectors, and institutions can greatly impede the diffusion of these technologies (Negro et al.,  2012). Similarly, in agriculture, while there are many intersections between mitigation and SD  through options such as  sustainable agriculture , the potential for leveraging these synergies is  contingent on appropriate and effective policies (Smith et al., 2007)   see also Sections 4.6.1 and  11.3.   Sometimes there may be a clear alignment between achieving equitable SD benefits and meeting  climate goals such as the provision of clean energy to the rural poor. But in meeting multiple  objectives, potential for conflicts and tradeoffs can also arise. For example, our likely continued  reliance on fossil fuels (IEA 2012) underlies the current exploration of new or well established GHG  mitigation options, such as biofuels or nuclear power, and other approaches like carbon dioxide  capture and storage (CCS) and geo engineering, including solar radiation management techniques,  to avoid a dangerous increase of the Earth's temperature (Crutzen, 2006; Rasch et al., 2008;  Intergovernmental Panel on Climate Change, 2012b). While such technological options may help  mitigate global warming, they also pose potential adverse environmental and social risks, and thus  give rise to concerns about their regulation and governance (Mitchell, 2008; Pimentel et al., 2009; de  Paula Gomes and Muylaert de Araujo, 2011; Shrader Frechette, 2011; Jackson, 2011b; Scheidel and  Sorman, 2012; Scott, 2013; Diaz Maurin and Giampietro, 2013)   see Sections 7.5 and 11.3.   The public perception and acceptability of technologies is country and context specific, mediated by  age, gender, knowledge, attitudes towards environmental risks and climate change, and policy  procedures (Shackley et al., 2005; Pidgeon et al., 2008; Wallquist et al., 2010; Corner et al., 2011;  Poumadere et al., 2011; Visschers and Siegrist, 2012) and therefore resolution of these kinds of  tradeoffs and conflicts may not be easy. Yet the tradeoffs and synergies between the three  dimensions of SD, as well as the impacts on socio ecological systems across geographical scales will  need to be systematically considered, which in turn will require the acknowledgement of multiple  stakeholder perspectives. Assessment of energy technology options, for example, will need to  include impact on landscapes  ecological and social dimensions accounting for multiple values and on energy distribution and access (Wolsink, 2007; Zografos and Martinez Alier, 2009).   There are also some crosscutting issues, such as regimes for technology transfer (TT) and intellectual  property (IP) that are particularly relevant to international cooperation in meeting the global  challenge of pursuing equitable SD and mitigation, although progress under the UNFCCC has been  incomplete. For example, TT under the CDM has been limited to selective conditions and mainly to a  few countries (Dechezlepretre et al., 2009; Seres et al., 2009; Wang, 2010). IP rights and patent laws  have been shown as promoting innovation in some countries (Khan, 2005), although recent work  suggests a more nuanced picture (Moser, 2013; Hudson and Minea, 2013). In fact, IP protection has  also been regarded as a precondition for technology transfer but, again, reality has proven more  complex (United Nations Environment Programme et al., 2010). A recent study shows that in the  wind sector, there are  patent thickets , which might restrain the extent and scope of dissemination  of wind power technologies (Wang et al., 2013). In part, there are such divergent views on this issue  since IP and TT also touch upon economic competitiveness (Ockwell et al., 2010). As noted earlier,      26 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     perspectives are shaped by perceived national circumstances, capabilities, and needs, yet these  issues do need to be resolved   in fact, there may be no single approach that will meet all needs.  Different IP regimes, for example, are required to meet development objectives at different stages  of development (Correa, 2011). The importance of this issue and the lack of consensus provide  impetus for further analysis of the evidence and for exploration to develop IP and TT regimes that  further international cooperation to meet climate, SD, and equity objectives.  4.3.7    Natural resources  Countries  level of endowment with renewable and/or non renewable resources influences but does  not determine their development paths. The location, types, quantities, long term availability and  the rates of exploitation of non renewable resources, including fossil fuels and minerals, and  renewable resources such as fertile land, forests, or freshwater affect national economies (e.g., in  terms of GDP, trade balance, and rent potential), agricultural and industrial production systems, the  potential for civil conflict, and countries' role in global geo political and trade systems (Krausmann et  al., 2009; Muradian et al., 2012; Collier and Goderis, 2012). Economies can evolve to reflect changes  in economic trends, in policies or in consumption patterns, both nationally and internationally. In the  context of climate change, natural resource endowments affect the level and profile of GHG  emissions, the relative cost of mitigation, and the level of political commitment to climate action.   Resource rich countries characterized by governance problems, including rent seeking behaviour  and weak judiciary and political institutions, have more limited capacity to distribute resource  extraction rents and increase incomes (Mehlum et al., 2006; Pendergast et al., 2011; Bjorvatn et al.,  2012). Some have negative genuine savings, i.e., they do not fully reinvest their resource rents in  foreign assets or productive capital, which in turn impoverishes present and future generations and  undermines both natural capital and human development prospects (Mehlum et al., 2006; van der  Ploeg, 2011). Furthermore, these countries also face risks associated with an over specialization on  agriculture and resource based exports that can undermine other productive sectors, e.g., through  increases in exchange rates and a reliance on importing countries economic growth trajectories  (Muradian et al., 2012). In some countries, an increase in primary commodity exports can lead to the  rise of socio environmental conflicts due to the increasing exploitation of land, mineral, and other  resources (Martinez Alier et al., 2010; Mitchell and Thies, 2012; Muradian et al., 2012).   Scholars have not reached definitive conclusions on the inter relationships between resource  endowment and development paths, including impacts on social welfare and conflict, and prospects  for SD. Recent reviews, for example, note the need to continue investigating current resource booms  and busts and documenting the latter s effect on national economies, policies, and social well being,  and to draw historical comparisons across countries and different institutional contexts (Wick and  Bulte, 2009; Deacon, 2011; van der Ploeg, 2011). It is clear though that the state and those actors  involved in natural resources use play a determining role in ensuring a fair distribution of any  benefits and costs (Banai et al., 2011). Further, economic valuation studies have noted that  systematic valuations of both positive and negative externalities can inform policymaking relating to  resource exploitation, in some cases showing that the exploitation of land and mineral resources  may not always be socially optimal, i.e., the social and environmental costs of action may be higher  than the economic benefits of exploitation (de Groot, 2006; Thampapillai, 2011).   These considerations are relevant for mitigation policy for at least three reasons. First, they raise  questions about if and how countries invest resource rents across economic, social, and  environmental sectors for SD (see Section 4.3.8). Second, they suggest that nations or sub national  actors with abundant fossil fuel reserves have, in principle, strong economic interest in exploiting  them, and thus in opposing the adoption of policies that constrain such exploitation. The timeliness  of this issue is underscored by the growing financial sector attention (although not yet academic  attention) to the potential impact of a global carbon constraint on the fossil sector (Grantham  Institute and CTI 2013; HSBC Global Research, 2013; Standard & Poor s, 2013). This raises the issue      27 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     of how to compensate resource rich countries for forgone benefits if necessary to win their  participation in international mitigation efforts (Rival, 2010; Waisman et al., 2013). It similarly raises  the issue of compensating (or circumventing) sub national actors who are political powerful enough  to impede domestic climate efforts. And third, they suggest that, if any given resource rich country  faces increased exposure to climate variability and extreme events, the forgone benefits of resource  rents may undermine its ability to absorb increasing adaptation costs. In this regard, a recent  analysis of the relationship between countries  adoption of mitigation policies and their vulnerability  to climate change confirms that countries that may suffer considerable impacts of climate change in  the future, which include many resource rich developing countries, do not show a strong  commitment to either mitigation or adaptation, while countries exhibiting strong political  commitment and action towards mitigation are also active in promoting adaptation policies (Tubi et  al., 2012).   4.3.8    Finance and investment  The financial system, comprising a large set of private and public institutions and actors, is the  medium by which households, firms, and collectivities manage insurable risks and fund investments  to secure future returns, thereby laying the foundations for future well being. As such, it is a key  determinant of society s development pathway and thus its prospects for an SD transition.  The financial system is characterized by four structural tensions with the ideals of SD.  First, its  dominant private component (banks and financial markets) is focused on commercial returns and  cannot spontaneously internalize environmental and social spillovers, even if some investors   interest in  sustainable investment  is growing (UNPRI, 2012). Climate change, identified as the  greatest and widest ranging market failure ever seen  (Stern and Treasury, 2007), is but one  obvious example of a large societally important cost that is neglected by capital markets. Second,  the private component of the financial system is also largely unattuned to distributive issues and  particularly insensitive to  the essential needs of the world's poor, to which overriding priority  should be given  (World Commission on Environment and Development, 1987), even if foreign direct  investments have contributed to overall growth in emerging economies. Third, the interests of  future generations may be neglected (although over investment is also possible   see Gollier, (2013)  and within a generation, there are various governance, organizational and sociological mechanisms  contributing to short termism (Tonello, 2006; Marginson and McAulay, 2008). Fourth, the recent  crisis has led some to conclude that the financial system itself is a source of economic instability  (Farmer et al., 2012), an issue reinforced by the recent financialization of the global economy, with  accelerated growth of the financial sector relative to the  real  economy, and an increasing role of  the financial system in mediating short term speculation as distinct from long term investment  (Epstein, 2005; Krippner, 2005; Palley, 2007; Dore, 2008).   These inherent problems in the financial system are sometimes compounded by hurdles in the  economic and institutional environment. The challenges are felt especially in many developing  countries, which face several investment barriers that affect their capacity to mobilize private sector  capital toward SD objectives and climate change mitigation and adaptation. These barriers include  the comparatively high overall cost of doing business; market distortionary policies such as subsidies  for conventional fuels; absence of credit worthy off takers; low access to early stage financing;  lower public R&D spending; too few wealthy consumers willing to pay a premium for  green  products ; social and political instability; poor market infrastructure; and weak enforcement of the  regulatory frameworks. Establishing better mechanisms for leveraging private sector finance through  innovative financing can help (EGTT, 2008), but there are also risks in relying on the private sector as  market based finance focuses on short term lending, and private financing during episodes of  abundant liquidity may not constitute a source of stable long term climate finance (Akyüz, 2012)  see Section 16.4 for further discussion and references on barriers, risks, and innovative mechanisms.      28 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     While some developing countries are able to mobilize domestic resources to finance efforts toward  SD, the needs for many developing countries exceed their financial capacity. Consequently, their  ability to pursue SD, and climate change mitigation and adaptation actions in particular, can be  severely constrained by lack of finance. The international provision of finance, alongside technology  transfer, can help to alleviate this problem, as well as accord with principles of equity, international  commitments, and arguments of effectiveness   see Sections 4.2.2 and 4.6.2. Under international  agreements, in particular Agenda 21 and the Rio Conventions of 1992, and reaffirmed in subsequent  UN resolutions and programs including the 2012 UN Conference on Sustainable Development  (United Nations, 2012a), developed countries have committed to provide financial resources to  developing countries that are new and additional to conventional development assistance.  4.4   Production, trade, consumption and waste patterns  The previous section has highlighted the role of behaviours and lifestyles and the complex  interaction of the values, goals, and interests of many actors in the political economy of SD and  equity. In order to better understand the possibilities and difficulties to equitably sustain well being  in the future, this section examines the consumption of goods and services by households,  consumption trends and disparities, and the relationship between consumption and GHG emissions.  It also discusses the components and drivers of consumption, efforts to make consumption (and  production) more sustainable, and how consumption affects well being. In order to shed light on  important debates about equity in mitigation, this chapter also reviews approaches to consumption based accounting of GHG emissions (carbon footprinting) and their relationship to territorial  approaches. So while subsequent chapters analyze GHG emissions associated with specific sectors  and transformation pathways, this chapter focuses on a particular group (consumers) and examine  their emissions in an integrated way.  The possibility of a SD pathway for the world hinges on  decoupling  (von Weizsäcker et al., 1997,  2009; Jackson, 2005b, 2009). We consider two types of decoupling at the global scale and in the long  term: the decoupling of material resource consumption (including fossil carbon) and environmental  impact (including climate change) from economic growth ( dematerialization ); and the decoupling  of human well being from economic growth and consumption. The first type (see Sections 4.4.1 and  4.4.3) involves an increased material efficiency and environmental efficiency of production and is  generally considered crucial for meeting SD and equity goals (UNEP, 2011); yet while some  dematerialization has occurred, absolute levels of resource use and environmental impact have  continued to rise, highlighting the important distinction between relative and absolute decoupling  (Krausmann et al., 2009). This has inspired examination of the second type of decoupling (Jackson,  2005b, 2009; Assadourian, 2010), including the reduction of consumption levels in wealthier  countries. We address this topic (in Section 4.4.4) by examining how income and income inequality  affect dimensions of well being. While the second type of decoupling represents a  stronger  form  than the first, it is also a more controversial goal, even though the unsustainability of excessive  consumption was highlighted by Chapter 4 of Agenda 21 (United Nations, 1992c).   4.4.1    Consumption patterns, inequality and environmental impact  4.4.1.1    Trends in resource consumption  Global levels of resource consumption and GHG emissions show strong historical trends, driven  primarily by developments in industrialized countries and emerging economies (see Sections 5.2 and  14.3). The global annual use (extraction) of material resources i.e., ores and industrial minerals,  construction materials, biomass, and fossil energy carriers increased eightfold during the 20th  century, reaching about 55 Gt in 2000, while the average resource use per capita (the metabolic  rate) doubled, reaching 8.5 9.2 tonnes per capita per year in 2005 (Krausmann et al., 2009; UNEP,  2011). The value of the global consumption of goods and services (the global GDP) has increased      29 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     sixfold since 1960 while consumption expenditures per capita has almost tripled (Assadourian,  2010). Consumption based GHG emissions ( carbon footprints    see Section 4.4.2.2) increased  between 1990 and 2009 in the world s major economies, except the Russian Federation, ranging  from 0.1 0.2% per year in the EU27, to 4.8 6.0% per year in China (Peters et al., 2012) (see Section  5.2.1).   Global resource consumption has risen slower than GDP, especially after around 1970, indicating  some decoupling of economic development and resource use, and signifying an aggregate increase  in resource productivity of about 1 2% annually (Krausmann et al., 2009; UNEP, 2011). While  dematerialization of economic activity has been most noticeable in the industrialized countries,  metabolic rates across countries remain highly unequal, varying by a factor of 10 or more due largely  to differences in level of development, although there is also significant cross country variation in  the relation between GDP and resource use (Krausmann et al., 2009; UNEP, 2011).   4.4.1.2    Consumerism and unequal consumption levels  The spread of material consumption with rising incomes is one of the  mega drivers  of global  resource use and environmental degradation (Assadourian, 2010). While for the world s many poor  people, consumption is driven mainly by the need to satisfy basic human needs, it is increasingly  common across cultures that people seek meaning, contentment and acceptance in consumption.  This pattern is often referred to as  consumerism , defined as a cultural paradigm where  the  possession and use of an increasing number and variety of goods and services is the principal  cultural aspiration and the surest perceived route to personal happiness, social status and national  success  (Assadourian, 2010, p. 187).   Consumerist lifestyles in industrialized countries seem to be imitated by the growing elites (Pow,  2011) and middle class populations in developing countries (Cleveland and Laroche, 2007; Gupta,  2011), exemplified by the increased demand for space cooling in emerging economies (Isaac and van  Vuuren, 2009). Together with the unequal distribution of income in the world, the spread of  consumerism means that a large share of goods and services produced are  luxuries  that only the  wealthy can afford, while the poor are unable to afford even basic goods and services (Khor, 2011).   A disproportionate part of the GHG emissions arising from production are linked to the consumption  of products by a relatively small portion of the world s population, illustrated by the great variation  in the per capita carbon footprint between countries and regions at different income levels  (Hertwich and Peters, 2009; Davis and Caldeira, 2010; Peters et al., 2011) (See Section 14.3.1). The  carbon footprint is strongly correlated with consumption expenditure. Across countries, Hertwich  and Peters (2009) found an expenditure elasticity of 0.57 for all GHGs: as nations become wealthier,  the per capita carbon footprint increases by 57% for each doubling of consumption. Within  countries, similar relationships have been found between household expenditure and carbon  footprint (Druckman and Jackson, 2009; Hertwich, 2011). Because wealthier countries meet a higher  share of their final demand from (net) imports than do less wealthy countries, consumption based  emissions are more closely associated with GDP than are territorial emissions, the difference being  the emissions embodied in trade (see Section 4.4.2 as well as 5.2 and 14.3).  4.4.1.3    Effect of non income factors on per capita carbon footprint  Non income factors such as geography, energy system, production methods, waste management  (GAIA, 2012; Corsten et al., 2013), household size, diet, and lifestyle also affect per capita carbon  footprints and other environmental impacts (Tukker et al., 2010a) so that the effects of increasing  income varies considerably between regions and countries (Lenzen et al., 2006; Hertwich, 2011;  Homma et al., 2012), cities (Jones and Kammen, 2011) and between rural and urban areas (Lenzen  and Peters, 2010). In this regard, the environmental impact of specific consumption patterns has  been studied intensely in recent years (Druckman and Jackson, 2009; Davis and Caldeira, 2010;  Tukker et al., 2010a; Hertwich, 2011). At the global level, Hertwich and Peters (2009) found that      30 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     food is the consumption category with the greatest climate impact, accounting for nearly 20% of  GHG emissions, followed by housing/shelter, mobility, services, manufactured products, and  construction (See Sections 8.2, 9.2, 10.3, 11.2, 12.2). Food and services were a larger share in poor  countries, while at high expenditure levels, mobility and the consumption of manufactured goods  caused the largest GHG emissions (Hertwich and Peters, 2009). The factors responsible for variations  in carbon footprints across households at different scales are further discussed in Sections 5.3, 5.5,  12.2 and 14.3.4.  4.4.2    Consumption patterns and carbon accounting  4.4.2.1    Choice of GHG accounting method  New GHG accounting methods have emerged and proliferated in the last decade, in response to  interest in 1) determining whether nations are reducing emissions (Bows and Barrett, 2010; Peters  et al., 2011, 2012), 2) allocating GHG responsibility (Peters and Hertwich, 2008a; b; Bows and  Barrett, 2010), 3) assuring the accountability of carbon markets (Stechemesser and Guenther, 2012),  4) determining the full implications of alternative energy technologies (von Blottnitz and Curran,  2007; Martínez et al., 2009; Cherubini et al., 2009; Soimakallio et al., 2011) and of outsourcing of  industrial production (See Section 4.4.3.3) helping corporations become greener (Wiedmann et al.,  2009), and 6) encouraging consumers to reduce their carbon footprints (Bolwig and Gibbon, 2010;  Jones and Kammen, 2011). Methods differ on whether consumers or producers of products are  responsible; whether emissions embedded in past or potential replacement of capital investments  are included; and whether indirect emissions, for example, through global land use change resulting  from changing product prices, are included (Finkbeiner, 2009; Plevin et al., 2010; Plassmann et al.,  2010). These methodological differences have normative implications.  Systems of GHG emissions accounting are constructed according to certain conventions and  purposes (Davis and Caldeira, 2010). Better ways may be excessively expensive given the plausible  importance of the value of better information in the decision process. Some interests will plead for  standardized techniques based on past data because it favours them. Others will argue for tailored  approaches that make their technologies or products look good. Producers favour responsibility  being assigned to consumers, as do nations that are net exporters of industrial goods. Controversies  over GHG emissions accounting approaches play into the broader issue of mitigation governance  (see Section 4.4.2.4). And whether carbon markets are effective or not depends on good accounting  and enforcement   but what will be enforced will depend on the accounting measures agreed upon.  The next section discusses consumption based GHG emissions accounting.   4.4.2.2    Carbon footprinting (consumption based GHG emissions accounting)  Carbon (or GHG) accounting refers to the calculation of the GHG emissions associated with  economic activities at a given scale or with respect to a given functional unit   including products,  households, firms, cities, and nations (Peters, 2010; Pandey et al., 2011). GHG accounting has  traditionally focused on emission sources, but recent years have seen a growing interest in analyzing  the drivers of emissions by calculating the GHG emissions that occur along the supply chain of  different functional units such as those just mentioned (Peters, 2010). The result of this  consumption based emissions accounting is often referred to as  carbon footprint  even if it involves  other GHGs along with CO2. Carbon footprinting starts from the premise that the GHG emissions  associated with economic activity are generated at least partly as a result of people s attempts to  satisfy certain functional needs and desires (Lenzen et al., 2007; Druckman and Jackson, 2009; Bows  and Barrett, 2010). These needs and desires carry the consumer demand for goods and services, and  thereby the production processes that consume resources and energy and release pollutants.  Emission drivers are not limited to individuals  consumption behaviour, however, but include also  the wider contexts of consumption such as transport infrastructure, production and waste systems,  and energy systems (see below and Sections 7.3, 8.2, 9.2, 10.3, 11.2, 12.2).       31 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     There is no single accepted carbon footprinting methodology (Pandey et al., 2011), nor is there one  widely accepted definition of carbon footprint. Peters (2010) proposes this definition, which allows  for all possible applications across scales:  [t]he  carbon footprint  of a functional unit is the climate  impact under a specific metric that considers all relevant emission sources, sinks and storage in both  consumption and production within the specified spatial and temporal system boundary  (pp. 245).  The emissions associated with the functional unit (but physically not part of the unit) are referred to  as  embodied carbon ,  carbon flows  or similar terms. (Annex II of this report discusses different  carbon footprint methodologies, including Life Cycle Assessment (LCA) and environmentally extended input output (EIO) models.) Carbon footprints have been estimated with respect to  different functional units at different scales. Most relevant to the analysis of consumption patterns  and mitigation linkages are the carbon footprints of products and nations, discussed in turn.  4.4.2.3    Product carbon footprinting  A product carbon footprint includes all emissions generated during the lifecycle of a good or service   from production and distribution to end use and disposal or recycling. Carbon footprinting of  products (and firms) can enable a range of mitigation actions and can have co benefits (Sinden,  2009; Bolwig and Gibbon, 2010). Informing consumers about the climate impact of products through  labelling or other means can influence purchasing decisions in a more climate friendly direction and  at the same time enable product differentiation (Edwards Jones et al., 2009; Weber and Johnson,  2012). Carbon footprinting can also help companies reduce GHG emissions cost effectively by  identifying the various emission sources within the company and along the supply chain (Sinden,  2009; Sundarakani et al., 2010; Lee, 2012). Those emissions can be reduced directly, or by  purchasing offsets in carbon markets. There is both theoretical and empirical evidence of a positive  relationship between a company s environmental and financial performance (Delmas and Nairn Birch, 2011; Griffin et al., 2012). The specific effect of carbon footprinting on company financial  performance and investor valuation is not well researched, however, and the results are ambiguous:  in the United Kingdom, Sullivan and Gouldson (2012) found limited investor interest in the climate  change related data provided by retailers, while a study from North America concludes that  investors do care about companies  GHG emission disclosures, whether these occur through a  voluntary scheme or informal estimates (Griffin et al., 2012).2 (See also Section 15.5.5)  There are also risks associated with product carbon footprinting. It can affect competitiveness and  trade by increasing costs and reduce demand for products made abroad, including in developing  countries, and it may violate World Trade Organization (WTO) trade rules (Brenton et al., 2009;  Edwards Jones et al., 2009; Erickson et al., 2012). A one sided focus on GHG emissions in product  development and consumer choice could also involve tradeoffs with other sustainability dimensions  (Finkbeiner, 2009; Laurent et al., 2012). So there are reasons to adopt more broadly encompassing  concepts and tools to assess and manage sustainability in relation to the consumption of goods and  services.  4.4.2.4    Consumption based and territorial approaches to GHG accounting  Consumption based accounting of GHG emissions (carbon footprinting) at national level differs from  the production based or territorial framework because of imports and exports of goods and services  that, directly or indirectly, involve GHG emissions (Davis and Caldeira, 2010; Peters et al., 2011,  2012). The territorial framework allocates to a nation (or other jurisdiction) those emissions that are  physically produced within its territorial boundaries. The consumption based framework assigns the  emissions released through the supply chain of goods and services consumed within a nation  irrespective of their territorial origin. The difference in inventories calculated based on the two                                                                In the United States, increasing carbon emissions was found to positively impact the financial performance of  firms when using accounting based measures, while the impact was negative when using market based  performance measures (Delmas and Nairn Birch, 2011).  2     32 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     frameworks are the emissions embodied in trade (Peters and Hertwich, 2008b; Bows and Barrett,  2010). We emphasize that territorial and consumption based accounting of emissions as such  represent pure accounting identities measuring the emissions embodied in goods and services that  are produced or consumed, respectively, by an individual, firm, country, region, etc. Responsibility  for these emissions only arises once it is assigned within a normative or legal framework, such as a  climate agreement, specifying rights to emit or obligations to reduce emission based on one of these  metrics. As detailed below, the two approaches function differently in a global versus a fragmented  climate policy regime.  Steckel et al. (2010) show that within a global regime that internalizes a cost of GHG emissions, the  two approaches are theoretically equivalent in terms of their efficiency in inducing mitigation. For  example, with a global cap and trade system with full coverage (i.e., an efficient global carbon  market) and given initial emission allocations, countries exporting goods benefit from export  revenues, with costs related to GHG emissions and any other negative impacts of production of  those goods priced in, such that the choice of accounting system has no influence on the efficiency  of production. Nor will it influence the welfare of countries, irrespective of being net exporters or  importers of emissions, since costs associated with these emissions are fully internalized in product  prices and will ultimately be borne by consumers. In practice, considerations such as transaction  costs and information asymmetries would influence the relative effectiveness and choice of  accounting system.  In the case of a fragmented climate policy regime, one argument put in favour of a consumption based framework is that, unlike the territorial approach, they do not allow current emission  inventories to be reduced by outsourcing production or relying more on imports to meet final  demand. Hence, some authors (e.g., Peters and Hertwich,(2008b) ; Bows and Barrett, (2010)) argue  that this approach gives a fairer illustration of responsibility for current emissions. Carbon  footprinting also increases the range of mitigation options by identifying the distribution of GHG  emissions among different activities, final uses, locations, household types, etc. This enables a better  targeting of policies and voluntary actions (Bows and Barrett, 2010; Jones and Kammen, 2011).   On the other hand, reducing emissions at the  consumption end  of supply chains requires changing  deeply entrenched lifestyle patterns and specific behaviours among many actors with diverse  characteristics and preferences, as opposed to among the much fewer actors emitting GHGs at the  source. It has also been pointed out that identical to the accounting of production based  emissions there is no direct one to one relationship between changes in consumption based and  global emissions (Jakob and Marschinski, 2012). That is, if some goods or services were not  consumed in a given country, global emissions would not necessarily decrease by the same amount  of emissions generated for their production, as this country s trade partners would adjust their  consumption as well as production patterns in response to price changes resulting from its  changed demand profile. This has been shown for China (Peters et al., 2007) and India  (Dietzenbacher and Mukhopadhyay, 2007): while these countries are large net exporters of  embodied carbon, territorial emissions would remain roughly constant or even increase if they were  to withdraw from international trade (and produce their entire current consumption domestically  instead). Hence, without international trade, consumption based emissions of these countries  trade  partners would likely be reduced, but not global emissions.   It is for this reason that Jakob and Marschinski (2012) argue that a more detailed understanding of  the underlying determinants of emissions is needed than what is currently provided by either  territorial or consumption based accounts, in order to guide policies that will effectively reduce  global emissions in a fragmented climate policy regime. In particular, a better understanding of  system interrelationships in a global economy is required in order to be able to attribute how, e.g.,  policy choices in one region affect global emissions by transmission via world market prices and  associated changes in production and consumption patterns in other regions. Furthermore, as      33 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     market dynamics and resource use are driven by both demand and supply, it is conceivable to rely  on climate policies that target the consumption as well as the production side of emissions, as is  done in some other policy areas  4.4.3    Sustainable consumption and production   SCP  The concepts of  sustainable consumption  and  sustainable production  represent, respectively,  demand  and supply side perspectives on sustainability. The efforts by producers to improve the  environmental or social impact of a product are futile if consumers do not buy the good or service  (Moisander et al., 2010). Conversely, sustainable consumption behaviour depends on the availability  and affordability of such products in the marketplace. The idea of sustainable consumption and  production (SCP) was first placed high on the international policy agenda at the 1992 UN Conference  on Environment and Development and was made part of Agenda 21. In 2003, a 10 year Framework  of Programmes on SCP was initiated, which was formalized in a document adopted by the 2012 UN  Conference on Sustainable Development (United Nations, 2012b, p. 2). A great variety of public and  private SCP policies and initiatives have developed alongside the UN led initiatives (see Section  10.11.3), as has a large body of research that we report on below.   4.4.3.1    Sustainable consumption and lifestyle  A rich research literature on sustainable consumption has developed over the past decade, including  several special issues of international journals (Tukker et al., 2010b; Le Blanc, 2010; Kilbourne, 2010;  Black, 2010; Schrader and Thgersen, 2011). Several books, such as Prosperity without Growth  (Jackson, 2009), discuss the unsustainable nature of current lifestyles, development trajectories, and  economic systems, and how these could be changed in more sustainable directions. Several  definitions of sustainable consumption have been proposed within policy, business, and academia  (Pogutz and Micale, 2011). At a meeting in Oslo in 2005, a group of scientists agreed on the following  broad and integrating conceptualization of sustainable consumption:    The future course of the world depends on humanity s ability to provide a high quality of life for  a prospective nine billion people without exhausting the Earth s resources or irreparably  damaging its natural systems   In this context, sustainable consumption focuses on formulating  strategies that foster the highest quality of life, the efficient use of natural resources, and the  effective satisfaction of human needs while simultaneously promoting equitable social  development, economic competitiveness, and technological innovation. (Tukker et al., 2006)   This perspective encompasses both demand side and production issues, and addresses all three  pillars of SD (social, economic, and environmental) as well as equity and well being, illustrating the  complexity of sustainable consumption and its connections to other issues.   Research has demonstrated that consumption practices and patterns are influenced by a range of  economic, informational, psychological, sociological, and cultural factors, operating at different  levels or spheres in society   including the individual, the family, the locality, the market, and the  work place (Thgersen, 2010). Furthermore, consumers  preferences are often constructed in the  situation (rather than pre existing) and their decisions are highly contextual (Weber and Johnson,  2009) and often inconsistent with values, attitudes, and perceptions of themselves as responsible  and green consumers and citizens (Barr, 2006; de Barcellos et al., 2011) (see below, as well as  Sections 2.6.6 and 3.10).  The sustainable consumption of goods and services can be viewed in the broader context of lifestyle  and everyday life. Conversely, sustainable consumption practices are bound up with perceptions of  identity, ideas of good life, and so on, and considered alongside other concerns such as affordability  and health. Ethical consumption choices are also negotiated among family members with divergent  priorities and interpretations of sustainability. Choosing a simpler lifestyle ( voluntary simplifying )  seems to be related to environmental concern (Shaw and Newholm, 2002; Huneke, 2005), but  frugality, as a more general trait or disposition, is not (Lastovicka et al., 1999; Pepper et al., 2009).      34 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Other research draws attention to the constraints placed on consumption and lifestyle choices by  factors beyond the influence of the individual, family or community, which tends to lock  consumption into unsustainable patterns by reducing  green agency  at the micro level (Thgersen,  2005; Pogutz and Micale, 2011). These structural issues include product availability, cultural norms  and beliefs, and working conditions that favour a  work and spend  lifestyle (Sanne, 2002). Brulle  and Young (2007) found that the growth in personal consumption in the United States during the  20th century is partly explained by the increase in advertising. According to this study, the effect of  advertising on spending is concentrated on luxury goods (household appliances and supplies and  automobiles) while it is nonexistent in the field of basic necessities (food and clothes), while  Druckman and Jackson (2010) found that in the UK, expenditures on food and clothes clearly  exceeded  necessary  levels.   The strength and pervasiveness of political economy factors such as those just mentioned, and the  inadequate attention to them by policy, is an important cause of the lack of real progress towards  more sustainable consumption patterns (Thgersen, 2005; Tukker et al., 2006; Le Blanc, 2010).  Furthermore, the unsustainable lifestyles in industrialized countries are being replicated by the  growing elites (Pow, 2011) and middle class populations in developing countries (Cleveland and  Laroche, 2007; Gupta, 2011). Finally, most Sustainable Consumption (SC) studies are done in a  consumer culture context, which limits discussion of instances where sustainable consumption has  pre empted consumerism.   4.4.3.2    Consumer sustainability attitudes and the relation to behaviour  Despite the overwhelming impact of structural factors on consumer practices, choices and  behaviour, it is widely agreed that the achievement of more sustainable consumption patterns also  depends on how consumers value environmental quality and other dimensions of sustainability  (Jackson, 2005a; Thgersen, 2005; Bamberg and Möser, 2007). It also depends on whether people  believe that their consumption practices make a difference to sustainability (Frantz and Mayer,  2009; Hanss and Böhm, 2010), which in turn is influenced by their value priorities and how much  they trust the environmental information provided to them by scientists, companies, and public  authorities (Kellstedt et al., 2008). The motivational roots of sustainable consumer choices seem to  be substantially the same, although not equally salient in different national and cultural contexts  (Thgersen, 2009; Thgersen and Zhou, 2012).  In a survey of European attitudes towards sustainable consumption and production (Gallup  Organisation, 2008a), 84% of EU citizens said that the product s impact on the environment is  very  important  or  rather important  when making purchasing decisions. This attitude is rarely reflected  in behaviour, however. There is plenty of evidence demonstrating the presence of an  attitude behaviour  or  values action  gap whereby consumers expressing  green  attitudes fail to adopt  sustainable consumption patterns and lifestyles (Barr, 2006; Young et al., 2010; de Barcellos et al.,  2011). To a large measure, this gap can be attributed to many other goals and concerns competing  for the person s limited attention (Weber and Johnson, 2009). This observation is reflected in the  substantial difference in the level of environmental concern that Europeans express in opinion polls  when the issue is treated in isolation, and when the environment is assessed in the context of other  important societal issues. For example, in 2008, 64% of Europeans said protecting the environment  was  very important  to them personally when the issue was presented in isolation (Gallup  Organisation, 2008b) while only 4% pointed at environmental pollution as one of the two most  important issues facing their country at the moment (Gallup Organisation, 2008a). When there are  many important issues competing for the person s limited attention and resources, those that  appear most pressing in everyday life are likely to prevail.   The likelihood that a person will act on his or her environmental concern is further diminished by  factors affecting everyday decisions and behaviour, including the structural factors mentioned  above, but also more specific factors such as habit, high transactions costs (i.e., time for information      35 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     search and processing and product search), availability, affordability, and the influence of non green  criteria such as quality, size, brand, and discounts (Young et al., 2010). Some of these factors vary  across different product categories and within sectors (McDonald et al., 2009). The impact of all of  these impeding factors is substantial, calling into question the capacity of  the green consumer  to  effectively advance sustainable consumption and production (Csutora, 2012) and, more generally,  the individualistic view of the consumer as a powerful market actor (Moisander et al., 2010).  Third party eco labels and declarations have proven to be an effective tool to transform consumer  sustainability attitudes into behaviour in many cases (Thgersen, 2002). One of the reasons is that a  trusted label can function as a choice heuristic in the decision situation, allowing the experienced  consumer to make sustainable choices in a fast and frugal way (see Section 2.6.5 and Thgersen et  al., 2012). Labeling products with their carbon footprint may help to create new goals (e.g., to  reduce CO2 emissions) and to attract and keep attention on those goals, in the competition between  goals (Weber and Johnson, 2012). In Europe, 72% of EU citizens thought that carbon labelling should  be mandatory (Gallup Organisation, 2008a). In Australia, Vanclay et al. (2010) found a strong  purchasing response of 20% when a green labelled product (indicating relatively low lifecycle CO2  emissions) was also the cheapest, and a much weaker response when green labelled products were  not the cheapest. Hence, consumers, at least in developed countries, show interest in product  carbon footprint information and many consumers would prefer carbon labelled products and firms  over others, other things being equal (Bolwig and Gibbon, 2010). Yet the impeding factors and the  related  attitude behaviour  gap limit how far one can get towards sustainable consumption with  labelling and other information based means alone.  Research on these topics in the developing world is lacking. Considering the notion of a hierarchy of  needs (Maslow, 1970; Chai and Moneta, 2012) and the challenges facing consumers in developing  countries, carbon footprints and other environmental declarations might be seen as a luxury concern  that only developed countries can afford. Countering this view, Kvaly et al. (2012) find  environmental concern in developing countries at the same level as in developed countries.  Furthermore, eco labelled products increasingly appear at retail level in developing countries  (Roitner Schobesberger et al., 2008; Thgersen and Zhou, 2012).   4.4.3.3    Sustainable production  Research and initiatives on sustainable production have been concerned with increasing the  resource efficiency of, and reducing the pollution and waste from, the production of goods and  services through technological innovations in process and product design at the plant and product  levels, and, more lately, through system wide innovations across value chains or production  networks (Pogutz and Micale, 2011). Policies that incentivize certain product choices have also been  developed (see Section 10.11.3). Eco efficiency (Schmidheiny and WBSCD, 1992) is the main  management philosophy guiding sustainable production initiatives among companies (Pogutz and  Micale, 2011) and is expressed as created value or provided functionality per caused environmental  impact. Moving towards a more eco efficient production thus means creating the same or higher  value or functionality while causing a lower environmental impact (relative or even absolute  decoupling). This involves consideration of multiple impacts across scales, ranging from global  impacts like climate change over regional impacts associated with air and water pollution, to local  impacts caused by use of land or water.  A strong increase in the eco efficiency of production is a pre requisite for developing a sustainable  society (Pogutz and Micale, 2011). The I=PAT equation expresses the environmental impact I as a  product of the population number P, the affluence A (value created or consumed per capita), and a  technology factor T perceived as the reciprocal of eco efficiency. Considering the foreseeable growth  in P and A, and the current unsustainable level of I for many environmental impacts it is clear that      36 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     the eco efficiency (1/T) must increase many times (a factor 4 to 20)3 to ensure a sustainable  production. While a prerequisite, even this kind of increases in eco efficiency may not be sufficient  since A and T are not mutually independent due to the presence of rebound   including market  effects; indeed, sometimes a reduction in T (increased eco efficiency) is accompanied by an even  greater growth in A, thereby increasing the overall environmental impact I (Pogutz and Micale,  2011). (A related concept to I=PAT is the Kaya identity, see Section 5.3)  With its focus on the provided function and its broad coverage of environmental impacts, LCA is  frequently used for evaluation of the eco efficiency of products or production activities (Hauschild,  2005; Finnveden et al., 2009) (see Annex II.4.2). LCA has been standardized by the International  Organization for Standardization (ISO 14040 and ISO 14044) and is a key methodology underlying  standards for eco labelling and environmental product declarations. LCA is also the analytical tool  underlying DFE (design for environment) methods (Bhander et al., 2003; Hauschild et al., 2004).   With the globalization and outsourcing of industrial production, analyzing the entire product  lifecycle (or product chain) from resource extraction to end of life gains increased relevance  when optimizing the energy and material efficiency of production. A lifecycle approach will reveal  the potential problem shifting that is inherent in outsourcing and that may lead to increased overall  resource consumption and GHG emissions of the product over its lifecycle in spite of reduced  impacts of the mother company (Shui and Harriss, 2006; Li and Hewitt, 2008; Herrmann and  Hauschild, 2009). This is why a lifecycle perspective is applied when calculating the carbon footprint.  Indeed, a lifecycle based assessment is generally needed to achieve resource and emissions  optimization across the product chain. The use stage can be especially important for products that  use electricity or fuels to function (Wenzel et al., 1997; Samaras and Meisterling, 2008; Yung et al.,  2011; Sharma et al., 2011). Improvement potentials along product chains can be large, in particular  when companies shift from selling only products to delivering product service systems, often  increasing the number of uses of the individual product (Manzini and Vezzoli, 2003). Exchange of  flows of waste materials or energy can also contribute to increasing eco efficiency. Under the  heading of  industrial symbiosis , such mutually beneficial relationships between independent  industries have emerged at multiple locations, generally leading to savings of energy and sometimes  also materials and resources (Chertow and Lombardi, 2005; Chertow, 2007; Sokka et al., 2011) (See  Section 10.5).  While the broad coverage of environmental impacts supported by LCA is required to avoid unnoticed  problem shifting between impacts, a narrower focus on climate change mitigation in relation to  production would be supported by considering energy efficiency, which can be addressed at  different levels: the individual process, the production facility, the product chain, and the industrial  system (industrial symbiosis). At the process level, the operation of the individual process and  consideration of the use stage energy efficiency in the design of the machine tools and production  equipment can be addressed (see Section 10.4). Improvements in energy efficiency in manufacturing  have focused on both the design and operation of a variety of processes (Gutowski et al., 2009;  Duflou et al., 2010; Herrmann et al., 2011; Kara and Li, 2011), finding improvement potentials at the  individual process level of up to 70% (Duflou et al., 2012), and at the plant level by re using e.g.,  waste heat from one process for heating in another (Hayakawa et al., 1999). Exergy analysis and  energy pinch analysis can be used to identify potentials for reutilization of energy flows in other  processes (Creyts and Carey, 1999; Bejan, 2002).   Research on the social dimensions of production systems have addressed such issues as worker  conditions (Riisgaard, 2009), farm income (Bolwig et al., 2009), small producer inclusion into markets  and value chains (Bolwig et al., 2010; Mitchell and Coles, 2011) and the role of standards in fostering                                                                Factor 4 to factor 20 increases can be calculated depending on the expected increases in P and A and the  needed reduction in I (von Weizsäcker et al., 1997; Schmidt Bleek, 2008).  3     37 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     sustainability (Gibbon et al., 2010; Bolwig et al., 2013). Recently, the LCA methodology has been  elaborated to include assessment of social impacts such as labour rights (Dreyer et al., 2010), in  order to support the assessment of problem shifting and tradeoffs between environmental and  social dimensions (Hauschild et al., 2008).  4.4.4    Relationship between consumption and well being  As noted earlier, global material resource consumption continues to increase despite substantial  gains in resource productivity or eco efficiency, causing further increases in GHG emissions and  overall environmental degradation. In this light it is relevant to discuss whether human well being or  happiness can be decoupled from consumption or growth (Ahuvia and Friedman, 1998; Jackson,  2005b; Tukker et al., 2006). We do this here by examining the relationship between different  dimensions of well being and income (and income inequality) across populations and over time.  Happiness is an ambiguous concept that is often used as a catchword for subjective well being  (SWB). SWB is multidimensional and includes both cognitive and affective components (Kahneman  et al., 2003). Cognitive well being refers to the evaluative judgments individuals make when they  think about their life and is what is reported in life satisfaction or ladder of life data, whereas  affective or emotional well being refers to the emotional quality of an individual s everyday  experience as captured by surveys about the intensity and prevalence of feelings along the day  (Kahneman and Deaton, 2010). Emotional well being has been defined as  the frequency and  intensity of experiences of joy, fascination, anxiety, sadness, anger, and affection that makes one s  life pleasant or unpleasant  (Kahneman and Deaton, 2010, p. 16489). Camfield and Skevington  (2008) examine the relationship between SWB and quality of life (QoL) as used in the literature. They  find that SWB and QoL are virtually synonymous; that they both contain a substantial element of life  satisfaction, and that health and income are key determinants of SWB or QoL, while low income and  high inequality are both associated with poor health and high morbidity.  The  Easterlin paradox  refers to an emerging body of literature suggesting that while there is little  or no relationship between SWB and the aggregate income of countries or long term GDP growth,  within countries people with more income are happier (Easterlin, 1973, 1995). Absolute income is, it  is argued, only important for happiness when income is very low, while relative income (or income  equality) is important for happiness at a wide range of income levels (Layard, 2005; Clark et al.,  2008). These insights have been used to question whether economic growth should be a primary  goal of government policy (for rich countries), instead of, for example, focusing on reducing  inequality within countries and globally, and on maximizing subjective well being. For instance,  Assadourian (2010) argues against consumerism on the grounds that increased material wealth  above a certain threshold does not contribute to subjective well being.  The Easterlin paradox has been contested in comparisons across countries (Deaton, 2008) and over  time (Stevenson and Wolfers, 2008; Sacks et al., 2010), on the basis of the World Gallup survey of  well being. These works establish a clear linear relationship between average levels of ladder of life  satisfaction and the logarithm of GDP per capita across countries, and find no satiation threshold  beyond which affluence no longer enhances subjective well being. Their time series analysis also  suggests that economic growth is on average associated with rising happiness over time. On this  basis they picture a strong role for absolute income and less for relative income comparisons in  determining happiness.  These results contrast with studies of emotional well being, which generally find a weak relationship  between income and well being at higher income levels. In the United States, for example,  Kahneman and Deaton (2010) find a clear satiation effect: beyond around USD2010 75,000 annual  household income (just above the mean United States household income)  further increases in  income no longer improve individuals  emotional well being (including aspects such as spending time      38 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     with people they like, avoiding pain and disease, and enjoying leisure)  (p. 16492).4 But even for life  satisfaction, there is contrasting evidence. In particular, Deaton (2008) finds much variation of SWB  between countries at the same level of development, and Sacks et al. (2010) finds the long term  positive relationship between income and life satisfaction to be weakly significant and sensitive to  the sample of countries (see also Graham (2009), Easterlin et al. (2010), Di Tella and MacCulloch  (2010)). An important phenomenon is that all components of SWB, in various degrees, adapt to most  changes in objective conditions of life, except a few things, such as physical pain (Kahneman et al.,  2003; Layard, 2005; Clark et al., 2008; Graham, 2009; Di Tella and MacCulloch, 2010).   The great variability of SWB data across individuals and countries and the adaptation phenomenon  suggest that these data do not provide indices of well being that are comparable across individuals  and over time. Respondents have different standards when they answer satisfaction questions at  different times or in different circumstances. Therefore, the weakness of the observed link between  growth and SWB is not only debated, but it is quite compatible with a strong and firm desire in the  population for ever growing material consumption (Fleurbaey, 2009). Decoupling growth and well being may be more complicated than suggested by raw SWB indicators.  Decoupling individual well being from consumption may be fraught with controversies, but  decoupling social welfare from average consumption might be possible via inequality reduction. It  has been found that inequality in society has a marked negative effect on average SWB. For  example, Oishi et al. (2011) found that over a 37 year period, Americans were less happy on average  during years with greater income inequality. This was explained by the fact that lower income  respondents "trusted other people less and perceived other people to be less fair in the years with  more national income inequality" (Oishi et al., 2011, p. 1095). The potential decoupling of social  welfare from average consumption is even more obvious if social welfare is defined in a way that  gives priority to those who are less well off (Atkinson, 1970).   4.5   Development pathways  Sustainable development provides a framework for the evaluation of climate policies. This is  particularly useful in view of the fact that a given concentration pathway or climate objective can  typically be achieved through various policies and development pathways inducing different impacts  on the economy, the society, and other aspects of the environment. Integrated models provide  valuable tools for the analysis of pathways, though most models suffer from limitations analyzed in  this section.  4.5.1    Definition and examples  Though widely used in the literature, the concept of development pathway has rarely been defined.5  According to AR4, a development path is  an evolution based on an array of technological,  economic, social, institutional, cultural, and biophysical characteristics that determine the  interactions between human and natural systems, including consumption and production patterns in  all countries, over time at a particular scale  (IPCC, 2007, Glossary, p. 813). AR4 also indicates that  alternative development paths refer to different possible trajectories of development, the  continuation of current trends being just one of the many paths . Though AR4 defines development  pathways as global, the concept has also been used at regional (e.g., Li and Zhang, 2008), national  (e.g.,Poteete, 2009) and subnational scales (e.g. Dusyk et al., 2009) at provincial scale and  (Yigitcanlar and Velibeyoglu, 2008) at city scale. In the present report, a development pathway  characterizes all the interactions between human and natural systems in a particular territory,  regardless of scale.                                                               4 5  This result is based on cross sectional data and do not refer to the effects of a change in a person s income.   Development path and development pathway are synonymous.       39 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     The concept of development pathway is holistic. It is broader than the development trajectory of a  particular sector, or of a particular group of people within a society. Thus, a wide range of economic,  social, and environmental indicators are necessary to describe a development pathway, not all of  which may be amenable to quantitative representation. As defined by AR4, however, a  pathway  is  not a random collection of indicators. It has an internal narrative and causal consistency that can be  captured by the determinants of the interactions between human and natural systems. The  underlying assumption is that the observed development trajectory as recorded by various  economic, social, and environmental indicators can be explained by identifiable drivers. This roots  the concept of development pathway in the (dominant) intellectual tradition according to which  history has some degree of intelligibility (while another tradition holds that history is a chaotic set of  events that is essentially not intelligible (Schopenhauer, 1819).   The literature on development pathways has two main branches. A  backward looking  body of work  describes past and present development trajectories for given territories and explores their  determinants. For example, most of the growth literature as well as a large part of the (macro)  development literature fall into this category.6 This body of work is discussed in Section 4.3 as well as  in several other chapters. In particular, Section 5.3.1 reviews the determinants of GHG emissions,  Section 12.2 reviews past trajectories of human settlements, and Section 14.3 discusses past  trajectories of development at regional scale. In addition,  forward looking  studies construct  plausible development pathways for the future and examine the ways by which development might  be steered towards one pathway or another. Box 4.3 briefly reviews the main forward looking  development pathways published since AR4. Most of Chapter 6 is devoted to forward looking  studies.    Box 4.3. Forward-Looking Development Pathways: new developments since AR4 Forward looking development pathways aim at illuminating possible futures, and at providing a  sense of how these futures might be reached (or avoided). Forward looking pathways can be  constructed using various techniques, ranging from simulations with numerical models to qualitative  scenario construction or group forecasting exercises (van Notten et al., 2003).   New sets of forward looking development pathways have been proposed since the AR4 review (in  Sathaye et al. (2007), Section 12.2.1.2). At the global scale, they include, inter alia, the climate smart  pathway (World Bank, 2010), the Tellus Institute scenarios (Raskin et al. (2010)), and degrowth  strategies (Martínez Alier et al., 2010) or the scenarios developed under the Integrated Assessment  Modelling Consortium (IAMC) umbrella (Moss et al., 2010) to update the 2000 SRES scenarios  (Nakicenovic and Swart, 2000). Pathways have also been proposed for specific sectors, such as  health (Etienne and Asamoa Baah, 2010), agriculture (Paillard et al., 2010), biodiversity (Leadley et  al., 2010; Pereira et al., 2010), and energy (Ayres and Ayres, 2009).  At the national and regional levels, the emergence of the  green growth  agenda (OECD, 2011) has  spurred the development of many short  to medium term exercises (e.g. Republic of Korea, 2009;  Jaeger et al., 2011); as well as renewed discussions on SD trajectories (e.g. Jupesta et al., 2011).  Similarly, there is growing research on the ways by which societies can transition towards a  low  carbon economy , considering not only mitigation and adaptation to climate change, but also the                                                                This literature can itself be divided in two main groups: papers aimed at identifying individual mechanisms  that drive development trajectories, and papers aimed at identifying broad patterns of development. One  example of the former is the literature on the relationships between GDP and emissions, discussed in Chapter  5, and in Section 4.1. One example of the latter is the so called  investment development path  literature,  which, following Dunning (1981), identifies stages of development for countries based on the direction of  foreign direct investment flows and the competitiveness of domestic firms on international markets.  6     40 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     need for social, economic, and technological (Shukla et al., 2008) (see 6.6.2 for a broader review).  For instance, studies in China show that controlling emissions without proper policies to counteract  the negative effects will have an adverse impact on the country s economic development, reducing  its per capita income and the living standards of both urban and rural residents (Wang Can et al.,  2005; Wang Ke, 2008). China is developing indicators for low carbon development and low carbon  society (UN (2010), with many citations) with specific indicators tested on selected cities and  provinces (Fu, Jiafeng et al., 2010), providing useful data on challenges and gaps as well as the need  for clearly defined goals and definitions of  low carbon  and its SD context.  4.5.2    Transition between pathways  Backward looking studies reveal that past development pathways have differed in many respects,  notably in terms of GHG emissions because of differences in, inter alia, fuel supply mix, location  patterns, structure of economic activity, composition of household demand, etc. even across  countries with otherwise very similar economic characteristics. Similarly, forward looking studies  point to very contrasted, yet equally plausible, futures in terms of GHG emissions. Shifting from a  high  to a low emissions development pathway require modifying the trajectory of the system that  generates (among others) GHG emissions. It thus requires time as well as action over multiple  dimensions of development (location, technology, lifestyles, etc.). Yet, shifting from a high  to a low emissions development pathway could potentially be as important for climate change mitigation as  implementing  climate  policies (Halsnaes et al., 2011).  A central theme of the present report is to explore the conditions of a transition towards  development pathways with lower emissions, globally (Chapter 6), sectorally (Chapters 7 12), and  regionally (Chapters 13 15). To frame these subsequent discussions, the present section does two  things. First, it discusses the obstacles to changing course by introducing the key notions of path  dependence and lock ins (4.5.2.1   ). Second, examples and lessons from the technology transition  literature are discussed (4.5.2.2   ). The policy and institutional aspects of building strategies to  transition between pathways are discussed in the subsequent chapters.7   4.5.2.1    Path dependence and lock ins  Path dependence is the tendency for past decisions and events to self reinforce, thereby diminishing  and possibly excluding the prospects for alternatives to emerge. Path dependence is important for  analyzing transitions between development pathways. For example, development of inter city  highways may make further extension of the road network more likely (if only for feeder roads) but  also make further extension of rail networks less cost effective by drawing out traffic and investment  financing (see Section 12.5), thereby diminishing the prospects for alternative transportation  investments.  Chief among the mechanisms that underlie path dependence are  increasing returns  mechanisms  (Page, 2006)   in which an outcome in one period increases the probability of generating that same  outcome in the next period. Increasing returns is a large group that comprises, inter alia, increasing  returns to scale, learning by doing, induced technological change, or agglomeration economies. As  (Shalizi and Lecocq, 2013) note, the concept of increasing returns has a long tradition in economic  history, and the implications of increasing returns mechanisms have been systematically explored  over the past three decades or so, notably around issues of monopolistic competition (Dixit and  Stiglitz, 1977), international trade (Krugman, 1979), economic geography (Fujita et al., 1999),                                                                The key point, as emphasized in AR4, is that a development pathway results from the interactions of  decisions by multiple agents, at all levels. Thus in general public policies7 alone cannot trigger changes in  pathways, and cooperation between governments, markets, and civil societies are necessary (Sathaye et al.,  2007).  7     41 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     economic growth (Romer, 1990), industrial organizations, or adoption of technologies (Arthur,  1989).  Yet increasing returns are neither sufficient nor necessary to generate path dependence. They are  not sufficient because competing increasing returns can cancel out. And they are not necessary  because other mechanisms might generate path dependence. For example, decisions that involve  the use of scarce resources, such as land, labour or exhaustible natural resources constrain future  agents  options, either temporarily (for labour) or permanently (for exhaustible resources). Similarly,  in the presence of switching costs e.g., costs attached to premature replacement of long lived  capital stock decisions made at one point in time can partially or totally lock in decision makers   subsequent choices (Farrell and Klemperer, 2007). Also, path dependence can emerge from  coordination failures in complex systems that require high degree of articulation between actors  (Yarime, 2009). The key message is that it is essential to look broadly for mechanisms that may  generate path dependence when analyzing the determinants of pathways (past or anticipated)  (Shalizi and Lecocq, 2013).  Lock in is the most extreme manifestation of path dependence, when it becomes extremely costly or  impossible to shift away from the current pathway. Lock ins can emerge in many domains, with  examples ranging from end use technology standards (e.g. the competition between the AZERTY and  the QWERTY keyboards, or between the VHS and BETAMAX video standards), energy supply  networks to expansion pathways of regions once initial choices are made (Fujita et al., 1999). Lock ins are not  good  or  bad  per se (Shalizi and Lecocq, 2013), but identifying risks of  bad  lock ins and  taking advantage of possible  good  lock ins matters for policymaking, so that ex ante decisions are  not regretted ex post (Liebowitz and Margolis (1995)). The literature, however, underlines that lock ins do not stem only for lack of information. There are also many cases in which rational agents  might make decisions based only on part of the information available, because of, inter alia,  differences between local and global optimum, time and resource constraints on the process or  information  symmetry (Foray, 1997); which points to the process of decision making (See 4.3.2 on  Governance and Political Economy).  4.5.2.2    Examples and lessons from the technology transition literature  Part of the literature on innovation (reviewed in Sections 3.11 and 4.3.6; technological change is  reviewed in Section 5.6) adopts a broad, systemic perspective to try to explain how new  technologies emerge. It thus provides examples of, and insights on how transition between  pathways can occur. In fact, changes in technologies, their causes, and their implications for  societies have been actively studied in social sciences since the late 18th century by historians,  economists, and sociologists. A common starting point is the observation that  technological change  is not a haphazard process, but proceeds in certain directions  (Kemp, 1994). For example,  processors tend to become faster, planes to become lighter, etc. To characterize these regularities,  scholars have developed the concepts of technological regime (Nelson and Winter, 2002) and  technological paradigms (Dosi, 1982; Dosi and Nelson, 1994). Technological regimes refer to shared  beliefs among technicians about what is feasible. Technological paradigms refer to the selected set  of objects engineers are working on, and to the selected set of problems they choose to address.  How technological regimes may change (such as with the development of information technologies)  is a subject of intense research. Radical innovations (e.g., the steam engine) are seen as a necessary  condition. But the drivers of radical innovation themselves are not clearly understood. In addition,  once an innovation is present, the shift in technological regime is not a straightforward process: the  forces that maintain technological regimes (e.g., increasing returns to scale, vested interests,  network externalities) are not easy to overcome   all the more so that new technologies are often  less efficient, in many respects, than existing ones, and competing technologies may coexist for a  while. History thus suggests that the diffusion of new technologies is a slow process (Kemp, 1994;  Fouquet, 2010).      42 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     More recent research over the past 20 years has yielded two major perspectives on technology  transitions (Truffer and Coenen, 2012): the multi level perspective on socio technical systems (Geels,  2002) and the concept of technological innovations systems (Bergek et al., 2008). The multi level  perspective distinguishes three levels of analysis: niche innovations, socio technical regimes, and  socio technical landscape (Geels, 2002). A technological niche is the micro level where radical  innovations emerge. Socio technical regimes correspond to an extended version of the technological  regime discussed above. The socio technical landscape corresponds to the regulatory, institutional,  physical, and behavioural environment within which innovations emerge. There is considerable  inertia at this third level. Changes in socio technical regimes emerge from the interactions between  these three levels. According to Geels and Schot s typology (2007), changes in socio technical  regimes can follow four different paths. Transformation corresponds to cases in which moderate  changes in the landscape occur at a time when niche innovations are not yet developed, thus  resulting in a relatively small change of direction of the development pathway. An example of  transformation occurred when municipal sewer systems were implemented in Dutch cities (Geels,  2006). De alignment and realignment correspond to sudden changes in the landscape that cause  actors to lose faith in the regime. If no clear replacement is ready yet, a large range of technologies  may compete until one finally dominates and a new equilibrium is reached. One example is the  transition from horse powered vehicles to cars. If new technologies are already available, on the  other hand, a transition substitution might occur, as in the case of the replacement of sailing ships by  steamships between 1850 and 1920. Finally, a reconfiguration occurs when innovations initially  adopted as part of the current regime progressively subvert it into a new one, an example of which  is the transition from traditional factories to mass production in the United States.  The technological innovation systems approach (Bergek et al., 2008) adopts a systemic perspective  by considering all relevant actors, their interactions, and the institutions relevant for innovation.  Early work in this approach argues that beside market failures,  system failures  such as, inter alia,  actor deficiencies, coordination deficits or conflicts with existing institutional structures (institutional  deficits) can explain unsuccessful innovation (Jacobsson and Bergek, 2011). More recent analysis  focuses on core processes critical for innovation, such as presence of entrepreneurial activities,  learning, knowledge diffusion through networks, etc. The technological innovation systems concept  was developed to inform public policy on how to better support technologies deemed sustainable  with an increasing focus on  system innovations  as opposed to innovation in single technologies or  products (Truffer and Coenen, 2012).  4.5.2.3    Economic modelling of transitions between pathways  As noted above (4.5.1), economic modelling is a major tool for analyzing future development  pathways. Models provide different types of information about transition, depending on their  features and on how they are used. The present sub section reviews use of models for studying  transitions. See Section 6.2 for a review of modelling tools for integrated assessment.  There are four increasingly complex ways of using economic models to analyze transitions between  development pathways. The first option static modelling consists of building plausible images of  the future at a given date and comparing them (comparative statics). The focus is on the internal  consistency of each image, and on the distance between them. Models without explicit  representation of time (e.g., input output, partial equilibrium, or static general equilibrium models)  are sufficient. Static models can provide insights on the sustainable character of the long term  images, to the extent that the model captures critical variables for sustainability such as natural  resources use or impact of economic activity on the environment (e.g., GHG emissions). However,  national accounts typically add up multiple products with very different material content, very  different energy contents, and very different prices. Thus, constructing robust relationships between  aggregate monetary indicators and physical flows requires in depth analysis. Similarly, static models  can provide insights on the social components of sustainability to the extent they include some form      43 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     of representation of the distribution of economic activity within the society, notably across income  groups (see Section 4.4.1). Again, the associated data challenge is significant. By construction, on the  other hand, static models do not provide insights on the pathways from the present on to each  possible future, let alone on the transitions between pathways.  Dynamic models are needed to depict the pathway towards desirable (or undesirable) long term  futures. Still, the relevance of dynamic models for discussing transitions depends on their structure,  content, and way they are used. A large part of the modelling literature on climate change mitigation  relies on neoclassical growth models with exogenous (Swan, 1956; Solow, 1956) or endogenous  (Koopmans, 1965; Cass, 1965) savings rate. In those models, long term growth is ultimately driven  by the sum of population growth and exogenous total factor productivity growth (exogenous  technical change). In the simplest version of the neoclassical model, there is thus only one  pathway   to speak of, as determined by human fertility and human ingenuity. Any departure from this  pathway resorbs itself endogenously through adjustment of the relative weights of capital and  labour in the production function, and through adjustment of the savings rate (when endogenous).  Empirically, neoclassical growth models have limited ability to explain observed short term growth  patterns (e.g., Easterly, (2002)).   Modelling of processes is needed to enrich discussions about transitions by differentiatiating short term economic processes from long term processes. The general point is that the technical,  economic, and social processes often exhibit more rigidities in the short  than in the long run. As  Solow (2000) suggests, at short term scales,  something sort of  Keynesian  is a good approximation,  and surely better than anything straight  neoclassical . At very long time scales, the interesting  questions are best studied in a neoclassical framework and attention to the Keynesian side of things  would be a minor distraction . There is a long tradition of debates in economics on the degree to  which production technologies and wages should be considered flexible or rigid in the short  and  medium run, with potentially very different results for the assessment of mitigation policies (Rezai  et al., 2013), (Guivarch et al., 2011). Other important rigidities include, inter alia, long lived physical  capital, the premature replacement of which is typically very costly, and the dynamics of which have  important implications for the costs, timing, and direction of climate policies (e.g. Lecocq et al.,  1998; Wing, 1999); rigidities associated with the location of households and firms, changes of which  take time; or rigidities associated with preferences of individuals and with institutions. Presence of  rigidities may also lead to bifurcations towards different long term outcome (i.e., equilibrium dependence and not just path dependence as in section 4.5.2) (See e.g. Hallegatte et al., 2007).  Recognizing uncertainty is a further key element for the enriching the analysis of transitions,   relaxing the full information hypothesis under which many models are run. If information increases  over time, there is a rationale for a sequential decision making framework (Arrow et al., 1996), in  which choices made at one point can be re considered in light of new information. Thus, the issue is  no longer to select a pathway once and for all, but to make the best first step (or short term)  decision, given the structure of uncertainties and the potential for increasing information over time   factors which are especially relevant in the context of climate change. Inertia plays an especially  important role in this context, as the more choices made at one point constrain future opportunity  sets, the more difficult it becomes to make advantage of new information (e.g.,Ha Duong et al.,  1997). Another way by which uncertainty can be captured in models is to abandon the intertemporal  optimization objective altogether and use simulation models instead, with decisions made at any  time based on imperfect expectations (Scrieciu et al., 2013). Such shift has major implications for the  transition pathway (Sassi et al., 2010), but results strongly depend on how expectations and  decisions under uncertainty are represented.   Ideally, models that produce development pathways should thus (1) be framed in a consistent  macroeconomic framework (since a pathway is holistic), (2) impose relevant technical constraints in  each sector, such as assumptions about the process of technical change, (3) capture the key      44 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     relationships between economic activity and the environment, e.g., energy and natural resources  consumption or greenhouse gases emissions, (4) have a horizon long enough to assess  sustainability a long term horizon which also implies, incidentally, that the model must be able to  represent structural and technical change yet (5) recognize short term economic processes critical  for assessing transition pathways, such as market imbalance and rigidities, all this while (6) providing  an explicit representation of how economic activity is distributed within the society, and how this  retrofits into the growth pattern, and (7) representing key uncertainties.   No model today meets all these specifications. Current models can be classified along two major  fault lines: bottom up vs. top down, and long term vs. short term. By design, computable general  equilibrium (CGE) models provide a comprehensive macroeconomic framework, and they can be  harnessed to analyze distributional issues, at least amongst income groups, but they typically fail to  incorporate key technical constraints. Conversely, bottom up engineering models provide a detailed  account of technical potentials and limitations, but their macro engine, if at all, is most often  rudimentary. Emerging  hybrid  models developed in the context of climate policy assessment are  steps towards closing this gap (Hourcade et al., 2006). A similar rift occurs with regard to time  horizon. Growth models like Solow s are designed to capture key features of long term development  pathways, but they do not include short  or medium term economic processes such as market  rigidities. On the other hand, short term models (econometric or structural) will meet requirement  but are not designed to look deep in the future. Again, emerging models include short /medium term processes into analysis of growth in the long run (see e.g., (Barker and Serban Scrieciu, 2010),  but this pretty much remains an open research field.  Box 4.4. Characterizing the sustainability of development pathways Constructing and modelling forward looking development pathways is one thing, evaluating how  they fare in terms of sustainability within and beyond the time horizon of the modelling is another.  Two questions can actually be distinguished (Asheim, 2007). One is to predict whether the current  situation (welfare, environment) will be preserved in the future: are we on a sustained development  pathway, i.e., a pathway without downturn in welfare or environmental objectives? This question is  answered by looking at the evolution of the target variables within the time horizon of the scenario,  and what happens beyond the horizon remains undetermined. Another question is to determine  whether the current generation s decisions leave it possible for future generations to achieve a  sustained pathway: is a sustained development pathway possible given what the current generation  does? Unlike the former question, the latter does not require predicting the future generations   decisions, only their future constraints and opportunities. Showing the existence of a sustained  pathway is then an argument in favour of the compatibility of current decisions with future  sustainability. Some indicators of sustainability such as genuine savings (see Box 4.2) are meant to  provide an answer based on the current evolution of (economic, social, environmental) capital  stocks and can also be used for the evaluation of scenarios that depict these stocks.  In practice,  sustainability analysis (of either type) is not frequent in the scenario building community, though  multi criteria analysis of scenarios has been gaining ground in recent years (See e.g.,GEA, 2012).  4.6   Mitigative capacity and mitigation, and links to adaptive capacity and  adaptation   4.6.1    Mitigation and adaptation measures, capacities, and development pathways  Even though adaptation and mitigation are generally approached as distinct domains of scientific  research and practice (Biesbroek et al., 2009) (as reflected, for example, in the IPCC separate  Working Groups II and III), a recognition of the deep linkages between mitigation and adaptation has  gradually emerged. Initially, mitigation and adaptation were analyzed primarily in terms of techno     45 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     economic considerations. But growing attention has been directed at the underlying capacities, first  with respect to adaptation, and later  and less fully  with respect to mitigation, (Grothmann and  Patt, 2005; Burch and Robinson, 2007; Winkler et al., 2007; Goklany, 2007; Pelling, 2010).  This attention has necessitated a broadening of the scope of analysis well beyond narrow techno economic considerations, to the social, political, economic, and cultural domains, as ultimately, this  is where the underlying determinants of mitigative and adaptive capacity lie. Following the literature  enumerated above, a non exhaustive list of these underlying determinants include: the level and  distribution of wealth, robustness and legitimacy of institutions, availability of credible information,  existence and reliability of infrastructure, access to and adequacy of technologies and systems of  innovation, effective governance, social cohesion and security, distribution of decision making power  among actors, conditions of equity and empowerment among citizens, and the opportunity costs of  action, as well as individual cognitive factors, including relevant skills, knowledge and cultural  framings. The fact that mitigative and adaptive capacities share and are similarly affected by these  underlying determinants highlights their similarity, blurring the distinction between them and  leading some scholars to argue that there is simply  response capacity  (Tompkins and Adger, 2005;  Wilbanks, 2005; Burch and Robinson, 2007). Because response capacity is directly shaped by these  underlying technological, economic, institutional, socio cultural, and political determinants, it is in  other words directly shaped by the overall development pathway, which is the combined product of  those same inter related determinants. This dependence of response capacity on development  pathway is underscored by the strong parallel between its determinants (outlined above) and the  defining dimensions of a development pathway (discussed in Sections 4.3 and 4.5). Indeed, response  capacity is determined much more by the overall development pathway than by targeted climate specific policies. The academic consensus on this point has been clearly reflected in the IPCC AR4  (2007), in WGI Chapter 12 in the case of mitigative capacity, and WGII Chapter 18 in the case of  adaptive capacity. Of course, more nuanced and site specific assessments of the determinants of  such capacity can provide further useful insight; see e.g., Keskitalo et al., 2011).   Moreover, there is consensus that an effective transition toward a SD pathway in particular can  more effectively foster response capacity (Intergovernmental Panel on Climate Change, 2007;  Matthew and Hammill, 2009; Parry, 2009; Halsnaes et al., 2011; Harry and Morad, 2013). There are  various elements of fostering a transition toward SD that naturally accord with the creation of  mitigative and adaptive capacity, including, for example, the establishment of innovation systems  that are supportive of environmental and social priorities, the support for adaptive ecosystem  management and conservation, the strengthening of institutions and assets to support food and  water security and public health, and the support for procedurally equitable systems of governance  (Banuri, 2009; Barbier, 2011; Bowen et al., 2011; Bowen and Friel, 2012). Mitigation and adaptation  outcomes can of course still be expected to depend on the extent to which explicit efforts are taken  to implement and mainstream climate change policies and measures, as well as on the manner in  which a particular SD approach may evolve   with more or less emphasis on economic, social, or  environmental objectives (Giddings et al., 2002; Beg et al., 2002; Grist, 2008; Halsnaes et al., 2008).   The centrality of mitigative and adaptive capacity to SD is highlighted by the growing attention to the  idea that the Earth system has moved from the Holocene into the Anthropocene (Steffen et al.,  2011), where societies are the most important drivers of the Earth s dynamics. Mitigative and  adaptive capacity can be seen in general terms, i.e., not just with respect to GHG emissions and  climate impacts, but all anthropogenic environmental pressures and impacts from ecosystem  degradation. In this view, mitigative and adaptive capacity are central to sustainable ecosystem  management (Holling, 1978; Walters and Holling, 1990; McFadden et al., 2011; Williams, 2011), and  thus fundamental to SD (Chapin et al., 2010; Folke et al., 2011b; Polasky et al., 2011; Biermann et al.,  2012). Some scholars interpret this as a fundamental redefinition of development calling for  transformational shifts based on re imagining possibilities for future development pathways (Pelling,  2010; Jackson, 2011a; Ehrlich et al., 2012; Kates et al., 2012).      46 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Scholarship exploring the links between mitigation, adaptation, socio ecological resilience and SD  more generally, has generally pointed toward the existence of (potential) synergies and tradeoffs  within and across policy sectors and across implementation measures (Gallopín, 2006; Rosenzweig  and Tubiello, 2007; Vogel et al., 2007; Boyd et al., 2009; Thornton and Gerber, 2010; Adger et al.,  2011; Warren, 2011; Lal et al., 2011; Vermeulen et al., 2012; Denton and Wilbanks, 2012; Hill, 2013).  These studies show that, in spite of mitigative and adaptive capacities being so closely intertwined  with each other and with SD, the relationship between mitigation and adaptation measures is more  ambiguous and, in line with the IPCC AR4, suggest that outcomes are highly dependent on the  measures and the context in which they are undertaken, with some policy sectors being more  conducive to synergies than others.   In the agricultural sector, for example, scholars have for many years highlighted the potential of  fostering both mitigation and adaptation by supporting traditional and biodiverse agro ecological  systems around the world (Campbell, 2011; Altieri and Nicholls, 2013, and see Section 11.5). A  recent modelling exercise suggests that investing substantially in adapting agriculture to climate  change in some regions Asia and North America can result in substantial mitigation co benefits,  while the latter may be insignificant in Africa (Lobell et al., 2013). There are empirical studies where  interventions in agricultural systems have led to positive mitigation and adaptation outcomes or  vice versa (Kenny, 2011; Wollenberg, 2012; Bryan et al., 2012), or where synergies between  adaptation and mitigation have not materialized due to, for example, limited scientific and policy  knowledge, as well as institutional and farmers' own financial and cognitive constraints (Haden et al.,  2012; Arbuckle Jr. et al., 2013; Bryan et al., 2013). In forestry, the links between fostering mitigation  strategies, e.g., through planting trees, developing agro forestry systems or conserving diverse  ecosystems, and the adaptation of both forests and people to climate change have been widely  acknowledged and the possibility of effective linkages in policy and action have also been identified  (Locatelli et al., 2011; Schoeneberger et al., 2012; Mori et al., 2013). Methods for identifying  tradeoffs between mitigation and adaptation at policy and implementation levels and to foster  legitimate decision making have also been recently developed (Laukkonen et al., 2009; Janetos et al.,  2012).   This evolving literature highlights the need to examine adaptation and mitigation for their SD  implications, and ultimately to mainstream them in broader development policy. It also explains the  parallel emergence of environmental governance research about reforming existing or developing  institutions in different policy domains to meet this need (Folke et al., 2005; Folke, 2007; Brunner  and Lynch, 2010). Recent studies highlight the organizational, institutional, financial, and knowledge  barriers to the development of effective governance for mitigation and adaptation in general  government policy (Picketts et al., 2012), as well as in particular policy sectors, e.g., in forestry  (Johnston and Hesseln, 2012); in health (Bowen et al., 2013); or in urban planning (Barton, 2013).  Others identify the multi scale, inter connected, and dynamic nature of many climate issues and  their associated responses as a key barrier to action, particularly at local level (Romero Lankao,  2012). Analyses of the effectiveness of public private partnerships and other forms of multi actor  cooperation to mainstream both mitigation and adaptation measures in a given sector and context  also reveal the challenging nature of such endeavour (Pattberg, 2010; Pinkse and Kolk, 2012).   There is ample scope to improve response capacity in nations and communities by putting SD at the  core of development priorities, despite the considerable governance challenges to mainstreaming  mitigation and adaptation measures across policy sectors, collective and individual behaviour, and to  exploit possible synergies and confront tradeoffs. Nonetheless, it remains the case that the variation  of mitigative and adaptive capacity between different nations and communities within them is a  function of the vast disparities in the determinants of such capacity. These differences in capacity  are in turn driven to a significant degree by differences in development pathways and, specifically,  level of development. This is a primary reason why the issue of burden sharing among nations      47 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     features so prominently in consideration of international cooperation on climate change generally,  and the UNFCCC in particular, as discussed further in the following section.   4.6.2    Equity and burden sharing in the context of international cooperation on climate  Chapter 3 (Sections 3.2 to 3.5) introduced the general equity principles in the philosophical literature  and their relevance to climate change including burden sharing. This section briefly reviews the  extensive literature regarding burden sharing in a global climate regime. If focuses first on the equity  principles as they are invoked in the literature, which emphasises those laid out in the UNFCCC. It  then reviews several categories of burden sharing frameworks. While the academic literature uses  the term  burden sharing , it is understood that mitigation action entails not only burdens but also  benefits.  4.6.2.1    Equity principles pertinent to burden sharing in an international climate regime  The UNFCCC clearly invokes the vision of equitable burden sharing among Parties toward achieving  the Convention s objective. While Parties had not articulated a specific burden sharing arrangement  in quantified detail, they had established an initial allocation of obligations among countries with  explicit references to the need for equitable contributions. All Parties adopted general commitments  to mitigate, adapt, and undertake other climate related actions, but distinct categories of countries  reflecting level of development were identified and assigned specific obligations. Developed  countries (listed in Annex I) were distinguished from developing countries and obliged to  take the  lead on combating climate change and the adverse effects thereof  (Article 3.1), noting  the need  for equitable and appropriate contributions by each of these Parties to the global effort regarding  [the UNFCCC] objective  (Article 4.2(a)).  A subset of Annex I countries consisting of the wealthier  developed countries (listed in Annex II) were further obliged to provide financial and technological  support  to developing countries to enable them to effectively implement their UNFCCC  commitments  (Article 4.7), noting that they  shall take into account   the importance of  appropriate burden sharing among the developed country Parties .   While Parties  equitable contributions are elaborated further in subsequent UNFCCC decisions and  under the Durban Platform for Enhanced Action, an explicit arrangement for equitable burden  sharing remains unspecified. Because there is no absolute standard of equity, countries (like people)  will tend to advocate interpretations which tend to favour their (often short term) interests  (Heyward, 2007; Lange et al., 2010; Kals and Maes, 2011). It is thus tempting to say that no reasoned  resolution is possible and to advocate a purely procedural resolution (Müller, 1999). However, there  is a basic set of shared ethical premises and precedents that apply to the climate problem, and  impartial reasoning (as behind a Rawlsian (Rawls, 2000)  veil of ignorance ) can help put bounds on  the plausible interpretations of equity in the burden sharing context. Even in the absence of a  formal, globally agreed burden sharing framework, such principles are important in establishing  expectations of what may be reasonably required of different actors. They influence the nature of  the public discourse, the concessions individuals are willing to grant, the demands citizens are  inclined to impose on their own governments, and the terms in which governments represent their  negotiating positions both to other countries and to their own citizens. From the perspective of an  international climate regime, many analysts have considered principles for equitable burden sharing,  (Rose 1990; Hayes and Smith 1993; Baer et al. 2000; B. Metz et al. 2002; Ringius, Torvanger, and  Underdal 2002; Aldy, Barrett, and Stavins 2003; Ghersi, Hourcade, and Criqui 2003; Gardiner 2004;  Caney 2005; Caney 2009; Caney 2010; Heyward 2007; E. A. Page 2008; Vanderheiden 2008; Klinsky  and Dowlatabadi 2009; Winkler et al. 2011). Equitable burden sharing has been most frequently  applied to costs of mitigation, though similar issues arise with regard to adaptation (Baer, 2006;  Paavola and Adger, 2006; Adger, 2006; Jagers and Duus Otterstrom, 2008; Dellink et al., 2009;  Grasso, 2010; Hartzell Nichols, 2011). Here these equity principles are given along four key  dimensions   responsibility, capacity, equality, and the right to sustainable development, expanding  on the philosophical arguments in Sections 3.2 3.4.       48 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   Responsibility   In the climate context, responsibility is widely taken as a fundamental principle relating  responsibility for contributing to climate change (via emissions of GHGs) to the responsibility for  solving the problem. The literature extensively discusses it, distinguishing moral responsibility from  causal responsibility, and considering the moral significance of knowledge of harmful effects  (Neumayer, 2000; Caney, 2005; Müller et al., 2009). Common sense ethics (and legal practice) hold  persons responsible for harms or risks they knowingly impose or could have reasonably foreseen,  and, in certain cases, regardless of whether they could have been foreseen. The notion of  responsibility is thus closely connected to the Polluter Pays Principle (PPP), and burden sharing  principles that derive from it hold that countries should be accountable for their greenhouse gas  emissions. This is a common interpretation of the UNFCCC phrase  common but differentiated  responsibilities  (Harris, 1999; Rajamani, 2000), given its similarity to the more explicit Rio  Declaration (see Section 4.1).  Responsibility is taken by some to include present and past emissions (Grübler and Fujii, 1991;  Smith, 1991; Neumayer, 2000; Rive et al., 2006; Wei et al., 2012). This has been justified on three  main grounds. First, climate change results from the stock of accumulated historic emissions.  Second, the total amount of greenhouse gases that can be emitted to the atmosphere must be  constrained (to a level determined by society s choice of global climate stabilization goal (see IPCC  AR5 WGI), and thus constitutes a finite common resource (often loosely referred to as the  atmospheric space  or the  carbon budget ). Users of this resource whether current or historical should be accountable for depleting the resource and precluding the access of others. Third,  historical emissions reflect the use of a resource from which benefits have been derived, i.e., wealth,  fixed capital, infrastructure, and other assets. These benefits constitute a legacy based in part on  consuming a common resource that (1) should be paid for, and (2) provides a basis for mitigative  capacity (Shue, 1999; Caney, 2006, 2010). The latter argument carries the notion of responsibility  further back in time, assigning responsibility for the emissions of previous generations, to the extent  that present generations have inherited benefits. This argument links responsibility with the capacity  principle discussed below (Meyer and Roser, 2010; Gardiner, 2011a; Meyer, 2012). If conventional  development continues, the relative responsibility of some nations that currently have relatively low  cumulative emissions would match and exceed by mid century the relative responsibility of some  nations who currently have high responsibility (Höhne and Blok, 2005; Botzen et al., 2008), on an  aggregate if not per capita basis. Such projections illustrate that the relative distribution of  responsibility among countries can vary substantially over time, and that a burden sharing  framework must dynamically reflect evolving realities if they are to faithfully reflect ethical  principles. They also may provide a basis for understanding where mitigation might productively be  undertaken, though not necessarily who should be obliged to bear the costs.    Each nation s responsibility for emissions is typically defined (as in IPCC inventory methodologies) in  terms of emissions within the nation s territorial boundary.  An alternative interpretation (Fermann,  1994), which has become more salient as international trade has grown more important, is to  include emissions embodied in internationally traded goods consumed by a given nation. Recent  studies (Lenzen et al., 2007; Pan et al., 2008; Peters et al., 2011) have provided a quantitative basis  for better understanding the implications of a consumption based approach to assessing  responsibility. In general, at the aggregate level, developed countries are net importers of emissions,  and developing countries are net exporters (see Sections 5.3.3.2 and 14.3.4). The relevance of this to  burden sharing may depend on further factors, such as the distribution between the exporting and  importing countries of the benefits of carbon intensive production, and the presence of other  climate policies such as border carbon tariffs (see Section 13.8.1 and 14.4.1), as well as the  development of the relevant data sources (see also Sections 3.9 and 4.4). Many analysts have  suggested that all emissions are not equivalent in how they translate to responsibility, distinguishing      49 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     the categories of  survival emissions ,  development emissions , and  luxury  emissions (Agarwal and  Narain, 1991; Shue, 1993; Baer et al., 2009; Rao and Baer, 2012).   Determining responsibility for emissions in order to allocate responsibility raises methodological  questions. In addition to the standard questions about data availability and reliability, there are also  equity related questions. For instance, there are various rationales for determining how far in the  past to include historical emissions. One rationale is that the 1990s should be the earliest date,  reflecting the timing of the First IPCC Assessment Report and the creation of a global regime that  imposed obligations to curb emissions (Posner and Sunstein, 2007). Some argue that the date should  be earlier, corresponding to the time that climate change became reasonably suspected of being a  problem, and greenhouse gas emissions thus identifiable as a pollutant worthy of policy action.  For  example, one might argue for the 1970s or 1960s, based on the published warnings issued by  scientific advisory panels to the United States presidents Johnson (U.S. National Research Council  Committee on Atmospheric Sciences, 1966; MacDonald et al., 1979) and Carter (MacDonald et al.,  1979), and the first G7 Summit Declaration highlighting climate change as a problem and seeking to  prevent further increases of carbon dioxide in the atmosphere (Group of 7 Heads of State, 1979).  Others argue that a still earlier date is appropriate because the damage is still caused, the stock  depleted, and the benefits derived, regardless of whether there is a legal requirement or knowledge.   Another issue is the question of accounting for the residence time of emissions into the atmosphere,  as an alternative to simply considering cumulative emissions over time. In the case of carbon  dioxide, responsibility could include past emissions even when they are no longer resident in the  atmosphere, on the grounds that those emissions (1) have contributed to the warming and climate  damages experienced so far, and upon which further warming and damages will be additive, and (2)  have been removed from the atmosphere predominantly to the oceans, where they are now causing  ocean acidification, which is itself an environmental problem (See AR5 WGI, Chapters 3 and 6).   Capacity (or, Ability to Pay)  A second principle for allocating effort arises from the capacity to contribute to solving the climate  problem (Shue, 1999; Caney, 2010). Generally, capacity is interpreted to mean that the more one  can afford to contribute, the more one should, just as societies tend to distribute the costs of  preserving or generating societal public goods; i.e., most societies have progressive income taxation.  This view can be applied at the level of countries, or at a lower level, recognizing inequalities  between individuals. Smith et al. (1993) suggested GDP as an income based measure of ability to pay, subject to a threshold value, determined by an indicator of quality of life. This was developed in  Kartha et al. (2009) and Baer et al. (2010), taking into account intra national disparities.   As discussed in Section 4.6.1, response capacity refers to more than just financial wherewithal,  encompassing also other characteristics that affect a nation s ability to contribute to solving the  climate problem. It recognizes that effective responses require not only financial resources, but also  technological, institutional, and human capacity. This issue has been treated by Winkler, Letete, and  Marquard (2011) by considering the Human Development Index as a complement to income in  considering capacity. Capacity, even in this broader sense, can be distinguished from mitigation  potential, which refers to the presence of techno economic opportunities for reducing emissions  due to, for example, having renewable energy resources that can be exploited, a legacy of high carbon infrastructure that can be replaced, or a rapidly growing capital stock that can be built based  on low carbon investments. Mitigation potential is a useful characteristic for determining where  emissions reductions can be located geographically for reasons of cost effectiveness, but this can be  distinguished from burden sharing per se, in the sense of determining on normative grounds which  country should pay for those reductions. This distinction is reflected in the economist s notion that  economic efficiency can be decoupled from equity (Coase, 1960; Manne and Stephan, 2005).        50 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   Equality   Equality means many things, but a common understanding in international law is that each human  being has equal moral worth and thus should have equal rights. Some argue this applies to access to  common global  resources, expressed in the perspective that each person should have an equal right  to emit (Grubb, 1989; Agarwal and Narain, 1991). This equal right is applied by some analysts to  current and future flows, and by some to the cumulative stock as well. (See further below.)   Some analysts (Caney, 2009) have noted, however, that a commitment to equality does not  necessarily translate into an equal right to emit.  Egalitarians generally call for equality of a total  package of  resources  (or  capabilities  or  opportunities for welfare ) and thus may support  inequalities in one good to compensate for inequalities in other goods (Starkey, 2011). For example,  one might argue that poor people who are disadvantaged with respect to access to resources such  as food or drinking water may be entitled to a greater than per capita share of emissions rights.  Second, some individuals may have greater needs than others. For example, poorer people may  have less access to alternatives to fossil fuels (or unsustainably harvested wood fuel) because of  higher cost or less available technologies, and thus be entitled to a larger share of emission rights.  Others have suggested that equality can be interpreted as requiring equal sacrifices, either by all  parties, or by parties who are equal along some relevant dimension. Then, to the extent that parties  are not equal, more responsibility (Gonzalez Miguez and Santhiago de Oliveira, 2011) or capacity  (Jacoby et al., 2009) would imply more obligation, all else being equal.   Right to development   The right to development appears in international law in the UN Declaration on the Right to  Development, the Rio Declaration, and the Vienna Declaration, and is closely related to the notion of  need as an equity principle, in that it posits that the interests of poor people and poor countries in  meeting basic needs are a global priority (Andreassen and Marks, 2007). The UNFCCC acknowledges  a right to promote sustainable development, and  the legitimate priority needs of developing  countries for the achievement of sustained economic growth and the eradication of poverty   (UNFCCC, 2002) and recognizes that  economic and social development and poverty eradication are  the first and overriding priorities of the developing country Parties  (p. 3).  In the context of equitable burden sharing, a minimalist interpretation of a right to development is a  right to an exemption from obligations for poor Parties (Ringius et al., 2002) on the basis that  meeting basic needs has clear moral precedence over the need to solve the climate problem, or, at  the very least, it should not be hindered by measures taken to address climate change.    4.6.2.2    Frameworks for equitable burden sharing  There are various ways of interpreting the above equity principles and applying them to the design  of burden sharing frameworks. It is helpful to categorize them into two broad classes.  Resource sharing  frameworks are aimed at applying ethical principles to establish a basis for sharing the  agreed global  carbon budget .  Effort sharing  frameworks are aimed at sharing the costs of the  global climate response. The resource sharing frame is the natural point of departure if climate  change is posed as a tragedy of the commons type of collective action problem; if it is posed as a  free rider type of collective action problem, the effort sharing perspective is more natural. Neither  of these framings is objectively the  correct  one, just as neither collective action framing of the  climate change problem is correct. Both can inform policymakers  judgments in different ways.  Indeed, the two approaches are complementary: any given resource sharing framework implies a  particular distribution of the effort, and conversely the opposite is true. In either case, burden  sharing frameworks are typically formulated as emission entitlements to be used in trading system  or global climate fund, which enables a cost effective distribution of the actual mitigation efforts.  Through such mechanisms, countries with obligations greater than their domestic mitigation      51 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     potential can fund reductions in countries with obligations that are less than their domestic  mitigation potential (see Sections 6.3.6 and 13.4.3).  One important dimension along which both resource sharing and effort sharing proposals can be  compared is the number of categories into which countries are grouped. The UNFCCC in fact had  three categories   Annex I, Annex II (the OECD countries within Annex I), and non Annex I. Many of  the proposals discussed below reproduce these distinctions. Others increase the number of  bins , to  as many as six (Winkler et al., 2006). Finally, many others eliminate any qualitative categories,  instead allocating emissions rights or obligations on the basis of a continuous index.   Resource sharing approaches  The resource sharing approach starts by acknowledging that the global  carbon budget  is bounded,  with its size defined by the agreed climate stabilization target. The most straightforward resource sharing approach is an equal per capita approach (Grubb, 1990; Agarwal and Narain, 1991; Jamieson,  2001), which is premised on the equal rights to the atmospheric commons to all individuals, and  allocates emission allowances to each country in proportion to its population. In response to the  concern that an equal per capita allocation would provide an incentive for more rapid population  growth, some analysts have argued that the effect would be negligible in comparison to other  factors affecting population, and others have proposed solutions such as holding population  constant as of some agreed date (Jamieson, 2001), establishing standardized growth expectations  (Cline, 1992), or allocating emission in proportion only to adult population (Grubb, 1990).   In response to the concern that unrealistically rapid reductions would be required in those countries  whose current emissions are far above the global average, some have proposed a period of  transition from grandfathered emission rights (i.e., allocated in proportion to current emissions) to  equal per capita emission rights (Grubb and Sebenius, 1992; Welsch, 1993; Meyer, 2004). This  rationale applies specifically to a framework intended to determine actual emission pathways, in  which case an immediate per capita distribution would impose unrealistically abrupt changes from  present emission levels. For a framework intended to assign transferable rights to emit, rather than  actual emissions, the rationale is questionable: the opportunity to acquire additional allocations  through emissions trading or some other transfer system would allow a cost effective transition and  lessen, though not eliminate, the political challenges of an immediate equal per capita allocation.   A variant on the above that aims to address the concern that many developing countries would have  to reduce their emissions from already very low levels is  Common but Differentiated Convergence   (Höhne et al., 2006), under which a developing country is required to begin converging only once its  per capita emissions exceed a specified (and progressively declining) threshold. Chakravarty et al.  (2009) put forward a variant that looked beyond average national indicators of emissions by  examining the distribution of emissions across individuals at different income levels within countries.   Extending the concept of equal per capita rights to include both the historical and future carbon  budget gives the  equal cumulative per capita emission rights  family of frameworks (Bode, 2004;  den Elzen et al., 2005; German Advisory Council on Global Change, 2009; Oberheitmann, 2010;  Höhne et al., 2011; CASS/DRC Joint Project Team, 2011; Jayaraman et al., 2011; Pan et al., 2013).  These frameworks vary, for example, in their choice of the initial date for historical emissions, the  way they deal with growing populations, their treatment of luxury versus survival emissions, and  their way of distributing a budget over time. As some countries (which tend to be higher income  countries that industrialized earlier) have consumed more than their equal per capita share of the  historical global budget, this excess use is offered as an argument for obliging them to provide  financial and technological resources to other countries that have used less than their historical  share. This obligation has been linked to the notion of a  carbon debt  or  climate debt  (Pickering  and Barry, 2012), and framed as a subset of a larger  ecological debt  (Roberts and Parks, 2009;      52 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Goeminne and Paredis, 2010), which some analyses have attempted to quantify (Smith, 1991;  Srinivasan et al., 2008; Cranston et al., 2010).  Effort sharing approaches  Effort sharing  frameworks seek to fairly divide the costs of reducing emissions to an agreed level.  (Effort sharing approaches can also be applied to adaptation costs whereas resource sharing  approaches cannot.) Many of the philosophers engaged with the question of burden sharing in the  climate regime have argued that obligations should be proportional in some fashion to responsibility  and capacity (see, for example the analyses of Shue (1993); or Caney (2005)).  An early effort sharing approach was the Brazilian proposal using historic responsibility for emissions  and thus global temperature rise as a basis for setting Kyoto targets. This approach has been  quantitatively analyzed (Höhne and Blok, 2005) and recently discussed in the global political context  (Gonzalez Miguez and Santhiago de Oliveira, 2011). Other approaches have used capacity based on  indicators such as GDP per capita (Wada et al., 2012) as a basis for effort sharing, or have combined  capacity and responsibility (Winkler et al., 2006). Some have included minimal form of a right to  development by identifying a threshold of development below which income and emissions are not  included in a nation s capacity or responsibility (Cao, 2008; Kartha et al., 2009; Yue and Wang, 2012).   The quantitative implications of a number of burden sharing frameworks are presented for several  regions in Section 6.3.6.6. The frameworks are grouped into six categories, corresponding either to  one of the underlying burden sharing principles (responsibility, capability, equality, right to  development), or a combination of them. It is important to note that several of the approaches are  based on considerations other than equity principles. For example, several allocate allowances  based on grandfathered emissions levels, with a transition to an equity based allocation only over  several decades or in some cases with no such transition. Others allocate allowances in proportion  to GDP, while others include mitigation potential as one basis in addition to equity principles.  4.7   Integration of framing issues in the context of sustainable development   Chapters 2 and 3 of this report review the framing issues related to risk and uncertainty (Chapter 2)  and social, economic, and ethical considerations guiding policy (Chapter 3). They examine how these  issues bear on climate policy, both on the mitigation and on the adaptation side of our response to  the challenge of climate change. Their general analysis is also directly relevant to the understanding  of SD and equity goals. This section briefly examines how the concepts reviewed in these chapters  shed light on the topic of the present chapter.   4.7.1    Risk and uncertainty in sustainability evaluation  The sustainability ideal seeks to minimize risks that compromise future human development  (Sections 4.2 and 4.5). This objective is less ambitious than maximizing an expected value of social  welfare over the whole future. It focuses on avoiding setbacks on development, and is therefore well  in line with Chapter 2 (Section 2.5.1) highlighting the difficulty of applying the standard decision  model based on expected utility in the context of climate policy. It is directly akin to the methods of  risk management listed there (Sections 2.5.2 2.5.7), in particular those focusing on worst case  scenarios. The literature on adaptation has similarly emphasized the concept of resilience, which is  the ability of a system to preserve its functions in a risky and changing environment (WGII Section  2.5 and Sections 20.2 20.6, Folke et al. (2010), Gallopin (2006)).  This chapter has reviewed the actors and determinants of support for policies addressing the climate  challenge (Sections 4.3 and 4.6). Among the relevant considerations, one must include how risk  perceptions shape the actors  understanding of threats to sustainability and willingness to take  action. Chapter 2 (Section 2.4) has described how framing and affective associations can be effective      53 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     and manipulative, how absence or presence of a direct experience of climate extremes makes  individuals distort probabilities, and how gradual changes are easy to underestimate.   Risk and uncertainty are also relevant to the dimension of equity, in relation to sustainability,  because various regions of the world and communities within those regions experience unequal  degrees of climate risk and uncertainty. Better information about the distribution of risks between  regions and countries would affect the policy response and negotiations. Lecocq and Shalizi (2007)  argue that the absence of information about the location and extent of impacts raises incentives for  mitigation, and Lecocq and Hourcade (2012) show that the optimal level of mitigation may also  increase.   Incorporating risk in the evaluation of sustainability of a development pathway is challenging and  has been analyzed in a small literature. In particular, Baumgärtner and Quaas (2009) and Martinet  (2011) propose to define thresholds for well being or for various natural or man made stocks and to  assess sustainability by the probability that thresholds will be crossed in the foreseeable future.  However, a decision maker may not find it sufficient to check that the risk of unsustainability is  below a given threshold, and may also want to know the likelihood of the bad scenarios and the  harm incurred by the population in these scenarios.   4.7.2    Socio economic evaluation  Chapter 3 has reviewed the principles of social and economic evaluation and equity in a general way.  In 3.6.1 it recalls that there is now a consensus that methods of cost benefit analysis that simply add  up monetary equivalent gains and losses are consistent and applicable only under very specific  assumptions (constant marginal utility of income and absence of priority for the worse off) which are  empirically dubious and ethically controversial. It is thus necessary to introduce weights in such  summations (see Eq. 3.6.2) that embody suitable ethical concerns and restore consistency of the  evaluation. Adler (2011) makes a detailed argument in favour of this  social welfare function   approach to cost benefit analysis. This approach is followed by Anthoff et al. (2009), refining  previous use of equity weights by Fankhauser et al. (1997) and Tol (1999). An advantage of a well specified methodology for the choice of equity weights is the ability to reach more precise  conclusions than when all possible weights are spanned. It also makes it possible to transparently  relate conclusions to ethical assumptions such as the degree of priority to the worse off.  Chapter 3 (Sections 3.2 3.4) describes the general concepts of social welfare and individual well being. In applications to the assessment of development paths and sustainability, empirical  measures are needed. Several methods are discussed in Stiglitz et al. (2009) and Adler (2011). In  particular, the capability approach (Sen, 2001, 2009) is well known for its broad measure of well being that synthesizes multiple dimensions of human life and incorporates considerations of  autonomy and freedom. Most applications of it do not directly rely on individual preferences (Alkire,  2010). Fleurbaey and Blanchet (2013) defend an approach that relies on individual preferences, in a  similar fashion as money metric utilities. Some authors (e.g., Layard et al. (2008)) even propose to  use satisfaction levels obtained from happiness surveys directly as utility numbers. This is  controversial because different individuals use different standards when they answer questions  about their satisfaction with life (Graham, 2009).  One reason why well being may be useful as a guiding principle in the assessment of sustainability,  as opposed to a more piecemeal analysis of each pillar, is that it helps evaluate the weak versus  strong sustainability distinction. As explained in Section 4.2, weak sustainability assumes that  produced capital can replace natural capital, whereas strong sustainability requires natural capital to  be preserved. From the standpoint of well being, the possibility to substitute produced capital for  natural capital depends on the consequences on living beings. If the well being of humans depends  directly on natural capital, if there is option value in preserving natural capital because it may have      54 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     useful properties that have yet to be discovered, or if non human living beings depend on natural  capital for their flourishing, this gives powerful reasons to support a form of strong sustainability.   Additionally, Chapter 3 (in particular Sections 3.3 and 3.5) mentions other aspects of equity that are  relevant to policy debates and international negotiations on climate responses. Chapter 3 discusses  these issues at the level of ethical principles, and given the importance of such issues in policy  debates about mitigation efforts, Section 4.6 develops how these principles have been applied to the  issue of burden sharing in climate regime.  4.8   Implications for subsequent chapters  The primary implication of this chapter as a framing for subsequent chapters is to underscore the  importance of explicitly scrutinizing the candidate mitigation technologies, measures, and policies  for their broader equity and sustainability implications. Indeed, the relevant stakeholders and  decision makers have various priorities, in particular regarding economic and human development,  which may align or conflict with prospective climate actions. Equitable and sustainable development  provides a broader overarching framework within which to examine climate strategies as one of the  multiple interacting challenges confronting society. Ultimately, it is a framework within which  society can consider the fundamental question of its development pathway.   4.8.1    Three levels of analysis of sustainability consequences of climate policy options  Various definitions and indicators of SD have been introduced in this chapter (in particular in  4.2,.4.5). This subsection offers a simple taxonomy of approaches for the assessment of  sustainability.  Long term evolution of the three pillars. The outcomes of climate policy options can generally be  observed in the three spheres related to the three pillars of SD: the economic, the social, and the  environmental sphere. Sustainability in the economy refers to the preservation of standards of living  and the convergence of developing economies toward the level of developed countries.  Sustainability in the social sphere refers to fostering the quality of social relations and reducing  causes of conflicts and instability, such as excessive inequalities and poverty, lack of access to basic  resources and facilities, and discriminations. Sustainability in the environmental sphere refers to the  conservation of biodiversity, habitat, natural resources, and to the minimization of ecosystem  impacts more generally.   Long term evolution of well being. The way the three spheres (and pillars) flourish can be viewed as  contributing to sustaining well being for humans as well as for other living creatures. Human well being depends on economic, social, and natural goods, and the other living beings depend on the  quality of the ecological system. It may therefore be convenient to summarize the multiple relevant  considerations by saying that the ultimate end result, for sustainability assessment, is the well being  of all living beings. Measuring well being is considered difficult for humans because there are  controversies about how best to depict individual well being, and about how to aggregate over the  whole population. However, as explained in Sections 3.4 and 4.7, many of the difficulties have been  exaggerated in the literature, and practical methodologies have been developed. Truly enough, it  still remains difficult to assess the well being of all living beings, humans and non humans together.   But, even if current methodologies fall short of operationalizing comprehensive measures of well being of that sort, it is useful for experts who study particular sectors to bear in mind that a narrow  notion of living standards for humans does not cover all the aspects of well being for the purposes of  assessing sustainability. It is also useful to try to assess how various interactions between the three  spheres can impact on well being. When there are tradeoffs between different aspects of the  economic, social, and ecological dimensions, one has to make an assessment of their relative  priorities. Well being is the overarching notion that helps thinking about such issues.      55 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Current  evolution of capacities. Sustainability can also be assessed in terms of capital or capacities,  as suggested by some indicators such as genuine savings (Section 4.2). Preserving the resources  transmitted to the future generation is a key step in guaranteeing a sustainable path. Again, it is  useful to think of the capacities underlying the functioning of the three spheres: economic, social,  environmental. The economic sphere needs various forms of productive capital and raw materials,  infrastructures, and a propitious environment, but also human capital, institutions, governance, and  knowledge. The social sphere needs various forms of institutions and resources for sharing goods  and connecting people, which involve certain patterns of distribution of economic resources,  transmission of knowledge, and forms of interaction, coordination, and cooperation. The ecological  sphere needs to keep the bases of its health, including habitat, climate, and biological integrity. In  general, climate policy options can affect capacities in all of these spheres, to varying degrees.   4.8.2    Sustainability and equity issues in subsequent chapters  As discussed in this chapter (Sections 4.2 and 4.5), sustainability is a property of a development  pathway as a whole. And some of the literature reviewed in the subsequent chapters (6 16) actually  discusses development pathways and the sustainability thereof. In addition, Chapters 6 16 discuss  individual issues relevant to SD and equity. Based on a detailed description of SD and equity issues  (rooted in the  three pillars  approach for SD, see Section 4.8.1), this section provides a map and a  reader s guide for the report from the SD and equity perspective. Table 4.1 shows where those  issues are addressed throughout the report. It is supplemented in this section by a brief outline of  how each chapter from 6 16 deals with them.  The present section is broader than, and a complement to, Section 6.6 and Table 6.5, which sum up  and discuss key co benefits and adverse side effects in chapters 7 12. It is broader in two ways.  First, the present section covers all chapters, not just the sectoral chapters. Second, the present  section reviews not only where co benefits and adverse side effects are discussed (the  development in the climate lens  approach as in Sathaye et al. (2007)), but also where the  implications of key development policies for mitigation and mitigative capacity are discussed  ( climate in the development lens ), and where integrated development paths, including but not  limited to climate mitigation, are analyzed. On the other hand, Section 6.6 and Table 6.5 provide a  more detailed description of many sorts of co benefits and adverse side effects (not all of which  directly bear on SD).   The review conducted in the present section leads to three key messages. First, SD and equity issues  are pervasive throughout the chapters, reflecting growing literature and attention paid to the topic.  Second, a large part of the discussion remains framed within the framework of co benefits and  adverse side effects. Although extremely important and useful, it has been noted above (Section 4.2)  that co benefits and adverse side effects are only a building block towards a full SD assessment    which is about integrating the different dimensions in a comprehensive pathway framework. Third,  while some topics, such as health co benefits and adverse side effects associated with mitigation  policies, appear already well covered in the literature, others remain scarcely addressed. In  particular, distributional issues (both distributional implications of mitigation policies and  implications of different distributional settings for climate policies), employment, and social  cohesiveness, have limited coverage   despite being among the key SD goals that policymakers will  consider.  The following paragraphs briefly describe how each chapter (from 5 to 16) deals with SD and equity  issues. Chapter 5 analyzes the drivers of GHG emissions, and many of these drivers have to do with  basic characteristics of the development pathway (population, economic growth, behaviours,  technology) that impact sustainability perspectives (5.3, 5.5, 5.6). It also provides a brief overview of  co benefits (in particular in health) and adverse side effects (5.7) and takes a system perspective to  understand the linkages between emissions and the various drivers (5.8)   such a systemic view is  congenial to the comprehensive approach to SD discussed in 4.2.      56 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Chapter 6 analyzes distributional consequences of different international burden sharing regimes  (6.3.6.6). This chapter also highlights the contrast between the literature suggesting that mitigation  might increase the rural urban gap and deteriorate the living standards of large sections of the  population in developing countries, and the SD literature stating that policy and measures aligned to  development  and  climate  objectives can deliver substantial co benefits [Box 6.2]. Section. 6.5.2  discusses underlying factors that enable or prevent mitigation. Section 6.6.1 summarizes Chapters  7 12 information on co benefits and adverse side effects, while 6.6.2 attempts to link  transformation pathway studies with other key development priorities, including air pollution and  health (6.6.2.1), energy security (6.6.2.2), energy access (6.6.2.3), employment (6.6.2.4), biodiversity  (6.6.2.5), water use (6.6.2.6). Section 6.6.2.7 reviews scenario studies analyzing the interactions  between mitigation, air quality, and energy security objectives.      57 of 114     Final Draft       EQUITY  Distribution (within and between countries and  generations)  Procedural equity (Participation / involvement,  including institutional issues)  ECONOMIC  Employment  Standards of living  Financing  Innovation  Path dependence and lock ins  Energy Security  SOCIAL  Poverty (alleviation)  Access to and affordability of basic services  Food security  Education and learning  Health  Displacements  Quality of life  Gender Impacts  ENVIRONMENTAL  Ecosystem impacts and biodiversity conservation  5    5.3.3  6    6.3.6.6  7    7.9.1  8    Chapter 4    IPCC WGIII AR5   Table 4.1. Overview of SD and equity issues as addressed in Chapters 5 16 of the WGIII AR5 report. 9    9.7.1  10      11    11.7.1  11.7.1 11.8.2  11.9.3    11.7.1 11.13.6  11.7.1  11.7.1  11.3.1 11.13.6  11.3.2  11.13.6    11.7.1 11.8.1  11.13.6  11.A.6  11.7.1 11.13.6/7    11.7.1 11.13.6  11.7.1  11.13.6  11.A.6  11.7  11.13.5    11.7.2 11.13.6/7  12    12.6  12.5.2.3  12.6.1    12.4.2 12.5.2.1  12.5.2.1  12.6.2  12.2.1.3  12.3.2.1 12.4.1  12.8.2      12.4.2.4 12.5.2.1      12.8.1 12.8.3/4    12.8.2/3      12.5.1 12.8.1/4  13    13.2.2.3 13.4.2.4  13.13.1.2  13.2.2.4        13.11.1  13.9              13.10              14    14.1.3  15    15.5.2.3  15.5.2.4  15.2.1          15.6              15.10            15.5.6  16      8.10.1      5.7.2  5.3.3    5.6.1  5.6.3  5.3.4        5.3.5 5.7.2    5.7.1          5.7.2  6.3.6.6    6.6.2.4  6.3.1.2    6.5.1  6.3.6.4 6.4.3  6.6.2.2    6.6.2.3  6.6.2.3  6.3.5    6.6.2.1          6.6.2.6      7.9.1  7.10.2  7.10.2  7.9.1  7.9,1 7.10.5  7.9.1    7.9,1  7.10.3  7.9.1   7.9.4  7.9.1  7.9.2; 7.9.3 7.9.4  7.9.4  7.9.1 (Box)   7.9.2      8.7.1  8.2.2.1    8.7.3  8.4  8.7.1    8.7.1  8.7.1       8.7.1    8.7.1      8.7.1      9.7.2.1  9.7.2.5  9.10.3.3    9.4.3  9.7.2.2    9.7.2.5  9.7.1      9.7.3.1 9.7.3.2    9.7.1  9.7.1    9.7.1      10.8.1  10.8.1    10.8.4    10.8.1            10.8.1  10.8.1  10.8.1      10.8.1      14.1.3    14.3.7 14.4.4  14.3.6  14.3.2  14.4.3    14.1.3  14.3.2.1                 14.3.5          16.8                16.3                  58 of 114     Final Draft       Water, soils, and other natural resources  5  5.5.2  6  6.6.2.5  7  7.9.2; 7.9.3 8  Chapter 4    IPCC WGIII AR5   9  9.7.3.3  10  10.8.1  11  11.7.2 11.8.3  11.13.6  12  12.6.1  12.8.4  13    14    15    16    8.7.2      59 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Chapter 7 reviews the literature on the co benefits, risks, and spillovers of mitigation in the energy  sector, with emphasis on employment, energy security and energy access (7.9.1), and health and  environmental issues (7.9.2 and 7.9.3). It also puts energy mitigation options into a broader  development context, notably by examining how special mechanisms such as microfinance can help  lifting rural populations out of the energy poverty trap and increase the deployment of low carbon  energy technologies (7.10.2). It stresses that poverty itself is shaping energy systems in Least  Developed Countries (LDCs) and creating obstacles (e.g., legal barriers, or vandalism, in informal  settlements) to the distribution of electricity (7.10.3). It also highlights the implications of the long  life duration of energy supply fixed capital stock (7.10.5).  Chapter 8 emphasizes the importance of the transport sector both for human development and for  mitigation (8.1.1). There are many potential co benefits associated with mitigation actions in the  transport sector, with respect to equitable mobility access, health and local air pollution, traffic  congestion, energy security, and road safety (8.7.1). It is, however, difficult to assess the social value  of such benefits, and there are risks and uncertainties (8.7.2). The chapter analyzes the special  uncertainties and concerns of developing countries, where efforts are made to develop or improve  institutional effectiveness to support integrated planning (involving transportation, land use, energy,  agriculture and public health authorities) that uses transportation as a driver for developing  economic and social resilience (8.9.3). Finally, Chapter 8 mentions the concerns with market based  policies having differential impacts across population groups (8.10.1).  Chapter 9 lists the co benefits and adverse side effects associated with buildings, notably in terms of  employment (9.7.2.1), energy security (9.7.2.2), fuel poverty alleviation (9.7.2.5), and health (9.7.3.1  and 9.7.3.2). Detailed analysis is also conducted on path dependence and lock in effects associated  with the building stock (9.4.2) and with financing issues, as they relate to the particular situations of  developing countries (9.10.3).  Chapter 10 discusses the co benefits and adverse side effects associated with mitigation actions in  the industry sector, focusing mostly on macroeconomic and health benefits (10.8.1). The chapter  also focuses on employment impacts of eco innovation and investment, noting that substantial  impacts require job support mechanisms, and that the distributional effects of these policies and  across different countries remain unclear (10.10.2).   Chapter 11 frames the discussion of mitigation options in the Agriculture, Forestry, and Land Use  (AFOLU) sector within a systemic development context (11.4.1). It thoroughly examines the socio economic impacts of changes in land use (11.7.1). Increasing land rents and food prices due to a  reduction in land availability for agriculture, and increasing inequity and land conflicts are serious  concerns (11.7.1). Special care for small holders and equity issues, including gender, should  accompany mitigation projects (Box 11.5). Bioenergy deployment can have strong distributional  impacts, mediated by global market dynamics, including policy regulations and incentives, the  production model and deployment scale, and place specific factors such as land tenure security,  labour and financial capabilities. It can raise and diversify farm incomes and increase rural  employment, but can also cause smallholders, tenants and herders to lose access to productive land,  while other social groups such as workers, investors, company owners, biofuels consumers, would  benefit (bioenergy appendix).  Chapter 12 naturally adopts a systemic perspective in dealing with human settlements (12.1, 12.4,  12.5.1), and discusses procedural equity issues in the context of city governance (12.6). It notes that  a high density city, depending heavily upon land based public private financing, faces issues of real  estate speculation and housing affordability (12.6.2). Adapted tax policies can help integrate market  incentives with policy objectives such as sustainable transit financing, affordable housing, and  environmental protection. Section 12.8 focuses more specifically on the co benefits of mitigation  options in human settlements, notably in terms of improved health, but also regarding quality of life  (noise, urban heat island effect) and energy security and efficiency.      60 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Chapter 13 provides a detailed examination of various international agreements and mechanisms  through the lens of distributional impacts, noting the complex interaction between equity and  participation in voluntary cooperation processes (13.2). The chapter discusses the distributional  impacts of the Kyoto Protocol as well as various proposals for multilateral systems (global permit  market, global tax, technology oriented schemes) (13.13.2), linkages (13.7.2), and more  decentralized initiatives such as trade sanctions (13.8) and geo engineering (13.4.4). Chapter 13  further discusses advantages and limitations of linking negotiations on mitigation and negotiations  on other development objectives (13.3.3). Links with policies and institutions related to other  development goals are not discussed, except for relationships between mitigation and international  trade regulation (13.8). Finally, human rights and rights of nature are discussed in so far as they  might support legal challenges to greenhouse gases emissions (13.5.2.2).  Chapter 14 firmly embeds its analysis of climate policies at the regional level within the context of  possible development paths, highlighting significant regional differences (14.1.2, 14.1.3). Given  heterogeneity of capacities between countries, it argues that regional cooperation on climate  change can help to foster mitigation that considers distributional aspects. In particular, high  inequalities in poor regions raise difficult distributional questions regarding the costs and benefits of  mitigation policies (14.1.3). Mitigation opportunities are discussed in the context of the broader  development objectives, with regard to energy access (14.3.2), urbanization (14.3.3), consumption  patterns (14.3.4), agriculture and land use (14.3.5), and technological development (14.3.6).  Relationships between mitigation options and regional trade agreements not a development  objective per se but an instrument for achieving economic growth are also examined (14.4.2).  Finally, Chapter 14 examines the geographical concentration of CDM projects (14.3.7).  In analyzing policies at the national and subnational level, Chapter 15 provides a detailed analysis of  the relationships between climate change mitigation and other development goals. While it notes  the practical importance of co benefits in the design of climate policies (15.2.2), it also shows that  certain measures set up with primarily other development objectives have important implications  for climate change mitigation, either directly in terms of emission reductions, or indirectly in terms  of provision of public goods necessary for mitigation policies to be effective (15.3.4, 15.5.2, 15.5.6).   In addition, the chapter highlights the importance of designing policy packages that jointly address  different development objectives, and discusses in depth the opportunities but also the difficulties  of such association (15.7.2, 15.11.3). Chapter 15 insists on the fact that whether a policy is adopted  or not, and what outcome it finally has strongly depends on local circumstances (notably  institutions), and on the process by which the decision is made (15.8.2, 15.9). Finally, this chapter  notes that while the distributional incidence of taxes has been studied quite extensively, much less is  known about the distributional incidence of other policies (15.13).  Availability of resources for investment is critical for supporting any development path. The  literature reviewed in Chapter 16 notes that there are barriers to investment in many countries, not  specific to mitigation   although mitigation activities have specific characteristics (size, perceived  risks, etc.) that make their financing even more difficult (16.8). However, Chapter 16 notes that the  literature on financing remains limited, and focuses quite narrowly on energy mitigation policies.  There is very little evaluation, both at the micro and macro level, of how investment flows in other  sectors (such as transportation or housing), could be redirected in relation with mitigation.  4.9   Gaps in knowledge and data   The current literature and data in the area of sustainable development and equity has gaps that  could be better addressed. The points below highlight questions and connections that may serve as  openings for future research.        61 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     The relationship between countries  human capital levels and their national and  international engagement in climate change policy would benefit from additional studies.   There are many open questions about how developing countries can best pull together the  resources and capabilities to achieve SD and mitigation objectives and how to leverage  international cooperation to support this process.  Not much is known about the desirability and feasibility of various economic and policy   frameworks for the compensation of foregone benefits from exploiting fossil fuels in  resource rich countries.   In the efforts made toward an evaluation of funding necessary to implement UNFCCC  mitigation and adaptation activities, harmonized and clear methodologies and processes are  still missing as a basis for accurate estimates.   It is still difficult to assess the unrealized potential for reducing the environmental impact of  economic activity and to understand how this potential can be realized.   For technology transitions, knowledge remains insufficient for a comparative assessment of  alternative innovation and diffusion systems and an assessment of the interplay between  property rights, markets and government action, taking account of local circumstances and  constraints.  The relative importance in a SD transition of changes in values, as opposed to standard  economic instruments influencing behaviours and economic activity, remains hard to assess.   Not much is known about the relative potential of frugality (lifestyles and consumption  patterns involving lower expenditures on goods and services) versus ecologically conscious  behaviour (lifestyles and consumption patterns involving fewer material resources and less  environmental harm without necessarily reducing expenditure) for promoting SD and equity.  The non economic motivations for climate friendly behaviours are not well understood,  particularly with regard to the respective role of social considerations or values (e.g.  universalism regarding fellow human beings) versus ecological considerations (universalism  regarding the environment), and the extent to which these drivers can be separated.  The predictive power of values regarding ecologically conscious consumer behaviour is often  low, typically less than 20%, due to a range of factors operating at different levels. The  causes of this  value action gap  regarding, especially, behaviours that increase or limit GHG  emissions are not well understood.  The measurement of well being, for the purpose of public policy, remains a controversial  field, which suggests a need to further explore the potential uses of subjective data, and also  seek ways to improve the quality of data on well being.   The empirical economic models used in the context of climate policy could substantially  improve by integrating transition issues (short medium term) into long term analysis, and  also by adopting a sequential structure compatible with the resolution of uncertainty over  time.  The current methodologies for the construction of scenarios do not yet deliver sufficiently  detailed and sufficiently long term data in order to assess development paths at the bar of  sustainability and equity. The studies of SD impacts of sectoral measures in terms of co benefits are seldom integrated into a comprehensive assessment of sustainability of the  general development path.  A better understanding of the distributional impacts of prospective climate policies would  provide guidance for designing equitable policies, and insight into the present political  economic landscape wherein some actors support climate action and others oppose it.      62 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   4.10   Frequently Asked Questions  FAQ 4.1 Why does the IPCC need to think about sustainable development?   Climate change is one among many (some of them longstanding) threats to SD, such as the depletion  of natural resources, pollution hazards, inequalities, or geopolitical tensions. As policymakers are  concerned with the broader issues of SD, it is important to reflect on how climate risks and policies  fit in the general outlook. This report studies the interdependence between policy objectives via the  analysis of co benefits and adverse side effects. More broadly, it examines how climate policy can be  conceived as a component of the transition of nations toward SD pathways (Sections 4.2, 4.6, 4.8).  Many factors determine the development pathway. Among the main factors that can be influenced  by policy decisions, one can list governance, human and social capital, technology, and finance.  Population size, behaviours and values are also important factors. Managing the transition toward  SD also requires taking account of path dependence and potential favourable or unfavourable lock ins (e.g., via infrastructures), and attention to the political economy in which all of these factors are  embedded (Sections 4.3, 4.4, 4.5).  FAQ 4.2 The IPCC and UNFCCC focus primarily on GHG emissions within countries. How can  we properly account for all emissions related to consumption activities, even if these  emissions occur in other countries?   For any given country, it is possible to compute the emissions embodied in its consumption or those  emitted in its productive sector. The consumption based framework for GHG emission accounting  allocates the emissions released during the production and distribution (i.e., along the supply chain)  of goods and services to the final consumer and the nation (or another territorial unit) in which they  resides, irrespective of the geographical origin of these products. The territorial or production based  framework allocates the emissions physically produced within a nation s territorial boundary to that  nation. The difference in emissions inventories calculated based on the two frameworks are the  emissions embodied in trade. Consumption based emissions are more strongly associated with GDP  than are territorial emissions. This is because wealthier countries satisfy a higher share of their final  consumption of products through net imports compared to poorer countries. (Section 4.4)  FAQ 4.3 What kind of consumption has the greatest environmental impact?  The relationship between consumer behaviours and their associated environmental impacts is well  understood. Generally, higher consumption lifestyles have greater environmental impact, which  connects distributive equity issues with the environment. Beyond that, research has shown that food  accounts for the largest share of consumption based GHG emissions (carbon footprints) with nearly  20% of the global carbon footprint, followed by housing, mobility, services, manufactured products,  and construction. Food and services are more important in poor countries, while mobility and  manufactured goods account for the highest carbon footprints in rich countries. (Section 4.4)  FAQ 4.4 Why is equity relevant in climate negotiations?  The international climate negotiations under the UNFCCC are working toward a collective global  response to the common threat of climate change. As with any cooperative undertaking, the total  required effort will be allocated in some way among countries, including both domestic action and  international financial support. At least three lines of reasoning have been put forward to explain  the relevance of equity in allocating this effort: (1) a moral justification that draws upon widely  applied ethical principles, (2) a legal justification that appeals to existing treaty commitments and  soft law agreements to cooperate on the basis of stated equity principles, and (3)  an effectiveness justification that argues that an international collective arrangement that  is perceived to be fair has greater legitimacy and is more likely to be internationally agreed and  domestically implemented, reducing the risks of defection and a cooperative collapse. (Sections 4.2,  4.6)      63 of 114     Final Draft       Chapter 4  IPCC WGIII AR5   References  Adger W.N. (2003). Social capital, collective action, and adaptation to climate change, Economic  Geography 79 387 404 pp. (ISSN: 0013 0095).  Adger W.N. (2006). Fairness in Adaptation to Climate Change. MIT Press, 337 pp., (ISBN:  9780262012270). .  Adger W.N., K. Brown, D.R. Nelson, F. Berkes, H. Eakin, C. Folke, K. Galvin, L. Gunderson, M.  Goulden, K. O Brien, J. Ruitenbeek, and E.L. Tompkins (2011). Resilience implications of policy  responses to climate change, Wiley Interdisciplinary Reviews: Climate Change 2 757 766 pp. (DOI:  10.1002/wcc.133), (ISSN: 17577799).  Adger W.N., and A. Jordan (2009). Sustainability: exploring the processes and outcomes of  governance. In: Governing Sustainability. Cambridge University Press, Cambridge pp.3 31(ISBN:  9780521732437).  Adger W.N., I. Lorenzoni, and K. O Brien (2009). Adapting to Climate Change. Thresholds, Values,  Governance. Cambridge University Press, Cambridge (GBR), 514 pp., (ISBN: 9780521764858). .  Adler M. (2011). Well Being and Fair Distribution : Beyond Cost Benefit Analysis. Oxford University  Press, New York, (ISBN: 9780195384994). .  AEIC (2010). A Business PIan for Americas Energy Future. American Energy Innovation Council.  Agarwal A., and S. Narain (1991). Global Warming in an Unequal World: A Case of Environmental  Colonialism. Centre for Science and the Environment.  Agyeman J., and B. Evans (2004).  Just sustainability : the emerging discourse of environmental  justice in Britain?, Geographical Journal 170 155 164 pp. (DOI: 10.1111/j.0016 7398.2004.00117.x),  (ISSN: 1475 4959).  Ahuvia A.C., and D.C. Friedman (1998). Income, Consumption, and Subjective Well Being: Toward a  Composite Macromarketing Model, Journal of Macromarketing 18 153  168 pp. (DOI:  10.1177/027614679801800207).  Aitken M. (2012). Changing climate, changing democracy: a cautionary tale, Environmental Politics  21 211 229 pp. .  Akimoto K., F. Sano, A. Hayashi, T. Homma, J. Oda, K. Wada, M. Nagashima, K. Tokushige, and T.  Tomoda (2012). Consistent assessments of pathways toward sustainable development and climate  stabilization, Natural Resources Forum n/a n/a pp. (DOI: 10.1111/j.1477 8947.2012.01460.x), (ISSN:  1477 8947).  Akyüz Y. (2012). Key Issues in the Organisation of and Government Intervention in Finance to  Developing Countries: Lessons from Recent Experiences, South Centre Policy Brief Number 14. .  Available at: http://www.southcentre.int/wp content/uploads/2013/06/PB14_National Financial Policy_EN.pdf.  Alkire S. (2010). Human Development: Definitions, Critiques, and Related Concepts. UNDP. . Available  at: http://hdr.undp.org/sites/default/files/hdrp_2010_01.pdf.      64 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Altieri M.A., and C.I. Nicholls (2013). The adaptation and mitigation potential of traditional  agriculture in a changing climate. 1 pp. Available at:  http://download.springer.com/static/pdf/926/art%253A10.1007%252Fs10584 013 0909 y.pdf?auth66=1391853737_3541d2d72e48128788ea7ac7e3e49b46&ext=.pdf.  Aminzadeh S.C. (2006). Moral Imperative: The Human Rights Implications of Climate Change, A,  Hastings International and Comparative Law Review 30 231 pp. . Available at:  http://heinonline.org/HOL/Page?handle=hein.journals/hasint30&id=243&div=&collection=journals.  Andreassen B.A., and S.P. Marks (Eds.) (2007). Development As a Human Right: Legal, Political, and  Economic Dimensions. FXB Center for Health and Human Rights, 350 pp., (ISBN: 0674021215). .  Anthoff D., C. Hepburn, and R.S.J. Tol (2009). Equity weighting and the marginal damage costs of  climate change, Ecological Economics 68 836 849 pp. (DOI: 10.1016/j.ecolecon.2008.06.017), (ISSN:  09218009).  Arbuckle Jr. J.G., L.W. Morton, and J. Hobbs (2013). Farmer beliefs and concerns about climate  change and attitudes toward adaptation and mitigation: Evidence from Iowa, Climatic Change 118  551 563 pp. (DOI: 10.1007/s10584 013 0700 0), (ISSN: 01650009).  Armitage D., F. Berkes, A. Dale, E. Kocho Schellenberg, and E. Patton (2011). Co management and  the co production of knowledge: Learning to adapt in Canada s Arctic, Global Environmental Change  21 995 1004 pp. (DOI: 10.1016/j.gloenvcha.2011.04.006), (ISSN: 0959 3780).  Aronsson T., P. O. Johansson, and K. G. Löfgren (1997). Welfare Measurement, Sustainability, and  Green National Accounting : A Growth Theoretical Approach. Edward Elgar Pub., Cheltenham   UK ;Brookfield  Vt.  US, (ISBN: 9781858984858). .  Arrow K.J., P. Dasgupta, L.H. Goulder, K.J. Mumford, and K. Oleson (2012). Sustainability and the  measurement of wealth, Environment and Development Economics 17 317 353 pp. (DOI:  10.1017/S1355770X12000137).  Arrow K.J., William R. Cline, Karl Goran Maler, Mohan Munasinghe, R. Squitieri, and Joseph E.  Stiglitz (1996). Intertemporal Equity, Discounting, and Economic Efficiency. In: Climate Change 1995:  Economic and Social Dimensions of Climate Change, Contribution of Working Group III to the Second  Assessment Report of the Intergovernmental Panel on Climate Change [J.P. Bruce, H. Lee, E.F. Haites  (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA pp.125 144.  Available at: http://www.ipcc.ch/ipccreports/sar/wg_III/ipcc_sar_wg_III_full_report.pdf.  Arthur W.B. (1989). Competing Technologies, Increasing Returns, and Lock In by Historical Events,  The Economic Journal 99 116 131 pp. (ISSN: 00130133).  Asheim G. (2007). Justifying, Characterizing, and Indicating Sustainability. Springer, Dordrecht, the  Netherlands, 269 pp., (ISBN: 9781402061998). .  Asheim G.B., W. Buchholz, and B. Tungodden (2001). Justifying Sustainability, Journal of  Environmental Economics and Management 41 252 268 pp. (DOI: 10.1006/jeem.2000.1137), (ISSN:  0095 0696).  Asheim G., T. Mitra, and B. Tungodden (2012). Sustainable recursive social welfare functions,  Economic Theory 49 267 292 pp. .      65 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Assadourian E. (2010). Transforming Cultures: From Consumerism to Sustainability, Journal of  Macromarketing 30 186  191 pp. (DOI: 10.1177/0276146710361932).  Atkinson A.B. (1970). On the measurement of inequality, Journal of Economic Theory 2 244 263  pp. .  Attfield R. (Ed.) (2008). The Ethics of the Environment. Ashgate, Farnham, England ; Burlington, VT,  620 pp., (ISBN: 9780754627869). .  Ayres R.U., and E.H. Ayres (2009). Crossing the Energy Divide: Moving from Fossil Fuel Dependence  to a Clean Energy Future. Wharton School Publishing, Upper Saddle River, NJ, USA, 254 pp., (ISBN:  9780137039012). .  Baer P. (2006). Adaptation: Who Pays Whom? In: Fairness in Adaptation to Climate Change. W.N.  Adger, (ed.), MIT Press, Cambridge, MA; London, UK(ISBN: 9780262012270).  Baer P. (2013). Who should pay for climate change?  Not me , Chicago Journal of International Law  13 508 523 pp. .  Baer P., T. Athanasiou, S. Kartha, and E. Kemp Benedict (2010). Greenhouse Development Rights: A  Framework for Climate Protection that is  More Fair  than Equal per Capita Emissions Rights. In:  Climate Ethics: Essential Readings. S.M. Gardiner, S. Caney, D. Jamieson, H. Shue, (eds.), Oxford  University Press, New York pp.215 230(ISBN: 9780195399622).  Baer P., S. Kartha, T. Athanasiou, and E. Kemp Benedict (2009). The Greenhouse Development  Rights Framework: Drawing Attention to Inequality within Nations in the Global Climate Policy  Debate, Development and Change 40 1121 1138 pp. (DOI: 10.1111/j.1467 7660.2009.01614.x),  (ISSN: 1467 7660).  Bakam I., B.B. Balana, and R. Matthews (2012). Cost effectiveness analysis of policy instruments for  greenhouse gas emission mitigation in the agricultural sector, Journal of Environmental  Management 112 33 44 pp. (DOI: 10.1016/j.jenvman.2012.07.001), (ISSN: 0301 4797).  Balsiger J., and B. Debarbieux (2011). Major challenges in regional environmental governance  research and practice, Procedia   Social and Behavioral Sciences 14 1 8 pp. (DOI:  10.1016/j.sbspro.2011.03.010), (ISSN: 1877 0428).  Bamberg S., and G. Möser (2007). Twenty years after Hines, Hungerford, and Tomera: A new meta analysis of psycho social determinants of pro environmental behaviour, Journal of Environmental  Psychology 27 14 25 pp. (DOI: 10.1016/j.jenvp.2006.12.002), (ISSN: 0272 4944).  Banai A., M. Ronzoni, and C. Schemmel (2011). Social Justice, Global Dynamics. Theoretical and  Empirical Perspectives. Routledge, Oxon, 238 pp., (ISBN: 978 0415575690). .  Bankoff G., G. Frerks, and D. Hilhorst (2004). Mapping Vulnerability. Disastres, Development &  People. Earthscan, London, 236 pp., (ISBN: 1853839647). .  Banuri T. (2009). Climate change and sustainable development, Natural Resources Forum 33 257 258 pp. (DOI: 10.1111/j.1477 8947.2009.01270.x), (ISSN: 01650203).  Barbier E. (2011). The policy challenges for green economy and sustainable economic development,  Natural Resources Forum 35 233 245 pp. (DOI: 10.1111/j.1477 8947.2011.01397.x), (ISSN:  01650203).      66 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     De Barcellos M.D., A. Krystallis, M.S. de Melo Saab, J.O. Kügler, and K.G. Grunert (2011).  Investigating the gap between citizens  sustainability attitudes and food purchasing behaviour:  empirical evidence from Brazilian pork consumers, International Journal of Consumer Studies 35  391 402 pp. (DOI: 10.1111/j.1470 6431.2010.00978.x), (ISSN: 1470 6431).  Bark R.H., D.E. Garrick, C.J. Robinson, and S. Jackson (2012). Adaptive basin governance and the  prospects for meeting Indigenous water claims, Environmental Science & Policy 19 20 169 177 pp.  (DOI: 10.1016/j.envsci.2012.03.005), (ISSN: 1462 9011).  Barker T., and S. Serban Scrieciu (2010). Modeling Low Climate Stabilization with E3MG: Towards a  New Economics  Approach to Simulating Energy Environment Economy System Dynamics, The  Energy Journal 31 137 164 pp. (DOI: 10.5547/ISSN0195 6574 EJ Vol31 NoSI 6), (ISSN: 01956574).  Barr S. (2006). Environmental action in the home: Investigating the  value action  gap, Geography 91  43 54 pp. . Available at:  http://www.jstor.org/discover/10.2307/40574132?uid=2944120&uid=3737864&uid=2134&uid=212 9&uid=2&uid=70&uid=3&uid=2927840&uid=67&uid=62&uid=5910216&sid=21103328704377.  Barrett S. (2005). Environment And Statecraft: The Strategy of Environmental Treaty Making. Oxford  University Press, 460 pp., (ISBN: 9780199286096). .  Barton J.R. (2013). Climate Change Adaptive Capacity in Santiago de Chile: Creating a Governance  Regime for Sustainability Planning, International Journal of Urban and Regional Research 37 1865 2242 pp. (DOI: 10.1111/1468 2427.12033).  Baumgärtner S., and M.F. Quaas (2009). Ecological economic viability as a criterion of strong  sustainability under uncertainty, Ecological Economics 68 2008 2020 pp. (DOI:  10.1016/j.ecolecon.2009.01.016), (ISSN: 09218009).  Baumol W.J. (2002). The Free Market Innovation Machine: Analyzing the Growth Miracle of  Capitalism. Princeton University Press, New Jersey, NJ, USA, 348 pp., (ISBN: 9780691096155). .  Bazilian M., P. Nussbaumer, E. Haites, M.I. Levi, M. Howells, and K.K. Yumkella (2010).  Understanding the Scale of Investment for Universal Energy Access, Geopolitics of Energy 32 21 42  pp. .  Bebbington A. (1999). Capitals and capabilities: A framework for analyzing peasant viability, rural  livelihoods and poverty, World Development 27 2021 2044 pp. (DOI: 10.1016/S0305 750X(99)00104 7), (ISSN: 0305 750X).  Beg N., J.C. Morlot, O. Davidson, Y. Afrane Okesse, L. Tyani, F. Denton, Y. Sokona, J.P. Thomas, E.L.  La Rovere, J.K. Parikh, K. Parikh, and A. Atiq Rahman (2002). Linkages between climate change and  sustainable development, Climate Policy 2 129 144 pp. (DOI: 10.1016/S1469 3062(02)00028 1),  (ISSN: 1469 3062).  Bejan A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the  generation of flow architecture, International Journal of Energy Research 26 0 43 pp. (DOI:  10.1002/er.804), (ISSN: 1099 114X).  Bell R., S. Taylor, and M. Marmot (2010). Global Health Governance: Commission on Social  Determinants of Health and the Imperative for Change, The Journal of Law, Medicine & Ethics 38  470 485 pp. (DOI: 10.1111/j.1748 720X.2010.00506.x), (ISSN: 1748 720X).      67 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Benvenisti E., and G.W. Downs (2007). The Empire s New Clothes: Political Economy and the  Fragmentation of International Law, Stanford Law Review 60 595 631 pp. . Available at:  http://papers.ssrn.com/abstract=976930.  Bergek A., S. Jacobsson, B. Carlsson, S. Lindmark, and A. Rickne (2008). Analyzing the functional  dynamics of technological innovation systems: A scheme of analysis, Research Policy 37 407 429 pp.  (DOI: 10.1016/j.respol.2007.12.003), (ISSN: 0048 7333).  Berkhout F. (2012). Adaptation to climate change by organizations, Wiley Interdisciplinary Reviews:  Climate Change 3 91 106 pp. (DOI: 10.1002/wcc.154), (ISSN: 17577780).  Bhander G.S., M. Hauschild, and T. McAloone (2003). Implementing life cycle assessment in product  development, Environmental Progress 22 255 267 pp. (DOI: 10.1002/ep.670220414), (ISSN: 1547 5921).  Biermann F. (2007).  Earth system governance  as a crosscutting theme of global change research,  Global Environmental Change Human and Policy Dimensions 17 326 337 pp. (DOI:  10.1016/j.gloenvcha.2006.11.010), (ISSN: 0959 3780).  Biermann F., K. Abbott, S. Andresen, K. Backstrand, S. Bernstein, M.M. Betsill, H. Bulkeley, B.  Cashore, J. Clapp, C. Folke, A. Gupta, J. Gupta, P.M. Haas, A. Jordan, N. Kanie, T. Kluvankova Oravska, L. Lebel, D. Liverman, J. Meadowcroft, R.B. Mitchell, P. Newell, S. Oberthur, L. Olsson, P.  Pattberg, R. Sanchez Rodriguez, H. Schroeder, A. Underdal, S. Camargo Vieira, C. Vogel, O.R.  Young, A. Brock, and R. Zondervan (2012). Navigating the Anthropocene: Improving Earth System  Governance, Science 335 1306 1307 pp. (DOI: 10.1126/science.1217255), (ISSN: 0036 8075).  Biermann F., M.M. Betsill, J. Gupta, N. Kanie, L. Lebel, D. Liverman, H. Schroeder, and B.  Siebenhüner (2009). Earth System Governance: People, Places and the Planet. Science and  Implementation Plan of the Earth System Governance Project. Earth System Governance Report 1,  IHDP Report 20. International Human Dimensions Programme, Bonn.  Biesbroek G.R., R.J. Swart, and W.G.M. van der Knaap (2009). The mitigation adaptation  dichotomy and the role of spatial planning, Habitat International 33 230 237 pp. (DOI:  10.1016/j.habitatint.2008.10.001), (ISSN: 0197 3975).  Bizikova L., J. Robinson, and S. Cohen (2007). Linking climate change and sustainable development  at the local level, Climate Policy 7 271 277 pp. .  Bjorvatn K., M.R. Farzanegan, and F. Schneider (2012). Resource Curse and Power Balance:  Evidence from Oil Rich Countries, World Development 40 1308 1316 pp. (DOI:  10.1016/j.worlddev.2012.03.003), (ISSN: 0305 750X).  Black I. (2010). Sustainability through anti consumption, Journal of Consumer Behaviour 9 403 411  pp. (DOI: 10.1002/cb.340), (ISSN: 1479 1838).  Blalock G., and P.J. Gertler (2009). How firm capabilities affect who benefits from foreign  technology, Journal of Development Economics 90 192 199 pp. (DOI:  10.1016/j.jdeveco.2008.11.011), (ISSN: 0304 3878).  Le Blanc D. (2010). Sustainable consumption and production: Policy efforts and challenges, Natural  Resources Forum 34 1 3 pp. (DOI: 10.1111/j.1477 8947.2010.01292.x), (ISSN: 1477 8947).      68 of 114     Final Draft   Chapter 4      Bloom D.E. (2011). Seven billion and counting, Science 333 562 569 pp. .  IPCC WGIII AR5   Bloom D.E., and D. Canning (2000). Public health   The health and wealth of nations, Science 287  1207 + pp. (DOI: 10.1126/science.287.5456.1207), (ISSN: 0036 8075).  Von Blottnitz H., and M.A. Curran (2007). A review of assessments conducted on bio ethanol as a  transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective,  Journal of Cleaner Production 15 607 619 pp. (DOI: 10.1016/j.jclepro.2006.03.002), (ISSN: 0959 6526).  Bodansky D. (2010). Climate Change and Human Rights: Unpacking the Issues. Social Science  Research Network, Rochester, NY. . Available at: http://papers.ssrn.com/abstract=1581555.  Bode S. (2004). Equal emissions per capita over time   a proposal to combine responsibility and  equity of rights for post 2012 GHG emission entitlement allocation, European Environment 14 300 316 pp. (DOI: 10.1002/eet.359), (ISSN: 1099 0976).  Böhm S., M.C. Misoczky, and S. Moog (2012). Greening Capitalism? A Marxist Critique of Carbon  Markets, Organization Studies 33 1617 1638 pp. (DOI: 10.1177/0170840612463326), (ISSN: 0170 8406, 1741 3044).  Bolwig S., and P. Gibbon (2010). Counting Carbon in The Marketplace: Part 1   Overview Paper. In:  Counting Carbon in the Market Place. OECD, Paris. Available at:  http://www.oecd.org/dataoecd/29/40/42886201.pdf.  Bolwig S., P. Gibbon, and S. Jones (2009). The Economics of Smallholder Organic Contract Farming  in Tropical Africa, World Development 37 1094 1104 pp. (DOI: 10.1016/j.worlddev.2008.09.012),  (ISSN: 0305 750X).  Bolwig S., S. Ponte, A. Du Toit, L. Riisgaard, and N. Halberg (2010). Integrating Poverty and  Environmental Concerns into Value Chain Analysis: A Conceptual Framework, Development Policy  Review 28 173 194 pp. (DOI: 10.1111/j.1467 7679.2010.00480.x), (ISSN: 1467 7679).  Bolwig S., L. Riisgaard, P. Gibbon, and S. Ponte (2013). Challenges of Agro Food Standards  Conformity: Lessons from East Africa and Policy Implications, European Journal of Development  Research 25 408 427 pp. (DOI: 10.1057/ejdr.2013.8), (ISSN: 0957 8811).  Bongaarts J. (2009). Human population growth and the demographic transition, Philosophical  Transactions of the Royal Society B Biological Sciences 364 2985 2990 pp. (DOI:  10.1098/rstb.2009.0137), (ISSN: 0962 8436).  Bongaarts J., and S. Sinding (2011). Population Policy in Transition in the Developing World, Science  333 574 576 pp. (DOI: 10.1126/science.1207558), (ISSN: 0036 8075).  Bonvillian W.B., and C. Weiss (2009). Stimulating Innovation in Energy Technology, Issues in Science  and Technology 26 51 56 pp. (ISSN: 0748 5492).  Botzen W.J.W., J.M. Gowdy, and J.C.J.M. van den Bergh (2008). Cumulative CO2 emissions: shifting  international responsibilities for climate debt, Climate Policy 8 569 576 pp. (DOI:  10.3763/cpol.2008.0539).      69 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Bowen K.J., K. Ebi, and S. Friel (2013). Climate change adaptation and mitigation: next steps for  cross sectoral action to protect global health. 18, 1 8. (DOI: 10.1007/s11027 013 9458 y), (ISSN:  1573 1596).  Bowen K.J., and S. Friel (2012). Climate change adaptation: Where does global health fit in the  agenda?, Globalization and Health 8 10 pp. (DOI: 10.1186/1744 8603 8 10), (ISSN: 1744 8603).  Bowen K.J., S. Friel, K. Ebi, C.D. Butler, F. Miller, and A.J. McMichael (2011). Governing for a  Healthy Population: Towards an Understanding of How Decision Making Will Determine Our Global  Health in a Changing Climate, International Journal of Environmental Research and Public Health 9  55 72 pp. (DOI: 10.3390/ijerph9010055), (ISSN: 1660 4601).  Bows A., and J. Barrett (2010). Cumulative emission scenarios using a consumption based approach:  a glimmer of hope?, Carbon Management 1 161 175 pp. (DOI: 10.4155/cmt.10.17), (ISSN: 1758 3004).  Boyd E., N. Hultman, J.T. Roberts, E. Corbera, J. Cole, A. Bozmoski, J. Ebeling, R. Tippman, P. Mann,  K. Brown, and D.M. Liverman (2009). Reforming the CDM for sustainable development: lessons  learned and policy futures, Environmental Science & Policy 12 820 831 pp. (DOI:  10.1016/j.envsci.2009.06.007), (ISSN: 1462 9011).  Brenton P., G. Edwards Jones, and M.F. Jensen (2009). Carbon Labelling and Low income Country  Exports: A Review of the Development Issues, Development Policy Review 27 243 267 pp. (DOI:  10.1111/j.1467 7679.2009.00445.x), (ISSN: 1467 7679).  Bretschger L. (2005). Economics of technological change and the natural environment: How    effective are innovations as a remedy for resource scarcity?, Ecological Economics 54 148 163 pp.  (DOI: 10.1016/j.ecolecon.2004.12.026), (ISSN: 0921 8009).  Bridger J.C., and A.E. Luloff (2001). Building the Sustainable Community: Is Social Capital the  Answer?, Sociological Inquiry 71 458 472 pp. (DOI: 10.1111/j.1475 682X.2001.tb01127.x), (ISSN:  1475 682X).  Brown K. (2009). Human development and environmental governance: a reality check. In: Governing  Sustainability. Cambridge University Press, Cambridge pp.32 52(ISBN: 9780521732437).  Brulle R.J., and L.E. Young (2007). Advertising, Individual Consumption Levels, and the Natural  Environment, 1900 2000, Sociological Inquiry 77 522 542 pp. (DOI: 10.1111/j.1475 682X.2007.00208.x), (ISSN: 1475 682X).  Brunner R., and A. Lynch (2010). Adaptive Governance and Climate Change. American  Meteorological Society, Boston, Mass., xix, 404 pp., (ISBN: 9781878220974). .  Bryan E., C. Ringler, B. Okoba, J. Koo, M. Herrero, and S. Silvestri (2012). Can agriculture support  climate change adaptation, greenhouse gas mitigation and rural livelihoods? Insights from Kenya,  Climatic Change 118 151 165 pp. (DOI: 10.1007/s10584 012 0640 0), (ISSN: 0165 0009, 1573 1480).  Bryan E., C. Ringler, B. Okoba, C. Roncoli, S. Silvestri, and M. Herrero (2013). Adapting agriculture  to climate change in Kenya: Household strategies and determinants, Journal of Environmental  Management 114 26 35 pp. (DOI: 10.1016/j.jenvman.2012.10.036), (ISSN: 03014797).      70 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Buck S.J. (1998). The Global Commons: An Introduction. Island Press, 225 pp., (ISBN:  9781559635516). .  Bumpus A.G., and D.M. Liverman (2008). Accumulation by decarbonization and the governance of  carbon offsets, Economic Geography 84 127 155 pp. (ISSN: 0013 0095).  Burch S., and J. Robinson (2007). A framework for explaining the links between capacity and action  in response to global climate change, Climate Policy 7 304 316 pp. .  Camfield L., and S.M. Skevington (2008). On Subjective Well being and Quality of Life, Journal of  Health Psychology 13 764  775 pp. (DOI: 10.1177/1359105308093860).  Campbell E. (2011). The agroecosystem role in climate change mitigation and adaptation, Carbon  Management 2 501 503 pp. (DOI: 10.4155/cmt.11.51), (ISSN: 17583004).  Caney S. (2005). Cosmopolitan Justice, Responsibility, and Global Climate Change, Leiden Journal of  International Law 18 747 775 pp. (ISSN: 09221565).  Caney S. (2006). Environmental Degradation, Reparations, and the Moral Significance of History,  Journal of Social Philosophy 37 464 482 pp. (DOI: 10.1111/j.1467 9833.2006.00348.x), (ISSN: 1467 9833).  Caney S. (2009). Justice and the distribution of greenhouse gas emissions, Journal of Global Ethics 5  125 146 pp. (DOI: 10.1080/17449620903110300), (ISSN: 1744 9626).  Caney S. (2010). Climate change and the duties of the advantaged, Critical Review of International  Social and Political Philosophy 13 203 228 pp. (DOI: 10.1080/13698230903326331), (ISSN: 1369 8230).  Cannon T., and D. Müller Mahn (2010). Vulnerability, resilience and development discourses in  context of climate change, Natural Hazards 55 621 635 pp. (DOI: 10.1007/s11069 010 9499 4),  (ISSN: 0921 030X, 1573 0840).  Cao J. (2008). Reconciling Human Development and Climate Protection: Perspectives from  Developing Countries on Post 2012 International Climate Change Policy. Belfer Center for Science  and International Affairs, Kennedy School of Government, Harvard University, Cambridge, MA. .  Available at:  http://belfercenter.ksg.harvard.edu/publication/18685/reconciling_human_development_and_clim ate_protection.html.  Caole A.J., and E.M. Hoover (1958). Population Growth and Economic Development in Low Income  Countries. Princeton University Press, Princeton, 385 pp.  Cass D. (1965). Optimum Growth in an Aggregative Model of Capital Accumulation, The Review of  Economic Studies 32 233 240 pp. (DOI: 10.2307/2295827), (ISSN: 0034 6527, 1467 937X).  CASS/DRC Joint Project Team (2011). Equitable access to sustainable development: Carbon budget  account proposal. In: Equitable access to sustainable development: Contribution to the body of  scientific knowledge. BASIC expert group, Beijing, Brasilia, Cape Town and Mumbai pp.35 58.  Available at: http://www.erc.uct.ac.za/Basic_Experts_Paper.pdf.      71 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Chai A., and A. Moneta (2012). Back to Engel? Some evidence for the hierarchy of needs, Journal of  Evolutionary Economics 22 649 676 pp. (DOI: 10.1007/s00191 012 0283 3), (ISSN: 0936 9937, 1432 1386).  Chakravarty S., A. Chikkatur, H. de Coninck, S. Pacala, R. Socolow, and M. Tavoni (2009). Sharing  global CO2 emission reductions among one billion high emitters, Proceedings of the National  Academy of Sciences 106 11884 11888 pp. (DOI: 10.1073/pnas.0905232106), (ISSN: 0027 8424,  1091 6490).  Chapin F.S., S.R. Carpenter, G.P. Kofinas, C. Folke, N. Abel, W.C. Clark, P. Olsson, D.M.S. Smith, B.  Walker, O.R. Young, F. Berkes, R. Biggs, J.M. Grove, R.L. Naylor, E. Pinkerton, W. Steffen, and F.J.  Swanson (2010). Ecosystem stewardship: sustainability strategies for a rapidly changing planet,  Trends in Ecology & Evolution 25 241 249 pp. (DOI: 10.1016/j.tree.2009.10.008), (ISSN: 0169 5347).  Chertow M.R. (2007).  Uncovering  Industrial Symbiosis, Journal of Industrial Ecology 11 11 30 pp.  (DOI: 10.1162/jiec.2007.1110), (ISSN: 1530 9290).  Chertow M.R., and D.R. Lombardi (2005). Quantifying Economic and Environmental Benefits of Co Located Firms, Environmental Science and Technology 39 6535 6541 pp. .  Cherubini F., N.D. Bird, A. Cowie, G. Jungmeier, B. Schlamadinger, and S. Woess Gallasch (2009).  Energy  and greenhouse gas based LCA of biofuel and bioenergy systems: Key issues, ranges and  recommendations, Resources, Conservation and Recycling 53 434 447 pp. (DOI:  10.1016/j.resconrec.2009.03.013), (ISSN: 0921 3449).  Chotray V., and G. Stoker (2009). Governance Theory and Practice: A Cross Disciplinary Approach.  Palgrave Macmillan, London.  Clark D.A. (2009). Capability approach. In: The Elgar Companion to Development Studies. Edward  Elgar, pp.32 44(ISBN: 9781843764755).  Clark W.C., and N.M. Dickson (2003). Sustainability science: The emerging research program,  Proceedings of the National Academy of Sciences 100 8059 8061 pp. (DOI:  10.1073/pnas.1231333100), (ISSN: 0027 8424, 1091 6490).  Clark A.E., P. Frijters, and M.A. Shields (2008). Relative income, happiness, and utility: An  explanation for the Easterlin paradox and other puzzles, Journal of Economic Literature 46 95 144  pp. .  Cleveland M., and M. Laroche (2007). Acculturaton to the global consumer culture: Scale  development and research paradigm, Journal of Business Research 60 249 259 pp. (DOI:  10.1016/j.jbusres.2006.11.006), (ISSN: 0148 2963).  Cline W.R. (1992). The Economics of Global Warming. Institute for International Economics,  Washington, D.C.  Clo S. (2010). Grandfathering, auctioning and Carbon Leakage: Assessing the inconsistencies of the  new ETS Directive, Energy Policy 38 2420 2430 pp. (DOI: 10.1016/j.enpol.2009.12.035), (ISSN: 0301 4215).  Coase R.H. (1960). The problem of social cost, Journal of Law and Economics 3 1 44 pp. . Available  at: http://onlinelibrary.wiley.com/doi/10.1002/9780470752135.ch1/summary.      72 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Colfer C.J.P. (2011). Marginalized Forest Peoples  Perceptions of the Legitimacy of Governance: An  Exploration, World Development 39 2147 2164 pp. (DOI: 10.1016/j.worlddev.2011.04.012), (ISSN:  0305 750X).  Collier P., and B. Goderis (2012). Commodity prices and growth: An empirical investigation,  European Economic Review 56 1241 1260 pp. (DOI: 10.1016/j.euroecorev.2012.04.002), (ISSN:  0014 2921).  Colombo M.G., and L. Grilli (2005). Founders  human capital and the growth of new technology based firms: A competence based view, Research Policy 34 795 816 pp. (DOI:  10.1016/j.respol.2005.03.010), (ISSN: 0048 7333).  Conway E.M., and N. Oreskes (2011). Merchants of Doubt: How a Handful of Scientists Obscured the  Truth on Issues from Tobacco Smoke to Global Warming. Bloomsbury Press, 457 pp., (ISBN:  9781408828779). .  Corbera E. (2012). Problematizing REDD+ as an experiment in payments for ecosystem services,  Current Opinion in Environmental Sustainability 4 612 619 pp. (DOI: 10.1016/j.cosust.2012.09.010),  (ISSN: 1877 3435).  Corbera E., and H. Schroeder (2011). Governing and implementing REDD+, Environmental Science &  Policy 14 89 99 pp. (DOI: 10.1016/j.envsci.2010.11.002), (ISSN: 1462 9011).  Corner A., D. Venables, A. Spence, W. Poortinga, C. Demski, and N. Pidgeon (2011). Nuclear power,  climate change and energy security: Exploring British public attitudes, Energy Policy 39 4823 4833  pp. (DOI: 10.1016/j.enpol.2011.06.037), (ISSN: 0301 4215).  Correa C. (2011). The Role of Intellectual Property Rights in Global Economic Governance. Initiative  for Policy Dialogue Working Paper Series, Columbia University and UNDP.  Corsten M., E. Worrell, M. Rouw, and A. van Duin (2013). The potential contribution of sustainable  waste management to energy use and greenhouse gas emission reduction in the Netherlands,  Resources, Conservation and Recycling 77 13 21 pp. (DOI: 10.1016/j.resconrec.2013.04.002), (ISSN:  0921 3449).  Cranston G.R., G.P. Hammond, and R.C. Johnson (2010). Ecological Debt: Exploring the Factors that  Affect National Footprints, Journal of Environmental Policy & Planning 12 121 140 pp. (DOI:  10.1080/15239081003719193), (ISSN: 1523 908X).  Creyts J.C., and V.P. Carey (1999). Use of extended exergy analysis to evaluate the environmental  performance of machining processes, Proceedings of the Institution of Mechanical Engineers, Part E:  Journal of Process Mechanical Engineering 213 247 264 pp. (DOI: 10.1243/0954408991529861),  (ISSN: 0954 4089, 2041 3009).  Crutzen P.J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to    resolve a policy dilemma?, Climatic Change 77 211 219 pp. (DOI: 10.1007/s10584 006 9101 y),  (ISSN: 0165 0009).  Csutora M. (2012). One More Awareness Gap? The Behaviour Impact Gap Problem, Journal of  Consumer Policy 35 145 163 pp. (DOI: 10.1007/s10603 012 9187 8), (ISSN: 0168 7034).      73 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Daly H.E. (1996). Beyond Growth: The Economics of Sustainable Environment. Beacon Press, Boston,  Mass., 264 pp., (ISBN: 0807047090  9780807047095  0807047082  9780807047088). .  Dasgupta P. (1993). An Inquiry into Well Being and Destitution. Oxford University Press, Oxford, 680  pp.  Dasgupta P., and K. G. Mäler (2000). Net national product, wealth, and social well being,  Environment and Development Economics 5 69 93 pp. (ISSN: 1469 4395).  Davis S.J., and K. Caldeira (2010). Consumption based accounting of CO2 emissions, Proceedings of  the National Academy of Sciences 107 5687 5692 pp. .  Deacon R. (2011). The Political Economy of the Natural Resources Curse: A Survey of Theory and  Evidence, Foundations and Trends(r) in Microeconomics 7 111 208 pp. (DOI: 10.1561/0700000042),  (ISSN: 1547 9846, 1547 9854).  Deaton A.S. (2008). Income, Health, and Well Being around the World: Evidence from the Gallup  World Poll, Journal of Economic Perspectives 22 53 72 pp. .  DeCanio S.J., and A. Fremstad (2010). Game Theory and Climate Diplomacy. E3 Network, Portland,  OR, USA. . Available at: http://www.e3network.org/papers/Basic_Game_Anlaysis.pdf.  Dechezlepretre A., M. Glachant, and Y. Méniere (2009). Technology transfer by CDM projects: A  comparison of Brazil, China, India and Mexico, Energy Policy 37 703 711 pp. (DOI:  10.1016/j.enpol.2008.10.007), (ISSN: 0301 4215).  Dellink R., M. den Elzen, H. Aiking, E. Bergsma, F. Berkhout, T. Dekker, and J. Gupta (2009). Sharing  the burden of financing adaptation to climate change, Global Environmental Change 19 411 421 pp.  (DOI: 10.1016/j.gloenvcha.2009.07.009), (ISSN: 0959 3780).  Delmas M.A., and N. Nairn Birch (2011). Is the tail wagging the dog? An empirical analysis of  corporate carbon footprints and financial performance. Institute of the Environment and  Sustainability, University of California. . Available at: http://escholarship.org/uc/item/3k89n5b7.  Denton F., and T. Wilbanks (2012). Climate Resilient Pathways: Adaptation, Mitigation, and  Sustainable Development. IPCC WGII AR5 Chapter 20.  Diaz H.L., R.D. Drumm, J. Ramirez Johnson, and H. Oidjarv (2002). Social capital, economic  development and food security in Peru s   mountain region, International Social Work 45 481 495  pp. (ISSN: 0020 8728).  Diaz Maurin F., and M. Giampietro (2013). A  Grammar  for assessing the performance of power supply systems: Comparing nuclear energy to fossil energy, Energy 49 162 177 pp. (DOI:  10.1016/j.energy.2012.11.014), (ISSN: 03605442).  Dietz S., and E. Neumayer (2007). Weak and strong sustainability in the SEEA: Concepts and  measurement, Ecological Economics 61 617 626 pp. (DOI: 10.1016/j.ecolecon.2006.09.007), (ISSN:  09218009).  Dietzenbacher E., and K. Mukhopadhyay (2007). An Empirical Examination of the Pollution Haven  Hypothesis for India: Towards a Green Leontief Paradox?, Environmental and Resource Economics 36  427 449 pp. (DOI: 10.1007/s10640 006 9036 9), (ISSN: 0924 6460, 1573 1502).      74 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Dingwerth K., and P. Pattberg (2009). World Politics and Organizational Fields: The Case of  Transnational   Sustainability Governance, European Journal of International Relations 15 707 743  pp. (DOI: 10.1177/1354066109345056), (ISSN: 1354 0661).  Dinica V. (2009). Biomass power: Exploring the diffusion challenges in Spain, Renewable and  Sustainable Energy Reviews 13 1551 1559 pp. (DOI: 10.1016/j.rser.2008.10.002), (ISSN: 1364 0321).  Dixit A.K., and J.E. Stiglitz (1977). Monopolistic Competition and Optimum Product Diversity, The  American Economic Review 67 297 308 pp. (ISSN: 0002 8282).  Dobson A. (1991). The Green Reader: Essays toward a Sustainable Society. Mercury House, San  Francisco, 280 pp., (ISBN: 1562790102). .  Dobson A. (2007). Environmental citizenship: towards sustainable development, Sustainable  Development 15 276 285 pp. (DOI: 10.1002/sd.344), (ISSN: 09680802, 10991719).  Doh S., and C.L. McNeely (2012). A multi dimensional perspective on social capital and economic    development: an exploratory analysis, Annals of Regional Science 49 821 843 pp. (DOI:  10.1007/s00168 011 0449 1), (ISSN: 0570 1864).  Dore R. (2008). Financialization of the global economy, Industrial and Corporate Change 17 1097 1112 pp. (DOI: 10.1093/icc/dtn041), (ISSN: 0960 6491, 1464 3650).  Dosi G. (1982). Technological paradigms and technological trajectories: A suggested interpretation  of the determinants and directions of technical change, Research Policy 11 147 162 pp. (DOI:  10.1016/0048 7333(82)90016 6), (ISSN: 0048 7333).  Dosi G., and R.R. Nelson (1994). An introduction to evolutionary theories in economics, Journal of  Evolutionary Economics 4 153 172 pp. (DOI: 10.1007/BF01236366), (ISSN: 0936 9937, 1432 1386).  Dreyer L., M. Hauschild, and J. Schierbeck (2010). Characterisation of social impacts in LCA, The  International Journal of Life Cycle Assessment 15 247 259 pp. (DOI: 10.1007/s11367 009 0148 7),  (ISSN: 0948 3349).  Druckman A., and T. Jackson (2009). The carbon footprint of UK households 1990 2004: A socio economically disaggregated, quasi multi regional input output model, Ecological Economics 68  2066 2077 pp. (DOI: 10.1016/j.ecolecon.2009.01.013), (ISSN: 0921 8009).  Druckman A., and T. Jackson (2010). The bare necessities: How much household carbon do we really  need?, Ecological Economics 69 1794 1804 pp. (DOI: 10.1016/j.ecolecon.2010.04.018), (ISSN: 0921 8009).  Dryzek J.S., R.B. Norgaard, and D. Schlosberg (2011). The Oxford Handbook of Climate Change and  Society. Oxford University Press, 743 pp., (ISBN: 9780199566600). .  Duflo E. (2001). Schooling and labour market consequences of school construction in Indonesia,  American Economic Review 91 795 813 pp. .  Duflou J.R., K. Kellens, T. Devoldere, W. Deprez, and Wim Dewulf (2010). Energy related  environmental impact reduction opportunities in machine design: case study of a laser cutting  machine, International Journal of Sustainable Manufacturing 2 80 98 pp. (DOI:  10.1504/IJSM.2010.031621).      75 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Duflou J.R., J.W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, M. Hauschild, and K.  Kellens (2012). Towards energy and resource efficient manufacturing: A processes and systems  approach, CIRP Annals   Manufacturing Technology 61 587 609 pp. (DOI:  10.1016/j.cirp.2012.05.002), (ISSN: 0007 8506).  Dunning J.H. (1981). Explaining the international position of countries towards a dynamic or  developmental approach, Weltwirtshaftliches Archiv 30 64 pp. .  Dusyk N., T. Berkhout, S. Burch, S. Coleman, and J. Robinson (2009). Transformative energy  efficiency and conservation: a sustainable development path approach in British Columbia, Canada,  Energy Efficiency 2 387 400 pp. (DOI: 10.1007/s12053 009 9048 8), (ISSN: 1570 646X, 1570 6478).  Dyson T. (2006). Population and Development. In: The Elgar Companion to Development Studies.  Edward Elgar, Cheltenham pp.436 441(ISBN: 978 1 84376475 5).  Easterlin R.A. (1973). Does Money Buy Happiness?, The Public Interest 30 3 10 pp. .  Easterlin R.A. (1995). Will raising the incomes of all increase the happiness of all?, Journal of  Economic Behavior & Organization 27 35 47 pp. (DOI: 10.1016/0167 2681(95)00003 B), (ISSN: 0167 2681).  Easterlin R.A., L.A. McVey, M. Switek, O. Sawangfa, and J.S. Zweig (2010). The happiness income  paradox revisited, Proceedings of the National Academy of Sciences 107 22463 22468 pp. (DOI:  10.1073/pnas.1015962107), (ISSN: 0027 8424, 1091 6490).  Easterly W. (2002). The Elusive Quest for Growth: Economists  Adventures and Misadventures in the  Tropics. The MIT Press. . Available at: http://ideas.repec.org/b/mtp/titles/0262550423.html.  Easterly W. (2009). How the Millennium Development Goals are Unfair to Africa, World  Development 37 26 35 pp. (DOI: 10.1016/j.worlddev.2008.02.009), (ISSN: 0305 750X).  Eckersley R. (2004). The Green State. Rethinking Democracy and Sovereignty. MIT Press, Cambridge,  Massachussetts, USA, 348 pp.  Eckersley R. (2012). Moving Forward in the Climate Negotiations: Multilateralism or Minilateralism?,  Global Environmental Politics 12 24 42 pp. (DOI: 10.1162/GLEP_a_00107), (ISSN: 1526 3800).  Edwards Jones G., K. Plassmann, E.H. York, B. Hounsome, D.L. Jones, and L. Mila i Canals (2009).  Vulnerability of exporting nations to the development of a carbon label in the United Kingdom,  Environmental Science & Policy 12 479 490 pp. (DOI: 10.1016/j.envsci.2008.10.005), (ISSN: 1462 9011).  EGTT (2008). UNFCCC Guidebook on Preparing Technology Transfer Projects for Financing. Expert  Group on Technology Transfer, United Nations Framework Convention on Climate Change, Bonn. .  Available at: http://unfccc.int/ttclear/jsp/Guidebook.jsp.  Ehrlich P.R., and J. Holdren (1971). Impact of population growth, Science 171 1212 1217 pp. .  Ehrlich P.R., P.M. Kareiva, and G.C. Daily (2012). Securing natural capital and expanding equity to  rescale civilization, Nature 486 68 73 pp. (DOI: 10.1038/nature11157), (ISSN: 0028 0836).      76 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Elkington J. (1998). Cannibals with Forks: The Triple Bottom Line of 21st Century Business. New  Society Publishers, Gabriola Island, BC; Stony Creek, CT, 424 pp., (ISBN: 0865713928   9780865713925). .  Den Elzen M.G.J., J. Fuglestvedt, N. Höhne, C. Trudinger, J. Lowe, B. Matthews, B. Romstad, C.P. de  Campos, and N. Andronova (2005). Analysing countries  contribution to climate change: scientific  and policy related choices, Environmental Science & Policy 8 614 636 pp. (DOI:  10.1016/j.envsci.2005.06.007), (ISSN: 1462 9011).  Epstein G.A. (2005). Financialization and the World Economy. Edward Elgar Publishing, 472 pp.,  (ISBN: 9781781008263). .  Erickson P., A. Owen, and E. Dawkins (2012). Low Greenhouse Gas Consumption Strategies and  Impacts on Developing Countries, In: Stockholm Environment Institute Working Papers 2012 01 .  Available at: http://www.sei international.org/publications?pid=2082.  Etienne C., and A. Asamoa Baah (2010). WHO The World Health Report   Health Systems Financing:  The Path to Universal Coverage. Available at:  http://www.cabdirect.org/abstracts/20113115509.html;jsessionid=A44C51F9AD7E7857E3633E1481 27D338.  Fankhauser S., R.S.J. Tol, and D.W. Pearce (1997). The aggregation of climate change damages: a  welfare theoretic approach, Environmental and Resource Economics 10 249 266 pp. .  FAO (2012). The State of Food Insecurity in the World 2012. Food and Agriculture Organisation,  Rome, Italy.  Farmer R., C. Nourry, and A. Venditti (2012). The Inefficient Markets Hypothesis: Why Financial  Markets Do Not Work Well in the Real World. National Bureau of Economic Research.  Farrell J., and P. Klemperer (2007). Chapter 31 Coordination and Lock In: Competition with  Switching Costs and Network Effects. In: Handbook of Industrial Organization. Elsevier, pp.1967 2072(ISBN: 1573 448X).  Fermann G. (1994). Climate Change, Burden sharing Criteria, and Competing Conceptions of  Responsibility, International Challenges 13 28 34 pp. .  Finkbeiner M. (2009). Carbon footprinting opportunities and threats, The International Journal of  Life Cycle Assessment 14 91 94 pp. (DOI: 10.1007/s11367 009 0064 x), (ISSN: 0948 3349, 1614 7502).  Finnveden G., M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D.  Pennington, and S. Suh (2009). Recent developments in Life Cycle Assessment, Journal of  Environmental Management 91 1 21 pp. (DOI: 10.1016/j.jenvman.2009.06.018), (ISSN: 0301 4797).  Fischer J., R. Dyball, I. Fazey, C. Gross, S. Dovers, P.R. Ehrlich, R.J. Brulle, C. Christensen, and R.J.  Borden (2012). Human behavior and sustainability, Frontiers in Ecology and the Environment 10  153 160 pp. (DOI: 10.1890/110079), (ISSN: 1540 9295).  Fischer J., A.D. Manning, W. Steffen, D.B. Rose, K. Daniell, A. Felton, S. Garnett, B. Gilna, R.  Heinsohn, D.B. Lindenmayer, B. MacDonald, F. Mills, B. Newell, J. Reid, L. Robin, K. Sherren, and A.      77 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Wade (2007). Mind the sustainability gap, Trends in Ecology & Evolution 22 621 624 pp. (DOI:  10.1016/j.tree.2007.08.016), (ISSN: 01695347).  Fleurbaey M. (2009). Beyond GDP: The quest for a measure of social welfare, Journal of Economic  Literature 47 1029 1075 pp. .  Fleurbaey M., and D. Blanchet (2013). Beyond GDP: Measuring Welfare and Assessing Sustainability.  Oxford University Press, Oxford ; New York, 320 pp., (ISBN: 9780199767199). .  Flint R.W., and M.J.E. Danner (2001). The nexus of sustainability & social equity: Virginia s Eastern  Shore as a local example of global issues, International Journal of Economic Development 3 .  Available at: http://www.spaef.com/article/1055/The Nexus of Sustainability & Social Equity: Virginia%27s Eastern Shore %28USA%29 as a Local Example of Global Issues.  Folke C. (2007). Social ecological systems and adaptive governance of the commons, Ecological  Research 22 14 15 pp. (DOI: 10.1007/s11284 006 0074 0), (ISSN: 0912 3814, 1440 1703).  Folke C., S.R. Carpenter, B. Walker, M. Scheffer, F.S. Chapin, and J. Rockström (2010). Resilience  thinking: integrating resilience, adaptability and transformability, Ecology and Society 15 20 pp. .  Available at: http://www.ecologyandsociety.org/vol15/iss4/art20/.  Folke C., T. Hahn, P. Olsson, and J. Norberg (2005). ADAPTIVE GOVERNANCE OF SOCIAL ECOLOGICAL SYSTEMS, Annual Review of Environment and Resources 30 441 473 pp. (DOI:  10.1146/annurev.energy.30.050504.144511), (ISSN: 1543 5938, 1545 2050).  Folke C., A. Jansson, J. Rockstrom, P. Olsson, S.R. Carpenter, F.S. Chapin, A. S. Crepin, G. Daily, K.  Danell, J. Ebbesson, T. Elmqvist, V. Galaz, F. Moberg, M. Nilsson, H. Osterblom, E. Ostrom, A.  Persson, G. Peterson, S. Polasky, W. Steffen, B. Walker, and F. Westley (2011a). Reconnecting to  the Biosphere, Ambio 40 719 738 pp. (DOI: 10.1007/s13280 011 0184 y), (ISSN: 0044 7447).  Folke C., A. Jansson, J. Rockström, P. Olsson, S.R. Carpenter, F. Stuart Chapin, A. S. Crépin, G. Daily,  K. Danell, J. Ebbesson, T. Elmqvist, V. Galaz, F. Moberg, M. Nilsson, H. Österblom, E. Ostrom, A.  Persson, G. Peterson, S. Polasky, W. Steffen, B. Walker, and F. Westley (2011b). Reconnecting to  the Biosphere, AMBIO:  A Journal of the Human Environment 40 719 738 pp. (DOI: 10.1007/s13280 011 0184 y), (ISSN: 0044 7447).  Da Fonseca I.F., M. Bursztyn, and B.S. Allen (2012). Trivializing sustainability: Environmental  governance and rhetorical free riders in the Brazilian Amazon, Natural Resources Forum 36 28 37  pp. (DOI: 10.1111/j.1477 8947.2012.01441.x), (ISSN: 1477 8947).  Foray D. (1997). The dynamic implications of increasing returns: Technological change and path  dependent inefficiency, International Journal of Industrial Organization 15 733 752 pp. (DOI:  10.1016/S0167 7187(97)00009 X), (ISSN: 0167 7187).  Fouquet R. (2010). The slow search for solutions: Lessons from historical energy transitions by sector  and service, Energy Policy 38 6586 6596 pp. (DOI: 10.1016/j.enpol.2010.06.029), (ISSN: 0301 4215).  Frantz C.M., and F.S. Mayer (2009). The Emergency of Climate Change: Why Are We Failing to Take  Action?, Analyses of Social Issues and Public Policy 9 205 222 pp. (DOI: 10.1111/j.1530 2415.2009.01180.x), (ISSN: 1530 2415).      78 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Fu, Jiafeng, Zhuang, Guiyang, and Gao, Qingxian (2010). Clarification on the concept of  low carbon  economy  and construction of evaluation indicator system, China Population, Resources and  Environment 20.  Fujita M., P. Krugman, and A.J. Venables (1999). The Spatial Economy. MIT Press, Cambridge, Mass.,  381 pp.  Fukuyama F. (2002). Social Capital and Development: The Coming Agenda, The SAIS Review of  International Affairs 22 23 37 pp. .  Gadgil M., F. Berkes, and C. Folke (1993). Indigenous Knowledge for Biodiversity Conservation,  AMBIO: A Journal of the Human Environment 22 151 156 pp. .  GAIA (2012). On the Road to Zero Waste: Successes and Lessons from around the World. GAIA    Global Alliance for Incinerator Alternatives, Quezon City, Phillipines. 88 pp. Available at: www.no burn.org.  Gallopín G.C. (2006). Linkages between vulnerability, resilience, and adaptive capacity, Global  Environmental Change 16 293 303 pp. (DOI: 10.1016/j.gloenvcha.2006.02.004), (ISSN: 09593780).  Gallup Organisation (2008a). Public Opinion in the European Union. European Commission, Brussels.  Gallup Organisation (2008b). Attitudes of European Citizens towards the Environment. European  Commission, Brussels. . Available at:  http://ec.europa.eu/public_opinion/archives/ebs/ebs_295_en.pdf.  Gamarnikow E., and A. Green (1999). Social Capital and the Educated Citizen, The School Field 10  103 126 pp. .  Gardiner S.M. (2011a). Climate Justice. In: Climate Change and Society. J.S. Dryzek, R.B. Norgaard, D.  Schlosberg, (eds.), Oxford University Press, pp.309 322.  Gardiner S.M. (2011b). A Perfect Moral Storm: The Ethical Tragedy of Climate Change. Oxford  University Press, 509 pp., (ISBN: 9780195379440). .  Gatersleben B., E. White, W. Abrahamse, T. Jackson, and D. Uzzell (2010). Values and sustainable  lifestyles, Architectural Science Review 53 37 50 pp. (DOI: 10.3763/asre.2009.0101), (ISSN: 0003 8628).  GEA (2012). Global Energy Assessment   Toward a Sustainable Future. Cambridge University Press,  Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis,  Laxenburg, Austria, (ISBN: 9781 10700 5198 hardback 9780 52118 2935 paperback). .  Geels F. (2002). Technological transitions as evolutionary reconfiguration processes: a multi level  perspective and a case study, Research Policy 31 1257 1274 pp. (DOI: 10.1016/S0048 7333(02)00062 8).  Geels F.W. (2006). The hygienic transition from cesspools to sewer systems (1840 1930): The  dynamics of regime transformation, Research Policy 35 1069 1082 pp. (DOI:  10.1016/j.respol.2006.06.001), (ISSN: 0048 7333).  Geels F.W., and J. Schot (2007). Typology of sociotechnical transition pathways, Research Policy 36  399 417 pp. (DOI: 10.1016/j.respol.2007.01.003), (ISSN: 0048 7333).      79 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     German Advisory Council on Global Change (2009). Solving the Climate Dilemma: The Budget  Approach Special Report (C. Hay and T. Cullen, Trans.). WBGU, Berlin, Germany. . Available at:  http://www.wbgu.de/en/special reports/sr 2009 budget approach/.  Gibbon P., S. Ponte, and E. Lazaro (Eds.) (2010). Global Agro Food Trade and Standards. Palgrave  Macmillan, London, 256 pp.  Giddens A. (2009). The Politics of Climate Change. Polity Press, Cambridge, 256 pp.  Giddings B., B. Hopwood, and G. O Brien (2002). Environment, economy and society: fitting them  together into sustainable development, Sustainable Development 10 187 196 pp. (DOI:  10.1002/sd.199), (ISSN: 1099 1719).  Gimmon E., and J. Levie (2010). Founder s human capital, external investment, and the survival of  new high technology ventures, Research Policy 39 1214 1226 pp. (DOI:  10.1016/j.respol.2010.05.017), (ISSN: 0048 7333).  Gladwin T.N., J.J. Kennelly, and T. S. Ause (1995). Shifting paradigms for sustainable development:  Implications for management theory and research, Academy of Management Review 20 874 907  pp. .  Goeminne G., and E. Paredis (2010). The concept of ecological debt: some steps towards an  enriched sustainability paradigm, Environment, Development and Sustainability 12 691 712 pp.  (DOI: 10.1007/s10668 009 9219 y), (ISSN: 1387 585X, 1573 2975).  Goerner S.J., B. Lietaer, and R.E. Ulanowicz (2009). Quantifying economic sustainability:  Implications for free enterprise theory, policy and practice, Ecological Economics 69 76 81 pp. (DOI:  10.1016/j.ecolecon.2009.07.018), (ISSN: 09218009).  Goklany I.M. (2007). Integrated strategies to reduce vulnerability and advance adaptation,  mitigation, and sustainable development, Mitigation and Adaptation Strategies for Global Change 12  755 786 pp. (DOI: 10.1007/s11027 007 9098 1), (ISSN: 1381 2386, 1573 1596).  Gollier C. (2013). The Debate on Discounting: Reconciling Positivists and Ethicists, Chicago Journal of  International Law 13 551 566 pp. .  Gonzalez Miguez J.D., and A. Santhiago de Oliveira (2011). The importance of historical  responsibility in the context of the international regime on climate change. In: Equitable access to  sustainable development: Contribution to the body of scientific knowledge. BASIC expert group,  Beijing, Brasilia, Cape Town and Mumbai pp.23 34. Available at:  http://www.erc.uct.ac.za/Basic_Experts_Paper.pdf.  Graham C. (2009). Happiness Around the World: The Paradox of Happy Peasants and Miserable  Millionaires. Oxford University Press, Oxford, 272 pp.  Grantham Institute, and Carbon Tracker Initiative (2013). Unburnable Carbon 2013:  Wasted Capital  and Stranded Assets. . Available at: http://carbontracker.live.kiln.it/Unburnable Carbon 2 Web Version.pdf.  Grasso M. (2010). An ethical approach to climate adaptation finance, Global Environmental Change  20 74 81 pp. (DOI: 10.1016/j.gloenvcha.2009.10.006), (ISSN: 0959 3780).      80 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Griffin P.A., D.H. Lont, and Y. Sun (2012). The Relevance to Investors of Greenhouse Gas Emission  Disclosures, UC Davis Graduate School of Management Research Papers 11 1 58 pp. . Available at:  http://ssrn.com/abstract=1735555 or http://dx.doi.org/10.2139/ssrn.1735555.  Grist N. (2008). Positioning climate change in sustainable development discourse, Journal of  International Development 20 783 803 pp. (DOI: 10.1002/jid.1496), (ISSN: 09541748).  De Groot R. (2006). Function analysis and valuation as a tool to assess land use conflicts in planning  for sustainable, multi functional landscapes, Landscape and Urban Planning 75 175 186 pp. (DOI:  10.1016/j.landurbplan.2005.02.016), (ISSN: 0169 2046).  Grothmann T., and A. Patt (2005). Adaptive capacity and human cognition: The process of individual  adaptation to climate change, Global Environmental Change Part A 15 199 213 pp. (DOI: doi:  10.1016/j.gloenvcha.2005.01.002), (ISSN: 0959 3780).  Group of 7 Heads of State (1979). G7 Economic Summit Declaration, Tokyo, 1979. . Available at:  http://www.g8.utoronto.ca/summit/1979tokyo/communique.html.  Grubb M. (1989). The Greenhouse Effect: Negotiating Targets. Wiley, NJ, USA, 70 pp., (ISBN:  9780905031309). .  Grubb M. (1990). The Greenhouse Effect : Negotiating Targets, International Affairs 66 67 89 pp. .  Grubb M. (2013). Planetary Economics: Energy, Climate Change and the Three Domains of  Sustainable Development. Routledge, New York, 544 pp., (ISBN: 9780415518826). .  Grubb M.J., and J. Sebenius (1992). Participation, allocation, and adaptability in international  tradeable emission permit systems for greenhouse gas control. In: Climate Change: Designing a  Tradeable Permit System. Organization for Economic Co operation and Development, Paris, France.  Grübler A., and Y. Fujii (1991). Intergenerational and spatial equity issues of carbon accounts,  Energy for Sustainable Development 16 1397 1416 pp. .  Guivarch C., R. Crassous, O. Sassi, and S. Hallegate (2011). The costs of climate policies in a second best world with labour market imperfections, Climate Policy 11 768 788 pp. (DOI:  10.3763/cpol.2009.0012), (ISSN: 1469 3062).  Gupta N. (2011). Globalization does lead to change in consumer behavior: An empirical evidence of  impact of globalization on changing materialistic values in Indian consumers and its aftereffects, Asia  Pacific Journal of Marketing and Logistics 23 251 269 pp. (DOI: 10.1108/13555851111143204),  (ISSN: Asia Pacific Journal of Marketing and Logistics).  Gutowski T.G., M.S. Branham, J.B. Dahmus, A.J. Jones, A. Thiriez, and D.P. Sekulic (2009).  Thermodynamic Analysis of Resources Used in Manufacturing Processes, Environmental Science &  Technology 43 1584 1590 pp. (DOI: 10.1021/es8016655), (ISSN: 0013 936X).  Haden V.R., M.T. Niles, M. Lubell, J. Perlman, and L.E. Jackson (2012). Global and Local Concerns:  What Attitudes and Beliefs Motivate Farmers to Mitigate and Adapt to Climate Change?, PLoS ONE 7  (DOI: 10.1371/journal.pone.0052882), (ISSN: 19326203).  Ha Duong M., M.J. Grubb, and J. C. Hourcade (1997). Influence of socioeconomic inertia and  uncertainty on optimal CO2 emission abatement, Nature 390 270 273 pp. (DOI: 10.1038/36825),  (ISSN: 0028 0836).      81 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Hallegatte S., J. C. Hourcade, and P. Dumas (2007). Why economic dynamics matter in assessing  climate change damages: Illustration on extreme events, Ecological Economics 62 330 340 pp. (DOI:  10.1016/j.ecolecon.2006.06.006).  Halsnaes K., A. Markandya, and P. Shukla (2011). Introduction: Sustainable Development, Energy,  and Climate Change, World Development 39 983 986 pp. (DOI: 10.1016/j.worlddev.2010.01.006),  (ISSN: 0305 750X).  Halsnaes K., P.R. Shukla, and A. Garg (2008). Sustainable development and climate change: Lessons  from country studies, Climate Policy 8 202 219 pp. (DOI: 10.3763/cpol.2007.0475.8.2.202), (ISSN:  14693062).  Hamilton K., and G. Atkinson (2006). Wealth, Welfare and Sustainability : Advances in Measuring  Sustainable Development. Edward Elgar, Cheltenham, 224 pp., (ISBN: 9781848441750). .  Hamilton K., and M. Clemens (1999). Genuine Savings Rates in Developing Countries, The World  Bank Economic Review 13 333  356 pp. (DOI: 10.1093/wber/13.2.333).  Hanss D., and G. Böhm (2010). Can I make a difference? The role of general and domain specific  self efficacy in sustainable consumption decisions, Umweltpsychologie 14 46 74 pp. . Available at:  http://www.academia.edu/2021220/Can_I_make_a_difference_The_role_of_general_and_domain specific_self efficacy_in_sustainable_consumption_decisions.  Hardin G. (1968). The Tragedy of the Commons, Science 162 1243 1248 pp. (DOI:  10.1126/science.162.3859.1243), (ISSN: 0036 8075, 1095 9203).  Harris P.G. (1996). Considerations of equity and international environmental institutions,  Environmental Politics 5 274 301 pp. (DOI: 10.1080/09644019608414265), (ISSN: 0964 4016).  Harris P.G. (1999). Common But Differentiated Responsibility: The Kyoto Protocol and United States  Policy, New York University Environmental Law Journal 7 28 pp. . Available at:  http://heinonline.org.ezproxy.library.tufts.edu/HOL/Page?handle=hein.journals/nyuev7&id=36&div =&collection=journals.  Harry S., and M. Morad (2013). Sustainable development and climate change: Beyond mitigation  and adaptation, Local Economy 28 358 368 pp. (DOI: 10.1177/0269094213476663), (ISSN:  02690942).  Hartzell Nichols L. (2011). Responsibility for meeting the costs of adaptation, Wiley Interdisciplinary  Reviews: Climate Change 2 687 700 pp. (DOI: 10.1002/wcc.132), (ISSN: 1757 7799).  Hauschild (2005). Assessing Environmental Impacts in a Life Cycle Perspective, Environmental  Science & Technology 39 81A 88A pp. (DOI: 10.1021/es053190s), (ISSN: 0013 936X).  Hauschild M.Z., L.C. Dreyer, and A. Jrgensen (2008). Assessing social impacts in a life cycle  perspective Lessons learned, CIRP Annals   Manufacturing Technology 57 21 24 pp. (DOI:  10.1016/j.cirp.2008.03.002), (ISSN: 0007 8506).  Hauschild M.Z., J. Jeswiet, and L. Alting (2004). Design for Environment   Do We Get the Focus  Right?, CIRP Annals   Manufacturing Technology 53 1 4 pp. (DOI: 10.1016/S0007 8506(07)60631 3),  (ISSN: 0007 8506).      82 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Hayakawa N., Y. Wakazono, T. Kato, Y. Suzuoki, and Y. Kaya (1999). Minimizing Energy  Consumption in Industry by Cascade Use of Waste Energy, IEEE Transactions on Energy Conversion  14 795 801 pp. .  Healy T., and S. Cote (2001). The Well Being of Nations: The Role of Human and Social Capital.  Education and Skills. Organisation for Economic Cooperation and Development, Paris, France. .  Available at: http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED453111.  Herrmann I.T., and M.Z. Hauschild (2009). Effects of globalisation on carbon footprints of products,  CIRP Annals   Manufacturing Technology 58 13 16 pp. (DOI: 10.1016/j.cirp.2009.03.078), (ISSN:  0007 8506).  Herrmann C., S. Thiede, S. Kara, and J. Hesselbach (2011). Energy oriented simulation of  manufacturing systems   Concept and application, CIRP Annals   Manufacturing Technology 60 45 48 pp. (DOI: 10.1016/j.cirp.2011.03.127), (ISSN: 0007 8506).  Hertwich E.G. (2011). THE LIFE CYCLE ENVIRONMENTAL IMPACTS OF CONSUMPTION, Economic  Systems Research 23 27 47 pp. (DOI: 10.1080/09535314.2010.536905), (ISSN: 0953 5314).  Hertwich E.G., and G.P. Peters (2009). Carbon Footprint of Nations: A Global, Trade Linked Analysis,  Environ. Sci. Technol. 43 6414 6420 pp. (DOI: 10.1021/es803496a), (ISSN: 0013 936X).  Heyward C. (2007). Equity and international climate change negotiations: a matter of perspective,  Climate Policy 7 518 534 pp. .  Hill M. (2013). Adaptive Capacity, Adaptive Governance and Resilience. Advances in Global Change  Research. In: Climate Change and Water Governance. Springer Netherlands, pp.29 51(ISBN: 978 94 007 5795 0, 978 94 007 5796 7).  Höhne N., and K. Blok (2005). Calculating Historical Contributions To Climate Change Discussing  The  Brazilian Proposal , Climatic Change 71 141 173 pp. (DOI: 10.1007/s10584 005 5929 9), (ISSN:  01650009).  Höhne N., H. Blum, J. Fuglestvedt, R.B. Skeie, A. Kurosawa, G. Hu, J. Lowe, L. Gohar, B. Matthews,  A.C.N. de Salles, and C. Ellermann (2011). Contributions of individual countries  emissions to climate  change and their uncertainty, Climatic Change 106 359 391 pp. (DOI: 10.1007/s10584 010 9930 6),  (ISSN: 0165 0009, 1573 1480).  Höhne N., M.G.J. den Elzen, and M. Weiss (2006). Common but differentiated convergence (CDC): A  new conceptual approach to long term climate policy, Climate Policy 6 181 199 pp. (DOI:  10.1080/14693062.2006.9685594).  Holling C.S. (1973). Resilience and Stability of Ecological Systems, Annual Review of Ecology and  Systematics 4 1 23 pp. (DOI: 10.2307/2096802), (ISSN: 0066 4162).  Holling C.S. (Ed.) (1978). Adaptive environmental assessment and management. , xviii + 377.  Homma T., K. Akimoto, and T. Tomoda (2012). Quantitative evaluation of time series GHG  emissions by sector and region using consumption based accounting, Energy Policy 51 816 827 pp.  (DOI: 10.1016/j.enpol.2012.09.031), (ISSN: 0301 4215).      83 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Hourcade J.C., M. Jaccard, C. Bataille, and F. Ghersi (2006). Hybrid Modeling: New Answers to Old  Challenges, The Energy Journal 2 1 12 pp. . Available at: http://halshs.archives ouvertes.fr/halshs 00471234.  Hovi J., D.F. Sprinz, and A. Underdal (2009). Implementing Long Term Climate Policy: Time  Inconsistency, Domestic Politics, International Anarchy, Global Environmental Politics 9 20 39 pp.  (DOI: 10.1162/glep.2009.9.3.20), (ISSN: 1526 3800).  Howarth R.B., and R.B. Norgaard (1992). Environmental Valuation Under Sustainable Development,  American Economic Review 82 473 477 pp. .  HSBC Global Research (2013). Oil & Carbon Revisited: Value at Risk from  unburnable  Reserves.  HSBC Bank PLC, London, UK. . Available at: http://gofossilfree.org/files/2013/02/HSBCOilJan13.pdf.  Hudson J., and A. Minea (2013). Innovation, Intellectual Property Rights, and Economic  Development: A Unified Empirical Investigation, World Development 46 66 78 pp. (DOI:  10.1016/j.worlddev.2013.01.023), (ISSN: 0305750X).  Hufty M. (2011). Investigating Policy Processes: The Governance Analytical Framework (GAF),  Research Sustainable Development: Foundations, Experiences, and Perspectives 403 424 pp. .  Hulme M. (2009). Why We Disagree about Climate Change. Cambridge University Press, Cambridge,  427 pp.  Humphreys S. (Ed.) (2009). Human Rights and Climate Change. Cambridge University Press, 368 pp.  Available at: http://www.cambridge.org/gb/knowledge/isbn/item2713745/?site_locale=en_GB.  Huneke M.E. (2005). The face of the un consumer: An empirical examination of the practice of  voluntary simplicity in the United States, Psychology and Marketing 22 527 550 pp. (DOI:  10.1002/mar.20072), (ISSN: 1520 6793).  IEA (2012). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. 2012 Edition.  Available at: http://wds.iea.org/wds/pdf/documentation_co2_2012.pdf.  Intergovernmental Panel on Climate Change (1990). Climate Change: First Assessment Report.  Cambridge University Press, Cambridge, UK; New York, USA, and Melbourne, Australia.  Intergovernmental Panel on Climate Change (1995). Climate Change 1995: IPCC Second Assessment.  Cambridge University Press, Cambridge, UK; New York, USA, and Melbourne, Australia, 63 pp.  Available at: http://www.ipcc.ch/pdf/climate changes 1995/ipcc 2nd assessment/2nd assessment en.pdf.  Intergovernmental Panel on Climate Change (2001). Climate Change 2001: IPCC Third Assessment  Report [Watson R.T. (eds)]. Cambridge University Press, Cambridge, UK. . Available at:  http://www.grida.no/publications/other/ipcc_tar/.  Intergovernmental Panel on Climate Change (2007). Climate Change 2007: IPCC Fourth Assessment  Report [Core Writing Team, Pachauri, R.K. and Reisinger, A. (eds)]. Cambridge University Press,  Cambridge, UK.  Intergovernmental Panel on Climate Change (2011). IPCC Special Report on Renewable Energy  Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P.  Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)].      84 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Cambridge University Press, Cambridge, U.K., and New York, 1075 pp. Available at: http://srren.ipcc wg3.de/report.  Intergovernmental Panel on Climate Change (2012a). Managing the Risks of Extreme Events and  Disasters to Advance Climate Change Adaption: Special Report of the Intergovernmental Panel on  Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea,  K.J. Mach, G. K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds)]. Cambridge University Press,  New York, NY, 582 pp., (ISBN: 9781107025066). .  Intergovernmental Panel on Climate Change (2012b). Meeting Report of the Intergovernmental  Panel on Climate Change Expert Meeting on Geoengineering [O. Edenhofer, R. Pichs Madruga, Y.  Sokona, C. Field, V. Barros, T.F. Stocker, Q. Dahe, J. Minx, K. Mach, G. K. Plattner, S. Schlömer, G.  Hansen, M. Mastrandrea (eds.)]. IPCC Working Group III Technical Support Unit, Potsdam Institute  for Climate Impact Research, Potsdam, Germany, Pp. 99. Potsdam, Germany.  Intergovernmental Panel on Climate Change (2014). IPCC Fifth Assessment Report, Working Group  II.  International Energy Agency (2012). World Energy Outlook 2012. IEA, Paris, France.  International Labour Office (2010). Climate Change and Labour: The Need for a  Just Transition .  International Journal of Labour Research, Geneva, Switzerland, 318 pp., (ISBN: 2076 9806). .  Isaac M., and D.P. van Vuuren (2009). Modeling global residential sector energy demand for heating  and air conditioning in the context of climate change, Energy Policy 37 507 521 pp. (DOI:  10.1016/j.enpol.2008.09.051), (ISSN: 0301 4215).  Iyer S. (2006). Human Capital. In: The Elgar Companion to Development Studies. Edward Elgar,  Cheltenham pp.240 245(ISBN: 978 1 84376 475 5).  Jabareen Y. (2006). A New Conceptual Framework for Sustainable Development, Environment,  Development and Sustainability 10 179 192 pp. (DOI: 10.1007/s10668 006 9058 z), (ISSN: 1387 585X, 1573 2975).  Jackson T. (2005a). Motivating Sustainable Consumption: A Review of Evidence on Consumer  Behaviour and Behavioural Change. A Report to the Sustainable Development Research Network.  University of Surrey, Centre for Environmental Strategies, Surrey. . Available at:  http://hiveideas.com/attachments/044_motivatingscfinal_000.pdf.  Jackson T. (2005b). Live Better by Consuming Less?: Is There a  Double Dividend  in Sustainable  Consumption?, Journal of Industrial Ecology 9 19 36 pp. (DOI: 10.1162/1088198054084734), (ISSN:  1530 9290).  Jackson T. (2009). Prosperity without Growth?   The Transition to a Sustainable Economy.  Sustainable Development Commission, London. . Available at: http://www.sd commission.org.uk/data/files/publications/prosperity_without_growth_report.pdf.  Jackson T. (2011a). Societal transformations for a sustainable economy, Natural Resources Forum 35  155 164 pp. (DOI: 10.1111/j.1477 8947.2011.01395.x), (ISSN: 1477 8947).      85 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Jackson A.L.R. (2011b). Renewable energy vs. biodiversity: Policy conflicts and the future of nature  conservation, Global Environmental Change 21 1195 1208 pp. (DOI:  10.1016/j.gloenvcha.2011.07.001), (ISSN: 0959 3780).  Jacobsson S., and A. Bergek (2011). Innovation system analyses and sustainability transitions:  Contributions and suggestions for research, Environmental Innovation and Societal Transitions 1 41 57 pp. (DOI: 10.1016/j.eist.2011.04.006), (ISSN: 2210 4224).  Jacoby H., M. Babiker, S. Paltsev, and J. Reilly (2009). Sharing the burden of GHG reductions. In:  Post Kyoto international climate policy : implementing architectures for agreement. J.E. Aldy, R.N.  Stavins, (eds.), Cambridge University Press, Cambridge(ISBN: 9780521137850  0521137853   9780521129527  0521129524).  Jacques P.J., R.E. Dunlap, and M. Freeman (2008). The organisation of denial: Conservative think  tanks and environmental scepticism, Environmental Politics 17 349 385 pp. (DOI:  10.1080/09644010802055576), (ISSN: 0964 4016).  Jaeger C.C., L. Paroussos, D. Mangalagiu, R. Kupers, A. Mandel, and J.D. Tabara (2011). A New  Growth Path for Europe: Generating Prosperity and Jobs in the Low Carbon Economy (Synthesis  Report). Postdam, Germany, 149 pp., (ISBN: 978 3 941663 09 1). .  Jaffe A.B., R.G. Newell, and R.N. Stavins (2005). A tale of two market failures: Technology and  environmental policy, Ecological Economics 54 164 174 pp. (DOI: 10.1016/j.ecolecon.2004.12.027),  (ISSN: 0921 8009).  Jagers S., and G. Duus Otterstrom (2008). Dual climate change responsibility: on moral divergences  between mitigation and adaptation, Environmental Politics 17 576 591 pp. (DOI:  10.1080/09644010802193443), (ISSN: 0964 4016).  Jagers S.C., and J. Stripple (2003). Climate governance beyond the state, Global Governance 9 385 399 pp. (ISSN: 1075 2846).  Jakob M., and R. Marschinski (2012). Interpreting trade related CO2 emission transfers, Nature  Climate Change 3 19 23 pp. (DOI: 10.1038/nclimate1630), (ISSN: 1758 678X, 1758 6798).  Jamieson D. (2001). Climate Change and Global Environmental Justice. In: Changing the Atmosphere:  Expert Knowledge and Environmental Governance. The MIT Press, Cambridge, MA pp.287 308.  Jamieson D. (2013). Climate change, consequentialism and the road ahead, Chicago Journal of  International Law 13 439 468 pp. .  Janetos A.C., E. Malone, E. Mastrangelo, K. Hardee, and A. de Bremond (2012). Linking climate  change and development goals: framing, integrating, and measuring, Climate and Development 4  141 156 pp. (DOI: 10.1080/17565529.2012.726195), (ISSN: 1756 5529, 1756 5537).  Jänicke M. (2012). Dynamic governance of clean energy markets: how technical innovation could  accelerate climate policies, Journal of Cleaner Production 22 50 59 pp. (DOI:  10.1016/j.jclepro.2011.09.006), (ISSN: 0959 6526).  Jasanoff S. (2004). Earthly Politics: Local and Global in Environmental Governance. MIT Press,  Cambridge, MA, 372 pp., (ISBN: 9780262600590). .      86 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Jayaraman T., T. Kaniktar, and M. D Souza (2011). Equitable access to sustainable development: An  Indian approach. In: Equitable access to sustainable development: Contribution to the body of  scientific knowledge. BASIC expert group, Beijing, Brasilia, Cape Town and Mumbai pp.59 77.  Available at: http://www.erc.uct.ac.za/Basic_Experts_Paper.pdf.  Jinnah S. (2011). Climate Change Bandwagoning: The Impacts of Strategic Linkages on Regime  Design, Maintenance, and Death, Global Environmental Politics 11 1 9 pp. (DOI:  10.1162/GLEP_a_00065), (ISSN: 1526 3800).  Johnston M., and H. Hesseln (2012). Climate change adaptive capacity of the Canadian forest sector,  Forest Policy and Economics 24 29 34 pp. (DOI: 10.1016/j.forpol.2012.06.001), (ISSN: 13899341).  Jonas H. (1985). The Imperative of Responsibility: In Search of an Ethics for the Technological Age.  University of Chicago Press, Chicago, IL, 267 pp., (ISBN: 9780226405971). .  Jones N., C.P. Halvadakis, and C.M. Sophoulis (2011). Social capital and household solid waste  management policies: a case study in Mytilene, Greece, Environmental Politics 20 264 283 pp. (DOI:  10.1080/09644016.2011.551032), (ISSN: 0964 4016, 1743 8934).  Jones C.M., and D.M. Kammen (2011). Quantifying Carbon Footprint Reduction Opportunities for  U.S. Households and Communities, Environmental Science & Technology 45 4088 4095 pp. (DOI:  10.1021/es102221h), (ISSN: 0013 936X).  Jones B.F., and B.A. Olken (2005). Do Leaders Matter? National Leadership and Growth Since World  War II, The Quarterly Journal of Economics 120 835 864 pp. (DOI: 10.1093/qje/120.3.835), (ISSN:  0033 5533, 1531 4650).  JRC/PBL (2012). European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR), release version  4.2 FT2010. Available at: http://edgar.jrc.ec.europa.eu.  Jupesta J., R. Boer, G. Parayil, Y. Harayama, M. Yarime, J.A.P. de Oliveira, and S.M. Subramanian  (2011). Managing the transition to sustainability in an emerging economy: Evaluating green growth  policies in Indonesia, Environmental Innovation and Societal Transitions 1 187 191 pp. (DOI:  10.1016/j.eist.2011.08.001), (ISSN: 2210 4224).  Kahneman D., and A. Deaton (2010). High income improves evaluation of life but not emotional  well being, Proceedings of the National Academy of Sciences 107 16489 16493 pp. (DOI:  10.1073/pnas.1011492107), (ISSN: 0027 8424, 1091 6490).  Kahneman D., E. Diener, and N. Schwarz (2003). Well Being : The Foundations of Hedonic  Psychology. Russell Sage Foundation, New York, 608 pp., (ISBN: 9780871544230). .  Kals E., and J. Maes (2011). Justice and Conflicts. Springer, New York, 452 pp., (ISBN:  9783642190346). .  Kara S., and W. Li (2011). Unit process energy consumption models for material removal processes,  CIRP Annals   Manufacturing Technology 60 37 40 pp. (DOI: 10.1016/j.cirp.2011.03.018), (ISSN:  0007 8506).      87 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Kartha S., P. Baer, T. Athanasiou, and E. Kemp Benedict (2009). The Greenhouse Development  Rights framework, Climate and Development 1 147 165 pp. (DOI: 10.3763/cdev.2009.0010), (ISSN:  1756 5529).  Kates R.W. (2001). Sustainability Science, Science 292 641 642 pp. (DOI: 10.1126/science.1059386),  (ISSN: 00368075, 10959203).  Kates R.W., W.R. Travis, and T.J. Wilbanks (2012). Transformational adaptation when incremental  adaptations to climate change are insufficient, Proceedings of the National Academy of Sciences 109  7156 7161 pp. (DOI: 10.1073/pnas.1115521109), (ISSN: 0027 8424, 1091 6490).  Kellstedt P.M., S. Zahran, and A. Vedlitz (2008). Personal Efficacy, the Information Environment,  and Attitudes Toward Global Warming and Climate Change in the United States, Risk Analysis 28  113 126 pp. (DOI: 10.1111/j.1539 6924.2008.01010.x), (ISSN: 1539 6924).  Kemp R. (1994). Technology and the transition to environmental sustainability: The problem of  technological regime shifts, Futures 26 1023 1046 pp. (DOI: 10.1016/0016 3287(94)90071 X), (ISSN:  0016 3287).  Kenny G. (2011). Adaptation in agriculture: Lessons for resilience from eastern regions of New  Zealand, Climatic Change 106 441 462 pp. (DOI: 10.1007/s10584 010 9948 9), (ISSN: 01650009).  Keskitalo E.C.H., H. Dannevig, G.K. Hovelsrud, J.J. West, and A.G. Swartling (2011). Adaptive  capacity determinants in developed states: Examples from the Nordic countries and Russia, Regional  Environmental Change 11 579 592 pp. (DOI: 10.1007/s10113 010 0182 9), (ISSN: 14363798).  Keyzer M., and L. Wesenbeeck (2007). The Millennium Development Goals, How Realistic are They?,  De Economist 155 139 139 pp. (DOI: 10.1007/s10645 006 9039 5), (ISSN: 0013 063X, 1572 9982).  Khan B.Z. (2005). The Democratization of Invention: Patents and Copyrights in American Economic  Development, 1790 1920. Cambridge University Press, Cambridge; New York, 342 pp., (ISBN:  052181135X 9780521811354 9780521747202  0521747201). .  Khor M. (2011). Risks and uses of the green economy concept in the context of sustainable  development, poverty and equity, South Centre Research Paper . Available at:  http://www.twnside.org.sg/title2/uncsd2012/RP40_GreenEcon_concept_MKJul11.pdf.  Kilbourne W.E. (2010). Facing the Challenge of Sustainability in a Changing World: An Introduction  to the Special Issue, Journal of Macromarketing 30 109  111 pp. (DOI: 10.1177/0276146710363726).  Kjellen B. (2008). A New Diplomacy for Sustainable Development. Routledge, London, 208 pp.  Knox J.H. (2009). Linking Human Rights and Climate Change at the United Nations, Harvard  Environmental Law Review 33 477 pp. . Available at:  http://www.law.harvard.edu/students/orgs/elr/vol33_2/Knox.pdf.  Kolk A., D. Levy, and J. Pinkse (2008). Corporate Responses in an Emerging Climate Regime: The    Institutionalization and Commensuration of Carbon Disclosure, European Accounting Review 17 719 745 pp. (DOI: 10.1080/09638180802489121), (ISSN: 0963 8180).  Kolmes S.A. (2011). Climate Change: A Disinformation Campaign, Environment: Science and Policy  for Sustainable Development 53 33 37 pp. (DOI: 10.1080/00139157.2011.588553), (ISSN: 0013 9157).      88 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Kooiman J. (2003). Governing as Governance. Sage Publications, Inc, London, Thousand Oaks, New  Delhi, 264 pp., (ISBN: 978 0761940364). .  Koopmans T.C. (1965). On the Concept of Optimal Economic Growth, Pontificiae Academiae  Scientiarum Scripta Varia 28 . Available at: http://econpapers.repec.org/paper/cwlcwldpp/163.htm.  Krausmann F., S. Gingrich, N. Eisenmenger, K. H. Erb, H. Haberl, and M. Fischer Kowalski (2009).  Growth in global materials use, GDP and population during the 20th century, Ecological Economics  68 2696 2705 pp. (DOI: 10.1016/j.ecolecon.2009.05.007), (ISSN: 0921 8009).  Krippner G.R. (2005). The financialization of the American economy, Socio Economic Review 3 173 208 pp. (DOI: 10.1093/SER/mwi008), (ISSN: 1475 1461, 1475 147X).  Krugman P.R. (1979). Increasing returns, monopolistic competition, and international trade, Journal  of International Economics 9 469 479 pp. (DOI: 10.1016/0022 1996(79)90017 5), (ISSN: 0022 1996).  Kvaly B., H. Finseraas, and O. Listhaug (2012). The publics  concern for global warming: A cross national study of 47 countries, Journal of Peace Research 49 11 22 pp. (DOI:  10.1177/0022343311425841), (ISSN: 0022 3433, 1460 3578).  Lal R., J.A. Delgado, P.M. Groffman, N. Millar, C. Dell, and A. Rotz (2011). Management to mitigate  and adapt to climate change, Journal of Soil and Water Conservation 66 276 282 pp. (DOI:  10.2489/jswc.66.4.276), (ISSN: 00224561).  Lane M.S. (2012). Eco Republic: What the Ancients Can Teach Us about Ethics, Virtue, and  Sustainable Living. Princeton University Press, Princeton, NJ, 245 pp., (ISBN: 9780691151243). .  Lange A., A. Löschel, C. Vogt, and A. Ziegler (2010). On the self interested use of equity in  international climate negotiations, European Economic Review 54 359 375 pp. (DOI:  10.1016/j.euroecorev.2009.08.006), (ISSN: 0014 2921).  Larsen R.K., A.G. Swartling, N. Powell, B. May, R. Plummer, L. Simonsson, and M. Osbeck (2012). A  framework for facilitating dialogue between policy planners and local climate change adaptation  professionals: Cases from Sweden, Canada and Indonesia, Environmental Science & Policy 23 12 23  pp. (DOI: 10.1016/j.envsci.2012.06.014), (ISSN: 1462 9011).  Lastovicka J.L., L.A. Bettencourt, R.S. Hughner, and R.J. Kuntze (1999). Lifestyle of the Tight and  Frugal: Theory and Measurement, Journal of Consumer Research 26 85 98 pp. (DOI:  10.1086/209552), (ISSN: 0093 5301, 1537 5277).  Laukkonen J., P.K. Blanco, J. Lenhart, M. Keiner, B. Cavric, and C. Kinuthia Njenga (2009).  Combining climate change adaptation and mitigation measures at the local level, Habitat  International 33 287 292 pp. (DOI: 10.1016/j.habitatint.2008.10.003), (ISSN: 01973975).  Laurent A., S.I. Olsen, and M.Z. Hauschild (2012). Limitations of Carbon Footprint as Indicator of  Environmental Sustainability, Environmental Science & Technology 46 4100 4108 pp. (DOI:  10.1021/es204163f), (ISSN: 0013 936X).  Lawn P.A. (2003). A theoretical foundation to support the Index of Sustainable Economic Welfare  (ISEW), Genuine Progress Indicator (GPI), and other related indexes, Ecological Economics 44 105 118 pp. (DOI: 10.1016/S0921 8009(02)00258 6), (ISSN: 09218009).      89 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Layard R. (2005). Happiness: Lessons from a New Science. Penguin, London, 320 pp., (ISBN: 978 0143037019). .  Layard R., G. Mayraz, and S. Nickell (2008). The marginal utility of income, Journal of Public  Economics 92 1846 1857 pp. .  Leadley P., H.M. Pereira, R. Alkemade, J.F. Fernandez Manjarrés, V. Proença, J.P.W. Scharlemann,  and M.J. Walpole (2010). Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity  and Associated Ecosystem Services : A Technical Report for the Global Biodiversity Outlook 3.  UNEP/Earthprint, 136 pp., (ISBN: 9789292252182). .  Lebel L., and S. Lorek (2008). Enabling Sustainable Production Consumption Systems, Annual Review  of Environment and Resources 33 241 275 pp. (DOI: 10.1146/annurev.environ.33.022007.145734).  Lecocq F., and J. C. Hourcade (2012). Unspoken ethical issues in the climate affair: Insights from a  theoretical analysis of negotiation mandates, Economic Theory 49 445 471 pp. (DOI:  10.1007/s00199 010 0589 z), (ISSN: 0938 2259, 1432 0479).  Lecocq F., J. C. Hourcade, and M. Ha Duong (1998). Decision making under uncertainty and inertia  constraints: sectoral implications of the when flexibility, Energy Economics 20 539 555 pp. (DOI:  10.1016/S0140 9883(98)00012 7).  Lecocq F., and Z. Shalizi (2007). Balancing Expenditures on Mitigation of and Adaptation to Climate  Change An Exploration of Issues Relevant to Developing Countries. World Bank.  Lee R. (2011). The Outlook for Population Growth, Science 333 569 573 pp. (DOI:  10.1126/science.1208859), (ISSN: 0036 8075).  Lee K. H. (2012). Carbon accounting for supply chain management in the automobile industry,  Journal of Cleaner Production 1 11 pp. (DOI: 10.1016/j.jclepro.2012.02.023), (ISSN: 0959 6526).  Leiserowitz A., R.W. Kates, and T.M. Parris (2005). Do Global Attitudes and Behaviors Support  Sustainable Development?, Environment 47 22 38 pp. .  Lenzen M., J. Murray, F. Sack, and T. Wiedmann (2007). Shared producer and consumer  responsibility   Theory and practice, Ecological Economics 61 27 42 pp. (DOI:  10.1016/j.ecolecon.2006.05.018), (ISSN: 0921 8009).  Lenzen M., and G.M. Peters (2010). How City Dwellers Affect Their Resource Hinterland, Journal of  Industrial Ecology 14 73 90 pp. (DOI: 10.1111/j.1530 9290.2009.00190.x), (ISSN: 1530 9290).  Lenzen M., M. Wier, C. Cohen, H. Hayami, S. Pachauri, and R. Schaeffer (2006). A comparative  multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and  Japan, Energy 31 181 207 pp. (DOI: 10.1016/j.energy.2005.01.009), (ISSN: 0360 5442).  Levin S.A. (2000). Fragile Dominion: Complexity and the Commons. Perseus, Cambridge, Mass.;  [Oxford], 272 pp., (ISBN: 073820319X 9780738203195 0738201111  9780738201115). .  Levin K., B. Cashore, S. Bernstein, and G. Auld (2012). Overcoming the tragedy of super wicked  problems: constraining our future selves to ameliorate global climate change, Policy Sciences 45  123 152 pp. (DOI: 10.1007/s11077 012 9151 0), (ISSN: 0032 2687, 1573 0891).      90 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Li Y., and C.N. Hewitt (2008). The effect of trade between China and the UK on national and global  carbon dioxide emissions, Energy Policy 36 1907 1914 pp. (DOI: 10.1016/j.enpol.2008.02.005),  (ISSN: 0301 4215).  Li Y., and B. Zhang (2008). Development Path of China and India and the Challenges for their  Sustainable Growth, The World Economy 31 1277 1291 pp. (DOI: 10.1111/j.1467 9701.2008.01128.x), (ISSN: 1467 9701).  Liebowitz S.J., and S.E. Margolis (1995). Path Dependence, Lock in, and History, Journal of Law,  Economics, & Organization 11 205 226 pp. (ISSN: 8756 6222).  Lobell D.B., U.L.C. Baldos, and T.W. Hertel (2013). Climate adaptation as mitigation: The case of  agricultural investments, Environmental Research Letters 8 (DOI: 10.1088/1748 9326/8/1/015012),  (ISSN: 17489318).  Locatelli B., V. Evans, A. Wardell, A. Andrade, and R. Vignola (2011). Forests and climate change in  latin America: Linking adaptation and mitigation, Forests 2 431 450 pp. (DOI: 10.3390/f2010431),  (ISSN: 19994907).  Lohmann L. (2008). Carbon Trading, Climate Justice and the Production of Ignorance: Ten examples,  Development 51 359 365 pp. (ISSN: 1011 6370).  Lohmann L. (2009). Climate as Investment, Development and Change 40 1063 1083 pp. (DOI:  10.1111/j.1467 7660.2009.01612.x), (ISSN: 0012 155X).  Lohmann L. (2010). Uncertainty Markets and Carbon Markets: Variations on Polanyian Themes, New  Political Economy 15 225 254 pp. (DOI: 10.1080/13563460903290946), (ISSN: 1356 3467).  Lorenzoni I., S. Nicholson Cole, and L. Whitmarsh (2007). Barriers perceived to engaging with  climate change among the UK public and their policy implications, Global Environmental Change 17  445 459 pp. (DOI: 10.1016/j.gloenvcha.2007.01.004), (ISSN: 0959 3780).  Lovell H., H. Bulkeley, and D. Liverman (2009). Carbon offsetting: sustaining consumption?,  Environment and Planning A 41 2357 2379 pp. (DOI: 10.1068/a40345), (ISSN: 0308 518X).  Lutz W., and S. KC (2010). Dimensions of global population projections: what do we know about    future population trends and structures?, Philosophical Transactions of the Royal Society B Biological  Sciences 365 2779 2791 pp. (DOI: 10.1098/rstb.2010.0133), (ISSN: 0962 8436).  MacDonald G., H. Abarbanel, and P. Carruthers (1979). JASON. Long Term Impact of Atmospheric  Carbon Dioxide on Climate. Technical Report. SRI International, Arlington, VA, US. . Available at:  http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5829641.  Manne A.S., and G. Stephan (2005). Global climate change and the equity efficiency puzzle, Energy  30 2525 2536 pp. (DOI: 10.1016/j.energy.2004.07.007), (ISSN: 0360 5442).  Manzini E., and C. Vezzoli (2003). Product Service Systems and Sustainability: Opportunities for  Sustainable Solutions. United Nations Environment Programme, Division of Technology Industry and  Economics, Paris. . Available at:  http://www.unep.org/resourceefficiency/Portals/24147/scp/design/pdf/pss imp 7.pdf.      91 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Marginson D., and L. McAulay (2008). Exploring the debate on short termism: a theoretical and  empirical analysis, Strategic Management Journal 29 273 292 pp. (DOI: 10.1002/smj.657), (ISSN:  1097 0266).  Markussen P., and G.T. Svendsen (2005). Industry lobbying and the political economy of GHG trade  in the European Union, Energy Policy 33 245 255 pp. (DOI: 10.1016/S0301 4215(03)00238 6), (ISSN:  0301 4215).  Martinet V. (2011). A characterization of sustainability with indicators, Journal of Environmental  Economics and Management 61 183 197 pp. (DOI: 10.1016/j.jeem.2010.10.002), (ISSN: 00950696).  Martinet V. (2012). Economic Theory and Sustainable Development: What Can We Preserve for  Future Generations? Routledge, London ; New York, 203 pp., (ISBN: 9780415544771). .  Martínez E., F. Sanz, S. Pellegrini, E. Jiménez, and J. Blanco (2009). Life cycle assessment of a multi megawatt wind turbine, Renewable Energy 34 667 673 pp. (DOI: 10.1016/j.renene.2008.05.020),  (ISSN: 0960 1481).  Martinez Alier J., G. Kallis, S. Veuthey, M. Walter, and L. Temper (2010). Social Metabolism,  Ecological Distribution Conflicts, and Valuation Languages, Ecological Economics 70 153 158 pp. .  Martínez Alier J., U. Pascual, F. D. Vivien, and E. Zaccai (2010). Sustainable de growth: Mapping the  context, criticisms and future prospects of an emergent paradigm, Ecological Economics 69 1741 1747 pp. (DOI: 10.1016/j.ecolecon.2010.04.017), (ISSN: 0921 8009).  Marvel M.R., and G.T. Lumpkin (2007). Technology entrepreneurs  human capital and its effects on  innovation radicalness, Entrepreneurship Theory and Practice 31 807 828 pp. (DOI: 10.1111/j.1540 6520.2007.00209.x), (ISSN: 1042 2587).  Maslow A.H. (1970). Motivation and Personality. Harper & Row, New York, 336 pp., (ISBN: 978 0060419875). .  Matthew R.A., and A. Hammill (2009). Sustainable development and climate change, International  Affairs 85 1117 1128 pp. (DOI: 10.1111/j.1468 2346.2009.00852.x), (ISSN: 1468 2346).  McCright A.M., and R.E. Dunlap (2011). Cool dudes: The denial of climate change among  conservative white males in the United States, Global Environmental Change 21 1163 1172 pp. (DOI:  10.1016/j.gloenvcha.2011.06.003), (ISSN: 0959 3780).  McDonald S., C. Oates, M. Thyne, P. Alevizou, and L. A. McMorland (2009). Comparing sustainable  consumption patterns across product sectors, International Journal of Consumer Studies 33 137 145  pp. (DOI: 10.1111/j.1470 6431.2009.00755.x), (ISSN: 1470 6431).  McFadden J.E., T.L. Hiller, and A.J. Tyre (2011). Evaluating the efficacy of adaptive management  approaches: Is there a formula for success?, Journal of Environmental Management 92 1354 1359  pp. (DOI: 10.1016/j.jenvman.2010.10.038), (ISSN: 0301 4797).  McShane K. (2007). Why Environmental Ethics Shouldn t Give Up on Intrinsic Value, Environmental  Ethics 29 43 61 pp. .  Meade J.E. (1967). Population explosion, the standard of living and social conflict, The Economic  Journal 77 233 255 pp. .      92 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Meadows D.H., J. Randers, and D. Meadows (2004). Limits to Growth: The 30 Year Update. Chelsea  Green, 338 pp., (ISBN: 1931498857). .  Mehlum H., K. Moene, and R. Torvik (2006). Cursed by resources or institutions?, World Economy  29 1117 1131 pp. (DOI: 10.1111/j.1467 9701.2006.00808.x), (ISSN: 0378 5920).  Meyer A. (2004). Briefing: Contraction and convergence, Proceedings of the ICE   Engineering  Sustainability 157 189 192 pp. (DOI: 10.1680/ensu.2004.157.4.189), (ISSN: 1478 4629, 1751 7680).  Meyer L.H. (2012). Why Historical Emissions Should Count, Chicago Journal of International Law 13  597 pp. . Available at:  http://heinonline.org.ezproxy.library.tufts.edu/HOL/Page?handle=hein.journals/cjil13&id=603&div= &collection=journals.  Meyer L.H., and D. Roser (2010). Climate justice and historical emissions, Critical Review of  International Social and Political Philosophy 13 229 253 pp. (DOI: 10.1080/13698230903326349),  (ISSN: 1369 8230).  Milanoviæ B., P.H. Lindert, and J.G. Williamson (2007). Measuring Ancient Inequality. National  Bureau of Economic Research.  Millennium Ecosystem Assessment (2005). Ecosystems and Human Well Being: Synthesis. Island  Press, Washington, DC, 137 pp., (ISBN: 1597260401). .  Mitchell D. (2008). A Note on Rising Food Prices. World Bank   Development Economics Group  (DEC). . Available at: http://papers.ssrn.com/abstract=1233058.  Mitchell J., and C. Coles (Eds.) (2011). Markets and Rural Poverty: Upgrading in Value Chains. Taylor  & Francis UK, London, 292 pp., (ISBN: 1849713138). .  Mitchell S.M., and C.G. Thies (2012). Resource Curse in Reverse: How Civil Wars Influence Natural  Resource Production, International Interactions 38 218 242 pp. (DOI:  10.1080/03050629.2012.658326), (ISSN: 0305 0629).  Moisander J., A. Markkula, and K. Eräranta (2010). Construction of consumer choice in the market:  challenges for environmental policy, International Journal of Consumer Studies 34 73 79 pp. (DOI:  10.1111/j.1470 6431.2009.00821.x), (ISSN: 1470 6431).  Mokyr J. (1992). The Lever of Riches: Technological Creativity and Economic Progress. Oxford  University Press, Oxford, 368 pp., (ISBN: 0195074777). .  Mori K., and A. Christodoulou (2012). Review of sustainability indices and indicators: Towards a new  City Sustainability Index (CSI), Environmental Impact Assessment Review 32 94 106 pp. (DOI:  10.1016/j.eiar.2011.06.001), (ISSN: 01959255).  Mori A.S., T.A. Spies, K. Sudmeier Rieux, and A. Andrade (2013). Reframing ecosystem  management in the era of climate change: Issues and knowledge from forests, Biological  Conservation 165 115 127 pp. (DOI: 10.1016/j.biocon.2013.05.020), (ISSN: 00063207).  Moser P. (2013). Patents and Innovation: Evidence from Economic History, Journal of Economic  Perspectives 27 23 44 pp. (DOI: 10.1257/jep.27.1.23), (ISSN: 0895 3309).      93 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Moss R.H., J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, D.P. van Vuuren, T.R. Carter, S.  Emori, M. Kainuma, T. Kram, G.A. Meehl, J.F.B. Mitchell, N. Nakicenovic, K. Riahi, S.J. Smith, R.J.  Stouffer, A.M. Thomson, J.P. Weyant, and T.J. Wilbanks (2010). The next generation of scenarios  for climate change research and assessment, Nature 463 747 756 pp. (DOI: 10.1038/nature08823),  (ISSN: 0028 0836).  Müller B. (1999). Justice in Global Warming Negotiations:  How to Obtain a Procedurally Fair  Compromise. Oxford Institute for Energy Studies, Oxford, UK. . Available at:  http://www.oxfordenergy.org/1998/03/justice in global warming negotiations how to obtain a procedurally fair compromise/.  Müller B., N. Höhne, and C. Ellermann (2009). Differentiating (historic) responsibilities for climate  change, Climate Policy 9 593 611 pp. (DOI: 10.3763/cpol.2008.0570), (ISSN: 1469 3062).  Muradian R., M. Walter, and J. Martinez Alier (2012). Hegemonic transitions and global shifts in  social metabolism: Implications for resource rich countries. Introduction to the special section,  Global Environmental Change (DOI: 10.1016/j.gloenvcha.2012.03.004), (ISSN: 0959 3780).  Murdiyarso D. (2010). Climate and development   the challenges in delivering the promises: an  editorial essay, Wiley Interdisciplinary Reviews: Climate Change 1 765 769 pp. (DOI:  10.1002/wcc.19), (ISSN: 17577780).  Nakicenovic N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T.Y.  Jung, T. Kram, E.L. La Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K.  Riahi, A. Roehrl, H. H. Rogner, A. Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van  Rooijen, N. Victor, and Z. Dadi (2000). Special Report on Emissions Scenarios (N. Nakicenovic and R.  Swart, Eds.). Intergovernmental Panel on Climate Change, The Hague. . Available at:  http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission.  Nakicenovic N., and R. Swart (Eds.) (2000). Emissions Scenarios. Cambridge University Press, UK,  Cambridge, UK, 570 pp. Available at:  http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0.  Negro S.O., F. Alkemade, and M.P. Hekkert (2012). Why does renewable energy diffuse so slowly? A  review of innovation system problems, Renewable and Sustainable Energy Reviews 16 3836 3846  pp. (DOI: 10.1016/j.rser.2012.03.043), (ISSN: 1364 0321).  Nelson R.R., and S.G. Winter (2002). Evolutionary Theorizing in Economics, The Journal of Economic  Perspectives 16 23 46 pp. (ISSN: 0895 3309).  Nemet G.F., and D.M. Kammen (2007). US energy research and development: Declining investment,  increasing need, and the feasibility of expansion, Energy Policy 35 746 755 pp. (DOI:  10.1016/j.enpol.2005.12.012), (ISSN: 0301 4215).  Neumayer E. (2000). In defence of historical accountability for greenhouse gas emissions, Ecological  Economics 33 185 192 pp. (DOI: 10.1016/S0921 8009(00)00135 X), (ISSN: 0921 8009).  Neumayer E. (2010). Weak versus Strong Sustainability: Exploring the Limits of Two Opposing  Paradigms. Edward Elgar, Cheltenham, UK ; Northhampton, MA, 272 pp., (ISBN: 9781848448728). .  Newell P., and D. Mulvaney (2013). The political economy of the  just transition , The Geographical  Journal 179 132 140 pp. (DOI: 10.1111/geoj.12008), (ISSN: 1475 4959).      94 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Newell P., and M. Paterson (2010). Climate Capitalism. Global Warming and the Transformation of  the Global Economy. Cambridge University Press, Cambridge.  Norenzayan A. (2011). Explaining Human Behavioral Diversity, Science 332 1041 1042 pp. (DOI:  10.1126/science.1207050), (ISSN: 0036 8075, 1095 9203).  Norgaard K.M. (2011). Living in Denial: Climate Change, Emotions, and Everyday Life. MIT Press,  Cambridge, MA, 300 pp., (ISBN: 9780262515856). .  Van Notten P.W.., J. Rotmans, M.B.. van Asselt, and D.S. Rothman (2003). An updated scenario  typology, Futures 35 423 443 pp. (DOI: 10.1016/S0016 3287(02)00090 3), (ISSN: 0016 3287).  O Neill B.C., L.F. MacKellar, and W. Lutz (2001). Population and Climate Change. Cambridge  University Press, Cambridge, 288 pp., (ISBN: 0521018021). .  Oberheitmann A. (2010). A new post Kyoto climate regime based on per capita cumulative CO2 emission rights rationale, architecture and quantitative assessment of the implication for the CO2 emissions from China, India and the Annex I countries by 2050, Mitigation and Adaptation Strategies  for Global Change 15 137 168 pp. (DOI: 10.1007/s11027 009 9207 4), (ISSN: 1381 2386, 1573 1596).  Ockwell D.G., R. Haum, A. Mallett, and J. Watson (2010). Intellectual property rights and low  carbon technology transfer: Conflicting discourses of diffusion and development, Global  Environmental Change 20 729 738 pp. (DOI: 10.1016/j.gloenvcha.2010.04.009), (ISSN: 0959 3780).  OECD (2011). Towards Green Growth. OECD Publishing, Paris, 142 pp., (ISBN: 9789264094970). .  Oishi S., S. Kesebir, and E. Diener (2011). Income Inequality and Happiness, Psychlogical Science 22  1095 1100 pp. (DOI: 10.1177/0956797611417262).  Okereke C. (2008). Global Justice and Neoliberal Environmental Governance. Routledge, London, 242  pp., (ISBN: 0415599466). .  Okereke C. (2010). Climate justice and the international regime, Wiley Interdisciplinary Reviews Climate Change 1 462 474 pp. (DOI: 10.1002/wcc.52), (ISSN: 1757 7780).  Okereke C. (2011). Moral Foundations for Global Environmental and Climate Justice, Royal Institute  of Philosophy Supplements 69 117 135 pp. (DOI: 10.1017/S1358246111000245).  Okereke C., H. Bulkeley, and H. Schroeder (2009). Conceptualizing Climate Governance Beyond the  International Regime, Global Environmental Politics 9 58 + pp. (DOI: 10.1162/glep.2009.9.1.58),  (ISSN: 1526 3800).  Okereke C., and K. Dooley (2010). Principles of justice in proposals and policy approaches to avoided    deforestation: Towards a post Kyoto climate agreement, Global Environmental Change Human and  Policy Dimensions 20 82 95 pp. (DOI: 10.1016/j.gloenvcha.2009.08.004), (ISSN: 0959 3780).  Okereke C., and D. McDaniels (2012). To what extent are EU steel companies susceptible to  competitive loss   due to climate policy?, Energy Policy 46 203 215 pp. (DOI:  10.1016/j.enpol.2012.03.052), (ISSN: 0301 4215).      95 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Osbaldiston R., and J.P. Schott (2012). Environmental Sustainability and Behavioral Science: Meta Analysis of   Proenvironmental Behavior Experiments, Environment and Behavior 44 257 299 pp.  (DOI: 10.1177/0013916511402673), (ISSN: 0013 9165).  Ostrom E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action.  Cambridge University Press, Cambridge, UK, 302 pp., (ISBN: 9780521405997). .  Ostrom E. (1998). A Behavioral Approach to the Rational Choice Theory of Collective Action:  Presidential Address, American Political Science Association, 1997, The American Political Science  Review 92 1 22 pp. (DOI: 10.2307/2585925), (ISSN: 0003 0554).  Ostrom E. (2008). Frameworks and theories of environmental change, Global Environmental Change  18 249 252 pp. (DOI: 10.1016/j.gloenvcha.2008.01.001), (ISSN: 0959 3780).  Ostrom E. (2010). Polycentric systems for coping with collective action and global environmental  change, Global Environmental Change 20 550 557 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0959378010000634.  Ostrom E., J. Burger, C.B. Field, R.B. Norgaard, and D. Policansky (1999). Revisiting the Commons:  Local Lessons, Global Challenges, Science 284 278 282 pp. (DOI: 10.1126/science.284.5412.278),  (ISSN: 0036 8075, 1095 9203).  Paavola J., and W.N. Adger (2006). Fair adaptation to climate change, Ecological Economics 56 594 609 pp. (DOI: 10.1016/j.ecolecon.2005.03.015), (ISSN: 0921 8009).  Page S.E. (2006). Path dependence, Quarterly Journal of Political Science 1 87 115 pp. (DOI:  10.1561/100.00000006).  Paillard S., S. Treyer, and B. Dorin (2010). Agrimonde: Scénarios et défis pour nourrir le monde en  2050. Editions Quae, 298 pp., (ISBN: 9782759208883). .  Palley T. (2007). Financialization: What it is and Why it Matters, PERI Working Papers . Available at:  http://scholarworks.umass.edu/peri_workingpapers/135.  Pan J., J. Phillips, and Y. Chen (2008). China s balance of emissions embodied in trade: approaches  to measurement and allocating international responsibility, Oxford Review of Economic Policy 24  354 376 pp. (DOI: 10.1093/oxrep/grn016).  Pan X., F. Teng, and G. Wang (2013). Sharing emission space at an equitable basis: Allocation  scheme based on the equal cumulative emission per capita principle, Applied Energy (DOI:  10.1016/j.apenergy.2013.07.021), (ISSN: 0306 2619).  Pandey D., M. Agrawal, and J. Pandey (2011). Carbon footprint: current methods of estimation,  Environmental Monitoring and Assessment 178 135 160 pp. (DOI: 10.1007/s10661 010 1678 y),  (ISSN: 0167 6369).  Parry M. (2009). Climate change is a development issue, and only sustainable development can  confront the challenge, Climate and Development 1 5 9 pp. (DOI: 10.3763/cdev.2009.0012), (ISSN:  17565529).  Parthan B., M. Osterkorn, M. Kennedy, S.J. Hoskyns, M. Bazilian, and P. Monga (2010). Lessons for  low carbon energy transition: Experience from the Renewable   Energy and Energy Efficiency      96 of 114     Final Draft   Chapter 4      Partnership (REEEP), Energy for Sustainable Development 14 83 93 pp. (DOI:  10.1016/j.esd.2010.04.003), (ISSN: 0973 0826).  IPCC WGIII AR5   Paterson M. (2009). Global governance for sustainable capitalism? The political economy of global  environmental governance. In: Governing Sustainability. Cambridge University Press, Cambridge  pp.99 122(ISBN: 9780521732437).  Pattberg P. (2010). Public private partnerships in global climate governance, Wiley Interdisciplinary  Reviews Climate Change 1 279 287 pp. (DOI: 10.1002/wcc.38), (ISSN: 1757 7780).  Patzelt H. (2010). CEO human capital, top management teams, and the acquisition of venture capital  in new technology ventures: An empirical analysis, Journal of Engineering and Technology  Management 27 131 147 pp. (DOI: 10.1016/j.jengtecman.2010.06.001), (ISSN: 0923 4748).  De Paula Gomes M.S., and M.S. Muylaert de Araujo (2011). Artificial cooling of the atmosphere A  discussion on the environmental   effects, Renewable & Sustainable Energy Reviews 15 780 786 pp.  (DOI: 10.1016/j.rser.2010.07.045), (ISSN: 1364 0321).  Pelling M. (2010). Adaptation to Climate Change: From Resilience to Transformation. Taylor &  Francis US, 220 pp., (ISBN: 9780415477505). .  Pendergast S.M., J.A. Clarke, and G.C. van Kooten (2011). Corruption, Development and the Curse  of Natural Resources, Canadian Journal of Political Science Revue Canadienne De Science Politique 44  411 437 pp. (DOI: 10.1017/S0008423911000114), (ISSN: 0008 4239).  Penetrante A.M. (2011). Politics of Equity and Justice in Climate Change Negotiations in North South  Relations. Hexagon Series on Human and Environmental Security and Peace. In: Coping with Global  Environmental Change, Disasters and Security. H.G. Brauch, Ú.O. Spring, C. Mesjasz, J. Grin, P.  Kameri Mbote, B. Chourou, P. Dunay, J. Birkmann, (eds.), Springer Berlin Heidelberg, pp.1355 1366(ISBN: 978 3 642 17775 0, 978 3 642 17776 7).  Pepper M., T. Jackson, and D. Uzzell (2009). An examination of the values that motivate socially  conscious and frugal consumer behaviours, International Journal of Consumer Studies 33 126 136  pp. (DOI: 10.1111/j.1470 6431.2009.00753.x), (ISSN: 1470 6431).  Pereira H.M., P.W. Leadley, V. Proença, R. Alkemade, J.P.W. Scharlemann, J.F. Fernandez Manjarrés, M.B. Araújo, P. Balvanera, R. Biggs, W.W.L. Cheung, L. Chini, H.D. Cooper, E.L. Gilman,  S. Guénette, G.C. Hurtt, H.P. Huntington, G.M. Mace, T. Oberdorff, C. Revenga, P. Rodrigues, R.J.  Scholes, U.R. Sumaila, and M. Walpole (2010). Scenarios for Global Biodiversity in the 21st Century,  Science 330 1496 1501 pp. (DOI: 10.1126/science.1196624), (ISSN: 0036 8075, 1095 9203).  Peters G.P. (2010). Carbon footprints and embodied carbon at multiple scales, Current Opinion in  Environmental Sustainability 2 245 250 pp. (DOI: 10.1016/j.cosust.2010.05.004), (ISSN: 1877 3435).  Peters G.P., S.J. Davis, and R. Andrew (2012). A synthesis of carbon in international trade,  Biogeosciences 9 3247 3276 pp. (DOI: 10.5194/bg 9 3247 2012), (ISSN: 1726 4189).  Peters G.P., and E.G. Hertwich (2008a). CO2 Embodied in International Trade with Implications for  Global Climate Policy, Environmental Science & Technology 42 1401 1407 pp. (DOI:  10.1021/es072023k), (ISSN: 0013 936X).      97 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Peters G.P., and E.G. Hertwich (2008b). Post Kyoto greenhouse gas inventories: production versus  consumption RID B 1012 2008, Climatic Change 86 51 66 pp. (DOI: 10.1007/s10584 007 9280 1),  (ISSN: 0165 0009).  Peters G.P., J.C. Minx, C.L. Weber, and O. Edenhofer (2011). Growth in emission transfers via  international trade from 1990 to 2008, Proceedings of the National Academy of Sciences 108 8903 8908 pp. (DOI: 10.1073/pnas.1006388108), (ISSN: 0027 8424, 1091 6490).  Peters G.P., C.L. Weber, D. Guan, and K. Hubacek (2007). China s Growing CO2 Emissions: A Race  between Increasing Consumption and Efficiency Gains, Environmental Science & Technology 41  5939 5944 pp. (DOI: 10.1021/es070108f), (ISSN: 0013 936X).  Pezzey J.C.V. (2004). One sided sustainability tests with amenities, and changes in technology, trade  and population, Journal of Environmental Economics and Management 48 613 631 pp. (DOI:  10.1016/j.jeem.2003.10.002), (ISSN: 0095 0696).  Pezzey J.C.V., and F. Jotzo (2012). Tax versus trading and efficient revenue recycling as issues for  greenhouse gas abatement, Journal of Environmental Economics and Management 64 230 236 pp.  (DOI: 10.1016/j.jeem.2012.02.006), (ISSN: 0095 0696).  Pezzey J.C.V., and M. Toman (2002). Progress and problems in the economics of sustainability. In:  International Yearbook of Environmental and Resource Economics 2002/2003. Edward Elgar  Publishing, .  Pickering J., and C. Barry (2012). On the concept of climate debt: its moral and political value,  Critical Review of International Social and Political Philosophy 15 667 685 pp. (DOI:  10.1080/13698230.2012.727311), (ISSN: 1369 8230).  Picketts I.M., J. Curry, and E. Rapaport (2012). Community Adaptation to Climate Change:  Environmental Planners  Knowledge and Experiences in British Columbia, Canada, Journal of  Environmental Policy and Planning 14 119 137 pp. (DOI: 10.1080/1523908X.2012.659847), (ISSN:  1523908X).  Pidgeon N.F., I. Lorenzoni, and W. Poortinga (2008). Climate change or nuclear power   No thanks!  A quantitative study of   public perceptions and risk framing in Britain, Global Environmental Change Human and Policy Dimensions 18 69 85 pp. (DOI: 10.1016/j.gloenvcha.2007.09.005), (ISSN: 0959 3780).  Pimentel D., A. Marklein, M.A. Toth, M.N. Karpoff, G.S. Paul, R. McCormack, J. Kyriazis, and T.  Krueger (2009). Food Versus Biofuels: Environmental and Economic Costs, Human Ecology 37 1 12  pp. (DOI: 10.1007/s10745 009 9215 8), (ISSN: 0300 7839).  Pimentel D., and M.G. Paoletti (2009). Developing a 21st Century View of Agriculture and the  Environment (N. Ferry and A.M.R. Gatehouse, Eds.). Cabi Publishing C a B Int, Wallingford, (ISBN:  978 1 84593 409 5). .  Pinkse J., and A. Kolk (2012). Addressing the climate change sustainable development nexus: The  role of multistakeholder partnerships, Business and Society 51 176 210 pp. (DOI:  10.1177/0007650311427426), (ISSN: 00076503).  Plassmann K., A. Norton, N. Attarzadeh, M.P. Jensen, P. Brenton, and G. Edwards Jones (2010).  Methodological complexities of product carbon footprinting: a sensitivity analysis of key variables in      98 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     a developing country context, Environmental Science & Policy 13 393 404 pp. (DOI:  10.1016/j.envsci.2010.03.013), (ISSN: 1462 9011).  Plevin R.J., M. O Hare, A.D. Jones, M.S. Torn, and H.K. Gibbs (2010). Greenhouse Gas Emissions  from Biofuels  Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously  Estimated, Environmental Science & Technology 44 8015 8021 pp. (DOI: 10.1021/es101946t), (ISSN:  0013 936X).  Van der Ploeg F. (2011). Natural Resources: Curse or Blessing?, Journal of Economic Literature 49  366 420 pp. (DOI: 10.1257/jel.49.2.366), (ISSN: 0022 0515).  Pogutz S., and V. Micale (2011). Sustainable consumption and production, Society and Economy 33  29 50 pp. (DOI: 10.1556/SocEc.33.2011.1.5), (ISSN: 1588 9726, 1588 970X).  Polasky S., S.R. Carpenter, C. Folke, and B. Keeler (2011). Decision making under great uncertainty:  environmental management in an era of global change, Trends in Ecology & Evolution 26 398 404  pp. (DOI: 10.1016/j.tree.2011.04.007), (ISSN: 0169 5347).  Polsky C., and H. Eakin (2011). Global change vulnerability assessments: Definitions, challenges, and  opportunities. In: The Oxford Handbook of Climate Change and Society. Oxford University Press,  (ISBN: 9780199566600).  Pope J., D. Annandale, and A. Morrison Saunders (2004). Conceptualising sustainability assessment,  Environmental Impact Assessment Review 24 595 616 pp. (DOI: 10.1016/j.eiar.2004.03.001), (ISSN:  01959255).  Posner E.A., and C.R. Sunstein (2007). Climate Change Justice, Georgetown Law Journal 96 1565  pp. . Available at:  http://scholar.google.de/scholar_url?hl=en&q=http://www.researchgate.net/publication/46454164 _Climate_Change_Justice/file/d912f50cb1a9fe6752.pdf&sa=X&scisig=AAGBfm3m6Af53l7vFkH56i8_ u5DEYAFhOQ&oi=scholarr&ei=SYnnUuWCEsWUswby74Eg&ved=0CCkQgAMoADAA.  Posner E.A., and D. Weisbach (2010). Climate Change Justice. Princeton University Press, Princeton,  NJ, 231 pp., (ISBN: 9780691137759). .  Posner E.A., and D. Weisbach (2012). International Paretianism: A Defense. . Available at:  http://papers.ssrn.com/abstract=2120650.  Poteete A.R. (2009). Is Development Path Dependent or Political? A Reinterpretation of Mineral Dependent Development in Botswana, Journal of Development Studies 45 544 571 pp. (DOI:  10.1080/00220380802265488), (ISSN: 0022 0388, 1743 9140).  Potts M. (2007). Population and environment in the twenty first century, Population and  Environment 28 204 211 pp. (DOI: 10.1007/s11111 007 0045 6), (ISSN: 0199 0039).  Poumadere M., R. Bertoldo, and J. Samadi (2011). Public perceptions and governance of  controversial technologies to tackle climate change: nuclear power, carbon capture and storage,  wind,   and geoengineering, Wiley Interdisciplinary Reviews Climate Change 2 712 727 pp. (DOI:  10.1002/wcc.134), (ISSN: 1757 7780).  Pow C. P. (2011). Living it up: Super rich enclave and transnational elite urbanism in Singapore,  Geoforum 42 382 393 pp. (DOI: 10.1016/j.geoforum.2011.01.009), (ISSN: 0016 7185).      99 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Prescott Allen R. (1980). How to Save the World: Strategy for World Conservation. Barnes and Noble  Books, Totowa, N.J., 150 pp., (ISBN: 0389200115 9780389200116). .  Rajamani L. (2000). The Principle of Common but Differentiated Responsibility and the Balance of  Commitments under the Climate Regime, Review of European Community & International  Environmental Law 9 120 131 pp. (DOI: 10.1111/1467 9388.00243), (ISSN: 1467 9388).  Rao N., and P. Baer (2012).  Decent Living  Emissions: A Conceptual Framework, Sustainability 4  656 681 pp. (DOI: 10.3390/su4040656), (ISSN: 2071 1050).  Rao K.U., and V.V.N. Kishore (2010). A review of technology diffusion models with special reference  to renewable energy technologies, Renewable and Sustainable Energy Reviews 14 1070 1078 pp.  (DOI: 10.1016/j.rser.2009.11.007), (ISSN: 1364 0321).  Rasch P.J., P.J. Crutzen, and D.B. Coleman (2008). Exploring the geoengineering of climate using  stratospheric sulfate aerosols: The role of particle size, Geophysical Research Letters 35 (DOI:  10.1029/2007GL032179), (ISSN: 0094 8276).  Raskin P.D., C. Electris, and R.A. Rosen (2010). The Century Ahead: Searching for Sustainability,  Sustainability 2 2626 2651 pp. (DOI: 10.3390/su2082626), (ISSN: 2071 1050).  Rawls J. (2000). A Theory of Justice. Belknap, Cambridge Mass., 560 pp., (ISBN: 9780674000773). .  Rayner S. (2010). How to eat an elephant: a bottom up approach to climate policy, Climate Policy 10  615 621 pp. (DOI: 10.3763/cpol.2010.0138), (ISSN: 1469 3062).  Republic of Korea (2009). Road to Our Future: Green Growth, National Strategy and the Five Year  Plan (2009 2013). Presidential Commission on Green Growth, Seoul. . Available at:  http://www.greengrowthknowledge.org/sites/default/files/downloads/resource/Road_to_Our_Futu re_GG_Republic_of_Korea.pdf.  Rezai A., L. Taylor, and R. Mechler (2013). Ecological macroeconomics: An application to climate  change, Ecological Economics 85 69 76 pp. (DOI: 10.1016/j.ecolecon.2012.10.008), (ISSN: 0921 8009).  Riisgaard L. (2009). Global Value Chains, Labor Organization and Private Social Standards: Lessons  from East African Cut Flower Industries, World Development 37 326 340 pp. (DOI:  10.1016/j.worlddev.2008.03.003), (ISSN: 0305 750X).  Ringius L., A. Torvanger, and A. Underdal (2002). Burden Sharing and Fairness Principles in  International Climate Policy, International Environmental Agreements: Politics, Law and Economics 2  1 22 pp. (DOI: 10.1023/A:1015041613785).  Rist G. (2003). The History of Development: From Western Origins to Global Faith. Zed Books,  London, UK, 308 pp., (ISBN: 9781842771815). .  Rival L. (2010). Ecuador s Yasuni ITT Initiative The old and new values of petroleum, Ecological  Economics 70 358 365 pp. (DOI: 10.1016/j.ecolecon.2010.09.007), (ISSN: 0921 8009).  Rive N., A. Torvanger, and J.S. Fuglestvedt (2006). Climate agreements based on responsibility for  global warming: Periodic updating, policy choices, and regional costs, Global Environmental Change  16 182 194 pp. (DOI: 10.1016/j.gloenvcha.2006.01.002), (ISSN: 0959 3780).      100 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Roberts J.T., and B.C. Parks (2007). A Climate of Injustice. Global Inequality, North South Politics,  and Climate Policy. MIT Press, Cambridge  Mass., 404 pp.  Roberts J.T., and B.C. Parks (2009). Ecologically Unequal Exchange, Ecological Debt, and Climate  Justice The History and Implications of Three Related Ideas for a New Social Movement,  International Journal of Comparative Sociology 50 385 409 pp. (DOI: 10.1177/0020715209105147),  (ISSN: 0020 7152, 1745 2554).  Robinson J., M. Bradley, P. Busby, D. Connor, A. Murray, B. Sampson, and W. Soper (2006). Climate  change and sustainable development: realizing the opportunity, Ambio 35 2 8 pp. (ISSN: 0044 7447).  Rockström J., W. Steffen, K. Noone, A. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer,  C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S.  Sorlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J.  Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. Foley (2009a). A safe operating  space for humanity, Nature 461 472 475 pp. (DOI: 10.1038/461472a), (ISSN: 0028 0836).  Rockström J., W. Steffen, K. Noone, A. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer,  C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S.  Sorlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J.  Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. Foley (2009b). Planetary  boundaries: Exploring the safe operating space for humanity, Ecology and Society 14.  Roemer J., and K. Suzumura (2002). Intergenerational equity and sustainability, Ecological  Economics 41 69 83 pp. .  Rohan M.J. (2000). A Rose by Any Name? The Values Construct, Personality and Social Psychology  Review 4 255 277 pp. (DOI: 10.1207/S15327957PSPR0403_4), (ISSN: 1088 8683, 1532 7957).  Roitner Schobesberger B., I. Darnhofer, S. Somsook, and C.R. Vogl (2008). Consumer perceptions of  organic foods in Bangkok, Thailand, Food Policy 33 112 121 pp. (DOI:  10.1016/j.foodpol.2007.09.004), (ISSN: 0306 9192).  Romer P.M. (1990). Endogenous Technological Change, Journal of Political Economy 98 S71 S102  pp. (ISSN: 0022 3808).  Romero Lankao P. (2012). Governing Carbon and Climate in the Cities: An Overview of Policy and  Planning Challenges and Options, European Planning Studies 20 7 26 pp. (DOI:  10.1080/09654313.2011.638496), (ISSN: 09654313).  Rosenau J.N. (1990). Turbulence in World Politics: A Theory of Change and Continuity. Princeton  University Press, Princeton, 504 pp., (ISBN: 9780691023083). .  Rosenzweig C., and F.N. Tubiello (2007). Adaptation and mitigation strategies in agriculture: an  analysis of potential synergies, Mitigation and Adaptation Strategies for Global Change 12 855 873  pp. (DOI: 10.1007/s11027 007 9103 8), (ISSN: 1381 2386, 1573 1596).  Rothstein B. (2005). Social Traps and the Problem of Trust. Cambridge University Press, Cambridge,  UK, 244 pp., (ISBN: 0521848296). .      101 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Rudd M.A. (2000). Live long and prosper: collective action, social capital and social vision, Ecological  Economics 34 131 144 pp. (DOI: 10.1016/S0921 8009(00)00152 X), (ISSN: 0921 8009).  Sachs, Wolfgang (1999). Planet Dialectics: Explorations in Environment and Development. Zed Books  Ltd., London, UK and New York, NY, 230 pp., (ISBN: 1 85649 700 3). .  Sacks D.W., B. Stevenson, and J. Wolfers (2010). SUBJECTIVE WELL BEING, INCOME, ECONOMIC  DEVELOPMENT AND GROWTH. NBER. . Available at: http://www.nber.org/papers/w16441.  Saeverud I.A., and J.B. Skjaerseth (2007). Oil Companies and Climate Change: Inconsistencies  between Strategy Formulation and Implementation?, Global Environmental Politics 7 42 62 pp.  (DOI: 10.1162/glep.2007.7.3.42), (ISSN: 1526 3800).  Sagar A.D., C. Bremner, and M.J. Grubb (2009). Climate Innovation Centres: A partnership approach  to meeting energy and climate challenges, Natural Resources Forum 33 274 284 pp. .  Sagar A.D., and J.P. Holdren (2002). Assessing the global energy innovation system: some key issues,  Energy Policy 30 465 469 pp. (DOI: 10.1016/S0301 4215(01)00117 3), (ISSN: 0301 4215).  Samaras C., and K. Meisterling (2008). Life Cycle Assessment of Greenhouse Gas Emissions from  Plug in Hybrid Vehicles: Implications for Policy, Environmental Science & Technology 42 3170 3176  pp. (DOI: 10.1021/es702178s), (ISSN: 0013 936X).  Sandler T. (2010). Overcoming Global and Regional Collective Action Impediments, Global Policy 1  40 50 pp. (DOI: 10.1111/j.1758 5899.2009.00002.x), (ISSN: 17585880).  Sanne C. (2002). Willing consumers or locked in? Policies for a sustainable consumption, Ecological  Economics 42 273 287 pp. (DOI: 10.1016/S0921 8009(02)00086 1), (ISSN: 0921 8009).  Sanwal M. (2010). Climate change and global sustainability: The need for a new paradigm for  international cooperation, Climate and Development 2 3 8 pp. (DOI: 10.3763/cdev.2010.0030),  (ISSN: 1756 5529).  Sanwal M. (2011). Climate change and the Rio +20 summit: A developing country perspective,  Climate and Development 3 89 93 pp. (DOI: 10.1080/17565529.2011.582274), (ISSN: 1756 5529).  Sarewitz D. (2011). Does climate change knowledge really matter?, Wiley Interdisciplinary Reviews:  Climate Change 2 475 481 pp. (DOI: 10.1002/wcc.126), (ISSN: 17577780).  Sassi O., R. Crassous, J.C. Hourcade, V. Gitz, H. Waisman, and C. Guivarch (2010). IMACLIM R: a  modelling framework to simulate sustainable development pathways, International Journal of Global  Environmental Issues 10 5 pp. (DOI: 10.1504/IJGENVI.2010.030566), (ISSN: 1466 6650, 1741 5136).  Sathaye J., O. Lucon, A. Rahman, J. Christensen, F. Denton, J. Fujino, G. Heath, S. Kadner, M. Mirza,  H. Rudnik, A. Schlaepfer, and A. Shmakin (2011). Renewable Energy in the Context of Sustainable  Development. In: IPCC Special Report on Renewable Energy Sources and Climate Change  Mitigation  [[O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]]. Cambridge University Press, pp.707 790.  Sathaye J., A. Najam, J. Robinson, R. Schae er, Y. Sokona, R. Swart, H. Winkler, C. Cocklin, T.  Heller, F. Lecocq, J. Llanes Regueiro, J. Pan, G. Petschel Held, and S. Rayner (2007). Sustainable  development and mitigation. In: Climate Change 2007 : Mitigation of Climate Change. Contribution  of Working Group III to the Fourth Assessment Report of the IPCC [B. Metz, O.R. Davidson, P.R. Bosch,      102 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     R. Dave, L.A. Meyer (eds)]. Cambridge University Press, Cambridge (GBR) pp.692 743. Available at:  http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch12.html.  Schäfer W. (2009). Some Talk, No Action (Yet): Interdependence, Domestic Interests and  Hierarchical EU Governance in Climate Policy, Swiss Political Science Review 15 683 713 pp. (DOI:  10.1002/j.1662 6370.2009.tb00150.x), (ISSN: 14247755).  Scheidel A., and A.H. Sorman (2012). Energy transitions and the global land rush: Ultimate drivers  and persistent consequences, Global Environmental Change (DOI:  10.1016/j.gloenvcha.2011.12.005), (ISSN: 0959 3780).  Scherbov S., W. Lutz, and W.C. Sanderson (2011). The Uncertain Timing of Reaching 8 Billion, Peak  World Population, and   Other Demographic Milestones, Population and Development Review 37  571 + pp. (DOI: 10.1111/j.1728 4457.2011.00435.x), (ISSN: 0098 7921).  Schmidheiny S., and WBSCD (1992). Changing Course: A Global Business Perspective on  Development and the Environment. MIT Press, Cambridge, MA, 373 pp., (ISBN: 0 262 69153 1). .  Schmidt Bleek F. (2008). Factor 10: The future of stuff, Sustainability: Science, Practice, & Policy 4 .  Available at: http://sspp.proquest.com/archives/vol4iss1/editorial.schmidt bleek.html.  Schoeneberger M., G. Bentrup, H. De Gooijer, R. Soolanayakanahally, T. Sauer, J. Brandle, X. Zhou,  and D. Current (2012). Branching out: Agroforestry as a climate change mitigation and adaptation  tool for agriculture, Journal of Soil and Water Conservation 67 128A 136A pp. (DOI:  10.2489/jswc.67.5.128A), (ISSN: 00224561).  Schokkaert E. (2009). The capabilities approach. In: The Handbook of Rational and Social Choice. P.  Anand, P.K. Pattanaik, C. Puppe, (eds.), Oxford University Press, pp.542 566.  Schopenhauer A. (1819). Le monde comme volonté et comme représentation (Die Welt als Wille und  Vorstellung) trad. A. Bureau, 1966. Presses Universitaires de France, Paris, 1434 pp., (ISBN:  2130545467). .  Schrader U., and J. Thgersen (2011). Putting Sustainable Consumption into Practice, Journal of  Consumer Policy 34 3 8 pp. (DOI: 10.1007/s10603 011 9154 9), (ISSN: 0168 7034, 1573 0700).  Schroeder H., M.T. Boykoff, and L. Spiers (2012). Equity and state representations in climate  negotiations, Nature Climate Change 2 834 836 pp. (DOI: 10.1038/nclimate1742), (ISSN: 1758 678X).  Schultz T.W. (1961). Investment in Human Capital, The American Economic Review 51 1 17 pp. .  Schultz T.P. (1995). Investment in Women s Human Capital. The University of Chicago Press, Chicago,  468 pp., (ISBN: 0226740889). .  Schultz T.P. (2003). Human capital, schooling and health, Economics and Human Biology 1 207 221  pp. .  Schwartz S.H., and W. Bilsky (1987). Toward a universal psychological structure of human values,  Journal of Personality and Social Psychology 53 550 562 pp. (DOI: 10.1037/0022 3514.53.3.550),  (ISSN: 1939 1315(Electronic);0022 3514(Print)).      103 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Scott K.N. (2013). International Law in the Anthropocene: Responding to the Geoengineering  Challenge, Michigan Journal of International Law 34 309 358 pp. (ISSN: 1980 2072).  Scrieciu S., A. Rezai, and R. Mechler (2013). On the economic foundations of green growth  discourses: the case of climate change mitigation and macroeconomic dynamics in economic  modeling, Wiley Interdisciplinary Reviews: Energy and Environment 2 251 268 pp. (DOI:  10.1002/wene.57), (ISSN: 2041 840X).  Sen A. (1997). Editorial: Human Capital and Human Capability, World Development 25 1959 1961  pp. .  Sen A. (2001). Development as Freedom. Oxford University Press, Oxford; New York, 384 pp., (ISBN:  0192893300 9780192893307). .  Sen A.K. (2009). The Idea of Justice. Belknap Press of Harvard University Press, Cambridge, Mass.,  496 pp., (ISBN: 9780674036130  0674036131). .  Seres S., E. Haites, and K. Murphy (2009). Analysis of technology transfer in CDM projects: An  update, Energy Policy 37 4919 4926 pp. (DOI: 10.1016/j.enpol.2009.06.052), (ISSN: 0301 4215).  Shackley S., C. McLachlan, and C. Gough (2005). The public perception of carbon dioxide capture  and storage in the UK:   results from focus groups and a survey, Climate Policy 4 377 398 pp. (ISSN:  1469 3062).  Shalizi Z., and F. Lecocq (2009). Climate Change and the Economics of Targeted Mitigation in Sectors  with Long Lived Capital Stock. World Bank, Washington, D.C. 41 pp. Available at: http://www wds.worldbank.org/external/default/WDSContentServer/IW3P/IB/2009/09/23/000158349_2009092 3161232/Rendered/PDF/WPS5063.pdf.  Shalizi Z., and F. Lecocq (2010). To Mitigate or to Adapt: Is that the Question? Observations on an  Appropriate Response to the Climate Change Challenge to Development Strategies, The World Bank  Research Observer 25 295  321 pp. (DOI: 10.1093/wbro/lkp012).  Shalizi Z., and F. Lecocq (2013). The economics of targeted mitigation in infrastructure, Climate  Policy (accepted).  Sharma A., A. Saxena, M. Sethi, V. Shree, and Varun (2011). Life cycle assessment of buildings: A  review, Renewable and Sustainable Energy Reviews 15 871 875 pp. (DOI:  10.1016/j.rser.2010.09.008), (ISSN: 1364 0321).  Shaw D., and T. Newholm (2002). Voluntary simplicity and the ethics of consumption, Psychology  and Marketing 19 167 185 pp. (DOI: 10.1002/mar.10008), (ISSN: 1520 6793).  Shiva V. (2008). Soil Not Oil: Environmental Justice in a Time of Climate Crisis. South End Press,  Cambridge  Mass., 200 pp., (ISBN: 978 0896087828). .  Shrader Frechette K. (2011). Climate Change, Nuclear Economics, and Conflicts of Interest, Science  and Engineering Ethics 17 75 107 pp. (DOI: 10.1007/s11948 009 9181 y), (ISSN: 1353 3452).  Shue H. (1993). Subsistence Emissions and Luxury Emissions, Law & Policy 15 39 60 pp. (DOI:  10.1111/j.1467 9930.1993.tb00093.x), (ISSN: 1467 9930).      104 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Shue H. (1999). Global Environment and International Inequality, Global Environment and  International Inequality, International Affairs, International Affairs 75 531 545 pp. (DOI:  10.1111/1468 2346.00092, 10.1111/1468 2346.00092), (ISSN: 1468 2346, 1468 2346).  Shui B., and R.C. Harriss (2006). The role of CO2 embodiment in US China trade, Energy Policy 34  4063 4068 pp. (DOI: 10.1016/j.enpol.2005.09.010), (ISSN: 0301 4215).  Shukla P.R., S. Dhar, and D. Mahapatra (2008). Low carbon society scenarios for India, Climate  Policy 8 S156 S176 pp. (DOI: 10.3763/cpol.2007.0498), (ISSN: 1469 3062).  Sinden G. (2009). The contribution of PAS 2050 to the evolution of international greenhouse gas  emission standards, The International Journal of Life Cycle Assessment 14 195 203 pp. (DOI:  10.1007/s11367 009 0079 3), (ISSN: 0948 3349, 1614 7502).  Singer P. (2004). One World: The Ethics of Globalization. Yale University Press, New Haven, CT, 264  pp., (ISBN: 9780300103052). .  Smith K.R. (1991). Allocating Responsibility for Global Warming: The Natural Debt Index, Ambio 20  95 96 pp. (ISSN: 0044 7447).  Smith P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O Mara, C. Rice,  B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, and S.  Towprayoon (2007). Policy and technological constraints to implementation of greenhouse gas    mitigation options in agriculture, Agriculture Ecosystems & Environment 118 6 28 pp. (DOI:  10.1016/j.agee.2006.06.006), (ISSN: 0167 8809).  Smith H.A., and K. Sharp (2012). Indigenous climate knowledges, Wiley Interdisciplinary Reviews:  Climate Change 3 467 476 pp. (DOI: 10.1002/wcc.185), (ISSN: 17577780).  Smith K.R., J. Swisher, and D. Ahuja (1993). Who pays (to solve the problem and how much)?  Working Paper No. 1991 22, World Bank Environment Department. In: The Global Greenhouse  Regime: Who Pays? P. Hayes, K.R. Smith, (eds.), Earthscan, Oxford, UK pp.70 98(ISBN:  9781853831362).  Sneddon C., R.B. Howarth, and R.B. Norgaard (2006). Sustainable development in a post Brundtland  world, Ecological Economics 57 253 268 pp. (DOI: 10.1016/j.ecolecon.2005.04.013), (ISSN: 0921 8009).  Sobrevila C. (2008). The Role of Indigenous Peoples in Biodiversity Conservation: The Role of Natural  but Often Forgotten Partners. The World Bank, Washington  D.C. 84 pp.  Soimakallio S., J. Kiviluoma, and L. Saikku (2011). The complexity and challenges of determining  GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life  cycle assessment)   A methodological review, Energy 36 6705 6713 pp. (DOI:  10.1016/j.energy.2011.10.028), (ISSN: 0360 5442).  Sokka L., S. Pakarinen, and M. Melanen (2011). Industrial symbiosis contributing to more  sustainable energy use   an example from the forest industry in Kymenlaakso, Finland, Journal of  Cleaner Production 19 285 293 pp. (DOI: 10.1016/j.jclepro.2009.08.014), (ISSN: 0959 6526).  Solow R.M. (1956). A Contribution to the Theory of Economic Growth, The Quarterly Journal of  Economics 70 65 94 pp. (ISSN: 00335533).      105 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Solow R.M. (2000). Toward a Macroeconomics of the Medium Run, The Journal of Economic  Perspectives 14 151 158 pp. (ISSN: 0895 3309).  Soroos M.S. (1997). The Endangered Atmosphere: Preserving a Global Commons. University of South  Carolina Press, Columbia, SC, 339 pp., (ISBN: 1570031606). .  Southerton D. (2012). Habits, routines and temporalities of consumption: From individual  behaviours to the reproduction of everyday practices, Time & Society (DOI:  10.1177/0961463X12464228), (ISSN: 0961 463X, 1461 7463).  Speth J.G., and P. Haas (2006). Global Environmental Governance: Foundations of Contemporary  Environmental Studies. Island Press, Washington, D.C., 192 pp., (ISBN: 1597260819). .  Springmann M. (2012). A look inwards: Carbon tariffs versus internal improvements in emissions trading systems, Energy Economics 34, Supplement 2 S228 S239 pp. (DOI:  10.1016/j.eneco.2012.08.039), (ISSN: 0140 9883).  Srinivasan U.T., S.P. Carey, E. Hallstein, P.A.T. Higgins, A.C. Kerr, L.E. Koteen, A.B. Smith, R.  Watson, J. Harte, and R.B. Norgaard (2008). The debt of nations and the distribution of ecological  impacts from human activities, Proceedings of the National Academy of Sciences 105 1768  1773 pp.  (DOI: 10.1073/pnas.0709562104).  Standard & Poor s (2013). What A Carbon Constrained Future Could Mean For Oil Companies   Creditworthiness. Standard & Poor s Financial Services LLC. . Available at:  http://www.carbontracker.org/wp content/uploads/downloads/2013/03/SnPCT report on oil sector carbon constraints_Mar0420133.pdf.  Starkey R. (2011). Assessing common(s) arguments for an equal per capita allocation, The  Geographical Journal 177 112 126 pp. (DOI: 10.1111/j.1475 4959.2010.00359.x), (ISSN: 1475 4959).  Stechemesser K., and E. Guenther (2012). Carbon accounting: a systematic literature review, Journal  of Cleaner Production (DOI: 10.1016/j.jclepro.2012.02.021), (ISSN: 0959 6526).  Steckel J.C., M. Kalkuhl, and R. Marschinski (2010). Should carbon exporting countries strive for  consumption based accounting in a global cap and trade regime?, Climatic Change 100 779 786 pp.  (DOI: 10.1007/s10584 010 9825 6), (ISSN: 0165 0009, 1573 1480).  Steffen W., J. Grinevald, P. Crutzen, and J. McNeill (2011). The Anthropocene: conceptual and  historical perspectives, Philosophical Transactions of the Royal Society A: Mathematical, Physical and  Engineering Sciences 369 842 867 pp. (DOI: 10.1098/rsta.2010.0327), (ISSN: 1364 503X, 1471 2962).  Stern N.H., and G.B. Treasury (2007). The Economics of Climate Change: The Stern Review.  Cambridge University Press, 713 pp., (ISBN: 9780521700801). .  Stevenson H., and J.S. Dryzek (2012). The discursive democratisation of global climate governance,  Environmental Politics 21 189 210 pp. (DOI: 10.1080/09644016.2012.651898), (ISSN: 0964 4016).  Stevenson B., and J. Wolfers (2008). Economic growth and subjective well being: reassessing the  Easterlin Paradox. In: Brookings Papers on Economic Activity: Spring 2008. Brookings Institution  Press, Washington, D.C. pp.1 102.  Stiglitz J.E. (2002). Globalization And Its Discontents. W.W. Norton, New York and London, 282 pp.,  (ISBN: 0 393 05124 2). .      106 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Stiglitz J.E., A. Sen, and J. P. Fitoussi (2009). Report by the Commission on the Measurement of  Economic Performance and Social Progress. Paris. 2632 2637 pp. Available at: http://www.stiglitz sen fitoussi.fr/documents/rapport_anglais.pdf.  Stoll Kleemann S., T. O Riordan, and C.C. Jaeger (2001). The psychology of denial concerning  climate mitigation measures: Evidence from Swiss focus groups, Global Environmental Change Human and Policy Dimensions 11 107 117 pp. (DOI: 10.1016/S0959 3780(00)00061 3), (ISSN: 0959 3780).  Stone C. (2004). Common but Differentiated Responsibilities in International Law, American Journal  of International Law 98 276 301 pp. . Available at: http://www.jstor.org/stable/10.2307/3176729.  Sullivan R., and A. Gouldson (2012). Does voluntary carbon reporting meet investors  needs?,  Journal of Cleaner Production 1 8 pp. (DOI: 10.1016/j.jclepro.2012.02.020), (ISSN: 0959 6526).  Sundarakani B., R. de Souza, M. Goh, S.M. Wagner, and S. Manikandan (2010). Modeling carbon  footprints across the supply chain, International Journal of Production Economics 128 43 50 pp.  (DOI: 10.1016/j.ijpe.2010.01.018), (ISSN: 0925 5273).  Swan T.W. (1956). ECONOMIC GROWTH and CAPITAL ACCUMULATION, Economic Record 32 334 361 pp. (DOI: 10.1111/j.1475 4932.1956.tb00434.x), (ISSN: 1475 4932).  Swanson D., S. Barg, S. Tyler, H. Venema, S. Tomar, S. Bhadwal, S. Nair, D. Roy, and J. Drexhage  (2010). Seven tools for creating adaptive policies, Technological Forecasting and Social Change 77  924 939 pp. (DOI: 10.1016/j.techfore.2010.04.005), (ISSN: 0040 1625).  Swart R., J. Robinson, and S. Cohen (2003). Climate change and sustainable development:  expanding the options, Climate Policy 3 S19 S40 pp. (DOI: 10.1016/j.clipol.2003.10.010), (ISSN:  14693062).  Swim J., S. Clayton, T. Doherty, R. Gifford, G. Howard, J. Reser, P. Stern, and E.U. Weber (2009).  Psychology and Global Climate Change: Addressing a Multi faceted Phenomenon and Set of  Challenges. . Available at: http://www.apa.org/science/about/publications/climate change.aspx.  Di Tella R., and R. MacCulloch (2010). Happiness Adaption to Income beyond  Basic Needs . In:  International Differences in Well Being. E. Diener, J. Helliwell, D.M. Kahneman, (eds.), Oxford  University Press, New York(ISBN: 0199732736).  Terjesen S. (2007). Building a better rat trap: Technological innovation, human capital, and   the  irula, Entrepreneurship Theory and Practice 31 953 963 pp. (DOI: 10.1111/j.1540 6520.2007.00204.x), (ISSN: 1042 2587).  Thampapillai D.J. (2011). Value of sensitive in situ environmental assets in energy resource  extraction, Energy Policy 39 7695 7701 pp. (DOI: 10.1016/j.enpol.2011.09.006), (ISSN: 0301 4215).  Thgersen J. (2002). Promoting green consumer behavior with eco labels. In: New Tools for  Environmental Protection: Education, Information, and Voluntary Measures. T. Dietz, P.C. Stern,  (eds.), National Academies Press, Washington, D.C. pp.83 104(ISBN: 9780309084222).  Thgersen J. (2005). How May Consumer Policy Empower Consumers for Sustainable Lifestyles?,  Journal of Consumer Policy 28 143 177 pp. (DOI: 10.1007/s10603 005 2982 8), (ISSN: 0168 7034,  1573 0700).      107 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Thgersen J. (2009). Consumer decision making with regard to organic food products. In: Traditional  Food Production and Rural Sustainable Development: A European Challenge. M.T. de N. Vaz, P.  Nijkamp, J.L. Rastoin, (eds.), Ashgate Publishing, Farnham pp.173 194(ISBN: 9780754674627).  Thgersen J. (2010). Country Differences in Sustainable Consumption: The Case of Organic Food,  Journal of Macromarketing 30 171 185 pp. (DOI: 10.1177/0276146710361926), (ISSN: 0276 1467,  1552 6534).  Thgersen J., A. K. Jrgensen, and S. Sandager (2012). Consumer Decision Making Regarding a  Green  Everyday Product, Psychology and Marketing 29 187 197 pp. (DOI: 10.1002/mar.20514),  (ISSN: 1520 6793).  Thgersen J., and Y. Zhou (2012). Chinese consumers  adoption of a  green  innovation   The case of  organic food, Journal of Marketing Management 28 313 333 pp. (DOI:  10.1080/0267257X.2012.658834), (ISSN: 0267 257X).  Thornton P.K., and P.J. Gerber (2010). Climate change and the growth of the livestock sector in  developing countries, Mitigation and Adaptation Strategies for Global Change 15 169 184 pp. (DOI:  10.1007/s11027 009 9210 9), (ISSN: 13812386).  Thuiller W. (2007). Biodiversity: Climate change and the ecologist, Nature 448 550 552 pp. (DOI:  10.1038/448550a), (ISSN: 0028 0836, 1476 4687).  Tol R.S.J. (1999). The marginal costs of greenhouse gas emissions, Energy Journal 20 61 81 pp. .  Tompkins E.L., and W.N. Adger (2005). Defining response capacity to enhance climate change  policy, Environmental Science & Policy 8 562 571 pp. (DOI: 10.1016/j.envsci.2005.06.012), (ISSN:  1462 9011).  Tonello M. (2006). Revisiting Stock Market Short Termism. Social Science Research Network,  Rochester, NY. . Available at: http://papers.ssrn.com/abstract=938466.  Truffer B., and L. Coenen (2012). Environmental Innovation and Sustainability Transitions in Regional  Studies, Regional Studies 46 1 21 pp. (DOI: 10.1080/00343404.2012.646164), (ISSN: 0034 3404).  Truman H.S. (1949). Inaugural Address, Thursday, January 20, 1949. . Available at:  http://www.bartleby.com/124/pres53.html.  Tsai T. (2008). The impact of social capital on regional waste recycling, Sustainable Development 16  44 55 pp. (DOI: 10.1002/sd.326), (ISSN: 09680802, 10991719).  Tubi A., I. Fischhendler, and E. Feitelson (2012). The effect of vulnerability on climate change  mitigation policies, Global Environmental Change Human and Policy Dimensions 22 472 482 pp.  (DOI: 10.1016/j.gloenvcha.2012.02.004), (ISSN: 0959 3780).  Tukker A., M.J. Cohen, K. Hubacek, and O. Mont (2010a). The Impacts of Household Consumption  and Options for Change, Journal of Industrial Ecology 14 13 30 pp. (DOI: 10.1111/j.1530 9290.2009.00208.x), (ISSN: 1530 9290).  Tukker A., M.J. Cohen, K. Hubacek, and O. Mont (2010b). Sustainable Consumption and Production,  Journal of Industrial Ecology 14 1 3 pp. (DOI: 10.1111/j.1530 9290.2009.00214.x), (ISSN: 1530 9290).      108 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Tukker A., M.J. Cohen, U. Zoysa, E. Hertwich, P. Hofstetter, A. Inaba, S. Lorek, and E. St (2006).  The Oslo Declaration on Sustainable Consumption, Journal of Industrial Ecology 10 9 14 pp. (DOI:  10.1162/108819806775545303), (ISSN: 1530 9290).  Turner II B.L. (2010). Vulnerability and resilience: Coalescing or paralleling approaches for  sustainability science?, Global Environmental Change 20 570 576 pp. (DOI:  10.1016/j.gloenvcha.2010.07.003), (ISSN: 09593780).  U.S. National Research Council Committee on Atmospheric Sciences (1966). Weather and Climate  Modification Problems and Prospects: Final Report of the Panel on Weather and Climate  Modification. National Academy of Sciences, Washington, DC.  UK Government Office for Science (2011). Foresight: Migration and Global Environmental Change  (2011) Final Project Report. London. . Available at: http://www.bis.gov.uk/foresight/our work/projects/published projects/global migration/reports publications.  UN (2010). China and a Sustainable Future: Towards a Low Carbon Economy and Society. China  Translation and Publishing Corporation, Beijin. . Available at:  http://planipolis.iiep.unesco.org/upload/China/China_HDR_2009_2010.pdf.  UNCSD (2001). Indicators of Sustainable Development: Framework and Methodologies. United  Nations Commission on Sustainable Development, New York.  UNEP (1972). Report of the United Nations Conference on Human Environment. UNEP.  UNEP (1997). Environment Outlook 1. UNEP and Oxford University Press, New York and Oxford, UK.  UNEP (2000). Global Environment Outlook. UNEP and Earthscan, London.  UNEP (2002). Global Environment Outlook 3. UNEP and Earthscan, London and Sterling, VA, US.  UNEP (2011). Decoupling Natural Resource Use and Environmental Impacts from Economic Growth.  United Nations Environment Programme. . Available at:  http://www.unep.org/resourcepanel/decoupling/files/pdf/Decoupling_Report_English.pdf.  UNFCCC (2002). Report of the Conference of the Parties on Its Seventh Session, Held at Marrakech  from 29 October to 10 November 2001. UNFCCC.  United Nations (1992a). United Nations Framework Convention on Climate Change. Rio de Janeiro. .  Available at:  http://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/con veng.pdf.  United Nations (1992b). Rio Declaration on Environment and Development. . Available at:  http://www.unep.org/Documents.Multilingual/Default.asp?documentid=78&articleid=1163.  United Nations (1992c). Agenda 21. United Nations Conference on Environment & Development. .  Available at:  http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=52&ArticleID=52&l=en.  United Nations (1997). Programme for Further Implementation of Agenda 21 and the Commitments  to the Rio Declaration Principles.      109 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     United Nations (2000). United Nations Millennium Declaration. New York. . Available at:  http://www.un.org/millennium/declaration/ares552e.htm.  United Nations (2002). Plan of Implementation. Johannesburg.  United Nations (2011a). Millennium Development Goals Report 2011. United Nations, New York. .  Available at:  http://www.un.org/millenniumgoals/pdf/(2011_E)%20MDG%20Report%202011_Book%20LR.pdf.  United Nations (2011b). World Population Prospects, the 2010 Revision. . Available at:  http://esa.un.org/wpp/Documentation/WPP%202010%20publications.htm.  United Nations (2012a). The Future We Want. . Available at:  http://uncsd2012.org/thefuturewewant.html.  United Nations (2012b). A 10 year framework of programmes on sustainable consumption and  production patterns. A/CONF.216/5. Available at:  http://www.unep.org/resourceefficiency/Policy/SCPPoliciesandthe10YFP/The10YearFrameworkProg rammesonSCP/tabid/102563/Default.aspx.  United Nations Development Programme (2013). Human Development Report 2013: The Rise of the  South : Human Progress in a Diverse World. 202 pp., (ISBN: 9211263409 9789211263404  9211263468 9789211263466). .  United Nations Environment Programme, European Patents Office, and International Centre for  Trade and Sustainable Development (2010). Patents and Clean Energy: Bridging the Gap between  Evidence and Policy. Munich.  UNPRI (2012). Investing in the Sustainable Economy. United Nations Principles for Responsible  Investment, London.  Vanclay J.K., J. Shortiss, S. Aulsebrook, A.M. Gillespie, B.C. Howell, R. Johanni, M.J. Maher, K.M.  Mitchell, M.D. Stewart, and J. Yates (2010). Customer Response to Carbon Labelling of Groceries,  Journal of Consumer Policy 34 153 160 pp. (DOI: 10.1007/s10603 010 9140 7), (ISSN: 0168 7034,  1573 0700).  Vermeulen S.J., P.K. Aggarwal, A. Ainslie, C. Angelone, B.M. Campbell, A.J. Challinor, J.W. Hansen,  J.S.I. Ingram, A. Jarvis, P. Kristjanson, C. Lau, G.C. Nelson, P.K. Thornton, and E. Wollenberg (2012).  Options for support to agriculture and food security under climate change, Environmental Science  and Policy 15 136 144 pp. (DOI: 10.1016/j.envsci.2011.09.003), (ISSN: 14629011).  Victor D. (1998). The Regulation of Greenhouse Gases: Does Fairness Matter? In: Fair weather?  Equity concerns in climate change. F.L. Tóth, (ed.), Earthscan, London(ISBN: 1853835579  9781853835575 1853835587 9781853835582).  Victor D.G. (2004). The Collapse Of The Kyoto Protocol And The Struggle To Slow Global Warming.  Princeton University Press, New Haven, CT, 219 pp., (ISBN: 9780691120263). .  Visschers V.H.M., and M. Siegrist (2012). Fair play in energy policy decisions: Procedural fairness,  outcome   fairness and acceptance of the decision to rebuild nuclear power plants, Energy Policy 46  292 300 pp. (DOI: 10.1016/j.enpol.2012.03.062), (ISSN: 0301 4215).      110 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Vlek C., and L. Steg (2007). Human behavior and environmental sustainability: Problems, driving    forces, and research topics, Journal of Social Issues 63 1 19 pp. (DOI: 10.1111/j.1540 4560.2007.00493.x), (ISSN: 0022 4537).  Vogel C., S.C. Moser, R.E. Kasperson, and G.D. Dabelko (2007). Linking vulnerability, adaptation,  and resilience science to practice: Pathways, players, and partnerships, Global Environmental  Change 17 349 364 pp. (DOI: 10.1016/j.gloenvcha.2007.05.002), (ISSN: 0959 3780).  Wada K., F. Sano, K. Akimoto, and T. Homma (2012). Assessment of Copenhagen pledges with long term implications, Energy Economics 34, Supplement 3 S481 S486 pp. (DOI:  10.1016/j.eneco.2012.01.001), (ISSN: 0140 9883).  Waisman H., J. Rozenberg, and J.C. Hourcade (2013). Monetary compensations in climate policy  through the lens of a general equilibrium assessment: The case of oil exporting countries, Energy  Policy (DOI: 10.1016/j.enpol.2013.08.055), (ISSN: 0301 4215).  Walker G., and H. Bulkeley (2006). Geographies of environmental justice, Geoforum 37 655 659 pp.  (DOI: 10.1016/j.geoforum.2005.12.002), (ISSN: 0016 7185).  Wallquist L., V.H.M. Visschers, and M. Siegrist (2010). Impact of Knowledge and Misconceptions on  Benefit and Risk Perception of CCS, Environmental Science & Technology 44 6557 6562 pp. (DOI:  10.1021/es1005412), (ISSN: 0013 936X).  Walters C.J., and C.S. Holling (1990). Large Scale Management Experiments and Learning by Doing,  Ecology 71 2060 2068 pp. (DOI: 10.2307/1938620), (ISSN: 0012 9658).  Wang B. (2010). Can CDM bring technology transfer to China? An empirical study of technology  transfer in China s CDM projects, Energy Policy 38 2572 2585 pp. (DOI:  10.1016/j.enpol.2009.12.052), (ISSN: 0301 4215).  Wang Can, Chen Jining, and Zou Ji (2005). Impact assessment of CO2 mitigation on China economy  based on a CGE model, Journal of Tsinghua University (Science and Technology) 12.  Wang Ke (2008). Technological Change Simulation and Its Application in Climate Change Policy  Analysis Based on a CGE Model. Tsinghua University.  Wang S., C. Wang, and Y. Xu (2013). Intellectual Property Rights and Climate Change. Social Sciences  Academic Press.  Warren R. (2011). The role of interactions in a world implementing adaptation and mitigation  solutions to climate change, Philosophical Transactions of the Royal Society A: Mathematical,  Physical and Engineering Sciences 369 217 241 pp. (DOI: 10.1098/rsta.2010.0271), (ISSN:  1364503X).  Watson A., R. Matt, K. Knotek, D. Williams, and L. Yung (2011). Traditional wisdom: protecting  relationships with wilderness as a cultural landscape, Ecology and Society 16 36  pp. .  Weale A. (2009). Governance, government and the pursuit of sustainability. In: Governing  Sustainability. Cambridge University Press, Cambridge pp.55 75.  Weber E.U., and E.J. Johnson (2009). Mindful Judgment and Decision Making, Annual Review of  Psychology 60 53 85 pp. (DOI: 10.1146/annurev.psych.60.110707.163633).      111 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Weber E.U., and E.J. Johnson (2012). Psychology and behavioral economics. Lessons for the design  of a green growth strategy., Policy Research Working Paper, The World Bank 1 47 pp. .  Wei T., S. Yang, J.C. Moore, P. Shi, X. Cui, Q. Duan, B. Xu, Y. Dai, W. Yuan, X. Wei, Z. Yang, T. Wen,  F. Teng, Y. Gao, J. Chou, X. Yan, Z. Wei, Y. Guo, Y. Jiang, X. Gao, K. Wang, X. Zheng, F. Ren, S. Lv, Y.  Yu, B. Liu, Y. Luo, W. Li, D. Ji, J. Feng, Q. Wu, H. Cheng, J. He, C. Fu, D. Ye, G. Xu, and W. Dong  (2012). Developed and developing world responsibilities for historical climate change and CO2  mitigation, Proceedings of the National Academy of Sciences 109 12911 12915 pp. (DOI:  10.1073/pnas.1203282109), (ISSN: 0027 8424, 1091 6490).  Weitzman M.L. (1976). On the Welfare Significance of National Product in a Dynamic Economy, The  Quarterly Journal of Economics 90 156  162 pp. (DOI: 10.2307/1886092).  Von Weizsäcker E., K. Hargroves, M.H. Smith, C. Desha, and P. Stasinopoulos (2009). Factor Five:  Transforming the Global Economy through 80% Improvements in Resource Productivity.  Earthscan/The Natural Edge Project, London and Sterling, VA, US, 448 pp., (ISBN: 9781844075911). .  Von Weizsäcker E., A.B. Lovins, and L.H. Lovins (1997). Factor Four: Doubling Wealth, Halving  Resource Use   A Report to the Club of Rome. Earthscan, London, 224 pp., (ISBN: 9781864484380). .  Welsch H. (1993). A CO2 agreement proposal with flexible quotas, Energy Policy 21 748 756 pp.  (DOI: 10.1016/0301 4215(93)90145 6), (ISSN: 0301 4215).  Wenzel H., M.Z. Hauschild, and L. Alting (1997). Environmental Assessment of Products: Volume 1:  Methodology, Tools and Case Studies in Product Development. Springer, 568 pp., (ISBN:  9780792378594). .  Wewerinke M., and V.P. Yu III (2010). ADDRESSING CLIMATE CHANGE THROUGH SUSTAINABLE  DEVELOPMENT AND THE PROMOTION OF HUMAN RIGHTS. South Centre, Geneva, Switzerland. .  Available at: http://www.southcentre.int/wp content/uploads/2013/05/RP34_Climate Change Sustainable Development and Human Rights_EN.pdf.  Weyant J.P. (2011). Accelerating the development and diffusion of new energy technologies:  Beyond the  valley of death , Energy Economics 33 674 682 pp. (DOI: 10.1016/j.eneco.2010.08.008),  (ISSN: 0140 9883).  Whitmarsh L. (2009). Behavioural responses to climate change: Asymmetry of intentions and  impacts, Journal of Environmental Psychology 29 13 23 pp. .  Wick K., and E. Bulte (2009). The Curse of Natural Resources. In: Annual Review of Resource  Economics. Annual Reviews, Palo Alto pp.139 155(ISBN: 978 0 8243 4701 7).  Wiedmann T.O., M. Lenzen, and J.R. Barrett (2009). Companies on the Scale, Journal of Industrial  Ecology 13 361 383 pp. (DOI: 10.1111/j.1530 9290.2009.00125.x), (ISSN: 1530 9290).  Wilbanks T.J. (2005). Issues in developing a capacity for integrated analysis of mitigation and  adaptation, Environmental Science & Policy 8 541 547 pp. (DOI: 10.1016/j.envsci.2005.06.014),  (ISSN: 1462 9011).  Williams B.K. (2011). Adaptive management of natural resources framework and issues, Journal of  Environmental Management 92 1346 1353 pp. (DOI: 10.1016/j.jenvman.2010.10.041), (ISSN: 0301 4797).      112 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Wilson E.O. (1978). On Human Nature. Harvard University Press, Cambridge, MA, 292 pp., (ISBN:  9780674016385). .  Wing H.D.J.I.S. (1999). Adjustment Time, Capital Malleability and Policy Cost, The Energy Journal 20  (DOI: 10.5547/ISSN0195 6574 EJ Vol20 NoSI 4), (ISSN: 01956574).  Winkler H., K. Baumert, O. Blanchard, S. Burch, and J. Robinson (2007). What factors influence  mitigative capacity?, Energy Policy 35 692 703 pp. (DOI: 10.1016/j.enpol.2006.01.009), (ISSN: 0301 4215).  Winkler H., B. Brouns, and S. Kartha (2006). Future mitigation commitments: differentiating among  non Annex I countries, Climate Policy 5 469 486 pp. (DOI: 10.1080/14693062.2006.9685572), (ISSN:  1469 3062).  Winkler H., T. Letete, and A. Marquard (2011). A South African approach   responsibility, capability  and sustainable development. In: Equitable access to sustainable development: Contribution to the  body of scientific knowledge. BASIC expert group, Beijing, Brasilia, Cape Town and Mumbai pp.78 91. Available at: http://www.erc.uct.ac.za/Basic_Experts_Paper.pdf.  Wittneben B.B.F., C. Okereke, S.B. Banerjee, and D.L. Levy (2012). Climate Change and the  Emergence of New Organizational Landscapes, Organization Studies 33 1431 1450 pp. (DOI:  10.1177/0170840612464612), (ISSN: 0170 8406).  Wolf J., W.N. Adger, I. Lorenzoni, V. Abrahamson, and R. Raine (2010). Social capital, individual  responses to heat waves and climate change   adaptation: An empirical study of two UK cities, Global  Environmental Change Human and Policy Dimensions 20 44 52 pp. (DOI:  10.1016/j.gloenvcha.2009.09.004), (ISSN: 0959 3780).  Wolf J., I. Allice, and T. Bell (2013). Values, climate change, and implications for adaptation:  Evidence from two communities in Labrador, Canada, Global Environmental Change 23 548 562 pp.  (DOI: 10.1016/j.gloenvcha.2012.11.007), (ISSN: 0959 3780).  Wolf J., and S.C. Moser (2011). Individual understandings, perceptions, and engagement with  climate change: insights from in depth studies across the world, Wiley Interdisciplinary Reviews:  Climate Change 2 547 569 pp. (DOI: 10.1002/wcc.120), (ISSN: 17577780).  Wollenberg E. (2012). Climate Change Mitigation and Agriculture. Earthscan, London; New York, 456  pp., (ISBN: 9781849713924  1849713928  9781849713931  1849713936  9780203144510   0203144511). .  Wolsink M. (2007). Planning of renewables schemes: Deliberative and fair decision making on  landscape issues instead of reproachful accusations of non cooperation, Energy Policy 35 2692 2704  pp. (DOI: 10.1016/j.enpol.2006.12.002), (ISSN: 0301 4215).  Wood P.J., and F. Jotzo (2011). Price floors for emissions trading, Energy Policy 39 1746 1753 pp.  (DOI: 10.1016/j.enpol.2011.01.004), (ISSN: 0301 4215).  Woolcock M. (1998). Social capital and economic development: Toward a theoretical synthesis and  policy framework, Theory and Society 27 151 208 pp. (DOI: 10.1023/A:1006884930135), (ISSN:  0304 2421).      113 of 114     Final Draft   Chapter 4    IPCC WGIII AR5     Woolcock M., and D. Narayan (2000). Social Capital: Implications for Development Theory,  Research, and Policy, The World Bank Research Observer 15 225 249 pp. (DOI:  10.1093/wbro/15.2.225), (ISSN: 0257 3032, 1564 6971).  World Bank (2003). World Development Report 2003: Sustainable Development in a Dynamic World.  World Bank, Washington, D.C.  World Bank (2010). World Development Report 2010: Development and Climate Change. World  Bank, Washington, D.C., 424 pp., (ISBN: 978 0 8213 7987 5). .  World Bank (2011). The Changing Wealth of Nations. Measuring Sustainable Development in the  New Millenium. World Bank, Washington DC.  World Commission on Environment and Development (1987). Our Common Future. Oxford  University Press, Oxford.  Yarime M. (2009). Public coordination for escaping from technological lock in: its possibilities and  limits in replacing diesel vehicles with compressed natural gas vehicles in Tokyo, Journal of Cleaner  Production 17 1281 1288 pp. (DOI: 10.1016/j.jclepro.2009.03.010), (ISSN: 0959 6526).  Yigitcanlar T., and K. Velibeyoglu (2008). Knowledge Based Urban Development: The Local  Economic Development Path of Brisbane, Australia, Local Economy 23 195 207 pp. (DOI:  10.1080/02690940802197358), (ISSN: 0269 0942).  Young O.R. (2012). On Environmental Governance: Sustainability, Efficiency, and Equity. Paradigm  Publishers, Boulder, CO, 192 pp., (ISBN: 1612051324). .  Young O.R. (2013). Does Fairness Matter in International Environmental Governance?  Creating an  Effective and Equitable Climate Regime. In: Toward a New Climate Agreement: Conflict, Resolution  and Governance. C. Todd, J. Hovi, D. McEvoy, (eds.), Routledge, London(ISBN: 0415643791).  Young W., K. Hwang, S. McDonald, and C.J. Oates (2010). Sustainable consumption: green  consumer behaviour when purchasing products, Sustainable Development 18 20 31 pp. (DOI:  10.1002/sd.394), (ISSN: 1099 1719).  Yue C., and S. Wang (2012). The National Development Rights Framework Bridging the gap between  developed and developing countries.  Yung W.K.C., H.K. Chan, J.H.T. So, D.W.C. Wong, A.C.K. Choi, and T.M. Yue (2011). A life cycle  assessment for eco redesign of a consumer electronic product, Journal of Engineering Design 22 69 85 pp. (DOI: 10.1080/09544820902916597), (ISSN: 0954 4828).  Zelli F. (2011). The fragmentation of the global climate governance architecture, Wiley  Interdisciplinary Reviews Climate Change 2 255 270 pp. (DOI: 10.1002/wcc.104), (ISSN: 1757 7780).  Zografos C., and J. Martinez Alier (2009). The politics of landscape value: a case study of wind farm  conflict in rural Catalonia, Environment and Planning A 41 1726 1744 pp. (DOI: 10.1068/a41208),  (ISSN: 0308 518X).        114 of 114     Working Group III Mitigation of Climate Change Chapter 5 Drivers, Trends and Mitigation   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft    Chapter:  Title:  Authors:    5  Chapter 5  IPCC WGIII AR5  Drivers, Trends and Mitigation  CLAs:  LAs:  Gabriel Blanco, Reyer Gerlagh, Sangwon Suh  John Barrett, Heleen de Coninck, Cristobal Felix Diaz Morejon, Ritu  Mathur, Nebojsa Nakicenovic, Alfred Ofosu Ahenkorah, Jiahua Pan,  Himanshu Pathak, Jake Rice, Richard Richels, Steven J Smith, David  Stern, Ferenc L. Toth, Peter Zhou  Robert Andres, Giovanni Baiocchi, Michael Hanemann, Michael Jakob,  Peter Kolp, Emilio la Rovere, Thomas Michielsen, Keisuke Nansai,  Mathis Rogner, Steven Rose, Estela Santalla, Tommy Wiedmann,  Thomas Wilson, Diana Ürge Vorsatz,  Marcos Gomes, Aviel Verbruggen  Joseph Bergesen, Rahul Madhusudanan    CAs:      REs:  CSAs    1 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Drivers, Trends and Mitigation Contents    Executive Summary ............................................................................................................................ 4  5.1 Introduction and overview ........................................................................................................... 7  5.2 Global trends in stocks and flows of greenhouse gases and short lived species ......................... 9  5.2.1 Sectoral and regional trends in GHG emissions .................................................................... 9  5.2.2 Trends in Aerosols and Aerosol/Tropospheric Ozone Precursors ...................................... 12  5.2.3 Emissions uncertainty ......................................................................................................... 13  5.2.3.1 Methods for emissions uncertainty estimation ........................................................... 13  5.2.3.2 Fossil carbon dioxide emissions uncertainty ............................................................... 14  5.2.3.3 Other greenhouse gases and non fossil fuel carbon dioxide ...................................... 15  5.2.3.4 Total greenhouse gas uncertainty ............................................................................... 16  5.2.3.5 Sulphur dioxide and aerosols ....................................................................................... 16  5.2.3.6 Uncertainties in emission trends ................................................................................. 16  5.2.3.7 Uncertainties in consumption based carbon dioxide emission accounts ................... 17  5.3 Key drivers of global change ....................................................................................................... 18  5.3.1 Drivers of global emissions  ................................................................................................. 18  . 5.3.1.1 Key drivers ................................................................................................................... 20  5.3.2 Population and demographic structure .............................................................................. 23  5.3.2.1 Population trends ........................................................................................................ 23  5.3.2.2 Trends in demographic structure ................................................................................ 24  5.3.3 Economic growth and development ................................................................................... 26  5.3.3.1 Production trends ........................................................................................................ 26  5.3.3.2 Consumption trends .................................................................................................... 29  5.3.3.3 Structural change ......................................................................................................... 31  5.3.4 Energy demand and supply ................................................................................................. 33  5.3.4.1 Energy demand ............................................................................................................ 33  5.3.4.2 Energy efficiency and Intensity .................................................................................... 34  5.3.4.3 Carbon intensity, the energy mix, and resource availability ....................................... 37  5.3.5 Other key sectors ................................................................................................................ 38  5.3.5.1 Transport  ..................................................................................................................... 42  . 5.3.5.2 Buildings ....................................................................................................................... 42  5.3.5.3 Industry ........................................................................................................................ 43    2 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.3.5.4 Agriculture, Forestry, Other Land Use ......................................................................... 43  5.3.5.5 Waste ........................................................................................................................... 45  5.4 Production and Trade patterns .................................................................................................. 46  5.4.1 Embedded carbon in trade  ................................................................................................. 46  . 5.4.2 Trade and productivity ........................................................................................................ 48  5.5 Consumption and behavioural change ....................................................................................... 49  5.5.1 Impact of behaviour on consumption and emissions ......................................................... 50  5.5.2 Factors driving change in behaviour ................................................................................... 51  5.6 Technological change ................................................................................................................. 52  5.6.1 Contribution of technological change to mitigation ........................................................... 52  5.6.1.1 Technological change: a drive towards higher or lower emissions? ........................... 53  5.6.1.2 Historical patterns of technological change ................................................................ 53  5.6.2 The rebound effect .............................................................................................................. 54  5.6.3 Infrastructure choices and lock in ....................................................................................... 55  5.7 Co benefits and adverse side effects of mitigation actions ....................................................... 55  5.7.1 Co benefits .......................................................................................................................... 57  5.7.2 Adverse side effects ............................................................................................................ 58  5.7.3 Complex issues in using co benefits and adverse side effects to inform policy ................. 59  5.8 The system perspective: linking sectors, technologies and consumption patterns ................... 59  5.9 Gaps in knowledge and data ...................................................................................................... 61  5.10 Frequently Asked Questions ..................................................................................................... 63  References ........................................................................................................................................ 65      3 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Executive Summary  Chapter 5 analyzes the anthropogenic greenhouse gas (GHG) emission trends until the present and  the main drivers that explain those trends. The chapter uses different perspectives to analyze past  GHG emissions trends, including aggregate emissions flows and per capita emissions, cumulative  emissions, sectoral emissions, and territory based vs. consumption based emissions. In all cases,  global and regional trends are analyzed. Where appropriate, the emission trends are contextualized  with long term historic developments in GHG emissions extending back to 1750.  GHG emissions trends  Anthropogenic GHG emissions have increased from 27 (+/-3.2) to 49 (+/-4.5) GtCO2eq/yr (+80%)  between 1970 and 2010; GHG emissions during the last decade of this period were the highest in  human history (high confidence).1 GHG emissions grew on average 2.2% per year between 2000 and  2010, compared to 1.3% per year between 1970 and 2000. [Section 5.2.1]  At 76% of total emissions in 2010, carbon dioxide (CO2) remains the major anthropogenic GHG  (high confidence). The share of fossil fuel related CO2 emissions for energy purposes increased  consistently over the last 40 years reaching 34 GtCO2/yr, or 69% of global GHG emissions in 2010.2  Agriculture, deforestation, and other land use changes have been the second largest contributors  whose emissions, including other GHGs, have reached 12 GtCO2eq/yr (low confidence), 24% of global  GHG emissions in 2010. Since 1970, CO2 emissions increased by about 90%, and methane (CH4) and  nitrous oxide (N2O) increased by about 47% and 43%, respectively. Fluorinated gases (F gases)  emitted in industrial processes continue to represent less than 2% of anthropogenic GHG emissions.  [5.2.1]  Over the last four decades GHG emissions have risen in every region, though trends in the different  regions have been dissimilar. In Asia, GHG emissions grew by 330% reaching 19 GtCO2eq/yr in 2010,  in Middle East and Africa (MAF) by 70%, in Latin America (LAM) by 57%, in the group of member  countries of the Organisation for Economic Co operation and Development (OECD 1990) by 22%,  and in Economies in Transition (EIT) by 4%.3 Although small in absolute terms, GHG emissions from  international transportation are growing rapidly. [5.2.1]  Cumulative fossil CO2 emissions (since 1750) more than tripled from 420 GtCO2 by 1970 to  1300 GtCO2 (+/-8%) by 2010 (high confidence). Cumulative CO2 emissions associated with agriculture,  deforestation, and other land use change (AFOLU) have increased from about 490 GtCO2 in 1970 to  approximately 680 GtCO2 (+/-45%) in 2010. Considering cumulative CO2 emissions from 1750 to 2010,  the OECD 1990 region continues to be the major contributor with 42%; Asia with 22% is increasing  its share. [5.2.1]  In 2010, median per capita emissions for the group of high income countries (13 tCO2eq/cap) is  almost 10 times that of low income countries (1.4 tCO2eq/cap) (robust evidence, high agreement).  Global average per capita GHG emissions have shown a stable trend over the last 40 years. This  global average, however, masks the divergence that exists at the regional level; in 2010 per capita  GHG emissions in OECD 1990 and EIT are between 1.9 and 2.7 times higher than per capita GHG                                                                Values with +/- provide uncertainty ranges for a 90% confidence interval.   Unless stated otherwise, all emission shares are calculated based on global warming potential with a  100 year time horizon. See also Section 3.9.6 for more information on emission metrics.  3  The country compositions of OECD 1990, EIT, LAM, MAF, and ASIA are defined in Annex II of the report  (Section A.II.2). In Chapter 5, both  ASIA  and  Asia  refer to the same group of countries in the geographic  region Asia. The region referred to excludes Japan, Australia and New Zealand; the latter countries are  included in the OECD 1990 region.  2 1   4 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  emissions in LAM, MAF, and Asia. While per capita GHG emissions in LAM and MAF have been stable  over the last four decades, in Asia they have increased by more than 120%. [5.2.1]  The energy and industry sectors in upper middle income countries accounted for 60% of the rise in  global GHG emissions between 2000 and 2010 (high confidence). From 2000 2010, GHG emissions  grew in all sectors: energy supply (+36%, to 17 GtCO2eq/yr), industry (+39%, to 10 GtCO2eq/yr),  transport (+18%, to 7.0 GtCO2eq/yr), buildings (+9%, to 3.2 GtCO2eq/yr), AFOLU (+8%, to  12 GtCO2eq/yr). Waste GHG emissions increased substantially but remained close to 3% of global  GHG emissions. [5.3.4, 5.3.5]  In the OECD 1990 region, territorial CO2 emissions slightly decreased between 2000 and 2010, but  consumption based CO2 emissions increased by 5% (robust evidence, high agreement). In most  developed countries, both consumption related emissions and GDP are growing. There is an  emerging gap between territorial, production related emissions, and consumption related emissions  that include CO2 embedded in trade flows. The gap shows that a considerable share of CO2 emissions  from fossil fuels combustion in developing countries is released in the production of goods exported  to developed countries. By 2010, however, the developing country group has overtaken the  developed country group in terms of annual CO2 emissions from fossil fuel combustion and industrial  processes from both production and consumption perspectives. [5.3.3]  The trend of increasing fossil CO2 emissions is robust (very high confidence). Five different fossil fuel  CO2 emissions datasets harmonized to cover fossil fuel, cement, bunker fuels, and gas flaring show +/-4% differences over the last three decades. Uncertainties associated with estimates of  historic anthropogenic GHG emissions vary by type of gas and decrease with the level of aggregation.  Global CO2 emissions from fossil fuels have relatively low uncertainty, assessed to be +/-8%.  Uncertainty in fossil CO2 emissions at the country level reaches up to 50%. [5.2.1, 5.2.3]  GHG emissions drivers  Per capita production and consumption growth is a major driver for worldwide increasing GHG  emissions (robust evidence, high agreement). Global average economic growth, as measured  through GDP per capita, grew by 100%, from 4800 to 9800 Int$2005/cap yr between 1970 and 2010,  outpacing GHG intensity improvements. At regional level, however, there are large variations.  Although different in absolute values, OECD 1990 and LAM showed a stable growth in per capita  income of the same order of magnitude as the GHG intensity improvements. This led to almost  constant per capita emissions and an increase in total emissions at the rate of population growth.  The EIT showed a decrease in income around 1990 that together with decreasing emissions per  output and a very low population growth led to a decrease in overall emissions until 2000. The MAF  showed a decrease in GDP per capita, but a high population growth rate led to an increase in overall  emissions. Emerging economies in Asia showed very high economic growth rates at aggregate and  per capita levels leading to the largest growth in per capita emissions despite also having the highest  emissions per output efficiency improvements. [5.3.3]  Reductions in the energy intensity of economic output during the past four decades have not been  sufficient to offset the effect of GDP growth (high confidence). Energy intensity has declined in all  developed and large developing countries due mainly to technology, changes in economic structure,  the mix of energy sources, and changes in the participation of inputs such as capital and labour used.  At the global level, per capita primary energy consumption rose by 30% from 1970 2010; due to  population growth, total energy use has increased by 130% over the same period. Countries and  regions with higher income per capita tend to have higher energy use per capita; per capita energy  use in the developing regions is only about 25% of that in the developed economies on average.  Growth rates in energy use per capita in developing countries, however, are much higher than those  in developed countries. [5.3.4]    5 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  The decreasing carbon intensity of energy supply has been insufficient to offset the increase in  global energy use (high confidence). Increased use of coal since 2000 has reversed the slight  decarbonization trends exacerbating the burden of energy related GHG emissions. Estimates  indicate that coal, and unconventional gas and oil resources are large, suggesting that  decarbonization would not be primarily driven by the exhaustion of fossil fuels, but by economics  and technological and socio political decisions. [5.3.4, 5.8]  Population growth aggravates worldwide growth of GHG emissions (high confidence). Global  population has increased by 87% from 1970 reaching 6.9 billion in 2010. The population has  increased mainly in Asia, Latin America, and Africa, but the emissions increase for an additional  person varies widely, depending on geographical location, income, lifestyle, and the available energy  resources and technologies. The gap in per capita emissions between the top and bottom countries  exceeds a factor of 50. The effects of demographic changes such as urbanization, ageing, and  household size have indirect effects on emissions and smaller than the direct effects of changes in  population size. [5.3.2]  Technological innovation and diffusion support overall economic growth, and also determine the  energy intensity of economic output and the carbon intensity of energy (medium confidence). At  the aggregate level, between 1970 and 2010, technological change increased income and resources  use, as past technological change has favoured labour productivity increase over resource efficiency  [5.6.1]. Innovations that potentially decrease emissions can trigger behavioural responses that  diminish the potential gains from increased efficiency, a phenomenon called the  rebound effect   [5.6.2]. Trade facilitates the diffusion of productivity enhancing and emissions reducing technologies  [5.4].  Infrastructural choices have long lasting effects on emissions and may lock a country in a  development path for decades (medium evidence, medium agreement). As an example,  infrastructure and technology choices made by industrialized countries in the post World War II  period, at low energy prices, still have an effect on current worldwide GHG emissions. [5.6.3]  Behaviour affects emissions through energy use, technological choices, lifestyles, and  consumption preferences (robust evidence, high agreement). Behaviour is rooted in individuals'  psychological, cultural, and social orientations that lead to different lifestyles and consumption  patterns. Across countries, strategies and policies have been used to change individual choices,  sometimes through changing the context in which decisions are made; a question remains whether  such policies can be scaled up to macro level. [5.5]  Co benefits may be particularly important for policymakers because the benefits can be realized  faster than can benefits from reduced climate change, but they depend on assumptions about  future trends (medium evidence, high agreement). Policies addressing fossil fuel use may reduce not  only CO2 emissions but also sulphur dioxide (SO2) emissions and other pollutants that directly affect  human health, but this effect interacts with future air pollution policies. Some mitigation policies  may also produce adverse side effects, by promoting energy supply technologies that increase some  forms of air pollution. A comprehensive analysis of co benefits and adverse side effects is essential  to estimate the actual costs of mitigation policies. [5.7]  Policies can be designed to act upon underlying drivers so as to decrease GHG emissions (limited  evidence, medium agreement). Policies can be designed and implemented to affect underlying  drivers. From 1970 2010, in most regions and countries, policies have proved insufficient in  influencing infrastructure, technological, or behavioural choices at a scale that curbs the upward  GHG emissions trends. [5.6, 5.8]      6 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.1   Introduction and overview  The concentration of greenhouse gases, including CO2 and methane (CH4), in the atmosphere has  been steadily rising since the beginning of the Industrial Revolution (Etheridge et al., 1996, 2002;  NRC, 2010). Anthropogenic CO2 emissions from the combustion of fossil fuels have been the main  contributors to the rising of GHG concentration levels in the atmosphere, followed by CO2 emissions  from land use, land use change, and forestry (LULUCF).  Chapter 5 analyzes the anthropogenic greenhouse gas (GHG) emission trends until the present and  the main drivers that explain those trends. This chapter serves as a reference for assessing, in  following chapters, the potential future emissions paths, and mitigation measures.  For a systematic assessment of the main drivers of GHG emission trends, this and subsequent  chapters employ a decomposition analysis based on the IPAT and Kaya identities (see Box 5.1).   Chapter 5 first considers the immediate drivers, or factors in the decomposition, of total GHG  emissions. For energy, the factors are population, gross domestic product (GDP) (production) and  gross national expenditure (GNE) (expenditures) per capita, energy intensity of production and  expenditures, and GHG emissions intensity of energy. For other sectors, the last two factors are  combined into GHG emissions intensity of production or expenditures. Secondly, it considers the  underlying drivers defined as the processes, mechanisms, and characteristics of society that  influence emissions through the factors, such as fossil fuels endowment and availability,  consumption patterns, structural and technological changes, and behavioural choices.   Underlying drivers are subject to policies and measures that can be applied to, and act upon them.  Changes in these underlying drivers, in turn, induce changes in the immediate drivers and,  eventually, in the GHG emissions trends.  The effect of immediate drivers on GHG emissions can be quantified through a straight  decomposition analysis; the effect of underlying drivers on immediate drivers, however, is not  straightforward and, for that reason, difficult to quantify in terms of their ultimate effects on GHG  emissions. In addition, sometimes immediate drivers may affect underlying drivers in a reverse  direction. Policies and measures in turn affect these interactions. Figure 5.1 reflects the  interconnections among GHG emissions, immediate drivers, underlying drivers, and policies and  measures as well as the interactions across these three groups through the dotted lines.    7 of 94    Final Draft    Chapter 5  IPCC WGIII AR5    Figure 5.1. Interconnections among GHG emissions, immediate drivers, underlying drivers, and policies and measures. Immediate drivers comprise the factors in the decomposition of emissions. Underlying drivers refer to the processes, mechanisms, and characteristics that influence emissions through the factors. Policies and measures affect the underlying drivers that, in turn, may change the factors. Immediate and underlying drivers may, in return, influence policies and measures. Past trends in global and regional GHG emissions from the beginning of the Industrial Revolution are  presented in Section 5.2, Global trends in greenhouse gases and short lived species; sectoral  breakdowns of emissions trends are introduced later in Section 5.3.4, Energy demand and supply,  and Section 5.3.5,Other key sectors, which includes transport, buildings, industry, forestry,  agriculture, and waste sectors.  The decomposition framework and its main results at both global and regional levels are presented  in Section 5.3.1,Drivers of global emissions. Immediate drivers or factors in the decomposition  identity are discussed in Section 5.3.2,Population and demographic structure, Section 5.3.3,  Economic growth and development, and Section 5.3.4, Energy demand and supply. Past trends of the  immediate drivers are identified and analyzed in these sections.  At a deeper level, the underlying drivers that influence immediate drivers that, in turn, affect GHG  emissions trends, are identified and discussed in Section 5.4, Production and trade patterns,  Section 5.5, Consumption and behavioural change, and Section 5.6, Technological change.  Underlying drivers include individual and societal choices as well as infrastructure and technological  changes.  Section 5.7, Co benefits and adverse side effects of mitigation actions, identifies the effects of  mitigation policies, measures or actions on other development aspects such as energy security, and  public health.  Section 5.8  The system perspective: linking sectors, technologies and consumption patterns   synthesizes the main findings of the chapter and highlights the relevant interactions among and  across immediate and underlying drivers that may be key for the design of mitigation policies and  measures.    8 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Finally, Section 5.9, Gaps in knowledge and data, addresses shortcomings in the dataset that prevent  a more thorough analysis or limit the time span of certain variables. The section also discussed the  gaps in the knowledge on the linkages among drivers and their effect on GHG emissions.  5.2   Global trends in stocks and flows of greenhouse gases and short lived  species 5.2.1    Sectoral and regional trends in GHG emissions Between 1970 and 2010, global warming potential (GWP) weighted territorial GHG emissions  increased from 27 to 49 GtCO2eq, an 80% increase (Figure 5.2). Total GHG emissions increased by  8 GtCO2eq over the 1970s, 6 GtCO2eq over the 1980s, and by 2 GtCO2 over the 1990s, estimated as  linear trends. Emissions growth accelerated in the 2000s for an increase of 10 GtCO2eq. The average  annual GHG growth rate over these decadal periods was 2.0%, 1.4%, 0.6%, and 2.2%.4 The main  regional changes underlying these global trends were the reduction in GHG emissions in the  Economies in Transition (EIT) region starting in the 1990s and the rapid increase in GHG emissions in  Asia in the 2000s. Emissions values in Section 5.2 are from the Electronic Data Gathering, Analysis,  and Retrieval (EDGAR) database (JRC/PBL, 2012) unless otherwise noted. As in previous assessments,  the EDGAR inventory is used because it provides the only consistent and comprehensive estimate of  global emissions over the last 40 years. The EDGAR emissions estimates for specific compounds are  compared to other results in the literature below.  Similar trends were seen for fossil CO2 emissions, where a longer record exists. The absolute growth  rate over the last decade was 8 GtCO2/decade, which was higher than at any point in history (Boden  et al., 2012). The relative growth rate for per capita CO2 emissions over the last decade, is still  smaller than the per capita growth rates at previous points in history, such as during the post World  War II economic expansion. Absolute rates of CO2 emissions growth, however, are higher than in the  past due to an overall expansion of the global economy due to population growth.  Carbon dioxide (CO2) is the largest component of anthropogenic GHG emissions (Figure 1.3 in  Chapter 1). CO2 is released during the combustion of fossil fuels such as coal, oil, and gas as well as  the production of cement (Houghton, 2007). In 2010, CO2, including net land use change emissions,  comprised over 75% of 100 year GWP weighted anthropogenic GHG emissions (Figure 1.3). Between  1970 2010, global anthropogenic fossil CO2 emissions more than doubled, while CH4 and nitrous  oxide (N2O) each increased by about 45%, although there is evidence that CH4 emissions may not  have increased over recent decades (see Section 5.2.3). Fluorinated gases, which represented about  0.4% in 1970, increased to comprise 2% of GHG emissions in 2010. Some anthropogenic influences  on climate, such as chlorofluorocarbons and aviation contrails, are not discussed in this section, but  are assessed in the IPCC Working Group I (WGI) contribution to the Fifth Assessment Report  (Boucher and Randall, 2013; Hartmann et al., 2013). Forcing from aerosols and ozone precursor  compounds are considered in the next section.  Following general scientific practice, 100 year GWPs from the IPCC Second Assessment Report  (Schimel et al., 1996) are used as the index for converting GHG emission estimates to common units  of CO2 equivalent emissions in this section (please refer to Annex II.9.1 for the exact values). There is  no unique method of comparing trends for different climate forcing agents (see Sections 1.2.5 and  3.9.6). A change to 20  or 500 year GWP values would change the trends by +/-6%. Similarly, use of  updated AR4 or AR5 GWPs, which change values by a smaller amount, would not change the overall  conclusions in this section. The largest absolute impact of a change in index values is on the weight                                                               4  Note that there are different methods to calculate the average annual growth rate. Here, for convenience of  the reader, we take the simple linear average of the annual growth rates gt within the period considered.    9 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  given to methane, whose emission trends are particularly uncertain (Section 5.2.3; (Kirschke et al.,  2013)).    Figure 5.2. Left panel: GHG emissions per region (territorial, see Section 5.5.1) over 1970-2010, including fossil, agriculture and land-use/land-use change sectors, aggregated using 100-year GWP values. Right panel: The same data presented as per capita GHG emissions. Data from JRC/PBL (2012) and IEA (2012). Regions are defined in Annex II.2. Global per capita GHG emissions (Figure 5.2, right panel) have shown little trend over the last 40  years. The most noticeable regional trend over the last two decades in terms of per capita GHG  emissions is the increase in Asia. Per capita emissions in regions other than EIT were fairly flat until  the last several years when per capita emissions have decreased slightly in the group of member  countries of the Organisation for Economic Co operation and Development in 1990 (OECD 1990) and  Latin America (LAM).  Fossil CO2 emissions have growth substantially over the past two centuries (Figure 5.3, left panels).  Fossil CO2 emissions over 2002 2011 were estimated at 30 +/-8% GtCO2/yr (Andres et al., 2012), (90%  confidence interval). Emissions in the 2000s as compared to the 1990s were higher in all regions,  except for EIT, and the rate of increase was largest in ASIA. The increase in developing countries is  due to an industrialization process that historically has been energy intensive; a pattern similar to  what the current OECD countries experienced before 1970. The figure also shows a shift in relative  contribution. The OECD 1990 countries contributed most to the pre 1970 emissions, but in 2010 the  developing countries and ASIA in particular, make up the major share of emissions.  Fossil CO2 emissions made up the largest share (80%) of the emissions increase between 2000 and  2010. In 2011, fossil CO2 emissions were 3% higher than in 2010, taking the average of estimates  from Joint Research Centre (JRC)/ Netherlands Environmental Assessment Agency (PBL) (Olivier et al.,  2013), U.S. Energy Information Administration (EIA), and Carbon Dioxide Information Analysis Center  (CDIAC) (Macknick, 2011). Preliminary estimates for 2012 indicate that emissions growth has slowed  to 1.4% (Olivier et al., 2013) or 2% (BP, 2013), as compared to 2012.  Land use change (LUC) emissions are highly uncertain, with emissions over 2002 2011 estimated to  be 3.3 +/-50 75% GtCO2/yr (Ciais et al., 2013). One estimate of LUC emissions by region is shown in  Figure 5.3, left panel (Houghton et al., 2012), disaggregated into sub regions using Houghton    10 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  (Houghton, 2008), and extended to 1750 using regional trends from Pongratz et al.(Pongratz et al.,  2009). LUC emissions were comparable to or greater than fossil emissions for much of the last two  centuries, but are of the order of 10% of fossil emissions by 2010. LUC emissions appear to be  declining over the last decade, with some regions showing net carbon uptake, although estimates do  not agree on the rate or magnitude of these changes (Figure 11.6). Uncertainty estimates in Figure  5.3 follow Le Quéré et al.(Le Quéré et al., 2012) and WGI (Ciais et al., 2013).     Figure 5.3. Upper-left panel: Historic fossil CO2 emissions per region (territorial, (Boden et al., 2012)); Lower-left panel: an illustrative estimate of historical land-use-change emissions (Houghton et al., 2012); Right panels show cumulative emissions over selected time periods by region. Whisker lines give an indication of the range of emission results. Regions are defined in Annex II.2. Cumulative CO2 emissions, which are a rough measure of the impact of past emissions on  atmospheric concentrations, are also shown in Figure 5.3. About half of cumulative fossil CO2  emissions to 2010 were from the OECD90 region, 20% from the EIT region, 15% from the ASIA region,  and the remainder from LAM, MAF, and international shipping (not shown). The cumulative  contribution of LUC emissions was similar to that of fossil fuels until the late 20th century. By 2010,  however, cumulative fossil emissions are nearly twice that of cumulative LUC emissions. Note that  the figures for LUC are illustrative, and are much more uncertain than the estimates of fossil CO2  emissions. Cumulative fossil CO2 emissions to 2011 are estimated to be 1340 +/- 110 GtCO2/year,  while cumulative LUC emissions are 660 +/- 290 GtCO2/year (WGI Table 6.1). Cumulative uncertainties  are, conservatively, estimated across time periods with 100% correlation across years. Cumulative  per capita emissions are another method of presenting emissions in the context of examining  historical responsibility (see Chapters 3 and 13; (Teng et al., 2011)).  Methane is the second most important greenhouse gas, although its apparent impact in these  figures is sensitive to the index used to convert to CO2 equivalents (see Section 3.9.6). Methane  emissions are due to a wide range of anthropogenic activities including the production and transport  of fossil fuels, livestock, and rice cultivation, and the decay of organic waste in solid waste landfills.  The 2005 estimate of CH4 emissions from JRC/PBL (2012) of 7.3 GtCO2eq is 7% higher than the  6.8 GtCO2eq estimates of US EPA (US EPA, 2012) and Höglund Isaksson et al. (Höglund Isaksson et al.,  2012), which is well within an estimated 20% uncertainty (Section 5.2.3).  The third most important anthropogenic greenhouse gas is N2O, which is emitted during agricultural  and industrial activities as well as during combustion and human waste disposal. Current estimates  are that about 40% of total N20 emissions are anthropogenic. The 2005 estimate of N2O emissions    11 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  from (JRC/PBL, 2012) of 3.0 GtCO2eq is 12% lower than the 3.4 GtCO2 estimate of (US EPA, 2012),  which is well within an estimated 30 to 90% uncertainty (Section 5.2.3).  In addition to CO2, CH4,and N20, the F gases are also greenhouse gases, and include  hydrofluorocarbons, perfluorocarbons, and sulphur hexafluoride. These gases, sometimes referred  to as High Global Warming Potential gases ( High GWP gases ), are typically emitted in smaller  quantities from a variety of industrial processes. Hydrofluorocarbons are mostly used as substitutes  for ozone depleting substances (i.e., chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs),  and halons). Emissions uncertainty for these gases varies, although for those gases with known  atmospheric lifetimes, atmospheric measurements can be inverted to obtain an estimate of total  global emissions. Overall, the uncertainty in global F gas emissions have been estimated to be 20%  (UNEP, 2012), appendix), although atmospheric inversions constrain emissions to lower uncertainty  levels in some cases (Section 5.2.3).  Greenhouse gases are emitted from many societal activities, with global emissions from the energy  sector consistently increasing the most each decade over the last 40 years (see also Figure 5.18). A  notable change over the last decade is high growth in emissions from the industrial sector, the  second highest growth by sector over this period. Subsequent sections of this chapter describe the  main trends and drivers associated with these activities and prospects for future mitigation options.  5.2.2    Trends in Aerosols and Aerosol/Tropospheric Ozone Precursors  In addition to GHGs, aerosols and tropospheric ozone also contribute to trends in climate forcing.  Because these forcing agents are shorter lived and heterogeneous, their impact on climate is not  discussed in terms of concentrations, but instead in terms of radiative forcing, which is the change in  the radiative energy budget of the Earth (Myhre et al., 2014)(Myhre et al., 2014). A positive forcing,  such as that due to increases in GHGs, tends to warm the system while a negative forcing represents  a cooling effect. Trends for the relevant emissions are shown in the Figure 5.4.   Aerosols contribute a net negative, but uncertain, radiative forcing (IPCC, 2007a; Myhre et al., 2014)  estimated to total  0.90 W/m2 (5 95% range:  1.9 to  0.1 W/m2). Trends in atmospheric aerosol  loading, and the associated radiative forcing, are influenced primarily by trends in primary aerosol,  black carbon (BC) and organic carbon (OC), and precursor emissions (primarily sulphur dioxide (SO2)),  although trends in climate and land use also impact these forcing agents.   Sulphur dioxide is the largest anthropogenic source of aerosols, and is emitted by fossil fuel  combustion, metal smelting, and other industrial processes. Global sulphur emissions peaked in the  1970s, and have generally decreased since then. Uncertainty in global SO2 emissions over this period  is estimated to be relatively low (+/-10%), although regional uncertainty can be higher (Smith et al.,  2011).       12 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Figure 5.4. Left panel: Global trends for air pollutant and methane emissions from anthropogenic and open burning, normalized to 1970 values. Short-timescale variability, in carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC) in particular, is due to grassland and forest burning. Data from JRC/PBL (2012) , except for SO2 (Smith et al., 2011);(Klimont et al., 2013a), and BC/OC (Lamarque et al., 2010). Right panel: contribution of each emission species in terms of top of the atmosphere radiative forcing (adapted from (Myhre et al., 2014), Figure 8.17). The aerosol indirect effect is shown separately as there is uncertainty as to the contribution of each species. Species not included in the left panel are shown in grey (included for reference).   A recent update of carbonaceous aerosol emissions trends (BC and OC) found an increase from 1970  through 2000, with a particularly notable increase in BC emissions from 1970 to 1980 (Lamarque et  al., 2010). A recent assessment indicates that BC and OC emissions may be underestimated (Bond et  al., 2013). These emissions are highly sensitive to combustion conditions, which results in a large  uncertainty (+100%/ 50% (Bond et al., 2007)). Global emissions from 2000 to 2010 have not yet  been estimated, but will depend on the trends in driving forces such as residential coal and biofuel  use, which are poorly quantified, and petroleum consumption for transport, but also changes in  technology characteristics and the implementation of emission reduction technologies.   Because of the large uncertainty in aerosol forcing effects, the trend in aerosol forcing over the last  two decades is not clear (Shindell et al., 2013).  Tropospheric ozone contributes a positive forcing and is formed by chemical reactions in the  atmosphere. Ozone concentrations are impacted by a variety of emissions, including CH4, nitrogen  oxides (NOx), carbon monoxide (CO), and volatile organic hydrocarbons (VOC) (Myhre et al., 2014).  Global emissions of ozone precursor compounds are also thought to have increased over the last  four decades. Global uncertainty has not been quantified for these emissions. An uncertainty of 10 20% for 1990 NOx emissions has been estimated in various European countries (Schöpp et al., 2005).   5.2.3    Emissions uncertainty 5.2.3.1    Methods for emissions uncertainty estimation  There are multiple methods of estimating emissions uncertainty (Marland et al., 2009), although  almost all methods include an element of expert judgement. The traditional uncertainty estimation  method, which compares emissions estimates to independent measurements, fails because of a  mismatch in spatial and temporal scales. The data required for emission estimates, ranging from  emission factors to fuel consumption data, originate from multiple sources that rarely have well  characterized uncertainties. A potentially useful input to uncertainty estimates is a comparison of  somewhat independent estimates of emissions, ideally over time, although care must be taken to  assure that data cover the same source categories (Macknick, 2011; Andres et al., 2012). Formal    13 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  uncertainty propagation can be useful as well (UNEP, 2012)(UNEP, 2012; Elzen et al., 2013) although  one poorly constrained element of such analysis is the methodology for aggregating uncertainty  between regions. Uncertainties in this section are presented as 5 95% confidence intervals, with  values from the literature converted to this range where necessary assuming a Gaussian uncertainty  distribution.  Total GHG emissions from EDGAR as presented here are up to 5 10% lower over 1970 2004 than  the earlier estimates presented in AR4 (IPCC, 2007a). The lower values here are largely due to lower  estimates of LUC CO2 emissions (by 0 50%) and N2O emissions (by 20 40%) and fossil CO2 emissions  (by 0 5%). These differences in these emissions are expected within the uncertainty ranges  estimated for these emission categories.  5.2.3.2    Fossil carbon dioxide emissions uncertainty Carbon dioxide emissions from fossil fuels and cement production are considered to have relatively  low uncertainty, with global uncertainty recently assessed to be 10% (Andres et al., 2012).  Uncertainties in fossil  fuel CO2 emissions arise from uncertainty in fuel combustion or other activity  data and uncertainties in emission factors, as well as assumptions for combustion completeness and  non combustion uses. Default uncertainty estimates (two standard deviations) suggested by the  IPCC (2006) for fossil fuel combustion emission factors are lower for fuels that have relatively  uniform properties ( 3%/+5% for motor gasoline,  2%/+1% for gas/diesel oil) and higher for fuels  with more diverse properties ( 15%/+18% petroleum coke,  10%/+14% for lignite). Some emissions  factors used by country inventories, however, differ from the suggested defaults by amounts that  are outside the stated uncertainty range because of local fuel practices (Olivier et al., 2011). In a  study examining power plant emissions in the United States, measured CO2 emissions were an  average of 5% higher than calculated emissions, with larger deviations for individual plants  (Ackerman and Sundquist, 2008). A comparison of five different fossil fuel CO2 emissions datasets,  harmonized to cover most of the same sources (fossil fuel, cement, bunker fuels, gas flaring) shows  +/-4% differences over the last three decades (Macknick, 2011). Uncertainty in underlying energy  production and consumption statistics, which are drawn from similar sources for existing emission  estimates, will contribute further to uncertainty (Gregg et al., 2008; Guan et al., 2012).  Uncertainty in fossil CO2 emissions increases at the country level (Marland et al., 1999; Macknick,  2011; Andres et al., 2012), with differences between estimates of up to 50%. Figure 5.5 compares  five estimates of fossil CO2 emissions for several countries. For some countries the estimates agree  well while for others more substantial differences exist. A high level of agreement between  estimates, however, can arise due to similar assumptions and data sources and does not necessarily  imply an equally low level of uncertainty. Note that differences in treatment of biofuels and  international bunker fuels at the country level can contribute to differences seen in this comparison.    14 of 94    Final Draft    Chapter 5  IPCC WGIII AR5    Figure 5.5. Upper panels: five estimates of fossil CO2 emissions for the three countries with the largest emissions (and complete time series). Middle panels: the three countries with the largest percentage variation between estimates. Lower panel: global emissions (TgCO2). Emissions data are harmonized data from (Macknick, 2011)(downloaded Sept 2013), IEA (2012) and JRC/PBL (2012) and include fossil fuel combustion, cement production, and gas flaring. Note that the vertical scales differ significantly between plots. 5.2.3.3    Other greenhouse gases and non fossil fuel carbon dioxide  Uncertainty is particularly large for sources without a simple relationship to activity factors, such as  emissions from LUC (Houghton et al., 2012); see also Chapter 11 for a comprehensive discussion),  fugitive emissions of CH4 and fluorinated gases (Hayhoe et al., 2002), biogenic emissions of CH4 and  N2O, and gas flaring (Macknick, 2011). Formally estimating uncertainty for LUC emissions is difficult  because a number of relevant processes are not characterized well enough to be included in  estimates (Houghton et al., 2012).   Methane emissions are more uncertain than CO2, with fewer global estimates (EDGAR, 2012; US EPA,  2012; Höglund Isaksson et al., 2012). The relationship between emissions and activity levels for CH4  are highly variable, leading to greater uncertainty in emission estimates. Leakage rates, for example,  depend on equipment design, environmental conditions, and maintenance procedures. Emissions  from anaerobic decomposition (ruminants, rice, landfill) also are dependent on environmental  conditions.  Nitrogen oxide emission factors are also heterogeneous, leading to large uncertainty. Bottom up  (inventory) estimates of uncertainty of 25% (UNEP, 2012) are smaller than the uncertainty of 60%    15 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  estimated by constraining emissions with atmospheric concentration observation and estimates of  removal rates (Ciais et al., 2013).   Unlike CO2, CH4, and N2O, most fluorinated gases are purely anthropogenic in origin, simplifying  estimates. Bottom up emissions, however, depend on assumed rates of leakage, for example, from  refrigeration units. Emissions can be estimated using concentration data together with inverse  modelling techniques, resulting in global uncertainties of 20 80% for various perfluorocarbons (Ivy  et al., 2012), 8 11% for sulphur hexafluoride (SF6)(Rigby et al., 2010), and +/-6 11% for HCFC 22  (Saikawa et al., 2012).5  5.2.3.4    Total greenhouse gas uncertainty  Estimated uncertainty ranges for GHGs range from relatively low for fossil fuel CO2 (+/-8%), to  intermediate values for CH4 and the F gases (+/-20%), to higher values for N2O (+/-60%) and net LUC CO2  (50 75%). Few estimates of total GHG uncertainty exist, and it should be noted that any such  estimates are contingent on the index used to convert emissions to CO2 equivalent values. The  uncertainty estimates quoted here are also not time dependent. In reality, the most recent data is  generally more uncertain due to the preliminary nature of much of the information used to calculate  estimates. Data for historical periods can also be more uncertain due to less extensive data  collection infrastructure and the lack of emission factor measurements for technologies no longer in  use. Uncertainty can also change over time due to changes in regional and sector contributions.  An illustrative uncertainty estimate of around 10% for total GHG emissions can be obtained by  combining the uncertainties for each gas assuming complete independence (which may  underestimate actual uncertainty). An estimate of 7.5% (90 percentile range) was provided by the  United Nations Environment Programme (UNEP) Gap Report (UNEP, 2012), appendix), which is lower  largely due to a lower uncertainty for fossil CO2.  5.2.3.5    Sulphur dioxide and aerosols Uncertainties in SO2 and carbonaceous aerosol (BC and OC) emissions have been estimated by Smith  et al. (Smith et al., 2011) and Bond et al. (Bond et al., 2004, 2007). Sulphur dioxide emissions  uncertainty at the global level is relatively low because uncertainties in fuel sulphur content are not  well correlated between regions. Uncertainty at the regional level ranges up to 35%. Uncertainties in  carbonaceous aerosol emissions, in contrast, are high at both regional and global scales due to  fundamental uncertainty in emission factors. Carbonaceous aerosol emissions are highly state dependent, with emissions factors that can vary by over an order of magnitude depending on  combustion conditions and emission controls. A recent assessment indicated that BC emissions may  be substantially underestimated (Bond et al., 2013), supporting the literature estimates of high  uncertainty for these emissions.  5.2.3.6    Uncertainties in emission trends  For global fossil CO2, the increase over the last decade as well as previous decades was larger than  estimated uncertainties in annual emissions, meaning that the trend of increasing emissions is  robust. Uncertainties can, however, impact the trends of fossil emissions of specific countries if  increases are less rapid and uncertainties are sufficiently high.   Quantification of uncertainties is complicated by uncertainties not only in annual uncertainty  determinations but also by potential year to year uncertainty correlations (Ballantyne et al., 2010,  2012). For fossil CO2, these correlations are most closely tied to fuel use estimates, an integral part  of the fossil CO2 emission calculation. For other emissions, errors in other drivers or emission factors                                                                HCFC 22 is regulated under the Montreal Protocol but not included in fluorinated gases totals reported in this  Chapter as it is not included in the Kyoto Protocol.  5   16 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  may have their own temporal trends as well. Without explicit temporal uncertainty considerations,  the true emission trends may deviate slightly from the estimated ones.   In contrast to fossil fuel emissions, uncertainties in global LUC emissions are sufficiently high to  make trends over recent decades uncertain in direction and magnitude (see also Chapter 11).   While two global inventories both indicate that anthropogenic methane emissions have increased  over the last three decades, a recent assessment combining atmospheric measurements, inventories,  and modelling concluded that anthropogenic methane emissions are likely to have been flat or have  declined over this period (Kirschke et al., 2013). The EDGAR inventory estimates an 86 Mt CH4 (or  30%) increase over 1980 2010 and the EPA (2012) historical estimate has a 26 Mt CH4 increase from  1990 2005 (with a further 18 Mt CH4 projected increase to 2010). (Kirschke et al., 2013) derives  either a 5 Mt increase or a net 15 Mt decrease over this period, which indicates the inventories may  be overestimating the increase in anthropogenic methane emissions. These results suggest that  estimates of methane emission uncertainties of 20% (UNEP, 2012; Kirschke et al., 2013) for  anthropogenic emissions may be too low, since the differences in trend between inventories and the  inversion synthesis are of this magnitude.  Overall, global SO2 emissions have decreased over the last two decades, decreasing again in recent  years following an increase from about 2000 2005 (Klimont et al., 2013a). Global trends in  carbonaceous aerosols over the past decade have not been estimated, however, BC and OC  emissions from fuel combustion in China and India were estimated to have increased over  2000 2010 (Lu et al., 2011).  5.2.3.7    Uncertainties in consumption based carbon dioxide emission accounts  Consumption based CO2 emission accounts reallocate part of the territorial CO2 emissions associated  with the production of exports to the countries where they are eventually consumed (Peters, 2008;  Minx et al., 2009). Different techniques and assumptions have been applied in modelling  consumption based CO2 emissions including aggregation or disaggregation of production sectors  (Lenzen, 2011; Lindner et al., 2012, 2013); consideration of price and deflation effects  (Dietzenbacher and Hoen, 1998; Dietzenbacher and Wagener, 1999); use of balancing techniques for  data discrepancies (Rey et al., 2004; Lenzen et al., 2009, 2010); simplifying multi regional input output models (Nansai et al., 2009a); and use of domestic production structure as a proxy for  imports (Suh, 2005). Different models and assumptions result in substantially different estimates of  consumption based CO2 emissions, but a direct comparison between these remains a gap in the  literature.  Uncertainties in consumption based emission accounts arise from various sources (Lenzen et al.,  2010) including (1) uncertainty in the territory based emission estimates (see previous sections);  (2) uncertainties in input output and international trade statistics (Lenzen et al., 2010); and  (3) uncertainties in the definitions, level of aggregation, and assumptions underlying the model  (Peters and Solli, 2010; Kanemoto et al., 2012; Andres et al., 2012).   There has been little quantitative analysis of this at the global level, with only a few comparisons  across different versions of the same dataset (Andrew and Peters, 2013) and direct comparisons  between studies (Andres et al., 2012). However, there have been detailed studies at the country  level (Lenzen et al., 2010) and many of the mechanisms of uncertainty are understood.   The few quantitative studies on the uncertainty and model spread in global analyses confirm that  the uncertainty in consumption based emissions are larger than territorial emissions, though trends  over time are likely to be robust (Andres et al., 2012). The uncertainty in territorial emission  estimates is a key driver for the uncertainty in consumption based emissions, and differences in  definition and system boundaries can lead to important differences (Peters and Solli, 2010). A  detailed assessment of the uncertainty due to different supply chain models is lacking, and this  remains a large gap in the literature. Based on model comparisons, particularly for large countries or    17 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  regions, the uncertainties may be less important than the uncertainties in territorial emission  estimates used as inputs.  5.3   Key drivers of global change  5.3.1    Drivers of global emissions This section analyzes drivers of the global trends in GHG emissions that were discussed in Section 5.2.  In general, drivers are the elements that directly or indirectly contribute to GHG emissions. While  there is no general consensus in the literature, some researchers distinguish proximate versus  underlying or ultimate drivers (see e.g., (Angel et al., 1998; Geist and Lambin, 2002)), where  proximate drivers are generally the activities that are directly or closely related to the generation of  GHGs and underlying or ultimate drivers are the ones that motivate the proximate drivers.   There is neither a unique method to identify the drivers of climate change, nor can the drivers  always be objectively defined: human activities manifest themselves through a complex network of  interactions, and isolating a clear cause and effect for a certain phenomenon purely through the  lens of scientific observation is often difficult. Therefore, the term,  driver  may not represent an  exact causality but is used to indicate an association to provide insights on what constitutes overall  changes in global GHG emissions.  In the literature, studies recognize various factors as main drivers to GHG emissions including  consumption (Morioka and Yoshida, 1995; Munksgaard et al., 2001; Wier et al., 2001; Hertwich and  Peters, 2009), international trade (Weber and Matthews, 2007; Peters and Hertwich, 2008; Li and  Hewitt, 2008; Yunfeng and Laike, 2010; Peters et al., 2011a; Jakob and Marschinski, 2013),  population growth (Ehrlich and Holdren, 1971; O Neill et al., 2010), economic growth (Grossman and  Krueger, 1994; Arrow et al, 1996; Stern et al., 1996; Lim et al., 2009; Blodgett and Parker, 2010;  Carson, 2010), structural change to a service economy (Suh, 2006; Nansai et al., 2009b), and energy  consumption (Wier, 1998; Malla, 2009; Bolla and Pendolovska, 2011). Each of these topics will be  discussed in more depth, starting in Section 5.3.2.   Obviously many drivers of GHG emissions are interlinked with each other, and furthermore, many of  these drivers can be further decomposed into various subcomponents. For example, transportation  emissions are an important driver of increasing GHG emissions globally. But there is a wide regional  variation in its significance. Furthermore, the increase in vehicle miles driven per capita or changes in  fuel economy of average vehicle fleet can also be referred to as a driver, while these drivers are  underlying to the higher level driver, namely changes to transportation emissions. Therefore, drivers  to GHG emissions can only be understood in the context of scale, level of detail, and the framework  under which the factors contributing to GHG emissions are analyzed.      18 of 94    Final Draft      Chapter 5  IPCC WGIII AR5  Box 5.1.IPAT and Kaya decomposition methods The IPAT (Ehrlich and Holdren, 1971) and Kaya (Kaya, 1990) identities provide two common  frameworks in the literature for analyzing emission drivers by decomposing overall changes in GHG  emissions into underlying factors. The Kaya identity is a special case of the more general IPAT  identity (Ehrlich and Holdren, 1971). The IPAT identity decomposes an impact (I, e.g., total GHG  emissions) into population (P), affluence (A, e.g., income per capita) and technology (T, e.g., GHG  emission intensity of production or consumption). The Kaya identity deals with a subset of GHG  emissions, namely CO2 emissions from fossil fuel combustion, which is the dominant part of the  anthropogenic GHG emissions and their changes at a global level (Figure 5.6). While global GHG  emissions measured in GWP 100 have increased in all three categories, namely fossil energy CO2,  AFOLU, and other over the last four decades, fossil energy CO2 dominates the absolute growth of  GHG emissions in all regions and the world during the period.     Figure 5.6. Greenhouse gas emissions in GWP 100 at regional level divided into fossil energy CO2, AFOLU and the rest (1970 2010); note that only the bottom-right panel for the World has a different scale for its vertical axis. Data from JRC/PBL (2012) and IEA (2012). Regions are defined in Annex II.2. The direct emission data from JRC/PBL (2012)(see Annex II.9) represents land-based CO2 emissions from forest and peat fires and decay that approximate to CO2 flux from anthopogenic emission sources in the FOLU sub-sector. For a more detailed representation of Agriculture and FOLU (AFOLU) GHG flux, see Section 11.2 and figures 11.2 and 11.6. Two approaches to GHG accounting are distinguished in the literature, namely territorial and  consumption accounts (see Box 5.2 for the definition). The Kaya identity for territorial CO2 emissions  can be written as   (1)  $     19 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  In other words, CO2 emissions are expressed as a product of four underlying factors: (1) population,  (2) per capita GDP (GDP/population), (3) energy intensity of GDP (Energy/GDP), and (4) CO2 intensity  of energy (CO2 emissions/energy) (Raupach et al., 2007; Steckel et al., 2011). Also even simpler  decomposition forms can be found in the literature (Raupach et al., 2007). They are obtained when  any two or three adjoining factors in the four factor Kaya identity in equation (1) are merged. For  example, merging energy intensity of GDP and CO2 intensity of energy into CO2 intensity of GDP, a  three factor decomposition can be written as:  (2)    Similarly, consumption based CO2 emissions can be decomposed such that  (3)    In this case, consumption based CO2 emissions are decomposed into (1) population, (2) per capita  consumption (GNE/people; GNE=Gross National Expenditure), and (3) embodied CO2 intensity of  consumption (consumption based CO2 emission/GNE). The Kaya identity can also be expressed as a  ratio between two time periods to show relative change in CO2 emissions and its contributing factors  (Raupach et al., 2007).  5.3.1.1    Key drivers Figure 5.6 shows that, globally AFOLU emissions have increased by 12% between 1970 and 2010.  The AFOLU emissions have been more pronounced in non OECD 1990 regions and dominate total  GHG emissions from MAF and LAM regions. Major increases in global GHG emission have been,  however, associated with CO2 emissions from fossil energy (+108% between 1970 and 2010), which  has been growing more rapidly since the last IPCC Assessment Report (IPCC, 2007b).  Figure 5.7 shows this increase in fossil energy CO2 decomposed into changes in population (+87%),  per capita GDP adjusted with Purchasing Power Parity (PPP) (+103%), energy intensity in GDP ( 35%)  and CO2 intensity of energy ( 15%) between 1970 and 2010. Over the last decade, however, the long  trend of decreasing carbon intensity in energy has been broken, and it increased by 1.7%. In short,  the improvements in energy intensity of GDP that the world has achieved over the last four decades  could not keep up with the continuous growth of global population resulting in a closely  synchronous behaviour between GDP per capita and CO2 emission during the period.  At a regional scale, all regions but Asia show 5% to 25% reduction in CO2 intensity of energy  consumption, while Asia increased CO2 intensity of energy consumption by 44% between 1970 and  2010. Energy intensity of GDP declined significantly in the EIT, ASIA, and OECD 1990 (39% 55%) and  moderately in LAM (9%), while in MAF it increased by 41%. Energy intensity of GDP may increase as  an economy enters into an industrialization process, while it generally decreases as the  industrialization process matures and as the share of service sector in the economy grows (Nansai et  al., 2007; Henriques and Kander, 2010). In all regions, population growth has been a persistent trend.  The EIT region showed the lowest population growth rate over the last four decades (16%), whereas  MAF marked 188% increase in population during the same period. ASIA gained the most to its  population from 1.9 billion to 3.7 billion during the period. Purchasing Power Parity (PPP ) adjusted  GDP also grew in all regions ranging from 43% (MAF), about two fold (OECD 1990, EIT, and LAM) to a  remarkable six fold increase (ASIA) over the last four decades. In general, the use of PPP adjusted  GDP instead of Market Exchange Rate (MER) based GDP gives more weight to developing economies  and their GDP growth (Raupach et al., 2007).  In summary, the improvements in energy intensity in GDP over the last four decades could not keep  up with the stable and persistent upward trends in GDP per capita and population. In particular, a  strong growth in GDP per capita in ASIA combined with its population growth has been the most  significant factors to the increase in GHG emissions during the period.    20 of 94    Final Draft    Chapter 5  IPCC WGIII AR5    Figure 5.7. Four factor decomposition of territorial fossil energy CO2 emission at regional level (1970 2010); note that only the bottom-right panel for the World has a different scale for its vertical axis. Data from IEA (2012) and JRC/PBL (2012); based on PPP adjusted GDP. Regions are defined in Annex II.2. Global CO2 emissions from fossil energy are decomposed into three factors using territorial and  consumption accounts. Figure 5.8 highlights the case of ASIA and OECD 1990, where the gap  between the two approaches is largest, over the 1990 2010 period. Based on a territorial  accounting, OECD 1990 increased its CO2 emissions from fossil energy only by 6% from 1990 to 2010.  The increase in CO2 emission from fossil energy embodied in consumption by OECD 1990, however,  is more significant (22%) during the period. On the other hand, CO2 emission embodied in  consumption by ASIA increased by 175% during the period, while its territorial emissions increased  by 197% during the period. Increasing international trade played an important role in this result,  which will be elaborated in Section 5.4.    21 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Figure 5.8. Three factor decomposition of consumption-based and territory-based fossil energy CO2 emission for Asia (left) and OECD (right) (1990 2010). Data from IEA (2012) and JRC/PBL (2012). Regions are defined in Annex II.2.   The strong correlation between GDP and CO2 emissions can be identified from the historical  trajectories of CO2 emissions and GDP (Figure 5.9). Although there are notable exceptions (EIT),  regional CO2 emission trajectories are closely aligned with the growth in GDP. On average, 1% of  world GDP increase has been associated with 0.39% increase in fossil energy CO2 emission during the  1970 2010 period. Over the last two decades, however, 1% of world GDP increase has been  accompanied with 0.49% increase in fossil energy CO2 emission (1990 2010) due largely to the rapid  growth of the energy intensive non OECD Asian economy.  Figure 5.9. Historical regional trajectories of territorial fossil energy CO2 emissions vs. GDP (1970 2010. Data from IEA (2012) and JRC/PBL (2012). Regions are defined in Annex II.2.     22 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Overall, the growth in production and consumption outpaced the reduction in CO2 emissions  intensity of production and that embodied in consumption. Together with the growth in population,  global CO2 emissions from fossil energy maintained a stable upward trend, which characterizes the  overall increase in global GHG emissions over the last two decades.  5.3.2    Population and demographic structure  5.3.2.1    Population trends  In the second half of the 19th century, global population increased at an average annual rate of  0.55%, but it accelerated after 1900. Population size and age composition are driven by fertility and  mortality rates, which in turn depend on a range of factors, including income, education, social  norms, and health provisions that keep changing over time, partly in response to government  policies. Section 4.3.1 discusses these processes in depth. Figure 5.10 presents the main outcomes.  Between 1970 and 2010, global population has increased by 87%, from 3.7 billion to 6.9 billion  (Wang et al., 2012a). The underlying process is the demographic transition in which societies move  from a relatively stable population level at high fertility and mortality rates, through a period of  declined mortality rates and fast population growth, and only at a later stage followed by a decline  in fertility rates with a more stable population size.  Figure 5.10. Trends in regional and global population growth 1850-2010. Global data up to 1950 (grey from (UN, 1999). Regional data from 1950 onwards from UN WPP (2012). Regions are defined in Annex II.2. Each person added to the global population increases GHG emissions, but the additional  contribution varies widely depending on the socio economic and geographic conditions of the  additional person. There is a 91 fold difference in per capita CO2 emissions from fossil fuels between  the highest and lowest emitters across the nine global regions analyzed by Raupach et al. (2007).  Global CO2 emissions from fossil fuel combustion have been growing at about the growth rate of  global population in most of the 1970 2010 period, but emissions growth accelerated toward the  end of the period (Figure 5.7).   Aggregating population and GHG emissions data according to the five IPCC Representative  Concentration Pathways (RC5) regions (see Annex II.2), Figure 5.11 shows that between 1971 and  2010 population growth was fastest in the MAF; GHG emissions have increased most in ASIA while  changes in population and emissions were modest in OECD 1990 and EIT. The evolution of total  population and per capita GHG emissions in the same period is shown in Figure 5.11. With some    23 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  fluctuations, per capita emissions have declined slightly from rather high levels in the OECD 1990  countries and the EIT, decreased somewhat from relatively lower levels in LAM and especially in the  MAF, while more than doubled in ASIA. These trends raise concerns about the future: per capita  emissions decline slowly in high emission regions (OECD 1990 and EIT) while fast increasing per  capita emissions are combined with relatively fast population and per capita income growth in ASIA  (JRC/PBL, 2012).    Figure 5.11. Regional trends in population and GHG emissions (left panel) and for each region the four most populous countries in 2010 (right panel). Regions are defined in Annex II.2. Grey diagonals connect points with constant emission intensity. Major GHG-emitting regions or countries are in the upper half. A shift to the right presents population growth. A steep line presents a growth in per capita emissions, while a flat line presents decreasing per capita emissions between 1971 and 2010. Right panel: The small labels refer to 1970, the large labels to 2010. Data from JRC/PBL (2012) and IEA (2012). (Note the log-log plot.) There is a substantial number of empirical econometric studies that assess the role of various  demographic attributes; an early example is (Dietz and Rosa, 1997). Those reviewed by O Neill et al.  (2012) confirm earlier observations that GHG emissions increase with the population size, although  the elasticity values (percent increase in emissions per 1% increase in population size) vary widely:  from 0.32 (Martínez Zarzoso and Maruotti, 2011) to 2.78 (Martínez Zarzoso et al., 2007)) (for the  eight new European Union countries of Central Europe). Differences in statistical estimation  techniques and data sets (countries included, time horizon covered, the number and kind of  variables included in the regression model and their possible linkages to excluded variables) explain  this wide range. Most recent studies find more than proportional increase of emissions triggered by  the increase in population. Yet the literature presents contradicting results concerning whether  population growth in rich or poor countries contributes more to increasing GHG emissions:  Poumanyvong and Kaneko (2010) estimate elasticities ranging from 1.12 (high income) to 1.23  (middle income) to 1.75 (low income) countries while Jorgenson and Clark (2010) find a value of  1.65 for developed and 1.27 for developing groups of countries.   5.3.2.2    Trends in demographic structure Urbanization  Income, lifestyles, energy use (amount and mix), and the resulting GHG emissions differ considerably  between rural and urban populations. The global rate of urbanization has increased from 13% (1900)  to 36% (1970) to 52% (2011), but the linkages between urbanization and GHG emissions trends are  complex and involve many factors including the level of development, rate of economic growth,  availability of energy resources and technologies, and urban form and infrastructure.    24 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Comparable direct measures of the effect of urbanization on emissions remain difficult due to  challenges of defining consistent system boundaries, including administrative or territorial,  functional or economic, and morphological or land use boundaries. Moreover, because urban areas  are typically much smaller than the infrastructure (e.g., transport, energy) in which they are  embedded, strict territorial emissions accounting such as that used for nations, omits important  emissions sources such as from energy production (Chavez and Ramaswami, 2013). An alternative is  to measure the effect of urbanization indirectly, through statistical analysis of national emission data  and its relation to national urbanization trends. An analysis of the effects of urbanization on energy  use and CO2 emissions over the period 1975 2005 for 99 countries, divided into three groups based  on GDP per capita, and explicitly considering the shares of industry and services and the energy  intensity in the CO2 emissions, concludes that the effects depend on the stage of development. The  impact of urbanization on energy use is negative (elasticity of  0.132) in the low income group, while  positive (0.507) in the medium income group, and strongly positive (0.907) in the high income group.  Emissions (for given energy use) are positively affected in all three income groups (between 0.358  and 0.512) (Poumanyvong and Kaneko, 2010). Consistent with this conclusion, a set of multivariate  decomposition studies reviewed by O Neill et al. (2014) estimate elasticity values between 0.02 and  0.76, indicating almost negligible to significant but still less than proportional increases in GHG  emissions as a result of urbanization. In China, between 1992 and 2007, urbanization and the related  lifestyle changes contributed to increasing energy related CO2 emissions (Minx et al., 2011).  Many studies observe that GHG emissions from urban regions vary significantly between cities, but  that measurements are also widely dispersed due to differences in accounting methods, the  coverage of GHGs and their sources, and the definition of urban areas (Dhakal, 2009). A comparison  of GHG emissions in 10 global cities by considering geophysical characteristics (climate, resources,  gateway status (port of entry and distribution centre for larger regions due to its geographic  location), and technical features (urban design, electricity generation, waste processing) finds  various outstanding determinants. For example, the level of household income is important because  it affects the threshold temperature for heating and cooling of the residential area. The use of high  versus low carbon sources for electricity production, such as nuclear power, is an important  determinant of urban GHG emissions in several global cities in the examined sample. Other  determinants include connectivity, accessibility of destination and origin, and ability to use  alternative transportation modes including mass transit, bicycling, or walking. GHG emissions  associated with aviation and marine fuels reflect the gateway status of cities that, in turn, is linked to  the overall urban economic activity (Kennedy et al., 2009).  An extended analysis of the urbanization emissions linkage in 88 countries between 1975 and 2003  finds a diverse picture. In 44 countries, urbanization is found to be not a statistically significant  contributor to emissions. In the other 44 countries, all other things equal, in the early phase of  urbanization (at low urbanization levels) emissions increased, while further urbanization at high urbanization levels was associated with decreasing emissions (Martínez Zarzoso and Maruotti, 2011).  This also confirms that in fast growing and urbanizing developing countries, urban households tend  to be far ahead of rural households in the use of modern energy forms and use much larger shares  of commercial energy. Urbanization thereby involves radical increases in household electricity  demand and in CO2 emissions as long as electricity supply comes from fossil fuelled, especially coal  based power plants. Transition from coal to low carbon electricity could mitigate the fast increasing  CO2 emissions associated with the combination of fast urbanization and the related energy transition  in these countries.   The literature is divided about the contribution of urbanization to GHG emissions. Most top down  studies find increasing emissions as urbanization advances, while some studies identify an inverted  U shaped relationship between the two. Bottom up studies often identify economic structure, trade  typology, and urban form as central determinants that are more important than the fraction of    25 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  people in urban areas (see Chapter 12). These findings are important to consider when extrapolating  past emission trends, based on past urbanization, to the future, together with other related aspects.  Age structure and household size  Studies of the effect of age structure (especially ageing) on GHG emissions fall into two main  categories with seemingly contradicting results: overall macroeconomic studies, and household level  consumption and energy use patterns of different age groups. A national scale energy economic  growth model calculates for the United States that ageing tends to reduce long term CO2 emissions  significantly relative to a baseline path with equal population levels (Dalton et al., 2008). Lower  labour force participation and labour productivity would slow economic growth in an ageing society,  leading to lower energy consumption and GHG emissions (O Neill et al., 2010). In contrast, studies  taking a closer look at the lifestyles and energy consumption of different age groups find that older  generations tend to use more energy and emit above average GHGs per person. A study of the  impacts of population, incomes, and technology on CO2 emissions in the period 1975 2000 in over  200 countries and territories finds that the share of the population in the 15 64 age group has a  different impact on emissions between different income groups: the impact is negative for high income countries and positive for lower income levels (Fan et al., 2006). This is consistent with the  finding that (in the United States) energy intensity associated with the lifestyles of the 20 34 and the  above 65 retirement age cohorts tends to be higher than that of the 35 64 age group, largely  explained by the fact that this middle age cohort tends to live in larger households characterized by  lower energy intensity on a per person basis and that residential energy consumption and electricity  consumption of the 65+ age group tends to be higher (Liddle and Lung, 2010). Similar results emerge  for 14  foundational  European Union countries between 1960 and 2000: an increasing share of the  65+ age group in the total population leads to increasing energy consumption although the  aggregated data disguise micro level processes: ageing may well influence the structure of  production, consumption, transport, social services, and their location (York, 2007). Several studies  assessed above indicate that part of the increasing emissions with age is due to the differences in  household size. A five country multivariate analysis of household energy requirement confirms this  (Lenzen et al., 2006). Immigration is not explicitly considered in these studies, probably because it  does not make much difference.  It remains an open question by how much the household level effects of increasing CO2 emissions as  a result of ageing population will counterbalance the declining emissions as a result of slower  economic growth caused by lower labour force participation and productivity. The balance is varied  and depends on many circumstances. The most important is changes in labour participation:  increasing retirement age in response to higher life expectancy will keep former retirement age  cohorts (60+) economically active, which means that the implications of ageing for incomes,  lifestyles, energy use, and emissions are  postponed  and the ratio of active/retired population  changes less. Other important aspects include the macroeconomic structure, key export and import  commodity groups, the direction and magnitude of financial transfers on the macro side, and on the  health status, financial profile, and lifestyle choices and possibilities of the elderly at the household  level. This makes it difficult to draw firm conclusions about the ageing emissions linkages.  Despite the widely varying magnitudes and patterns of household energy use due to differences in  geographical and technological characteristics, lifestyles, and population density, most studies tend  to indicate that past trends of increasing age, smaller household size, and increasing urbanization  were positive drivers for increasing energy use, and associated GHG emissions.  5.3.3    Economic growth and development  5.3.3.1    Production trends  This section reviews the role of income per capita as a driver of emissions while reserving judgement  on the appropriateness of GDP per capita as an indicator of development or welfare (see    26 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  (Kubiszewski et al., 2013)). Global trends in per capita GDP and GHG emissions vary dramatically by  region as shown in Figure 5.12. Economic growth was strongest in ASIA averaging 5.0% per annum  over the 1970 2010 period. Economic growth averaged 1.9% p.a. in the OECD 1990, but was below  the global average of 1.8% in the remaining regions. The MAF and the reforming economies saw  setbacks in growth related to the changing price of oil and the collapse of the centrally planned  economies, respectively. However, all regions showed a decline in emissions intensity over time.  Emissions per capita grew in ASIA and were fairly constant in LAM, OECD 1990, and EIT, as well as  globally, and declined in MAF. The levels of the GDP and emissions per capita also vary tremendously  globally as shown in Figure 5.12.    Figure 5.12. Regional trends in per capita production and GHG emissions (left panel), and for each region the four most populous countries in 2010 (right panel). Regions are defined in Annex II.2. Grey diagonals connect points with constant emission intensity (emissions/GDP). A shift to the right presents income growth. A flat or downwards line presents a decrease in energy intensity, 1971 and 2010. Right panel: The small labels refer to 1970, the large labels to 2010. The figure shows a clear shift to the right for some countries: increasing income at similar per capita emission levels. The figures also show the high income growth for Asia associated with substantial emissions increase. Data from JRC/PBL (2012) and IEA (2012). Per capita emissions are positively correlated with per capita income. But per capita emissions have  declined in all regions but ASIA over time, so that there has been convergence in the level of per  capita emissions over time. Despite this convergence, there is still a wide variation in per capita  emissions levels among countries at a common level of income per capita due to structural and  institutional differences (Pellegrini and Gerlagh, 2006; Matisoff, 2008; Stern, 2012).  The nature of the relationship between growth and the environment and identification of the causes  of economic growth are both uncertain and controversial (Stern, 2011). The sources of growth are  important because the degree to which economic growth is driven by technological change versus  accumulation of capital and increased use of resources will strongly affect its impact on emissions. In  particular, growth in developing countries might be expected to be more emissions intensive than  growth through innovation in technologically leading developed economies (Jakob et al., 2012).  However, despite this, energy use per capita is strongly linearly correlated with income per capita  across countries (Krausmann et al., 2008; see also Figure 5.12). The short run effects of growth are  slightly different; it seems that energy intensity rises or declines more slowly in the early stages of  business cycles, such as in the recovery from the global financial crisis in 2009 2010, and then  declines more rapidly in the later stages of business cycles (Jotzo et al., 2012).  Mainstream economic theory (Aghion and Howitt, 2009), and empirical evidence (e.g.,(Caselli,  2005)) point to technological change and increases in human capital per worker as the key    27 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  underlying drivers of per capita economic output growth in the long run. Technological change  encompasses both quality improvements in products and efficiency improvements in production.  Human capital is increased through improving workers  skills through education and training. While  mainstream growth and development economics does not allocate much role for increasing energy  and resource use as drivers of economic growth (Toman and Jemelkova, 2003), many researchers in  energy and ecological economics do (Stern, 2011).  Productivity is lower in developing countries than developed countries (Caselli, 2005; Parente and  Prescott, 2000)(Parente and Prescott, 2000). Developing countries can potentially grow faster than  developed countries by adopting technologies developed elsewhere and  catch up  to the  productivity leaders (Parente and Prescott, 2000). Income per capita has risen in most countries of  the world in the last several decades but there is much variation over time and regions, especially  among low  and middle income countries (Durlauf et al., 2005). The highest growth rates are found  for countries that are today at middle income levels such as China and India (and before them  Singapore, South Korea, etc.), which are in the process of converging to high income levels. But  many developing countries have not participated in convergence to the developed world and some  have experienced negative growth in income per capita. Therefore, there is both convergence  among some countries and divergence among others and a bi modal distribution of income globally  (Durlauf et al., 2005). A large literature attempts to identify why some countries succeed in achieving  economic growth and development and others not (Durlauf et al., 2005; Caselli, 2005; Eberhardt and  Teal, 2011). But there seems to be little consensus as yet (Eberhardt and Teal, 2011). A very large  number of variables could have an effect on growth performance and disentangling their effects is  statistically challenging because many of these variables are at least partially endogenous (Eberhardt  and Teal, 2011). This incomplete understanding of the drivers of economic growth makes the  development of future scenarios on income levels a difficult task.   Ecological economists such as Ayres and Warr (2009) often ascribe to energy the central role in  economic growth (Stern, 2011). Some economic historians, such as Wrigley (2010), Allen (2009), and  to some degree Pomeranz (2000), argue that limited availability of energy resources can constrain  economic growth and that the relaxation of the constraints imposed by dependence of pre industrial  economies on biomass energy and muscle power sources alone, with the adoption of fossil energy  was critical for the emergence of the Industrial Revolution in the 18th and 19th centuries. Stern and  Kander (2012) develop a simple growth model including an energy input and econometrically  estimate it using 150 years of Swedish data. They find that since the beginning of the 19th century  constraints imposed on economic growth by energy availability have declined as energy became  more abundant, technological change improved energy efficiency, and the quality of fuels improved.  A large literature has attempted using time series analysis to test whether energy use causes  economic growth or vice versa, but results are significantly varied and no firm conclusions can be  drawn yet (Stern, 2011).   The effect of economic growth on emissions is another area of uncertainty and controversy. The  environmental Kuznets curve hypothesis proposes that environmental impacts tend to first increase  and then eventually decrease in the course of economic development (Grossman and Krueger, 1994).  This theory has been very popular among economists but the econometric evidence has not been  found to be very robust (Wagner, 2008; Gallagher, 2009; Vollebergh et al., 2009; Stern, 2010) and in  any case, even early studies found that carbon emissions continue to rise with increasing income  (e.g.,Shafik (Shafik, 1994)). More recent research (Brock and Taylor, 2010) has attempted to  disentangle the effects of economic growth and technological change. Rapid catch up growth in  middle income countries tends to overwhelm the effects of emissions reducing technological change  resulting in strongly rising emissions. But in developed countries economic growth is slower and  hence the effects of technological change are more apparent and emissions grow slower or decline.  This narrative is illustrated by Figure 5.13. Almost all countries had declining emissions intensity over  time but in more rapidly growing economies, this was insufficient to overcome the effect of the    28 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  expansion of the economy. As a result, though there is much variation in the rate of decline of  emissions intensity across countries, there is, in general, a strong positive correlation between the  growth of the two variables. The rapidly growing countries tend to be middle  and lower income  countries and hence there is a tendency for per capita emissions to grow in poorer countries and  decline in wealthier ones (Brock and Taylor, 2010).    Figure 5.13. Growth rates of per capita income and emissions. The figure shows the correlation between the average annual growth rate of per capita income and per capita emissions from 1970 2010, for all countries with more than 1 million people by 2010. Points along the grey lines have either constant emissions intensity or emissions intensity declining at 2%, 4% or 6% per annum. The size of the circles is proportional to countries emissions. The figure shows that fast growing economies also tend to have increasing emissions, while slower growing economies tend to have declining per capita emissions. This is despite quite rapidly declining emissions intensity in some fast growing economies (upper right corner). Regions are defined in Annex II.2. Data from JRC/PBL (2012) and IEA (2012). In conclusion, while economic growth increases the scale of the economy in the Kaya decomposition  and, therefore, should increase emissions, the technological change that is the main underlying  driver of growth tends to reduce emissions. This has resulted in a tendency for slower growing or  declining emissions per capita in wealthier, slower growing, economies, and global convergence in  emissions per capita.  5.3.3.2    Consumption trends  Production and consumption are closely connected, but when we study their effect on GHG  emissions, we find subtle but important differences. Box 5.2 presents two methods: one for  allocating GHG emissions to production (territories), and the other to consumption. Between 1990  and 2010, emissions from Annex B countries decreased by 8% when taking a territorial perspective  (production) to carbon accounting, while over the same period, emissions related to consumption in  Annex B increased by 5% (Wiedmann et al., 2010; Peters et al., 2011, 2012; Caldeira and Davis, 2011;  Andrew et al, 2013). In a similar vein, as Figure 5.14 shows, while territorial emissions from non OECD Asian countries together surpassed those of the OECD 1990 countries in 2009, for  consumption based emissions, the OECD countries as a group contributed more than all non OECD  Asian countries together for every year between 1990 and 2010. The difference between the two  methods also shows up in the trends for the per capita emissions. The OECD 1990 territorial per  capita emissions declined over 1990 2010, while consumption based emissions increased. By 2010,  per capita territorial emissions for OCED countries are three times those for non OECD Asian    29 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  countries, but per capita consumption related emissions differ by a factor of five. The overall picture  shows a substantial gap between territorial and consumption based emissions, due to emissions  embedded in trade. For the OECD 1990 countries, the gap amounts to 2.6 GtCO2 in 2010. The data  shows that the reduction in territorial emissions that has been achieved in the OECD 1990 countries  has been more than negated by an increase in emissions in other countries, but related with  consumption in OECD 1990 countries. Furthermore, while countries with a Kyoto Protocol  commitment did reduce emissions over the accounting period by 7%, their share of imported over  domestic emissions increased by 14% (Peters et al., 2011a; Aichele and Felbermayr, 2012).    Figure 5.14. Territory-based versus consumption-based emissions in five world regions, from 1990 to 2010. The left panel presents total emissions, while the right panel presents per capita emissions. The blue areas indicate that a region is a net importer of embodied CO2 emissions. The yellow area indicates a region is a net exporter of embodied CO2. Data from Lenzen et al. (2010). Regions are defined in Annex II.2. Numerous studies have used a structural decomposition analysis to quantify the factors for changes  in GHG emissions over time in both developed and developing countries (De Haan, 2001; Peters et  al., 2007; Baiocchi and Minx, 2010; Wood, 2009; Weber, 2009). The analysis has been used to  separate factors such as the intensity per output, shifts in production structure, as well as changes in  the composition and the level of consumption. In all of these studies, increasing levels of  consumption is the main contributor to increasing emissions. Specifically, all the studies show that  reductions in emissions resulting from improvements in emissions intensity and changes in the  structure of production and consumption have been offset by significant increases in emissions,  resulting from the volume of consumption, resulting in an overall increase in emissions (De Haan,  2001; Peters et al., 2007; Baiocchi and Minx, 2010). For example, De Haan (2001) demonstrates for  the Netherlands that final demand increased by 31% over 11 years (1987 1998), Peters et al. (2007)  demonstrate an increase of consumption by 129% over 10 years for China, and Baiocchi and Minx  (2010) show for the United Kingdom that final demand increased by 49% between 1992 and 2004. In  all these cases, the increase in final demand was greater than the emission reduction caused by    30 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  structural change and efficiency improvements, leading to an overall increase in consumption related emissions.    Box 5.2. Definitions of territorial and consumption-based emissions The United Nations Framework Convention on Climate Change (UNFCCC) requires countries to  submit, following the IPCC guidelines, annual National GHG Emissions Inventories to assess the  progress made by individual countries on GHG emissions and removals taking place within national  (including administered) territories and offshore areas over which the country has jurisdiction  (IPCC,  1997; House of Commons, 2012). These inventories are called  territorial based emission  inventories .  Consumption based emissions allocate emissions to the consumers in each country, usually based on  final consumption as in the System of National Accounting but also as trade adjusted emissions  (Peters and Hertwich, 2008; DEFRA, 2012). Conceptually, consumption based inventories can be  thought of as consumption equals production minus emissions from the production of exports (see  reviews by (Wiedmann et al., 2007; Wiedmann, 2009; Barrett et al., 2013). The methodology  employed is predominately  Multi Regional Input Output Analysis  (MRIO).   Note on Uncertainty There is increased uncertainty in consumption based emission estimates. MRIO  datasets combine data from different data sets, often large and incoherent. As a result, uncertainties  arise in relation to calibration, balancing, and harmonisation; use of different time periods; different  currencies; different country classifications; levels of disaggregation, inflation, and raw data errors  (Lenzen et al., 2004, 2010; Peters, 2007; Weber and Matthews, 2008; Peters et al., 2012).  Production based emissions data are a key input to the MRIO models that can vary for some  countries significantly between databases (Peters et al., 2012). A process of harmonization can  greatly reduce the necessary manipulations, and hence, uncertainties reflected in inconsistent  reporting practices in different countries and regions (Peters and Solli, 2010; House of Commons,  2012; Barrett et al., 2013). For a detailed description in the variation of MRIO models, please read  Peters et al.(2012). Peters et al (2012) concludes that estimates from different studies are robust  and that the variation between estimates relates to different input data and approaches to assign  emissions to trade and not uncertainty.  Calculating emissions based on a consumption based approach sketches a more negative view on  the decoupling of economic growth from greenhouse gas emissions. According to York (2007),  territorial emissions showed a relative decoupling; emissions grew by 0.73% for every 1% increase in  GDP per capita from 1960 2008. However, the elasticity of consumption based emissions with  respect to economic growth will have to be revised upwards for OECD 1990 countries, given that  their consumption emissions grew at a faster rate than territorial ones (Peters et al., 2011a). In this  sense, there is less decoupling in industrialized nations.  5.3.3.3    Structural change  Changes in the structure of the economy shares of each economic or industry sector in the output  of the economy might also affect emissions. Over the course of economic development, as income  grows, the share of agriculture in the value of production and employment tends to decline and the  share of services increases (Syrquin and Chenery, 1989). The share of manufacturing tends to follow  an inverted U shaped path (Hettige et al., 2000). The income levels at which these transitions occur  differ across countries. For example, China s share of services in GDP and employment is small and  its agriculture share large, given its income level (World Bank, 2011), while India has a relatively  large service sector (Deb Pal et al., 2012). Between 1970 and 2010 the global share of agriculture in  GDP has declined from 9% to 3% while the share of services increased from 53% to 71%. Industry  declined from 38% to 26% of GDP (World Bank, 2011). Schäfer (Schäfer, 2005) shows that there are  similar changes in the sectoral composition of energy use. The share of total energy use used in    31 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  services increases in the course of economic development while that of industry follows an inverted  U shaped curve. The share of residential energy use declines with rising per capita income.  The shift from the industrial sector to services reduces energy use and emissions less than  commonly thought. Partly, this is due to strong gains in productivity in manufacturing. The  productivity gain can be observed through the price of manufactured goods, which has historically  fallen relative to the price of services. Because of the price decline, it appears that the share of  manufacturing industry in the economy is falling when, in real output terms, it is constant or  increasing (Kander, 2005). Part of the productivity gain in manufacturing is due to improvements in  energy efficiency, which reduce energy intensity in the sector (Kander, 2005). Also, not all service  sectors are low in energy intensity. Transport is clearly energy intensive and retail and other service  sectors depend on energy intensive infrastructure.   In Austria and the United Kingdom, the transition of the industrial society into a service economy or  post industrial society did not lead to dematerialization (Krausmann et al., 2008), but instead it was  systematically linked to an increase in per capita energy and material consumption as all parts of the  economy shifted from traditional to modern methods of production. Further evidence (Henriques  and Kander, 2010) for 10 developed countries (United States, Japan, and eight European countries),  and three emerging economies (India, Brazil, and Mexico), indicates a minor role for structural  change in reducing energy intensity, while the decline in energy intensity within industries is found  to be the main driver of aggregate energy intensity. Yet the decomposition is sensitive to the level of  disaggregation. A classic result in the growth accounting literature (Jorgenson and Griliches, 1967) is  that a finer disaggregation of inputs and outputs leads to lower estimates for technological change  and a larger role for substitution between inputs and structural change. This is confirmed by Wing  (2008), who found that structural change between industries explained most of the decline in energy  intensity in the United States (1958 2000), especially before 1980 (Stern, 2010). An alternative  perspective is provided by the literature on consumption based emissions (see Section 5.3.3.2).  Baiocchi and Minx (Baiocchi and Minx, 2010) show that the shift to a service economy in the United  Kingdom was partly achieved by off shoring emissions intensive industrial activities and thus  reducing industrial activity, and that the service sector uses imported emissions intensive goods.  Both of these offset the reduction in emissions from shifting toward the service sector in the United  Kingdom. Likewise, Suh (Suh, 2006) and Nansai et al. (2009b)show that if the entire supply chain is  considered, the emissions intensity of services is much higher than if only the final production of  services is considered.  The reform of centrally planned economies has been an important factor driving changes in GHG  emissions. Emissions and energy intensity were high in China, the former Soviet Union, and many  Eastern European countries prior to reform, and declined as their economies were reformed. China  serves as a case in point. Its energy intensity was very high compared to similar but market oriented  countries before 1980, but China s energy intensity decreased sharply between 1980 and 2000, as it  opened its economy through market based reforms (Ma and Stern, 2008). Energy and emissions  intensity rose and then fell again from 2000 to the present as at first easy options for energy  efficiency improvements were exhausted and later new policies to improve energy and carbon  intensity were put in place. On the other hand, China s carbon intensity of energy supply has  increased steadily since at least 1970 (Stern and Jotzo, 2010). Sectoral shifts played only a small role  in these large movements of the past three decades (Ma and Stern, 2008; Steckel et al.,  2011),though they were important in the rise in emissions intensity from 2000 to 2005 (Minx et al.,  2011).  In conclusion, the role of an increase in share of the service sector in output in reducing emissions is  probably quite small, but finer grained structural change could be important and economy wide  reforms contribute much to the adoption of more energy  and emissions efficient production  processes.    32 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.3.4    Energy demand and supply  5.3.4.1    Energy demand Globally, per capita primary energy use, as estimated by the International Energy Agency (IEA)  method (see Annex II.9), rose by 31% from 1971 2010; however the five world regions exhibited  two different pathways during this period, as seen in Figure 5.15 (left). In the OECD and EIT, energy  use per capita rose by 13 14%, while the other regions increased their per capita energy use at a  much higher rate: LAM by 60%, MAF by 90%, and ASIA by 200%. Nevertheless, the 2010 per capita  energy use in these three regions still remains at less than half of the OECD and EIT countries 40  years ago.  The two pathways in per capita energy use are also reflected when looking at energy intensity over  time (Figure 5.15 (right)). The measurement of energy intensity, i.e., ratio of energy use per unit of  GDP and its limitations, are discussed in the following section. The differences in pathways between  the OECD and EIT versus ASIA, LAM, and MAF illustrate the energy intensity gap between the  industrialized and developing countries. In Figure 5.16, we show a similar chart for individual  countries. Combining the left and right panels, we see that improvements in energy intensity have  slowed the growth in energy use substantially, but have been insufficient to offset the growth in the  scale of the economy (Stern, 2012).    Figure 5.15. Historical trend (1971 2010) by region in per capita primary energy (left panel), and primary energy intensity of GDP (right panel), against GDP per capita on the horizontal axis. Note that both axes are logarithmic. Source: (IEA, 2012; UN WPP, 2012; World Bank, 2012). Regions are defined in Annex II.2. The effects of the oil price shocks in 1973 and 1979 and perhaps 2008 (Hamilton, 2009) are  particularly visible as dips in the OECD trend. These price shocks do not appear, however, to have  reversed the upward trend in per capita primary energy use in the regions. In the long run, per  capita energy consumption has increased with income and over time since the onset of the  Industrial Revolution in Northern Europe (Gales et al., 2007) and the United States (Grubler, 2008;  Tol et al., 2009)and since the Second World War in southern Europe (Gales et al., 2007).   Changes in total energy use can be decomposed to reflect the effects of growth in population and  income per capita and changes in energy intensity, all of which are discussed in detail in other  sections of this chapter as well as in Chapter 7.   The relationship between economic growth and energy use is complicated and variable over time.  The provision of energy services is one of the necessary conditions for economic growth, yet in turn,    33 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  economic growth increases the demand for energy services (Grübler et al., 2012). As income  increases, so does energy use. This phenomenon, coupled with population growth, has resulted in  global total primary energy use increasing by 130% between 1971 and 2010, and almost 50 times  since 1800 (Nakicenovic et al., 1998; Grubler, 2008).   5.3.4.2    Energy efficiency and Intensity Energy efficiency can be defined as the ratio of the desired (usable) energy output for a specific task  or service to the energy input for the given energy conversion process (Nakicenovic et al., 1996). For  example, for an automobile engine, this is the mechanical energy at the crankshaft or the wheels  divided by the energy input of gasoline. This definition of energy efficiency is called the first law  efficiency. Other approaches often define energy efficiency in relative terms, such as the ratio of  minimum energy required by the current best practice technology to actual energy use, everything  else being constant (Stern, 2012).   In 2005, the global first law efficiency of converting primary energy sources (such as coal or natural  gas) to final energy forms (such as electricity or heat) was about 67% (i.e., 330 EJ over 496 EJ). The  efficiency of further converting final energy forms into useful energy is lower, with an estimated  global average of 51% (i.e., 169 EJ over 330 EJ). Thus, approximately one third of global primary  energy use is dissipated to the environment in the form of waste heat or what is colloquially termed  energy  losses  (Grübler et al., 2012).  The theoretical potential for efficiency improvements is thus very large (Grübler et al., 2012).  However, efficiency improvements can lead to additional demand, a side effect called the rebound  effect, discussed later in Section 5.6.2, which needs to be taken into account (Pao and Tsai, 2010).   Economic studies, including those based on the Kaya identity (Nakicenovic and Swart, 2000), often  use energy intensity the ratio of energy use per dollar of GDP as an indicator of how effectively  energy is used to produce goods and services, also known as its inverse: the energy productivity.  However, energy intensity depends on many factors other than technical efficiencies, as discussed in  the remainder of this section, and is not an appropriate proxy of actual energy (conversion)  efficiency (Ang, 2006; Filippini and Hunt, 2011; Stern, 2012; Grübler et al., 2012).  Energy intensity metrics yield valuable insights into potentials for efficiency improvements related to  various activities (Fisher and Nakicenovic, 2008; Grübler et al., 2012). Energy intensity measured at  the economy wide level is an attractive indicator because of its simplicity and ease of comparability  across systems and time (e.g., national economies, regions, cities, etc.). However, the indicator is  affected by a number of issues, including in relation to the way definitions are made and  measurements are performed (Ang, 2006)(Ang, 2006; Filippini and Hunt, 2011). Many factors  besides technical efficiency drive energy intensity differences.   Energy intensities are strongly affected by energy and economic accounting conventions, which are  not always disclosed prominently in the reporting reference. For energy, the largest influences on  the metrics are whether primary or final energy are used in the calculations, and whether or not  non commercial energy6 is included Grübler et al.(Grübler et al., 2012)see Figure 5.16).  Figure 5.16 illustrates these differences in the evolution of historical primary energy intensity for  four major world economies: China, India, Japan, and the United States. It shows the different ways  energy intensity of GDP can be measured.   To see how the inclusion of non commercial energy affects energy intensity, we take the United  States as an example, as its PPP and MER GDP are the same by definition. The thin green curve  shows United States commercial energy intensity. According to (Grübler et al., 2012), commercial                                                                Non commercial energy is energy that is not commercially traded such as the traditional biomass or  agricultural residues, which are of particular importance in developing countries.  6   34 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  energy intensities increase during the early phases of industrialization, as traditional, less efficient  energy forms are replaced by commercial energy. Once this substitution is completed, commercial  energy intensity peaks and starts to decline. This phenomenon is sometimes called the  hill of energy  intensity (Grübler et al., 2012). These peaks are observed to be lower for countries reaching this  transition stage now, promising lower energy intensity in developing countries that still have to  reach the peak (Gales et al., 2007; Lescaroux, 2011; Reddy and Goldemberg, 1990; Nakicenovic et al.,  1998). More important than this  hill  in commercial energy intensities is, however, a pervasive trend  toward overall lower total energy (including also non commercial energy) intensities over time and  across all countries (Grübler et al., 2012). It is interesting to note that despite the relatively wide  upper and lower bounds of starting energy intensity between the investigated countries, they all  exhibit very similar rates of energy improvements independent of whether they are on a more or  less energy intensive development trajectory.    Figure 5.16. Energy intensity improvements and per capita GDP USA (1800 2008), Japan (1885 2008), India (1950 2008), and China (1970 2008). Source: (Grübler et al., 2012). Note: Energy intensities (in MJ per USD) are always shown for total primary energy (bold lines), and commercial primary energy only (thin lines), and per unit of GDP expressed at market exchange rates (MER in USD2005), and for China, India, and Japan also at purchasing power parities (PPP in Int$2005). For the United States, MER and PPP are identical. For GDP, the most important accounting factor are the exchange rates used for converting income  measured in local national currencies to internationally comparable currency units based on either  MER or PPP exchange rates (both illustrated in Figure 5.16) (Grübler et al., 2012). In the cases of  India and China, MER energy intensities are very high, similar to the energy intensities of the  industrialized countries more than 100 years ago. This gives the appearance of very high energy  intensity of GDP in developing countries. However, China and India s PPP measured GDPs are much    35 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  higher, meaning that with the same dollar amount, a Chinese or Indian consumer can purchase more  goods and services in developing countries than in industrialized countries. The PPP measured  energy intensities are thus much lower for developing countries, indicating substantially higher  energy effectiveness in these countries than would be calculated using MER (Grübler et al., 2012). A  further limitation of GDP accounting, especially for developing countries, is the exclusion of  grey  economies  in official statistics, which would increase GDP.  Countries with long term statistical records show improvements in total energy intensities by a  factor of five or more since 1800, corresponding to an global annual average decline of total energy  intensities of about 0.75 1% (Gilli et al., 1990; Fouquet, 2008). Improvement rates can be much  faster over periods of a few decades, as illustrated in the case of China, which exhibited a steep  decline (2 3%/year for PPP  and MER based energy intensities, respectively) between 1979 and  2000 before the trend flattened (Stern and Jotzo, 2010). Faster economic growth leads to a faster  turnover of the capital stock of an economy, thus offering more opportunities to switch to more  energy efficient technologies. The reverse also applies for the economies in transition (Eastern  Europe and the former Soviet Union in the 1990s) or recession; that is, with declining GDP, energy  intensities increase.  Energy intensity has declined globally in all developed and major developing countries including  India and China (Steckel et al., 2011). When traditional (non commercial) biomass fuels are included  in the measure of energy input, energy intensity has declined over time in most investigated  countries (Gales et al., 2007). However, historical improvements in energy intensities have not been  sufficient to fully offset GDP growth, resulting in increased energy consumption over time (Bruckner  et al., 2010). The literature indicates some albeit inconsistent convergence in energy intensities  among developed economies, but not for both developed and developing countries (Le Pen and Sévi,  2010; Mulder and de Groot, 2012).  Changes in energy intensity over time can be decomposed into the effects of structural change (the  shift to more or less energy intensive industries), changes in the mix of energy sources, technological  change, and the quantities of other inputs such as capital and labour used (Stern, 2012; Wang, 2011).  Globally, structural changes play a smaller role in determining trends in energy use and CO2  emissions, though they can be important in individual countries (Cian et al., 2013). More generally  for countries and regions, energy intensity is also affected by the substitution of capital and other  inputs for energy (Stern, 2012). The causes for energy intensity trends are difficult to isolate. For  example, in the United States, most researchers find that technological change has been the  dominant factor in reducing energy intensity (Metcalf, 2008). Similar results have been found for  Sweden (Kander, 2005) and China (Ma and Stern, 2008; Steckel et al., 2011)(Steckel et al., 2011).  However, Wing (2008) finds that structural change explained most of the decline in energy intensity  in the United States (1958 2000), especially before 1980, and Kaufmann(2004) attributes the  greatest part of the decline to substitution towards higher quality energy sources, in particular  electricity that produces more output per Joule. Similarly, Liao et al. (2007), conclude that structural  change, instead of technological change, is the most dominant factor in reducing energy intensity in  China.  Some differences in energy intensity among countries are easily explained. Countries with cold  winters and formerly centrally planned economies tend to be more energy intensive economies,  though the latter have improved energy intensities significantly in recent decades through reform of  energy markets (Stern, 2012). The role of economic structure, resource endowments, and policies  explain much of the differences in energy intensities (Ramachandra et al., 2006; Matisoff, 2008; Wei  et al., 2009; Stern, 2012; Davidsdottir and Fisher, 2011). There is no clear one to one link between  overall energy intensity and energy efficiency in production (Filippini and Hunt, 2011), though there  is evidence for the role of energy prices. Higher energy prices are associated with lower levels of  energy consumption and are significantly determined by policy. Countries that have high electricity  prices tend to have lower demand for electricity, and vice versa (Platchkov and Pollitt, 2011), with a    36 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  price elasticity of demand for total energy use between  0.2 and  0.45 for the OECD countries  between 1978 and 2006 (Filippini and Hunt, 2011).  5.3.4.3    Carbon intensity, the energy mix, and resource availability Carbon intensity is calculated as the ratio of emissions of CO2 per unit of primary or final energy,  whereas decarbonization refers to the rate at which the carbon intensity of energy decreases.  Throughout the 20th century, the choice of fossil fuels for energy has progressed towards less  carbon intensive fuels and to conversion of energy to more usable forms (e.g., electricity) (Grübler et  al., 2012). Hydrogen rich fuels release, during combustion, more energy for every carbon atom that  is oxidized to CO2 (Grübler et al., 1999). The result is a shift from fuels such as coal with a high carbon content to energy carriers with a lower carbon content such as natural gas7, as well as the  introduction of near zero carbon energy sources, such as renewables, including sustainably managed  biomass (biogenic carbon is reabsorbed through new growth), and nuclear, and consequently  further decarbonization of energy systems (Grübler and Nakiæenoviæ, 1996; Grubler, 2008).  Decarbonization can also affect the emissions of other GHGs and radiatively active substances such  as aerosols. Figure 5.17(a) shows the historical dynamics of primary energy. It indicates that the  changes in primary energy are very slow, because it took more than half a century to replace coal as  the dominant source of energy. Figure 5.17. Left Panel: Structural change in world primary energy (in percent) illustrating the substitution of traditional biomass (mostly non-commercial) by coal and later by oil and gas. The emergence of hydro, nuclear and new renewables is also shown. Source: Nakicenovic et al. (1998) and Grubler (2008). Right panel: Decarbonization of primary energy (PE) use worldwide since 1850 (kg of CO2 emitted per GJ). The black line shows carbon intensities of all primary energy sources, orange line of commercial energy sources without biomass CO2 emissions, assuming they have all been taken up by the biosphere under a sustainable harvesting regime (biomass re-growth absorbing the CO2 released from biomass burning) and the green line shows global decarbonization without biomass and its CO2 emissions. Note: For comparison, the specific emission factors (OECD/IPCC default emission factors, lower-heating value (LHV) basis) for biomass (wood fuel), coal, crude oil, and natural gas are also shown (coloured squares). Source: updated from Grübler et al. (2012).    Figure 5.17 (right panel) illustrates the historical trend of global decarbonization of primary energy  since 1850 in terms of the average carbon emissions per unit of primary energy (considering all  primary energy sources, commercial energy sources with and without biomass). Historically,  traditional biomass emissions related to LUCs, i.e., from deforestation to land for food and energy  crops, have far exceeded carbon releases from energy related biomass burning, which indicates that  in the past, biomass, like fossil fuels, has also contributed significantly to increases in atmospheric  concentrations of CO2 (Grübler et al., 2012).                                                                For further detailed information on carbon emissions for various combustible fuels, see IPCC (IPCC, 1997) and  IPCC (IPCC, 2006).  7   37 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  The global rate of decarbonization has been on average about 0.3% annually, about six times too low  to offset the increase in global energy use of approximately 2% annually (Grübler et al., 2012). A  significant slowing of decarbonization trends since the energy crises of the 1970s is noteworthy,  particularly the rising carbon intensities as a result of increased use of coal starting in 2000 (IEA,  2009; Stern and Jotzo, 2010; Steckel et al., 2011). Recent increases in natural gas, in particular shale  gas use, will tend to partially offset the carbonization trends.  Some future scenarios foresee continuing decarbonization over the next several decades as natural  gas and non fossil energy sources increase their share in total primary energy use. Other scenarios  anticipate a reversal of decarbonization in the long term as more easily accessible sources of  conventional oil and gas are replaced by more carbon intensive alternatives such as coal and  unconventional oil and gas (Fisher et al., 2007). Nonetheless, almost all scenarios anticipate an  increase in future demand for energy services. The increase in energy demand means higher primary  energy requirements and, depending on the rates of future energy efficiency improvements, higher  emissions. Therefore, energy efficiency improvements alone will not be sufficient to significantly  reduce GHG emissions, and it is thus essential to accelerate the worldwide rate of decarbonization.  Current evidence indicates that further decarbonization will not be primarily driven by the  exhaustion of fossil fuels, but rather by economics, technological and scientific advances, socio political decisions, and other salient driving forces. Furthermore, new information and  communication technologies (ICTs) can help reduce the energy needs and associated emissions to  improve the efficiency measures as a result of better management of energy generation and end use, e.g., emergence of smart grids and better control of end use devices.   Fossil fuel reserves and resources make up the hydrocarbon endowments, which as a whole are not  known with a high degree of certainty. Reserves are the part of global fossil occurrences that are  known with high certainty and can be extracted using current technologies at prevailing prices. Thus,  the quantification and classification of reserves relies on the dynamic balance between geological  assurance, technological possibilities, and economic feasibility. There is little controversy that oil and  gas occurrences are abundant, whereas the reserves are more limited, with some 50 years of  production for oil and about 70 years for natural gas at the current rates of extraction (Rogner et al.,  2012). Reserve additions have shifted to inherently more challenging and potentially costlier  locations, with technological progress outbalancing potentially diminishing returns (Nakicenovic et  al., 1998; Rogner et al., 2012).  In general, estimates of the resources of unconventional gas, oil, and coal are huge (GEA, 2012;  Rogner et al., 2012) ranging for oil resources to be up to 20,000 EJ or almost 120 times larger than  the current global production; natural gas up to 120,000 EJ or 1300 times current production,  whereas coal resources might be as large as 400,000 EJ or 3500 times larger than the current  production. However, the global resources are unevenly distributed and are often concentrated in  some regions and not others (U.S. Energy Information Administration, 2010). These upper estimates  of global hydrocarbon endowments indicate that their ultimate depletion cannot be the assurance  for limiting the global CO2 emissions. For example, the carbon embedded in oil and gas reserves  exceeds the carbon of the atmosphere. The emissions budget for stabilizing climate change at  2 Cabove pre industrial levels is about the same as the current content of the atmosphere, meaning  that under this constraint only a small fraction of reserves can be exploited (Meinshausen et al.,  2009). Chapter 7 of this report discusses in detail the current and future availability of global energy  resources (see also Table 7.2).  5.3.5    Other key sectors This section briefly describes the GHG emission trends for the main economic sectors (energy,  transport, buildings, industry, AFOLU, and waste) and the correlation between emissions and income,  showing marked differences between sectors and countries. The following sections provide short  discussions of trends and drivers per sector, while the following chapters (7 11) provide the detailed    38 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  analyses. Note that in Chapter 5, we consider direct emissions for the buildings sector, whereas  Chapter 9 provides the more elaborate view including indirect emissions.  As is clear from Figure 5.18, high income countries contribute mostly to emissions associated with  transport (Chapter 8) and buildings (Chapter 9). Low and lower middle income countries contribute  the largest share of emissions associated with AFOLU (Chapter 11). Over 2000 2010, emissions by  upper middle income countries for energy (+3.5 GtCO2e/yr) and industry (+2.4 GtCO2e/yr) more than  doubled, and by 2010, emissions from industries in upper middle income countries have passed  those from high income countries. For transport, emissions start to increase at higher income levels.  The large increase in energy and industry emissions in upper middle income countries is consistent  with the observed income growth and correlation between emissions and income for these sectors  (Figure 5.19). There is a robust positive relation between income and emissions, particularly for  annual income levels between 1000 and 10,000 Int$2005/cap, while for transport, the correlation  between income and emissions continues up to higher income levels. We find no positive  correlation between income and emissions for AFOLU.  In 2010, the typical high income country (median of the high income group, population weighted)  had per capita emissions of 13 tCO2e/cap yr, while per capita emissions in the typical low income  country reached to about one tenth of that value, at 1.4 tCO2e/cap yr. But, there is a large variety  between countries that have similar income levels. The per capita emissions in high income  countries range from 8.2 to 21 tCO2eq/cap yr, for the (population weighted) 10 and 90 percentile,  respectively. Many low income countries (median income of 1,200 Int$2005/cap) have low per capita  emissions (median of 1.4 tCO2e/yr), but for the low income country group, average per capita  emissions (4.3 tCO2e/yr) are pulled up by a few countries with very high emissions associated with  land use.      39 of 94    Final Draft    Chapter 5  IPCC WGIII AR5    Figure 5.18. Regional and sector distribution of emission trends. Regions are defined in Annex II.2. The figure shows annual GHG emissions for the six key sectors discussed in sections 5.3.4 and 5.3.5. The left-lower panel presents global sector emissions to assess the relative contribution. Decadal growth rates are projected on the charts for emissions exceeding 0.2 GtCO2eq/yr. The direct emission data from JRC/PBL (2012) and IEA (2012) (see Annex II.9) represents land-based CO2 emissions from forest and peat fires and decay that approximate to CO2 flux from anthopogenic emission sources in the Forestry and Other Land Use (FOLU) sub-sector. For a more detailed representation of Agriculture and FOLU (AFOLU) GHG flux see Section 11.2 and figures 11.2 and 11.6.   40 of 94    Final Draft    Chapter 5  IPCC WGIII AR5    Figure 5.19. The relation between income and emissions for the six key sectors discussed in sections 5.3.4 and 5.3.5. The left-lower panel presents the relation for emissions aggregated over all sectors. Each circle is one country, for the year 2010. The area of a circle is proportional to the aggregate emissions for that country and sector, using the same scale consistently over all panels. The bubble size is bounded from below for visual ease. Note the logarithmic scales on both x and y axes. For most sectors apart from AFOLU, there is a clear positive relation between income and   41 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  emissions. Data from JRC/PBL (2012) and IEA (2012). The direct emission data from JRC/PBL (2012) (see Annex II.9) represents land-based CO2 emissions from forest and peat fires and decay that approximate to CO2 flux from anthopogenic emission sources in the Forestry and Other Land Use (FOLU) sub-sector. For a more detailed representation of Agriculture and FOLU (AFOLU) GHG flux see Section 11.2 and figures 11.2 and 11.6. Regions are defined in Annex II.2. 5.3.5.1    Transport The global transport GHG emissions8 grew from 2.8 GtCO2eq in 1970 to 7 GtCO2eq in 2010 (JRC/PBL,  2012). The OECD countries contributed the largest share of the emissions (i.e., 60% in 1970, 56% in  1990, and 46% in 2010) but the highest growth rate in transport emissions was in the upper middle income and international bunkers. The overall picture shows that transport emissions have steadily  increased but show a marked decrease around 2008/2009.   Increasing demand for passenger and freight transport, urban development and sprawl, lack of rail  and bus transit and cycle infrastructure in many regions, transport behaviour constrained by lack of  modal choice in some regions, high fuel consuming stock fleet of vehicles, relatively low oil prices,  and the limited availability of low carbon fuels have been the principle drivers of transport sector  CO2 emission growth over the past few decades (Jolley, 2004; Davies et al., 2007; IPCC, 2007;  Timilsina and Shrestha, 2009; Ubaidillah, 2011; Wang et al., 2011 Chapter 8).  The marked growth rate of international transport emissions after 2002 coincides with growth in  Chinese exporting industries suggesting an influence of trade policies and world trade agreements  on the transport emissions (Olivier et al., 2011).   The high oil prices of 2008 and the global recession in 2009 both resulted in a decrease in fossil fuel  consumption for the OECD regions, with CO2 emissions declining by 2.0% in 2008, and an estimated  6.3% in 2009. The greenhouse gas emissions in non OECD emissions were not affected and even  caused a 2.2% increase in total global transport emissions and an estimated 0.3% in 2009 (US EIA,  2011).  There is a strong correlation of per capita transport emissions and the per capita incomes and  alignment of the two variables is sharper in the high income countries (Fig 5.3.15) as the demand for  personal transportation increases as standards of living rise and increased economic activity as a  result of high per capita income (US EIA, 2011).   5.3.5.2    Buildings The building sector emissions grew from 2.5 GtCO2eq in 1970 to 3.2 GtCO2eq in 2010 with emissions  growth rates in OECD countries being largely negative. Positive emission growth rates were  registered in the upper and lower middle income countries, although the largest contribution to the  buildings emissions were still from OECD countries (Figure 5.18).  There is correlation of per capita buildings emissions with per capita income attributed to high  energy consumption. Considering life cycle assessment starting with manufacturing of building  materials to demolition, over 80% of GHG emissions take place during building operation phase  (UNEP, 2009) largely from consumption of electricity for heating, ventilation, and air conditioning  (HVAC), water heating, lighting, and entertainment (US DOE, 2008). On average, most residential  energy in developed countries is consumed for space heating, particularly in cold climates. The  demand for energy in buildings for space heating was 58% in 1990 and 53% in 2005, while water  heating was 17% to 16%, cooking and lighting about 5%, and appliances 16 21% (IEA, 2008; UNEP,  2009). In the low income countries, per capita emissions also tend to be high as a large proportion of  operational energy is derived from polluting fuels, mainly wood and other biomass, such as dung  and crop residues and that there is still a high number of people (2.4 billion) using biomass for  cooking and heating (International Energy Agency, 2002, 2006).                                                               8 Consisting of direct CO2, CH4, N2O, and F gases (Freight Vision, 2009).    42 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.3.5.3    Industry  The direct industry emissions (excluding waste water and AFOLU contributions9) grew from 6.1 in  1970 to 10.2 GtCO2eq/yr in 2010 and the contribution of OECD countries to the emissions  dominated at the start of the period with over 61% of the emissions declining to 26% in 2010. The  middle income countries have become the major emitters, particularly from after 2000 (Fig 5.3.14)  when the annual growth rate in emissions increased by 165% in the middle (upper and lower) income countries. There is positive correlation of industry per capita emissions and per capita  income to about 10,000 Int$2005/cap. Beyond that income level, the correlation gradient flattens due  to improvements in energy efficiency in the industrialized OECD countries (European Environment  Agency, 2009).  Energy use in industry, which is the major source of the sector emissions has grown in both absolute  and relative terms in all OECD regions and in relative terms in EIT countries driven by changes in  income, demand of goods and services hence the level of industrial output, fuel switching, and  structural changes (International Energy Agency, 2003). There has also been a complex restructuring  and relocation of production and consumption of goods and supply of services that have shaped the  location of industrial emissions, hence the shift of major emissions to some non OECD Asian  economies (De Backer and Yamano, 2012)(De Backer and Yamano, 2012; Backer and Yamano, 2007).  The production of energy intensive industrial goods that include cement, steel, aluminium has  grown dramatically. From 1970 2012, global annual production of cement increased 500%;  aluminium 400%; steel 150%, ammonia 250%, and paper 200% (USGS, 2013); with energy intensive  industries being located in developing nations (IPCC, 2007a). Rapid growth in export industries has  also driven emissions growth, and since 2001, China dominates in production of goods for own  consumption and export ((Weber et al., 2008); see Chapter 10).  Non energy industry emissions such as perfluorocarbon (PFC) emissions have declined in many OECD  countries, while SF6 emissions vary and HFC emissions have increased very rapidly, driven more by  use in refrigeration equipment rather than in manufacturing industries (International Energy Agency,  2003).  5.3.5.4    Agriculture, Forestry, Other Land Use  Emission of GHGs in the AFOLU sector increased by 20% from 9.9 GtCO2eq in 1970 to 12 GtCO2eq in  2010(Figure 5.18) contributing about 20 25% of the global emission in 2010 (JRC/PBL, 2012). Both  the agriculture sub sector and the FOLU sub sector showed an increase in emissions during the  period 1970 2010, but there is substantial uncertainty and variation between databases (see  Section 5.2.3); Chapter 11 provides an overview of other estimates. In the agriculture sub sector,  CH4from enteric fermentation and rice cultivation, and nitrous oxide (N2O) mainly from soil and  application of synthetic and manure fertilizer manure management had the largest contribution  ( 80%) to total emission in 2010. Between 1970 and 2010, emission of CH4increased by 20%,  whereas emission of N2O increased by 45 75%. Though total global emissions increased but per  capita emissions went down from 2.5 tonne in 1970 to 1.6 tonne in 2010 because of growth in  population. Per capita emissions decreased in LAM, MAF, and EIT countries, whereas in ASIA and  OECD 1990countries, it remained almost unchanged. There was no clear relation between emissions  in the AFOLU sector and per capita income (Figure 5.19).  During 2000 and 2010, emission in the AFOLU sector marginally increased from 11 GtCO2eq to  11.9 GtCO2eq (Figure 5.18), but per capita emission marginally decreased from 1.8 tCO2eq/cap yr to  1.7 tCO2eq/cap yr (JRC/PBL, 2012).  Drivers of emissions included increased livestock numbers linked to increased demand for animal  products, area under agriculture, deforestation, use of fertilizer, area under irrigation, per capita                                                               9  These emissions have been presented in other sections    43 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  food availability, consumption of animal products, and increased human and animal populations.  Global agricultural land increased by 7%, from 4560 Mha to 4900 Mha between 1970 and 2010  (FAOSTAT, 2013). Global population increased by about 90% from 3.6 to 6.9 billion during the  period. As a result, per capita crop land availability declined by about 50%, from 0.4 ha to 0.2 ha. On  the other hand, crop productivity increased considerably during the period. For example, cereal  production has doubled from 1.2 Gt to 2.5 Gt and average yield of cereals increased from  1600 kg ha 1 to 3000 kg ha 1. To enable this increase, use of nitrogenous fertilizer increased by 230%  from 32 Mt in 1970 to 106 Mt in 2010 (FAOSTAT, 2013), which was a major driver for increased N2O  emission (Spark et al., 2012). During the past 40 years, there has been increase in irrigated cropped  area (Foley et al., 2005). Population of cattle, sheep, and goats increased 1.4 fold and that of pigs  and poultry by 1.6 and 3.7 fold, respectively (FAOSTAT, 2014). This has increased GHGs emission  directly and also through manure production (Davidson, 2009). Global daily per capita food  availability and consumption of animal products increased, particularly in Asia (FAOSTAT, 2013).   The emission in the AFOLU sector increased during the last four decades with marginal increase in  the last decade (2000 2010). The continued growth in world population causing greater demand for  food with reduced per capita land availability will have significant impact on emission. The details of  emission, more on forestry and land use, and opportunities for mitigation in the AFOLU sector are  discussed in Chapter 11.      44 of 94    Final Draft      Chapter 5  IPCC WGIII AR5  Box 5.3. Trends and drivers of GHG emissions in Least Developing Countries  Almost 90% of 1970 2010 GHG emissions in the Least Developed Countries (LDC) countries are  generated by agriculture, forestry, and other land use activities (AFOLU) (Fig 5.16), and emissions  have increased by 0.6% per year in these countries during the last four decades. For the LDC, the  primary activities within AFOLU include subsistence farming and herding, and use of wood as fuel for  cooking and heating (Golub et al., 2008; Dauvergne and Neville, 2010; Erb et al., 2012).  The effects of population growth on energy use and emissions are, in relative terms, greater in the  LDCs and developing countries than in the developed countries (Poumanyvong and Kaneko, 2010).  The dominance of AFOLU over buildings, industry, and transport as sources of emissions for LDC  (Figure 5.20) suggests population growth as a major contributor to the growth in LDC emissions. Yet  the low historic emissions growth of 0.6% annually is substantially below population growth of 2.5%  annually. Changes in land use with regard to biofuels (Ewing and Msangi, 2009) and agricultural  practices (Mann et al., 2009; Bryan et al., 2013) may also have affected the increase in emissions.  Changes in future trends of GHG emissions in LDCs will depend on the pace of urbanization and  industrialization in the LDCs. Although currently most LDCs continue to have a large share of rural  population, the rate of urbanization is progressing rapidly. This pattern is expected to lead to  increasing access to and use of energy and emissions (Parikh and Shukla, 1995; Holtedahl and Joutz,  2004; Alam et al., 2008; Liu, 2009) particularly since early stages of urbanization and industrialization  are associated with higher emissions than later stages (Martínez Zarzoso and Maruotti, 2011).    Figure 5.20. Historic fossil-fuel GHG emissions per sector in LDC. The figure shows that for all sectors apart from AFOLU, emissions have increased sharply in relative terms. Yet AFOLU presents the largest share of emissions. Data from JRC/PBL (2012) and IEA (2012). The direct emission data from JRC/PBL (2012) (see Annex II.9) represents land-based CO2 emissions from forest and peat fires and decay that approximate to CO2 flux from anthopogenic emission sources in the Forestry and Other Land Use (FOLU) sub-sector. For a more detailed representation of Agriculture and FOLU (AFOLU) GHG flux see Section 11.2 and figures 11.2 and 11.6. 5.3.5.5    Waste Total global waste emissions for all gases (CH4, N2O, CO2) almost doubled from 1970 2010  (Figure 5.18) (JRC/PBL, 2012), while in the period 2000 2010 year, the increment was 13%  (1278 MtCO2eq vs. 1446 MtCO2eq) (JRC/PBL, 2012). Waste GHG emissions represented in 2010 the  3.0% of total GHG emissions from all sources (1446 MtCO2eq), compared to 2.6% in 1970  (734 MtCO2eq) (JRC/PBL, 2012). Main sources of waste GHG emissions were solid waste disposal on  land (46% of total waste GHG emissions in 1970 year and 43% in 2010 year) and wastewater    45 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  handling (51% of total waste GHG emissions in 1970 year and 54% in 2010 year), and in minor  importance according to their GHG emission quantities waste incineration (mainly CO2), and other  sources (JRC/PBL, 2012).   From 1998 year and forward waste GHG emissions in ASIA are larger than in OECD countries (mainly  in GHG wastewater emissions); while in 1970 year OECD s emissions represented 50% of emissions  (364 MtCO2eq) and ASIA 27% (199 MtCO2eq), in 2010 year ASIA represented 41% of waste GHG  emissions (596 Mt ) and OECD 27% (391 MtCO2eq) (Figure 5.18) (JRC/PBL, 2012). The main GHG  from waste is CH4 mainly emitted from municipal solid wastes disposal on land and wastewaters representing 91% in 1970 year, followed by N2O(7%); and 90% in 2010 year followed by N2O (8%)  (Monni et al., 2006; JRC/PBL, 2012).  The waste generation is closely interrelated with population, urbanization, and affluence. Waste generation rates can be correlated with different indicators of affluence, as GDP/cap, energy  consumption/cap, and private final consumption/cap (Monni et al., 2006; Bogner et al., 2008). In the  same way Sjöström and Östblom (Sjöström and Östblom, 2009) remark in their article that waste  quantities have grown steadily along with GDPs over the last decades, moreover they report that the  total quantity of municipal waste per capita increased by 29% in North America, 35%in OECD, and  54% in the EU15 from 1980 to 2005 (Sjöström and Östblom, 2009).  The estimation of the past, current, and future emissions, as well as the mitigation potential in the  waste sector has many uncertainties, the most important relating to the poor quality of activity data  needed for estimation of emissions (Monni et al., 2006; Bogner et al., 2008).  5.4   Production and Trade patterns  5.4.1    Embedded carbon in trade  Between 1971 and 2010, world trade has grown by 6% a year on average, meaning it doubled nearly  every 12 years (World Trade Organisation, 2011), outpacing the growth of world GDP, which was  3.1% per year on average. The ratio of world exports of goods and commercial services to GDP in  real terms has increased substantially; steadily since 1985, and by nearly one third between 2000  and 2008, before dropping in 2009 as world trade fell as a result of the Global Financial Crisis (World  Trade Organisation, 2011). While information on the size of physical trade is more limited, Dittrich  and Bringezu (2010) estimate that between 1970 and 2005, the physical tonnage of international  trade grew from 5.4 to 10 Gt. Statistics on CO2 emissions associated with international shipping  support these findings (Heitmann and Khalilian, 2011); international shipping has grown at a rate of  3.1% per annum for the past three decades (Eyring et al., 2010), and there is evidence of a recent  acceleration in seaborne trade suggesting that trade, measured in ton miles has increased by 5.2%  per annum (on average) between 2002 and 2007. This is further supported by van Renssen (2012),  who observes a doubling of shipping and aviation emissions between 1990 and 2010.  Trade has increased the developing countries' participation in the global economy. According to the  World Trade Organization,  From 1990 to 2008, the volume of exports from developing countries  grew consistently faster than exports from developed countries, as did the share of developing  countries' exports in the value of total world exports . Between 2000 and 2008, the volume of  developing countries  exports almost doubled, while world exports increased by 50%. Non OECD  Asia is by far the most important exporting region in the developing country group, with a 10% share  of world exports in 1990 (USD 335 million), which increased to 21% (USD2603 million) in 2009  (World Trade Organisation, 2011).    46 of 94    Final Draft      Box 5.4. Definition of carbon leakage Chapter 5  IPCC WGIII AR5  Carbon leakage refers to phenomena whereby the reduction in emissions (relative to a benchmark)  are offset by an increase outside the jurisdiction (Peters and Hertwich, 2008; Barrett et al., 2013).  Leakage can occur at a number of levels, be it a project, state, province, nation, or world region. This  can occur through:  Changes in the relative prices whereby national climate regulation reduces demand for  fossil fuels, thereby causing a fall in world prices resulting in an increase in demand outside  the jurisdiction  Relocation of industry where a firm relocates their operation to another nation due to less  favourable financial benefits in the original jurisdiction brought about by the reduction  measures  Nested regulation where, for example, the European Union imposes an aggregate cap on  emissions meaning that the efforts of individual countries exceed the cap freeing up  allowances in other country under the scheme  Weak consumption leakage describes the increase of emissions in one country as a  consequence of actions or policies that are unrelated to climate policy (such as a changed  quantity or composition of imports) in another country.  The consumption accounts presented in Section 5.3.3.2 showed that between 1990 and 2000, global  CO2 emissions increased by about 10%, and by a further 29% between 2000 and 2008 (Le Quere et  al., 2009; Peters et al., 2011a). Over the full period, all of the growth in CO2 emissions occurred in  non Annex B countries while CO2 emissions in Annex B countries stabilized. Partly, this was due to  the collapse of the former Soviet Union in the early 1990s, which reduced emissions in these  countries between 1990 and 2000. But the pattern also relates to the rapid increase in international  trade between Annex B and non Annex B countries. Twenty percent of the growth in CO2 emissions  in non Annex B countries can, through trade, be attributed to the increased demand for products by  Annex B countries (Peters et al., 2011a).   In 1990, the global CO2 emissions associated with exported products was 4.3 GtCO2 (Peters et al.,  2011a) This figure includes the CO2 emissions through the whole supply chain associated with the  production of the final product, using the  Environmentally Extended Multi Region Input Output  Analysis" (Davis and Caldeira, 2010; Minx et al., 2009)(Minx et al., 2009). In 2008, this figure had  increased to 7.8 GtCO2, (average annual increase of 4.3%) (Peters et al., 2011a). Between 1990 and  2000, the growth in the embedded CO2 emissions of products being traded grew by 10%. Between  2000 and 2008, CO2 emissions embedded in trade grew by a further 26%, demonstrating a more  recent and rapid increase (Peters et al., 2011a). In 2005, China accounted for 25% of the total global  CO2 emissions embedded in exports, with China s exported emissions at 1.7 Gt (Weber et al., 2008)  compared to the global total of 6.8 Gt (Peters et al., 2011b). In terms of total CO2 emissions due to  the production of goods and services that were finally consumed in another country, a number of  papers suggest that this represents between 20% and 26% of total global emissions in 2004 (Davis  and Caldeira, 2010; Peters et al., 2011b).  Trade explains the divergence between territorial and consumption based emissions in OECD  countries to the extent that it has resulted in an increase of emissions in the exporting countries. The  associated increase in emissions in exporting countries (mostly non Annex B) is often defined in the  literature as  weak leakage  (Davis and Caldeira, 2010)(Davis and Caldeira, 2010; Rothman, 1998,  2000; Peters and Hertwich, 2008; Weber and Peters, 2009; Strmman et al., 2009; Peters, 2010;  Yunfeng and Laike, 2010). Lenzen et al. (Lenzen et al., 2010) confirm these findings along with  numerous national level studies  (Wiedmann et al., 2010; Hong et al., 2007; Liu et al., 2011;    47 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Ackerman et al., 2007; Weber and Matthews, 2007; Mäenpää and Siikavirta, 2007; Munoz and  Steininger, 2010; Minx et al., 2011).   Trade has allowed countries with a higher than global average emission intensity to import lower  emission intensity goods and vice versa. For example, exports from China have a carbon intensity  four times higher than exports from the United States (Davis and Caldeira, 2010). Net exports of  carbon could occur due to (i) a current account surplus, (ii) a relatively high energy intensity of  production, (iii) a relatively high carbon intensity of energy production, and (iv) specialization in the  export of carbon intensive products (Jakob et al., 2012). Jakob and Marchinski (2013) argue that  further analysis is required to better understand the gap in consumption and territorial emissions,  and to assess the validity of possible but different causes.  Calculating emissions embodied in trade tells us the amount of emissions generated to produce  goods and services that are consumed elsewhere, but it doesn t allow us to establish a causal  interpretation. In particular, it doesn t allow identifying which fraction of observed changes in  regional emissions can be attributed to regulatory changes undertaken elsewhere, such as adoption  of climate measures in one region (often called  strong carbon leakage  in the literature). Due to the  sparse data available, only a few empirical studies exist. (Aichele and Felbermayr, 2012, 2013)  provide evidence for a strong carbon leakage effect resulting from the Kyoto protocol. Most  estimates of how GHG emissions could react to regional regulatory changes have so far relied on  numerical modelling. These studies find a wide variety of rates of leakage (i.e., the fraction of  unilateral emission reductions that are offset by increases in other regions), with one study  demonstrating that under some specific assumptions, leakages rates could even exceed 100%  (Babiker, 2005). However, it has also been pointed out that energy represents a small fraction of the  total cost for most industries and therefore leakage should not be expected to render unilateral  climate policies grossly ineffective (Hourcade et al., 2008; Jakob, 2011). This is confirmed by recent  model comparison of 12 computable general equilibrium models. Boehringer et al. (Boehringer et al.,  2012) finds leakage rates between 5% and 19%, with a mean value of 12%. However, taking into  account (non energy related) industrial process emissions, which are not included in the latter  model comparison, may result in higher leakage rates, as some of the most energy  as well as  trade intensive sectors are also important sources of industrial process emissions (Bednar Friedl et  al., 2012) find that accounting for industrial process emissions raises the leakage rate by one third.  5.4.2    Trade and productivity  Trade does not only affect emissions through its effect on consumption patterns, the relocation of  production, and emissions for international transport, it also affects emissions through its effect on  innovation and the exchange of technologies between trading partners. Section 5.6 assesses the  literature on innovation while this section assesses the theoretical and empirical literature on  channels through which trade (broadly defined as trade in goods and foreign direct investment)  affects productivity (Havrylyshyn, 1990).   At the aggregate level, trade can improve productivity through increased allocative efficiency.  Furthermore, trade increases the international flow of intermediate goods (Hummels et al., 2001;  Koopman et al., 2008), allowing for the production of higher quality final products with the same  amount of emissions and other inputs (Rutherford and Tarr, 2002). Though, trade may impede  productivity growth in developing countries if it causes them to specialize in low tech labour and  energy intensive sectors with little scope for productivity improvements. Trade can also increase  income inequality in developing countries. For example, because the least skill intensive industries in  developed countries often become the most skill intensive sectors in developing countries (Zhu and  Trefler, 2005; Meschi and Vivarelli, 2009), developing countries can experience a negative impact on  productivity growth (Persson and Tabellini, 1994).  At the sector level, trade liberalization increases competition in import competing sectors, and  causes the least productive firms in these sectors to collapse or exit (Pavcnik, 2002). Therefore,    48 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  through this mechanism, trade liberalization can cause job losses, especially for those working in the  previously protected sectors. At the same time, trade can also increase productivity, energy efficiency, and research and development (R&D) incentives in import competing sectors: trade  intensifies import competition and increases the remaining firms  domestic market shares, both of  which are associated with higher R&D efforts  possibly because firms with large market shares use  innovation to deter entry (Blundell et al., 1999).  Aside allocation and competition effects, trade can increase productivity growth through knowledge  spillovers. Multinationals do more R&D than purely domestic firms, thus Foreign Direct Investment  (FDI) can increase the knowledge stock of the recipient country. Moreover, the entry of foreign  multinationals facilitates the diffusion of energy saving technologies if domestic firms reverse engineer their products or hire away their employees (Keller and Yeaple, 2009). In addition to these  horizontal spillovers, foreign entrants have an incentive to share their knowledge with domestic  suppliers and customers to improve the quality of domestically sourced inputs and to enable  domestic customers to make better use of their products (Javorcik, 2004).  Turning to empirical analyses, there are many studies that estimate the effect of trade on sector  overall productivity or the international diffusion of specific technologies, but little that quantify the  effect of trade, through productivity, on emissions. Empirical work, mostly focusing on labour and  total factor productivity, suggests that trade openness indeed enhances productivity. Coe and  Helpman (Coe and Helpman, 1995) and Edwards (Edwards, 2001) find that foreign R&D has a larger  positive effect for countries with a higher import volume, and that for small countries, foreign R&D  matters more for domestic productivity than domestic R&D. Keller (2000) finds that imports from  high productivity countries lead to more productivity growth than imports from low productivity  countries. According to Kim (2000), trade liberalization increased total factor productivity growth by  2 percentage points in Korea between 1985 1988. For United States firms, FDI spillovers accounted  for 14% of productivity growth between 1987 1996 (Keller and Yeaple, 2009).  With regards to specifically environmental applications, Verdolini and Galeotti (2011a) and Bosetti  and Verdolini (2012) constructed and tested a model to show that the factors that impede  international trade in physical goods, such as geographic distance, also hinder the diffusion of  environmentally benign technologies. Reppelin Hill (1998) finds that the Electric Arc Furnace, a  technology for cleaner steel production, diffused faster in countries that are more open to trade.  Trade reduces global energy efficiency if it relocates production to countries that have a  comparative advantage in unskilled labour but low energy efficiency (Li and Hewitt, 2008). Lastly,  Mulder and De Groot (2007) document a convergence of energy productivity across OECD countries  over time. The results may be attributable to knowledge diffusion through trade, but the authors do  not estimate a link between convergence and trade.  5.5   Consumption and behavioural change  Behaviour is an underlying driver affecting the factors in the decomposition of anthropogenic GHG  emissions. Although it is difficult to delineate and attribute the effects of behaviour unambiguously,  there is empirical evidence of variation in behaviour and consumption patterns across regions, social  groups, and over time, and its connection to, e.g., energy and emission intensity of consumption.  This section reviews the evidence of how behaviour affects energy use and emissions through  technological choices, lifestyles, and consumption preferences. It focuses on behaviour of consumers  and producers, delineates the factors influencing behaviour change, and reviews policies and  measures that have historically been effective in changing behaviour for the benefit of climate  change mitigation.    49 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.5.1    Impact of behaviour on consumption and emissions  Consumer choices with regard to food, mobility, and housing, and more generally consumption  patterns affect the environmental impact and GHG emissions associated with the services (Faber et  al., 2012). Consumption patterns are shaped not only by economic forces, but also by technological,  political, cultural, psychological, and environmental factors. For example, domestic energy use and  travel choices are intrinsically related to social identity, status, and norms (Layton et al., 1993; Black  et al., 2001; Steg et al., 2001; Exley and Christie, 2002). Senses of security, clean environment, family  ties, and friendships are also viewed as important factors in determining consumption patterns  (Chitnis and Hunt, 2012). The cultural context in which an individual lives and the inherent values of  a society also shape the intrinsic motivation underlying consumer choices (Fuhrer et al., 1995;  Chawla, 1998, 1999). As an example, the high proportion of people following a vegetarian diet Indian  can be attributed to its cultures and religions, resulting in lower GHG emissions per caloric intake  (Ghosh, 2006). Similar explanations are given for India s relatively low levels of waste generation  coupled with higher levels of waste recycling and re use (Ghosh, 2006). Cross cultural differences  are also revealed at higher income levels. In some high income countries people appreciate high density neighbourhoods and public transport more as compared to other countries (Roy and Pal,  2009).  Studies indicate that approximately one third of food produced for human consumption (about  1.3 billion tons per year) is wasted globally, adding to GHG emissions for food production  (Gustavsson et al., 2011). It is estimated that substantially more food is wasted in the developed  countries than in developing countries. In Europe and North America, per capita food waste by  consumers is estimated at 95 115 kg/year, while in sub Saharan Africa and South/Southeast Asia is  about 6 11 kg/year (Gustavsson et al., 2011). There is significant inter regional variation with regard  to the stage of the food chain at which wastage occurs. About 40% of food wastage in medium  and  high income countries is generated at the consumer and retail stages, while in low income countries  food waste at the consumer level is much smaller and food waste in the early and middle stages of  the food supply chain reaches about 40%. Food losses and waste in low income countries are  attributed to financial, managerial, and technical limitations, while consumer behaviour and lack of  coordination between different actors in the supply chain influence food wastage in the high income  countries (Gustavsson et al., 2011).  Empirical evidence indicates that per capita energy consumption varies widely across regions (see  Sections 5.3 and 5.4), resulting in significantly different CO2 emissions in per capita terms and per  unit economic activity, but that GDP per capita does not explain all variation (see Figures 5.16 and  5.19). While part of this variability can be attributed, inter alia, to population density, infrastructure  and resource endowments, social and cultural predispositions, such as lifestyle, also influence the  choice and consumption levels of energy and materials (Marechal, 2009; Tukker et al., 2010;  Sovacool and Brown, 2010). Historic data show a clear increase at the global level of key  consumption activities of households that contribute to emissions, such as personal travel by car,  intake of meat and fossil fuel consumption (Mont and Plepys, 2008). Energy intensity, which  depends on behaviour at the individual and economy wide level, is therefore one of the key  determinants of emissions in the decomposition analysis. Behaviour is not only an implicit and  relevant driver of emissions, but also equally important a potential agent for change in emissions.   Apart from individuals and households, companies and organizations also contribute to emissions,  through both direct and indirect use of energy. Businesses, policy makers, as well as non governmental consumer organizations also play a role in inducing behaviour change and therefore  indirectly changing emissions. Studies show that environmental values are important determinants  of willingness to accept climate change policy measures, and that values and norms are required for  climate policy support within public and private organizations (Biel and Lundqvist, 2012).   Technological solutions directed at improving resource productivity may not be sufficient for curbing  the environmental impact of consumption (Hunt and Sendhil, 2010). Complementary to eco   50 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  efficiency in production, sustainable development strategies may need to support sufficiency in  consumption, shifting from a culture of consumerism without limits to a society with less  materialistic aspirations (Mont and Plepys, 2008). This implies an addition to the focus on more  environmentally sound products and services; finding happiness with lower levels of material  consumption, especially in higher income countries (Hunt and Sendhil, 2010).  5.5.2    Factors driving change in behaviour  The literature differentiates between efficiency behaviours, (1) the purchase of more or less energy efficient equipment (e.g., insulation), and (2) curtailment behaviours that involve repetitive efforts  to reduce energy use, such as lowering thermostat settings (Gardner and Stern, 1996). It is  suggested that the energy saving potential through efficiency behaviour is greater than that through  curtailment behaviour. However, energy efficient appliances can lead to an increase in demand for  the service due to the lower cost of these services, discussed in Section 5.6.2.  Behavioural economics studies anomalies in consumer s energy choices but it is also used to design  approaches aimed at influencing and modifying those behaviours (see Sections 2.4 and 3.10.1).  There is evidence that consumers consistently fail to choose appliances that offer energy savings,  which, according to engineering estimates, more than compensate for their higher capital cost. In  analyses of appliance choices, Hausman (1979) and subsequent studies found implicit consumer  discount rates ranging from 25% to over 100% (Train, 1985; Sanstad et al., 2006). A variety of  explanations have been offered, including consumer uncertainty regarding savings, lack of liquidity  and financing constraints, other hidden costs, and the possibility that the engineering estimates may  overstate energy savings in practice. Recent ideas draw on bounded rationality, the notion that  consumers  satisfice  rather than  optimize  (Simon, 1957), the importance of non price product  attributes and consumers  perceptions thereof (Lancaster, 1965; Van den bergh, 2008), and  asymmetric information and the principal agent problem (Akerlof, 1970; Stiglitz, 1988). From  psychology and behavioural economics come notions such as loss aversion (consumers place more  weight on avoiding a loss than on securing a gain of the same magnitude ((Kahneman et al., 1982);  see Greene(2011) for an application to energy efficiency), attention10 and the role of salience11 (Fiske  and Morling, 1996), priming (Richardson Klavehn and Bjork, 1988), affect (Slovic et al., 2002),  norms12 (Axelrod, 2006), a present bias in inter temporal decision making (O Donoghue and Rabin,  2008; DellaVigna, 2009), and mental accounts (separate decision making for subsets of commodities,  (Thaler, 1999)). The literature is not unanimous, though, regarding the magnitude of the  energy  efficiency gap  (Allcott and Greenstone, 2012).  Ayres et al. (2009) estimate that non price, peer comparison interventions can induce a  consumption response equivalent to a 17 29% price increase.13 Newell et al. (1999) provides  evidence that the United States room air conditioners energy efficiency gain since 1973 is only about  one quarter induced by higher energy prices, while another quarter is due to raised government  standards and labelling.   Behavioural interventions can be aimed at voluntary behavioural change by targeting an individual s  perceptions, preferences, and abilities, or at changing the context in which decisions are made. Such  non price context interventions have been used across countries with varying degrees of success to  bring about behaviour change in consumption choices and patterns of energy use. These include  antecedent strategies (involving commitment, goal setting, information or modelling) and                                                                For example, Allcott (2011) indicates that 40% of US consumers do not consider a vehicle s gasoline  consumption when purchasing a car.  11  Chetty et al. (2009) show that consumers  reaction to taxes depends on the visibility and salience of the tax.  12  Responsiveness to norm based messages has been demonstrated in a number of domains (e.g. (Frey and  Meier, 2004; Cialdini et al., 2006; Salganik et al., 2006; Goldstein et al., 2008; Cai et al., 2009).  13  Similarly, with household water use, Ferraro and Price (2011) find that the social comparison effect is  equivalent to what would be expected if average prices were to increase by 12% to 15%.  10   51 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  consequence strategies (feedback or rewards) (Abrahamse et al., 2005; Fischer, 2008). As an  example, the Property Assessed Clean Energy (PACE) program tackles the high discount rate that  residential energy users ascribe to investments associated with energy efficiency retrofits of  buildings through providing local governments financing for retrofits of buildings repayable through  a supplement to property taxes (Ameli and Kammen, 2012). Various United States and United  Kingdom government agencies and the private sector, including some electric and water utilities,  have developed strategies collected under the rubrics Nudge (Thaler and Sunstein, 2009) and  Mindspace (Dolan et al., 2012). These programs involve elements such as increasing the salience of  financial incentives, invoking norms, providing information on social comparisons, and modifying the  choice architecture (the structure of the choice) including the default alternative.14 Laboratory  studies and small scale pilots have demonstrated a potential role for behavioural interventions, but  there is uncertainty on the scalability of these interventions and the level of impacts they can  achieve (Hunt and Sendhil, 2010).   The state of awareness and concern about climate change and the willingness to act is an important  underlying driver for voluntary reduction in energy consumption by individuals. Some studies  indicate that the provision of information, or awareness creation by itself, is unlikely to bring about  significant change in consumption behaviour and reduction in emissions (Van Houwelingen and Van  Raaij, 1989; Kollmuss and Agyeman, 2002; Jackson, 2005). Other studies indicate that awareness  creation and provision of information facilitates the deployment of energy efficient technologies.  The establishing of benchmarks for the energy consumption of homes and commercial buildings may  contribute to reduce information asymmetries in the marketplace and to lower the discount rates  used by consumers to evaluate future efficiency gains (Cox et al., 2013). Coller and Williams (Coller  and Williams, 1999) suggest that information about energy consumption will result in a 5% decline in  discount rates for energy decisions made by the median population, an estimate that is adopted by  Cox et al. (Cox et al., 2013).  Rewards are seen to have effectively encouraged energy conservation, though with possibly short lived effects (Dwyer and Leeming, 1993; Geller, 2002)(Geller, 2002). Feedback has also proven to be  useful, particularly when given frequently (Becker et al., 1981), while a combination of strategies is  generally found to be more effective than applying any one strategy (Abrahamse et al., 2005).  Ability to change, or opportunities, is also essential, and can be constrained by institutional and  physical structures. Old habits are also seen as a strong barrier to changing energy behaviours (Pligt,  1985; Kollmuss and Agyeman, 2002; Mont and Plepys, 2008; Whitmarsh, 2009).  5.6   Technological change  5.6.1    Contribution of technological change to mitigation  The IPCC Fourth Assessment Report (AR4) acknowledged the importance of technological change as  a driver for climate change mitigation (IPCC, 2007a): p. 149 153; 218 219). It also gave an extensive  review of technological change and concluded, among other things, that there is a relationship  between environmental regulation and innovative activity on environmental technologies, but that  policy is not the only determinant for technological change. It also discussed the debate around  technology push and market pull for technological change, the role of different actors and market  failures around technological innovation. Since 2007, more studies have documented improvements  of energy efficiency and the impact of different drivers, including technological change, on the  energy intensity, e.g., (Fan and Xia; Sheinbaum et al., 2011; Wu et al., 2012).                                                                14  UK Cabinet Office (2012).    52 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.6.1.1    Technological change: a drive towards higher or lower emissions?  Previous assessment reports have focused on the contribution of technological change in reducing  GHG emissions. The rising emissions in emerging economies and accompanied rapid technological  change, however, point at a question of whether technological change might also lead to rising  emissions   in developed and developing countries. Due to a combination of rebound effects (see  Section 5.6.2) and an observed tendency towards cost saving innovations, the rebound effect could  be enhanced so much that energy saving technological change could indirectly lead to an increase in  emissions (Fisher Vanden and Ho, 2010). Probably more importantly, technological change may  favour non mitigation issues over reduction of GHG emissions. For example, compact cars in the  1930s have a similar fuel consumption rate to compact cars in the 1990s, but have far advanced in  terms of speed, comfort, safety, and air pollution (Azar and Dowlatabadi, 1999).   The energy sector is of great importance to technological change and climate change mitigation.  Changes in the energy intensity that are not related to changes in the relative price of energy are  often called changes in the autonomous energy efficiency index (Kaufmann, 2004; Stern, 2010). How  do macro economic factors affect differences in energy efficiency between countries and changes  over time? Using country based case study approach, the general trend at the macro level over the  20th century in the United States, the United Kingdom, Japan, and Austria has been to greater  energy efficiency (Warr et al., 2010).   Recent research investigates the factors that affect the adoption of energy efficiency policies or  energy efficiency technology  (Matisoff, 2008; Fredriksson et al., 2004; Gillingham et al., 2009;  Linares and Labandeira, 2010; Wei et al., 2009; Popp, 2011; Stern, 2010). Differences in endowments,  preferences, or the state of technology create differences in the adoption of energy efficiency  technologies across countries and among individuals over time. The rate of adoption may also be  influenced by market failures such as environmental externalities, information access, and liquidity  constraints in capital markets, and behavioural factors. Behavioural factors are discussed in Section  5.5.2. The variation of implementation of energy efficiency measures varies greatly, both between  countries and between sectors and industries, especially if developing countries are taken into  account (Sanstad et al., 2006).  5.6.1.2    Historical patterns of technological change There is ample evidence from historical studies, for instance in the United States, Germany, and  Japan, that technological change can affect energy use (Carley, 2011b); (Welsch and Ochsen, 2005);  (Unruh, 2000). In Japan, it has also shown to be a driver for reduction of CO2 emissions (Okushima  and Tamura, 2010). Technological change is also a dominant factor in China s fast declining energy  intensity until 2003 (Ma and Stern, 2008); but between 2003 and 2010, energy intensity declined  only slightly (IEA, 2012).  Technological change in the energy sector is best studied. Several studies find that technological  change in energy was particularly pronounced in periods with a great political sense of urgency  and/or energy price hikes, such as during oil crises (Okushima and Tamura, 2010); (Karanfil and  Yeddir Tamsamani, 2010). Wilbanks (2011) analyzes the discovery of innovations and argues that  only with a national sense of threat and the entailing political will it is worthwhile and possible to set  up an  exceptional R&D  effort in the field of climate change mitigation. Aghion et al. (Aghion et al.,  2012) conclude an increase in clean technology patenting in the auto industry as a consequence of  policy induced increases in energy prices. In a study on 38 countries, Verdolini and Galeotti (2011b)  find that technological opportunity and policy, proxied by energy prices, affect the flow of  knowledge and technological spillovers.   There is more evidence supporting the conclusion that policy matters as a part of systemic  developments. Dechezlepretre (2008) find that the Kyoto Protocol has a positive impact on  patenting and cross border technology transfer, although they did not evaluate the impact of those  on emissions. In a study on photovoltaic (PV) technology in China, a policy driven effort to catch up    53 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  in critical technological areas related to manufacturing proved successful, although it also mattered  that capabilities could be built through the returning of a Chinese diaspora (de la Tour et al.,  2011).(Calel and Dechezlepretre, 2012) show that the European Union Emissions Trading System led  to an increase in climate technology related patents in the European Union.  5.6.2    The rebound effect  Section 3.9.5 distinguishes between  direct  and  indirect  rebound effect. Direct rebounds appear  when, for example, an energy efficient car has lower operating costs encouraging the owner to drive  further (Sorrell, 2007). In addition, this could apply to a company where new, more energy efficient  technology reduces costs and leads to an increase in production. Indirect rebounds (Lovins, 1988;  Sorrell, 2007) appear when increased real income is made available by saving energy costs that are  then used to invest or purchase other goods and services that emit GHG emissions (Berkhout et al.,  2000; Thomas and Azevedo, 2013). For example, savings in fuel due to a more efficient car provides  more disposal income that could be spent on an additional holiday. These could include substitution  or income effect or changes in consumption patterns (Thomas and Azevedo, 2013). Economy wide  changes include market price effects, economic growth effects, and adjustments in capital stocks  that result in further increases in long run demand response for energy (Howarth, 1997).  Rebound effects are context specific, making it difficult to generalize on their relative size and  importance. Being context specific means that there is evidence of both negative rebound effects  where further energy saving are induced beyond the initial savings and  backfire  where the rebound  effects exceed the initial saving (Gillingham et al., 2013; Chakravarty et al., 2013; Saunders, 2013).  There is much debate on the size of the rebound effect with considerably more evidence on direct  rebounds than on indirect rebounds. There are numerous studies relying predominately on  econometric techniques to evaluate rebounds. A comprehensive review of 500 studies suggests that  direct rebounds are likely to be over 10% and could be considerably higher (i.e., 10% less savings  than the projected saving from engineering principles). Other reviews have shown larger ranges with  Thomas and Azevedo (Thomas and Azevedo, 2013) suggesting between 0 and 60%. For household efficiency measures, the majority of studies  show rebounds in developed countries in the region of  20 45% (the sum of direct and indirect rebound effects), meaning that efficiency measures achieve  65 80% of their original purposes (Greening et al., 2000; Bentzen, 2004; Sorrell, 2007; Sorrell et al.,  2009; Haas and Biermayr, 2000; Berkhout et al., 2000; Schipper and Grubb, 2000; Freire González,  2010). For private transport, there are some studies that support higher rebounds, with Frondel et  al.(Frondel et al., 2012) findings rebounds of between 57 and 62%.  There is evidence to support the claim that rebound effects can be higher in developing countries  (Wang et al., 2012b; Fouquet, 2012; Chakravarty et al., 2013). Roy (2000) argues that rebound  effects in the residential sector in India and other developing countries can be expected to be larger  than in developed economies because high quality energy use is still small in households in India and  demand is very elastic (van den Bergh, 2010; Stern, 2010; Thomas and Azevedo, 2013). However,  there is considerable uncertainty of the precise scale of rebound effects in developing countries with  more research required (Thomas and Azevedo, 2013; Chakravarty et al., 2013). In terms of  developed countries, Fouquet (Fouquet, 2012) provides evidence on diminishing rebound effects in  developed countries due to less inelastic demand for energy.  While generalization is difficult, circumstances where rebounds are high is when energy costs form a  large proportion of total costs (Sorrell, 2007). Rebounds effects are often diminished where energy efficiency improvements are coupled with an increase in energy prices. For industry, targeted  carbon intensity improvements can reduce costs and therefore prices and subsequently increase  output (Barker et al., 2007). Therefore, the relative scale of the saving is a good indicator of the  potential size of the rebound effect. In conclusion, rebound effects cannot be ignored, but at the  same time do not make energy efficiency measures completely redundant. By considering the size of  the rebound effect, a more realistic calculation of energy efficiency measures can be achieved    54 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  providing a clearer understanding of their contribution to climate policy. Particular attention is  required where efficiency saving are made with no change in the unit cost of energy.  5.6.3    Infrastructure choices and lock in Infrastructure in a broad sense covers physical, technological, and institutional categories but is  often narrowed down to long lasting and capital intensive physical assets to which public access is  allowed, such as transport infrastructure (Ballesteros et al., 2010; Cloete and Venter, 2012). The  assessment in this part focuses on the narrower physical part. Among physical infrastructure are  buildings, roads and bridges, ports, airports, railways, power, telecom, water supply and waste  water treatment, irrigation systems, and the like. Energy consumption and CO2 emissions vary  greatly between different types of infrastructure. Infrastructure choices reflect the practice at the  time of investment but they have long lasting consequences. The infrastructure and technology  choices made by industrialized countries in the post World War II period, at low energy prices, still  have an effect on current worldwide GHG emissions. Davis et al. (2010) estimate the commitment to  future emissions and warming by existing CO2 emitting devices, totalling to 500 (280 700) GtCO2  between 2010 and 2060, and an associated warming of 1.3°C (1.1°C to 1.4°C).   Transport is a case in point. Air, rail, and road transport systems all rely on a supporting  infrastructure, and compete for distances in the range of 1500km. Of these options, railways  typically have the lowest emissions, but they require substantial infrastructure investments. Similarly,  for urban transport, public transport requires substantial infrastructure investments to provide  mobility with relatively low emission intensities. At the same time, existing roads are designed for  use for decades and consequently automobiles remain a major means for mobility. In United States  cities, 20 30% of the land area is used for roads, the corresponding share for major cities in Asia is  10 12% (Banister and Thurstain Goodwin, 2011; Banister, 2011a; b). But the emerging megacities  around the world are associated with population expansion and large scale increase in infrastructure  supply. Investment in urban physical investment in these emerging megacities will have a significant  long lasting impact on GHG emissions. Investment in waste disposal facilities (incinerators) is an  example of a path dependency and lock in of an industry barrier that will prevent material efficiency  strategies for a long period of time. A recent study proves how this lock in effect in place such as  Denmark, Sweden, Germany, or the Netherlands is threatening recycling and encouraging the  shipment of waste that otherwise could be treated locally with less environmental cost (Sora and  Ventosa, 2013).  Carley (2011a) provides historical evidence from the United States electricity sector indicating that  crucial drivers market, firm, government, and consumer can work together to improve efficiency,  but that they can also lead to  persistent market and policy failures that can inhibit the diffusion of  carbon saving technologies despite their apparent environmental and economic advantages  (Unruh,  2000, 2002).   Avoiding the lock in in emission intensive physical infrastructure is highly important to reduce  emissions not only in the short run but also far into the future. At the planning stage, when choice of  materials and construction are made, a forward looking life cycle assessment can help to reduce  undesired lock in effects with respect to the construction and operation of large physical  infrastructure.  5.7   Co benefits and adverse side effects of mitigation actions  The implementation of mitigation policies and measures can have positive or negative effects on  broader economic, social, and/or environmental objectives and vice versa. As both co benefits and    55 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  adverse side effects occur, the net effect is sometimes difficult to establish (Holland, 2010).15 The  extent to which co benefits and adverse side effects will materialize in practice as well as their net  effect on social welfare differ greatly across regions, and is strongly dependent on local  circumstances, implementation practices, as well as the scale and pace of the deployment of the  different mitigation measures (see Section 6.6). Section 4.8 relates co benefits to sustainable  development, Section 5.2 covers the historic emission trends of many substances related to air  quality co benefits and adverse side effects, Section 6.6 covers the forward looking perspective, and  the sectoral dimensions are discussed in Sections 7.9, 8.7, 9.7, 10.8, and 11.7. While Section 12.8  focuses on co effects in cities, Chapter 15 considers the policy implications. This section looks at co benefits and adverse effects from a macro perspective to understand their role in decision making  for climate change mitigation and sustainable development. We focus on cross sectoral air pollution  literature and the role of pollutant emission trends and briefly discuss the difficulty for assessing the  role of co benefits and adverse effects as an underlying driver when it plays a role for GHG mitigation decisions. Figure 5.21 offers a picture of the connection between climate change and  other social and environmental objectives through policies affecting the emissions of various  substances. The following chapters will assess many of these interactions between air pollutants  associated with the combustion of fossil fuels and their direct and indirect impacts.    Figure 5.21. Impacts of and links between selected substances emitted to the atmosphere. Adopted from (UNEP, 2012). The quantitative key findings of the AR4 were three fold: First, the reduction of fossil fuel  combustion will lead to the reduction of a number of air pollutants that interact with a number of  policy objectives (see Figure 7.8). Second, the policy costs of achieving air pollution objectives  through direct control measures decrease as a result of mitigation policies. Third, monetized health  benefits counterbalance a substantial fraction of mitigation costs, even exceeding them in certain  cases, particularly in developing countries (Barker et al., 2008). The next section will assess new                                                                Co benefits and adverse side effects describe co effects without yet evaluating the net effect on overall  social welfare. Please refer to Sections 3.6.3 and 4.8.2 as well as to the glossary in Annex I  15   56 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  literature that relates to the third finding while the post AR4 literature on the first two findings is  presented in the sector chapters and summarized in Section 6.6.  5.7.1    Co benefits  A substantial share of estimated co benefits is related to improving health through limiting air  pollution while reducing GHG emissions. Estimates in the literature for the monetized air quality co benefits from climate change mitigation range from 2 to 420 USD2010/tCO2, and co benefits in  developing countries around twice those in industrialized countries (see Nemet et al., 2010a) for a  review and (West et al., 2013) for the high estimate. The gap between developing and industrialized  countries results from lower levels of air pollution control and higher pollution levels in the former  countries, and thus the greater potential for improving health, particularly in the transport and  household energy demand sectors (Markandya et al., 2009; Nemet et al., 2010b; West et al., 2013;  Shukla and Dhar, 2011). In industrialized countries, substantial reductions in air pollutant emissions  have already occurred in the absence of climate policy and further tightening of air regulations is  underway (Rao et al., 2013). If climate policy provides only small incremental reductions, then the  co benefit is small (see Section 3.6.3), while large emission reductions are expected to yield  substantial air quality co benefits and associated cost savings (see Section 6.6.2).  Much of the literature assessed in AR4 did not explicitly analyze policies targeted at reducing air  pollution thereby neglecting the associated opportunity costs of mitigation polices (Bollen et al.,  2009; Edenhofer et al., 2013). But for countries and regions that do not have or do not enforce  current air quality regulations, it is important to consider expected future air pollution policies.  Rapidly industrializing developing countries may follow the pattern of developed countries and  adopt regulations to improve local air quality (and provide immediate local health and  environmental benefits) before focusing on climate policy (Nemet et al., 2010b; Klimont et al.,  2013a) . If this is indeed the case, the co benefits of climate policy will be much smaller. Figure 5.22  shows the declining trend in SO2 emission intensity per CO2 emissions (see Section 5.2 for trends in  global SO2 emissions). It shows that assumptions about the extrapolation of the historic trends into  the future will be a major determinant of future co benefits estimates (Burtraw and Evans, 2003;  Bell et al., 2008), see Section 6.6.2.7 for an example from the scenario literature).  Due to a lack of a counterfactual historic baseline for other policies, it is not possible to determine a  clean ex post measure for the co benefits of climate policies such as the Kyoto Protocol. But it is  clear that drivers for fossil fuel combustion affect both CO2 emissions and SO2 emissions (see van  Vuuren et al. (van Vuuren et al., 2006)).        57 of 94    Final Draft      Chapter 5  IPCC WGIII AR5    Figure 5.22. Trends for SO2 per CO2 emissions per region over 2000 2010. For CO2: territorial, excluding AFOLU and Waste: (Data Source: (JRC/PBL, 2012)). For SO2, data source: (Klimont et al., 2013b). Regions are defined in Annex II.2.   Box 5.5. The Chinese experience with co-benefits from a cross-sectoral perspective (see sections 7.9, 8.7, 9.7, 10.9, and 11.8 for sectoral effects) Pan et al. (Pan et al., 2011) estimate the amount of green jobs in three sectors (energy,  transportation, and forestry) and the result suggests a number at least 4.5 million in 2020 in China.  The wind power industry in China, including power generation and turbine manufacturing, has  created 40,000 direct jobs annually between 2006 and 2010 (Pan et al., 2011). Beijing s ambitious  metro system plan, which includes 660 km by 2015 and another 340 km during 2016 2020,could  bring more than 437,000 jobs each year (Pan et al., 2011). China s forestation activities could create  as many as 1.1 million direct and indirect jobs annually during 2011 2020 to achieve its 2020 goals  (Pan et al., 2011).  In 2007, China called for a more environmentally friendly and resource saving models of production  and consumption (Pan, 2012). Twelve out of 17 mandatory targets in the 12th five year (2011 2015)  plan are related to the protection of natural resources and the environment; the rest are related to  the improvement of social welfare (Pan, 2012). The actions taken under the five year plan include  progressive pricing for electricity consumption; implementation of energy consumption quota,  disaggregated emission targets; emissions trading schemes; initiatives for eco cities and low carbon  cities; and upgraded building codes with improved enforcement (Pan, 2012).  5.7.2    Adverse side effects  There are also adverse side effects associated with mitigation. A comprehensive discussion is given  in the following chapters (6 12), while this section presents some examples in the context of air  pollution. While many low carbon energy supply technologies perform better than pulverized coal  technologies for most air pollutants, some solar energy technologies, for example, have comparable  or even higher life cycle emissions of SO2 (see Figure 7.8 in Section 7.9.2). Desulphurization of  existing coal power plants, however, requires additional consumption of coal in the thermal power  sector implying higher CO2 emissions for a given electricity output (Pan, 2013). While CO2 capture    58 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  processes reduce SO2 emissions at the same time, some carbon dioxide capture and storage (CCS)  technologies would imply an increase in NOx and/or ammonia (NH3) emissions (Koornneef et al.,  2012).  For the displacement of fossil based transport fuels with biofuels, many studies indicate lower  carbon monoxide and hydrocarbon emissions, but NOx emissions are often higher. Next generation  biofuels are expected to improve performance, such as the low particulate matter emissions from  lignocellulosic ethanol (see Hill et al. (Hill et al., 2009); Sathaye et al. (Sathaye et al., 2011)) and  Sections 8.7 and 11. A.6). In the buildings sector, the most important health risks derive from  insufficient ventilation practices in air tight buildings (Section 9.7).  5.7.3    Complex issues in using co benefits and adverse side effects to inform policy  Mitigation options that improve productivity of energy, water, or land use yield, in general, positive  benefits. The impact of other mitigation actions depend on a wider socio economic context within  which the action is implemented (Sathaye et al., 2007). A complete incorporation of co benefits and  adverse side effects into climate policy is complicated, but it is part of a shift of the development  paradigm towards sustainability (Pan, 2012).  Co benefits are pervasive and inseparable (Grubb et al., 2013). It is not possible to  separate  each  benefit with different decisions: both technically and politically, most decisions involve multiple  dimensions. In addition, most suggested policy changes involve large changes in the policy  environment as opposed to the concept of marginal changes (see also Section 3.6.3). Finally, many  effects are measured in very different metrics or are not quantified at all. As an example, whereas  local air quality co benefits are measured in health terms, energy security is typically measured with  indicators of the sufficiency of domestic resources (e.g., dependence on fossil fuel imports) and  resilience of energy supply (see Sections 6.6 and 7.9 for details). All these characteristics make a  comprehensive analysis of co benefits and adverse side effects of a particular policy or measure  challenging. This is why a synthesis of results from different research communities is crucial for  robust decision making (see Section 6.6).  Despite the difficulties, side effects from climate policy are important for policy design (see  Section 15.2.4).Costs of mitigation policies are over  or under estimated when co benefits and  adverse side effects are not included (see Sections 3.6.3 and 6.3.6). Co benefits estimates are  particularly important for policymakers because most of the climate benefits are realized decades  into the future while most co benefits, such as improvement in air quality, are realized  immediately(Barker et al., 2008; Nemet et al., 2010b; Shindell et al., 2012, p.  ; Jack and Kinney,  2010; Henriksen et al., 2011).  5.8   The system perspective: linking sectors, technologies and consumption  patterns  Between 1970 and 2010 global greenhouse gas emissions have increased by approximately 80%. The  use of fossil fuels for energy purposes has been the major contributor to GHG emissions. Emissions  growth can be decomposed in population growth and per capita emissions growth. Population  growth is a major immediate driver for global GHG emissions trends. Global population grew from  3.7 to 6.9 billion. The largest growth rates are found in MAF.  GHG emissions can be attributed to regions according to the territorial location of emissions, or  alternatively emissions can be attributed to the consumption of goods and services, and located to  regions where consumption takes place. There is an emerging gap between territorial and  consumption based emissions, signalling a trend where a considerable share of CO2 emissions from  fossil fuel combustion in developing countries is released in the production of goods and services  exported to developed countries. At a regional level, OECD 1990 is the largest net importer of CO2  embedded in trade, while ASIA is the largest net exporter. This emerging gap opens questions about    59 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  the apparent decoupling between economic growth and GHG emissions in several Annex I countries;  when consumption related emissions are taking into account both GDP and GHG emissions have  grown. Yet, a robust result is that, between 2000 and 2010, the developing country group has  overtaken the developed country group in terms of annual CO2 emissions from fossil fuel  combustion and industrial processes, from both territorial and consumption perspectives.  When considering per capita emissions, rather than aggregate GHG emissions, other trends become  visible. Global average per capita GHG emissions have shown a rather stable trend over the last  40 years. This global average, however, masks differences between regions and sectors. A strong  correlation appears between per capita income and per capita GHG emissions both from a cross country comparison on income and emission levels, and when considering income and emissions  growth. The relation is most clearly for the sectors  energy, industry, and transport (Section 5.3.5),  and holds despite the reduction in the average emission intensity of production, from 1.5 to  0.73 kgCO2eq/Int$2005 over the same 40 year period.  ASIA had low per capita emission levels in 1970, but these increased steadily, by more than 150%.  The EIT region showed a rapid increase in per capita emissions between 1970 and 1990, and a sharp  drop immediately after 1990. In 2010, per capita emissions are comparable in ASIA, LAM, and MAF  [5.2, 6.4, and 5.4 tCO2eq/yr, respectively] but per capita GHG emissions in OECD 1990 and EIT are  still higher by a factor of 2 to 3 [14.1 and 11.9 tCO2eq/yr, respectively]. Also, between 1970 and 2010,  per capita land use related emissions decreased, but fossil fuel related emissions increased. Regions  vary greatly with respect to the income trends. The OECD 1990 and LAM countries showed a stable  growth in per capita income, which was in the same order of magnitude as the GHG intensity  improvements, so that per capita emissions remained almost constant and total emissions increased  by the rate of population growth. The EIT showed a decrease in income around 1990, which together  with decreasing emissions per output and a very low population growth led to a robust decrease in  overall emissions. The MAF sector also shows a decrease in GDP per capita but a high population  growth led to a robust increase in overall emissions. Emerging economies in Asia showed very high  economic growth rates; rapidly expanding industries resulted in sharply increasing emissions. In  2010, ASIA emitted more than half of worldwide industry related emissions. ASIA showed both the  highest economy wide efficiency improvements measured as output per emissions, and the largest  growth in per capita emissions.  The underlying drivers for economic growth are diverse and vary among regions and countries.  Technological change and human capital are key underlying drivers, but some authors also  underscore the availability of energy resources to play a central role in economic growth. Economic  growth is strongly correlated to growth in energy use, and the direction of causality is not clearly  established. At the global level, per capita primary energy consumption rose by 29% from 1970 to  2010, but due to population growth total energy use has increased much more 140% over the same  period.  Energy related GHG emissions can be further decomposed in two additional immediate drivers:  energy intensity and carbon intensity. Energy intensity has declined globally in all developed and  major developing countries including India and China. This decline can be explained through  technological changes, the effects of structural changes, and the substitution of other inputs such as  capital and labour used. These historical improvements in energy intensities, however, have not  been enough to compensate the effect of GDP growth, thus, increasing energy consumption over  time as a result.    In addition, energy resources have historically become less carbon intensive, though increased use  of coal, relative to other resources, since 2000 has changed the trends exacerbating the burden of  energy related GHG emissions. Estimates of the resources of coal and conventional plus  unconventional gas and oil are very large; indicating that resource scarcity has not been and will not  be an underlying driver for decarbonization.    60 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  The immediate drivers that directly affect GHG emissions, namely population, GDP per capita,  energy intensity and carbon intensity, are affected, in turn, by underlying drivers as described in  Figure 5.1. These underlying drivers include resource availability, development status and goals,  level of industrialization and infrastructure, international trade, urbanization, technological changes,  and behavioural choices. Among these, infrastructure, technological changes and behavioural  choices appear to be critical but, even though their influences on other drivers is well established,  the magnitude of this impact remains difficult to quantify.   Co benefits have large potential to contribute to emission reductions, but its historic contribution is  not established. Infrastructural choices have long lasting effects directing the development path to  higher or lower energy and carbon intensities. Infrastructure also guides the choices in technological  innovation. Technological change affects both income and emission intensity of income; it can lead  to both increasing and decreasing GHG emissions. Historically, innovation increased income but also  resource use, as past technological change has favoured labour productivity increase over resource  efficiency. There is clear empirical evidence that prices and regulation affect the direction of  innovations. Innovations that increase energy efficiency of appliances often also lead to increased  use of these appliances, diminishing the potential gains from increased efficiency, a process called  rebound effect .   Behaviour and life styles are important underlying drivers affecting the emission intensity of  expenditures through consumption choices and patterns for transportation modes, housing, and  food. Behaviour and lifestyles are very diverse, rooted in individuals' psychological traits, cultural,  and social context, and values that influence priorities and actions concerning climate change  mitigation. Environmental values are found to be important for the support of climate change  policies and measures. Chapter 4 discusses formal and civil institutions and governance in the  context of incentivizing behavioural change. There are many empirical studies based on experiments  showing behavioural interventions to be effective as an instrument in emission reductions, but not  much is known about the feasibility of scaling up experiments to the macro economy level.  As described across the different sections of the chapter, factors and drivers are interconnected and  influence each other and, many times, the effects of an individual driver on past GHG emissions are  difficult to quantify. Yet historic trends reveal some clear correlations. Historically, population  growth and per capita income growth have been associated with increasing energy use and  emissions. Technological change is capable to substantially reduce emissions, but historically, labour  productivity has increased more compared to resource productivity leading to increased emissions.  Regulations and prices are established as directing technological change towards lower emission  intensities. Behavioural change is also established as a potentially powerful underlying driver, but  not tested at the macro level. Policies and measures can be designed and implemented to affect  drivers but at the same time these drivers influence the type of policies and measures finally  adopted. Historic policies and measures have proved insufficient to curb the upward GHG emissions  trends in most countries. Future policies need to provide more support for emission reductions  compared to policies over the period 1970 2010, if the aim is to change the future GHG emissions  trends.  5.9   Gaps in knowledge and data  There is a need for a more timely and transparent update of emission estimates. The collection  and processing of statistics of territorial emissions for almost all countries since 1970, as used in  Section 5.2, is far from straightforward. There are multiple data sources, which rarely have well characterized uncertainties. Uncertainty is particularly large for sources without a simple  relationship to activity factors, such as emissions from LUC, fugitive emissions, and gas flaring.  Formally estimating uncertainty for LUC emissions is difficult because a number of relevant  processes are not well enough characterized to be included in estimates. Additionally, the    61 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  dependence of the attribution of emissions to sectors and regions on the relative weight given to  various GHGs is often not specified.  The calculation of consumption based emissions (in addition to territorial emissions) is  dependent on strong assumptions. The calculations require an additional layer of processing on  top of the territorial emissions, increasing uncertainties without a clear characterization of the  uncertainties. The outcomes presented in sections 5.3.1 and 5.3.3.2 are only available for years  since 1990.   Empirical studies that connect GHG emissions to specific policies and measures or underlying  drivers often cannot be interpreted in terms of causality, have attribution problems, and  provide competing assessments. Statistical association is not the same as a chain of causality,  and there are competing explanations for correlations. Studies can attribute changes in emissions  to changes of activities when all other things are kept equal, but historically, all other things  rarely are equal. Section 5.3 identifies population, income, the economic structure, the choice of  energy sources related to energy resource availability and energy price policies as proximate and  underlying drivers for greenhouse gas emissions. But for most demography variables other than  the population level, the literature provides competing assessments; different studies find  different significant associations, and at different levels. Underlying drivers work in concert and  cannot be assessed independently. From a cause effect perspective, there is, for instance, no  conclusive answer whether ageing, urbanization, and increasing population density as such lead  to increasing or decreasing emissions; this depends on other underlying drivers as well. The  results from the literature are often limited to a specific context and method. Our understanding  could benefit from a rigorous methodological comparison of different findings (Sections 5.3.2;  5.6; 5.7).  It is debated whether greenhouse gas emissions have an  autonomous  tendency to stabilize at  higher income levels (Section 5.3.3.1). It is agreed that economic growth increases emissions at  low  and middle income levels. With respect to energy, there are competing views whether  energy availability is a driver for economic growth, or inversely that economic growth jointly with  energy prices drives energy use, or that the causality depends on the stage of development  (Sections 5.3.3.1 and 5.3.4).  The net effect of trade, behaviour, and technological change as a determinant of a global  increase or decrease of emissions is not established (Sections 5.4.2; 5.6.1; 5.7). There is evidence  that the social, cultural, and behavioural context is an important underlying driver, and there are  case studies that identify emission reductions for specific policies and technologies. For  technology, empirical studies that ask whether innovations have been emission saving or  emission increasing are limited in scope (Section 5.6.1). There is a rich theory literature on the  potential of innovations to make production energy or emission efficient but evidence on the  macro effects and the rebound effect is still context dependent (Section 5.6.2). How much  carbon is exactly locked in existing physical infrastructure is uncertain and gaps of knowledge  exist in how long physical infrastructure like housing, plants, and transport infrastructure typically  remains in place in which geographical context (Section 5.6.3). Finally, most if not all of the  literature on co benefits and risk tradeoffs focuses on future potential gains. There is a total  absence of empirical assessment about the role that co benefits and adverse sideeffects have  played, historically, in policy formation and GHG emissions (Section 5.7).    62 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  5.10   Frequently Asked Questions  FAQ 5.1. Based on trends in the recent past, are GHG emissions expected to continue to  increase in the future, and if so, at what rate and why?  Past trends suggest that GHG emissions are likely to continue to increase. The exact rate of increase  cannot be known but between 1970 and 2010, emissions increased 79%, from 27 Gt of GHG to over  50 Gt (Figure 5.2). Business as usual would result in that rate continuing. The UN DESA World  Population Division expects human population to increase at approximately the rate of recent  decades (Section 5.3.2.1) of this report. The global economy is expected to continue to grow  (sections 5.3.3 and 5.4.1), as well as energy consumption per person (sections 5.3.4.1 and 5.5.1). The  latter two factors already vary greatly among countries (Figure 5.16), and national policies can affect  future trajectories of GHG emissions directly as well as indirectly through policies affecting economic  growth and (energy) consumption (Section 5.5). The existing variation and sensitivity to future policy  choices make it impossible to predict the rate of increase in GHG emissions accurately, but past  societal choices indicate that with projected economic and population growth, emissions will  continue to grow (Section 5.8).  FAQ 5.2. Why is it so hard to attribute causation to the factors and underlying drivers  influencing GHG emissions?  Factors influencing GHG emissions interact with each other directly and indirectly, and each factor  has several aspects. Most things people produce, consume, or do for recreation result in GHG  emissions (sections 5.3 and 5.5). For example, the food chain involves land use, infrastructure,  transportation, and energy production systems (Section 5.3). At each stage, emissions can be  influenced by available agricultural and fishing technologies (Section 5.6), by intermediaries along  the supply chain (Section 5.4), by consumers and by technology choices (Section 5.5). Technology  and choice are not independent: available technologies affect prices, prices affect consumer  preferences, and consumer preferences can influence the development and distribution of  technologies (Sections 5.5). Policies, culture, traditions, and economic factors intervene at every  stage. The interaction of these factors makes it difficult to isolate their individual contributions to  carbon emissions growth or mitigation (Section 5.8). This interaction is both a cause for optimism,  because it means there are many pathways to lower emissions, and a challenge because there will  be many potential points of failure in even well designed plans for mitigation.  FAQ 5.3. What options, policies, and measures change the trajectory of GHG emissions?  The basic options are to have individuals consume less, consume things that require less energy, use  energy sources that have lower carbon content, or have fewer people. Although inhabitants of the  most developed countries have the option to consume less, most of the human population is located  in less developed countries and economies in transition where population growth is also higher  (Section 5.3.2.). In these countries, achieving a  middle class lifestyle  will involve consuming more  rather than less (Section 5.3.3.2). Accepting that population will continue to grow, choices will  involve changes in technology and human behaviour, so that the production and use of products and  services is associated with lower rates of GHG emissions (technology Section 5.6), and consumers  choose products, services, and activities with lower unit GHG emissions (behaviour Section 5.5).  FAQ 5.4. What considerations constrain the range of choices available to society and their  willingness or ability to make choices that would contribute to lower GHG emissions?  Choices are constrained by what is available, what is affordable, and what is preferred (Section 5.3.3).  For a given product or service, less carbon intensive means of provision need to be available, priced  accessibly, and appeal to consumers (Section 5.3.4.2). Availability is constrained by infrastructure  and technology, with a need for options that are energy efficient and less dependent on fossil fuels  (Section 5.3.5). The choice of what to consume given the availability of accessible and affordable    63 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  options is constrained by preferences due to culture, awareness, and understanding of the  consequences in terms of emissions reduction (sections 5.5.1, 5.5.2). All of these constraints can be  eased by the development of alternative energy generation technologies and distribution systems  (Section 5.6), and societies that are well informed about the consequences of their choices and  motivated to choose products, services, and activities that will reduce GHG emissions (sections 5.5.3,  5.7).      64 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  References  Abrahamse W., L. Steg, C. Vlek, and T. Rothengatter (2005). A review of intervention studies aimed  at household energy conservation, Journal of Environmental Psychology 25 273 291 pp. .  Ackerman F., M. Ishikawa, and M. Suga (2007). The carbon content of Japan US trade, Energy Policy  35 4455 4462 pp. .  Ackerman K.V., and E.T. Sundquist (2008). Comparison of two US power plant carbon dioxide  emissions data sets, Environmental Science & Technology 42 5688 5693 pp. (DOI:  10.1021/Es800221q), (ISSN: 0013 936X).  Aghion P., A. Dechezlepretre, D. Hemous, R. Martin, and J. Van Reenen (2012). Carbon Taxes, Path  Dependency and Directed Technical Change: Evidence from the Auto Industry. London, UK. 76 pp.  Aghion P., and P. Howitt (2009). The Economics of Growth. MIT Press, Cambridge  Mass., (ISBN:  9780262012638). .  Aichele R., and G. Felbermayr (2012). Kyoto and the carbon footprint of nations, J. Environmental  Economics and Management 63 336 354 pp. .  Aichele R., and G. Felbermayr (2013). Estimating the effects of Kyoto on bilateral trade flows using  matching econometrics, The World Economy (DOI: 0.1111/twec.12053).  Akerlof G.A. (1970). The market for  lemons : Quality uncertainty and the market mechanism, The  Quarterly Journal of Economics 84 488 500 pp. (DOI: 10.2307/1879431), (ISSN: 00335533).  Alam S.S., A. Khatibi, M.I.S. Ahmad, and H.B. Ismail (2008). Factors affecting e commerce adoption  in the electronic manufacturing companies in Malaysia, International Journal of Commerce and  Management 17 125 139 pp. (DOI: 10.1108/10569210710776503), (ISSN: 1056 9219).  Allcott H. (2011). Social norms and energy conservation, Journal of Public Economics 95 1082 1095  pp. (DOI: 10.1016/j.jpubeco.2011.03.003), (ISSN: 0047 2727).  Allcott H., and M. Greenstone (2012). Is There an Energy Efficiency Gap? National Bureau of  Economic Research. . Available at: http://www.nber.org/papers/w17766.  Allen R. (2009). The British Industrial Revolution in Global Perspective. Cambridge Univ. Press,  Cambridge [u.a.], (ISBN: 9780521687850). .  Ameli N., and D.M. Kammen (2012). Clean energy deployment: addressing financing cost,  Environmental Research Letters 7 034008 pp. (DOI: 10.1088/1748 9326/7/3/034008), (ISSN: 1748 9326).  Andres R.J., T.A. Boden, F. M. Bréon, P. Ciais, S. Davis, D. Erickson, J.S. Gregg, A. Jacobson, G.  Marland, J. Miller, T. Oda, J.G.J. Olivier, M.R. Raupach, P. Rayner, and K. Treanton (2012). A  synthesis of carbon dioxide emissions from fossil fuel combustion, Biogeosciences 9 1845 1871 pp.  (DOI: 10.5194/bg 9 1845 2012), (ISSN: 1726 4189).  Andrew R.M., and G.P. Peters (2013). A multi region input output table based on the global trade  analysis project database (gtap Mrio), Economic Systems Research 25 99 121 pp. (DOI:  10.1080/09535314.2012.761953), (ISSN: 0953 5314).    65 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Ang B.W. (2006). Monitoring changes in economy wide energy efficiency: From energy GDP ratio to  composite efficiency index, Energy Policy 34 574 582 pp. (DOI: 16/j.enpol.2005.11.011), (ISSN: 0301 4215).  Angel D.P., S. Attoh, D. Kromm, J. Dehart, R. Slocum, and S. White (1998). The drivers of  greenhouse gas emissions: what do we learn from local case studies?, Local environment 3 263 277  pp. .  Arrow et al K. (1996). Economic growth, carrying capacity, and the environment, Ecological  Applications 6 13 15 pp. . Available at: http://www.jstor.org/stable/2269539.  Axelrod R. (2006). Robert Axelrod. 1986. An evolutionary approach to norms. American Political  Science Review 80 (December): 1095 1111, The American Political Science Review 100 682 683 pp.  (DOI: 10.2307/27644412), (ISSN: 0003 0554).  Ayres I., S. Raseman, and A. Shih (2009). Evidence from Two Large Field Experiments That Peer  Comparison Feedback Can Reduce Residential Energy Usage. National Bureau of Economic Research,  Cambridge, MA. . Available at: http://www.nber.org/papers/w15386.  Ayres R., and B. Warr (2009). The Economic Growth Engine: How Energy and Work Drive Material  Prosperity. Edward Elgar, Cheltenham, UK, (ISBN: 9781848441828). .  Azar C., and H. Dowlatabadi (1999). A review of technical change in assessment of climate policy,  Annual Review of Energy and the Environment 24 513 544 pp. (DOI:  10.1146/annurev.energy.24.1.513), (ISSN: 1056 3466, 1056 3466).  Babiker M.H. (2005). Climate change policy, market structure, and carbon leakage, Journal of  International Economics 65 421 445 pp. . Available at:  http://ideas.repec.org/a/eee/inecon/v65y2005i2p421 445.html.  De Backer K., and N. Yamano (2012). International Comparative Evidence on Global Value Chains.  Organisation for Economic Co Operation and Development, Paris. . Available at: http://www.oecd ilibrary.org/content/workingpaper/5k9bb2vcwv5j en.  Backer K.D., and N. Yamano (2007). The Measurement of Globalisation Using International Input Output Tables. OECD Publishing. . Available at: http://ideas.repec.org/p/oec/stiaaa/2007 8 en.html.  Baiocchi G., and J.C. Minx (2010). Understanding changes in the UK s CO2 emissions: A global  perspective, Environ. Sci. Technol. 44 1177 1184 pp. (DOI: 10.1021/es902662h), (ISSN: 0013 936X).  Ballantyne A.P., C.B. Alden, J.B. Miller, P.P. Tans, and J.W.C. White (2012). Increase in observed net  carbon dioxide uptake by land and oceans during the past 50 years, Nature 488 70 72 pp. (DOI:  10.1038/nature11299), (ISSN: 0028 0836).  Ballantyne A.P., D.R. Greenwood, J.S.S. Damsté, A.Z. Csank, J.J. Eberle, and N. Rybczynski (2010).  Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple  independent proxies, Geology 38 603 606 pp. (DOI: 10.1130/G30815.1), (ISSN: 0091 7613, 1943 2682).  Ballesteros A., S. Nakhooda, J. Werksman, and K. Hurlburt (2010). Power, responsibility, and  accountability: Rethinking the legitimacy of institutions for climate finance, Climate law 1 261 312  pp. (DOI: 10.3233/CL 2010 013).    66 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Banister D. (2011a). The trilogy of distance, speed and time, Journal of Transport Geography 19 950 959 pp. (DOI: 10.1016/j.jtrangeo.2010.12.004), (ISSN: 0966 6923).  Banister D. (2011b). Cities, mobility and climate change, Journal of Transport Geography 19 1538 1546 pp. (DOI: 10.1016/j.jtrangeo.2011.03.009), (ISSN: 0966 6923).  Banister D., and M. Thurstain Goodwin (2011). Quantification of the non transport benefits  resulting from rail investment, Journal of Transport Geography 19 212 223 pp. (DOI:  10.1016/j.jtrangeo.2010.05.001), (ISSN: 0966 6923).  Barker T., A. Alharthi, M. Amann, L. Cifuentes, J. Drexhage, R. Duan, O. Edenhofer, B. Flannery, M.  Grubb, M. Hoogwijk, F.I. Ibitoye, C.J. Jepma, W.A. Pizer, and K. Yamaji (2008). Mitigation from a  cross sectoral perspective. In: Climate Change 2007: Mitigation; Contribution of Working Group III to  the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, O.R.  Davidson, P.R. Bosch, R. Dave, L.A. Meyer, (eds.), Cambridge University Press, Cambridge, United  Kingdom.  Barker T., P. Ekins, and T. Foxon (2007). The macro economic rebound effect and the UK economy,  Energy Policy 35 4935 4946 pp. (DOI: 10.1016/j.enpol.2007.04.009), (ISSN: 0301 4215).  Barrett J., K. Roelich, T. Wiedmann, J. Minx, and A. Owen (2013). Learning from the past, evaluating  futures? Sustainable consumption and production evidence and applications in the UK, Environment  and Planning.  Becker L.J., C. Seligman, R.H. Fazio, and J.M. Darley (1981). Relating attitudes to residential energy  use, Environment and Behavior 13 590 609 pp. (DOI: 10.1177/0013916581135004), (ISSN: 0013 9165, 1552 390X).  Bednar Friedl B., T. Schinko, and K.W. Steininger (2012). The relevance of process emissions for  carbon leakage: A comparison of unilateral climate policy options with and without border carbon  adjustment, Energy Economics 34, Supplement 2 S168 S180 pp. (DOI: 10.1016/j.eneco.2012.08.038),  (ISSN: 0140 9883).  Bell M.L., D.L. Davis, L.A. Cifuentes, A.J. Krupnick, R.D. Morgenstern, and G.D. Thurston (2008).  Ancillary human health benefits of improved air quality resulting from climate change mitigation,  Environmental Health 7 41 pp. (DOI: 10.1186/1476 069X 7 41), (ISSN: 1476 069X).  Bentzen J. (2004). Estimating the rebound effect in US manufacturing energy consumption, Energy  Economics 26 123 134 pp. (DOI: 10.1016/S0140 9883(03)00047 1), (ISSN: 0140 9883).  Van den Bergh J.C.J.M. (2010). Energy conservation more effective with rebound policy,  Environmental and Resource Economics 48 43 58 pp. (DOI: 10.1007/s10640 010 9396 z), (ISSN:  0924 6460).  Berkhout P.H.G., J.C. Muskens, and J. W. Velthuijsen (2000). Defining the rebound effect, Energy  Policy 28 425 432 pp. (DOI: 10.1016/S0301 4215(00)00022 7), (ISSN: 0301 4215).  Biel A., and L.J.J. Lundqvist (2012). From Kyoto to the Town Hall: Making International and National  Climate Policy Work at the Local Level. Routledge (Oxford, UK), 152 pp., (ISBN: 9781136565182). .  Black C., A. Collins, and M. Snell (2001). Encouraging walking: The case of journey to school trips in  compact urban areas, Urban Studies 38 1121 1141 pp. (DOI: 10.1080/00420980124102), (ISSN:  0042 0980, 1360 063X).    67 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Blodgett J., and L. Parker (2010). Greenhouse Gas Emission Drivers: Population, Economic  Development and Growth, and Energy Use. Congressional Report Service, Washington, D.C.  Available at: http://www.cnie.org/NLE/CRSreports/10Apr/RL33970.pdf.  Blundell R., R. Griffith, and J. van Reenen (1999). Market share, market value and innovation in a  panel of British manufacturing firms, Review of Economic Studies 66 529 554 pp. .  Boden T.A., G. Marland, and R.J. Andres (2012). Global, Regional, and National Fossil Fuel CO2  Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.  Department of Energy, Oak Ridge, Tenn., U.S.A.  Boehringer C., T. Rutherford, and E. Balistreri (2012). The role of border carbon adjustment in  unilateral climate policy, insights from an EMF model comparison, Energy Economics.  Bogner J., R. Pipatti, S. Hashimoto, C. Diaz, K. Mareckova, L. Diaz, P. Kjeldsen, S. Monni, A. Faaij, Q.  Gao, T. Zhang, M.A. Ahmed, R.T.M. Sutamihardja, and R. Gregory (2008). Mitigation of global  greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel  on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation), Waste  Management & Research 26 11 32 pp. (DOI: 10.1177/0734242X07088433), (ISSN: 0734 242X, 1096 3669).  Bolla V., and V. Pendolovska (2011). Driving Forces Behind EU 27 Greenhouse Gas Emissions over  the Decade 1999 2008. Eurostat. . Available at:  http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS SF 11 010/EN/KS SF 11 010 EN.PDF.  Bollen J., B. Guay, S. Jamet, and J. Corfee Morlot (2009). Co Benefits of Climate Change Mitigation  Policies: Literature Review and New Results. OECD Publishing, Paris, France. . Available at:  http://ideas.repec.org/p/oec/ecoaaa/693 en.html.  Bond T.C., E. Bhardwaj, R. Dong, R. Jogani, S.K. Jung, C. Roden, D.G. Streets, and N.M. Trautmann  (2007). Historical emissions of black and organic carbon aerosol from energy related combustion,  1850 2000, Global Biogeochemical Cycles 21 (DOI: 10.1029/2006gb002840), (ISSN: 0886 6236).  Bond T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S.  Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondou, P.K. Quinn, M.C. Sarofim, M.G. Schultz, C.  Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W.  Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, and C.S.  Zender (2013). Bounding the role of black carbon in the climate system: A scientific assessment., J.  Geophys. Res. 118 5380 5552 pp. .  Bond T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J. H. Woo, and Z. Klimont (2004). A technology based global inventory of black and organic carbon emissions from combustion, Journal of  Geophysical Research 109 D14203 pp. .  Bosetti V., and E. Verdolini (2012). Heterogeneous Firms Trading In Ideas: An Application to Energy  Technologies. . Available at:  http://graduateinstitute.ch/files/live/sites/iheid/files/sites/cies/shared/publications/InnovationWor kshop/VB_EV_Heterogenous_Geneva.pdf.  Boucher O., and D. Randall (2013). Chapter 7: Clouds and Aerosols. Working Group I Contribution to  the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis [Stocker, T.F., D.  Qin, G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley  (eds.)].    68 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  BP (2013). BP Statistical Review of World Energy. British Petroleum, UK. . Available at:  http://www.bp.com/content/dam/bp/pdf/statistical review/statistical_review_of_world_energy_2013.pdf.  Brock W., and M. Taylor (2010). The Green Solow model, Journal of Economic Growth 15 127 153  pp. (DOI: 10.1007/s10887 010 9051 0), (ISSN: 1381 4338).  Bruckner T., O. Edenhofer, H.S. Matthews, M. Haller, M. Lüken, N. Bauer, and N. Nakicenovic  (2010). Robust options for decarbonization. In: Global Sustainability: A Nobel Cause. H. J.  Schellnhuber, M. Molina, N. Stern, V. Huber, S. Kadner, (eds.), Cambridge University Press, pp.189 204.  Bryan J.E., P.L. Shearman, G.P. Asner, D.E. Knapp, G. Aoro, and B. Lokes (2013). Extreme  differences in forest degradation in Borneo: comparing practices in Sarawak, Sabah, and Brunei, PloS  one 8 e69679 pp. (DOI: 10.1371/journal.pone.0069679), (ISSN: 1932 6203).  Burtraw D., and D. Evans (2003). The Evolution of NOx Control Policy for Coal Fired Power Plants in  the United States. Resources for the Future, Washington, D.C. Available at:  http://ideas.repec.org/p/rff/dpaper/dp 03 23.html.  Cai H., Y. Chen, and H. Fang (2009). Observational Learning: Evidence from a Randomized Natural  Field Experiment, American Economic Review 99 864 82 pp. . Available at:  http://ideas.repec.org/a/aea/aecrev/v99y2009i3p864 82.html.  Caldeira K., and S.J. Davis (2011). Accounting for carbon dioxide emissions: A matter of time,  Proceedings of the National Academy of Sciences 108 8533  8534 pp. (DOI:  10.1073/pnas.1106517108).  Calel R., and A. Dechezlepretre (2012). Environmental Policy and Directed Technological Change:  Evidence from the European Carbon Market. Centre for Climate Change Economics and Policy /  Grantham Research Institute on Climate Change and the Environment, London, UK. 35 pp. Available  at: http://www.lse.ac.uk/GranthamInstitute/publications/WorkingPapers/Papers/70 79/WP75_environmental policy european carbon market.pdf.  Carley S. (2011a). Historical analysis of U.S. electricity markets: Reassessing carbon lock in, Energy  Policy 39 720 732 pp. (DOI: 10.1016/j.enpol.2010.10.045), (ISSN: 0301 4215).  Carley S. (2011b). Historical analysis of U.S. electricity markets: Reassessing carbon lock in, Energy  Policy 39 720 732 pp. (DOI: 10.1016/j.enpol.2010.10.045), (ISSN: 0301 4215).  Carson R.T. (2010). The environmental Kuznets curve: Seeking empirical regularity and theoretical  structure, Review of Environmental Economics and Policy 4 3  23 pp. (DOI: 10.1093/reep/rep021).  Caselli F. (2005). Chapter 9 Accounting for cross country income differences. In: Handbook of  Economic Growth. P. Aghion, S. Durlauf, (eds.), Elsevier, pp.679 741(ISBN: 978 0 444 52041 8).  Chakravarty D., S. Dasgupta, and J. Roy (2013). Rebound effect: how much to worry?, Current  Opinion in Environmental Sustainability 5 216 228 pp. (DOI: 10.1016/j.cosust.2013.03.001), (ISSN:  1877 3435).  Chavez A., and A. Ramaswami (2013). Articulating a trans boundary infrastructure supply chain  greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance,  Energy Policy 54 376 384 pp. (DOI: 10.1016/j.enpol.2012.10.037), (ISSN: 0301 4215).    69 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Chawla L. (1998). Significant life experiences revisited: A review of research on sources of  environmental sensitivity, The Journal of Environmental Education 29 11 21 pp. (DOI:  10.1080/00958969809599114), (ISSN: 0095 8964).  Chawla L. (1999). Life paths into effective environmental action, The Journal of Environmental  Education 31 15 26 pp. (DOI: 10.1080/00958969909598628), (ISSN: 0095 8964).  Chetty R., A. Looney, and K. Kroft (2009). Salience and Taxation: Theory and Evidence. Board of  Governors of the Federal Reserve System (U.S.) (Washington, D.C.). . Available at:  http://ideas.repec.org/p/fip/fedgfe/2009 11.html.  Chitnis M., and L.C. Hunt (2012). What drives the change in UK household energy expenditure and  associated CO2 emissions? Implication and forecast to 2020, Applied Energy 94 202 214 pp. .  Available at: http://ideas.repec.org/a/eee/appene/v94y2012icp202 214.html.  Ciais P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M.  Heimann, C. Jones, C. Le Quéré, R. Myneni, S. Piao, and P. Thornton (2013). Carbon and other  biochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working  Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker,  T.F., D. Qin, G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.  Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.  Cialdini R.B., N.J. Goldstein, and V. Griskevicius (2006). Social norms: An underestimated and  underemployed lever for managing climate change. . Available at: http://143.236.32.231/cnr ap/UWEXLAKES/Documents/ecology/shoreland/marketing/social_norms_griskevicius.pdf.  Cian D., Enrica, M. Schymura, E. Verdolini, and S. Voigt (2013). Energy Intensity Developments in 40  Major Economies: Structural Change or Technology Improvement? Social Science Research Network,  Rochester, NY. . Available at: http://papers.ssrn.com/abstract=2264708.  Cloete B., and F. Venter (2012). Carbon Lock in: Infrastructure Investment Research Piece. NPC Low  Carbon Economy Work Programme. . Available at:  http://www.dnaeconomics.com/assets/Usematthew/Infrastructure_Lock_In_Paper_June_2012_fina l2.pdf.  Coe D., and E. Helpman (1995). International R&D spillovers, European Economic Review 39 859 887 pp. .  Coller M., and M.B. Williams (1999). Eliciting individual discount rates, Experimental Economics 2  107 127 pp. (DOI: 10.1007/BF01673482), (ISSN: 1386 4157, 1573 6938).  Cox M., M.A. Brown, and X. Sun (2013). Energy benchmarking of commercial buildings: a low cost  pathway toward urban sustainability, Environmental Research Letters 8 035018 pp. (DOI:  10.1088/1748 9326/8/3/035018), (ISSN: 1748 9326).  Dalton M., B. O Neill, A. Prskawetz, L. Jiang, and J. Pitkin (2008). Population aging and future  carbon emissions in the United States, Energy Economics 30 642 675 pp. (DOI:  10.1016/j.eneco.2006.07.002), (ISSN: 0140 9883).  Dauvergne P., and K.J. Neville (2010). Forests, food, and fuel in the tropics: the uneven social and  ecological consequences of the emerging political economy of biofuels, The Journal of Peasant  Studies 37 631 660 pp. (DOI: 10.1080/03066150.2010.512451), (ISSN: 0306 6150).    70 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Davidsdottir B., and M. Fisher (2011). The odd couple: The relationship between state economic  performance and carbon emissions economic intensity, Energy Policy 39 4551 4562 pp. (DOI:  10.1016/j.enpol.2011.04.030), (ISSN: 0301 4215).  Davidson E.A. (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous  oxide since 1860, Nature Geoscience 2 659 662 pp. (DOI: 10.1038/ngeo608), (ISSN: 1752 0894).  Davies J., M. Grant, J. Venezia, and J. Aamidor (2007). US Transportation Sector Greenhouse Gas  Emissions: Trends, Uncertainties and Methodological Improvements, TRB 2007 Annual Meeting .  Available at: http://www.uvm.edu/~transctr/pdf/email/Davies%20Article.pdf.  Davis S.J., and K. Caldeira (2010). Consumption based accounting of CO2 emissions, Proceedings of  the National Academy of Sciences 107 5687 5692 pp. (DOI: 10.1073/pnas.0906974107), (ISSN: 0027 8424, 1091 6490).  Davis S.J., K. Caldeira, and H.D. Matthews (2010). Future CO2 emissions and climate change from  existing energy infrastructure, Science 329 1330 1333 pp. (DOI: 10.1126/science.1188566), (ISSN:  0036 8075, 1095 9203).  Dechezlepretre A., M. Glanchant, I. Hascic, N. Johnstone, and Y. Meniere (2008). Invention and  Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent  Data. MPT, Cerna and AFD, France. 48 pp. Available at:  http://www.cerna.ensmp.fr/images/stories/file/Poznan/final_report_090112.pdf.  DEFRA (2012). 2012 Guidelines to Defra / DECC s GHG Conversion Factors for Company Reporting:  Methodology Paper for Emission Factors. Department for Environment Food and Rural Affairs  (DEFRA) UK. . Available at:  https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69568/pb13792 emission factor methodology paper 120706.pdf.  DellaVigna S. (2009). Psychology and economics: Evidence from the field, Journal of Economic  Literature 47 315 72 pp. . Available at: http://ideas.repec.org/a/aea/jeclit/v47y2009i2p315 72.html.  Dhakal S. (2009). Urban energy use and carbon emissions from cities in China and policy implications,  Energy Policy 37 4208 4219 pp. (DOI: doi: 10.1016/j.enpol.2009.05.020), (ISSN: 0301 4215).  Dietz T., and E.A. Rosa (1997). Effects of population and affluence on CO2 emissions, Proceedings of  the National Academy of Sciences 94 175  179 pp. . Available at:  http://www.pnas.org/content/94/1/175.abstract.  Dietzenbacher E., and A.R. Hoen (1998). Deflation of input output tables from the user s point of  view: A heuristic approach, Review of Income and Wealth 44 111 22 pp. . Available at:  http://ideas.repec.org/a/bla/revinw/v44y1998i1p111 22.html.  Dietzenbacher E., and H. J. Wagener (1999). Prices in the two Germanies, Journal of Comparative  Economics 27 131 149 pp. . Available at: http://ideas.repec.org/a/eee/jcecon/v27y1999i1p131 149.html.  Dittrich M., and S. Bringezu (2010). The physical dimension of international trade: Part 1: Direct  global flows between 1962 and 2005, Ecological Economics 69 1838 1847 pp. .    71 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Dolan P., M. Hallsworth, D. Halpern, D. King, R. Metcalfe, and I. Vlaev (2012). Influencing  behaviour: The mindspace way, Journal of Economic Psychology 33 264 277 pp. (DOI:  10.1016/j.joep.2011.10.009), (ISSN: 0167 4870).  Durlauf S., P. Johnson, and J. Temple (2005). Chapter 8 Growth econometrics. In: Handbook of  Economic Growth. P. Aghion, S. Durlauf, (eds.), Elsevier, pp.555 677(ISBN: 978 0 444 52041 8).  Dwyer W.O., and F.C. Leeming (1993). Critical review of behavioral interventions to preserve the  environment research since 1980, Environment and Behavior 25 275 321 pp. .  Eberhardt M., and F. Teal (2011). Econometrics for grumblers: A new look at the literature on cross country growth empirics, Journal of Economic Surveys 25 109 155 pp. (DOI: 10.1111/j.1467 6419.2010.00624.x), (ISSN: 1467 6419).  Edenhofer O., K. Seyboth, F. Creutzig, and S. Schlömer (2013). On the Sustainability of Renewable  Energy Sources, Annual Review of Environment and Resources 38 169 200 pp. (DOI:  10.1146/annurev environ 051012 145344).  Edwards S. (2001). Openness, productivity and growth: What do we really know?, The Economic  Journal 108 383 398 pp. .  Ehrlich P.R., and J.P. Holdren (1971). Impact of population growth, Science 171 1212 1217 pp. (DOI:  10.1126/science.171.3977.1212), (ISSN: 0036 8075, 1095 9203).  Elzen M.G.J., J.G.J. Olivier, N. Höhne, and G. Janssens Maenhout (2013). Countries  contributions to  climate change: effect of accounting for all greenhouse gases, recent trends, basic needs and  technological progress, Climatic Change 121 397 412 pp. (DOI: 10.1007/s10584 013 0865 6), (ISSN:  0165 0009 1573 1480).  Erb K. H., H. Haberl, and C. Plutzar (2012). Dependency of global primary bioenergy crop potentials  in 2050 on food systems, yields, biodiversity conservation and political stability, Energy Policy 47  260 269 pp. (DOI: 10.1016/j.enpol.2012.04.066), (ISSN: 0301 4215).  Etheridge D.M., L.P. Steele, R.J. Francey, and R.L. Langenfelds (2002). Historical CH4 Records Since  About 1000 A.D. From Ice Core Data. Carbon Dioxide Information Analysis Center, Oak Ridge  National Laboratory, U.S. Department of Energy.  Etheridge D.M., L.P. Steele, R.L. Langenfelds, R.J. Francey, J. M. Barnola, and V.I. Morgan (1996).  Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic  ice and firn, Journal of Geophysical Research: Atmospheres 101 4115 4128 pp. (DOI:  10.1029/95JD03410), (ISSN: 2156 2202).  European Environment Agency (2009). Greenhouse Gas Emission Trends and Projections in Europe  2009. EEA   European Environment Agency Denmark. . Available at:  http://www.eea.europa.eu/publications/eea_report_2009_9.  Ewing M., and S. Msangi (2009). Biofuels production in developing countries: assessing tradeoffs in  welfare and food security, Environmental Science & Policy 12 520 528 pp. (DOI:  10.1016/j.envsci.2008.10.002), (ISSN: 1462 9011).  Exley S., and I. Christie (2002). Off the buses? In: British Social Attitudes: The 19th Report British  social attitudes: The 19th report. SAGE Publications Ltd, London, UK pp.1 26(ISBN: 9780761974543,  9781849208659).    72 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Eyring V., I.S.A. Isaksen, T. Berntsen, W.J. Collins, J.J. Corbett, O. Endresen, R.G. Grainger, J.  Moldanova, H. Schlager, and D.S. Stevenson (2010). Transport impacts on atmosphere and climate:  Shipping, Atmospheric Environment 44 4735 4771 pp. (DOI: 10.1016/j.atmosenv.2009.04.059),  (ISSN: 1352 2310).  Faber J., A. Schroten, M. Bles, M. Sevenster, and A. Markowska (2012). Behavioural Climate Change  Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios.  European Environment Agency, Denmark. . Available at:  http://ec.europa.eu/clima/policies/roadmap/docs/main_report_en.pdf.  Fan Y., L. C. Liu, G. Wu, and Y. M. Wei (2006). Analyzing impact factors of CO2 emissions using the  STIRPAT model, Environmental Impact Assessment Review 26 377 395 pp. (DOI: doi:  10.1016/j.eiar.2005.11.007), (ISSN: 0195 9255).  Fan Y., and Y. Xia. Exploring energy consumption and demand in China, Energy 40 23 30 pp. .  FAOSTAT (2014). Food and Agriculture Organization of the United Nations. . Available at:  faostat.fao.org.  Ferraro P.J., and M.K. Price (2011). Using Non Pecuniary Strategies to Influence Behavior: Evidence  from a Large Scale Field Experiment. National Bureau of Economic Research, Cambridge, MA. .  Available at: http://www.nber.org/papers/w17189.  Filippini M., and L.C. Hunt (2011). Energy demand and energy efficiency in the OECD countries: A  stochastic demand frontier approach, The Energy Journal 32 (DOI: 10.5547/ISSN0195 6574 EJ Vol32 No2 3), (ISSN: 01956574).  Fisher B.S., and N. Nakicenovic (2008). Issues related to mitigation in the long term context. In:  Climate Change 2007: Mitigation; Contribution of Working Group III to the Fourth Assessment Report  of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A.  Meyer (eds)]. Cambridge University Press, Cambridge, UK, and New York, USA., .  Fisher Vanden K., and M.S. Ho (2010). Technology, development, and the environment, Journal of  Environmental Economics and Management 59 94 108 pp. (DOI: 10.1016/j.jeem.2009.08.002),  (ISSN: 0095 0696).  Fiske S.T., and B. Morling (1996). Stereotyping as a function of personal control motives and  capacity constraints: The odd couple of power and anxiety. Handbook of Motivation and Cognition.  In: Handbook of motivation and cognition, Vol. 3:  The interpersonal context. R.M. Sorrentino, E.T.  Higgins, (eds.), Guilford Press, New York,  NY,  US pp.322 346(ISBN: 1 57230 052 3 (Hardcover)).  Foley J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C.  Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz,  I.C. Prentice, N. Ramankutty, and P. Snyder (2005). Global consequences of land use, Science 309  570 574 pp. .  Fouquet R. (2008). Heat, Power and Light: Revolutions in Energy Services. Edward Elgar Publishing,  UK, (ISBN: 978 1 84542 660 6). .  Fouquet R. (2012). Trends in income and price elasticities of transport demand (1850 2010), Energy  Policy 50 62 71 pp. (DOI: 10.1016/j.enpol.2012.03.001), (ISSN: 0301 4215).    73 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Fredriksson P.G., H.R.J. Vollebergh, and E. Dijkgraaf (2004). Corruption and energy efficiency in  OECD countries: Theory and evidence, Journal of Environmental Economics and Management 47  207 231 pp. . Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=703969.  Freight Vision (2009). Freight Transport Foresight 2050. Transport Related Emission Trends 2000 2050: Deliverable 4.4. 7th Research Framework Program, DG TREN, Helsinki, Finland. Available at:  http://www.freightvision.eu/files/D4.4.pdf.  Freire González J. (2010). Empirical evidence of direct rebound effect in Catalonia, Energy Policy 38  2309 2314 pp. (DOI: 10.1016/j.enpol.2009.12.018), (ISSN: 0301 4215).  Frey B.S., and S. Meier (2004). Pro social behavior in a natural setting, Journal of Economic Behavior  & Organization 54 65 88 pp. . Available at: http://ideas.repec.org/a/eee/jeborg/v54y2004i1p65 88.html.  Frondel M., N. Ritter, and C. Vance (2012). Heterogeneity in the rebound effect: Further evidence  for Germany, Energy Economics 34 461 467 pp. (DOI: 10.1016/j.eneco.2011.10.016), (ISSN: 0140 9883).  Fuhrer U., F.G. Kaiser, J. Seiler, and M. Maggi (1995). From social representations to environmental  concern: the influence of face to face versus mediated communication, Fuhrer U (ed.) Ökologisches  Handeln als sozialer Prozess 61 75. pp. .  Gales B., A. Kander, P. Malanima, and M. Rubio (2007). North versus south: Energy transition and  energy intensity in Europe over 200 years, European Review of Economic History 11 219 253 pp.  (DOI: 10.1017/S1361491607001967).  Gallagher K.P. (2009). Economic globalization and the environment, Annual Review of Environment  and Resources 34 279 304 pp. (DOI: 10.1146/annurev.environ.33.021407.092325).  Gardner G.T., and P.C. Stern (1996). Environmental Problems and Human Behavior. Allyn and Bacon,  Boston, MA, 392 pp., (ISBN: 9780205156054). .  GEA (2012). Global Energy Assessment, Toward a More Sustainable Future. Cambridge University  Press, Cambridge, UK, and New York, USA., 1885 pp., (ISBN: 9780521182935). .  Geist H., and E. Lambin (2002). Proximate causes and underlying driving forces of tropical  deforestation, BioScience 52 143 150 pp. . Available at: http://dx.doi.org/10.1641/0006 3568(2002)052%5B0143:PCAUDF%5D2.0.CO;2.  Geller E.. (2002). Chapter 34: The challenge of increasing proenvironmental behavior, Handbook of  Environmental Psychology.  Ghosh P. (2006). A partnership for a decarbonised energy future, World Affairs the Journal of  International Issues 10.  Gilli P.V., N. Nakicenovic, A. Grubler, and F.L. Bodda (1990). Technischer Fortschritt, Strukturwandel  und Effizienz der Energieanwendung: Trends weltweit und in Österreich. Österreichische  Elektrizitätswirtschafts AG Verbundgesellschaft, 331 pp.  Gillingham K., M.J. Kotchen, D.S. Rapson, and G. Wagner (2013). Energy policy: The rebound effect  is overplayed, Nature 493 475 476 pp. (DOI: 10.1038/493475a), (ISSN: 0028 0836).    74 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Gillingham K., R.G. Newell, and K. Palmer (2009). Energy efficiency economics and policy, Annual  Review of Resource Economics 1 597 620 pp. (DOI: 10.1146/annurev.resource.102308.124234),  (ISSN: 1941 1340, 1941 1359).  Goldstein N.J., R.B. Cialdini, and V. Griskevicius (2008). A room with a viewpoint: Using social norms  to motivate environmental conservation in hotels, Journal of Consumer Research 35 472 482 pp. .  Available at: http://ideas.repec.org/a/ucp/jconrs/v35y2008i3p472 482.html.  Golub A., T. Hertel, and B. Sohngen (2008). Land Use Modeling in Recursively Dynamic GTAP  Framework. Center for Global Trade Analysis, Department of Agricultural Economics, Purdue  University. . Available at: https://www.gtap.agecon.purdue.edu/resources/download/3679.pdf.  Greene D.L. (2011). Uncertainty, loss aversion, and markets for energy efficiency, Energy Economics  33 608 616 pp. (DOI: 10.1016/j.eneco.2010.08.009), (ISSN: 0140 9883).  Greening L.A., D.L. Greene, and C. Difiglio (2000). Energy efficiency and consumption   the rebound  effect   a survey, Energy Policy 28 389 401 pp. (ISSN: 0301 4215).  Gregg J.S., R.J. Andres, and G. Marland (2008). China: Emissions pattern of the world leader in CO2  emissions from fossil fuel consumption and cement production, Geophysical Research Letters 35  (DOI: 10.1029/2007gl032887), (ISSN: 0094 8276).  Grossman G.M., and A.B. Krueger (1994). Economic Growth and the Environment. National Bureau  of Economic Research. . Available at: http://www.nber.org/papers/w4634.  Grubb M., J.C. Hourcade, and K. Neuhoff (2013). Planetary Economics: Energy, Climate Change and  the Three Domains of Sustainable Development. Rutledge, Oxford and New York., (ISBN:  9780415518826  0415518822). .  Grubler A. (2008). Energy Transitions, Encyclopedia of Earth Environmental Information Coalition,  National Council for Science and the Environment, Washington, DC . Available at:  http://www.eoearth.org/article/Energy_transitions.  Grübler A., T.B. Johansson, L. Mundaca, N. Nakicenovic, S. Pachauri, K. Riahi, H.H. Rogner, and L.  Strupeit (2012). Chapter 1   Energy primer. In: Global Energy Assessment. IIASA and Cambridge  University Press, Cambridge, UK(ISBN: 9781107005198).  Grübler A., and N. Nakiæenoviæ (1996). Decarbonizing the global energy system, Technological  Forecasting and Social Change 53 97 110 pp. (DOI: 10.1016/0040 1625(96)00049 2), (ISSN: 0040 1625).  Grübler A., N. Nakicenovic, and D.G. Victor (1999). Modeling technological change: implications for  the global environment, Annual Review of Energy and the Environment 24 545 569 pp. . Available at:  http://www.annualreviews.org/doi/abs/10.1146/annurev.energy.24.1.545.  Guan D.B., Z. Liu, Y. Geng, S. Lindner, and K. Hubacek (2012). The gigatonne gap in China s carbon  dioxide inventories, Nature Climate Change 2 672 675 pp. (DOI: 10.1038/Nclimate1560), (ISSN:  1758 678X).  Gustavsson J., C. Cederberg, U. Sonesson, R. van Otterdijk, and A. Meybeck (2011). Global Food  Losses and Food Waste FAO Report. Food and Agriculture Organization (FAO) of the United Nations. .  Available at: http://www.2degreesnetwork.com/preview/resource/global food losses and food waste fao report/.    75 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  De Haan M. (2001). A structural decomposition analysis of pollution in the Netherlands, Economic  Systems Research 13 181 196 pp. (DOI: 10.1080/09537320120052452), (ISSN: 0953 5314).  Haas R., and P. Biermayr (2000). Energy Policy . The rebound effect for space heating empirical  evidence from Austria, Energy Policy 28 403 410 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v28y2000i6 7p403 410.html.  Hamilton J.D. (2009). Causes and consequences of the oil shock of 2007 08, Brookings Papers on  Economic Activity 2009 215 284 pp. . Available at:  http://www.brookings.edu/~/media/Projects/BPEA/Spring%202009/2009a_bpea_hamilton.PDF.  Hartmann J., A.J. West, P. Renforth, P. Köhler, C.L. De La Rocha, D.A. Wolf Gladrow, H.H. Dürr, and  J. Scheffran (2013). Enhanced chemical weathering as a geoengineering strategy to reduce  atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification: Enhanced  weathering, Reviews of Geophysics 51 113 149 pp. (DOI: 10.1002/rog.20004), (ISSN: 87551209).  Hausman J.A. (1979). Individual discount rates and the purchase and utilization of energy using  durables, The Bell Journal of Economics 10 33 54 pp. .  Havrylyshyn O. (1990). Trade policy and productivity gains in developing countries: A survey of the  literature, The World Bank Research Observer 5 1 24 pp. (DOI: 10.1093/wbro/5.1.1).  Hayhoe K., H.S. Kheshgi, A.K. Jain, and D.J. Wuebbles (2002). Substitution of natural gas for coal:  Climatic effects of utility sector emissions, Climatic Change 54 107 139 pp. (DOI:  10.1023/A:1015737505552), (ISSN: 0165 0009).  Heitmann N., and S. Khalilian (2011). Accounting for carbon dioxide emissions from international  shipping: Burden sharing under different UNFCCC allocation options and regime scenarios, Marine  Policy 35 682 691 pp. (DOI: 10.1016/j.marpol.2011.02.009), (ISSN: 0308 597X).  Henriksen C., K. Hussey, and P. Holm (2011). Exploiting soil management strategies for climate  mitigation in the European Union: Maximizing  win win  solutions across policy regimes, Ecology  and  Society 16 22 pp. .  Henriques S.T., and A. Kander (2010). The modest environmental relief resulting from the transition  to a service economy, Ecological Economics 70 271 282 pp. (DOI: 10.1016/j.ecolecon.2010.08.010),  (ISSN: 0921 8009).  Hertwich E.G., and G.P. Peters (2009). Carbon footprint of nations: A global, trade linked analysis,  Environ. Sci. Technol. 43 6414 6420 pp. (DOI: 10.1021/es803496a), (ISSN: 0013 936X).  Hettige H., M. Mani, and D. Wheeler (2000). Industrial pollution in economic development: the  environmental Kuznets curve revisited, Journal of Development Economics 62 445 476 pp. (DOI:  10.1016/S0304 3878(00)00092 4), (ISSN: 0304 3878).  Hill J., S. Polasky, E. Nelson, D. Tilman, H. Huo, L. Ludwig, J. Neumann, H. Zheng, and D. Bonta  (2009). Climate change and health costs of air emissions from biofuels and gasoline, Proceedings of  the National Academy of Sciences, Washington, D.C. pnas.0812835106 pp. (DOI:  10.1073/pnas.0812835106), (ISSN: 0027 8424, 1091 6490).  Höglund Isaksson L., W. Winiwarter, P. Purohit, P. Rafaj, W. Schöpp, and Z. Klimont (2012). EU low  carbon roadmap 2050: Potentials and costs for mitigation of non CO2 greenhouse gas emissions,  Energy Strategy Reviews 1 97 108 pp. (DOI: 10.1016/j.esr.2012.05.004), (ISSN: 2211 467X).    76 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Holland S.P. (2010). Spillovers from Climate Policy. National Bureau of Economic Research. .  Available at: http://www.nber.org/papers/w16158.  Holtedahl P., and F.L. Joutz (2004). Residential electricity demand in Taiwan, Energy Economics 26  201 224 pp. . Available at: http://ideas.repec.org/a/eee/eneeco/v26y2004i2p201 224.html.  Hong L., Z. Pei Dong, H. Chunyu, and W. Gang (2007). Evaluating the effects of embodied energy in  international trade on ecological footprint in China, Ecological Economics 62 136 148 pp. .  Houghton R.A. (2007). Balancing the global carbon budget, Annual Review of Earth and Planetary  Sciences 35 313 347 pp. (DOI: 10.1146/annurev.earth.35.031306.140057).  Houghton R.A. (2008). Carbon Flux to the Atmosphere from Land Use Changes: 1850 2005, TRENDS:  A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge  National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.  Houghton R.A., G.R. van der Werf, R.S. DeFries, M.C. Hansen, J.I. House, C. Le Quéré, J. Pongratz,  and N. Ramankutty (2012). Chapter G2 Carbon emissions from land use and land cover change,  Biogeosciences Discussions 9 835 878 pp. (DOI: 10.5194/bgd 9 835 2012), (ISSN: 1810 6285).  Hourcade J., D. Demailly, K. Neuhoff, and M. Sato (2008). Differentiation and Dynamics of EU ETS  Industrial Competitiveness Impacts: Final Report. Institute for Sustainable Development and  International Relations (IDDRI), Paris, France. . Available at:  http://www.iddri.org/Evenements/Interventions/070622_workshopberlin_Competitiveness_interim _report.pdf.  House of Commons (2012). Consumption Based Emissions Reporting. Twelfth Report of Session  2010 12. House of Commons Energy and Climate Change Committee, London, UK. . Available at:  http://www.publications.parliament.uk/pa/cm201012/cmselect/cmenergy/1646/1646vw.pdf.  Van Houwelingen J.H., and W.F. Van Raaij (1989). The effect of goal setting and daily electronic  feedback on in home energy use, Journal of consumer research 16 98 105 pp. .  Howarth R.B. (1997). Energy efficiency and economic growth, Contemporary Economic Policy XV .  Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=49080.  Hummels D., J. Ishii, and K. M. Yi (2001). The nature and growth of vertical specialization in world  trade, Journal of International Economics 54 75 96 pp. .  Hunt A., and M. Sendhil (2010). Behavior and energy policy, Science 327 1204 1205 pp. . Available  at: www.sciencemag.org.  IEA (2009). World Energy Outlook 2009. OECD, Paris, (ISBN: 978 92 64 06130 9). .  IEA (2012). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. Available at:  http://data.iea.org.  International Energy Agency (2002). World Energy Outlook 2002. Organisation for Economic Co Operation and Development, Paris, (ISBN: 9789264198357). .  International Energy Agency (2003). World Energy Outlook 2003. Organisation for Economic Co Operation and Development, Paris, (ISBN: 9789264019065). .    77 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  International Energy Agency (2006). World Energy Outlook 2006. Organisation for Economic Co Operation and Development, Paris, (ISBN: 9789264109896). .  International Energy Agency (2008). World Energy Outlook 2008. Organisation for Economic Co Operation and Development, Paris, (ISBN: 9789264045606). .  IPCC (1997). IPCC Guidelines for National Greenhouse Gas Inventories. Vol.3. Greenhouse Gas  Inventory Reference Manual. Revised 1996. Intergovernmental Panel on Climate Change, Japan. .  Available at: http://www.ipcc nggip.iges.or.jp/public/gl/invs6.html.  IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National  Greenhouse Gas Inventories Programme [Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K.  (eds)]. Intergovernmental Panel on Climate Change, Japan. . Available at: http://www.ipcc nggip.iges.or.jp/public/2006gl/index.htm.  IPCC (2007a). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to  the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing  Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 52 pp. Available at:  www.ipcc.ch.  IPCC (2007b). Climate Change 2007   Mitigation of Climate Change: Working Group III Contribution  to the Fourth Assessment Report of the IPCC [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer  (eds)]. Cambridge University Press, Cambridge, UK, and New York, USA, 863 pp., (ISBN:  9781139468640). .  Ivy D.J., M. Rigby, M. Baasandorj, J.B. Burkholder, and R.G. Prinn (2012). Global emission estimates  and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18, Atmospheric Chemistry and Physics  12 7635 7645 pp. (DOI: 10.5194/Acp 12 7635 2012), (ISSN: 1680 7316).  Jack D.W., and P.L. Kinney (2010). Health co benefits of climate mitigation in urban areas, Current  Opinion in Environmental Sustainability 2 172 177 pp. (DOI: 10.1016/j.cosust.2010.06.007), (ISSN:  1877 3435).  Jackson T. (2005). Live better by consuming less?: Is there a  double dividend  in sustainable  consumption?, Journal of Industrial Ecology 9 19 36 pp. (DOI: 10.1162/1088198054084734), (ISSN:  1530 9290).  Jakob M.A. (2011). Reframing International Climate Policy: Essays on Development Issues and  Fragmented Regimes, Ein neuer Analyserahmen für die internationale Klimapolitik: Essays zu  Entwicklungsfragen und fragmentierten Regimen. . Available at: http://opus4.kobv.de/opus4 tuberlin/frontdoor/index/index/docId/2949.  Jakob M., M. Haller, and R. Marschinski (2012). Will history repeat itself? Economic convergence  and convergence in energy use patterns, Energy Economics 34 95 104 pp. (DOI:  10.1016/j.eneco.2011.07.008), (ISSN: 0140 9883).  Jakob M., and R. Marschinski (2013). Interpreting trade related CO2 emission transfers, Nature  Climate Change 3 19 23 pp. (DOI: 10.1038/nclimate1630), (ISSN: 1758 678X).  Javorcik B.S. (2004). Does foreign direct investment increase the productivity of domestic firms? In  search of spillovers through backward linkages, American Economic Review 94 605 627 pp. .    78 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Jolley A. (2004). New Technologies, Industry Developments and Emission Trends in Key Sectors: The  Land Transportation Sector. Victoria University, Melbourne, AU. . Available at:  http://vuir.vu.edu.au/390/.  Jorgenson A.K., and B. Clark (2010). Assessing the temporal stability of the population/environment  relationship in comparative perspective: a cross national panel study of carbon dioxide emissions,  1960 2005, Population and Environment 32 27 41 pp. (DOI: 10.1007/s11111 010 0117 x), (ISSN:  0199 0039, 1573 7810).  Jorgenson D.W., and Z. Griliches (1967). The explanation of productivity change, The Review of  Economic Studies 34 249 283 pp. (DOI: 10.2307/2296675), (ISSN: 0034 6527).  Jotzo F., P.J. Burke, P.J. Wood, A. Macintosh, and D.I. Stern (2012). Decomposing the 2010 global  carbon dioxide emissions rebound, Nature Climate Change 2 213 214 pp. (DOI:  10.1038/nclimate1450), (ISSN: 1758 678X).  JRC/PBL (2012). European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR), release version  4.2 FT2010. . Available at: http://edgar.jrc.ec.europa.eu/index.php.  Kahneman D., P. Slovic, and A. Tversky (Eds.) (1982). Judgment under Uncertainty: Heuristics and  Biases. Cambridge University Press, Cambridge, UK, and New York, USA., 544 pp., (ISBN:  0521284147). .  Kander A. (2005). Baumol s disease and dematerialization of the economy, Ecological Economics 55  119 130 pp. (DOI: 10.1016/j.ecolecon.2004.10.008), (ISSN: 0921 8009).  Kanemoto K., M. Lenzen, G.P. Peters, D.D. Moran, and A. Geschke (2012). Frameworks for  comparing emissions associated with production, consumption, and international trade,  Environmental Science & Technology 46 172 179 pp. (DOI: 10.1021/es202239t), (ISSN: 0013 936X).  Karanfil F., and Y. Yeddir Tamsamani (2010). Energy Policy . Is technological change biased toward  energy? A multi sectoral analysis for the French economy, Energy Policy 38 1842 1850 pp. .  Available at: http://ideas.repec.org/a/eee/enepol/v38y2010i4p1842 1850.html.  Kaufmann R.K. (2004). The mechanisms for autonomous energy efficiency increases: A cointegration  analysis of the US energy/GDP ratio, The Energy Journal 25 63 86 pp. (ISSN: 01956574).  Kaya Y. (1990). Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of  Proposed Scenarios, IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris,  France. Paris. 1990, .  Keller W. (2000). Do trade patterns and technology flows affect productivity growth?, The World  Bank Economic Review 14 17 47 pp. .  Keller W., and S. Yeaple (2009). Multinational enterprises, international trade, and productivity  growth: Firm level evidence from the United States, Review of Economics and Statistics 91 821 831  pp. .  Kennedy C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A. Phdungsilp,  A. Ramaswami, and G.V. Mendez (2009). Greenhouse gas emissions from global cities,  Environmental Science and Technology 43 7297 7302 pp. . Available at:    79 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  http://www.scopus.com/inward/record.url?eid=2 s2.0 70349617486&partnerID=40&md5=37442767d9f4778060f56bc8e97f98c2.  Kim E. (2000). Trade liberalization and productivity growth in Korean manufacturing industries: price  protection, market power, and scale efficiency, Journal of Development Economics 62 55 83 pp. .  Kirschke S., P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D.  Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser,  M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J. F. Lamarque, R.L.  Langenfelds, C. Le Quéré, V. Naik, S. O Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G.  Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P.  Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. van der Werf, A. Voulgarakis, M. van Weele, R.F. Weiss,  J.E. Williams, and G. Zeng (2013). Three decades of global methane sources and sinks, Nature  Geoscience 6 813 823 pp. (DOI: 10.1038/ngeo1955), (ISSN: 1752 0894 1752 0908).  Klimont Z., S.J. Smith, and J. Cofala (2013a). The last decade of global anthropogenic sulfur dioxide:  2000 2011 emissions, Environmental Research Letters 8 014003 pp. (DOI: 10.1088/1748 9326/8/1/014003), (ISSN: 1748 9326).  Klimont Z., S.J. Smith, and J. Cofala (2013b). The last decade of global anthropogenic sulfur dioxide:  2000 2011 emissions, Environmental Research Letters 8 014003 pp. (DOI: 10.1088/1748 9326/8/1/014003), (ISSN: 1748 9326).  Kollmuss A., and J. Agyeman (2002). Mind the Gap: Why do people act environmentally and what  are the barriers to pro environmental behavior?, Environmental Education Research 8 239 260 pp.  (DOI: 10.1080/13504620220145401), (ISSN: 1350 4622).  Koopman R., Z. Wang, and S. J. Wei (2008). How Much of Chinese Exports is Really Made In China?  Assessing Domestic Value Added When Processing Trade is Pervasive. National Bureau of Economic  Research, Cambridge, MA. . Available at: http://www.nber.org/papers/w14109.  Koornneef J., A. Ramírez, W. Turkenburg, and A. Faaij (2012). The environmental impact and risk  assessment of CO2 capture, transport and storage   An evaluation of the knowledge base, Progress  in Energy and Combustion Science 38 62 86 pp. (DOI: 10.1016/j.pecs.2011.05.002), (ISSN: 0360 1285).  Krausmann F., H. Schandl, and R.P. Sieferle (2008). Socio ecological regime transitions in Austria  and the United Kingdom, Ecological Economics 65 187 201 pp. (DOI:  10.1016/j.ecolecon.2007.06.009), (ISSN: 0921 8009).  Kubiszewski I., R. Costanza, C. Franco, P. Lawn, J. Talberth, T. Jackson, and C. Aylmer (2013).  Beyond GDP: Measuring and achieving global genuine progress, Ecological Economics 93 57 68 pp.  (DOI: 10.1016/j.ecolecon.2013.04.019), (ISSN: 0921 8009).  Lamarque J.F., T.C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D.S. Lee, C. Liousse, A. Mieville,  B. Owen, M. Schultz, D. Shindell, S.J. Smith, E. Stehfest, J. van Aardenne, O. Cooper, M. Kainuma, N.  Mahowald, J.R. McConnell, K. Riahi, and D. van Vuuren (2010). Historical (1850 2000) gridded  anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and  application, Atmospheric Chemistry and Physics 10 7017 7039 pp. .  Lancaster K. (1965). The theory of qualitative linear systems, Econometrica 33 395 408 pp. (DOI:  10.2307/1909797), (ISSN: 0012 9682).    80 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Layton D., E. Jenkins, S. Macgill, and A. Davey (1993). Inarticulate Science? Perspectives on the  Public Understanding of Science and Some Implications for Science Education. Studies in Education,  (ISBN: 090548455X  9780905484556). .  Lenzen M. (2011). Aggregation versus disaggregation in input output analysis of the environment,  Economic Systems Research 23 73 89 pp. (ISSN: 0953 5314).  Lenzen M., B. Gallego, and R. Wood (2009). Matrix balancing under conflicting information,  Economic Systems Research 21 23 44 pp. (DOI: 10.1080/09535310802688661), (ISSN: 0953 5314).  Lenzen M., L. L. Pade, and J. Munksgaard (2004). CO2 multipliers in multi region input output  models, Economic Systems Research 16 391 412 pp. (DOI: 10.1080/0953531042000304272), (ISSN:  0953 5314).  Lenzen M., M. Wier, C. Cohen, H. Hayami, S. Pachauri, and R. Schaeffer (2006). A comparative  multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and  Japan, Energy 31 181 207 pp. (DOI: doi: 10.1016/j.energy.2005.01.009), (ISSN: 0360 5442).  Lenzen M., R. Wood, and T. Wiedmann (2010). Uncertainty analysis for multi region input output  models   a case study of the Uk s carbon footprint, Economic Systems Research 22 43 63 pp. (DOI:  10.1080/09535311003661226), (ISSN: 0953 5314).  Lescaroux F. (2011). Dynamics of final sectoral energy demand and aggregate energy intensity,  Energy Policy 39 66 82 pp. (DOI: 10.1016/j.enpol.2010.09.010), (ISSN: 0301 4215).  Li Y., and C.N. Hewitt (2008). The effect of trade between China and the UK on national and global  carbon dioxide emissions, Energy Policy 36 1907 1914 pp. (DOI: 10.1016/j.enpol.2008.02.005),  (ISSN: 0301 4215).  Liao H., Y. Fan, and Y. M. Wei (2007). What induced China s energy intensity to fluctuate: 1997 2006?, Energy Policy 35 4640 4649 pp. (DOI: 10.1016/j.enpol.2007.03.028), (ISSN: 0301 4215).  Liddle B. (2011). Consumption driven environmental impact and age structure change in OECD  countries: A cointegration STIRPAT analysis, Demographic Research Volume 24 749 770 pp. .  Available at: www.demographic research.org/Volumes/Vol24/30/.  Liddle B., and S. Lung (2010). Age structure, urbanization, and climate change in developed  countries: Revisiting STIRPAT for disaggregated population and consumption related environmental  impacts, Population and Environment 31 317 343 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 77952429903&partnerID=40&md5=44342c066f5991af0d9456a5b996feac.  Lim H. J., S. H. Yoo, and S. J. Kwak (2009). Industrial CO2 emissions from energy use in Korea: A  structural decomposition analysis, Energy Policy 37 686 698 pp. (DOI: 10.1016/j.enpol.2008.10.025),  (ISSN: 0301 4215).  Linares P., and X. Labandeira (2010). Energy efficiency: Economics and policy, Journal of Economic  Surveys 24 573 592 pp. . Available at:  http://econpapers.repec.org/article/blajecsur/v_3a24_3ay_3a2010_3ai_3a3_3ap_3a573 592.htm.  Lindner S., J. Legault, and D. Guan (2012). Disaggregating input output models with incomplete  information, Economic Systems Research 24 329 347 pp. (DOI: 10.1080/09535314.2012.689954),  (ISSN: 0953 5314).    81 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Lindner S., J. Legault, and D. Guan (2013). Disaggregating the electricity sector of China s input output table for improved environmental life cycle assessment, Economic Systems Research 25 300 320 pp. (DOI: 10.1080/09535314.2012.746646), (ISSN: 0953 5314).  Liu Z. (2009). Thinking of Economic Transformation of Coal Resource Based Cities in Shanxi. .  Available at: http://old.sxgov.cn/qj/nr/622963.shtml (in Chinese).  Liu L. C., G. Wu, J. N. Wang, and Y. M. Wei (2011). China s carbon emissions from urban and rural  households during 1992 2007, Journal of Cleaner Production 19 1754 1762 pp. (DOI: doi:  10.1016/j.jclepro.2011.06.011), (ISSN: 0959 6526).  Lovins A.B. (1988). Energy saving from the adoption of more efficient appliances: Another view, The  Energy Journal 9 155 162 pp. (ISSN: 0195 6574).  Lu Z., Q. Zhang, and D.G. Streets (2011). Sulfur dioxide and primary carbonaceous aerosol emissions  in China and India, 1996 2010, Atmospheric Chemistry and Physics 11 9893 9864 pp. (DOI:  doi:10.5194/acp 11 9839 2011).  Ma C., and D.I. Stern (2008). China s changing energy intensity trend: A decomposition analysis,  Energy Economics 30 1037 1053 pp. (DOI: 10.1016/j.eneco.2007.05.005), (ISSN: 0140 9883).  Macknick J. (2011). Energy and CO2 emission data uncertainties, Carbon Management 2 189 205 pp.  (DOI: 10.4155/Cmt.11.10), (ISSN: 1758 3004).  Mäenpää I., and H. Siikavirta (2007). Greenhouse gases embodied in the international trade and  final consumption of Finland: An input output analysis, Energy Policy 35 128 143 pp. (DOI:  10.1016/j.enpol.2005.10.006), (ISSN: 0301 4215).  Malla S. (2009). CO2 emissions from electricity generation in seven Asia Pacific and North American  countries: A decomposition analysis, Energy Policy 37 1 9 pp. (DOI: 10.1016/j.enpol.2008.08.010),  (ISSN: 0301 4215).  Mann W., L. Lipper, T. Tennigkeit, N. McCarthy, and G. Branca (2009). Food Security and  Agricultural Mitigation in Developing Countries: Options for Capturing Synergies. Food and  Agriculture Organization (FAO) of the United Nations, Rome, Italy. . Available at:  http://www.fao.org/docrep/012/i1318e/i1318e00.pdf.  Marechal K. (2009). An evolutionary perspective on the economics of energy consumption: the  crucial role of habits, Journal of Economic Issues XLIII 69 88 pp. .  Markandya A., B.G. Armstrong, S. Hales, A. Chiabai, P. Criqui, S. Mima, C. Tonne, and P. Wilkinson  (2009). Public health benefits of strategies to reduce greenhouse gas emissions: low carbon  electricity generation, The Lancet 374 2006 2015 pp. (DOI: 10.1016/S0140 6736(09)61715 3), (ISSN:  01406736).  Marland G., R.J. Andres, T.A. Boden, C.A. Johnston, and A. Brenkert (1999). Global, Regional, and  National CO2 Emission Estimates from Fossil Fuel Burning, Cement Production, and Gas Flaring:  1751 1996. In: Trends Online: A Compendium of Data on Global Change. Oak Ridge National  Laboratory, Oak Ridge, TN. Available at: http://cdiac.esd.ornl.gov/ftp/ndp030.  Marland G., K. Hamal, and M. Jonas (2009). How uncertain are estimates of CO2 emissions?, Journal  of Industrial Ecology 13 4 7 pp. (DOI: 10.1111/J.1530 9290.2009.00108.X), (ISSN: 1088 1980).    82 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Martínez Zarzoso I., and A. Maruotti (2011). The impact of urbanization on CO2 emissions: Evidence  from developing countries, Ecological Economics 70 1344 1353 pp. (DOI: doi:  10.1016/j.ecolecon.2011.02.009), (ISSN: 0921 8009).  Matisoff D.C. (2008). The adoption of state climate change policies and renewable portfolio  standards: regional diffusion or internal determinants?, Review of Policy Research 25 527 546 pp.  (DOI: 10.1111/j.1541 1338.2008.00360.x), (ISSN: 1541 1338).  Meinshausen M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R.  Allen (2009). Greenhouse gas emission targets for limiting global warming to 2 °C, Nature 458 1158 1162 pp. (DOI: 10.1038/nature08017), (ISSN: 0028 0836).  Meschi E., and M. Vivarelli (2009). Trade and Income Inequality in Developing Countries, World  Development 37 287 302 pp. .  Metcalf G.E. (2008). An empirical analysis of energy intensity and its determinants at the state level,  The Energy Journal 29 1 26 pp. (ISSN: 01956574).  Minx J.C., G. Baiocchi, G.P. Peters, C.L. Weber, D. Guan, and K. Hubacek (2011). A  carbonizing  dragon : China s fast growing CO2 emissions revisited, Environ. Sci. Technol. 45 9144 9153 pp. (DOI:  10.1021/es201497m), (ISSN: 0013 936X).  Minx J.C., T. Wiedmann, R. Wood, G.P. Peters, M. Lenzen, A. Owen, K. Scott, J. Barrett, K. Hubacek,  G. Baiocchi, A. Paul, E. Dawkins, J. Briggs, D. Guan, S. Suh, and F. Ackerman (2009). Input output  analysis and carbon footprinting: An overview of applications, Economic Systems Research 21 187 216 pp. (DOI: 10.1080/09535310903541298), (ISSN: 0953 5314, 1469 5758).  Monni S., R. Pipatti, A. Lehtilla, I. Savolainen, and S. Syri (2006). Global Climate Change Mitigation  Scenarios for Solid Waste Management. Technical Research Centre of Finland  VTT Publications,  Espoo. . Available at: http://www.vtt.fi/inf/pdf/publications/2006/P603.pdf.  Mont O., and A. Plepys (2008). Sustainable consumption progress: should we be proud or alarmed?,  Journal of Cleaner Production 16 531 537 pp. .  Morioka T., and N. Yoshida (1995). Comparison of carbon dioxide emission patterns due to  consumers  expenditure in UK and Japan, Journal of Global Environmental Engineering 1 59 78 pp. .  Mulder P., and H. de Groot (2007). Sectoral energy  and labour productivity convergence. In:  Sustainable Resource Use and Economic Dynamics. Springer, pp.165 190.  Munksgaard J., K.A. Pedersen, and M. Wier (2001). Changing consumption patterns and CO2  reduction, International Journal of Environment and Pollution 15 146 158 pp. .  Munoz P., and K.W. Steininger (2010). Austria s CO2 responsibility and the carbon content of its  international trade, Ecological Economics 69 2003 2019 pp. (DOI: 10.1016/j.ecolecon.2010.05.017),  (ISSN: 0921 8009).  Myhre G., D. Shindell, F. M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. F. Lamarque, D.  Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and Zhang (2014).  Anthropogenic and natural radiative forcing. In: Climate Change 2013: The Physical Science Basis.  Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on  Climate Change [Stocker, T.F., D. Qin, G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y.    83 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and  New York, NY, USA.  Nakicenovic N., P.V. Gilli, and R. Kurz (1996). Regional and global exergy and energy efficiencies,  Energy 21 223 237 pp. (DOI: 10.1016/0360 5442(96)00001 1), (ISSN: 0360 5442).  Nakicenovic N., A. Grübler, and A. McDonald (1998). Global Energy Perspectives. Cambridge  University Press, Cambridge, UK, and New York, USA, 267 pp., (ISBN: 9780521645690). .  Nakicenovic N., and R. Swart (2000). Special Report on Emissions Scenarios: A Special Report of  Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press,  Cambridge, UK, and New York, USA, 612 pp., (ISBN: 0521804930). .  Nansai K., S. Kagawa, Y. Kondo, S. Suh, R. Inaba, and K. Nakajima (2009a). Improving the  completeness of product carbon footprints using a global link input output model: the case of Japan,  Economic Systems Research 21 267 290 pp. (DOI: 10.1080/09535310903541587), (ISSN: 1469 5758).  Nansai K., S. Kagawa, S. Suh, M. Fujii, R. Inaba, and S. Hashimoto (2009b). Material and energy  dependence of services and its implications for climate change, Environ. Sci. Technol. 43 4241 4246  pp. (DOI: 10.1021/es8025775), (ISSN: 0013 936X).  Nansai K., S. Kagawa, S. Suh, R. Inaba, and Y. Moriguchi (2007). Simple indicator to identify the  environmental soundness of growth of consumption and technology:  eco velocity of consumption ,  Environmental science & technology 41 1465 1472 pp. (ISSN: 0013 936X).  Nemet G.F., T. Holloway, and P. Meier (2010a). Implications of incorporating air quality co benefits  into climate change policymaking, Environmental Research Letters 5 014007 pp. (ISSN: 1748 9326).  Nemet G.F., T. Holloway, and P. Meier (2010b). Implications of incorporating air quality co benefits  into climate change policymaking, Environmental Research Letters 5 014007 pp. (DOI: 10.1088/1748 9326/5/1/014007), (ISSN: 1748 9326).  Newell R.G., A.B. Jaffe, and R.N. Stavins (1999). The Induced Innovation Hypothesis and Energy Saving Technological Change, The Quarterly Journal of Economics 114 941  975 pp. (DOI:  10.1162/003355399556188).  NRC (2010). Advancing the Science of Climate Change, Report in Brief. National Research Council,  National Academies Press, Washington, D.C., 528 pp., (ISBN: 0 309 14588 0). .  O Donoghue T., and M. Rabin (2008). Procrastination on long term projects, Journal of Economic  Behavior & Organization 66 161 175 pp. . Available at:  http://ideas.repec.org/a/eee/jeborg/v66y2008i2p161 175.html.  O Neill B.C., M. Dalton, R. Fuchs, L. Jiang, S. Pachauri, and K. Zigova (2010). Global demographic  trends and future carbon emissions, Proceedings of the National Academy of Sciences of the United  States of America 107 17521 17526 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 78049252451&partnerID=40&md5=7da8389d593807dde90debe5f3704457.  O Neill B.C., B. Liddle, L. Jiang, K.R. Smith, S. Pachauri, M. Dalton, and R. Fuchs (2014).  Demographic change and emissions of carbon dioxide, the main greenhouse gas, Lancet.    84 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Okushima S., and M. Tamura (2010). What causes the change in energy demand in the economy?:  The role of technological change, Energy Economics 32, Supplement 1 S41 S46 pp. (DOI:  10.1016/j.eneco.2009.03.011), (ISSN: 0140 9883).  Olivier J.G.J., G. Janssens Maenhout, M. Muntean, and J.A.H.W. Peters (2013). Trends in Global CO2  Emissions: 2013 Report. PBL Netherlands Environmental Assessment Agency, The Hague,  Netherlands, (ISBN: 978 94 91506 51 2). .  Olivier J.G.J., G. Janssens Maenhout, J.A.H.W. Peters, and J. Wilson (2011). Long Term Trend in  Global CO2 Emissions. PBL Netherlands Environmental Assessment Agency: The Hague; JRC European  Commission: Belgium.  Deb Pal B., S. Pohit, and J. Roy (2012). Social Accounting Matrix for India, Economic Systems  Research 24 77 99 pp. (DOI: 10.1080/09535314.2011.618824), (ISSN: 0953 5314).  Pan J. (2012). From industrial toward ecological in China, Science 336 1397 1397 pp. (DOI:  10.1126/science.1224009), (ISSN: 0036 8075, 1095 9203).  Pan J. (2013). An urgent need for a low carbon approach to environmental pollution control,  Environmental Protection (in Chinese) No. 12.  Pan J., H. Ma, Y. Zhang, L. Mastny, and Worldwatch Institute (2011). Green Economy and Green  Jobs in China: Current Status and Potentials for 2020. Worldwatch Institute, Washington, DC, (ISBN:  9780983543701 0983543704). .  Pao H. T., and C. M. Tsai (2010). CO2 emissions, energy consumption and economic growth in BRIC  countries, Energy Policy 38 7850 7860 pp. (DOI: doi: 10.1016/j.enpol.2010.08.045), (ISSN: 0301 4215).  Parente S., and E. Prescott (2000). Barriers to Riches. MIT Press, Cambridge, MA, (ISBN:  9780262161930). .  Parikh J., and V. Shukla (1995). Urbanization, energy use and greenhouse effects in economic  development: Results from a cross national study of developing countries, Global Environmental  Change 5 87 103 pp. (DOI: 10.1016/0959 3780(95)00015 G), (ISSN: 0959 3780).  Pavcnik N. (2002). Trade liberalization, exit, and productivity improvements: Evidence from Chilean  plants, Review of Economic Studies 69 245 276 pp. .  Pellegrini L., and R. Gerlagh (2006). Corruption, democracy, and environmental policy an empirical  contribution to the debate, The Journal of Environment & Development 15 332 354 pp. (DOI:  10.1177/1070496506290960), (ISSN: 1070 4965, 1552 5465).  Le Pen Y., and B. Sévi (2010). On the non convergence of energy intensities: Evidence from a pair wise econometric approach, Ecological Economics 69 641 650 pp. (DOI:  10.1016/j.ecolecon.2009.10.001), (ISSN: 0921 8009).  Persson T., and G. Tabellini (1994). Is inequality harmful for growth?, American Economic Review 84  600 621 pp. .  Peters G.P. (2007). Efficient algorithms for Life Cycle Assessment, Input Output Analysis, and Monte Carlo Analysis, The International Journal of Life Cycle Assessment 12 373 380 pp. (DOI:  10.1065/lca2006.06.254), (ISSN: 0948 3349, 1614 7502).    85 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Peters G.P. (2008). From production based to consumption based national emission inventories,  Ecological Economics 65 13 23 pp. (DOI: 10.1016/j.ecolecon.2007.10.014), (ISSN: 0921 8009).  Peters G.P. (2010). Managing carbon leakage, Carbon Management 1 35 37 pp. .  Peters G.P., and E.G. Hertwich (2008). CO2 embodied in international trade with implications for  global climate policy, Environ. Sci. Technol. 42 1401 1407 pp. (DOI: 10.1021/es072023k), (ISSN:  0013 936X).  Peters G.P., G. Marland, C. Le Quéré, T. Boden, J.G. Canadell, and M.R. Raupach (2012). Rapid  growth in CO2 emissions after the 2008 2009 global financial crisis, Nature Climate Change 2 2 4 pp.  (DOI: 10.1038/nclimate1332).  Peters G.P., J.C. Minx, C.L. Weber, and O. Edenhofer (2011a). Growth in emission transfers via  international trade from 1990 to 2008, Proceedings of the National Academy of Sciences (DOI:  10.1073/pnas.1006388108).  Peters G.P., J.C. Minx, C.L. Weber, and O. Edenhofer (2011b). Growth in emission transfers via  international trade from 1990 to 2008, Proceedings of the National Academy of Sciences 108 8903 8908 pp. (DOI: 10.1073/pnas.1006388108), (ISSN: 0027 8424, 1091 6490).  Peters G., and C. Solli (2010). Global Carbon Footprints: Methods and Import/Export Corrected  Results from the Nordic Countries in Global Carbon Footprint Studies. Nordic Council of Ministers,  Copenhagen, (ISBN: 9789289321594 9289321598). .  Peters G.P., C.L. Weber, D. Guan, and K. Hubacek (2007). China s Growing CO2 Emissions A Race  between Increasing Consumption and Efficiency Gains, Environ. Sci. Technol. 41 5939 5944 pp. (DOI:  10.1021/es070108f), (ISSN: 0013 936X).  Platchkov L.M., and M.G. Pollitt (2011). The economics of energy (and electricity) demand,  Cambridge Working Papers in Economics . Available at:  http://econpapers.repec.org/paper/camcamdae/1137.htm.  Pligt J. van der (1985). Energy conservation: Two easy ways out, Journal of Applied Social Psychology  15 3 15 pp. (DOI: 10.1111/j.1559 1816.1985.tb00890.x), (ISSN: 1559 1816).  Pomeranz K. (2000). The Great Divergence: China, Europe, and the Making of the Modern World.  Princeton University Press, Princeton,  N.J., (ISBN: 9780691090108). .  Pongratz J., C.H. Reick, T. Raddatz, and M. Claussen (2009). Effects of anthropogenic land cover  change on the carbon cycle of the last millennium, Global Biogeochemical Cycles 23 n/a n/a pp.  (DOI: 10.1029/2009GB003488), (ISSN: 1944 9224).  Popp D. (2011). International technology transfer, climate change, and the clean development  mechanism, Review of Environmental Economics and Policy 5 131 152 pp. .  Poumanyvong P., and S. Kaneko (2010). Does urbanization lead to less energy use and lower CO2  emissions? A cross country analysis, Ecological Economics 70 434 444 pp. (DOI: doi:  10.1016/j.ecolecon.2010.09.029), (ISSN: 0921 8009).  Le Quéré C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters,  G. van der Werf, A. Ahlström, R.M. Andrew, L. Bopp, J.G. Canadell, P. Ciais, S.C. Doney, C. Enright,  P. Friedlingstein, C. Huntingford, A.K. Jain, C. Jourdain, E. Kato, R.F. Keeling, K. Klein Goldewijk, S.    86 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Levis, P. Levy, M. Lomas, B. Poulter, M.R. Raupach, J. Schwinger, S. Sitch, B.D. Stocker, N. Viovy, S.  Zaehle, and N. Zeng (2012). The global carbon budget 1959 2011, Earth System Science Data  Discussions 5 1107 1157 pp. (DOI: 10.5194/essdd 5 1107 2012), (ISSN: 1866 3591).  Le Quere C., M.R. Raupach, J.G. Canadell, and G. Marland et al. (2009). Trends in the sources and  sinks of carbon dioxide, Nature Geosci 2 831 836 pp. (DOI: 10.1038/ngeo689), (ISSN: 1752 0894).  Ramachandra T.V., Y. Loerincik, and B.V. Shruthi (2006). Intra and inter country energy intensity  trends, The Journal of Energy and Development 31 43 84 pp. .  Rao S., S. Pachauri, F. Dentener, P. Kinney, Z. Klimont, K. Riahi, and W. Schoepp (2013). Better air  for better health: Forging synergies in policies for energy access, climate change and air pollution,  Global Environmental Change 23 1122 1130 pp. (DOI: 10.1016/j.gloenvcha.2013.05.003), (ISSN:  0959 3780).  Raupach M.R., G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell, G. Klepper, and C.B. Field (2007).  Global and regional drivers of accelerating CO2 emissions, Proceedings of the National Academy of  Sciences 104 10288  10293 pp. (DOI: 10.1073/pnas.0700609104).  Reddy A.K.N., and J. Goldemberg (1990). Energy for the developing world, Scientific American 263  110 18 pp. (ISSN: ISSN 0036 8733).  Renssen S. van (2012). Stuck on shipping, Nature Climate Change 2 767 768 pp. (DOI:  10.1038/nclimate1723), (ISSN: 1758 678X).  Reppelin Hill V. (1998). Trade and environment: An empirical analysis of the technology effect in the  steel industry, Journal of Environmental Economics and Management 38 283 301 pp. .  Rey S., G. West, and M. Janikas (2004). Uncertainty in integrated regional models, Economic  Systems Research 16 259 277 pp. . Available at:  http://ideas.repec.org/a/taf/ecsysr/v16y2004i3p259 277.html.  Richardson Klavehn A., and R.. Bjork (1988). Measures of memory, Annual Review of Psychology  475 543 pp. .  Rigby M., J. Muhle, B.R. Miller, R.G. Prinn, P.B. Krummel, L.P. Steele, P.J. Fraser, P.K. Salameh, C.M.  Harth, R.F. Weiss, B.R. Greally, S. O Doherty, P.G. Simmonds, M.K. Vollmer, S. Reimann, J. Kim, K.R.  Kim, H.J. Wang, J.G.J. Olivier, E.J. Dlugokencky, G.S. Dutton, B.D. Hall, and J.W. Elkins (2010).  History of atmospheric SF6 from 1973 to 2008, Atmospheric Chemistry and Physics 10 10305 10320  pp. (DOI: 10.5194/Acp 10 10305 2010), (ISSN: 1680 7316).  Rogner H.H., R.F. Aguilera, C.L. Archer, R. Bertani, S.C. Bahattacharya, M.B. Dusseault, L. Gagnon,  H. Haberl, M. Hoogwijk, A. Johnson, M.L. Rogner, H. Wagner, and V. Yakushev (2012). Chapter 7    Energy resources and potentials. In: Global Energy Assessment   Toward a Sustainable Future. IIASA  and Cambridge University Press, Vienna, Austria, and Cambridge, UK(ISBN: 9781107005198).  Rothman D.S. (1998). Ecological Economics . Environmental Kuznets curves real progress or passing  the buck?: A case for consumption based approaches, Ecological Economics 25 177 194 pp. .  Available at: http://ideas.repec.org/a/eee/ecolec/v25y1998i2p177 194.html.  Rothman D.S. (2000). Measuring environmental values and environmental impacts: Going from the  local to the global, Climatic Change 44 351 376 pp. (DOI: 10.1023/A:1005645301478), (ISSN: 0165 0009).    87 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Roy J. (2000). Energy Policy . The rebound effect: some empirical evidence from India, Energy Policy  28 433 438 pp. . Available at: http://ideas.repec.org/a/eee/enepol/v28y2000i6 7p433 438.html.  Roy J., and S. Pal (2009). Lifestyles and climate change: link awaiting activation, Current Opinion in  Environmental Sustainability 1 192 200 pp. (DOI: 10.1016/j.cosust.2009.10.009), (ISSN: 1877 3435).  Rutherford T.F., and D.G. Tarr (2002). Trade liberalization, product variety and growth in a small  open economy: a quantitative assessment, Journal of International Economics 56 247 272 pp. (DOI:  10.1016/S0022 1996(01)00121 0).  Saikawa E., M. Rigby, R.G. Prinn, S.A. Montzka, B.R. Miller, L.J.M. Kuijpers, P.J.B. Fraser, M.K.  Vollmer, T. Saito, Y. Yokouchi, C.M. Harth, J. Muhle, R.F. Weiss, P.K. Salameh, J. Kim, S. Li, S. Park,  K.R. Kim, D. Young, S. O Doherty, P.G. Simmonds, A. McCulloch, P.B. Krummel, L.P. Steele, C.  Lunder, O. Hermansen, M. Maione, J. Arduini, B. Yao, L.X. Zhou, H.J. Wang, J.W. Elkins, and B. Hall  (2012). Global and regional emission estimates for HCFC 22, Atmospheric Chemistry and Physics 12  10033 10050 pp. (DOI: 10.5194/Acp 12 10033 2012), (ISSN: 1680 7316).  Salganik M.J., P.S. Dodds, and D.J. Watts (2006). Experimental study of inequality and  unpredictability in an artificial cultural market, Science 311 854 856 pp. (DOI:  10.1126/science.1121066), (ISSN: 0036 8075, 1095 9203).  Sanstad A., M. Hanemann, and M. Auffhammer (2006). Chapter 6: End Use Energy Efficiency in a  Post Carbon  California Economy: Policy Issues and Research Frontiers. In: Managing Greenhouse  Gas Emissions in California. The California Climate Change Center, University of California Berkeley,  CA.  Sathaye J., O. Lucon, A. Rahman, J.M. Christensen, F. Denton, J. Fujino, G. Heath, M. Mirza, H.  Rudnick, A. Schlaepfer, and A. Shmakin (2011). Renewable energy in the context of sustainable  development. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge,  United Kingdom and New York, NY, USA. Available at: http://srren.ipcc wg3.de/report/IPCC_SRREN_Ch09.  Sathaye J., A. Najam, C. Cocklin, T. Heller, F. Lecocq, J. Llanes Regueiro, J. Pan, G. Petschel Held, S.  Rayner, and J. Robinson (2007). Sustainable development and mitigation, Climate Change 2007:  Mitigation of Climate Change 691 743 pp. . Available at: http://eprints.jcu.edu.au/2967/.  Saunders H.D. (2013). Historical evidence for energy efficiency rebound in 30 US sectors and a  toolkit for rebound analysts, Technological Forecasting and Social Change 80 1317 1330 pp. (DOI:  10.1016/j.techfore.2012.12.007), (ISSN: 0040 1625).  Schäfer A. (2005). Structural change in energy use, Energy Policy 33 429 437 pp. (DOI:  10.1016/j.enpol.2003.09.002), (ISSN: 0301 4215).  Schimel D., D. Alves, I. Enting, M. Heimann, R. Joos, D. Raynaud, T. Wigley, M. Prather, R. Derwent,  D. Ehhalt, R. Eraser, E. Sanhueza, X. Zhou, R. Jonas, R. Charlson, H. Rohde, S. Sadasivan, K.R. Shine,  Y. Fouquart, V. Ramaswamy, S. Solomon, and J. Srinivasan (1996). Radiative forcing of climate  change. In: Climate Change 1995: The Science of Climate Change [J.T. Houghton, L.G. Meira Filho, B.A.  Callander, N. Harris, A. Kattenberg and K. Maskell (eds)]. Cambridge University Press, Cambridge  pp.65 131.    88 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Schipper L., and M. Grubb (2000). On the rebound? Feedback between energy intensities and  energy uses in IEA countries, Energy Policy 28 367 388 pp. (DOI: 10.1016/S0301 4215(00)00018 5),  (ISSN: 0301 4215).  Schöpp W., Z. Klimont, R. Suutari, and J. Cofala (2005). Uncertainty analysis of emission estimates in  the RAINS integrated assessment model, Environmental Science and Policy 8 601 613 pp. .  Shafik N. (1994). Economic Development and Environmental Quality: An Econometric Analysis,  Oxford Economic Papers 46 757 73 pp. .  Sheinbaum C., B.J. Ruíz, and L. Ozawa (2011). Energy consumption and related CO2 emissions in five  Latin American countries: Changes from 1990 to 2006 and perspectives, Energy 36 3629 3638 pp.  (DOI: doi: 10.1016/j.energy.2010.07.023), (ISSN: 0360 5442).  Shindell D., J.C.I. Kuylenstierna, E. Vignati, R. van Dingenen, M. Amann, Z. Klimont, S.C. Anenberg,  N. Muller, G. Janssens Maenhout, F. Raes, J. Schwartz, G. Faluvegi, L. Pozzoli, K. Kupiainen, L.  Höglund Isaksson, L. Emberson, D. Streets, V. Ramanathan, K. Hicks, N.T.K. Oanh, G. Milly, M.  Williams, V. Demkine, and D. Fowler (2012). Simultaneously Mitigating Near Term Climate Change  and Improving Human Health and Food Security, Science 335 183 189 pp. (DOI:  10.1126/science.1210026), (ISSN: 0036 8075, 1095 9203).  Shindell D.T., J.F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P.J. Young, Y.H. Lee, L.  Rotstayn, N. Mahowald, G. Milly, G. Faluvegi, Y. Balkanski, W.J. Collins, A.J. Conley, S. Dalsoren, R.  Easter, S. Ghan, L. Horowitz, X. Liu, G. Myhre, T. Nagashima, V. Naik, S.T. Rumbold, R. Skeie, K.  Sudo, S. Szopa, T. Takemura, A. Voulgarakis, J.H. Yoon, and F. Lo (2013). Radiative forcing in the  ACCMIP historical and future climate simulations, Atmospheric Chemistry and Physics 13 2939 2974  pp. (DOI: 10.5194/Acp 13 2939 2013), (ISSN: 1680 7316).  Shukla P., and S. Dhar (2011). Climate agreements and India: aligning options and opportunities on a  new track, International Environmental Agreements: Politics, Law and Economics 11 229 243 pp. .  Simon H.A. (1957). Models of Man: Social and Rational; Mathematical Essays on Rational Human  Behavior in Society Setting. Wiley, New York, 312 pp.  Sjöström M., and G. Östblom (2009). Future Waste Scenarios for Sweden Based on a CGE Model.  National Institute of Economic Research, Stockholm, Sweden. . Available at:  http://ideas.repec.org/p/hhs/nierwp/0109.html.  Slovic P., M. Finucane, E. Peters, and D.G. MacGregor (2002). Rational actors or rational fools:  implications of the affect heuristic for behavioral economics, The Journal of Socio Economics 31 329 342 pp. (DOI: 10.1016/S1053 5357(02)00174 9), (ISSN: 1053 5357).  Smith S.J., J. van Aardenne, Z. Klimont, R. Andres, A.C. Volke, and S. Delgado Arias (2011).  Anthropogenic sulfur dioxide emissions: 1850 2005, Atmospheric Chemistry and Physics, 11(3):1101 1116; Journal Volume: 10 Medium: X pp. .  Sora M.J., and I.P. Ventosa (2013). Incineration Overcapacity and Waste Shipping in Europe the End  of the Proximity Principle? Global Alliance for Incinerator Alternatives (GAIA), Phillipines, USA, Chile. .  Available at: http://www.no burn.org/downloads/Incineration%20overcapacity%20and%20waste%20shipping%20in%20Europe% 20the%20end%20of%20the%20proximity%20principle%20 January%202013 1.pdf.    89 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Sorrell S. (2007). The Rebound Effect: An Assessment of the Evidence for Economy Wide Energy  Savings from Improved Energy Efficiency. The UK Energy Research Centre (UKERC), London, UK. .  Available at: http://www.ukerc.ac.uk/support/tiki index.php?page=ReboundEffect.  Sorrell S., J. Dimitropoulos, and M. Sommerville (2009). Energy Policy . Empirical estimates of the  direct rebound effect: A review, Energy Policy 37 1356 1371 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v37y2009i4p1356 1371.html.  Sovacool B.K., and M.A. Brown (2010). Twelve metropolitan carbon footprints: A preliminary  comparative global assessment, Energy Policy 38 4856 4869 pp. (DOI: 10.1016/j.enpol.2009.10.001),  (ISSN: 0301 4215).  Steckel J.C., M. Jakob, R. Marschinski, and G. Luderer (2011). From carbonization to  decarbonization? Past trends and future scenarios for China s CO2 emissions, Energy Policy 39  3443 3455 pp. (DOI: doi: 10.1016/j.enpol.2011.03.042), (ISSN: 0301 4215).  Steg L., C. Vlek, and G. Slotegraaf (2001). Instrumental reasoned and symbolic affective motives for  using a motor car, Transportation Research Part F: Traffic Psychology and Behaviour 4 151 169 pp.  (DOI: 10.1016/S1369 8478(01)00020 1), (ISSN: 1369 8478).  Stern D.I. (2010). The Role of Energy in Economic Growth. Social Science Research Network,  Rochester, NY. . Available at: http://papers.ssrn.com/abstract=1715855.  Stern D.I. (2011). The role of energy in economic growth, Annals of the New York Academy of  Sciences 1219 26 51 pp. (DOI: 10.1111/j.1749 6632.2010.05921.x), (ISSN: 1749 6632).  Stern D.I. (2012). Modeling international trends in energy efficiency, Energy Economics 34 2200 2208 pp. (DOI: 10.1016/j.eneco.2012.03.009), (ISSN: 0140 9883).  Stern D.I., M.S. Common, and E.B. Barbier (1996). Economic growth and environmental  degradation: The environmental Kuznets curve and sustainable development, World Development  24 1151 1160 pp. (DOI: 10.1016/0305 750X(96)00032 0), (ISSN: 0305 750X).  Stern D.I., and F. Jotzo (2010). How ambitious are China and India s emissions intensity targets?,  Energy Policy 38 6776 6783 pp. (DOI: 10.1016/j.enpol.2010.06.049), (ISSN: 0301 4215).  Stern D.I., and A. Kander (2012). The role of energy in the industrial revolution and modern  economic growth, Energy Journal 33 127 154 pp. . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1759705.  Stiglitz J.E. (1988). Principal and Agent. John M. Olin Program for the Study of Economic  Organization and Public Policy, Department of Economics/Woodrow Wilson School of Public and  International Affairs, Princeton University, Princeton, NJ, 30 pp.  Strmman A.H., E.G. Hertwich, and F. Duchin (2009). Shifting trade patterns as a means of reducing  global carbon dioxide emissions, Journal of Industrial Ecology 13 38 57 pp. (DOI: 10.1111/j.1530 9290.2008.00084.x), (ISSN: 1530 9290).  Sue Wing I. (2008). Explaining the declining energy intensity of the U.S. economy, Resource and  Energy Economics 30 21 49 pp. (DOI: 10.1016/j.reseneeco.2007.03.001), (ISSN: 0928 7655).    90 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Suh S. (2005). Developing a sectoral environmental database for input output analysis: the  comprehensive environmental data archive of the US, Economic Systems Research 17 449 469 pp.  (ISSN: 0953 5314).  Suh S. (2006). Are services better for climate change?, Environ. Sci. Technol. 40 6555 6560 pp. (DOI:  10.1021/es0609351), (ISSN: 0013 936X).  Syrquin M., and H. Chenery (1989). Three Decades of Industrialization, The World Bank Economic  Review 3 145  181 pp. (DOI: 10.1093/wber/3.2.145).  Teng H., G. Branstator, and G.A. Meehl (2011). Predictability of the Atlantic overturning circulation  and associated surface patterns in two CCSM3 climate change ensemble experiments, Journal of  Climate 24 6054 6076 pp. . Available at:  http://journals.ametsoc.org/doi/abs/10.1175/2011JCLI4207.1.  Thaler R.H. (1999). Mental accounting matters, Journal of Behavioral Decision Making 12 183 206  pp. (DOI: 10.1002/(SICI)1099 0771(199909)12:3<183::AID BDM318>3.0.CO;2 F), (ISSN: 1099 0771).  Thaler R.H., and C.R. Sunstein (2009). Nudge: Improving Decisions About Health, Wealth, and  Happiness. Penguin Books, New York, 320 pp., (ISBN: 014311526X). .  Thomas B.A., and I.L. Azevedo (2013). Estimating direct and indirect rebound effects for U.S.  households with input output analysis Part 1: Theoretical framework, Ecological Economics 86 199 210 pp. (DOI: 10.1016/j.ecolecon.2012.12.003), (ISSN: 0921 8009).  Timilsina G.R., and A. Shrestha (2009). Transport sector CO2 emissions growth in Asia: Underlying  factors and policy options, Energy Policy 37 4523 4539 pp. (DOI: 10.1016/j.enpol.2009.06.009),  (ISSN: 0301 4215).  Tol R.S.J., S.W. Pacala, and R.H. Socolow (2009). Understanding long term energy use and carbon  dioxide emissions in the USA, Journal of Policy Modeling 31 425 445 pp. (DOI:  10.1016/j.jpolmod.2008.12.002), (ISSN: 0161 8938).  Toman M.A., and B. Jemelkova (2003). Energy and economic development: An assessment of the  state of knowledge, The Energy Journal 24 93 112 pp. (ISSN: 01956574).  De la Tour A., M. Glachant, and Y. Méniere (2011). Innovation and international technology  transfer: The case of the Chinese photovoltaic industry, Energy Policy 39 761 770 pp. (DOI:  10.1016/j.enpol.2010.10.050), (ISSN: 0301 4215).  Train K. (1985). Discount rates in consumers  energy related decisions: a review of the literature,  Energy 10 1243 1253 pp. (ISSN: 03605442).  Tukker A., M.J. Cohen, K. Hubacek, and O. Mont (2010). The impacts of household consumption  and options for change, Journal of Industrial Ecology 14 13 30 pp. .  U.S. Energy Information Administration (2010). Annual Energy Review 2009. Washington, D.C.  Available at: http://www.eia.gov/totalenergy/data/annual/archive/038409.pdf.  Ubaidillah N.Z. (2011). The relationship between income and environment in UK s road transport  sector. Is there an EKC? In: 2011 International Conference on Economics and Finance Research,  IPEDR Vol. 4, IACSIT Press, Singapore. . Available at: http://www.ipedr.com/vol4/20 F00040.pdf.    91 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  UN (1999). The World at Six Billion. United Nations, Department of Economic and Social Affairs, New  York. . Available at: http://www.un.org/esa/population/publications/sixbillion/sixbillion.htm.  UN WPP (2012). World Population Prospects, the 2012 Revision. United Nations Department of  Economic and Social Affairs New York. . Available at: http://esa.un.org/unpd/wpp/index.htm.  UNEP (2009). UNEP 2008 Annual Report. United Nations Environment Programme New York. .  Available at: http://www.unep.org/PDF/AnnualReport/2008/AnnualReport2008_en_web.pdf.  UNEP (2012). The Emissions Gap Report 2012: A UNEP Synthesis Report. United Nations  Environment Programme. . Available at: http://www.unep.org/pdf/2012gapreport.pdf.  Unruh G.C. (2000). Understanding carbon lock in, Energy Policy 28 817 830 pp. (DOI:  10.1016/S0301 4215(00)00070 7), (ISSN: 0301 4215).  Unruh G.C. (2002). Escaping carbon lock in, Energy Policy 30 317 325 pp. (DOI: 10.1016/S0301 4215(01)00098 2), (ISSN: 0301 4215).  US DOE (2008). Energy Efficiency Trends in Residential and Commercial Buildings. US Department of  Energy, Washington, D.C. Available at:  http://apps1.eere.energy.gov/buildings/publications/pdfs/corporate/bt_stateindustry.pdf.  US EIA (2011). International Energy Outlook. U.S. Energy Information Administration, Washington,  D.C., 300 pp., (ISBN: 9780160894459). .  US EPA (2012). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 2010. US Environmental  Protection Agency, Washington, D.C. Available at:  http://www.epa.gov/climatechange/Downloads/ghgemissions/US GHG Inventory 2012 Main Text.pdf.  Verdolini E., and M. Galeotti (2011a). At home and abroad: An empirical analysis of innovation and  diffusion in energy technologies, Journal of Economics and Management 61 119 134 pp. .  Verdolini E., and M. Galeotti (2011b). At home and abroad: An empirical analysis of innovation and  diffusion in energy technologies, Journal of Environmental Economics and Management 61 119 134  pp. . Available at: http://ideas.repec.org/a/eee/jeeman/v61y2011i2p119 134.html.  Van Vuuren D.P., J. Cofala, H.E. Eerens, R. Oostenrijk, C. Heyes, Z. Klimont, M.G.J. den Elzen, and M.  Amann (2006). Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe,  Energy Policy 34 444 460 pp. (DOI: 10.1016/j.enpol.2004.06.012), (ISSN: 0301 4215).  Wagner M. (2008). The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?,  Resource and Energy Economics 30 388 408 pp. (DOI: 10.1016/j.reseneeco.2007.11.001), (ISSN:  0928 7655).  Wang C. (2011). Sources of energy productivity growth and its distribution dynamics in China,  Resource and Energy Economics 33 279 292 pp. (DOI: 10.1016/j.reseneeco.2010.06.005), (ISSN:  0928 7655).  Wang H., L. Dwyer Lindgren, K.T. Lofgren, J.K. Rajaratnam, J.R. Marcus, A. Levin Rector, C.E. Levitz,  A.D. Lopez, and C.J. Murray (2012a). Age specific and sex specific mortality in 187 countries, 1970 2010: a systematic analysis for the Global Burden of Disease Study 2010, The Lancet 380 2071 2094  pp. (DOI: 10.1016/S0140 6736(12)61719 X), (ISSN: 0140 6736).    92 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  Wang W.W., M. Zhang, and M. Zhou (2011). Using LMDI method to analyze transport sector CO2  emissions in China, Energy 36 5909 5915 pp. (DOI: 10.1016/j.energy.2011.08.031), (ISSN: 0360 5442).  Wang H., P. Zhou, and D.Q. Zhou (2012b). An empirical study of direct rebound effect for passenger  transport in urban China, Energy Economics 34 452 460 pp. (DOI: 10.1016/j.eneco.2011.09.010),  (ISSN: 0140 9883).  Warr B., R. Ayres, N. Eisenmenger, F. Krausmann, and H. Schandl (2010). Energy use and economic  development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom  and the US during 100 years of economic growth, Ecological Economics 69 1904 1917 pp. (DOI:  10.1016/j.ecolecon.2010.03.021), (ISSN: 0921 8009).  Weber C.L. (2009). Measuring structural change and energy use: Decomposition of the US economy  from 1997 to 2002, Energy Policy 37 1561 1570 pp. (DOI: 10.1016/j.enpol.2008.12.027), (ISSN:  0301 4215).  Weber C., and S. Matthews (2007). Embodied environmental emissions in U.S. international trade,  1997 2004, Environ. Sci. Technol. 41 4875 4881 pp. (DOI: 10.1021/es0629110), (ISSN: 0013 936X).  Weber C.L., and H.S. Matthews (2008). Quantifying the global and distributional aspects of  American household carbon footprint, Ecological Economics 66 379 391 pp. (DOI:  10.1016/j.ecolecon.2007.09.021), (ISSN: 0921 8009).  Weber C.L., and G.P. Peters (2009). Climate change policy and international trade: Policy  considerations in the US, Energy Policy 37 432 440 pp. (DOI: 10.1016/j.enpol.2008.09.073), (ISSN:  0301 4215).  Weber C.L., G.P. Peters, D. Guan, and K. Hubacek (2008). The contribution of Chinese exports to  climate change, Energy Policy 36 3572 3577 pp. (DOI: 10.1016/j.enpol.2008.06.009), (ISSN: 0301 4215).  Wei C., J. Ni, and M. Shen (2009). Empirical analysis of provincial energy efficiency in china, China &  World Economy 17 88 103 pp. (DOI: 10.1111/j.1749 124X.2009.01168.x), (ISSN: 1749 124X).  Welsch H., and C. Ochsen (2005). Energy Economics . The determinants of aggregate energy use in  West Germany: factor substitution, technological change, and trade, Energy Economics 27 93 111  pp. . Available at: http://ideas.repec.org/a/eee/eneeco/v27y2005i1p93 111.html.  West J.J., S.J. Smith, R.A. Silva, V. Naik, Y. Zhang, Z. Adelman, M.M. Fry, S. Anenberg, L.W.  Horowitz, and J. F. Lamarque (2013). Co benefits of mitigating global greenhouse gas emissions for  future air quality and human health, Nature Climate Change 3 885 889 pp. (DOI:  10.1038/nclimate2009), (ISSN: 1758 678X).  Whitmarsh L. (2009). Behavioural responses to climate change: Asymmetry of intentions and  impacts, Journal of Environmental Psychology 29 13 23 pp. .  Wiedmann T. (2009). A review of recent multi region input output models used for consumption based emission and resource accounting, Ecological Economics 69 211 222 pp. (DOI:  10.1016/j.ecolecon.2009.08.026), (ISSN: 0921 8009).  Wiedmann T., M. Lenzen, K. Turner, and J. Barrett (2007). Examining the global environmental  impact of regional consumption activities   Part 2: Review of input output models for the    93 of 94    Final Draft    Chapter 5  IPCC WGIII AR5  assessment of environmental impacts embodied in trade, Ecological Economics 61 15 26 pp. .  Available at: http://ideas.repec.org/a/eee/ecolec/v61y2007i1p15 26.html.  Wiedmann T., R. Wood, J. Minx, M. Lenzen, D. Guan, and R. Harris (2010). A carbon footprint time  series of the UK   results from a multi region input output model, Economic Systems Research 22 19 42 pp. . Available at: http://dx.doi.org/10.1080/09535311003612591.  Wier M. (1998). Sources of changes in emissions from energy: a structural decomposition analysis,  Economic Systems Research 10 99 112 pp. .  Wier M., M. Lenzen, J. Munksgaard, and S. Smed (2001). Effects of household consumption  patterns on CO2 requirements, Economic Systems Research 13 259 274 pp. .  Wilbanks T.J. (2011). Energy Economics . Inducing transformational energy technological change,  Energy Economics 33 699 708 pp. . Available at:  http://ideas.repec.org/a/eee/eneeco/v33y2011i4p699 708.html.  Wood R. (2009). Structural decomposition analysis of Australia s greenhouse gas emissions, Energy  Policy 37 4943 4948 pp. (DOI: 10.1016/j.enpol.2009.06.060), (ISSN: 0301 4215).  World Bank (2011). World Development Indicators. World Bank, Washington, D.C. Available at:  http://data.worldbank.org/data catalog/world development indicators.  World Bank (2012). World Development Indicators | Data. . Available at:  http://data.worldbank.org/data catalog/world development indicators.  World Trade Organisation (2011). International Trade Statistics, 2011. Geneva, Switzerland. .  Available at: http://www.wto.org/english/res_e/statis_e/its2011_e/its11_toc_e.htm.  Wrigley E. (2010). Energy and the English Industrial Revolution. Cambridge University Press,  Cambridge and New York, (ISBN: 9780521766937). .  Wu F., L.W. Fan, P. Zhou, and D.Q. Zhou (2012). Industrial energy efficiency with CO2 emissions in  China: A non parametric analysis, Energy Policy 49 164 172 pp. .  York R. (2007). Demographic trends and energy consumption in European Union Nations, 1960 2025, Social Science Research 36 855 872 pp. (DOI: 10.1016/j.ssresearch.2006.06.007), (ISSN: 0049 089X).  Yunfeng Y., and Y. Laike (2010). China s foreign trade and climate change: A case study of CO2  emissions, Energy Policy 38 350 356 pp. (DOI: 10.1016/j.enpol.2009.09.025), (ISSN: 0301 4215).  Zhu S.C., and D. Trefler (2005). Trade and inequality in developing countries: a general equilibrium  analysis, Journal of International Economics 65 21 48 pp. .      94 of 94    Working Group III Mitigation of Climate Change Chapter 6 Assessing Transformation Pathways   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    6  Chapter 6  IPCC WGIII AR5  Assessing Transformation Pathways  CLAs:  LAs:  Leon Clarke, Kejun Jiang  Keigo Akimoto, Mustafa Babiker, Geoffrey Blanford, Karen Fisher Vanden, Jean Charles Hourcade, Volker Krey, Elmar Kriegler, Andreas  Löschel, David McCollum, Sergey Paltsev, Steven Rose, Priyadarshi R.  Shukla, Massimo Tavoni, Bob van der Zwaan, Detlef P. van Vuuren  Hannes Böttcher, Katherine Calvin, Katie Daenzer, Michel den Elzen,  Subash Dhar, Jiyong Eom, Samuel Hoeller, Niklas Höhne, Nathan  Hultman, Peter Irvine, Jessica Jewell, Nils Johnson, Amit Kanudia, Agnes  Kelemen, Klaus Keller, Peter Kolp, Mark Lawrence, Thomas Longden,  Jason Lowe, Andre Lucena, Gunnar Luderer, Giacomo Marangoni, Nigel  Moore, Ionna Mouratiadou, Nils Petermann, Philip Rasch, Keywan  Riahi, Jouri Rogelj, Michiel Schaeffer, Stefan Schäfer, Jan Sedlacek,  Laura Sokka, Christoph von Stechow, Ian Sue Wing, Naomi Vaughan,  Thilo Wiertz, Timm Zwickel  Wenying Chen, John Weyant  Laura Sokka    CAs:        REs  CSA:  1 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Chapter 6:    Assessing Transformation Pathways  Contents    Executive Summary ............................................................................................................................ 5  6.1 Introduction .................................................................................................................................. 7  6.1.1 Framing and evaluating transformation pathways ............................................................... 7  6.1.2 New mitigation scenarios since AR4 ..................................................................................... 8  6.1.2.1 Non idealized international implementation scenarios ................................................ 9  6.1.2.2 Limited technology scenarios ...................................................................................... 10  6.2 Tools of analysis .......................................................................................................................... 10  6.2.1 Overview of integrated modelling tools ............................................................................. 10  6.2.2 Overview of the scenario ensemble for this assessment  ................................................... 12  . 6.2.3 Uncertainty and the interpretation of large scenario ensembles  ...................................... 12  . 6.2.4 Interpretation of model inability to produce particular scenarios ..................................... 13  6.3 Climate stabilization: Concepts, costs and implications for the macro economy, sectors and  technology portfolios, taking into account differences across regions ...................................... 14  6.3.1 Baseline scenarios ............................................................................................................... 14  6.3.1.1 Introduction to baseline scenarios .............................................................................. 14  6.3.1.2 The drivers of baseline emissions of energy related emissions .................................. 14  6.3.1.3 Baseline emissions projections from fossil fuels and industry .................................... 17  6.3.1.4 Baseline CO2 emissions from land use and emissions of non CO2 gases ..................... 18  6.3.1.5 Baseline radiative forcing and cumulative carbon emissions ...................................... 19  6.3.2 Emissions trajectories, concentrations, and temperature in transformation pathways .... 20  6.3.2.1 Linking between different types of scenarios .............................................................. 20  6.3.2.2 The timing of emissions reductions: The influence of technology, policy, and  overshoot ....................................................................................................................... 25  6.3.2.3 Regional roles in emissions reductions ........................................................................ 27  6.3.2.4 Projected CO2 emissions from land use....................................................................... 29  6.3.2.5 Projected emissions of other radiatively important substances ................................. 29  6.3.2.6 The link between concentrations, radiative forcing, and temperature ...................... 31  6.3.3 Treatment of impacts and adaptation in transformation pathways .................................. 36  6.3.4 Energy sector in transformation pathways ......................................................................... 37  6.3.5 Land and bioenergy in transformation pathways ............................................................... 41  6.3.6 The aggregate economic implications of transformation pathways .................................. 45  6.3.6.1 Overview of the aggregate economic implications of mitigation ................................ 45  2 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.3.6.2 Global aggregate costs of mitigation in idealized implementation scenarios ............. 46  6.3.6.3 The implications of technology portfolios for aggregate global economic costs ........ 49  6.3.6.4 Economic implications of non idealized international mitigation policy  implementation ............................................................................................................. 51  6.3.6.5 The interactions between policy tools and their implementation, pre existing taxes,  market failures, and other distortions........................................................................... 54  6.3.6.6 Regional mitigation costs and effort sharing regimes ................................................. 55  6.4 Integrating long  and short term perspectives .......................................................................... 62  6.4.1 Near term actions in a long term perspective .................................................................... 62  6.4.2 Near term emissions and long term transformation pathways ......................................... 62  6.4.3 The importance of near term technological investments and development of institutional  capacity .............................................................................................................................. 66  6.5 Integrating technological and societal change ........................................................................... 66  6.5.1 Technological change .......................................................................................................... 67  6.5.2 Integrating societal change ................................................................................................. 69  6.6 Sustainable development and transformation pathways, taking into account differences across  regions ......................................................................................................................................... 70  6.6.1 Co benefits and adverse side effects of mitigation measures: Synthesis of sectoral  information and linkages to transformation pathways ..................................................... 71  6.6.2 Transformation pathways studies with links to other policy objectives  ............................ 76  . 6.6.2.1 Air pollution and health ............................................................................................... 76  6.6.2.2 Energy security ............................................................................................................. 78  6.6.2.3 Energy access ............................................................................................................... 78  6.6.2.4 Employment ................................................................................................................. 79  6.6.2.5 Biodiversity conservation  ............................................................................................ 79  . 6.6.2.6 Water use ..................................................................................................................... 80  6.6.2.7 Integrated studies of multiple objectives .................................................................... 80  6.7 Risks of transformation pathways .............................................................................................. 83  6.8 Integrating sector analyses and transformation scenarios ........................................................ 84  6.8.1 The sectoral composition of GHG emissions along transformation pathways ................... 84  . 6.8.2 Mitigation from a cross sectoral perspective: Insights from integrated models  ............... 84  6.8.3 Decarbonizing energy supply .............................................................................................. 86  6.8.4 Energy demand reductions and fuel switching in end use sectors  .................................... 87  . 6.8.5 Options for bioenergy production, reducing land use change emissions, and creating land use GHG sinks  .................................................................................................................... 90  . 6.9 Carbon and radiation management and other geo engineering options including  environmental risks ..................................................................................................................... 91  6.9.1 Carbon dioxide removal ...................................................................................................... 92  3 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.9.1.1 Proposed carbon dioxide removal methods and characteristics ................................ 92  6.9.1.2 Role of carbon dioxide removal in the context of transformation pathways ............. 93  6.9.2 Solar radiation management  .............................................................................................. 94  . 6.9.2.1 Proposed solar radiation management methods and characteristics ......................... 94  6.9.2.2 The relation of solar radiation management to climate policy and transformation  pathways  ....................................................................................................................... 96  . 6.9.3 Summary ............................................................................................................................. 98  6.10 Gaps in knowledge and data .................................................................................................... 98  6.11 Frequently Asked Questions ..................................................................................................... 99  References ...................................................................................................................................... 101  4 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Executive Summary  Stabilizing greenhouse gas (GHG) concentrations will require large scale transformations in human  societies, from the way that we produce and consume energy to how we use the land surface. A  natural question in this context is what will be the  transformation pathway  towards stabilization;  that is, how do we get from here to there? The topic of this chapter is transformation pathways. The  chapter is primarily motivated by three questions. First, what are the near term and future choices  that define transformation pathways, including the goal itself, the emissions pathway to the goal,  technologies used for and sectors contributing to mitigation, the nature of international  coordination, and mitigation policies? Second, what are the key characteristics of different  transformation pathways, including the rates of emissions reductions and deployment of low carbon  energy, the magnitude and timing of aggregate economic costs, and the implications for other policy  objectives such as those generally associated with sustainable development? Third, how will actions  taken today influence the options that might be available in the future? As part of the assessment in  this chapter, data from over 1000 new scenarios published since the IPCC Fourth Assessment Report  (AR4) were collected from integrated modelling research groups, many from large scale model  intercomparison studies. In comparison to AR4, new scenarios, both in this AR5 dataset and more  broadly in the literature assessed in this chapter, consider more ambitious concentration goals, a  wider range of assumptions about technology, and more possibilities for delays in global mitigation  and fragmented international action.   Atmospheric concentrations in baseline scenarios collected for this assessment (scenarios without  additional efforts to constrain emissions) all exceed 450 parts per million (ppm) carbon dioxide equivalent (CO2eq) by 2030 and lie above the RCP 6.0 representative concentration pathway in  2100 (770 ppm CO2eq in 2100); the majority lie below the RCP 8.5 concentration pathway in 2100  (1330 ppm CO2eq in 2100) (high confidence). The scenario literature does not systematically explore  the full range of uncertainty surrounding development pathways and the possible evolution of key  drivers such as population, technology, and resources. However, the baseline scenarios do  nonetheless strongly suggest that absent explicit efforts at mitigation, cumulative CO2 emissions  since 2010 will exceed 700 GtCO2 by 2030, exceed 1500 GtCO2 by 2050, and potentially be well over  4000 GtCO2 by 2100. [Section 6.3.1]  Scenarios can be distinguished by the long term concentration level they reach by 2100; however,  the degree to which concentrations exceed (overshoot) this level before 2100 is also important  (high confidence). The large majority of scenarios produced in the literature that reach roughly  450 ppm CO2eq by 2100 are characterized by concentration overshoot facilitated by the deployment  of carbon dioxide removal (CDR) technologies. Many scenarios have been constructed to reach  roughly 550 ppm CO2eq by 2100 without overshoot. Scenarios with more overshoot exhibit less  mitigation today, but they often rest on the assumption that future decision makers deploy CDR  technologies at large scale. An assessment in this chapter of geophysical climate uncertainties  consistent with the dynamics of Earth System Models assessed in Working Group I (WG I) found that  the likelihood of exceeding temperature goals this century increases with peak concentration levels,  which are higher in overshoot scenarios. [6.3.2]  All major emitting regions make substantial reductions from their baseline CO2eq emissions over  the century in scenarios that bring atmospheric concentrations to 550 ppm CO2eq or below by  2100 (high confidence). In most scenarios collected for this assessment that reach concentrations  between 530 and 580 ppm CO2eq by 2100, global CO2eq emissions are reduced by more than 50%,  and in some cases by more than 100%, by the end of the century relative to 2010 levels. The CO2eq  emissions are brought to zero or below by 2100 in the majority of the scenarios reaching  concentrations between 430 and 480 ppm CO2eq by 2100. In large part because baseline emissions  from the countries not part of the Organisation for Economic Co operation and Development (OECD)  in 1990 are projected to outstrip those from the OECD 1990 countries, the total CO2eq reductions  5 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  from baseline occurring in the non OECD 1990 countries are larger than in the OECD 1990 countries,  particularly in scenarios that cost effectively allocate emissions reductions across countries.  Emissions peak earlier in the OECD 1990 countries than in the non OECD 1990 countries in these  cost effective scenarios. [6.3.2]  Bringing concentrations to 550 ppm CO2eq or below by 2100 will require large scale changes to  global and national energy systems, and potentially to the use of land; these changes are  inconsistent with both long  and short term trends (high confidence). Accelerated electrification of  energy end use, coupled with decarbonization of the majority of electricity generation by 2050 and  an associated phaseout of freely emitting coal generation, is a common feature of scenarios reaching  roughly 550 ppm C02eq or less by 2100. Scenarios suggest that applications currently using liquid  fuel are more costly to decarbonize than electricity and may be among  the last sectors to be  decarbonized for deep CO2 emissions reductions . Scenarios articulate very different changes in the  land surface, reflecting different assumptions about land use costs, the potential of large scale  bioenergy production, and the potential for afforestation and reduced deforestation. Studies  indicate a large potential for energy use reductions, but also demonstrate that these reductions will  not be sufficient by themselves to constrain GHG emissions. [6.3.4, 6.3.5, 6.8]  Estimates of the aggregate economic costs of mitigation vary widely, but increase with stringency  of mitigation (high confidence). Most scenario studies collected for this assessment that are based  on the idealized assumptions that all countries of the world begin mitigation immediately, there is a  single global carbon price applied to well functioning markets, and key technologies are available,  estimate that reaching 430 480 ppm CO2eq by 2100 would entail global consumption losses of  1 4% in 2030, 2 6% in 2050, and 3 11% in 2100 relative to what would happen without mitigation.  To put these losses in context, studies assume increases in consumption from four fold to over ten fold over the century without mitigation. Costs for maintaining concentrations at around  550 ppm CO2eq are estimated to be roughly one third to two thirds lower. Substantially higher and  lower cost estimates have been obtained based on assumptions about less idealized policy  implementations, interactions with pre existing distortions, non climate market failures, or  complementary policies. (Limits on technology and delayed mitigation are discussed below.) [6.3.6]  Effort sharing frameworks could help address distributional issues and decouple regional  mitigation investments from financial burdens, but would be associated with significant  international financial transfers (medium confidence). Without transfers across regions, cost effectively allocating emissions across countries would yield an uneven distribution of mitigation  costs. Scenarios indicate that this would lead to higher relative costs in developing economies as  well as for many fuel exporters. Studies estimate that the financial transfers to ameliorate this  asymmetry could be on the order of hundreds of billions of USD per year before mid century to  bring concentrations to roughly 450 ppm CO2eq in 2100. [6.3.6]  Emissions through 2030 will have strong implications for the challenges of, and options for,  bringing concentrations to between 430 and 530 ppm CO2eq by the end of the twenty first century  (high confidence). The vast majority of cost effective scenarios leading to 2100 concentrations  between 430 ppm CO2eq and 530 ppm CO2eq are characterized by 2030 emissions roughly between  30 GtCO2eq and 50 GtCO2eq. Scenarios with emissions above 55 GtCO2eq in 2030 are predominantly  driven by delays in mitigation. These scenarios are characterized by substantially higher rates of  emissions reductions from 2030 to 2050, a larger reliance on CDR technologies in the long term, and  higher transitional and long term economic impacts. Due to these challenges, many models with  2030 emissions in this range could not produce scenarios reaching 430 to 480 ppm CO2eq in 2100.  Studies confirm that delaying mitigation through 2030 has substantially larger influence on the  subsequent challenges of mitigation than delaying only through 2020. [6.3.2, 6.4]  The availability of key technologies and improvements in the cost and performance of these  technologies will have important implications for the challenge of achieving concentration goals  6 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  (high confidence). Many models in recent multi model comparisons could not produce scenarios  reaching approximately 450 ppm CO2eq by 2100 with broadly pessimistic assumptions about key  mitigation technologies. Large scale deployment of CDR technologies in particular is relied upon in  many of these scenarios in the second half of the century. For those models that could produce such  scenarios, pessimistic assumptions about important technologies for decarbonizing non electric  energy supply significantly increased the discounted global mitigation costs of reaching roughly 450  ppm and 550 ppm CO2eq by the end of the century, with the effect being larger for more stringent  goals. These studies also showed that reducing energy demand can potentially decrease mitigation  costs significantly. [6.3.2, 6.3.4, 6.3.6, 6.4]  Mitigation efforts will influence the costs of meeting other policy objectives. Recent studies  indicate that climate policies significantly reduce the costs of reaching energy security and/or air  quality objectives (medium evidence, high agreement). The associated economic implications for  these objectives are not taken into account in most scenario studies. Sectoral studies suggests that  the number of co benefits for energy end use mitigation measures outweighs the number of the  adverse side effects, whereas the evidence suggests this is not the case for all supply side measures  (medium evidence, high agreement). The overall welfare implications associated with these  additional objectives have not been assessed thoroughly in the literature. [6.6]  There is only limited evidence on the potential of geoengineering by CDR or solar radiation  management (SRM) to counteract climate change, and all techniques carry risks and uncertainties  (high confidence). A range of different SRM and CDR techniques have been proposed, but no  currently existing technique could fully replace mitigation or adaptation efforts. Nevertheless, many  low GHG concentration scenarios rely on two CDR techniques, afforestation and biomass energy  with carbon dioxide capture and storage (BECCS), which some studies consider to be comparable  with conventional mitigation methods. Solar radiation management could reduce global mean  temperatures, but with uneven regional effects, for example on temperature and precipitation, and  it would not address all of the impacts of increased CO2 concentrations, such as ocean acidification.  Techniques requiring large scale interventions in the earth system, such as ocean fertilization or  stratospheric aerosol injections, carry significant risks. Although proposed geoengineering  techniques differ substantially from each other, all raise complex questions about costs, risks,  governance, and ethical implications of research and potential implementation. [6.9] Despite the advances in our understanding of transformation pathways since AR4, many avenues of  inquiry remain unanswered. Important future research directions include the following:  development of a broader set of socioeconomic and technological storylines to support  development of scenarios; scenarios explicitly pursuing a wider set of climate goals, including those  related to temperature change; more mitigation scenarios that include impacts from, and  adaptations to, a changing climate, including energy and land use systems critical for mitigation;  expanded treatment of the benefits and risks of CDR and SRM options; expanded treatment of co benefits and risk tradeoffs of mitigation pathways; improvements in the treatment and  understanding of mitigation options and responses in end use sectors in transformation pathways;  and more sophisticated treatments of land use and land use based mitigation options in mitigation  scenarios. [6.10]  6.1   Introduction  6.1.1    Framing and evaluating transformation pathways  Stabilizing greenhouse gas (GHG) concentrations at any level will require deep reductions in GHG  emissions. Net global CO2 emissions, in particular, must eventually be brought to or below zero.  Emissions reductions of this magnitude will require large scale transformations in human societies,  from the way that we produce and consume energy to how we use the land surface. The more  ambitious the stabilization goal, the more rapid this transformation must occur. A natural question  7 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  in this context is what will be the transformation pathway toward stabilization; that is, how do we  get from here to there?  The topic of this chapter is transformation pathways. The chapter is motivated primarily by three  questions. First, what are the near term and future choices that define transformation pathways  including, for example, the goal itself, the emissions pathway to the goal, the technologies used for  and sectors contributing to mitigation, the nature of international coordination, and mitigation  policies? Second, what are the key decision making outcomes of different transformation pathways,  including the magnitude and international distribution of economic costs and the implications for  other policy objectives such as those associated with sustainable development? Third, how will  actions taken today influence the options that might be available in the future?  Two concepts are particularly important for framing any answers to these questions. The first is that  there is no single pathway to stabilization of GHG concentrations at any level. Instead, the literature  elucidates a wide range of transformation pathways. Choices will govern which pathway is followed.  These choices include, among other things, the long term stabilization goal, the emissions pathway  to meet that goal, the degree to which concentrations might temporarily overshoot the goal, the  technologies that will be deployed to reduce emissions, the degree to which mitigation is  coordinated across countries, the policy approaches used to achieve these goals within and across  countries, the treatment of land use, and the manner in which mitigation is meshed with other  policy objectives such as sustainable development.   The second concept is that transformation pathways can be distinguished from one another in  important ways. Weighing the characteristics of different pathways is the way in which deliberative  decisions about transformation pathways would be made. Although measures of aggregate  economic implications have often been put forward as key deliberative decision making factors,  these are far from the only characteristics that matter for making good decisions. Transformation  pathways inherently involve a range of tradeoffs that link to other national and policy objectives  such as energy and food security, the distribution of economic costs, local air pollution, other  environmental factors associated with different technology solutions (e.g., nuclear power, coal fired  carbon dioxide capture and storage (CCS)), and economic competitiveness. Many of these fall under  the umbrella of sustainable development.  A question that is often raised about particular stabilization goals and transformation pathways to  those goals is whether the goals or pathways are  feasible . In many circumstances, there are clear  physical constraints that can render particular long term goals physically impossible. For example, if  mitigation is delayed to a large enough degree and carbon dioxide removal (CDR) options are not  available (see Section 6.9), a goal of reaching 450 ppm CO2eq by the end of the 21st century can be  physically impossible. However, in many cases, statements about feasibility are bound up in  subjective assessments of the degree to which other characteristics of particular transformation  pathways might influence the ability or desire of human societies to follow them. Important  characteristics include economic implications, social acceptance of new technologies that underpin  particular transformation pathways, the rapidity at which social and technological systems would  need to change to follow particular pathways, political feasibility, and linkages to other national  objectives. A primary goal of this chapter is to illuminate these characteristics of transformation  pathways.  6.1.2    New mitigation scenarios since AR4  Since the IPCC Fourth Assessment Report (AR4), the integrated modelling community has produced  a range of new transformation pathway scenarios. Major advances include an increase in the  number of scenarios exploring the following: low concentration goals such as 450 ppm CO2eq;  overshoot emissions trajectories with and without CDR technologies; a variety of international  mitigation policy configurations, including fragmented action and delays in mitigation; and the  implications of variations in technology cost, performance, and availability. The literature also  8 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  includes a small but growing set of scenarios and research exploring the linkage between mitigation  and other policy objectives, an increasingly sophisticated treatment of the role of land use in  mitigation, and scenarios exploring non market approaches to mitigation. Two particularly important  categories for the discussion in this chapter are non idealized international implementation  scenarios and scenarios with limits on technology cost, performance, or availability. These categories  of scenarios are discussed in more detail below.  6.1.2.1    Non idealized international implementation scenarios  At the time of AR4, the majority of mitigation scenarios were based on the idealized assumption that  mitigation is undertaken where and when it is least expensive. Such  idealized implementation   scenarios assume the imposition of a global price on carbon that reaches across countries,  permeates all economic sectors within countries, and that rises over time in a way that will minimize  discounted economic costs over a long period of time, typically through 2100. These are often  referred to as  cost effective  scenarios, because they lead to the lowest aggregate global mitigation  costs under idealized assumptions about the functioning of markets and economies (see  Section 6.3.6   ). However, the reality of international strategies for mitigation is one of different  countries taking on mitigation at different times and using different and independent  implementation approaches. Responding to this reality, the research community has produced a  large set of  non idealized  international implementation scenarios for reaching long term  concentration goals. Often, but not always, non idealized implementation is focused on the coming  decades, with a transition toward idealized implementation in the long run. In addition to individual  papers (for example, Richels et al., 2007; Edmonds et al., 2008; Luderer et al., 2013b; Rogelj et al.,  2013a), there have been a number of multi model projects exploring non idealized implementation  scenarios (Table 6.1). This chapter relies heavily on those multi model studies.   Table 6.1: Multi-model studies exploring non-idealized international implementation Multi Model Study  Description  Delayed participation (fragmented action) scenarios in which Organisation for Economic Co EMF 22 (Clarke et al.,  operation and Development (OECD) countries begin mitigation immediately; Brazil, Russia,  2009)  India, and China begin after 2030; remaining countries begin after 2050. Scenarios meet  various 2100 concentration goals, with and without overshooting the concentration goal.   EMF 27 (Blanford et al.,  Delayed and limited participation scenario with Annex I adopting 80% emissions reductions  2014; Kriegler et al.,  until 2050, non Annex I adopting a global 50% emissions reduction by 2050 after 2020, and  2014a)   resource exporting countries not undertaking emissions reductions.   Two studies: AMPERE WP2 focused on delayed mitigation scenarios with the world following  moderate mitgation until 2030, and adopting long term concentration goals thereafter.   AMPERE (Kriegler et al.,  AMPERE WP3 focused on delayed participation scenarios with EU27 or EU27 and China  2014b; Riahi et al., 2014)   acting immediately and the remaining countries transitioning from moderate policies to a  global carbon pricing regime (without mitigation goal) between 2030 and 2050.  LIMITS (Kriegler et al.,  Delayed mitgation scenarios with the world following two levels of moderate fragmented  2013c; Tavoni et al.,  action through 2020 or 2030, and adopting two long term concentration goals thereafter.  2014)  Three different effort sharing schemes are considered.   RoSE (Luderer et al.,  Delayed mitgation scenarios with the world following moderate fragmented action in the  2013a)  near term and adopting a long term concentration goal after 2020 or 2030.  Note: The Energy Modeling Forum (EMF) 27, AMPERE (Assessment of Climate Change Mitigation Pathways and Evaluation of the Robustness of Mitigation Cost Estimates), LIMITS (Low Climate Impact Scenarios and the Implications of Reguired Tight Emission Control Strategies), and RoSE (Roadmaps Towards Sustainable Energy Futures) studies also included scenarios of moderate fragmented action throughout the 21st century without the goal of meeting any specific long-term concentration. There are a number of ways that scenarios may deviate from the idealized implementation, but two  are most prominent in the new literature. One set of scenarios includes those in which near term  mitigation is inconsistent with typically less than what would be called for to minimize the  discounted, century long costs of meeting a long term goal such as 450 ppm CO2eq by 2100. These  scenarios are intended to capture the implications of  delayed action  or  delayed mitigation  or  constrained near term ambition . Mitigation is not undertaken  when  it would be least expensive.  The other set of scenarios includes those in which the price on carbon is not consistent across  9 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  countries. Some countries reduce emissions more aggressively than others, particularly in the near term, so that mitigation is not undertaken  where  it is least expensive. These scenarios are intended  to capture the implications of  fragmented action  or  delayed participation . Non idealized  international implementation scenarios may include one or both of these deviations.  6.1.2.2    Limited technology scenarios  Scenario research prior to AR4 emphasized the importance of technology in constraining the costs of  mitigation. A range of individual papers had made initial explorations of this space for more than a  decade before AR4. Since AR4, however, a range of new studies have emerged including large model  intercomparison studies, that have focused on the implications of limitations on technology cost,  performance, availability on the cost and other characteristics of meeting concentration goals such  as 450 ppm CO2eq by 2100. The large model intercomparison studies include Energy Modeling  Forum (EMF) 27 (Krey et al., 2014; Kriegler et al., 2014a), ADAM (Adaptation and Mitigation  Strategies: Supporting European Climate Policy) (Edenhofer et al., 2010), RECIPE (Report on Energy  and Climate Policy in Europe) (Luderer et al., 2011; Tavoni et al., 2012), and AMPERE (Assessment of  Climate Change Mitigation Pathways and Evaluation of the Robustness of Mitigation Cost Estimates)  (Riahi et al., 2014). In addition to the large model intercomparison studies, a number of individual  research papers and reports have explored this space since AR4, typically constrained to a single  model (Kim et al., 2000; Richels et al., 2007; Calvin et al., 2009a; van Vliet et al., 2009; Krey and Riahi,  2009; Riahi et al., 2012; Luderer et al., 2013b; Rogelj et al., 2013b). In many cases, these studies have  simply assumed that particular technologies, such as CCS or nuclear power, may not be available. In  others, studies have put constraints on resource supplies, for example, the supply of bioenergy. In  others, they have called for variations in cost and performance of different technologies. Many have  also explored the implications of energy end use improvements. .  6.2   Tools of analysis  6.2.1    Overview of integrated modelling tools  The long term scenarios assessed in this chapter were generated primarily by large scale, integrated  models that can project key characteristics of transformation pathways to mid century and beyond.  These models represent many of the most relevant interactions among important human systems  (e.g., energy, agriculture, the economic system), and often represent important physical processes  associated with climate change (e.g., the carbon cycle). Other approaches to explore transformation  pathways include qualitative scenario methods and highly aggregated modelling tools, such as those  used for cost benefit analysis (see Box 6.1 on cost benefit analysis). These other approaches provide  a different level of quantitative information about transformation pathways than scenarios from  large scale integrated models.   All integrated models share some common traits. Most fundamentally, integrated models are  simplified, stylized, numerical approaches to represent enormously complex physical and social  systems. They take in a set of input assumptions and produce outputs such as energy system  transitions, land use transitions, economic effects of mitigation, and emissions trajectories.  Important input assumptions include population growth, baseline economic growth, resources,  technological change, and the mitigation policy environment. The models do not structurally  represent many social and political forces that can influence the way the world evolves (e.g., shocks  such as the oil crisis of the 1970s). Instead, the implications of these forces enter the model through  assumptions about, for example, economic growth and resource supplies. The models use  economics as the basis for decision making. This may be implemented in a variety of ways, but it  fundamentally implies that the models tend toward the goal of minimizing the aggregate economic  costs of achieving mitigation outcomes, unless they are specifically constrained to behave otherwise.  In this sense, the scenarios tend towards normative, economics focused descriptions of the future.  The models typically assume fully functioning markets and competitive market behavior, meaning  10 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  that factors such as non market transactions, information asymmetries, and market power  influencing decisions are not effectively represented. Maintaining a long term, integrated, and often  global perspective involves tradeoffs in terms of the detail at which key processes can be  represented in integrated models. Hence, the models do not generally represent the behaviour of  certain important system dynamics, such as economic cycles or the operation of electric power  systems important for the integration of solar and wind power, at the level of detail that would be  afforded by analyses that the focus exclusively on those dynamics.   Beyond these and other similarities, integrated modelling approaches can be very different, and  these differences can have important implications for the variation among scenarios that emerge  from different models. The following paragraphs highlight a number of key differences in model  structure. To provide insight into the implications of these tradeoffs, potential implications for  aggregate economic costs are provided as examples, when appropriate.  Economic coverage and interactions. Models differ in terms of the degree of detail with which they  represent the economic system and the degree of interaction they represent across economic  sectors. Full economy models (e.g., general equilibrium models) represent interactions across all  sectors of the economy, allowing them to explore and understand ripple effects from, for example,  the imposition of a mitigation policy, including impacts on overall economic growth. Partial economy  models, on the other hand, take economic activity as an input that is unresponsive to policies or  other changes such as those associated with improvements in technology. These models tend to  focus more on detailed representations of key systems such as the energy system. All else equal,  aggregate economic costs would tend to be higher in full economy models than in partial economy  models because full economy models include feedbacks to the entire economy. On the other hand,  full economy models may include more possibilities for substitution in sectors outside of those  represented in partial economy models, and this would tend to reduce aggregate economic costs.  Foresight. Perfect foresight models (e.g., intertemporal optimization models) optimize over time, so  that all future decisions are taken into account in today s decisions. In contrast, recursive dynamic  models make decisions at each point in time based only on the information in that time period. In  general, perfect foresight models would be likely to allocate emissions reductions more efficiently  over time than recursive dynamic models, which should lead to lower aggregate costs.  Representation of trade. Models differ in terms of how easy it is for goods to flow across regions.  On one end of the spectrum are models assuming goods are homogeneous and traded easily at one  world price (Heckscher Ohlin) or that there is one global producer (quasi trade). On the other end of  the spectrum are models assuming a preference for domestic goods over imported goods  (Armington) or models without explicit trade across regions (e.g., models with import supply  functions). In general, greater flexibility to trade will result in lower aggregate mitigation costs  because the global economy is more flexible to undertake mitigation where it is least expensive.  More generally, many partial equilibrium models include trade only in carbon permits and basic  energy commodities. These models are not capable of exploring the full nature of carbon leakage  that might emerge from mitigation policies, and particularly those associated with fragmented  international action.  Model flexibility. The flexibility of models describes the degree to which they can change course.  Model flexibility is not a single, explicit choice for model structure. Instead, it is the result of a range  of choices that influence, for example, how easily capital can be reallocated across sectors including  the allowance for premature retirement of capital stock, how easily the economy is able to  substitute across energy technologies,  whether fossil fuel and renewable resource constraints exist  and how easily the economy can extract resources. The complexity of the different factors  influencing model flexibility makes clear delineations of which models are more or less flexible  difficult. Evaluation and characterization of model flexibility is an area of current research (see  Kriegler et al., 2013b). Greater flexibility will tend to lower mitigation costs.  11 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Sectoral, regional, technology, and GHG detail. Models differ dramatically in terms of the detail at  which they represent key sectors and systems. These differences influence not only the way that the  models operate, but also the information they can provide about transformation pathways. Key  choices include the number of regions, the degree of technological detail in each sector, which GHGs  are represented and how, whether land use is explicitly represented, and the sophistication of the  model of earth system process such as the carbon cycle. Some models include only CO2 emissions,  many do not treat land use change (LUC) and associated emissions, and many do not have  submodels of the carbon cycle necessary to calculate CO2 concentrations. In addition, although the  scenarios in this chapter were generated from global models that allow for the implications of  mitigation for international markets to be measured, regional models can provide finer detail on the  implications for a specific region s economy and distributional effects. The effects of detail on  aggregate mitigation costs are ambiguous   Representation of technological change. Models can be categorized into two groups with respect to  technological change. On one end of the spectrum, models with exogenous technological change  take technology as an input that evolves independently of policy measures or investment decisions.  These models provide no insight on how policies may induce advancements in technology. On the  other end of the spectrum, models with endogenous technological change (also known as induced  technological change) allow for some portion of technological change to be influenced by  deployment rates or investments in research and development (R&D). Models featuring endogenous  technological change are valuable for understanding how the pace of technological change might be  influenced by mitigation policies.  6.2.2    Overview of the scenario ensemble for this assessment  The synthesis in this chapter is based on a large set of new scenarios produced since AR4. The  number of models has increased and model functionality has significantly improved since AR4,  allowing for a broader set of scenarios in the AR5 ensemble. The majority of these scenarios were  produced as part of multi model comparisons. Most model intercomparison studies produce publicly  available databases that include many of the key outputs from the studies. Although crucial for our  understanding of transformation pathways, these intercomparison exercises are not the only source  of information on transformation pathways. A range of individual studies have been produced since  AR4, largely assessing transformation pathways in ways not addressed in the model intercomparison  exercises. For the purposes of this assessment, an open call was put forward for modellers to submit  scenarios not included in the large model intercomparison databases. These scenarios, along with  those from many of the model intercomparison studies, have been collected in a database that is  used extensively in this chapter.A summary of the models and model intercomparison exercises that  generated the scenarios referenced in this chapter can be found in Annex II.10.  6.2.3    Uncertainty and the interpretation of large scenario ensembles   The interpretation of large ensembles of scenarios from different models, different studies, and  different versions of individual models is a core component of the assessment of transformation  pathways in this chapter. Indeed, many of the tables and figures represent ranges of results across  models of all these dimensions.   There is an unavoidable ambiguity in interpreting ensemble results in the context of uncertainty. On  the one hand, the scenarios assessed in this chapter do not represent a random sample that can be  used for formal uncertainty analysis. Each scenario was developed for a specific purpose. Hence, the  collection of scenarios included in this chapter does not necessarily comprise a set of  best guesses.   In addition, many of these scenarios represent sensitivities, particularly along the dimensions of  future technology availability and the timing of international action on climate change, and are  therefore highly correlated. Indeed, most of the scenarios assessed in this chapter were generated  as part of model intercomparison exercises that impose specific assumptions, often regarding long term policy approaches to mitigation, but also in some cases regarding fundamental drivers like  12 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  technology, population growth, and economic growth. In addition, some modelling groups have  generated substantially more scenarios than others, introducing a weighting of scenarios that can be  difficult to interpret. At the same time, however, with the exception of pure sensitivity studies, the  scenarios were generated by experts making informed judgements about how key forces might  evolve in the future and how important systems interact. Hence, although they are not explicitly  representative of uncertainty, they do provide real and often clear insights about our lack of  knowledge about key forces that might shape the future (Fischedick et al., 2011; Krey and Clarke,  2011). The synthesis in this chapter does not attempt to resolve the ambiguity associated with  ranges of scenarios, and instead focuses simply on articulating the most robust and valuable insights  that can be extracted given this ambiguity. However, wherever possible, scenario samples are  chosen in such a way as to reduce bias, and these choices are made clear in the discussion and figure  legends.  6.2.4    Interpretation of model inability to produce particular scenarios   A question that is often raised about particular stabilization goals and transformation pathways is  whether the goals or pathways are  feasible  (see Section 6.1). Integrated models can be helpful in  informing this question by providing information about key elements of transformation pathways  that might go into assessments of feasibility, such as rates of deployment of energy technologies,  rates of reductions in global and regional emissions, aggregate economic costs, financial transfers  among regions, and links to other policy objectives such as energy security or energy prices.  However, beyond cases where physical laws might be violated to achieve a particular scenario (for  example, a 2100 carbon budget is exceeded prior to 2100 with no option for negative emissions),  these integrated models cannot determine feasibility in an absolute sense.   This is an important consideration when encountering situations where models are incapable of  producing scenarios. Many models have been unable to achieve particularly aggressive  concentration goals such as those associated with meeting 450 ppm CO2eq goals, particularly under  challenging technological or policy constraints. In some cases, this may be due to the violation of real  physical laws, the most common of which is when the cumulative carbon budget associated with  meeting a long term goal is exceeded without options to remove carbon from the atmosphere.  Frequently, however, instances of model infeasibility arise from pushing models beyond the  boundaries that they were built to explore, for example, rates of change in the energy system that  exceed what the model can represent, or carbon prices sufficiently high that they conflict with the  underlying computational structure. Indeed, in many cases, one model may be able to produce  scenarios while another will not, and model improvements over time may result in feasible scenarios  that previously were infeasible. Hence, although these model infeasibilities cannot generally be  taken as an indicator of feasibility in an absolute sense, they are nonetheless valuable indicators of  the challenge associated with achieving particular scenarios. For this reason, whenever possible, this  chapter highlights those situations where models were unable to produce scenarios.  Unfortunately, this type of result can be difficult to fully represent in an assessment because, outside  of model intercomparison studies intended explicitly to identify these circumstances, only scenarios  that could actually be produced (as opposed that could not be produced) are generally published.  Whether certain circumstances are underrepresented because they have been under examined or  because they have been examined and the scenarios failed is a crucial distinction, yet one that it is  currently not possible to fully report. Model infeasibilities can bias results in important ways, for  example, the costs of mitigation, because only those models producing scenarios can provide  estimated costs (Tavoni and Tol, 2010).   13 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.3   Climate stabilization: Concepts, costs and implications for the macro  economy, sectors and technology portfolios, taking into account  differences across regions  6.3.1    Baseline scenarios  6.3.1.1    Introduction to baseline scenarios  Baseline scenarios are projections of GHG emissions and their key drivers as they might evolve in a  future in which no explicit actions are taken to reduce GHG emissions. Baseline scenarios play the  important role of establishing the projected scale and composition of the future energy, economic,  and land use systems as a reference point for measuring the extent and nature of required  mitigation for a given climate goal. Accordingly, the resulting estimates of mitigation effort and costs  in a particular mitigation scenario are always conditional upon the associated baseline.   Although the range of emissions pathways across baseline scenarios in the literature is broad, it may  not represent the full potential range of possibilities. There has been comparatively little research  formally constructing or eliciting subjective probabilities for comprehensive ranges of the key drivers  of baseline emissions in a country specific context, and this remains an important research need for  scenario development. As discussed in Section 6.2, although the range of assumptions used in the  literature conveys some information regarding modellers  expectations about how key drivers might  evolve and the associated implications, several important factors limit its interpretation as a true  uncertainty range. An important distinction between scenarios in this regard is between those that  are based on modellers   default  assumptions and those that are harmonized across models within  specific studies. The former can be considered a better, although still imperfect, representation of  modellers  expectations about the future, while, as is discussed below, the latter consider specific  alternative views that in some cases span a larger range of possible outcomes.  6.3.1.2    The drivers of baseline emissions of energy related emissions  As discussed in Chapter 5, the drivers of the future evolution of energy related emissions in the  baseline can be summarized by the terms of the Kaya identity: population, per capita income, energy  intensity of economic output, and carbon intensity of energy. At the global level, baseline  projections from integrated models are typically characterized by modest population growth  stabilizing by the end of the century, fast but decelerating growth in income, decline in energy  intensity, and modest changes in carbon intensity with ambiguous sign (Figure 6.1).  14 of 141   Final Draft  Chapter 6  IPCC WGIII AR5      Figure 6.1. Global baseline projection ranges for Kaya factors. Scenarios harmonized with respect to a particular factor are depicted with individual lines. Other scenarios depicted as a range with median emboldened; shading reflects interquartile range (darkest), 5th 95th percentile range (lighter), and full extremes (lightest), excluding one indicated outlier in population panel. Scenarios are filtered by model and study for each indicator to include only unique projections. Model projections and historic data are normalized to 1 in 2010. Gross domestic product (GDP) is aggregated using base-year market exchange rates. Energy and carbon intensity are measured with respect to total primary energy. Sources: UN (2012), Heston et al. (2012), World Bank (2013), BP (2013), WG III AR5 Scenario Database (Annex II.10). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. There is comparatively little variation across model scenarios in projected population growth, with  virtually all modelling studies relying on central estimates (UN, 2012). One exception is the RoSE  project (Bauer et al., 2013b; Calvin et al., 2014; De Cian et al., 2014), which explicitly considers high  population scenarios, as well as the storyline beneath the representative concentration pathways  (RCP) 8.5 scenario. Among the majority of default population projections, there are some minor  differences across models, for example, the extent to which declining rates for certain regions in  coming decades are incorporated. On the other hand, there is substantially more variation in model  projections of per capita income, with a few scenarios harmonized at both the low and high ends of  the range, and energy intensity, for which two studies (AMPERE and EMF27) specified alternative  fast  decline baselines. Still, the interquartile range of default assumptions for both indicators is  narrow, suggesting that many scenarios are based on a similar underlying narrative. Models project  a faster global average growth rate in the future as dynamic emerging economies constitute an  increasing share of global output. Energy intensity declines more rapidly than in the past, with an  15 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  especially marked departure from the historical trend for  fast  energy intensity decline scenarios.  Carbon intensity, typically viewed as a model outcome driven by resource and technology cost  assumptions, is projected in most baseline scenarios to change relatively little over time, but there  are exceptions in both directions. Declining carbon intensity could result from rapid improvements in  renewable technologies combined with rising fossil fuel prices. Conversely, the fossil share in energy  could rise with favourable resource discoveries, or the fossil mix could become more carbon  intensive, for example, due to replacement of conventional petroleum with heavier oil sands or coal to liquids.  While all models assume increasing per capita income and declining energy intensity, broad ranges  are projected and high uncertainty remains as to what rates might prevail. Most models describe  income growth as the result of exogenous improvement over time in labour productivity. The  processes of technological advance by which such improvement occurs are only partially  understood. Changes in aggregate energy intensity over time are the net result of several trends,  including both improvements in the efficiency of energy end use technology and structural changes  in the composition of energy demand. Structural changes can work in both directions: there may be  increased demand for energy intensive services such as air conditioning as incomes rise, while on  the production side of the economy, there may be shifts to less energy intensive industries as  countries become wealthier. Although increasing energy intensity has been observed for some  countries during the industrialization stage, the net effect is usually negative, and in general energy  intensity has declined consistently over time. Both efficiency improvements and structural change  can be driven by changes in energy prices, but to a significant extent both are driven by other factors  such as technological progress and changing preferences with rising incomes. Most integrated  models are able to project structural and technological change only at an aggregate level, although  some include explicit assumptions for certain sectors (Sugiyama et al., 2014).   Because of limited variation in population and carbon intensity projections, the relative strength of  the opposing effects of income growth and energy intensity decline (summarized by changes in per  capita energy), plays the most important role in determining the growth of emissions in the baseline  scenario literature (see Blanford et al., 2012). Assumptions about the evolution of these factors vary  strongly across regions. In general, rates of change in population, income, energy intensity, and per  capita energy are all expected to be greater in developing countries than in currently developed  countries in coming decades, although this pattern has not necessarily prevailed in the past 40 years,  as non OECD 1990 countries had slower energy intensity decline than OECD 1990 countries (Figure  6.2). Among default energy intensity scenarios, assumed rates of change appear to be positively  correlated between income and energy intensity, so that equivalent per capita energy outcomes are  realized through varying combinations of these two indicators. The harmonized shift in the energy  intensity decline rate leads to very low per capita energy rates, with global per capita energy use  declining in a few cases (Figure 6.2). Projected emissions are essentially the product of per capita  energy and carbon intensity projections, with most variation in future emissions scenarios explained  by variation in per capita energy; the highest emissions projections arise from instances with high  levels in both indicators (Figure 6.3).  16 of 141   Final Draft  Chapter 6  IPCC WGIII AR5    Figure 6.2. Average rates of change between 2010 and 2050 in baseline scenarios for GDP per capita and energy intensity of GDP in OECD-1990 and Non-OECD-1990. There are 62 of 77 unique default intensity scenarios and 22 of 24 unique fast intensity scenarios plotted. Omitted are scenarios without OECD-1990 break-out. Sources: UN (2012), Heston et al. (2012), World Bank (2013), BP (2013), WG III AR5 Scenario Database (Annex II.10). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9.     Figure 6.3. Indexed change through 2050 in carbon intensity of energy and per capita energy use in baseline scenarios. Color reflects indexed 2050 global fossil fuel and industrial (FF&I) CO2 emissions according to key in right panel showing histogram of plotted scenarios. For default population projections, emissions are correlated with chart position; exceptions with high population are noted. Source: UN (2012), BP (2013) WG III AR5 Scenario Database (Annex II.10). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. 6.3.1.3    Baseline emissions projections from fossil fuels and industry  Based on the combination of growing population, growing per capita energy demand, and a lack of  significant reductions in carbon intensity of energy summarized in the previous section, global  baseline emissions of CO2 from fossil fuel and industrial (FF&I) sources are projected to continue to  increase throughout the 21st century (Figure 6.4, left panel). Although most baseline scenarios  project a deceleration in emissions growth, especially compared to the rapid rate observed in the  past decade, none is consistent in the long run with the pathways in the two most stringent RCP  scenarios (Sections 2.6 and 4.5), with the majority falling between the 6.0 and 8.5 pathways (see  IPCC (2013), Chapter 12 for a discussion of the RCP study). The RCP 8.5 pathway has higher  emissions than all but a few published baseline scenarios. Projections for baseline FF&I CO2  emissions in 2050 range from only slightly higher than current levels (in scenarios with explicit  assumptions about fast energy intensity decline) to nearly triple current levels.  17 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.4. Global FF&I CO2 emissions in baseline scenarios with default growth assumptions (grey range) and fast energy intensity decline (gold range) (left panel), and for OECD-1990 vs. non-OECD1990 (right panel). RCP scenarios are shown for comparison with the global baseline ranges. Scenarios are depicted as ranges with median emboldened; shading reflects interquartile range (darkest), 5th 95th percentile range (lighter), and full extremes (lightest). Absolute projections are subject to variation in reported base-year emissions arising from different data sources and calibration approaches (Chaturvedi et al., 2012). Some of the range of variation in reported 2010 emissions reflects differences in regional definitions. Sources: WG III AR5 Scenario Database (Annex II.10), (van Vuuren et al., 2011b). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. A common characteristic of all baseline scenarios is that the majority of emissions over the next  century occur among non OECD 1990 countries , Figure 6.4, right panel). Because of its large and  growing population and projected rates of economic growth relatively faster than the industrialized  OECD 1990 countries, this region is projected to have the dominant share of world energy demand  over the course of the next century. While the range of emissions projected in the OECD 1990 region  remains roughly constant (a few models have higher growth projections), nearly all growth in future  baseline emissions is projected to occur in the non OECD 1990 countries. It is important to note that  while a baseline by construction excludes explicit climate policies, management of non climate  challenges, particularly in the context of sustainable development, will likely impact baseline GHG  pathways. Many of these policy objectives (but likely not all) are taken into account in baseline  scenarios, such as reductions in local air pollution and traditional biomass use and fuel switching  more generally away from solids towards refined liquids and electricity. Section 6.6 provides more  details on this issue.  6.3.1.4    Baseline CO2 emissions from land use and emissions of non CO2 gases  Baseline projections for global land use related carbon emissions and sequestration (also referred to  as net Agriculture, Forestry and Other Land Use (AFOLU) CO2 emissions) are made by a smaller  subset of models, and due to observation difficulties are subject to greater historical uncertainty  than FF&I emissions as discussed in Section 11.2 (Pan et al., 2011; Houghton et al., 2012). Baseline  projections for land use related CO2 emissions reflect base year uncertainty and suggest declining  annual net CO2 emissions in the long run (Figure 6.5a). In part, projections are driven by  technological change, as well as projected declining rates of agriculture area expansion, a byproduct  of decelerating population growth. Though uncertain, the estimated contribution of land use related  carbon over the coming century is small relative to emissions from fossil fuels and industry, with  some models projecting a net sink late in the century. For non CO2 GHGs, the contribution in CO2eq  terms is larger than land use CO2 with projected emissions increasing over time (Figure 6.5a). Along  with fugitive methane and a few industrial sources, land use related activities are projected to be a  major driver of non CO2 emissions, accounting for roughly 50% of total methane (CH4) emissions and  90% of nitrous oxide (N2O) emissions. Total CO2eq emissions are projected as the sum of FF&I CO2,  land use related CO2, and non CO2 (Figure 6.5b), with FF&I CO2 constituting around 80%.  18 of 141   Final Draft    Chapter 6  IPCC WGIII AR5    Figure 6.5. Global CO2-equivalent emissions in baseline scenarios by component (left panel) and total (right panel) for baseline scenarios. Net AFOLU CO2 and total non-CO2 (CH4, N2O, and F-gases) projections are shown for individual models from EMF27. The FF&I CO2 projections are depicted in detail above; the range is truncated here; FF&I CO2 includes CO2 from AFOLU fossil fuel use. Total CO2eq emissions1 are shown for all baseline scenarios with full coverage, depicted as a range with median emboldened; shading reflects interquartile range (darkest), 5th 95th percentile range (lighter), and full extremes (lightest). Sources: WG III AR5 Scenario Database (Annex II.10); historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. 6.3.1.5    Baseline radiative forcing and cumulative carbon emissions  The emissions pathways for all of the emissions from the scenarios collected for this assessment  were run through a common version of the MAGICC model to obtain estimates of CO2eq  concentrations (Section 6.3.2   ). As a result of projected increasing emissions in the scenarios,  radiative forcing from all sources continues to grow throughout the century in all baseline scenarios,  exceeding 550 CO2eq (3.7 W/m2) between 2040 and 2050, while 450 CO2eq (2.6 W/m2) is surpassed  between 2020 and 2030 (Figure 6.6, left panel). Again, the majority of baseline forcing scenarios fall  below the RCP 8.5 path but above RCP 6.0. Total forcing projections include the highly uncertain  contribution of aerosols and other non gas agents, which are based on the MAGICC model s median  estimates of forcing as a function of aerosol emissions (for scenarios that do not project emissions of  these substances, emissions were prescribed from other sources; see Annex II.10). Due to variation  in driver assumptions, which may not reflect true uncertainty, baseline scenarios could lead to a  range of long term climate outcomes, with cumulative carbon emissions from 1751 to 2100 reaching  between 1.5 and 3 TtC (Figure 6.6, right panel). Noting that all of the baseline scenarios reviewed  here include improvements to technology throughout the economy, there is strong evidence that,  conditional on rates of growth assumed in the literature, technological change in the absence of  explicit mitigation policies is not sufficient to bring about stabilization of GHG concentrations.                                                                In this chapter, CO2 eq emissions are constructed using Global Warming Potentials (GWPs) over a 100 year  time horizon derived from the IPCC Second Assessment Report (see Annex II.9.1 for the GWP values of the  different GHGs). A discussion about different GHG metrics can be found in Sections 1.2.5 and 3.9.6.  1 19 of 141   Final Draft  Chapter 6  IPCC WGIII AR5    Figure 6.6. Total radiative forcing (left panel) and cumulative carbon emissions since 1751 (right panel) in baseline scenario literature compared to RCP scenarios. Forcing was estimated ex-post from models with full coverage the median output from the MAGICC results. Secondary axis in the left panel expresses forcing in CO2eq concentrations. Scenarios are depicted as ranges with median emboldened; shading reflects interquartile range (darkest), 5th 95th percentile range (lighter), and full extremes (lightest). Sources: WG III AR5 Scenario Database (Annex II.10); Boden et al. (2013); Houghton (2008);van Vuuren et al. (2011a). 6.3.2    Emissions trajectories, concentrations, and temperature in transformation  pathways  6.3.2.1    Linking between different types of scenarios  There are important differences among long term scenarios that complicate comparison between  them. One difference is the nature of the goal itself. The majority of long term scenarios focus on  reaching long term radiative forcing or GHG concentration goals. However, scenarios based on other  long term goals have also been explored in the literature. This includes scenarios focused on specific  policy formulations (e.g., the Group of Eight (G8) goal of 50% emission reduction in 2050 (G8, 2009)  or the pledges made in the context of United Nations Framework Convention on Climate Change  (UNFCCC) (UNFCCC, 2011a; b)), those based on cumulative emissions goals over a given period,  those based on prescribed carbon prices, and those resulting from cost benefit analysis (see Box 6.1  for a discussion of cost benefit analysis scenarios). A second important difference is that some  scenarios include all relevant forcing agents, while others only cover a subset of gases or focus only  on CO2. Finally, some scenarios allow concentrations to temporarily exceed long term goals  (overshoot scenarios), while others are formulated so that concentrations never exceed the long term goal ( not to exceed scenarios ).  Box 6.1. Cost benefit analysis scenarios Cost benefit studies (e.g. Tol, 1997; Nordhaus and Boyer, 2000; Hope, 2008) monetize the impacts of  climate change and then balance the economic implications of mitigation and climate damages to  identify the optimal trajectory of emissions reductions that will maximize total welfare. There are  other frameworks of analysis for considering impacts as well (Bradford, 1999; Barrett, 2008; Keller et  al., 2008). For example, risk assessment is also often used to determine overall goals. A theoretical  discussion of cost benefit analysis, including models that have conducted these analyses, can be  found in both Chapters 2 and 3. One important characteristic of cost benefit analyses is that the bulk  of research in this domain has been conducted using highly aggregate models that do not have the  structural detail necessary to explore the nature of energy system or agricultural and land use  transitions that are the focus of this chapter. For this reason, they are not assessed in this chapter. In  contrast, the scenarios explored here rely on more detailed integrated models and have been  implemented in a cost effectiveness framework, meaning that they are designed to find a least cost  20 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  approach to meeting a particular goal, such as a concentration goal in 2100. Additionally, the  scenarios and models described in this chapter typically examine mitigation independent from  potential feedbacks from climate impacts and adaptation responses. A discussion of studies that do  incorporate impacts into their assessment of transformation pathways, and a characterization of  how these feedbacks might affect mitigation strategies, is provided in Section 6.3.3   ).   Despite these differences, it is necessary for the purposes of assessment to establish comparability  across scenarios. To this end, scenarios assessed here have been grouped according to several key  parameters (Table 6.2) (for more detail on this process, see Annex II.10). The main criterion for  grouping is the radiative forcing level in 2100, expressed in full forcing CO2eq concentrations. (Full  radiative forcing here includes GHGs, halogenated gases, tropospheric ozone, aerosols, and and  land use related albedo change). Radiative forcing levels are often used as goal in scenarios, and the  RCPs have been formulated in terms of this indicator (Moss et al., 2010; van Vuuren et al., 2011a).  The scenario categories were chosen to relate explicitly to the four RCPs. A similar table in AR4  (Table 3.5) presented equilibrium values rather than 2100 values. Equilibrium values (as presented in  AR4) and 2100 concentration and temperature values (as presented in this report) cannot easily be  compared given the wide range of possible post 2100 trajectories and the lags in the physical  processes that govern both. In particular, equilibrium values assume that concentrations stay  constant after 2100, while many scenarios in the literature since AR5 show increasing or decreasing  concentrations in 2100. Thus, it is more appropriate to focus on 21st century values to avoid relying  on additional assumptions about post 2100 dynamics.   Another issue that complicates comparison across scenarios reported in the literature is that the  Earth System components (e.g., the carbon cycle and climate system) of integrated models can vary  substantially (van Vuuren et al., 2009b). Hence, similar emissions pathways from different models  may arrive at different 2100 CO2eq concentration levels and climate outcomes. To provide  consistency in this regard across the scenarios assessed in the scenario database for AR5 (Annex  II.10), and to facilitate the comparison with the assessment in Working Group I (WG I), the variation  originating from the use of different models was removed by running all the scenarios in the  database with at least information on Kyoto gas emissions through a standard reduced form climate  model called MAGICC (see Meinshausen et al., 2011ac; b; Rogelj et al., 2012). For each scenario,  MAGICC was run multiple times using a distribution of Earth System parameters, creating an  ensemble of MAGICC runs. The resulting median concentration from this distribution was used to  classify each scenario (see Section 6.3.2.6    for more on this process and a discussion of temperature  outcomes). This means that the median concentration information reported here does not reflect  uncertainty by Earth System components, unless mentioned otherwise, and it also means that the  concentrations may differ from those that were originally reported in the literature for the individual  models and scenarios.  The consistency of the MAGICC model version used here and the more comprehensive general  circulation models used in the Working Group I report (Stocker et al., 2013) is discussed in  Section6.3.2.6   , where where MAGICC is also used to produce probabilistic temperature estimates.  The CO2eq concentration in 2010 is 400 ppm CO2eq based on the parameters used in this version of  MAGICC.  To compare scenarios with different coverage of relevant substances or goals, a set of relationships  was developed to map scenarios with only sufficient information to assess Kyoto gas forcing or with  information only on cumulative CO2 budgets to the full forcing CO2eq concentration categories  (Table 6.2 and Method and Metrics Annex). Scenarios without full forcing information and that  extend to the end of the century were mapped, in order of preference, by Kyoto gas forcing in 2100  or by cumulative CO2 budgets from 2011 to 2100. In addition, scenarios that only extend to mid century were mapped according to cumulative CO2 budgets from 2011 to 2050. These mappings  21 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  allow for a practical, though still imperfect, means to compare between scenarios with different  constructions.   The categories leading to CO2eq concentration above 720 ppm contain mostly baseline scenarios  and some scenarios with very modest mitigation policies (Figure 6.7). The categories from  580 720 ppm CO2eq contain a small number of baseline scenarios at the upper end of the range,  some scenarios based on meeting long term concentration goals such as 650 ppm CO2eq by 2100,  and a number of scenarios without long term concentration goals but based instead on emissions  goals. There has been a substantial increase in the number of scenarios in the two lowest categories  since AR4 (Fisher et al., 2007). The RCP 2.6 falls in the 430 480 ppm CO2eq category based on its  forcing level by 2100. A limited number of studies (Rogelj et al 2013a,b; Luderer et al, 2013) have  explored emissions scenarios leading to concentrations below 430 ppm CO2eq by 2100. These  scenarios were not submitted to the AR5 database.   Table 6.2. Definition of CO2eq concentration categories used in this assessment, the mapping used to allocate scenarios based on different metrics to those categories, and the number of scenarios that extend through 2100 in each category. [Note: This table shows the mapping of scenarios to the categories; Table 6.3. shows the resulting characteristics of the categories using this mapping. The table only covers the scenarios with information for the full 21st century. The mapping of scenarios based on 2011-2050 cumulative total CO2eq emissions is described in the Methods and Metrics Annex.] CO2 equivalent concentration in  2100 (based on full radiative   1 forcing)   CO2eq  Concentration    (ppm) 430   480  480   530  530   580  580   650  650   720  720   1000   >1000   1 Secondary categorization criteria   Kyoto gas only  CO2eq  concentration in  2100 (ppm)  450 500  500 550  550 600  600 670  670 750  750 1030  1030   Cumulative total  CO2 emissions  2011 2100    (GtCO2) < 950    950   1500  1500  1950 1950  2600 2600  3250 3250  5250 > 5250 2 No of scenarios extending    through 2100   With Overshoot  Greater than 0.4  2  W/m 72 (72)  77 (77)  22 (22)  8 (8)  0 (0)  0 (0)  0 (0)  Radiative  2 forcing (W/m )  2.3   2.9  2.9   3.45  3.45   3.9  3.9   4.5  4.5   5.1  5.1   6.8   > 6.8  Corresponding  3 RCP   RCP 2.6    RCP 4.5  RCP .6 RCP 8.5 Total 114 (114)  251 (257)  198 (222) 102 (109) 27 (27) 111 (120) 160 (166) 4 Scenarios with information for the full 21st century were categorized in different categories based on their 2100 full radiative forcing/CO2eq concentration level (including GHGs and other radiatively active substances). If insufficient information was available to calculate full forcing, scenarios were categorized, in order of preference, by 2100 Kyoto gas forcing or cumulative CO2 emissions in the 2011 2100 period. Scenarios extending only through 2050 were categorized based on cumulative CO2 emissions in the 2011 2050 period. Those scenarios are not included in this table. (See the Methods and Metrics Annex for more information.) 3 2 The column indicates the corresponding RCP falling within the scenario category based on 2100 equivalent concentration. 4 Number of scenarios in the respective category, which report at least total CO2 emissions to 2100. Numbers in parentheses denote scenarios that report only CO2 emissions from fossil fuels and industry (but not land-use CO2). This mapping between different types of scenarios allows for roughly comparable assessments of  characteristics of scenarios, grouped by 2100 full forcing CO2eq concentration, across the full  database of scenarios collected for AR5 (Table 6.3.). The cumulative CO2 budgets from 2011 to 2100  in each category in Table 6.3 span a considerable range. This variation in CO2 budgets results from  the range of of concentration levels assigned to each category, the timing of emission reductions,  and variation in non CO2 emissions, including aerosols. Although this leads to a wider range of CO2  budgets than for the scenarios used in WG i (SPM Figure 10), the central estimates for the period  2011 2100 are very consistent. (Temperature results are discussed in Section 6.3.2.6   ).  An important distinction between scenarios is the degree to which concentrations exceed the 2100  goal before decreasing to reach it. Table 6.3. includes subcategories for scenarios in which  22 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  concentrations exceed their 2100 level by more than 0.4 W/m2 and scenarios that sometime during  the century overshoot the upper bound concentration level of the category. Both subcategories  result in different emission profiles and temperature outcomes compared to those that do not meet  these criteria (see Section 6.3.2.6    regarding temperature outcomes). 23 of 141   Final Draft  1  2  Chapter 6  IPCC WGIII AR5  Table 6.3. Key characteristics of the scenarios categories introduced in Table 6.2. For all parameters, the 10th to 90th percentile of the scenarios are shown.1 Source: WG III AR5 Scenario Database (Annex II.10). Cumulative CO2 emissions3 CO2 eq. CO2 eq (GtCO2) emissions in emissions in 2050 2100 relative to relative to 2011 2050 2011 2100 2010 (%)4 2010 (%) 630 1180 630 1180 670 1180 960 1550 960 1490 1020 1500 960 1430 990 1550 1170 2240 1400 2190 1170 2080 1240 2240 1170 2100 1870 2440 2570 3340 28 59 28 51 34 59 43 104 (8) 43 58 46 104 (8) 43 58 45 75 53 107 53 88 93 107 53 81 84 107 62 124 89 117 118 154 152 195 18 22 6 22 18 3 79 27 3 24 79 2 7 27 14 10 84 41 14 40 84 2 19 41 83 14 34 50 46 79 93 172 174 278 Concentration (ppm)5 Temperature (relative to 1850 1900)6,7 Probability of Probability of Probability of Probability of 2100 Temperature Exceeding1.5 Exceeding 2 Exceeding 3 Exceeding 4 Peak CO2 eq. (degrees C) degrees C (%) degrees C (%) degrees C (%) degrees C (%) 465 530 465 500 505 530 505 575 505 560 530 575 505 530 535 575 540 640 545 585 590 640 540 575 585 640 585 690 645 710 1.5 1.7 (1.0 2.8) 1.5 1.7 (1.0 2.6) 1.6 1.7 (1.1 2.8) 1.7 2.1 (1.2 3.3) 1.8 2.0 (1.2 3.2) 1.8 2.1 (1.2 3.3) 1.7 1.9 (1.2 2.9) 1.8 2.0 (1.2 3.3) 2.0 2.3 (1.4 3.6) 2.0 2.2 (1.4 3.6) 2.1 2.2 (1.4 3.6) 2.0 2.2 (1.4 3.6) 2.1 2.3 (1.4 3.6) 2.3 2.6 (1.5 4.2) 2.6 2.9 (1.8 4.5) 49 86 49 72 76 86 80 96 81 94 86 96 80 87 88 96 93 99 93 96 95 99 93 95 95 99 96 100 99 100 100 100 100 100 12 37 12 22 22 37 32 61 32 56 38 61 32 40 39 61 54 84 55 71 63 84 54 70 66 84 74 93 88 95 97 100 100 100 1 3 1 2 1 3 3 10 3 10 3 10 3 4 4 10 8 19 8 14 8 19 8 13 8 19 14 35 26 43 55 83 92 98 0 1 0 0 0 1 0 2 0 2 1 2 0 1 1 2 1 3 1 2 1 3 1 2 1 3 2 8 4 10 14 39 53 78 CO2 eq Conc in 2100 (CO2 eq) 2 Subcategories Total range CO2 in 2100 390 435 390 435 400 435 425 460 425 460 425 460 425 455 425 460 425 520 465 520 425 505 450 520 425 510 500 545 565 615 645 780 810 975 550 1300 430 480 Overshoot <0.4 W/m2 550 1030 Overshoot >0.4 W/m2 920 1300 Total range 860 1600 Overshoot <0.4 W/m2 870 1240 480 530 Overshoot >0.4 W/m2 1060 1600 No exceedance of 530 ppm CO2 eq 860 1180 Exceedance of 530 ppm CO2 eq 1130 1530 Total range 1070 1780 Overshoot <0.4 W/m2 1090 1490 530 580 Overshoot >0.4 W/m2 1540 1780 No exceedance of 580 ppm CO2 eq 1070 1460 Exceedance of 580 ppm CO2 eq 1420 1750 580 650 Total range 1260 1640 650 720 Total range 1310 1750 720 1000 Total range 1570 1940 >1000 Total range 3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  3620 4990 1840 2310 5350 7010 765 935 3.1 3.7 (2.1 5.8) 1075 1285 4.1 4.8 (2.8 7.8) 1 Text in blue shows results of the subset of the scenarios from column one. One subcategory distinguishes scenarios that have a large overshoot (i.e., a maximum forcing during the 21st century 2 that is >0.4 W/m higher than its 2100 forcing) from those that do not have a large overshoot. The second set of subcategories shows whether a scenario exceeds the maximum equivalent concentration level of its category somewhere before 2100. For categories above 580 ppm CO2-eq., the information in the row total range refers to the 10th to 90th percentiles for the total set of scenarios in the category. For the categories below 580 ppm CO2-eq, the total range is based on the 10th to 90th percentiles of the subcategories (the lowest and highest values from the subcategories). 2 The CO2 equivalent concentration includes the forcing of all greenhouse gases, halogenated gases, tropospheric ozone, aerosols and albedo change (calculated on the basis of the MAGICC output). 3  For comparison of the cumulative CO2 emissions estimates assessed here with those presented in WG1, an amount of 515 [445 to 585] GtC (1890 [1630 to 2150] GtCO2), was already emitted by 2011 {Section WG1  12.5}. Note that cumulative emissions are presented for different periods of time (2011 2050 and 2011 2100), while cumulative emissions in WG1 are presented until the year of peak warming.   4  The global 2010 emissions are 31% above the 1990 emissions (AR5 WGIII historical database). CO2 eq. emissions include the basket of Kyoto gases (CO2, CH4, N2O as well as F gases)  5 The evaluation in WG3 involves a large number of scenarios published in the scientific literature. To evaluate the greenhouse gas concentration and climate implications of these scenarios, a model of intermediate complexity (MAGICC) was used in a probabilistic mode (see Methods and Metrics Annex) ). (Meinshausen et al., 2011a). For a comparison between MAGICC model results and the outcomes of the models used in WG1, see Section WG1 12.4.1.2 and WG1 12.4.8 and 6.3.2.6. The probabilities are indicative only. 6 Temperature change in 2100 is provided for a median estimate of the MAGICC calculations, which illustrates differences between the emissions pathways of the scenarios in each category. The range of  temperature change in the parentheses includes in addition also the carbon cycle and climate system uncertainties as represented by the MAGICC model (see 6.3.2.6 for further details). The temperature data  compared to the 1850 1900 reference year was calculated by taking all projected warming relative to 1986 2005, and adding 0.61°C for 1986 2005 compared to 1850 1900, based on HadCRUT4, as also applied in  WG1 Table SPM.2.  7  Temperature change is reported for the year 2100, which is not directly comparable to the equilibrium warming reported in AR4 (Table 3.5, Chapter 3 WGIII). For the 2100 temperature estimates, the transient  climate response (TCR) is the most relevant system property. The assumed 90th percentile uncertainty range of the TCR for MAGICC is 1.2 2.6°C . This compares to the 90th percentile range of TCR between 1.2 2.4°C for CMIP5 (WG1 9.7) and an assessed likely range of 1 2.5°C from multiple lines of evidence reported in the IPCC AR5 WGI report (Box 12.2 in chapter 12.5).  8  The high estimate is influenced by multiple scenarios from the same model in this category with very large net negative CO2 eq emissions of about 40 GtCO2 eq./ year in the long term. The higher bound CO2 eq.  emissions estimate, excluding extreme net negative emissions scenarios and thus comparable to the estimates from the other rows in the table, is about 81% in 2050 relative to 2010.. 24 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.3.2.2    The timing of emissions reductions: The influence of technology, policy, and  overshoot  There are many different emissions pathways associated with meeting 2100 CO2eq concentrations  (Figure 6.7). For all categories below a 2100 CO2eq concentration of 720 ppm CO2eq, emissions are  reduced in the long run relative to current levels. The decision on timing of emission reductions is a  complex one. Model scenarios are typically designed to find the least cost pathway to meet a long term goal, in some cases under specific constraints, such as the availability of certain technologies or  the timing and extent of international participation. Because models differ in, among other things,  technology representations and baseline assumptions, there are clear differences among scenarios  with regards to the timing of emissions reductions and the allocation of reductions across gases.   Three interrelated factors are particularly important determinants of emissions profiles in the  modelling literature: (1) the degree of overshoot, (2) technology options and associated deployment  decisions, and (3) policy assumptions. Overshoot scenarios scenarios  entail less mitigation today in  exchange for greater reductions later (Wigley, 2005; Meinshausen et al., 2006; den Elzen and van  Vuuren, 2007; Nusbaumer and Matsumoto, 2008). Overshooting a long term concentration goal,  however, may lead to higher transient temperature change than if the goal is never exceeded  (Section 6.3.2.6   ). Overshoot is particularly important for concentration goals that are close to  today s levels. The majority of scenarios reaching 480 ppm CO2eq or below by 2100, for instance,  rely on overshoot pathways. Those that do not include overshoot, need faster emissions reductions  (and associated energy system changes) during the next 1 2 decades (Calvin et al., 2009b).    Figure 6.7. Emissions pathways for total CO2 and Kyoto gases for the various categories defined in Table 6.2. The bands indicate the 10th to 90th percentile of the scenarios included in the database. The grey bars to the right of the top panels indicate the full 2100 range (not only the 10th to 90th percentile) for baseline scenarios (see Section 6.3.1 ). The bottom panels show for the combined categories 430 530 ppm and 530 650 ppm CO2eq the scenarios with and without negative emissions larger than 20 GtCO2eq/yr. Source: WG III AR5 Scenario Database (Annex II.10). 25 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  The second consideration is technology. The most critical set of technologies in the context of the  timing of emission reductions is CDR technologies, which can be used to generate negative  emissions (van Vuuren et al., 2007; Edenhofer et al., 2010; Azar et al., 2010, 2013; van Vuuren and  Riahi, 2011; Tavoni and Socolow, 2013). In most model studies in the literature, negative emissions  are generated via the use of biomass energy with carbon dioxide capture and storage (BECCS), and  to a lesser extent, afforestation, though in principle other options could potentially result in negative  emissions as well (see Section 6.9  ). CDR technologies have not been applied yet at large scale. The  potential of afforestation is limited, and the use of BECCS is ultimately constrained by the potential  for CCS and biomass supply (van Vuuren et al., 2013). CDR technologies have two key implications  for transformation pathways. One is that by removing emissions from the atmosphere, CDR  technologies can compensate for residual emissions from technologies and sectors with more  expensive abatement. The second is that CDR technologies can create net negative emissions flows,  which allow faster declines in concentrations in the second half of the century and thus facilitate  higher near term emissions, effectively expanding the potential scope for overshoot. In model  comparison studies, many of the models that could not produce scenarios leading to concentrations  of roughly 450 ppm CO2eq by 2100, particularly in combination with delayed or fragmented policy  approaches, did not include CDR techniques (Clarke et al., 2009). The vast majority of scenarios with  overshoot of greater than 0.4 W/m2 (greater than 20 ppmv CO2eq) deploy CDR technologies to an  extent that net global CO2 emissions become negative. Evidence is still mixed whether CDR  technologies are essential for achieving very low GHG concentration goals (Rose et al., 2013). A  limited number of studies have explored scenarios with negative emissions as large as 20 GtCO2 per  year or more (lower panels Figure 6.7), which allow for very substantial delays in emission  reductions. However, the majority of studies have explored futures with smaller, but often still quite  substantial, contributions of CDR technologies. Technology portfolio assumptions other than CDR  technologies (e.g., regarding renewables, CCS, efficiency, and nuclear power) can also have  implications for emissions trajectories, although these are often less pronounced and may in fact  shift mitigation earlier or later (Rogelj et al., 2012; Eom et al., 2014; Krey et al., 2014; Kriegler et al.,  2014a; Riahi et al., 2014).  The third consideration is policy structure. Since AR4, scenario studies have increasingly focused on  the outcomes of fragmented international action and global delays in emission reduction (Clarke et  al., 2009; Vliet et al., 2012; Kriegler et al., 2013c; Rogelj et al., 2013a; see Riahi et al., 2014; Tavoni et  al., 2014). Considering both idealized implementation and non idealized implementation scenarios, a  considerable range of 2020 and 2030 emissions can be consistent with specific long term goals.  Although studies show that low long term concentration goals could still be met with near term  emissions above those in idealized scenarios, initial periods of delay are typically followed by periods  rapid reductions in subsequent decades (Kriegler et al., 2014b; Riahi et al., 2014). This has important  implications for costs and technology transitions, among other things (see Section 6.3.5). In general,  delays in mitigation  decrease the options for meeting long term goals and increase the risk of  foreclosing on certain long term goals (Riahi et al., 2014).   The intersection of these three factors overshoot, CDR technologies, and delayed mitigation can  be viewed in the context of  emissions pathways over the next several decades. For example,  emissions pathways over the century can be viewed in terms of the level emissions pass through in  2030 (Figure 6.8). For a given range of forcing at the end of the century, pathways with the lowest  levels in 2030 have higher emissions in the long run and slower rates of decline in the middle of the  century. On the other hand, high emissions in 2030 leads to more rapid declines in the medium term  and lower or eventually net negative emissions in the long run, with the pattern exaggerated in a  few extreme scenarios exploring deployment of CDR of 20 GtCO2/yr or more. (See Section 6.4   for a  more thorough discussion of the relationship between near term actions and long term goals.)  Deeper long term goals also interact with these factors. For example, scenarios leading to  concentrations below 430 ppm CO2eq by 2100 (Rogelj et al., 2013a,b; Luderer et al., 2013) feature  26 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  large scale application of CDR technologies in the long term, and most of them have deep emission  reductions in the near term.  Figure 6.8. Emissions pathways from three model comparison exercises with explicit 2030 emissions goals. Mitigation scenarios are shown for scenarios reaching 430 530 ppm CO2eq in 2100 (left panel) and 530 650 ppm CO2eq in 2100 (right panel). Scenarios are distinguished by their 2030 emissions: <50 GtCO2eq, 50 55 GtCO2eq, and >55 GtCO2eq. Individual emissions pathways with negative emissions of > 20 GtCO2/yr in the second-half of the century are shown as solid black lines. The full range of the scenarios in the AR5 database is given as dashed black lines. (Source: Scenarios from intermodelling comparisons with explicit interim goals (AMPERE: Riahi et al. (2014); LIMITS: Kriegler et al. (2013c), ROSE: Luderer et al. (2013a), and WG III AR5 Scenario Database (Annex II.10)). A final observation is that the characteristics of emissions profiles discussed here are, in many cases,  driven by the cost effectiveness framing of the scenarios. A more comprehensive consideration of  timing would also include, among other things, considerations of the tradeoff between the risks  related to both transient and long term climate change, the risks associated with deployment of  specific technologies and expectation of the future developments of these technologies, short term  costs and transitional challenges, flexibility in achieving climate goals, and the linkages between  emissions reductions and a wide range of other policy objectives (van Vuuren and Riahi, 2011; Krey  et al., 2014; Riahi et al., 2014) .  6.3.2.3    Regional roles in emissions reductions  The contribution of different regions to mitigation is directly related to the formulation of  international climate policies. In idealized implementation scenarios, which assume a uniform global  carbon price, the extent of mitigation in each region depends most heavily on relative baseline  emissions, regional mitigation potentials, and terms of trade effects. All of these can vary  significantly across regions (van Vuuren et al., 2009a; Clarke et al., 2012; Chen et al., 2013; Tavoni et  al., 2014; van Sluisvel et al., 2014). In this idealized implementation environment, the carbon  budgets associated with bringing concentrations to between 430 and 530 ppm CO2eq in 2100 are  generally highest in Asia, smaller in the OECD 1990, and lowest for other regions (Figure 6.9, left  panel). However, the ranges for each of these vary substantially across scenarios. Mitigation in terms  of relative reductions from baseline emissions are distributed more similarly between OECD 1990,  ASIA, and Economies in Transition (EIT) across scenarios (Figure 6.9, right panel). The Middle East  and Africa (MAF) region and especially Latin America (LAM) have the largest mitigation potential. In  absolute terms, the remaining emissions in the mitigation scenarios are largest in Asia (Figure 6.10 ,  left panel) as are the absolute emissions reductions (Figure 6.9, right panel), due to the size of this  region. It is important to note that the mitigation costs borne by different regions and countries do  not need to translate directly from the degree of emissions reductions, because the use of effort sharing schemes can reallocate economic costs (see Section 6.3.6.6).  27 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.9. Regional carbon budget (left panel) and relative mitigation effort (right panel) for mitigation scenarios reaching 430 530 ppm-eq in 2100, based on cumulative CO2 emissions from 2010 to 2100. Carbon budgets below 0 and relative mitigation above 100% can be achieved via negative emissions. The number of scenarios is reported below the regional acronyms. The number of scenarios outside the figure range is noted at the top. Source: WG III AR5 Scenario Database (Annex II.10), idealized implementation and default technology cases. The transient emission reductions implications also vary across regions in idealized implementation  scenarios (Table 6.4). In general, emissions peak in the OECD 1990 sooner than in other countries  with higher baseline growth. Similarly, emissions are reduced in the OECD 1990 countries by 2030  relative to today, but they may increase in other regions, particularly the fast growing Asian and  MAF regions.  Deviations from the idealized implementation, either through global delays in mitigation or delays by  particular countries or regions, will lead to different regional contributions to emissions reductions.  When mitigation is undertaken by a subset of regions, it will have implications on other non participating countries through energy markets, terms of trade, technology spillovers, and other  leakage channels. Multi model ensembles have shown leakage rates of energy related emissions to  be relatively contained, often below 20% (Böhringer et al., 2012, p. 29; Bauer et al., 2014; Blanford  et al., 2014; Kriegler et al., 2014b). Policy instruments such as border carbon adjustment can  effectively reduce these effects further (Böhringer et al., 2012, p. 29). Leakage in land use, on the  other hand, could be substantial, though fewer studies have quantified it (Calvin et al., 2009).  Table 6.4. Regional peak year of CO2 emission and emissions reductions in 2030 over 2010, for 430 530 and 530 650 ppm CO2eq scenarios. Negative values for emissions reductions indicate that 2030 emissions are higher than in 2010. Figures are averages across models. The numbers in parenthesis show the interquartile range across scenarios. The number of underlying scenarios is the same as in Figure 6.9. Source: WG III AR5 Scenario Database (Annex II.10), idealized implementation and default technology scenarios.     OECD 1990  ASIA  2020  (2015/2030)  2030 (2030/2030)  1% ( 15/14 %)  34% ( 43/ 26 %)  LAM  2015 (2010/2020)  2020 (2010/2030)  35% (16 59 %)  9% ( 17/41 %)  MAF  2020 (2010/2030)  2034 (2020/2040)  8% ( 7/18 %)  22% ( 41/ 12 %)  EIT  2014  (2010/2015)  2016  (2010/2020)  32%  (18/40 %)  8%  ( 5/16 %)  Peak year of emissions  430 530  ppm CO2eq  Peak year of emissions  530 650  ppm CO2eq  430 530  2030 Emission  reductions w.r.t. 2010  ppm CO2eq  2030 Emission  reductions w.r.t. 2010  2010  (2010/2010)  2014  (2010/2015)  32%  (23/40 %)    530 650  14%  ppm CO2eq  (6/21 %)  28 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.3.2.4    Projected CO2 emissions from land use   Net CO2 emissions from land use (also referred to as  net AFOLU CO2 emissions, see Figure 6.5) result  from an interplay between the use of land to produce food and other non energy products, to  produce bioenergy, and to store carbon in land. Land management practices can also influence CO2  emissions (see Section 6.3.5). Currently about 10 20% of global CO2 emissions originate from land use and LUC. In general, most scenarios show declining CO2 emissions from land use as a result of  declining deforestation rates, both with and without mitigation (see also Section 6.3.1.4   ). In fact,  many scenarios project a net uptake of CO2 as a result of reforestation after 2050 (Figure 6.10).   Figure 6.10. Net AFOLU CO2 emissions in mitigation scenarios. The left panel shows cumulative net CO2 emission (2011 2100) from energy/industry (horizontal axis) and AFOLU (land use) (vertical axis). The right panel shows net CO2 emission from land use as function of time. FF&I CO2 includes CO2 from AFOLU fossil fuel use. Source: WG III AR5 Scenario Database (Annex II.10). Scenarios provide a wide range of outcomes for the contribution of CO2 emissions from land use  (see Section 11.9 for a sample from a model intercomparison study). However, one difficulty in  interpreting this range is that many scenarios were developed from models that do not explicitly  look at strategies to reduce net AFOLU CO2 emissions. Nonetheless, the spread in net AFOLU  emissions still reflects the implications of land  use related mitigation activities   bioenergy ,  avoided deforestation, and afforestation   in both models that explicitly represent land use and  those that do not (see Section 6.3.5 for a detailed discussion). Some studies emphasize a potential  increase in net AFOLU emissions due to bioenergy production displacing forests (van Vuuren et al.,  2007; Searchinger et al., 2008; Wise et al., 2009; Melillo et al., 2009; Reilly et al., 2012). Others show  a decrease in net AFOLU emissions as a result of decreased deforestation, forest protection, and/or  net afforestation enacted as a mitigation measure (e.g. Wise et al., 2009; Popp et al., 2011b; Riahi et  al., 2011; Reilly et al., 2012). Wise et al. (2009) show a range of results from a single model, first  focusing mitigation policy on the energy sector, thereby emphasizing the bioenergy production  effect, and then focusing policy more broadly to also encourage afforestation and slow  deforestation. Reilly et al. (2012) conduct a similar analysis, but with more policy design alternatives.  However, policies to induce large scale land related mitigation will be challenging and actual  implementation will affect costs and net benefits (Lubowski and Rose, 2013) (see Section 6.3.5   ,  Section 6.8   and Chapter 11).  6.3.2.5    Projected emissions of other radiatively important substances  Beyond CO2, the scenario literature has focused most heavily on the mitigation opportunities for the  gases covered by the Kyoto protocol, including the two most important non CO2 gases, CH4 and N2O.  29 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Attention is also increasingly being paid to the climate consequences of other emissions such as  aerosols and ozone precursors (e.g. Shindell et al., 2012; Rose et al., 2014b). Although several  models have produced projections of aerosol forcing and have incorporated these emissions into the  constraint on total forcing, most of them do not have specific mitigation measures for these  emissions.   For non CO2 Kyoto gases, the relative depth and timing of emissions reductions are influenced by  two primary factors: (1) the abatement potential and costs for reducing emissions of different  greenhouse forcers, and (2) the strategies for making tradeoffs between them.  With respect to  abatement potential and costs, studies indicate that in the short run, there are many low cost  options to reduce non CO2 gases relative to opportunities to reduce CO2 emissions. Partially as a  result, studies indicate that short term reduction strategies may rely more heavily in the near term  on non CO2 gases than in the long run (Weyant et al., 2006; Lucas et al., 2007). In the longer run,  emission reductions, particularly for CH4 and N2O, are expected to be constrained by several hard to mitigate sources such as livestock and the application of fertilizers. This ultimately results in lower  reduction rates than for CO2 for the lower concentration categories despite slower growth in  baseline projections (see Figure 6.11, and also discussed by Lucas et al., (2007)). For scenarios  resulting in 430 480 CO2eq forcing in 2100, CH4 reductions in 2100 are about 50% compared to  2005. For N2O, the most stringent scenarios result in emission levels just below today s level. For  halogenated gases, emission growth is significantly reduced for the lower concentration categories,  but variation among models is large, ranging from a 90% reduction to a 100% increase compared to  2005.   Strategies for making tradeoffs across  greenhouse forcers must account for differences in both  radiative effectiveness and atmospheric lifetime and the associated impacts on near term and long term climate change. They must also consider relationships between gases in terms of common  sources and non climate impacts such as air pollution control. Models handle these tradeoffs  differently, but there are essentially two classes of approaches. Most models rely on exogenous  metrics such as Global Warming Potentials (GWPs) (discussed further below) and tradeoff  abatement among gases based on metric weighted prices. Other models make the tradeoff on the  basis of economic optimization over time  and the physical characterization of the gases within the  model with respect to a specified goal such as total forcing (e.g. Manne and Richels, 2001).  Differences both within these classes of approaches and among them lead to very different results,  especially with respect to the timing of mitigation for short lived substances. Several studies have  looked into the role of these substances in mitigation (Shine et al., 2007; Berntsen et al., 2010; UNEP  and WMO, 2011; Myhre et al., 2011; McCollum et al., 2013b; Rose et al., 2014a). Studies can be  found that provide argument for early emission reduction as well as a more delayed response of  short lived forcers. Arguments for early reductions emphasize the near term benefits for climate and  air pollution associated with ozone and particulate matter. An argument for a delayed response is  that, in the context of long term climate goals, reducing short lived forcers now has only a very  limited long term effect (Smith and Mizrahi, 2013).   30 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.11. Emissions reductions in GHGs in 2030, 2050, and 2100. The left panel shows 2010 emissions and the bars in the right panel indicate changes compared to 2010 for different GHGs. FF&I CO2 includes CO2 from AFOLU fossil fuel use. Source: WG III AR5 Scenario Database (Annex II.10). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. Model analysis has also looked into the impact of using different substitution metrics (see  Section 3.9.6 for a theoretical discussion the implication of various substitution metrics and  Section 8.7 of the Working Group I report for the physical aspects of substitution metrics). In most  current climate policies, emission reductions are allocated on the basis of GWPs for a time of horizon  of 100 years. Several papers have explored the use of metrics other than 100 year GWPs, including  updated GWP values and Global Temperature Potential (GTP) values (Smith et al., 2012; Reisinger et  al., 2012; Azar and Johansson, 2012; van den Berg et al., 2014). Quantitative studies show that the  choice of metrics is critical for the timing of CH4 emission reductions among the Kyoto gases, but  that it rarely has a strong impact on overall global costs. The use of dynamic GTP values (as  alternative to GWPs) has been shown to postpone emissions reductions of short lived gases. Using  different estimates for 100 year GWP from the various previous IPCC Assessment Reports has no  major impact on transition pathways.  6.3.2.6    The link between concentrations, radiative forcing, and temperature  The assessment in this chapter focuses on scenarios that result in alternative CO2eq concentrations  by the end of the century. However, temperature goals are also an important consideration in policy  discussions. This raises the question of how the scenarios assessed in this chapter relate to possible  temperature outcomes. One complication for assessing this relationship is that scenarios can follow  different concentration pathways to the same end of century goal (see Section 6.3.2.2   ), and this  will lead to different temperature responses. A second complication is that several uncertainties  confound the relationship between emissions and temperature responses, including uncertainties  about the carbon cycle, climate sensitivity, and the transient climate response (see WG I, Box 12.2).  This means that the temperature outcomes of different concentration pathways assessed here (see  Section 6.3.2.1   ) are best expressed in terms of a range of probable temperature outcomes (see  Chapter 2 and Section 6.2.3    for a discussion of evaluating scenarios under uncertainty). The  definition of the temperature goals themselves forms a third complication. Temperature goals might  be defined in terms of the long term equilibrium associated with a given concentration, in terms of  31 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  the temperature in a specific year (e.g., 2100), or based on never exceeding a particular level. Finally,  the reference year, often referred to as  pre industrial , is ambiguous given both the lack of real  measurements and the use of different reference periods. Given all of these complications, a range  of emissions pathways can be seen as consistent with a particular temperature goal (see also Figure  6.12, 6.13, and 6.14).  Because of the uncertain character of temperature outcomes, probabilistic temperature information  has been created for the scenarios in the AR5 database that have reported information on at least  CO2, CH4, N2O and sulphur aerosol emissions. Several papers have introduced methods for  probabilistic statements on temperature increase for emission scenarios (Meinshausen, 2006; Knutti  et al., 2008; Schaeffer et al., 2008; Zickfeld et al., 2009; Allen et al., 2009; Meinshausen et al., 2009;  Ramanathan and Xu, 2010; Rogelj et al., 2011). For this assessment, the method described by Rogelj  et al. (2012) and Schaeffer et al. (2013) is used, which employs the MAGICC model based on the  probability distribution of input parameters from  (see Meinshausen et al., 2011c; Rogelj et al., 2012;  Schaeffer et al., 2013). MAGICC was run 600 times for each scenario. Probabilistic temperature  statements are based on the resulting distributions (see also the Methods and Metrics Annex; and  the underlying papers cited). Because the temperature distribution of these runs is based on a single  probability distribution in a single modelling framework, resulting probabilistic temperature  statements should be regarded as indicative.  An important consideration in the evaluation of this method is the consistency between the  distributions of key parameters used here and the outcome of the WG I research regarding these  same parameters. Carbon cycle parameters in the MAGICC model used in this chapter are based on  Earth System Coupled Model Intercomparison Project (CMIP) 4 model results from AR4, and a  probability density function (PDF) for climate sensitivity is assumed that corresponds to the  assessment of IPCC AR4 (Rogelj et al., 2012) for climate sensitivity is assumed that corresponds to  the assessment of IPCC AR4 (Meehl et al., 2007; Rogelj et al., 2012, Box 10.2). The MAGICC output  based on this approach has been shown to be consistent with the output of the CMIP5 Earth System  models (see also WG I Sections 12.4.1.2 and 12.4.8). The MAGICC model captures the temperature  outcomes of the CMIP5 models reasonably well, with median estimates close to the middle of the  CMIP5 uncertainty ranges (see panels a and b in Figure 6.12). For lower emission scenarios, the  MAGICC uncertainty range is more narrow, mainly due to the larger range methodologies  representing non CO2 forcings in the CMIP5 models, as well as the fact that MAGICC does not reflect  all of the structural uncertainty represented by the range of CMIP5 models (see panels a and b in  Figure 6.12, and WG I Figure 12.8 and Section 12.4.1.2). Uncertainty ranges are largest for emissions driven runs (only available for RCP 8.5 from CMIP5 models), since uncertainties in carbon cycle  feedbacks play a larger role (see also WG I Section 12.4.8.1). The relationship between the  cumulative CO2 emissions and the transient temperature increase from MAGICC is well aligned with  the CMIP5 model results for the RCP pathways (Figure 6.12 panel c, and WG I Section 12.5.4.2,  Figure 12.46, TFE.8 Figure 1). WG I has estimated that a cumulative CO2 emissions budget of around  1000 GtCO2 from 2011 onward is associated with a likely (>66%) chance of maintaining temperature  change to less than 2oC. For the database of scenarios assessed here, the majority of scenarios with  a greater than 66% chance of limiting temperature change to less than 2oC, based on the MAGICC  analysis, are those that reach between 430 and 480 ppmv CO2eq, and these are associated with  cumulative emissions over the century of 630 1180 GtCO2 (Table 6.3). The two budgets are not fully  comparable, however, since the WG I budget relates to the cumulative emissions at the time of peak  warming which are higher than the cumulative emissions until 2100 in overshoot scenarios with net  negative emissions by the end of the century.. In addition, the WGI estimate is based on a single  scenario for non CO2 substances (RCP2.6), whereas the database assessed here considers a much  wider range of non CO2 emissions.      32 of 141   Final Draft  Chapter 6  IPCC WGIII AR5    Figure 6.12. Comparison of CMIP5 results (as presented in Working Group I) and MAGICC output for global temperature increase. Note that temperature increase is presented relative to the 1986 2005 average in this figure (see also Figure 6.13). Panel a) shows concentration-driven runs for the RCP scenarios from MAGICC (lines) and one-standard deviation ranges from CMIP5 models. Panel b) compares 2081 2100 period projections from MAGICC with CMIP5 for scenarios driven by prescribed RCP concentrations (four left-hand bars of both model categories) and the RCP 8.5 run with prescribed emissions (fifth bar; indicated by a star). Panel c) shows temperature increases for the concentration-driven runs of a subset of CMIP5 models against cumulative CO2 emissions backcalculated by these models from the prescribed CO2-concentration pathways (full lines) and temperature increase projected by the MAGICC model against cumulative CO2 emissions (dotted lines) (based on WG I Figure SPM.10). Cumulative emissions are calculated from 2000 onwards. Based on the results of the MAGICC analysis, temperature outcomes are similar across all scenarios  in the next few decades, due in part to physical inertia in the climate system (Figure 6.13, panel a). In  the second half of the century, however, temperatures diverge. Scenarios leading to 2100  concentrations over 1000 ppm CO2eq lead to a temperature increase of 3 to 6°C (66th percentile of  the distribution of temperature outcomes), while scenarios with 2100 concentrations between  430 480 ppm CO2eq lead to a temperature increase of about 1.3 to 2.2°C (66th percentile of the  distribution of temperature outcomes) (Figure 6.13, panels a and b). Cumulative CO2 emissions from  2011 2100 for all scenarios in the database correlate well to the 2100 temperature level   see also  WG I Section 12.5.4 (Figure 6.13, panel c). However, there is some variation due to differences in  emissions of other forcing agents, in particular CH4 and sulphur, along with the timing of emissions  reduction and the associated extent of overshoot. In general, both the 2100 temperatures and the  relationship between the cumulative emissions and 2100 temperature change are roughly consistent  with the correlation for the RCPs in WG I (Figure 6.13, panel c). Scenarios that overshoot the 2100  concentration goal by more than 0.4 W/m2 result in higher levels of temperature increase mid 33 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  century and prolonged periods of relatively rapid rates of change in comparison to those without  overshoot or with less overshoot (Figure 6.13, panel d). By 2100, however, the different scenarios  converge.     Figure 6.13. Changes in global temperature for the scenario categories above 1850 -1900 reference level as calculated by MAGICC. (Observed temperatures in the 1985-2006 period were about 0.61 deg C above the reference level see e.g. WG1 Table SPM.2). Panel a) shows temperature increase relative reference as calculated by MAGICC (10th to 90th percentile for median MAGICC outcomes). Panel b) shows 2081 2100 temperature levels for the scenario categories and RCPs for the MAGICC outcomes. The bars for the scenarios used in this assessment include both the 10th to 90th percentile range for median MAGICC outcomes (colored portion of the bars) and the 16th to 84th percentile range of the full distribution of MAGICC outcomes from these scenarios, which also captures the Earth-System uncertainty. The bars for the RCPs are based on the 16th to 84th of MAGICC outcomes based on the RCP emissions scenarios, capturing only the Earth-System uncertainty. Panel c) shows relationship between cumulative CO2 emissions in the 2011-2100 period and median 2081 2100 temperature levels calculated by MAGICC. Panel d indicates the median temperature development of overshoot (>0.4 W/m2) and non-overshoot scenarios for the first two scenario categories (25th to 75th percentile of scenario outcomes). Source: WG III AR5 Scenario Database (Annex II.10). Defining temperature goals in terms of the chance of exceeding a particular temperature this  century accounts for both the 2100 concentration and the pathway to get to this concentration  (Figure 6.14). Overshoot scenarios of greater than 0.4 W/m2 have a higher probability of exceeding  2oC prior to 2100 than in 2100 (Figure 6.14, panel a). In general, the results suggest that the peak  concentration during the 21st century is a fundamental determinant of the probability of remaining  below a particular temperature goal (Figure 6.14, panel c). The CO2eq concentration in 2100, on the  other hand, is a proxy for the probability of exceeding end of the century temperature goals (panel  34 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  d). Based on the MAGICC results, only scenarios leading to 2100 concentrations of 430 480 ppm and  a small number of scenarios leading to 2100 concentrations of 480 530 ppm have a probability of  greater than 66%  of maintaining temperature change below 2oC throughout the century. Scenarios  that reach 2100 concentrations between 530 and 580 ppm CO2eq while exceeding this range (that is,  exceeding 580 ppm CO2eq) during the course of the century have less than a 33% probability of  limiting transient temperature change to below 2°C over the course of the century, based on the  MAGICC results.   Other temperature levels in addition to 2oC are relevant for mitigation strategy. Based on the  MAGICC results, scenarios leading to concentrations between 430 and 480 ppm CO2eq have less  than a 50% probability of maintaining temperature change below 1.5oC throughout the 21st century,  and many have less than a 33% probability of achieving this goal. However, as noted in Section  6.3.2.1   , there are scenarios in the literature that reach levels below 430 ppm CO2eq by 2100, but  these were not submitted to the database used for this assessment. Using the same methods for  assessing temperature implications of scenarios as used in this assessment, the associated studies  found that these scenarios have a probability (also based on MAGICC) of more than 66% to remain  below 1.5 C, after peaking earlier in the century (e.g., Luderer et al., 2013, Rogelj et al., 2013a,b). In  contrast, the scenarios submitted to this assessment that lead to CO2eq concentration below 580  ppm to CO2eq by 2100 have more than a 50% probability of limiting temperature change to below  2.5oC during the 21st century, based on the MAGICC results, and many have more than a 66%  probability. (Section 6.9  discusses how the use of geoengineering techniques can change the  relationships between GHG emissions and radiative forcing.)  35 of 141   Final Draft  Chapter 6  IPCC WGIII AR5    Figure 6.14. The probability of staying below temperature levels for the different scenario categories as assessed by the MAGICC model (representing the statistics of 600 different climate realizations for each emission scenario). Panel a) 2 probability in 2100 of being below 2oC versus probability of staying below 2oC throughout the 21st century. Open dots indicate overshoot scenarios (>0.4 W/m2). Panel b) probability of staying below 1.5, 2.0, and 2.5oC (10th to 90th percentile) during 21st century. Panel c) relationship between peak concentration and the probability of exceeding 2oC during the 21st century. Panel d) relationship between 2100 concentration and the probability of exceeding 2oC in 2100. Source: Scenario database for AR5. 6.3.3    Treatment of impacts and adaptation in transformation pathways  The importance of considering impacts and adaptation responses when assessing the optimal level  of mitigation in a cost benefit framework has been well studied in highly aggregated models (see  Box 6.1. on cost benefit analysis). However the role impacts and adaptation in scenarios from large scale integrated models has seen far less treatment. Mitigation, impacts, and adaptation are  interlinked in several important ways and should, ideally, be considered jointly in the context of  achieving concentration goals such as those explored in this chapter. A few studies from large scale  integrated models consider mitigation, impacts, and adaptation simultaneously in their construction  of scenarios (See Reilly et al., 2007; Isaac and van Vuuren, 2009; Chum et al., 2011; Nelson et al.,  2013; Calvin et al., 2013; Zhou et al., 2013; Dowling, 2013). In the vast majority of cases, however,  the scenarios discussed in this chapter do not consider these linkages, and this is considered a major  gap in the transformation pathways literature. (For a summary of integrated models that capture  36 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  impacts and adaptation, see, e.g., Füssel (2010) and Fisher Vanden et al. (2012). (For a  comprehensive discussion of climate impacts, adaptation, and vulnerability, see IPCC WG II AR5).  Major efforts are now underway to incorporate impacts and adaptation into large scale integrated  models, but these efforts must overcome a range of challenges, including incorporating the sectoral  and regional character of impact and adaptation into integrated models, which have higher spatial  aggregation, and a lack of data and empirical evidence on impacts and adaptation required for  model inputs.   Omitting climate impacts and adaptation responses from scenarios is likely to lead to biased results  for three main reasons. First, climate impacts could influence the effectiveness of mitigation options.  For instance, electricity production could be affected by changes in cooling water availability  (Schaeffer et al., 2012) or air temperature, changes in precipitation will alter hydroelectric power,  and climate change could impact biofuel crop productivities (Chum et al., 2011). Unfortunately, the  set of modelling studies that explore these issues is limited (Fisher Vanden et al., 2011), so there is  insufficient evidence today to draw broad conclusions about how the omission of impacts and  adaptation responses would alter mitigation options and the resulting scenarios reviewed in this  chapter. Second, adaptation responses to climate change could themselves alter emissions from  human activities, either increasing or decreasing the emissions reductions required to reach GHG concentration goals. For example, a warmer climate is likely to lead to higher demand for air  conditioning (Mansur et al., 2008), which will lead to higher emissions if this increased electricity  demand is met by electric power generated with fossil fuels. On the other hand, a warmer climate  will lead to reductions in heating demand, which would lower emissions. Also, impacts could  potentially lead to lower economic growth and thus lower emissions. Further, because electricity is  relatively easier to decarbonize than solid, liquid, or gaseous fuels, changing in heating and cooling  demands could reduce the economic costs of mitigation (Isaac and van Vuuren, 2009; Zhou et al.,  2013). Climate change will also change the ability of the terrestrial biosphere to store carbon. Again,  there is a limited number of studies that account for this adaptive response to climate change  (Bosello et al., 2010b; Eboli et al., 2010; Anthoff et al., 2011) or optimal mitigation levels when  adaptation responses are included (Patt et al., 2009). Finally, mitigation strategies will need to  compete with adaptation strategies for scarce investment and R&D resources, assuming these occur  contemporaneously. A number of studies account for competition for investment and R&D  resources. In cost benefit, several modelling studies (de Bruin et al (2009) and Bosello et al (2010a,  2010b)), adaptation, and mitigation are both decision variables and compete for investment  resources. Competition for investment resources is also captured in studies measuring the economic  impacts of climate impacts, but rather than competing with mitigation investments, competition is  between investment in adaptation and consumption (Bosello et al., 2007) and other capital  investments (Darwin and Tol, 2001). Some simulation studies that estimate the economic cost of  climate damages add adaptation cost to the cost of climate impacts and do not capture crowding  out of other expenditures, such as investment and R&D (Hope, 2006). No existing study, however,  examines how this crowding out will affect an economy s ability to invest in mitigation options to  reach concentration goals.  6.3.4    Energy sector in transformation pathways   The fundamental transformation required in the energy system to meet long term concentration  goals is a phase out in the use of freely emitting fossil fuels, the timing of which depends on the  concentration goal (Fischedick et al., 2011). Baseline scenarios indicate that scarcity of fossil fuels  alone will not be sufficient to limit CO2eq concentrations to levels such as 450, 550, or 650 ppm by  2100 (Verbruggen and Al Marchohi, 2010; Riahi et al., 2012; Bauer et al., 2013; McCollum et al.,  2013a; Calvin et al., 2014), Section 7.4.1). Mitigation scenarios indicate that meeting long term goals  will most significantly reduce coal use, followed by unconventional oil and gas use, with  conventional oil and gas affected the least (Bauer et al., 2013, 2014; McCollum et al., 2013a) (Figure  6.5). This will lead to strong re allocation effects on international energy markets (Section 6.3.6.6).   37 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  The reduction in freely emitting fossil fuels necessary for mitigation  is not necessarily equal to the  reduction in fossil fuels more generally, however, because fossil resources can be used in  combination with CCS to serve as a low carbon energy source (McFarland et al., 2009; McCollum et  al., 2013a; Bauer et al., 2014) (see also Sections 7.5.5 and 7.11.2). This means that the total use of  fossil fuels can exceed the use of freely emitting fossil fuels.     Figure 6.15. Cumulative global coal, oil, and gas use between 2010 and 2100 in baseline and mitigation scenarios between 2010 and 2100 compared to reserves and resources. Estimates of reserves and resources ( R+R ) are shown as shaded areas and historical cumulative use until 2010 is shown as dashed black line. Dots correspond to individual scenarios, of which the number in each sample is indicated at the bottom of each panel. Note that the horizontal distribution of dots does not have a meaning, but avoids overlapping dots. Source: WG III AR5 Scenario Database (Annex II.10). Includes only scenarios based on idealized policy implementation. Reserve, resource, and historical cumulative use from Table 7.1 in Section 7.4.1. To accommodate this reduction in freely emitting fossil fuels, transformations of the energy system  rely on a combination of three high level strategies: (1) decarbonization of energy supply, (2) an  associated switch to low carbon energy carriers such as decarbonized electricity, hydrogen, or  biofuels in the end use sectors, and (3) reductions in energy demand. The first two of these can be  illustrated in terms of changes in the carbon intensity of energy. The last can be illustrated in terms  of energy intensity of GDP, energy per capita, or other indexed measures of energy demand.  The integrated modelling literature suggests that the first of these two (carbon intensity of energy)  will make the largest break from past trends in the long run on pathways toward concentration goals  (Figure 6.16). The fundamental reason for this is that the ultimate potential for end use demand  reduction is limited; some energy will always be required to provide energy services. Bringing energy  system CO2 emissions down toward zero, as is ultimately required for meeting any concentration  goal, requires a switch from carbon intensive (e.g., direct use of coal, oil, and natural gas) to low carbon energy carriers (most prominently electricity, but also heat and hydrogen) in the end use  sectors in the long run.  38 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.16. Final energy intensity of GDP (left panel) and carbon intensity of primary energy (right panel) in mitigation and baseline scenarios, normalized to 1 in 2010. GDP is aggregated using baseyear market exchange rates. Sources: Heston et al. (2012); World Bank (2013); BP (2013); WGIII AR5 Scenario Database (Annex II.10). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. At the same time, integrated modelling studies also sketch out a dynamic in which energy intensity  reductions equal or outweigh decarbonization of energy supply in the near term when the supply  system is still heavily reliant on largely carbon intensive fossil fuels, and then the trend is reversed  over time (Figure 6.7, see Fisher et al. (2007, fig. 3.21)). At the most general level, this results directly  from assumptions about the flexibility to achieve end use demand reductions relative to  decarbonization of supply in integrated models (Kriegler et al., 2013b), about which there is a great  deal of uncertainty (see Section 6.8  ). More specifically, one reason for this dynamic is that fuel switching takes time to take root as a strategy because there is little incentive to switch, say, to  electricity early on when electricity may still be very carbon intensive. As electricity generation  decreases in carbon intensity through the use of low carbon energy sources (see Section 7.11.3),  there is an increasing incentive to increase its use relative to sources associated with higher  emissions, such as natural gas. A second factor is that there may be low cost demand reduction  options available in the near term, although there is limited consensus on the costs of reducing  energy demand. Indeed, much of the energy reduction takes place in baseline scenarios. Of  importance, these trends can be very regional in character. For example, the value of fuel switching  will be higher in countries that already have low carbon electricity portfolios.    Figure 6.17. Development of carbon-intensity vs. final energy-intensity reduction relative to 2010 in selected baseline and mitigation scenarios reaching 530 580 ppm and 430 480 ppm CO2eq concentrations in 2100 (left panel) and relative to baseline in the same scenarios (right panel). Consecutive dots represent 10-year time steps starting in 2010 at the origin and going out to 2100. Source: WG III AR5 Scenario Database (Annex II.10). Includes only 2100 scenarios with idealized 39 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  policy implementation for which a baseline, a 530 580 ppm and a 430 480 ppm CO2eq scenario are available from the same set. The decarbonization of the energy supply will require a significant scaleup of low carbon energy  supplies, which may impose significant challenges (see Section 7.11.2). The deployment levels of  low carbon energy technologies are substantially higher than today in the vast majority of scenarios,  even under baseline conditions, and particularly for the most stringent concentration categories.  Scenarios based on an idealized implementation approach in which mitigation begins immediately  across the world and with a full portfolio of supply options indicate a scaleup of anywhere from a  modest increase to upwards of three times today s low carbon energy by 2030 to bring  concentrations to roughly 450 ppm CO2eq by 2100. A scaleup of anywhere from roughly a tripling to  over seven times today s levels in 2050 is consistent with this same goal Figure 6.18, Section 7.11.4).  The degree of scaleup depends critically on the degree of overshoot, which allows emissions  reductions to be pushed into the future.  Figure 6.18. Global low-carbon primary energy supply (direct equivalent, see Annex II.4) vs. total final energy use by 2030 and 2050 for idealized implementation scenarios. Low-carbon primary energy includes fossil energy with CCS, nuclear energy, bioenergy, and non-biomass renewable energy. Source: WG III AR5 Scenario Database (Annex II.10). Includes baseline and idealized policy implementation scenarios. Historical data from IEA (2012a). The degree of low carbon energy scaleup also depends crucially on the degree that final energy use  is altered along a transformation pathway. All other things being equal, higher low carbon energy  technology deployment tends to go along with higher final energy use and vice versa (Figure 6.18,  Figure 7.11). Final energy demand reductions will occur both in response to higher energy prices  brought about by mitigation as well as by approaches to mitigation focused explicitly on reducing  energy demand. Hence, the relative importance of energy supply and demand technologies varies  across scenarios (Riahi et al., 2012).  A major advance in the literature since AR4 is the assessment of scenarios with limits on available  technologies or variations in the cost and performance of key technologies. These scenarios are  intended as a rough proxy for economic and various non economic obstacles faced by technologies.  Many low carbon supply technologies, such as nuclear power, CO2 storage, hydro, or wind power,  face public acceptance issues and other barriers that may limit or slow down their deployment (see  Section 7.9.4). In general, scenarios with limits on available technologies or variations in their cost  and performance demonstrate the simple fact that reductions in the availability and/or performance  or an increase in costs of one technology will necessarily result in increases in the use of other  options. The more telling result of these scenarios is that limits on the technology portfolio available  for mitigation can substantially increase the costs of meeting long term goals. Indeed, many models  40 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  cannot produce scenarios leading to 450 ppm CO2eq when particularly important technologies are  removed from the portfolio. This topic is discussed in more detail in Section 6.3.6.3   .  Delays in climate change mitigation both globally and at regional levels simply alter the timing of the  deployment of low carbon energy sources and demand reductions. As noted in Sections 6.3.2    and  6.4  , less mitigation over the coming decades will require greater emissions reductions in the  decades that follow to meet a particular long term climate goal. The nature of technology transitions  follows the emissions dynamic directly. Delays in mitigation in the near term will lower the rate of  energy system transformation over the coming decades but will call for a more rapid transformation  in the decades that follow. Delays lead to higher utilization of fossil fuels, and coal in particular, in  the short run, which can be prolonged after the adoption of stringent mitigation action due to  carbon lock ins. To compensate for the prolonged use of fossil fuels over the next decades, fossil fuel  use   particularly oil and gas   would need to be reduced much more strongly in the long run. One  study found that this leads to a reduction in overall fossil energy use over the century compared to a  scenario of immediate mitigation (Bauer et al., 2014). Another study (Riahi et al., 2014) found that if  2030 emissions are kept to below 50 GtCO2eq, then low carbon energy deployment is tripled  between 2030 and 2050 in most scenarios reaching concentrations of roughly 450 ppm CO2eq by  2100. In contrast, if emissions in 2030 are greater than 55 GtCO2eq in 2030, then low carbon energy  deployment increases by five fold in most scenarios meeting this same long term concentration goal  (see Section 7.11.4, specifically Figure 7.15).  Beyond these high level characteristics of the energy system transformation lie a range of more  detailed characteristics and tradeoffs. Important issues include the options for producing low carbon  energy and the changes in fuels used in end uses, and the increase in electricity use in particular,  both with and without mitigation. These issues are covered in detail in Section 6.8 and Chapter 7  through 12.  6.3.5    Land and bioenergy in transformation pathways  Scenarios suggest a substantial cost effective, and possibly essential, role for land in transformation  pathways  (Section 6.3.2.4 and Section 11.9), with baseline land use emissions and sequestration an  important uncertainty (Section 6.3.1.4   ). Changes in land use and management will result from a  confluence of factors, only some of which are due to mitigation. The key forces associated with  mitigation are (1) the demand for bioenergy, (2) the demand to store carbon in land by reducing  deforestation, encouraging afforestation, and altering soil management practices, and (3) reductions  in non CO2 GHG emissions by changing management practices. Other forces include demand for  food and other products, such as forest products, land for growing urban environments, and  protecting lands for environmental, aesthetic, and economic purposes. Currently, only a subset of  models explicitly model LUC in scenarios. The development of fully integrated land use models is an  important area of model development.  Scenarios from integrated models suggest the possibility of very different landscapes relative to  today, even in the absence of mitigation. Projected global baseline changes in land cover by 2050  typically exhibit increases in non energy cropland and decreases in  other  land, such as abandoned  land, other arable land, and non arable land (Figure 6.19). On the other hand, projected baseline  pasture and forest land exhibit both increases and decreases. The projected increases in non energy  cropland and decreases in forest area through 2050 are typically projected to outpace historical  changes from the previous 40 years (+165 and  105 million hectares of crop and forest area changes,  respectively, from 1961 2005 (Food and Agriculture Organization of the United Nations (FAO),  2012)).Energy cropland is typically projected to increase as well, but there is less agreement across  scenarios. Overall, baseline projections portray large differences across models in the amount and  composition of the land converted by agricultural land expansion. These baseline differences are  important because they represent differences in the opportunity costs of land use and management  41 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  changes for mitigation. (See Chapter 11.9 for regional baseline, and mitigation, land cover  projections for a few models and scenarios.)  Mitigation generally induces greater land cover conversion than in baseline scenarios, but for a given  level of mitigation, there is large variation in the projections (Figure 6.19). Projections also suggest  additional land conversion with tighter concentration goals, but declining additional conversion with  increased mitigation stringency. This is consistent with the declining role of land related mitigation  with the stringency of the mitigation goal (Rose et al., 2012). However, additional land conversion  with more stringent goals could be substantial if there are only bioenergy incentives (see below)..   A common, but not universal, characteristic of mitigation scenarios is an expansion of energy  cropland to support the production of modern bioenergy. There is also a clear tradeoff in the  scenarios between energy cropland cover and other cover types. Most scenarios project reduced  non energy cropland expansion, relative to baseline expansion, with some projections losing  cropland relative to today. On the other hand, there are projected pasture changes of every kind.  Forest changes depend on the incentives and constraints considered in each scenario. Some of the  variations in projected land cover change are attributable to specific assumptions, such as fixed  pasture acreage, prioritized food provision, land availability constraints for energy crops, and the  inclusion or exclusion of afforestation options(e.g. Popp et al., 2013). Others are more subtle  outcomes of combinations of modelling assumption and structure, such as demands for food and  energy, land productivity and heterogeneity, yield potential, land production options, and land conversion costs.     Figure 6.19. Global land cover change by 2050 from 2005 for a sample of baseline and mitigation scenarios with different technology assumptions. Sources: EMF27 Study (Kriegler et al., 2014a), Reilly et al. (2012), Melillo et al. (2009), Wise et al. (2009). Notes: default (see Section 6.3.1) fossil fuel, industry, and land mitigation technology incentives assumed except as indicated by the following bioe = only land-based mitigation incentive is for modern bioenergy, nobioe = land incentives but not for modern bioenergy, bioe+land = modern bioenergy and land carbon stocks incentives, bioe+agint = modern bioenergy incentive and agricultural intensification response allowed, lowbio = global modern bioenergy constrained to 100 EJ/year, noccs = CCS unavailable for fossil or bioenergy use. Other land cover includes abandoned land, other arable land, and non-arable land. Which mitigation activities are available or incentivized has important implications for land  conversion (Figure 6.19). Bioenergy incentives alone can produce energy cropland expansion, with  42 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  increased forest and other land conversion (Wise et al., 2009; Reilly et al., 2012). In general, forest  land contraction results when increased demand for energy crops is not balanced by policies that  incentivize or protect the storage of carbon in terrestrial systems. However, the degree of this forest  conversion will depend on a range of factors, including the potential for agricultural intensification  and underlying modelling approaches. For example, Melillo et al. (2009) find twice as much forest  land conversion by 2050 when they ignore agricultural intensification responses. Forest land  expansion is projected when forests are protected, there are constraints on bioenergy deployment  levels, or there are combined incentives for bioenergy and terrestrial carbon stocks (e.g., Wise et al.,  2009; Reilly et al., 2012, and GCAM EMF27 in Figure 6.19). Differences in forest land expansion  result largely from differences in approaches to incorporating land carbon in the mitigation regime.  For example, in Figure 6.19, GCAM EMF27 (all variants), Wise et al.(2009) (low bioe+land) and Reilly  et al.  (2012)(low bioe and bioe+land) include an explicit price incentive to store carbon in land,  which serves to encourage afforestation and reduce deforestation of existing forests, and discourage  energy cropland expansion. In contrast, other scenarios consider only avoided deforestation  (REMIND EMF27), or land conversion constraints (IMAGE EMF27). Both protect existing forests, but  neither encourages afforestation. In other studies, Melillo et al (2009) protect existing natural  forests based on profitability and Popp et al (2011a) (not shown) impose conservation policies that  protect forest regardless of cost. The explicit pricing of land carbon incentives can lead to large land  use carbon sinks in scenarios, and an afforestation incentive or constraint on bioenergy use can  result in less land conversion from bioenergy, but not necessarily less land conversion as  afforestation may increase.   An important issue with respect to bioenergy, and therefore to land transformation, is the  availability and use of BECCS. As discussed in Section 6.3.2   , BECCS could be valuable for reaching  lower concentration levels, in part by facilitating concentration overshoot. The availability of CCS  could therefore also have land use implications. Constraints on the use of CCS would prohibit BECCS  deployment. However, CCS (for BECCS as well as fossil energy with CCS) may not increase land  conversion through 2050 relative to scenarios without BECCS. Instead, the presence of BECCS could  decrease near term energy crop expansion as some models project delayed mitigation with BECCS  (Rose et al., 2014a, 6.3.2.2). In addition to biomass feedstock requirements, BECCS land  considerations include bioenergy CCS facility land, as well as optimal siting relative to feedstock,  geologic storage, and infrastructure.  As noted above, land transformation is tightly linked to the role of bioenergy in mitigation. To  understand bioenergy s role in transformation pathways, it is important to understand bioenergy s  role within the energy system. The review by Chum et al. (2011) estimated technical potential for  bioenergy of 300 and 500 EJ/year in 2020 and 2050, respectively, and deployment of 100 to 300 EJ  of biomass for energy globally in 2050, while Rose et al. (2012) found bioenergy contributing up to  15% of cumulative primary energy over the century under climate policies. Rose et al. (2014a)  analyze more recent results from 15 models (Figure 6.20). They find that modelled bioenergy  structures vary substantially across models, with differences in feedstock assumptions, sustainability  constraints, and conversion technologies. Nonetheless, the scenarios project increasing deployment  of, and dependence on, bioenergy with tighter climate change goals, both in a given year as well as  earlier in time. Shares of total primary energy increase under climate policies due to both increased  deployment of bioenergy and shrinking energy systems. Bioenergy s share of total regional  electricity and liquid fuels is projected to be up to 35% and 75%, respectively, by 2050. However,  there is no single vision about where biomass is cost effectively deployed within the energy system  (electricity, liquid fuels, hydrogen, and/or heat), due in large part to uncertainties about relative  technology options and costs over time. (See Chapter 7 for more detail on bioenergy s role in energy  supply.) As noted above, the availability of CCS, and therefore BECCS, has important implications for  bioenergy deployment. In scenarios that do include BECCS technologies, BECCS is deployed in  greater quantities and earlier in time the more stringent the goal, potentially representing 100% of  bioenergy in 2050 (Figure 6.20).  43 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Models universally project that the majority of biomass supply for bioenergy and bioenergy  consumption will occur in developing and transitional economies. For instance, one study (Rose et  al., 2014a) found that 50 90% of global bioenergy primary energy is projected to come from non OECD countries in 2050, with the share increasing beyond 2050. Developing and transitional regions  are also projected to be the home of the majority of agricultural and forestry mitigation.  Finally, a number of integrated models have explicitly modelled land use with full emissions  accounting, including indirect land cover change and agricultural intensification. These models have  suggested that it could be cost effective to tradeoff lower land carbon stocks from land cover  change and increase N2O emissions from agricultural intensification for the long run climate change  management benefits of bioenergy (Popp et al., 2013; Rose et al., 2014a).     Figure 6.20. Annual global modern biomass primary energy supply and bioenergy share of total primary energy supply (top panels) and BECCS share of modern bioenergy (bottom panels) in baseline, 550 ppm and 450 ppm CO2eq scenarios in 2030, 2050, and 2100. Source: Rose et al. (2014a). Notes: All scenarios shown assume idealized implementation. Results for 15 models shown (3 models project to only 2050). Also, some models do not include BECCS technologies and some no more than biopower options. Overall, the integrated modelling literature suggests opportunities for large scale global deployment  of bioenergy and terrestrial carbon gains. However, the transformations associated with mitigation  will be challenging due to the regional scale of deployments and implementation issues, including  institution and program design, land use and regional policy coordination, emissions leakage,  biophysical and economic uncertainties, and potential non climate social implications. Among other  things, bioenergy deployment is complicated by a variety of social concerns, such as land conversion  and food security (See Section 6.6   and the Chapter 11 Bioenergy Annex). Coordination between  land mitigation policies, regions, and activities over time will affect forestry , agricultural , and  bioenergy mitigation costs and net GHG mitigation effectiveness. When land options and bioenergy  are included in mitigation scenarios, it is typically under the assumption of a highly idealized  implementation, with immediate, global, and comprehensive availability of land related mitigation  options. In these cases, models are assuming a global terrestrial carbon stock incentive or global  forest protection policy, global incentives for bioenergy feedstocks, and global agriculture mitigation  policies. They also assume no uncertainty, risk, or transactions costs. (For a discussion of these  issues, see Lubowski and Rose, 2013). The literature has begun exploring more realistic policy  contexts and found that there is likely less available mitigation potential in the near term than  previously estimated, and possibly unavoidable emissions leakage associated with getting programs  in place, and with voluntary mitigation supply mechanisms (Section 11.9, Section 6.8  ). Additional  44 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  exploration into the need for and viability of large scale land based mitigation is an important area  for future research.  6.3.6    The aggregate economic implications of transformation pathways  6.3.6.1    Overview of the aggregate economic implications of mitigation  Mitigation will require a range of changes, including behavioural changes and the use of alternative  technologies. These changes will affect economic output and the consumption of goods and  services. The primary source of information on these costs over multi decade or century long time  horizons are integrated models such as those reviewed in this chapter.  Mitigation will affect economic conditions through several avenues, only some of which are included  in estimates from integrated models. To a first order, mitigation involves reductions in the  consumption of energy services, and perhaps agricultural products, and the use of more expensive  technologies. This first order effect is the predominant feature and focus of the integrated modelling  estimates discussed in this chapter and will lead to aggregate economic losses. However, mitigation  policies may interact with pre existing distortions in labour, capital, energy, and land markets, and  market failures in markets for technology adoption and innovation, among other things. These  interactions might increase or decrease economic impacts (Sections 3.6.3 and 6.3.6.5   ).  Estimates of the potential aggregate economic effects from mitigation are generally expressed as  deviations from a counter factual baseline scenario without mitigation policies; that is, the  difference in economic conditions relative to what would have happened without mitigation. The  estimates, and those discussed in this section, generally do not include the benefits from reducing  climate change, nor do they consider the interactions between mitigation, adaptation, and climate  impacts (Section 6.3.3   ). In addition, the estimates do not take into account important co benefits  and adverse side effects from mitigation, such as impacts on land use and health benefits from  reduced air pollution (Sections 11.13.6 and 6.6  ).  A wide range of methodological issues attends the estimation of aggregate economic costs in  integrated models, one of which is the metric itself. (For more discussion on these issues in  estimating aggregate economic costs, see Annex II.3.2 on mitigation costs metrics and Chapter 3.) A  change in welfare due to changes in household consumption is commonly measured in terms of  equivalent and compensating variation, but other, more indirect cost measures such as GDP losses,  consumption losses, and area under the marginal abatement cost function are more widely used  (Paltsev and Capros, 2013). For consistency, results in this section are presented preferentially in  terms of cost measures commonly reported by the models: consumption losses and GDP losses for  general equilibrium models, and area under the marginal abatement cost function or reduction of  consumer and producer surplus (in the following summarized with the term abatement cost) for  partial equilibrium models. These cost metrics differ in terms of whether or not general equilibrium  effects in the full economy have been taken into account and whether or not the direct impact on  households or the intermediate impact on economic output is measured. They are therefore treated  separately in this chapter.  Emissions prices (carbon prices) are also assessed in this chapter. However, they are not a proxy for  aggregate economic costs for two primary reasons. First, emissions prices measure marginal cost,  that is, the cost of an additional unit of emissions reduction. In contrast, total economic costs  represent the costs of all mitigation that has taken place. Second, emissions prices can interact with  other policies and measures, such as regulatory policies or subsidies directed at low carbon  technologies, and will therefore indicate a lower marginal cost than is actually warranted if  mitigation is achieved partly by these other measures.  Different methods can be used to sum costs over time. For this purpose, in the absence of specific  information from individual models about the discount rate used in studies, the estimates of net  present value (NPV) costs in this chapter are aggregated ex post using a discount rate of 5%. This is  45 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  roughly representative of the average interest rate that underlies the discounting approach in most  models (Kriegler et al., 2014a). Other rates could have been used to conduct this ex post  aggregation. Since mitigation costs tend to rise over time, lower (higher) rates would lead to higher  (lower) aggregate costs than what are provided here. However, it is important to note that  constructing NPV metrics based on other rates is not the same as actually evaluating scenarios under  alternative discounting assumptions and will not accurately reflect aggregate costs under such  assumptions.   Estimates of aggregate economic effects from integrated models vary substantially. This arises  because of differences in assumptions about driving forces such as population and economic growth  and the policy environment in the baseline, as well as differences in the structures and scopes of the  models (Section 6.2  ). In addition, aggregate economic costs are influenced by the future cost,  performance, and availability of mitigation technologies (Section 6.3.6.3   ), the nature of  international participation in mitigation (Section 6.3.6.4   ), and the policy instruments used to  reduce emissions and the interaction between these instruments and pre existing distortions and  market failures (Section 6.3.6.5   ).  6.3.6.2    Global aggregate costs of mitigation in idealized implementation scenarios  A valuable benchmark for exploring aggregate economic mitigation costs is estimates based on the  assumption of a stylized implementation approach in which a ubiquitous price on carbon and other  GHGs is applied across the globe in every sector of every country and rises over time in a way that  minimizes the discounted sum of costs over time. These  idealized implementation  scenarios are  included in most studies as a benchmark against which to compare results based on less idealized  circumstances. One reason that these idealized scenarios have been used as a benchmark is that the  implementation approach provides the lowest costs under idealized implementation conditions of  efficient global markets in which there are no pre existing distortions or interactions with other,  non climate market failures. For this reason, they are often referred to as  cost effective  scenarios.  However, the presence of pre existing market distortions, non climate market failures, or  complementary policies means that the cost of the idealized approach could be lower or higher than  in an idealized implementation environment, and that the idealized approach may not be the least cost strategy (see Section 6.3.6.5   ). Most of the idealized implementation scenarios assessed here  consider these additional factors only to a limited degree or not at all, and the extent to which a  non idealized implementation environment is accounted for varies between them.   A robust result across studies is that aggregate global costs of mitigation tend to increase over time  and with stringency of the concentration goal (Figure 6.21).  According to the idealized  implementation scenarios collected in the WG III AR5 Scenario Database (Annex II.10), the central  70% (10 out of 14) of global consumption loss estimates for reaching levels of 430 480 ppm CO2eq  by 2100 range between 1% to 4% in 2030, 2% to 6% in 2050, and 3% to 11% in 2100 relative to  consumption in the baseline (Figure 6.21, panel c). For context, consumption is assumed to grow by  roughly a factor of 2 to 4.5 by 2050, and four fold to over ten fold over the century in the baseline  scenarios in the scenario database (values are based on global projections in market exchange  rates).   46 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.21. Global mitigation costs of idealized implementation scenarios. Panels show the development of (a) carbon prices, (c) consumption losses , (e) GDP losses and (f) abatement costs over time, and (b) the average carbon price (2015 2100), and (d) the NPV mitigation costs (2015 2100) discounted at a 5% discount rate. Costs are expressed as a fraction of economic output or in the case of consumption losses consumption in the baseline. The number of scenarios included in the boxplots is indicated at the bottom of the panels. The number of scenarios outside the figure range is noted at the top. One model shows NPV consumption losses of 13%/9.5%, and GDP losses of 15%/11% for 430 480/530 580 ppm CO2eq (see text). Source: WG III AR5 Scenario Database (Annex II.10).The scenario selection includes all idealized implementation scenarios that 47 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  reported costs or carbon prices to 2050 or 2100 (only the latter are included in aggregate cost and price plots) after removal of similar scenarios (in terms of reaching similar goals with similar overshoots and assumptions about baseline emissions) from the same model. An important caveat to these results is that they do not account for a potential model bias due to  the fact that higher cost models may have not been able to produce low concentration scenarios  and have therefore not reported results for these scenarios (see discussion of model failures in  Section 6.2, and Tavoni and Tol, 2010). They also do not capture uncertainty in model parameter  assumptions (Webster et al., 2012). Since scenario samples for different concentration levels do not  come from precisely the same models, it is informative to look at the cost changes between different  concentration levels as projected by individual models within a given study (Figure 6.22). This can  partly remove model bias, although the bias from a lack of models that could not produce low concentration scenarios remains. The large majority of studies in the scenario database for AR5  report a factor 1.5 to 3 higher global consumption and GDP losses, and 2 to 4 times higher  abatement costs, for scenarios reaching 430 530 ppm CO2eq by 2100 compared to the  530 650 ppm CO2eq range.  Figure 6.22. Carbon price (left panel) and global mitigation cost changes (right panel) for idealized implementation scenarios relative to a reference concentration category (530 650 ppm CO2eq in 2100). Results for NPV costs are shown by consumption losses, GDP losses, and abatement costs. Results are based on pairs of idealized implementation scenarios, one in the 530 650 ppm CO2eq range and one in a neighbouring concentration range, from a single model and study. Cost changes were calculated on the basis of NPV economic costs (discounted at 5% per year) and carbon price changes on the basis of average discounted values for the period 2015 2100. See Figure 6.21 caption for further explanation on the presentation of results. Source: WG III AR5 Scenario Database (Annex II.10). Aggregate economic costs vary substantially, even in idealized scenarios. The variation of cost  estimates for individual CO2eq concentration ranges can be attributed, among other things, to  differences in assumptions about driving forces such as population and GDP and differences in  model structure and scope (see Section 6.2 for a discussion of model differences). Diagnostic studies  have indicated that the assumed availability and flexibility of low carbon technologies to substitute  fossil energy is a key factor influencing the level of carbon prices for a given level of emissions  reductions (Kriegler et al., 2013b). The extent to which carbon prices translate into mitigation costs  through higher energy prices is another factor that differs between models. Both the variation of  carbon prices and the variation of the economic impact of higher prices are major determinants of  48 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  the observed range of aggregate economic costs for a given amount of emissions reductions.  Assumptions about the implementation environment can be another important driver of costs. For  example, the highest consumption and GDP losses in the scenario sample are from a model with an  emphasis on market imperfections, infrastructure lock ins, and myopia (Waisman et al., 2012).  It is possible to control for several key sources of variation by relating mitigation costs to cumulative  emissions reductions from baseline emissions (Figure 6.23). As expected, carbon prices and  mitigation costs increase with the amount of mitigation. Since different models have different  capabilities for deep emissions reductions, the inter model spread in carbon price and cost estimates  increases as well. In other words, scenarios indicate greater consensus regarding the nature of  mitigation costs at higher concentration levels than those at lower levels. This increase in variation  reflects the challenge associated with modelling energy and other human systems that are  dramatically different than those of today. Figure 6.23. Average carbon prices (left panel) and global mitigation costs (right panel) as a function of residual cumulative FF&I CO2 emissions expressed as fraction of cumulative baseline emissions over the period 2011 2100. Emissions reductions relative to baseline can be deduced by subtracting the fraction of residual cumulative emissions from unity. Mitigation costs are reported in NPV consumption losses in percent baseline consumption for general equilibrium (GE) models and abatement costs in percent baseline GDP for partial equilibrium (PE) models. A discount rate of 5% per year was used for calculating average carbon prices and net present value mitigation costs. See description of Figure 6.21 for the selection of scenarios. Source: WG III AR5 Scenario Database (Annex II.10). 6.3.6.3    The implications of technology portfolios for aggregate global economic costs  Because technology will underpin the transition to a low carbon economy, the availability, cost, and  performance of technologies will exert an influence on economic costs. Several multi model studies  and a wide range of individual model studies have explored this space (see Section 6.1.2.2 A precise  understanding of the implications of technology availability on costs is confounded by several  factors. One issue is that the sensitivities among technologies are not necessarily comparable across  models or scenarios. Some models do not represent certain technologies such as BECCS and  therefore do not exhibit a strong cost increase if these options are restricted. These models may  instead have difficulties in achieving tighter concentration goals regardless of the restriction (Krey et  al., 2014). In addition, assumptions about cost and performance can vary across models, even within  a single, multi model study. Moreover, many limited technology scenarios are characterized by  frequent model infeasibilities, as shown by the fraction of models in the EMF27 study (Kriegler et al.,  2014a) able to meet a particular goal with different technology combinations  at the bottom of  Figure 6.24 . (See Section 6.2.4    regarding interpretation of model infeasibility).   49 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Despite these limitations, the literature broadly confirms that mitigation costs are heavily influenced  by the availability, cost, and performance of mitigation technologies. In addition, these studies  indicate that the influence of technology on costs generally increases with increasing stringency of  the concentration goal (Figure 6.24). The effect on mitigation costs varies by technology, however,  the ranges reported by the different models tend to strongly overlap  (Figure 6.24, Krey et al.  (2014)), reflecting the general variation of mitigation costs across models (Section 6.3.6.2, Fisher et  al. (2007). In general, models have been able to produce scenarios leading to roughly 550 ppm  CO2eq by 2100, even under limited technology assumptions. However, many models could not  produce scenarios leading to roughly 450 ppm CO2eq by 2100 with limited technology portfolios,  particularly when assumptions preclude or limit the use of BECCS (Azar et al., 2006; van Vliet et al.,  2009; Krey et al., 2014; Kriegler et al., 2014a).  Figure 6.24. Relative increase of NPV mitigation costs (period 2015-2100, 5% discount rate) from technology portfolio variations compared to a scenario with default technology availability. Scenario names on the horizontal axis indicate the technology variation relative to the default assumptions: Low Energy Intensity = higher energy intensity improvements leading to energy demand reductions of 20-30% by 2050 and 35-45% by 2100 relative to the default baseline; Nuclear phase out = No addition of nuclear power plants beyond those under construction; existing plants operated until the end of their lifetime; Limited Solar/Wind = 20% limit on solar and wind electricity generation; Limited Bioenergy = maximum of 100 EJ/yr bioenergy supply; Conventional energy future = combining pessimistic assumptions for renewable energy (Limited Solar/Wind + Limited Bioenergy); Energy efficiency and renewable energy future = combining low energy intensity with non-availability of CCS and nuclear phase-out; Limited Technology Future = all supply side options constrained and energy intensity developing in line with historical records in the baseline. Source: EMF27 study, adapted from (Kriegler et al., 2014a). Only those scenarios from the EMF27 study are included that reached the 430-480 and 530-580 ppm CO2eq concentration ranges or were close to it (see footnotes in the figure). As noted above, the lack of availability of CCS is most frequently associated with the most significant  cost increase (Edenhofer et al., 2010; Tavoni et al., 2012; Krey et al., 2014; Kriegler et al., 2014a;  Riahi et al., 2014), particularly for concentration goals approaching 450 ppm CO2eq, which are  characterized by often substantial overshoot. One fundamental reason for this is that the  combination of biomass with CCS can serve as a CDR technology in the form of BECCS (Azar et al.,  2006; van Vliet et al., 2009; Krey and Riahi, 2009; Edmonds et al., 2013; Kriegler et al., 2013a; van  Vuuren et al., 2013) (see Sections 6.3.2    and 6.9  ). In addition to the ability to produce negative  emissions when coupled with bioenergy, CCS is a versatile technology that can be combined with  50 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  electricity, synthetic fuel, and hydrogen production from several feedstocks and in energy intensive  industries such as cement and steel. The CCS can also act as bridge technology that is compatible  with existing fossil fuel dominated supply structures (see Sections 7.5.5, 7.9, and 6.9   for a  discussion of challenges and risks of CCS and CDR). Bioenergy shares some of these characteristics  with CCS. It is also an essential ingredient for BECCS, and it can be applied in various sectors of the  energy system, including for the provision of liquid low carbon fuels for transportation (see Chapter  11, Bioenergy Annex for a discussion of related challenges and risks). In contrast, those options that  are largely confined to the electricity sector (e.g., wind, solar, and nuclear energy) and heat  generation tend to show a lower value, both because they cannot be used to generate negative  emissions and because there are a number of low carbon electricity supply options available that  can generally substitute each other (Krey et al., 2014).  Scenarios also suggest that energy end use technologies and measures have an important influence  on mitigation costs. For example, in the EMF27 and AMPERE multi model studies, reductions in the  final energy demand of 20 30% by 2050 and 35 45% by 2100 led to reductions in the cumulative  discounted aggregate mitigation costs on the order of 50% ; (Krey et al., 2014; Kriegler et al., 2014a;  Riahi et al., 2014). An important caveat to these results is that the costs of achieving these  reductions were not considered nor were the policy or technology drivers that led to them. Energy  end use measures are important not just for reducing energy consumption, but also for facilitating  the use of low carbon fuels. For example, a number of studies (Kyle and Kim, 2011; Riahi et al., 2012;  Pietzcker et al., 2013; McCollum et al., 2014a) show that allowing electricity or hydrogen in  transportation lowers mitigation costs by opening up additional supply routes to the transportation  sector (see Section 6.8   for more on this topic). An increasing ability to electrify the end use sectors  and transport in particular, in turn, tends to reduce the importance of CCS and bioenergy  technologies for achieving lower concentration goals such as 450 ppm CO2eq.   6.3.6.4    Economic implications of non idealized international mitigation policy  implementation  Research has consistently demonstrated that delaying or limiting near term global mitigation as well  as reducing the extent of international participation in mitigation can significantly affect aggregate  economic costs of mitigation. One way in which aggregate mitigation costs are increased is by  delaying or limiting near term global mitigation relative to what would be warranted in the  hypothetical idealized case that a long term goal was adopted and a least cost approach to reach the  global mitigation goal was implemented immediately. This represents one manifestation of not  undertaking mitigation  when  it is least expensive (Keppo and Rao, 2007; Bosetti et al., 2009b; Krey  and Riahi, 2009; Jakob et al., 2012; Kriegler et al., 2013c; Luderer et al., 2013b; a; Rogelj et al.,  2013b; Riahi et al., 2014). In scenarios in which near term global mitigation is limited, the increase in  mitigation costs is significantly and positively related to the gap in short term mitigation with respect  to the idealized scenarios (Figure 6.25). Costs are lower in the near term, but increase more rapidly  in the transition period following the delayed mitigation, and are higher in the longer term. Future  mitigation costs are higher because limited near term mitgation not only requires deeper reductions  in the long run to compensate for higher emissions in the short term, but also produces a larger lock in in carbon infrastructure, increasing the challenge of these accelerated emissions reduction rates.  The effects of delay on mitigation costs increase with the stringency of the mitigation goal. Studies  suggest that important transitional economic metrics other than aggregate costs   for example,  reduced growth rates in economic output and consumption, escalating energy prices, and increasing  carbon rents   may be more affected by delayed mitigation than aggregate costs (Kriegler et al.,  2013c; Luderer et al., 2013b; a).  51 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.25. Mitigation costs increase as a function of reduced near term mitigation effort, expressed as relative change to immediate mitigation (idealized implementation) scenarios (referred to as the mitigation gap ). Cost increase is shown both in the medium term (2030 2050, left panel) and in the long term (2050 2100, right panel), calculated on undiscounted costs. The mitigation gap is calculated from cumulative CO2 mitigation to 2030. Blue and yellow dots show scenarios reaching concentration goals of 430 530 ppm and 530 650 ppm CO2-eq , respectively. The shaded area indicates the range for the whole scenario set (two standard deviations). The bars in the lower panel indicate the mitigation gap range where 75% of scenarios with 2030 emissions, respectively, above and below 55 GtCO2 are found. Source: WG III AR5 Scenario Database (Annex II.10), differences between delayed mitigation to 2020 and 2030 and immediate mitigation categories. Studies have consistently found that delays through 2030 have substantially more profound  aggregate economic implications than delays through 2020, both in terms of higher transitional  impacts due to more rapidly increasing mitigation costs at the time of adopting the long term  strategy and higher long term costs (Kriegler et al., 2013c; Rogelj et al., 2013a; Luderer et al., 2013a).  This is directly related to prolonged limited mitigation in the short run leading to both larger carbon  lock ins and higher short term emissions that need to be compensated by deeper emissions cuts in  the long run (Sections 6.3.2   and 6.4  ). Moreover, delayed mitigation further increases the  dependence on the full availability of mitigation options, especially on CDR technologies such as  BECCS (Luderer et al., 2013b; Rogelj et al., 2013b; Riahi et al., 2014). (See Section 6.3.6.3   , Section  6.4  ).   Fragmented action or delayed participation by particular countries   that is, not undertaking  mitigation  where  it is least expensive   has also been broadly shown to increase global mitigation  costs (Edmonds et al., 2008; Calvin et al., 2009b; Clarke et al., 2009; Tol, 2009; van Vliet et al., 2009;  Richels et al., 2009; Bosetti et al., 2009d). Fragmented action will influence aggregate global  economic costs not only because of misallocation of mitigation across countries, but also through  emissions leakage and trade related spillover effects (Babiker, 2005; Böhringer et al., 2012, p. 29;  Bosetti and De Cian, 2013; Arroyo Curras, T. et al., 2014). The range and strength of these adverse  effects and risks depends on the type of policy intervention and the stringency of the mitigation  effort. Border carbon adjustments have been found to reduce economic impacts of exposed  industries, but not to yield significant global cost savings (Böhringer et al., 2012, p. 29). Some studies  have indicated that the increased costs from fragmented action could be counterbalanced by  52 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  increased incentives to carry out innovation, though only to a limited extent (Di Maria and Werf,  2007; Golombek and Hoel, 2008; Gerlagh et al., 2009; De Cian and Tavoni, 2012; De Cian et al.,  2013a).  Multi model studies have indeed found that the smaller the proportion of total global emissions  included in a climate regime due to fragmented action, the higher the costs and the more  challenging it becomes to meet any long term goal. For example, only 2 (5) of 10 participating  models could produce a 450 ppm CO2eq overshoot (550 ppm CO2eq not to exceed) scenarios under  the regional fragmentation assumptions in the EMF22 scenarios (Clarke et al., 2009). In these  scenarios, the Annex I countries began mitigation immediately, followed by major emerging  economies in 2030, and the rest of the world in 2050 (see Table 6.1, (Clarke et al., 2009) (see Section  6.2   for a discussion of model infeasibility). Discounted global aggregate mitigation costs over the  century increased by 50% to more than double for those models that could produce these scenarios.  In general, when some countries act earlier than others, the increased costs of fragmented action  fall on early actors. However, aggregate economic costs can also increase for late entrants, even  taking into account their lower near term mitigation (Clarke et al., 2009; Jakob et al., 2012). Late  entrants benefit in early periods from lower mitigation; however, to meet long term goals, they  must then reduce emissions more quickly once they begin mitigation, in just the same way that  global emissions must undergo a more rapid transition if they are delayed in total. The increased  costs of this rapid and deep mitigation can be larger than the reduced costs from limited near term  mitigation (Figure 6.26). The degree to which the late entrants  mitigation costs increase with  fragmented action depends on the extent of carbon intensive technologies and infrastructure put in  place during the period during which they undertake limited reductions and the speed at which  emissions must be reduced after they begin emissions reductions. Indeed, in the face of a future  mitigation commitment it is optimal to anticipate emissions reductions, reducing the adjustment  costs of confronting mitigation policy with a more carbon intensive capital stock (Bosetti et al.,  2009a; Richels et al., 2009). In addition, countries may incur costs from international mitigation  policy even if they do not participate, for example, from a loss of fossil fuel revenues (Blanford et al.,  2014).  Figure 6.26. Impact of fragmented action on the relative mitigation costs of three representative regions: Annex I without Russia; Brasil, Russia, India, and China (BRIC); and Rest of the World (ROW) from the EMF22 Study. In this study, Annex I (without Russia) joins immediately, BRIC in 2030, and ROW in 2050 (see Table 6.1). The vertical axis shows the increase in mitigation costs between full participation and fragmented action scenarios. Thus, values above 0 indicate that fragmented action increases costs. Mitigation costs are calculated relative to baseline over 2015 2100 both in NPV at 5% discount rate (left bars) and as maximum losses over the century (right bars). Source: EMF22 data base. 53 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.3.6.5    The interactions between policy tools and their implementation, pre existing  taxes, market failures, and other distortions  The aggregate economic costs reported in Section 6.3.6.2 have assumed an idealized policy  implementation and in many cases an idealized implementation environment with perfectly  functioning economic markets devoid of market failures, institutional constraints, and pre existing  tax distortions. Many models represent some of these distortions, but most models represent only a  small portion of possible distortions and market failures. The reality that assumptions of idealized  implementation and idealized implementation environment will not be met in practice means that  real world aggregate mitigation costs could be very different from those reported here.  Under the assumption of a perfect implementation environment, economic analysis has long  demonstrated that the way to minimize the aggregate economic costs of mitigation is to undertake  mitigation where and when it is least expensive (Montgomery, 1972). This implies that policies be  flexible and comprehensive with a ubiquitous price on GHG emissions, as might be achieved by a  cap and trade policy or carbon tax (Goulder and Parry, 2008). The literature presented thus far in  this section has assumed such an approach. Even scenarios with fragmented or limited near term  emissions reductions have typically assumed efficient, full economy carbon prices for all countries  undertaking mitigation. However, real world approaches may very well deviate from this approach.  For example, some policies may only address particular sectors, such as power generation; other  policies may regulate the behaviour of particular sectors through command and control measures,  for example, through renewable portfolio standards for power generation or fuel economy  standards for transport.  In an idealized implementation environment, the literature shows that approaches that exclude  sectors or regulate reductions by sector will lead to higher aggregate mitigation costs, particularly  for goals requiring large emissions reductions where coverage and flexibility are most important  (Paltsev et al., 2008). A wide range of recent studies have corroborated this general result, including  the large scale multi model comparison studies such as EMF22 (Böhringer et al., 2009), EMF24  (Fawcett et al., 2014), and EMF28 (Knopf et al., 2013) along with a wide range of individual papers.  As an example, a survey of results (OECD, 2009) indicates that exempting energy intensive industries  increases mitigation costs for achieving concentrations of 550 ppm by 50% in 2050, and that  excluding non CO2 GHG emissions increases the mitigation costs by 75% in 2050. The EMF22 study  (Böhringer et al., 2009) find that differential prices for the European Union (EU) Emission Trading  Scheme (ETS) and non ETS emissions in the EU and the inclusion of a renewable portfolio standard  could double the mitigation costs for the EU goals for 2020. Wise et al. (2009) found that the failure  to include changes in land use emissions in mitigation policy could double global carbon prices in a  450 ppm CO2 scenario. At the same time, it is important to recognize that mitigation may not be the  only objective of these sectoral approaches and regulatory policies. They may also be designed to  address other policy priorities such as energy security and local environmental concerns.  Climate policies will interact with pre existing policy structures as well as with other market failures  beyond the market failure posed by climate change that is, a non idealized implementation  environment and these interactions can either increase or decrease policy costs. A number of  authors have argued that costs could be much lower or even negative compared to those produced  by studies assuming idealized policy and implementation environments (Bosquet, 2000; Bye et al.,  2002; Waisman et al., 2012). The results of these studies rest on one or several assumptions   that  mitigation policy be used not only to address the climate externality, but also to achieve other policy  priorities such as sustainable development; the use of mitigation policy instruments for the  correction of the implementation environment including removal of market failures and pre existing  distortions; and/or on optimistic views of climate related innovation and technology development,  adoption, and penetration.  54 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Because technology is so critical to the economic costs of mitigation, the economic costs and efficacy  of climate policies more generally will necessarily be influenced by market failures in markets for  technology adoption and those for development and R&D (Jaffe, 2012). There are numerous market  failures, such as research and adoption spillovers, limited foresight, limited information, and  imperfect capital markets, which can cause underinvestment in mitigation technologies, discussed in  more detail in Section 15.6 (Thollander et al., 2010; Allcott, 2011, 2013; Kalkuhl et al., 2012, among  many others). Studies indicate aggregate mitigation costs could be lower if these market failures  could be removed through complementary policies (Jaffe et al., 2005; Thollander et al., 2010).  Additionally, literature that focuses in particular on failures in markets for investments in technology  and R&D has found large reductions in aggregate mitigation costs as a result of correcting these  failures, for example, through the recycling of revenue from climate policies or otherwise using  public funds (Bosquet, 2000; Edenhofer et al., 2010; Waisman et al., 2012). The literature has also  shown the value of related complementary policies to enhance labor flexibility (Guivarch et al.,  2011) or impact the mobility of demand, such as transportation infrastructures or urban and fiscal  policies lowering real estate prices and urban sprawl (Waisman et al., 2012).  Interactions with pre existing policies and associated distortions will also influence economic costs.  The EU ETS offers an example where an efficient policy tool (cap and trade system) that is applied  on partial sectors (partial coverage) and interacts with pre existing distortions (high energy taxes)  and other energy policies (renewable energy requirements) is affected by over allocation of permits  and slower than expected economic growth (Ellerman and Buchner, 2008; Ellerman, 2010; Batlle et  al., 2012). Paltsev et al (2007) show that pre existing distortions (e.g., energy taxes) can greatly  increase the cost of a policy that targets emission reduction. In contrast, literature has also looked  into the use of carbon revenues to reduce pre existing taxes (generally known as the  double  dividends  literature). This literature indicates that total mitigation costs can be reduced through  such recycling of revenues (Goulder, 1995; Bovenberg and Goulder, 1996). Nonetheless, a number of  authors have also cautioned against the straight generalization of such results indicating that the  interplay between carbon policies and pre existing taxes can differ markedly across countries  showing empirical cases where a  double dividend  does not exist as discussed in Section 3.6.3.3  (Fullerton and Metcalf, 1997; Babiker et al., 2003; Metcalf et al., 2004).  6.3.6.6    Regional mitigation costs and effort sharing regimes   The costs of climate change mitigation will not be identical across countries (Clarke et al., 2009; Hof  et al., 2009; Edenhofer et al., 2010; Lüken et al., 2011; Luderer et al., 2012; Aboumahboub et al.,  2014; Blanford et al., 2014; Tavoni et al., 2014). The regional variation in costs will be influenced by  the nature of international participation in mitigation, regional mitigation potentials, and transfer  payments across regions. In the idealized setting of a universal carbon price leading to reductions  where they would be least expensive, and in the absence of transfer payments, the total aggregate  economic costs of mitigation would vary substantially across countries and regions. In results  collected from modelling studies under these circumstances, relative aggregate costs in the OECD 1990, measured as a percentage change from , or relative to, baseline conditions, are typically lower  than the global average, those in Latin America are typically around the global average, and those in  other regions are higher than the global average (Figure 6.27) (Clarke et al., 2009; Tavoni et al.,  2014).  55 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.27. Regional mitigation costs relative to global average for scenarios reaching 430 530 ppm CO2eq in 2100 (left panel) and 530 650 ppm CO2eq in 2100 (right panel). Values above (below) 1 indicate that the region has relative mitigation costs higher (lower) than global average. Relative costs are computed as the cumulative costs of mitigation over the period 2020 2100, discounted at a 5% discount rate, divided by cumulative discounted economic output over that period. Scenarios assume no carbon trading across regions. The numbers below the regions names indicate the number of scenarios in each box plot. Source: WGIII AR5 Scenario Database (Annex II.10), idealized implementation and default (see Section 6.3.1) technology scenarios. The variation in these relative regional costs can be attributed to several factors (Stern et al., 2012;  Tavoni et al., 2014). First, costs are driven by relative abatement with respect to emissions in a  baseline, or no policy, scenario, which are expected to behigher in developing countries (see Section  6.3.2    for more discussion). Second, developing countries are generally characterized by higher  energy and carbon intensities due to the structure of economies in economic transition. This induces  a higher economic feedback for the same level of mitigation (Luderer et al., 2012). Third, domestic  abatement is only one determinant of policy costs, since international markets would interact with  climate policies (Leimbach et al., 2010). For some regions, notably the fossil energy exporting  countries, higher costs would originate from unfavourable terms of trade effects of the mitigation  policy (OECD, 2008; Luderer et al., 2011; Massetti and Tavoni, 2011; Aboumahboub et al., 2014;  Blanford et al., 2014), while some regions could experience increased bio energy exports (Persson et  al., 2006; Wise et al., 2009; Leimbach et al., 2010). A final consideration is that the total costs (as  opposed to costs measured as a percentage change from  baseline conditions) and associated  mitigation investments are also heavily influenced by baseline emissions, which are projected to be  larger in the developing regions than the developed regions (see Section 6.3.1   ).  A crucial consideration in the analysis of the aggregate economic costs of mitigation is that the  mitigation costs borne in a region can be separated from who pays those costs. Under the  assumption of efficient markets, effort sharing schemes have the potential to yield a more equitable  cost distribution between countries (Ekholm et al., 2010b; Tavoni et al., 2014). Effort sharing  approaches will not meaningfully change the globally efficient level of regional abatement, but can  substantially influence the degree to which mitigation costs or investments might be borne within a  given country or financed by other countries (e.g. Edenhofer et al., 2010). A useful benchmark for  consideration of effort sharing principles is the analysis of a framework based on the creation of  endowments of emission allowances and the ability to freely exchange them in an international  carbon market. Within this framework, many studies have analyzed different effort sharing  allocations according to equity principles and other indicators (see Section 3.3, Section 4.6.2) (den  Elzen and Höhne, 2008; Den Elzen and Höhne, 2010; Höhne et al., 2013).   Comparing emission allocation schemes from these proposals is complex because studies explore  different regional definitions, timescales, starting points for calculations, and measurements to  assess emission allowances such as CO2 only or as CO2eq (see Höhne et al., 2013). The range of  56 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  results for a selected year and concentration goal is relatively large due to the fact that it depicts  fundamentally different effort sharing approaches and other varying assumptions of the studies.   Nonetheless, it is possible to provide some general comparison and characterization of these  studies. To allow comparison of substantially different proposals, Höhne et al. (2013) developed a  categorization into seven categories based on three equity principles (see Chapter 4): responsibility,  capability, and equality (Table 6.5). The first three categories represent these equity principles alone.  The following three categories represent combinations of these principles.  Equal cumulative per  capita emissions  combines equality (per capita) with responsibility (cumulative accounting for  historical emissions);  responsibility, capability, and need  includes approaches that put high  emphasis on historical responsibility and at the same time on capability plus the need for sustainable  development;  staged approaches  includes those that already constitute a compromise over several  principles. Finally, the last category,  equal marginal abatement costs  (implemented in the models  as uniform carbon tax with no compensatory transfers), represents the initial allocation to that  which would emerge from a global price on carbon. This is used as a reference against which to  compare the implications of other regimes.  The range of allowances can be substantial even within specific categories of effort sharing,  depending on the way the principle is implemented (Figure 6.28). For some effort sharing  categories, the ranges are smaller because only a few studies were found. Despite the ranges within  a category, distributional impacts differ significantly with underlying criteria for effort sharing.   The concentration goal is significant for the resulting emissions allowances (Figure 6.29). Indeed, for  many regions, the concentration goal is of equal or larger importance for emission allowances than  the effort sharing approach. For concentration levels between 430 and 480 in 2100, the allowances  in 2030 under all effort sharing approaches in OECD 1990 are approximately half of 2010 emissions  with a large range, roughly two thirds in the EITs, roughly at the 2010 emissions level or slightly  below in ASIA, slightly above the 2010 level in the Middle East and Africa, and well below the 2010  level in Latin America. For these same concentration levels, allowances in OECD 1990 and EITs are a  fraction of today s emissions in 2050, and allowances for Asia and Latin America are approximately  half of 2010 emission levels in 2050. For higher stabilization scenarios most studies show a  significant decline in allowances below current levels for OECD 1990 and EITs by 2050. Most studies  show a decline in allowances below current levels for the Latin America region, mostly increasing  above current levels for the Africa and Middle East region and an inconsistent picture for ASIA.  The creation of endowments of emissions allowances would generate payment transfers across  regions in a global carbon market. These transfer payments would depend on the regional  abatement opportunities, the distribution of allowances, and the concentration goal. To the extent  that regional mitigation levels represents the cost effective mitigation strategy across regions, the  size of these allocations relative to domestic emissions provide an indication of the degree to which  allowances would be transferred to or from any region. If allocations are higher than the  equal  marginal abatement cost  allocation in a particular country, then the country could possibly improve  its financial position by reducing emissions and selling the remaining allowances. If allocations are  lower than the  equal marginal abatement cost  allocation, the country could possibly purchase  allowances and therefore provide transfers.   Multi model studies indicate that the size of the carbon market transfers would be significant in  relation to the total global aggregate economic costs of mitigation, of the order of hundreds of  billions of United States dollars per year before mid century (Clarke et al., 2009; Luderer et al., 2012;  Tavoni et al., 2014). Transfers through emissions allowances are also particularly high if the carbon  price is high, because the transfers are based on the quantity of the allowances traded and the price  of those allowances. Higher prices are associated with more ambitious mitigation. For some regions,  financial flows could be on the same order of magnitude as the investment requirements for  emissions reductions (McCollum et al., 2014b). Financial transfers are particularly high for some  57 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  regions for the categories  equal per capita cumulative emissions  and  responsibility, capability, and  need  in general and for  staged approaches  in some of studies.   Table 6.5. Categories of effort-sharing proposals. Source: Höhne et al. (2013) Responsibility  Capability  Equality      References  Categories  Description  Responsibility  X      The concept to use historical emissions to derive  emission goals was first directly proposed by  Brazil in the run up of the Kyoto negotiations  (UNFCCC, 1997), without allocations. Allowances  based only on this principle were quantified by  only a few studies.  Frequently used for allocation relating reduction  goals or reduction costs to GDP or human  development index (HDI). This includes also  approaches that are focused exclusively on basic  needs.  A multitude of studies provide allocations based  on immediate or converging per capita emissions  (e.g. Agarwal and Narain, 1991; Meyer, 2000).  Later studies refine the approach using also per  capita distributions within countries (e.g.  Chakravarty et al., 2009).  Berk and den Elzen (2001)*, Den Elzen et al. (2005); Den Elzen and Lucas (2005)  Capability    X    Den Elzen and Lucas (2005); Knopf et al. (2011); Jacoby  et al. (2009); Miketa and Schrattenholzer (2006);  Kriegler et al. (2013c) and Tavoni et al. (2014) **  Berk and den Elzen (2001)*, Kriegler et al. (2013c)  and Tavoni et al. (2014)**, Böhringer and Welsch  (2006); Bows and Anderson (2008); Chakravarty et al.  (2009); Criqui et al.(2003); Den Elzen and Lucas (2005);  Den Elzen and Meinshausen (2006); Den Elzen et  al.(2005, 2008); Edenhofer et al. (2010); Hof et al.  Equality      X  (2010b); Höhne and Moltmann (2008, 2009); Knopf  et al.(2009, 2011); Kuntsi Reunanen and Luukkanen  (2006); Nabel et al.(2011); Miketa and Schrattenholzer  (2006); Peterson and Klepper (2007); Onigkeit et al.  Responsibility,  capability, and  need  X  X    Recent studies used responsibility and capability  explicitly as a basis, e.g., Greenhouse  Development Rights (Baer et al., 2008); or  Responsibility, Capability, and Sustainable  Development (Winkler et al., 2011)  Several studies allocate equal cumulative per  capita emission rights based on a global carbon  budget (Pan, 2005, 2008). Studies diverge on how  they assign the resulting budget for a country to  individual years.  A suite of studies propose or analyze approaches,  where countries take differentiated  commitments in various stages. Also approaches  based on allocation for sectors such as the  Triptych approach (Phylipsen et al., 1998) or  sectoral approaches are included here.  Categorization to a stage and the respective  commitments are determined by indicators using  all four equity principles. Finally, studies using  equal percentage reduction goals, also called  grandfathering, are also placed in this category.  Modelling studies often use the allocations that  would emerge from a global carbon price as a  reference case for comparing other allocations.   (2009); Van Vuuren et al. (2009a, 2010)  Baer et al. (2008); Baer (2013); Höhne and Moltmann  (2008, 2009); Winkler et al. (2011)  X    X  Equal  cumulative per  capita  emissions  Staged  approaches  X  X  X  Bode (2004); Nabel et al. (2011); Jayaraman et al.  (2011); Schellnhuber et al. (2009);   Bosetti and Frankel (2012); Criqui et al. (2003); Den  Elzen and Lucas (2005); Den Elzen and Meinshausen  (2006); Den Elzen et al. (2007, 2008, 2012); Hof et  al.(2010a); Höhne and Moltmann (2008, 2009);  Höhne et al.(2005, 2006); Knopf et al. (2011);  Vaillancourt and Waaub (2004); Peterson and Klepper  (2007); Böhringer and Welsch (2006); Knopf et  al.(2011)  Berk and den Elzen (2001)  Peterson and Klepper (2007), Van Vuuren et al.  (2014) **    *: Not included in the quantitative results, because either too old or pending clarifications of the data.   **: This is a model comparison study of seven integrated models as part of the LIMITS research project: PBL, IIASA, FEEM, ECN*, PIK, PNNL,  NIES*. Each of these models represents one data point. Some of these model studies are more extensively described in a particular model  study (Kober et al., 2013).    Equal Marginal        Abatement  Costs (for  reference)  (2009a), Kriegler et al. (2013c) and Tavoni et al.  58 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.28. Emission allowances in 2030 relative to 2010 emissions by effort-sharing category for mitigation scenarios reaching 430 480 ppm CO2eq in 2100. GHG emissions (all gases and sectors) in GtCO2eq in 1990 and 2010 were 13.4 and 14.2 for OECD-1990, 8.4 and 5.6 for EIT, 10.7 and 19.9 for ASIA, 3.0 and 6.2 for MAF, 3.3 and 3.8 for LAM. Emissions allowances are shown compared to 2010 levels, but this does not imply a preference for a specific base-year. For the OECD-1990 in the category responsibility, capability, need the emission allowances in 2030 is -106% to -128% (20th to 80th percentile) below 2010 level (therefore not shown here). The studies with the Equal cumulative per capita emissions approaches do not have the regional representation MAF. For comparison in orange: Equal marginal abatement cost (allocation based on the imposition of a global carbon price) and baseline scenarios. Source: Adapted from Höhne et al.(2013). Studies were placed in this CO2eq concentration range based on the level that the studies themselves indicate. The pathways of the studies were compared with the characteristics of the range, but concentration levels were not recalculated. Figure 6.29. Emission allowances in 2050 relative to 2010 emissions for different 2100 CO2eq concentration ranges by all effort-sharing categories except equal marginal abatement costs . For comparison in orange: baseline scenarios. Source: Adapted from Höhne et al. (2013). Studies were placed in the CO2eq concentration ranges based on the level that the studies themselves indicate. The pathways of the studies were compared with the characteristics of the ranges, but concentration levels were not recalculated. 59 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  The transfers associated with different effort sharing schemes have a direct impact on the regional  distribution of mitigation policy costs (Luderer et al., 2012). These costs are sensitive both to local  abatement costs and to size and direction of transfers, both of which are related to the effort sharing scheme as well as the carbon price and the associated climate goal (Russ and Criqui, 2007;  den Elzen et al., 2008; Edenhofer et al., 2010; Ekholm et al., 2010b; Luderer et al., 2012). Given the  large uncertainty about future transfers and carbon prices, the regional distribution of costs under  different sharing schemes varies widely (Luderer et al., 2012; Tavoni et al., 2014). For example,  emerging economies like China could incur relatively high expenditures (den Elzen et al., 2012;  Johansson et al., 2012), but this would change when cumulative past emissions are also accounted  for (Jiahua, 2008; Ding et al., 2009; He et al., 2009). Moreover, the uneven regional distribution of  relative mitigation costs observed in Figure 6.27 in the case without transfers is not significantly  alleviated when emissions rights are equalized per capita by 2050 and the concentration goal is  stringent, as shown in Figure 6.30.   Figure 6.30. Regional mitigation costs relative to global average for a 450 ppm CO2eq concentration goal for a per capita effort-sharing scheme from the LIMITS multi-model study. Values above (below) 1 indicate that the region has relative mitigation costs higher (lower) than global average ones. Values below 0 are possible for regions who are large net sellers of carbon allowances. Mitigation costs are computed relative to the baseline, over 2020 2100 in NPV at a 5% discount rate. Emission allocations are based on linear convergence from 2020 levels to equal per capita by 2050, with per capita equalization thereafter. Regions are allowed to trade emission rights after 2020 without any constraint. Source: WG III AR5 Scenario Database (Annex II.10), LIMITS per capita scenarios. Optimal transfers can also be devised as a way to provide economic incentives to regions to  participate in international climate agreements. When accounting for the strategic behaviour of the  various regions and countries, the literature suggests that climate coalitions, which are self enforcing  and stable, can indeed be effective only in the presence of significant compensatory payments  across regions (Finus et al., 2003; Nagashima et al., 2009; Bréchet et al., 2011). Transfers would also  occur in the case that different regional social costs of carbon were equalized to maximize efficiency  (Landis and Bernauer, 2012).  The impacts of mitigation policies on global fossil fuel trade depend on the type of fuel, time  horizon, and stringency of mitigation efforts. Recent model intercomparison studies focusing on low concentration goals (430 530 CO2eq in 2100) have found an unambiguous decrease in coal trade  over the first half of the century (Cherp et al., 2013; Jewell et al., 2013b). In contrast, studies indicate  that natural gas trade could potentially increase over the coming decades as gas serves as a  transition fuel and substitutes for coal (Cherp et al., 2013). Studies present a less clear picture  regarding the future of oil trade for concentration goals in this range. In general, however, studies  find oil trade to be less sensitive to mitigation policy than coal and gas trade through 2030, and  60 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  perhaps even to 2050 (Bauer et al., 2013, 2014; Cherp et al., 2013; Jewell et al., 2013b; McCollum et  al., 2013a).   These changes in trade patterns will have important implications for the future trade revenues of  fossil exporting countries. There is high agreement among integrated models that revenues from  coal trade are likely to fall for major exporters (Lüken et al., 2011; Bauer et al., 2013, 2014). For oil  and gas, on the other hand, the effect of stringent climate policies on export revenues is less clear,  with results varying across models. Notwithstanding these differences, the general conclusion of  recent intercomparison exercises is that there is likely to be a decrease in oil and gas revenues for  exporting countries over the first half of the century (IEA, 2009; Haurie and Vielle, 2010; Bauer et al.,  2013, 2014; McCollum et al., 2013a; Tavoni et al., 2014). It is important to note, however, that  several recent studies have shown a potential gain in revenues from conventional oil resources as a  result of climate policies (Persson et al., 2007; Johansson et al., 2009; Nemet and Brandt, 2012).  Because exporters of these resources can benefit from the cheaper extraction costs and less carbon intensive nature of conventional oil (relative to unconventional oil deposits and coal  or gas derived  liquids), mitigation efforts could potentially have a positive impact on export revenues. These  dynamics depend critically on future commodity prices. No global studies have, as yet, systematically  explored the impact of stringent climate policies on unconventional gas trade and export revenues,  particularly those where methane leakage from extraction activities could be an issue.  Box 6.2. Least-developed countries in integrated models There are significant data and information deficits pertaining to least developed countries(LDCs) and  limits to the modelling of the specific features and characteristics of LDCs. For this reason, the  integrated modelling literature provides relatively little information on the specific implications of  transformation pathways for LDCs. Based on the limited available literature, LDCs contribute little to  future GHG emissions until 2050 even though they are projected to grow faster than global  emissions. Post 2050 emissions trends for LDCs depend on highly uncertain projections of their long term economic growth prospects. One study in the available integrated modelling literature suggests  that LDC s contribution to global emissions increases by about 50% between 2000 and 2100 (Calvin  et al., 2009b).The mitigation challenges for LDCs are particularly significant given their ambitions for  economic growth, poverty alleviation, and sustainable development on the one hand, and their  limited means for mitigation in terms of technology and finance on the other hand. Tradeoffs can  include, among other things, a prolonged use of traditional bioenergy and a reduction in final energy  use. Potential synergies include accelerated electrification (Calvin and al., 2014).   The literature on the transformation pathways has also indicated the need for large deployment of  low carbon technologies. These projections pose critical challenges and uncertainties for LDCs when  taking into account issues related to deployment, institutions and program design, and non climate  socioeconomic implications. In particular, many scenarios rely on technologies with potentially large  land footprints, such as bioenergy and afforestation or reforestation, to achieve mitigation goals.  The scenarios surveyed in the chapter universally project the majority of bioenergy primary energy  will occur in developing economies (50 90% in non OECD in 2050, see Section 6.3.5). These  abatement patterns imply significant challenges for developing countries in general, and LDCs in  particular, where large land use abatement potentials lie.   The literature related to effort sharing and distributional implications of mitigation in LDCs is  relatively scarce. The literature suggests that there are tradeoffs between food security and  mitigation (e.g. Reilly et al., 2012) with negative impacts for poor, developing countries due to the  high share of their incomes spent on food. Mitigation might increase the rural urban gap and  deteriorate the living standards of large sections of the population in developing countries (e.g. Liang  and Wei, 2012). In contrast, policy and measures aligned to development and climate objectives can  deliver substantial co benefits and help avoid climate risks in developing countries (Shukla et al.,  2009). Modelling studies that use the  low carbon society  framework arrive at a similar conclusion  61 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  about co benefits in developing countries (DCs) and LDCs (Kainuma et al., 2012; Shrestha and  Shakya, 2012). Spillover effects from trade related mitigation policies may pose certain risks for LDCs  such as induced factor mobility, unemployment, and international transport related impacts on food  and tourism sectors (Nurse, 2009; ICTSD, 2010; Pentelow and Scott, 2011). Downscaling of  integrated modelling to the level of LDCs is a key area for future research.  6.4   Integrating long  and short term perspectives  6.4.1    Near term actions in a long term perspective  Stabilizing atmospheric concentrations of GHGs and radiative forcing is a long term endeavour.  Whether a particular long term mitigation goal will be met, and what the costs and other  implications will be of meeting it, will depend on decisions to be made and uncertainties to be  resolved over many decades in the future. For this reason, transformation pathways to long term  climate goals are best understood as a process of sequential decision making and learning. The most  relevant decisions are those that must be made in the near term with the understanding that new  information and opportunities for strategic adjustments will arrive often in the future, but largely  beyond the reach of those making decisions today. An important question for decision makers today  is therefore how near term decisions will influence choices available to future decision makers.  Some decisions may maintain a range of future options, while others may constrain the future set of  options for meeting long term climate goals.  6.4.2    Near term emissions and long term transformation pathways  A key outcome of current decision making will be the level of near term global emissions. Scenarios  can provide important insights into the implications of the near term (i.e., 2020 2030) emissions  level for long term climate outcomes. As discussed in Section 6.1.2   , a number of multi model  studies have been designed specifically for this purpose, exploring delays in global mitigation, in  which near term emissions are held fixed to particular levels, and fragmented action, in which only a  subset of regions initially respond to a long term goal (see Table 6.1). These scenarios are typically  designed as counterpoint to idealized implementation scenarios in which mitigation begins  immediately, timing of reductions is unconstrained, and full participation is assumed from the  outset. This distinction is essential for characterizing the relationship between the path emissions  follow through 2030 and the possible climate outcomes through the end of the century. Among  idealized implementation scenarios with 2100 concentrations in the range of 430 530 ppm CO2eq,  emissions in 2020 fall almost exclusively below the  range of global GHG emissions implied by the  Cancún Pledges (see Section 13.13.1.3 for more details), as in Rogelj et al. (2013a) (Figure 6.31, top  panel). However, several scenarios with delayed mitigation imposed either through global delays or  delayed participation have 2020 emissions in the possible range of the Cancun Agreements and in  some cases 2030 emissions even higher than this range while still remaining consistent with the  long term goal (the cost implications of delay are discussed in Section 6.3.6.4   ).  A second distinction that can play a critical role is the extent to which CDR options are available and  deployed. In scenarios designed with a forcing goal applied only at the end of the century,  particularly concentrations in the range of 430 530 ppm CO2eq, idealized implementation scenarios  often choose to temporarily overshoot the 2100 concentration (Section 6.3.2   ). As noted in Section  6.3.2   , CDR options, typically represented in integrated models by BECCS but also afforestation in  some cases, facilitate more rapid declines in emissions, amplifying this overshoot pattern (Krey et al.,  2014). A large number of scenarios reaching CO2eq concentrations below 530 ppm CO2eq by 2100  deploy CDR technologies at large enough scales that net global emissions become negative in the  second half of the century. The availability of CDR options, as well as the representation of  intertemporal flexibility, varies significantly across models and studies. The spread in reliance on CDR  options across scenarios reveals a strong impact on the timing of emissions pathways. In scenarios  reaching the the 2100 concentration range of 430 530 ppm CO2eq in which global net CO2 emissions  62 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  remain positive through the century, near term emissions are generally lower than if the scenario  deploys CDR technologies to a large enough scale to lead to net negative total global CO2 emissions  later in the century (Figure 6.31, top panel). More generally, the scenarios indicate that a reliance on  large scale CDR, whether or not emissions become net negative, leads to higher near term emissions  (van Vuuren and Riahi, 2011).  The interaction between delayed mitigation and CDR options is also important. Very few scenarios  are available to demonstrate emissions pathways consistent with  2100 concentrations  of  430 530 ppm CO2eq in which mitigation effort is delayed in some form and global carbon emissions  do not become net negative. Whether these circumstances are not represented because they have  been under examined or because they have been examined and the scenarios failed is a crucial  distinction, yet one that it is currently not possible to fully report (see discussion of model  infeasibility in Section 6.3.2   ). However, there are instances where the combination of delay and  limited options for CDR has been explored and has resulted in model infeasibilities (Luderer et al.,  2013b; Rogelj et al., 2013b; Riahi et al., 2014), , which supports the notion that this combination  presents important challenges. For example, in the AMPERE study, seven out of nine models could  not produce a scenario with global delay through 2030 and a restriction on CCS technology that  reached 450 CO2eq  by 2100 (one of the remaining two had net negative global emissions through  other channels and the other did not run past 2050). Several individual modelling team studies have  also explored this space, and have found situations in which they could not reach solutions for more  ambitious goals and delayed mitigation or constrained technology, including O Neill et al. (2010),  Edmonds et al. (2008), and Edmonds et al. (2013). Studies have found that delayed reductions  through 2020 do not have as substantial an effect on the cost and challenge more broadly of  meeting 2100 concentration levels such as 450 ppm CO2eq as delayed reductions through 2030  (Kriegler et al., 2013c; Luderer et al., 2013b; a; Rogelj et al., 2013b)   The implications of delayed mitigation, CDR options, and overshoot for possible temperature  outcomes are also significant. Numerous studies have attempted to place the possible outcome of  the Cancun Agreements in the context of longer term climate goals (Höhne et al., 2012; UNEP,  2012). Due to the factors discussed above, but also variation in assumptions about baseline growth,  mitigation costs, tradeoffs between sectors such as energy and land use, and the evolution of non gas forcing agents, models have found that a wide range of near term emissions could be consistent  with a given long term outcome. Among scenarios with 2100 concentrations between 430 and  530 ppm CO2eq, focusing on those scenarios in the AR5 database for which temperature implications  were calculated (see Section 6.3.2   ), near term global emissions range from 22 to 56 GtCO2eq in  2020 and from 18 to 66 GtCO2eq in 2030 (Figure 6.31, top panel). However, based on the MAGICC  results,not all pathways in this range are consistent with at least a 50% chance of remaining below  2°C, in particular those that rely on net negative global emissions. Pathways reaching the same 2100  concentration with higher emissions in 2030 tend to have more overshoot; when forcing stays  higher for longer, the likelihood of reaching a temperature threshold increases. Based on the  MAGICC results, very few scenarios in the 430 530 ppm CO2eq range have a 50% chance of  remaining below 1.5°C, and none with delay or limited deployment of CDR technologies; most have  a probability between 0 and 25%. A few studies have explored scenarios that lead to concentrations  below 430 ppm CO2eq in 2100 (e.g., Luderer et al, 2013, Rogelj et al, 2013a,b), some of which have  been found to have more than a 66% chance of returning to 1.5°C by the end of the century after  peaking at higher levels; these scenarios are characterized by immediate emissions reductions  followed by very low mid century emissions and extensive deployment of CDR technologies. Based  on the MAGICC results, nearly all scenarios reaching 2100 concentrations in the range of 530 650  ppm CO2eq,have a greater than a 50% chance of exceeding 2°C by 2100, but many have a probability  of less than 50% of exceeding 2.5°C (Figure 6.31, bottom panel). Because of the higher long term  forcing range, some growth in emissions can occur, and the preferred least cost range is similar to  63 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  the delayed range and largely consistent with the global GHG emissions reductions through 2020  implied yb the Cancún Pledges (see Section 13.13.1.3)..      Figure 6.31. Near-term global GHG emissions from mitigation scenarios reaching 430 530 ppm CO2eq (top panel) and 530 650 ppm CO2eq (bottom panel) in 2100. Includes only scenarios for which temperature exceedance probabilities were calculated (see Section 6.3.2). Individual model results are indicated with a data point when 2°C exceedance probability, based on the MAGICC results, is below 50% for bottom panel or when 2.5°C exceedance probability is below 50% for top panel. Colours refer to scenario classification in terms of whether net CO2 emissions become negative before 2100 and the timing of international participation (immediate vs. delay). Number of reported individual results is shown in legend. The range of global GHG emissions in 2020 implied by the Cancún Pledges is based on an analysis of alternative interpretations of national pledges (see Section 13.13.1.3 for details). Source: WG III AR5 Scenario Database (Annex II.10). Historic data: JRC/PBL (2012), IEA (2012a),see Annex II.9. Note: Only four reported scenarios were produced based on delayed mitigation without net negative emissions while still lying below 530 ppm CO2eq by 2100. They do not appear in panel (a) because the model had insufficient coverage of nongas species to enable a temperature calculation (see Section 6.3.2). Delay in these scenarios extended only to 2020, and their emissions fell in the same range as the No Negative/Immediate 64 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  category. Note: Delayed scenarios include both delayed global action and fragmented action scenarios. Whether due to delayed mitigation or widespread use of CDR options or some combination of the  two, higher levels of emissions in the near term imply an emissions pathway shifted in time,  resulting in steeper reductions later to remain consistent with a given long term forcing goal. As  discussed in Section 6.3.2   , emissions in 2030 have been used a rough indicator for understanding  the relationship between near term and long term mitigation. Higher emissions in 2030 require  more rapid decreases in emissions from 2030 through 2050, both to make up for the larger  cumulative emissions up through 2030 and because emissions must be reduced from a higher 2030  level (Figure 6.32). Emissions decline rates for any scenario that meets 2100 concentration goals  such as 450 or 550 ppm CO2eq must at some point push beyond historical experience, because  emissions have in general followed growth, with past instances of decline associated only with large scale disruptions such as the collapse of the Soviet Union or special cases of policy intervention such  as France and Sweden (see Chapter 5). Less mitigation over the coming decades will only exacerbate  the required departure from the past to meet long term goals   pathways with emissions above  55 GtCO2eq in 2030 indicate decline rates between 2030 and 2050 of around 6% for scenarios in the  range of 430 530 ppm CO2eq in 2100 (Figure 6.32).  Figure 6.32. The implications of different 2030 GHG emissions levels for the pace of CO2 emissions reductions to 2050 in mitigation scenarios reaching 430 530 ppm CO2eq by 2100. Left-hand panel shows the development of GHG emissions to 2030. Right-hand panel denotes the corresponding annual CO2 emissions reduction rates for the period 2030 2050. The scenarios are grouped according to different emissions levels by 2030 (colored in dark, medium and light green). The range of global GHG emissions in 2020 implied by the Cancún Pledges is based on an analysis of alternative interpretations of national pledges (see Section 13.13.1.3 for details). The right-hand panel compares the median and interquartile range across scenarios from recent intermodelling comparisons with explicit 2030 interim goals with the range of scenarios in the WG III AR5 Scenario Database (Annex II.10). Annual rates of historical emissions change (sustained over a period of 20 years) are shown in grey. Sources: Intermodelling comparisons with explicit interim goals (AMPERE: Riahi et al., 2013; LIMITS: Kriegler et al., 2013; ROSE: Luderer et al., 2013) and the WG III AR5 Scenario Database (Annex II.10). Note: Only scenarios with default technology assumptions are shown. Scenarios with non-optimal timing of mitigation due to exogenous carbon price trajectories are excluded. 65 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.4.3    The importance of near term technological investments and development of  institutional capacity  While it is clear that some mitigation effort in the near term is crucial to preserve the option of  achieving low concentration goals, whether these goals are met in the long run depends to a greater  extent on the potential for deep GHG emissions reductions several decades from now. Thus efforts  to begin the transformation to lower concentrations must also be directed toward developing the  technologies and institutions that will enable deep future emissions cuts rather than exclusively on  meeting particular near term goals. The way in which countries begin low carbon technology  deployment and the implementation of climate change mitigation policies may well turn out to be  quite different from the approach that proves best in the long run. The benefit of beginning to  create and improve technologies as well as to develop appropriate institutional capacity today is  that these present day activities create opportunities to make early and mid course corrections.  The likelihood of a unified global policy for a deep GHG emissions reduction is low for the near  future. Rather, the expectation is that a  mosaic  of national and regional policies will emerge over  the years to come. Individual countries will bring different views and values to bear on their  decisions, which will likely lead to a wide variety of policy approaches, some more economically  efficient than others. Flexible market based policies with maximal sectoral and geographic coverage  are generally understood to deliver emissions reductions at the lowest economic cost (see  Section 6.3.6.5    for a discussion of issues that influence the efficiency of implementation  approaches). Although the added cost of inefficient policies in the near term may be smaller than in  the long term when mitigation requirements will be much larger, their implementation now may  lead to  institutional lock in  if policy reform proves difficult. Thus a near term focus on developing  institutions to facilitate flexible mitigation strategies, as well as political structures to manage the  large capital flows associated with carbon pricing (see e.g. Kober and al., 2014), could provide  substantial benefits over the coming decades when mitigation efforts reach their full proportions.  R&D investments to bring down the costs of low emitting technology options, combined with early  deployment of mitigation technologies to improve long term performance through learning by doing, are among the most important steps that can be taken in the near term (see e.g. Sagar and  van der Zwaan, 2006). R&D investments are important for bringing down the costs of known low carbon energy alternatives to the current use of predominantly fossil fuels, to develop techniques  that today only exist on the drawing board, or for generating new concepts that have not yet been  invented. Early deployment of climate change mitigation technologies can lead to both incremental  and fundamental improvements in their long term performance through the accumulation of  experience or learning by doing. Mitigation policy is essential for spurring R&D and learning by  doing, because it creates commitments to future GHG emissions reductions that create incentives  today for investments in these drivers of technological innovation, and avoid further lock in of long lived carbon intensive capital stock.  Even if policies requiring GHG emissions reductions are not implemented immediately, market  participants may act in anticipation of future mitigation. Commitments to emissions reductions in  the future will create incentives for investments in climate change mitigation technologies today,  which can serve both to reduce current emissions and avoid further lock in of long lived carbon intensive capital stock and infrastructure (see, for example, Bosetti et al., 2009c; Richels et al., 2009).   6.5   Integrating technological and societal change  Technological change occurs as innovations create new possibilities for processes and products, and  market demand shifts over time in response to changes in preferences, purchasing power, and other  societal factors. Societal changes can be viewed as both a requirement for and a result of global  climate change mitigation. Because the use of improved and new technologies is an inherent  66 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  element of society s transformation required for climate change mitigation, technological and  societal changes necessarily interact. Their analysis therefore needs to be integrated.  6.5.1    Technological change  The development and deployment of technology is central to long term mitigation, since established  fossil fuel based energy supply will need to be replaced by new low carbon energy techniques. The  importance of technological change raises key questions about whether current technology is  sufficient for deep GHG emissions reductions, the best ways to improve the technologies needed for  deep emissions reductions, and the degree to which current efforts in this regard are adequate to  the upcoming challenge. Essential questions also surround the appropriate timing of investments in  technological change relative to other efforts to reduce GHG emissions.  A primary question regarding technological change is whether current technology is sufficient for the  deep emissions reductions ultimately needed  to stabilize GHG concentrations. Arguments have  been made on both sides of this debate (see Hoffert et al. (2002), and Pacala and Socolow (2004),  for complementary perspectives on this question). The integrated modelling literature provides  limited information regarding the sufficiency of current technology, because virtually all baseline and  mitigation scenarios assume that technology will improve significantly over time, especially for  technologies with a large potential for advancement (see Riahi et al., 2013, and van der Zwaan et al.,  2013, for two recent cross model comparison examples). There is generally more agreement about  the rate of incremental cost and performance improvements for mature technologies than for  emerging technologies upon which transformation pathways may depend (see McCollum et al.,  2014b, for a cross model study on the investment dimension of this matter). Nonetheless, the  literature makes clear that improvements in technology and the availability of advanced  technologies can dramatically alter the costs of climate change mitigation (see also Section 6.3.6.3    ). The current scientific literature also emphasizes that the development and deployment of CDR  technologies (see Section 6.9), are a further requirement for particular transformation pathways, for  example those leading to 450 ppm CO2eq by 2100 yet assuming substantial near term delays in  mitigation.  Various steps can be observed in the life of a technology, from invention through innovation,  demonstration, commercialization, diffusion, and maturation (see e.g. Grübler et al., 1999). Both  investments in R&D and the accumulation of experience through learning by doing play important  roles in the mechanisms behind technological change. These forces are complemented by  economies of scale. All these drivers of technological change are complementary yet and interlinked  (Clarke and Weyant, 2002; Goulder and Mathai, 2000; Sagar and van der Zwaan, 2006; Stoneman,  2013).   Although technological change has received extensive attention and analysis in the context of  transformation pathways (for recent examples, see SRREN, 2011; GEA, 2012), a clear systematic  understanding of the subject matter is still not available. For this reason, most of the scenarios  developed since the 1970s for energy and climate change analysis make exogenous assumptions  about the rate of technological change. Only since the late 1990s has the effect of induced  innovation been considered in a subset of integrated models used for the development of these  scenarios (such as in Messner, 1997; Goulder and Schneider, 1999; van der Zwaan et al., 2002;  Carraro et al., 2003). This restricted treatment is due to limitations in the ability to represent the  complexity of technological change, and also results from the incomplete empirical evidence on the  magnitude of the effects of technological change (Popp, 2006b). More recently, empirical data on  technological change have been incorporated in some integrated models  (see e.g., Fisher Vanden,  2008), which advances the endogenous representation of technological progress. Unsettled issues  remain, however, including the proper accounting for opportunity costs of climate related  knowledge generation, the treatment of knowledge spillovers and appropriability, and the empirical  basis for parameterizing technological relationships (Gillingham et al., 2008).  67 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  The relation between mitigation and innovation, and the presence of market failures associated with  both, raises the question of the proper combination of innovation and mitigation policy for reducing  GHG emissions over the long term. The modelling literature broadly indicates that relying solely on  innovation policies would not be sufficient to stabilize GHG concentrations (see e.g. Bosetti et al.,  2011; Kalkuhl et al., 2013), as evidenced by the fact that although most reference scenarios assume  substantial technological change, none of them lead to emissions reductions on the level of those  needed to bring CO2eq concentrations to levels such as 650 ppm CO2eq or below by 2100 (see  Section 6.3.2   ). Climate policies such as carbon pricing could induce significant technological  change, provided the policy commitment is credible, long term, and sufficiently strong (Popp, 2006a;  Bosetti et al., 2011), while at the same time contributing to emission reductions. The positive effect  of climate policies on technological change, however, does not necessarily obviate the need for  specific policies aimed at incentivizing R&D investments. Market failures associated with innovation  provide the strongest rationale for subsidizing R&D (see Section 15.6).  The joint use of R&D subsidies and climate policies has been shown to possibly generate further  advantages, with some studies indicating benefits of the order of 10 30% overall climate control  cost reductions (D. Popp, 2006; V. Bosetti et al., 2011). Climate specific R&D instruments can step up  early innovation and ultimately reduce mitigation costs (Gerlagh et al., 2009), although R&D  subsidies could raise the shadow value of CO2 in the short term because of rebound effects from  stimulating innovation (Otto and Reilly, 2008) (See Section 6.3.6.5    for further discussion of  combining policy instruments to reduce aggregate mitigation costs). In the absence of explicit efforts  to address innovation market failures, carbon taxes might be increased or differentiated across  regions to indirectly address the under provision of R&D (Golombek and Hoel, 2008; Hart, 2008;  Greaker and Pade, 2009; Heal and Tarui, 2010; De Cian and Tavoni, 2012).   Although there is no definitive conclusion on the subject matter, several studies suggest that the  benefits of increased technological change for climate change mitigation may be sufficiently high to  justify upfront investments and policy support in innovation and diffusion of energy efficiency and  low carbon mitigation technologies (see e.g. Dowlatabadi, 1998; Newell et al., 1999; Nordhaus,  2002; Buonanno et al., 2003; Gerlagh and van der Zwaan, 2003). For example, it has been suggested  that the current rates of investments are relatively low and that an average increase several times  from current clean energy R&D expenditures may be closer towards optimality to stabilize GHG  concentrations (Popp, 2006a; Nemet and Kammen, 2007; Bosetti et al., 2009a; IEA, 2010a;  Marangoni and M. Tavoni, 2013) (Table 6.6). Bridging a possible  R&D gap  is particularly important  and challenging, given that public energy R&D investments in OECD countries have generally been  decreasing as a share of total research budgets over the past 30 years (from 11% down to 4%,  according to recent International Energy Agency (IEA) R&D statistics). On the other hand, in the  private sector the rate of innovation (if measured by clean energy patents) seems to have  accelerated over the past 10 years.   Table 6.6. Preliminary findings on energy efficiency and clean energy R&D investments, as suggested in the literature to date,and as needed to attain concentration goals. For reference, current public R&D expenditures are approximately 10 Billion USD/yr. Foreseen total clean  Study  energy R&D investments  Notes  Nemet and Kammen (2007) based  17 27 USD Billion/yr  For the period 2005 2015  on Davis and Owens (2003)   To achieve the  Blue Map  scenario in 2050.  IEA (2010a)  Roughly half of the investments are reserved for  50 100 USD Billion/yr  advanced vehicle R&D.  Average to 2050 for a range of climate  concentration goals. A large share is reserved for  70 90 USD Billion/yr  Bosetti et al. (2009a)  low carbon fuel R&D.  68 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  An unequivocal call for energy innovation policy can be questioned, however, when all inventive  activities are accounted for. It might also not be straightforward to determine the overall effect of  mitigation policy on technological innovation, since low carbon energy R&D may crowd out other  inventive activity and result in lower overall welfare (Goulder and Schneider, 1999). The degree of  substitutability between different inputs of production has been shown to drive the outcome of  scenarios from integrated models (Otto et al., 2008; Acemoglu et al., 2009; Carraro et al., 2010).  Innovation is found to play an important role in attempts to hedge against future uncertainties such  as related to climate change impacts, technological performance and policy implementation  (Loschel, 2002; Bohringer and Löschel, 2006; Baker and Shittu, 2008; Bosetti and Tavoni, 2009).   6.5.2    Integrating societal change  Individual behaviour, social preferences, historical legacies, and institutional structures can influence  the use of technologies and mitigation more generally. Technological transitions necessarily  encompass more than simply improving and deploying technology. Because they co evolve with  technologies, social determinants of individual and collective behaviours can be either causes or  consequences of transformation pathways. Moreover, governance and policies can influence these  factors and thereby affect transformation pathways. This more complex framing of transformation  pathways implies the need for a broader perspective on mitigation that explicitly considers the  obstacles to deployment and mitigation more generally.  Research on these societal change elements is analytically diverse and often country specific, which  complicates comparative modelling exercises of the type reviewed in this chapter. The difficulty in  representing these processes in models has meant that societal change research has often been  divorced from the literature on transformation pathways. However, significant bodies of literature  show how societal changes can affect the costs and acceptability of mitigation, and the interactions  of climate policies and other dimensions of public policies beyond the energy sector.  Non optimal or real world institutional conditions can influence how technological pathways evolve  even under an economy wide price on carbon. Because of the heterogeneity of the carbon impact of  different sectors, the impact of a carbon price differs widely across sectors (Smale et al., 2006;  Houser et al., 2009; Fischer and Fox, 2011; Monjon and Quirion, 2011) Demailly et al., 2008). Even in  less energy intensive sectors, pre existing characteristics in the national economy   such as  inflexible labor markets   can complicate the deployment of technologies (Guivarch et al., 2011). A  further obstacle is the uneven impacts of a carbon price on household purchasing power,  particularly for lower income brackets (Combet et al., 2010; Grainger and Kolstad, 2010).  Policy uncertainty can have implications for low carbon technology investment. High levels of  uncertainty force risk averse firms not to adopt technologies by merit order in terms of net present  value (Kahneman and Tversky, 1979; Pindyck, 1982; Majd and Pindyck, 1987) . Hallegatte et al.  (2008) show the importance of the difference in investment rules in a managerial economy (Roe,  1994) and a shareholder economy (Jensen, 1986). Hadjilambrinos (2000) and Finon (2009) (2012)  show how differences in regulatory regimes may explain differences in technological choices in the  electricity industries. Bosetti et al. (2011) show that investment uncertainty increases the costs and  reduces the pace of transformation pathways. Perceived policy risks can not only dampen  investment but can also encourage perverse outcomes such as non additionality in the CDM  (Hultman et al., 2012b). This raises the potential for linking mitigation policies, energy sector  regulatory reforms, and financial policies to increase the risk averse returns of mitigation  investments (Hourcade and Shukla, 2013).  Changes in institutional structures will be required to facilitate the technological change envisaged in  the scenarios reviewed in this chapter. Historically, political and institutional pre conditions,  changing decision routines, and organizational skills help explain why countries with similar  dependence on oil imports adopted very different energy responses to oil shocks (Hourcade and  Kostopoulou, 1994; Hultman et al., 2012a). Similar issues arise in a low carbon transition. New  69 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  policies and institutional structures might be developed to manage infrastructures such as those  associated with large quantities of intermittent resources on the electric grid, CO2 transport and  storage, dispersed generation or storage of electricity, or nuclear waste and materials.   Although modelling exercises have been able to assess the possible changes in the energy supply  portfolio and the pressures to deploy energy efficiency technologies, such changes are difficult in  practice to separate from the evolution of preference and lifestyles. The literature on energy efficiency investments highlights the frequent incongruity between perceived economic benefits for  energy efficiency and actual consumer behaviour that seems often to ignore profitable investments.  Such behaviour has been shown to stem from perceived unreliability, unfounded expectations for  maintenance, information failures, property rights, split incentives, and differentiation across  income.  Finally, social factors influence the changes in the way energy systems couple with other large scale  systems of production such as the built environment, transportation, and agriculture. The way that  energy is used and consumed in urban areas (such as in transportation, heating, and air conditioning) is often driven by the structure and form of the urban infrastructure (Leck, 2006).  Recent modelling exercises demonstrated the tradeoff between commuting costs and housing costs  and their impact on the urban sprawl and the mobility needs (Gusdorf and Hallegatte, 2007; Gusdorf  et al., 2008). In many cases, the price of real estate is as powerful a driver of mobility demand as the  price of transportation fuel, and therefore affects the price of carbon needed for meeting a given  climate objective (Waisman et al., 2012; Lampin et al., 2013). The transport contribution to carbon  can be affected by, for example, just in time processes and geographical splits of the productive  chains (Crassous and Hourcade, 2006).  6.6   Sustainable development and transformation pathways, taking into  account differences across regions  Averting the adverse social and environmental effects of climate change is fundamental to  sustainable development (WCED, 1987, and Chapter 4) .Yet, climate change is but one of many  challenges facing society in the 21st century. Others include, for instance, providing access to clean,  reliable, and affordable energy services to the world s poorest; maintaining stable and plentiful  employment opportunities; limiting air pollution, health damages, and water impacts from energy  and agriculture; alleviating energy security concerns; minimizing energy driven land use  requirements and biodiversity loss; and maintaining the security of food supplies. A complex web of  interactions and feedback effects links these various policy objectives, all of which are important for  sustainable development (see Section 4.8 and Table 4.1).   Implementation of mitigation policies and measures therefore may be adequately described within a  multi objective framework and may be aligned with other objectives to maximize synergies and  minimize tradeoffs. Because the relative importance of individual objectives differs among diverse  stakeholders and may change over time, transparency on the multiple effects that accrue to  different actors at different points of time is important for decision making (see Sections 2.4, 3.6.3,  3.7.1, and 4.8).  Although the scientific literature makes very clear that a variety of policies and measures exist for  mitigating climate change, the impacts of each of these options along other, non climate dimensions  have received less attention. To the extent these mitigation side effects are positive, they can be  deemed  co benefits ; if adverse, they imply  risks  with respect to the other non climate objectives  (see Annex I for definitions). Despite their importance for mitigation strategies, side effects are often  not monetized or even quantified in analyses of climate change (see e.g. Levine et al., 2007).  70 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  6.6.1    Co benefits and adverse side effects of mitigation measures: Synthesis of sectoral  information and linkages to transformation pathways   One source of information on side effects emerges from literature exploring the nature of individual  technological or sectoral mitigation measures. These studies are covered in Chapters 7 12. Based on  those assessments, Table 6.7 provides an aggregated but qualitative overview of the potential co benefits and adverse side effects that could be realized if certain types of mitigation measures are  enacted in different sectors: energy supply side transformations; technological and behavioural  changes in the transport, buildings, and industry end use sectors; and modified agriculture, forestry,  and land use practices. These co benefits and adverse side effects can be classified by the nature of  their sustainable development implications: economic, social, or environmental (see Sections 4.2  and 4.8 for a discussion of the three pillars of sustainable development). Other types of impacts are  also possible and are highlighted in the table where relevant.   Whether or not any of these side effects actually materialize, and to what extent, will be highly case   and site specific, as they will depend importantly on local circumstances and the scale, scope, and  pace of implementation, among other factors. Measures undertaken in an urbanized area of the  industrialized world, for instance, may not yield the same impacts as when enacted in a rural part of  a developing country (Barker et al., 2007) . Such detailed considerations are not reflected in Table  6.7, which is meant to give an aggregated sense of the potential co benefits and adverse side effects  throughout the world when mitigation policies are in place. Details are discussed in each of the  respective sectoral chapters (see Chapters 7 12). Note that in addition to the qualitative  information on potential side effects summarized below, Table 6.7 also provides quantitative  information for each sector regarding the mid century contribution of the respective (group of)  mitigation measures to reach stringent mitigation goals (see Sections 6.8  , 7.11, and 11.9 for the  underlying data).   The compilation of sectoral findings in Table 6.7 suggests that the number of co benefits clearly  outweighs that of adverse side effects in the case of energy end use mitigation measures (transport,  buildings, and industry), whereas the evidence suggests this is not the case for all supply side  measures. Although no single category of mitigation measures is completely devoid of risk, Table 6.7  highlights that certain co benefits are valid across all sectors. For instance, by contributing to a  phaseout of conventional fossil fuels, nearly all mitigation measures have major health and  environmental benefits for society, owing to significant reductions in both outdoor and indoor air  pollution, and lead to improved energy security at the national level for most countries. In addition  to the many sector specific co benefits and adverse side effects, sectoral employment and  productivity gains, technological spillovers, and more equitable energy/mobility access offer  examples of co benefits that are possible across all demand sectors. While energy demand  reductions additionally mitigate risks associated with energy supply technologies (see also Rogelj et  al., 2013b), the upstream effects of fuel switching are more complex and depend to a large extent on  local circumstances (see Section 7.11).  Moreover, while nearly all mitigation measures for reducing (fuel) carbon and energy intensity have  higher up front investment requirements than conventional technologies, their often lower  operating costs, and sometimes even lifecycle costs, can contribute to reduced energy service prices  for consumers, depending on local and national institutional settings (see Section 7.9.1). If, on the  other hand, energy prices rise as a consequence, so do the political challenges of implementation,  such as those associated with the provision of universal energy access and associated economic,  social, environmental, and health risks for the poorest members of society (Markandya et al., 2009;  Sathaye et al., 2011; Rao, 2013). Well designed policies are thus important to avoid perverse  incentives of climate policies, including increasing traditional biomass use for heating and cooking  (see Bollen et al., 2009a, b, and Section 9.7.1).   71 of 141   Final Draft  Chapter 6  IPCC WGIII AR5  In addition to furthering the achievement of various global goals for sustainability, namely those of  the major environmental conventions (e.g., the United Nations  Convention to Combat  Desertification (UNCCD, 2004), Convention on Biological Diversity (CBD, 1992),  Sustainable Energy  for All  initiative, and the Millennium Development Goals (MDG)), mitigation can potentially yield  positive side effects in the impacts, adaptation, and vulnerability (IAV) dimensions (see Section  6.6.2.5 and 11.7, Haines et al., 2009; Rogelj et al., 2013c). For instance, decentralized renewable  energy systems can help to build adaptive capacity in rural communities (Venema and Rehman,  2007), and sustainable agricultural practices (e.g., conservation tillage and water management) can  improve drought resistance and soil conservation and fertility (Uprety et al., 2012). 72 of 141   Final Draft     Chapter 6  IPCC WGIII AR5  Table 6.7. Potential co-benefits (green arrows) and adverse side-effects (orange arrows) of the main sectoral mitigation measures; arrows pointing up/down denote a positive/negative effect on the respective objective or concern; a question mark (?) denotes an uncertain net effect. Co-benefits and adverse side-effects depend on local circumstances as well as on the implementation practice, pace, and scale (see Tables 7.3, 8.4, 9.7, 10.5, 11.9, 11.12). Column two provides the contribution of different sectoral mitigation strategies to stringent mitigation scenarios reaching atmospheric CO2eq concentrations of 430 530 ppm in 2100. The interquartile ranges of the scenario results for the year 2050 show that there is flexibility in the choice of mitigation strategies within and across sectors consistent with low-concentration goals (see Sections 6.4 and 6.8). Scenario results for energy supply and end-use sectors are based on the AR5 Scenario Database (see Section 6.2.2). For an assessment of macroeconomic, cross-sectoral effects associated with mitigation policies (e.g., on energy prices, consumption, growth, and trade), see Sections 3.9, 6.3.6, 13.2.2.3, and 14.4.2. The uncertainty qualifiers in brackets denote the level of evidence and agreement on the respective effects. Abbreviations for evidence: l=limited, m=medium, r=robust; for agreement: l=low, m=medium, h=high. Sectoral mitigation  results for stringent  measures   mitigation scenarios  Energy Supply  Integrated model  Effect on additional objectives/concerns  Economic  Social  Environmental    Ecosystem impact via       Air pollution (m/h) and coal mining (l/h)        Nuclear accidents (m/m)  Other  Proliferation risk  (m/m)  Deployment1 Rate of  For possible upstream effects of biomass supply for bioenergy, see AFOLU.  change  2010  2050 %/yr    Energy security (reduced exposure to fuel    Health impact via   10  EJ/yr  (4 22)  17 47  ( 2 2)  1 4  Nuclear replacing coal  power       Air pollution and coal mining accidents (m/h)    price volatility) (m/m)    Local employment impact (but uncertain net       Nuclear accidents and waste treatment, uranium  mining and milling (m/l)    effect) (l/m)      Safety and waste concerns (r/h)    Legacy cost of waste and abandoned  reactors (m/h)    Energy security (resource sufficiency,  diversity in the near/medium term) (r/m)    Renewable Energy  (wind, photovoltaic  (PV), concentrated  solar power (CSP),  hydro, geothermal,  bioenergy) replacing  coal   62  EJ/yr    Health impact via       Air pollution (except bioenergy) (r/h)  Local employment impact (but uncertain net        Coal mining accidents (m/h)    Contribution to (off grid) energy access (m/l)  (66 125) (0.2 2)    effect) (m/m)    Irrigation, flood control, navigation, water  ?  Project specific public acceptance concerns   194 282 3 4  supply availability (for reservoir and     (e.g., visibility of wind) (l/m)    rivers)(m/h)    Threat of displacement (for large hydro) (m/h)    Extra measures to match demand (for PV,  wind and some CSP) (r/h)  (0)  4 12  (0)  0 6  (0)  NA  Preservation vs lock in of human and physical    Health impact via  capital in the fossil industry (m/m)      Risk of CO2 leakage (m/m)      Upstream supply chain activities (m/h)    Safety concerns (CO2 storage and transport) (m/h)  NA    Ecosystem impact via       Air pollution (except bioenergy) (m/h)      Coal mining (l/h)      Habitat impact (for some hydro) (m/m)      Landscape and wildlife impact (for wind) m/m)  Higher use of  critical metals for  PV and direct  drive wind  turbines (r/m)  Water use (for wind and PV) (m/m)    Water use (for bioenergy, CSP, geothermal, and  reservoir hydro) (m/h)  Ecosystem impact via upstream supply chain activities  Long term  monitoring of    (m/m)  CO2 storage    Water use (m/h)  (m/h) Fossil CCS replacing  coal   0 Gt  CO2/yr  stored  0 Gt  CO2/yr  BECCS replacing coal  See fossil CCS where applicable. For possible upstream effect of biomass supply, see agriculture, forestry, and other land use (AFOLU).   Methane leakage  NA  NA  NA    Energy security (potential to use gas in some    Health impact via reduced air pollution (m/m)    Ecosystem impact via reduced air pollution (l/m)  prevention, capture or  cases) (l/h)    Occupational safety at coal mines (m/m) treatment  1) Deployment levels for baseline scenarios (in parentheses) and stringent mitigation scenarios leading to 430 530 ppm CO2eq in 2100 (in italics). Ranges correspond to the 25th to 75th percentile interquartile across  the scenario ensemble of the AR5 Scenario Database (for mitigation scenarios, only assuming idealized policy implementation)      73 of 141  Final Draft    Transport  Reduction of fuel  carbon intensity: e.g.,  electricity, hydrogen  (H2), compressed  natural gas (CNG),  biofuels   Reduction of energy  intensity   Chapter 6  Scenario results  Interquartile ranges for  the whole sector in 2050  with 430 530 ppm CO2eq  concentrations in 2100  (see Figures 6.37 & 6.38):    1) Final energy low carbon fuel shares   IPCC WGIII AR5  For possible upstream effects of low carbon electricity, see Energy Supply. For possible upstream effects of biomass supply, see AFOLU.    Energy security (diversification, reduced oil  dependence and exposure to oil price    volatility) (m/m)      Technological spillovers (e.g., battery  technologies for consumer electronics) (l/l)    ?  Health impact via urban air pollution by      CNG, biofuels: net effect unclear (m/l)      Electricity, H2: reducing most pollutants (r/h)      Diesel: potentially increasing pollution (l/m)      Noise (electrification and fuel cell LDVs) (l/m)    Ecosystem impact of electricity and hydrogen via      Urban air pollution (m/m)      Material use (unsustainable resource mining) (l/l)    Ecosystem impact of biofuels: see AFOLU      Road safety (silent electric LDVs at low speed) (l/l)    Energy security (reduced oil dependence and  Health impact via reduced urban air pollution (r/h)    exposure to oil price volatility) (m/m)    Road safety (via increased crash worthiness) (m/m)    Energy security (reduced oil dependence and    exposure to oil price volatility) (m/m)      Productivity (reduced urban congestion and  travel times, affordable and accessible    transport) (m/h)    ?  Employment opportunities in the public  transport sector vs car manufacturing (l/m)      Ecosystem and biodiversity impact via reduced urban  air pollution (m/h)    Ecosystem impact via reduced       Urban air pollution (r/h)        Land use competition (m/m)    27   41 %    2) Final energy reduction  relative to baseline   Compact urban form +  improved transport  infrastructure  Modal shift   Health impact for non motorized modes via       Increased activity (r/h)      Potentially higher exposure to air pollution (r/h)      Noise (modal shift and travel reduction) (r/h)  Equitable mobility access to employment  opportunities, e.g., in Developing Countries (r/h)    20   45 %      Road safety (via modal shift and/or infrastructure for  pedestrians and cyclists) (r/h)    Ecosystem impact via       Urban air pollution (r/h)      New/shorter shipping routes (r/h)  Land use competition (transport infrastructure) (r/h)    Journey reduction and  avoidance    Energy security (reduced oil dependence and    Health impact (for non motorized transport modes)  (r/h)  exposure to oil price volatility) (r/h)      Productivity (reduced urban congestion,  travel times, walking) (r/h)  Buildings  Fuel switching,  incorporation of  renewable energy,  green roofs, and other  measures reducing  emissions intensity   Retrofits of existing  buildings (e.g., cool  roof, passive solar,  etc.)  Exemplary new  buildings   Efficient equipment   Behavioural changes  reducing energy  demand  Scenario results  Interquartile ranges for  the whole sector in 2050  with 430 530 ppm CO2eq  concentrations in 2100  (see Figures 6.37 & 6.38):    1) Final energy low carbon fuel shares   For possible upstream effects of fuel switching and RES, see Energy Supply.    Energy security (m/h)    Employment impact (m/m)    Lower need for energy subsidies (l/l)    Asset values of buildings (l/m)    Fuel poverty (residential) via      Energy demand (m/h)      Energy cost (l/m)  Energy access (for higher energy cost) (l/m)    Productive time for women/children                           (for replaced traditional cookstoves) (m/h)    Health impact in residential buildings via      Outdoor air pollution (r/h)      Indoor air pollution (in DCs) (r/h)      Fuel poverty (r/h)  Reduced Urban  Heat Island Effect  (UHI) (l/m) Ecosystem impact (less outdoor air pollution) (r/h)    Urban biodiversity (for green roofs) (m/m)  Health impact via      Outdoor air pollution (r/h)      Indoor air pollution (for efficient cookstoves) (r/h)      Indoor environmental conditions (m/h)      Fuel poverty (r/h)      Insufficient ventilation (m/m)  Reduced UHI  (retrofits and  new exemplary  buildings) (l/m)    Energy security (m/h)    Employment impact (m/m)  51   60 %    2) Final energy reduction  relative to baseline   14   35 %  Energy access (higher cost for housing due to the    Productivity (for commercial buildings) (m/h)   investments needed) (l/m)  Thermal comfort (for retrofits and exemplary new    Lower need for energy subsidies (l/l)  buildings) (m/h)      Asset values of buildings (l/m)    Productive time for women and children                      Disaster resilience (l/m)  (for replaced traditional cookstoves) (m/h)    Energy security (m/h)    Lower need for energy subsidies (l/l)      Fuel poverty (for retrofits, efficient equipment) (m/h)   Ecosystem impact (less outdoor air pollution) (r/h)    Water consumption and sewage production (l/l)  Health impact via less outdoor air pollution (r/h) &  improved indoor environmental conditions (m/h)      Ecosystem impact (less outdoor air pollution) (r/h)    74 of 141  Final Draft    Industry  CO2/non CO2 emission  intensity reduction   Chapter 6  Scenario results  Interquartile ranges for  the whole sector in 2050  with 430 530 ppm CO2eq  concentrations in 2100  (see Figures 6.37 & 6.38):      IPCC WGIII AR5  For possible upstream effects of low carbon energy supply (incl CCS), see energy supply and of biomass supply, see AFOLU.    Competitiveness and productivity (m/h)    Health impact via reduced local air pollution and  better work conditions (perfluorinated compounds  (PFCs) from aluminium) (m/m)    Ecosystem impact via reduced local air pollution and  reduced water pollution (m/m)      Water conservation (l/m)    Ecosystem impact via       Fossil fuel extraction (l/l)        Local pollution and waste (m/m)    Energy security (lower energy intensity)(m/m) Health impact via reduced local pollution (l/m)    Employment impact (l/l)    Competitiveness and productivity (m/h)  New business opportunities (m/m)  Water availability and quality (l/l)  Energy efficiency  improvements via new  1) Final energy low processes/technologies  carbon fuel shares:  44   57 %      Technological spillovers in DCs (due to supply    Safety, working conditions and job satisfaction (m/m) chain linkages) (l/l)    National sales tax revenue (medium term)(l/l) Health impacts and safety concerns (l/m)    Employment impact (waste recycling) (l/l)    Competitiveness in manufacturing (l/l)    New infrastructure for industrial clusters (l/l) New business opportunities (m/m)    Local conflicts (reduced resource extraction) (l/m) Ecosystem impact via reduced local air and water  pollution and waste material disposal (m/m)  Material efficiency of  goods, recycling  Product demand  reductions  2) Final energy reduction  relative to baseline:    22   38 %    Use of raw/virgin materials and natural resources  implying reduced unsustainable resource mining (l/l)      National sales tax revenue (medium term)(l/l)  Local conflicts (reduced inequity in consumption)(l/l)    Post consumption waste (l/l)    New diverse lifestyle concept (l/l)  AFOLU  Supply side: forestry,  land based  agriculture, livestock,  integrated systems  and bioenergy  (marked by *)    Demand side: reduced  losses in the food  supply chain, changes  in human diets,  changes in demand for  wood and forestry  products  Scenario results  Ranges for cumulative  land related emissions  reductions relative to  baseline for CH4, CO2, and  N2O in idealized  implementation scenarios  with 450 CO2eq ppm  concentrations in 2100  (see Table 11.10):  Note: co benefits and adverse side effects depend on the development context and the scale of the intervention (size).    * Employment impact via        entrepreneurship development (m/h)        use of less labor intensive (m/m)      technologies in agriculture    * Diversification of income sources and    access to markets (r/h)    * Additional income to (sustainable)  landscape management (m/h)        * Food crops production through integrated (r/m)  systems and sustainable agriculture intensification  * Food production (locally) due to large scale  monocultures of non food crops (r/l)    Cultural habitats and recreational areas via (m/m)  (sustainable) forest management and conservation          Provision of ecosystem services via       ecosystem conservation and      sustainable management as well      as sustainable agriculture (r/h)      * large scale monocultures (r/h)  * Land use competition (r/m)  Soil quality (r/h)  Erosion (r/h)  Ecosystem resilience (m/h)    Albedo and evaporation (r/h)  CH4: 2   18 %  CO2:   104   423 %  N2O: 8   17 %    *Human health and animal welfare e.g., through less  pesticides, reduced burning practices and practices      * Income concentration (m/m)    like agroforestry and silvo pastoral systems (m/h)    * Energy security (resource sufficiency) (m/h) *Human health when using burning practices   (in agriculture or bioenergy) (m/m)      Innovative financing mechanisms for  sustainable resource management (m/h)      * Gender, intra  and inter generational equity via    Technology innovation and transfer (m/m)      participation and fair benefit sharing (r/h)        concentration of benefits (m/m)  Institutional aspects:  * Tenure and use rights at    the local level (for  indigenous people and    local communities)    especially when    implementing activities in    natural forests (r/h)  Access to participative  mechanisms for land      management decisions (r/h)   Enforcement of existing  policies for sustainable  resource management (r/h)  Human Settlements and Infrastructure  Compact development and infrastructure  Increased accessibility  Mixed land use  For co benefits and adverse side effects of compact urban form and improved transport infrastructure, see also Transport.    Innovation and efficient resource use (r/h)  Higher rents and property values(m/m)    Commute savings (r/h)    Commute savings (r/h)  Higher rents and property values (m/m)  Health from physical activity: see Transport    Health from increased physical activity: see Transport   Air quality and reduced ecosystem and health  impacts (m/h)    Social interaction and mental health (m/m)  Health from increased physical activity (r/h)    Social interaction and mental health (l/m)      Preservation of open space (m/m)    Air quality and reduced ecosystem and health  impacts (m/h)    75 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  6.6.2    Transformation pathways studies with links to other policy objectives  As indicated above, the overall nature and extent of the co benefits and risks arising from global  transformation pathways depends importantly on which mitigation options are implemented and  how. The full systems level welfare impacts for multi objective decision making are therefore best  viewed from an integrated perspective that permits the full accounting of the impacts of each of the  objectives on social welfare (see Section 3.5.3) (Bell et al., 2008; Sathaye et al., 2011; Rao et al., 2013).  Taking such a perspective poses a significant challenge, since the costs of mitigation need to be  weighed against the multiple benefits and adverse side effects for the other objectives. To complicate  matters further, these other objectives are traditionally measured in different units (e.g., health  benefits of reduced air pollution in terms of deaths avoided). In addition, combining the different  objectives into a single overall welfare formulation implies subjective choices about the ranking or  relative importance of policy priorities. Such a ranking is highly dependent on the policy context (see  Sections 2.4 and 3.6.3).  Since AR4, a number of scenario studies have been conducted to shed light on the global implications  of transformation pathways for other objectives. Earlier scenario literature primarily focused on the  health and ecosystem benefits of mitigation via reduced air pollution; some evidence of co benefits  for employment and energy security was also presented in AR4. More recent studies have broadened  their focus to include energy security, energy access, biodiversity conservation, water and land use  requirements (see Section 11.13.7 for a review of scenario studies focusing on water and land use and  implications for food security). Many of these newer analyses use globally consistent methods,  meaning they employ long term, multi region frameworks that couple models of both bio geophysical  and human processes, thereby permitting the consideration of targeted policies for the additional  objectives in their own right. While the majority of these studies focus on two way interactions (e.g.,  the effect of mitigation on air pollution in a given country or across groups of countries   or vice  versa), a few recent analyses have looked at three or more objectives simultaneously (Section 6.6.2.7).  Important to note in this context is that many of the non technical measures listed in Table 6.7 (e.g.,  behavioral changes) are not fully taken into account by models, though the state of the art continues  to improve.  6.6.2.1    Air pollution and health  Greenhouse gas and air pollutant emissions typically derive from the same sources, such as power  plants, factories, and cars. Hence mitigation strategies that reduce the use of fossil fuels typically  result in major cuts in emissions of black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx), and  mercury (Hg), among other harmful species. Together with tropospheric ozone and its precursors  (mainly deriving from AFOLU and fossil fuel production/transport processes), these pollutants  separately or jointly cause a variety of detrimental health and ecosystem effects at various scales (see  Section 7.9.2). The magnitude of these effects varies across pollutants and atmospheric  concentrations (as well as the concentrations of pollutants created via further chemical reactions) and  is due to different degrees of population exposure, whether indoor or outdoor or in urban or rural  settings (see Barker et al., 2007; Bollen et al., 2009b; Markandya et al., 2009; Smith et al., 2009;  Sathaye et al., 2011; GEA, 2012). The term  fine particular matter (PM2.5)  is frequently used to refer to  a variety of air pollutants that are extremely small in diameter and therefore cause some of the most  serious health effects.   The literature assessed in AR4 focused on air pollution reductions in individual countries and regions,  pointing to large methodological differences in, for example, the type of pollutants analyzed, sectoral  focus, and the treatment of existing air pollution policy regimes. As confirmed by recent literature  (Friel et al., 2009; Wilkinson et al., 2009; Woodcock et al., 2009; Markandya et al., 2009; Haines et al.,  2009; Smith et al., 2009; Nemet et al., 2010), AR4 showed that the monetized air quality co benefits  from mitigation are of a similar order of magnitude as the mitigation costs themselves (see  Sections 3.6.3 and 5.7.1). For instance, taking into account new findings on the relationship between    76 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  chronic mortality and exposure to PM and ozone as well as the effect of slowing climate change on air  quality, West et al., (2013) calculate global average monetized co benefits of avoided mortality of  55 420 USD2010/tCO2. They find that the values for East Asia far exceed the marginal mitigation costs  in 2030. (See Section 5.7 for a broader review of this issue, as well as a discussion of the importance of  baseline conditions for these results.) Furthermore, it has been noted that reductions in certain air  pollutants can potentially increase radiative forcing (see Sections 1.2.5, 5.2, and WG I Chapter 7). This  is an important adverse side effect, and one that is not discussed here due to the lack of scenario  studies addressing the associated tradeoff between health and climate benefits.  The available evidence indicates that transformation pathways leading to 430 530 ppm CO2eq in 2100  will have major co benefits in terms of reduced air pollution (Figure 6.33, top right panel). Recent  integrated modelling studies agree strongly with earlier findings by van Vuuren et al. (2006) and Bollen  et al. (2009a) in this regard. For example, Rose et al. (2014b) find that national air pollution policies  may no longer be binding constraints on pollutant emissions depending on the stringency of climate  policies. In China, for instance, mitigation efforts consistent with a global goal of 3.7 W/m2 (2.8 W/m2)  in 2100 result in SO2 emissions 15 to 55% (25 75%) below reference levels by 2030 and 40 to 80% (55 80%) by 2050. Chaturvedi and Shukla (2013) find similar results for India. Globally, Rafaj et al. (2012)  calculate that stringent mitigation efforts would simultaneously lead to near term (by 2030)  reductions of SO2, NOx, and PM2.5 on the order of 40%, 30%, and 5%, respectively, relative to a  baseline scenario. Riahi et al. (2012) find that by further exploiting the full range of opportunities for  energy efficiency and ensuring access to modern forms of energy for the world s poorest (hence less  indoor/household air pollution), the near term air pollution co benefits of mitigation could be even  greater: 50% for SO2, 35% for NOx, and 30% for PM2.5 by 2030. Amann et al. (2011) and Rao et al.  (2013) find significant reductions in air quality control costs due to mitigation policies (see Section  6.6.2.7).   Riahi et al. (2012) further estimate that stringent mitigation efforts can help to reduce globally  aggregated disability adjusted life years (DALYs) by more than 10 million by 2030, a decrease of one third compared to a baseline scenario. The vast majority of these co benefits would accrue in urban  households of the developing world. Similarly, West et al. (2013) find that global mitigation (RCP 4.5)  can avoid 0.5 +/- 0.2, 1.3 +/- 0.5, and 2.2 +/- 0.8 million premature deaths in 2030, 2050, and 2100, relative  to a baseline scenario that foresees decreasing PM and ozone (O3) concentrations. Regarding mercury,  Rafaj et al. (2013) show that under a global mitigation regime, atmospheric releases from  anthropogenic sources can be reduced by 45% in 2050, relative to a a baseline scenario without  climate measures.   Several studies published since AR4 have analyzed the potential climate impacts of methane  mitigation and local air pollutant emissions control (West et al., 2006, 2007; Shine et al., 2007; Reilly et  al., 2007; Ramanathan and Carmichael, 2008; Jerrett et al., 2009; Anenberg et al., 2012). For instance,  Shindell et al. (2012) identify 14 different methane and BC mitigation measures that, in addition to  slowing the growth in global temperatures in the medium term (~0.5°C lower by 2050, central  estimate), lead to important near term (2030) co benefits for health (avoiding 0.7 to 4.7 million  premature deaths from outdoor air pollution globally) and food security (increasing annual crop yields  globally by 30 to 135 million metric tons due to ozone reductions; see Section 11.13.7 for a further  discussion of the relationship between mitigation and food security). Smith and Mizrahi (2013) also  acknowledge the important co benefits of reducing certain short lived climate forcers (SLCF) but at the  same time conclude that (1) the near to medium term climate impacts of these measures are likely to  be relatively modest (0.16°C lower by 2050, central estimate; 0.04 0.35°C considering the various  uncertainties), and (2) the additional climate benefit of targeted SLCF measures after 2050 is  comparatively low.     77 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  6.6.2.2    Energy security  A number of analyses have studied the relationship between mitigation and energy security. The  assessment here focuses on energy security concerns that relate to (1) the sufficiency of resources to  meet national energy demand at competitive and stable prices, and (2) the resilience of energy supply  (see Section 7.9.1 for a broader discussion). A number of indicators have been developed to  quantitatively express these concerns (Kruyt et al., 2009; Jewell, 2011; Jewell et al., 2013a). The most  common indicators of sufficiency of energy supply are energy imports (see SRREN Figure 9.6) and the  adequacy of the domestic resource base (Gupta, 2008; Kruyt et al., 2009; Le Coq and Paltseva, 2009;  IEA, 2011; Jewell, 2011; Jewell et al., 2013b). Resilience of energy systems is commonly measured by  the diversity of energy sources and carriers (Stirling, 1994, 2010; Grubb et al., 2006; Bazilian and  Roques, 2009; Skea, 2010) and the energy intensity of GDP (Gupta, 2008; Kruyt et al., 2009; Jewell,  2011; Cherp et al., 2012).  Recent studies show that mitigation policies would likely increase national energy sufficiency and  resilience (Figure 6.33, top left panel). Mitigation policies lead to major reductions in the import  dependency of many countries, thus making national and regional energy systems less vulnerable to  price volatility and supply disruptions (Criqui and Mima, 2012; Shukla and Dhar, 2011; Jewell et al.,  2013b). One multi model study finds that in stringent mitigation scenarios, global energy trade would  be 10 70% lower by 2050 and 40 74% by 2100 than in the baseline scenario (Jewell et al., 2013b).  Most of the decrease in regional import dependence would appear after 2030 since mitigation  decreases the use of domestic coal in the short term, which counteracts the increase in domestic  renewables (Akimoto et al., 2012; Jewell et al., 2013b). At the same time mitigation leads to much  lower extraction rates for fossil resources (Kruyt et al., 2009; Jewell et al., 2013b; McCollum et al.,  2013a). The IEA, for example, finds that rapid deployment of energy efficiency technologies could  reduce oil consumption by as much as 13 million barrels a day (IEA 2012). Mitigation actions could  thus alleviate future energy price volatility, given that perceptions of resource scarcity are a key driver  of rapid price swings. This would mean that domestic fossil resources could act as a  buffer of  indigenous resources  (Turton and Barreto, 2006). Improved energy security of importers, however,  could adversely impact the  demand security  of exporters (Luft, 2013); on the other hand, there are  studies that indicate that oil exporters could benefit under climate policies (Persson et al., 2007;  Johansson et al., 2009; Tavoni et al., 2014). (See Section 6.3.6.6 regarding the impacts that these trade  shifts would have on major energy exporters.)   Studies also indicate that mitigation would likely increase the resilience of energy systems (Figure  6.33, top left panel). The diversity of energy sources used in the transport and electricity sectors would  rise relative to today and to a baseline scenario in which fossils remain dominant (Grubb et al., 2006;  Riahi et al., 2012; Cherp et al., 2013; Jewell et al., 2013b). Additionally, energy trade would be much  less affected by fluctuations in GDP growth and by uncertainties in fossil resource endowments and  energy demand growth (Cherp et al., 2013; Jewell et al., 2013b). These developments (mitigation and  energy efficiency improvements) would make energy systems more resilient to various types of shocks  and stresses and would help insulate economies from price volatility and supply disruptions (see  Chapters 8 10).  6.6.2.3    Energy access  According to the literature, providing universal energy access (see Section 7.9.1 for a broader  discussion) would likely result in negligible impacts on GHG emissions globally (PBL, 2012; Riahi et al.,  2012). Rogelj et al (2013c) find that the United Nation s (UN s) energy access goals for 2030 are fully  consistent with stringent mitigation measures while other scenario analyses indicate that deployment  of renewable energy in LDCs can help to promote access to clean, reliable, and affordable energy  services (Kaundinya et al., 2009; Reddy et al., 2009). In addition, a number of recent integrated  modelling studies ensure, by design, that developing country household final energy consumption  levels are compatible with minimal poverty thresholds (Ekholm et al., 2010a; van Ruijven et al., 2011;  Daioglou et al., 2012; Narula et al., 2012; Krey et al., 2012). An important message from these studies    78 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  is that the provision of energy access in developing countries should not be confused with broader  economic growth. The latter could have a pronounced GHG affect, particularly in today s emerging  economies (see Section 6.3.1.3).  The primary risk from mitigation is that an increase in energy prices for the world s poor could  potentially impair the transition to universal energy access by making energy less affordable (see  Sections 6.6.1 and 7.9.1). A related concern is that increased energy prices could also delay structural  changes and the build up of physical infrastructure (Goldemberg et al., 1985; Steckel et al., 2013)  Jakob and Steckel, 2013). Isolating these effects has proven to be difficult in the integrated modelling  context because these models typically aggregate consumption losses from climate policies (see  Section 6.3.6   ).  6.6.2.4    Employment  The potential consequences of climate policies on employment are addressed in the scientific  literature in different ways. One strand of literature analyzes the employment impacts associated with  the deployment of specific low carbon technologies, such as renewables or building retrofits (see  Sections 7.9.1 and 9.7.2.1). This literature often finds a significant potential for gross job creation,  either directly or indirectly; however, a number of issues are left unresolved regarding the  methodologies used in computing those impacts on one hand and the gap between this potential and  net employment impacts in a particular sector on the other hand (see Wei et al. (2010)). The net effect  is typically addressed in general equilibrium literature. Although many integrated models used to  develop long term scenarios are general equilibrium models, they usually assume full employment  and are therefore not well suited to addressing gross versus net employment related questions.  According to the literature, employment benefits from mitigation depend on the direction and  strength of income/output and substitution impacts of mitigation. These impacts are governed by two  interrelated sets of factors related to mitigation technologies and general equilibrium effects. One set  involves the characteristics of mitigation technologies, including (1) their costs per job created, which  determines the crowding out of jobs in other sectors when capital is constrained (Frondel et al., 2010);  (2) the portion of the low carbon technologies that is imported, which determines domestic job  creation and the net positive impact on the trade balance; and (3) the availability of skills in the labor  force, as well as its capacity to adapt (Babiker and Eckaus, 2007; Fankhauser et al., 2008; Guivarch et  al., 2011), which determines the pace of job creation and the real cost of low carbon technology  deployment in terms of increased wages due to skilled labor scarcities.  A second set of factors encompasses all the general equilibrium effects, some of which are triggered  by the above parameters and others by the net income effects of higher carbon prices (see  Section 3.6.3). Recycling the revenues from carbon pricing and subsequently lowering labor taxes  changes the relative prices of labor and energy (and to a lesser extent the costs of production inputs),  which in turn leads to a redirection of technology choices and innovation towards more labor intensive techniques. In addition, by contributing to higher energy costs, climate policies change the  relative prices of energy  and non energy intensive goods and services, thereby causing households to  consume more of the latter. These mechanisms operate differently in developed, emerging, and  developing economies, particularly with respect to the various forms of informal labor. Some of the  mechanisms operate over the medium (more labor intensive techniques) and long term (structural  change) (Fankhauser et al., 2008). Others, however, operate over the short term and might therefore  be influenced by near term mitigation policies.  6.6.2.5    Biodiversity conservation  The concept of biodiversity can be interpreted in different ways. Measuring it therefore presents a  challenge. One indicator that has been used in the integrated modelling literature for assessing the  biodiversity implications of global transformation pathways is that of mean species abundance (MSA),  which uses the species composition and abundance of the original ecosystem as a reference situation.    79 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  According to PBL (2012), globally averaged MSA declined continuously from approximately 76% in  1970 to 68% in 2010 (relative to the undisturbed states of ecosystems). This was mostly due to habitat  loss resulting from conversion of natural systems to agriculture uses and urban areas.   The primary biodiversity related side effects from mitigation involve the potentially large role of  reforestation and afforestation efforts and of bioenergy production. These elements of mitigation  strategy could either impose risks or lead to co benefits, depending on where and how they are  implemented (see Table 6.7). The integrated modelling literature does not at this time provide an  explicit enough treatment of these issues to effectively capture the range of transformation pathways.  One study (PBL, 2012) suggests that it is possible to stabilize average global biodiversity at the  2020/2030 level (MSA = 65%) by 2050 even if land use mitigation measures are deployed. Such an  achievement represents more than a halving of all biodiversity loss projected to occur by mid century  in the baseline scenario and is interpreted to be in accordance with the Aichi Biodiversity Targets  (CBD, 2010). Of critical importance in this regard are favourable institutional and policy mechanisms  for reforestation/afforestation and bioenergy that complement mitigation actions (as described in  Section 11.13).  6.6.2.6    Water use  The last decades have seen the world s freshwater resources come under increasing pressure. Almost  three billion people live in water scarce regions (Molden, 2007), some two billion in areas of severe  water stress in which demand accounts for more than 40% of total availability (PBL, 2012). Water  withdrawals for energy and industrial processes (currently 20% globally) and municipal applications  (10%) are projected to grow considerably over the next decades, jointly surpassing irrigation (70%) as  the primary water user by 2050 (Alcamo and Henrichs, 2002; Shiklomanov and Rodda, 2003; Molden,  2007; Fischer et al., 2007; Shen et al., 2008; Bruinsma, 2011). This growth is projected to be greatest in  areas already under high stress, such as South Asia.   Renewable energy technologies such as solar PV and wind power will reduce freshwater withdrawals  for thermal cooling relative to fossil alternatives. On the other hand, CCS and some forms of  renewable energy, especially bioenergy, could demand a significant amount of water (see Table 6.7  and Section 7.9.2). For bioenergy in particular, the overall effect will depend importantly on which  feedstocks are grown, where, and if they require irrigation (see Section 11.13.7). Similarly,  reforestation and afforestation efforts, as well as attempts to avoid deforestation, will impact both  water use and water quality. The net effects could be either positive (Townsend et al., 2012) or  negative (Jackson et al., 2005), depending on the local situation (see Section 11.7).   When accounting for the system dynamics and relative economics between alternative mitigation  options (both in space and time), recent integrated modelling scenarios generally indicate that  stringent mitigation actions, combined with heightened water use efficiency measures, could lead to  significant reductions in global water demand over the next several decades. PBL (2012), for instance,  calculates a 25% reduction in total demand by 2050, translating to an 8% decline in the number of  people living in severely water stressed regions worldwide. Other studies by Hanasaki et al. (2013) and  Hejazi et al.(2013) find the co benefits from mitigation to be of roughly the same magnitude:  reductions of 1.0 3.9% and 1.2 5.5%, respectively, in 2050. Hejazi et al. (2013) note, however, that  water scarcity could be exacerbated if mitigation leads to more intensive production of bioenergy  crops. In contrast, Akimoto et al. (2012) find that stringent mitigation increases water stressed  populations globally (+3% in 2050) as a result of decreases in annual water availability in places like  South Asia.   6.6.2.7    Integrated studies of multiple objectives  Integrated scenario research is just beginning to assess multiple sustainable development objectives in  parallel. This emerging literature generally finds that mitigation goals can be achieved more cost effectively if the objectives are integrated and pursued simultaneously rather than in isolation. Recent    80 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  examples of such studies include Bollen et al. (2010) and the Global Energy Assessment (GEA)  (McCollum et al., 2011, 2013b; Riahi et al., 2012). These two analyses are unique from other  integrated studies (e.g., PBL (2012), IEA, (2011); Akimoto et al., (2012); Howell et al., (2013), (Shukla et  al., 2008; See e.g. Skea and Nishioka, 2008; Strachan et al., 2008; Shukla and Dhar, 2011)) because  they attempt to quantify key interactions in economic terms on a global scale, employing varying  methodologies to assess the interactions between climate change, air pollution, and energy security  policies. Bollen et al. (2010) employ a cost benefit social welfare optimization approach while the GEA  study employs a cost effectiveness approach (see Section 3.7.2.1). Despite these differences, the two  studies provide similar insights. Both suggest that near term synergies can be realized through  decarbonization and energy efficiency and that mitigation policy may be seen as a strategic entry point  for reaping energy security and air quality co benefits. The GEA study in particular finds major cost  savings from mitigation policy in terms of reduced expenditures for imported fossil fuels and end of pipe air pollution control equipment (see bottom panel of Figure 6.33). The magnitude of these co benefits depends importantly on the future stringency of energy security and air pollution policies in  the absence of mitigation policy. If these are more aggressive than currently planned, then the co benefits would be smaller.     81 of 141  Final Draft  Chapter 6  IPCC WGIII AR5    Figure 6.33. Co-benefits of mitigation for energy security and air quality in scenarios with stringent climate policies (reaching 430 530 ppm CO2eq concentrations in 2100). Upper panels show co-benefits for different energy security indicators and air pollutant emissions. Lower panel shows related global policy costs of achieving the energy security, air quality, and mitigation objectives, either alone (w, x, y) or simultaneously (z). Integrated approaches that achieve these objectives simultaneously show the highest cost-effectiveness due to synergies (w+x+y>z). Policy costs are given as the increase in total energy system costs relative to a no-policy baseline; hence, they only capture the mitigation component and do not include the monetized co-benefits of, for example, reduced health impacts or climate damages. In this sense, costs are indicative and do not represent full uncertainty ranges. Sources:   82 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  LIMITS model intercomparison (Jewell et al., 2013b; Tavoni et al., 2014), WGIII AR5 Scenario Database (Annex II.10, includes only scenarios based on idealized policy implementation and full technology availability), Global Energy Assessment (GEA) scenarios (Riahi et al., 2012; McCollum et al., 2013b). Another class of sustainable development scenarios are the Low Carbon Society (LCS) assessments  (Kainuma et al., 2012), which collectively indicate that explicit inclusion of mitigation co benefits in the  cost calculation results in a lower carbon price in the LCS scenarios than in a scenario that only  considers mitigation costs (Shukla et al., 2008). A key message from these studies is that co benefits  are neither automatic nor assured, but result from conscious and carefully coordinated policies and  implementation strategies, such as lifestyle changes, green manufacturing processes, and investments  into energy efficient devices, recycling measures, and other targeted actions (Shukla and Chaturvedi,  2012).   Finally, studies suggest that co benefits could influence the incentives for global climate agreements  discussed in Section 13.3 (Pittel and Rübbelke, 2008; Bollen et al., 2009b; Wagner, 2012). At the  present time, however, international policy regimes for mitigation and its important co benefits  remain separate (Holloway et al., 2003; Swart et al., 2004; Nemet et al., 2010; Rao et al., 2013).  Dubash et al. (2013) propose a methodology for operationalizing co benefits in mitigation policy  formulation, thus helping to bring the varied policy objectives closer together (see Section 15.2).  6.7   Risks of transformation pathways  Mitigation will be undertaken within the context of a broad set of policy objectives, existing societal  structures, institutional frameworks, and physical infrastructures. The relationship between these  broader characteristics of human societies and the particular implications of mitigation activities will  be both complex and uncertain. Mitigation will also take place under uncertainty about the underlying  physical processes that govern the climate. All of these indicate that there is a range of different risks  associated with different transformation pathways.  The various risks associated with transformation pathways can be grouped into several categories, and  many of these are discussed elsewhere in this chapter. One set of risks is associated with the linkage  of mitigation with other policy objectives, such as clean air, energy security, or energy access. These  linkages may be positive (co benefits) or negative (risks). These relationships are discussed in  Section 6.6  . Another set of risks is associated with the possibility that particular mitigation measures  might be taken off the table because of perceived negative side effects and that stabilization will  prove more challenging that what might have been expected (Strachan and Usher, 2012). These issues  are discussed in Section 6.3 as well as elsewhere in the chapter, including Section 6.9 for CDR options.  Another risk is that the economic costs may be higher or lower than anticipated, because the   implications of mitigation cannot be understood with any degree of certainty today, for a wide range  of reasons. This issue is discussed in Section 6.3.6   . It is important to emphasize that both the  economic costs and the economic benefits of mitigation are uncertain. One of the most fundamental  risks associated with mitigation is that any transformation pathway may not maintain temperatures  below a particular threshold, such as 2°C or 1.5°C above preindustrial levels due to limits in our  understanding of the relationship between emissions and concentrations and, more importantly, the  relationship between GHG concentrations and atmospheric temperatures. This topic is discussed in  Section 6.3.2   .  A broad risk that underpins all the mitigation scenarios in this chapter is that every long term pathway  depends crucially not just on actions by today s decision makers, but also by future decision makers  and future generations. Indeed, mitigation must be framed within a sequential decision making not  just because it is good practice, but more fundamentally because decision makers today cannot make  decisions for those in the future. A consistent risk is that future decision makers may not undertake  the mitigation that is required to meet particular long term goals. In this context, actions today can be    83 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  seen as creating or limiting options to manage risk rather than leading to particular goals. This topic is  discussed in Sections 6.3   and 6.4  through the exploration of the consequences of different levels of  near term mitigation. This issue is particularly important in the context of scenarios that lead to  concentration goals such as 450 ppm CO2eq by 2100. The vast majority of these scenarios temporarily  overshoot the long term goal and then descend to it by the end of the century through increasing  emissions reductions. When near term mitigation is not sufficiently strong, future mitigation must rely  heavily on CDR technologies such as BECCS, putting greater pressure on future decision makers and  highlighting any uncertainties and risks surrounding these technologies. While these scenarios are  possible in a physical sense, they come with a very large risk that future decision makers will not take  on the ambitious action that would ultimately be required. Indeed, studies have shown that delayed  and fragmented mitigation can lead to a relaxation of long term goals if countries that delay their  participation in a global mitigation strategy are not willing or unable to pick up the higher costs of  compensating higher short term emissions (Blanford et al., 2014; Kriegler et al., 2014b).  6.8   Integrating sector analyses and transformation scenarios  6.8.1    The sectoral composition of GHG emissions along transformation pathways  Options for reducing GHG emissions exist across a wide spectrum of human activities. The majority of  these options fall into three broad areas: energy supply, energy end use, and AFOLU. The primary  focus of energy supply options is to provide energy from low  or zero carbon energy sources; that is,  to decarbonize energy supply. Options in energy end use sectors focus either on reducing the use of  energy and/or on using energy carriers produced from low carbon sources, including electricity  generated from low carbon sources. Direct options in AFOLU involve storing carbon in terrestrial  systems (for example, through afforestation). This sector is also the source of bioenergy. Options to  reduce non CO2 emissions exist across all these sectors, but most notably in agriculture, energy  supply, and industry.  These sectors and the associated options are heavily interlinked. For example, energy demand  reductions may be evident not only as direct emissions reductions in the end use sectors but also as  emissions reductions from the production of energy carriers such as electricity ( indirect emissions ,  see Annex A.II.4). Replacing fossil fuels in energy supply or end use sectors by bioenergy reduces  emissions in these sectors, but may increase land use emissions in turn (see Chapter 11, Bioenergy  Appendix). In addition, at the most general level, sectoral mitigation actions are linked by the fact that  reducing emissions through a mitigation activity in one sector reduces the required reductions from  mitigation activities in other sectors to meet a long term CO2 equivalent concentration goal.  The precise set of mitigation actions taken in any sector will depend on a wide range of factors,  including their relative economics, policy structures, and linkages to other objectives (see Section 6.6)  and interactions among measures across sectors. Both integrated models, such as those assessed in  this chapter, and sectorally focused research, such as that assessed in Chapters 7 11, offer insights  into the options for mitigation across sectors. The remainder of this section first assesses the potential  for mitigation within the sectors based on integrated studies and then in each of the emitting sectors  based on the combined assessments from sectoral and integrated studies. Important questions are  how consistent the results from integrated modelling studies are with sectorally focused literature  and how they complement each other.  6.8.2    Mitigation from a cross sectoral perspective: Insights from integrated models  Integrated models are a key source of research on the tradeoffs and synergies in mitigation across  sectors. In scenarios from these models, energy sector emissions are the dominant source of GHG  emissions in baseline scenarios, and these emissions continue to grow over time relative to net AFOLU  CO2 emissions and non CO2 GHG emissions (Section 6.3.1 and Figure 6.34). Within the energy sector,  direct emissions from energy supply, and electricity generation in particular, are larger than the  emissions from any single end use sector (Figure 6.34). Direct emissions, however, do not provide a    84 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  full representation of the importance of different activities causing the emissions, because the  consumption of energy carriers such as electricity by the end use sectors, leads to indirect emissions  from the production of those energy carriers (consumption based approach). An alternative  perspective is to allocate these indirect energy supply emissions to the end use sectors that use these  supplies (see, for example, in Figure 6.34). At present, indirect emissions from electricity use are larger  than direct emissions in buildings and constitute an important share of industrial emissions while they  are small in transport compared to direct CO2 emissions.  Figure 6.34 Direct (left panel) and direct and indirect emissions (right panel) of CO2 and non-CO2 GHGs across sectors in baseline scenarios. Note that in the case of indirect emissions, only electricity emissions are allocated from energy supply to end-use sectors. The numbers at the bottom refer to the number of scenarios included in the ranges that differ across sectors and time due to different sectoral resolution and time horizon of models. Source: WG III AR5 Scenario Database (Annex II.10). Includes only baseline scenarios. Historical data: JRC/PBL (2012), IEA (2012), see Annex II.9 and Annex II.5. In mitigation scenarios from integrated models, decarbonization of the electricity sector takes place at  a pace more rapid than reduction of direct emissions in the energy end use sectors (see  Sections 7.11.3 and Figure 6.35). For example, in 450 ppm CO2eq scenarios, the electricity sector is  largely decarbonized by 2050, whereas deep reductions in direct emissions in the end use sectors  largely arise beyond mid century. More so than any other energy supply technology, the availability of  BECCS and its role as a primary CDR technology (Sections 6.3.2 and 6.9) has a substantial effect on this  dynamic, allowing for energy supply sectors to serve as a net negative emissions source by mid century and allowing for more gradual emissions reductions in other sectors. In contrast, sectoral  studies show available pathways to deep reductions in emissions (both direct and indirect) already by  mid century (see, e.g., Chapter 9).    85 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Figure 6.35. Direct emissions by sector normalized to 2010 levels (light blue dashed line) in mitigation scenarios reaching 430 530 ppm CO2eq in 2100 with default technology assumptions (left panel) and without CCS (right panel). Note that values below the dashed black zero line indicate negative sectoral emissions. The thick red lines correspond to the median, the coloured boxes to the interquartile range (25th to 75th percentile) and the whiskers to the total range across scenarios. Gray dots refer to emissions of individual models to give a sense of the spread within the ranges shown. The numbers at the bottom refer to the number of scenarios included in the range that differs across sectors and time due to different sectoral resolution and time horizon of models. Source: EMF27 study, adapted from (Krey et al., 2014). Within the end use sectors, deep emissions reductions in transport are generally the last to emerge in  integrated modelling studies because of the assumption that options to switch to low carbon energy  carriers in transport are more limited than in buildings and industry, and also because of the expected  high growth for mobility and freight transport (Section 8.9.1). In the majority of baseline scenarios  from integrated models, net AFOLU CO2 emissions largely disappear by mid century, with some  models projecting a net sink after 2050 (Section 6.3.1.4). There is a wide uncertainty in the role of  afforestation and reforestation in mitigation, however. In some mitigation scenarios the AFOLU  sectors can become a significant carbon sink (Section 6.3.2.4).  6.8.3    Decarbonizing energy supply  Virtually all integrated modelling studies indicate that decarbonization of electricity is critical for  mitigation, but there is no general consensus regarding the precise low carbon technologies that  might support this decarbonization (Fischedick et al., 2011; Clarke et al., 2012) (Section 7.11.3). These  studies have presented a wide range of combinations of renewable energy sources (Krey and Clarke,  2011; Luderer et al., 2014), nuclear power (Bauer et al., 2012; Rogner and Riahi, 2013), and CCS based  technologies (McFarland et al., 2009; McCollum et al., 2013a; Bauer et al., 2014; van der Zwaan et al.,  2014) as both viable and cost effective (see Section 7.11). The breadth of different, potentially cost effective strategies raises the possibility not only that future costs and performances of competing  electricity technologies are uncertain today, but also that regional circumstances, including both  energy resources and links to other regional objectives (e.g., national security, local air pollution,  energy security, see Section 6.6  ), might be as important decision making factors as economic costs  (Krey et al., 2014)). The one exception to this flexibility in energy supply surrounds the use of BECCS.  CDR technologies such as BECCS are fundamental to many scenarios that achieve low CO2eq  concentrations, particularly those based on substantial overshoot as might occur if near term  mitigation is delayed (Sections 6.3.2 and 6.4). In contrast to the electricity sector, decarbonization of    86 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  the non electric energy supply sector (e.g., liquid fuels supply) is progressing typically at much lower  pace (Section 7.11.3, Figures 7.14 and 7.15) and could therefore constitute a bottleneck in the  transformation process.  6.8.4    Energy demand reductions and fuel switching in end use sectors  The two major groups of options in energy end use sectors are those that focus on reducing the use of  energy and/or those that focus on using energy carriers produced from low carbon sources. Three  important issues are therefore the potential for fuel switching, the potential for reductions of energy  use per unit of output/service, and the relationship and timing between the two. In general, as  discussed in Section 6.3.4, integrated studies indicate that energy intensity (per unit of GDP)  reductions outweigh decarbonization of energy supply in the near term when the energy supply  system is still heavily reliant on largely carbon intensive fossil fuels (Figure 6.17). Over time, the  mitigation dynamic switches to one focused on carbon intensity reductions (see AR4, Fisher et al.  (2007, Section 3.3.5.2)). From the perspective of end use sectors, decarbonization of energy involves  both the decarbonization of existing sources, for example, by producing electricity from low carbon  sources or using liquid fuels made from bioenergy, and an increase in the use of lower carbon fuels,  for example, through an increase in the use of electricity (Edmonds et al., 2006; Kyle et al., 2009;  Sugiyama, 2012; Williams et al., 2012; Krey et al., 2014; Yamamoto et al., 2014). It should be noted  that there is generally an autonomous increase in electrification in baseline scenarios that do not  assume any climate policies, which reflects a trend toward more convenient grid based fuels due to  higher affluence (Nakicenovic et al., 1998; Schäfer, 2005), as well as electricity typically showing a  slower cost increase over time compared to other energy carriers (Edmonds et al., 2006; Krey et al.,  2014).  The comparison between integrated and sectoral studies is difficult with regard to the timing and  tradeoffs between fuel switching and energy reduction, because few sectoral studies have attempted  to look concurrently at both fuel switching and energy reduction strategies. Instead, the majority of  sectoral studies have focused most heavily on energy reduction, asking how much energy use for a  particular activity can be reduced with state of the art technology. One reason for this focus on  energy reduction is that sectoral research is more commonly focused on near term actions based on  available mitigation technologies and, in the near term, major fuel sources such as liquid fuels and  electricity may have high carbon intensities. This means that energy reductions will have substantial  near term mitigation effects. In the longer term, however, these fuel sources will be largely  decarbonized along low concentration transformation pathways, meaning that energy reductions will  not so clearly lead to reductions in indirect emissions (note that this does not mean they do not  continue to be important, because they decrease the need for utilizing energy sources and the  associated co benefits and risks, see Section 6.6).  This evolution can be clearly seen through a comparison of direct and indirect emissions in end use  sectors in integrated modelling scenarios (Figure 6.36). In 2010, the largest emissions from the  buildings sector are the indirect emissions from electricity. This trend continues in baseline scenarios  (Figure 6.36). However, in deep emission reduction scenarios, indirect emissions from electricity are  largely eliminated by 2050, and in many scenarios, the electricity sector even becomes a sink for CO2  through the use of BECCS (Figure 6.36, left panel). There are only minimal indirect emissions from  electricity in the transport sector today and by 2050 in mitigation scenarios. Those scenarios that  decarbonize the transportation sector through electrification do so by taking advantage of a largely  decarbonized electricity sector. The industrial sector lies between the buildings and transport sectors.  Of importance, the observed trends can be very regional in character. For example, the value of  electrification will be higher in countries or regions that already have low carbon electricity portfolios.  The primary distinction between sectoral studies and integrated modelling studies with regard to end use options for fuel switching and end use reductions is that integrated models typically represent  end use options at a more aggregated scale than sectoral studies. In addition, however, there is an    87 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  important difference in the way that the two types of studies attempt to ascertain opportunities (see  Section 8.9). Long term mitigation scenarios from integrated models achieve reductions from baseline  emissions based almost exclusively on the imposition of a carbon price and generally assume  functioning markets and may not fully represent existing barriers, in particular in end use sectors. In  contrast, sectoral studies explore options for energy demand reduction based on engineering and/or  local details and do so based on cost effectiveness calculations regarding a typically much richer  portfolio of tailored options. They also recognize that there are many boundaries to consumer  rationality and thus not all options that are cost effective happen automatically in a baseline, but are  mobilized by mitigation policies. It is also challenging to compare the potential for energy reductions  across sectoral and integrated studies, because of difficulties to discern the degree of mitigation that  has occurred in the baseline itself in these studies. Therefore any comparisons must be considered  approximate at best. It is important to note that the emphasis on economic instruments like carbon  pricing in integrated studies leads to a negative correlation between energy demand reduction and  the option of switching to low carbon energy carriers at modest cost. Therefore, integrated studies  that foresee a significant potential for switching to electricity, for example, in an end use sector at  modest costs, usually show a lower need for reducing energy demand in this sector and the other way  around. It should also be noted that there is thus not always a clear cut distinction between sectoral  and integrated studies. Some sectoral studies, in particular those that provide estimates for both  energy savings and fuel switching, are in fact integrated studies with considerable sectoral detail such  as the IEA World Energy Outlook (IEA, 2010b, 2012b) or the Energy Technology Perspectives report  (IEA, 2008, 2010c) (see Annex II.10).   Figure 6.36. Direct CO2 emissions vs. indirect CO2 emissions from electricity in the transport, buildings, and industry sectors in 2050 for baseline and mitigation scenarios reaching 430-480 ppm and 530-580 ppm CO2eq in 2100. Source: WG III AR5 Scenario Database (Annex II.10). Includes only scenarios based on idealized policy implementation that provide emissions at the sectoral level. Historical data from (IEA, 2012a; JRC/PBL, 2012). In general, in the transport sector, the opportunities for energy use reductions and fuel switching are  broadly consistent between integrated and sectoral studies (Figure 6.37 and Figure 6.38, Section 8.9).  However, the underlying mechanisms utilized in these studies may be different. Comprehensive  transport sector studies tend to include technical efficiency measures, switching to low carbon fuels,  behavioural changes that affect both the modal split and the amount of transport services demanded,  and a broader set of infrastructural characteristics such as compact cities. In integrated studies, these  factors are not always addressed explicitly, and the focus is usually on technical efficiency measures,  fuel switching and service demand reduction. Regarding fuel choice, the majority of integrated studies  indicate a continued reliance on liquid and gaseous fuels, supported by an increase in the use of  bioenergy up to 2050. Many integrated studies also include substantial shares of electricity through,  for example, the use of electric vehicles for light duty transportation, usually during the second half of  the century. Hydrogen has also been identified by numerous studies as a potential long term solution  should storage, production, and distribution challenges be overcome (Section 8.9.1). While electricity  and hydrogen achieve substantial shares in some scenarios, many integrated modelling scenarios    88 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  show no dominant transport fuel source in 2100. This prevails in scenarios leading to 430 530 ppm  CO2eq concentration levels in 2100 with the median values for the share of electricity and hydrogen in  2100 being 22% and 25% of final energy, respectively (Section 8.9.1, Figure 8.9.4).  Detailed building sector studies indicate energy savings potential by 2050 on the upper end of what  integrated studies show (Section 9.8.2, Figure 9.19), and both sectoral and integrated studies show  modest opportunities for fuel switching due to the already high level of electricity consumption in the  buildings sector, particularly in developed countries (Figure 6.37 and 6.38). Building sector studies  have focused largely on identifying options for saving energy whereas fuel switching as a means for  reducing emissions is not considered in detail by most studies. In general, both sectoral and integrated  studies indicate that electricity will supply a dominant share of building energy demand over the long  term, especially if heating demand decreases due to a combination of efficiency gains, better  architecture and climate change. Best case new buildings can reach 90% lower space heating and  cooling energy use compared to the existing stock (Section 9.3.3), while for existing buildings, deep  retrofits can achieve heating and cooling energy savings in the range of 50 90% (Section 9.3.4).  Figure 6.37. Sectoral final energy demand reduction relative to baseline in the energy end-use sectors, transport, buildings, and industry by 2030 and 2050 in mitigation scenarios reaching 430-530 ppm and 530-650 ppm CO2eq in 2100 (see Section 6.3.2) compared to sectoral studies assessed in Chapters 8 10. Filled circles correspond to sectoral studies with full sectoral coverage while empty circles correspond to studies with only partial sectoral coverage (e.g., heating and cooling only for buildings). Source: WG III AR5 Scenario Database (Annex II.10). Includes only scenarios based on idealized policy implementation. Sectoral studies as provided by Chapters 8, 9, and 10, see Annex II.10. Detailed industry sector studies tend to be more conservative regarding savings in industrial final  energy compared to baseline, but on the other hand foresee a greater potential for switching to low carbon fuels, including electricity, heat, hydrogen and bioenergy than integrated studies (Figure 6.37  and Figure 6.38). Sectoral studies, which are often based on micro unit level analyses, indicate that the  broad application of best available technologies for energy reduction could lead to about 25% of  energy savings in the sector with immediate deployment and similar contributions could be achieved  with new innovations and deployment across a large number of production processes (Section 10.4).  Integrated models in general (with exceptions, see Section 10.10.1) treat the industry sector in a more  aggregated fashion and mostly do not provide detailed sub sectoral material flows, options for  reducing material demand, and price induced inter input substitution possibilities explicitly  (Section 10.10.1). Similar to the transportation sector, there is no single perceived near  or long term    89 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  configuration for industrial energy (see Sections 10.4 and 10.7). Multiple pathways may be pursued or  chosen depending on process selection and technology development. For the industry sector to  achieve near zero emission with carbonaceous energy, carriers will need CCS facilities though market  penetration of this technology is still highly uncertain and only limited examples are in place so far.  Some integrated studies indicate a move toward electricity whereas others indicate a continued  reliance on liquid or solid fuels, largely supported through bioenergy (Section 10.10.1, Figure 10.14).  Due to the heterogeneous character of the industry sector a coherent comparison between sectoral  and integrated studies remains difficult.  Figure 6.38. Development of final energy low-carbon fuel shares in the energy end-use sectors transport, buildings, and industry by 2030 and 2050 in baseline and mitigation scenarios reaching 430530 ppm and 530-650 ppm CO2eq in 2100 (see Section 6.3.2) compared to sectoral studies assessed in Chapters 8 10. Low-carbon fuels include electricity, hydrogen, and liquid biofuels in transport, electricity in buildings and electricity, heat, hydrogen, and bioenergy in industry. Filled symbols correspond to sectoral studies with additional climate policies whereas empty symbols correspond to studies with baseline assumptions. Source: WG III AR5 Scenario Database (Annex II.10). Includes only scenarios based on idealized policy implementation. Sectoral studies as provided by Chapters 8, 9, and 10, see Annex II.10. Historical data from (IEA, 2012c; d). 6.8.5    Options for bioenergy production, reducing land use change emissions, and creating  land use GHG sinks  As noted in Section 6.3.5, land use has three primary roles in mitigation: bioenergy production,  storage of carbon in terrestrial systems, mitigation of non CO2 GHGs. It also influences mitigation  through biogeophysical factors such as albedo. Integrated modelling studies are the primary means by  which the tradeoffs and synergies between these different roles, in particular the first two, might  unfold over the rest of the century. The integrated modelling studies sketch out a wide range of ways  in which these forces might affect the land surface, from widespread afforestation under  comprehensive climate policies to widespread deforestation efforts to store carbon in land are not  included in the mitigation policy (Sections 6.3.5 and 11.9).  Sectoral studies complement integrated modelling studies by exploring the ability of policy and social  structures to support broad changes in land use practices over time (Section 11.6). In general, sectoral  studies point to the challenges associated with making large scale changes to the land surface in the  name of mitigation, such as challenges associated with institutions, livelihoods, social and economic  concerns, and technology and infrastructure. These challenges raise questions about transformation    90 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  pathways (Section 11.6). For example, although increasing the land area covered by natural forests  could enhance biodiversity and a range of other ecosystem services, afforestation occurring through  large scale plantations could negatively impact biodiversity, water, and other ecosystem services  (Sections 11.7 and 11.13.6). Similarly, the use of large land areas for afforestation or dedicated  feedstocks for bioenergy could increase food prices and compromise food security if land normally  used for food production is converted to bioenergy or forests (Section 11.4). The degree of these  effects is uncertain and depends on a variety of sector specific details regarding intensification of land  use, changes in dietary habits, global market interactions, and biophysical characteristics and  dynamics. The implications of transformation pathways that rely heavily on reductions of non CO2  GHGs from agriculture depend on whether mitigation is achieved through reduced absolute emissions,  or through reduced emissions per unit of agricultural product (Section 11.6), and the role of large scale intensive agriculture, which has often not been implemented sustainably (e.g., large areas of  monoculture food or energy crops or intensive livestock production, potentially damaging ecosystem  services). Furthermore, sector studies are beginning to elucidate implementation issues, such as the  implications of staggered and/or partial regional adoption of land mitigation policies, as well as  institutional design. For example, realizing large scale bioenergy without compromising the terrestrial  carbon stock might require strong institutional conditions, such as an implemented and enforced  global price on land carbon. Finally, sector studies will continue to provide revised and new  characterizations of mitigation technologies that can be evaluated in a portfolio context (Section 11.9).   6.9   Carbon and radiation management and other geo engineering options  including environmental risks  Some scientists have argued that it might be useful to consider, in addition to mitigation and  adaptation measures, various intentional interventions into the climate system as part of a broader  climate policy strategy (Keith, 2000; Crutzen, 2006). Such technologies have often been grouped under  the blanket term  geoengineering  or, alternatively,  climate engineering (Keith, 2000; Vaughan and  Lenton, 2011). Calls for research into these technologies have increased in recent years (Caldeira and  Keith, 2010; Science and Technology Committee, 2010), and several assessments have been  conducted (Royal Society, 2009; Edenhofer et al., 2011; Ginzky et al., 2011; Rickels et al., 2011). Two  categories of geoengineering are generally distinguished. Removal of GHGs, in particular carbon  dioxide (termed  carbon dioxide removal  or CDR, would reduce atmospheric GHG concentrations. The  boundary between some mitigation and some CDR methods is not always clear (Boucher et al., 2011,  2013).  Solar radiation management  or SRM technologies aim to increase the reflection of sunlight to  cool the planet and do not fall within the usual definitions of mitigation and adaptation. Within each  of these categories, there is a wide range of techniques that are addressed in more detail in Sections  6.5 and 7.7 of the WG I report.   Many geoengineering technologies are presently only hypothetical. Whether or not they could  actually contribute to the avoidance of future climate change impacts is not clear (Blackstock et al.,  2009; Royal Society, 2009). Beyond open questions regarding environmental effects and technological  feasibility, questions have been raised about the socio political dimensions of geoengineering and its  potential implications for climate politics (Barrett, 2008; Royal Society, 2009; Rickels et al., 2011). In  the general discussion, geoengineering has been framed in a number of ways (Nerlich and Jaspal,  2012; Macnaghten and Szerszynski, 2013; Luokkanen et al., 2013; Scholte et al., 2013), for instance, as  a last resort in case of a climate emergency (Blackstock et al., 2009; McCusker et al., 2012), or as a way  to buy time for implementing conventional mitigation (Wigley, 2006; Institution of Mechanical  Engineers, 2009; MacCracken, 2009). Most assessments agree that geoengineering technologies  should not be treated as a replacement for conventional mitigation and adaptation due to the high  costs involved for some techniques, particularly most CDR methods, and the potential risks, or  pervasive uncertainties involved with nearly all techniques (Royal Society, 2009; Rickels et al., 2011).  The potential role of geoengineering as a viable component of climate policy is yet to be determined,    91 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  and it has been argued that geoengineering could become a distraction from urgent mitigation and  adaptation measures (Lin; Preston, 2013).   6.9.1    Carbon dioxide removal  6.9.1.1    Proposed carbon dioxide removal methods and characteristics  Proposed CDR methods involve removing CO2 from the atmosphere and storing the carbon in land,  ocean, or geological reservoirs. These methods vary greatly in their estimated costs, risks to humans  and the environment, potential scalability, and notably in the depth of research about their potential  and risks. Some techniques that fall within the definition of CDR are also regarded as mitigation  measures such as afforestation and BECCS (see Glossary). The term  negative emissions technologies   can be used as an alternative to CDR (McGlashan et al., 2012; McLaren, 2012; Tavoni and Socolow,  2013).  The WG I report (Section 6.5.1) provides an extensive but not exhaustive list of CDR techniques (WG I  Table 6.14). Here only techniques that feature more prominently in the literature are covered. This  includes (1) increased land carbon sequestration by reforestation and afforestation, soil carbon  management, or biochar (see WG III Chapter 11); (2) increased ocean carbon sequestration by ocean  fertilization; (3) increased weathering through the application of ground silicates to soils or the ocean;  and (4) chemical or biological capture with geological storage by BECCS or direct air capture (DAC).  CDRtechniques can be categorized in alternative ways. For example, they can be categorized (1) as  industrial technologies versus ecosystem manipulation; (2) by the pathway for carbon dioxide capture  (e.g. McLaren, 2012; Caldeira et al., 2013); (3) by the fate of the stored carbon (Stephens and Keith,  2008); and (4) by the scale of implementation (Boucher et al., 2013). Removal of other GHGs, e.g., CH4  and N2O, have also been proposed (Boucher and Folberth, 2010; de_Richter and Caillol, 2011; Stolaroff  et al., 2012).   All CDR techniques have a similar slow impact on rates of warming as mitigation measures (van  Vuuren and Stehfest, 2013) (see WG I Section 6.5.1). An atmospheric  rebound effect  (see WG I  Glossary) dictates that CDR requires roughly twice as much CO2 removed from the atmosphere for any  desired  net reduction in atmospheric CO2 concentration, as some CO2 will be returned from the  natural carbon sinks (Lenton and Vaughan, 2009; Matthews, 2010). Permanence of the storage  reservoir is a key consideration for CDR efficacy. Permanent (larger than tens of thousands of years)  could be geological reservoirs while non permanent reservoirs include oceans and land (the latter  could, among others, be affected by the magnitude of future climate change) (see WG I Section 6.5.1).  Storage capacity estimates suggest geological reservoirs could store several thousand GtC; the oceans  a few thousand GtC in the long term, and the land may have the potential to store the equivalent to  historical land use loss of 180 +/- 80 GtC (also see Table 6.15 of WG I)(Metz et al., 2005; House et al.,  2006; Orr, 2009; Matthews, 2010).   Ocean fertilization field experiments show no consensus on the efficacy of iron fertilization (Boyd et  al., 2007; Smetacek et al., 2012). Modelling studies estimate between 15 ppm and less than 100 ppm  drawdown of CO2 from the atmosphere over 100 years (Zeebe and Archer, 2005; Cao and Caldeira,  2010) while simulations of mechanical upwelling suggest 0.9 Gt/yr (Oschlies et al., 2010). The latter  technique has not been field tested. There are a number of possible risks including downstream  decrease in productivity, expanded regions of low oxygen concentration, and increased N2O emissions  (See WG I Section 6.5.3.2) (low confidence). Given the uncertainties surrounding effectiveness and  impacts, this CDR technique is at a research phase with no active commercial ventures. Furthermore,  current international governance states that marine geoengineering including ocean fertilization is to  be regulated under amendments to the London Convention/London Protocol on the Prevention of  Marine Pollution by Dumping of Wastes and Other Matter, only allowing legitimate scientific research  (Güssow et al., 2010; International Maritime Organization, 2013).    92 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Enhanced weathering on land using silicate minerals mined, crushed, transported, and spread on soils  has been estimated to have a potential capacity, in an idealized study, of 1 GtC/yr (Köhler et al., 2010).  Ocean based weathering CDR methods include use of carbonate or silicate minerals processed or  added directly to the ocean (see WG I Section 6.5.2.3). All of these measures involve a notable energy  demand through mining, crushing, and transporting bulk materials. Preliminary hypothetical cost  estimates are in the order of 23 66 USD/tCO2 (Rau and Caldeira, 1999; Rau et al., 2007) for land and  51 64 USD/tCO2 for ocean methods (McLaren, 2012). The confidence level on the carbon cycle  impacts of enhanced weathering is low (WG I Section 6.5.3.3).   The use of CCS technologies (Metz et al., 2005) with biomass energy also creates a carbon sink (Azar et  al., 2006; Gough and Upham, 2011). The BECCS is included in the RCP 2.6 (van Vuuren et al., 2007,  2011b) and a wide range of scenarios reaching similar and higher concentration goals. From a  technical perspective, BECCS is very similar to a combination of other techniques that are part of the  mitigation portfolio: the production of bio energy and CCS for fossil fuels. Estimates of the global  technical potential for BECCS vary greatly ranging from 3 to more than 10 GtCO2/yr (Koornneef et al.,  2012; McLaren, 2012; van Vuuren et al., 2013), while initial cost estimates also vary greatly from  around 60 to 250 USD/tCO2 (McGlashan et al., 2012; McLaren, 2012). Important limiting factors for  BECCS include land availability, a sustainable supply of biomass and storage capacity (Gough and  Upham, 2011; McLaren, 2012). There is also a potential issue of competition for biomass under  bioenergy dependent mitigation pathways.  Direct air capture uses a sorbent to capture CO2 from the atmosphere and the long term storage of  the captured CO2 in geological reservoirs (GAO, 2011; McGlashan et al., 2012; McLaren, 2012). There  are a number of proposed capture methods including adsorption of CO2 using amines in a solid form  and the use of wet scrubbing systems based on calcium or sodium cycling. Current research efforts  focus on capture methodologies (Keith et al., 2006; Baciocchi et al., 2006; Lackner, 2009; Eisenberger  et al., 2009; Socolow et al., 2011) with storage technologies assumed to be the same as CCS (Metz et  al, 2005). A U.S. Government Accountability Office (GAO) (2011) technology assessment concluded  that all DAC methods were currently immature. A review of initial hypothetical cost estimates,  summarizes 40 300 USD/tCO2 for supported amines and 165 600 USD/tCO2 for sodium or calcium  scrubbers (McLaren, 2012) reflecting an ongoing debate across very limited literature. Carbon dioxide  captured through CCS, BECCS, and DAC are all intended to use the same storage reservoirs (in  particular deep geologic reservoirs), potentially limiting their combined use under a transition  pathway.   6.9.1.2    Role of carbon dioxide removal in the context of transformation pathways  Two of the CDR techniques listed above, BECCS and afforestation, are already evaluated in the current  integrated models. For concentration goals on the order of 430 530 ppm CO2eq by 2100, BECCS forms  an essential component of the response strategy for climate change in the majority of scenarios in the  literature, particularly in the context of concentration overshoot. As discussed in Section 6.2.2, BECCS  offers additional mitigation potential, but also an option to delay some of the drastic mitigation action  that would need to happen to reach lower GHG concentration goals by the second half of the century.  In scenarios aiming at such low concentration levels, BECCS is usually competitive with conventional  mitigation technologies, but only after these have been deployed at very large scale (see Azar et al.,  2010; Tavoni and Socolow, 2013). At same time, BECCS applications do not feature in less ambitious  mitigation pathways (van Vuuren et al., 2011a). Key implications of the use of BECCS in transition  pathways is that emission reduction decisions are directly related to expected availability and  deployment of BECCS in the second half of the century and that scenarios might temporarily  overshoot temperature or concentration goals.   The vast majority of scenarios in the literature show CO2 emissions of LUC become negative in the  second half of the century   even in the absence of mitigation policy (see Section 6.3.2). This is a  consequence of demographic trends and assumptions on land use policy. Addition afforestation as    93 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  part of mitigation policy is included in a smaller set of models. In these models, afforestation measures  increase for lower concentration categories, potentially leading to net uptake of carbon of around  10 GtCO2/yr.  There are broader discussions in the literature regarding the technological challenges and potential  risks of large scale BECCS deployment. The potential role of BECCS will be influenced by the  sustainable supply of large scale biomass feedstock and feasibility of capture, transport, and long term  underground storage of CO2 as well as the perceptions of these issues. The use of BECCS faces large  challenges in financing, and currently no such plants have been built and tested at scale. Integrated  modeling studies have therefore explored the sensitivities regarding the availability of BECCS in the  technology portfolio by limiting bioenergy supply or CCS storage (Section 6.3.6.3   ).  Only a few papers have assessed the role of DAC in mitigation scenarios (e.g. Keith et al., 2006; Keller  et al., 2008; Pielke Jr, 2009; Nemet and Brandt, 2012; Chen and Tavoni, 2013). These studies generally  show that the contribution of DAC hinges critically on the stringency of the concentration goal, the  costs relative to other mitigation technologies, time discounting and assumptions about scalability. In  these models, the influence of DAC on the mitigation pathways is similar to that of BECCS (assuming  similar costs). That is, it leads to a delay in short term emission reduction in favour of further  reductions in the second half of the century. Other techniques are even less mature and currently not  evaluated in integrated models.  There are some constraints to the use of CDR techniques as emphasized in the scenario analysis. First  of all, the potential for BECCS, afforestation, and DAC are constrained on the basis of available land  and/or safe geologic storage potential for CO2. Both the potential for sustainable bio energy use  (including competition with other demands, e.g., food, fibre, and fuel production) and the potential to  store >100 GtC of CO2 per decade for many decades are very uncertain (see previous section) and raise  important societal concerns. Finally, the large scale availability of CDR, by shifting the mitigation  burden in time, could also exacerbate inter generational impacts.  6.9.2    Solar radiation management  6.9.2.1    Proposed solar radiation management methods and characteristics  SRM geoengineering technologies aim to lower the Earth s temperature temperature by reducing the  amount of sunlight that is absorbed by the Earth s surface, and thus countering some of the GHG  induced global warming. Most techniques work by increasing the planetary albedo, thus reflecting a  greater fraction of the incoming sunlight back to space. A number of SRM methods have been  proposed:     Mirrors (or sunshades) placed in a stable orbit between the Earth and Sun would directly reduce  the insolation the Earth receives (Early, 1989; Angel, 2006). Studies suggest that such a technology  is unlikely to be feasible within the next century (Angel, 2006).      Stratospheric aerosol injection would attempt to imitate the global cooling that large volcanic  eruptions produce (Budyko and Miller, 1974; Crutzen, 2006; Rasch et al., 2008). This might be  achieved by lofting sulphate aerosols (or other aerosol species) or their precursors to the  stratosphere to create a high altitude reflective layer that would need to be continually  replenished. Section 7.7.2.1 of WG I assessed that there is medium confidence that up to 4 Wm 2  of forcing could be achieved with this approach.     Cloud brightening might be achieved by increasing the albedo of certain marine clouds through  the injection of cloud condensation nuclei, most likely sea salt, , producing an effect like that seen  when ship tracks of brighter clouds form behind polluting ships (Latham, 1990; Latham et al.,  2008, 2012). Section 7.7.2.2 of WG I assessed that too little was known about marine cloud  brightening to provide a definitive statement on its potential efficacy, but noted that it might be  sufficient to counter the radiative forcing that would result from a doubling of CO2 levels.     94 of 141  Final Draft  Chapter 6  IPCC WGIII AR5     Various methods have been proposed that could increase the albedo of the planetary surface, for  example in urban, crop, and desert regions (President s Science Advisory Committee.  Environmental Pollution Panel, 1965; Gaskill, 2004; Hamwey, 2007; Ridgwell et al., 2009). These  methods would likely only be possible on a much smaller scale than those listed above. Section  7.7.2.3 of WG I discusses these approaches.  This list is non exhaustive and new proposals for SRM methods may be put forward in the future.  Another method that is discussed alongside SRM methods aims to increase outgoing thermal  radiation, reducing incoming solar radiation, through the modification of cirrus clouds (Mitchell and  Finnegan, 2009) (see WG I Section 7.7.2.4).   As SRM geoengineering techniques only target the solar radiation budget of the Earth, the effects of  CO2 and other GHGs on the Earth System would remain, for example, greater absorption and re emission of thermal radiation by the atmosphere (WG I Section 7.7), an enhanced CO2 physiological  effect on plants (WG I Section 6.5.4), and increased ocean acidification (Matthews et al., 2009).  Although SRM geoengineering could potentially reduce the global mean surface air temperature, no  SRM technique could fully return the climate to a pre industrial or low CO2 like state. One reason for  this is that global mean temperature and global mean hydrological cycle intensity cannot be  simultaneously returned to a pre industrial state (Govindasamy and Caldeira, 2000; Robock et al.,  2008; Schmidt et al., 2012; Kravitz et al., 2013; MacMartin et al., 2013; Tilmes et al., 2013). Section  7.7.3 of WG I details the current state of knowledge on the potential climate consequences of SRM  geoengineering. In brief, simulation studies suggest that some SRM geoengineering techniques  applied to a high CO2 climate could create climate conditions more like those of a low CO2 climate  (Moreno Cruz et al., 2011; MacMartin et al., 2013), but the annual mean, seasonality, and interannual  variability of climate would be modified compared to the pre industrial climate  (Govindasamy and  Caldeira, 2000; Lunt et al., 2008; Robock et al., 2008; Ban Weiss and Caldeira, 2010; Moreno Cruz et  al., 2011; Schmidt et al., 2012; Kravitz et al., 2013; MacMartin et al., 2013). SRM geoengineering that  could reduce global mean temperatures would reduce thermosteric sea level rise and would likely also  reduce glacier and ice sheet contributions to sea level rise (Irvine et al., 2009, 2012; Moore et al.,  2010).  Model simulations suggest that SRM would result in substantially altered global hydrological  conditions, with uncertain consequences for specific regional responses such as precipitation and  evaporation in monsoon regions (Bala et al., 2008; Schmidt et al., 2012; Kravitz et al., 2013; Tilmes et  al., 2013) . In addition to the imperfect cancellation of GHG induced changes in the climate by SRM,  CO2 directly affects the opening of plant stomata, and thus the rate of transpiration of plants and in  turn the recycling of water over continents, soil moisture, and surface hydrology (Bala et al., 2007;  Betts et al., 2007; Boucher et al., 2009; Spracklen et al., 2012).   Due to these broadly altered conditions that would result from an implementation of geoengineering,  and based on experience from studies of the detection and attribution of climate change, it may take  many decades of observations to be certain whether SRM is responsible for a particular regional trend  in climate (Stone et al., 2009; MacMynowski et al., 2011). These detection and attribution problems  also imply that field testing to identify some of the climate consequences of SRM geoengineering  would require deployment at a sizeable fraction of full deployment for a period of many years or even  decades (Robock et al., 2010; MacMynowski et al., 2011).  It is important to note that in addition to affecting the planet s climate, many SRM methods could  have serious non climatic side effects. Any stratospheric aerosol injection would affect stratospheric  chemistry and has the potential to affect stratospheric ozone levels. Tilmes et al. (2009) found that  sulphate aerosol geoengineering could delay the recovery of the ozone hole by decades (WG I  Section 7.7.2.1). Stratospheric aerosol geoengineering would scatter light, modifying the optical  properties of the atmosphere. This would increase the diffuse to direct light ratio, which would make  the sky appear hazier (Kravitz et al., 2012), reduce the efficacy of concentrated solar power facilities    95 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  (Murphy, 2009), and potentially increase the productivity of some plant species, and preferentially  those below the canopy layer, with unknown long term ecosystem consequences (Mercado et al.,  2009). The installations and infrastructure of SRM geoengineering techniques may also have some  negative effects that may be particularly acute for techniques that are spatially extensive, such as  desert albedo geoengineering. SRM would have very little effect on ocean acidification and the other  direct effects of elevated CO2 concentrations that are likely to pose significant risks (see WG I Section  6.5.4).   6.9.2.2    The relation of solar radiation management to climate policy and transformation  pathways  A key determinant of the potential role, if any, of SRM in climate policy is that some methods might  act relatively quickly. For example, stratospheric aerosol injection could be deployable within months  to years, if and when the technology is available, and the climate response to the resulting changes in  radiative forcing could occur on a timescale of a decade or less (e.g. Keith, 2000; Matthews and  Caldeira, 2007; Royal Society, 2009; Swart and Marinova, 2010; Goes et al., 2011). Mitigating GHG  emissions would affect global mean temperatures only on a multi decadal to centennial time scale  because of the inertia in the carbon cycle (van Vuuren and Stehfest, 2013). Hence, it has been argued  that SRM technologies could potentially complement mitigation activities, for example, by countering  global GHG radiative forcing while mitigation activities are being implemented, or by providing a back up strategy for a hypothetical future situation where short term reductions in radiative forcing may be  desirable (Royal Society, 2009; Rickels et al., 2011). However, the relatively fast and strong climate  response expected from some SRM techniques would also impose risks. The termination of SRM  geoengineering forcing either by policy choice or through some form of failure would result in a rapid  rise of global mean temperature and associated changes in climate, the magnitude of which would  depend on the degree of SRM forcing that was being exerted and the rate at which the SRM forcing  was withdrawn (Wigley, 2006; Matthews and Caldeira, 2007; Goes et al., 2011; Irvine et al., 2012;  Jones et al., 2013). It has been suggested that this risk could be minimized if SRM geoengineering was  used moderately and combined with strong CDR geoengineering and mitigation efforts (Ross and  Matthews, 2009; Smith and Rasch, 2012). The potential of SRM to significantly impact the climate on  short time scales, at potentially low cost, and the uncertainties and risks involved in this raise  important socio political questions in addition to natural scientific and technological considerations in  the section above.   The economic analysis of the potential role of SRM as a climate change policy is an area of active  research and has, thus far, produced mixed and preliminary results (see Klepper and Rickels, 2012).  Estimates of the direct costs of deploying various proposed SRM methods differ significantly. A few  studies have indicated that direct costs for some SRM methods might be considerably lower than the  costs of conventional mitigation, but all estimates are subject to large uncertainties because of  questions regarding efficacy and technical feasibility (Coppock, 1992; Barrett, 2008; Blackstock et al.,  2009; Robock et al., 2009; Pierce et al., 2010; Klepper and Rickels, 2012; McClellan et al., 2012).   However, SRM techniques would carry uncertain risks, do not directly address some impacts of  anthropogenic GHG emissions, and raise a range of ethical questions (see WG III Section 3.3.8) (Royal  Society, 2009; Goes et al., 2011; Moreno Cruz and Keith, 2012; Tuana et al., 2012). While costs for the  implementation of a particular SRM method might potentially be low, a comprehensive assessment  would need to consider all intended and unintended effects on ecosystems and societies and the  corresponding uncertainties (Rickels et al., 2011; Goes et al., 2011; Klepper and Rickels, 2012).  Because most proposed SRM methods would require constant replenishment and an increase in their  implementation intensity if emissions of GHGs continue, the result of any assessment of climate policy  costs is strongly dependent on assumptions about the applicable discount rate, the dynamics of  deployment, the implementation of mitigation, and the likelihood of risks and side effects of SRM (see  Bickel and Agrawal, 2011; Goes et al., 2011). While it has been suggested that SRM technologies may  buy time  for emission reductions (Rickels et al., 2011), they cannot substitute for emission reductions    96 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  in the long term because they do not address concentrations of GHGs and would only partially and  imperfectly compensate for their impacts.  The acceptability of SRM as a climate policy in national and international socio political domains is  uncertain. While international commitment is required for effective mitigation, a concern about SRM  is that direct costs might be low enough to allow countries to unilaterally alter the global climate  (Bodansky, 1996; Schelling, 1996; Barrett, 2008). Barrett (2008) and Urpelainen (2012) therefore argue  that SRM technologies introduce structurally obverse problems to the  free rider  issue in climate  change mitigation. Some studies suggest that deployment of SRM hinges on interstate cooperation,  due to the complexity of the climate system and the unpredictability of outcomes if states do not  coordinate their actions (Horton, 2011). In this case, the political feasibility of an SRM intervention  would depend on the ability of state level actors to come to some form of agreement.   The potential for interstate cooperation and conflict will likely depend on the institutional context in  which SRM is being discussed, as well as on the relative importance given to climate change issues at  the national and international levels. Whether a broad international agreement is possible is a highly  contested subject (see Section 13.4.4) (EDF; The Royal Society; TWAS, 2012). Several researchers  suggest that a UN based institutional arrangement for decision making on SRM would be most  effective (Barrett, 2008; Virgoe, 2009; Zürn and Schäfer, 2013). So far there are no legally binding  international norms that explicitly address SRM, although certain general rules and principles of  international law are applicable (see WG II, Chapter 13, p.37). States parties to the UN Convention on  Biological Diversity have adopted a non binding decision on geoengineering that establishes criteria  that could provide guidance for further development of international regulation and governance (CBD  Decision IX/16 C (ocean fertilization) and Decision X/33(8)(w); see also LC/LP Resolutions LC LP.1(2008) and LC LP.2(2010), preamble).   Commentators have identified the governance of SRM technologies as a significant political and  ethical challenge, especially in ensuring legitimate decision making, monitoring, and control (Victor,  2008; Virgoe, 2009; Bodansky, 2012). Even if SRM would largely reduce the global temperature rise  due to anthropogenic climate change, as current modelling studies indicate, it would also imply a  spatial and temporal redistribution of risks. SRM thus introduces important questions of intra  and  intergenerational justice, both distributive and procedural (see Wigley, 2006; Matthews and Caldeira,  2007; Goes et al., 2011; Irvine et al., 2012; Tuana et al., 2012; Bellamy et al., 2012; Preston, 2013).  Furthermore, since the technologies would not remove the need for emission reductions, in order to  to effectively ameliorate climate change over a longer term SRM regulation would need to be based  on a viable relation between mitigation and SRM activities, and consider the respective and combined  risks of increased GHG concentrations and SRM interventions. The concern that the prospect of a  viable SRM technology may reduce efforts to mitigate and adapt has featured prominently in  discussions to date (Royal Society, 2009; Gardiner, 2011; Preston, 2013).  Whether SRM field research or even deployment would be socially and politically acceptable is also  dependent on the wider discursive context in which the topic is being discussed. Bellamy et al. (2013)  show that the success of mitigation policies is likely to have an influence on stakeholder acceptability  of SRM. While current evidence is limited to few studies in a very narrow range of cultural contexts, in  a first review of early studies on perceptions of geoengineering, Corner et al. (2012) find that  participants of different studies tend to prefer CDR over SRM and mitigation over geoengineering.  Considerations that influence opinions are, amongst others, the perceived  naturalness  of a  technology, its reversibility, and the capacity for responsible and transparent governance (Corner et  al., 2012). Furthermore, the way that the topic is framed in the media and by experts plays an  important role in influencing opinions on SRM research or deployment (Luokkanen et al., 2013;  Scholte et al., 2013). The direction that future discussions may take is impossible to predict, since  deepened and highly differentiated information is rapidly becoming available (Corner et al., 2012;  Macnaghten and Szerszynski, 2013).    97 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  6.9.3    Summary  Despite the assumption of some form of negative CO2 emissions in many scenarios, including those  leading to 2100 concentrations approaching 450 ppmv CO2eq, whether proposed CDR or SRM  geoengineering techniques can actually play a useful role in transformation pathways is uncertain as  the efficacy and risks of many techniques are poorly understood at present. CDR techniques aim to  reduce CO2 (or potentially other GHG) concentrations. A broad definition of CDR would cover  afforestation and BECCS, which are sometimes classified as mitigation techniques, but also proposals  that are very distinct in terms of technical maturity, scientific understanding, and risks from mitigation  such as ocean iron fertilization. The former are often included in current integrated models and  scenarios and are, in terms of their impact on the climate, directly comparable with techniques that  are considered to be conventional mitigation, notably fossil CCS and bio energy use. Both BECCS and  afforestation may play a key role in reaching low GHG concentrations, but at a large scale have  substantial land use demands that may conflict with other mitigation strategies and societal needs  such as food production. Whether other CDR techniques would be able to supplement mitigation at  any significant scale in the future depends upon efficacy, cost, and risks of these techniques, which at  present are highly uncertain. The properties of potential carbon storage reservoirs are also critically  important, as limits to reservoir capacity and longevity will constrain the quantity and permanence of  CO2 storage. Furthermore, some CDR techniques such as ocean iron fertilization may pose  transboundary risks. The impacts of CDR would be relatively slow: climate effects would unfold over  the course of decades.  In contrast to CDR, SRM would aim to cool the climate by shielding sunlight. These techniques would  not reduce elevated GHG concentrations, and thus not affect other consequences of high GHG  concentrations, such as ocean acidification. Some SRM proposals could potentially cause a large  cooling within years, much quicker than mitigation or CDR, and a few studies suggest that costs might  be considerably lower than CDR for some SRM techniques. It has thus been suggested that SRM could  be used to quickly reduce global temperatures or to limit temperature rise while mitigation activities  are being implemented. However, to avoid warming, SRM would need to be maintained as long as  GHG concentrations remain elevated. Modelling studies show that SRM may be able to reduce global  average temperatures but would not perfectly reverse all climatic changes that occur due to elevated  GHG concentrations, especially at local to regional scales. For example, SRM is expected to weaken the  global hydrological cycle with consequences for regional precipitation patterns and surface hydrology,  and is expected to change the seasonality and variability of climate. Because the potential climate  impacts of any SRM intervention are uncertain and evidence is very limited, it is too early to conclude  how effective SRM would be in reducing climate risks. SRM approaches may also carry significant non climatic side effects. For example, sulphate aerosol injection would modify stratospheric chemistry,  potentially reducing ozone levels, and would change the appearance of the sky. The risks of SRM  interventions and large scale experiments, alongside any potential benefits, raise a number of ethical  and political questions that would require public engagement and international cooperation to  address adequately.   6.10   Gaps in knowledge and data  The questions that motivate this chapter all address the broad characteristics of possible long term  transformation pathways toward stabilization of GHG concentrations. The discussion has not focused  on today s global or country specific technology strategies, policy strategies, or other elements of a  near term strategy. It is therefore within this long term strategic context that gaps in knowledge and  data should be viewed. Throughout this chapter, a number of areas of further development have been  highlighted. Several areas would be most valuable to further the development of information and  insights regarding long term transformation pathways.    98 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  These include the following: development of a broader set of socioeconomic and technological  storylines to support the development of future scenarios; scenarios pursuing a wider set of climate  goals including those related to temperature change; more mitigation scenarios that include impacts  from, and adaptations to, a changing climate, including energy and land use systems critical for  mitigation; expanded treatment of the benefits and risks of CDR and SRM options; expanded  treatment of co benefits and risks of mitigation pathways; improvements in the treatment and  understanding of mitigation options and responses in end use sectors in transformation pathways;  and more sophisticated treatments of land use and land use based mitigation options in mitigation  scenarios. In addition, a major weakness of the current integrated modelling suite is that regional  definitions are often not comparable across models. An important area of advancement would be to  develop some clearly defined regional definitions that can be met by most or all models.  6.11   Frequently Asked Questions  FAQ 6.1. Is it possible to bring climate change under control given where we are and what  options are available to us? What are the implications of delaying mitigation or limits on  technology options?   Many commonly discussed concentration goals, including the goal of reaching 450 ppm CO2eq by the  end of the 21st century, are both physically and technologically possible. However, meeting long term  climate goals will require large scale transformations in human societies, from the way that we  produce and consume energy to how we use the land surface, that are inconsistent with both long term and short term trends. For example, to achieve a 450 ppm CO2eq concentration by 2100,  supplies of low carbon energy   energy from nuclear power, solar power, wind power, hydroelectric  power, bioenergy, and fossil resources with carbon dioxide capture and storage   might need to  increase five fold or more over the next 40 years. The possibility of meeting any concentration goal  therefore depends not just on the available technologies and current emissions and concentrations,  but also on the capacity of human societies to bear the associated economic implications, accept the  associated rapid and large scale deployment of technologies, develop the necessary institutions to  manage the transformation, and reconcile the transformation with other policy priorities such as  sustainable development. Improvements in the costs and performance of mitigation technologies will  ease the burden of this transformation. In contrast, if the world s countries cannot take on sufficiently  ambitious mitigation over the next 20 years, or obstacles impede the deployment of important  mitigation technologies at large scale, goals such as 450 ppm CO2eq by 2100 may no longer be  possible.   FAQ 6.2. What are the most important technologies for mitigation? Is there a silver bullet  technology?  Limiting CO2eq concentrations will require a portfolio of options, because no single option is sufficient  to reduce CO2eq concentrations and eventually eliminate net CO2 emissions. Options include a range  of energy supply technologies such as nuclear power, solar energy, wind power, and hydroelectric  power, as well as bioenergy and fossil resources with carbon dioxide capture and storage. A range of  end use technologies will be needed to reduce energy consumption, and therefore the need for low carbon energy, and to allow the use of low carbon fuels in transportation, buildings, and industry.  Halting deforestation and encouraging an increase in forested land will help to halt or reverse LUC CO2  emissions. Furthermore, there are opportunities to reduce non CO2 emissions from land use and  industrial sources. Many of these options must be deployed to some degree to stabilize CO2eq  concentrations. A portfolio approach can be tailored to local circumstances to take into account other  priorities such as those associated with sustainable development. At the same time, if emissions  reductions are too modest over the coming two decades, it may no longer be possible to reach a goal  of 450 ppm CO2eq by the end of the century without large scale deployment of carbon dioxide    99 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  removal technologies. Thus, while no individual technology is sufficient, carbon dioxide removal  technologies could become necessary in such a scenario.  FAQ 6.3. How much would it cost to bring climate change under control?  Aggregate economic mitigation cost metrics are an important criterion for evaluating transformation  pathways and can indicate the level of difficulty associated with particular pathways. However, the  broader socio economic implications of mitigation go beyond measures of aggregate economic costs,  as transformation pathways involve a range of tradeoffs that link to other policy priorities. Global  mitigation cost estimates vary widely due to methodological differences along with differences in  assumptions about future emissions drivers, technologies, and policy conditions. Most scenario  studies collected for this assessment that are based on the idealized assumptions that all countries of  the world begin mitigation immediately, there is a single global carbon price applied to well functioning markets, and key technologies are available, find that meeting a 430 480 ppm CO2eq goal  by century s end would entail a reduction in the amount global consumers spend of 1 4% in 2030,  2 6% in 2050, and 3 11% in 2100 relative to what would happen without mitigation. To put these  losses in context, studies assume that consumption spending might grow from four  to over ten fold  over the century without mitigation. Less ambitious goals are associated with lower costs this century.  Substantially higher and lower estimates have been obtained by studies that consider interactions  with pre existing distortions, non climate market failures, and complementary policies. Studies  explicitly exploring the implications of less idealized policy approaches and limited technology  performance or availability have consistently produced higher cost estimates. Delaying mitigation  would reduce near term costs; however studies indicate that subsequent costs will rise much more  rapidly to higher levels.      100 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  References  Aboumahboub T., et al, E. Kriegler, M. Leimbach, Bauer, Pehl, and L. Baumstark (2014).  On the  regional distribution of climate mitigation costs: the impact of delayed cooperative action. Accepted  for publication in Climate Change Economics. In press., .  Acemoglu D., P. Aghion, L. Bursztyn, and D. Hemous (2009).  The Environment and Directed Technical  Change. National Bureau of Economic Research.  Agarwal A., and S. Narain (1991).  Global Warming in an Unequal World: A Case of Environmental  Colonialism. Centre for Science and Environment (CSE), New Delhi, India. 37 pp.  Akimoto K., F. Sano, A. Hayashi, T. Homma, J. Oda, K. Wada, M. Nagashima, K. Tokushige, and T.  Tomoda (2012).  Consistent assessments of pathways toward sustainable development and climate  stabilization. Natural Resources Forum. 36, 231 244 pp. (DOI: 10.1111/j.1477 8947.2012.01460.x),  (ISSN: 1477 8947).  Alcamo J., and T. Henrichs (2002).  Critical regions: A model based estimation of world water  resources sensitive to global changes. Aquatic Sciences. 64, 352 362 pp. (DOI: 10.1007/PL00012591),  (ISSN: 1015 1621).  Allcott H. (2011).  Consumers  Perceptions and Misperceptions of Energy Costs. American Economic  Review. 101, 98 104 pp. (DOI: 10.1257/aer.101.3.98).  Allcott H. (2013).  The Welfare Effects of Misperceived Product Costs: Data and Calibrations from the  Automobile Market. American Economic Journal: Economic Policy. 5, 30 66 pp. (DOI:  10.1257/pol.5.3.30).  Allen M., D.J. Frame, C. Huntingford, C.D. Jones, J.A. Lowe, M. Meinshausen, and N. Meinshausen  (2009).  Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 458,  1163 1166 pp. .  Anenberg S.C., J. Schwartz, D. Shindell, M. Amann, G. Faluvegi, Z. Klimont, G. Janssens Maenhout, L.  Pozzoli, R. Van Dingenen, and E. Vignati (2012).  Global air quality and health co benefits of mitigating  near term climate change through methane and black carbon emission controls. Environmental health  perspectives. 120, 831 pp. .  Angel R. (2006).  Feasibility of cooling the Earth with a cloud of small spacecraft near the inner  Lagrange point (L1). Proceedings of the National Academy of Sciences of the United States of America.  103, 17184 17189 pp. (DOI: 10.1073/pnas.0608163103), (ISSN: 0027 8424).  Anthoff D., S. Rose, R. Tol, and S. Waldhoff (2011).  Regional and sectoral estimates of the social cost  of carbon: An application of FUND. Economics Discussion Paper. 31 pp. .  Arroyo Curras, T., N. Bauer, E. Kriegler, J. Schwanitz, G. Luderer, T. Aboumahboub, A. Giannousakis,  and J. Hilaire (2014).  Carbon Leakage in a Fragmented Climate Regime: The Dynamic Response of  Global Energy Markets. Tech For. & Soc. Change, accepted for publication. (DOI:  10.1016/j.techfore.2013.10.002).  Azar C., and D.J.A. Johansson (2012).  On the relationship between metrics to compare greenhouse  gases   the case of IGTP, GWP and SGTP. Earth Syst. Dynam. 3, 139 147 pp. (DOI: 10.5194/esd 3 139 2012), (ISSN: 2190 4987).    101 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Azar C., D.J.A. Johansson, and N. Mattsson (2013).  Meeting global temperature targets the role of  bioenergy with carbon capture and storage. Environmental Research Letters. 8, 034004 pp. (ISSN:  1748 9326).  Azar C., K. Lindgren, E. Larson, and K. Möllersten (2006).  Carbon Capture and Storage From Fossil  Fuels and Biomass   Costs and Potential Role in Stabilizing the Atmosphere. Climatic Change. 74, 47 79 pp. (DOI: 10.1007/s10584 005 3484 7), (ISSN: 0165 0009).  Azar C., K. Lindgren, M. Obersteiner, K. Riahi, D.P. van Vuuren, M.G.J. den Elzen, K. Möllersten, and  E.D. Larson (2010).  The feasibility of low CO2 concentration targets and the role of bio energy with  carbon capture and storage (BECCS). Climatic Change. 100, 195 202 pp. (DOI: 10.1007/s10584 010 9832 7).  Babiker M.H. (2005).  Climate change policy, market structure, and carbon leakage. Journal of  international Economics. 65, 421 445 pp. .  Babiker M.H., and R.S. Eckaus (2007).  Unemployment effects of climate policy. Environmental Science  & Policy. 10, 600 609 pp. (DOI: 10.1016/j.envsci.2007.05.002), (ISSN: 1462 9011).  Babiker M.H., G.E. Metcalf, and J. Reilly (2003).  Tax distortions and global climate policy. Journal of  Environmental Economics and Management. 46, 269 287 pp. (DOI: 10.1016/S0095 0696(02)00039 6),  (ISSN: 0095 0696).  Baciocchi R., G. Storti, and M. Mazzotti (2006).  Process design and energy requirements for the  capture of carbon dioxide from air. Chemical Engineering and Processing: Process Intensification. 45,  1047 1058 pp. (DOI: 10.1016/j.cep.2006.03.015), (ISSN: 0255 2701).  Baer P. (2013).  The greenhouse development rights framework for global burden sharing: reflection  on principles and prospects. Wiley Interdisciplinary Reviews: Climate Change. 4, 61 71 pp. (DOI:  10.1002/wcc.201), (ISSN: 1757 7799).  Baer P., T. Athanasiou, S. Kartha, and E. Kemp Benedict (2008).  The Greenhouse Development Rights  Framework: The Right to Development in a Climate Constrained World. Heinrich Böll Foundation,  Christian Aid, EcoEquity, and the Stockholm Environment Institute, Berlin and Albany, CA, 11 pp.  Baker E., and E. Shittu (2008).  Uncertainty and endogenous technical change in climate policy  models. Energy Economics. 30, 2817 2828 pp. .  Bala G., K. Caldeira, M. Wickett, T. Phillips, D. Lobell, C. Delire, and A. Mirin (2007).  Combined  climate and carbon cycle effects of large scale deforestation. Proceedings of the National Academy of  Sciences. 104, 6550 6555 pp. (ISSN: 0027 8424).  Bala G., P.B. Duffy, and K.E. Taylor (2008).  Impact of geoengineering schemes on the global  hydrological cycle. Proceedings of the National Academy of Sciences. 105, 7664 7669 pp. (DOI:  10.1073/pnas.0711648105).  Barker T., I. Bashmakov, A. Alharthi, M. Amann, L. Cifuentes, J. Drexhage, M. Duan, O. Edenhofer, B.  Flannery, M. Grubb, M. Hoogwijk, F.I. Ibitoye, C.J. Jepma, W.A. Pizer, and K. Yamaji (2007).   Mitigation from a cross sectoral perspective. In: Climate Change 2007   Mitigation. Cambridge  University Press, Cambridge pp.619 690, .  Barrett S. (2008).  The incredible economics of geoengineering. Environmental and Resource  Economics. 39, 45 54 pp. .    102 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Batlle C., I.J. Pérez Arriaga, and P. Zambrano Barragán (2012).  Regulatory design for RES E support  mechanisms: Learning curves, market structure, and burden sharing. Modeling Transport (Energy)  Demand and Policies. 41, 212 220 pp. (DOI: 10.1016/j.enpol.2011.10.039), (ISSN: 0301 4215).  Bauer N., V. Bosetti, M. Hamdi Cherif, A. Kitous, D. McCollum, A. Méjean, S. Rao, H. Turton, L.  Paroussos, S. Ashina, K. Calvin, K. Wada, and D. van Vuuren (2014).  CO2 emission mitigation and  fossil fuel markets: Dynamic and international aspects of climate policies. Technological Forecasting  and Social Change. In press, (DOI: 10.1016/j.techfore.2013.09.009), (ISSN: 0040 1625).  Bauer N., R.J. Brecha, and G. Luderer (2012).  Economics of nuclear power and climate change  mitigation policies. Proceedings of the National Academy of Sciences. (DOI:  10.1073/pnas.1201264109).  Bauer N., I. Mouratiadou, G. Luderer, L. Baumstark, R.J. Brecha, O. Edenhofer, and E. Kriegler (2013).   Global fossil energy markets and climate change mitigation   an analysis with ReMIND. Climatic  Change. 121, (DOI: 10.1007/s10584 013 0901 6), (ISSN: 0165 0009, 1573 1480).  Bazilian M., and F. Roques (2009).  Analytical Methods for Energy Diversity and Security: Portfolio  Optimization in the Energy Sector: A Tribute to the Work of Dr. Shimon Awerbuch. Elsevier Science,  New York, 364 pp., (ISBN: 0080915310). .  Bell M., D. Davis, L. Cifuentes, A. Krupnick, R. Morgenstern, and G. Thurston (2008).  Ancillary human  health benefits of improved air quality resulting from climate change mitigation. Environmental  Health. 7, 41 pp. .  Bellamy R., J. Chilvers, N.E. Vaughan, and T.M. Lenton (2012).  A review of climate geoengineering  appraisals. Wiley Interdisciplinary Reviews Climate Change. 3, 597 615 pp. (DOI: 10.1002/wcc.197),  (ISSN: 1757 7780).  Bellamy R., J. Chilvers, N.E. Vaughan, and T.M. Lenton (2013).   Opening up  geoengineering  appraisal: Multi Criteria Mapping of options for tackling climate change. Global Environmental Change.  23, 926 937 pp. (DOI: 10.1016/j.gloenvcha.2013.07.011), (ISSN: 09593780).  Van den Berg M., A. Hof, J. Van Vliet, and D. Van Vuuren (2014).  Impact of the Choice of Emission  Metrics on Greenhouse Gas Abatement and Costs. Impact of the Choice of Emission Metrics on  Greenhouse Gas Abatement and Costs.  Berk M.M., and M.G.J. den Elzen (2001).  Options for differentiation of future commitments in climate  policy: how to realise timely participation to meet stringent climate goals? Climate Policy. 1, 465 480  pp. (DOI: 10.3763/cpol.2001.0148), (ISSN: 1469 3062).  Berntsen T., K. Tanaka, and J. Fuglestvedt (2010).  Does black carbon abatement hamper CO2  abatement? Climatic Change. 103, 627 633 pp. (DOI: 10.1007/s10584 010 9941 3), (ISSN: 0165 0009).  Betts R.A., O. Boucher, M. Collins, P.M. Cox, P.D. Falloon, N. Gedney, D.L. Hemming, C. Huntingford,  C.D. Jones, D.M.H. Sexton, and M.J. Webb (2007).  Projected increase in continental runoff due to  plant responses to increasing carbon dioxide. Nature. 448, 1037 U5 pp. (DOI: 10.1038/nature06045),  (ISSN: 0028 0836).  Bickel J.E., and S. Agrawal (2011).  Reexamining the economics of aerosol geoengineering. Climatic  Change. 1 14 pp. (ISSN: 0165 0009).    103 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Blackstock J.J., D.S. Battisti, K. Caldeira, D.M. Eardley, J.I. Katz, D. Keith, A.A.N. Patrinos, D. Schrag,  R.H. Socolow, and S.E. Koonin (2009).  Climate Engineering Responses to Climate Emergencies. Novim,  Santa Barbara, California. 66 pp. Available at: http://tinyurl.com/m4w3ca.  Blanford G., E. Kriegler, and M. Tavoni (2014).  Harmonization vs. Fragmentation: Overview of Climate  Policy Scenarios in EMF27. Climatic Change. In press, (DOI: DOI: 10.1007/s10584 013 0951 9).  Blanford G.J., S.K. Rose, and M. Tavoni (2012).  Baseline projections of energy and emissions in Asia.  The Asia Modeling Exercise: Exploring the Role of Asia in Mitigating Climate Change. 34, S284 S292  pp. (DOI: 10.1016/j.eneco.2012.08.006), (ISSN: 0140 9883).  Bodansky D. (1996).  May we engineer the climate? Climatic Change. 33, 309 321 pp. (DOI:  10.1007/bf00142579), (ISSN: 0165 0009).  Bodansky D. (2012).  The who, what, and wherefore of geoengineering governance. Climatic Change.  121, 1 13 pp. (ISSN: 0165 0009).  Bode S. (2004).  Equal emissions per capita over time   a proposal to combine responsibility and  equity of rights for post 2012 GHG emission entitlement allocation. European Environment. 14, 300 316 pp. (DOI: 10.1002/eet.359), (ISSN: 1099 0976).  Boden T.A., G. Marland, and R.J. Andres (2013).  Global, Regional, and National Fossil Fuel CO2  Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.  Department of Energy, Oak Ridge, Tenn. 539 551 pp. Available at:  http://cdiac.ornl.gov/trends/emis/overview_2010.html.  Böhringer C., E.J. Balistreri, and T.F. Rutherford (2012).  The role of border carbon adjustment in  unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29). Energy Economics.  34, Supplement 2, S97 S110 pp. (DOI: 10.1016/j.eneco.2012.10.003), (ISSN: 0140 9883).  Bohringer C., and A. Löschel (2006).  Promoting Renewable Energy in Europe: A Hybrid Computable  General Equilibrium Approach. The Energy Journal. Hybrid Modeling, 135 150 pp. (ISSN: 0195 6574).  Böhringer C., T.F. Rutherford, and R.S.J. Tol (2009).  THE EU 20/20/2020 targets: An overview of the  EMF22 assessment. Energy Economics. 31, S268 S273 pp. (DOI: 16/j.eneco.2009.10.010), (ISSN: 0140 9883).  Böhringer C., and H. Welsch (2006).  Burden sharing in a greenhouse: egalitarianism and sovereignty  reconciled. Applied Economics. 38, 981 996 pp. (DOI: 10.1080/00036840500399453), (ISSN: 0003 6846).  Bollen J., B. Guay, S. Jamet, and J. Corfee Morlot (2009a).  Co Benefits of Climate Change Mitigation  Policies. OECD Publishing, Paris, France. 47 pp. Available at: /content/workingpaper/224388684356.  Bollen J., S. Hers, and B. van der Zwaan (2010).  An integrated assessment of climate change, air  pollution, and energy security policy. Energy Policy. 38, 4021 4030 pp. (DOI:  10.1016/j.enpol.2010.03.026), (ISSN: 0301 4215).  Bollen J., B. van der Zwaan, C. Brink, and H. Eerens (2009b).  Local air pollution and global climate  change: A combined cost benefit analysis. Resource and Energy Economics. 31, 161 181 pp. (DOI:  10.1016/j.reseneeco.2009.03.001), (ISSN: 0928 7655).    104 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Bosello F., C. Carraro, and E. De Cian (2010b).  Climate Policy and the Optimal Balance between  Mitigation, Adaptation and Unavoided Damage. Climate Change Economics. 1, 71 92 pp. .  Bosello F., C. Carraro, and E. De Cian (2010a).  An Analysis of Adaptation as a Response to Climate  Change. In: Smart Solutions to Climate Change. B. Lomborg, (ed.), Cambridge University Press,  Cambridge.  Bosello F., R. Roson, and R. Tol (2007).  Economy wide Estimates of the Implications of Climate  Change: Sea Level Rise. Environmental and Resource Economics. 37, 549 571 pp. .  Bosetti V., C. Carraro, R. Duval, and M. Tavoni (2011).  What should we expect from innovation? A  model based assessment of the environmental and mitigation cost implications of climate related  R&D. Energy Economics. 33, 1313 1320 pp. (DOI: 10.1016/j.eneco.2011.02.010), (ISSN: 0140 9883).  Bosetti V., C. Carraro, E. Massetti, A. Sgobbi, and M. Tavoni (2009a).  Optimal energy investment and  R&D strategies to stabilize atmospheric greenhouse gas concentrations. Resource and Energy  Economics. 31, 123 137 pp. (DOI: 10.1016/j.reseneeco.2009.01.001), (ISSN: 0928 7655).  Bosetti V., C. Carraro, A. Sgobbi, and M. Tavoni (2009b).  Delayed action and uncertain stabilisation  targets. How much will the delay cost? Climatic Change. 96, 299 312 pp. (DOI: 10.1007/s10584 009 9630 2), (ISSN: 0165 0009).  Bosetti V., C. Carraro, and M. Tavoni (2009c).  A Chinese commitment to commit: can it break the  negotiation stall? Climatic change. 97, 297 303 pp. .  Bosetti V., C. Carraro, and M. Tavoni (2009d).  Climate change mitigation strategies in fast growing  countries: The benefits of early action. Energy Economics. 31, Supplement 2, S144 S151 pp. (DOI: doi:  10.1016/j.eneco.2009.06.011), (ISSN: 0140 9883).  Bosetti V., and E. De Cian (2013).  A Good Opening: The Key to Make the Most of Unilateral Climate  Action. Environmental and Resource Economics. 56, 255 276 pp. (DOI: 10.1007/s10640 013 9643 1),  (ISSN: 0924 6460, 1573 1502).  Bosetti V., and J. Frankel (2012).  Politically Feasible Emissions Targets to Attain 460 ppm CO2  Concentrations. Review of Environmental Economics and Policy. 6, 86 109 pp. (DOI:  10.1093/reep/rer022).  Bosetti V., and M. Tavoni (2009).  Uncertain R&D, backstop technology and GHGs stabilization. Energy  Economics. 31, S18 S26 pp. .  Bosquet B. (2000).  Environmental tax reform: does it work? A survey of the empirical evidence.  Ecological Economics. 34, 19 32 pp. (DOI: 10.1016/S0921 8009(00)00173 7), (ISSN: 0921 8009).  Boucher O., and G.A. Folberth (2010).  New Directions: Atmospheric methane removal as a way to  mitigate climate change? Atmospheric Environment. 44, 3343 3345 pp. (DOI:  10.1016/j.atmosenv.2010.04.032), (ISSN: 1352 2310).  Boucher O., P.M. Forster, N. Gruber, M. Ha Duong, M.G. Lawrence, T.M. Lenton, A. Maas, and N.E.  Vaughan (2013).  Rethinking climate engineering categorization in the context of climate change  mitigation and adaptation. Wiley Interdisciplinary Reviews: Climate Change. 5, 23 35 pp. (DOI:  10.1002/wcc.261), (ISSN: 1757 7799).    105 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Boucher O., Gruber, N., and Blackstock (2011).  Summary of the Synthesis Session. IPCC Expert  Meeting Report on Geoengineering. In: IPCC Expert Meeting Report on Geoengineering. IPCC Working  Group III Technical Support Unit, Potsdam Institute for Climate Impact Research, Potsdam, Germany  pp.99, .  Boucher O., A. Jones, and R.A. Betts (2009).  Climate response to the physiological impact of carbon  dioxide on plants in the Met Office Unified Model HadCM3. Climate Dynamics. 32, 237 249 pp. (DOI:  10.1007/s00382 008 0459 6), (ISSN: 0930 7575).  Bovenberg A., and L. Goulder (1996).  Optimal environmental taxation in the presence of other taxes:  General equilibrium analyses. American Economic Review. 86, 985 1006 pp. (ISSN: 0002 8282).  Bows A., and K. Anderson (2008).  Contraction and convergence: an assessment of the CCOptions  model. Climatic Change. 91, 275 290 pp. (DOI: 10.1007/s10584 008 9468 z), (ISSN: 0165 0009).  Boyd P.W., T. Jickells, C.S. Law, S. Blain, E.A. Boyle, K.O. Buesseler, K.H. Coale, J.J. Cullen, H.J.W. de  Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N.P.J. Owens, R. Pollard, R.B. Rivkin, J.  Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, and A.J. Watson (2007).   Mesoscale Iron Enrichment Experiments 1993 2005: Synthesis and Future Directions. Science. 315, 612  617 pp. .  BP (2013).  BP Statistical Review of World Energy. BP, London. 48 pp. Available at:  http://www.bp.com/en/global/corporate/about bp/statistical review of world energy 2013.html.  Bradford D.F. (1999).  On the uses of benefit cost reasoning in choosing policy toward global climate  change. In: Discounting and intergenerational equity. J.P. Weyant, P. Portney, (eds.), RFF Press,  Washington DC, USA pp.37 44, (ISBN: 0915707896).  Bréchet T., F. Gerard, and H. Tulkens (2011).  Efficiency vs. stability in climate coalitions: a conceptual  and computational appraisal. Energy Journal. 32, 49 pp. .  De Bruin K.C., R.B. Dellink, and R.S.J. Tol (2009).  AD DICE: an implementation of adaptation in the  DICE model. Climatic Change. 95, 63 81 pp. (DOI: 10.1007/s10584 008 9535 5), (ISSN: 0165 0009,  1573 1480).  Bruinsma J. (2011).  The resources outlook: by how much do land, water and crop yields need to  increase by 2050? In: Looking ahead in world food and agriculture: Perspectives to 2050. P. Conforti,  (ed.), Food and Agriculture Organization of the United Nations., Rome, Italy pp.1 33, .  Budyko M.I., and D.H. Miller (1974).  Climate and Life. Academic Press, New York, 508 pp.  Buonanno P., C. Carraro, and M. Galeotti (2003).  Resource and Energy Economics. . Endogenous  induced technical change and the costs of Kyoto. Resource and Energy Economics. 25, 11 34 pp. .  Bye B., S. Kverndokk, and K. Rosendahl (2002).  Mitigation costs, distributional effects, and ancillary  benefits of carbon policies in the Nordic countries, the U.K., and Ireland. Mitigation and Adaptation  Strategies for Global Change. 7, 339 366 pp. (DOI: 10.1023/A:1024741018194), (ISSN: 1381 2386).  Caldeira K., G. Bala, and L. Cao (2013).  The Science of Geoengineering. Annual Review of Earth and  Planetary Sciences. 41, 231 256 pp. (DOI: 10.1146/annurev earth 042711 105548), (ISSN: 0084 6597).  Calvin K., and al. (2014).  The effect of African growth on future global energy, emissions, and regional  development. Accepted for publication in Climatic Change. (DOI: DOI: 10.1007/s10584 013 0964 4).    106 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Calvin K., J. Edmonds, B. Bond Lamberty, L. Clarke, S.H. Kim, P. Kyle, S.J. Smith, A. Thomson, and M.  Wise (2009a).  2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy  Economics. 31, S107 S120 pp. (ISSN: 0140 9883).  Calvin K., P. Patel, A. Fawcett, L. Clarke, K. Fisher Vanden, J. Edmonds, S.H. Kim, R. Sands, and M.  Wise (2009b).  The distribution and magnitude of emissions mitigation costs in climate stabilization  under less than perfect international cooperation: SGM results. Energy Economics. 31, S187 S197 pp.  (DOI: 16/j.eneco.2009.06.014), (ISSN: 0140 9883).  Calvin K., M. Wise, L. Clarke, J. Edmonds, P. Kyle, P. Luckow, and A. Thomson (2013).  Implications of  simultaneously mitigating and adapting to climate change: initial experiments using GCAM. Climatic  Change. 117, 545 560 pp. (DOI: 10.1007/s10584 012 0650 y), (ISSN: 0165 0009).  Calvin K., M. Wise, P. Luckow, P. Kyle, L. Clarke, and J. Edmonds (2014).  Implications of uncertain  future fossil energy resources on bioenergy use and terrestrial carbon emissions. Climatic Change.  accepted for publication, .  Cao L., and K. Caldeira (2010).  Can ocean iron fertilization mitigate ocean acidification? Climatic  Change. 99, 303 311 pp. (DOI: 10.1007/s10584 010 9799 4), (ISSN: 0165 0009).  Carraro C., E. De Cian, L. Nicita, E. Massetti, and E. Verdolini (2010).  Environmental policy and  technical change: A survey. International Review of Environmental and Resource Economics. 4, 163 219 pp. .  Carraro C., R. Gerlagh, and B. van der Zwaan (2003).  Resource and Energy Economics. . Endogenous  technical change in environmental macroeconomics. Resource and Energy Economics. 25, 1 10 pp. .  CBD (1992).  Convention on Biological Diversity (CBD). Available at: http://www.cbd.int/convention/.  CBD (2010).  COP 10 Decision X/2: Strategic Plan for Biodiversity 2011 2020. Secretariat of the  Convention on Biological Diversity, Aichi.  Chakravarty S., A. Chikkatur, H. de Coninck, S. Pacala, R. Socolow, and M. Tavoni (2009).  Sharing  global CO2 emission reductions among one billion high emitters. Proceedings of the National Academy  of Sciences. 106, 11884 11888 pp. (DOI: 10.1073/pnas.0905232106).  Chaturvedi V., and P. Shukla (2013).  Role of energy efficiency in climate change mitigation policy for  India: assessment of co benefits and opportunities within an integrated assessment modeling  framework. Climatic Change. 1 13 pp. (DOI: 10.1007/s10584 013 0898 x), (ISSN: 0165 0009).  Chaturvedi V., S. Waldhoff, L. Clarke, and S. Fujimori (2012).  What are the starting points? Evaluating  base year assumptions in the Asian Modeling Exercise. The Asia Modeling Exercise: Exploring the Role  of Asia in Mitigating Climate Change. 34, Supplement 3, S261 S271 pp. (DOI:  10.1016/j.eneco.2012.05.004), (ISSN: 0140 9883).  Chen C., and M. Tavoni (2013).  Direct air capture of CO2 and climate stabilization: A model based  assessment. Climatic Change. 118, 59 72 pp. (DOI: 10.1007/s10584 013 0714 7), (ISSN: 0165 0009).  Chen W., X. Yin, and H. Zhang (2013).  Towards low carbon development in China: a comparison of  national and global models. Climatic Change. 1 14 pp. (DOI: 10.1007/s10584 013 0937 7), (ISSN:  0165 0009).    107 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Cherp A., A. Adenikinju, A. Goldthau, F. Hernandez, L. Hughes, J. Jansen, J. Jewell, M. Olshanskaya,  R. Soares de Oliveira, B. Sovacool, and S. Vakulenko (2012).  Chapter 5   Energy and Security. In:  Global Energy Assessment   Toward a Sustainable Future.Cambridge University Press, Cambridge, UK  and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg,  Austria pp.325 384, (ISBN: 9781 10700 5198 hardback 9780 52118 2935 paperback).  Cherp A., J. Jewell, V. Vinichenko, N. Bauer, and E. Cian (2013).  Global energy security under  different climate policies, GDP growth rates and fossil resource availabilities. Climatic Change. In  press, (DOI: 10.1007/s10584 013 0950 x), (ISSN: 0165 0009).  Chum H., A. Faaij, J. Moreira, G. Berndes, P. Dharnija, H. Dong, and B. Gabrielle (2011).  Bioenergy.  In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [[O. Edenhofer, R.  Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S.  Schlömer, C. von Stechow (eds)]]. Cambridge University Press, Cambridge, United Kingdom and New  York, NY, USA pp.209 332, .  De Cian E., Carrara, S., and Tavoni, M (2013a).  Innovation benefits from nuclear phase out: can they  compensate the costs? Climatic Change. In press, (DOI: doi 10.1007/s10584 013 0870 9).  De Cian E., F. Sferra, and M. Tavoni (2013b).  The influence of economic growth, population and fossil  fuel scarcity on energy investments. Climatic Change. In press, (DOI: 10.1007/s10584 013 0902 5),  (ISSN: 1573 1480).  De Cian E., and M. Tavoni (2012).  Do technology externalities justify restrictions on emission permit  trading? Resource and Energy Economics. 34, 624 646 pp. (DOI: 10.1016/j.reseneeco.2012.05.009),  (ISSN: 0928 7655).  Clarke L., J. Edmonds, V. Krey, R. Richels, S.K. Rose, and M. Tavoni (2009).  International climate  policy architectures: Overview of the EMF 22 International Scenarios. Energy Economics. 31, S64 S81  pp. (ISSN: 0140 9883).  Clarke L., V. Krey, J. Weyant, and V. Chaturvedi (2012).  Regional energy system variation in global  models: Results from the Asian Modeling Exercise scenarios. Energy Economics. 34, S293 S305 pp.  (DOI: 10.1016/j.eneco.2012.07.018), (ISSN: 0140 9883).  Combet E., F. Ghersi, J.C. Hourcade, and D. Thery (2010).  Carbon Tax and Equity, the importance of  Policy Design. In: Critical Issues in Environmental Taxation. Oxford University Press, Oxford pp.277 295, .  Coppock R. (1992).  Policy implications of greenhouse warming. AIP Conference Proceedings. 247,  222 236 pp. (DOI: 10.1063/1.41930).  Le Coq C., and E. Paltseva (2009).  Measuring the security of external energy supply in the European  Union. Energy Policy. 37, 4474 4481 pp. (DOI: 10.1016/j.enpol.2009.05.069), (ISSN: 0301 4215).  Corner A., N. Pidgeon, and K. Parkhill (2012).  Perceptions of geoengineering: public attitudes,  stakeholder perspectives, and the challenge of  upstream  engagement. Wiley Interdisciplinary  Reviews Climate Change. 3, 451 466 pp. (DOI: 10.1002/wcc.176), (ISSN: 1757 7780).  Crassous R., and J. C. Hourcade (2006).  Endogenous Structural Change and Climate Targets Modeling  Experiments with Imaclim R. The Energy Journal. 0, 259 276 pp. .    108 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Criqui P., A. Kitous, M.M. Berk, M.G.J. Den Elzen, B. Eickhout, P. Lucas, D.P. van Vuuren, N.  Kouvaritakis, and D. Vanregemorter (2003).  Greenhouse Gas Reduction Pathways in the UNFCCC  Process up to 2025 Technical Report. European Commission, DG Environment, Brussels, Belgium. 104  pp.  Criqui P., and S. Mima (2012).  European climate energy security nexus: A model based scenario  analysis. Modeling Transport (Energy) Demand and Policies. 41, 827 842 pp. (DOI:  10.1016/j.enpol.2011.11.061), (ISSN: 0301 4215).  Crutzen P. (2006).  Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve  a Policy Dilemma? Climatic Change. 77, 211 220 pp. (DOI: 10.1007/s10584 006 9101 y), (ISSN: 0165 0009).  Daioglou V., B.J. van Ruijven, and D.P. van Vuuren (2012).  Model projections for household energy  use in developing countries. 7th Biennial International Workshop  Advances in Energy Studies . 37,  601 615 pp. (DOI: 10.1016/j.energy.2011.10.044), (ISSN: 0360 5442).  Darwin R., and R. Tol (2001).  Estimates of the Economic Effects of Sea Level Rise. Environmental and  Resource Economics. 19, 113 129 pp. .  de_Richter R., and S. Caillol (2011).  Fighting global warming: The potential of photocatalysis against  CO2 , CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. Journal of  Photochemistry and Photobiology C: Photochemistry Reviews. 12, 1 19 pp. (DOI:  10.1016/j.jphotochemrev.2011.05.002), (ISSN: 1389 5567).  Ding Z.L., X.N. Duan, Q.S. Ge, and Z.Q. Zhang (2009).  Control of atmospheric CO 2 concentrations by  2050: A calculation on the emission rights of different countries. Science in China Series D: Earth  Sciences. 52, 1447 1469 pp. .  Dowlatabadi H. (1998).  Sensitivity of climate change mitigation estimates to assumptions about  technical change. Energy Economics. 20, 473 493 pp. (DOI: 10.1016/S0140 9883(98)00009 7), (ISSN:  0140 9883).  Dowling P. (2013).  The impact of climate change on the European energy system. Energy Policy. 60,  406 417 pp. (DOI: 10.1016/j.enpol.2013.05.093), (ISSN: 0301 4215).  Dubash N.K., D. Raghunandan, G. Sant, and A. Sreenivas (2013).  Indian Climate Change Policy.  Economic & Political Weekly. 48, 47 pp. .  Early J.T. (1989).  Space based solar shield to offset greenhouse effect. Journal of the British  Interplanetary Society. 42, 567 569 pp. (ISSN: 0007 084X).  Eboli F., R. Parrado, and R. Roson (2010).  Climate change feedback on economic growth: explorations  with a dynamic general equilibrium model. Environment and Development Economics. 15, 515 533 pp.  (DOI: 10.1017/S1355770X10000252).  Edenhofer O., B. Knopf, T. Barker, L. Baumstark, E. Bellevrat, B. Chateau, P. Criqui, M. Isaac, A.  Kitous, S. Kypreos, M. Leimbach, K. Lessmann, B. Magne, A. Scrieciu, H. Turton, and D. Van Vuuren  (2010).  The economics of low stabilization: Model comparison of mitigation strategies and costs.  Energy Journal. 31, 11 48 pp. Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 77749319301&partnerID=40&md5=8553abeac6ecffe853fbc430f7b17972.    109 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Edenhofer O., R. Pichs Madruga, Y. Sokon, Christopher Field,, V. Barros,, T.F. Stocker, and et al.  (2011).  IPCC Expert Meeting on Geoengineering: Meeting Report. Intergovernmental Panel on Climate  Change, Lima, Peru. 108 pp. Available at: http://www.ipcc.ch/pdf/supporting material/EM_GeoE_Meeting_Report_final.pdf.  EDF; The Royal Society; TWAS (2012).  Solar Radiation Management. The Governance of Research.  Environmental Defense Fund, Washington, DC. 70 pp. Available at:  http://www.srmgi.org/files/2012/01/DES2391_SRMGI report_web_11112.pdf.  Edmonds J., L. Clarke, J. Lurz, and M. Wise (2008).  Stabilizing CO2  concentrations with incomplete  international cooperation. Climate Policy. 8, 355 376 pp. .  Edmonds J., P. Luckow, K. Calvin, M. Wise, J. Dooley, P. Kyle, S. Kim, P. Patel, and L. Clarke (2013).   Can radiative forcing be limited to 2.6 Wm 2 without negative emissions from bioenergy and CO2  capture and storage? Climatic Change. 1 15 pp. (DOI: 10.1007/s10584 012 0678 z), (ISSN: 0165 0009).  Edmonds J.A., T. Wilson, M.A. Wise, and J.P. Weyant (2006).  Electrification of the Economy and CO2   Emissions Mitigation. Environmental Economics and Policy Studies. 7, 175 203 pp. .  Eisenberger P., R. Cohen, G. Chichilnisky, N. Eisenberger, R. Chance, and C. Jones (2009).  Global  Warming and Carbon Negative Technology: Prospects for a Lower Cost Route to a Lower Risk  Atmosphere. Energy & Environment. 20, 973 984 pp. (DOI: 10.1260/095830509789625374).  Ekholm T., V. Krey, S. Pachauri, and K. Riahi (2010a).  Determinants of household energy  consumption in India. The socio economic transition towards a hydrogen economy   findings from  European research, with regular papers. 38, 5696 5707 pp. (DOI: 10.1016/j.enpol.2010.05.017), (ISSN:  0301 4215).  Ekholm T., S. Soimakallio, S. Moltmann, N. Höhne, S. Syri, and I. Savolainen (2010b).  Effort sharing in  ambitious, global climate change mitigation scenarios. Energy Policy. 38, 1797 1810 pp. (DOI:  16/j.enpol.2009.11.055), (ISSN: 0301 4215).  Ellerman A.D. (2010).  Pricing Carbon: The European Union Emissions Trading Scheme. Cambridge  University Press, Cambridge UK, 390 pp., (ISBN: 0521196477). .  Ellerman A.D., and B. Buchner (2008).  Over Allocation or Abatement? A Preliminary Analysis of the  EU ETS Based on the 2005 06 Emissions Data. Environmental and Resource Economics. 41, 267 287  pp. (DOI: 10.1007/s10640 008 9191 2), (ISSN: 0924 6460).  Den Elzen M.G.J., A.M. Beltran, A.F. Hof, B. van Ruijven, and J. van Vliet (2012).  Reduction targets  and abatement costs of developing countries resulting from global and developed countries  reduction  targets by 2050. Mitigation and Adaptation Strategies for Global Change. 1 22 pp. .  Den Elzen M., and N. Höhne (2008).  Reductions of greenhouse gas emissions in Annex I and non Annex I countries for meeting concentration stabilisation targets. Climatic Change. 91, 249 274 pp.  (DOI: 10.1007/s10584 008 9484 z), (ISSN: 0165 0009).  Den Elzen M., and N. Höhne (2010).  Sharing the reduction effort to limit global warming to 2°C.  Climate Policy. 10, 247 260 pp. (DOI: 10.3763/cpol.2009.0678), (ISSN: 1469 3062).  Den Elzen M.G.J., N. Höhne, B. Brouns, H. Winkler, and H.E. Ott (2007).  Differentiation of countries   future commitments in a post 2012 climate regime: An assessment of the  South North Dialogue     110 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Proposal. Environmental Science & Policy. 10, 185 203 pp. (DOI: 10.1016/j.envsci.2006.10.009), (ISSN:  1462 9011).  Den Elzen M., and P. Lucas (2005).  The FAIR model: A tool to analyse environmental and costs  implications of regimes of future commitments. Environmental Modeling & Assessment. 10, 115 134  pp. (DOI: 10.1007/s10666 005 4647 z), (ISSN: 1420 2026).  Den Elzen M., P. Lucas, and D. van Vuuren (2005).  Abatement costs of post Kyoto climate regimes.  Energy Policy. 33, 2138 2151 pp. (DOI: 10.1016/j.enpol.2004.04.012), (ISSN: 0301 4215).  Den Elzen M.G.J., P.L. Lucas, and D.P. Vuuren (2008).  Regional abatement action and costs under  allocation schemes for emission allowances for achieving low CO 2 equivalent concentrations. Climatic  change. 90, 243 268 pp. .  Den Elzen M., and M. Meinshausen (2006).  Meeting the EU 2°C climate target: global and regional  emission implications. Climate Policy. 6, 545 564 pp. (DOI: 10.1080/14693062.2006.9685620), (ISSN:  1469 3062).  Den Elzen M.G.J., and D. van Vuuren (2007).  Peaking profiles for achieving long term temperature  targets with more likelihood at lower costs. Proceedings of the National Academy of Sciences. 104,  17931  17936 pp. (DOI: 10.1073/pnas.0701598104).  Eom J., J.A. Edmonds, V. Krey, N. Johnson, T. Longden, G. Luderer, K. Riahi, and D. van Vuuren  (2014).  The Impact of Near term Climate Policy Choices on Technology and Emissions Transition  Pathways. Technological Forecasting and Social Change. In press, (DOI:  10.1016/j.techfore.2013.09.017).  Fankhauser S., F. Sehlleier, and N. Stern (2008).  Climate change, innovation and jobs. Climate Policy.  8, 421 429 pp. (DOI: 10.3763/cpol.2008.0513), (ISSN: 1469 3062).  Fawcett A., L. Clarke, S. Rausch, and J. Weyant (2014).  Policy Overview of the EMF24 Study. Energy  Journal. In press, (DOI: 10.5547/01956574.35.SI1.3).  Finon D., and E. Romano (2009).  Electricity market integration: Redistribution effect versus resource  reallocation. Energy Policy. 37, 2977 2985 pp. (DOI: 10.1016/j.enpol.2009.03.045), (ISSN: 0301 4215).  Finus M., E. Van Ierland, and R. Dellink (2003).  Stability of Climate Coalitions in a Cartel Formation  Game. Fondazione Eni Enrico Mattei (FEEM), Italy. Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=447461.  Fischedick M., R. Schaeffer, A. Adedoyin, M. Akai, T. Bruckner, L. Clarke, V. Krey, I. Savolainen, S.  Teske, D. Urge Vorsatz, R. Wright, and G. Luderer (2011).  Chapter 10: Mitigation potential and costs.  In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [[O. Edenhofer, R.  Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S.  Schlömer, C. von Stechow (eds)]]. Cambridge University Press, Cambridge pp.74, .  Fischer C., and A.K. Fox (2011).  The Role of Trade and Competitiveness Measures in US Climate  Policy. American Economic Review. 101, 258 62 pp. (DOI: 10.1257/aer.101.3.258).  Fischer G., F.N. Tubiello, H. van Velthuizen, and D.A. Wiberg (2007).  Climate change impacts on  irrigation water requirements: Effects of mitigation, 1990 2080. Greenhouse Gases   Integrated  Assessment. 74, 1083 1107 pp. (DOI: 10.1016/j.techfore.2006.05.021), (ISSN: 0040 1625).    111 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Fisher B.S., N. Nakicenovic, K. Alfsen, J. Corfee Morlot, F. de la Chesnaye, J. C. Hourcade, K. Jiang, M.  Kainuma, E. La Rovere, A. Matysek, A. Rana, K. Riahi, R. Richels, S.K. Rose, D. van Vuuren, and R.  Warren (2007).  Issues related to mitigation in the long term context. In: Climate Change 2007:  Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter governmental Panel on Climate Change. Cambridge University Press, Cambridge, UK pp.82, .  Fisher Vanden K. (2008).  Introduction to the special issue on technological change and the  environment. Energy Economics. 30, 2731 2733 pp. (DOI: 10.1016/j.eneco.2008.08.001), (ISSN: 0140 9883).  Fisher Vanden K., I. Sue Wing, E. Lanzi, and D. Popp (2011).  Modeling Climate Change Impacts and  Adaptation: Recent Approaches. Pennsylvania State University, 45 pp.  Fisher Vanden K., I. Sue Wing, E. Lanzi, and D. Popp (2012).  Modeling climate change feedbacks and  adaptation responses: recent approaches and shortcomings. Climatic Change. 1 15 pp. (DOI:  10.1007/s10584 012 0644 9), (ISSN: 0165 0009).  Food and Agriculture Organization of the United Nations (FAO) (2012).  FAOSTAT database. Available  at: http://faostat.fao.org/.  Friel S., A.D. Dangour, T. Garnett, K. Lock, Z. Chalabi, I. Roberts, A. Butler, C.D. Butler, J. Waage, A.J.  McMichael, and A. Haines (2009).  Public health benefits of strategies to reduce greenhouse gas  emissions: food and agriculture. The Lancet. 374, 2016 2025 pp. (DOI: 10.1016/S0140 6736(09)61753 0), (ISSN: 0140 6736).  Frondel M., N. Ritter, C.M. Schmidt, and C. Vance (2010).  Economic impacts from the promotion of  renewable energy technologies: The German experience. Energy Policy. 38, 4048 4056 pp. (DOI:  10.1016/j.enpol.2010.03.029), (ISSN: 0301 4215).  Fullerton D., and G.E. Metcalf (1997).  Environmental Taxes and the Double Dividend Hypothesis: Did  You Really Expect Something for Nothing. Chicago Kent Law Review. 73, 221 pp. .  Füssel H. (2010).  Modeling impacts and adaptation in global IAMs. Wiley Interdisciplinary Reviews:  Climate Change. 1, 288 303 pp. (DOI: 10.1002/wcc.40), (ISSN: 1757 7799).  G8 (2009).  Responsible Leadership for a Sustainable Future. Responsible Leadership for a Sustainable  Future. , 40. L Aquila Summit, L Aquila.  GAO (2011).  Technology Assessment: Climate Engineering: Technical Status, Future Directions, and  Potential Responses. United States Government Accountability Office (GAO), USA. 135 pp. Available at:  http://www.gao.gov/assets/330/322208.pdf.  Gardiner S.M. (2011).  Some Early Ethics of Geoengineering the Climate: A Commentary on the Values  of the Royal Society Report. Environmental Values. 20, 163 188 pp. (DOI:  10.3197/096327111x12997574391689), (ISSN: 0963 2719).  Gaskill A. (2004).  Summary of Meeting with US DOE to discuss Geoengineering options to prevent  abrupt and long term climate change. Available at:  http://www.see.ed.ac.uk/~shs/Climate%20change/Geo politics/Gaskill%20DOE.pdf.  GEA (2012).  Global Energy Assessment   Toward a Sustainable Future. Cambridge University Press,  Cambridge, UK and New York, NY, USA, and the International Institute for Applied Systems Analysis,    112 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Laxenburg, Austria [ISBN 9781107005198 (hardback); ISBN 9780521182935 (paperback)], 1882 pp.,  (ISBN: [ISBN 9781107005198 (hardback); ISBN 9780521182935 (paperback)]). .  Gerlagh R., S. Kverndokk, and K.E. Rosendahl (2009).  Optimal timing of climate change policy:  Interaction between carbon taxes and innovation externalities. Environmental and resource  Economics. 43, 369 390 pp. .  Gerlagh R., and B. van der Zwaan (2003).  Resource and Energy Economics. . Gross world product and  consumption in a global warming model with endogenous technological change. Resource and Energy  Economics. 25, 35 57 pp. .  Gillingham K., R.. Newell, and W.A. Pizer (2008).  Modeling endogenous technological change for  climate policy analysis. Energy Economics. 30, 2734 2753 pp. .  Ginzky H., F. Harmann, K. Kartschall, W. Leujak, K. Lipsius, C. Mäder, S. Schwermer, and G. Straube  (2011).  Geoengineering. Effective Climate Protection or Megalomania. German Federal Environment  Agency, Berlin, Germany. 48 pp.  Goes M., N. Tuana, and K. Keller (2011).  The economics (or lack thereof) of aerosol geoengineering.  Climatic Change. 109, 719 744 pp. (DOI: 10.1007/s10584 010 9961 z), (ISSN: 0165 0009).  Goldemberg J., T.B. Johansson, A.K.N. Reddy, and R.H. Williams (1985).  Basic needs and much more  with one kilowatt per capita (energy). Ambio. 14, 190 200 pp. .  Golombek R., and M. Hoel (2008).  Endogenous technology and tradable emission quotas. Resource  and Energy Economics. 30, 197 208 pp. .  Gough C., and P. Upham (2011).  Biomass energy with carbon capture and storage (BECCS or Bio CCS).  Greenhouse Gases: Science and Technology. 1, 324 334 pp. (DOI: 10.1002/ghg.34), (ISSN: 2152 3878).  Goulder L.H. (1995).  Environmental taxation and the double dividend: A reader s guide. International  Tax and Public Finance. 2, 157 183 pp. (DOI: 10.1007/BF00877495), (ISSN: 0927 5940).  Goulder L.H., and K. Mathai (2000).  Journal of Environmental Economics and Management. . Optimal  CO2  Abatement in the Presence of Induced Technological Change. Journal of Environmental Economics  and Management. 39, 1 38 pp. .  Goulder L.H., and I.W.H. Parry (2008).  Review of Environmental Economics and Policy. . Instrument  Choice in Environmental Policy. Review of Environmental Economics and Policy. 2, 152 174 pp. .  Goulder L.H., and S.H. Schneider (1999).  Resource and Energy Economics. . Induced technological  change and the attractiveness of CO2  abatement policies. Resource and Energy Economics. 21, 211 253 pp. .  Govindasamy B., and K. Caldeira (2000).  Geoengineering Earth s radiation balance to mitigate CO2  induced climate change. Geophysical Research Letters. 27, 2141 2144 pp. (DOI:  10.1029/1999gl006086), (ISSN: 0094 8276).  Grainger C.A., and C.D. Kolstad (2010).  Who Pays a Price on Carbon? Environmental and Resource  Economics. 46, 359 376 pp. .  Greaker M., and L.L. Pade (2009).  Optimal carbon dioxide abatement and technological change:  should emission taxes start high in order to spur R&D? Climatic change. 96, 335 355 pp. .    113 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Grubb M., L. Butler, and P. Twomey (2006).  Diversity and security in UK electricity generation: The  influence of low carbon objectives. Energy Policy. 34, 4050 4062 pp. (DOI:  10.1016/j.enpol.2005.09.004).  Grübler A., N. Nakicenovic, and D.G. Victor (1999).  Energy Policy. . Dynamics of energy technologies  and global change. Energy Policy. 27, 247 280 pp. .  Guivarch C., R. Crassous, O. Sassi, and S. Hallegatte (2011).  The costs of climate policies in a second best world with labour market imperfections. Climate Policy. 11, 768 788 pp. (DOI:  10.3763/cpol.2009.0012), (ISSN: 1469 3062).  Gupta E. (2008).  Oil vulnerability index of oil importing countries. Energy Policy. 36, 1195 1211 pp.  (DOI: 10.1016/j.enpol.2007.11.011), (ISSN: 0301 4215).  Gusdorf F., and S. Hallegatte (2007).  Compact or spread out cities: Urban planning, taxation, and the  vulnerability to transportation shocks. Energy Policy. 35, 4826 4838 pp. (DOI:  10.1016/j.enpol.2007.04.017), (ISSN: 0301 4215).  Gusdorf F., S. Hallegatte, and A. Lahellec (2008).  Time and space matter: How urban transitions  create inequality. Local evidence on vulnerabilities and adaptations to global environmental change.  18, 708 719 pp. (DOI: 10.1016/j.gloenvcha.2008.06.005), (ISSN: 0959 3780).  Güssow K., A. Proelss, A. Oschlies, K. Rehdanz, and W. Rickels (2010).  Ocean iron fertilization: Why  further research is needed. Marine Policy. 34, 911 918 pp. (DOI: 10.1016/j.marpol.2010.01.015),  (ISSN: 0308 597X).  Hadjilambrinos C. (2000).  Understanding technology choice in electricity industries: a comparative  study of France and Denmark. Energy Policy. 28, 1111 1126 pp. .  Haines A., A.J. McMichael, K.R. Smith, I. Roberts, J. Woodcock, A. Markandya, B.G. Armstrong, D.  Campbell Lendrum, A.D. Dangour, M. Davies, N. Bruce, C. Tonne, M. Barrett, and P. Wilkinson  (2009).  Public health benefits of strategies to reduce greenhouse gas emissions: overview and  implications for policy makers. The Lancet. 374, 2104 2114 pp. (DOI: 10.1016/S0140 6736(09)61759 1), (ISSN: 0140 6736).  Hallegatte S., M. Ghil, P. Dumas, and J. C. Hourcade (2008).  Business cycles, bifurcations and chaos in  a neo classical model with investment dynamics. Journal of Economic Behavior & Organization. 67,  57 77 pp. .  Hamwey R. (2007).  Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An  Exploratory Study. Mitigation and Adaptation Strategies for Global Change. 12, 419 439 pp. (DOI:  10.1007/s11027 005 9024 3).  Hanasaki N., S. Fujimori, T. Yamamoto, S. Yoshikawa, Y. Masaki, Y. Hijioka, M. Kainuma, Y.  Kanamori, T. Masui, K. Takahashi, and S. Kanae. A global water scarcity assessment under Shared  Socio economic Pathways: Part 2 Water availability and scarcity. A global water scarcity assessment  under Shared Socio economic Pathways: Part 2 Water availability and scarcity.  Hanasaki N., S. Fujimori, T. Yamamoto, S. Yoshikawa, Y. Masaki, Y. Hijioka, M. Kainuma, Y.  Kanamori, T. Masui, K. Takahashi, and S. Kanae (2013).  A global water scarcity assessment under  Shared Socio economic Pathways: Part 2 Water availability and scarcity. Hydrology and Earth System  Sciences. 17, 2393 2413 pp. (DOI: 10.5194/hess 17 2393 2013).    114 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Hart R. (2008).  The timing of taxes on CO2  emissions when technological change is endogenous.  Journal of Environmental Economics and Management. 55, 194 212 pp. .  Haurie A., and M. Vielle (2010).  A Metamodel of the Oil Game under Climate Treaties. Information  Systems and Operational Research. 48, 215 228 pp. (DOI: 10.3138/infor.48.4.215).  He J., W. Chen, F. Teng, and B. Liu (2009).  Long term climate change mitigation target and carbon  permit allocation. Advances in Climate Change Research. 5, S78 S85 pp. .  Heal G., and N. Tarui (2010).  Investment and emission control under technology and pollution  externalities. Resource and Energy Economics. 32, 1 14 pp. .  Hejazi M.I., J. Edmonds, L. Clarke, P. Kyle, E. Davies, V. Chaturvedi, J. Eom, M. Wise, P. Patel, and K.  Calvin (2013).  Integrated assessment of global water scarcity over the 21st century; Part 2: Climate  change mitigation policies. Hydrology and Earth System Sciences Discussions. 10, 3383 3425 pp. (DOI:  10.5194/hessd 10 3383 2013).  Heston A., R. Summers, and B. Aten (2012).  Penn World Table Version 7.1. Center for International  Comparisons of Production, Income and Prices at the University of Pennsylvania.  Hof A.F., M.G.J. Den Elzen, and D.P. Van Vuuren (2009).  Environmental effectiveness and economic  consequences of fragmented versus universal regimes: what can we learn from model studies?  International Environmental Agreements: Politics, Law and Economics. 9, 39 62 pp. .  Hof A., M.J. Elzen, and D. Vuuren (2010a).  Including adaptation costs and climate change damages in  evaluating post 2012 burden sharing regimes. Mitigation and Adaptation Strategies for Global  Change. 15, 19 40 pp. (DOI: 10.1007/s11027 009 9201 x), (ISSN: 1381 2386).  Hof A.F., D.P. van Vuuren, and M.G.J. den Elzen (2010b).  A quantitative minimax regret approach to  climate change: Does discounting still matter? Ecological Economics. 70, 43 51 pp. (DOI:  16/j.ecolecon.2010.03.023), (ISSN: 0921 8009).  Hoffert M.I., K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S.  Lackner, J.S. Lewis, H.D. Lightfoot, W. Manheimer, J.C. Mankins, M.E. Mauel, L.J. Perkins, M.E.  Schlesinger, T. Volk, and T.M.L. Wigley (2002).  Advanced Technology Paths to Global Climate  Stability: Energy for a Greenhouse Planet. Science. 298, 981 987 pp. (DOI: 10.1126/science.1072357).  Höhne N., M.G.J. Den Elzen, and D. Escalante (2013).  Regional greenhouse gas mitigation targets  based on equity principles   a comparison of studies. Climate Policy. Accepted for publication, (DOI:  10.1080/14693062.2014.849452).  Höhne N., M. den Elzen, and M. Weiss (2006).  Common but differentiated convergence (CDC): a new  conceptual approach to long term climate policy. Climate Policy. 6, 181 199 pp. (DOI:  10.1080/14693062.2006.9685594), (ISSN: 1469 3062).  Höhne N., J. Kejun, J. Rogelj, L. Segafredo, R.S. da Motta, P.R. Shukla, J.V. Fenhann, J.I. Hansen, A.  Olhoff, and M.B. Pedersen (2012).  The Emissions Gap Report 2012: A UNEP Sythesis Report. United  Nations Environment Programme, Nairobi, Kenya, 62 pp., (ISBN: 978 92 807 3303 7). .  Höhne N., and S. Moltmann (2008).  Distribution of Emission Allowances under the Greenhouse  Development Rights and Other Effort Sharing Approaches. Heinrich Böll Stiftung, Berlin, Germany. 67  pp.    115 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Höhne N., and S. Moltmann (2009).  Sharing the Effort under a Global Carbon Budget. ECOFYS Gmbh,  Cologne, Germany. 40 pp.  Höhne N., D. Phylipsen, S. Ullrich, and K. Blok (2005).  Options for the Second Commitment Period of  the Kyoto Protocol. Umweltbundesamt / German Federal Environmental Agency, Berlin, Germany.  Holloway T., A. Fiore, and M.G. Hastings (2003).  Intercontinental Transport of Air Pollution:  Will  Emerging Science Lead to a New Hemispheric Treaty? Environmental Science & Technology. 37, 4535 4542 pp. (DOI: 10.1021/es034031g), (ISSN: 0013 936X).  Hope C. (2006).  The Marginal Impact of CO2  from PAGE2002: An Integrated Assessment Model  Incorporating the IPCC s Five Reasons for Concern. The Integrated Assessment Journal. 6, 19 56 pp. .  Hope C. (2008).  Optimal carbon emissions and the social cost of carbon over time under uncertainty.  Integrated Assessment. 8, Available at:  http://journals.sfu.ca/int_assess/index.php/iaj/article/view/273.  Horton J.B. (2011).  Geoengineering and the Myth of Unilateralism : Pressures and Prospects for  International Cooperation. Stanford Journal of Law, Science & Policy. 6, 56 69 pp. .  Houghton R.A. (2008).  Carbon Flux to the Atmosphere from Land Use Changes 1850 2005. In:  TRENDS: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak  Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn, USA pp.74, .  Houghton R.A., J.I. House, J. Pongratz, G.R. van der Werf, R.S. DeFries, M.C. Hansen, C. Le Quéré,  and N. Ramankutty (2012).  Carbon emissions from land use and land cover change. Biogeosciences.  9, 5125 5142 pp. (DOI: 10.5194/bg 9 5125 2012), (ISSN: 1726 4189).  Hourcade J. C., and M. Kostopoulou (1994).  Quelles politiques face aux chocs énergétiques. France,  Italie, Japon, RFA: quatre modes de résorption des déséquilibres. Futuribles. 189, 7 27 pp. .  Hourcade J. C., and P. Shukla (2013).  Triggering the low carbon transition in the aftermath of the  global financial crisis. Climate Policy. 13, 22 35 pp. (DOI: 10.1080/14693062.2012.751687), (ISSN:  1469 3062).  House K.Z., D.P. Schrag, C.F. Harvey, and K.S. Lackner (2006).  Permanent carbon dioxide storage in  deep sea sediments. Proceedings of the National Academy of Sciences. 103, 12291 12295 pp. .  Houser T., R. Bradley, B. Childs, J. Werksman, and R. Heilmayr (2009).  Leveling the Carbon Playing  Field: International Competition and US Climate Policy Design. Peterson Institute for International  Economics, World Resource Institute, Washington, DC.  Howells M., S. Hermann, M. Welsch, M. Bazilian, R. Segerstrom, T. Alfstad, D. Gielen, H. Rogner, G.  Fischer, H. van Velthuizen, D. Wiberg, C. Young, R.A. Roehrl, A. Mueller, P. Steduto, and I. Ramma  (2013).  Integrated analysis of climate change, land use, energy and water strategies. Nature Climate  Change. 3, 621 626 pp. (ISSN: 1758 678X).  Hultman N.E., E.L. Malone, P. Runci, G. Carlock, and K.L. Anderson (2012a).  Factors in low carbon  energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States.  Strategic Choices for Renewable Energy Investment. 40, 131 146 pp. (DOI:  10.1016/j.enpol.2011.08.064), (ISSN: 0301 4215).    116 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Hultman N.E., S. Pulver, L. Guimaraes, R. Deshmukh, and J. Kane (2012b).  Carbon market risks and  rewards: Firm perceptions of CDM investment decisions in Brazil and India. Energy Policy. 40, 90 102  pp. (DOI: 10.1016/j.enpol.2010.06.063), (ISSN: 0301 4215).  ICTSD (2010).  International Transport, Climate Change and Trade   What Are the Options for  Regulating Emissions from Aviation and Shipping and What Will Be Their Impact on Trade?  International Centre for Trade and Sustainable Development, Geneva, Switzerland. 12 pp.  IEA (2008).  Energy Technology Perspectives 2008 : Scenarios & Strategies to 2050. International  Energy Agency, Paris, 646 pp., (ISBN: 9789264041424). .  IEA (2009).  World Energy Outlook 2009. Organisation for Economic Cooperation and Development /  International Energy Agency, Paris. 698 pp.  IEA (2010a).  Global Gaps in Clean Energy RD&D: Updates and Recommendations for International  Collaboration. International Energy Agency. Available at:  http://www.iea.org/publications/freepublications/publication/global_gaps.pdf.  IEA (2010b).  World Energy Outlook 2010. Organisation for Economic Cooperation and Development /  International Energy Agency, Paris, 738 pp., (ISBN: 978 92 64 08624 1). .  IEA (2010c).  Energy Technology Perspectives 2010   Scenarios and Strategies to 2050. Organisation for  Economic Cooperation and Development / International Energy Agency, Paris, France :, 710 pp., (ISBN:  9789264085978). .  IEA (2011).  World Energy Outlook 2011 Special Report: Energy for All. Organisation for Economic  Cooperation and Development / International Energy Agency, Paris, France. 52 pp. Available at:  http://www.iea.org/publications/freepublications/publication/weo2011_energy_for_all.pdf.  IEA (2012a).  CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. 2012 Edition.  International Energy Agency, Paris. 138 pp. Available at: http://data.iea.org.  IEA (2012b).  World Energy Outlook 2012. Organisation for Economic Cooperation and Development /  International Energy Agency, Paris, 690 pp., (ISBN: 978 92 64 18084 0). .  IEA (2012c).  Energy Balances of Non OECD Countries. International Energy Agency, Paris, 554 pp.,  (ISBN: 978 92 64 08414 8). .  IEA (2012d).  Energy Balances of OECD Countries. International Energy Agency, Paris, 330 pp., (ISBN:  978 92 64 17382 8). .  Institution of Mechanical Engineers (2009).  Geoengineering. Geoengineering. Environment Policy  Statement 09/02.  International Maritime Organization (2013).  Report of the thirty fifth consultative meeting and the  eighth meeting of contracting parties. Available at:  http://www.imo.org/MediaCentre/SecretaryGeneral/Secretary GeneralsSpeechesToMeetings/Pages/LC35LP8.aspx.  Irvine P.J., D.J. Lunt, E.J. Stone, and A. Ridgwell (2009).  The fate of the Greenland Ice Sheet in a  geoengineered, high CO2 world. Environmental Research Letters. 4, (DOI: 10.1088/1748 9326/4/4/045109), (ISSN: 1748 9326).    117 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Irvine P.J., R.L. Sriver, and K. Keller (2012).  Tension between reducing sea level rise and global   warming through solar radiation management. Nature Climate Change. 2, 97 100 pp. (DOI:  10.1038/nclimate1351), (ISSN: 1758 678X).  Isaac M., and D.P. van Vuuren (2009).  Modeling global residential sector energy demand for heating  and air conditioning in the context of climate change. Energy Policy. 37, 507 521 pp. (DOI:  10.1016/j.enpol.2008.09.051), (ISSN: 0301 4215).  Jackson R.B., E.G. Jobbágy, R. Avissar, S.B. Roy, D.J. Barrett, C.W. Cook, K.A. Farley, D.C. le Maitre,  B.A. McCarl, and B.C. Murray (2005).  Trading Water for Carbon with Biological Carbon Sequestration.  Science. 310, 1944 1947 pp. (DOI: 10.1126/science.1119282).  Jacoby H.D., M.H. Babiker, S. Paltsev, and J.M. Reilly (2009).  Sharing the Burden of GHG Reductions.  In: Post Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N.  Stavins, (eds.), Cambridge University Press, (ISBN: 0521138000).  Jaffe A.B. (2012).  Technology policy and climate change. Climate Change Economics. 03, 1250025 pp.  (DOI: 10.1142/S201000781250025X), (ISSN: 2010 0078, 2010 0086).  Jaffe A.B., R.G. Newell, and R.N. Stavins (2005).  A tale of two market failures: Technology and  environmental policy. Technological Change and the Environment Technological Change. 54, 164 174  pp. (DOI: 10.1016/j.ecolecon.2004.12.027), (ISSN: 0921 8009).  Jakob M., G. Luderer, J. Steckel, M. Tavoni, and S. Monjon (2012).  Time to act now? Assessing the  costs of delaying climate measures and benefits of early action. Climatic Change. 1 21 pp. .  Jayaraman T., T. Kanitkar, and T. Dsouza (2011).  Equitable access to sustainable development: An  Indian approach. In: Equitable access to sustainable development: Contribution to the body of scientific  knowledge: A paper by experts from BASIC countries. BASIC expert group, Beijing, Brasilia, Cape Town  and Mumbai pp.97, .  Jensen M.C. (1986).  Agency costs of free cash flow, corporate finance, and takeovers. The American  Economic Review. 76, 323 329 pp. (ISSN: 0002 8282).  Jerrett M., R.T. Burnett, C.A. Pope, K. Ito, G. Thurston, D. Krewski, Y. Shi, E. Calle, and M. Thun  (2009).  Long Term Ozone Exposure and Mortality. New England Journal of Medicine. 360, 1085 1095  pp. (DOI: 10.1056/NEJMoa0803894), (ISSN: 0028 4793).  Jewell J. (2011).  The IEA Model of Short Term Energy Security (MOSES): Primary Energy Sources and  Secondary Fuels. OECD Publishing, Paris, France. 48 pp. Available at:  http://www.iea.org/publications/freepublications/publication/moses_paper.pdf.  Jewell J., A. Cherp, and K. Riahi (2013a).  Energy security under de carbonization energy scenarios.  Energy Policy. Accepted for publication, (DOI: dx.doi.org/10.1016/j.enpol.2013.10.051i).  Jewell J., A. Cherp, V. Vinichenko, N. Bauer, T. Kober, D. McCollum, D. Van Vuuren, and B. van der  Zwaan (2013b).  Energy security of China, India, the E.U. and the U.S. under long term scenarios:  Results from six IAMs. Climate Change Economics. In press, .  Jiahua P. (2008).  Carbon Budget for Basic Needs Satisfaction: implications for international equity and  sustainability [J]. World Economics and Politics. 1, 003 pp. .    118 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Johansson D.J., C. Azar, K. Lindgren, and T.A. Persson (2009).  OPEC strategies and oil rent in a climate  conscious world. Energy Journal. 30, 23 50 pp. (ISSN: 0195 6574).  Johansson D.J.A., P.L. Lucas, M. Weitzel, E.O. Ahlgren, A.B. Bazaz, W. Chen, M.G.J. den Elzen, J.  Ghosh, M. Grahn, and Q.M. Liang (2012).  Multi model analyses of the economic and energy  implications for China and India in a post Kyoto climate regime. Energy Policy. Accepted for  publication, Available at: http://www.econstor.eu/handle/10419/67337.  Jones A., J.M. Haywood, K. Alterskjaer, O. Boucher, J.N.S. Cole, C.L. Curry, P.J. Irvine, D. Ji, B. Kravitz,  J. Egill Kristjánsson, J.C. Moore, U. Niemeier, A. Robock, H. Schmidt, B. Singh, S. Tilmes, S. Watanabe,  and J. H. Yoon (2013).  The impact of abrupt suspension of solar radiation management (termination  effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of  Geophysical Research: Atmospheres. 118, 9743 9752 pp. (DOI: 10.1002/jgrd.50762), (ISSN: 2169 8996).  JRC/PBL (2012).  Emission Database for Global Atmospheric Research (EDGAR)   Release Version 4.2  FT2010. European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency, Bilthoven, Netherlands. Available at: http://edgar.jrc.ec.europa.eu.  Kahneman D., and A. Tversky (1979).  Prospect theory: An analysis of decision under risk.  Econometrica: Journal of the Econometric Society. 263 291 pp. .  Kainuma M., P.R. Shukla, and K. Jiang (2012).  Framing and modeling of a low carbon society: An  overview. Energy Economics. 34, Supplement 3, S316 S324 pp. (DOI: 10.1016/j.eneco.2012.07.015),  (ISSN: 0140 9883).  Kalkuhl M., O. Edenhofer, and K. Lessmann (2012).  Learning or Lock In: Optimal Technology Policies  to Support Mitigation. SSRN eLibrary. 34, 1 23 pp. .  Kalkuhl M., O. Edenhofer, and K. Lessmann (2013).  Renewable energy subsidies: Second best policy  or fatal aberration for mitigation? Resource and Energy Economics. 35, 217 234 pp. (DOI:  10.1016/j.reseneeco.2013.01.002), (ISSN: 0928 7655).  Kaundinya D.P., P. Balachandra, and N.H. Ravindranath (2009).  Grid connected versus stand alone  energy systems for decentralized power A review of literature. Renewable and Sustainable Energy  Reviews. 13, 2041 2050 pp. (DOI: 10.1016/j.rser.2009.02.002), (ISSN: 1364 0321).  Keith D.W. (2000).  Geoengineering the Climate: History and Prospect. Annual Review of Energy and  the Environment. 25, 245 284 pp. (DOI: 10.1146/annurev.energy.25.1.245), (ISSN: 1056 3466).  Keith D.W., M. Ha Duong, and J.K. Stolaroff (2006).  Climate strategy with CO 2 capture from the air.  Climatic Change. 74, 17 45 pp. .  Keller K., D. McInerney, and D. Bradford (2008).  Carbon dioxide sequestration: how much and when?  Climatic Change. 88, 267 291 pp. (DOI: 10.1007/s10584 008 9417 x), (ISSN: 0165 0009).  Keppo I., and S. Rao (2007).  International climate regimes: Effects of delayed participation.  Technological Forecasting and Social Change. 74, 962 979 pp. .  Kim S., C. MacCracken, and J. Edmonds (2000).  Solar Energy Technologies And Stabilizing  Atmospheric CO2  Concentrations. Progress in Photovoltaics. 8, 3 15 pp. .    119 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Klepper G., and W. Rickels (2012).  The Real Economics of Climate Engineering. Economics Research  International. 2012, Available at: http://www.hindawi.com/journals/econ/aip/316564/.  Knopf B., Y. H.H. Chen, E. De Cian, H. Förster, A. Kanudia, I. Karkatsouli, I. Keppo, T. Koljonen, K.  Schumacher, and D. Van Vuuren (2013).  Beyond 2020   Strategies and costs for transforming the  European energy system. Climate Change Economics. 4, 2 38 pp. (DOI: 10.1142/S2010007813500140).  Knopf B., O. Edenhofer, T. Barker, N. Bauer, L. Baumstark, B. Chateau, P. Criqui, A. Held, M. Isaac, M.  Jakob, E. Jochem, A. Kitous, S. Kypreos, M. Leimbach, B. Magne, S. Mima, W. Schade, S. Scrieciu, H.  Turton, and D. van Vuuren (2009).  The economics of low stabilisation: implications for technological  change and policy. In: Making climate change work for us. Cambridge University Press, Cambridge  pp.35, .  Knopf B., G. Luderer, and O. Edenhofer (2011).  Exploring the feasibility of low stabilization targets.  Wiley Interdisciplinary Reviews: Climate Change. 2, 617 626 pp. (DOI: 10.1002/wcc.124), (ISSN: 1757 7799).  Knutti R., M.R. Allen, P. Friedlingstein, J.M. Gregory, G.C. Hegerl, G.A. Meehl, M. Meinshausen, J.M.  Murphy, G. K. Plattner, S.C.B. Raper, T.F. Stocker, P.A. Stott, H. Teng, and T.M.L. Wigley (2008).  A  Review of Uncertainties in Global Temperature Projections over the Twenty First Century. Journal of  Climate. 21, 2651 2663 pp. (DOI: 10.1175/2007JCLI2119.1), (ISSN: 0894 8755).  Kober, and al. (2014).  Emission Certificate Trade and Costs under Regional Burden Sharing Regimes  for a 2C Climate Change Control Target. Climate Change Economics. Accepted for publication, .  Kober T., B.C. van der Zwaan, and H. Rösler (2013).  Emission Certificate Trade and Costs under  Regional Burden Sharing Regimes for a 2 C Climate Change Control Target. Climate Change Economics.  Köhler P., J. Hartmann, and D.A. Wolf Gladrow (2010).  Geoengineering potential of artificially  enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences. 107, 20228 20233 pp. (ISSN: 0027 8424).  Koornneef J., P. van Breevoort, C. Hamelinck, C. Hendriks, M. Hoogwijk, K. Koop, M. Koper, T. Dixon,  and A. Camps (2012).  Global potential for biomass and carbon dioxide capture, transport and storage  up to 2050. International Journal of Greenhouse Gas Control. 11, 117 132 pp. (DOI:  10.1016/j.ijggc.2012.07.027), (ISSN: 1750 5836).  Kravitz B., K. Caldeira, O. Boucher, A. Robock, P.J. Rasch, K. Alterskjaer, D.B. Karam, J.N. Cole, C.L.  Curry, and J.M. Haywood (2013).  Climate model response from the geoengineering model  intercomparison project (geomip). Journal of Geophysical Research: Atmospheres. 118, 8320 8332 pp.  (ISSN: 2169 8996).  Kravitz B., D.G. MacMartin, and K. Caldeira (2012).  Geoengineering: Whiter skies? Geophysical  Research Letters. 39, (DOI: 10.1029/2012gl051652), (ISSN: 0094 8276).  Krey V., and L. Clarke (2011).  Role of renewable energy in climate mitigation: A synthesis of recent  scenarios. Climate Policy. 11, 1131 1158 pp. .  Krey V., G. Luderer, L. Clarke, and E. Kriegler (2014).  Getting from here to there   energy technology  transformation pathways in the EMF27 scenarios. Accepted for publication in Climatic Change. (DOI:  DOI 10.1007/s10584 013 0947 5).    120 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Krey V., B.C. O Neill, B. van Ruijven, V. Chaturvedi, V. Daioglou, J. Eom, L. Jiang, Y. Nagai, S. Pachauri,  and X. Ren (2012).  Urban and rural energy use and carbon dioxide emissions in Asia. The Asia  Modeling Exercise: Exploring the Role of Asia in Mitigating Climate Change. 34, Supplement 3, S272 S283 pp. (DOI: 10.1016/j.eneco.2012.04.013), (ISSN: 0140 9883).  Krey V., and K. Riahi (2009).  Implications of delayed participation and technology failure for the  feasibility, costs, and likelihood of staying below temperature targets Greenhouse gas mitigation  scenarios for the 21st century. Energy Economics. 31, Supplement 2, S94 S106 pp. (DOI: doi:  10.1016/j.eneco.2009.07.001), (ISSN: 0140 9883).  Kriegler E., O. Edenhofer, L. Reuster, G. Luderer, and D. Klein (2013a).  Is atmospheric carbon dioxide  removal a game changer for climate change mitigation? Climatic Change. 118, 45 57 pp. (DOI:  10.1007/s10584 012 0681 4), (ISSN: 0165 0009).  Kriegler E., J. Weyant, G. Blanford, L. Clarke, J. Edmonds, A. Fawcett, V. Krey, G. Luderer, K. Riahi, R.  Richels, S. Rose, M. Tavoni, and D. van Vuuren (2014a).  The Role of Technology for Achieving Climate  Policy Objectives: Overview of the EMF 27 Study on global technology and climate policy strategies.  Climatic Change. In press, (DOI: 10.1007/s10584 013 0953 7).  Kriegler E., N. Petermann, V. Krey, J. Schwanitz, G. Luderer, S. Ashina, V. Bosetti, A. Kitous, A.  Méjean, L. Paroussos, F. Sano, H. Turton, C. Wilson, and D. van Vuuren (2013b).  Diagnostic  indicators for integrated assessment models of climate policies. Technological Forecasting and Social  Change. In press, (DOI: http://dx.doi.org/10.1016/j.techfore.2013.09.020*).  Kriegler E., K. Riahi, N. Bauer, V.J. Schanitz, N. Petermann, V. Bosetti, A. Marcucci, S. Otto, L.  Paroussos, S. Rao, and al. (2014b).  Making or breaking climate targets: The AMPERE study on staged  accession scenarios for climate policy. Technological Forecasting and Social Change. In press, (DOI:  http://dx.doi.org/10.1016/j.techfore.2013.09.021).  Kriegler E., M. Tavoni, T. Aboumahboub, G. Luderer, K. Calvin, G. DeMaere, V. Krey, K. Riahi, H.  Rosler, M. Schaeffer, and D.P. Van Vuuren (2013c).  What does the 2°C target imply for a global  climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Climate Change  Economics. 4, (DOI: 10.1142/S2010007813400083).  Kruyt B., D.P. van Vuuren, H.J.M. de Vries, and H. Groenenberg (2009).  Indicators for energy  security. Energy Policy. 37, 2166 2181 pp. (DOI: 10.1016/j.enpol.2009.02.006).  Kuntsi Reunanen E., and J. Luukkanen (2006).  Greenhouse gas emission reductions in the post Kyoto  period: Emission intensity changes required under the  contraction and convergence  approach.  Natural Resources Forum. 30, 272 279 pp. (DOI: 10.1111/j.1477 8947.2006.00119.x), (ISSN: 1477 8947).  Kyle P., L. Clarke, G. Pugh, M. Wise, K. Calvin, J. Edmonds, and S. Kim (2009).  The value of advanced  technology in meeting 2050 greenhouse gas emissions targets in the United States. Energy Economics.  31, S254 S267 pp. (DOI: 16/j.eneco.2009.09.008), (ISSN: 0140 9883).  Kyle P., and S.H. Kim (2011).  Long term implications of alternative light duty vehicle technologies for  global greenhouse gas emissions and primary energy demands. Energy Policy. 39, 3012 3024 pp. (DOI:  10.1016/j.enpol.2011.03.016), (ISSN: 0301 4215).  Lackner K.S. (2009).  Capture of carbon dioxide from ambient air. The European Physical Journal  Special Topics. 176, 93 106 pp. (DOI: 10.1140/epjst/e2009 01150 3), (ISSN: 1951 6355).    121 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Lampin L.B.A., F. Nadaud, F. Grazi, and J. C. Hourcade (2013).  Long term fuel demand: Not only a  matter of fuel price. Energy Policy. 62, 780 787 pp. (DOI: 10.1016/j.enpol.2013.05.021), (ISSN: 0301 4215).  Landis F., and T. Bernauer (2012).  Transfer payments in global climate policy. Nature Climate Change.  2, 628 633 pp. .  Latham J. (1990).  Control of global warming? Nature. 347, 339 340 pp. (DOI: 10.1038/347339b0).  Latham J., K. Bower, T. Choularton, H. Coe, P. Connolly, G. Cooper, T. Craft, J. Foster, A. Gadian, L.  Galbraith, H. Iacovides, D. Johnston, B. Launder, B. Leslie, J. Meyer, A. Neukermans, B. Ormond, B.  Parkes, P. Rasch, J. Rush, S. Salter, T. Stevenson, H.L. Wang, Q. Wang, and R. Wood (2012).  Marine  cloud brightening. Philosophical Transactions of the Royal Society a Mathematical Physical and  Engineering Sciences. 370, 4217 4262 pp. (DOI: 10.1098/rsta.2012.0086), (ISSN: 1364 503X).  Latham J., P. Rasch, C. C. Chen, L. Kettles, A. Gadian, A. Gettelman, H. Morrison, K. Bower, and T.  Choularton (2008).  Global temperature stabilization via controlled albedo enhancement of low level  maritime clouds. Philosophical Transactions of the Royal Society A: Mathematical, Physical and  Engineering Sciences. 366, 3969 3987 pp. (DOI: 10.1098/rsta.2008.0137).  Leck E. (2006).  The impact of urban form on travel behavior: a meta analysis. Berkeley Planning  Journal. 19, 37 58 pp. .  Leimbach M., N. Bauer, L. Baumstark, and O. Edenhofer (2010).  Mitigation costs in a globalized  world: climate policy analysis with REMIND R. Environmental Modeling and Assessment. 15, 155 173  pp. .  Lenton T.M., and N.E. Vaughan (2009).  The radiative forcing potential of different climate  geoengineering options. Atmospheric Chemistry and Physics. 9, 5539 5561 pp. (DOI: 10.5194/acp 9 5539 2009).  Levine M., D. Urge Vorsatz, K. Blok, L. Geng, D. Harvey, S. Lang, G. Levermore, A. Mongameli  Mehlwana, S. Mirasgedis, A. Novikova, J. Rilling, and J. Yoshino (2007).  Residential and commercial  buildings. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth  Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,  Cambridge, United Kingdom and New York, NY, USA. pp.389 446, .  Liang Q.M., and Y. M. Wei (2012).  Distributional impacts of taxing carbon in China: Results from the  CEEPA model. Applied Energy. 92, 545 551 pp. (DOI: 10.1016/j.apenergy.2011.10.036).  Lin A. (Accepted for publication).  Does Geoengineering Present a Moral Hazard? Ecology Law  Quarterly.  Loschel (2002).  Technological change in economic models of environmental policy: a survey.  Ecological Economics. 43, 105 126 pp. (DOI: 10.1016/S0921 8009(02)00209 4).  Lubowski R.N., and S.K. Rose (2013).  The potential of REDD+: Economic modeling insights and issues.  Review of Environmental Economics and Policy. In press, .  Lucas P.L., D. van Vuuren, J.G.J. Olivier, and M.G.J. den Elzen (2007).  Long term reduction potential  of non CO2  greenhouse gases. Environmental Science & Policy. 10, 85 103 pp. (DOI:  16/j.envsci.2006.10.007), (ISSN: 1462 9011).    122 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Luderer G., C. Bertram, K. Calvin, E. Cian, and E. Kriegler (2013a).  Implications of weak near term  climate policies on long term mitigation pathways. Climatic Change. 1 14 pp. (DOI: 10.1007/s10584 013 0899 9), (ISSN: 0165 0009).  Luderer G., V. Bosetti, M. Jakob, M. Leimbach, J. Steckel, H. Waisman, and O. Edenhofer (2011).  The  economics of decarbonizing the energy system results and insights from the RECIPE model  intercomparison. Climatic Change. 1 29 pp. (DOI: 10.1007/s10584 011 0105 x), (ISSN: 0165 0009).  Luderer G., E. DeCian, J. C. Hourcade, M. Leimbach, H. Waisman, and O. Edenhofer (2012).  On the  regional distribution of mitigation costs in a global cap and trade regime. Climatic Change. (DOI:  10.1007/s10584 012 0408 6), (ISSN: 0165 0009).  Luderer G., V. Krey, R. Pietzcker, K. Calvin, J. Merrick, J.V. Vliet, K. Wada, and S. Mima (2014).  The  role of renewable energy in climate change mitigation: results from the EMF 27 scenarios. Climatic  Change. In press., (DOI: 10.1007/s10584 013 0924 z).  Luderer G., R.C. Pietzcker, C. Bertram, E. Kriegler, M. Meinshausen, and O. Edenhofer (2013b).   Economic mitigation challenges: how further delay closes the door for achieving climate targets.  Environmental Research Letters. 8, 034033 pp. (ISSN: 1748 9326).  Luft G. (2013). Foreign Policy.  Lüken M., O. Edenhofer, B. Knopf, M. Leimbach, G. Luderer, and N. Bauer (2011).  The role of  technological availability for the distributive impacts of climate change mitigation policy. Energy Policy.  39, 6030 6039 pp. (DOI: 10.1016/j.enpol.2011.07.002).  Lunt D.J., A. Ridgwell, P.J. Valdes, and A. Seale (2008).   Sunshade world : a fully coupled GCM  evaluation of the climatic impacts of geoengineering. Geophysical Research Letters. 35, (ISSN: 1944 8007).  Luokkanen M., S. Huttunen, and M. Hilden (2013).  Geoengineering, news media and metaphors:  Framing the controversial. Public Understanding of Science. (DOI: 10.1177/0963662513475966), (ISSN:  0963 6625 (Print) 0963 6625 (Linking)).  MacCracken M.C. (2009).  On the possible use of geoengineering to moderate specific climate change  impacts. Environmental Research Letters. 4, 045107 045107 pp. (DOI: 10.1088/1748 9326/4/4/045107).  MacMartin D.G., D.W. Keith, B. Kravitz, and K. Caldeira (2013).  Management of trade offs in  geoengineering through optimal choice of non uniform radiative forcing. Nature Climate Change. 3,  365 368 pp. (DOI: 10.1038/nclimate1722), (ISSN: 1758 678X).  MacMynowski D.G., D.W. Keith, K. Caldeira, and H.J. Shin (2011).  Can we test geoengineering?  Energy & Environmental Science. 4, 5044 5052 pp. (DOI: 10.1039/C1ee01256h), (ISSN: 1754 5692).  Macnaghten P., and B. Szerszynski (2013).  Living the global social experiment: An analysis of public  discourse on solar radiation management and its implications for governance. Global Environmental  Change. 23, 465 474 pp. (DOI: 10.1016/j.gloenvcha.2012.12.008), (ISSN: 09593780).  Majd S., and R.S. Pindyck (1987).  Time to build, option value, and investment decisions. Journal of  financial Economics. 18, 7 27 pp. .    123 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Manne A.S., and R.G. Richels (2001).  An alternative approach to establishing trade offs among  greenhouse gases. Nature. 410, 675 677 pp. (DOI: 10.1038/35070541), (ISSN: 0028 0836).  Mansur E., R. Mendelsohn, and W. Morrison (2008).  Climate change adaptation: A study of fuel  choice and consumption in the US energy sector. Journal of Environmental Economics and  Management. 55, 175 193 pp. .  Marangoni G., and M. Tavoni (2013). submitted to Climate Change Economics.  Di Maria C., and E. Werf (2007).  Carbon leakage revisited: unilateral climate policy with directed  technical change. Environmental and Resource Economics. 39, 55 74 pp. (DOI: 10.1007/s10640 007 9091 x), (ISSN: 0924 6460, 1573 1502).  Markandya A., B.G. Armstrong, S. Hales, A. Chiabai, P. Criqui, S. Mima, C. Tonne, and P. Wilkinson  (2009).  Public health benefits of strategies to reduce greenhouse gas emissions: low carbon electricity  generation. The Lancet. 374, 2006 2015 pp. (ISSN: 0140 6736).  Massetti E., and M. Tavoni (2011).  The Cost Of Climate Change Mitigation Policy In Eastern Europe  And Former Soviet Union. Climate Change Economics. 2, 341 370 pp. .  Matthews H.D. (2010).  Can carbon cycle geoengineering be a useful complement to ambitious  climate mitigation? Carbon Management. 1, 135 144 pp. (DOI: 10.4155/cmt.10.14), (ISSN: 1758 3004).  Matthews H.D., and K. Caldeira (2007).  Transient climate   carbon simulations of planetary  geoengineering. Proceedings of the National Academy of Sciences. 104, 9949 9954 pp. (DOI:  10.1073/pnas.0700419104).  Matthews H.D., L. Cao, and K. Caldeira (2009).  Sensitivity of ocean acidification to geoengineered  climate stabilization. Geophysical Research Letters. 36, (DOI: 10.1029/2009gl037488), (ISSN: 0094 8276).  McClellan J., D.W. Keith, and J. Apt (2012).  Cost analysis of stratospheric albedo modification delivery  systems. Environmental Research Letters. 7, 034019 pp. (ISSN: 1748 9326).  McCollum D., N. Bauer, K. Calvin, A. Kitous, and K. Riahi (2013a).  Fossil resource and energy security  dynamics in conventional and carbon constrained worlds. Climatic Change. 120, 59 78 pp. (DOI:  10.1007/s10584 013 0939 5).  McCollum D.L., V. Krey, P. Kolp, Y. Nagai, and K. Riahi (2014a).  Transport electrification:  a key  element for energy system transformation and climate stabilization. Climatic Change. In press, (DOI:  DOI 10.1007/s10584 013 0969 z).  McCollum D., V. Krey, and K. Riahi (2011).  An integrated approach to energy sustainability. Nature  Climate Change. 1, 428 429 pp. (DOI: 10.1038/nclimate1297), (ISSN: 1758 6798).  McCollum D., V. Krey, K. Riahi, P. Kolp, A. Grubler, M. Makowski, and N. Nakicenovic (2013b).   Climate policies can help resolve energy security and air pollution challenges. Climatic Change. 119,  479 494 pp. (DOI: 10.1007/s10584 013 0710 y), (ISSN: 0165 0009).  McCollum D., Y. Nagai, K. Riahi, G. Marangoni, K. Calvin, R. Pietzcker, J. Van Vliet, and B. Van der  Zwaan (2014b).  Energy investments under climate policy: a comparison of global models. Climate  Change Economics. Accepted for publication, .    124 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  McCusker K.E., D.S. Battisti, and C.M. Bitz (2012).  The Climate Response to Stratospheric Sulfate  Injections and Implications for Addressing Climate Emergencies. Journal of Climate. 25, 3096 3116 pp.  (DOI: 10.1175/Jcli D 11 00183.1), (ISSN: 0894 8755).  McFarland J.R., S. Paltsev, and H.D. Jacoby (2009).  Analysis of the Coal Sector under Carbon  Constraints. Climate Change and Energy Policy. 31, 404 424 pp. (DOI:  10.1016/j.jpolmod.2008.09.005), (ISSN: 0161 8938).  McGlashan N., N. Shah, B. Caldecott, and M. Workman (2012).  High level techno economic  assessment of negative emissions technologies. Special Issue: Negative emissions technology. 90, 501 510 pp. (DOI: 10.1016/j.psep.2012.10.004), (ISSN: 0957 5820).  McLaren D. (2012).  A comparative global assessment of potential negative emissions technologies.  Special Issue: Negative emissions technology. 90, 489 500 pp. (DOI: 10.1016/j.psep.2012.10.005),  (ISSN: 0957 5820).  Meehl G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti,  J.M. Murphy, and A. Noda (2007).  Global climate projections. In: Climate change:The Physical Science  Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental  Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY,  USA pp.747 845, .  Meinshausen M. (2006).  What does a 2°C target mean for greenhouse gas concentrations?   A brief  analysis based on multi gas emission pathways and several climate sensitivity uncertainty estimates.  In: Avoiding Dangerous Climate Change: Key Vulnerabilities of the Climate System and Critical  Thresholds; Part II. General Perspectives on Dangerous Impacts; Part III. Key Vulnerabilities for  Ecosystems and Biodiversity; Part IV. Socio Economic Effects; Part V. Regional Perspectives; Part VI.  Emission Pathways; Part VII. Technological Options. H. Schellnhuber, W.P. Cramer, (eds.), Cambridge  University Press, pp.265 279, .  Meinshausen M., B. Hare, T.M. Wigley, D. Vuuren, M.J. Elzen, and R. Swart (2006).  Multi gas  Emissions Pathways to Meet Climate Targets. Climatic Change. 75, 151 194 pp. (DOI: 10.1007/s10584 005 9013 2), (ISSN: 0165 0009).  Meinshausen M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R.  Allen (2009).  Greenhouse gas emission targets for limiting global warming to 2 degrees C. Nature.  458, 1158 1162 pp. (DOI: 10.1038/nature08017), (ISSN: 1476 4687).  Meinshausen M., S.C.B. Raper, and T.M.L. Wigley (2011a).  Emulating coupled atmosphere ocean and  carbon cycle models with a simpler model, MAGICC6   Part 1: Model description and calibration.  Atmospheric Chemistry and Physics. 11, 1417 1456 pp. (DOI: 10.5194/acp 11 1417 2011).  Meinshausen M., S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J. F. Lamarque, K. Matsumoto,  S.A. Montzka, S.C.B. Raper, K. Riahi, A. Thomson, G.J.M. Velders, and D. van Vuuren (2011b).  The  RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change. 109,  213 241 pp. (DOI: 10.1007/s10584 011 0156 z), (ISSN: 0165 0009, 1573 1480).  Meinshausen M., T.M.L. Wigley, and S.C.B. Raper (2011c).  Emulating atmosphere ocean and carbon  cycle models with a simpler model, MAGICC6   Part 2: Applications. Atmospheric Chemistry and  Physics. 11, 1457 1471 pp. (DOI: 10.5194/acp 11 1457 2011), (ISSN: 1680 7324).    125 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Melillo J.M., J.M. Reilly, D.W. Kicklighter, A.C. Gurgel, T.W. Cronin, S. Paltsev, B.S. Felzer, X. Wang,  A.P. Sokolov, and C.A. Schlosser (2009).  Indirect Emissions from Biofuels: How Important? Science.  326, 1397 1399 pp. (DOI: 10.1126/science.1180251).  Mercado L.M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P.M. Cox (2009).   Impact of changes in diffuse radiation on the global land carbon sink. Nature. 458, 1014 1017 pp.  (ISSN: 0028 0836).  Messner S. (1997).  Endogenized technological learning in an energy systems model. Journal of  Evolutionary Economics. 7, 291 313 pp. (DOI: 10.1007/s001910050045).  Metcalf G., M. Babiker, and J. Reilly (2004).  A Note on Weak Double Dividends. Topics in Economic  Analysis and Policy. 4, (DOI: 10.2202/1538 0653.1275).  Metz B., O. Davidson, H. de Coninck, M. Loos, and L. Meyer (2005).  IPCC Special Report on Carbon  Dioxide Capture and Storage. Intergovernmental Panel on Climate Change, Geneva (Switzerland).  Working Group III. 443 pp. Available at: https://www.ipcc.ch/pdf/special reports/srccs/srccs_wholereport.pdf.  Meyer A. (2000).  Contraction & Convergence: The Global Solution to Climate Change. Green Books,  Bristol, UK, (ISBN: 1870098943). .  Miketa A., and L. Schrattenholzer (2006).  Equity implications of two burden sharing rules for  stabilizing greenhouse gas concentrations. Energy Policy. 34, 877 891 pp. (DOI:  10.1016/j.enpol.2004.08.050), (ISSN: 0301 4215).  Mitchell D.L., and W. Finnegan (2009).  Modification of cirrus clouds to reduce global warming.  Environmental Research Letters. 4, 1 9 pp. (DOI: 10.1088/1748 9326/4/4/045102), (ISSN: 1748 9326).  Molden D. (2007).  Comprehensive Assessment of Water Management in Agriculture. London:  Earthscan, and Colombo: International Water Management Institute., 48 pp., (ISBN: 978 1 84407 396 2). .  Monjon S., and P. Quirion (2011).  Addressing leakage in the EU ETS: Border adjustment or output based allocation? Ecological Economics. 70, 1957 1971 pp. (DOI: 10.1016/j.ecolecon.2011.04.020),  (ISSN: 0921 8009).  Montgomery W.D. (1972).  Journal of Economic Theory. . Markets in licenses and efficient pollution  control programs. Journal of Economic Theory. 5, 395 418 pp. .  Moore J.C., S. Jevrejeva, and A. Grinsted (2010).  Efficacy of geoengineering to limit 21st century sea level rise. Proceedings of the National Academy of Sciences. 107, 15699 15703 pp. (DOI:  10.1073/pnas.1008153107).  Moreno Cruz J.B., and D.W. Keith (2012).  Climate policy under uncertainty: a case for solar  geoengineering. Climatic Change. 121, 431 444 pp. (DOI: 10.1007/s10584 012 0487 4), (ISSN: 0165 0009).  Moreno Cruz J.B., K.L. Ricke, and D.W. Keith (2011).  A simple model to account for regional  inequalities in the effectiveness of solar radiation management. Climatic Change. 110, 649 668 pp.  (DOI: 10.1007/s10584 011 0103 z), (ISSN: 0165 0009 1573 1480).    126 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Moss R., J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, D. van Vuuren, T.R. Carter, S. Emori,  M. Kainuma, T. Kram, G.A. Meehl, J.F.B. Mitchell, N. Nakicenovic, K. Riahi, S.J. Smith, R.J. Stouffer,  A.M. Thomson, J.P. Weyant, and T.J. Wilbanks (2010).  The next generation of scenarios for climate  change research and assessment. Nature. 463, 747 756 pp. (DOI: 10.1038/nature08823), (ISSN: 0028 0836).  Murphy D.M. (2009).  Effect of Stratospheric Aerosols on Direct Sunlight and Implications for  Concentrating Solar Power. Environmental Science & Technology. 43, 2784 2786 pp. (DOI:  10.1021/es802206b), (ISSN: 0013 936X).  Myhre G., J.S. Fuglestvedt, T.K. Berntsen, and M.T. Lund (2011).  Mitigation of short lived heating  components may lead to unwanted long term consequences. Atmospheric Environment. 45, 6103 6106 pp. (DOI: 10.1016/j.atmosenv.2011.08.009), (ISSN: 1352 2310).  Nabel J.E.M.S., J. Rogelj, C.M. Chen, K. Markmann, D.J.H. Gutzmann, and M. Meinshausen (2011).   Decision support for international climate policy   The PRIMAP emission module. Environmental  Modelling & Software. 26, 1419 1433 pp. (DOI: 10.1016/j.envsoft.2011.08.004), (ISSN: 1364 8152).  Nagashima M., R. Dellink, E. van Ierland, and H. P. Weikard (2009).  Stability of international climate  coalitions   A comparison of transfer schemes. Ecological Economics. 68, 1476 1487 pp. (DOI:  10.1016/j.ecolecon.2008.10.006), (ISSN: 0921 8009).  Nakicenovic N., A. Grubler, and A. McDonald (1998).  Global Energy Perspectives. Cambridge  University Press, Cambridge, 299 pp.  Narula K., Y. Nagai, and S. Pachauri (2012).  The role of Decentralized Distributed Generation in  achieving universal rural electrification in South Asia by 2030. Energy Policy. 47, 345 357 pp. (DOI:  10.1016/j.enpol.2012.04.075), (ISSN: 0301 4215).  Nelson G.C., H. Valin, R.D. Sands, P. Havlík, H. Ahammad, D. Deryng, J. Elliott, S. Fujimori, T.  Hasegawa, and E. Heyhoe (2013).  Climate change effects on agriculture: Economic responses to  biophysical shocks. Proceedings of the National Academy of Sciences. 201222465 pp. .  Nemet G.F., and A.R. Brandt (2012).  Willingness to pay for a climate backstop: Liquid fuel producers  and direct CO2 air capture. The Energy Journal. 33, 59 81 pp. .  Nemet G.F., T. Holloway, and P. Meier (2010).  Implications of incorporating air quality co benefits  into climate change policymaking. Environmental Research Letters. 5, 014007 pp. (ISSN: 1748 9326).  Nemet G.F., and D.M. Kammen (2007).  U.S. energy research and development: Declining investment,  increasing need, and the feasibility of expansion. Energy Policy. 35, 746 755 pp. (DOI:  10.1016/j.enpol.2005.12.012), (ISSN: 0301 4215).  Nerlich B., and R. Jaspal (2012).  Metaphors We Die By? Geoengineering, Metaphors, and the  Argument From Catastrophe. Metaphor and Symbol. 27, 131 147 pp. (DOI:  10.1080/10926488.2012.665795), (ISSN: 1092 6488).  Newell R.G., A.B. Jaffe, and R.N. Stavins (1999).  The Induced Innovation Hypothesis and Energy Saving Technological Change. The Quarterly Journal of Economics. 114, 941 975 pp. (DOI:  10.1162/003355399556188).    127 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Nordhaus W.D. (2002).  Modeling induced innovation in climate change policy. In: Technological  Change and the Environment. A. Grubler, N. Nakicenivic, W.D. Nordhaus, (eds.), RFF Press,  Washington, DC pp.33, .  Nordhaus W.D., and J. Boyer (2000).  Warming the World: Economic Models of Global Warming. MIT  Press, Cambridge, Massachusetts, 244 pp., (ISBN: 9780262640541). .  Nurse K. (2009).  Trade, Climate Change and Tourism: Responding to Ecological and Regulatory  Challenges. International Centre for Trade and Sustainable Development, Geneva, Switzerland. 4 pp.  Nusbaumer J., and K. Matsumoto (2008).  Climate and carbon cycle changes under the overshoot  scenario. Global and Planetary Change. 62, 164 172 pp. (DOI: 10.1016/j.gloplacha.2008.01.002),  (ISSN: 0921 8181).  O Neill B.C., K. Riahi, and I. Keppo (2010).  Mitigation implications of midcentury targets that preserve  long term climate policy options. Proceedings of the National Academy of Sciences of the United States  of America. 107, 1011 1016 pp. (DOI: 10.1073/pnas.0903797106).  OECD (2008).  OECD Environmental Outlook to 2030. Organisation for Economic Cooperation and  Development, Paris, France.  OECD (2009).  The Economics of Climate Change Mitigation: Policies and Options for Global Action  beyond 2012. Organisation for Economic Cooperation and Development, Paris, France, (ISBN:  9789264056060). .  Onigkeit J., N. Anger, and B. Brouns (2009).  Fairness aspects of linking the European emissions  trading scheme under a long term stabilization scenario for CO2 concentration. Mitigation and  Adaptation Strategies for Global Change. 14, 477 494 pp. (DOI: 10.1007/s11027 009 9177 6), (ISSN:  1381 2386).  Orr F.M. (2009).  Onshore Geologic Storage of CO2. Science. 325, 1656 1658 pp. (DOI:  10.1126/science.1175677).  Oschlies A., M. Pahlow, A. Yool, and R.J. Matear (2010).  Climate engineering by artificial ocean  upwelling: Channelling the sorcerer s apprentice. Geophysical Research Letters. 37, L04701 pp. (DOI:  10.1029/2009GL041961), (ISSN: 1944 8007).  Otto V.M., A. Löschel, and J. Reilly (2008).  Directed technical change and differentiation of climate  policy. Energy Economics. 30, 2855 2878 pp. (DOI: 10.1016/j.eneco.2008.03.005), (ISSN: 0140 9883).  Otto V.M., and J. Reilly (2008).  Energy Economics. . Directed technical change and the adoption of  CO2 abatement technology: The case of CO2 capture and storage. Energy Economics. 30, 2879 2898  pp. .  Pacala S., and R. Socolow (2004).  Stabilization wedges: Solving the climate problem for the next 50  years with current technologies. Science. 305, 968 972 pp. .  Paltsev S., and P. Capros (2013).  Cost concepts for climate change mitigation. Climate Change  Economics. 4, .  Paltsev S., J. Reilly, H.D. Jacoby, A.C. Gurgel, G.E. Metcalf, A.P. Sokolov, and J.F. Holak (2008).   Assessment of US GHG cap and trade proposals. Climate Policy. 8, 395 420 pp. .    128 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Paltsev S., J. Reilly, H.D. Jacoby, and K.H. Tay (2007).  How (and why) do climate policy costs differ  among countries? In: Human Induced Climate Change. M.E. Schlesinger, H.S. Kheshgi, J. Smith, F.C. de  la Chesnaye, J.M. Reilly, T. Wilson, C. Kolstad, (eds.), Cambridge University Press, Cambridge UK and  New York, New York pp.282 293, (ISBN: 9780511619472).  Pan J. (2005).  Meeting Human Development Goals with Low Emissions : An Alternative to Emissions  Caps for post Kyoto from a Developing Country Perspective. International Environmental Agreements:  Politics, Law and Economics. 5, 89 104 pp. (DOI: 10.1007/s10784 004 3715 1), (ISSN: 1567 9764).  Pan J. (2008).  Welfare dimensions of climate change mitigation. Global Environmental Change. 18, 8 11 pp. (DOI: 10.1016/j.gloenvcha.2007.11.001), (ISSN: 0959 3780).  Pan Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, S.L.  Lewis, J.G. Canadell, P. Ciais, R.B. Jackson, S.W. Pacala, A.D. McGuire, S. Piao, A. Rautiainen, S. Sitch,  and D. Hayes (2011).  A Large and Persistent Carbon Sink in the World s Forests. Science. 333, 988 993  pp. (DOI: 10.1126/science.1201609).  Patt A.G., D. van Vuuren, F. Berkhout, A. Aaheim, A.F. Hof, M. Isaac, and R. Mechler (2009).   Adaptation in integrated assessment modeling: where do we stand? Climatic Change. 99, 383 402 pp.  (DOI: 10.1007/s10584 009 9687 y), (ISSN: 0165 0009, 1573 1480).  PBL (2012).  Roads from Rio+20. Pathways to Achieve Global Sustainability Goals by 2050. Netherlands  Environmental Assessment Agency (PBL), The Hague. 286 pp.  Pentelow L., and D.J. Scott (2011).  Aviation s inclusion in international climate policy regimes:  Implications for the Caribbean tourism industry. Developments in Air Transport and Tourism. 17, 199 205 pp. (DOI: 10.1016/j.jairtraman.2010.12.010), (ISSN: 0969 6997).  Persson T.A., C. Azar, D. Johansson, and K. Lindgren (2007).  Major oil exporters may profit rather  than lose, in a carbon constrained world. Energy Policy. 35, 6346 6353 pp. (DOI:  10.1016/j.enpol.2007.06.027), (ISSN: 0301 4215).  Persson T.A., C. Azar, and K. Lindgren (2006).  Allocation of CO2  emission permits Economic  incentives for emission reductions in developing countries. Energy Policy. 34, 1889 1899 pp. .  Peterson S., and G. Klepper (2007).  Distribution Matters: Taxes vs. Emissions Trading in Post Kyoto  Climate Regimes. Kiel Institute for the World Economy, Kiel, Germany. 26 pp. Available at:  http://hdl.handle.net/10419/4076.  Phylipsen G., J. Bode, K. Blok, H. Merkus, and B. Metz (1998).  A Triptych sectoral approach to burden  differentiation; GHG emissions in the European bubble. Energy Policy. 26, 929 943 pp. (DOI:  10.1016/S0301 4215(98)00036 6), (ISSN: 0301 4215).  Pielke Jr R.A. (2009).  An idealized assessment of the economics of air capture of carbon dioxide in  mitigation policy. Environmental Science & Policy. 12, 216 225 pp. .  Pierce J.R., D.K. Weisenstein, P. Heckendorn, T. Peter, and D.W. Keith (2010).  Efficient formation of  stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft.  Geophysical Research Letters. 37, (DOI: 10.1029/2010gl043975), (ISSN: 0094 8276).  Pietzcker R., T. Longden, W. Chen, S. Fu, E. Kriegler, P. Kyle, and G. Luderer (2013).  Long term  transport energy demand and climate policy: Alternative visions on Transport Decarbonization in  Energy Economy Models. Energy. Accepted for publication, (DOI: 10.1016/j.energy.2013.08.059).    129 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Pindyck R.S. (1982).  Adjustment costs, uncertainty, and the behavior of the firm. The American  Economic Review. 72, 415 427 pp. .  Pittel K., and D.T.G. Rübbelke (2008).  Climate policy and ancillary benefits: A survey and integration  into the modelling of international negotiations on climate change. Ecological Economics. 68, 210 220  pp. (DOI: 10.1016/j.ecolecon.2008.02.020), (ISSN: 0921 8009).  Popp D. (2006a).  ENTICE BR: The effects of backstop technology R&D on climate policy models.  Energy Economics. 28, 188 222 pp. .  Popp D. (2006b).  Innovation in climate policy models: Implementing lessons from the economics of  R&D. Energy Economics. 28, 596 609 pp. (DOI: 10.1016/j.eneco.2006.05.007), (ISSN: 0140 9883).  Popp D., J.P. Dietrich, H. Lotze Campen, D. Klein, N. Bauer, M. Krause, T. Beringer, D. Gerten, and O.  Edenhofer (2011a).  The economic potential of bioenergy for climate change mitigation with special  attention given to implications for the land system. Environmental Research Letters. 6, 034017 pp.  (DOI: 10.1088/1748 9326/6/3/034017), (ISSN: 1748 9326).  Popp D., I. Hascic, and N. Medhi (2011b).  Technology and the diffusion of renewable energy. Energy  Economics. 33, 648 662 pp. (DOI: doi: 10.1016/j.eneco.2010.08.007), (ISSN: 0140 9883).  Popp A., S. Rose, K. Calvin, D. Vuuren, J. Dietrich, M. Wise, E. Stehfest, F. Humpenöder, P. Kyle, J.  Vliet, N. Bauer, H. Lotze Campen, D. Klein, and E. Kriegler (2013).  Land use transition for bioenergy  and climate stabilization: model comparison of drivers, impacts and interactions with other land use  based mitigation options. Climatic Change. 1 15 pp. (DOI: 10.1007/s10584 013 0926 x), (ISSN: 0165 0009).  President s Science Advisory Committee. Environmental Pollution Panel (1965).  Restoring the  Quality of Our Environment: Report. White House, Washington, DC, 20 pp.  Preston C.J. (2013).  Ethics and geoengineering: reviewing the moral issues raised by solar radiation  management and carbon dioxide removal. Wiley Interdisciplinary Reviews Climate Change. 4, 23 37  pp. (DOI: 10.1002/wcc.198), (ISSN: 1757 7780).  Rafaj P., I. Bertok, J. Cofala, and W. Schöpp (2013).  Scenarios of global mercury emissions from  anthropogenic sources. Atmospheric Environment. 79, 472 479 pp. (DOI:  10.1016/j.atmosenv.2013.06.042), (ISSN: 1352 2310).  Rafaj P., W. Schöpp, P. Russ, C. Heyes, and M. Amann (2012).  Co benefits of post 2012 global climate  mitigation policies. Mitigation and Adaptation Strategies for Global Change. 1 24 pp. (DOI:  10.1007/s11027 012 9390 6), (ISSN: 1381 2386).  Ramanathan V., and G. Carmichael (2008).  Global and regional climate changes due to black carbon.  Nature Geoscience. 1, 221 227 pp. (DOI: 10.1038/ngeo156), (ISSN: 1752 0894).  Ramanathan V., and Y. Xu (2010).  The Copenhagen Accord for limiting global warming: criteria,  constraints, and available avenues. Proceedings of the National Academy of Sciences of the United  States of America. 107, 8055 8062 pp. (DOI: 10.1073/pnas.1002293107).  Rao N.D. (2013).  Distributional impacts of climate change mitigation in Indian electricity: The  influence of governance. Energy Policy. 61, 1344 1356 pp. (DOI: 10.1016/j.enpol.2013.05.103), (ISSN:  0301 4215).    130 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Rao S., S. Pachauri, F. Dentener, P. Kinney, Z. Klimont, K. Riahi, and W. Schoepp (2013).  Better air for  better health: Forging synergies in policies for energy access, climate change and air pollution. Global  Environmental Change. 23, 1122 1130 pp. (DOI: 10.1016/j.gloenvcha.2013.05.003), (ISSN: 0959 3780).  Rasch P.J., S. Tilmes, R.P. Turco, A. Robock, L. Oman, C.C. Chen, G.L. Stenchikov, and R.R. Garcia  (2008).  An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical  Transactions of the Royal Society a Mathematical Physical and Engineering Sciences. 366, 4007 4037  pp. (DOI: 10.1098/rsta.2008.0131), (ISSN: 1364 503X).  Rau G.H., and K. Caldeira (1999).  Enhanced carbonate dissolution: a means of sequestering waste CO2  as ocean bicarbonate. Energy Conversion and Management. 40, 1803 1813 pp. (DOI: 10.1016/S0196 8904(99)00071 0), (ISSN: 0196 8904).  Rau G.H., K.G. Knauss, W.H. Langer, and K. Caldeira (2007).  Reducing energy related CO2  emissions  using accelerated weathering of limestone. Energy. 32, 1471 1477 pp. (DOI:  10.1016/j.energy.2006.10.011), (ISSN: 0360 5442).  Reddy B.S., P. Balachandra, and H.S.K. Nathan (2009).  Universalization of access to modern energy  services in Indian households Economic and policy analysis. Energy Policy. 37, 4645 4657 pp. (DOI:  10.1016/j.enpol.2009.06.021), (ISSN: 0301 4215).  Reilly J., J. Melillo, Y. Cai, D. Kicklighter, A. Gurgel, S. Paltsev, T. Cronin, A. Sokolov, and A. Schlosser  (2012).  Using Land To Mitigate Climate Change: Hitting the Target, Recognizing the Trade offs.  Environmental Science & Technology. 46, 5672 5679 pp. (DOI: 10.1021/es2034729), (ISSN: 0013 936X).  Reilly J., S. Paltsev, B. Felzer, X. Wang, D. Kicklighter, J. Melillo, R. Prinn, M. Sarofim, A. Sokolov, and  C. Wang (2007).  Global economic effects of changes in crops, pasture, and forests due to changing  climate, carbon dioxide, and ozone. Energy Policy. 35, 5370 5383 pp. (DOI:  10.1016/j.enpol.2006.01.040), (ISSN: 0301 4215).  Reisinger A., P. Havlik, K. Riahi, O. Vliet, M. Obersteiner, and M. Herrero (2012).  Implications of  alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic  Change. 117, 677 690 pp. (DOI: 10.1007/s10584 012 0593 3), (ISSN: 0165 0009).  Riahi K., F. Dentener, D. Gielen, A. Grubler, J. Jewell, Z. Klimont, V. Krey, D. McCollum, S. Pachauri, S.  Rao, B. van Ruijven, D.P. van Vuuren, and C. Wilson (2012).  Chapter 17   Energy Pathways for  Sustainable Development. In: Global Energy Assessment   Toward a Sustainable Future.Cambridge  University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied  Systems Analysis, Laxenburg, Austria pp.1203 1306, (ISBN: 9781 10700 5198 hardback 9780 52118  2935 paperback).  Riahi K., E. Kriegler, N. Johnson, C. Bertram, M. Den Elzen, J. Eom, M. Schaeffer, J. Edmonds, and et  al. (2014).  Overview WP2   Locked into Copenhagen Pledges   Implications of short term emission  targets for the cost and feasibility of long term climate goals. Technological Forecasting and Social  Change. In press, (DOI: 10.1016/j.techfore.2013.09.016).  Riahi K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj  (2011).  RCP 8.5 A scenario of comparatively high greenhouse gas emissions. Climatic Change. 109,  33 57 pp. (DOI: 10.1007/s10584 011 0149 y), (ISSN: 0165 0009, 1573 1480).    131 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Richels R.G., G.J. Blanford, and T.F. Rutherford (2009).  International climate policy: a  second best   solution for a  second best  world? Climatic Change. 97, 289 296 pp. (DOI: 10.1007/s10584 009 9730 z), (ISSN: 0165 0009, 1573 1480).  Richels R., T. Rutherford, G. Blanford, and L. Clarke (2007).  Managing the transition to climate  stabilization. Climate Policy. 7, 409 428 pp. .  Rickels W., G. Klepper, J. Dovern, G. Betz, N. Brachatzek, S. Cacean, K. Güssow, J. Heintzenberg, S.  Hiller, C. Hoose, G. Klepper, T. Leisner, A. Oschlies, U. Platt, A. Proelß, O. Renn, W. Rickels, S.  Schäfer, and M. Zürn (2011).  Large Scale Intentional Interventions into the Climate System? Assessing  the Climate Engineering Debate. Scoping Report Conducted on Behalf of the German Federal Ministry  of Education and Research (BMBF). Kiel Earth Institute, Kiel, 170 pp.  Ridgwell A., J.S. Singarayer, A.M. Hetherington, and P.J. Valdes (2009).  Tackling Regional Climate  Change By Leaf Albedo Bio geoengineering. Current Biology. 19, 146 150 pp. (DOI:  10.1016/j.cub.2008.12.025), (ISSN: 0960 9822).  Robock A., M. Bunzl, B. Kravitz, and G.L. Stenchikov (2010).  A Test for Geoengineering? Science. 327,  530 531 pp. (DOI: 10.1126/science.1186237), (ISSN: 0036 8075).  Robock A., A. Marquardt, B. Kravitz, and G. Stenchikov (2009).  Benefits, risks, and costs of  stratospheric geoengineering. Geophysical Research Letters. 36, L19703 pp. .  Robock A., L. Oman, and G.L. Stenchikov (2008).  Regional climate responses to geoengineering with  tropical and Arctic SO2 injections. Journal of Geophysical Research Atmospheres. 113, D16101 pp.  (DOI: 10.1029/2008JD010050), (ISSN: 0148 0227).  Roe M.J. (1994).  Strong Managers, Weak Owners: The Political Roots of American Corporate Finance.  Princeton University Press (Princeton, NJ), 342 pp., (ISBN: 0691036837). .  Rogelj J., W. Hare, J. Lowe, D. van Vuuren, K. Riahi, B. Matthews, T. Hanaoka, K. Jiang, and M.  Meinshausen (2011).  Emission pathways consistent with a 2 °C global temperature limit. Nature  Climate Change. 1, 413 418 pp. (DOI: 10.1038/nclimate1258), (ISSN: 1758 678X).  Rogelj J., D.L. McCollum, B.C. O/ Neill, and K. Riahi (2013a).  2020 emissions levels required to limit  warming to below 2 degrees. Nature Climate Change. 3, 405 412 pp. (DOI: 10.1038/nclimate1758),  (ISSN: 1758 678X).  Rogelj J., D.L. McCollum, A. Reisinger, M. Meinshausen, and K. Riahi (2013b).  Probabilistic cost  estimates for climate change mitigation. Nature. 493, 79 83 pp. (DOI: 10.1038/nature11787), (ISSN:  0028 0836).  Rogelj J., D.L. McCollum, and K. Riahi (2013c).  The UN s  Sustainable Energy for All  initiative is  compatible with a warming limit of 2 [deg]C. Nature Climate Change. 3, 545 551 pp. (ISSN: 1758 678X).  Rogelj J., M. Meinshausen, and R. Knutti (2012).  Global warming under old and new scenarios using  IPCC climate sensitivity range estimates. Nature Climate Change. 2, 248 253 pp. (DOI:  10.1038/nclimate1385), (ISSN: 1758 678X).  Rogner M., and K. Riahi (2013).  Future nuclear perspectives based on MESSAGE integrated  assessment modeling. Energy Strategy Reviews. 1, 223 232 pp. Available at:    132 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  http://www.scopus.com/inward/record.url?eid=2 s2.0 84877352603&partnerID=40&md5=d0e3c7792c0b8848cc89d78ca6a29a59.  Rose S.K., H. Ahammad, B. Eickhout, B. Fisher, A. Kurosawa, S. Rao, K. Riahi, and D.P. van Vuuren  (2012).  Land based mitigation in climate stabilization. Energy Economics. 34, 365 380 pp. (DOI:  10.1016/j.eneco.2011.06.004), (ISSN: 0140 9883).  Rose S.K., E. Kriegler, R. Bibas, K. Calvin, D. Popp, D. Van Vuuren, and J. Weyant (2014a).  Bioenergy  in energy transformation and climate management. Climatic Change. In press, (DOI: DOI:  10.1007/s10584 013 0965 3).  Rose S.K., R. Richels, S. Smith, K. Riahi, J. Strefler, and D. van Vuuren (2014b).  Non Kyoto Radiative  Forcing in Long Run Greenhouse Gas Emissions and Climate Change Scenarios. Climatic Change. In  press., (DOI: DOI: 10.1007/s10584 013 0955 5).  Ross A., and D.H. Matthews (2009).  Climate engineering and the risk of rapid climate change.  Environmental Research Letters. 4, 7 pp. (DOI: 10.1088/1748 9326/4/4/045103).  Royal Society (2009).  Geoengineering the Climate: Science, Governance and Uncertainty. The Royal  Society, London, 98 pp.  Van Ruijven B.J., D.P. van Vuuren, B.J.M. de Vries, M. Isaac, J.P. van der Sluijs, P.L. Lucas, and P.  Balachandra (2011).  Model projections for household energy use in India. Clean Cooking Fuels and  Technologies in Developing Economies. 39, 7747 7761 pp. (DOI: 10.1016/j.enpol.2011.09.021), (ISSN:  0301 4215).  Russ P., and P. Criqui (2007).  Post Kyoto CO2  emission reduction: The soft landing scenario analysed  with POLES and other world models. Energy Policy. 35, 786 796 pp. .  Sagar A.D., and B. van der Zwaan (2006).  Technological innovation in the energy sector: R&D,  deployment, and learning by doing. Energy Policy. 34, 2601 2608 pp. (DOI:  10.1016/j.enpol.2005.04.012).  Sathaye J., O. Lucon, A. Rahman, J. Christensen, F. Denton, J. Fujino, G. Heath, M. Mirza, H. Rudnick,  A. Schlaepfer, and A. Shmakin (2011).  Renewable Energy in the Context of Sustainable Development.  In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [ [O. Edenhofer,  R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen,  S. Schlömer, C. von Stechow (eds)] ]. Cambridge University Press, Cambridge, United Kingdom and New  York, NY, USA.  Schaeffer M., L. Gohar, E. Kriegler, J. Lowe, K. Riahi, and D. Van Vuuren (2013).  Mid  and long term  climate projections for fragmented and delayed action scenarios. Technological Forecasting and Social  Change. In press, (DOI: 10.1016/j.techfore.2013.09.013).  Schaeffer M., T. Kram, M. Meinshausen, D. van Vuuren, and W.L. Hare (2008).  Near linear cost  increase to reduce climate change risk. Proceedings of the National Academy of Sciences. 105, 20621  20626 pp. (DOI: 10.1073/pnas.0802416106).  Schaeffer R., A.S. Szklo, A.F. Pereira de Lucena, B.S. Moreira Cesar Borba, L.P. Pupo Nogueira, F.P.  Fleming, A. Troccoli, M. Harrison, and M.S. Boulahya (2012).  Energy sector vulnerability to climate  change: A review. Energy. 38, 1 12 pp. (DOI: 10.1016/j.energy.2011.11.056), (ISSN: 0360 5442).    133 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Schäfer A. (2005).  Structural change in energy use. Energy Policy. 33, 429 437 pp. (DOI: doi:  10.1016/j.enpol.2003.09.002), (ISSN: 0301 4215).  Schelling T.C. (1996).  The economic diplomacy of geoengineering. Climatic Change. 33, 303 307 pp.  (DOI: 10.1007/bf00142578), (ISSN: 0165 0009).  Schellnhuber H.J., D. Messner, C. Leggewie, R. Leinfelder, N. Nakicenovic, S. Rahmstorf, S. Schlacke,  J. Schmid, and R. Schubert (2009).  Solving the Climate Dilemma: The Budget Approach. Berlin,  Germany. 25 pp.  Schmidt H., K. Alterskjaer, D. Bou Karam, O. Boucher, A. Jones, J.E. Kristjánsson, U. Niemeier, M.  Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck (2012).  Solar irradiance reduction to  counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth  system models. Earth System Dynamics. 3, 63 78 pp. (DOI: 10.5194/esd 3 63 2012), (ISSN: 2190 4987).  Scholte S., E. Vasileiadou, and A.C. Petersen (2013).  Opening up the societal debate on climate  engineering: how newspaper frames are changing. Journal of Integrative Environmental Sciences. 10,  1 16 pp. (DOI: 10.1080/1943815X.2012.759593), (ISSN: 1943 815X).  Searchinger T., R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, and  T. H. Yu (2008).  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions  from Land Use Change. Science. 319, 1238  1240 pp. (DOI: 10.1126/science.1151861).  Shen Y., T. Oki, N. Utsumi, S. Kanae, and N. Hanasaki (2008).  Projection of future world water  resources under SRES scenarios: water withdrawal / Projection des ressources en eau mondiales  futures selon les scénarios du RSSE: prélevement d eau. Hydrological Sciences Journal. 53, 11 33 pp.  (DOI: 10.1623/hysj.53.1.11), (ISSN: 0262 6667).  Shiklomanov I.A., and J.C. Rodda (2003).  World Water Resources at the Beginning of the 21st  Century. Center for Ecology and Hydrology, Cambridge, UK. 25 pp.  Shindell D., J.C.I. Kuylenstierna, E. Vignati, R. van Dingenen, M. Amann, Z. Klimont, S.C. Anenberg, N.  Muller, G. Janssens Maenhout, F. Raes, J. Schwartz, G. Faluvegi, L. Pozzoli, K. Kupiainen, L. Höglund Isaksson, L. Emberson, D. Streets, V. Ramanathan, K. Hicks, N.T.K. Oanh, G. Milly, M. Williams, V.  Demkine, and D. Fowler (2012).  Simultaneously Mitigating Near Term Climate Change and Improving  Human Health and Food Security. Science. 335, 183 189 pp. (DOI: 10.1126/science.1210026).  Shine K.P., T.K. Berntsen, J.S. Fuglestvedt, R.B. Skeie, and N. Stuber (2007).  Comparing the climate  effect of emissions of short  and long lived climate agents. Philosophical Transactions of the Royal  Society A: Mathematical, Physical and Engineering Sciences. 365, 1903 1914 pp. (DOI:  10.1098/rsta.2007.2050).  Shrestha R.M., and S.R. Shakya (2012).  Benefits of low carbon development in a developing country:  Case of Nepal. The Asia Modeling Exercise: Exploring the Role of Asia in Mitigating Climate Change. 34,  Supplement 3, S503 S512 pp. (DOI: 10.1016/j.eneco.2012.03.014), (ISSN: 0140 9883).  Shukla P.R., and V. Chaturvedi (2012).  Low carbon and clean energy scenarios for India: Analysis of  targets approach. Energy Economics. 34, S487 S495 pp. (DOI: 10.1016/j.eneco.2012.05.002), (ISSN:  0140 9883).    134 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Shukla P.R., and S. Dhar (2011).  International Environmental Agreements: Politics, Law and  Economics. . Climate agreements and India: aligning options and opportunities on a new track.  International Environmental Agreements: Politics, Law and Economics. 11, 229 243 pp. .  Shukla P.R., S. Dhar, and D. Mahapatra (2008).  Low carbon society scenarios for India. Climate Policy.  8, S156 S176 pp. (DOI: 10.3763/cpol.2007.0498), (ISSN: 1469 3062).  Shukla P.R., A. Garg, and S. Dhar (2009).  Integrated regional assessment for South Asia: A Case Study.  In: Knight, C.G. & Jäger, J. (eds). Integrated Regional Assessment of Climate Change. Cambridge  University Press, Cambridge UK and New York, NY.  Skea J. (2010).  Valuing diversity in energy supply. Large scale wind power in electricity markets with  Regular Papers. 38, 3608 3621 pp. (DOI: 10.1016/j.enpol.2010.02.038), (ISSN: 0301 4215).  Skea J.I.M., and S. Nishioka (2008).  Policies and practices for a low carbon society. Climate Policy. 8,  S5 S16 pp. (DOI: 10.3763/cpol.2008.0487), (ISSN: 1469 3062).  Smale R., M. Hartley, C. Hepburn, J. Ward, and M. Grubb (2006).  The impact of CO2  emissions  trading on firm profits and market prices. Climate Policy. 6, 31 48 pp. .  Smetacek V., C. Klaas, V.H. Strass, P. Assmy, M. Montresor, B. Cisewski, N. Savoye, A. Webb, F.  d/ Ovidio, J.M. Arrieta, U. Bathmann, R. Bellerby, G.M. Berg, P. Croot, S. Gonzalez, J. Henjes, G.J.  Herndl, L.J. Hoffmann, H. Leach, M. Losch, M.M. Mills, C. Neill, I. Peeken, R. Rottgers, O. Sachs, E.  Sauter, M.M. Schmidt, J. Schwarz, A. Terbruggen, and D. Wolf Gladrow (2012).  Deep carbon export  from a Southern Ocean iron fertilized diatom bloom. Nature. 487, 313 319 pp. (DOI:  10.1038/nature11229), (ISSN: 0028 0836).  Smith K.R., M. Jerrett, H.R. Anderson, R.T. Burnett, V. Stone, R. Derwent, R.W. Atkinson, A. Cohen,  S.B. Shonkoff, D. Krewski, C.A. Pope III, M.J. Thun, and G. Thurston (2009).  Public health benefits of  strategies to reduce greenhouse gas emissions: health implications of short lived greenhouse  pollutants. The Lancet. 374, 2091 2103 pp. (DOI: 10.1016/S0140 6736(09)61716 5), (ISSN: 0140 6736).  Smith S.M., J.A. Lowe, N.H.A. Bowerman, L.K. Gohar, C. Huntingford, and M.R. Allen (2012).   Equivalence of greenhouse gas emissions for peak temperature limits. Nature Climate Change. 2, 535 538 pp. (DOI: 10.1038/nclimate1496), (ISSN: 1758 678X).  Smith S.J., and A. Mizrahi (2013).  Near term climate mitigation by short lived forcers. Proceedings of  the National Academy of Sciences. 110, 14202 14206 pp. .  Smith S.J., and P.J. Rasch (2012).  The long term policy context for solar radiation management.  Climatic Change. 121, 487 497 pp. (DOI: 10.1007/s10584 012 0577 3).  Socolow R.H., M. Desmond, R. Aines, J. Blackstock, O. Bolland, T. Kaarsberg, L. Lewis, and et al.  (2011).  Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public  Affairs. The American Physical Society, Washington DC, 100 pp.  Spracklen D.V., S.R. Arnold, and C.M. Taylor (2012).  Observations of increased tropical rainfall  preceded by air passage over forests. Nature. 489, 282 285 pp. (ISSN: 1476 4687).  SRREN I. (2011).  Renewable Energy Sources and Climate Change Mitigation. Special Report of the  International Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge UK.  1070 pp.    135 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Steckel J.C., R.J. Brecha, M. Jakob, J. Strefler, and G. Luderer (2013).  Development without energy?  Assessing future scenarios of energy consumption in developing countries. Ecological Economics. 90,  53 67 pp. (DOI: 10.1016/j.ecolecon.2013.02.006), (ISSN: 0921 8009).  Stephens J., and D. Keith (2008).  Assessing geochemical carbon management. Climatic Change. 90,  217 242 pp. (DOI: 10.1007/s10584 008 9440 y), (ISSN: 0165 0009).  Stern D.I., J.C.V. Pezzey, and N.R. Lambie (2012).  Where in the world is it cheapest to cut carbon  emissions?*. Australian Journal of Agricultural and Resource Economics. 56, 315 331 pp. (DOI:  10.1111/j.1467 8489.2011.00576.x), (ISSN: 1467 8489).  Stirling A. (1994).  Diversity and ignorance in electricity supply investment: Addressing the solution  rather than the problem. Energy Policy. 22, 195 216 pp. (DOI: 10.1016/0301 4215(94)90159 7), (ISSN:  0301 4215).  Stirling A. (2010).  Multicriteria diversity analysis: A novel heuristic framework for appraising energy  portfolios. Energy Security   Concepts and Indicators with regular papers. 38, 1622 1634 pp. (DOI:  10.1016/j.enpol.2009.02.023), (ISSN: 0301 4215).  Stocker T.F., Q.F. Dahe, and al. (2013).  Climate Change 2013: The Physical Science Basis. WMO &  UNEP. Available at: http://www.climatechange2013.org/.  Stolaroff J.K., S. Bhattacharyya, C.A. Smith, W.L. Bourcier, P.J. Cameron Smith, and R.D. Aines  (2012).  Review of Methane Mitigation Technologies with Application to Rapid Release of Methane  from the Arctic. Environmental Science & Technology. 46, 6455 6469 pp. (DOI: 10.1021/es204686w),  (ISSN: 0013 936X).  Stone D.A., M.R. Allen, P.A. Stott, P. Pall, S.K. Min, T. Nozawa, and S. Yukimoto (2009).  The  Detection and Attribution of Human Influence on Climate. Annual Review of Environment and  Resources. 34, 1 16 pp. (DOI: 10.1146/annurev.environ.040308.101032), (ISSN: 1543 5938).  Strachan N., T. Foxon, and J. Fujino (2008).  Low Carbon Society (LCS) modelling. Climate Policy. 8, S3 S4 pp. (DOI: 10.3763/cpol.2008.0538), (ISSN: 1469 3062).  Strachan N., and W. Usher (2012).  Failure to achieve stringent carbon reduction targets in a second best policy world. Climatic Change. 113, 121 139 pp. (DOI: 10.1007/s10584 011 0267 6), (ISSN: 0165 0009).  Sugiyama M. (2012).  Climate change mitigation and electrification. Energy Policy. 44, 464 468 pp. .  Sugiyama M., O. Akashi, K. Wada, A. Kanudia, J. Li, and J. Weyant (2014).  Role of energy efficiency in  climate change mitigation policy for India: Assessment of  co benefits and opportunities within an  integrated assessment modeling framework. Climatic Change. In press, (DOI: 10.1007/s10584 013 0874 5).  Swart R., M. Amann, F. Raes, and W. Tuinstra (2004).  A Good Climate for Clean Air: Linkages  between Climate Change and Air Pollution. An Editorial Essay. Climatic Change. 66, 263 269 pp. (DOI:  10.1023/B:CLIM.0000044677.41293.39), (ISSN: 0165 0009).  Swart R., and N. Marinova (2010).  Policy options in a worst case climate change world. Mitigation  and Adaptation Strategies for Global Change. 15, 531 549 pp. (DOI: 10.1007/s11027 010 9235 0),  (ISSN: 1381 2386).    136 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Tavoni M., E. De Cian, G. Luderer, J. Steckel, and H. Waisman (2012).  The value of technology and of  its evolution towards a low carbon economy. Climatic Change. 114, 39 57 pp. .  Tavoni M., E. Kriegler, T. Aboumahboub, K. Calvin, G. DeMaere, T. Kober, J. Jewell, P. Lucas, G.  Luderer, D. McCollum, and et al. (2014).  The distribution of the major economies  effort in the  Durban platform scenarios. Climate Change Economics. Accepted for publication, .  Tavoni M., and R. Socolow (2013).  Modeling meets science and technology: an introduction to a  special issue on negative emissions. Climatic Change. 118, 1 14 pp. (DOI: 10.1007/s10584 013 0757 9), (ISSN: 0165 0009).  Tavoni M., and R.S.J. Tol (2010).  Counting only the hits? The risk of underestimating the costs of  stringent climate policy. Climatic Change. 100, 769 778 pp. (DOI: 10.1007/s10584 010 9867 9), (ISSN:  0165 0009).  Thollander P., J. Palm, and P. Rohdin (2010).  Categorizing barriers to energy efficiency: an  interdisciplinary perspective. In: Energy efficiency. Sciyo, Croatia.(ISBN: 978 953 307 137 4).  Tilmes S., J. Fasullo, J. Lamarque, D.R. Marsh, M. Mills, K. Alterskjaer, H. Muri, J.E. Kristjánsson, O.  Boucher, and M. Schulz (2013).  The hydrological impact of geoengineering in the Geoengineering  Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres. 118, 11 036  pp. (ISSN: 2169 8996).  Tilmes S., R.R. Garcia, D.E. Kinnison, A. Gettelman, and P.J. Rasch (2009).  Impact of geoengineered  aerosols on the troposphere and stratosphere. Journal of Geophysical Research Atmospheres. 114,  D12305 pp. (DOI: 10.1029/2008JD011420), (ISSN: 0148 0227).  Tol R.S.J. (1997).  On the optimal control of carbon dioxide emissions: an application of FUND.  Environmental Modeling & Assessment. 2, 151 163 pp. .  Tol R.S.. (2009).  The feasibility of low concentration targets: An application of FUND. Energy  Economics. 31, S121 S130 pp. .  Townsend P.V., R.J. Harper, P.D. Brennan, C. Dean, S. Wu, K.R.J. Smettem, and S.E. Cook (2012).   Multiple environmental services as an opportunity for watershed restoration. Forest Policy and  Economics. 17, 45 58 pp. (DOI: 10.1016/j.forpol.2011.06.008), (ISSN: 1389 9341).  Tuana N., R.L. Sriver, T. Svoboda, R. Olson, P.J. Irvine, J. Haqq Misra, and K. Keller (2012).  Towards  Integrated Ethical and Scientific Analysis of Geoengineering: A Research Agenda. Ethics, Policy &  Environment. 15, 136 157 pp. (DOI: 10.1080/21550085.2012.685557), (ISSN: 2155 0085).  Turton H., and L. Barreto (2006).  Long term security of energy supply and climate change. Energy  Policy. 34, 2232 2250 pp. (DOI: 10.1016/j.enpol.2005.03.016), (ISSN: 0301 4215).  UNCCD (2004).  United Nations Convention to Combat Desertification (UNCCD). Available at:  http://www.unccd.int/en/Pages/default.aspx.  UNEP (2012).  The Emissions Gap Report 2012: UNEP Synthesis Report. United Nations Environment  Programme (UNEP), Nairobi, Kenya. 62 pp. Available at: http://igitur archive.library.uu.nl/milieu/2013 0903 200557/2012gapreport.pdf.  UNEP and WMO (2011).  Integrated Assessment of Black Carbon and Tropospheric Ozone. United  Nations Environment Programme and World Meteorological Organisation, Nairobi, Kenya.    137 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  UNFCCC (1997).  Paper No 1: Brazil; Proposed Elements of a Protocol to the United Nations Framework  Convention on Climate Change. United Nations Framework Convention on Climate Change, Bonn,  Germany. 58 pp.  UNFCCC (2011a). UNFCCC/SB/2011/INF.1/Rev.1.  UNFCCC (2011b). UNFCCC/ FCCC/AWGLCA/2011/INF.1.  Uprety D.C., S. Dhar, D. Hongmin, B. Kimball, A. Garg, and J. Upadhyay (2012).  Technologies for  Green House Gas Mitigation in Agriculture. UNEP Risoe Centre, Risoe DTU National Laboratory for  Sustainable Energy, Nairobi, Kenya, 138 pp.  Urpelainen J. (2012).  Geoengineering and global warming: a strategic perspective. International  Environmental Agreements Politics Law and Economics. 12, 375 389 pp. (DOI: 10.1007/s10784 012 9167 0), (ISSN: 1567 9764).  Vaillancourt K., and J. P. Waaub (2004).  Equity in international greenhouse gases abatement  scenarios: A multicriteria approach. Management of the Future MCDA: Dynamic and Ethical  Contributions. 153, 489 505 pp. (DOI: 10.1016/S0377 2217(03)00170 X), (ISSN: 0377 2217).  van Sluisvel, Gernaat, Ashina, Calvin, Garg, Isaac, Lucas, Luderer, McCollum, Marangoni, Riahi, and  Van Vuuren (2014).  A multi model analysis of post 2020 mitigation efforts of five major economies.  Accepted for publication climate Change Economics. 22 pp. .  Vaughan N., and T. Lenton (2011).  A review of climate geoengineering proposals. Climatic Change.  109, 745 790 pp. (DOI: 10.1007/s10584 011 0027 7), (ISSN: 0165 0009).  Venema H.D., and I.H. Rehman (2007).  Decentralized renewable energy and the climate change  mitigation adaptation nexus. Mitigation and Adaptation Strategies for Global Change. 12, 875 900 pp.  (DOI: 10.1007/s11027 007 9104 7), (ISSN: 1381 2386).  Verbruggen A., and M. Al Marchohi (2010).  Views on peak oil and its relation to climate change  policy. Energy Policy. 38, 5572 5581 pp. (DOI: 10.1016/j.enpol.2010.05.002), (ISSN: 0301 4215).  Victor D.G. (2008).  On the regulation of geoengineering. Oxford Review of Economic Policy. 24, 322 336 pp. (DOI: 10.1093/oxrep/grn018), (ISSN: 0266 903X).  Virgoe J. (2009).  International governance of a possible geoengineering intervention to combat  climate change. Climatic Change. 95, 103 119 pp. (DOI: 10.1007/s10584 008 9523 9), (ISSN: 0165 0009).  Vliet J., M. Berg, M. Schaeffer, D. Vuuren, M. Elzen, A. Hof, A. Mendoza Beltran, and M.  Meinshausen (2012).  Copenhagen Accord Pledges imply higher costs for staying below 2°C warming.  Climatic Change. 113, 551 561 pp. (DOI: 10.1007/s10584 012 0458 9), (ISSN: 0165 0009).  Van Vliet J., M.G.J. den Elzen, and D.P. van Vuuren (2009).  Meeting radiative forcing targets under  delayed participation. Energy Economics. 31, S152 S162 pp. (DOI: 16/j.eneco.2009.06.010), (ISSN:  0140 9883).  Van Vuuren D., J. Cofala, H.E. Eerens, R. Oostenrijk, C. Heyes, Z. Klimont, M.G.J. den Elzen, and M.  Amann (2006).  Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe.  Energy Policy. 34, 444 460 pp. (DOI: 10.1016/j.enpol.2004.06.012), (ISSN: 0301 4215).    138 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Van Vuuren D.P., S. Deetman, J. Vliet, M. Berg, B.J. Ruijven, and B. Koelbl (2013).  The role of  negative CO2  emissions for reaching 2 °C insights from integrated assessment modelling. Climatic  Change. 118, 15 27 pp. (DOI: 10.1007/s10584 012 0680 5), (ISSN: 0165 0009).  Van Vuuren D., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V.  Krey, J. F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S.J. Smith, and S.K. Rose (2011a).   The representative concentration pathways: an overview. Climatic Change. 109, 5 31 pp. (DOI:  10.1007/s10584 011 0148 z), (ISSN: 0165 0009, 1573 1480).  Van Vuuren D., M.G.J. den Elzen, P.L. Lucas, B. Eickhout, B.J. Strengers, B. Ruijven, S. Wonink, and R.  Houdt (2007).  Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction  strategies and costs. Climatic Change. 81, 119 159 pp. (DOI: 10.1007/s10584 006 9172 9), (ISSN:  01650009).  Van Vuuren D., M. Hoogwijk, T. Barker, K. Riahi, S. Boeters, J. Chateau, S. Scrieciu, J. van Vliet, T.  Masui, T. Blok, E. Blomen, and T. Kram (2009a).  Comparison of top down and bottom up estimates  of sectoral and regional greenhouse gas emission reduction potentials. Energy Policy. 37, 5125 5139  pp. (DOI: 16/j.enpol.2009.07.024), (ISSN: 0301 4215).  Van Vuuren D.P., M. Isaac, M.G.. den Elzen, E. Stehfest, and J. van Vliet (2010).  Low stabilization  scenarios and implications for major world regions from an integrated assessment perspective. The  Energy Journal. 31, 165 192 pp. .  Van Vuuren D., J. Lowe, E. Stehfest, L. Gohar, A.F. Hof, C. Hope, R. Warren, M. Meinshausen, and G. K. Plattner (2009b).  How well do integrated assessment models simulate climate change? Climatic  Change. 104, 255 285 pp. (DOI: 10.1007/s10584 009 9764 2), (ISSN: 0165 0009, 1573 1480).  Van Vuuren D., and K. Riahi (2011).  The relationship between short term emissions and long term  concentration targets. Climatic Change. 104, 793 801 pp. (DOI: 10.1007/s10584 010 0004 6), (ISSN:  0165 0009).  Van Vuuren D.P., and E. Stehfest (2013).  If climate action becomes urgent: the importance of  response times for various climate strategies. Climatic Change. 121, 473 486 pp. (DOI:  10.1007/s10584 013 0769 5), (ISSN: 0165 0009).  Van Vuuren D., E. Stehfest, M.G.J. den Elzen, T. Kram, J. van Vliet, S. Deetman, M. Isaac, K. Klein  Goldewijk, A. Hof, A. Mendoza Beltran, R. Oostenrijk, and B. Ruijven (2011b).  RCP2.6: exploring the  possibility to keep global mean temperature increase below 2°C. Climatic Change. 109, 95 116 pp.  (DOI: 10.1007/s10584 011 0152 3), (ISSN: 0165 0009, 1573 1480).  Wagner F. (2012).  Mitigation here and now or there and then: the role of co benefits. Carbon  Management. 3, 325 327 pp. (DOI: 10.4155/cmt.12.37), (ISSN: 1758 3004).  Waisman H., C. Guivarch, F. Grazi, and J. Hourcade (2012).  The Imaclim R model: infrastructures,  technical inertia and the costs of low carbon futures under imperfect foresight. Climatic Change. 114,  101 120 pp. (DOI: 10.1007/s10584 011 0387 z), (ISSN: 0165 0009).  WCED (1987).  Our Common Future, From One Earth to One World (Brundtland Report). United  Nations World Commission on Environment and Development, Oslo. 300 pp.  Webster M., A. Sokolov, J. Reilly, C. Forest, S. Paltsev, A. Schlosser, C. Wang, D. Kicklighter, M.  Sarofim, J. Melillo, R. Prinn, and H. Jacoby (2012).  Analysis of climate policy targets under  uncertainty. Climatic Change. 112, 569 583 pp. (DOI: 10.1007/s10584 011 0260 0), (ISSN: 0165 0009).    139 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  Wei M., S. Patadia, and D.M. Kammen (2010).  Putting renewables and energy efficiency to work:  How many jobs can the clean energy industry generate in the US? Energy Policy. 38, 919 931 pp. (DOI:  10.1016/j.enpol.2009.10.044), (ISSN: 0301 4215).  Ban Weiss G.A., and K. Caldeira (2010).  Geoengineering as an optimization problem. Environmental  Research Letters. 5, 034009 pp. (ISSN: 1748 9326).  West J.J., A.M. Fiore, L.W. Horowitz, and D.L. Mauzerall (2006).  Global health benefits of mitigating  ozone pollution with methane emission controls. Proceedings of the National Academy of Sciences of  the United States of America. 103, 3988 3993 pp. .  West J.J., A.M. Fiore, V. Naik, L.W. Horowitz, M.D. Schwarzkopf, and D.L. Mauzerall (2007).  Ozone  air quality and radiative forcing consequences of changes in ozone precursor emissions. Geophysical  Research Letters. 34, L06806 pp. (DOI: 10.1029/2006GL029173), (ISSN: 1944 8007).  West J.J., S.J. Smith, R.A. Silva, V. Naik, Y. Zhang, Z. Adelman, M.M. Fry, S. Anenberg, L.W. Horowitz,  and J. F. Lamarque (2013).  Co benefits of mitigating global greenhouse gas emissions for future air  quality and human health. Nature Climate Change. 3, 885 889 pp. .  Weyant J., F.C. de la Chesnaye, and G.J. Blanford (2006).  Overview of EMF 21: Multigas Mitigation  and Climate Policy. The Energy Journal. Multi Greenhouse Gas Mitigation and Climate Policy, 1 32  pp. .  Wigley T.M.L. (2005).  The Climate Change Commitment. Science. 307, 1766 1769 pp. (DOI:  10.1126/science.1103934).  Wigley T.M.L. (2006).  A Combined Mitigation/Geoengineering Approach to Climate Stabilization.  Science. 314, 452 454 pp. (DOI: 10.1126/science.1131728), (ISSN: 0036 8075, 1095 9203).  Wilkinson P., K.R. Smith, M. Davies, H. Adair, B.G. Armstrong, M. Barrett, N. Bruce, A. Haines, I.  Hamilton, T. Oreszczyn, I. Ridley, C. Tonne, and Z. Chalabi (2009).  Public health benefits of strategies  to reduce greenhouse gas emissions: household energy. The Lancet. 374, 1917 1929 pp. (DOI:  10.1016/S0140 6736(09)61713 X), (ISSN: 0140 6736).  Williams J.H., A. DeBenedictis, R. Ghanadan, A. Mahone, J. Moore, W.R. Morrow III, S. Price, and  M.S. Torn (2012).  The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal  role of electricity. Science. 335, 53 59 pp. Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84855488361&partnerID=40&md5=5d8e91d91b6592a2157cc3fceff978ab.  Winkler H., T. Letete, and A. Marquard (2011).  A South African approach   responsibility, capability  and sustainable development. In: Equitable access to sustainable development: contribution to the  body of scientific knowledge. BASIC expert group, Beijing, Brasilia, Cape Town and Mumbai pp.97, .  Wise M., K. Calvin, A. Thomson, L. Clarke, B. Bond Lamberty, R. Sands, S.J. Smith, A. Janetos, and J.  Edmonds (2009).  Implications of Limiting CO2 Concentrations for Land Use and Energy. Science. 324,  1183  1186 pp. (DOI: 10.1126/science.1168475).  Woodcock J., P. Edwards, C. Tonne, B.G. Armstrong, O. Ashiru, D. Banister, S. Beevers, Z. Chalabi, Z.  Chowdhury, A. Cohen, O.H. Franco, A. Haines, R. Hickman, G. Lindsay, I. Mittal, D. Mohan, G. Tiwari,  A. Woodward, and I. Roberts (2009).  Public health benefits of strategies to reduce greenhouse gas  emissions: urban land transport. The Lancet. 374, 1930 1943 pp. (DOI: 10.1016/S0140 6736(09)61714 1), (ISSN: 0140 6736).    140 of 141  Final Draft  Chapter 6  IPCC WGIII AR5  World Bank (2013).  International Comparison Program Database. World Bank, Washington DC, USA.  Available at: http://data.worldbank.org/indicator/NY.GDP.MKTP.PP.KD.  Yamamoto H., M. Sugiyama, and J. Tsutsui (2014).  Role of end use technologies in long term GHG  reduction scenarios developed with the BET model. Climatic Change. In press., (DOI: DOI  10.1007/s10584 013 0938 6).  Zeebe R.E., and D. Archer (2005).  Feasibility of ocean fertilization and its impact on future  atmospheric CO2 levels. Geophysical Research Letters. 32, L09703 pp. (DOI: 10.1029/2005GL022449),  (ISSN: 1944 8007).  Zhou Y., J. Eom, and L. Clarke (2013).  The effect of global climate change, population distribution, and  climate mitigation on building energy use in the U.S. and China. Climatic Change. 119, 979 992 pp.  (DOI: 10.1007/s10584 013 0772 x), (ISSN: 0165 0009).  Zickfeld K., M. Eby, H.D. Matthews, and A.J. Weaver (2009).  Setting cumulative emissions targets to  reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences. 106,  16129  16134 pp. (DOI: 10.1073/pnas.0805800106).  Zürn M., and S. Schäfer (2013).  The Paradox of Climate Engineering. Global Policy. 4, 266 277 pp.  (DOI: 10.1111/1758 5899.12004).  Van der Zwaan B., R. Gerlagh, G. Klaassen, and L. Schrattenholzer (2002).  Energy Economics. .  Endogenous technological change in climate change modelling. Energy Economics. 24, 1 19 pp. .  Van der Zwaan B.C.C., H. Rösler, T. Kober, T. Aboumahboub, K.V. Calvin, D.E.H.J. Gernaat, G.  Marangoni, and D. McCollum (2014).  A Cross model Comparison of Global Long term Technology  Diffusion under a 2C Climate Change Control Target. Climate Change Economics. Accepted for  publication, .      141 of 141  Working Group III Mitigation of Climate Change Chapter 7 Energy Systems A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:   Title:  Author(s):    7  Energy Systems  CLAs:  LAs:  Chapter 7   IPCC WGIII AR5   Thomas Bruckner, Igor Alexeyevich Bashmakov, Yacob Mulugetta  Helena Chum, Angel De la Vega Navarro, James Edmonds, Andre Faaij,  Bundit Fungtammasan, Amit Garg, Edgar Hertwich, Damon Honnery,  David Infield, Mikiko Kainuma, Smail Khennas, Suduk Kim, Hassan  Bashir Nimir, Keywan Riahi, Neil Strachan, Ryan Wiser, Xiliang Zhang  Yumiko Asayama, Giovanni Baiocchi, Francesco Cherubini, Anna  Czajkowska, Naim Darghouth, James J. Dooley, Thomas Gibon, Haruna  Gujba, Ben Hoen, David de Jager, Jessica Jewell, Susanne Kadner, Son H.  Kim, Peter Larsen, Axel Michaelowa, Andrew Mills, Kanako Morita,  Karsten Neuhoff, Ariel Macaspac Hernandez, H Holger Rogner, Joseph  Salvatore, Steffen Schlömer, Kristin Seyboth, Christoph von Stechow,  Jigeesha Upadhyay   Kirit Parikh, Jim Skea  Ariel Macaspac Hernandez    CAs:      REs:  CSA:        1 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   Chapter 7: Energy Systems  Contents    Executive Summary ............................................................................................................................ 4  7.1 Introduction .................................................................................................................................. 7  7.2 Energy production, conversion, transmission and distribution ................................................... 9  7.3 New developments in emission trends and drivers ................................................................... 13  7.4 Resources and resource availability ........................................................................................... 15  7.4.1 Fossil fuels ........................................................................................................................... 15  7.4.2 Renewable energy ............................................................................................................... 16  7.4.3 Nuclear energy .................................................................................................................... 17  7.5 Mitigation technology options, practices and behavioral aspects ............................................. 18  7.5.1 Fossil fuel extraction, conversion, and fuel switching ........................................................ 18  7.5.2 Energy efficiency in transmission and distribution ............................................................. 20  7.5.3 Renewable energy technologies ......................................................................................... 21  7.5.4 Nuclear energy .................................................................................................................... 23  7.5.5 Carbon dioxide capture and storage (CCS) ......................................................................... 25  7.6 Infrastructure and systemic perspectives .................................................................................. 28  7.6.1 Electrical power systems ..................................................................................................... 28  7.6.1.1 System balancing flexible generation and loads......................................................... 28  7.6.1.2 Capacity adequacy ....................................................................................................... 29  7.6.1.3 Transmission and distribution ..................................................................................... 30  7.6.2 Heating and cooling networks  ............................................................................................ 30  . 7.6.3 Fuel supply systems  ............................................................................................................ 31  . 7.6.4 CO2 transport  ...................................................................................................................... 32  . 7.7 Climate change feedback and interaction with adaptation ....................................................... 32  7.8 Costs and potentials ................................................................................................................... 34  7.8.1 Potential emission reduction from mitigation measures ................................................... 34  7.8.2 Cost assessment of mitigation measures ............................................................................ 37  7.8.3 Economic potentials of mitigation measures ...................................................................... 41  7.9 Co benefits, risks and spillovers ................................................................................................. 41  7.9.1 Socio economic effects ....................................................................................................... 45  7.9.2 Environmental and health effects ....................................................................................... 47  7.9.3 Technical risks ..................................................................................................................... 50      2 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   7.9.4 Public perception ................................................................................................................ 52  7.10 Barriers and opportunities  ....................................................................................................... 53  . 7.10.1 Technical aspects .............................................................................................................. 53  7.10.2 Financial and investment barriers and opportunities ....................................................... 53  7.10.3 Cultural, institutional, and legal barriers and opportunities ............................................. 55  7.10.4 Human capital capacity building ....................................................................................... 55  7.10.5 Inertia in energy systems physical capital stock turnover ................................................ 56  7.11 Sectoral implication of transformation pathways and sustainable development ................... 57  7.11.1 Energy related greenhouse gas emissions ........................................................................ 57  7.11.2 Energy supply in low stabilization scenarios ..................................................................... 58  7.11.3 Role of the electricity sector in climate change mitigation .............................................. 63  7.11.4 Relationship between short term action and long term targets ...................................... 67  7.12 Sectoral policies ........................................................................................................................ 70  7.12.1 Economic instruments  ...................................................................................................... 70  . 7.12.2 Regulatory approaches ..................................................................................................... 73  7.12.3 Information programmes .................................................................................................. 74  7.12.4 Government provision of public goods or services ........................................................... 74  7.12.5 Voluntary actions .............................................................................................................. 74  7.13 Gaps in knowledge and data .................................................................................................... 75  7.14 Frequently Asked Questions ..................................................................................................... 75  References ........................................................................................................................................ 78      3 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   Executive Summary  The energy systems chapter addresses issues related to the mitigation of greenhouse gas  emissions (GHG) from the energy supply sector. The energy supply sector, as defined in this report,  comprises all energy extraction, conversion, storage, transmission, and distribution processes that  deliver final energy to the end use sectors (industry, transport, and building, as well as agriculture  and forestry). Demand side measures in the energy end use sectors are discussed in chapters 8 11.  The energy supply sector is the largest contributor to global greenhouse gas emissions (robust  evidence, high agreement). In 2010, the energy supply sector was responsible for approximately 35%  of total anthropogenic GHG emissions. Despite the United Nations Framework Convention on  Climate Change (UNFCCC) and the Kyoto Protocol, GHG emissions grew more rapidly between 2001  and 2010 than in the previous decade. Growth in sector GHG emissions accelerated from 1.7% per  year from 1991 2000 to 3.1% per year from 2001 2010. The main contributors to this trend were a  higher energy demand associated with rapid economic growth and an increase of the share of coal in  the global fuel mix. [Sections 7.2, 7.3]  In the absence of climate change mitigation policies, energy related carbon dioxide (CO2)emissions  are expected to continue to increase, with fossil fuel and industrial emissions reaching 55 70 GtCO2 by 2050 (medium evidence, medium agreement). This corresponds to an increase of 80% 130% compared to emissions of about 30 GtCO2 in 2010 (based on the 25th 75th percentile of  baseline scenarios). By the end of the 21st century, emissions could grow further, with the 75th  percentile of scenarios reaching 90 GtCO2 in 2100. [7.11.1]  Multiple options exist to reduce energy supply sector GHG emissions (robust evidence, high  agreement). These include energy efficiency improvements and fugitive emission reductions in fuel  extraction as well as in energy conversion, transmission, and distribution systems; fossil fuel  switching; and low GHG energy supply technologies such as renewable energy (RE), nuclear power,  and carbon dioxide capture and storage (CCS). [7.5, 7.8.1, 7.11]  The stabilization of GHG concentrations at low levels requires a fundamental transformation of  the energy supply system, including the long term substitution of unabated1 fossil fuel conversion  technologies by low GHG alternatives (robust evidence, high agreement). Concentrations of CO2 in  the atmosphere can only be stabilized if global (net) CO2 emissions peak and decline toward zero in  the long term. Improving the energy efficiencies of fossil power plants and/or the shift from coal to  gas will not by itself be sufficient to achieve this. Low GHG energy supply technologies are found to  be necessary if this goal is to be achieved. [ 7.5.1, 7.8.1, 7.11]  Integrated modelling studies indicate that decarbonizing electricity supply will play an important  role in achieving low CO2 equivalent (eq) concentration stabilization levels (medium evidence, high  agreement). In the majority of low stabilization scenarios (430 530 ppm CO2eq), the share of low carbon energy in electricity supply increases from the current share of approximately 30% to more  than 80% by 2050. In the long run (2100), fossil power generation without CCS is phased out almost  entirely in these scenarios. [7.11]  Since the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4),  many RE technologies have substantially advanced in terms of performance and cost and a  growing number of RE technologies have achieved a level of technical and economic maturity to  enable deployment at significant scale (robust evidence, high agreement). Some technologies are  already economically competitive in various settings. While the levelized cost of photovoltaic (PV)  systems fell most substantially between 2009 and 2012, a less  marked trend has been observed for  many other RE technologies. Renewable energy accounted for just over half of the new electricity 1  These are fossil fuel conversion technologies not using carbon dioxide capture and storage technologies.       4 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   generating capacity added globally in 2012, led by growth in wind, hydro, and solar power.  Decentralized RE supply to meet rural energy needs has also increased, including various modern  and advanced traditional biomass options as well as small hydropower, PV, and wind.   Nevertheless many RE technologies still need direct support (e.g., feed in tariffs, RE quota  obligations, and tendering/bidding) and/or indirect support (e.g., sufficiently high carbon prices and  the internalization of other externalities) if their market shares are to be increased. Additional  enabling policies are needed to address issues associated with the integration of RE into future  energy systems (medium evidence, medium agreement). [7.5.3, 7.6.1, 7.8.2, 7.12, 11.13]  There are often co benefits from the use of RE, such as a reduction of air pollution, local  employment opportunities, few severe accidents compared to some other forms of energy supply,  as well as improved energy access and security (medium evidence, medium agreement). At the  same time, however, some RE technologies can have technology  and location specific adverse side effects, though those can be reduced to a degree through appropriate technology selection,  operational adjustments, and siting of facilities. [7.9]  Infrastructure and integration challenges vary by RE technology and the characteristics of the  existing background energy system (medium evidence, medium agreement). Operating experience  and studies of medium to high penetrations of RE indicate that these issues can be managed with  various technical and institutional tools. As RE penetrations increase, such issues are more  challenging, must be carefully considered in energy supply planning and operations to ensure  reliable energy supply, and may result in higher costs. [7.6, 7.8.2]   Nuclear energy is a low GHG emission technology with specific emissions below  100 gCO2eq per  kWh on a lifecycle basis and with currently more than 400 operational nuclear reactors worldwide  (robust evidence, high agreement). In recent years, the share of nuclear energy in world power  generation has declined. Nuclear electricity represented 11% of the world s electricity generation in  2012, down from a high of 17% in 1993. Pricing the externalities of GHG emissions (carbon pricing)  could improve the competitiveness of nuclear power plants. [7.2, 7.5.4, 7.8.1, 7.12]  Barriers to an increasing use of nuclear energy include concerns about operational safety and  (nuclear weapon) proliferation risks, unresolved waste management issues as well as financial and  regulatory risks (robust evidence, high agreement). New fuel cycles and reactor technologies  addressing some of these issues are under development and progress has been made concerning  safety and waste disposal (medium evidence, medium agreement). [7.5.4, 7.8.2, 7.9, 7.11]  Carbon dioxide capture and storage technologies could reduce the specific CO2eq lifecycle  emissions of fossil power plants (medium evidence, medium agreement). Although CCS has not yet  been applied at scale to a large, commercial fossil fired power generation facility, all of the  components of integrated CCS systems exist and are in use in various parts of the fossil energy chain.  A variety of pilot and demonstrations projects have led to critical advances in the knowledge of CCS  systems and related engineering, technical, economic and policy issues. CCS power plants will only  be deployed in the market place if they are either required for fossil fuel facilities by regulation or  the cost differential between them and their unabated counterpart is overcome (e.g., via sufficiently  high carbon prices or subsidies). Beyond economic incentives, well defined regulations concerning  short  and long term responsibilities for storage are essential for a large scale future deployment of  CCS. [7.5.5, 7.8.1]   Barriers to large scale deployment of CCS technologies include concerns about the operational  safety and long term integrity of CO2 storage as well as transport risks (limited evidence, medium  agreement). There is, however, a growing body of literature on how to ensure the integrity of CO2  wells, on the potential consequences of a pressure buildup within a geologic formation caused by  CO2 storage (such as induced seismicity), and on the potential human health and environmental  impacts from CO2 that migrates out of the primary injection zone. [7.5.5, 7.9]      5 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   Bioenergy coupled CCS (BECCS) has attracted particular attention since AR4 because it offers the  prospect of energy supply with negative emissions (limited evidence, medium agreement).  Technological challenges and potential risks of BECCS include those associated with the upstream  provision of the biomass that is used in the CCS facility as well as those originating from the capture,  transport, and long term underground storage of CO2 that would otherwise be emitted. BECCS faces  large challenges in financing and currently no such plants have been built and tested at scale. [7.5.5,  7.8.2, 7.9, 7.12, 11.13]  Where natural gas is available and the fugitive emissions associated with its extraction and supply  are low, near term GHG emissions from energy supply can be reduced by replacing coal fired with  highly efficient natural gas combined cycle (NGCC) power plants or combined heat and power  (CHP) plants (robust evidence, high agreement). Lifecycle assessments indicate a reduction of  specific GHG emissions of approximately 50% for a shift from a current world average coal power  plant to a modern NGCC plant depending on natural gas upstream emissions. Substitution of natural  gas for renewable energy forms increases emissions. Mitigation scenarios with low GHG  concentration targets (430 530 ppm CO2eq) require a fundamental transformation of the energy  system in the long term. In most mitigation scenarios reaching 430 530 ppm CO2eq by 2100, the  contribution of natural gas power generation without CCS is below current levels in 2050, and  further declines in the second half of the century (medium evidence, medium agreement). [7.5.1,  7.8, 7.9, 7.11]   Direct GHG emissions from the fossil fuel chain can be reduced through various measures (medium  evidence, high agreement). These include the capture or oxidation of coal bed methane, the  reduction of venting and flaring in oil and gas systems, as well as energy efficiency improvements  and the use of low GHG energy sources in the fuel chain. [7.5.1]  Greenhouse gas emission trading and GHG taxes have been enacted to address the market  externalities associated with GHG emissions (high evidence, high agreement). In the longer term,  GHG pricing can support the adoption of low GHG energy technologies due to the resulting fuel  and  technology dependent mark up in marginal costs. Technology policies (e.g., feed in tariffs, quotas,  and tendering/bidding) have proven successful in increasing the share of RE technologies (medium  evidence, medium agreement). [7.12]  The success of energy policies depends on capacity building, the removal of financial barriers, the  development of a solid legal framework, and sufficient regulatory stability (robust evidence, high  agreement). Property rights, contract enforcement, and emissions accounting are essential for the  successful implementation of climate policies in the energy supply sector. [7.10, 7.12]  The energy infrastructure in developing countries, especially in Least Developed Countries (LDCs),  is still undeveloped and not diversified (robust evidence, high agreement). There are often co benefits associated with the implementation of mitigation energy technologies at centralized and  distributed scales, which include local employment creation, income generation for poverty  alleviation, as well as building much needed technical capability and knowledge transfer. There are  also risks in that the distributive impacts of higher prices for low carbon energy might become a  burden on low income households, thereby undermining energy access programmes, which can,  however, be addressed by policies to support the poor. [7.9, 7.10]  Although significant progress has been made since AR4 in the development of mitigation options  in the energy supply sector, important knowledge gaps still exist that can be reduced with further  research and development (R&D). These especially comprise the technological challenges, risks, and  co benefits associated with the upscaling and integration of low carbon technologies into future  energy systems, and the resulting costs. In addition, research on the economic efficiency of climate related energy policies, and especially concerning their interaction with other policies applied in the  energy sector, is limited. [7.13]      6 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   7.1 Introduction  The energy supply sector is the largest contributor to global greenhouse gas (GHG) emissions. In  2010, approximately 35% of total anthropogenic GHG emissions were attributed to this sector.  Despite the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto  Protocol, annual GHG emissions growth from the global energy supply sector accelerated from 1.7%  per year in 1991 2000 to 3.1% in 2001 2010 (Section 7.3). Rapid economic growth (with the  associated higher demand for power, heat, and transport services) and an increase of the share of  coal in the global fuel mix were the main contributors to this trend.   The energy supply sector, as defined in this chapter (Figure 7.1), comprises all energy extraction,  conversion, storage, transmission, and distribution processes with the exception of those that use  final energy to provide energy services in the end use sectors (industry, transport, and building, as  well as agriculture and forestry). Concerning energy statistics data as reported in Sections 7.2 and  7.3, power, heat, or fuels that are generated on site for own use exclusively are not accounted for in  the assessment of the energy supply sector. Note that many scenarios in the literature do not  provide a sectoral split of energy related emissions; hence, the discussion of transformation  pathways in Section 7.11 focuses on aggregated energy related emissions comprising the supply and  the end use sectors.  The allocation of cross cutting issues among other chapters allows for a better understanding of the  Chapter 7 boundaries (see Figure 7.1). The importance of energy for social and economic  development is reviewed in Chapters 4 and 5 and to a lesser degree in Section 7.9 of this chapter.  Chapter 6 presents long term transformation pathways and futures for energy systems.      7 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   Figure 7.1. Illustrative energy supply paths shown in order to illustrate the boundaries of the energy supply sector as defined in this report. The self-generation of heat and power in the end-use sectors (i.e., transport, buildings, industry, and Agriculture, Forestry, and Other Land Use (AFOLU)) is discussed in Chapters 8 11. Source: own illustration.   Transport fuel supply, use in vehicles, modal choice, and the local infrastructure are discussed in  Chapter 8. Building integrated power and heat generation as well as biomass use for cooking are  addressed in Chapter 9. Responsive load issues are dealt with by chapters 8 10. Chapter 7 considers  mitigation options in energy extraction industries (oil, gas, coal, uranium, etc.), while other  extractive industries are addressed in Chapter 10. Together with aspects related to bioenergy usage,  provision of biomass is discussed in Chapter 11, which covers land uses including agriculture and  forestry. Only energy supply sector related policies are covered in Chapter 7 while the broader and  more detailed climate policy picture is presented in Chapters 13 15.   The derivation of least cost mitigation strategies must take into account the interdependencies  between energy demand and supply. Due to the selected division of labor described above,  Chapter 7 does not discuss demand side measures from a technological point of view. Tradeoffs  between demand  and supply side options, however, are considered by the integrated models (IAM)  that delivered the transformation pathways collected in the AR5 Scenario Database (see Annex II.10  and, concerning energy supply aspects, Section 7.11).  Chapter 7 assesses the literature evolution of energy systems from earlier Intergovernmental Panel  on Climate Change (IPCC) reports, comprising the IPCC Special Report on Carbon Dioxide Capture      8 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   and Storage (2005), the IPCC Fourth Assessment Report (AR4) (2007), and the IPCC Special Report on  Renewable Energy Sources and Climate Change Mitigation (SRREN) (2011a). Section 7.2 describes  the current status of global and regional energy markets. Energy related GHG emissions trends  together with associated drivers are presented in Section 7.3. The next section provides data on  energy resources. Section 7.5 discusses advances in the field of mitigation technologies. Issues  related to the integration of low carbon technologies are covered in Section 7.6, while Section 7.7  describes how climate change may impact energy demand and supply. Section 7.8 discusses  emission reduction potentials and related costs. Section 7.9 covers issues of co benefits and adverse  side effects of mitigation options. Mitigation barriers are dealt with in Section 7.10. The implications  of various transformation pathways for the energy sector are covered in Section 7.11. Section 7.12  presents energy supply sector specific policies. Section 7.13 addresses knowledge gaps and  Section 7.14 summarizes frequently asked questions (FAQ).   7.2 Energy production, conversion, transmission and distribution  The energy supply sector converts over 75% of total primary energy supply (TPES) into other forms,  namely, electricity, heat, refined oil products, coke, enriched coal, and natural gas. Industry  (including non energy use) consumes 84% of final use of coal and peat, 26% of petroleum products,  47% of natural gas, 40% of electricity, and 43% of heat. Transportation consumes 62% of liquid fuels  final use. The building sector is responsible for 46% of final natural gas consumption, 76% of  combustible renewables and waste, 52% of electricity use, and 51% of heat (Table 7.1). Forces  driving final energy consumption evolution in all these sectors (Chapters 8 11) have a significant  impact on the evolution of energy supply systems, both in scale and structure.  The energy supply sector is itself the largest energy user. Energy losses assessed as the difference  between the energy inputs to (78% of the TPES) and outputs from this sector (48.7% of TPES)  account for 29.3% of TPES (Table 7.1). The TPES is not only a function of end users  demand for  higher quality energy carriers, but also the relatively low average global efficiency of energy  conversion, transmission, and distribution processes (only 37% efficiency for fossil fuel power and  just 83% for fossil fuel district heat generation). However, low efficiencies and large own energy use  of the energy sector result in high indirect multiplication effects of energy savings from end users.  One argument (Bashmakov (2009)) is that in estimating indirect energy efficiency effects,  transformation should be done not only for electricity, for which it is regularly performed, but also  for district heating as well as for any activity in the energy supply sector, and even for fuels  transportation. Based on this argument, global energy savings multiplication factors are much higher  if assessed comprehensively and are equal to 1.07 for coal and petroleum products, 4.7 for  electricity, and 2.7 for heat.      9 of 137          Final Draft  Chapter 7   IPCC WGIII AR5   Table 7.1: 2010 World Energy Balance (EJ on a net calorific value basis applying the direct equivalent method) Supply and consumption  Coal and  peat  150.56  26.83  28.52  3.34  145.52  28.51%  0.00  2.07  82.68  6.75  8698  40.58%  4.34  0.37     9.19  0.68  0.00  3.61  0.11  107.73  74.03%  35.72  9.97%  28.38  0.14  4.25  0.46  0.98  1.51  164.70 0.00 0.33 0.01 0.42 0.34 173.18 99.45% 1.44 0.40% 0.52 0.00 0.03 0.00 0.25 0.63 28  0.13%  0.03 Crude oil Oil  products  0.00 44.12 46.55 0.26 2.17 0.43% 7.51 1.13 8.44 0.94 961  4.49%  0.54 0.15 162.86 0.13 0.00 0.01 8.81 0.02 151.33 7.08% 148.02 41.30% 12.98 91.94 13.13 4.51 0.60 24.87 0.07 29.54 12.76 4768  22.25%  3.77 0.12 0.03 0.00 0.30 0.09 11.53 1.03 58.94 51.61% 55.19 15.40% 19.42 3.73 25.15 0.25 0.26 6.38 9.95 100.00% 0.00 0.00% 12.38 100.00% 0.00 0.00% 9.89 0.06 2756  12.86%  12.38 0 3437  16.04%  Gas Nuclear Hydro Geother mal.  Solar, etc.  2.91           9.95 1.95% 12.38 2.42% 2.91  0.57%     0.01  1.61  0.02  450  2.10%  0.34                 0.01  0.01  1.98  68.00%  0.92  0.26%  0.02     0.48  0.03  0.39     2.22 0.56 0.01 7.35 13.74% 46.14 12.87% 8.20 2.41 35.10 0.31 0.11 6.10 6.08 60.02 8.17% 60.35 16.84% 24.26 0.97 31.46 1.58 2.07 0.01 1.43 0.89 10.56 18.21% 10.60 2.96% 4.61 0.00 5.37 0.14 0.49 0.00 Combustible  renewables  and waste  53.47 0.45 0.39 0.02 53.51 10.48% 0.00 0.02 2.65 1.47 332  1.55%  0.44 0.28 65.37 6.85       0.01 0.00 0.01 5.86 2  0.01%  7.05 0.04 0.01% 0.04 Electricity Heat Total* Share in  TPES (%)  101.20% 39.92% 40.10% 0.41% 100.00% 0.19% 0.50% 16.31% 1.82% Share in  FEC (%)                                  0.47% 0.08% 0.37% 1.83% 0.13% 6.36% 1.66% 29.30% 70.20% 19.27% 19.43% 22.52% 1.43% 1.01% 6.54%                      100.0%     27.46%  27.68%  32.08%  2.03%  1.44%  9.32%                   Conversion  efficiency*  and losses (%)                          37.13%  57.72%        83.28%  22.79%  98.86%     33.69%  0.30%  6.36%  1.66%        Production  Imports  Exports  Stock Changes  Total Primary Energy Supply (TPES) Share in total TPES (%)  Transfers  Statistical Differences  Electricity Plants  Combined Heat and Power Plants Electricity generation (TWh) Share in electricity generation (%) Heat Plants  Gas Works  Oil Refineries  Coal Transformation  Liquefaction Plants  Other Transformation  Energy Industry Own Use  Losses  Total energy sector  Share of energy sector in TPES by fuels (%) Total Final Consumption (TFC) Share of energy carriers in TFC (%) Industry  Transport  Buildings   Agriculture/forestry/fishing Non Specified  Non Energy Use  170.38 96.09 92.59 0.27 174.14 34.11% 6.56 0.47 1.45 113.84 34.21 34.60 0.75 114.20 22.37% 9.95 12.38 0 2.12 2.08 0.04 0.00 0.00 513.52 203.81 204.73 2.09 510.52 100.00% 0.95 2.55 83.28 9.31 21431  100.00%  2.42 0.40 1.87 9.33 0.65 2.33 32.46 8.49 149.60 29.30% 358.37 100.00% 98.39 99.20 114.96 7.29 5.15 33.38 Source: See IEA (2012a) for data, methodology, and definitions. International Energy Agency (IEA) data were modified to convert to primary energy by applying the direct equivalent method (see Annex II.4). Negative numbers  in energy sector reflect energy spent or lost, while positive ones indicate that specific forms of energy were generated. *Only for fossil fuel powered generation. Totals may not add up due to rounding.       10 of 137          Final Draft  Chapter 7 IPCC WGIII AR5    In 2001 2010, TPES grew by 27% globally (2.4% per annum), while for the regions it was 79% in Asia,  47% in Middle East and Africa (MAF), 32% in Latin America (LAM), 13% in Economies in Transition  (EIT), and it was nearly stable for the countries of the Organisation for Economic Co operation and  Development 1990 (OECD90)2 (IEA, 2012a). After 2010, global TPES grew slower (close to 2% per  annum over 2011 2012) with Asia, MAF, and LAM showing nearly half their 2001 2010 average  annual growth rates and declining energy use in EIT and OECD90 (BP, 2013; Enerdata, 2013). Thus all  additional energy demand after 2000 was generated outside of the OECD90 (Figure 7.2). The  dynamics of the energy markets evolution in Asia differs considerably from the other markets. This  region accounted for close to 70% of the global TPES increment in 2001 2010 (over 90% in 2011 2012), for all additional coal demand, about 70% of additional oil demand, over 70% of additional  hydro, and 25% of additional wind generation (IEA, 2012a; BP, 2013; Enerdata, 2013). In 2001 2010,  China alone more than doubled its TPES and contributed to over half of the global TPES increment,  making it now the leading energy consuming nation.  Led by Asia, global coal consumption grew in 2001 2010 by over 4% per annum and a slightly slower  rate in 2011 2012. Coal contributed 44% of the growth in energy use and this growth alone matched  the total increase in global TPES for 1991 2000 (Figure 7.2). Power generation remains the main  global coal renaissance driver (US DOE, 2012). China is the leading coal producer (47% of world 2012  production), followed by the United States, Australia, Indonesia, and India (BP, 2013). Competitive  power markets flexible to gas and coal price spreads are creating stronger links between gas and  coal markets driving recent coal use down in the USA, but up in EU (IEA, 2012b).     Figure 7.2. Contribution of energy sources to global and regional primary energy use increments. Notes: Modern biomass contributes 40% of the total biomass share. Underlying data from IEA (2012a) for this figure have been converted using the direct equivalent method of accounting for primary energy (see Annex.II.4). Legend: OECD-1990 (OECD-1990), Asia (ASIA), Economies in 2  For regional aggregation, see Annex II.2  11 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Transition (EIT), Middle East and Africa (MAF), and Latin America (LAM),total primary energy supply (TPES). Although use of liquid fuels has grown in non OECD countries (mostly in Asia and the MAF), falling  demand in the OECD90 has seen oil s share of global energy supply continue to fall in 2001 2012.  Meeting demand has required mobilization of both conventional and unconventional liquid supplies.  Relatively low transportation costs have given rise to a truly global oil market with 55% of crude  consumption and 28% of petroleum products being derived from cross border trade (Table 7.1). The  Organization of the Petroleum Exporting Countries (OPEC) in 2012 provided 43% of the world s total  oil supply keeping its share above its 1980 level; 33% came from the Middle East (BP, 2013). The  most significant non OPEC contributors to production growth since 2000 were Russia, Canada,  United States, Kazakhstan, Brazil, and China (GEA, 2012; IEA, 2012b; US DOE, 2012; BP, 2013).  Growing reliance on oil imports raises concerns of Asia and other non OECD regions about oil prices  and supply security (IEA, 2012b).  In the global gas balance, the share of unconventional gas production (shale gas, tight gas, coal bed  methane, and biogas) grew to 16% in 2011 (IEA, 2012c). The shale gas revolution put the United  States (where the share of unconventional gas more than doubled since 2000, and reached 67% in  2011) on top of the list of major contributors to additional (since 2000) gas supply, followed by  Qatar, Iran, China, Norway, and Russia (BP, 2013; US DOE, 2013a). Although the 2001 2010 natural  gas consumption increments are more widely distributed among the regions than for oil and coal,  gas increments in Asia and the MAF dominate. The low energy density of gas means that  transmission and storage make up a large fraction of the total supply chain costs, thus limiting  market development. Escalation of Liquefied Natural Gas (LNG) markets to 32% of international gas  trade in 2012 (BP, 2013) has, however, created greater flexibility and opened the way to global trade  in gas (MIT, 2011). Growth in United States natural gas production and associated domestic gas  prices decline have resulted in the switching of LNG supplies to markets with higher prices in South  America, Europe, and Asia (IEA, 2012b). Nevertheless, natural gas supply by pipelines still delivers  the largest gas volumes in North America and in Europe (US DOE, 2012; BP, 2013).   Renewables contributed 13.5% of global TPES in 2010 (Table 7.1). The share of renewables in global  electricity generation approached 21% in 2012 (BP, 2013; Enerdata, 2013), making them the third largest contributor to global electricity production, just behind coal and gas, with large chances to  become the second largest contributor well before 2020. Greatest growth during 2005 2012  occurred in wind and solar with generation from wind increasing 5 fold, and from solar photovoltaic,  which grew 25 fold. By 2012, wind power accounted for over 2% of world electricity production  (gaining 0.3% share each year since 2008). Additional energy use from solar and wind energy was  driven mostly by two regions, OECD90 and Asia, with a small contribution from the rest of the world  (IEA, 2012d). In 2012, hydroelectricity supplied 16.3% of world electricity (BP, 2013).  New post 2000 trends were registered for nuclear s role in global energy systems. In recent years,  the share of nuclear energy in world power generation has declined. Nuclear electricity represented  11% of the world s electricity generation in 2012, down from a high of 17% in 1993; its contribution  to global TPES is declining since 2002 (IEA, 2012b; BP, 2013). Those trends were formed well before  the incident at the Fukushima nuclear plants in March 2011 and following revision of policies  towards nuclear power by several governments (IEA, 2012e). Growing nuclear contribution to TPES  after 2000 was observed only in EIT and Asia (mostly in Russia and China).   Additional information on regional total and per capita energy consumption and emissions, historic  emissions trends and drivers, and embedded (consumption based) emissions is reported in  Chapter 5.  12 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    7.3 New developments in emission trends and drivers  In 2010, the energy supply sector accounts for 49% of all energy related GHG emissions3 (JRC/PBL,  2012) and 35% of anthropogenic GHG emissions, up 13% from 22% in 1970, making it the largest  sectoral contributor to global emissions. According to the Historic Emission Database, Emissions  Database for Global Atmospheric Research (EDGAR)/International Energy Agency (IEA) dataset,  2001 2010 global energy supply sector GHG emissions increased by 35.7% and grew on average  nearly 1% per year faster than global anthropogenic GHG emissions. Despite the UNFCCC and the  Kyoto Protocol, GHG emissions grew more rapidly between 2001 and 2010 than in the previous  decade. Growth in the energy supply sector GHG emissions accelerated from 1.7% per year from  1991 2000 to 3.1% per year from 2001 2010 (Figure 7.3). In 2012, the sector emitted 6% more than  in 2010 (BP, 2013), or over 18 GtCO2eq. In 2010, 43% of CO2 emissions from fuel combustion were  produced from coal, 36% from oil, and 20% from gas (IEA, 2012f).   Emissions from electricity and heat generation contributed 75% of the last decade increment  followed by 16% for fuel production and transmission and 8% for petroleum refining. Although  sector emissions were predominantly CO2, also emitted were methane (of which 31% is attributed to  mainly coal and gas production and transmission), and indirect nitrous oxide (of which 9% comes  from coal and fuel wood combustion) (IEA, 2012f).4     Figure 7.3. Energy supply sector GHG emissions by subsectors. Table shows average annual growth rates of emissions over decades and the shares (related to absolute emissions) of different emission sources. Right-hand graph displays contribution of different drivers (POP = population, GDP = gross domestic product, FEC = final energy consumption, TPES = total primary energy supply) to energy  The remaining energy related emissions occur in the consumer sectors (see Figure 7.1). The IEA reports  energy sector share at 46% (IEA, 2012f).  4  As in the case with energy, there is some disagreement on the historical level of global energy  related GHG  emissions (See Andres et al., 2012). Moreover, emission data provided by IEA or EDGAR often do not match  data  from  national  communications  to  UNFCCC.  For  example,  Bashmakov  and  Myshak  (2012)  argue  that  EDGAR  does  not  provide  adequate  data  for  Russian  GHG  emissions:  according  to  national  communication,  energy related CO2 emissions in 1990 2010 are 37% down while EDGAR reports only a 28% decline.   3 13 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    supply sector GHG (GHGs) decadal emissions increments. It is based on (IEA, 2012a). The large graph and table are based on the Historic Emission Database EDGAR/IEA dataset (IEA, 2012g; JRC/PBL, 2012). Decomposition analysis (Figure 7.3), shows that population growth contributed 39.7% of additional  sector emissions in 2001 2010, with Gross Domestic Product (GDP) per capita 72.4%. Over the same  period, energy intensity decline (final energy consumption (FEC) per unit of GDP) reduced the  emissions increment by 45.4%. Since electricity production grew by 1% per year faster than TPES,  the ratio of TPES/FEC increased contributing 13.1% of the additional emissions. Sector carbon  intensity relative to TPES was responsible for 20.2% of additional energy supply sector GHG  emissions.   In addition to the stronger TPES growth, the last decade was marked by a lack of progress in the  decarbonization of the global fuel mix. With 3.1% annual growth in energy supply sector emissions,  the decade with the strongest ever mitigation policies was the one with the strongest emissions  growth in the last 30 years.   Carbon intensity decline was fastest in OECD90 followed closely by EIT in 1991 2000, and by LAM in  2001 2010 (IEA, 2012a; US DOE, 2012); most developing countries show little or no decarbonization.  Energy decarbonization progress in OECD90 ( 0.4% per annum in 2001 2010) was smaller than the  three previous decades, but enough to compensate their small TPES increment keeping 2010  emissions below 2000 levels. In non OECD90 countries, energy related emissions increased on  average from 1.7% per year in 1990 2000 to 5.0% in 2001 2010 due to TPES growth accompanied  by a 0.6% per annum growth in energy carbon intensity, driven largely by coal demand in Asia (IEA,  2012b). As a result, in 2010 non OECD90 countries  energy supply sector GHG emissions were  2.3 fold that for OECD90 countries.     Figure 7.4. Energy supply sector GHG emissions by subsectors and regions:OECD90, ASIA countries, Economies in Transition (EIT), Africa and the Middle East (MAF), and Latin America (LAM). 14 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Right-hand graph shows contribution of different regions to decadal emissions increments. Source: Historic Emission Database EDGAR/IEA (IEA, 2012g; JRC/PBL, 2012). In 1990, OECD90 was the world s highest emitter of energy supply sector GHGs (42% of the global  total), followed by the EIT region (30%). By 2010, Asia had become the major emitter with 41%  share. China s emissions surpassed those of the United States, and India s surpassed Russia s (IEA,  2012f). Asia accounted for 79% of additional energy supply sector emissions in 1991 2000 and 83%  in 2001 2010, followed well behind by the MAF and LAM regions (Figure 7.4). The rapid increase in  energy supply sector GHG emissions in developing Asia was due to the region s economic growth  and increased use of fossil fuels. The per capita energy supply sector GHGs emissions in developing  countries are below the global average, but the gap is shrinking, especially for Asia (Figure 7.4). The  per capita energy supply sector CO2 emissions of Asia (excluding China) in 2010 was only 0.75 tCO2,  against the world average of 2.06 tCO2, while the 2010 Chinese energy supply sector CO2 emissions  per capita of 2.86 tCO2 exceeded the 2.83 tCO2 of OECD Europe (IEA, 2012f).  Another region with large income driven energy supply sector GHG emissions in 2001 2010 was EIT,  although neutralized by improvements in energy intensity there. This region was the only one that  managed to decouple economic growth from energy supply sector emissions; its GDP in 2010 being  10% above the 1990 level, while energy supply sector GHG emissions declined by 29% over the same  period. Additional information on regional total and per capita emissions, historic emissions trends  and drivers, embedded (consumption based) emissions is reported in Chapter 5.  7.4 Resources and resource availability  7.4.1 Fossil fuels  Table 7.2 provides a summary of fossil fuel resource estimates in terms of energy and carbon  contents. Fossil fuel resources are not fixed; they are a dynamically evolving quantity. The estimates  shown span quite a range reflecting the general uncertainty associated with limited knowledge and  boundaries. Changing economic conditions, technological progress, and environmental policies may  expand or contract the economically recoverable quantities altering the balance between future  reserves and resources.   Coal reserve and resource estimates are subject to uncertainty and ambiguity, especially when  reported in mass units (tonnes) and without a clear distinction of their specific energy contents,  which can vary considerably. For both reserves and resources, the quantity of hard (black) coal  significantly outnumbers the quantity of lignite (brown coal), and despite resources being far greater  than reserves, the possibility for resources to cross over to reserves is expected to be limited since  coal reserves are likely to last around 100 years at current rates of production (Rogner et al., 2012).  Cumulative past production of conventional oil falls between the estimates of the remaining  reserves, suggesting that the peak in conventional oil production is imminent or has already been  passed (Höök et al., 2009; Owen et al., 2010; Sorrell et al., 2012). Including resources extends  conventional oil availability considerably. However, depending on such factors as demand, the  depletion and recovery rates achievable from the oil fields (IEA, 2008a; Sorrell et al., 2012), even the  higher range in reserves and resources will only postpone the peak by about two decades, after  which global conventional oil production is expected to begin to decline, leading to greater reliance  on unconventional sources.   Unconventional oil resources are larger than those for conventional oils. Large quantities of these in  the form of shale oil, heavy oil, bitumen, oil (tar) sands, and extra heavy oil are trapped in  sedimentary rocks in several thousand basins around the world. Oil prices in excess of USD2010  80/barrel are probably needed to stimulate investment in unconventional oil development  (Engemann and Owyang, 2010; Rogner et al., 2012; Maugeri, 2012).  15 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Unlike oil, natural gas reserve additions have consistently outpaced production volumes and  resource estimations have increased steadily since the 1970s (IEA, 2011a). The global natural gas  resource base is vast and more widely dispersed geographically than oil. Unconventional natural gas  reserves, i.e., coal bed methane, shale gas, deep formation and tight gas are now estimated to be  larger than conventional reserves and resources combined. In some parts of the world, supply of  unconventional gas now represents a significant proportion of gas withdrawals, see Section 7.2.  For climate change, it is the CO2 emitted to the atmosphere from the burning of fossil fuels that  matters. When compared to the estimated CO2 budgets of the emission scenarios presented in  Chapter 6 (Table 6.2) as part of the transformation pathways analysis, the estimate of the total fossil  fuel reserves and resources contains sufficient carbon, if released, to yield radiative forcing above  that required to limit global mean temperature change to less than 2oC, as established by the  Cancun Agreement. Mitigation scenarios are further discussed in Section 7.11 and Chapter 6.   Table 7.2. Estimates of fossil reserves and resource, and their carbon content. Source: (Rogner et al. 2012)1   Reserves Resources    Conventional oil  Unconventional oil  Conventional gas  Unconventional gas  Coal  Total  1 [EJ]       4,900   7,610      3,750   5,600      5,000   7,100    20,100   67,100   17,300   21,000   51,050   108,410 [Gt C]       98  152       75  112       76  108     307  1,026     446  542  1 002  1,940 [EJ]     4,170  6,150    11,280  14,800     7,200  8,900  40,200  121,900  291,000  435,000  353,850  586,750  [Gt C]        83   123      226   297      110   136      614   1,863   7,510   11,230   8,543   13,649 Reserves are those quantities able to be recovered under existing economic and operating conditions (BP, 2011); resources are those where economic extraction is potentially feasible (UNECE, 2010a). 7.4.2 Renewable energy  For the purpose of AR5, renewable energy (RE) is defined as in (IPCC, 2011a) to include bioenergy,  direct solar energy, geothermal energy, hydropower, ocean energy, and wind energy.5 The technical  potential for RE is defined in Verbruggen et al. (2011) as  the amount of renewable energy output  obtainable by full implementation of demonstrated technologies or practices.  A variety of practical,  land use, environmental, and/or economic constraints are sometimes used in estimating the  technical potential of RE, but with little uniformity across studies in the treatment of these factors,  including costs. Definitions of technical potential therefore vary by study (e.g., Verbruggen et al.,  2010), as do the data, assumptions, and methods used to estimate it (e.g., Angelis Dimakis et al.,  2011). There have also been questions raised about the validity of some of the  bottom up   estimates of technical potential for RE that are often reported in the literature, and whether those  estimates are consistent with real physical limits (e.g., de Castro et al., 2011; Jacobson and Archer,  2012; Adams and Keith, 2013). Finally, it should be emphasized that technical potential estimates do   Note that, in practice, the RE sources as defined here are sometimes extracted at a rate that exceeds the  natural rate of replenishment (e.g., some forms of biomass and geothermal energy). Most, but not all, RE  sources impose smaller GHG burdens than do fossil fuels when providing similar energy services (see  Section 7.8.1). 5 16 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    not seek to address all practical or economic limits to deployment; many of those additional limits  are noted at the end of this section, and are discussed elsewhere in Chapter 7.  Though comprehensive and consistent estimates for each individual RE source are not available, and  reported RE technical potentials are not always comparable to those for fossil fuels and nuclear  energy due to differing study methodologies, (IPCC, 2011a) concludes that the aggregated global  technical potential for RE as a whole is significantly higher than global energy demands. Figure 7.12  (shown in Section 7.11) summarizes the ranges of global technical potentials as estimated in the  literature for the different RE sources, as reported in IPCC (2011a). The technical potential for solar is  shown to be the largest by a large magnitude, but sizable potential exists for many forms of RE. Also  important is the regional distribution of the technical potential. Though the regional distribution of  each source varies (see, e.g., IPCC, 2011a), Fischedick et al. (2011) reports that the technical  potential of RE as a whole is at least 2.6 times as large as the 2007 total primary energy demand in  all regions of the world.  Considering all RE sources together, the estimates reported by this literature suggest that global and  regional technical potentials are unlikely to pose a physical constraint on the combined contribution  of RE to the mitigation of climate change (also see GEA (2012)). Additionally, as noted in IPCC  (2011b),  Even in regions with relatively low levels of technical potential for any individual  renewable energy source, there are typically significant opportunities for increased deployment  compared to current levels . Moreover, as with other energy sources, all else being equal, continued  technological advancements can be expected to increase estimates of the technical potential for RE  in the future, as they have in the past (Verbruggen et al., 2011).   Nonetheless, the long term percentage contribution of some individual RE sources to climate change  mitigation may be limited by the available technical potential if deep reductions in GHG emissions  are sought (e.g., hydropower, bioenergy, and ocean energy), while even RE sources with seemingly  higher technical potentials (e.g., solar, wind) will be constrained in certain regions (see Fischedick et  al., 2011). Additionally, as RE deployment increases, progressively lower quality resources are likely  to remain for incremental use and energy conversion losses may increase, e.g., if conversion to  alternative carriers such as hydrogen is required (Moriarty and Honnery, 2012). Competition for land  and other resources among different RE sources may impact aggregate technical potentials, as might  concerns about the carbon footprint and sustainability of the resource (e.g., biomass) as well as  materials demands (cf. Annex Bioenergy in Chapter 11; de Vries et al., 2007; Kleijn and van der Voet,  2010; Graedel, 2011). In other cases, economic factors, environmental concerns, public acceptance,  and/or the infrastructure required to manage system integration (e.g., investments needed to  accommodate variable output or transmit renewable electricity to load centres) are likely to limit  the deployment of individual RE technologies before absolute technical resource potential limits are  reached (IPCC, 2011a).  7.4.3 Nuclear energy  The average uranium (U) concentration in the continental Earth s crust is about 2.8 ppm, while the  average concentration in ocean water is 3 to 4 ppb (Bunn et al., 2003). The theoretically available  uranium in the Earth s crust is estimated at 100 teratonnes (Tt) U, of which 25 Tt U occur within 1.6  km of the surface (Lewis, 1972). The amount of uranium dissolved in seawater is estimated at 4.5 Gt  (Bunn et al., 2003). Without substantial research and development (R&D) efforts to develop vastly  improved and less expensive extraction technologies, these occurrences do not represent practically  extractable uranium. Current market and technology conditions limit extraction of conventional  uranium resources to concentrations above 100 ppm U.   Altogether, there are 4200 EJ (or 7.1 MtU) of identified conventional uranium resources available at  extraction costs of less than USD 260/kgU (current consumption amounts to about 53,760 tU per  year). Additional conventional uranium resources (yet to be discovered) estimated at some 4400 EJ  can be mobilized at costs larger than USD 260/kgU (NEA and IAEA, 2012). Present uranium resources  17 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    are sufficient to fuel existing demand for more than 130 years, and if all conventional uranium  occurrences are considered, for more than 250 years. Reprocessing of spent fuel and recycling of  uranium and plutonium in used fuel would double the reach of each category (IAEA, 2009). Fast  breeder reactor technology can theoretically increase uranium utilization 50 fold or even more with  corresponding reductions in high level waste (HLW) generation and disposal requirements (IAEA,  2004). However, reprocessing of spent fuel and recycling is not economically competitive below  uranium prices of USD2010 425/kgU (Bunn et al., 2003). Thorium is a widely distributed slightly  radioactive metal. Although the present knowledge of the world s thorium resource base is poor and  incomplete, it is three to four times more abundant than uranium in the Earth s outer crust (NEA,  2006). Identified thorium resource availability is estimated at more than 2.5 Mt at production costs  of less than USD2010 82/kgTh (NEA, 2008).  Further information concerning reactor technologies, costs, risks, co benefits, deployment barriers  and policy aspects can be found in sections 7.5.4, 7.8.2, 7.9, 7.10, and 7.12, respectively.  7.5 Mitigation technology options, practices and behavioral aspects  Climate change can only be mitigated and global temperature be stabilized when the total amount  of CO2 emitted is limited and emissions eventually approach zero (Allen et al., 2009; Meinshausen et  al., 2009). Options to reduce GHG emissions in the energy supply sector reduce the lifecycle GHG emissions intensity of a unit of final energy (electricity, heat, fuels) supplied to end users. Section 7.5  therefore addresses options to replace unabated fossil fuel usage with technologies without direct  GHG emissions, such as renewable and nuclear energy sources, and options to mitigate GHG  emissions from the extraction, transport, and conversion of fossil fuels through increased efficiency,  fuel switching, and GHG capture. In assessing the performance of these options, lifecycle emissions  have to be considered. Appropriate policies need to be in place to ensure that the adoption of such  options leads to a reduction and ultimate phaseout of freely emitting (i.e., unabated) fossil  technologies and not only to reduced additional energy consumption, as indicated in Section 7.12.  Options discussed in this section put some emphasis on electricity production, but many of the same  options could be used to produce heat or transport fuels or deliver heating and transportation  services through electrification of those demands. The dedicated provision of transport fuels is  treated in Chapter 8, of heat for buildings is covered in Chapter 9, and of heat for industrial  processes in Chapter 10. Options to reduce final energy demand are addressed in Chapters 8 12.  Options covered in this section mainly address technology solutions. Behavioural issues in the  energy supply sector often concern the selection of and investment in technology, and these issues  are addressed in sections 7.10, 7.11, and 7.12. Costs and emission reduction potentials associated  with the options are discussed in Section 7.8, whereas co benefits and risks are addressed in  Section 7.9.  7.5.1 Fossil fuel extraction, conversion, and fuel switching   Several important trends shape the opportunity to mitigate emissions associated with the  extraction, transport, and conversion of fossil fuels: (1) new technologies that make accessible  substantial reservoirs of shale gas and unconventional oil; (2) a renewed focus on fugitive methane  emissions, especially those associated with gas production; (3) increased effort required to find and  extract oil; and (4) improved technologies for energy efficiency and the capture or prevention of  methane emissions in the fuel supply chain. Carbon dioxide capture technologies are discussed in  Section 7.5.5.  A key development since AR4 is the rapid deployment of hydraulic fracturing and horizontal drilling  technologies, which has increased and diversified the gas supply and allowed for a more extensive  switching of power and heat production from coal to gas (IEA, 2012b); this is an important reason for  a reduction of GHG emissions in the United States. At the same time, the increasing utilization of gas  18 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    has raised the issue of fugitive emissions of methane from both conventional and shale gas  production. While some studies estimate that around 5% of the produced gas escapes in the supply  chain, other analyses estimate emissions as low as 1% (Stephenson et al., 2011; Howarth et al.,  2011; Cathles et al., 2012). Central emission estimates of recent analyses are 2% 3% (+/ 1%) of the  gas produced, where the emissions from conventional and unconventional gas are comparable  (Jaramillo et al., 2007; O Sullivan and Paltsev, 2012; Weber and Clavin, 2012). Fugitive emissions  depend to a significant degree on whether low emission practices, such as the separation and  capture of hydrocarbons during well completion and the detection and repair of leaks throughout  gas extraction and transport, are mandated and how they are implemented in the field (Barlas,  2011; Wang et al., 2011; O Sullivan and Paltsev, 2012). Empirical research is required to reduce  uncertainties and to better understand the variability of fugitive gas emissions (Jackson et al., 2013)  as well as to provide a more global perspective. Recent empirical research has not yet resolved  these uncertainties (Levi, 2012; Petron et al., 2012). The main focus of the discussion has been  drilling, well completion, and gas product, but gas grids (Ryerson et al., 2013) and liquefaction  (Jaramillo et al., 2007) are also important.   There has also been some attention to fugitive emissions of methane from coal mines (Su et al.,  2011; Saghafi, 2012) in connection with opportunities to capture and use or treat coal seam gas  (Karacan et al., 2011). Emission rates vary widely based on geological factors such as the age of the  coal and previous leakage from the coal seam (Moore, 2012).   Taking into account revised estimates for fugitive methane emissions, recent lifecycle assessments  indicate that specific GHG emissions are reduced by one half (on a per kWh basis) when shifting  from the current world average coal fired power plant to a modern natural gas combined cycle  (NGCC) power plant, evaluated using the 100 year global warming potentials (GWP) (Burnham et al.,  2012), as indicated in Figure 7.6 (Section 7.8). This reduction is the result of the lower carbon  content of natural gas (15.3 gC/MJ compared to, e.g., 26.2 gC/MJ for sub bituminous coal) and the  higher efficiency of combined cycle power plants (IEA, 2011a). A better appreciation of the  importance of fugitive emissions in fuel chains since AR4 has resulted in a downward adjustment of  the estimated benefit from fuels switching. More modest emissions reductions result when shifting  from current average coal plants to the best available coal technology or less advanced gas power  plants. Climate mitigation consistent with the Cancun Agreement requires a reduction of emissions  rates below that of NGCC plants by the middle of this century (Figure 7.7, Section 7.8.2 and Figure  7.9, Section 7.11), but natural gas may play a role as a transition fuel in combination with variable  renewable sources (Levi, 2013).   Combined heat and power (CHP) plants are capable of recovering a share of the waste heat that is  otherwise released by power plants that generate only electricity. The global average efficiency of  fossil fuelled power plants is 37%, whereas the global average efficiency of CHP units is 58% if both  power and the recovered heat are taken into account (see Table 7.1 in 7.2). State of the art CHP  plants are able to approach efficiencies over 85% (IEA, 2012b). The usefulness of decentralized  cogeneration units is discussed in (Pehnt, 2008). Further emissions reductions from fossil fuel  systems are possible through CO2 capture and storage (Section 7.5.5).   Producing oil from unconventional sources and from mature conventional oil fields requires more  energy than producing it from virgin conventional fields (Brandt and Farrell, 2007; Gagnon, Luc et al.,  2009; Lechtenböhmer and Dienst, 2010). Literature indicates that the net energy return on  investment has fallen steadily for conventional oil to less than 10 GJ/GJ (Guilford et al.; Brandt et al.,  2013). For oil sands, the net energy return ratio of the product delivered to the customer is about  3 GJ/GJ invested (Brandt et al., 2013), with similar values expected for oil shale (Dale et al., 2013). As  a result, emissions associated with synthetic crude production from oil sands are higher than those  from most conventional oil resources (Charpentier et al., 2009; Brandt, 2011). These emissions are  related to extra energy requirements, fugitive emissions from venting and flaring (Johnson and  Coderre, 2011), and land use (Rooney et al., 2012). Emissions associated with extraction of oil sands  19 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    and refining to gasoline are estimated to be 35 55 gCO2eq/MJ fuel, compared to emissions of 20  gCO2eq/MJ for the production and refining of regular petroleum and 70 gCO2eq/MJ associated with  combusting this fuel (Burnham et al., 2012). Overall, fossil fuel extraction and distribution are  currently estimated to contribute 5% 10% of total fossil fuel related GHG emissions (Alsalam and  Ragnauth, 2011; IEA, 2011a; Burnham et al., 2012). Emissions associated with fuel production and  transmission can be reduced through higher energy efficiency and the use of lower carbon energy  sources in mines, fields, and transportation networks (IPIECA and API, 2007; Hasan et al., 2011), the  capture and utilization (UNECE, 2010b), or treatment (US EPA, 2006; IEA, 2009a; Karacan et al.,  2011; Karakurt et al., 2011; Su et al., 2011) of methane from coal mining, the reduction of venting  and flaring from oil and gas production (IPIECA and API, 2009; Johnson and Coderre, 2011), and leak  detection and repair for natural gas systems (Goedbloed, 2011; Wilwerding, 2011).  7.5.2 Energy efficiency in transmission and distribution  Electrical losses associated with the high voltage transmission system are generally less than losses  within the lower voltage distribution system mainly because the total length of transmission lines is  far less than that for distribution in most power systems, and that currents and thus losses are lower  at high voltages. These losses are due to a combination of cable or line losses and transformer losses  and vary with the nature of the power system, particularly its geographical layout. Losses as a  fraction of power generated vary considerably between countries, with developed countries tending  to have lower losses, and a number of developing countries having losses of over 20% in 2010  according to IEA online data (IEA, 2010a). Combined transmission and distribution losses for the  OECD countries taken together were 6.5% of total electricity output in 2000 (IEA, 2003a), which is  close to the EU average (European Copper Institute, 1999).   Approximately 25% of all losses in Europe, and 40% of distribution losses, are due to distribution  transformers (and these losses  will be similar in OECD countries); therefore, use of improved  transformer designs can make a significant impact (see European Copper Institute, 1999 and in  particular Appendix A therein). Roughly a further 25% of losses are due to the distribution system  conductors and cables. An increase in distributed generation can reduce these losses since  generation typically takes place closer to loads than with central generation and thus the electricity  does not need to travel so far (Méndez Quezada et al., 2006; Thomson and Infield, 2007). However,  if a large amount of distributed power generation is exported back into the main power system to  meet more distant loads, then losses can increase again. The use of greater interconnection to ease  the integration of time varying renewables into power systems would be expected to increase the  bulk transfer of power over considerable distances and thus the losses (see Section 7.6.1). High voltage direct current transmission (HVDC) has the potential to reduce transmission losses and is  cost effective for very long above ground lines. However, sub sea HVDC has lower losses over 55 to  70 kms (Barberis Negra et al., 2006) and will most likely be used for the connection of large offshore  wind farms due to the adverse reactive power characteristics of long sub sea alternating current  (AC) transmission cables.   Crude oil transportation from upstream production facilities to refineries and subsequent moving of  petroleum products to service stations or end user is an energy consuming process if it is not  effectively performed (PetroMin Pipeliner, 2010). Pipelines are the most efficient means to transport  fluids. Additives can ease the flow of oil and reduce the energy used (Bratland, 2010). New pumps  technology, pipeline pigging facilities, chemicals such as pour point depressants (for waxy crude oil),  and drag reducing agents are good examples of these technologies that increase the pipeline  throughput.   Finally, it is worth noting that the decarbonization of heat through heat pumps and transport  through an increased use of electric vehicles (EVs), could require major additions to generation  capacity and aligned with this, an improved transmission and distribution infrastructure. Exactly how  20 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    much will depend on whether these new loads are controlled and rescheduled through the day by  demand side management (see Section 8.3.4.2 for more detail).   7.5.3 Renewable energy technologies  Only a small fraction of the renewable energy (RE) technical potential has been tapped so far (see  Section 7.4.2; IPCC 2011a), and most but not all forms of RE supply have low lifecycle GHG  emissions in comparison to fossil fuels (see Section 7.8.1). Though RE sources are often discussed  together as a group, the specific conversion technologies used are numerous and diverse. A  comprehensive survey of the literature is available in IPCC (2011a). Renewable energy sources are  capable of supplying electricity, but some sources are also able to supply thermal and mechanical  energy, as well as produce fuels that can satisfy multiple energy service needs (Moomaw et al.,  2011).   Many RE sources are primarily deployed within larger, centralized energy networks, but some  technologies can be and often are deployed at the point of use in a decentralized fashion  (Sathaye et al., 2011; Sims et al., 2011; REN21, 2013). The use of RE in the transport, buildings, and  industrial sectors as well as in agriculture, forestry, and human settlements is addressed more  fully in Chapters 8 12.   Fischedick et al. (2011) find that, while there is no obvious single dominant RE technology likely to be  deployed at a global level, bioenergy, wind, and solar may experience the largest incremental  growth. The mix of RE technologies suited to a specific location, however, will depend on local  conditions, with hydropower and geothermal playing a significant role in certain countries.   Because some forms of RE are primarily used to produce electricity (e.g., Armaroli and Balzani,  2011), the ultimate contribution of RE to overall energy supply may be dictated in part by the future  electrification of transportation and heating/cooling or by using RE to produce other energy carriers,  e.g., hydrogen (Sims et al., 2011; Jacobson and Delucchi, 2011; see also other chapters of AR5).   The performance and cost of many RE technologies have advanced substantially in recent decades  and since IPCC s AR4 (e.g., IPCC, 2011a; Arent et al., 2011). For example, improvements in  photovoltaic (PV) technologies and manufacturing processes, along with changed market conditions  (i.e., manufacturing capacity exceeding demand) and reduced non hardware costs, have  substantially reduced PV costs and prices. Continued increases in the size and therefore energy  capture of individual wind turbines have reduced the levelized cost of land based wind energy and  improved the prospects for future reductions in the cost of offshore wind energy. Concentrated  solar thermal power (CSP) technologies, some together with thermal storage or as gas/CSP hybrids,  have been installed in a number of countries. Research, development, and demonstration of  enhanced geothermal systems has continued, enhancing the prospects for future commercial  deployments. Performance improvements have also been made in cropping systems, logistics, and  multiple conversion technologies for bioenergy (see 11.13). IPCC (2011a) provides further examples  from a broader array of RE technologies.  As discussed in IPCC (2011a), a growing number of RE technologies have achieved a level of technical  and economic maturity to enable deployment at significant scale (with some already being deployed  at significant scale in many regions of the world), while others are less mature and not yet widely  deployed. Most hydropower technologies, for example, are technically and economically mature.  Bioenergy technologies, meanwhile, are diverse and span a wide range; examples of mature  technologies include conventional biomass fuelled power plants and heating systems as well as  ethanol production from sugar and starch, while many lignocellulose based transport fuels are at a  pre commercial stage (see Section 11.13). The maturity of solar energy ranges from the R&D stage  (e.g., fuels produced from solar energy), to relatively more technically mature (e.g., CSP), to  technically mature (e.g., solar heating and wafer based silicon PV); however, even the technologies  that are more technically mature have not all reached a state of economic competitiveness.  21 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Geothermal power and heat technologies that rely on hydrothermal resources use mature  technologies (though reservoir risks remain substantial), whereas enhanced geothermal systems  continue to undergo R&D with some limited demonstration plants now deployed. Except for certain  types of tidal barrages, ocean energy technologies are also at the demonstration phase and require  additional R&D. Traditional land based wind technologies are mature, while the use of wind energy  in offshore locations is increasing but is typically more costly than land based wind.   With regard to traditional biomass, the conversion of wood to charcoal in traditional kilns results in  low conversion efficiencies. A wide range of interventions have tried to overcome this challenge by  promoting more efficient kilns, but the adoption rate has been limited in many countries,  particularly in sub Saharan Africa (Chidumayo and Gumbo, 2013). Although not yielding large GHG  savings in global terms, increasing the efficiency of charcoal production offers local benefits such as  improved charcoal delivery and lower health and environmental impacts (FAO, 2010).  Because the cost of energy from many (but not all) RE technologies has historically been higher than  market energy prices (e.g. Fischedick et al., 2011; Section 7.8), public R&D programmes have been  important, and government policies have played a major role in defining the amount and location of  RE deployment (IEA, 2011b; Mitchell et al., 2011; REN21, 2013). Additionally, because RE relies on  natural energy flows, some (but not all) RE technologies must be located at or near the energy  resource, collect energy from diffuse energy flows, and produce energy output that is variable and though power output forecasting has improved to some degree unpredictable (IPCC, 2011b).   The implications of these characteristics for infrastructure development and network integration are  addressed in Section 7.6.1.  Renewable energy currently constitutes a relatively small fraction of global energy supply, especially  if one excludes traditional biomass. However, RE provided almost 21% of global electricity supply in  2012, and RE deployment has increased significantly since the IPCC s AR4 (see Section 7.2). In 2012,  RE power capacity grew rapidly: REN21 (2013) reports that RE accounted for just over half of the  new electricity generating capacity added globally in 2012.6 As shown in Figure 7.5, the fastest growing sources of RE power capacity included wind power (45 GW added in 2012), hydropower  (30 GW), and PV (29 GW).7   In aggregate, the growth in cumulative renewable electricity capacity equalled 8% from 2010 to  2011 and from 2011 to 2012 (REN21, 2013). Biofuels accounted for 3.4% of global road transport  fuel demand in 2012 (REN21, 2013); though growth was limited from 2010 to 2012, growth since the  IPCC s AR4 has been substantial. By the end of 2012, the use of RE in hot water/heating markets  included 293 GWth of modern biomass, 255 GWth of solar, and 66 GWth of geothermal heating  (REN21, 2013).   Collectively, developing countries host a substantial fraction of the global renewable electricity  generation capacity, with China adding more capacity than any other country in 2012 (REN21, 2013).  Cost reductions for PV have been particularly sizable in recent years, resulting in and reflecting  strong percentage growth rates (albeit from a small base), with the majority of new installations  through 2012 coming from Europe (and to a lesser degree Asia and North America) but with  manufacturing shifting to Asia (REN21, 2013; see also Section 7.8). The United States and Brazil  accounted for 61% and 26%, respectively, of global bioethanol production in 2012, while China led in  the use of solar hot water (REN21, 2013).   Decentralized RE to meet rural energy needs, particularly in the less developed countries, has also  increased, including various modern and advanced traditional biomass options as well as small  6  A better metric would be based on energy supply, not installed capacity, especially because of the relatively low capacity factors of some  RE sources. Energy supply statistics for power plants constructed in 2012, however, are not available.   7  REN21 (2013) estimates that biomass power capacity increased by 9 GW in 2012, CSP by 1 GW, and geothermal power by 0.3 GW.  22 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    hydropower, PV, and wind, thereby expanding and improving energy access (IPCC, 2011a; REN21,  2013).       Figure 7.5. Selected indicators of recent global growth in RE deployment (REN21, 2013). Note: A better metric of the relative contribution of RE would be based on energy supply, not installed capacity, especially because of the relatively low capacity factors of some RE sources. Energy supply statistics for power plants constructed in the most recent years, however, are not available. 7.5.4 Nuclear energy   Nuclear energy is utilized for electricity generation in 30 countries around the world (IAEA, 2013a).  There are 434 operational nuclear reactors with a total installed capacity of 371 GWe as of  September 2013 (IAEA, 2013a). Nuclear electricity represented 11% of the world s electricity  generation in 2012, with a total generation of 2346 TWh (IAEA, 2013b). The 2012 share of global  nuclear electricity generation is down from a high of 17% in 1993 (IEA, 2012b; BP, 2013). The United  States, France, Japan, Russia, and Korea (Rep. of) with 99, 63, 44, 24, and 21 GWe of nuclear power,  respectively are the top five countries in installed nuclear capacity and together represent 68% of  total global nuclear capacity as of September 2013 (IAEA, 2013a). The majority of the world s  reactors are based on light water technology of similar concept, design, and fuel cycle. Of the  reactors worldwide, 354 are light water reactors (LWR), of which 270 are pressurized water reactors  (PWR) and 84 are boiling water reactors (BWR) (IAEA, 2013a). The remaining reactor types consist of  48 heavy water reactors (PHWR), 15 gas cooled reactors (GCR), 15 graphite moderated reactors  (RBMK/LWGR), and 2 fast breeder reactors (FBR) (IAEA, 2013a). The choice of reactor technologies  has implications for safety, cost, and nuclear fuel cycle issues.  Growing demand for electricity, energy diversification, and climate change mitigation motivate the  construction of new nuclear reactors. The electricity from nuclear power does not contribute to  direct GHG emissions. There are 69 reactors, representing 67 GWe of capacity, currently under  construction in 14 countries (IAEA, 2013a). The bulk of the new builds are in China, Russia, India,  Korea (Rep. of), and the United States   with 28, 10, 7, 5, and 3 reactors under construction,  respectively (IAEA, 2013a). New reactors consist of 57 PWR, 5 PHWR, 4 BWR, 2 FBR, and one high temperature gas cooled reactor (HTGR) (IAEA, 2013a).  Commercial reactors currently under construction such as the Advanced Passive 1000 (AP 1000,  USA Japan), Advanced Boiling Water Reactor (ABWR, USA Japan), European Pressurized Reactor  (EPR, France), Water Water Energetic Reactor 1200 (VVER 1200, Russia), and Advanced Power  Reactor 1400 (APR 1400, Rep. of Korea) are Gen III and Gen III+ reactors that have evolutionary  designs with improved active and passive safety features over the previous generation of reactors  (Cummins et al., 2003; IAEA, 2006; Kim, 2009; Goldberg and Rosner, 2011).   23 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Other more revolutionary small modular reactors (SMR) with additional passive safety features are  under development (Rosner and Goldberg, 2011; IAEA, 2012a; Vujic et al., 2012; World Nuclear  Association, 2013). The size of these reactors is typically less than 300 MWe, much smaller than the  1000 MWe or larger size of current LWRs. The idea of a smaller reactor is not new, but recent SMR  designs with low power density, large heat capacity, and heat removal through natural means have  the potential for enhanced safety (IAEA, 2005a, 2012a). Additional motivations for the interest in  SMRs are economies of manufacturing from modular construction techniques, shorter construction  periods, incremental power capacity additions, and potential for improved financing (Rosner and  Goldberg, 2011; Vujic et al., 2012; World Nuclear Association, 2013). Several SMR designs are under  consideration. Light water SMRs are intended to rely on the substantial experience with current  LWRs and utilize existing fuel cycle infrastructure. Gas cooled SMRs that operate at higher  temperatures have the potential for increased electricity generation efficiencies relative to LWRs  and industrial applications as a source of high temperature process heat (EPRI, 2003; Zhang et al.,  2009). A 210 MWe demonstration high temperature pebble bed reactor (HTR PM) is under  construction in China (Zhang et al., 2009). While several countries have interest in the development  of SMRs, their widespread adoption remains uncertain.   The choice of the nuclear fuel cycle has a direct impact on uranium resource utilization, nuclear  proliferation, and waste management. The use of enriched uranium fuels for LWRs in a once through fuel cycle dominates the current nuclear energy system. In this fuel cycle, only a small  portion of the uranium in the fuel is utilized for energy production, while most of the uranium  remains unused. The composition of spent or used LWR fuel is approximately 94% uranium,  1% plutonium, and 5% waste products (ORNL, 2012). The uranium and converted plutonium in the  spent fuel can be used as new fuel through reprocessing. While the ultimate availability of natural  uranium resources is uncertain (see Section 7.4.3), dependence on LWRs and the once through fuel  cycle implies greater demand for natural uranium. Transition to ore grades of lower uranium  concentration for increasing uranium supply could result in higher extraction costs (Schneider and  Sailor, 2008). Uranium ore costs are a small component of nuclear electricity costs, however, so  higher uranium extraction cost may not have a significant impact on the competitiveness of nuclear  power (IAEA, 2012b).  The necessity for uranium enrichment for LWRs and the presence of plutonium in the spent fuel are  the primary proliferation concerns. There are differing national policies for the use or storage of  fissile plutonium in the spent fuel, with some nations electing to recycle plutonium for use in new  fuels and others electing to leave it intact within the spent fuel (IAEA, 2008a). The presence of  plutonium and minor actinides in the spent fuel leads to greater waste disposal challenges as well.  Heavy isotopes such as plutonium and minor actinides have very long half lives, as high as tens to  hundreds of thousands of years (NRC, 1996), which require final waste disposal strategies to address  safety of waste disposal on such great timescales. Alternative strategies to isolate and dispose of  fission products and their components apart from actinides could have significant beneficial impact  on waste disposal requirements (Wigeland et al., 2006). Others have argued that separation and  transmutation of actinides would have little or no practical benefit for waste disposal (NRC, 1996;  Bunn et al., 2003).  Alternative nuclear fuel cycles, beyond the once through uranium cycle, and related reactor  technologies are under investigation. Partial recycling of used fuels, such as the use of mixed oxide  (MOX) fuels where U 235 in enriched uranium fuel is replaced with recycled or excess plutonium, is  utilized in some nations to improve uranium resource utilization and waste minimization efforts  (OECD and NEA, 2007; World Nuclear Association, 2013). The thorium fuel cycle is an alternative to  the uranium fuel cycle, and the abundance of thorium resources motivates its potential use (see  Section 7.4.3). Unlike natural uranium, however, thorium does not contain any fissile isotopes. An  external source of fissile material is necessary to initiate the thorium fuel cycle, and breeding of  fissile U 233 from fertile Th 232 is necessary to sustain the fuel cycle (IAEA, 2005b).   24 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Ultimately, full recycling options based on either uranium or thorium fuel cycles that are combined  with advanced reactor designs including fast and thermal neutron spectrum reactors where only  fission products are relegated as waste can significantly extend nuclear resources and reduce high level wastes (GIF, 2002, 2009; IAEA, 2005b). Current drawbacks include higher economic costs, as  well as increased complexities and the associated risks of advanced fuel cycles and reactor  technologies. Potential access to fissile materials from widespread application of reprocessing  technologies further raises proliferation concerns. The advantages and disadvantages of alternative  reprocessing technologies are under investigation.  There is not a commonly accepted, single worldwide approach to dealing with the long term storage  and permanent disposal of high level waste. Regional differences in the availability of uranium ore  and land resources, technical infrastructure and capability, nuclear fuel cost, and societal acceptance  of waste disposal have resulted in alternative approaches to waste storage and disposal. Regardless  of these differences and the fuel cycle ultimately chosen, some form of long term storage and  permanent disposal, whether surface or geologic (subsurface), is required.   There is no final geologic disposal of high level waste from commercial nuclear power plants  currently in operation, but Finland and Sweden are the furthest along in the development of  geologic disposal facilities for the direct disposal of spent fuel (Posiva Oy, 2011, 2012; SKB, 2011). In  Finland, construction of the geologic disposal facility is in progress and final disposal of spent fuel is  to begin in early 2020 (Posiva Oy, 2012). Other countries, such as France and Japan, have chosen to  reprocess spent fuel to use the recovered uranium and plutonium for fresh fuel and to dispose of  fission products and other actinides in a geologic repository (OECD and NEA, 2007; Butler, 2010). Yet  others, such as Korea (Rep. of), are pursuing a synergistic application of light and heavy water  reactors to reduce the total waste by extracting more energy from used fuels (Myung et al., 2006). In  the United States, waste disposal options are currently under review with the termination of the  Yucca Mountain nuclear waste repository in Nevada (CRS, 2012). Indefinite dry cask storage of high level waste at reactor sites and interim storage facilities are to be pursued until decisions on waste  disposal are resolved.  The implementation of climate change mitigation policies increases the competiveness of nuclear  energy technologies relative to other technology options that emit GHG emissions (See 7.11,  Nicholson et al., 2011). The choice of nuclear reactor technologies and fuel cycles will affect the  potential risks associated with an expanded global response of nuclear energy in addressing climate  change.   Nuclear power has been in use for several decades. With low levels of lifecycle GHG emissions (see  Section 7.8.1), nuclear power contributes to emissions reduction today and potentially in the future.  Continued use and expansion of nuclear energy worldwide as a response to climate change  mitigation require greater efforts to address the safety, economics, uranium utilization, waste  management, and proliferation concerns of nuclear energy use (IPCC, 2007, Chapter 4; GEA, 2012).   Research and development of the next generation nuclear energy system, beyond the evolutionary  LWRs, is being undertaken through national and international efforts (GIF, 2009). New fuel cycles  and reactor technologies are under investigation in an effort to address the concerns of nuclear  energy use. Further information concerning resources, costs, risks and co benefits, deployment  barriers, and policy aspects can be found in sections 7.4.3, 7.8.2, 7.9, 7.10, and 7.12.  7.5.5 Carbon dioxide capture and storage (CCS)  As of mid 2013, CCS has not yet been applied at scale to a large, commercial fossil fired power  generation facility. However, all of the components of integrated CCS systems exist and are in use  today by the hydrocarbon exploration, production, and transport, as well as the petrochemical  refining sectors.   25 of 137       Final Draft  Chapter 7 IPCC WGIII AR5     A  complete end to end CCS system  captures CO2 from large (e.g., typically larger than  0.1 MtCO2/year) stationary point sources (e.g., hydrocarbon fuelled power plants, refineries, cement  plants, and steel mills), transports and injects the compressed CO2 into a suitable deep (typically  more than 800 m below the surface) geologic structure, and then applies a suite of measurement,  monitoring, and verification (MMV) technologies to ensure the safety, efficacy, and permanence of  the captured CO2 s isolation from the atmosphere (IPCC, 2005; Herzog, 2011). As of mid 2013, five  large end to end commercial CCS facilities were in operation around the world. Collectively, they  have stored more than 30 MtCO2 over their lifetimes (Eiken et al., 2011; Whittaker et al., 2011; MIT,  2013). All of them capture a high purity CO2 stream from industrial (i.e., non electricity generating)  facilities such as natural gas processing plants. The near term deployment of CCS is likely to arise in  just these kinds of industrial facilities that produce high purity (which connotes relatively  inexpensive to capture) CO2 waste streams that would otherwise be vented to the atmosphere  and/or in situations where the captured CO2 can be used in a value added manner as is the case with  CO2 driven tertiary hydrocarbon recovery (IPCC, 2005; Bakker et al., 2010; Vergragt et al., 2011).   In the long term, the largest market for CCS systems is most likely found in the electric power sector,  where the cost of deploying CCS (measured on a USD/tCO2 basis) will be much higher and, as a  result, will be done solely for the purpose of isolating anthropogenic CO2 from the atmosphere.  However, this is unlikely to occur without sufficiently stringent limits on GHG emissions to make it  economic to incur these additional costs, regulatory mandates that would require the use of CCS (for  example, on new facilities), or sufficient direct or indirect financial support (IPCC, 2005; Herzog,  2011).   Research aimed at improving the performance and cost of CO2 capture systems for the electric  power sector is significant across three broad classes of CO2 capture technologies: pre combustion  (Rubin et al., 2007; Figueroa et al., 2008), post combustion (Lin and Chen, 2011; Padurean et al.,  2011; Versteeg and Rubin, 2011), and oxyfuel capture (Scheffknecht et al., 2011; Wall et al., 2011).   The risks associated with a large scale deployment of CCS technologies include concerns about the  lifecycle toxicity of some capture solvents(IEAGHG, 2010; Korre et al., 2010; Corsten et al., 2013), the  operational safety and long term integrity of CO2 storage sites (Birkholzer et al., 2009; Oruganti and  Bryant, 2009; Juanes et al., 2010, 2012; Morris et al., 2011; Mazzoldi et al., 2012), as well as risks  associated with CO2 transport via dedicated pipelines (Aines et al., 2009; Mazzoldi et al., 2012).   There is, however, a growing body of literature on how to minimize capture risks and to ensure the  integrity of CO2 wells (Carey et al., 2007, 2010; Jordan and Benson, 2009; Crow et al., 2010; Zhang  and Bachu, 2011; Matteo and Scherer, 2012), as well as on using detailed measurement, monitoring,  and verification data to lower the threshold for detecting any leakage out of the intended injection  zone (Hovorka et al., 2006; Gilfillan et al., 2009; Jordan and Benson, 2009; Eiken et al., 2011). The  literature is also quantifying potential consequences of a pressure buildup within a formation caused  by CO2 storage such as induced seismicity (Juanes et al., 2012; Mazzoldi et al., 2012; NAS, 2013a),  the potential human health impacts (Roberts et al., 2011; de Lary et al., 2012; Atchley et al., 2013),  and environmental consequences from CO2 that might migrate out of the primary injection zone  (Gaus, 2010; Romanak et al., 2012; Zheng et al., 2012) as well as mechanisms for actively managing  the storage formation such as withdrawing formation waters to reduce pressure buildup (Esposito  and Benson, 2012; Réveillere et al., 2012; Sullivan et al., 2013).   The deployment of CCS at a scale of 100s of GtCO2 over the course of this century (which is  consistent with the stabilization scenarios described in Chapter 6 and in Section 7.11) would imply  that large, regional, deep geologic basins would have to accommodate multiple large scale CO2  injection projects (Bachu, 2008; Nicot, 2008; Birkholzer and Zhou, 2009; Juanes et al., 2010) while  taking into account other industrial activities in the region that could impact the integrity of CO2  storage reservoirs (Elliot and Celia, 2012). The peer reviewed literature that has looked at these  large CCS deployment scenarios stress the need for good CO2 storage site selection that would  26 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    explicitly address the cumulative far field pressure effects from multiple injection projects in a given  basin.   A considerable body of practical engineering and scientific knowledge has been generated from the  first five large scale, complete CCS deployments as well as from numerous smaller scale CCS field  experiments and technology demonstrations (Cavanagh et al., 2010; IEAGHG, 2011; NETL, 2012). In  particular, a key advance has been the field testing of MMV technologies to monitor injected CO2 in  a variety of settings. These real world MMV deployments are the beginnings of a broader portfolio  of MMV technologies that can be matched to site specific geology and project  and jurisdiction specific MMV needs (Mathieson et al., 2010; Vasco et al., 2010; Sato et al., 2011). The value of high quality MMV data is becoming clearer as these data allow for the active management of a geologic  CO2 storage formation and can provide operators and regulators with the ability to detect possible  leakage out of the target formation at low levels, which, in turn, can reduce the probability and  magnitude of adverse events (Dooley et al., 2010; Torvanger et al., 2012; Buscheck et al., 2012;  Schloemer et al., 2013).   As noted by Bachu (2008), Krevor et al., (2012), and IPCC (2005), there are a number of key physical  and chemical processes that work in concert to help ensure the efficacy of deep geologic CO2  storage over time. The accumulated knowledge from the five commercial CCS facilities mentioned  above, from many smaller field experiments and technology demonstrations, and from laboratory based research suggests a declining long term risk profile for CO2 stored in deep geologic reservoirs  once active CO2 injection into the reservoir has ceased (Hovorka et al., 2006; Gilfillan et al., 2009;  Jordan and Benson, 2009). Torvanger et al. (2012) builds upon this accumulated knowledge and  concludes,  only in the most unfortunate conditions could such CO2 escape [from deep geologic CO2  storage reservoirs and] compromise [humanity s ability to not exceed a] maximum 2.5°C warming.    Further information concerning transport risks, costs, deployment barriers, and policy aspects can be  found in sections 7.6.4, 7.8.2, 7.10, and 7.12, respectively. The use of CCS in the industrial sector is  described in Section 10.4.   The direct CO2 emissions from biogenic feedstock combustion broadly correspond to the amount of  atmospheric CO2 sequestered through the growth cycle of bioenergy production.8 A net removal of  atmospheric CO2 therefore would result, once the direct emissions are captured and stored using  CCS technologies (see Section 11.13, Figure 11.22). As a consequence, a combination of bio energy  and CCS (BECCS) generally will result in net negative emissions (see IEA, 2011c, 2012c; IEAGHG,  2011). Currently, two small scale examples of commercial precursors to BECCS are capturing CO2  emissions from ethanol production facilities for enhanced oil recovery in close proximity facilities  (DiPietro and Balash, 2012).   BECCS is one of the few technologies that is capable of removing past CO2 emissions remaining in  the atmosphere. As this enhances the  when  (i.e., temporal) flexibility during the design of  mitigation scenarios considerably, BECCS plays a prominent role in many of the low stabilization  pathways discussed in Chapter 6 and Section 7.11. Potential risks associated with BECCS  technologies are related to those associated with the upstream provision of the used biomass9 (see    Non vanishing  life cycle  emissions  originate  from  fossil  fuels  used  during  the  planting,  regrowth,  and  harvesting cycle and potential emissions from land use and management change, among others. The lifecycle  emissions depend on the type of feedstock, specific location, scale and practices of biomass production, and  on the dynamics and management of land use. In some cases, if biomass growth accumulates carbon in the  soil until reaching equilibrium, additional carbon sequestration can occur, but these may be short term effects.  Indirect emissions relate more directly to the use of food crops for energy than to the use of lignocellulosic  biomass (see Section 11.13). Short rotation species (herbaceous plants) wastes have near zero net emissions  cycles.  9 8   BECCS  costs  can  be  reduced  by  using  large scale  biomass  conversion  facilities,  which,  in  turn,  require  the  development of cost effective and low emitting large scale feedstock and supply logistics (Section 11.13.3).   27 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Section 11.13) as well as those originating from the capture, transport, and long term underground  storage of CO2 that would be emitted otherwise (see above).   7.6 Infrastructure and systemic perspectives  7.6.1 Electrical power systems   Reducing GHG emissions from the electric power sector will require infrastructure investments and  changes in the operations of power systems   these will both depend on the mitigation technologies  employed. The fundamental reliability constraints that underpin this process are the requirements  that power supply and electricity demand remain in balance at all times (system balancing), that  adequate generation capacity is installed to meet (peak) residual demand (capacity adequacy)10, and  that transmission and distribution network infrastructure is sufficient to deliver generation to end  users (transmission and distribution). Studies of high variable RE penetration (Mason et al., 2010;  Delucchi and Jacobson, 2011; Denholm and Hand, 2011; Huva et al., 2012; Elliston et al., 2012; Haller  et al., 2012; Rasmussen et al., 2012; Budischak et al., 2013) and the broader literature (summarized  in Sims et al., 2011) suggest that integrating significant RE generation technology is technically  feasible, though economic and institutional barriers may hinder uptake. Integrating high  penetrations of RE resources, particularly those that are intrinsically time variable, alongside  operationally inflexible generation is expected to result in higher system balancing costs. Compared  to other mitigation options variable renewable generation will contribute less to capacity adequacy,  and, if remote from loads, will also increase transmission costs. The determination of least cost  portfolios of those options that facilitate the integration of fluctuating power sources is a field of  active and ongoing research (Haller et al., 2012; Steinke et al., 2013).  7.6.1.1  System balancing flexible generation and loads  Variable RE resources may increase the need for system balancing beyond that required to meet  variations in demand. Existing generating resources can contribute to this additional flexibility. An  IEA assessment shows the amount of variable RE electricity that can be accommodated using  existing  balancing resources exceeds 20% of total annual electricity supply in seven regions and is  above 40% in two regions and one country (IEA, 2011d). Higher RE penetrations will require  additional flexible resources (De Vos et al., 2013). Surplus renewable supply can be curtailed by  switching off unwanted plants or through regulation of the power output, but with corresponding  economic consequences (Brandstätt et al., 2011; Jacobsen and Schröder, 2012).   Some low carbon power technologies (such as nuclear) have relatively high up front and low  operating costs, making them attractive for baseload operation rather than providing flexible  generation to assist in system balancing. Depending on the pattern of electricity demand, a relatively  high share of energy can be provided by these baseload technologies but at some point, further  increases in their penetration will require part loaded operation,11 load following, time shifting of  demand (via load management or demand response), and/or deployment of storage where it is cost effective (Knapp, 1969; Johnson and Keith, 2004; Chalmers et al., 2009; Pouret et al., 2009).   Part load operation of nuclear plants is possible as in France, though in other regions it may be  restricted by institutional barriers (Perez Arriaga and Batlle, 2012). Load following by nuclear power  plants is more challenging and must be considered at the design stage (NEA, 2011a, 2012;  Greenblatt et al., 2012). Flexible operation of a CCS fitted generation plant is also an active area of  research (Chalmers and Gibbins, 2007; Nord et al., 2009; Cohen et al., 2011). Operational flexibility  of combined heat and power (CHP) plants may be constrained by heat loads, though thermal  storages and complementary heat sources can mitigate this effect (e.g., Lund and Andersen, 2005;  10 11  Sometimes called resource adequacy.    In the field of RE this is called  curtailment .   28 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Christidis et al., 2012; Blarke, 2012; Nuytten et al., 2013), however, the capital intensity of CHP will  favor high load factors. Reservoir hydropower can be useful in balancing due to its flexibility.   Certain combinations may present further challenges (Ludig et al., 2011): high shares of variable RE  power, for example, may not be ideally complemented by nuclear, CCS, and CHP plants (without  heat storage). If those plants cannot be operated in a flexible manner, additional flexibility is  required and can be obtained from a number of sources including investment in new flexible  generation, improvements in the flexibility of existing power plants, demand response, and storage  as summarized in the SRREN report (Sims et al., 2011). Obtaining flexibility from fossil generation has  a cost (see Section 7.8.2) and can affect the overall GHG reduction potential of variable RE (Pehnt et  al., 2008; Fripp, 2011; Wiser et al., 2011; Perez Arriaga and Batlle, 2012). Demand response12 is of  increasing interest due to its potentially low cost (see chapter 9 and 10; IEA, 2003b; Depuru et al.,  2011; Cook et al., 2012; Joung and Kim, 2013; Procter, 2013), albeit some emphasize its limitation  compared to flexible conventional supply technologies (Cutter et al., 2012). Smart meters and  remote controls are key components of the so called smart grid where information technology is  used to improve the operation of power systems, especially with resources located at the  distribution level (IEA, 2011e).   Energy storage might play an increasing role in the field of system balancing (Zafirakis et al., 2013).  Today pumped hydro storage is the only widely deployed storage technology (Kanakasabapathy,  2013). Other storage technologies including compressed air energy storage (CAES) and batteries may  be deployed at greater scale within centralized power systems in the future (Pickard et al., 2009a; b;  Roberts and Sandberg, 2011), and the latter can be decentralized. These short term storage  resources can be used to compensate the day night cycle of solar and short term fluctuation of wind  power (Denholm and Sioshansi, 2009; Chen et al., 2009; Loisel et al., 2010; Beaudin et al., 2010).  With the exception of pumped hydro storage, full (levelized) storage costs are still high, but storage  costs are expected to decline with technology development (IEA, 2009b; Deane et al., 2010; Dunn et  al., 2011; EIA, 2012).  Power to heat  and  power to gas  (H2 or methane) technologies might allow  for translating surplus renewable electricity into other useful final energy forms (see Sections 7.6.2  and 7.6.3).   7.6.1.2 Capacity adequacy  One measure of reliability in a power system is the probability that demand will exceed available  generation. The contribution of different generation technologies to ensuring the availability of  sufficient generation is called the capacity credit or capacity value (Keane et al., 2011). The capacity  credit of nuclear, thermal plants with CCS, geothermal, and large hydro is expected to be higher than  90% (i.e., within 10% of the plant nameplate capacity) as long as fuel supply and cooling water is  sufficient and maintenance is scheduled outside critical periods. Variable RE will generally have a  lower capacity credit that depends on the correlation between generation availability and periods of  high demand. The capacity credit of wind power, for instance, ranges from 5% to 40% of the  nameplate capacity (Mason et al., 2010; Holttinen et al., 2011); ranges of capacity credits for other  RE resources are summarized in Sims et al. (2011).   The addition of significant plants with low capacity credit can lead to the need for a higher planning reserve margin (defined as the ratio of the sum of the nameplate capacity of all generation to peak  demand) to ensure the same degree of system reliability. If specifically tied to RE generation, energy  storage can increase the capacity credit of that source; for example, the capacity credit of CSP with  thermal storage is greater than without thermal storage (Madaeni et al., 2011).   Demand response is load management triggered by power price signals derived from the spot market prices  or other control signals (IEA, 2003b).   12 29 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    7.6.1.3 Transmission and distribution  Due to the geographical diversity of RE resources, connecting RE sources to the existing transmission  system may require the installation of additional transmission capacity and strengthening the  existing system if significantly greater power flows are required across the system (Sims et al., 2011).  Increased interconnection and strengthened transmission systems provide power system operators  the capability to move surplus generation in one region to meet otherwise unmet demand in  another, exploiting the geographical diversity of both loads and generation (Rasmussen et al., 2012).  Although there will be a need for additional transmission capacity, its installation often faces  institutional challenges, and it can be visually intrusive and unpopular in the affected areas.  Infrastructure challenges are particularly acute for RE deployment in developing countries, which is  why stand alone decentralized generation, such as with solar home systems, is often favored.  Transmission considerations applied to CCS plants have to reflect the tradeoff between the cost of  electrical transmission and the cost of pipeline transport of CO2 to final depositories (Svensson et al.,  2004; Benson et al., 2005; Herzog et al., 2005; Spiecker et al., 2011). Transmission investments may  also be needed for future nuclear plants if these are located at some distance from load centers due  to public perceptions of health and safety, access to cooling water, or other factors.  Distributed generation (DG), where small generating units (often renewable technologies, cogenera tion units, or fuel cells) are connected directly to the electricity distribution system and near loads,  may not have the same need for expansion of the transmission system. The net impact of DG on  distribution networks depends on the local penetration level, the location of DG relative to loads,  and temporal coincidence of DG generation and loads (Cossent et al., 2011). As DG grows, system  operators would like to have increased visibility and controllability of DG to ensure overall system  reliability. Smart grids might include components to facilitate the integration of various DG  technologies, allow for more active control of the distribution network, and improve the market  value of DG through aggregation into virtual power plants (Pudjianto et al., 2007; Clastres, 2011; IEA,  2011e; Wissner, 2011; Ardito et al., 2013; Hashmi et al., 2013).  7.6.2 Heating and cooling networks  Globally, 15.8 EJ were used in 2010 (2.6% of global TPES) to produce nearly 14.3 EJ13 of district heat  for sale at CHP (44%) and heat only boilers (56%) (Table 7.1). After a long decline in the 1990s,  district heat returned to a growing trajectory in the last decade, rising by about 21% above the year 2000 level (IEA, 2012a). This market is dominated by the Russian Federation with a 42% share in the  global heat generation, followed by Ukraine, United States, Germany, Kazakhstan, and Poland.  Natural gas dominates in the fuel balance of heat generation (46%), followed by coal (40%), oil (5%),  biofuels and waste (5%), geothermal and other renewables (2.4%), and a small contribution from  nuclear. Development of intelligent district heating and cooling networks in combination with  (seasonal) heat storage allows for more flexibility and diversity (combination of wind and CHP  production in Denmark) and facilitates additional opportunities for low carbon technologies (CHP,  waste heat use, heat pumps, and solar heating and cooling) (IEA, 2012a). In addition, excess  renewable electricity can be converted into heat to replace what otherwise would have been  produced by fossil fuels (Meibom et al., 2007).   Statistically reported average global efficiency of heat generation by heat only boilers is 83%, while it  is possible to improve it to 90 95% depending on fuel used. About 6.9% of globally generated heat  for sale is lost in heating networks (Table 7.1). In some Russian and Ukrainian municipal heating  systems, such losses amount to 20 25% as a result of excessive centralization of many district  heating systems and of worn and poorly maintained heat supply systems (Bashmakov, 2009).   13  UNES reports lower number. For 2008 this sources assess the total production of district heat equal to 10.7 EJ (UNES,  2011).  30 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    The promotion of district heating and cooling system should also account for future technology  developments that impact the district heating sector (building heat demand reduction, high efficiency single housing boilers, heat pump technology, cogeneration reciprocating engines, or fuel  cells, etc.), which may allow switching to more efficient decentralized systems (GEA, 2012). District  heating and cooling systems could be more energy and economically efficient when heat or coldness  load density is high through the development of tri generation, the utilization of waste heat by  communities or industrial sites, if heat (cooling) and power loads show similar patterns, and if heat loss control systems are well designed and managed (see 9.4.1.1).   7.6.3 Fuel supply systems  As noted in Section 7.5.1, fossil fuel extraction and distribution contributes around 5 10% of total  fossil fuel related GHG emissions. It has also been noted that specific emissions from this sector will  increase due to increased energy requirements of extraction and processing of oil and gas from  mature fields and unconventional sources, and the mining of coal from deeper mines. The fuel  supply system supporting this sector does, however, provide opportunities to reduce GHG emissions  by enabling the delivery of low carbon fuels (such as biofuels, biogas, renewable H2,or renewable  methane).   Opportunities for delivery of liquid fuels are likely limited to fuels such as biodiesel and ethanol at  points in the system that enable either storage or blending before transport to distribution nodes,  which is discussed in Section 8.3.3; for gaseous fuels, supply of low carbon fuels could occur across  much of the gas delivery network.   More than 50 countries transport high pressure natural gas through pipe networks greater than  1,000 km in length (Central Intelligence Agency, 2011). Although individual layout varies, connected  to these are the lower pressure networks that distribute gas for power generation, industry, and  domestic use. Because of their ability to carry natural gas substitutes, these networks provide an  opportunity to expand production of these gases; depending on the availability of resources,  estimates suggest substitutes could replace 17.4 EJ of natural gas used in Europe by 2020 (IPCC,  2011a). Low CO2 emitting natural gas substitutes can be produced from surplus fluctuating  renewable electricity generation, e.g.,  power to methane  (Sterner, 2009; Arvizu et al., 2011), from  other renewable sources such as biomass and waste, or via coal when combined with CCS; CCS can  be added to gas production from biomass to further enhance CO2 mitigation potential (Carbo et al.,  2011). Provided the substitute natural gas meets the relevant gas quality standard (IEA Bioenergy,  2006, 2009; IPCC, 2011a), and gas cleanup may be required to achieve this, there are no technical  barriers to the injection of gas substitutes into the existing gas networks (Hagen et al., 2001).  Biomethane produced from a variety of sources is already being injected into a number of natural  gas networks (IEA Bioenergy, 2011; IPCC, 2011a).  The existing natural gas network also has the potential to transport and distribute hydrogen  provided the injected fraction remains below 20% by volume, although estimates vary (Naturalhy  2004). Limiting factors are gas quality standard and equipment compliance, pipeline integrity  (failure, fire, and explosion) and end user safety (Naturalhy, 2004; Tabkhi et al., 2008). Where the  pipelines are suitable and more frequent inspections can be undertaken, a higher fraction of  hydrogen can be carried, although the lower volumetric energy density of hydrogen will reduce  energy flow, unless gas pressure can be increased. If required, hydrogen separation is possible via a  range of existing technologies.   For dedicated hydrogen delivery, transport distance is an important consideration; pipelines are  favoured over shorter delivery distances and at high flow rates, while batch delivery of liquid  hydrogen is favoured by long distances (Yang and Ogden, 2007). Hydrogen can be produced from  renewable sources such as wind and solar (IEA, 2006; Moriarty and Honnery, 2007; Gahleitner, 2013)  as well as biomass. Its production from intermittent renewable sources can provide greater system  31 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    flexibility; drawbacks are the additional cost and reduced overall efficiency in energy delivery  (Mason and Zweibel, 2007; Honnery and Moriarty, 2009; IPCC, 2011a).   7.6.4 CO2 transport  There are more than 6,300 km of existing CO2 pipeline in the U.S and much has been learned from  the decades of operational experience obtained from these existing CO2 pipeline systems (Dooley et  al., 2011). There is a growing body of research that describes the magnitude and region specific  nature of future CO2 transport systems. Specifically, there are a growing number of bottom up  studies that examine spatial relationships between where CO2 capture units might be located and  the very heterogeneous distribution, capacity, and quality of candidate geologic storage reservoirs.  For example, the work of Dahowski et al., (2005, 2012) suggests that more than 90% of the large  stationary CO2 point sources in the United States are within 160 km of at least one candidate  geologic storage reservoir and 80% of China s large stationary point sources are within 80 km of at  least one candidate storage reservoir. For regions like these, the proximity of most large stationary  CO2 point sources to large and geographically distributed geologic CO2 storage reservoirs suggests  that at least early on in the commercial deployment of CCS technologies facilities might rely on  dedicated pipelines linking the CO2 source to an appropriate sink. The work of Johnson and Ogden  (2011) suggests that once there is a critical density of CO2 capture and storage projects in a region, a  more integrated national pipeline network may evolve. For other regions, especially  Western/Northern Europe, Japan, and Korea, where onshore storage options are not widely  distributed, more care is needed in planning pipeline networks given the geographical (and political)  challenges of linking distributed CO2 sources to the available/usable predominantly offshore geologic  storage options. This requires longer term planning as well as political/legal agreements between  countries in those regions as more coordination and cross boundary transport will be  necessary/desired (Huh et al., 2011; Ogawa et al., 2011; Strachan et al., 2011; ZEP, 2011a). While  pipelines are likely to be the transport mode of choice for onshore and most offshore storage  projects (IPCC, 2005), in certain circumstances, transporting CO2 by large ocean going vessels could  be a technically feasible and cost effective option (Aspelund et al., 2006; Decarre et al., 2010; Ozaki  and Ohsumi, 2011; Yoo et al., 2011).   The United States oil and gas industry has more than 40 years of experience associated with  transporting large volumes of CO2 via dedicated commercial pipelines (IPCC, 2005; Meyer, 2007).  Available data suggests that these CO2 pipelines have safety records that are as good or better than  large interstate natural gas pipelines, their closest industrial analogue (Gale and Davison, 2004; IPCC,  2005; Cole et al., 2011). There is also a growing body of work combining pipeline fluid flow, pipeline  engineering models, and atmospheric dispersion models suggesting that the hazard associated with  potential ruptures in CO2 pipelines is likely to be small for most plausible releases to the atmosphere  (Aines et al., 2009; Koornneef et al., 2010; Mazzoldi et al., 2011). Although much can be learned  from existing CO2 pipeline systems, knowledge gaps exist for systems that integrate multiple CO2  source points. Because of their impact on pipeline integrity, gas stream properties and flow  management, impurity control is emerging as a major design feature of these systems (Oosterkamp  and Ramsen, 2008; Cole et al., 2011) with particular importance given to limiting the amount of  water in the gas stream at its source to avoid corrosion.   Estimates for the cost of transporting, injecting into a suitable formation, site closure, and long term  post injection monitoring are summarized at the end of Section 7.8.2. Options for CO2 geologic  storage are presented in Section 7.5.5 and a discussion of the cost of CO2 capture is presented in  Section 7.8.2.  7.7 Climate change feedback and interaction with adaptation  Climate change will affect heating and cooling energy demands (see also Chapter 9.5; Arent et al.,  2014), thereby also influencing energy supply needs. The effect on overall energy demand will vary  32 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    geographically (Mideksa and Kallbekken, 2010; Pilli Sihvola et al., 2010; Wan et al., 2011). Many  studies indicate that demand for electricity will increase because of greater need for space cooling,  while demand for natural gas and oil will decline because of less need for space heating (Isaac and  van Vuuren, 2009; Akpinar Ferrand and Singh, 2010; Arent et al., 2014). Peak electricity demand  could also increase, especially as a result of extreme events, requiring a disproportionate increase in  energy infrastructure (US EPA, 2008). Although impacts on energy demands outside of heating and  cooling are less clear, possible effects include increased energy use for climate sensitive processes,  such as pumping water for irrigated agriculture and municipal uses (US EPA, 2008; Aromar and  Sattherhwaite, 2014). As another example, reductions or changes to surface water flows could  increase energy demand for desalination (Boyé, 2008; Scholes and Settele, 2014).   In addition to impacting energy supply through changes in energy demand, climate change will have  various impacts on the potential future role of mitigation technologies in the energy supply sector.  Though these impacts are summarized here, further details on potential impacts, as well as a  summary of how conventional higher carbon energy supplies might be affected, are available in the  WGII AR5 report, especially but not limited to Chapter 10 (Arent et al., 2014).   Though the impact of climate change on the primary resource base for fossil fuels is likely to be small  (World Bank, 2011a), RE sources can be particularly sensitive to climate change impacts. In general,  any impacts are expected to increase with the level of climate change, but the nature and magnitude  of these effects are technology dependent and somewhat uncertain, and they may vary substantially  on regional and local levels (IPCC, 2011a; Schaeffer et al., 2012; Arent et al., 2014). IPCC (2011a),  page 12, summarizes the available literature as follows:   The future technical potential for bioenergy could be influenced by climate change through  impacts on biomass production such as altered soil conditions, precipitation, crop  productivity, and other factors. The overall impact of a global mean temperature change of  less than 2°C on the technical potential of bioenergy is expected to be relatively small on a  global basis. However, considerable regional differences could be expected and  uncertainties are larger and more difficult to assess compared to other RE options due to the  large number of feedback mechanisms involved. For solar energy, though climate change is  expected to influence the distribution and variability of cloud cover, the impact of these  changes on overall technical potential is expected to be small. For hydropower the overall  impacts on the global technical potential is expected to be slightly positive. However, results  also indicate the possibility of substantial variations across regions and even within  countries. Research to date suggests that climate change is not expected to greatly impact  the global technical potential for wind energy development but changes in the regional  distribution of the wind energy resource may be expected. Climate change is not anticipated  to have significant impacts on the size or geographic distribution of geothermal or ocean  energy resources.    A decline in renewable resource potential in one area could lead to a shift in the location of  electricity generation technologies over time to areas where the resource has not degraded. Long lived transmission and other infrastructure built to accommodate these technologies, however, may  be stranded. The longer lifetimes of hydropower dams may mean that these facilities are also less  adaptable to climate changes such as changes in local precipitation; nonetheless, dams also offer the  opportunity for energy and water storage that may provide climate adaptation benefits (Kumar et  al., 2011; Schaeffer et al., 2012).  Climate change may also impact the design and operation of energy sourcing and delivery facilities  (e.g., US DOE, 2013b). Offshore infrastructure, including gas and oil wells but also certain RE facilities  such as offshore wind power plants, are vulnerable to extreme weather events (Karl et al., 2009;  Wiser et al., 2011; World Bank, 2011a; Rose et al., 2012; Arent et al., 2014). Production losses from  thermal power plants (whether low  or high carbon facilities) and efficiency losses from energy 33 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    delivery infrastructures increase when temperatures exceed standard design criteria (Schaeffer et  al., 2012; Sathaye et al., 2013). Some power generation facilities will also be impacted by changes in  access to and the temperature of cooling water, while both power generation facilities and energy delivery infrastructures can be impacted by sea level rise and extreme weather events (Kopytko and  Perkins, 2011; Schaeffer et al., 2012; Arent et al., 2014). Adaptation strategies include infrastructure  relocation and reinforcement, cooling facility retrofit, and proactive water resource management  (Rübbelke and Vögele, 2011; Arent et al., 2014).   Finally, interdependencies between the energy supply sector and other sectors of the economy are  important to consider (de Lucena et al., 2009). For example, if climate change detrimentally impacts  crop yields, bioenergy potential may decline and costs may rise because more land is demanded for  food crop production (Porter and Xie 2014; 11.13). Climate change may also exacerbate water and  energy tensions across sectors and regions, potentially impacting hydropower (either positively or  negatively, depending on whether the potential climate adaptation benefits of hydropower facilities  are realized) and other technologies that require water (Kumar et al., 2011; Arent et al., 2014;  Cisneros and Oki, 2014).   7.8 Costs and potentials  7.8.1 Potential emission reduction from mitigation measures  When assessing the potential of different mitigation opportunities, it is important to evaluate the  options from a lifecycle perspective to take into account the emissions in the fuel chain and the  manufacturing of the energy conversion technology (Annex II.6.3). This section contains a review of  life cycle GHG emissions associated with different energy supply technologies per unit of final  energy delivered, with a focus on electricity generation (Figure 7.6).  The largest lifecycle GHG emissions are associated with the combustion of coal. Lifecycle  assessments reviewed in SRREN (IPCC, 2011a), showed a range of 675 1689 gCO2eq/kWh electricity.  Corresponding ranges for oil and gas were 510 1170 gCO2eq/kWh and 290 930 gCO2eq/kWh14. For  the AR5, the performance of prospective new fossil fuel power plants was assessed, taking into  account a revised assessment of fugitive methane emission from coal mining and natural gas supply  (Section 7.5.1). According to this assessment, modern to advanced hard coal power plants show a  range of 710 950 gCO2eq/kWh, while natural gas combined cycle plants have emissions in the range  of 410 650 gCO2eq/kWh, with high uncertainty and variability associated with methane emissions  from gas production (Section 7.5.1; Annex II.6). Compared to a separate provision of heat, cooling,  and power from stand alone fossil fuel based facilities, combined heat, cooling, and power plants  reduce emissions by one quarter (Pehnt, 2008). The transformation pathways that achieve a  stabilization of the global temperature consistent with the Cancun Agreement (Chapter 6, Section  7.11, Figure 7.9), however, are based on emissions intensities approaching zero in the second half of  the 21st century, so that the employment of technologies with even lower emissions (than the one  mentioned for gas fired power and combined heat and power plants) is called for if these goals are  to be achieved.  A number of power supply technologies offer very low lifecycle GHG emissions(Figure 7.6). The use  of CCS is expected to reduce GHG emissions to 70 290 gCO2eq/kWh for coal (98 396 gCO2eq/kWh in  SRREN). For gas power, the literature specifies 120 170 gCO2eq/kWh assuming a leakage of 1% of  natural gas (Koornneef et al., 2008; Singh et al., 2011; Corsten et al., 2013), while SRREN specified  65 245 gCO2eq/kWh. According to the literature, natural gas leakage is between 0.8% 5.5%  (Burnham et al., 2012) (see Section 7.5.1 for a discussion and more references), resulting in  emissions between 90 and 370 gCO2eq/kWh (Figure 7.6). Most of these assessments assume that  90% of the CO2 in the flue gas is captured, while the remaining emissions are mainly connected to  14  All reported SRREN numbers are from Table A.II.4 in Moomaw et al.(2011)   34 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    the fuel chain. The upper range of emissions for CCS based power plants is flexible since plants can  be designe to capture less, something that results in lower cost and less equipment required. (Figure  7.6).  Figure 7.6. Comparative lifecycle greenhouse gas emissions from electricity supplied by commercially available technologies (fossil fuels, renewable, and nuclear power) and projected emissions of future commercial plants of currently pre-commercial technologies (advanced fossil systems with CCS and ocean energy). The figure shows distributions of lifecycle emissions (harmonization of literature values for WGIII AR5 Report and the full range of published values for WGIII SRREN Report for comparison) and typical contributions to lifecycle emissions by source (cf. the notes below ). Note that percentiles are displayed for RE and traditional coal and gas in the SRREN, but not for coal CCS and gas CCS. In the latter cases, the entire range is therefore shown. For fossil technologies, fugitive emissions of methane from the fuel chain are the largest indirect contribution and hence shown separately. For hydropower, the variation in biogenic methane emissions from project to project are the main cause of the large range. 35 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Abbreviations: AR5 IPCC WG III Fifth Assessment Report, CCS CO2 capture and storage, IGCC integrated coal gasification combined cycle, PC pulverized hard coal, PV photovoltaic, SRREN IPCC WGIII Special Report on Renewable Energy Sources and Climate Change Mitigation. Sources: SRREN (IPCC, 2011), Wind (Arvesen and Hertwich, 2012), PV (Kim et al., 2012; Hsu et al., 2012), CSP (Burkhardt et al., 2012), ocean and wave (Walker and Howell, 2011; Kelly et al., 2012), geothermal power (Sathaye et al., 2011), hydropower (Sathaye et al., 2011; Hertwich, 2013), nuclear power (Warner and Heath, 2012), bioenergy (Cherubini et al., 2012). Notes: Harmonized values have been used where available and the mean values of the typical contributions are shown for the set of those cases where the data base allowed the separation. For world average coal and gas, the uncertainty range represents the uncertainty in the mean; the range of the uncerlying distribution is much larger. For the fossil fuel technologies, all fugitive methane emissions were calculated based on the range provided by (Burnham et al., 2012), infrastructure and supplies are based on (Singh et al., 2011), and direct emissions are based on (Singh et al., 2011; Corsten et al., 2013). For bioenergy, ranges include global climate impacts of CO2 emissions from combustion of regenerative biomass (i.e., biogenic CO2) and the associated changes in surface albedo following ecosystem disturbances, quantified according to the IPCC framework for emission metrics (see the 4th IPCC Assessment Report, (Forster et al., 2007)) and using global warming potentials (GWP) with TH = 100 years as characterization factors (Cherubini et al., 2012; Section 11.13.4) . These impacts are site-specific and generally more significant for long rotation species. The category Biogas includes cases where manure, dedicated crops (e.g., maize), or a mixture of both are used as feedstocks. In addition to the variability in the substrates, the large range in the results reflects different degrees of CH4 emissions from leakage and digestate storage, with the latter that can be reduced in closed storage systems (Boulamanti et al., 2013). No contribution analysis was available for this category. For more detail, see Annex II.6 and 11.13.4. Renewable heat and power generation and nuclear energy can bring more significant reductions in  GHG emissions. The information provided here has been updated from the data provided in SRREN,  taking into account new findings and reviews, where available. The ranges of harmonized lifecycle  greenhouse gas emissions reported in the literature are 18 180 gCO2eq/kWh for PV (Kim et al.,  2012; Hsu et al., 2012), 9 63 gCO2eq/kWh for CSP (Burkhardt et al., 2012), and 4 110 gCO2eq/kWh  for nuclear power (Warner and Heath, 2012). The harmonization has narrowed the ranges down  from 5 217 gCO2eq/kWh for PV, 7 89 gCO2eq/kWh for CSP, and 1 220 gCO2eq/kWh for nuclear  energy. A new literature review for wind power published since 2002 reports 7 56 gCO2eq/kWh,  where the upper part of the range is associated with smaller turbines (<100 kW) (Arvesen and  Hertwich, 2012), compared to 2 81 gCO2eq/kWh reported in SRREN. For all of these technologies, at  least five studies are reviewed. The empirical basis for estimating the emissions associated with  geothermal and ocean energy is much weaker. SRREN reported 6 79 gCO2eq/kWh for geothermal  power and 2 23 gCO2eq/kWh for ocean energy (Moomaw et al., 2012). For ocean power, Figure 7.6  shows only the results of newer assessments, which range between 10 30 gCO2eq/kWh for tidal  barrages, marine current turbines, and wave power (Walker and Howell, 2011; Kelly et al., 2012). For  RE, emissions are mainly associated with the manufacturing and installation of the power plants, but  for nuclear power, uranium enrichment can be significant (Warner and Heath, 2012). Generally, the  ranges are quite wide reflecting differences in local resource conditions, technology, and  methodological choices of the assessment. The lower end of estimates often reflects incomplete  systems while the higher end reflects poor local conditions or outdated technology.   Lifecycle direct global climate impacts of bioenergy in Figure 7.6 come from the peer reviewed  literature from 2010 to 2012 (reviewed in Section 11.13.4) and are based on a range of electric  conversion efficiencies of 30% 50%. The category  Biomass dedicated and crop residues  includes  perennial grasses like switchgrass and miscanthus, short rotation species like willow and eucalyptus,  and agricultural byproducts like wheat straw and corn stover.  Biomass forest wood  refers to  sustainably harvested forest biomass from long rotation species in various climate regions. The  range in  Biomass forest wood  is representative of various forests and climates, e.g., aspen forest in  Wisconsin (US), mixed forest in Pacific Northwest (US), pine forest in Saskatchewan (Canada), and  36 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    spruce forest in Southeast Norway. Impacts from biogenic CO2 and albedo are included in the same  manner as the other GHGs, i.e., converted to gCO2eq after characterization of emissions from  combustion with case specific GWPs (Cherubini et al., 2012). In areas affected by seasonal snow  cover, the cooling contribution from the temporary change in surface albedo can be larger than the  warming associated with biogenic CO2 fluxes and the bioenergy system can have a net negative  impact (i.e., cooling). Change in soil organic carbon can have a substantial influence on the overall  GHG balance of bioenergy systems, especially for the case  Biomass dedicated and crop residues ,  but are not covered here due to their high dependence on local soil conditions and previous land use  (Don et al., 2012; Gelfand et al., 2013).   The climate effect of hydropower is very project specific. Lifecycle emissions from fossil fuel  combustion and cement production related to the construction and operation of hydropower  stations reported in the literature fall in the range of up to 40 gCO2eq/kWh for the studies reviewed  in the SRREN (Kumar et al, 2011) and 3 7 gCO2eq/kWh for studies reviewed in (Dones et al., 2007).  Emissions of biogenic CH4 result from the degradation of organic carbon primarily in hydropower  reservoirs (Tremblay et al., 2005; Barros et al., 2011; Demarty and Bastien, 2011), although some  reservoirs act as sinks (Chanudet et. al 2011). Few studies appraise net emissions from  freshwater  reservoirs, i.e., adjusting for pre existing natural sources and sinks and unrelated anthropogenic  sources (Kumar et al, 2011, section 5.6.3.2). A recent meta analysis  of 80 reservoirs indicates that  CH4 emission factors are log normally distributed, with the majority of measurements being below  20 gCO2eq/kWh (Hertwich, 2013), but emissions of approximately 2 kgCO2eq/kWh coming from a  few reservoirs with a large area in relation to electricity production and thus low power intensity  (w/m2) (Abril et al., 2005; Kemenes et al., 2007, 2011). The global average emission rate was  estimated to be 70 gCO2eq/kWh (Maeck et al., 2013; Hertwich, 2013). Due to the high variability  among power stations, the average emissions rate is not suitable for the estimation of emissions of  individual countries or projects. Ideas for mitigating existing methane emissions have been  presented (Ramos et al., 2009; Stolaroff et al., 2012).   The literature reviewed in this section shows that a range of technologies can provide electricity with  less than 5% of the lifecycle GHG emissions of coal power: wind, solar, nuclear, and hydropower in  suitable locations. In the future, further reductions of lifecycle emissions on these technologies could  be attained through performance improvements (Caduff et al., 2012; Dale and Benson, 2013) and as  a result of the a cleaner energy supply in the manufacturing of the technologies (Arvesen and  Hertwich, 2011).  7.8.2 Cost assessment of mitigation measures  Though there are limits to its use as a tool for comparing the competitiveness of energy supply  technologies, the concept of  levelized costs of energy  (LCOE, also called levelized unit costs or  levelized generation costs)15 is frequently applied (IEA, 2005, 2010b, 2011a; GEA, 2012).   Figure 7.7 shows a current assessment of the private cost16 of various low carbon power supply  technologies in comparison to their conventional counterparts.    A basic description of this concept, including its merits and shortcomings, can be found in Annex II of this  report.   16  Beyond variations in carbon prices, additional external costs are not considered in the following. Although  the term  private  will be omitted in the remainder of this section, the reader should be aware that all costs  discussed here are private costs. An extended discussion of external costs is given in Fischedick et al., (2011).   15 37 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Figure 7.7. Specific direct and lifecycle emissions (gCO2/kWh and gCO2eq/kWh, respectively) and levelized cost of electricity (LCOE in USD2010/MWh) for various power-generating technologies (cf. Annex III, Section A.III.2 for data and assumptions and Annex II, Section A.II.3.1 and Section A.II.9.3 for methodological issues). The upper left graph shows global averages of specific direct CO2 emissions (gCO2/kWh) of power generation in 2030 and 2050 for the set of 430 530 ppm scenarios that are contained in the AR5 database (cf. Annex II, Section A.II.10). The global average of specific direct CO2 emissions (gCO2/kWh) of power generation in 2010 is shown as a vertical line (IEA, 2013a). 38 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Note: The inter-comparability of LCOE is limited. For details on general methodological issues and interpretation see Annexes as mentioned above. The LCOE ranges are broad as values vary across the globe depending on the site specific  (renewable) energy resource base, on local fuel and feedstock prices as well as on country and site specific projected costs of investment, and operation and maintenance. Investment decisions  therefore should not be based on the LCOE data provided here; instead, site , project , and investor specific conditions are to be considered. Integration costs, time dependent revenue opportunities  (especially in the case of intermittent renewables), and relative environmental impacts (e.g.,  external costs) play an important role as well (Heptonstall, 2007; Fischedick et al., 2011; Joskow,  2011; Borenstein, 2012; Edenhofer et al., 2013; Hirth, 2013).  The LCOE of many low carbon technologies changed considerably since the release of the IPCC AR4.  Even compared to the numbers published in the SRREN (IPCC, 2011a), the decline of LCOE of some  RE technologies have been significant.17 The LCOE of (crystalline silicon) photovoltaic systems, for  instance, fell by 57% since 2009. Compared to PV, a similar, albeit less extreme trend towards lower  LCOE (from the second quarter of 2009 to the first quarter of 2013) has been observed for onshore  wind ( 15%), land fill gas ( 16%), municipal solid waste ( 15%), and biomass gasification ( 26%) (BNEF  and Frankfurt School UNEP Centre, 2013).   Due to their rapid cost decline, some RE sources have become an economical solution for energy  supply in an increasing number of countries (IRENA, 2013). Under favourable conditions (see  Figure 7.7), large scale hydropower (IEA, 2008b), larger geothermal projects (>30 MWe) (IEA, 2007),  and wind onshore power plants (IEA, 2010c) are already competitive. The same is true for selected  off grid PV applications (IEA, 2010d, 2011b). As emphasized by the SRREN (2011a) and IEA (IEA,  2008b, 2011b, 2012h) support policies, however, are still necessary in order to promote the  deployment of many RE in most regions of the world.   Continuous cost reductions are not always a given (see BNEF and Frankfurt School UNEP Centre,  2013), as illustrated by the recent increase in costs of offshore wind (+44%) and technologies in an  early stage of their development (marine wave and tidal, binary plant geothermal systems). This  however, does not necessarily imply that technological learning has stopped. As observed for PV and  wind onshore (see SRREN,IPCC, 2011a), phases characterized by an increase of the price might be  followed by a subsequent decline, if, for instance, a shortage of input material is eliminated or a  shake out  due to increasing supplier competition is happening (Junginger et al., 2005, 2010). In  contrast, a production overcapacity as currently observed in the PV market might result in system  prices that are temporarily below production costs (IEA, 2013a). A critical discussion of the solar  photovoltaic grid parity issue can be found in IEA (2013a).   While nuclear power plants, which are capable of delivering baseload electrical energy with low  lifecycle emissions, have low operating costs (NEA, 2011b), investments in nuclear power are  characterized by very large up front investment costs, and significant technical, market, and  regulatory risks (IEA, 2011a, p. 455). Potential project and financial risks are illustrated by the  significant time and cost over runs of the two novel European Pressurized Reactors (EPR) in Finland  and France (Kessides, 2012). Without support from governments, investments in new nuclear power  plants are currently generally not economically attractive within liberalized markets, which have  access to relatively cheap coal and/or gas (IEA, 2012b). Carbon pricing could improve the  competitiveness of nuclear power plants (NEA, 2011b). The post Fukushima assessment of the  economics and future fate of nuclear power is mixed. According to the IEA, the economic   The subsequent percent values in LCOE data refer to changes between the second quarter (Q2) of 2009 and  the first quarter (Q1) of 2013 (BNEF and Frankfurt School UNEP Centre, 2013). Although the IPCC SRREN was  published in 2011, the cost data base used there refers to 2009.   17 39 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    performance and future prospects of nuclear power might be significantly affected (IEA, 2011a,  2012b). Joskow and Parsons (2012) assesses that the effect will be quite modest at the global level,  albeit based on a pre Fukushima baseline evolution, which is a moderate one itself.   As there is still no commercial large scale CCS power plant in operation today, the estimation of their  projected costs has to be carried on the basis of design studies and few existing pilot projects. The  associated problems are described in (Yeh and Rubin, 2010; Global CCS Institute, 2011; Rubin, 2012).  The CCS technologies applied in the power sector will only become competitive with unabated  technologies if the additional equipment attached to the power plant and their decreased efficiency  as well as the additional cost for CO2 transport and storage is compensated by sufficiently high  carbon prices or direct financial support (Lohwasser and Madlener, 2011; IEA, 2013c). BECCS faces  large challenges in financing and currently no such plants have been built and tested at scale.  The deployment of CCS requires infrastructure for long term storage of waste products, which  includes direct CO2 transport and storage costs, along with costs associated with long term  measurement, monitoring, and verification. The related cost of transport and storage (excluding  capture costs) are unlikely to exceed USD 15/tCO2 for the majority of CCS deployment scenarios  (Herzog et al., 2005; Herzog, 2011; ZEP, 2011b) and some estimates are below USD 5/tCO2 (McCoy  and Rubin, 2008; Dahowski et al., 2011). Figure 7.7 relies on an assumed cost of USD 10/tCO2.  System integration costs (cf. Section 7.6.1, and not included in Figure 7.7) typically increase with the  level of deployment and are dependent on the mitigation technology and the state of the  background energy system. From the available evidence, these costs appear to be greater for  variable renewable technologies than they are for dispatchable power plants (Hirth, 2013). The costs  comprise (1) balancing costs (originating from the required flexibility to maintain a balance between  supply and demand), (2) capacity adequacy costs (due to the need to ensure operation even at peak  times of the residual load), and (3) transmission and distribution costs.   (1) Based on assessments carried out for OECD countries, the provision of additional balancing  reserves increases the system costs of wind energy by approximately USD 1 to 7/MWh for wind  energy market shares of up to approximately 30% of annual electricity demand (IEA, 2010e, 2011d;  Wiser et al., 2011; Holttinen et al., 2011). Balancing costs for PV are in a similar range (Hoke and  Komor, 2012).   (2) As described in Section 7.6.1, the contribution of variable renewables like wind, solar, and tidal  energy to meeting peak demand is less than the resources  nameplate capacity. Still, determining  the cost of additional conventional capacity needed to ensure that peak demands are met is  contentious (Sims et al., 2011). Estimates of this cost for wind power range from USD 0 to 10/MWh  (IEA, 2010e, 2011d; Wiser et al., 2011). Because of the coincidence of solar generation with air conditioning loads, solar at low penetration levels can in some regions displace a larger amount of  capacity, per unit of energy generated, than other supply options, yielding estimates of  infrastructure savings as high as USD 23/MWh greater than the savings from baseload supply  options (Mills et al., 2011).   (3) Estimates of the additional cost of transmission infrastructure for wind energy in OECD countries  are often in the range of USD 0 to 15/MWh, depending on the amount of wind energy supply,  region, and study assumptions (IEA, 2010e, 2011d; Wiser et al., 2011; Holttinen et al., 2011).  Infrastructure costs are generally higher for time variable and location dependent RE, at least when  developed as large centralized plants, than for other sources of energy supply (e.g., Sims et al., 2007;  Hoogwijk et al., 2007; Delucchi and Jacobson, 2011). If mitigation technologies can be deployed near  demand centres within the distribution network, or used to serve isolated autonomous systems  40 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    (e.g., in less developed countries), such deployments may defer or avoid the need for additional  transmission and distribution, potentially reducing infrastructure costs relative to a BAU scenario.18   7.8.3 Economic potentials of mitigation measures  Quantifying the economic potential of major GHG mitigation options is problematic due to the  definition of welfare metrics, broader impacts throughout the energy economic system, and the  background energy system, carbon intensity, and energy prices (see sections 3.4.3 and 3.7.1 for a  general discussion). Three major approaches to reveal the economic potentials of mitigation  measures are discussed in the literature:   One approach is to use energy supply cost curves, which summarize energy resource estimates (GEA,  2012) into a production cost curve on an annual or cumulative basis. Uncertainties associated with  energy cost curves include the relationship between confirmed reserves and speculative resources,  the impact of unconventional sources of fuels, future technological change and energy market  structures, discounting, physical conditions (e.g., wind speeds), scenarios (e.g., land use tradeoffs in  energy vs. food production) and the uneven data availability on global energy resources. Illustrative  renewable resource cost curves are discussed in Section 10.4 and Figure 10.29 of Fischedick et al.,  (2011).   A second and broader approach are marginal abatement cost (MAC) curves. The MAC curves  (discussed in Section 3.9.3) discretely rank mitigation measures according to their GHG emission  abatement cost (in USD/tCO2) for a given amount of emission reduction (in million tCO2). The MAC  curves have become a standard policy communication tool in assessing cost effective emissions  reductions (Kesicki and Ekins, 2011). There is wide heterogeneity (discussed in detail in Section 3.9.3)  in the method of construction, the use of experts vs. models, and the year/region to which the MAC  is applied. Recent global MAC curve studies (van Vuuren et al., 2004; IEA, 2008c; Clapp et al., 2009;  Nauclér and Enkvist, 2009) give overall mitigation potentials ranging from 20 100% of the baseline  for costs up to USD 100/tCO2. These MACs can be a useful summary mechanism but improved  treatment of interactions between mitigation measures and the path dependency of potential cost  reductions due to technological learning (e.g., Luderer et al., 2012), as well as more sophisticated  modelling of interactions throughout the energy systems and wider economy are required.   A third approach utilized in the IPCC AR5 overcomes these shortcomings through integrated  modelling exercises in order to calculate the economic potential of specific supply side mitigation  options. These models are able to determine the economic potential of single options within the  context of (other) competing supply side and demand side mitigation options by taking their  interaction and potential endogenous learning effects into account. The results obtained in this way  are discussed in Chapter 6; the different deployment paths of various supply side mitigation options  as part of least cost climate protection strategies are shown in Section 7.11.  7.9 Co benefits, risks and spillovers  Besides economic cost aspects, the final deployment of mitigation measures will depend on a variety  of additional factors, including synergies and tradeoffs across mitigation and other policy objectives.  The implementation of mitigation policies and measures can have positive or negative effects on  The ability for distributed resources to defer distribution investments depends on the correlation of the  generation profile and load, as well as on location specific factors (Mendez et al., 2006; Thomson and Infield,  2007; Hernández et al., 2008; Wang et al., 2010; Agah and Abyaneh, 2011). At higher penetrations of  distributed generation, additional distribution infrastructure may be required (e.g., Cossent et al., 2011).  18 41 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    these other objectives and vice versa. To the extent these side effects are positive, they can be  deemed  co benefits ; if adverse and uncertain, they imply risks.19   Co benefits, adverse side effects, technical risks and uncertainties associated with alternative  mitigation measures and their reliability (Sections 7.9.1 7.9.3) as well as public perception thereof  (Section 7.9.4) can affect investment decisions, individual behaviour as well as priority setting of  policymakers. Table 7.3 provides an overview of the potential co benefits and adverse side effects of  the main mitigation measures that are assessed in this chapter. In accordance with the three  sustainable development pillars described in Chapter 4, the table presents effects on objectives that  may be economic, social, environmental, and health related.      Co benefits and adverse side effects describe effects in non monetary units without yet evaluating the net  effect on overall social welfare. Please refer to the respective sections in the framing chapters as well as to the  glossary in Annex I for concepts and definitions particularly sections 2.4, 3.6.3, and 4.8. The extent to which  co benefits and adverse side effects will materialize in practice as well as their net effect on social welfare will  differ greatly across regions, and depend on local circumstances, implementation practices, as well as the scale  and pace of the deployment of the different measures.   19 42 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    Table 7.3. Overview of potential co-benefits (green arrows) and adverse side-effects (orange arrows) of the main mitigation measures in the energy supply sector. Arrows pointing up/down denote positive/negative effect on the respective objective/concern; a question mark (?) denotes an uncertain net effect. Please refer to Sections 11.7 and 11.13.6 for possible upstream effects of biomass supply on additional objectives. Co-benefits and adverse side-effects depend on local circumstances as well as on the implementation practice, pace, and scale (see Section 6.6). For an assessment of macroeconomic, crosssectoral effects associated with mitigation policies (e.g., on energy prices, consumption, growth, and trade), see Sections 3.9, 6.3.6, 13.2.2.3, and 14.4.2. Numbers correspond to references listed below table.  Effect on additional objectives/concerns  Mitigation measures   Nuclear replacing coal  power     RE (wind, PV, CSP,  hydro, geothermal,    bioenergy) replacing  coal     Fossil CCS replacing  coal   Economic  Energy security (reduced exposure to fuel price  volatility)1   Local employment impact (uncertain net effect)2  Legacy cost of waste and abandoned reactors3  Energy security (resource sufficiency, diversity in  the near/medium term)13  Local employment impact (uncertain net effect)14 Irrigation, flood control, navigation, water  availability (for some hydro)15  Extra measures to match demand (for PV, wind,  and some CSP)16  Preservation vs. lock in of human and physical    capital in the fossil industry29      Social  Health impact via        Air pollution4, coal mining accidents5  6    Nuclear accidents  and waste treatment,  U mining and milling7    Safety and waste concerns8  Health impact via          Air pollution (except bioenergy)17  18      Coal mining accidents   19 Contribution to (off grid) energy access   Project specific public acceptance  20 concerns (e.g., visibility of wind)    21 Threat of displacement (for large hydro) Environmental  Ecosystem impact via        Air pollution9, coal mining10       Nuclear accidents11   Ecosystem impact via        Air pollution (except bioenergy)22       Coal mining23       Habitat impacts (for some hydro)24  25      Landscape/wildlife impact (for wind) Water use (for wind and PV)26  Water use (for bioenergy, CSP, geo thermal, and reservoir hydro)27  Other  Proliferation  risk12     ?    Higher use of  critical metals for PV, direct  drive wind  turbines28     BECCS replacing coal  Methane leakage  prevention, capture,  or treatment     1 Health impact via  Ecosystem impact via upstream supply      Risk of CO2 leakage30    chain activities33  31      Upstream supply chain activities    Water use34  Safety concerns (CO2 storage and  transport)32  See fossil CCS where applicable. For possible upstream effect of biomass supply, see Sections 11.7 and 11.13.6   Energy security (potential to use gas in some  Occupational safety at coal mines37  Ecosystem impact via reduced air  cases)36  Health impact via reduced air pollution38    pollution39    Long term  monitoring of  storage35    Legend:  Adamantiades and Kessides (2009); Rogner (2010, 2012a; b). For the low share of fuel expenditures in LCOE, see IAEA (2008b) and Annex III. For the energy security effects of a general increase in nuclear  2 3 power, see NEA (2010) and Jewell (2011a).  Cai et al. (2011); Wei et al. (2010); Kenley et al. (2009); McMillen et al. (2011).  Marra and Palmer (2011); Greenberg, (2013a); Schwenk Ferrero (2013a); Skipperud et al.  4 (2013); Tyler et al. (2013a).  Smith and Haigler (2008); Smith et al. (2012b); Smith et al. (2013); Gohlke et al. (2011); Rückerl et al. (2011), and WGII Section 11.9 on health impacts from air pollution attributable to  5 coal; Solli et al. (2006); Dones et al. (2007); Dones et al. (2005); Simons and Bauer (2012) on air pollution attributable to nuclear; see Section 7.9.2 for comparison. See Section 7.9.3 and references cited therein:  6 Epstein et al. (2010); Burgherr et al. (2012); Chen et al. (2012); Chan and Griffiths (2010); Asfaw et al. (2013).  See Section 7.9.3, in particular Cardis et al. (2006); Balonov et al. (2011); Moomaw et al. (2011a); WHO  7 8 (2013).  Abdelouas (2006); Al Zoughool and Kewski (2009) cited in Sathaye et al. (2011a); Smith et al. (2013); Schnelzer et al. (2010); Tirmarche (2012); Brugge and Buchner (2011).  Visschers and Siegrist (2012);  Greenberg (2013a); Kim et al. (2013); Visschers and Siegrist (2012); see Section 7.9.4 and references cited therein: Bickerstaff et al. (2008); Sjoberg and Drottz Sjoberg (2009); Corner et al. (2011); Ahearne (2011).  9 Simons and Bauer (2012) for comparison of nuclear and coal. See Section 7.9.2 and references cited therein for ecological impacts of coal: Galloway et al. (2008); Doney (2010); Hertwich et al. (2010); Rockstrom et  al. (2009); van Grinsven et al. (2013) for eutrophication and acidification, Emberson et al. (2012); van Geothem et al. (2013) for photooxidants; IEA (2011a); Pacyna et al. (2007) for increased metal emissions and  10 Nagajyoti et al. (2010); Sevcikova et al. (2011); Mahboob (2013) for the ecosystem effects of those emissions.  Adibee et al. (2013); Cormier et al. (2013); Smith et al. (2013), and reference cited therein: Palmer et al.  11 12 (2010).  Mller et al. (2012); Hiyama et al. (2013); Mousseau and Mller (2013); Mller and Mousseau (2011); Mller et al. (2011).  von Hippel et al. (2011, 2012); Sagan (2011); Yim and Li (2013); Adamantiades and  43 of 137       Final Draft  13 Chapter 7 14 IPCC WGIII AR5    Kessides (2009); Rogner (2010).  Sathaye et al. (2011); McCollum et al. (2013b); Jewell et al. (2014); Cherp et al. (2013).  van der Zwaan et al. (2013); Cai et al. (2011); Lehr et al. (2012); Ruiz Romero et al. (2012);  15 Böhringer et al. (2013); Sathaye et al. (2011), and references cited therein, e.g. Frondel et al. (2010) and Barbier (2009).  For multipurpose use of reservoirs and regulated rivers, see (Kumar et al., 2011; Schaeffer et  16 17 al., 2012); Smith et al. (2013); WCD (2000) and Moore et al. (2010), cited in Sathaye et al. (2011a).  IEA (2011d); Williams et al. (2012); Sims et al. (2011); Holttinen et al. (2011); Rasmussen et al. (2012).  Sathaye et  18 19 al. (2011); Smith, GEA (2012); Smith et al. (2013); Figure 7.8, Annex II and references cited therein.  Section 7.9.3, especially Moomaw et al. (2011a); Chen et al. (2012); Burgherr et al. (2012).  Pachauri et al. (2012);  Sathaye et al. (2011); Kanagawa and Nakata (2008); Bazilian et al. (2012); Sokona et al. (2012); Byrne et al. (2007); D Agostino et al. (2011); Pachauri et al. (2012); Díaz et al. (2013); van der Vleuten et al. (2013);  20 21 Nguyen, (2007); Narula et al. (2012); Sudhakara Reddy et al. (2009).  Lovich and Ennen (2013); Sathaye et al. (2011); Wiser et al. (2011).  Bao (2010); Scudder (2005); Kumar et al. (2011); Sathaye et al. (2011a) and  22 references cited therein: Richter et al. (2010); Smith et al. (2013) and references cited therein: Hwang et al. (2011); McDonald Wilmsen and Webber (2010); Finley Brook and Thomas (2010).  See Section 7.9.2 and  references cited therein for ecological impacts of coal: Galloway et al., (2008); Doney, (2010); Hertwich et al., (2010); Rockstrom et al. (2009); van Grinsven (2013) for eutrophication and acidification, Emberson et al.  (2012) and van Geothem et al. (2013) for photooxidants. See Arversen and Hertwich (2011, 2012) for wind, Fthenakis et al. (2008) and Laleman et al. (2011) for PV, Becerralopez and Golding (2007) and Moomaw et  23 24 al. (2011b) for CSP, and Moomaw et al. (2011a) for a general comparison.  See footnote 10 on ecosystem impact from coal mining.  Kumar et al. (2011); Alho (2011); Kunz et al. (2011); Smith et al. (2013); Ziv et al.  25 26 (2012).  Wiser et al. (2011); Lovich and Ennen (2013); Garvin et al. (2011); Grodsky et al. (2011); Dahl et al. (2012); de Lucas et al. (2012); Dahl et al. (Dahl et al., 2012)); Jain et al. (2011).  Pachauri et al. (2012);  27 Fthenakis and Kim (2010); Sathaye et al. (2011); Moomaw et al. (2011a); Meldrum et al. (2013).  Pachauri et al. (2012); Fthenakis and Kim (2010); Sathaye et al. (2011); Moomaw et al. (2011a); Meldrum et al. (2013);  28 Berndes (2008); Pfister et al. (2011); Fingerman et al. (2011); Mekonnen and Hoekstra (2012); Bayer et al. (2013a).  Section 7.9.2, Kleijn and van der Voet (2010);  Graedel (2011); Zuser and Rechberger (2011);  29 Fthenakis and Anctil (2013); Ravikumar and Malghan (2013); Pihl et al. (2012); Hoenderdaal et al. (2013).  Vergragt et al. (2011); Markusson et al. (2012); IPCC (2005); Benson et al. (2005); Fankhauser et al. (2008);  30 31 Shackley and Thompson (2012).  Atchley et al. (2013) simarly applicable to animal health; Apps et al. (2010); Siirila et al. (2012); Wang and Jaffe (2004).  Koorneef et al. (2011); Singh et al. (2011); Hertwich et al.  32 (2008); Veltman et al. (2010); Corsten et al.(2013).  Ashworth et al. (2012); Einsiedel et al. (2013); IPCC (2005); Miller et al. (2007); de Best Waldhober et al. (2009); Shackley et al. (2009); Wong Parodi and Ray  33 34 (2009); Waööquist et al. (2009, 2010); Reiner and Nuttall (2011).  Koorneef et al. (2011); Singh et al. (2011); Hertwich et al. (2008); Veltman et al. (2010); Corsten et al.(2013).  Zhai et al. (2011); Koorneef et al.  35 36 37 (2011); Sathaye et al. (2011); Moomaw et al. (2011a).  Haszeldine et al. (2009); Sauer et al. (2013); Kudryavtsev et al. (2012); Held and Edenhofer (2009).  Wilkinson (2011); Song and Liu (2012).  Karacan et al.  38 (2011); Deng et al. (2013); Wang et al. (2012); Zhang et al. (2013); Cheng et al. (2011).  IEA, (2009c); Jerrett et al. (2009); Shindell et al. (2012); Smith et al. (2013), and references cited therein: Kim et al. (2013); Ito et  39 al. (2005); Ji et al. (2011).  Van Dingenen et al. (2009); Shindell et al. (2012); van Goethem et al. (2013). 44 of 137       Final Draft  Chapter 7 IPCC WGIII AR5    7.9.1 Socio economic effects  There is an increasing body of work showing that the implementation of energy mitigation options  can lead to a range of socio economic co benefits for, e.g., employment, energy security, and better  access to energy services in rural areas (Shrestha and Pradhan, 2010; IPCC, 2011a; UNEP, 2011).   Employment. Analysis by Cai et al. (2011) shows that as a result of the increased share of renewable  energy in China, the power sector registered 472,000 net job gains in 2010. For the same amount of  power generated, solar PV requires as many as 18 and 7 times more jobs than nuclear and wind,  respectively. Using conservative assumptions on local content of manufacturing activities, van der  Zwaan et al. (2013) show that renewable sources of power generation could account for about  155,000 direct and 115,000 indirect jobs in the Middle East by 2050. Examples of Germany and Spain  are also noteworthy where 500 to 600 thousand people could be employed in the renewable energy  supply sector in each country by 2030 (Lehr et al., 2012; Ruiz Romero et al., 2012) while the net  effect is less clear. Wei et al. (2010) also found that over 4 million full time jobs could be created by  2030 from the combined effect of implementing aggressive energy efficiency measures coupled with  meeting a 30% renewable energy target. An additional 500,000 jobs could be generated by while  increasing the share of nuclear power to 25% and CCS to 10% of overall total generation capacity. In  line with these trends, Kenley et al. (2009) show that adding 50,000 megawatts by 2020 of new  nuclear generating capacity in the United States would lead to 117,000 new jobs, 250,000 indirect  jobs, and an additional 242,000 non nuclear induced jobs. Relating to CCS, although development in  this sector could deliver additional employment (Yuan and Lyon, 2012; Bezdek and Wendling, 2013),  safeguarding jobs in the fossil based industry is expected to be the main employment co benefit  (Frankhauser et al., 2008). Whilst recognizing the growing contribution of mitigation options for  employment, some sobering studies have highlighted that this potentially carries a high cost. In the  PV sector in Germany, for example, the cost per job created can be as high as USD2010 236,000   ( 175,000 in 2008) (Frondel et al., 2010), underlining that continued employment and welfare gains  will remain dependent on the level and availability of support and financing mechanisms (Alvarez et  al., 2010; Furchtgott Roth, 2012; Böhringer et al., 2013). Furthermore, given the higher cost of  electricity generation from RE and CCS based fossil fuels, at least in the short term, jobs in energy intensive economic sectors are expected to be affected (Delina and Diesendorf, 2013). The structure  of the economy and wage levels will nonetheless influence the extent of industry restructuring and  its impact of labour redeployment.   Energy security. As discussed in Section 6.6.2.2, energy security can generally be understood as "low  vulnerability of vital energy systems" (Cherp et al., 2012). Energy security concerns can be grouped  as (1) the sufficiency of resources to meet national energy demand at competitive and stable prices,  and (2) the resilience of the energy supply.20 Since vital energy systems and their vulnerabilities  differ from one country to another, the concept of energy security also differs between countries  (Chester, 2009; Cherp and Jewell, 2011; Winzer, 2012). Countries with a high share of energy  imports in total imports (or export earnings) are relatively more vulnerable to price fluctuations and  historically have focused on curtailing energy imports (GNESD, 2010; Jain, 2010; Sathaye et al.,  2011), but more recently, also building the resilience of energy supply (IEA, 2011a; Jewell, 2011b).  For energy importers, climate policies can increase the sufficiency of national energy demand by  decreasing imports and energy intensity while at the same time increasing the domestic resource  buffer and the diversity of energy supply (Turton and Barreto, 2006; Costantini et al., 2007; Kruyt et  al., 2009; McCollum et al., 2013a; Jewell et al., 2014). Energy exporting countries are similarly  interested in stable and competitive global prices, but they have the opposite interest of maintaining   These dimensions are roughly in line with the treatment of energy security in the SRREN albeit with  terminology based on recent literature along the lines of the sovereignty and robustness perspectives on the  one hand and resilience on the other described by Cherp and Jewell (2011). It is also very similar to the IEA s  distinction between energy system risks and resilience capacities (IEA, 2011a; Jewell, 2011b).  20 45 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    or increasing energy export revenues (Sathaye et al., 2011; Cherp and Jewell, 2011). There is  uncertainty over how climate policies would impact energy export revenues and volumes as  discussed in Section 6.3.6.6. One of the biggest energy security issues facing developing countries is  the necessity to dramatically expand energy systems to support economic growth and development  (Kuik et al., 2011; Cherp et al., 2012), which makes energy security in low  and middle income  countries closely related to the energy access challenge, discussed in the next paragraphs and in  Section 6.6.2.3.  Rural development. In various developing countries such as India, Nepal, Brazil, and parts of Africa,  especially in remote and rural areas, some renewables are already cost competitive options for  increasing energy access (Nguyen, 2007; Goldemberg et al., 2008; Cherian, 2009; Sudhakara Reddy  et al., 2009; Walter et al., 2011; Narula et al., 2012). Educational benefits as a function of rural  electrification (Kanagawa and Nakata, 2008), and enhanced support for the productive sector and  income generation opportunities (Bazilian et al., 2012; Sokona, Y. et al., 2012; Pachauri et al., 2013)  are some of the important co benefits of some mitigation options. However, the co benefits may  not be evenly distributed within countries and local jurisdictions. While there is a regressive impact  of higher energy prices in developed countries (Grainger and Kolstad, 2010), the empirical evidence  is more mixed for developing countries (Jakob and Steckel, 2013). The impact depends on the type  of fuel used by different income groups, the redistribution of the revenues through, e.g., a carbon  tax, and in what way pro poor measures are able to mitigate adverse effects (Casillas and Kammen,  2010) (see Section 15.5.2.3 for a discussion of the distributional incidence of fuel taxes). Hence,  regulators need to pay attention that the distributive impacts of higher prices for low carbon  electricity (fuel) do not become a burden on low income rural households (Rao, 2013). The success  of energy access programmes will be measured against affordability and reliability criteria for the  poor.   Other positive spillover effects from implementation of renewable energy options include  technology trade and knowledge transfer (see Chapter 13), reduction in the exposure of a regional  economy to the volatility of the price of fossil fuels (Magnani and Vaona, 2013; see Chapter 14), and  enhanced livelihoods conditions at the household level (Cooke et al., 2008; Oparoacha and Dutta,  2011).    Box 7.1. Energy systems of LDCs: Opportunities & challenges for low-carbon development One of the critical indicators of progress towards achieving development goals in the Least  Developed Countries (LDCs) is the level of access to modern energy services. It is estimated that 79%  of the LDC population lacked access to electricity in 2009, compared to a 28% average in the  developing countries (WHO and UNDP, 2009). About 71% of people in LDCs relied exclusively on  biomass burning for cooking in 2009. The dominance of subsistence agriculture in LDCs as the  mainstay of livelihoods, combined with a high degree of population dispersal, and widespread  income poverty have shaped the nature of energy systems in this category of countries (Banuri,  2009; Sokona, Y. et al., 2012). The LDCs from sub Saharan Africa and parts of Asia, with limited  access to fossil based electricity (and heat), would need to explore a variety of appropriate  sustainable technologies to fuel their development goals (Guruswamy, 2011). In addition to  deploying fossil based and renewable technologies, improved biomass cooking from biogas and  sustainably produced wood for charcoal will remain essential in LDCs (Guruswamy, 2011).   Bioenergy production from unsustainable biomass harvesting, for direct combustion and charcoal  production is commonly practiced in most LDCs. The net GHG emissions from these practices is  significant (FAO, 2011), and rapid urbanization trends is likely to intensify harvesting for wood,  contributing further to rises in GHG emissions, along with other localized environmental impacts.  However, important initiatives from multilateral organizations and from the private sector with  innovative business models are improving agricultural productivity for food and creating bioenergy  46 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    development opportunities. One example produces liquid biofuels for stove cooking while creating,  near cities, agroforestry zones with rows of fast growing leguminous trees/shrubs and alleys planted  with annual crop rotations, surrounded by a forestry shelterbelt zone that contains indigenous trees  and oilseed trees and provides business opportunities across the value chain including for women  (WWF UK, 2011). The mixture of crops and trees produces food with higher nutritive values, enables  clean biofuels production for stove cooking, develops businesses, and simultaneously avoids GHG  emissions from deforestation to produce charcoal for cooking (Zvinavashe et al., 2011). A dearth of  documented information and a lack of integration of outcomes of the many successful specific  projects that show improved management practices of so called traditional forest biomass resource  into sustainably managed forest propagate the impression that all traditional biomass is  unsustainable. As more data emerge, the record will be clarified. Holistic biomass programmes that  address the full value chain, from sustainable production of wood based fuels to their processing,  conversion, distribution, and marketing, and use with the potential to reduce future GHG emissions  are currently being promoted (see Box 11.6). Other co benefits associated with these programmes  include reduced burden of fuel collection, employment, and improved health conditions of the end  users (Reddy et al., 2000; Lambrou and Piana, 2006; Hutton et al., 2007; Anenberg et al., 2013; Owen  et al., 2013). The LDC contribution to climate stabilization requires minimizing future GHG emissions  while meeting unmet (or suppressed) energy demand, which is likely to rise. For example, though  emissions levels remain low, the rate of growth in emissions in Africa is currently above the world  average, and the continent s share of global emissions is likely to increase in the coming decades  (Canadell et al., 2009). Whilst growth in GHG emissions is expected as countries build their industrial  base and consumption moves beyond meeting basic needs, minimizing this trend will involve  exploring new opportunities for scaling up modern energy access where possible by embracing  cleaner and more efficient energy options that are consistent with regional and global sustainability  goals. One such opportunity is the avoidance of associated natural gas flaring in oil  and gas producing developing countries where venting and flaring amounts to 69% of world total of  150 billion cubic metres representing 1.2% of global CO2 emissions (Farina, 2011; GGFR and World  Bank, 2011). For a country such as Nigeria, which flares about 15 billion m3 of gas sufficient to meet  its energy needs along with the current needs of many neighbouring countries (Dung et al., 2008),  this represents an opportunity towards a low carbon pathway (Hassan and Kouhy, 2013). Collier and  Venables (2012) argue that while abundant natural endowments in renewable and fossil resources  in Africa and other LDCs should create opportunities for green energy development, energy  sourcing, conversion, distribution, and usage are economic activities that require the fulfilment of  factors such as capital, governance capacity, and skills (see Box 1.1).  7.9.2 Environmental and health effects  Energy supply options differ with regard to their overall environmental and health impacts, not only  their GHG emissions (Table 7.3). Renewable energies are often seen as environmentally benign by  nature; however, no technology particularly in large scale application comes without  environmental impacts. To evaluate the relative burden of energy systems within the environment,  full energy supply chains need to be considered on a lifecycle basis, including all system components,  and across all impact categories.  To avoid creating new environmental and health problems, assessments of mitigation technologies  need to address a wide range of issues, such as land and water use, as well as air, water, and soil  pollution, which are often location specific. Whilst information is scarce and often difficult to  generalize, tradeoffs among the different types of impacts, affecting different species, and at  different times, become important in carrying out the assessments (Sathaye et al., 2011). Also, the  analysis has to go beyond marginal changes (see Section 3.6.3) in the existing system to address  alternative futures. Environmental and health implications of different low carbon technologies as  they are understood today are briefly discussed below.   47 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Combustion related emissions cause substantial human health and ecological impacts. Exposure to  outdoor particulate matter emitted directly or formed from products of incomplete combustion, i.e.,  sulphur, nitrogen oxides, and ammonia, lead to cardiovascular disease, chronic and acute respiratory  illness, lung cancer, and other health damages, causing in the order of 3.2 million premature deaths  per year (Pope et al., 2009; Lim et al., 2012; Smith et al., 2012a). Despite air pollution policies, the  exposure to ambient air pollution of 80% of the world s population is estimated to exceed the World  Health Organization (WHO) recommendation of 10  g/m3 for PM2.5 (Brauer et al., 2012; Rao et al.,  2013).21 Sulphur and nitrogen oxides are involved in the acidification of fresh water and soils; and  nitrogen oxides in the eutrophication of water bodies (Galloway et al., 2008; Doney, 2010), both  threatening biodiversity (Rockstrom et al., 2009; Hertwich et al., 2010; van Grinsven et al., 2013).  Volatile organic compounds and nitrogen oxides cause the formation of photochemical oxidants  (summer smog), which impact human health (Lim et al., 2012) and ecosystems (Emberson et al.,  2012; van Goethem et al., 2013).22 Coal is an important source of mercury (IEA, 2011a) and other  toxic metals (Pacyna et al., 2007), harming ecosystems (Nagajyoti et al., 2010; Sevcikova et al., 2011;  Mahboob, 2013), and potentially also human health (van der Voet et al., 2012; Tchounwou et al.,  2012). Many of these pollutants can be significantly reduced through various types of pollution  control equipment, but even with this equipment in place, some amount of pollution remains. In  addition, surface mining of coal and tar sand causes substantial land use and mining waste (Yeh et  al., 2010; Elliott Campbell et al., 2012; Jordaan, 2012).    Reducing fossil fuel combustion, especially coal combustion, can reduce many forms of pollution and  may thus yield co benefits for health and ecosystems. Error! Reference source not found. indicates  that most renewable power projects offer a reduction of emissions contributing to particulate  matter exposure even compared to modern fossil fuel fired power plants with state of the art  pollution control equipment.    See WGII 11.9 (Smith et al., 2014) and Chapter 4 of the Global Energy Assessment  Energy and Health   (Smith et al., 2012) for a recent overview of human health effects associated with air pollution.   See Chapter 3 of the Global Energy Assessment  Energy and Environment  (Emberson et al., 2012) for a  recent overview of environmental effects associated with air pollution.  22 21 48 of 137        Final Draft  Chapter 7 IPCC WGIII AR5      Figure 7.8. Life-cycle inventory results of the production of 1 kWh of electricity for important air pollutants contributing to particulate matter (PM) exposure, the leading cause of health impact from air pollution. The technology modelling considers state-of-the-art pollution control equipment for fossil power plants. Data sources: Arvesen and Hertwich (2011); Burkhardt et al. (2011); Whitaker (2013), Dones et al. (2005); Singh et al. (2011). Abbreviations: PC = pulverized coal, PV = photovoltaic, CSP = concentrating solar power, Poly-Si = polycrystalline silicon, CIGS = copper indium gallium selenide thin film, CdTe = cadmium telluride thin film, IGCC = integrated gasification combined cycle, CCS = CO2 capture and storage, SCPC = supercritical pulverized coal, NGCC = natural gas combined cycle, PWR = pressurized water reactor.   Ecological and health impacts of renewable energy have been comprehensively assessed in the  SRREN, which also provides a review of life cycle assessments of nuclear and fossil based power  generation (Sathaye et al., 2011). Renewable energy sources depend on large areas to harvest  energy, so these technologies have a range of ecological impacts related to habitat change, which depending on site characteristics and the implementation of the technology  may be higher than  that of fossil fuel based systems (Sathaye et al., 2011). For wind power plants, collisions with raptors  and bats, as well as site disturbance during construction cause ecological concerns (Garvin et al.,  2011; Grodsky et al., 2011; Dahl et al., 2012). Adjustments in the location, design and operation of  facilities can mitigate some of these damages (Arnett et al., 2011; de Lucas et al., 2012). For  hydropower plants, dams present an obstacle to migratory species (Alho, 2011; Ziv et al., 2012). The  large scale modification of river flow regimes affects the amount and timing of water release,  reduces seasonal flooding, and sediment and nutrient transport to flood plains (Kunz et al., 2011).  These modifications result in a change of habitat of species adapted to seasonal flooding or living on  flood plains (Young et al., 2011). Geothermal (Bayer et al., 2013b) and concentrating solar power  (CSP) (Damerau et al., 2011) can cause potential concerns about water use/pollution, depending on  design and technological choices.   Wind, ocean, and CSP need more iron and cement than fossil fuel fired power plants, while  photovoltaic power relies on a range of scarce materials (Burkhardt et al., 2011; Graedel, 2011;  Kleijn et al., 2011; Arvesen and Hertwich, 2011). Furthermore, mining and material processing is  49 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    associated with environmental impacts (Norgate et al., 2007), which make a substantial contribution  to the total life cycle impacts of renewable power systems. There has been a significant concern  about the availability of critical metals and the environmental impacts associated with their  production. Silver, tellurium, indium, and gallium have been identified as metals potentially  constraining the choice of PV technology, but not presenting a fundamental obstacle to PV  deployment (Graedel, 2011; Zuser and Rechberger, 2011; Fthenakis and Anctil, 2013; Ravikumar and  Malghan, 2013). Silver is also a concern for CSP (Pihl et al., 2012). The limited availability of rare  earth elements used to construct powerful permanent magnets, especially dysprosium and  neodymium, may limit the application of efficient direct drive wind turbines (Hoenderdaal et al.,  2013). Recycling is necessary to ensure the long term supply of critical metals and may also reduce  environmental impacts compared to virgin materials (Anctil and Fthenakis, 2013; Binnemans et al.,  2013). With improvements in the performance of renewable energy systems in recent years, their  specific material demand and environmental impacts have also declined (Arvesen and Hertwich,  2011; Caduff et al., 2012).   While reducing atmospheric GHG emissions from power generation, CCS will increase environmental  burdens associated with the fuel supply chains due to the energy, water, chemicals, and additional  equipment required to capture and store CO2. This is likely to increase the pressure on human health  and ecosystems through chemical mechanisms by 0 60% compared to the best available fossil fuel  power plants (Singh, et al., 2011). However, these impacts are considered to be lower than the  ecological and human health impacts avoided through reduced climate change (Singh et al., 2012).  Uncertainties and risks associated with long term storage also have to be considered (sections 7.5.5  and 7.9.3; Ketzer et al., 2011; Koornneef et al., 2011). For an overview of mitigation options and  their unresolved challenges, see Section 7.5.  The handling of radioactive material23 poses a continuous challenge to the operation of the nuclear  fuel chain and leads to releases of radionuclides. The most significant routine emissions of  radionuclides occurs during fuel processing and mining (Simons and Bauer, 2012). The legacy of  abandoned mines, sites, and waste storage causes some concerns (Marra and Palmer, 2011;  Greenberg, 2013b; Schwenk Ferrero, 2013; Skipperud et al., 2013; Tyler et al., 2013).   Epidemiological studies indicate an increase in childhood leukemia of populations living within 5 km  of a nuclear power plant in a minority of sites studied (Kaatsch et al., 2008; Raaschou Nielsen et al.,  2008; Laurier et al., 2008; Heinävaara et al., 2010; Spycher et al., 2011; Koerblein and Fairlie, 2012;  Sermage Faure et al., 2012), so that the significance of a potential effect is not resolved (Fairlie and  Körblein, 2010; Laurier et al., 2010).   Thermal power plants with high cooling loads and hydropower reservoirs lead to reduced surface  water flows through increased evaporation (Bates et al., 2008; Dai, 2011), which can adversely affect  the biodiversity of rivers (Hanafiah et al., 2011) and wetlands (Amores et al., 2013; Verones et al.,  2013).   While any low carbon energy system should be subject to scrutiny to assure environmental integrity,  the outcome must be compared against the performance of the current energy system as a baseline,  and well designed low carbon electricity supply outperforms fossil based systems on most  indicators. In this context, it should be noted that the environmental performance of fossil based  technologies is expected to decline with increasing use of unconventional resources with their  associated adverse environmental impacts of extraction (Jordaan et al., 2009; Yeh et al., 2010).  7.9.3 Technical risks  Within the context of sustainable development, a comprehensive assessment of energy supply and  mitigation options needs to take into account technical risks, especially those related to accidents  23  Accidents are addressed in Section 7.9.3.  50 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    risks. In the event of accidents, fatality and injury may occur among workers and residents.  Evacuation and resettlements of residents may also take place. This section, therefore, updates the  risk assessment presented in Chapter 9 of the IPCC SRREN (IPCC, 2011a).  Accidental events can be  triggered by natural hazards (e.g., Steinberg et al., 2008; Kaiser et al., 2009; Cozzani et al., 2010),  technological failures (e.g., Hirschberg et al., 2004; Burgherr et al., 2008), purposefully malicious  action (e.g., Giroux, 2008), and human errors (e.g., Meshakti, 2007; Ale et al., 2008) , (IPCC, 2011a),  p. 745. An analysis of the fatalities caused by large accidents ( 5 fatalities or  10 injured or  200 evacuated) recorded in the Energy Related Severe Accident Database (ENSAD) (Burgherr et al.,  2011), as presented in SRREN, allows for a comparison of the potential impacts. The analysis in  SRREN included accidents in the fuel chain, such as coal mining and oil shipping, 1970 2008.   SRREN indicates high fatality rates (>20 fatalities per PWh)24 associated with coal, oil, and  hydropower in non OECD countries and low fatalities (<2 fatalities per PWh) associated with  renewable and nuclear power in OECD countries (Figure 9.12 in Sathaye et al., 2011). Coal and oil  power in OECD countries and gas power everywhere were associated with impacts on the order of  10 fatalities per PWh.   Coal mining accidents in China were identified to have contributed to 25,000 of the historical total of  33,000 fatalities in severe accidents from 1970 2008 (Epstein et al., 2010; Burgherr et al., 2012).  New analysis indicates that the accident rate in Chinese coal mining has been reduced substantially,  from 5670 deaths in 2001 to 1400 in 2010, or from 5.1 to 0.76 fatalities per Mt coal produced (Chen  et al., 2012). The majority of these fatalities is apparently associated with smaller accidents not  covered in the ENSAD database. In China, accident rates in smaller coal mines are higher than those  in larger mines (Chan and Griffiths, 2010), and in the United States, less profitable mines have higher  rates than more profitable ones (Asfaw et al., 2013). A wide range of research into underlying causes  of accidents and measures to prevent future accidents is currently under way.  For oil and gas, fatalities related to severe accidents at the transport and distribution stage are a  major component of the accident related external costs. Over 22,000 fatalities in severe accidents  for the oil chain were reported, 4000 for LPG, and 2800 for the natural gas chain (Burgherr et al.,  2011, 2012). Shipping and road transport of fuels are associated with the highest number of  fatalities, and accident rates in non OECD countries are higher than those in OECD countries (Eckle  and Burgherr, 2013).  For hydropower, a single event, the 1975 Banqiao/Shimantan dam failure in China, accounted for  26,000 immediate fatalities. Remaining fatalities from large hydropower accidents amount to nearly  4000, but only 14 were recorded in OECD countries (Moomaw et al., 2011a; Sathaye et al., 2011).   Severe nuclear accidents have occurred at Three Mile Island in 1979, Chernobyl in 1986, and  Fukushima in 2011. For Three Mile Island, no fatalities or injuries were reported. For Chernobyl,  31 immediate fatalities occurred and 370 persons were injured (Moomaw et al., 2011a). Chernobyl  resulted in high emissions of iodine 131, which has caused measureable increases of thyroid cancer  in the surrounding areas (Cardis et al., 2006). The United Nations Scientific Committee on the Effects  of Atomic Radiation (UNSCEAR) identified 6000 thyroid cases in individuals who were below the age  of 18 at the time of the accident, 15 of which had resulted in mortalities (Balonov et al., 2011). A  significant fraction of these are above the background rate. Epidemiological evidence for other  cancer effects does not exist; published risk estimates often assume a linear no threshold dose response relationship, which is controversial (Tubiana et al., 2009). Between 14,000 and 130,000  cancer cases may potentially result (Cardis et al., 2006), and up to 9,000 potential fatalities in the  Ukraine, Belarus, and Russia in the 70 years after the accident (Hirschberg et al., 1998). The potential  radiation induced increase in cancer incidence in a population of 500 million would be too low to be  detected by an epidemiological study and such estimates are neither endorsed nor disputed by  24  The global electricity production in 2008 was 17 PWh.  51 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    UNSCEAR (Balonov et al., 2011). Adverse effects on other species have been reported within the 30 km exclusion zone (Alexakhin et al., 2007; Mller et al., 2012; Geras kin et al., 2013; Mousseau and  Mller, 2013).    The Fukushima accident resulted in much lower radiation exposure. Some 30 workers received  radiation exposure above 100 mSv, and population exposure has been low (Boice, 2012). Following  the linear, no threshold assumption, 130 (15 1100) cancer related mortalities, and 180 (24 1800)  cancer related morbidities have been estimated (Ten Hoeve and Jacobson, 2012). The WHO does  not estimate cancer incidence from low dose population exposure, but identifies the highest lifetime  attributable risk to be thyroid cancer in girls exposed during infancy in the Fukushima prefecture,  with an increase of a maximum of 70% above relatively low background rates. In the highest  exposed locations, leukemia in boys may increase by 5% above background, and breast cancer in  girls by 4% (WHO, 2013).  Design improvements for nuclear reactors have resulted in so called Generation III+ designs with  simplified and standardized instrumentation, strengthened containments, and  passive  safety  designs seeking to provide emergency cooling even when power is lost for days. Nuclear power  reactor designs incorporating a 'defence in depth' approach possess multiple safety systems  including both physical barriers with various layers and institutional controls, redundancy, and  diversification all targeted at minimizing the probability of accidents and avoiding major human  consequences from radiation when they occur (NEA, 2008).  The fatality rates of non hydro RE technologies are lower than those of fossil chains, and are  comparable to hydro and nuclear power in developed countries. Their decentralized nature limits  their capacity to have catastrophic impacts.  As indicated by the IPCC SRREN report, accidents can result in the contamination of large land and  water areas with radionuclides or hydrocarbons. The accidental releases of crude oil and its refined  products into the maritime environment have been substantially reduced since the 1970s through  technical measures, international conventions, national legislations, and increased financial liabilities  (see e.g. Kontovas et al., 2010; IPCC, 2011a; Sathaye et al., 2011). Still, oil spills are common and can  affect both marine and freshwater resources (Jernelöv, 2010; Rogowska and Namiesnik, 2010).  Furthermore, increased drilling in deep offshore waters (e.g., Gulf of Mexico, Brazil) and extreme  environments (e.g., the Arctic) poses a risk of potentially high environmental and economic impacts  (Peterson et al., 2012; Moreno et al., 2013; Paul et al., 2013). Leakage of chemicals used in hydraulic  fracturing during shale gas and geothermal operations can potentially contaminate local water flows  and reservoirs (Aksoy et al., 2009; Kargbo et al., 2010; Jackson et al., 2013). Further research is  needed to investigate a range of yet poorly understood risks and risk factors, such as CCS storage  (see Sections 7.5.5 and 7.9.4). Risks of CO2 transport are discussed in Section 7.6.4.  7.9.4 Public perception25  Although public concerns are often directed at higher GHG emitting energy sources, concerns also  exist for lower emitting sources, and opposition can impede their deployment. Although RE sources  often receive relatively wide public support, public concerns do exist, which, because of the diversity  of RE sources and applications, vary by technology (Sathaye et al., 2011). For bioenergy, concerns  focus on direct and indirect land use and related GHG emissions, deforestation, and possible  competition with food supplies (e.g., Chum et al., 2011; and Bioenergy Annex of chapter 11). For  hydropower, concerns include the possibility of the displacement of human populations, negative  environmental impacts, and altered recreational opportunities (e.g., Kumar et al., 2011). For wind   Other portions of this chapter and AR5 contain discussions of actual ecological and environmental impacts of  various energy sources. Although not addressed here, energy transmission infrastructure can also be the focus  of public concern. See also Chapters 2, 6, and 10, which cover issues of public acceptance through  complementary lenses.  25 52 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    energy, concerns primarily relate to visibility and landscape impacts as well as potential nuisance  effects, such as noise (e.g., Wiser et al., 2011). For solar energy, land area requirements can be a  concern for large, utility scale plants (e.g., Arvizu et al., 2011). For ocean energy, sea area  requirements are a concern (e.g., Lewis et al., 2011). Concerns for geothermal energy include the  possibility of induced local seismicity and impacts on natural especially recreational areas (e.g.,  Goldstein et al., 2011). For nuclear energy, anxieties often focus on health and safety (e.g.,  accidents, disposal of wastes, decommissioning) and proliferation (e.g., terrorism, civil unrest).  Further, perceptions are dependent on how the debate around nuclear is framed relative to other  sources of energy supply (e.g., Bickerstaff et al., 2008; Sjoberg and Drottz Sjoberg, 2009; Corner et  al., 2011; Ahearne, 2011; Visschers and Siegrist, 2012; Greenberg, 2013b; Kim et al., 2013).   Among CCS technologies, early26 misgivings include the ecological impacts associated with different  storage media, the potential for accidental release and related storage effectiveness of stored CO2,  and the perception that CCS technologies do not prevent all of the non GHG social and  environmental impacts of fossil energy sources (e.g., IPCC, 2005; Miller et al., 2007; de Best Waldhober et al., 2009; Shackley et al., 2009; Wong Parodi and Ray, 2009; Wallquist et al., 2009,  2010; Reiner and Nuttall, 2011; Ashworth et al., 2012; Einsiedel et al., 2013). For natural gas, the  recent increase in the use of unconventional extraction methods, such as hydraulic fracturing, has  created concerns about potential risks to local water quality and public health (e.g., US EPA, 2011;  IEA, 2012i).   Though impacts, and related public concerns, cannot be entirely eliminated, assessing, minimizing  and mitigating impacts and concerns are elements of many jurisdictions  planning, siting, and  permitting processes. Technical mitigation options show promise, as do procedural techniques, such  as ensuring the availability of accurate and unbiased information about the technology, its impacts  and benefits; aligning the expectations and interests of different stakeholders; adjusting to the local  societal context; adopting benefit sharing mechanisms; obtaining explicit support at local and  national levels prior to development; building collaborative networks; and developing mechanisms  for articulating conflict and engaging in negotiation (e.g., Ashworth et al., 2010; Fleishman, De Bruin,  and Morgan, 2010; Mitchell et al., 2011; Terwel et al., 2010).   7.10 Barriers and opportunities   7.10.1 Technical aspects  From a global perspective, the large number of different technologies that are available to mitigate  climate change (Section 7.5.) facilitates the achievement of prescribed climate protection goals.  Given that many different combinations of the mitigation technologies are often feasible, least cost  portfolios can be determined that select those options that interact in the best possible way  (Chapter 6, Section 7.11). On a local scale and/or concerning specific technologies, however,  technological barriers might constrain their mitigation potential. These limits are discussed in  sections 7.4, 7.5, 7.6, and 7.9.   7.10.2 Financial and investment barriers and opportunities   The total global investment in the energy supply sector in 2010 is estimated to be USD 1,076 to  1,350 billion per year, of which 43 48% is invested in the power sector and 37 50% is invested in  fossil extraction. In the power sector, 49 55% of the investments is used for power generation and  45 51% is used for transmission and distribution (see Section 16.2.2).  The total investment in renewables excluding hydropower in 2012 was USD 244 billion, which was  six times the level in 2004. Out of this total, USD 140 billion was for solar and USD 80 billion for wind  26  Knowledge about the social acceptability of CCS is limited due to the early state of the technologies  deployment, though early research  has deepened our understanding of the issues related to CCS significantly (de Best Waldhober et al., 2009; Malone et al., 2010; Ter Mors  et al., 2010; Corry and Reiner, 2011). (see also Section 2.6.6.2)  53 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    power. The total was down 12% from a record USD 279 billion in 2011 in part due to changes in  support policies and also due to sharp reductions in renewable energy technology costs. Total  investment in developed countries fell 29% in 2012 to USD 132 billion, while investment in  developing countries rose 19% to USD 112 billion. The investment in renewables is smaller than  gross investment on fossil fuel plants (including replacement plant) at USD 262 billion, but much  larger than net investment in fossil fuel technologies, at USD 148 billion. The amount of installed  capacity of renewables excluding hydropower was 85 GW, up from 2011's 80 GW (BNEF and  Frankfurt School UNEP Centre, 2013; REN21, 2013).  Additional investments required in the energy supply sector by 2050 are estimated to be USD  190 billion to USD 900 billion/year to limit the temperature increase below 2°C (about 0.30% to 1.4%  of world GDP in 2010) (GEA, 2012; IEA, 2012h; Kainuma et al., 2013). The additional investment costs  from both supply and demand sides are estimated to about USD 800 billion/year according to  McCollum et al. (2014). With a greater anticipated increase in energy demands, developing countries  are expected to require more investments than the developed countries (see also Chapter 6 and  Chapter 16).  Investment needs in the energy supply sector increase under low GHG scenarios. However, this  should be set in the context of the total value of the world s financial stock, which (including global  stock market capitalization) stood at more than USD 210 trillion at the end of 2010 (Roxburgh et al.,  2011). Moreover, the investment needs described above would be offset, to a degree, by the lower  operating costs of many low GHG energy supply sources, as well as those due to energy efficiency  improvements in the end use sectors (IEA, 2012h).  Though only a fraction of the available private sector capital stock would be needed to cover the  costs of low GHG energy supply even in aggressive GHG reduction scenarios, private capital will not  be mobilized automatically for such purposes. For this reason, various measures such as climate  investment funds, carbon pricing, feed in tariffs, RE quotas and RE rendering/bidding schemes,  carbon offset markets, removal of fossil fuel subsidies and private/public initiatives aimed at  lowering barriers for investors are currently being implemented (see Section 7.12, chapters 13, 14,  and Section 15.2), and still more measures may be needed to achieve low GHG stabilization  scenarios. Uncertainty in policies is also a barrier to investment in low GHG energy supply sources  (United Nations, 2010; World Bank, 2011b; IEA, 2012h; IRENA, 2012a; BNEF and Frankfurt School UNEP Centre, 2013).   Investment in LDCs may be a particular challenge given their less developed capital markets.  Multilateral development banks and institutions for bilateral developmental cooperation will have  an important role towards increasing levels of confidence for private investors. Innovative insurance  schemes to address regulatory and policy barriers could encourage participation of more diverse  types of institutional investors (Patel, 2011). Building capacity in local governments in developing  countries for designing and implementing appropriate policies and regulations, including those for  efficient and transparent procurement for infrastructure investment, is also important (World  Economic Forum, 2011; IRENA, 2012a; Sudo, 2013).  Rural areas in LDCs are often characterized by a very low population densities and income levels.  Even with the significant decline in the price of PV systems, investment cost barriers are often  substantial in these areas (IPCC, 2011b). Micro finance mechanisms (grants, concessional loans)  adapted to the pattern of rural activities (for instance, installments correlated with income from  agriculture) may be necessary to lift rural populations out of the energy poverty trap and increase  the deployment of low carbon energy technologies in these areas (Rao et al., 2009; Bazilian et al.,  2012; IRENA, 2012c).   54 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    7.10.3 Cultural, institutional, and legal barriers and opportunities  Managing the transition from fossil fuels to energy systems with a large penetration of low carbon  technologies and improved energy efficiency will pose a series of challenges and opportunities,  particularly in the case of poor countries. Depending on the regions and the development, barriers  and opportunities may differ dramatically.  Taking the example in the United States, Sovacool (Sovacool, 2009) points to significant social and  cultural barriers facing renewable power systems as policymakers continue to frame electricity  generation as a mere technical challenge. He argues that in the absence of a wider public discourse  around energy systems and challenging entrenched values about perceived entitlements to cheap  and abundant forms of electricity, RE and energy efficiency programmes will continue to face public  acceptability problems. Indeed, attitudes towards RE in addition to rationality are driven by  emotions and psychological issues. To be successful, RE deployment, as well as information and  awareness efforts and strategies need to take this explicitly into account (Sathaye et al., 2011). Legal  regulations and procedures are also impacting on the deployment of nuclear energy, CCS, shale gas,  and renewable energy. However, the fundamental reasons (environment, health, and safety) may  differ according to the different types of energy. The underlying risks are discussed in Sections 7.5  and 7.9, and enabling policies to address them are in Section 7.12.  A huge barrier in the case of poor, developing countries is the cultural, economic, and social gap  between rural and urban areas (Khennas, 2012). For instance, cooking fuels, particularly firewood, is  widely used in rural areas because it is a suitable fuel for these communities in addition to its access  without payment apart from the time devoted to its collection. Indeed, values such as time have  different perceptions and opportunity costs depending on the social and geographical context.  Furthermore, legal barriers are often hindering the penetration of modern energy services and  distorting the economics of energy systems. For instance, informal settlements in poor peripheral  urban areas mean legal barriers to get access to electricity. Land tenancy issues and illegal  settlements are major constraints to energy access, which are often overcome by illegal power  connections with an impact on the safety of the end users and economic loss for the utility due to  meter tampering. In addition, in many slums, there is a culture of non payment of the bills (UN  Habitat and GENUS, 2009). Orthodox electrification approaches appear to be inefficient in the  context of urban slums. Adopting a holistic approach encompassing cultural, institutional, and legal  issues in the formulation and implementation of energy policies and strategies is increasingly  perceived particularly in sub Saharan Africa as essential to addressing access to modern energy  services. In South Africa, the Electricity Supply Commission (ESKOM), the large utility in Africa,  implemented a holistic Energy Losses Management Program (UN Habitat and GENUS, 2009), with  strong community involvement to deal with the problem of energy loss management and theft. As a  result prepayment was successfully implemented as it gives poor customers a daily visibility of  consumption and a different culture and understanding of access to modern energy services.   7.10.4 Human capital capacity building  Lack of human capital is widely recognized as one of the barriers to development, acquisition,  deployment, and diffusion of technologies required for meeting energy related CO2 emissions  reduction targets (IRENA, 2012d). Human capacity is critical in providing a sustainable enabling  environment for technology transfer in both the host and recipient countries (Barker et al., 2007;  Halsnaes et al., 2007). Human workforce development has thus been identified as an important near term priority (IEA, 2010c).   There is increasing concern in the energy supply sector in many countries that the current  educational system is not producing sufficient qualified workers to fill current and future jobs, which  increasingly require science, technology, engineering, and mathematics (STEM) skills. This is true not  only in the booming oil and gas and traditional power industries, but also in the rapidly expanding RE  supply sector (NAS, 2013b). Skilled workforce in the areas of RE and decentralized energy systems,  55 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    which form an important part of  green jobs  (Strietska Ilina et al., 2011), requires different skill sets  for different technologies and local context, and hence requires specific training (Moomaw et al.,  2011c). Developing the skills to install, operate, and maintain the RE equipment is exceedingly  important for a successful RE project, particularly in developing countries (UNEP, 2011), where  shortages of teachers and trainers in subjects related to the fast growing RE supply sector have been  reported (Strietska Ilina et al., 2011) (ILO and EU, 2011). Well qualified workers will also be required  on other low carbon energy technologies, particularly nuclear and CCS should there be large scale  implementation (Creutzig and Kammen, 2011; NAS, 2013b).   Apart from technology oriented skills, capacity for decision support and policymaking in the design  and enactment stages is also essential, particularly on assessing and choosing technology and policy  options, and designing holistic policies that effectively integrate renewable energy with other low carbon options, other policy goals, and across different but interconnected sectors (Mitchell et al.,  2011; Jagger et al., 2013).  To avoid future skill shortages, countries will need to formulate short  and long term capacity  development strategies based on well informed policy decisions, and adequate information on  labour market and skill needs in the context of low carbon transition and green jobs (Strietska Ilina  et al., 2011; Jagger et al., 2013). But producing a skilled workforce with the right skills at the right  time requires additional or alternatives to conventional approaches. These include, but are not  limited to, increased industry education government partnership, particularly with industry  organizations, in job demand forecasting, designing education and training curricula, augmenting  available skills with specific skills, and adding energy supply sector experience in education and  training (Strietska Ilina et al., 2011; NAS, 2013b).  7.10.5 Inertia in energy systems physical capital stock turnover  The long life of capital stock in energy supply systems (discussed in detail in Section 5.6.3) gives the  possibility of path dependant carbon lock in (Unruh, 2002). The largest contribution to GHG  emissions from existing high carbon energy capital stock is in the global electricity sector, which is  also characterized by long lived facilities with historical plant lifetimes for coal, natural gas, and oil  plant of 38.6, 35.8, and 33.8 years, respectively (Davis et al., 2010). Of the 1549 GW investments  (from 2000 2010) in the global electricity sector (EIA, 2011), 516 GW (33.3%) were coal and 482 GW  (31.1%) were natural gas. Only 34 GW (2.2%) were nuclear investments, with combined renewable  source power plants at 317 GW (20.5%). The investment share for RE power plants accelerated  toward the end of the decade. The transport, industrial, commercial, and residential sectors  generally have smaller technology sizes, shorter lifetimes, and limited plant level data for directly  emitting GHG facilities; however, in combination, contribute over half of the GHG emissions from  existing primary energy capital stock (Davis et al., 2010).  Long lived fossil energy system investments represent an effective (high carbon) lock in. Typical  lifetime of central fossil fuelled power plants are between 30 and 40 years; those of electricity and  gas infrastructures between 25 50 years (Philibert and Pershing, 2002). Although such capital stock  is not an irreversible investment, premature retirement (or retrofitting with CCS if feasible) is  generally expensive. Examples include low natural gas prices in the United States due to shale gas  production making existing coal plants uneconomic to run, or merit order consequences of new  renewable plants, which endanger the economic viability of dispatchable fossil fuel power plants in  some European countries under current market conditions (IEA, 2013b). Furthermore, removal of  existing fossil plants must overcome inertia from existing providers, and consider wider physical,  financial, human capital, and institutional barriers. Explicit analysis of path dependency from existing energy fossil technologies (450ppm scenario, IEA,  2011a) illustrates that if current trends continue, by 2015 at least 90% of the available  carbon  budget  will be allocated to existing energy and industrial infrastructure, and in a small number of  subsequent years there will be extremely little room for manoeuvre at all (IEA, 2011a, Figure 6.12).  56 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Effective lock in from long lived energy technologies is particularly relevant for future investments  by developing economies, which are projected to account for over 90% of the increase in primary  energy demand by 2035 (IEA, 2011a). The relative lack of existing energy capital in many developing  countries bolsters the potential opportunities to develop a low carbon energy system, and hence  reduce the effective carbon lock in from broader energy infrastructures (e.g., oil refineries, industrial  heat provision, transport networks) (Guivarch and Hallegatte, 2011), or the very long lived capital  stock embodied in buildings and urban patterns (Jaccard and Rivers, 2007).  7.11 Sectoral implication of transformation pathways and sustainable  development   This section reviews long term integrated scenarios and transformation pathways with regard to  their implication for the global energy system. Focus is given to energy related CO2 emissions and  the required changes to the energy system to achieve emissions reductions compatible with a range  of long term climate targets. Aggregated energy related emissions, discussed in this section,  comprise the full energy system, including energy sourcing, conversion, transmission, as well as the  supply of energy carries to the end use sectors and their use in the end use sectors. Aggregated  energy related emissions are further split into emissions from electricity generation and the rest of  the energy system.27,28  This section builds upon more than 1200 emissions scenarios, which were collated by Chapter 6 in  the AR5 scenario database (Section 6.2.2). The scenarios were grouped into baseline and mitigation  scenarios. As described in more detail in Section 6.3.2, the scenarios are further categorized into  bins based on 2100 concentrations: between 430 480 ppm CO2eq, 480 530 ppm CO2eq, 530 580  ppm CO2eq, 580 650 ppm CO2eq, 650 720 ppm CO2eq, and >720 ppm CO2eq by 2100. An  assessment of geophysical climate uncertainties consistent with the dynamics of Earth System  Models assessed in WG I found that the most stringent of these scenarios leading to 2100  concentrations between 430 and 480 ppm CO2eq would lead to an end of century median  temperature change between 1.6 to 1.8°C compared to pre industrial times, although uncertainties  in understanding of the climate system mean that the possible temperature range is much wider  than this. These scenarios were found to maintain temperature change below 2°C over the course of  the century with a likely chance. Scenarios in the concentration category of 650 720 ppm CO2eq  correspond to comparatively modest mitigation efforts, and were found to lead to median  temperature rise of approximately 2.6 2.9°C in 2100 (see Section 6.3.2 for details).  7.11.1 Energy related greenhouse gas emissions  In absence of climate change mitigation policies,29 energy related CO2 emissions are expected to  continue to increase from current levels to about 55 70 GtCO2 by 2050 (25th 75th percentile of the  scenarios in the AR5 Scenario Database, see Figure 7.9).30 This corresponds to an increase of  between 80% and 130% compared to emissions of about 30 GtCO2 in the year 2010. By the end of  27  Note that the other sections in Chapter 7 are focusing on the energy supply sector, which comprises only energy extraction, conversion,  transmission, and distribution. As noted in Section 7.3, CO2 emissions from the energy supply sector are the most important source of  climate forcing. Climate forcing associated with emissions from non CO2 greenhouse gases (e.g., CH4 and N2O) of the energy supply sector  is smaller than for CO2. For the most part, non CO2 greenhouse gases are emitted by other non energy sectors, though CH4 is released in  primary energy sourcing and supply as a bi product of oil, gas, and coal production as well as in the transmission and distribution of  methane to markets. While its share in total GHG emissions is relatively small, the energy supply sector is, however, a major source of  sulphur and other aerosol emissions. (See also Section 6.6)  28  The mitigation scenarios in the AR5 Scenario Database do not provide information on energy related emissions of non CO2 gases. The  assessment in this section thus focuses on CO2 emissions only.  29  Beyond those already in effect.  30  Note that the total energy related emissions include in some scenarios also fossil fuel emissions from industrial processes, such as the  use of fossil fuel feedstocks for lubricants, asphalt, or cement production. A split between energy and industrial process emissions is not  available from the AR5 scenario database.  57 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    the 21st century, emissions could grow further, the 75th percentile of scenarios reaching about 90  GtCO2.31,32  The stabilization of GHG concentrations requires fundamental change in the global energy system  relative to a baseline scenario. As discussed in Section 7.11.4, unlike traditional pollutants, CO2  concentrations can only be stabilized if global emissions peak and in the long term, decline toward  zero. The lower the concentration at which CO2 is to be stabilized, the sooner and lower is the peak.  For example, in the majority of the scenarios compatible with a long term concentration goal of  below 480 ppm CO2eq, energy related emissions peak between 2020 and 2030, and decline to about  10 15 GtCO2 by 2050 (Figure 7.9). This corresponds to emissions reductions by 2050 of 50 70%  compared to the year 2010, and 75 90% compared to the business as usual (25th 75th percentile).     Figure 7.9. Global development of CO2 emissions for the full energy system including energy supply, and end uses (upper panel), and the split between electricity and non-electric emissions (lower panels). The baseline emissions range (grey) is compared to the range of emissions from mitigation scenarios grouped according to their long-term CO2eq concentration level by 2100. Shaded areas correspond to the 25th 75th percentile and dashed lines to the median across the scenarios. Nonelectric comprises emissions from the full chain of non-electric conversion processes as well as emissions from fossil fuels supplied to the end-use sectors. The upper panel includes in addition also the representative concentration pathways (RCPs) (black lines, see Chapter 6, Table 6.2). Source: AR5 Scenario Database (See Section 6.2.2 and Annex II.10). Note: Some scenarios report industrial process emissions (e.g., CO2 released from cement manufacture beyond energy-related emissions) as part of the energy system. 7.11.2 Energy supply in low stabilization scenarios  While stabilizing CO2eq concentrations requires fundamental changes to the global energy supply  systems, a portfolio of measures is available that includes the reduction of final energy demand  through enhanced efficiency or behavioural changes as well as fuel switching (e.g., from coal to gas)   The full uncertainty range of the AR5 Scenario Database includes high emissions scenarios approaching 80 GtCO2 by 2050, and almost  120 GtCO2 by 2100.  32  If not otherwise mentioned, ranges refer to the 25th 75th percentile of the AR5 Scenario Database.  31 58 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    and the introduction of low carbon supply options such as renewables, nuclear, CCS, in combination  with fossil or biomass energy conversion processes, and finally, improvements in the efficiency of  fossil fuel use. These are discussed in Section 7.5 as well as in Chapters 8 10.   Figure 7.10 shows three examples of alternative energy system transformation pathways that are  consistent with limiting CO2eq concentrations to about 480 ppm CO2eq by 2100. The scenarios from  the three selected models are broadly representative of different strategies for how to transform  the energy system. In absence of new policies to reduce GHG emissions, the energy supply portfolio  of the scenarios continues to be dominated by fossil fuels. Global energy supply in the three baseline  scenarios increases from present levels to 900 1200 EJ/yr by 2050 (left hand panels of Figure 7.10).  Limiting concentrations to low levels requires the rapid and pervasive replacement of fossil fuel  without CCS (see the negative numbers at the right hand panels of Figure 7.10). Between 60 and  300 EJ of fossil fuels are replaced across the three scenarios over the next two decades (by 2030). By  2050 fossil energy use is 230 670 EJ lower than in non climate policy baseline scenarios.33     The numbers refer to the replacement of freely emitting (unabated) fossil fuels without CCS. The  contribution of fossil fuels with CCS is increasing in the mitigation scenarios.   33 59 of 137        Final Draft  Chapter 7 IPCC WGIII AR5      Figure 7.10. Development of primary energy (EJ) in three illustrative baseline scenarios (left-hand panel); and the change in primary energy compared to the baseline to meet a long-term concentration target between 430 and 530 ppm CO2eq. Source: ReMIND (RoSE: Bauer et al. (2013); GCAM (AME: Calvin et al. (2012)); MESSAGE (GEA: Riahi et al. (2012)).34  The three scenarios achieve their concentration goals using different portfolios. These differences  reflect the wide range in assumptions about technology availability and the policy environment.35   Note that  Savings  is calculated as the residual reduction in total primary energy.   For example, the MESSAGE scenario corresponds to the so called  efficiency  case of the Global Energy  Assessment, which depicts low energy demand to test the possibility of meeting the concentration goal even if  nuclear power were phased out. GCAM on the other hand imposed no energy supply technology availability  constraints and assumed advances across a broad suite of technologies.  35 34 60 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    While the pace of the transformation differs across the scenarios (and depends also on the carbon intensity and energy demand development in the baseline), all three illustrative scenarios show the  importance of measures to reduce energy demand over the short term. For instance, by 2030,  between 40 90% of the emissions reductions are achieved through energy demand savings, thus  reducing the need for fossil fuels. The long term contribution of energy demand savings differs,  however, significantly across the three scenarios. For instance, in MESSAGE about 1200 EJ of fossil  fuels are replaced through efficiency and demand side improvements by 2100, compared to about  400 EJ in the GCAM scenario.    Figure 7.11. Influence of energy demand on the deployment of energy supply technologies for stringent mitigation scenarios (430 530 ppm CO2eq) in 2050. Blue bars for low energy demand show the deployment range of scenarios with limited growth of final energy of <20% in 2050 compared to 2010. Red bars show the deployment range of technologies in case of high energy demand (>20% growth in 2050 compared to 2010). For each technology, the median-, interquartile-, and fulldeployment range is displayed. (Source: AR5 Scenario Database; see Annex II.10).   Notes: Scenarios assuming technology restrictions and scenarios with final energy in the base-year outside +/-5% of 2010 inventories are excluded. Ranges include results from many different integrated models. Multiple scenario results from the same model were averaged to avoid sampling biases. For further details see Chapter 6.   Achieving concentrations at low levels (430 530 ppm CO2eq) requires significant up scaling of low carbon energy supply options. The up scaling of low carbon options depends greatly on the  development of energy demand, which determines the overall  size  of the system. Hence, scenarios  with greater emphasis on efficiency and other measures to limit energy demand, generally show less  pervasive and rapid up scaling of supply side options (see right side panels of Figure 7.11). Figure  7.11 compares stringent mitigation scenarios with low and comparatively high global energy  demands by 2050. The higher energy demand scenarios are generally accompanied by higher  deployment rates for low carbon options and more rapid phaseout of freely emitting fossil fuels  without CCS. Moreover, and as also shown by Figure 7.11, high energy demand leads to a further  lock in  into fossil intensive oil supply infrastructures, which puts additional pressure on the supply  system of other sectors that need to decarbonize more rapidly to compensate for the increased  61 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    emissions from oil products. The results confirm the importance of measures to limit energy demand  (Wilson et al, 2013) to increase the flexibility of energy supply systems, thus reducing the risk that  stringent mitigation stabilization scenarios might get out of reach (Riahi et al., 2013). Note also that  even at very low concentration levels, a significant fraction of energy supply in 2050 may be  provided by freely emitting fossil energy (without CCS).      Figure 7.12. Comparison of global technical potentials of renewable energy sources (Moomaw et al., 2011c) and deployment of renewable energy technologies in integrated model scenarios in 2050 (AR5 Scenario Database, see Annex II.10). Solar energy and biomass are displayed as primary energy as they can serve multiple uses. Note that the figure is presented in logarithmic scale due to the wide range of assessed data. Integrated model mitigation scenarios are presented for different ranges of CO2eq concentration levels (see Chapter 6). Notes: The reported technical potentials refer to the total worldwide annual RE supply. Any potential that is already in use is not deducted. Renewable energy power sources could also supply heating applications, whereas solar and biomass resources are represented in terms of primary energy because they could be used for multiple (e.g., power, heat, and transport) services. The ranges were derived by using various methodologies and the given values refer to different years in the future. As a result, the displayed ranges cannot be strictly compared across different technologies. Additional information concerning data sources and additional notes that should be taken into account in interpreting the figure, see Moomaw, Yamba, et al. (2011). Contribution of ocean energy in the integrated model scenarios is less than 0.1 EJ and thus outside the logarithmic scale of the figure. Note that not all scenarios report deployment for all RE sources. The number of assessed scenarios differs thus across RE sources and scenario categories. The abbreviation n.a. indicates lack of data for a specific concentration category and RE. Scenarios assuming technology restrictions are excluded.   The projected deployment of renewable energy technologies in the mitigation scenarios (Figure  7.12), with the exception of biomass, is well within the estimated global technical potentials  assessed by the IPCC (2011a). As illustrated in Figure 7.12, global technical potentials of, for instance,  wind, solar, geothermal, and ocean energy are often more than an order of magnitude larger than  the projected deployment of these technologies by 2050. Also for hydropower the technical  potentials are larger than the projected deployment, whereas for biomass, projected global  deployment is within the wide range of global technical potential estimates. Considering the large  up scaling in the mitigation scenarios, global technical potentials of biomass and hydropower seem  to be more limiting than for other renewables (Figure 7.12). That said, considering not only global  potentials, but also regional potentials, other renewable energy sources may also be limited by  technical potentials under mitigation scenarios (Fischedick et al., 2011).   Additionally, reaching the global deployment levels as projected by the mitigation scenarios requires  addressing potential environmental concerns, public acceptance, the infrastructure requirements to  62 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    manage system integration and deliver renewable energy to load centres, and other barriers (see  Section 7.4.2, 7.6, 7.8, 7.9, 7.10, IPCC, 2011a). Competition for land and other resources among  different renewables may also impact aggregate technical potentials as well as deployment levels, as  might concerns about the carbon footprint and sustainability of the resource (e.g., biomass) as well  as materials demands (cf. Annex Bioenergy in Chapter 11; de Vries et al., 2007; Kleijn and van der  Voet, 2010; Graedel, 2011). In many mitigation scenarios with low demand, nuclear energy supply is  projected to increase in 2050 by about a factor of two compared to today, and even a factor of 3 or  more in case of relatively high energy demand (Figure 7.11). Resource endowments will not be a  major constraint for such an expansion, however, greater efforts will be necessary to improve the  safety, uranium utilization, waste management, and proliferation concerns of nuclear energy use  (see also Sections 7.5.4, 7.4.3, 7.8, 7.9, and 7.10).  Integrated models (see Section 6.2) tend to agree that at about USD 100 150/tCO2 the electricity  sector is largely decarbonized with a significant fraction being from CCS deployment (Krey and Riahi,  2009; Luckow et al., 2010; Wise et al., 2010). Many scenarios in the AR5 Scenario database achieve  this decarbonization at a carbon tax of approximately USD 100/tCO2. This price is sufficient, in most  scenarios, to produce large scale utilization of bioenergy with CCS (BECCS) (Krey and Riahi, 2009;  Azar et al., 2010; Luckow et al., 2010; Edmonds et al., 2013). BECCS in turn allows net removal of CO2  from the atmosphere while simultaneously producing electricity (Sections 7.5.5 and 11.13). In terms  of large scale deployment of CCS in the power sector, Herzog (2011), p. 597, and many others have  noted that  Significant challenges remain in growing CCS from the megatonne level where it is today  to the gigatonne level where it needs to be to help mitigate global climate change. These challenges,  none of which are showstoppers, include lowering costs, developing needed infrastructure, reducing  subsurface uncertainty, and addressing legal and regulatory issues . In addition, the up scaling of  BECCS, which plays a prominent role in many of the stringent mitigation scenarios in the literature,  will require overcoming potential technical barriers to increase the size of biomass plants. Potential  adverse side effects related to the biomass feedstock usage remain the same as for biomass  technologies without CCS (Sections 7.5.5, 11.13, particularly 11.7, 11.13.6, and 11.13.7).   Over the past decade, a standardized geologic CO2 storage capacity methodology for different types  of deep geologic formations (Bachu et al., 2007; Bradshaw et al., 2007; Kopp et al., 2009; Orr, 2009;  Goodman et al., 2011; De Silva et al., 2012) has been developed and applied in many regions of the  world. The resulting literature has been surveyed by Dooley (2013), who reports that, depending on  the quality of the underlying data used to calculate a region s geologic CO2 storage capacity, and on  the type and stringency of various engineering and economic constraints, global theoretical CO2  storage could be as much as 35,000 GtCO2, global effective storage capacity is 13,500 GtCO2, global  practical storage capacity is 3,900 GtCO2, and matched geologic CO2 storage capacity for those  regions of the globe where this has been computed is 300 GtCO2. Dooley (2013) compared these  estimates of geologic storage capacity to the potential demand for storage capacity in the 21st  century by looking across more than 100 peer reviewed scenarios of CCS deployment. He concludes  that a lack of geologic storage space is unlikely to be the primary impediment to CCS deployment as  the average demand for geologic CO2 storage for scenarios that have end of century CO2  concentrations of 400 500 ppm ranges from 448 GtCO2 to 1,000 GtCO2.  Energy system response to a prescribed climate policy varies across models and regions. There are  multiple alternative transition pathways, for both the global energy system as a whole, and for  individual regional energy systems. In fact the special circumstances encountered by individual  regions imply greater regional variety in energy mitigation portfolios than in the global portfolio  (Calvin et al., 2012; Bauer et al., 2013).   7.11.3 Role of the electricity sector in climate change mitigation  Electrification of the energy system has been a major driver of the historical energy transformation  from an originally biomass dominated energy system in the 19th century to a modern system with  63 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    high reliance on coal and gas (two of the major sources of electricity generation today). Many  mitigation scenario studies (Edmonds et al., 2006; as well as the AR5 database)(cf. sections 6.3.4 and  6.8) have three generic components: (1) decarbonize power generation; (2) substitute electricity for  direct use of fossil fuels in buildings and industry (see Sections 9.3 and 10.4), and in part for  transportation fuels (Chapter 8); and (3) reduce aggregate energy demands through technology and  other substitutions.   Most scenarios in the AR5 Scenario database report a continuation of the global electrification trend  in the future (Figure 7.13). In the baseline scenarios (assuming no new climate policies) most of the  demand for electricity continues to be in the residential, commercial, and industry sectors (see  Chapters 9 and 10), while transport sectors rely predominantly on liquid fuels (Section 8.9). Biofuels  and electricity both have the potential to provide transport services without fossil fuel emissions.  The relative contribution of each depends at least in part on the character of technologies that  evolve to provide transport services with each fuel.  Electricity production is the largest single sector emitting fossil fuel CO2 at present and in baseline  scenarios of the future. A variety of mitigation options exist in the electricity sector, including  renewables (wind, solar energy, biomass, hydro, geothermal), nuclear, and the possibility of fossil or  biomass with CCS. The electricity sector plays a major role in mitigation scenarios with deep cuts of  GHG emissions. Many mitigation scenario studies report an acceleration of the electrification trend  in mitigation scenarios (Figure 7.13).  Figure 7.13 Share of electricity in total final energy for the year 2050 in baseline scenarios and five different levels of mitigation stringency (long-term concentration levels in ppm CO2eq by 2100). Bars show the interquartile range and error bands of the full range across the baseline and mitigation scenarios (See Section 6.3.2). Dashed horizontal line shows the electricity share for the year 2010. Source: AR5 Scenario Database. Scenarios assuming technology restrictions are excluded.    Mitigation scenario studies indicate that the decarbonization of the electricity sector may be  achieved at a much higher pace than in the rest of the energy system (Figure 7.14). In the majority of  stringent mitigation scenarios (430 480 ppm and 480 530 ppm), the share of low carbon energy  increases from presently about 30% to more than 80% by 2050. In the long term (2100), fossil based  electricity generation without CCS is phased out entirely in these scenarios.   64 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Figure 7.14. Share of low-carbon energy in total primary energy, electricity and liquid supply sectors for the year 2050. Bars show the interquartile range and error bands the full range across the baseline and mitigation scenarios for different CO2eq ppm concentration levels in 2100 (Section 6.3.2). Dashed horizontal lines show the low-carbon share for the year 2010. Low-carbon energy includes nuclear, renewables, and fossil fuels with CCS. Source: AR5 Scenario Database. Scenarios assuming technology restrictions are excluded.    Figure 7.15 shows the evolution over time of transformation pathways for primary energy supply,  electricity supply, and liquid fuels supply for reference scenarios and low concentration scenarios  (430 530 ppm CO2eq). The development of the full scenario ensemble is further compared to the  three illustrative mitigation scenarios by the ReMIND, MESSAGE, and GCAM models discussed in  Section 7.11.2 (see Figure 7.10). The effect of climate policy plays out differently in each of the three  supply domains. In aggregate, mitigation leads to a reduction in primary energy demands. However,  two distinctly different mitigation portfolios emerge one in which hydro carbon fuels, including  biomass, BECCS, and fossil CCS play a prominent role; and the other where, taken together, non biomass renewables and nuclear power take center stage. In both instances, the share of fossil  energy without CCS declines to less than 20% of the total by 2100. Note that in the scenarios  examined here, the major branch point occurs around the 2050 period, while the foundations are  laid in the 2030 to 2050 period.  Electricity generation is a somewhat different story. While as previously noted, electricity generation  decarbonizes rapidly and completely (in many scenarios emissions actually become negative), taken  together, non biomass renewables and nuclear power always play an important role. The role of CCS  varies greatly, but even when CCS becomes extremely important to the overall mitigation strategy, it  never exceeds half of power generation. By 2050, the contribution of fossil CCS technologies is in  most scenarios larger than BECCS (see Figure 7.11). In contrast to the overall scale of primary energy  supply, which falls in climate policy scenarios relative to baseline scenarios, the scale of power  generation can be higher in the presence of climate policy depending on whether the pace of  electrification proceeds more or less rapidly than the rate of end use energy demand reductions.  With regards to the deployment of individual non biomass renewables or different CCS technologies,  see also Figure 7.11 and Figure 7.12.  Liquid fuels are presently supplied by refining petroleum. Many scenarios report increasing shares  for liquids derived from other primary energy feedstocks such as bioenergy, coal, and natural gas.  This transition is gradual, and becomes more pronounced in the second half of the century. Like  aggregate primary energy supply, the supply of liquid fuels is reduced in climate policy scenarios  compared with baseline scenarios. In addition, the primary feedstock shifts from petroleum and  other fossil fuels to bioenergy.  65 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    66 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Figure 7.15. Transition Pathways for the Aggregate Energy Supply Transformation System (a), Electricity Supply (b), and the Supply of Liquid Fuels (c): 2010 to 2100 for baseline and stringent mitigation scenarios (430 530 ppm CO2eq). The pathways of three illustrative scenarios (cases A, B, and C) are highlighted for comparison. The illustrative pathways correspond to the same scenarios as shown in Figure 7.10. Dashed lines in the middle panels show the development to 2030 and 2050, and are indicative only for central trends across the majority of the scenarios. Source: AR5 Scenario Database (see Section 6.2.2 and Annex II.10) and three illustrative scenarios from ReMIND (Rose: Bauer et al., (2013); GCAM (AME: Calvin et al., (2012); and the MESSAGE model (GEA: Riahi et al., (2012)). Note: Scenarios assuming technology restrictions and scenarios with significant deviations for the base-year (2010) are excluded. 7.11.4 Relationship between short term action and long term targets  The relationship between near term actions and long term goals is complex and has received a great  deal of attention in the research literature. Unlike short lived species (e.g., CH4, CO, NOx, and SO2)  for which stable concentrations are associated with stable emissions, stable concentrations of CO2  ultimately in the long term require net emissions to decline to zero (Kheshgi et al., 2005).36 Two  important implications follow from this observation.   First, it is cumulative emissions over the entire century that to a first approximation determines the  CO2 concentration at the end of the century, and therefore no individual year s emissions are critical  (for cumulative CO2 emissions consistent with different concentration goals see Section 6.3.2, and  Meinshausen et al (2009)). For any stable concentration of CO2 emissions must peak and then  decline toward zero, and for low concentrations, some period of negative emissions may prove  necessary.  Second, minimization of global social cost implies an immediate initiation of global emissions  mitigation, relative to a reference, no climate policy scenario, with a marginal value of carbon that   The precise relationship is subject to uncertainty surrounding processes in both the oceans and on land that  govern the carbon cycle. Processes to augment ocean uptake are constrained by international agreements.  36 67 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    rises exponentially (Hotelling, 1931; Peck and Wan, 1996). The consequence of this latter feature is  that emissions abatement and the deployment of mitigation technologies grows over time. When  only a long term state, e.g., a fixed level of radiative forcing in a specific year such as 2.6 Wm 2 in  2100, is prescribed, the interim path can theoretically take on any value before the target year.  Overshoot scenarios  are scenarios for which target values are exceeded during the period before  the target date. They are possible because carbon is removed from the atmosphere by the oceans  over an extended period of time, and can be further extended by the ability of society to create  negative emissions through sequestration in terrestrial systems (Section 7.5, Chapter 11), production  of bioenergy in conjunction with CCS technology (Section 7.5.5), and/or direct air capture (DAC). See  for example, Edmonds, et al. (2013).   Even so, the bounded nature of the cumulative emissions associated with any long term CO2  concentration limit creates a derived limit on near term emissions. Beyond some point, the system  cannot adjust sufficiently to achieve the goal. Early work linking near term actions with long term  goals was undertaken by researchers such as Swart, et al. (1998), the  safe landing  concept, and  Bruckner, et al., (1999), the  tolerable windows  concept. O Neill, et al., (2010) and Rogelj et al.,  (2013) assessed the relationship between emissions levels in 2020 and 2050 to meet a range of long term targets (in 2100). They identified  emissions windows  through which global energy systems  would need to pass to achieve various concentration goals.   Recent intermodel comparison projects AMPERE, LIMITS and RoSE (Bauer et al., 2013; Eom et al.,  2013; Kriegler et al., 2013; Luderer et al., 2013; Riahi et al., 2013; Tavoni et al., 2014) have explored  the implications of different near term emissions targets for the attainability and costs of reaching  low concentrations levels of 430 530 ppm CO2eq. The studies illustrate that the pace of the energy  transformation will strongly depend on the attainable level of emissions in the near term (Figure  7.16). Scenarios that achieve comparatively lower global emissions levels by 2030 (<50 GtCO2eq)  show a more gradual transformation to 2050 corresponding to about a doubling of the low carbon  energy share every 20 years. Scenarios with higher 2030 emissions levels (>55 GtCO2eq) lead to a  further  lock in  into GHG intensive energy infrastructures without any significant change in terms of  the low carbon energy share by 2030. This poses a significant challenge for the time period between  2030 and 2050, where the low carbon share in these scenarios would need to be rapidly scaled by  nearly a factor of four (from about 15% to about 60% in 20 years).    Figure 7.16. The up-scaling of low-carbon energy in scenarios meeting different 2100 CO2eq concentration levels (left-hand panel). The right panel shows the rate of up-scaling for different levels of emissions in 2030. Bars show the interquartile range and error bands the full range across the baseline and mitigation scenarios (see Section 6.3.2 for more details). Low-carbon technologies include renewables, nuclear energy, and fossil fuels with CCS. Sources: AR5 Scenario Database (lefthand panel) and scenarios from multimodel comparisons with explicit 2030 emissions targets (right- 68 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    hand panel: AMPERE: Riahi et al. (2013), Eom et al. (2013); LIMITS: Kriegler et al. (2013), ROSE: Luderer et al. (2013)). Note: Only scenarios with default technology assumptions are shown. In addition, scenarios with nonoptimal timing of mitigation due to exogenous carbon price trajectories are excluded in the right-hand panel.   Eom et al. (2013) indicates that such rapid transformations due to delays in near term emissions  reductions would pose enormous challenges with respect to the up scaling of individual  technologies. The study shows that depending on the assumptions about the technology portfolio, a  quadrupling of the low carbon share over 20 years (2030 2050) would lead on average to the  construction of 29 to 107 new nuclear plants per year. While the lower bound estimate corresponds  to about the observed rate of nuclear power installations in the 1980s (Wilson et al., 2013), the high  estimate is historically unprecedented. The study further indicates an enormous requirement for the  future up scaling of RE technologies. For instance, solar power is projected in the models to increase  by 50 360 times of the year 2011 global solar capacity between 2030 and 2050. With respect to the  attainability of such high deployment rates, the recent study by Wilson et al. (2013) indicates that  the diffusion of successful technologies in the past has been generally more rapid than the projected  technology diffusion by integrated models.   As shown in Figure 7.17, cost effective pathways (without delay) show a remarkable near term up scaling (between 2008 and 2030) of CCS technologies by about three orders of magnitude from the  current CCS facilities that store a total of 5 MtCO2 per year (see also, Sathre et al., 2012). The  deployment of CCS in these scenarios is projected to accelerate even further reaching CO2 storage  rates of about half to double current global CO2 emissions from fossil fuel and industry by 2100. The  majority of the models indicate that in absence of this CCS potential, the transformation to low GHG  concentrations (about 480 ppm CO2eq) might not be attainable if mitigation is delayed to 2030 (Riahi  et al., 2013). Delays in mitigation thus reduce technology choices, and as a result some of the  currently optional technologies might become  a must  in the future (Riahi et al., 2012, 2013; Rogelj  et al., 2013). It should be noted that even at the level of CCS deployment as depicted by the cost effective scenarios, CO2 storage capacity is unlikely to be a major limiting factor for CCS (see 7.11.2.),  however, various concerns related to potential ecological impacts, accidental release of CO2, and  related storage effectiveness of CCS technologies might pose barriers to deployment. (See  Section 7.9)    Figure 7.17. Annual Rate of Geological Carbon Dioxide Storage in cost-effective mitigation scenarios reaching 430 530 ppm CO2eq. Source: AMPERE intermodelling comparison; Eom et al. (2013), Riahi et al. (2013). Source: Reprinted from Technological Forecasting and Social Change, Eom J. et al., The impact of near-term climate policy choices on technology and emission transition pathways , 2013, with permission from Elsevier. 69 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    7.12 Sectoral policies  The stabilization of GHG concentrations at a level consistent with the Cancun agreement requires a  fundamental transformation of the energy supply system, and the long term substitution of freely  emitting (i.e., unabated)37 fossil fuel conversion technologies by low carbon alternatives (Chapter 6,  Section 7.11). Studies that have analyzed current policies plus the emission reduction pledges under  the Cancun agreement have found that global GHG emissions are expected to grow (den Elzen et al.,  2011; IEA, 2011a; e.g., Carraro and Massetti, 2012). As a consequence, additional policies must be  enacted and/or the coverage and stringency of the existing ones must be increased if the Cancun  agreement is to be fulfilled.  Currently, most countries combine instruments from three domains: economic instruments to guide  investments of profit maximizing firms, information and regulation approaches to guide choices  where economic instruments are politically not feasible or not fully reflected in satisficing behaviour  of private actors, and innovation and infrastructure policies reflecting public investment in long term  transformation needs (Grubb et al., 2013). This section discusses the outcome of existing climate  policies that address the energy supply sector in terms of their GHG emission reduction, their  influence on the operation, and (via changed investments) on the structure of the energy system, as  well as the associated side effects. The policy categories considered in the following are those  introduced in Section 3.8. The motivation behind the policies (e.g., their economic justification) and  problems arising from enacting multiple policies simultaneously are discussed in Sections 3.8.6,  3.8.7, 15.3, and 15.7. A general evaluation of the performance of the policies is carried out in  Section 15.5.  7.12.1 Economic instruments  The GHG pricing policies, such as GHG emission trading schemes (ETS) and GHG emission taxes,  have been frequently proposed to address the market externalities associated with GHG emissions  (see Sections 3.8 and 15.5). In the power sector, GHG pricing has primarily been pursued through  emission trading mechanisms and, to a lower extent, by carbon taxes (Sumner et al., 2009; IEA,  2010f; Lin and Li, 2011). Economic instruments associated with the provision of transport fuels and  heat are discussed in chapters 8 10.  The existence of GHG (allowance or tax) prices increases the cost of electricity from fossil fuelled  power plants and, as a consequence, average electricity prices. The short term economic impacts of  power price increases for industrial and private consumers have been widely discussed (Parry, 2004;  Hourcade et al., 2007). To address the associated distributional impacts, various compensation  schemes have been proposed (IEA, 2010f; Burtraw et al., 2012; EU Commission, 2012). The impact of  an emission trading scheme on the profitability of power generation can vary. Allowances that are  allocated for free lead to windfall gains (Keats and Neuhoff, 2005; IEA, 2010f, p. 8). With full  auctioning, the impact on profitability can vary between different power stations (Keppler and  Cruciani, 2010).  From an operational point of view, what counts is the fuel  and technology dependent mark up in  the marginal costs of fossil fuel power plants due to GHG prices. Power plants with low specific GHG  emissions (e.g., combined cycle gas turbines) will see a smaller increase of their marginal costs  compared to those with higher specific emissions (e.g., coal power plants). The resulting influence  on the relative competiveness of different power plants and the associated effect on the generation  mix depends, in part, on fuel prices (which help set the marginal cost reference levels) and the  stringency of the GHG emission cap or tax (defining the GHG price) (IEA, 2010f).   37    These are those not using carbon dioxide capture and storage technologies.  70 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Although GHG taxes are expected to have a high economic efficiency (see Section 15.5.2), explicit  GHG taxes that must be obeyed by the power sector (e.g., as part of an economy wide system) have  only been enacted in a couple of countries (WEC, 2008; Tanaka, 2011). In contrast, taxes on fuels are  common (Section 15.5.2). Concerning operational decisions, GHG taxes, taxes or charges on input  fuels and emission permit schemes are equal as long as the resulting (explicit or implicit) GHG price  is the same. Concerning investment decisions (especially those made under uncertainty), there are  differences that are discussed as part of the  prices versus quantities  debate (see Weitzman, 1974,  2007; OECD, 2009). Due to some weaknesses of existing ETSs and associated uncertainties, there is a  renewed interest in hybrid systems, which combine the merits of both approaches by introducing  price caps (serving as  safety valves ) and price floors into emission trading schemes to increase their  flexibility in the context of uncertain costs (Pizer, 2002; Philibert, 2008). Concerning the issue of  potential intertemporal and spatial leakages, as discussed in the Green Paradox literature  (Section 15.5.2.4), differences between tax and GHG ETSs exist as well. Options to address these  issues are discussed in Section 15.5.3.8 and Kalkuhl and Edenhofer (2013).   The EU ETS38 is perhaps the world s most prominent example of a GHG trading scheme, and the GHG  prices observed in that market, in combination with other policies that have been enacted  simultaneously, have been effective in changing operating and investment choices in a way that has  allowed the short term fulfilment of the sector specific GHG reduction goals (Ellerman et al., 2010;  IEA, 2010f). The significant associated emission reductions compared to the baseline are discussed in  Section 14.4.2.1. Shortcomings of emissions trading in general, and the EU ETS in particular (e.g., the  high GHG price volatility and the resulting lack of stable price signals), are addressed by (Grubb et al.,  2006; Neuhoff et al., 2006; Ahman et al., 2007; Kettner et al., 2008; Ellerman et al., 2010; IEA, 2010f;  Pahle et al., 2011). According to the IEA (2010f), these shortcomings can be mitigated by setting  long term emission caps that are consistent with given GHG concentration stabilization goals and by  avoiding a free allocation of allowances to power producers. A general discussion of the  performance of GHG trading schemes is given in Section 15.5.3, including programs outside Europe.  The main factors that have contributed to the low EU ETS carbon prices currently observed include  caps that are modest in comparison to the Cancun agreement, relatively low electricity demand due  to the economic crisis in the EU, increasing shares of RE, as well as an unexpected high inflow of  certificates from CDM projects (IEA, 2013c).   In the longer term and provided that sufficiently stringent emissions caps are set, GHG pricing  (potentially supplemented by technology support, see Section 15.6) can support low emitting  technologies (e.g., RE, nuclear power, and CCS) due to the fuel  and technology dependent mark up  in the marginal costs of fossil fuel power plants:   (a) The economic performance of nuclear power plants, for instance, can be improved by the  establishment of GHG pricing schemes (NEA, 2011b; Linares and Conchado, 2013).   (b) CCS technologies applied in the power sector will only become competitive with their freely  emitting (i.e., unabated) counterparts if the additional investment and operational costs associated  with the CCS technology are compensated for by sufficiently high carbon prices or direct financial  support (Herzog, 2011; IEA, 2013c). In terms of the price volatility seen in the ETS, Oda and Akimoto  (2011) analyzed the influence of carbon price volatility on CCS investments and concluded that  carbon prices need to be higher to compensate for the associated uncertainty. The provision of  capital grants, investment tax credits, credit guarantees, and/or insurance are considered to be  suitable means to support CCS technologies as long as they are in their early stages of development  (IEA, 2013c, p. 79).   For additional information on the history and general success of this policy see Sections 14.4.2.1, 15.3.2, and  15.5.3.   38 71 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    (c) Many RE technologies still need direct (e.g., price based or quantity based deployment policies)  or indirect (e.g., sufficiently high carbon prices and the internalization of other externalities) support  if their market shares are to be increased (see 7.8.2, IPCC, 2011a; IRENA, 2012a). To achieve this  goal, specific RE deployment policies have been enacted in a large number of countries (Halsnaes et  al., 2012; Zhang et al., 2012; REN21, 2013). These policies are designed to facilitate the process of  bringing RE technologies down the learning curve (IEA, 2011f; IRENA, 2012a). Taken together, RE  policies have been successful in driving an escalated growth in the deployment of RE (IPCC, 2011a).  Price based mechanisms (such as feed in tariffs (FITs)) and quantity based systems (such as quotas  or renewable portfolio standards, RPS, and tendering/bidding) are the most common RE deployment  policies in the power sector (15.6, Halsnaes et al., 2012; REN21, 2013). With respect to their success  and efficiency, the SRREN (IPCC, 2011a SPM, p. 25) notes  that some feed in tariffs have been  effective and efficient at promoting RE electricity, mainly due to the combination of long term fixed  price or premium payments, network connections, and guaranteed purchase of all RE electricity  generated. Quota policies can be effective and efficient if designed to reduce risk; for example, with  long term contracts . Supported by Klessmann et al. (2013), a new study confirms:  Generally, it can  be concluded that support schemes, which are technology specific, and those that avoid  unnecessary risks in project revenues, are more effective and efficient than technology neutral  support schemes, or schemes with higher revenue risk  (Ragwitz and Steinhilber, 2013).   Especially in systems with increasing and substantial shares of RE and  despite the historic success of  FITs, there is a tendency to shift to tender based systems because guaranteed tariffs without a limit  on the total subsidy are difficult to handle in government budgets. Conversely a system with  competitive bidding for a specified amount of electricity limits the total amount of subsidy required   (Halsnaes et al., 2012, p. 6). A renewed tendency to shift to tender based systems with public  competitive bidding to deploy renewables is observed by REN21 (2013) as well. Assessing the  economic efficiency of RE policies requires a clear distinction between whether a complete  macroeconomic assessment is intended (i.e., one where competing mitigation options are taken into  account as well) or whether prescribed and time dependent RE shares are to be achieved in a cost effective manner. In addition, the planning horizon must be clearly stated. RE policies might be  considered to be inefficient in a short term (myopic) perspective, while they could be potentially  justified in an intertemporal setting where a dynamic optimization over a couple of decades is  carried out (see 15.6, IEA, 2011f; IPCC, 2011a SRREN, 11.1.1 and 11.5.7.3; Kalkuhl et al., 2012, 2013).   Issues related to synergetic as well as adverse interactions of RE policies with GHG policies (Halsnaes  et al., 2012) are discussed in detail in Section 15.7 and IPCC, SRREN Sections 11.1.1 and 11.5.7.3. A  new line of reasoning shows that delayed emission pricing policies can be partially compensated by  near term support of RE (Bauer et al., 2012). The macroeconomic burden associated with the  promotion of RE is emphasized by Frondel et al. (2010). The relationship between RE policy support  and larger power markets is also an area of focus. Due to the  merit order effect , RE can, in the  short term, reduce wholesale electricity prices by displacing power plants with higher marginal costs  (Bode, 2006; Sensfuß et al., 2008; Woo et al., 2011; Würzburg et al., 2013), though in the long term,  the impact may be more on the temporal profile of wholesale prices and less on overall average  prices. The promotion of low carbon technologies can have an impact on the economics of backup  power plants needed for supply security. The associated challenges and options to address them are  discussed in Lamont, (2008); Sáenz de Miera et al., (2008); Green and Vasilakos, (2011); Hood,  (2011); Traber and Kemfert, (2011); IEA, (2012b, 2013b; c); and Hirth, (2013).   According to Michaelowa et al., (2006); Purohit and Michaelowa, (2007); Restuti and Michaelowa,  (2007); Bodas Freitas et al., (2012); Hultman et al., (2012); Zhang et al., (2012); and Spalding Fecher  et al., (2012), the emissions credits generated by the Clean Development Mechanism (CDM) have  been a significant incentive for the expansion of renewable energy in developing countries.   72 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Zavodov (2012), however, has questioned this view and argues that CDM in its current form is not a  reliable policy tool for long term RE development plans. In addition, CCS has been accepted as an  eligible measure under the CDM by the UN (IEA, 2010g).   The phaseout of inefficient fossil fuel subsidies as discussed during the G 20 summit meetings in  2009, 2010, 2011, and 2012 will have a visible influence on global energy related carbon emissions  (Bruvoll et al., 2011; IEA, 2011g, 2013c). Removing these subsidies could lead to a 13% decline in CO2  emissions and generate positive spillover effects by reducing global energy demand (IMF, 2013). In  addition, inefficiently low pricing of externalities (e.g., environmental and social costs of electricity  production) in the energy supply sector introduces a bias against the development of many forms of  low carbon technologies (IRENA, 2012a).  A mitigation of GHG emissions in absolute terms is only possible through policies/measures that  either reduce the amount of fossil fuel carbon oxidized and/or that capture and permanently  remove GHGs from fossil fuel extraction, processing, and use from the atmosphere (Sections 7.5,  7.11). The deployment of renewable or nuclear energy or energy efficiency as such does not  guarantee that fossil fuels will not be burned (in an unabated manner). The interplay between  growth in energy demand, energy efficient improvements, the usage of low carbon energy, and  fossil fuel is discussed in detail in IPCC, SRREN, Chapter 1 (Figure 1.14), and Chapter 10.   The question whether or not the deployment of low carbon technologies substitutes fossil fuels that  otherwise would have emitted GHG have to take into account the complexity of economic systems  and human behaviour (York, 2012). A central aspect in this context is the rebound effect, which is  extensively discussed in Sections 3.9.5 and 5.6.2. Spillover effects that are highly related to this issue  are discussed in Section 6.3.6. To constrain the related adverse effects, carefully drafted packages  combining GHG pricing schemes with technology policies in a way that avoids negative interactions  have been proposed (see IPCC, 2011a, SRREN, Chapter 11).   7.12.2 Regulatory approaches  The formulation of low carbon technologies targets can help technology companies to anticipate the  scale of the market and to identify opportunities for their products and services (Lester and Neuhoff,  2009), thus, motivating investments in innovation and production facilities while reducing costs for  low carbon technologies. Currently, for instance, about 138 countries have renewable targets in  place. More than half of them are developing countries (REN21, 2013).  The success of energy policies heavily depends on the development of an underlying solid legal  framework as well as a sufficient regulatory stability (Reiche et al., 2006; IPCC, 2011a). Property  rights, contract enforcement, appropriate liability schemes, and emissions accounting are essential  for a successful implementation of climate policies. For example, well defined responsibilities for the  long term reliability of geologic storages are an important pre requisite for successful CCS  applications (IEA, 2013c), while non discriminatory access to the grid is of similar importance for RE.   Concerning the promotion of RE, the specific challenges that are faced by developing countries and  countries with regulated markets are addressed by IRENA (2012a); IRENA, (2012b); Kahrl (2011); and  Zhang et al. (2012). Renewable portfolio standards (or quota obligations, see Section 15.5.4.1) are  usually combined with the trading of green certificates and therefore have been discussed under the  topic of economic instruments (see Section 7.12.1). Efficiency and environmental performance  standards are usual regulatory instruments applied to fossil fuel power plants.   In the field of nuclear energy, a stable policy environment comprising a regulatory and institutional  framework that addresses operational safety and the appropriate management of nuclear waste as  well as long term commitments to the use of nuclear energy are requested to minimize investment  risks for new nuclear power plants (NEA, 2013).   To regain public acceptance after the Fukushima accident, comprehensive safety reviews have been  carried out in many countries. Some of them included  stress tests , which investigated the capability  73 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    of existing and projected reactors to cope with extreme natural and man made events, especially  those lying outside the reactor design assumptions. As a result of the accident and the subsequent  investigations, a  radical revision of the worst case assumptions for safety planning  is expected to  occur (Rogner, 2013), p. 291.   7.12.3 Information programmes   Though information programs play a minor role in the field of power plant related energy efficiency  improvements and fossil fuel switching, awareness creation, capacity building, and information  dissemination to stakeholders outside of the traditional power plant sector plays an important role  especially in the use of decentralized RE in LDCs (IRENA, 2012c). Other low carbon technologies like  CCS and nuclear would require specifically trained personnel (see Section 7.10.4). Furthermore,  enhanced transparency of information improves public and private decisions and can enhance public  perception (see Section 7.9.4).  7.12.4 Government provision of public goods or services  Public energy related R&D expenditures in the IEA countries peaked in 2009 as a result of economic  stimulus packages, but soon after suffered a substantial decline. Although R&D spending is now  again rising, energy related expenditures still account for less than 5% of total government R&D compared to 11% that was observed in 1980 (IEA, 2012j). Nuclear has received significant support in  many countries and the share of research, development, and demonstration (RD&D) for RE has  increased, but public R&D for CSS is lower, and does not reflect its potential importance (see  Section 7.11) for the achievement of negative emissions (von Stechow et al., 2011; Scott et al., 2013)  IEA, 2012j).  Although private R&D expenditures are seldom disclosed,39 they are estimated to represent a large  share of the overall spending for RD&D activities (IEA, 2012j). Private R&D investments are not only  stimulated by R&D policies. Additional policies (e.g., deployment policies, see 7.12.1 and  Section 15.6) addressing other parts of the innovation chain as well as broad GHG pricing policies  might assist in triggering private investments in R&D (IPCC, 2011a, p. 851; Rogge et al., 2011;  Battelle, 2012).   The integration of variable RE poses additional challenges, as discussed earlier in Section 7.6, with a  variety of possible technical and institutional responses possible. Many of these technical and  institutional measures require an enabling regulatory framework facilitating their application.  Infrastructure challenges, e.g., grid extension, are particularly acute for RE deployment in developing  countries, sometimes preventing deployment (IRENA, 2012a). Governments can play a prominent  role in providing the infrastructure (e.g., transmissions grids or the provision of district heating and  cooling systems) that is needed to allow for a transformation of energy systems towards lower GHG  emissions (IEA, 2012b; Grubb et al., 2013).   7.12.5 Voluntary actions   Voluntary agreements (see Section 15.5.7.4) have been frequently applied in various sectors around  the globe, though they often have been replaced by mandatory schemes in the long term (Halsnaes  et al., 2012). According to Chapter 15, their success is mixed.  Voluntary agreements had a positive  effect on energy efficiency improvements, but results in terms of GHG emissions reductions have  been modest, with the exception of Japan, where the status of these voluntary agreements has also  been much more  binding  than in other countries in line with Japanese cultural traditions  (Halsnaes  et al., 2012, p. 13; IPCC, 2007; Yamaguchi, 2012).   39  A rare exception is the annual forecast of Battelle (2012).   74 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    7.13 Gaps in knowledge and data  Gaps in knowledge and data are addressed to identify those that can be closed through additional  research and others that are inherent to the problems discussed and are therefore expected to  persist. Chapter 7 is confronted by various gaps in knowledge, especially those related to  methodological issues and availability of data:  The diversity of energy statistic and GHG emission accounting methodologies as well as  several years delay in the availability of energy statistics data limit reliable descriptions of  current and historic energy use and emission data on a global scale (Section 7.2, 7.3).   Although fundamental problems in identifying fossil fuel and nuclear resource deposits, the  extent of potential carbon storage sites, and technical potentials of RE are acknowledged,  the development of unified and consistent reporting schemes, the collection of additional  field data, and further geological modelling activities could reduce the currently existing  uncertainties (Section 7.4).   There is a gap in our knowledge concerning fugitive CH4 emissions as well as adverse  environmental side effects associated with the increasing exploitation of unconventional  fossil fuels. As novel technologies are applied in these fields, research could help reduce the  gap. Operational and supply chain risks of nuclear power plants, the safety of CCS storage  sites and adverse side effects of some RE, especially biomass and hydropower, are often  highly dependent on the selected technologies and the locational and regulatory context in  which they are applied. The associated risks are therefore hard to quantify, although further  research could, in part, reduce the associated knowledge gaps (Section 7.5).   There is limited research on the integration issues associated with high levels of low carbon  technology utilization (Section7.6).   Knowledge gaps pertain to the regional and local impacts of climate change on the technical  potential for renewable energy and appropriate adaptation, design, and operational  strategies to minimize the impact of climate change on energy infrastructure (Section 7.7).  The current literature provides a limited number of comprehensive studies on the economic,  environmental, social, and cultural implications that are associated with low carbon  emission paths. Especially, there is a lack of consistent and comprehensive global surveys  concerning the current cost of sourcing and using unconventional fossil fuels, RE, nuclear  power, and the expected ones for CCS and BECCS. In addition, there is a lack of globally  comprehensive assessments of the external cost of energy supply and GHG related  mitigation options (Sections 7.8, 7.9, 7.10).  Integrated decision making requires further development of energy market models as well  as integrated assessment modelling frameworks, accounting for the range of possible  co benefits and tradeoffs between different policies in the energy sector that tackle energy  access, energy security, and/or environmental concerns (Section 7.11).   Research on the effectiveness and cost efficiency of climate related energy policies and  especially concerning their interaction with other policies in the energy sector is limited  (Section 7.12).  7.14 Frequently Asked Questions  FAQ 7.1 How much does the energy supply sector contribute to the GHG emissions?  The energy supply sector comprises all energy extraction, conversion, storage, transmission, and  distribution processes with the exception of those that use final energy in the demand sectors  75 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    (industry, transport, and building). In 2010, the energy supply sector was responsible for 46% of all  energy related GHG emissions (IEA, 2012b) and 35% of anthropogenic GHG emissions, up from 22%  in 1970 (Section7.3).   In the last 10 years, the growth of GHG emissions from the energy supply sector has outpaced the  growth of all anthropogenic GHG emissions by nearly 1% per year. Most of the primary energy  delivered to the sector is transformed into a diverse range of final energy products including  electricity, heat, refined oil products, coke, enriched coal, and natural gas. A significant amount of  energy is used for transformation, making the sector the largest consumer of energy. Energy use in  the sector results from end user demand for higher quality energy carriers such as electricity, but  also the relatively low average global efficiency of energy conversion and delivery processes  (Sections 7.2, 7.3).  Increasing demand for high quality energy carriers by end users in many developing countries has  resulted in significant growth in the sectors  GHG emission, particularly as much of this growth has  been fuelled by the increased use of coal in Asia, mitigated to some extent by increased use of gas in  other regions and the continued uptake of low carbon technologies. While total output from low carbon technologies, such as hydro, wind, solar, biomass, geothermal, and nuclear power, has  continued to grow, their share of global primary energy supply has remained relatively constant;  fossil fuels have maintained their dominance and carbon dioxide capture and storage (CCS) has yet  to be applied to electricity production at scale (7.2, 7.5).   Biomass and hydropower dominate renewable energy, particularly in developing countries where  biomass remains an important source of energy for heating and cooking; per capita emissions from  many developing countries remain lower than the global average. Renewable energy accounts for  one fifth of global electricity production, with hydroelectricity taking the largest share. Importantly,  the last 10 years has seen significant growth in both wind and solar, which combine to deliver  around one tenth of all renewable electricity. Nuclear energys  share of electricity production  declined from maximum peak of 17% in 1993 to 11% in 2012 (Sections 7.2, 7.5).  FAQ 7.2 What are the main mitigation options in the energy supply sector?  The main mitigation options in the energy supply sector are energy efficiency improvements, the  reduction of fugitive non CO2 GHG emissions, switching from (unabated) fossil fuels with high  specific GHG emissions (e.g., coal) to those with lower ones (e.g., natural gas), use of renewable  energy, use of nuclear energy, and carbon dioxide capture and storage (CCS). (Section 7.5).  No single mitigation option in the energy supply sector will be sufficient to hold the increase in  global average temperature change below 2°C above pre industrial levels. A combination of some,  but not necessarily all, of the options is needed. Significant emission reductions can be achieved by  energy efficiency improvements and fossil fuel switching, but they are not sufficient by themselves  to provide the deep cuts needed. Achieving deep cuts will require more intensive use of low GHG  technologies such as renewable energy, nuclear energy, and CCS. Using electricity to substitute for  other fuels in end use sectors plays an important role in deep emission cuts, since the cost of  decarbonizing power generation is expected to be lower than that in other parts of the energy  supply sector (Chapter 6, Section 7.11).  While the combined global technical potential of low carbon technologies is sufficient to enable  deep cuts in emissions, there are local and regional constraints on individual technologies (Sections  7.4, 7.11). The contribution of mitigation technologies depends on site  and context specific factors  such as resource availability, mitigation and integration costs, co benefits/adverse side effects, and  public perception (Sections 7.8, 7.9, 7.10). Infrastructure and integration challenges vary by  mitigation technology and region. While these challenges are not in general technically  insurmountable, they must be carefully considered in energy supply planning and operations to  ensure reliable and affordable energy supply [Section 7.6].  76 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    FAQ 7.3 What barriers need to be overcome in the energy supply sector to enable a  transformation to low GHG emissions?   The principal barriers to transforming the energy supply sector are mobilizing capital investment;  lock in to long lived high carbon systems; cultural, institutional, and legal aspects; human capital;  and lack of perceived clarity about climate policy (Section 7.10).   Though only a fraction of available private sector capital investment would be needed to cover the  costs of future low GHG energy supply, a range of mechanisms including climate investment funds,  carbon pricing, removal of fossil fuel subsidies and private/public initiatives aimed at lowering  barriers for investors need to be utilized to direct investment towards energy supply  (Section 7.10.2).  Long lived fossil energy system investments represent an effective (high carbon) lock in. The relative  lack of existing energy capital in many developing countries therefore provides opportunities to  develop a low carbon energy system (Section 7.10.5).  A holistic approach encompassing cultural, institutional, and legal issues in the formulation and  implementation of energy supply strategies is essential, especially in areas of urban and rural  poverty where conventional market approaches are insufficient. Human capital capacity building encompassing technological, project planning, and institutional and public engagement elements is  required to develop a skilled workforce and to facilitate wide spread adoption of renewable,  nuclear, CCS, and other low GHG energy supply options (Sections 7.10.3, 7.10.4).  Elements of an effective policy aimed at achieving deep cuts in CO2 emissions would include a global  carbon pricing scheme supplemented by technology support, regulation, and institutional  development tailored to the needs to individual countries (notably less developed countries)  (Section 7.12, Chapters 13 15).    77 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    References  Abdelouas A. (2006). Uranium mill tailings: Geochemistry, mineralogy, and environmental impact,  Elements 2 335 341 pp. .  Abril G., F. Guérin, S. Richard, R. Delmas, C. Galy Lacaux, P. Gosse, A. Tremblay, L. Varfalvy, M.A.  Dos Santos, and B. Matvienko (2005). Carbon dioxide and methane emissions and the carbon  budget of a 10 year old tropical reservoir (Petit Saut, French Guiana), Global Biogeochem. Cycles 19  (DOI: 10.1029/2005GB002457).  Adamantiades A., and I. Kessides (2009). Nuclear power for sustainable development: Current  status and future prospects, Energy Policy 37 5149 5166 pp. .  Adams A.S., and D.W. Keith (2013). Are global wind power resource estimates overstated?,  Environmental Research Letters 8 015021 pp. (DOI: 10.1088/1748 9326/8/1/015021), (ISSN: 1748 9326).  Adibee N., M. Osanloo, and M. Rahmanpour (2013). Adverse effects of coal mine waste dumps on  the environment and their management, Environmental Earth Sciences 70 1581 1592 pp. .  Agah S.M.M., and H.A. Abyaneh (2011). Quantification of the distribution transformer life extension  value of distributed generation, IEEE Transactions on Power Delivery 26 1820 1828 pp. (DOI:  10.1109/TPWRD.2011.2115257), (ISSN: 0885 8977).  Ahearne J.F. (2011). Prospects for nuclear energy, Energy Economics 33 572 580 pp. (DOI:  16/j.eneco.2010.11.014), (ISSN: 0140 9883).  Ahman M., D. Burtraw, J. Kruger, and L. Zetterberg (2007). A ten year rule to guide the allocation of  EU emission allowances, Energy Policy 35 1718 1730 pp. .  Aines R.D., M.J. Leach, T.H. Weisgraber, M.D. Simpson, S. Friedmann, and C.J. Burton (2009).  Quantifying the potential exposure hazard due to energetic releases of CO2 from a failed  sequestration well, Energy Procedia 1 2421 2429 pp. (DOI:  http://dx.doi.org/10.1016/j.egypro.2009.02.003).  Akpinar Ferrand E., and A. Singh (2010). Modeling increased demand of energy for air conditioners  and consequent CO2 emissions to minimize health risks due to climate change in India,  Environmental Science & Policy 13 702 712 pp. .  Aksoy N., C. ªimºe, and O. Gunduz (2009). Groundwater contamination mechanism in a geothermal  field: A case study of Balcova, Turkey, Journal of Contaminant Hydrology 103 13 28 pp. .  Ale B.J.M., H. Baksteen, L.J. Bellamy, A. Bloemhof, L. Goossens, A. Hale, M.L. Mude, J.I.H. Oh, I.A.  Papazoglou, J. Post, and J.Y. Whiston (2008). Quantifying occupational risk: The development of an  occupational risk model, Safesty Science 46 176 185 pp. .  Alexakhin R.M., N.I. Sanzharova, S.V. Fesenko, S.I. Spiridonov, and A.V. Panov (2007). Chernobyl  radionuclide distribution, migration, and environmental and agricultural impacts, Health Physics 93  418 426 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 37349067417&partnerID=40&md5=9a7b6d1acd16987f8113ea83768c23e7.  Alho C.J.R. (2011). Environmental effects of hydropower reservoirs on wild mammals and  freshwater turtles in amazonia: A review, Oecologia Australis 15 593 604 pp. . Available at:  78 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    http://www.scopus.com/inward/record.url?eid=2 s2.0 80052867044&partnerID=40&md5=99294977641dd31eaad3a128fd651e6d.  Allen M.R., D.J. Frame, C. Huntingford, C.D. Jones, J.A. Lowe, M. Meinshausen, and N.  Meinshausen (2009). Warming caused by cumulative carbon emissions towards the trillionth tonne,  Nature 458 1163 1166 pp. .  Alsalam J., and S. Ragnauth (2011). Draft Global Antropogenic Non CO2 Greenhouse Gas Emissions:  1990 2030. US EPA, Washington. . Available at:  http://www.epa.gov/climatechange/Downloads/EPAactivities/EPA_NonCO2_Projections_2011_draf t.pdf.  Alvarez G.C., R.M. Jara, and J.R.R. Julian (2010). Study of the effects on employment of public aid to  renewable energy sources, Procesos de Mercado. Universidad Rey Juan Carlos VII (ISSN: 1697 6797 13).  Amores M.J., F. Verones, C. Raptis, R. Juraske, S. Pfister, F. Stoessel, A. Antón, F. Castells, and S.  Hellweg (2013). Biodiversity impacts from salinity increase in a coastal wetland, Environmental  Science and Technology 47 6384 6392 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84879211765&partnerID=40&md5=dc52468ee59667b56dd36b635eb5e0be.  Anctil A., and V. Fthenakis (2013). Critical metals in strategic photovoltaic technologies: Abundance  versus recyclability, Progress in Photovoltaics: Research and Applications 21 1253 1259 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84883053696&partnerID=40&md5=0287b3b2e3fcb1b53a1c91e77c770b59.  Andres R.J., T.A. Boden, F.M. Bréon, P. Ciais, S. Davis, D. Erickson, J.S. Gregg, A. Jacobson, G.  Marland, J. Miller, T. Oda, J.G.J. Olivier, M.R. Raupach, P. Rayner, and K. Treanton (2012). A  synthesis of carbon dioxide emissions from fossil fuel combustion, Biogeosciences 9 1845 1871 pp.  (DOI: 10.5194/bg 9 1845 2012).  Anenberg S.C., K. Balakrishnan, J. Jetter, O. Masera, S. Mehta, J. Moss, and V. Ramanathan (2013).  Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits, Environmental  Science & Technology 47 3944 3952 pp. .  Angelis Dimakis A., M. Biberacher, J. Dominguez, G. Fiorese, S. Gadocha, E. Gnansounou, G.  Guariso, A. Kartalidis, L. Panichelli, I. Pinedo, and M. Robba (2011). Methods and tools to evaluate  the availability of renewable energy sources, Renewable and Sustainable Energy Reviews 15 1182 1200 pp. (DOI: doi: 10.1016/j.rser.2010.09.049), (ISSN: 1364 0321).  Apps J.A., L. Zheng, Y. Zhang, T. Xu, and J.T. Birkholzer (2010). Evaluation of potential changes in  groundwater quality in response to CO2 leakage from deep geologic storage, Transport in Porous  Media 82 215 246 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 76749137129&partnerID=40&md5=f5417af7652df88f0f16ed28c7be7766.  Ardito L., G. Procaccianti, G. Menga, and M. Morisio (2013). Smart Grid Technologies in Europe: An  Overview, Energies 6 251 281 pp. .  Arent D., R. Tol, E. Faust, J. Hella, S. Kumar, K. Strzepek, F. Toth, and D. Yan (2014). Chapter 10. Key  Economic Sectors and Services. In: Climate Change 2013: Impacts, Adaptation, and Vulnerability.  Fifth Assessment Report of Working Group II. Cambride University Press, Cambridge, UK.  79 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Arent D., A. Wise, and R. Gelman (2011). The status and prospects of renewable energy for  combating global warming, Energy Economics 33 584 593 pp. (DOI: 10.1016/j.eneco.2010.11.003),  (ISSN: 0140 9883).  Armaroli N., and V. Balzani (2011). Towards an electricity powered world, Energy Environ. Sci. 4  3193 3222 pp. (DOI: 10.1039/C1EE01249E).  Arnett E.B., M.M.P. Huso, M.R. Schirmacher, and J.P. Hayes (2011). Altering turbine speed reduces  bat mortality at wind energy facilities, Frontiers in Ecology and the Environment 9 209 214 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79955607686&partnerID=40&md5=4cf56647fe02d70061e2e13659dc7e1d.  Aromar R., and D. Sattherhwaite (2014). Chapter 8   Urban Areas. In: Climate Change 2013: Impacts,  Adaptation, and Vulnerability. Fifth Assessment Report of Working Group II. Cambride University  Press, Cambridge, UK.  Arvesen A., and E.G. Hertwich (2011). Environmental implications of large scale adoption of wind  power: a scenario based life cycle assessment, Environmental Research Letters 6 045102 pp. (DOI:  10.1088/1748 9326/6/4/045102), (ISSN: 1748 9326).  Arvesen A., and E.G. Hertwich (2012). Assessing the life cycle environmental impacts of wind power:  A review of present knowledge and research needs, Renewable and Sustainable Energy Reviews  (DOI: dx.doi.org/10.1016/j.rser.2012.06.023).  Arvizu D., P. Balaya, L. Cabeza, T. Hollands, A. Jäger Waldau, M. Kondo, C. Konseibo, V. Meleshko,  W. Stein, Y. Tamaura, H. Xu, and R. Zilles (2011). Direct Solar Energy. In: IPCC Special Report on  Renewable Energy Sources and Climate Change Mitigation [[O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von  Stechow (eds)]]. Cambridge University Press, Cambridge, UK and New York, NY, USA.  Asfaw A., C. Mark, and R. Pana Cryan (2013). Profitability and occupational injuries in U.S.  underground coal mines, Accident Analysis and Prevention 50 778 786 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84870292672&partnerID=40&md5=cdc9949f18f6ef8a8986edb9e26db15c.  Ashworth P., N. Boughen, M. Mayhew, and F. Millar (2010). From research to action: Now we have  to move on CCS communication, International Journal of Greenhouse Gas Control 4 426 433 pp.  (DOI: 10.1016/j.ijggc.2009.10.012), (ISSN: 1750 5836).  Ashworth P., J. Bradbury, S. Wade, C.F.J. Ynke Feenstra, S. Greenberg, G. Hund, and T. Mikunda  (2012). What s in store: Lessons from implementing CCS, International Journal of Greenhouse Gas  Control 9 402 409 pp. .  Aspelund A., M.J. Mlnvik, and G. De Koeijer (2006). Ship Transport of CO2: Technical Solutions and  Analysis of Costs, Energy Utilization, Exergy Efficiency and CO2 Emissions, Chemical Engineering  Research and Design 84 847 855 pp. (DOI: DOI: 10.1205/cherd.5147), (ISSN: 0263 8762).  Atchley A., Z. Nie, and S. Durucan (2013). Human Health Risk Assessment of CO2 Leakage into  Overlying Aquifers Using a Stochastic, Geochemical Reactive Transport Approach, Environmental  Science & Technology 47 5954 5962 pp. (DOI: 10.1021/es400316c).  80 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Azar C., K. Lindgren, M. Obersteiner, M. Riahi, D. Vuuren, K. Elzen, K. Möllersten, and E. Larson  (2010). The feasibility of low CO2 concentration targets and the role of bio energy with carbon  capture and storage (BECCS), Climate Change 100 195 202 pp. .  Bachu S. (2008). CO2 storage in geological media: Role, means, status and barriers to deployment,  Progress in Energy and Combustion Science 34 254 273 pp. (DOI: 10.1016/j.pecs.2007.10.001).  Bachu S., D. Bonijoly, J. Bradshaw, R. Burruss, S. Holloway, N.P. Christensen, and O.M. Mathiassen  (2007). CO2 storage capacity estimation: Methodology and gaps, International Journal of  Greenhouse Gas Control 1 430 443 pp. (DOI: DOI: 10.1016/S1750 5836(07)00086 2), (ISSN: 1750 5836).  Bakker S., H. de Coninck, and H. Groenenberg (2010). Progress on including CCS projects in the  CDM: Insights on increased awareness, market potential and baseline methodologies, International  Journal of Greenhouse Gas Control 4 321 326 pp. (DOI: DOI: 10.1016/j.ijggc.2009.10.011), (ISSN:  1750 5836).  Balonov M., G.R. Howe, A. Bouville, A. Guskova, V. Ivanov, J. Kenigsberg, I. Likhtarev, F. Mettler, R.  Shore, G. Thomas, M. Tirmarche, and L. Zablotska (2011). Annex D   Health Effects due to Radiation  from the Chernobyl Accident. In: Sources and Effects of Ionizing Radiation   UNSCEAR 2008   Report  to the General Assembly with Scientific Annnexes. UNSCEAR, (ed.), United Nations Scientific  Committee on the Efects of Atomic Radiation, New York(ISBN: 978 92 1 142280 1).  Banuri T. (2009). Climate change and sustainable development, Natural Resources Forum 33 254 258 pp. .  Bao G. (2010). Study on the ecological impacts of hydropower resettlement in the Nujiang area,  Journal of Hydroelectric Engineering 29 120 124 pp. .  Barberis Negra N., J. Todorovic, and T. Ackermann (2006). Loss evaluation of HVAC and HVDC  transmission solutions for large offshore wind farms, Electric Power Systems Research 76 916 927  pp. .  Barbier E.B. (2009). Rethinking the Economic Recovery: A Global Green New Deal. UNEP, Nairobi. .  Available at: http://www.sustainable innovations.org/GE/UNEP%20%5B2009%5D%20A%20global%20green%20new%20deal.pdf.  Barker T., L. Bernstein, J. E. Bogner, I. Bashmakov, P. R. Bosch, R. Dave,, O. R. Davidson, B. S.  Fisher, S. Gupta, K. Halsnaes, G.J. Heij, S. Kahn Ribeiro, S. Kobayashi, M.D. Levine, D. L. Martino, O.  Masera, B. Metz, L. A. Meyer, G. J. Nabuurs, N. Nakicenovic, H.  H. Rogner, J. Roy, J. Sathaye, R.  Schock, P. Shukla,, R. E. H. Sims, P. Smith, D. A. Tirpak, D. Urge Vorsatz, and D. Zhou (2007).  Technical Summary. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the  Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O. R.  Davidson, P. R. Bosch, R. Dave, L. A. Meyer (eds)]. Cambridge University Press, Cambridge, United  Kingdom and New York, NY, USA. 35 37 pp.  Barlas S. (2011). Green Completions for Shale Gas Come to Fore as Methane Emissions Reduction  Tool, Pipeline and Gas Journal 238 . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84856189359&partnerID=40&md5=1f262679bef24e2d935db76b469a757f.  Barros N., J. Cole J., L.J. Tranvik, Y.T. Prairie, D. Bastviken, V.L.M. Huszar, P. del Giorgio, and F.  Roland (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude,  Nature Geoscience 4 593 596 pp. (DOI: doi:10.1038/ngeo1211).  81 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Bashmakov I. (2009). Resource of energy efficiency in Russia: scale, costs, and benefits., Energy  Efficiency 2 369 386 pp. . Available at: www.mdpi.com/journal/sustainability.  Bashmakov I., and A. Myshak (2012). Factors Driving Russian Energy Related GHG Emissions.  Analysis Based on National GHG Inventory Data. Roshydromet and Russian Academy of Sciences,  Moscow, 130 pp.  Bates B.C., Z.W. Kundewicz, S. Wu, and J.P. Palutikof (2008). Climate Change and Water. IPCC  Secretariat, Geneva, Switzerland.  Battelle (2012). 2012 Global R&D Funding Forecast. Battelle, Columbus, OH. . Available at:  http://battelle.org/docs/default document library/2012_global_forecast.pdf.  Bauer N., L. Baumstark, and M. Leimbach (2012). The REMIND R model: the role of renewables in  the low carbon transformation   first best vs. second best worlds, Climatic Change 114 145 168 pp. .  Bauer N., I. Mouratiadou, L. Baumstark, R.J. Brecha, O. Edenhofer, and E. Kriegler (2013). Global  Fossil Energy Markets and Climate Change Mitigation   An Analysis with ReMIND, Climatic Change  14 pp. (DOI: DOI 10.1007/s10584 013 0901 6), (ISSN: 1573 1480).  Bayer P., L. Rybach, P. Blum, and R. Brauchler (2013a). Review on life cycle environmental effects of  geothermal power generation, Renewable and Sustainable Energy Reviews 26 446 463 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84879985527&partnerID=40&md5=ac2d3106b1942a8f7344b3880afdb9ea.  Bayer P., L. Rybach, P. Blum, and R. Brauchler (2013b). 26 . Review of life cycle environmental  effects of geothermal power generation, Renewable and Sustainable Energy Reviews 446 463 pp. .  Bazilian M., P. Nussbaumer, C. Eibs Singer, A. Brew Hammond, V. Modi, B. Sovacool, V. Ramana,  and P.K. Aqrawi (2012). Improving Access to Modern Energy Services: Insights from Case Studies,  The Electricity Journal 25 93 114 pp. .  Beaudin M., H. Zareipour, A. Schellenberglabe, and W. Rosehart (2010). Energy storage for  mitigating the variability of renewable electricity sources: An updated review, Energy for Sustainable  Development 14 302 314 pp. (DOI: 10.1016/j.esd.2010.09.007), (ISSN: 0973 0826).  Becerralopez H., and P. Golding (2007). Dynamic exergy analysis for capacity expansion of regional  power generation systems: Case study of far West Texas, Energy 32 2167 2186 pp. (DOI:  10.1016/j.energy.2007.04.009), (ISSN: 03605442).  Benson S., P. Cook, J. Anderson, S. Bachu, H. Nimir, B. Basu, J. Bradshaw, G. Deguchi, J. Gale, G.  von Goerne, W. Heidug, S. Holloway, R. Kamal, D. Keith, P. Lloyd, P. Rocha, B. Senior, J. Thomson,  T. Torp, T. Wildenborg, M. Wilson, F. Zarlenga, and D. Zhou (2005). Underground Geological  Storage. In: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group  III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M.  Loos, and L. A. Meyer (eds.)].Cambridge, UK and New York, NY, USA pp.442. Available at:  http://www.ipcc.ch/publications_and_data/_reports_carbon_dioxide.htm.  Berndes G. (2008). Future Biomass Energy Supply: The Consumptive Water Use Perspective,  International Journal of Water Resources Development 24 235 245 pp. (DOI:  10.1080/07900620701723489), (ISSN: 0790 0627, 1360 0648).  82 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    De Best Waldhober M., D. Daamen, and A. Faaij (2009). Informed and uninformed public opinions  on CO2 capture and storage technologies in the Netherlands, International Journal of Greenhouse  Gas Control 3 322 332 pp. (DOI: 10.1016/j.ijggc.2008.09.001), (ISSN: 1750 5836).  Bezdek R., and R.M. Wendling (2013). The return on investment of the clean coal technology  program in the USA, Energy Policy 54 104 112 pp. .  Bickerstaff K., I. Lorenzoni, N.F. Pidgeon, W. Poortinga, and P. Simmons (2008). Reframing nuclear  power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste,  Public Understanding of Science 17 145  169 pp. (DOI: 10.1177/0963662506066719).  Binnemans K., P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert (2013).  Recycling of rare earths: A critical review, Journal of Cleaner Production 51 1 22 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84879926400&partnerID=40&md5=40216849dbbe602d34c655b01a6453d1.  Birkholzer J.T., and Q. Zhou (2009). Basin scale hydrogeologic impacts of CO2 storage: Capacity and  regulatory implications, International Journal of Greenhouse Gas Control 3 745 756 pp. (DOI: DOI:  10.1016/j.ijggc.2009.07.002), (ISSN: 1750 5836).  Birkholzer J.T., Q. Zhou, and C. F. Tsang (2009). Large scale impact of CO2 storage in deep saline  aquifers: A sensitivity study on pressure response in stratified systems, International Journal of  Greenhouse Gas Control 3 181 194 pp. (DOI: 10.1016/j.ijggc.2008.08.002), (ISSN: 1750 5836).  Blarke M.B. (2012). Towards an intermittency friendly energy system: Comparing electric boilers  and heat pumps in distributed cogeneration, Applied Energy 91 349 365 pp. (DOI:  10.1016/j.apenergy.2011.09.038), (ISSN: 0306 2619).  BNEF, and Frankfurt School UNEP Centre (2013). Global Trends in Renewable Energy Investment  2013. Bloomberg New Energy Finance and Frankfurt School   UNEP Centre, Frankfurt am Main.  Bodas Freitas I., E. Dantas, and M. Iizuka (2012). The Kyoto mechanisms and the diffusion of  renewable energy technologies in the BRICS, Energy Policy 42 118 128 pp. .  Bode S. (2006). On the impact of renewable energy support schemes on power prices, HWWI  Research Paper 4.  Böhringer C., A. Keller, and E. van der Werf (2013). Are green hopes too rosy? Employment and  welfare impacts of renewable energy promotion, Energy Economics 36 277 285 pp. .  Boice J.J. (2012). Radiation Epidemiology: A Perspective on Fukushima, Journal of Radiological  Protection 32 N33 N40 pp. .  Borenstein S. (2012). The Private and Public Economics of Renewable Electricity Generation, Journal  of Economic Perspectives, American Economic Association 26 67 92 pp. .  Boulamanti A., S.D. Maglio, J. Giuntoli, and A. Agostini (2013). Influence of different practices on  biogas sustainability, Biomass and Bioenergy 53 149 161 pp. .  Boyé H. (2008). Water, energy, desalination & climate change in the Mediterranean. Blue Plan,  Regional Activity Center. . Available at:  http://www.planbleu.org/publications/Regional_study_desalination_EN.pdf.  83 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    BP (2011). BP Statistical Review of World Energy. . Available at:  http://www.bp.com/statisticalreview.  BP (2012). BP Statistical Review of World Energy. . Available at:  http://www.bp.com/statisticalreview.  BP (2013). BP Statistical Review of World Energy. . Available at:  http://www.bp.com/en/global/corporate/about bp/statistical review of world energy 2013.html.  Bradshaw J., S. Bachu, D. Bonijoly, R. Burruss, S. Holloway, N.P. Christensen, and O.M. Mathiassen  (2007). CO2 storage capacity estimation: Issues and development of standards, International Journal  of Greenhouse Gas Control 1 62 68 pp. (DOI: DOI: 10.1016/S1750 5836(07)00027 8), (ISSN: 1750 5836).  Brandstätt C., G. Brunekreeft, and K. Jahnke (2011). How to deal with negative power price spikes?   Flexible voluntary curtailment agreements for large scale integration of wind, Energy Policy 39  3732 3740 pp. .  Brandt A.R. (2011). Variability and Uncertainty in Life Cycle Assessment Models for Greenhouse Gas  Emissions from Canadian Oil Sands Production, Environ. Sci. Technol. 46 1253 1261 pp. (DOI:  10.1021/es202312p), (ISSN: 0013 936X).  Brandt A.R., J. Englander, and S. Bharadwaj (2013). The energy efficiency of oil sands extraction:  Energy return ratios from 1970 to 2010, Energy 55 693 702 pp. (DOI:  10.1016/j.energy.2013.03.080), (ISSN: 0360 5442).  Brandt A.R., and A.E. Farrell (2007). Scraping the bottom of the barrel: Greenhouse gas emission  consequences of a transition to low quality and synthetic petroleum resources, Climatic Change 84  241 263 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 36148957478&partnerID=40&md5=0fe496aff8dd3db95377fd6f4f3e6daa.  Bratland O. (2010). Pipe Flow 2   Multi Phase Flow Assurance. . Available at:  http://www.drbratland.com/free book pipe flow 2 multi phase flow assurance/.  Brauer M., M. Amann, R.T. Burnett, A. Cohen, F. Dentener, M. Ezzati, S.B. Henderson, M.  Krzyzanowski, R.V. Martin, R. Van Dingenen, A. Van Donkelaar, and G.D. Thurston (2012).  Exposure assessment for estimation of the global burden of disease attributable to outdoor air  pollution, Environmental Science and Technology 46 652 660 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84863420410&partnerID=40&md5=266280b5d8a2a681d4fc23174f8439dc.  Bruckner T., G. Petschel Held, G. Toth, F.L. Fussel, C. Helm, M. Leimbach, and H.J. Schnellnhuber  (1999). Climate change decision support and the tolerable windows approach, Environmental  Modeling and Assessment 4 217 234 pp. .  Brugge D., and V. Buchner (2011). Health effects of uranium: new research findings, Reviews on  Environmental Health 26 (DOI: 10.1515/REVEH.2011.032), (ISSN: 2191 0308, 0048 7554).  Bruvoll A., S.J. Magne, and H. Vennemo (2011). Reforming Environmentally Harmful Subsidies. How  to Counteract Distributional Impacts. TemaNord, Nordic Council of Ministers, Copenhagen. .  Available at: http://www.norden.org/en/publications/publikationer/2011 551.  84 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Budischak C., D. Sewell, H. Thomson, L. Mach, D.E. Veron, and W. Kempton (2013). Cost minimized  combinations of wind power, solar power and electrochemical storage, powering the grid up to  99.9% of the time, Journal of Power Sources 225 60 74 pp. (DOI: 10.1016/j.jpowsour.2012.09.054),  (ISSN: 0378 7753).  Bunn M., S. Fetter, J. Holdren, and B. van der Zwaan (2003). The Economics of Reprocessing vs.  Direct Disposal of Spent Nuclear Fuel. Project on Managing the Atom. Belfer Center for Science and  International Affairs, John F. Kennedy School of Government, Harvard University, Cambridge, MA.  Burgherr P., P. Eckle, and S. Hirschberg (2012). Comparative assessment of severe accident risks in  the coal, oil and natural gas chains, Reliability Engineering and System Safety 105 97 103 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84863987998&partnerID=40&md5=535fbc23cfa28af76f6d5fc814c41eec.  Burgherr P., P. Eckle, S. Hirschberg, and E. Cazzoli (2011). Final Report on Severe Accident Risks  Including Key Indicators. Paul Scherrer Institute, Villingen, Switzerland. . Available at:  http://gabe.web.psi.ch/pdfs/secure/SECURE_Deliverable_D5_7_2_Severe_Accident_Risks.pdf.  Burgherr P., S. Hirschberg, and E. Cazzoli (2008). Final Report on Quantification of Risk Indicators for  Sustainability Assessment of Future Electricity Supply Options. New Energy Externalities  Developments for Sustainability, Brussels, Belgium.  Burkhardt J.J., G. Heath, and E. Cohen (2012). Life Cycle Greenhouse Gas Emissions of Trough and  Tower Concentrating Solar Power Electricity Generation, Journal of Industrial Ecology 16 S93 S109  pp. (DOI: 10.1111/j.1530 9290.2012.00474.x), (ISSN: 1530 9290).  Burkhardt J.J., G.A. Heath, and C.S. Turchi (2011). Life Cycle Assessment of a Parabolic Trough  Concentrating Solar Power Plant and the Impacts of Key Design Alternatives, Environmental Science  & Technology 45 2457 2464 pp. .  Burnham A., J. Han, C.E. Clark, M. Wang, J.B. Dunn, and I. Palou Rivera (2012). Life cycle  greenhouse gas emissions of shale gas, natural gas, coal, and petroleum, Environmental Science and  Technology 46 619 627 pp. .  Burtraw D., J. Blonz, and M. Walls (2012). Social Safety Nets and US Climate Policy Costs, Climate  Policy 12 1 17 pp. .  Buscheck T.A., Y. Sun, M. Chen, Y. Hao, T.J. Wolery, W.L. Bourcier, B. Court, M.A. Celia, S. Julio  Friedmann, and R.D. Aines (2012). Active CO2 reservoir management for carbon storage: Analysis of  operational strategies to relieve pressure buildup and improve injectivity, International Journal of  Greenhouse Gas Control 6 230 245 pp. (DOI: 10.1016/j.ijggc.2011.11.007. ISSN: 1750 5836.).  Butler D. (2010). France digs deep for nuclear waste, Nature 466 804 805 pp. .  Byrne J., A. Zhou, B. Shen, and K. Hughes (2007). Evaluating the potential of small scale renewable  energy options to meet rural livelihoods needs: A GIS  and lifecycle cost based assessment of  Western China s options, Energy Policy 35 4391 4401 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 34248585361&partnerID=40&md5=4a339fa5ad37c5eff458b1f5a2695dd8.  Caduff M., M.A.J. Huijbregts, H.J. Althaus, A. Koehler, and S. Hellweg (2012). Wind power  electricity: The bigger the turbine, the greener the electricity?, Environmental Science and  85 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Technology 46 4725 4733 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84860454335&partnerID=40&md5=4d1a8548e3f31657fca9e0ee75800b40.  Cai W., C. Wang, J. Chen, and S. Wang (2011). Green economy and green jobs: Myth or reality? The  case of China s power generation sector, Energy Economics 36 277 285 pp. .  Calvin K., L. Clarke, V. Krey, G. Blanford, K. Jiang, M. Kainuma, E. Kriegler, G. Luderer, and P.R.  Shukla (2012). The role of Asia in mitigating climate change: Results from the Asia modeling  exercise, Energy Economics 34 S251 S260 pp. .  Canadell J.G., M.R. Raupach, and R.A. Houghton (2009). Anthropogenic CO2 emissions in Africa,  Biogeosciences 6 463 468 pp. .  Carbo M.C., R. Smit, B. van der Drift, and D. Jansen (2011). Bio energy with CCS (BECCS): Large  potential for BioSNG at low CO2 avoidance cost, Energy Procedia 4 2950 2954 pp. (DOI:  10.1016/j.egypro.2011.02.203), (ISSN: 1876 6102).  Cardis E., D. Krewski, M. Boniol, V. Drozdovitch, S. Darby, E.S. Gilbert, S. Akiba, J. Benichou, J.  Ferlay, S. Gandini, C. Hill, G. Howe, A. Kesminiene, M. Mosner, M. Sanchez, H. Storm, L. Voisin, and  P. Boyle (2006). Estimates of the Cancer Burden in Europe from Radioactive Fallout from the  Chernobyl Accident, International Journal of Cancer 119 1224 1235 pp. (DOI: 10.1002/ijc.22037).  Carey J.W., R. Svec, R. Grigg, J. Zhang, and W. Crow (2010). Experimental investigation of wellbore  integrity and CO2 Äibrine flow along the casing Äicement microannulus, International Journal of  Greenhouse Gas Control 4 272 282 pp. (DOI: 10.1016/j.ijggc.2009.09.018), (ISSN: 1750 5836).  Carey J.W., M. Wigand, S.J. Chipera, G. WoldeGabriel, R. Pawar, P.C. Lichtner, S.C. Wehner, M.A.  Raines, and J.G.D. Guthrie (2007). Analysis and performance of oil well cement with 30 years of CO2  exposure from the SACROC Unit, West Texas, USA, International Journal of Greenhouse Gas Control  1 75 85 pp. (DOI: Doi: 10.1016/s1750 5836(06)00004 1), (ISSN: 1750 5836).  Carraro C., and E. Massetti (2012). Beyond Copenhagen: a realistic climate policy in a fragmented  world, Climatic Change 110 (DOI: 10.1007/s10584 011 0125 6).  Casillas C.E., and D.M. Kammen (2010). Environment and development. The energy poverty climate  nexus, Science 330 1181 1182 pp. .  De Castro C., M. Mediavilla, L.J. Miguel, and F. Frechoso (2011). Global wind power potential:  Physical and technological limits, Energy Policy 39 6677 6682 pp. (DOI:  10.1016/j.enpol.2011.06.027), (ISSN: 0301 4215).  Cathles I., L. Brown, M. Taak, and A. Hunter (2012). A Commentary on  The Greenhouse gas  Footprint of Natural Gas in Shale Formations  by R.W. Howarth, R. Santoro, and Anthony Ingraffea,  Climate Change 113 525 535 pp. .  Cavanagh A.J., R.S. Haszeldine, and M.J. Blunt (2010). Open or closed? A discussion of the mistaken  assumptions in the Economides pressure analysis of carbon sequestration, Journal of Petroleum  Science and Engineering 74 107 110 pp. (DOI: 10.1016/j.petrol.2010.08.017).  Central Intelligence Agency (2011). The World Factbook. . Available at:  https://www.cia.gov/library/publications/the world factbook/fields/2117.html#as.  86 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Chalmers H., and J. Gibbins (2007). Initial evaluation of the impact of post combustion capture of  carbon dioxide on supercritical pulverised coal power plant part load performance, Fuel 86 2109 2123 pp. (DOI: 10.1016/j.fuel.2007.01.028), (ISSN: 0016 2361).  Chalmers, M. Lucquiaud, J. Gibbins, and M. Leach (2009). Flexible operation of coal fired power  plants with postcombustion capture of carbon dioxide, Journal of Environmental Engineering 135  449 pp. (DOI: 10.1061/(ASCE)EE.1943 7870.0000007), (ISSN: 07339372).  Chan E.Y.Y., and S.M. Griffiths (2010). The epidemiology of mine accidents in China, The Lancet 376  575 577 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 77956049158&partnerID=40&md5=67e5dc9aab2067a0d5b35f9ba8db397f.  Charpentier A.D., J.A. Bergerson, and H.L. MacLean (2009). Understanding the Canadian oil sands  industry s greenhouse gas emissions, Environmental Research Letters 4 . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 67650269786&partnerID=40&md5=234b9d5805675dea858bcbae040ff8c5.  Chen H., T.N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding (2009). Progress in electrical energy storage  system: A critical review, Progress in Natural Science 19 291 312 pp. (DOI:  10.1016/j.pnsc.2008.07.014), (ISSN: 1002 0071).  Chen H., H. Qi, R. Long, and M. Zhang (2012). Research on 10 year tendency of China coal mine  accidents and the characteristics of human factors, Safety Science 50 745 750 pp. (DOI:  10.1016/j.ssci.2011.08.040), (ISSN: 0925 7535).  Cheng Y.P., L. Wang, and X.L. Zhang (2011). Environmental impact of coal mine methane emissions  and responding strategies in China, International Journal of Greenhouse Gas Control 5 157 166 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 78650973741&partnerID=40&md5=dd17524e9d2471b14771b630cb577c57.  Cherian A. (2009). Bridging the Divide Between Poverty Reduction and Climate Change through  Sustainable and Innovative Energy Technologies. Environment and Energy Group, United Nations  Development Programme, New York, NY, USA.  Cherp A., A. Adenikinju, A. Goldthau, F. Hernandez, L. Hughes, J. Jansen, J. Jewell, M. Olshanskaya,  R. Soares de Oliveira, B. Sovacool, and S. Vakulenko (2012). Energy and Security. In: Global Energy  Assessment: Toward a Sustainable Future. N. Nakicenovic, A. Patwardhan, L. Gomez Echeverri, T.  Johansson, (eds.), Cambridge Univeristy Press, Laxenburg, Austria; Cambridge, UK & New York, USA  pp.325 384.  Cherp A., and J. Jewell (2011). The Three Perspectives on Energy Security: Intellectual History,  Disciplinary Roots and the Potential for Integration, Current Opinion in Environmental Sustainability  3 202 212 pp. (DOI: 10.1016/j.cosust.2011.07.001).  Cherp A., J. Jewell, V. Vinichenko, N. Bauer, and E. De Cian (2013). Global energy security under  different climate policies, GDP growth rates and fossil resource availabilities, Climatic Change (DOI:  10.1007/s10584 013 0950 x).  Cherubini F., R. Bright, and A. Strmman (2012). Site specific global warming potentials of biogenic  CO2 for bioenergy: Contributions from carbon fluxes and albedo dynamics, Environmental Research  Letters 7 (DOI: doi:10.1088/1748 9326/7/4/045902).  87 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Chester L. (2009). Conceptualising Energy Security and Making Explicit Its Polysemic Nature, Energy  Policy 38 887 895 pp. (DOI: 10.1016/j.enpol.2009.10.039).  Chidumayo E.N., and D.J. Gumbo (2013). The environmental impacts of charcoal production in  tropical ecosystems of the world: A synthesis, Energy for Sustainable Development 17 86 94 pp. .  Christidis A., C. Koch, L. Pottel, and G. Tsatsaronis (2012). The contribution of heat storage to the  profitable operation of combined heat and power plants in liberalized electricity markets, Energy 41  75 82 pp. .  Chum H., A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, G. Goss Eng, W. Lucht,  M. Mapako, O. Masera Cerutti, T. McIntyre, T. Minowa, and K. Pingoud (2011). Bioenergy. In: IPCC  Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S.  Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New  York, NY, USA.  Cisneros B.J., and T. Oki (2014). Chapter 3. Freshwater Resources. In: Climate Change 2013: Impacts,  Adaptation, and Vulnerability. Fifth Assessment Report of Working Group II. Cambridge Univeristy  Press, Cambridge, UK.  Clapp C., K. Karousakis, B. Buchner, and J. Chateau (2009). National and Sectoral GHG Mitigation  Potential: A Comparison Across Models. Organisation for Economic Co Operation and Development,  Paris.  Clastres C. (2011). Smart grids: Another step towards competition, energy security and climate  change objectives, Energy Policy 39 5399 5408 pp. .  Cohen S., H. Chalmers, M. Webber, and C. King (2011). Comparing post combustion CO2 capture  operation at retrofitted coal fired power plants in the Texas and Great Britain electric grids,  Environmental Research Letters 6 024001 pp. (DOI: 10.1088/1748 9326/6/2/024001), (ISSN: 1748 9326).  Cole I.S., P. Corrigan, S. Sim, and N. Birbilis (2011). Corrosion of pipelines used for CO2 transport in  CCS: Is it a real problem?, International Journal of Greenhouse Gas Control 5 749 756 pp. (DOI:  10.1016/j.ijggc.2011.05.010), (ISSN: 1750 5836).  Collier P., and A.J. Venables (2012). Greening Africa? Technologies, endowments and the latecomer  effect, Energy Economics 34 S75 S84 pp. .  Cook B., J. Gazzano, Z. Gunay, L. Hiller, S. Mahajan, A. Taskan, and S. Vilogorac (2012). The smart  meter and a smarter consumer: quantifying the benefits of smart meter implementation in the  United States, Chemistry Central Journal 6 1 16 pp. .  Cooke P., G. Kohlin, and W.F. Hyde (2008). Fuelwood, Forests and Community Management:  Evidence from Household Studies, Environment and Development Economics 13 103 135 pp. .  Cormier S., S. Wilkes, and L. Zheng (2013). Relationship of land use and elevated ionic strength in  Appalachian watersheds, Environ Toxicol Chem 32 296 303 pp. (DOI: doi: 10.1002/etc.2055).  Corner A., D. Venables, A. Spence, W. Poortinga, C. Demski, and N. Pidgeon (2011). Nuclear power,  climate change and energy security: Exploring British public attitudes, Energy Policy 39 4823 4833  pp. .  88 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Corry O., and D. Reiner (2011). Evaluating Global Carbon Capture and Storage (CCS) Communication  Materials: A Survey of Global CCS Communications. Cambridge   Judge Business School. 46 pp.  Available at: http://www.globalccsinstitute.com/publications/evaluating global ccs communications.  Corsten M., A. Ramírez, L. Shen, J. Koornneef, and A. Faaij (2013). Environmental impact  assessment of CCS chains   Lessons learned and limitations from LCA literature, International Journal  of Greenhouse Gas Control 13 59 71 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84872421378&partnerID=40&md5=1aed2b9726e322bc529253388cdd0749.  Cossent R., L. Olmos, T. Gómez, C. Mateo, and P. Frías (2011). Distribution network costs under  different penetration levels of distributed generation, European Transactions on Electrical Power 21  1869 1888 pp. (DOI: 10.1002/etep.503), (ISSN: 1546 3109).  Costantini V., F. Gracceva, A. Markandya, and G. Vicini (2007). Security of energy supply:  Comparing scenarios from a European Perspective, Energy Policy 35 210 226 pp. .  Cozzani V., M. Campedela, E. Renni, and E. Krausmann (2010). Industrial accidents triggered by  flood events: Analysis of past accidents, Journal of Hazardous Materials 175 501 509 pp. .  Creutzig F.S., and D.M. Kammen (2011). The Post Copenhagen Roadmap Towards Sustainability:  Differentiated Geographic Approaches, Integrated Over Goals, Innovations: Technology, Governance,  Globalization 4 301 321 pp. .  Crow W., J.W. Carey, S. Gasda, D. Brian Williams, and M. Celia (2010). Wellbore integrity analysis of  a natural CO2 producer, International Journal of Greenhouse Gas Control 4 186 197 pp. (ISSN:  17505836 (ISSN)).  CRS (2012). Closing Yucca Mountain: Litigation Associated with Attempts to Abandon the Planned  Nuclear Waste Repository. Congressional Research Service, Washington, DC.  Cummins W.E., M.M. Corletti, and T.L. Schulz (2003). Westinghouse AP1000 Advanced Passive  Plant, Proceedings of International Congress on Advances in Nuclear Power Plants (ICAPP  03) Paper  3234 Cordoba, Spain.  Cutter E., C.W. Woo, F. Kahrl, and A. Taylor (2012). Maximizing the Value of Responsive Load, The  Electricity Journal 25 6 16 pp. .  D Agostino A.L., B.K. Sovacool, and M.J. Bambawale (2011). And then what happened? A  retrospective appraisal of China s Renewable Energy Development Project (REDP), Renewable  energy 36 3154 3165 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79957827651&partnerID=40&md5=86b4ff42ed6acd6e3a601a2778c05c31.  Dahl E.L., K. Bevanger, T. Nygard, E. Rskaft, and B.G. Stokke (2012). Reduced breeding success in  white tailed eagles at Smla windfarm, western Norway, is caused by mortality and displacement,  Biological Conservation 145 79 85 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84856235825&partnerID=40&md5=482f29339d3c94ae1e4000559314cd31.  Dahowski R.T., C. Davidson, and J. Dooley (2011). Comparing large scale CCS deployment potential  in the USA and China: A detailed analysis based on country specific CO2 transport & storage cost  89 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    curves, Energy Procedia 4 2732 2739 pp. (DOI: DOI: 10.1016/j.egypro.2011.02.175), (ISSN: 1876 6102).  Dahowski R.T., C.L. Davidson, X. Li, and N. Wei (2012). A $70/tCO2 greenhouse gas mitigation  backstop for China s industrial and electric power sectors: Insights from a comprehensive CCS cost  curve, International Journal of Greenhouse Gas Control 11 73 85 pp. .  Dahowski R., J. Dooley, C. Davidson, S. Bachu, and N. Gupta (2005). Building the Cost Curves for  CO2 Storage: North America. IEA Greenhouse Gas R&D Programme, Cheltenham, UK.  Dai A. (2011). Drought under global warming: a review, Wiley Interdisciplinary Reviews: Climate  Change 2 45 65 pp. .  Dale M., and S.M. Benson (2013). Energy Balance of the Global Photovoltaic (PV) Industry   Is the PV  Industry a Net Electricity Producer?, Environmental Science & Technology 47 3482 3489 pp. (DOI:  10.1021/es3038824), (ISSN: 0013 936X).  Dale A.T., V. Khanna, R.D. Vidic, and M.M. Bilec (2013). Process based life cycle assessment of  natural gas from the marcellus shale, Environmental Science and Technology 47 5459 5466 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84878225327&partnerID=40&md5=fb3390ca2c94400b0e0ee8de6299ae0f.  Damerau K., K. Williges, A.G. Patt, and P. Gauché (2011). Costs of reducing water use 326 of  concentrating solar power to sustainable levels: Scenarios for North Africa., Energy Policy 39 4391 4398 pp. .  Davis S.J., K. Caldeira, and H.D. Matthews (2010). Future CO2 emissions and climate change from  existing energy infrastructure, Science 329 1330 3 pp. (DOI: 10.1126/science.1188566), (ISSN: 1095 9203 (Electronic) 0036 8075 (Linking)).  Deane J.P., B.P. Gallachóir, and E.J. McKeogh (2010). Techno economic review of existing and new  pumped hydro energy storage plant, Renewable and Sustainable Energy Reviews 14 1293 1302 pp.  (DOI: 10.1016/j.rser.2009.11.015), (ISSN: 1364 0321).  Decarre S., J. Berthiaud, N. Butin, and J. L. Guillaume Combecave (2010). CO2 maritime  transportation, International Journal of Greenhouse Gas Control 4 857 864 pp. (DOI: DOI:  10.1016/j.ijggc.2010.05.005), (ISSN: 1750 5836).  Delina L.L., and M. Diesendorf (2013). Is wartime mobilisation a suitable policy model for rapid  national climate mitigation?, Energy Policy 58 371 380 pp. .  Delucchi M., and M. Jacobson (2011). Providing all global energy with wind, water, and solar power,  Part II: Reliability, system and transmission costs, and policies, Energy Policy 39 1170 1190 pp. (DOI:  16/j.enpol.2010.11.045), (ISSN: 0301 4215).  Demarty M., and J. Bastien (2011). GHG emissions from hydroelectric reservoirs in tropical and  equatorial regions: Review of 20 years of CH 4 emission measurements., Energy Policy 39 4197 4206  pp. .  Deng J., Y. Xu, H. Jiang, and S. Hu (2013). Safe and effective production of coal mine promoted by  coalbed methane reclamation, Advanced Materials Research 616 618 310 315 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84871877312&partnerID=40&md5=217e31c02bcddd08098b40dcb9790525.  90 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Denholm P., and M. Hand (2011). Grid flexibility and storage required to achieve very high  penetration of variable renewable electricity, Energy Policy 39 1817 1830 pp. (DOI:  16/j.enpol.2011.01.019), (ISSN: 0301 4215).  Denholm P., and R. Sioshansi (2009). The value of compressed air energy storage with wind in  transmission constrained electric power systems, Energy Policy 37 3149 3158 pp. .  Depuru S.S.S.R., L. Wang, and V. Devabhaktuni (2011). Smart meters for power grid: Challenges,  issues, advantages and status, Renewable and Sustainable Energy Reviews 15 2736 2742 pp. .  DERA (2011). Kurzstudie   Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2011.  Deutsche Rohstoff Agentur (DERA), Bundesanstalt fuer Geowissenschaften und Rohstoffe. 92 pp.  Available at: http://www.bgr.bund.de/DE/Themen/Energie/Downloads/Energiestudie Kurzf 2011.pdf?__blob=publicationFile&v=3.  Díaz P., C.A. Arias, M. Gomez Gonzalez, D. Sandoval, and R. Lobato (2013). Solar home system  electrification in dispersed rural areas: A 10 year experience in Jujuy, Argentina, Progress in  Photovoltaics: Research and Applications 21 297 307 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84876670694&partnerID=40&md5=0ced5c8b1b981a40d233b22f1a4ad6ec.  Van Dingenen R., F.J. Dentener, F. Raes, M.C. Krol, L. Emberson, and J. Cofala (2009). The global  impact of ozone on agricultural crop yields under current and future air quality legislation,  Atmospheric Environment 43 604 618 pp. (DOI: 10.1016/j.atmosenv.2008.10.033), (ISSN: 1352 2310).  DiPietro P., and P. Balash (2012). A Note on Sources of CO2 Supply for Enhanced Oil Recovery  Opperations, SPE Economics & Management 4 69 74 pp. .  Don A., B. Osborne, A. Hastings, U. Skiba, M. Carter, J. Drewer, H. Flessa, A. Freibauer, N. Hyvönen,  M. Jones, G. Lanigan, Ü. Mander, A. Monti, S. Nijakou Djomo, J. Valentine, K. Walter, W. Zegada Lizarazu, and T. Zenone (2012). Land use change to bioenergy production in Europe: implications for  the greenhouse gas balance and soil carbon, GCB Bioenergy 4 372 391 pp. .  Dones R., C. Bauer, R. Bolliger, B. Burger, M. Faist, Emmenegger, R. Frischknecht, T. Heck, N.  Jungbluth, and A. Röder (2007). Life Cycle Inventories of Energy Systems: Results for Current Systems  in Switzerland and Other UCTE Countries. Swiss Centre for Life Cycle Inventories, Dübendorf, CH.  Dones R., T. Heck, M.F. Emmenegger, and N. Jungbluth (2005). Life cycle inventories for the nuclear  and natural gas energy systems, and examples of uncertainty analysis, International Journal of Life  Cycle Assessment 10 10 23 pp. . Available at: ://000226379900003.  Doney S.C. (2010). The Growing Human Footprint on Coastal and Open Ocean Biogeochemistry,  Science 328 1512 1516 pp. (DOI: 10.1126/science.1185198), (ISSN: 0036 8075, 1095 9203).  Dooley J.J. (2013). Estimating the supply and demand for deep geologic CO2 storage capacity over  the course of the 21st Century: A meta analysis of the literature, Energy Procedia 37 5141 5150 pp. .  Dooley J., R. Dahowski, and C. Davidson (2011). CO2 driven Enhanced Oil Recovery as a Stepping  Stone to What? An MIT Energy Initiative and Bureau of Economic Geology at UT Austin Symposium.  In: Role of Enhanced Oil Recovery in Accelerating the Deployment of Carbon Capture and Storage. E.J.  Moniz, S.W. Tinker, (eds.), MIT Press, Cambridge, MA pp.196.  91 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Dooley J., C. Trabucchi, and L. Patton (2010). Design considerations for financing a national trust to  advance the deployment of geologic CO2 storage and motivate best practices, International Journal  of Greenhouse Gas Control 4 381 387 pp. (DOI: DOI: 10.1016/j.ijggc.2009.09.009), (ISSN: 1750 5836).  Dung E., S. Leonardo, and T. Agusomu (2008). The effect of gas flaring on crops in the Niger Delta,  Nigeria, GeoJournal 73 297 305 pp. .  Dunn B., H. Kamath, and J. Tarascon (2011). Electrical energy storage for the grid: A battery of  choices, Science 334 928 935 pp. .  Eckle P., and P. Burgherr (2013). Bayesian Data Analysis of Severe Fatal Accident Risk in the Oil  Chain, Risk Analysis 33 146 160 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84872415471&partnerID=40&md5=6589ab7e0beb90ef0f27a497eea47f1b.  Edenhofer O., L. Hirth, B. Knopf, M. Pahle, S. Schloemer, E. Schmid, and F. Ueckerdt (2013). On the  economics of renewable energy sources, Energy Economics 40 S12 S23 pp. .  Edmonds J.A., P.W. Luckow, K.V. Calvin, M.A. Wise, J.J. Dooley, G.P. Kyle, S.H. Kim, P.L. Patel, and  L.E. Clarke (2013). Can radiative forcing be limited to 2.6 Wm 2 without negative emissions from  bioenergy AND CO2 capture and storage?, Climate Change 118 29 43 pp. (DOI: 10.1007/s10584 012 0678 z).  Edmonds J., T. Wilson, M. Wise, and J. Weyant (2006). Electrification of the Economy and CO2  Emissions Mitigation, Journal of Environmental Economics and Policy Studies 7 175 203 pp. .  EIA (2011). Retrospective Review: Annual Energy Outlook 2010. US Department of Energy, Energy  Information Administration, Washington, D.C.  EIA (2012). Annual Energy Outlook 2012. With Projections to 2035. U.S. Energy Information  Administration, Office of Integrated and International Energy Analysis, Washington, D.C. Available at:  http://www.eia.gov/forecasts/archive/aeo12/index.cfm.  Eiken O., P. Ringrose, C. Hermanrud, B. Nazarian, T.A. Torp, and L. Hier (2011). Lessons learned  from 14 years of CCS operations: Sleipner, In Salah and Snohvit, Energy Procedia 4 5541 5548 pp.  (DOI: 10.1016/j.egypro.2011.02.541), (ISSN: 1876 6102).  Einsiedel E.F., A.D. Boyd, J. Medlock, and P. Ashworth (2013). Assessing socio technical mindsets:  Public deliberations on carbon capture and storage in the context of energy sources and climate  change, Energy Policy 53 149 158 pp. .  Ellerman A.D., F.J. Convery, and C. de Perthuis (2010). Pricing Carbon: The European Union  Emissions Trading Scheme. Cambridge University Press, Cambridge.  Elliot T., and M. Celia (2012). Potential restrictions for CO2 sequestration sites due to shale and tight  gas production, Environmental Science and Technology 46 1 16 pp. (DOI: 10.1021/es2040015).  Elliott Campbell J., J.F. Fox, and P.M. Acton (2012). Terrestrial carbon losses from mountaintop coal  mining offset regional forest carbon sequestration in the 21st century, Environmental Research  Letters 7 . Available at: http://www.scopus.com/record/display.url?eid=2 s2.0 84871840367&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a2.  92 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Elliston B., M. Diesendorf, and I. MacGill (2012). Simulations of scenarios with 100% renewable  electricity in the Australian National Electricity Market, Energy Policy 45 606 613 pp. (DOI:  10.1016/j.enpol.2012.03.011), (ISSN: 0301 4215).  Den Elzen M., A. Hof, and M. Roelfsema (2011). The emissions gap between the Copenhagen  pledges and the 2 8C climate goal: Options for closing and risks that could widen the gap, Global  Environmental Change 21 733 743 pp. (DOI: 10.1016/j.gloenvcha.2011.01.006).  Emberson L., K. He, J. Rockström, M. Amann, J. Barron, R. Corell, S. Feresu, R. Haeuber, K. Hicks,  F.X. Johnson, A. Karlqvist, Z. Klimont, I. Mylvakanam, W.W. Song, H. Vallack, and Z. Qiang (2012).  Chapter 3   Energy and Environment. In: Global Energy Assessment   Toward a Sustainable  Future.Cambridge University Press, Cambridge, UK and New York, NY, USA and the International  Institute for Applied Systems Analysis, Laxenburg, Austria pp.191 254(ISBN: 9781 10700 5198  hardback 9780 52118 2935 paperback).  Enerdata (2013). Global Energy Statistical Yearbook. 2013. Enerdata, Grenoble, France. . Available  at: http://www.enerdata.net/enerdatauk/press and publication/publications/world energy statistics supply and demand.php.  Engemann K.M., and M.T. Owyang (2010). Unconventional Oil  Stuck in a Rock and a Hard Place, The  Regional Economist July 14 15 pp. . Available at:  http://www.stlouisfed.org/publications/pub_assets/pdf/re/2010/c/oil.pdf.  Eom J., J. Edmonds, V. Krey, N. Johnson, K. Riahi, and D. van Vuuren (2013). The Impact of Near term Climate Policy Choices on Technology and Emissions Transition Pathways, Technological  Forecasting & Social Change (DOI: http://dx.doi.org/10.1016/j.techfore.2013.09.017).  EPRI (2003). High Temperature Gas Cooled Reactors for the Production of Hydrogen: An Assessment  in Support of the Hydrogen Economy. Electric Power Research Institute (EPRI), Palo Alto, California.  Epstein P.R., J.J. Buonocore, K. Eckerle, M. Hendryx, B.M. Stout III, R. Heinberg, R.W. Clapp, B.  May, N.L. Reinhart, M.M. Ahern, S.K. Doshi, and L. Glustrom (2010). Full cost accounting for the life  cycle of coal, Ann. N.Y. Acad. Sci. 1219 73 98 pp. .  Esposito A., and S.M. Benson (2012). Evaluation and development of options for remediation of Co2  leakage into groundwater aquifers from geologic carbon storage, International Journal of  Greenhouse Gas Control 7 62 73 pp. .  EU Commission (2012). COMMUNICATION FROM THE COMMISSION, Guidelines on Certain State Aid  Measures in the Context of the Greenhouse Gas Emission Allowance Trading Scheme Post 2012. EU  Commission, Brussels, Belgium.  European Copper Institute (1999). The Scope for Energy Saving in the EU through the Use of Energy Efficient Electricity Distribution Transformers. European Copper Institute and European Commission  Directorate General for Energy DGXVII, Brussels, Belgium. . Available at:  http://www.seai.ie/Archive1/Files_Misc/REP009THERMIEFinalreport.pdf.  Fairlie I., and A. Körblein (2010). Review of epidemiology studies of childhood leukaemia near  nuclear facilities: Commentary on Laurier et al, Radiation Protection Dosimetry 138 194 195 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 77950199313&partnerID=40&md5=ac27757a0c9916dcc674bb04633f9ce8.  93 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Fankhauser S., F. Sehlleier, and N. Stern (2008). Climate change, innovation and jobs, Climate Policy  8 421 429 pp. .  FAO (2010). What Woodfuels Can Do to Mitigate Climate Change. Food and Agriculture Organization  of the United Nations, Rome, Italy, (ISBN: 978 92 5 106653 9). .  FAO (2011). Highlights on Wood Charcoal: 2004 2009. Food and Agriculture Organization of the  United Nations. . Available at: http://faostat.fao.org/Portals/_faostat/documents/pdf/  wood%20charcoal.pdf.  Farina M. (2011). Recent Global Trends and Policy Considerations. GE Energy. . Available at:  http://www.genewscenter.com/ImageLibrary/DownloadMedia.ashx?MediaDetailsID=3691.  Figueroa J.D., T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava (2008). The U.S. Department of  Energy s Carbon Sequestration Program . Advances in CO2 capture technology, International Journal  of Greenhouse Gas Control 2 9 20 pp. .  Fingerman K.R., G. Berndes, S. Orr, B.D. Richter, and P. Vugteveen (2011). Impact assessment at  the bioenergy water nexus, Biofuels, Bioproducts and Biorefining 5 375 386 pp. (DOI:  10.1002/bbb.294), (ISSN: 1932104X).  Finley Brook M., and C. Thomas (2010). From malignant neglect to extreme intervention: treatment  of displaced indigenous populations in two large hydro projects in Panama, Water Altern. 3 269 290  pp. .  Fischedick M., R. Schaeffer, A. Adedoyin, M. Akai, T. Bruckner, L. Clarke, V. Krey, I. Savolainen, S.  Teske, D. Ürge Vorsatz, and R. Wright (2011). Mitigation Potential and Costs. In: IPCC Special Report  on Renewable Energy Sources and Climate Change Mitigation. O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C.  von Stechow, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.  Fleishman L.A., W.B. De Bruin, and M.G. Morgan (2010). Informed Public Preferences for Electricity  Portfolios with CCS and Other Low Carbon Technologies, Risk Analysis 30 1399 1410 pp. (DOI:  10.1111/j.1539 6924.2010.01436.x), (ISSN: 1539 6924).  Forster P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C.  Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R.V. Dorland (2007). Chapter 2.  Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007   The  Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the  Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt,  M.M.. Tignor, H.L. Miller, (eds.), Cambridge University Press, New York, NY. Available at:  file://localhost/Users/rjp/literature/i/IPCC%20AR4/ar4 wg1 chapter2.pdf.  Frankhauser S., F. Sehlleier, and N. Stern (2008). Climate change, innovation and jobs, Climate  Policy 8 421 429 pp. .  Fripp M. (2011). Greenhouse Gas Emissions from Operating Reserves Used to Backup Large Scale  Wind Power, Environmental Science & Technology 45 9405 9412 pp. (DOI: 10.1021/es200417b).  Frondel M., N. Ritter, C.M. Schmidt, and C. Vance (2010). Economic impacts from the promotion of  renewable energy technologies: The German experience, Energy Policy 38 4048 4056 pp. .  94 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Fthenakis V., and A. Anctil (2013). Direct te mining: Resource availability and impact on cumulative  energy demand of CdTe PV life cycles, IEEE Journal of Photovoltaics 3 433 438 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84871746775&partnerID=40&md5=bc385e07cc93b1ea402042635e9491c1.  Fthenakis V., and H.C. Kim (2010). Life cycle uses of water in U.S. electricity generation, Renewable  and Sustainable Energy Reviews 14 2039 2048 pp. (DOI: 10.1016/j.rser.2010.03.008), (ISSN: 1364 0321).  Fthenakis V.M., H.C. Kim, and E. Alsema (2008). Emissions from Photovoltaic Life Cycles,  Environmental Science & Technology 42 2168 2174 pp. (DOI: 10.1021/es071763q), (ISSN: 0013 936X, 1520 5851).  Furchtgott Roth D. (2012). The elusive and expensive green job, Energy Economics 34 43 52 pp. .  Gagnon, Luc, Hall, Charles A.S., and Brinker, Lysle (2009). A Preliminary Investigation of Energy  Return on Energy Investment for Global Oil and Gas Production, Energies 2 490 503 pp. (DOI:  doi:10.3390/en20300490).  Gahleitner G. (2013). Hydrogen from renewable electricity: An international review of power to gas  pilot plants for stationary applications, International Journal of Hydrogen Energy 38 2039 2061 pp.  (DOI: 10.1016/j.ijhydene.2012.12.010), (ISSN: 0360 3199).  Gale J., and J. Davison (2004). Transmission of CO2 safety and economic considerations, Energy 29  1319 1328 pp. (DOI: 10.1016/j.energy.2004.03.090), (ISSN: 0360 5442).  Galloway J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P.  Seitzinger, and M.A. Sutton (2008). Transformation of the Nitrogen Cycle: Recent Trends, Questions,  and Potential Solutions, Science 320 889 892 pp. (DOI: 10.1126/science.1136674), (ISSN: 0036 8075,  1095 9203).  Garvin J.C., C.S. Jennelle, D. Drake, and S.M. Grodsky (2011). Response of raptors to a windfarm,  Journal of Applied Ecology 48 199 209 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 78650947882&partnerID=40&md5=19b7713a1d723460adeb4a0800a9b3e9.  Gaus I. (2010). Role and impact of CO2 rock interactions during CO2 storage in sedimentary rocks,  International  Journal of Greenhouse Gas Control 4 73 89 pp. (DOI:  http://dx.doi.org/10.1016/j.ijggc.2009.09.015).  GEA (2012). Global Energy Assessment (Rogner, R.F. Aguilera, C.L. Archer, R. Bertani, S.C.  Bhattacharya, M.B. Dusseault, L. Gagnon, and V. Yakushev, Eds.). Cambridge University Press and  International Institute for Applied Systems Analysis, Cambridge, UK & New York, NY, Vienna, Austria.  Gelfand I., R. Sahajpal, X. Zhang, R.C. Izaurralde, K. Gross, and G.P. Robertson (2013). Sustainable  bioenergy production from marginal lands in the US Midwest, Nature 493 514 517 pp. .  Geras kin S., T. Evseeva, and A. Oudalova (2013). Effects of long term chronic exposure to  radionuclides in plant populations, Journal of Environmental Radioactivity 121 22 32 pp. . Available  at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84876735275&partnerID=40&md5=750da9a24481103c23f3e7ab9a43491b.  95 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    GGFR, and World Bank (2011). Improving Energy Efficiency and Mitigating Impact on Climate  Change. Global Gas Flaring Reduction Partnership and the World Bank, Washington, D.C.  GIF (2002). A Technology Roadmap for Generation IV Nuclear Energy Systems. US DOE Nuclear  Energy Research Advisory Committee and the Generation IV International Forum.  GIF (2009). GIF R&D Outlook for Generation IV Nuclear Energy Systems. OECD Nuclear Energy  Agency, Paris, France.  Gilfillan S.M.V., B.S. Lollar, G. Holland, D. Blagburn, S. Stevens, M. Schoell, M. Cassidy, Z. Ding, Z.  Zhou, G. Lacrampe Couloume, and C.J. Ballentine (2009). Solubility trapping in formation water as  dominant CO2 sink in natural gas fields, Nature 458 614 618 pp. (DOI: 10.1038/nature07852), (ISSN:  0028 0836).  Giroux J. (2008). Turmoil in the Delta: trends and implications, Perspectives on Terrorism 2 11 22  pp. .  Global CCS Institute (2011). The Global Status of CCS: 2011. Global CCS Institute, Canberra, Australia.  156 pp. Available at: www.globalccsinstitute.com/resources/publications/global status ccs 2011.  GNESD (2010). Achieving Energy Security in Developing Countries. Global Network on Energy for  Sustainable Development, Roskilde, Denmark.  Goedbloed J. (2011). Snapping emissions, Hydrocarbon Engineering 16 39 42 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 80053340973&partnerID=40&md5=7d24c832f4441ecbcdef020480b05cb5.  Van Goethem T.M.W.J., L.B. Azevedo, R. van Zelm, F. Hayes, M.R. Ashmore, and M.A.J. Huijbregts  (2013). Plant Species Sensitivity Distributions for ozone exposure, Environmental Pollution 178 1 6  pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84875208139&partnerID=40&md5=6d40e84c48fb09ad14a2a8c218f6025f.  Gohlke J., R. Thomas, A. Woodward, D. Campbell Lendrum, A. Prüss Üstün, S. Hales, and C. Portier  (2011). Estimating the Global Public Health Implications of Electricity and Coal Consumption,  Environmental Health Perspectives 119 821 826 pp. (DOI: 10.1289/ehp.1002241).  Goldberg S., and R. Rosner (2011). Nuclear Reactors: Generation to Generation. American Academy  of Arts & Sciences, Cambridge, MA.  Goldemberg J., S.T. Coelho, and P. Guardabassi (2008). The sustainability of ethanol production  from sugarcane, Energy Policy 36 2086 2097 pp. (DOI: 10.1016/j.enpol.2008.02.028), (ISSN: 0301 4215).  Goldstein B., G. Hiriart, R. Bertani, C. Bromley, L. Guitiérrez Negrín, E. Huenges, and H. Muraoka  (2011). Geothermal Energy. In: IPCC Special Report on Renewable Energy Sources and Climate  Change Mitigation. O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner,  T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow, A. Ragnarsson, J. Tester, V. Zui,  (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.  Goodman A., A. Hakala, G. Bromhal, D. Deel, T. Rodosta, S. Frailey, M. Small, D. Allen, V. Romanov,  J. Fazio, N. Huerta, D. McIntyre, B. Kutchko, and G. Guthrie (2011). U.S. DOE methodology for the  development of geologic storage potential for carbon dioxide at the national and regional scale,  96 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    International Journal of Greenhouse Gas Control 5 952 965 pp. (DOI: 10.1016/j.ijggc.2011.03.010),  (ISSN: 1750 5836).  Graedel T.E. (2011). On the Future Availability of the Energy Metals, Annual Review of Materials  Research 41 323 335 pp. .  Grainger C.A., and C.D. Kolstad (2010). Who Pays a Price on Carbon?, Environmental and Resource  Economics 46 359 376 pp. . Available at: http://link.springer.com/article/10.1007/s10640 010 9345 x#page 1.  Green R., and N. Vasilakos (2011). The Long Term Impact of Wind Power on Electricity Prices and  Generating Power, SSRN Scholarly Paper ID 1851311 . Available at:  http://papers.ssrn.com/abstract=1851311.  Greenberg M. (2013a). Nuclear Waste Management, Nuclear Power, and Energy Choices. Public  Preferences, Perceptions, and Trust. Springer, London; New York, (ISBN: 9781447142317   1447142314). .  Greenberg M. (Ed.) (2013b). Managing the Nuclear Legacies. Lecture Notes in Energy. In: Nuclear  Waste Management, Nuclear Power, and Energy Choices: Public Preferences, Perceptions, and Trust.  Springer, Berlin pp.1 14(ISBN: 978 1 4471 4231 7).  Greenblatt J., J. Long, and B. Hannegan (2012). California s Energy Future   Electricity from  Renewable Energy and Fossil Fuels with Carbon Capture and Sequestration. California Council of  Science and Technology. . Available at: http://ccst.us/publications/2012/2012ccs.pdf.  Van Grinsven H.J.M., M. Holland, B.H. Jacobsen, Z. Klimont, M.A. Sutton, and W. Jaap Willems  (2013). Costs and benefits of nitrogen for europe and implications for mitigation, Environmental  Science and Technology 47 3571 3579 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84876235709&partnerID=40&md5=0354bd4b11466e40b60ab65d7ab78a00.  Grodsky S.M., M.J. Behr, A. Gendler A., D. Drake, B.D. Dieterle, R.J. Rudd, and N.L. Walrath (2011).  Investigating the causes of death for wind turbine associated bat fatalities, Journal of Mammalogy  92 917 925 pp. .  Grubb M., R. Betz, and K. Neuhoff (Eds.) (2006). National Allocation Plans in the EU Emissions  Trading Scheme: Lessons and Implications for Phase II. Earthscan, London.  Grubb M., K. Neuhoff, and J. Hourcade (2013). Planetary Economics: The Three Domains of  Sustainable Energy Development. Earthscan / Taylor & Francis, London.  Guilford M.C., C.A.S. Hall, P. O Connor, and C. Cleveland. A new long term assessment of energy  return on investment (EROI) for U.S. oil and gas discovery and production., Sustainability 3 1866 1887 pp. .  Guivarch C., and S. Hallegatte (2011). Existing infrastructure and the 2°C target, Climatic Change 109  801 805 pp. (DOI: 10.1007/s10584 011 0268 5), (ISSN: 0165 0009 1573 1480).  Guruswamy L. (2011). Energy poverty, Annual Review of Environment and Resources 36 139 161 pp.  (DOI: 10.1146/annurev environ 040610 090118).  97 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Hagen M., E. Polman, A. Myken, J. Jensen, O. Jönsson, A. Biomil, and A. Dahl (2001). Adding Gas  from Biomass to the Gas Grid: Contract No: XVII/4.1030/Z/99 412. . Available at:  http://gasunie.eldoc.ub.rug.nl/root/2001/2044668/.  Haller M., S. Ludig, and N. Bauer (2012). Decarbonization scenarios for the EU and MENA power  system: Considering spatial distribution and short term dynamics of renewable generation, Energy  Policy 47 282 290 pp. (DOI: 10.1016/j.enpol.2012.04.069), (ISSN: 0301 4215).  Halsnaes K., A. Garg, J. Christensen, H. Ystanes Fyn, M. Karavai, E. La Rovere, M. Bramley, X. Zhu,  C. Mitchell, J. Roy, K. Tanaka, H. Katayama, C. Mena, I. Obioh, I. Bashmakov, S. Mwakasonda, M. K. Lee, M. Vinluan, Y.J. Huang, and L. Segafredo (2012). Mitigation and Adaptation Strategies for  Global Change . Climate change mitigation policy paradigms national objectives and alignments,  Mitigation and Adaptation Strategies for Global Change (DOI: 10.1007/s11027 012 9426 y).  Halsnaes K., P. Shukla, D. Ahuja, G. Akumu, R. Beale, J. Edmonds, C. Gollier, A. Grubler, M. Ha  Duong, A. Markandya, M. McFarland, T. Sugiyama, and A. Villavicencio (2007). Framing Issues. In:  Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report  of the Intergovernmental Panel on Climate change [B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A.  Meyer (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,.  Hanafiah M.M., M.A. Xenopoulos, S. Pfister, R.S.E.W. Leuven, and M.A.J. Huijbregts (2011).  Characterization Factors for Water Consumption and Greenhouse Gas Emissions Based on  Freshwater Fish Species Extinction, Environmental Science & Technology 45 5272 5278 pp. (DOI:  10.1021/es1039634), (ISSN: 0013 936X).  Hasan M.M.F., I.A. Karimi, and C.M. Avison (2011). Preliminary synthesis of fuel gas networks to  conserve energy and preserve the environment, Industrial and Engineering Chemistry Research 50  7414 7427 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79958791351&partnerID=40&md5=94863df106afcb12e3bcef728dea9ded.  Hashmi M., S. Hänninen, and K. Mäki (2013). Developing smart grid concepts, architectures and  technological demonstrations worldwide   A literature survey, International Review of Electrical  Engineering 8 236 252 pp. .  Hassan A., and R. Kouhy (2013). Gas flaring in Nigeria: Analysis of changes and its consequent  carbon emission and reporting, Accounting Forum 37 124 134 pp. .  Heinävaara S., S. Toikkanen, K. Pasanen, P.K. Verkasalo, P. Kurttio, and A. Auvinen (2010). Cancer  incidence in the vicinity of Finnish nuclear power plants: An emphasis on childhood leukemia, Cancer  Causes and Control 21 587 595 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 77953291916&partnerID=40&md5=d5acd53679a23cc72fe40b01ca4b962d.  Held H., and O. Edenhofer (2009). CCS Bonds as a superior instrument to incentivize secure carbon  sequestration, Energy Procedia 1 4559 4566 pp. .  Heptonstall (2007). A Review of Electricity Unit Cost Estimates. UK Energy Research Centre, London,  UK.  Hernández J.C., A. Medina, and F. Jurado (2008). Impact comparison of PV system integration into  rural and urban feeders, Energy Conversion and Management 49 1747 1765 pp. (DOI:  10.1016/j.enconman.2007.10.020), (ISSN: 0196 8904).  98 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Hertwich E.G. (2013). Addressing Biogenic Greenhouse Gas Emissions from Hydropower in LCA,  Environmental Science & Technology 47 9604 9611 pp. (DOI: 10.1021/es401820p), (ISSN: 0013 936X).  Hertwich E.G., M. Aaberg, B. Singh, and A.H. Stromman (2008). Life cycle assessment of carbon  dioxide capture for enhanced oil recovery, Chinese Journal of Chemical Engineering 16 343 353 pp.  (ISSN: 1004 9541).  Hertwich E.G., E. van der Voet, M. Huijbregts, S. Sangwon, A. Tukker, P. Kazmierczyk, M. Lenzen, J.  McNeely, and Y. Moriguchi (2010). Environmental Impacts of Consumption and Production: Priority  Products and Materials. UNEP, Paris.  Herzog H. (2011). Scaling up carbon dioxide capture and storage: From megatons to gigatons, Energy  Economics 33 597 604 pp. (DOI: 10.1016/j.eneco.2010.11.004), (ISSN: 0140 9883).  Herzog H., K. Smekens, P. Dadhich, J. Dooley, Y. Fujii, O. Hohmeyer, and K. Riahi (2005). Cost and  economic potential. In: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by  Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de  Coninck, M. Loos, and L. A. Meyer (eds.)].Cambridge, UK and New York, NY, USA pp.442. Available at:  http://www.ipcc.ch/publications_and_data/_reports_carbon_dioxide.htm.  Von Hippel F., M. Bunn, A. Diakov, M. Ding, R. Goldston, T. Katsuta, M.V. Ramana, T. Suzuki, and Y.  Suyuan (2012). Chapter 14   Nuclear Energy. In: Global Energy Assessment   Toward a Sustainable  Future. Cambridge University Press, Cambridge pp.1069 1130.  Von Hippel D., P. Hayes, J. Kang, and T. Katsuta (2011). Future regional nuclear fuel cycle  cooperation in East Asia: Energy security costs and benefits, Energy Policy 39 6867 6881 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 80054866834&partnerID=40&md5=c1b5a17e2ca785182cd2b80a2b72a62c.  Hirschberg S., P. Burgherr, G. Spiekerman, and R. Dones (2004). Severe accidents in the energy  sector: comparative perspective, Journal of Hazardous Materials 111 57 65 pp. .  Hirschberg S., G. Spiekerman, and R. Dones (1998). Severe Accidents in the Energy Sector. Paul  Scherrer Institut, Villingen, Switzerland.  Hirth L. (2013). The Market Value of Variable Renewables: The Effect of Solar Wind Power Variability  on their Relative Price, Energy Economics 38 218 236 pp. (DOI: doi:10.1016/j.eneco.2013.02.004).  Hiyama A., C. Nohara, W. Taira, S. Kinjo, M. Iwata, and J.M. Otaki (2013). The Fukushima nuclear  accident and the pale grass blue butterfly: Evaluating biological effects of long term low dose  exposures, BMC Evolutionary Biology 13 . Available at:  http://www.scopus.com/record/display.url?eid=2 s2.0 84881286117&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a43.  Hoenderdaal S., L. Tercero Espinoza, F. Marscheider Weidemann, and W. Graus (2013). Can a  dysprosium shortage threaten green energy technologies?, Energy 49 344 355 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84871722979&partnerID=40&md5=c44b160f41640e64982555d578f5ce79.  Hoke A., and P. Komor (2012). Maximizing the Benefits of Distributed Photovoltaics, The Electricity  Journal 25 55 67 pp. (DOI: 10.1016/j.tej.2012.03.005), (ISSN: 1040 6190).  99 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Holttinen H., P. Meibom, A. Orths, B. Lange, M. O Malley, J.O. Tande, A. Estanqueiro, E. Gomez, L.  Söder, G. Strbac, J.C. Smith, and F. van Hulle (2011). Impacts of large amounts of wind power on  design and operation of power systems, results of IEA collaboration, Wind Energy 14 179 192 pp.  (DOI: 10.1002/we.410), (ISSN: 1099 1824).  Honnery D., and P. Moriarty (2009). Estimating global hydrogen production from wind, International  Journal of Hydrogen Energy 34 727 736 pp. (DOI: 10.1016/j.ijhydene.2008.11.001), (ISSN: 0360 3199).  Hood C. (2011). Electricity Market Design for Decarbonisation. IEA/OECD, Paris, France. 15 20 pp.  Hoogwijk M., D. van Vuuren, B. de Vries, and W. Turkenburg (2007). Exploring the impact on cost  and electricity production of high penetration levels of intermittent electricity in OECD Europe and  the USA, results for wind energy, Energy 32 1381 1402 pp. (DOI: 16/j.energy.2006.09.004), (ISSN:  0360 5442).  Höök M., R. Hirsch, and K. Aleklett (2009). Giant oil field decline rates and their influence on world  oil production, Energy Policy 37 2262 2272 pp. (DOI: 10.1016/j.enpol.2009.02.020), (ISSN: 0301 4215).  Hotelling H. (1931). The Economics of Exhaustible Resources, Journal of Political Economy 39 137 175 pp. .  Hourcade J.C., D. Demailly, K. Neuhoff, and S. Sato (2007). Differentiation and Dynamics of EU ETS  Industrial Competitiveness, Climate Strategies. Climate Strategies Report. Climate Strategies, London,  UK. . Available at: http://www.climatestrategies.org/component/reports/category/17/37.html.  Hovorka S.D., S.M. Benson, C. Doughty, B.M. Freifeld, S. Sakurai, T.M. Daley, Y.K. Kharaka, M.H.  Holtz, R.C. Trautz, H.S. Nance, L.R. Myer, and K.G. Knauss (2006). Measuring permanence of CO2  storage in saline formations: the Frio experiment, Environmental Geosciences 13 105 121 pp. (DOI:  10.1306/eg.11210505011).  Howarth R., R. Santoro, and A. Ingraffea (2011). Methane and the Greenhouse gas Footprint of  Natural Gas from Shale Formations, Climate Change 106 679 690 pp. (DOI: 10.1007/s10584 011 0061 5).  Hsu D., P. O Donoughue, V. Fthenakis, G. Heath, H. C. Kim, P. Sawyer, J. K. Choi, and D. Turney  (2012). Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity  Generation, Journal of Industrial Ecology Special Issue: Meta Analysis of Life Cycle Assessments  S122 S135 pp. .  Huh D. G., Y. C. Park, D. G. Yoo, and S. H. Hwang (2011). CO2 Geological storage potential in Korea,  Energy Procedia 4 4881 4888 pp. .  Hultman N., S. Pulver, L. Guimaraes, R. Deshmukh, and J. Kane (2012). Carbon market risks and  rewards: Firm perceptions of CDM investment decisions in Brazil and India, Energy Policy 40 90 102  pp. .  Hutton G., E. Rehfuess, and F. Tediosi (2007). Evaluation of the Costs and Benefits of Interventions  to Reduce Indoor Air Pollution, Energy for Sustainable Development 11 34 43 pp. .  100 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Huva R., R. Dargaville, and S. Caine (2012). Prototype large scale renewable energy system  optimisation for Victoria, Australia, Energy 41 326 334 pp. (DOI: 10.1016/j.energy.2012.03.009),  (ISSN: 0360 5442).  Hwang S., Y. Cao, and J. Xi (2011). The short term impact of involuntary migration in China s Three  Gorges: a prospective study, Soc. Indc. Res. 101 73 92 pp. .  IAEA (2004). Status of Advanced Light Water Reactor Designs. International Atomic Energy Agency,  Vienna, Austria. . Available at: http://www pub.iaea.org/MTCD/publications/PDF/te_1391_web.pdf.  IAEA (2005a). Innovative Small and Medium Sized Reactors: Design Features, Safety Approaches and  R&D Trends. International Atomic Energy Agency, Vienna, Austria.  IAEA (2005b). Thorium Fuel Cycle   Potential Benefits and Challenges. International Atomic Energy  Agency, Vienna, Austria.  IAEA (2006). Advanced Nuclear Plant Design Options to Cope with External Events. International  Atomic Energy Agency (IAEA), Vienna, Austria.  IAEA (2008a). Spent Fuel Reprocessing Options. International Atomic Energy Agency, Vienna, Austria.  IAEA (2008b). Financing of New Nuclear Power Plants. Technical Report. IAEA, Vienna, Austria.  IAEA (2009). Classification of Radioactive Waste   General Safety Guide. International Atomic Energy  Agency, Vienna, Austria.  IAEA (2012a). Nuclear Power Reactors in the World 2012 Edition. International Atomic Energy  Agency (IAEA), Vienna, Austria.  IAEA (2012b). Climate Change and Nuclear Power 2012. International Atomic Energy Agency,  Vienna, Austria.  IAEA (2013a). The Power Reactor Information System (PRIS) and Its Extension to Non Electrical  Applications, Decommissioning and Delayed Projects Information. International Atomic Energy  Agency, Vienna, Austria. . Available at:  http://www.iaea.org/PRIS/WorldStatistics/OperationalReactorsByCountry.aspx.  IAEA (2013b). Energy, Electricity and Nuclear Power Estimate for the Period up to 2050. International  Atomic Energy Agency, Vienna, Austria.  IEA (2003a). World Energy Investment Outlook 2003. International Energy Agency. OECD, Paris. .  Available at: http://www.worldenergyoutlook.org/media/weowebsite/2008 1994/weo2003.pdf.  IEA (2003b). The Power to Choose. Demand Response in Liberalised Electricity Markets. International  Energy Agency, Paris, France.  IEA (2005). Projected Costs of Generating Electricity. International Energy Agency. OECD, Paris.  IEA (2006). Hydrogen Production and Storage: R&D Priorities and Gaps. International Energy Agency,  Paris. . Available at: http://www.iea.org/publications/freepublications/publication/hydrogen.pdf.  IEA (2007). Renewables in Global Energy Supply: An IEA Fact Sheet. International Energy Agency.  OECD, Paris.  101 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    IEA (2008a). World Energy Outlook 2008. International Energy Agency, Paris.  IEA (2008b). Deploying Renewable Energies: Principles for Effective Policies. International Energy  Agency. OECD, Paris.  IEA (2008c). Energy Technology Perspectives 2008: Scenarios and Strategies to 2050. International  Energy Agency, Paris.  IEA (2009a). Coal Mine Methane in Russia   Capturing the Safety and Environmental Benefits.  International Energy Agency, Paris.  IEA (2009b). Prospects for Large Scale Energy Storage in Decarbonised Power Grids. IEA, Paris.  IEA  a (2009c). World Energy Outlook 2009. International Energy Agency. OECD, Paris.  IEA (2010a). Energy Balances of Non OECD Countries. International Energy Agency, Paris, France. 554  pp.  IEA (2010b). Projected Costs of Generating Electricity   2010 Edition. International Energy Agency,  Paris, France.  IEA (2010c). Energy Technology Perspectives 2010: Scenarios and Strategies to 2050. International  Energy Agency, Paris.  IEA (2010d). Technology Roadmap Solar Photovoltaic Energy. International Energy Agency, Paris,  France.  IEA (2010e). World Energy Outlook 2010. International Energy Agency, Paris. . Available at:  http://www.worldenergyoutlook.org/media/weo2010.pdf.  IEA (2010f). Reviewing Existing and Proposed Emissions Trading Systems. IEA/OECD, Paris, France.  IEA (2010g). Carbon Capture and Storage Legal and Regulatory Review: Edition 1. International  Energy Agency, Paris. 66 pp.  IEA (2011a). World Energy Outlook 2011. International Energy Agency, Paris.  IEA (2011b). Deploying Renewables 2011: Best and Future Policy Practice. OECD/IEA, Paris, France.  IEA (2011c). Combining Bioenergy with CCS. Reporting and Accounting for Negative Emissions under  UNFCCC and the Kyoto Protocol. OECD/IEA, Paris.  IEA (2011d). Harnessing Variable Renewables: A Guide to the Balancing Challenge. International  Energy Agency, Paris, France.  IEA (2011e). Technology Roadmap. Smart Grids. International Energy Agency, Paris.  IEA (2011f). Summing up the Parts. Combining Policy Instruments for Least Cost Climate Mitigation  Strategies. IEA, OECD, Paris, France.  IEA (2011g). Energy Technology Perspectives 2010. Scenarios & Strategies to 2050. IEA/OECD, Paris,  France.  102 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    IEA (2012a). Energy Balances of Non OECD Countries. International Energy Agency, Paris, France. 538  pp.  IEA (2012b). World Energy Outlook 2012. IEA/OECD, Paris.  IEA (2012c). A Policy Strategy for Carbon Capture and Storage. IEA/OECD, Paris.  IEA (2012d). Renewables Information 2012. IEA/OECD, Paris.  IEA (2012e). Electricity Information 2012. IEA/OECD, Paris.  IEA (2012f). CO2 Emission from Fuel Combustion. International Energy Agency. OECD, Paris, France.  IEA (2012g). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. IEA, Paris. .  Available at: http://data.iea.org.  IEA (2012h). Energy Technology Perspectives 2012: Pathways to a Clean Energy Systems.  International Energy Agency, Paris, France.  IEA (2012i). Golden Rules for a Golden Age of Gas. International Energy Agency, Paris, France.  IEA (2012j). Tracking Clean Energy Progress. Energy Technology Perspectives 2012 Excerpt as IEA  Input to the Clean Energy Ministerial. Paris, France.  IEA (2013a). CO2 Emissions from Fuel Combustion. Organisation for Economic Co Operation and  Development/International Energy Agency, Paris, France, 546 pp., (ISBN: 978 92 64 17475 7). .  IEA (2013b). World Energy Outlook. OECD/IEA, Paris, France.  IEA (2013c). Redrawing the Energy Climate Map. International Energy Agency, Paris. . Available at:  http://www.iea.org/publications/freepublications/publication/RedrawingEnergyClimateMap_2506.p df.  IEA Bioenergy (2006). Biogas Upgrading to Vehicle Fuel Standards and Grid Injection. IEA Bioenergy  Task 37. . Available at: http://www.iea biogas.net/files/daten redaktion/download/publi task37/upgrading_report_final.pdf.  IEA Bioenergy (2009). Biogas Upgrading Technologies Developments and Innovations. IEA Bioenergy  Task 37. . Available at: http://www.iea biogas.net/files/daten redaktion/download/publi task37/upgrading_rz_low_final.pdf.  IEA Bioenergy (2011). IEA Biogas Task 37 Country Reports and Plant Lists. IEA Bioenergy Task 37. .  Available at: http://www.iea biogas.net/country reports.html.  IEAGHG (2010). Environmental Evaluation of CCS Using Life Cycle Assessment (LCA). IEA Greenhouse  Gas R&D Programme, Cheltenham, UK.  IEAGHG (2011). Potentials for Biomass and Carbon Dioxide Capture and Storage. IEA Greenhouse  Gas R&D Programme, Cheltenham, UK. . Available at:  http://www.eenews.net/assets/2011/08/04/document_cw_01.pdf.  ILO and EU (2011). Skills and Occupational Needs in Renewable Energy (2011). International Labor  Organization and European Union, Geneva.  103 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    IMF (2013). Energy Subsidy Reform: Lessons and Implications. IMF, International Monetary Fund,  Washington D.C.  IPCC (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press  for the Intergovernmental Panel on Climate Change, Cambridge, UK.  IPCC (2007). Climate Change 2007: Mitigation of Climate Change: Contribution of Working Group III  to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R.  Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge University Press, Cambridge, UK, 851  pp., (ISBN: 9780521880114). .  IPCC (2011a). Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN).  Cambridge University Press, Cambridge, UK.  IPCC (2011b). Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and  Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S.  Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge  University Press, Cambridge, UK and New York, NY, USA.  IPIECA, and API (2007). Oil and Natural Gas Industry Guidelines for Greenhouse Gas Reduction  Projects. Part II: Carbon Capture and Geological Storage Emissions Reduction Family. International  Petroleum Industry Environmental Conservation Association and American Petroleum Institute,  Washington, D.C.  IPIECA, and API (2009). Oil and Natural Gas Industry Guidelines for Greenhouse Gas Reduction  Projects. Part III: Flare Reduction Project Family. International Petroleum Industry Environmental  Conservation Association and American Petroleum Institute, Washington, D.C.  IRENA (2012a). Financial Mechanisms and Investment Frameworks for Renewables in Developing  Countries. International Renewable Energy Agency, Abu Dhabi. . Available at:  http://www.irena.org/DocumentDownloads/Publications/IRENA%20report%20 %20Financial%20Mechanisms%20for%20Developing%20Countries.pdf.  IRENA (2012b). IRENA Handbook on Renewable Energy Nationally Appropriate Mitigation Actions  (NAMAs) for Policy Makers and Project Developers. International Renewable Energy Agency, Abu  Dhabi. . Available at:  http://www.irena.org/DocumentDownloads/Publications/Handbook_RE_NAMAs.pdf.  IRENA (2012c). Renewable Energy Jobs & Access. International Renewable Energy Agency. .  Available at:  http://www.irena.org/DocumentDownloads/Publications/Renewable_Energy_Jobs_and_Access.pdf.  IRENA (2012d). Capacity Building  Strategic Framework  for IRENA (2012  2015). International  Renewable Energy Agency, Abu Dhabi.  IRENA (2013). Renewable Power Generation Costs in 2012: An Overview. International Renewable  Energy Agency, Abu Dhabi. . Available at:  https://www.irena.org/DocumentDownloads/Publications/Overview_Renewable%20Power%20Gen eration%20Costs%20in%202012.pdf.  Isaac M., and D. van Vuuren (2009). Modeling global residential sector energy demand for heating  and air conditioning in the context of climate change, Energy Policy 37 507 521 pp. .  104 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Ito K., S. De Leon, and M. Lippmann (2005). Associations between ozone and daily mortality:  analysis and meta analysis, Epidemiology 16 446 457 pp. .  Jaccard M., and N. Rivers (2007). Heterogeneous capital stocks and the optimal timing for CO2  abatement, Resource and Energy Economics 29 1 16 pp. (DOI: 10.1016/j.reseneeco.2006.03.002),  (ISSN: 09287655).  Jackson R.B., A. Vengosh, T.H. Darrah, N.R. Warner, A. Down, R.J. Poreda, S.G. Osborn, K. Zhao,  and J.D. Karr (2013). Increased stray gas abundance in a subset of drinking water wells near  Marcellus shale gas extraction, Proceedings of the National Academy of Sciences of the United States  of America 110 11250 11255 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84879916912&partnerID=40&md5=a5154dc6ba25d9463acf06c3f9b65c9b.  Jacobsen H.K., and S.T. Schröder (2012). Curtailment of renewable generation: Economic optimality  and incentives, Energy Policy 49 663 675 pp. .  Jacobson M.Z., and C.L. Archer (2012). Saturation wind power potential and its implications for wind  energy, Proceedings of the National Academy of Sciences 109 15679 15684 pp. (DOI:  10.1073/pnas.1208993109), (ISSN: 0027 8424, 1091 6490).  Jacobson M.Z., and M.A. Delucchi (2011). Providing all global energy with wind, water, and solar  power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials,  Energy Policy 39 1154 1169 pp. (DOI: 16/j.enpol.2010.11.040), (ISSN: 0301 4215).  Jagger N., T. Foxon, and A. Gouldson (2013). Skills constraints and the low carbon transition,  Climate Policy 13 (DOI: 10.1080/14693062.2012.709079).  Jain G. (2010). Energy security issues at household level in India, Energy Policy 38 2835 2845 pp. .  Jain A.A., R.R. Koford, A.W. Hancock, and G.G. Zenner (2011). Bat mortality and activity at a  Northern Iowa wind resource area, American Midland Naturalist 165 185 200 pp. .  Jakob M., and J.C. Steckel (2013). Why mitigation could harm developing countries, WIREs Climate  Change.  Jaramillo P., W.M. Griffin, and H.S. Matthews (2007). Comparative Life Cycle Air Emissions of Coal,  Domestic Natural Gas, LNG, and SNG for Electricity Generation, Environmental Science and  Technology 42.  Jernelöv A. (2010). The threats from oil spills: Now, then, and in the future, Ambio 39 353 266 pp. .  Jerrett M., R.T. Burnett, C.A. Pope, K. Ito, G. Thurston, D. Krewski, Y. Shi, E. Calle, and M. Thun  (2009). Long Term Ozone Exposure and Mortality, New England Journal of Medicine 360 1085 1095  pp. (DOI: 10.1056/NEJMoa0803894), (ISSN: 0028 4793).  Jewell J. (2011a). Ready for Nuclear Energy? an Assessment of Capacities and Motivations for  Launching New National Nuclear Power Programs, Energy Policy 39 1041 1055 pp. (DOI:  doi:10.1016/j.enpol.2010.10.041).  Jewell J. (2011b). The IEA Model of Short Term Energy Security (MOSES). OECD/IEA, Paris.  105 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Jewell J., A. Cherp, and K. Riahi (2014). Energy security under de carbonization scenarios: An  assessment framework and evaluation under different technology and policy choices, Energy Policy  65 743 760 pp. .  Ji M., D.S. Cohan, and M.L. Bell (2011). Meta analysis of the association between short term  exposure to ambient ozone and respiratory hospital admissions, Environmental Research Letters 6  21779304 pp. .  Johnson M.R., and A.R. Coderre (2011). An analysis of flaring and venting activity in the Alberta  upstream oil and gas industry, Journal of the Air and Waste Management Association 61 190 200  pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79952923425&partnerID=40&md5=15740cb2aa7c50701a34c94363c7bb42.  Johnson T.L., and D.W. Keith (2004). Fossil Electricity and CO2 Sequestration: How Natural Gas  Prices, Initial Conditions and Retrofits Determine the Cost of Controlling CO2 Emissions, Energy  Policy 32 367 382 pp. .  Johnson N., and J. Ogden (2011). Detailed spatial modeling of carbon capture and storage (CCS)  infrastructure deployment in the southwestern United States, Energy Procedia 4 2693 2699 pp.  (DOI: 10.1016/j.egypro.2011.02.170), (ISSN: 1876 6102).  Jordaan S.M. (2012). Land and water impacts of oil sands production in Alberta, Environmental  Science and Technology 46 3611 3617 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84859363548&partnerID=40&md5=e1afa2d7969972e3d1b0da443abac80f.  Jordaan S.M., D.W. Keith, and B. Stelfox (2009). Quantifying land use of oil sands production: a life  cycle perspective, Environmental Research Letters 4 024004 pp. .  Jordan P., and S. Benson (2009). Well blowout rates and consequences in California Oil and Gas  District 4 from 1991 to 2005: implications for geological storage of carbon dioxide, Environmental  Geology 57 1103 1123 pp. (DOI: 10.1007/s00254 008 1403 0), (ISSN: 0943 0105).  Joskow P.L. (2011). Comparing the Costs of Intermittent and Dispatchable Electricity Generating  Technologies, American Economic Review: Papers & Proceedings 100 238 241 pp. .  Joskow P., and E. Parsons (2012). The Future of Nuclear Power After Fukushima, Economics of  Energy & Environmental Policy 1 99 113 pp. .  Joung M., and J. Kim (2013). Assessing demand response and smart metering impacts on long term  electricity market prices and system reliability, Applied Energy 101 441 448 pp. .  JRC/PBL (2012). Emission Database for Global Atmospheric Research (EDGAR). European  Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency. .  Available at: http://edgar.jrc.ec.europa.eu.  Juanes R., B.H. Hager, and H.J. Herzog (2012). No geologic evidence that seismicity causes fault  leakage that would render large scale carbon capture and storage unsuccessful, Proceedings of the  National Academy of Sciences 109 (DOI: 1073/pnas.1215026109).  Juanes R., C. MacMinn, and M. Szulczewski (2010). The Footprint of the CO2 Plume during Carbon  Dioxide Storage in Saline Aquifers: Storage Efficiency for Capillary Trapping at the Basin Scale,  Transport in Porous Media 82 19 30 pp. (DOI: 10.1007/s11242 009 9420 3), (ISSN: 0169 3913).  106 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Junginger M., A. Faaij, and W. Turkenburg (2005). Globale xperience curves for wind farms, Energy  Policy 33 133 150 pp. .  Junginger M., W. van Sark, and A. Faaij (Eds.) (2010). Technological Learning in the Energy Sector    Lessons for Policy, Industry and Science. Edward Elgar, Cheltenham, UK.  Kaatsch P., C. Spix, R. Schulze Rath, S. Schmiedel, and M. Blettner (2008). Leukaemia in young  children living in the vicinity of German nuclear power plants, International Journal of Cancer 122  721 726 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 38349023141&partnerID=40&md5=04cff46a59fa295b31a181027e55f7db.  Kahrl F., J. Williams, D. Jianhua, and H. Junfeng (2011). Challenges to China s transition to a low  carbon electricity system, Energy Policy 39 4032 4041 pp. .  Kainuma M., K. Miwa, T. Ehara, O. Akashi, and Y. Asayama (2013). A low carbon society: global  visions, pathways, and challenges, Climate Policy 13 5 21 pp. (DOI:  http://dx.doi.org/10.1080/14693062.2012.738016).  Kaiser M.J., Y. Yu, and C.J.J. Jablonowski (2009). Modeling lost production from destroyed platforms  in the 2004 2005 Gulf of Mexico hurricane seasons, Energy 34 1156 1171 pp. .  Kalkuhl M., and O. Edenhofer (2013). Managing the climate rent: How can regulators implement  intertemporally efficient mitigation policies?, Natural Resource Modelling Early View (DOI:  dx.doi.org/10.1111/nrm.12018).  Kalkuhl M., O. Edenhofer, and K. Lessman (2013). Renewable Energy Subsidies: Second best Policy  or Fatal Aberration for Mitigation?, Resource and Energy Economics 35 217 234 pp. (DOI:  dx.doi.org/10.1016/j.reseneeco.2013.01.002).  Kalkuhl M., O. Edenhofer, and K. Lessmann (2012). Learning or Lock in: Optimal Technology Policies  to Support Mitigation., Resource and Energy Economics 34 1 23 pp. (DOI:  dx.doi.org/10.1016/j.reseneeco.2011.08.001).  Kanagawa M., and T. Nakata (2008). Assessment of Access to Electricity and the Socio Economic  Impacts in Rural Areas of Developing Countries, Energy Policy 36 2016 2029 pp. (DOI:  10.1016/j.enpol.2008.01.041).  Kanakasabapathy P. (2013). Economic impact of pumped storage power plant on social welfare of  electricity market, International Journal of Electric Power & Energy Systems 45 187 193 pp. .  Karacan C.Ö., F.A. Ruiz, M. Cote, and S. Phipps (2011). Coal mine methane: A review of capture and  utilization practices with benefits to mining safety and to greenhouse gas reduction, International  Journal of Coal Geology 86 121 156 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 79954570672&partnerID=40&md5=c0284b08d84df709d09a301b303458d1.  Karakurt I., G. Aydin, and K. Aydiner (2011). Mine ventilation air methane as a sustainable energy  source, Renewable and Sustainable Energy Reviews 15 1042 1049 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 78649965532&partnerID=40&md5=ce8c461e22c6740d2b968a9c6e720126.  Kargbo D.M., R.G. Wilhelm, and D.J. Campbell (2010). Natural gas plays in the Marcellus Shale:  challenges and potential opportunities, Environmental Science & Technology 44 5679 5684 pp. .  107 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Karl T., J. Melillo, and T. Peterson (Eds.) (2009). Global Climate Change Impacts in the United States.  Cambridge University Press, Cambridge, UK, 188 pp.  Keane A., M. Milligan, C.J. Dent, B. Hasche, C. D Annunzio, K. Dragoon, H. Holttinen, N. Samaan, L.  Soder, and M. O Malley (2011). Capacity Value of Wind Power, IEEE Transactions on Power Systems  26 564 572 pp. (DOI: 10.1109/TPWRS.2010.2062543), (ISSN: 0885 8950).  Keats K., and K. Neuhoff (2005). Allocation of carbon emissions certificates in the power sector:  How generators profit from grandfathered rights, Climate Policy 5 61 78 pp. .  Kelly K.A., M.C. McManus, and G.P. Hammond (2012). An energy and carbon life cycle assessment  of tidal power case study: The proposed Cardiff Weston severn barrage scheme, Energy 44 692 701  pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84864373242&partnerID=40&md5=87f550eefe7f8c19c75440d5fec8d54b.  Kemenes A., B.R. Forsberg, and J.M. Melack (2007). Methane release below a tropical hydroelectric  dam, Geophysical Research Letters 34 L12809 pp. (DOI: 10.1029/2007GL029479).  Kemenes A., B.R. Forsberg, and J.M. Melack (2011). CO2 emissions from a tropical hydroelectric  reservoir (Balbina, Brazil), Journal of Geophysical Research 116 (DOI: 10.1029/2010JG001465).  Kenley C.R., R.D. Klingler, C.M. Plowman, R. Soto, R.J. Turk, and R.L. Baker (2009). Job creation due  to nuclear power resurgence in the United States, Energy Policy 37 4894 4900 pp. .  Keppler J.H., and M. Cruciani (2010). Rents in the European power sector due to carbon trading,  Energy Policy 38 4280 4290 pp. .  Kesicki F., and P. Ekins (2011). Marginal abatement cost curves: a call for caution, Climate Policy 1 18 pp. (DOI: 10.1080/14693062.2011.582347), (ISSN: 1469 3062).  Kessides I. (2012). The future of the nuclear industry reconsidered: Risks, uncertainties, and  continued promise, Energy Policy 48 185 208 pp. (DOI:  http://dx.doi.org/10.1016/j.enpol.2012.05.008.).  Kettner C., A. Köppl, S. Schleicher, and G. Thenius (2008). Stringency and distribution in the EU  Emissions Trading Scheme: First Evidence, Climate Policy 8 41 61 pp. .  Ketzer J.M., R. Iglesias, and S. Einloft (2011). Reducing greenhouse gas emissions with CO2 capture  and geological storage. In: Handbook of Climate Change Mitigation. C. Wei Yin, J. Seiner, T. Suzuki,  M. Lackner, (eds.),.  Khennas S. (2012). Understanding the Political Economy and Key drivers of Energy Access in  Addressing National Energy access Priorities and Policies: African Perspective, Energy Policy 47 21 26 pp. .  Kheshgi H., S.J. Smith, and J. Edmonds (2005). Emissions and Atmospheric CO2 Stabilization: Long term Limits and Paths,  Mitigation and Adaptation Strategies for Global Change, Climate Change and  Environmental Policy 10 213 220 pp. .  Kim H. G. (2009). The Design Characteristics of Advanced Power Reactor 1400. International Atomic  Energy Agency, Vienna, Austria.  108 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Kim H.C., V. Fthenakis, J. K. Choi, and D.E. Turney (2012). Life Cycle Greenhouse Gas Emissions of  Thin film Photovoltaic Electricity Generation, Journal of Industrial Ecology 16 S110 S121 pp. (DOI:  10.1111/j.1530 9290.2011.00423.x), (ISSN: 1530 9290).  Kim Y., M. Kim, and W. Kim (2013). Effect of the Fukushima nuclear disaster on global public  acceptance of nuclear energy, Energy Policy 61 822 828 pp. .  Kleijn R., and E. van der Voet (2010). Resource constraints in a hydrogen economy based on  renewable energy sources: An exploration, Renewable and Sustainable Energy Reviews 14 2784 2795 pp. .  Kleijn R., E. van der Voet, G.J. Kramer, L. van Oers, and C. van der Giesen (2011). Metal  requirements of low carbon power generation, Energy 36 5640 5648 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 80052101512&partnerID=40&md5=bdafd633a6bf530fc0e3826269e6c7bc.  Klessmann C., M. Rathmann, D. de Jager, A. Gazzo, G. Resch, S. Busch, and M. Ragwitz (2013).  Policy options for reducing the costs of reaching the European renewables target, Renewable Energy  57 390 403 pp. .  Knapp S.R. (1969). PUMPED STORAGE: THE HANDMAIDEN OF NUCLEAR POWER., IEEE (Inst. Elec.  Electron. Eng.), Spectrum, 6: No. 4, 46 52 (Apr. 1969).  Koerblein A., and I. Fairlie (2012). French geocap study confirms increased leukemia risks in young  children near nuclear power plants, International Journal of Cancer 131 2970 2971 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84867870370&partnerID=40&md5=a725f442c15d4bc59da2203f3b029cea.  Kontovas C.A., H.N. Psaraftis, and N.P. Ventikos (2010). An empirical analysis of IOPCF oil spill cost  data, Marine Pollution Bulletin 60 1455 1466 pp. .  Koornneef J., T. van Keulen, A. Faaij, and W. Turkenburg (2008). Life cycle assessment of a  pulverized coal power plant with post combustion capture, transport and storage of CO2,  International Journal of Greenhouse Gas Control 2 448 467 pp. .  Koornneef J., A. Ramirez, Turkenburg W., and A. Faaij (2011). The environmental impact and risk  assessment of CO2 capture, transport and storage.An evaluation of the knowledge base, Progress in  Energy and Combustion Science (DOI: 10.1016/j.pecs.2011.05.002).  Koornneef J., M. Spruijt, M. Molag, A. Ramirez, W. Turkenburg, and A. Faaij (2010). Quantitative  risk assessment of CO2 transport by pipelines; a review of uncertainties and their impacts, Journal of  Hazardous Materials 177 12 27 pp. (DOI: 10.1016/j.jhazmat.2009.11.068), (ISSN: 0304 3894).  Kopp A., H. Class, and R. Helmig (2009). Investigations on CO2 storage capacity in saline  aquifers ÄîPart 2: Estimation of storage capacity coefficients, International Journal of Greenhouse  Gas Control 3 277 287 pp. (DOI: 10.1016/j.ijggc.2008.10.001), (ISSN: 1750 5836).  Kopytko N., and J. Perkins (2011). Climate change, nuclear power, and the adaptation mitigation  dilemma, Energy Policy 39 318 333 pp. (DOI: 10.1016/j.enpol.2010.09.046), (ISSN: 0301 4215).  Korre A., Z. Nie, and S. Durucan (2010). Life cycle modelling of fossil fuel power generation with  post combustion CO2 capture, International Journal of Greenhouse Gas Control 4 289 300 pp. (DOI:  10.1016/j.ijggc.2009.08.005), (ISSN: 1750 5836).  109 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Krevor S.C.M., R. Pini, L. Zuo, and S.M. Benson (2012). Relative permeability and trapping of CO2  and water in sandstone rocks at reservoir conditions, Water Resources 48 (DOI:  10.1029/2011WR010859).  Krey V., and K. Riahi (2009). Implications of delayed participation and technology failure for the  feasibility, costs, and likelihood of staying below temperature targets greenhouse gas mitigation  scenarios for the 21st century, Energy Economics 31 S94 S106 pp. (DOI:  10.1016/j.eneco.2009.10.013), (ISSN: 0140 9883).  Kriegler E., M. Tavoni, T. Aboumahboub, G. Luderer, K. Calvin, G. DeMaere, V. Krey, K. Riahi, H.  Rosler, M. Schaeffer, and D. van Vuuren (2013). Can we still meet 2°C with global climate action?  The LIMITS study on implications of Durban Action Platform scenarios, Climate Change Economics.  Kruyt B., D.P. van Vuuren, H.J.M. de Vries, and H. Groenenberg (2009). Indicators for energy  security, Energy Policy 37 2166 2181 pp. .  Kudryavtsev V., N. Spooner, J. Gluyas, C. Fung, and M. Coleman (2012). Monitoring subsurface CO2  emplacement and security of storage using muon tomography, International Journal of Greenhouse  Gas Control 11 21 24 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1750583612001806.  Kuik O.J., M. Bastos Lima, and J. Gupta (2011). Energy Security in a Developing World, Climate  Change 2 627 634 pp. (DOI: 10.1002/wcc.118).  Kumar A., T. Schei, A. Ahenkorah, R. Caceras Rodriguez, J. M. Devernay, M. Freitas, and D. Hall  (2011). Hydropower. In: IPCC Special Report on Renewable Energy Sources and Climate Change  Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T.  Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press,  Cambridge, UK and New York, NY, USA.  Kunz M.J., A. Wüest, B. Wehrli, J. Landert, and D.B. Senn (2011). Impact of a large tropical reservoir  on riverine transport of sediment, carbon, and nutrients to downstream wetlands, Water Resources  Research 47 . Available at: http://www.scopus.com/record/display.url?eid=2 s2.0 84855396744&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a57.  Laleman R., J. Albrecht, and J. Dewulf (2011). Life Cycle Analysis to estimate the environmental  impact of residential photovoltaic systems in regions with a low solar irradiation, Renewable and  Sustainable Energy Reviews 15 267 281 pp. (DOI: 10.1016/j.rser.2010.09.025), (ISSN: 13640321).  Lambrou Y., and G. Piana (2006). Gender: The Missing Component of the Response to Climate  Change. Food and Agriculture Organization of the United Nations. . Available at:  http://www.fao.org/sd/dim_pe1/docs/pe1_051001d1_en.pdf.  Lamont A. (2008). Assessing the Long term System Value of Intermittent Electric Generation  Technologies, Energy Economics 30 1208 1231 pp. (DOI: doi:10.1016/j.eneco.2007.02.007).  De Lary L., A. Loschetter, O. Bouc, J. Rohmer, and C.M. Oldenburg (2012). Assessing health impacts  of Co2 leakage from a geological storage site into buildings: Role of attenuation in the unsaturated  zone and building foundation, International Journal of Greenhouse Gas Control 9 322 333 pp. .  110 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Laurier D., S. Jacob, M.O. Bernier, K. Leuraud, C. Metz, E. Samson, and P. Laloi (2008).  Epidemiological studies of leukaemia in children and young adults around nuclear facilities: a critical  review, Radiation Protection Dosimetry 132 182 190 pp. (DOI: 10.1093/rpd/ncn262).  Laurier D., S. Jacob, and P. Laloi (2010). Review of epidemiology studies of childhood leukaemia  near nuclear facilities: Answer to the commentary from fairlie and Korblein, Radiation Protection  Dosimetry 138 195 197 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 77950321286&partnerID=40&md5=80ade34822121fe503a9270958d8de6b.  Lechtenböhmer S., and C. Dienst (2010). Future development of the upstream greenhouse gas  emissions from natural gas industry, focussing on Russian gas fields and export pipelines, Journal of  Integrative Environmental Sciences 7 39 48 pp. .  Lehr U., C. Lutz, and D. Edler (2012). Green jobs? Economic impacts of renewable energy in  Germany, Energy Policy 47 358 364 pp. .  Lester S., and K. Neuhoff (2009). Understanding the roles of policy targets in national and  international governance, Climate Policy 9 464 480 pp. .  Levi M.A. (2012). Comment on  hydrocarbon emissions characterization in the Colorado Front  Range: A pilot study  by Gabrielle Pétron et al, Journal of Geophysical Research D: Atmospheres 117 .  Available at: http://www.scopus.com/record/display.url?eid=2 s2.0 84868676788&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a66.  Levi M. (2013). Climate changes of natural gas as a bridge fuel, Climate Change 118 609 623 pp. .  Lewis W.B. (1972). Energy in the Future: the Role of Nuclear Fission and Fusion, Proceedings of the  Royal Society of Edinburgh. Section A: Mathematical and Physical Sciences 70 219 223 pp. .  Lewis, S. Estefen, J. Huckerby, W. Musial, T. Pontes, and J. Torres Martinez (2011). Ocean Energy.  In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer,  R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G.  Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, UK and New  York, NY, USA pp.49 pp.  Lim S.S., T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair Rohani, M. Amann, H.R. Anderson,  K.G. Andrews, M. Aryee, C. Atkinson, L.J. Bacchus, A.N. Bahalim, K. Balakrishnan, J. Balmes, S.  Barker Collo, A. Baxter, M.L. Bell, J.D. Blore, F. Blyth, C. Bonner, G. Borges, R. Bourne, M.  Boussinesq, M. Brauer, P. Brooks, N.G. Bruce, B. Brunekreef, C. Bryan Hancock, C. Bucello, R.  Buchbinder, F. Bull, R.T. Burnett, T.E. Byers, B. Calabria, J. Carapetis, E. Carnahan, Z. Chafe, F.  Charlson, H. Chen, J.S. Chen, A.T. A. Cheng, J.C. Child, A. Cohen, K.E. Colson, B.C. Cowie, S. Darby,  S. Darling, A. Davis, L. Degenhardt, F. Dentener, D.C. Des Jarlais, K. Devries, M. Dherani, E.L. Ding,  E.R. Dorsey, T. Driscoll, K. Edmond, S.E. Ali, R.E. Engell, P.J. Erwin, S. Fahimi, G. Falder, F. Farzadfar,  A. Ferrari, M.M. Finucane, S. Flaxman, F.G.R. Fowkes, G. Freedman, M.K. Freeman, E. Gakidou, S.  Ghosh, E. Giovannucci, G. Gmel, K. Graham, R. Grainger, B. Grant, D. Gunnell, H.R. Gutierrez, W.  Hall, H.W. Hoek, A. Hogan, H.D. Hosgood, D. Hoy, H. Hu, B.J. Hubbell, S.J. Hutchings, S.E. Ibeanusi,  G.L. Jacklyn, R. Jasrasaria, J.B. Jonas, H. Kan, J.A. Kanis, N. Kassebaum, N. Kawakami, Y. H. Khang,  S. Khatibzadeh, J. P. Khoo, C. Kok, and F. Laden (2012). A comparative risk assessment of burden of  disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990 2010: a  systematic analysis for the Global Burden of Disease Study 2010, The Lancet 380 2224 2260 pp.  (ISSN: 0140 6736).  111 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Lin C. C., and Y. W. Chen (2011). Performance of a cross flow rotating packed bed in removing  carbon dioxide from gaseous streams by chemical absorption, International Journal of Greenhouse  Gas Control 5 668 675 pp. (DOI: 10.1016/j.ijggc.2011.02.002), (ISSN: 1750 5836).  Lin B., and X. Li (2011). The effect of carbon tax on per capita CO2 emissions, Energy Policy 39 5137 5146 pp. .  Linares P., and A. Conchado (2013). The economics of new nuclear power plants in liberalized  electricity markets, Energy Economics 40 119 125 pp. .  Lohwasser R., and R. Madlener (2011). Economics of CCS for Coal Plants: Impact of Investment  Costs and Efficiency on Market Diffusion in Europe, Energy Economics 34 850 863 pp. .  Loisel R., A. Mercier, C. Gatzen, N. Elms, and H. Petric (2010). Valuation framework for large scale  electricity storage in case with wind curtailment, Energy Policy 38 7323 7337 pp. .  Lovich J.E., and J.R. Ennen (2013). Assessing the state of knowledge of utility scale wind energy  development and operation on non volant terrestrial and marine wildlife, Applied Energy 103 52 60  pp. (DOI: 10.1016/j.apenergy.2012.10.001), (ISSN: 0306 2619).  De Lucas M., M. Ferrer, M.J. Bechard, and A.R. Munoz (2012). Griffon vulture mortality at wind  farms in southern Spain: Distribution of fatalities and active mitigation measures, Biological  Conservation 147 184 189 pp. .  De Lucena A.F.P., A.S. Szklo, and R. Schaeffer (2009). Renewable energy in an unpredictable and  changing climate., Energy Review 1 22 25 pp. .  Luckow P., M.A. Wise, J.J. Dooley, and S.H. Kim (2010). Large scale utilization of biomass energy  and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2  concentration limit scenarios, International Journal of Greenhouse Gas Control 4 865 877 pp. (DOI:  10.1016/j.ijggc.2010.06.002), (ISSN: 1750 5836).  Luderer G., C. Bertram, K. Calvin, E. De Cian, and E. Kriegler (2013). Implications of weak near term  climate policies on long term mitigation pathways, Climate Change.  Luderer G., R. Pietzcker, K. Kriegler, M. Haller, and N. Bauer (2012). Asia s role in mitigating climate  change: A technology and sector specific analysis with ReMIND R, Energy Economics 34 378 390  pp. .  Ludig S., M. Haller, and N. Bauer (2011). Tackling long term climate change together: The case of  flexible CCS and fluctuating renewable energy, Energy Procedia 4 2580 2587 pp. .  Lund H., and A.N. Andersen (2005). Optimal designs of small CHP plants in a market with fluctuating  electricity prices, Energy Conversion and Management 46 893 904 pp. (DOI:  10.1016/j.enconman.2004.06.007), (ISSN: 0196 8904).  Madaeni S.H., R. Sioshansi, and P. Denholm (2011). How Thermal Energy Storage Enhances the  Economic Viability of Concentrating Solar Power, Proceedings of the IEEE pp 1 13 pp. (DOI:  10.1109/JPROC.2011.2144950), (ISSN: 0018 9219).  Maeck A., T. DelSontro, D.F. McGinnis, H. Fischer, S. Flury, M. Schmidt, P. Fietzek, and A. Lorke  (2013). Sediment Trapping by Dams Creates Methane Emission Hot Spots, Environmental Science &  Technology (DOI: 10.1021/es4003907), (ISSN: 0013 936X).  112 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Magnani N., and A. Vaona (2013). Regional spill over effects of renewable energy generation in  Italy, Energy Policy 56 663 671 pp. .  Mahboob S. (2013). Environmental pollution of heavy metals as a cause of oxidative stress in fish: A  review, Life Science Journal 10 336 347 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84885096944&partnerID=40&md5=415db58a08f81e835361c22b1a18324b.  Malone E.L., J.J. Dooley, and J.A. Bradbury (2010). Moving from misinformation derived from public  attitude surveys on carbon dioxide capture and storage towards realistic stakeholder involvement,  International Journal of Greenhouse Gas Control 4 419 425 pp. (DOI: 10.1016/j.ijggc.2009.09.004),  (ISSN: 1750 5836).  Markusson N., S. Shackley, and B. Evar (2012). The Social Dynamics of Carbon Capture and Storage  Understanding CCS Representations, Governance and Innovation. Taylor & Francis, Hoboken, (ISBN:  9780203118726 0203118723). .  Marra J., and R. Palmer (2011). Radioactive Waste Management. In: Waste   A Handbook for  Management. T. Letcher, D. Vallero, (eds.), Elsevier, Amsterdam pp.101 108.  Mason I.G., S.C. Page, and A.G. Williamson (2010). A 100% renewable electricity generation system  for New Zealand utilising hydro, wind, geothermal and biomass resources, Energy Policy 38 3973 3984 pp. (DOI: 10.1016/j.enpol.2010.03.022), (ISSN: 0301 4215).  Mason J.E., and K. Zweibel (2007). Baseline model of a centralized pv electrolytic hydrogen system,  International Journal of Hydrogen Energy 32 2743 2763 pp. (DOI: 10.1016/j.ijhydene.2006.12.019),  (ISSN: 0360 3199).  Mathieson A., J. Midgley, K. Dodds, I. Wright, P. Ringrose, and N. Saoul (2010). CO2 sequestration  monitoring and verification technologies applied at Krechba, Algeria, The Leading Edge 29 216 222  pp. (DOI: 10.1190/1.3304827).  Matteo E.N., and G.W. Scherer (2012). Experimental study of the diffusion controlled acid  degradation of Class H Portland cement, International Journal of Greenhouse Gas Control (DOI:  10.1016/j.ijggc.2011.07.012), (ISSN: 1750 5836).  Maugeri L. (2012).  Oil: The Next Revolution  The Unprecedented Upsurge of Oil Production Capacity  and What It Means for the World. Harvard University, Belfer Center for Science and International  Affairs. 86 pp. Available at: http://belfercenter.ksg.harvard.edu/files/Oil %20The%20Next%20Revolution.pdf.  Mazzoldi A., T. Hill, and J.J. Colls (2011). Assessing the risk for CO2 transportation within CCS  projects, CFD modelling, International Journal of Greenhouse Gas Control 5 816 825 pp. (DOI:  10.1016/j.ijggc.2011.01.001), (ISSN: 1750 5836).  Mazzoldi A., A.P. Rinaldi, A. Borgia, and J. Rutqvist (2012). Induced seismicity within geological  carbon sequestration projects: Maximum earthquake magnitude and leakage potential from  undetected faults, International Journal of Greenhouse Gas Control 10 434 442 pp. .  McCollum D.L., V. Krey, K. Riahi, P. Kolp, A. Grubler, M. Makowski, and N. Nakicenovic (2013a).  Climate policies can help resolve energy security and air pollution challenges, Climate Change 119  479 494 pp. .  113 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    McCollum D., Y. Nagai, K. Riahi, G. Marangoni, K. Calvin, R. Pietzcker, J. Van Vliet, and B. Van der  Zwaan (2014). Energy investments under climate policy: a comparison of global models, Accepted  for publication in Climate Change Economics.  McCollum D.L., Y. Nagai, K. Riahi, G. Marangoni, K. Calvin, R. Pietzscker, J. van Vliet, and B. van der  Zwaan (2013b). Energy investments under climate policy: a comparison of global models, Climate  Change Economics.  McCoy S.T., and E.S. Rubin (2008). An engineering economic model of pipeline transport of CO2  with application to carbon capture and storage, International Journal of Greenhouse Gas Control 2  219 229 pp. (DOI: 10.1016/s1750 5836(07)00119 3), (ISSN: 1750 5836).  McDonald Wilmsen B., and M. Webber (2010). Dams and displacement: raising the standards and  broadening the research agenda, Water Altern. 3 142 161 pp. .  McMillen S., N. Prakash, A. DeJonge, and D. Shannon (2011). The Economic Impact of Nuclear  Power Generation in Connecticut. Connecticut Academy of Science and Engineering, Rocky Hill, CT.  Meibom P., J. Kiviluoma, R. Barth, H. Brand, C. Weber, and Larsen H.V. (2007). Value of electric  heat boilers and heat pumps for wind power integration, Wind Energy 10 321 337 pp. (DOI:  10.1002/we.224).  Meinshausen M., N. Meinshausen, W. Hare, S.C. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R.  Allen (2009). Greenhouse Gas Emission Targets for Limiting Global Warming to 2°C, Nature 458  1158 62 pp. .  Mekonnen M.M., and A.Y. Hoekstra (2012). The blue water footprint of electricity from  hydropower, Hydrology and Earth System Sciences 16 179 187 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84874198727&partnerID=40&md5=555bc09e521a427c29c816b94a26a825.  Meldrum J., S. Nettles Anderson, G. Heath, and J. Macknick (2013). Life cycle water use for  electricity generation: A review and harmonization of literature estimates, Environmental Research  Letters 8 . Available at: http://www.scopus.com/record/display.url?eid=2 s2.0 84876172832&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a74.  Méndez Quezada V., J. Rivier Abbad, and T. Gómez San Román (2006). Assessment of energy  distribution losses for increasing penetration of distributed generation, IEEE Transactions on Power  Systems 21 533 540 pp. . Available at: http://www.ecs.csun.edu/~bruno/IEEEpapers/01626356.pdf.  Mendez V.H., J. Rivier, J.I. de la Fuente, T. Gomez, J. Arceluz, J. Mari n, and A. Madurga (2006).  Impact of distributed generation on distribution investment deferral, International Journal of  Electrical Power & Energy Systems 28 244 252 pp. (DOI: 10.1016/j.ijepes.2005.11.016), (ISSN: 0142 0615).  Meshakti N. (2007). The safety and reliability of complex energy processing systems, Energy Sources  Part B   Economics Planning and Policy 2 141 154 pp. .  Meyer J. (2007). Summary of Carbon Dioxide Enhanced Oil Recovery (CO2 EOR) Injection Well  Technology. American Petroleum Institute, Washington, DC. . Available at:  http://www.api.org/environment health and safety/environmental performance/~/media/d68de1954b8e4905a961572b3d7a967a.ashx.  114 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Michaelowa A., M. Krey, and S. Butzengeiger (2006). Clean Development Mechanism and Joint  Implementation: New Instruments for Financing Renewable Energy Technologies. In: Renewable  energy. D. Assmann, U. Laumanns, D. Uh, (eds.), Earthscan, London pp.196 216.  Mideksa T.K., and S. Kallbekken (2010). The impact of climate change on the electricity market: a  review, Energy Policy 38 3579 3585 pp. .  Miller E., L.M. Bell, and L. Buys (2007). Public understanding of carbon sequestration in Australia:  Socio demographic predictors of knowledge, engagement and trust, International Journal of  Emerging Technologies and Society 5 15 33 pp. .  Mills A., A. Phadke, and R. Wiser (2011). Exploration of resource and transmission expansion  decisions in the Western Renewable Energy Zone initiative, Energy Policy 39 1732 1745 pp. (DOI:  10.1016/j.enpol.2011.01.002), (ISSN: 0301 4215).  MIT (2011). The Future of Natural Gas. Massachusetts Institute of Technology, Cambridge, MA, USA.  MIT (2013). CCS Project Database. Massachusetts Institute of Technology, Cambridge, MA, USA.  Mitchell C., J. Sawin, G.R. Pokharel, D.M. Kammen, Z. Wang, S. Fifita, M. Jaccard, O. Langniss, H.  Lucas, A. Nadai, R. Trujillo Blanco, E. Usher, A. Verbruggen, R. Wüstenhagen, and K. Yamaguchi  (2011). Policy, Financing and Implementation. In: IPCC Special Report on Renewable Energy Sources  and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P.  Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)].  Cambridge University Press, Cambridge, UK and New York, NY, USA.  Mller A., F. Barnier, and T. Mousseau (2012). Ecosystems effects 25 years after Chernobyl:  pollinators, fruit set and recruitment, Oecologia 170 1155 1165 pp. (DOI: 10.1007/s00442 012 2374 0), (ISSN: 0029 8549).  Mller A.P., A. Bonisoli Alquati, G. Rudolfsen, and T.A. Mousseau (2011). Chernobyl birds have  smaller brains, Plos One 6 . Available at: http://www.scopus.com/record/display.url?eid=2 s2.0 79951663714&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a82.  Mller A.P., and T.A. Mousseau (2011). Conservation consequences of Chernobyl and other nuclear  accidents, Biological Conservation 144 2787 2798 pp. .  Moomaw W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, and A. Verbruggen (2011a). Annex II:  Methodology. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge.  Moomaw W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, and A. Verbruggen (2011b). Annex II:  Methodology. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge.  Moomaw W., F. Yamba, M. Kamimoto, L. Maurice, J. Nyboer, K. Urama, and T. Weir (2011c).  Introduction: Renewable Energy and Climate Change. In: IPCC Special Report on Renewable Energy  Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P.  Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)].  Cambridge University Press, Cambridge, UK and New York, NY, USA.  115 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Moore T.A. (2012). Coalbed methane: A review, International Journal of Coal Geology 101 36 81  pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84865049192&partnerID=40&md5=ebf4c6be74a60be8c40e773fa6fe62dc.  Moore D., J. Dore, and D. Gyawali (2010). The World Commission on Dams + 10: Revisiting the large  dam controversy, Water Alternatives 3 3 13 pp. .  Moreno R., L. Jover, C. Diez, F. Sarda, and C. Sanpera (2013). Ten Years after the Prestige Oil Spill:  Seabird Trophic Ecology as Indicator of Long Term Effects on the Coastal Marine Ecosystem, Plos  One 8 . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84885110890&partnerID=40&md5=1c7f16a3f0860cc598ef580cdc4ae34e.  Moriarty P., and D. Honnery (2007). Intermittent renewable energy: The only future source of  hydrogen?, International Journal of Hydrogen Energy 32 1616 1624 pp. (DOI:  10.1016/j.ijhydene.2006.12.008), (ISSN: 0360 3199).  Moriarty P., and D. Honnery (2012). What is the global potential for renewable energy?, Renewable  and Sustainable Energy Reviews 16 244 252 pp. (DOI: 10.1016/j.rser.2011.07.151), (ISSN: 1364 0321).  Morris J.P., R.L. Detwiler, S.J. Friedmann, O.Y. Vorobiev, and Y. Hao (2011). The large scale  geomechanical and hydrogeological effects of multiple CO2 injection sites on formation stability,  International Journal of Greenhouse Gas Control 5 69 74 pp. (DOI: 10.1016/j.ijggc.2010.07.006),  (ISSN: 1750 5836).  Mousseau T.A., and A.P. Mller (2013). Elevated Frequency of Cataracts in Birds from Chernobyl,  Plos One 8 e66939 pp. . Available at: http://www.scopus.com/record/display.url?eid=2 s2.0 84880831984&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a91.  Myung S., H. Choi, C. Jeong, K. Song, J. Lee, G. Park, H. Kim, W. Ko, J. Park, K. Kim, H. Lee, and J.  Park (2006). The Status and Prospect of DUPIC Fuel Technology, Nuclear Engineering and Technology  38.  Nagajyoti P.C., K.D. Lee, and T.V.M. Sreekanth (2010). Heavy metals, occurrence and toxicity for  plants: a review, Environmental Chemistry Letters 8 199 216 pp. (DOI: 10.1007/s10311 010 0297 8),  (ISSN: 1610 3653, 1610 3661).  Narula K., Y. Nagai, and S. Pachauri (2012). The role of Decentralized Distributed Generation in  achieving universal rural electrification in South Asia by 2030, Energy Policy 47 345 357 pp. .  NAS (2013a). Induced Seismicity Potential in Energy Technologies. National Academy of Sciences. .  Available at: http://dels.nas.edu/Report/Induced Seismicity Potential Energy Technologies/13355.  NAS (2013b). Emerging Workforce Trends in the U.S. Energy and Mining Industries: A Call to Action.  National Academy of Sciences, The National Academies Press, Washington D.C., USA.  Naturalhy (2004). Preparing for the Hydrogen Economy by Using the Existing Natural Gas System as  a Catalyst. Available at: http://www.naturalhy.net/docs/Strategic_justification_NATURALHY.pdf.  Nauclér T., and P.A. Enkvist (2009). Pathways to a Low Carbon Economy   Version 2 of the Global  Greenhouse Gas Abatement Cost Curve. McKinsey & Company, New York City.  116 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    NEA (2006). Forty Years of Uranium Resources, Production and Demand in Perspective   The Red  Book Perspective. OECD Nuclear Energy Agency, Paris, France.  NEA (2008). Nuclear Energy Outlook 2008. Nuclear Energy Agency (NEA) of the Organisation for  Economic Co Operation and Development (OECD), Paris, France.  NEA (2010). The Security of Energy Supply and the Contribution of Nuclear Energy. OECD, Paris.  NEA (2011a). Technical and Economic Aspects of Load Following with Nuclear Power Plants. Nuclear  Energy Agency, OECD, Paris.  NEA (2011b). Carbon Princing, Power Markets and the Competitiveness of Nuclear Power. Nuclear  Energy Agency, OECD, Paris. . Available at: http://www.oecd nea.org/ndd/reports/2011/carbon pricing exec sum 2011.pdf.  NEA (2012). Nuclear Energy and Renewables. System Effects in Low Carbon Electricity Systems.  Nuclear Energy Agency, OECD, Paris.  NEA (2013). Nuclear Energy Today. Nuclear Energy Agency (NEA) and International Energy Agency  (IEA) of the OECD.  NEA, and IAEA (2012). Uranium 2011: Resources, Production and Demand. OECD Nuclear Energy  Agency and the International Atomic Energy Agency, Paris.  NETL (2012). Carbon Sequestration Atlas of the United States and Canada. Fourth Edition. US  Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA. . Available at:  http://www.netl.doe.gov/File%20Library/Research/Coal/carbon storage/natcarb/Atlas IV 2012.pdf.  Neuhoff K., M. Ahman, R. Betz, J. Cludius, F. Ferrario, K. Holmgren, G. Pal, M. Grubb, F. Matthes, K.  Rogge, M. Sato, J. Schleich, A. Tuerk, C. Kettner, and N. Walker (2006). Implications of announced  Phase 2 National Allocation Plans for the EU ETS, Climate Policy 6 411 422 pp. .  Nguyen K. (2007). Alternatives to Grid Extension for Rural Electrification: Decentralized Renewable  Energy Technologies in Vietnam, Energy Policy 35 2579 2589 pp. .  Nicholson M., T. Biegler, and B. Brook (2011). How carbon pricing changes the relative  competitiveness of low carbon base load generating technologies, Energy 36 305e313 pp. .  Nicot J. P. (2008). Evaluation of large scale CO2 storage on fresh water sections of aquifers: An  example from the Texas Gulf Coast Basin, International Journal of Greenhouse Gas Control 2 582 593 pp. (DOI: 10.1016/j.ijggc.2008.03.004), (ISSN: 1750 5836).  Nord L.O., R. Anantharaman, and O. Bolland (2009). Design and off design analyses of a pre combustion CO2 capture process in a natural gas combined cycle power plant, International Journal  of Greenhouse Gas Control 3 385 392 pp. (DOI: 10.1016/j.ijggc.2009.02.001), (ISSN: 1750 5836).  Norgate T.E., S. Jahanshahi, and W.J. Rankin (2007). Assessing the environmental impact of metal  production processes, Journal of Cleaner Production 15 838 848 pp. (DOI:  10.1016/j.jclepro.2006.06.018), (ISSN: 0959 6526).  NRC (1996). Nuclear Wastes: Technologies for Separation and Transmutation. National Research  Council, National Academy Press, Washington, D.C.  117 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Nuytten T., B. Claessens, K. Paredis, J. van Bael, and D. Six (2013). Flexibility of a combined heat and  power system with thermal energy storage for district heating, Applied Energy 104 583 591 pp. .  O Neill B., K. Riahi, and I. Keppo (2010). Mitigation implications of midcentury targets that preserve  long term climate policy options, PNAS 107 1011 1016 pp. (DOI: 10.1073/pnas.0903797106).  O Sullivan F., and S. Paltsev (2012). Shale gas production: potential versus actual greenhouse gas  emissions, Environmental Research Letters 7 (DOI: 10.1088/1748 9326/7/4/044030).  Oda J., and K. Akimoto (2011). An analysis of CCS investment under uncertainty, Energy Procardia 4  1997 2004 pp. .  OECD (2009). The Economics of Climate Change Mitigation   Policies and Options for Global Action  beyond 2012. OECD, Paris. . Available at: www.oecd.org/env/cc/econ/beyond2012.  OECD, and NEA (2007). Management of Recyclable Fissile and Fertile Materials. OECD Nuclear  Energy Agency, Paris.  Ogawa T., S. Nakanishi, T. Shidahara, T. Okumura, and E. Hayashi (2011). Saline aquifer CO2  sequestration in Japan methodology of storage capacity assessment, International Journal of  Greenhouse Gas Control 5 318 326 pp. (DOI: 10.1016/j.ijggc.2010.09.009), (ISSN: 1750 5836).  Oosterkamp A., and J. Ramsen (2008). State of the Art Overview of CO2 Pipeline Transport with  Relevance to Offshore Pipelines. Norway. 87 pp.  Oparoacha S., and S. Dutta (2011). Gender and Energy for Sustainable Development, Current  Opinion in Environmental Sustainability 3 265 271 pp. .  ORNL (2012). Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National  Nuclear Fuel Cycle Strategy. Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., U.S.A.  Orr F.M. (2009). Onshore Geologic Storage of CO2, Science 325 1656 1658 pp. (DOI:  10.1126/science.1175677).  Oruganti Y., and S.L. Bryant (2009). Pressure build up during CO2 storage in partially confined  aquifers, Energy Procedia 1 3315 3322 pp. (DOI: 10.1016/j.egypro.2009.02.118), (ISSN: 1876 6102).  Owen N.A., O.R. Inderwildi, and D.A. King (2010). The status of conventional world oil reserves Hype or cause for concern?, Energy Policy 38 4743 4749 pp. (DOI: 10.1016/j.enpol.2010.02.026),  (ISSN: 0301 4215).  Owen M., R. van der Plas, and S. Sepp (2013). Can there be energy policy in Sub Saharan Africa  without biomass?, Energy for Sustainable Development 17 146 152 pp. .  Ozaki M., and T. Ohsumi (2011). CCS from multiple sources to offshore storage site complex via ship  transport, Energy Procedia 4 2992 2999 pp. (DOI: 10.1016/j.egypro.2011.02.209), (ISSN: 1876 6102).  Pachauri S., A. Brew Hammond, D.F. Barnes, D.H. Bouille, D.H. Gitonga, V. Modi, G. Prasad, A.  Rath, and H. Zerriffi (2012). Energy Access for Development. In: Global Energy Assessment: Toward  a Sustainable Future. L. Gomez Echeverri, T.B. Johansson, N. Nakicenovic, A. Patwardhan, (eds.),  International Institute for Applied Systems Analysis and Cambridge University Press, Laxenburg,  Austria; Cambridge, UK & New York, USA.  118 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Pachauri S., B. van Ruijven, Y. Nagai, K. Riahi, D. van Vuuren, A. Brew Hammond, and N.  Nakicenovic (2013). Pathways to achieve universal household access to modern energy by 2030,  Environmental Research Letters 8 024015 pp. (DOI: doi:10.1088/1748 9326/8/2/024015).  Pacyna E.G., J.M. Pacyna, J. Fudala, E. Strzelecka Jastrzab, S. Hlawiczka, D. Panasiuk, S. Nitter, T.  Pregger, H. Pfeiffer, and R. Friedrich (2007). Current and future emissions of selected heavy metals  to the atmosphere from anthropogenic sources in Europe., Atmospheric Environment 41 8557 8566  pp. .  Padurean A., C. C. Cormos, A. M. Cormos, and P. S. Agachi (2011). Multicriterial analysis of post combustion carbon dioxide capture using alkanolamines, International Journal of Greenhouse Gas  Control 5 676 685 pp. (DOI: 10.1016/j.ijggc.2011.02.001), (ISSN: 1750 5836).  Pahle M., L. Fan, and W.P. Schill (2011). How emission certificate allocations distort fossil  investments: The German example, Energy Policy 39 1975 1987 pp. .  Palmer M.A., E.S. Bernhardt, W.H. Schlesinger, K.N. Eshleman, E. Foufoula Georgiou, M.S.  Hendryx, A.D. Lemly, G.E. Likens, O.L. Loucks, M.E. Power, P.S. White, and P.R. Wilcock (2010).  Mountaintop Mining Consequences, Policy Forum. Science and Regulation . Available at:  http://www.dep.state.fl.us/water/mines/docs/prbmac/mining science 2010.pdf.  Parry I. (2004). Are Emission Permits Regressive, Journal of Environmental Economics and  Management 47 264 387 pp. .  Patel S. (2011). Climate Finance: Engaging the Private Sector. International Finance Corporation,  Washington, D.C. Available at:  http://www1.ifc.org/wps/wcm/connect/5d659a804b28afee9978f908d0338960/ClimateFinance_G2 0Report.pdf?MOD=AJPERES.  Paul J.H., D. Hollander, P. Coble, K.L. Daly, S. Murasko, D. English, J. Basso, J. Delaney, L. McDaniel,  and C.W. Kovach (2013). Toxicity and Mutagenicity of Gulf of Mexico Waters During and After the  Deepwater Horizon Oil Spill, Environmental Science & Technology 47 9651 9659 pp. (DOI:  10.1021/es401761h), (ISSN: 0013 936X, 1520 5851).  Peck S.C., and Y.S. Wan (1996). Analytic Solutions of Simple Greenhouse Gas Emission Models. In:  Economics of Atmospheric Pollution. E.C. Van Ierland, K. Gorka, (eds.), Spinger Verlag, Berlin.  Pehnt M. (2008). Environmental impacts of distributed energy systems The case of micro  cogeneration, Environmental Science and Policy 11 25 37 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 38649089809&partnerID=40&md5=99154cbe4e8de5bc6f53b979ea707f54.  Pehnt M., M. Oeser, and D.J. Swider (2008). Consequential environmental system analysis of  expected offshore wind electricity production in Germany, Energy 33 747 759 pp. (DOI:  10.1016/j.energy.2008.01.007), (ISSN: 0360 5442).  Perez Arriaga I.J., and C. Batlle (2012). Impacts of Intermittent Renewables on Electricity Generation  System Operation, Economics of Energy & Environmental Policy 1 (DOI: 10.5547/2160 5890.1.2.1),  (ISSN: 21605882).  Peterson C.H., S.S. Anderson, G.N. Cherr, R.F. Ambrose, S. Anghera, S. Bay, M. Blum, R. Condon,  T.A. Dean, M. Graham, M. Guzy, S. Hampton, S. Joye, J. Lambrinos, B. Mate, D. Meffert, S.P.  Powers, P. Somasundaran, R.B. Spies, C.M. Taylor, R. Tjeerdema, and E. Eric Adams (2012). A tale  119 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    of two spills: Novel science and policy implications of an emerging new oil spill model, BioScience 62  461 469 pp. .  PetroMin Pipeliner (2010). Flow Assurance   Solutions for Oil and Gas Pipeline Problems. PetroMin  Pipeliner. 45 49 pp.  Petron G., G. Frost, B.R. Miller, A.I. Hirsch, S.A. Montzka, A. Karion, M. Trainer, C. Sweeney, A.E.  Andrews, L. Miller, J. Kofler, A. Bar Ilan, E.J. Dlugokencky, L. Patrick, C.T. Moore, T.B. Ryerson, C.  Siso, W. Kolodzey, P.M. Lang, T. Conway, P. Novelli, K. Masarie, B. Hall, D. Guenther, D. Kitzis, J.  Miller, D. Welsh, D. Wolfe, W. Neff, and P. Tans (2012). Hydrocarbon emissions characterization in  the Colorado Front Range: A pilot study, J. Geophys. Res. 117 D04304 pp. (DOI:  10.1029/2011JD016360), (ISSN: 0148 0227).  Pfister S., D. Saner, and A. Koehler (2011). The environmental relevance of freshwater consumption  in global power production, International Journal of Life Cycle Assessment 16 580 591 pp. . Available  at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79960570841&partnerID=40&md5=ffb2bd28105d0706b8d9a61b789d1389.  Philibert C. (2008). Price Caps and Price Floors in Climate Policy. A Quantitative Assessment.  IEA/OECD, Paris.  Philibert C., and J. Pershing (2002). Beyond Kyoto, Energy Dynamics and Climate Stabilisation.  International Energy Agency, Paris. . Available at:  http://philibert.cedric.free.fr/Downloads/Beyond%20Kyoto_NS.pdf.  Pickard W.F., N.J. Hansing, and A.Q. Shen (2009a). Can large scale advanced adiabatic compressed  air energy storage be justified economically in an age of sustainable energy?, Journal of Renewable  and Sustainable Energy 1 (DOI: http://dx.doi.org/10.1063/1.3139449).  Pickard W.F., A.Q. Shen, and N.J. Hansing (2009b). Parking the power: Strategies and physical  limitations for bulk energy storage in supply demand matching on a grid whose input power is  provided by intermittent sources, Renewable & Sustainable Energy Reviews 13 1934 1945 pp. .  Pihl E., D. Kushnir, B. Sandén, and F. Johnsson (2012). Material constraints for concentrating solar  thermal power, Energy 44 944 954 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84864377217&partnerID=40&md5=e7d6d283cc083b599f3ecf89d539eedc.  Pilli Sihvola K., P. Aatola, M. Ollikainen, and H. Tuomenvirt (2010). Climate change and electricity  consumption Witnessing increasing or decreasing use and costs?, Energy Policy 38 2409 2419 pp. .  Pizer W.A. (2002). Combining price and quantity controls to mitigate global climate change, Journal  of Public Economics 85 409 434 pp. .  Pope C.A., M. Ezzati, and D.W. Dockery (2009). Fine Particulate Air Pollution and Life Expectancy in  the United States, New England Journal of Medicine 360 376 386 pp. .  Porter J.R., and L. Xie (2014). Chapter 7. Food Security and Food Production Systems. In: Climate  Change 2013: Impacts, Adaptation, and Vulnerability. Fifth Assessment Report of Working Group II.  Cambridge University Press, Cambridge, UK.  Posiva Oy (2011). Nuclear Waste Management of the Olkiluoto and Loviisa Nuclear Power Plants.  Posiva Oy, Olkiluoto, Finland.  120 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Posiva Oy (2012). Annual Report 2012. Posiva Oy, Okiluoto, Finland.  Pouret L., N. Buttery, and W. Nuttall (2009). Is Nuclear Power Flexible?, Nuclear Future 5 333 341  pp. .  Procter R. (2013). Integrating Time Differentiated Rates, Demand Response, and Smart Grid to  Manage Power System Costs, The Electricity Journal 26 50 60 pp. .  Pudjianto D., C. Ramsay, and G. Strbac (2007). Virtual power plant and system integration of  distributed energy resources, IET Renewable Power Generation 1 10 16 pp. .  Purohit P., and A. Michaelowa (2007). CDM potential of bagasse cogeneration in India, Energy  Policy 35 4779 4798 pp. .  Raaschou Nielsen O., C.E. Andersen, H.P. Andersen, P. Gravesen, M. Lind, J. Schüz, and K. Ulbak  (2008). Domestic radon and childhood cancer in Denmark, Epidemiology 19 536 543 pp. . Available  at: http://www.scopus.com/inward/record.url?eid=2 s2.0 49849085205&partnerID=40&md5=cd45ee7576a7c7c2132eb1775e9fb489.  Ragwitz M., and S. Steinhilber (2013). Effectiveness and efficiency of support schemes for electricity  from renewable energy sources, Wiley Interdisciplinary Reviews: Energy and Environment (DOI: doi:  10.1002/wene.85).  Ramos F.M., L.A.W. Bambace, I.B.T. Lima, R.R. Rosa, E.A. Mazzi, and P.M. Fearnside (2009).  Methane stocks in tropical hydropower reservoirs as a potential energy source, Climate Change 93  1 13 pp. .  Rao N.D. (2013). Distributional impacts of climate change mitigation in Indian electricity: The  influence of governance, Energy Policy 61 1344 1356 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421513004588.  Rao P.S.C., J. Miller, D.W. Young, and J. Byrne (2009). Energy microfinance intervention for below  poverty line households in India, Energy Policy 37 1694 1712 pp. .  Rao S., S. Pachauri, F. Dentener, P. Kinney, Z. Klimont, K. Riahi, and W. Schoepp (2013). Better air  for better health: Forging synergies in policies for energy access, climate change and air pollution,  Global Environmental Change . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84879479992&partnerID=40&md5=bfd3a5077f5fa19dec1f2d8d10dc1c39.  Rasmussen M.G., G.B. Andresen, and M. Greiner (2012). Storage and balancing synergies in a fully  or highly renewable pan European power system, Energy Policy 51 642 651 pp. (DOI:  10.1016/j.enpol.2012.09.009), (ISSN: 0301 4215).  Ravikumar D., and D. Malghan (2013). Material constraints for indigenous production of CdTe PV:  Evidence from a Monte Carlo experiment using India s National Solar Mission Benchmarks,  Renewable and Sustainable Energy Reviews 25 393 403 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84878625693&partnerID=40&md5=3bc338e8612be9d510eaa4a82ecbddb7.  Reddy A.K.N., W. Annecke, K. Blok, D. Bloom, B. Boardman, A. Eberhard, J. Ramakrishna, Q.  Wodon, and A.K.M. Zaidi (2000). Energy and social issues. In: World Energy Assessment: Energy and  the Challenge of Sustainability. United Nations Development Programme, UN Department of  Economic and Social Affairs and the World Energy Council, New York, N.Y. pp.40 60. Available at:  121 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    http://www.undp.org/content/undp/en/home/librarypage/environment energy/sustainable_energy/world_energy_assessmentenergyandthechallengeofsustainability.html.  Reiche K., B. Tenenbaum, and C. Torres de Mästle (2006). Electrification and Regulation: Principles  and a Model Law. The World Bank Group, Washington D.C.  Reiner D.M., and W.J. Nuttall (2011). Public Acceptance of Geological Disposal of Carbon Dioxide  and Radioactive Waste: Similarities and Differences. In: Geological Disposal of Carbon Dioxide and  Radioactive Waste: A Comparative Assessment. F.L. Toth, (ed.), Springer Netherlands, Dordrecht  pp.295 315(ISBN: 978 90 481 8711 9, 978 90 481 8712 6).  REN21 (2013). Renewables 2013 Global Status Report. Renewable Energy Policy Network for the  21st Century, Paris, France.  Restuti D., and A. Michaelowa (2007). The economic potential of bagasse cogeneration as CDM  projects in Indonesia, Energy Policy 35 3952 3966 pp. .  Réveillere A., J. Rohmer, and J. C. Manceau (2012). Hydraulic barrier design and applicability for  managing the risk of Co2 leakage from deep saline aquifiers, International Journal of Greenhouse Gas  Control 9 62 71 pp. .  Riahi A., F. Dentener, D. Gielen, A. Grubler, J. Jewell, Z. Klimont, V. Krey, D. McCollum, S. Pachauri,  B. Rao, B. van Ruijven, D.P. van Vuuren, and C. Wilson (2012). Energy Pathways for Sustainable  Development. In: Global Energy Assessment: Toward a Sustainable Future. L. Gomez Echeverri, T.B.  Johansson, N. Nakicenovic, A. Patwardhan, (eds.), International Institute for Applied Systems  Analysis and Cambridge University Press, Laxenburg, Austria; Cambridge, UK & New York, USA.  Riahi K., E. Kriegler, N. Johnson, C. Bertram, M. den Elzen, E. Jiyong, M. Schaeffer, J. Edmonds, M.  Isaac, V. Krey, T. Longden, G. Luderer, A. Méjean, D. McCollum, S. Mima, H. Turton, D. van Vuuren,  K. Wada, V. Bosetti, P. Capros, P. Criqui, and M. Kainuma (2013). Locked into Copenhagen Pledges    Implications of short term emission targets for the cost and feasibility of long term climate goals,  Technological Forecasting & Social Change (DOI: http://dx.doi.org/10.1016/j.techfore.2013.09.016).  Roberts B.P., and C. Sandberg (2011). The Role of Energy Storage in Development of Smart Grids,  Proceedings of the IEEE 99 1139 1144 pp. (DOI: 10.1109/JPROC.2011.2116752), (ISSN: 0018 9219).  Roberts J.J., R.A. Wood, and R.S. Haszeldine (2011). Assessing the health risks of natural CO2 seeps  in Italy, Proceedings of the National Academy of Sciences 108 16545 16548 pp. (DOI:  10.1073/pnas.1018590108).  Rockstrom J., W. Steffen, K. Noone, A. Persson, F.S. Chapin, E. Lambin, T.M. Lenton, M. Scheffer, C.  Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sorlin,  P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen,  B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. Foley (2009). Planetary Boundaries:  Exploring the Safe Operating Space for Humanity, Ecology and Society 14 (ISSN: 1708 3087).  Rogelj J., D. McCollum, B. O Neill, and K. Riahi (2013). 2020 emissions levels required to limit  warming to below 2 °C, Nature Climate Change 3 405 412 pp. (DOI: doi:10.1038/nclimate1758).  Rogge K.S., M. Schneider, and V.H. Hoffmann (2011). The innovation impact of the EU Emission  Trading System   Findings of company case studies in the German Power Sector, Ecological  Economics 70 513 523 pp. .  122 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Rogner H. H. (2010). Nuclear power and sustainable development, Journal of International Affairs 64  137 163 pp. .  Rogner H. H. (2012a). The economics of nuclearpower: Past, present and future aspects. Woodhead  Publishing Series in Energy. In: Infrastructure and methodologies for the justification of nuclear  power programmes. A. Alonson, (ed.), Woodhead Publishing, Cambridge, UK pp.502 548.  Rogner H. H. (2012b). Green Growth and Nuclear Energy. Ifo Institute, Munich, Germany.  Rogner H. (2013). World outlook for nuclear power, Energy Strategy Reviews 1 291 295 pp. .  Rogner H., R.F. Aguilera, C.L. Archer, Bertani, R., Bhattacharya, S.C., Dusseault, M.B., Gagnon, L.,  and Yakushev, V. (2012). Chapter 7: Energy Resources and Potentials;   Global Energy Assessment    Toward a Sustainable Future. Global Energy Assessment. In: Global Energy Assessment   Toward a  Sustainable Future. GEA, (ed.), Cambridge University Press, Cambridge UK and New York, NY, USA  and the International Institute for Applied Systems Analysis, Laxenburg, Austri, (ISBN: 9781 10700  5198).  Rogowska J., and J. Namiesnik (2010). Environmental implications of oil spills from shipping  accidents, Reviews of Environmental Contamination and Toxicology 206 95 114 pp. .  Romanak K.D., R.C. Smyth, C. Yang, S.D. Hovorka, M. Rearick, and J. Lu (2012). Sensitivity of  groundwater systems to CO2: Application of a site specific analysis of carbonate monitoring  parameters at the SACROC CO2 enhanced oil field, International Journal of Greenhouse Gas Control  6 142 152 pp. (DOI: http://dx.doi.org/10.1016/j.ijggc.2011.10.011).  Rooney R.C., S.E. Bayley, and D.W. Schindler (2012). Oil sands mining and reclamation cause  massive loss of peatland and stored carbon, Proceedings of the National Academy of Sciences of the  United States of America 109 4933 4937 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84859467402&partnerID=40&md5=c81a6a9b0ed4cdf9705e330172bd1364.  Rose S., P. Jaramillo, M.J. Small, I. Grossmann, and J. Apt (2012). Quantifying the hurricane risk to  offshore wind turbines, Proceedings of the National Academy of Sciences (DOI:  10.1073/pnas.1111769109), (ISSN: 0027 8424, 1091 6490).  Rosner R., and S. Goldberg (2011). Small Modular Reactors   Key to Future Nuclear Power  Generation in the U.S. The University of Chicago Press, Chicago, Illinois.  Roxburgh C., S. Lund, and J. Piotrowski (2011). Mapping Global Capital Markets. McKinsey Global  Institute, Chicago. . Available at:  http://www.mckinsey.com/insights/global_capital_markets/mapping_global_capital_markets_2011.  Rübbelke D., and S. Vögele (2011). Impacts of climate change on European critical infrastructures:  The case of the power sector, Environmental Science & Policy 14 53 63 pp. (DOI:  10.1016/j.envsci.2010.10.007), (ISSN: 1462 9011).  Rubin E.S. (2012). Understanding the pitfalls of CCS cost estimates, International Journal of  Greenhouse Gas Control 10 181 190 pp. .  Rubin E., S. Yeh, M. Antes, M. Berkenpas, and J. Davison (2007). Use of experience curves to  estimate the future cost of power plants with CO2 capture, International Journal of Greenhouse Gas  Control 1 188 197 pp. (DOI: Doi: 10.1016/s1750 5836(07)00016 3), (ISSN: 1750 5836).  123 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Rückerl R., A. Schneider, S. Breitner, J. Cyrys, and A. Peters (2011). Health effects of particulate air  pollution: A review of epidemiological evidence, Inhalation Toxicology 23 555 592 pp. .  Ruiz Romero S., A. Colmenar Santos, and M. Castro Gil (2012). EU plans for renewable energy. An  Application to the Spanish case, Renewable Energy 43 322 330 pp. .  Ryerson T.B., A.E. Andrews, W.M. Angevine, T.S. Bates, C.A. Brock, B. Cairns, R.C. Cohen, O.R.  Cooper, J.A. De Gouw, F.C. Fehsenfeld, R.A. Ferrare, M.L. Fischer, R.C. Flagan, A.H. Goldstein, J.W.  Hair, R.M. Hardesty, C.A. Hostetler, J.L. Jimenez, A.O. Langford, E. McCauley, S.A. McKeen, L.T.  Molina, A. Nenes, S.J. Oltmans, D.D. Parrish, J.R. Pederson, R.B. Pierce, K. Prather, P.K. Quinn, J.H.  Seinfeld, C.J. Senff, A. Sorooshian, J. Stutz, J.D. Surratt, M. Trainer, R. Volkamer, E.J. Williams, and  S.C. Wofsy (2013). The 2010 California Research at the Nexus of Air Quality and Climate Change  (CalNex) field study, Journal of Geophysical Research D: Atmospheres 118 5830 5866 pp. . Available  at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84875876234&partnerID=40&md5=b34bc6d3bacb2dfc1a4e327cfe9a6620.  Sáenz de Miera G., P. del Río González, and I. Vizcaíno (2008). Analysing the Impact of Renewable  Electricity Support Schemes on Power Prices: The Case of Wind Electricity in Spain, Energy Policy 36  3345 3359 pp. .  Sagan S.D. (2011). The causes of nuclear weapons proliferation, Annual Review of Political Science  14 225 244 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79955949040&partnerID=40&md5=a53c9fe0cb5f3e6b2a071b3afd868b06.  Saghafi A. (2012). A Tier 3 method to estimate fugitive gas emissions from surface coal mining,  International Journal of Coal Geology 100 14 25 pp. (DOI: 10.1016/j.coal.2012.05.008), (ISSN: 0166 5162).  Sathaye J.A., L.L. Dale, P.H. Larsen, G.A. Fitts, K. Koy, S.M. Lewis, and A.F.P. de Lucena (2013).  Estimating impacts of warming temperatures on California s electricity system, Global Environmental  Change 23 499 511 pp. (DOI: 10.1016/j.gloenvcha.2012.12.005), (ISSN: 0959 3780).  Sathaye J., O. Lucon, A. Rahman, J. Christensen, F. Denton, J. Fujino, G. Heath, S. Kadner, M. Mirza,  H. Rudnick, A. Schlaepfer, and A. Shmakin (2011). Renewable Energy in the Context of Sustainable  Development. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge,  UK and New York, NY, USA.  Sathre R., M. Chester, J. Cain, and E. Masanet (2012). A framework for environmental assessment  of CO2 capture and storage systems, Energy 37 540 548 pp. .  Sato K., S. Mito, T. Horie, H. Ohkuma, H. Saito, and J. Watanabe (2011). Monitoring and simulation  studies for assessing macro  and meso scale migration of CO2 sequestered in an onshore aquifer:  Experiences from the Nagaoka pilot site, Japan, International Journal of Greenhouse Gas Control 5  125 137 pp. .  Sauer U., C. Schütze, C. Leven, S. Schlömer, and P. Dietrich (2013). An integrative hierarchical  monitoring approach applied at a natural analogue site to monitor CO2 degassing areas, Acta  Geotechnica 1 7 pp. . Available at: http://link.springer.com/article/10.1007/s11440 013 0224 9.  124 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Schaeffer R., A.S. Szklo, A.F. Pereira de Lucena, B.S. Moreira Cesar Borba, L.P. Pupo Nogueira, F.P.  Fleming, A. Troccoli, M. Harrison, and M.S. Boulahya (2012). Energy sector vulnerability to climate  change: A review, Energy 38 1 12 pp. (DOI: 10.1016/j.energy.2011.11.056), (ISSN: 0360 5442).  Scheffknecht G., L. Al Makhadmeh, U. Schnell, and J. Maier (2011). Oxy fuel coal combustion A  review of the current state of the art, International Journal of Greenhouse Gas Control 5 S16 S35  pp. (DOI: 10.1016/j.ijggc.2011.05.020), (ISSN: 1750 5836).  Schenk C.J. (2012). An Estimate of Undiscovered Conventional Oil and Gas Resources of the World,  2012. United States Geological Survey. . Available at: http://pubs.usgs.gov/fs/2012/3042/fs2012 3042.pdf.  Schloemer S., M. Furche, I. Dumke, J. Poggenburg, A. Bahr, C. Seeger, A. Vidal, and E. Faber (2013).  A review of continuous soil gas monitoring related to CCS   Technical advances and lessons learned,  Applied Geochemistry 30 148 160 pp. .  Schneider E., and Sailor (2008). Long Term Uranium Supply Estimates, Nuclear Technology 162.  Schnelzer M., G.P. Hammer, M. Kreuzer, A. Tschense, and B. Grosche (2010). Accounting for  smoking in the radon related lung cancer risk among German uranium miners: Results of a nested  case control study, Health Physics 98 20 28 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 73449122707&partnerID=40&md5=7a80dce700bab4dadbda8d0a0e1a105a.  Scholes R., and J. Settele (2014). Chapter 4   Terrestial and inland water systems. In: Climate Change  2013: Impacts, Adaptation, and Vulnerability. Fifth Assessment Report of Working Group II  [Stocker,  T.F., D. Qin, G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.  Midgley (eds.)]. IPCC, (ed.), Cambridge University Press, Cambridge, UK.  Schwenk Ferrero A. (2013a). Article ID 293792 . German Spent Nuclear Fuel Legacy: Characteristics  and High Level Waste Management Issues, Science and Technology of Nuclear Installations 2013  (DOI: http://dx.doi.org/10.1155/2013/293792).  Schwenk Ferrero A. (2013b). German spent nuclear fuel legacy: Characteristics and high level waste  management issues, Science and Technology of Nuclear Installations 2013 . Available at:  http://www.hindawi.com/journals/stni/2013/293792/.  Scott V., S. Gilfillan, N. Markusson, H. Chalmers, and R.S. Haszeldine (2013). Last chance for carbon  capture and storage, Nature Climate Change 3 105 111 pp. .  Scudder T. (2005). The Future of Large Dams   Dealing with Social, Environmental, Institutional and  Political Costs. Earthscan, London, (ISBN: 1 84407 155 3). .  Sensfuß F., M. Ragwitz, and M. Genoese (2008). The merit order effect: A detailed analysis of the  price effect of renewable electricity generation on spot market prices in Germany, Energy Policy 36  3086 3094 pp. .  Sermage Faure C., D. Laurier, S. Goujon Bellec, M. Chartier, A. Guyot Goubin, J. Rudant, D. Hémon,  and J. Clavel (2012). Childhood leukemia around French nuclear power plants   The Geocap study,  2002 2007, International Journal of Cancer 131 E769 E780 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84863199908&partnerID=40&md5=e813746ff34206a2dbb238a633d73d32.  125 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Sevcikova M., H. Modra, A. Slaninova, and Z. Svobodova (2011). Metals as a cause of oxidative  stress in fish: A review, Veterinarni Medicina 56 537 546 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84855743358&partnerID=40&md5=4c1592f3ff802462b4d086c807c1bc79.  Shackley S., D. Reiner, P. Upham, H. de Coninck, G. Sigurthorsson, and J. Anderson (2009). The  acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining  factors: Part 2. The social acceptability of CCS and the wider impacts and repercussions of its  implementation, International Journal of Greenhouse Gas Control 3 344 356 pp. (DOI:  10.1016/j.ijggc.2008.09.004), (ISSN: 1750 5836).  Shackley S., and M. Thompson (2012). Lost in the mix: Will the technologies of carbon dioxide  capture and storage provide us with a breathing space as we strive to make the transition from fossil  fuels to renewables?, Climatic Change 110 101 121 pp. .  Shindell D., J.C.I. Kuylenstierna, E. Vignati, R. van Dingenen, M. Amann, Z. Klimont, S.C. Anenberg,  N. Muller, G. Janssens Maenhout, F. Raes, J. Schwartz, G. Faluvegi, L. Pozzoli, K. Kupiainen, L.  Höglund Isaksson, L. Emberson, D. Streets, V. Ramanathan, K. Hicks, N.T.K. Oanh, G. Milly, M.  Williams, V. Demkine, and D. Fowler (2012). Simultaneously Mitigating Near Term Climate Change  and Improving Human Health and Food Security, Science 335 183  189 pp. (DOI:  10.1126/science.1210026).  Shrestha R.M., and S. Pradhan (2010). Co benefits of CO2 emission reduction in a developing  country, Energy Policy 38 2586 2597 pp. .  Siirila E.R., A.K. Navarre Sitchler, R.M. Maxwell, and J.E. McCray (2012). A quantitative  methodology to assess the risks to human health from CO2 leakage into groundwater, Advances in  Water Resources 36 146 164 pp. (DOI: 10.1016/j.advwatres.2010.11.005), (ISSN: 03091708).  De Silva P.N.K., P.G. Ranjith, and S.K. Choi (2012). A study of methodologies for CO2 storage  capacity estimation of coal, Fuel 92 1 15 pp. (DOI: 10.1016/j.fuel.2011.07.010), (ISSN: 0016 2361).  Simons A., and C. Bauer (2012). Life cycle assessment of the European pressurized reactor and the  influence of different fuel cycle strategies, Proceedings of the Institution of Mechanical Engineers,  Part A: Journal of Power and Energy 226 427 444 pp. .  Sims R., P. Mercado, W. Krewitt, G. Bhuyan, D. Flynn, H. Holttinen, G. Jannuzzi, S. Khennas, Y. Liu,  M. O Malley, L.J. Nilsson, J. Ogden, K. Ogimoto, H. Outhred, O. Ulleberg, and F. van Hulle (2011).  Integration of Renewable Energy into Present and Future Energy Systems. In: Special Report on  Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von  Stechow (eds)]. Cambridge University Press, Cambridge, UK and New York, NY, USA pp.1076(ISBN:  978 1 107 60710 1).  Sims R., R. Schock, A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, H. Nimir, B.  Schlamadinger, J. Torres Martínez, C. Turner, Y. Uchiyama, S. Vuori, N. Wamukonya, and X. Zhang  (2007). Energy Supply. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the  Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R.  Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)].Cambridge, UK and New York, NY, USA.  Singh B., A.H. Stromman, and E.G. Hertwich (2012). Environmental Damage Assessment of Carbon  Capture and Storage, Journal of Industrial Ecology 16 407 419 pp. .  126 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Singh B., A.H. Strmman, and E.G. Hertwich (2011). Comparative life cycle environmental  assessment of CCS technologies, International Journal of Greenhouse Gas Control 5 911 921 pp. .  Sjoberg L., and B.M. Drottz Sjoberg (2009). Public risk perception of nuclear waste, International  Journal of Risk Assessment and Management 11 248 280 pp. .  SKB (2011). Long Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark. Swedish  Nuclear Fuel and Waste Management Co, Stockholm, Sweden.  Skipperud L., and G. Strmman (2013). Environmental impact assessment of radionuclide and metal  contamination at the former U sites Taboshar and Digmai, Tajikistan, Journal of Environmental  Radioactivity 123 50 62 pp. .  Skipperud L., G. Strmman, M. Yunusov, P. Stegnar, B. Uralbekov, H. Tilloboev, G. Zjazjev, L.S.  Heier, B.O. Rosseland, and B. Salbu (2013). Environmental impact assessment of radionuclide and  metal contamination at the former U sites Taboshar and Digmai, Tajikistan, Journal of Environmental  Radioactivity 123 50 62 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84878630268&partnerID=40&md5=089624d2ccb2064227287b347da76619.  Smith K., K. Balakrishnan, C. Butler, Z. Chafe, I. Fairlie, P. Kinney, T. Kjellstrom, D.L. Mauzerall, T.  McKone, A. McMichael, and M. Schneider (2012a). Chapter 4   Energy and Health. In: Global Energy  Assessment   Toward a Sustainable Future. Cambridge University Press, Cambridge pp.255 324.  Smith, and et al. (2013). How much land based greenhouse gas mitigation can be achieved without  compromising food security and environmental goals?, Global Change Biology (DOI: doi:  10.1111/gcb.12160).  Smith K., and E. Haigler (2008). Co benefits of climate mitigation and health protection in energy  systems: Scoping methods, Annual Review of Public Health 29 11 25 pp. . Available at:  http://ehs.sph.berkeley.edu/krsmith/publications/2008%20pubs/Smith Haigler%20ARPH%2008.pdf.  Smith K., A.R. Mosier, P.J. Crutzen, and W. Winiwarter (2012b). The role of N2O derived from crop based biofuels, and from agriculture in general, in Earth s climate, Philosophical Transactions of the  Royal Society B: Biological Sciences 367 1169 1174 pp. (DOI: 10.1098/rstb.2011.0313).  Sokona Y., Y. Mulugetta, and H. Gujba (2012). Widening Energy Access in Africa: Towards Energy  Transition, Energy Policy 47 3 10 pp. .  Sokona, Y., Y. Mulugetta, and H. Gujba (2012). Widening energy access in Africa: Towards energy  transition, Energy Policy 47 3 10 pp. (DOI: dx.doi.org/10.1016/j.enpol.2012.03.040).  Solli C., A. Stromman, and E. Hertwich (2006). Fission or fossil: Life cycle assessment of hydrogen  production, Proceedings of the IEEE 94 1785 1794 pp. .  Song Y., and S. Liu (2012). Coalbed methane genesis, occurrence and accumulation in China,  Petroleum Science 9.  Sorrell S., J. Speirs, R. Bentley, R. Miller, and E. Thompson (2012). Shaping the global oil peak: A  review of the evidence on field sizes, reserve growth, decline rates and depletion rates, Energy 37  709 724 pp. (DOI: 10.1016/j.energy.2011.10.010), (ISSN: 0360 5442).  127 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Sovacool B.K. (2009). Rejecting Renewables: The Socio technical Impediments to Renewable  Electricity in the United States, Energy Policy 37 4500 4513 pp. (DOI:  http://dx.doi.org/10.1016/j.enpol.2009.05.073).  Spalding Fecher R., A.N. Achanta, P. Erickson, E. Haites, M. Lazarus, N. Pahuja, N. Pandey, S. Seres,  and R. Tewari (2012). Assessing the Impact of the Clean Development Mechanism. CDM Policy  Dialogue, Luxembourg.  Spiecker S., V. Eickholt, and C. Weber (2011). The relevance of CCS for the future power market,  2011 IEEE Power and Energy Society General Meeting 1 8 pp. IEEE, (ISBN: 978 1 4577 1000 1). ,  (DOI: 10.1109/PES.2011.6039754).  Spycher B.D., M. Feller, M. Zwahlen, M. Röösli, N.X. von der Weid, H. Hengartner, M. Egger, and  C.E. Kuehni (2011). Childhood cancer and nuclear power plants in Switzerland: A census based  cohort study, International Journal of Epidemiology 40 1247 1260 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 80053295088&partnerID=40&md5=3d31355810ce87b1b83f4142d803017e.  Von Stechow C., J. Watson, and B. Praetorius (2011). Policy Incentives for Carbon Capture and  Storage Technologies in Europe: A Qualitative Multi criteria Analysis, Global Environmental Change:  Human and Policy Dimensions 21 346 357 pp. .  Steinberg L.J., H. Sengul, and A.M. Cruz (2008). Natech risk and management: an assessment of the  state of the art, Natural Hazards 46 143 152 pp. .  Steinke F., P. Wolfrum, and C. Hoffmann (2013). Grid vs. storage in a 100% renewable Europe,  Renewable Energy 50 826 832 pp. (DOI: 10.1016/j.renene.2012.07.044), (ISSN: 0960 1481).  Stephenson T., J.E. Valle, and X. Riera Palou (2011). Modeling the relative GHG emissions of  conventional and shale gas production, Environmental Science and Technology 45 10757 10764 pp. .  Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 83455262435&partnerID=40&md5=2da1d9a87db84d74c487e5ea0d51550d.  Sterner M. (2009). Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy  Systems   Limiting Global Warming by Transforming Energy Systems. University of Kassel, Kassel,  Germany.  Stolaroff J.K., S. Bhattacharyya, C.A. Smith, W.L. Bourcier, P.J. Cameron Smith, and R.D. Aines  (2012). Review of Methane Mitigation Technologies with Application to Rapid Release of Methane  from the Arctic, Environmental Science & Technology 46 6455 6469 pp. (DOI: 10.1021/es204686w),  (ISSN: 0013 936X).  Strachan N., R. Hoefnagels, A. Ramirez, M. van den Broek, A. Fidje, K. Espegren, P. Seljom, M.  Blesl, T. Kober, and P.E. Grohnheit (2011). CCS in the North Sea region: A comparison on the cost effectiveness of storing CO2 in the Utsira formation at regional and national scales, International  Journal of Greenhouse Gas Control 5 1517 1532 pp. (DOI: 10.1016/j.ijggc.2011.08.009), (ISSN: 1750 5836).  Strietska Ilina O., C. Hofmann, M. Durán Haro, and S. Jeon (2011). Skills for Green Jobs: A Global  View: Synthesis Report Based on 21 Country Studies. International Labour Office, Skills and  Employability Department, Job Creation and Enterprise Development Department, Geneva. .  Available at:  128 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    http://www.ilo.org/wcmsp5/groups/public/@ed_emp/@ifp_skills/documents/publication/wcms_15 6220.pdf.  Su S., J. Han, J. Wu, H. Li, R. Worrall, H. Guo, X. Sun, and W. Liu (2011). Fugitive coal mine methane  emissions at five mining areas in China, Atmospheric Environment 45 2220 2232 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 79953048040&partnerID=40&md5=189ca78d7a8c50776fcbd60bb4927737.  Sudhakara Reddy B., P. Balachandra, and H. Salk Kristle Nathan (2009). Universalization of access  to modern energy services in Indian households Economic and policy analysis, Energy Policy 37  4645 4657 pp. .  Sudo T. (2013). Integration of low carbon development strategies into development cooperation,  Global Environmental Research 17 71 78 pp. .  Sullivan E.J., S. Chu, P.H. Stauffer, R.S. Middleton, and R.J. Pawar (2013). A method and cost model  for treatment of water extracted during geologic CO2 storage, International Journal of Greenhouse  Gas Control 12 372 381 pp. .  Sumner J., L. Bird, and H. Smith (2009). Carbon Taxes: A Review of Experience and Policy Design  Considerations. National Renewable Energy Laboratory.  Svensson R., M. Odenberger, F. Johnsson, and L. StrAmberg (2004). Transportation systems for  CO2 application to carbon capture and storage, Energy Conversion and Management 45 2343 2353  pp. (DOI: 10.1016/j.enconman.2003.11.022), (ISSN: 0196 8904).  Swart R., M. Berk, Janssen, E. Kreileman, and R. Leemans (1998). The safe landing approach: Risks  and trade offs in climate change. In: Global change scenarios of the 21st century   Results from the  IMAGE 2.1. Model. J. Alcamo, R. Leemans, E. Kreileman, (eds.), Pergamon/Elsevier, Oxford pp.193 218.  Tabkhi F., C. Azzaro Pantel, L. Pibouleau, and S. Domenech (2008). A Mathematical Framework for  Modelling and Evaluating Natural Gas Pipeline Networks Under Hydrogen Injection, International  Journal of Hydrogen Energy 33 6222 6231 pp. .  Tanaka K. (2011). Review of policies and measures for energy efficiency in industry sector, Energy  Policy 39 6532 6550 pp. .  Tavoni M., E. Kriegler, T. Aboumahboub, K. Calvin, G. De Maere, J. Jewell, T. Kober, P. Lucas, G.  Luderer, D. McCollum, G. Marangoni, K. Riahi, and D. van Vuuren (2014). The distribution of the  major economies  effort in the Durban platform scenarios, Climate Change Economics.  Tchounwou P., C. Yedjou, A. Patlolla, and D. Sutton (2012). Heavy Metal Toxicity and the  Environment. Experientia Supplementum. In: Molecular, Clinical and Environmental Toxicology. A.  Luch, (ed.), Springer Basel, pp.133 164(ISBN: 978 3 7643 8339 8).  Ten Hoeve J.E., and M.Z. Jacobson (2012). Worldwide health effects of the Fukushima Daiichi  nuclear accident, Energy and Environmental Science 5 8743 8757 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84865242434&partnerID=40&md5=79f0208a97352d07bc4345b5e3b88a69.  Ter Mors E., M.W.H. Weenig, N. Ellemers, and D.D.L. Daamen (2010). Effective communication  about complex environmental issues: Perceived quality of information about carbon dioxide capture  129 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    and storage (CCS) depends on stakeholder collaboration, Journal of Environmental Psychology 30  347 357 pp. (DOI: 10.1016/j.jenvp.2010.06.001), (ISSN: 0272 4944).  Terwel B.W., F. Harinck, N. Ellemers, and D.D.L. Daamen (2010). Going beyond the properties of  CO2 capture and storage (CCS) technology: How trust in stakeholders affects public acceptance of  CCS, International Journal of Greenhouse Gas Control 5 181 188 pp. (DOI:  http://dx.doi.org/10.1016/j.ijggc.2010.10.001).  Thomson M., and D. Infield (2007). Impact of widespread photovoltaics generation on distribution  systems, IET Renewable Power Generation 1 33 40 pp. (DOI: 10.1049/iet rpg:20060009), (ISSN:  1752 1416).  Tirmarche M., J. Harrison, D. Laurier, E. Blanchardon, F. Paquet, and J. Marsh (2012). Risk of lung  cancer from radon exposure: Contribution of recently published studies of uranium miners, Annals  of the ICRP 41 368 377 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84867756884&partnerID=40&md5=703c014e489f18d336df49cfc836a46e.  Torvanger A., A. Grimstad, E. Lindeberg, N. Rive, K. Rypdal, R. Skeie, J. Fuglestvedt, and P.  Tollefsen (2012). Quality of geological CO2 storage to avoid jeopardizing climate targets, Climate  Change 114 245 260 pp. .  Traber T., and C. Kemfert (2011). Gone with the Wind? Electricity Market Prices and Incentives to  Invest in Thermal Power Plants under Increasing Wind Energy Supply, Energy Economics 33 249 256  pp. (DOI: 10.1016/j.eneco.2010.07.002).  Tremblay A., L. Varfalvy, C. Roehm, and M. Garneau (2005). Synthesis Greenhouse Gas Emissions    Fluxes and Processes, Environmental Science and Engineering 637 659 pp. .  Tubiana M., E. Feinendegen, C. Yang, and J.M. Kaminski (2009). The Linear No Threshold  Relationship Is Inconsistent with Radiation Biologic and Experimental Data1, Radiology 251 13 22  pp. (DOI: 10.1148/radiol.2511080671).  Turton H., and L. Barreto (2006). Long term security of energy supply and climate change, Energy  Policy 34 2232 2250 pp. .  Tyler A., P. Dale, D. Copplestone, S. Bradley, H. Ewen, C. McGuire, and E. Scott (2013a). The radium  legacy: Contaminated land and the committed effective dose from the ingestion of radium  contaminated materials, Environment International 59 449 455 pp. .  Tyler A., P. Dale, D. Copplestone, S. Bradley, H. Ewen, C. McGuire, and E.M. Scott (2013b). The  radium legacy: Contaminated land and the committed effective dose from the ingestion of radium  contaminated materials, Environment International 59 449 455 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84882276659&partnerID=40&md5=23acdc1ac6369732df4ff7859e8f05fa.  UN Habitat, and GENUS (2009). Promoting Energy Access for the Urban Poor in Africa: Approaches  and Challenges in Slum Electrification. UN Habitat & Global Network for Urban Settlements, Nairobi,  Kenya.  UNECE (2010a). United Nations International Framework Classification for Fossil Energy and Mineral  Reserves and Resources 2009. United Nations Economic Commission for Europe (UNECE), Geneva,  Switzerland. . Available at:  http://live.unece.org/fileadmin/DAM/energy/se/pdfs/UNFC/unfc2009/UNFC2009_ES39_e.pdf.  130 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    UNECE (2010b). Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines.  United Nations Economic Commission for Europe, Geneva and New York.  UNEP (2011). Towards a Green Economy. Pathways to Sustainable Development and Poverty  Eradication. United Nations Environment Programme, Nairobi, Kenya. 632 pp. Available at:  http://www.unep.org/greeneconomy.  UNES (2011). 2008 Energy Statistics Yearbook. United Nations Department of Economic and Social  Affairs. Statistics Division, New York.  United Nations (2010). Report of the Secretary General s High Level Advisory Group on Climate  Change Financing. United Nations, New York. . Available at:  http://www.un.org/wcm/content/site/climatechange/pages/financeadvisorygroup/pid/13300.  Unruh G. (2002). Escaping Carbon Lock in, Energy Policy 30 317 325 pp. .  US DOE (2012). International Energy Outlook 2011. U.S. Energy Information Administration. Office of  Integrated Analysis and Forecasting. U.S. Department of Energy, Washington D.C.  US DOE (2013a). International Energy Outlook 2013. U.S. Energy Information Administration. Office  of Integrated Analysis and Forecasting. U.S. Department of Energy, Washington D.C.  US DOE (2013b). U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather. U.S.  Department of Energy, Washington D.C., USA. . Available at:  http://energy.gov/sites/prod/files/2013/07/f2/20130716 Energy%20Sector%20Vulnerabilities%20Report.pdf.  US EPA (2006). Global Mitigation of Non CO2 Greenhouse Gases. Office of Atmospheric Programs,  United States Environmental Protection Agency, Washington, D.C.  US EPA (2008). Effects of Climate Change on Energy Production and Use in the United States. U.S.  Climate Change Science Program, Washington D.C. Available at:  http://science.energy.gov/~/media/ber/pdf/Sap_4_5_final_all.pdf.  US EPA (2011). Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water  Resources. US Environmental Protection Agency. 140 pp. Available at:  http://www2.epa.gov/hfstudy/draft plan study potential impacts hydraulic fracturing drinking water resources february 7.  Vasco D.W., A. Rucci, A. Ferretti, F. Novali, R.C. Bissell, P.S. Ringrose, A.S. Mathieson, and I.W.  Wright (2010). Satellite based measurements of surface deformation reveal fluid flow associated  with the geological storage of carbon dioxide, Geophys. Res. Lett. 37 L03303 pp. (DOI:  10.1029/2009gl041544), (ISSN: 0094 8276).  Veltman K., B. Singh, and E. Hertwich (2010). Human and environmental impact assessment of  postcombustion CO2 capture focusing on emissions from amine based scrubbing solvents to air.,  Environmental Science & Technology 44 1496 1502 pp. .  Verbruggen A., M. Fischedick, W. Moomaw, T. Weir, A. Nadai, L.J. Nilsson, J. Nyboer, and J.  Sathaye (2010). Renewable energy costs, potentials, barriers: Conceptual issues, Energy Policy 38  850 861 pp. (DOI: doi: 10.1016/j.enpol.2009.10.036), (ISSN: 0301 4215).  131 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Verbruggen A., W. Moomaw, and J. Nyboer (2011). Annex I: Glossary, Acronyms, Chemical Symbols  and Prefixes. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge,  UK and New York, NY, USA.  Vergragt P.J., N. Markusson, and H. Karlsson (2011). Carbon capture and storage, bio energy with  carbon capture and storage, and the escape from the fossil fuel lock in, Global Environmental  Change 21 282 292 pp. (DOI: 10.1016/j.gloenvcha.2011.01.020), (ISSN: 0959 3780).  Verones F., S. Pfister, and S. Hellweg (2013). Quantifying area changes of internationally important  wetlands due to water consumption in LCA, Environmental Science and Technology 47 9799 9807  pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84883499193&partnerID=40&md5=ecb50351308b2bec11fa0a5c1906c862.  Versteeg P., and E.S. Rubin (2011). A technical and economic assessment of ammonia based post combustion CO2 capture at coal fired power plants, International Journal of Greenhouse Gas Control  5 1596 1605 pp. .  Visschers V., and M. Siegrist (2012). Fair play in energy policy decisions: Procedural fairness,  outcome fairness and acceptance of the decision to rebuild nuclear power plants, Energy Policy 46  292 300 pp. .  Van der Vleuten F., N. Stam, and R.J. van der Plas (2013). Putting rural energy access projects into  perspective: What lessons are relevant?, Energy Policy 61 1071 1078 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84881665681&partnerID=40&md5=b5f3d5406c5bff78f42a213789df2e71.  Van der Voet E., R. Salminen, M. Eckelman, T. Norgate, G. Mudd, R. Hischier, J. Spijker, M. Vijver,  O. Selinus, L. Posthuma, D. de Zwart, D. van de Meent, M. Reuter, L. Tikana, S. Valdivia, P. Wäger,  M. Hauschild, and A. de Koning (2012). Environmental Challenges of Anthropogenic Metals Flows  and Cycles. United Nations Environment Programme, Nairobi (Kenya) and Paris (France).  De Vos K., J. Morbee, J. Driesen, and R. Belmans (2013). Impact of wind power on sizing and  allocation of reserve requirements, IET Renewable Power Generation 7 1 9 pp. (DOI:  doi:10.1049/iet rpg.2012.0085).  De Vries B., D.P. van Vuuren, and M.M. Hoogwijk (2007). Renewable energy sources: Their global  potential for the first half of the 21st century at a global level: An integrated approach, Energy Policy  35 2590 2610 pp. (DOI: doi: 10.1016/j.enpol.2006.09.002), (ISSN: 0301 4215).  Vujic J., R.M. Bergmann, R. Skoda, and M. Miletic (2012). Small modular reactors: Simpler, safer,  cheaper?, Energy 45 288 295 pp. .  Van Vuuren D.P., B. de Vries, B. Eickhout, and T. Kram (2004). Responses to technology and taxes in  a simulated world, Energy Economics 26 579 601 pp. (DOI: DOI: 10.1016/j.eneco.2004.04.027),  (ISSN: 0140 9883).  Walker S., and R. Howell (2011). Life cycle comparison of a wave and tidal energy device,  Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the  Maritime Environment 225 325 327 pp. .  132 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Wall T., R. Stanger, and S. Santos (2011). Demonstrations of coal fired oxy fuel technology for  carbon capture and storage and issues with commercial deployment, International Journal of  Greenhouse Gas Control 5, Supplement 1 S5 S15 pp. (DOI: 10.1016/j.ijggc.2011.03.014), (ISSN:  1750 5836).  Wallquist L., V.H.M. Visschers, and M. Siegrist (2009). Lay concepts on CCS deployment in  Switzerland based on qualitative interviews, International Journal of Greenhouse Gas Control 3 652 657 pp. (DOI: 10.1016/j.ijggc.2009.03.005), (ISSN: 1750 5836).  Wallquist L., V.H.M. Visschers, and M. Siegrist (2010). Impact of Knowledge and Misconceptions on  Benefit and Risk Perception of CCS, Environmental Science & Technology 44 6557 6562 pp. (DOI:  10.1021/es1005412).  Walter A., P. Dolzan, O. Quilodrán, J.G. de Oliveira, C. da Silva, F. Piacente, and A. Segerstedt  (2011). Sustainability assessment of bio ethanol production in Brazil considering land use change,  GHG emissions and socio economic aspects, Energy Policy 39 5703 5716 pp. (DOI:  10.1016/j.enpol.2010.07.043), (ISSN: 0301 4215).  Wan K.K.W., D.H.W. Li, D. Liu, and J.C. Lam (2011). Future trends of building heating and cooling  loads and energy consumption in different climates, Building and Environment 46 223 234 pp. .  Wang S., and P.R. Jaffe (2004). Dissolution of a mineral phase in potable aquifers due to CO2  releases from deep formations; Effect of dissolution kinetics, Energy Conversion and Management  45 2833 2848 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 3142563032&partnerID=40&md5=6eb9231df90192f957834136c0026482.  Wang D.T. C., L.F. Ochoa, and G.P. Harrison (2010). DG Impact on Investment Deferral: Network  Planning and Security of Supply, IEEE Transactions on Power Systems 25 1134 1141 pp. (DOI:  10.1109/TPWRS.2009.2036361), (ISSN: 0885 8950).  Wang F., T. Ren, S. Tu, F. Hungerford, and N. Aziz (2012). Implementation of underground longhole  directional drilling technology for greenhouse gas mitigation in Chinese coal mines, International  Journal of Greenhouse Gas Control 11 290 303 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84867236911&partnerID=40&md5=c7f1563dcc6deab70a395f4cf7d1097d.  Wang J., D. Ryan, and E.J. Anthony (2011). Reducing the Greenhouse Gas Footprint of Shale Gas,  Energy Policy 39 8196 8199 pp. .  Warner E.S., and G.A. Heath (2012). Life Cycle Greenhouse Gas Emissions of Nuclear Electricity  Generation, Journal of Industrial Ecology 16 S73 S92 pp. (DOI: 10.1111/j.1530 9290.2012.00472.x),  (ISSN: 1530 9290).  WCD (2000). Dams and Development. A New Framework for Decision Making. Earthscan, London  and Sterling, VA.  Weber C.L., and C. Clavin (2012). Life cycle carbon footprint of shale gas: Review of evidence and  implications, Environmental Science and Technology 46 5688 5695 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84861883168&partnerID=40&md5=718bf3d9ab5534fb3ab2a738e0881c1b.  133 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    WEC (2008). Energy Efficiency Policies around the World: Review and Evaluation. Executive  Summary. World Energy Council, London. . Available at:  http://89.206.150.89/documents/energy_efficiency_es_final_online.pdf.  Wei M., S. Patadia, and D.M. Kammen (2010). Putting Renewables and Energy Efficiency to Work:  How Many Jobs Can the Clean Energy Industry Generate in the US?, Energy Policy 38 919 931 pp. .  Weitzman M.L. (1974). Prices versus Quantities, Review of Economic Studies 41 477 491 pp. .  Weitzman M.L. (2007). A Review of The Stern Review on the Economics of Climate Change, Journal  of Economic Literature 45 703 724 pp. .  Whitaker M.B., G.A. Heath, J.J. Burkhardt, and C.S. Turchi (2013). Life Cycle Assessment of a Power  Tower Concentrating Solar Plant and the Impacts of Key Design Alternatives, Environmental Science  & Technology 47 5896 5903 pp. (DOI: 10.1021/es400821x), (ISSN: 0013 936X).  Whittaker S., B. Rostron, C. Hawkes, C. Gardner, D. White, J. Johnson, R. Chalaturnyk, and D.  Seeburger (2011). A decade of CO2 injection into depleting oil fields: Monitoring and research  activities of the IEA GHG Weyburn Midale CO2 Monitoring and Storage Project, Energy Procedia 4  6069 6076 pp. (DOI: 10.1016/j.egypro.2011.02.612), (ISSN: 1876 6102).  WHO (2013). Health Risk Assessment from the Nuclear Accident after the 2011 Great East Japan  Earthquake and Tsunami, Based on a Preliminary Dose Estimation. World Health Organization,  Geneva, Switzerland, (ISBN: 9789241505130 9241505133). .  WHO, and UNDP (2009). The Energy Access in Situation in Developing Countries. UNDP, New York.  Wigeland R., T. Bauer, T. Fanning, and E. Morris (2006). Separations and Transmutation Criteria to  Improve Utilization of a Geologic Repository, Nuclear Technology 154.  Wilkinson R. (2011). Eastern Australian coalbed methane supply rivals western offshore  conventional resource, Oil and Gas Journal 109 56 64 pp. .  Williams J.H., A. DeBenedictis, R. Ghanadan, A. Mahone, J. Moore, W.R. Morrow Iii, S. Price, and  M.S. Torn (2012). The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal  role of electricity, Science 335 53 59 pp. (DOI: 10.1126/science.1208365), (ISSN: 00368075 (ISSN)).  Wilson C., A. Grubler, V. Krey, and K. Riahi (2013). Future capacity growth of energy technologies:  Are scenarios consistent with historical evidence?, Climatic Change 118 381 395 pp. .  Wilwerding J. (2011). Fugitive emissions from valves: Update:  Leak free  involves monitoring and  new equipment technology, Hydrocarbon Processing 90 . Available at:  http://www.scopus.com/record/display.url?eid=2 s2.0 79958199088&origin=inward&txGid=E22C3BA38F75A3546366A9F10ECCACB6.N5T5nM1aaTEF8rE6y KCR3A%3a138.  Winzer C. (2012). Conceptualizing Energy Security, Energy Policy 46 36 48 pp. (DOI:  10.1016/j.enpol.2012.02.067).  Wise M., G. Kyle, J. Dooley, and S. Kim (2010). The impact of electric passenger transport  technology under an economy wide climate policy in the United States: Carbon dioxide emissions,  coal use, and carbon dioxide capture and storage, International Journal of Greenhouse Gas Control 4  4 301 308 pp. (DOI: 10.1016/j.ijggc.2009.09.003).  134 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Wiser R., Z. Yang, M. Hand, O. Hohmeyer, D. Infield, P.H. Jensen, V. Nikolaev, M. O Malley, G.  Sinden, and A. Zervos (2011). Wind Energy. In: IPCC Special Report on Renewable Energy Sources  and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P.  Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)].  Cambridge University Press, Cambridge, UK and New York, NY, USA.  Wissner M. (2011). The Smart Grid   A saucerful of secrets?, Applied Energy 88 2509 2518 pp. .  Wong Parodi G., and I. Ray (2009). Community perceptions of carbon sequestration: insights from  California, Environmental Research Letters 4 034002 pp. (DOI: 10.1088/1748 9326/4/3/034002),  (ISSN: 1748 9326).  Woo C.K., J. Horowitz, J. Moore, and A. Pacheco (2011). The impact of wind generation on the  electricity spot market price level and variance: The Texas experience, Energy Policy 39 3939 3944  pp. (DOI: doi:16/j.enpol.2011.03.084).  World Bank (2011a). Climate Change Impacts on Energy Systems: Key Issues for Energy Sector  Adaptation. Energy Sector Management Assistance Program; The World Bank Group, Washington,  DC, USA. 224 pp.  World Bank (2011b). Mobilizing Climate Finance. Paper Prepared at the Request of G20 Finance  Ministers. World Bank, Washington D.C. Available at:  http://climatechange.worldbank.org/content/mobilizing climate finance.  World Economic Forum 2011 (2011). Scaling Up Low Carbon Infrastructure Investments in  Developing Countries. World Economic Forum, Geneva, Switzerland. . Available at: The Critical Mass  Initiative Working Report as of January 2011.  World Nuclear Association (2013). Mixed Oxide (MOX) Fuel. . Available at: http://www.world nuclear.org/info/inf29.html.  Würzburg K., X. Labandeira, and P. Linares (2013). Renewable generation and electricity prices:  Taking stock and new evidence for Germany and Austria, Energy Economics (DOI:  doi:10.1016/j.eneco.2013.09.011).  WWF UK (2011). Green Game Changers. Insights for Mainstreaming Business Innovation. WWF and  Verdantix, London. . Available at:  http://assets.wwf.org.uk/downloads/1121_1_wwf_greengamechange_aw_web__2_.pdf.  Yamaguchi M. (2012). Climate Change Mitigation. A Balanced Approach to Climate Change. Spinger,  London, Heidelberg, New York, Dordrecht, (ISBN: 978 1 4471 4227 0). .  Yang C., and J. Ogden (2007). Determining the Lowest cost Hydrogen Delivery Mode, International  Journal of Hydrogen Energy 32 268 286 pp. .  Yeh S., S. Jordaan, A. Brandt, M. Turetsky, S. Spatari, and D. Keith (2010). Land use greenhouse gas  emissions from conventional oil production and oil sands, Environmental Science and Technology 44  8766 8772 pp. .  Yeh S., and E. Rubin (2010). Uncertainties in technology experience curves for energy economic  models, Workshop on Assessing the Economic Impacts of Climate Change. The National Academies,  Washington, DC. 2010, .  135 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Yim M.S., and J. Li (2013). Examining relationship between nuclear proliferation and civilian nuclear  power development, Progress in Nuclear Energy 66 108 114 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84876759547&partnerID=40&md5=a2cfa5adb27ef81d99253980074f24d1.  Yoo B. Y., S. G. Lee, K. Rhee, H. S. Na, and J. M. Park (2011). New CCS system integration with CO2  carrier and liquefaction process, Energy Procedia 4 2308 2314 pp. (DOI:  10.1016/j.egypro.2011.02.121), (ISSN: 1876 6102).  York R. (2012). Do alternative energy sources displace fossil fuels?, Nature Climate Change 2 441 443 pp. .  Young P.S., J.J. Cech Jr, and L.C. Thompson (2011). Hydropower related pulsed flow impacts on  stream fishes: A brief review, conceptual model, knowledge gaps, and research needs, Reviews in  Fish Biology and Fisheries 21 713 731 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 81255149424&partnerID=40&md5=f9ed60b9bd82ee62f1b6470614b738f5.  Yuan J.H., and T.P. Lyon (2012). Promoting global CSS RDD&D by stronger U.S. China collaboration,  Renewable and Sustainable Energy Reviews 16 6746 6769 pp. .  Zafirakis D., K. Chalvatzis, G. Baiocchi, and G. Daskalakis (2013). Modeling of financial incentives for  investments in energy storage systems that promote the large scale integration of wind energy,  Applied Energy 105 138 154 pp. .  Zavodov K. (2012). Renewable energy investment and the clean development mechanism, Energy  policy 40 81 89 pp. .  ZEP (2011a). The Cost of CO2 Transport. Zero Emissions Platform, Brussels, Belgium. 53 pp.  ZEP (2011b). The Costs of CO2 Capture, Transport and Storage. European Technology Platform for  Zero Emission Fossil Fuel Power Plants. . Available at:  www.zeroemissionsplatform.eu/library/publication/165 zep cost report summary.html.  Zhai H., Rubin, E.S., and P.L. Versteeg (2011). Water use at pulverized coal power plants with  postcombustion carbon capture and storage, Environmental Science & Technology 45 2479 2485 pp.  (DOI: 10.1021/es1034443).  Zhang M., and S. Bachu (2011). Review of integrity of existing wells in relation to CO2 geological  storage: What do we know?, International Journal of Greenhouse Gas Control 5 826 840 pp. (DOI:  10.1016/j.ijggc.2010.11.006), (ISSN: 1750 5836).  Zhang X.L., E. Martinot, and S.Y. Chang (2012). Renewable energy in China: An integrated  technology and policy perspective, Energy Policy 51 1 6 pp. .  Zhang Y., G. Wei, Z. Zhang, T. Jia, and D. Yang (2013). Study of hydraulic slotting technology for  rapid excavation of coal seams with severe coal and gas outburst potentials, Journal of Applied  Sciences 13 3483 3489 pp. .  Zhang Z., Z. Wu, D. Wang, Y. Xu, Y. Sun, F. Li, and Y. Dong (2009). Current status and technical  description of Chinese 2x250 MWth HTR PM demonstration plant, Nuclear Engineering and Design  239 1212 1219 pp. .  136 of 137        Final Draft  Chapter 7 IPCC WGIII AR5    Zheng L., J. Apps, N. Spycher, J. Birkholzer, Y. Kharaka, J. Thordsen, S. Beers, W. Herkelrath, E.  Kakouros, and R. Trautz (2012). Geochemical modeling of changes in shallow groundwater  chemistry observed during the MSU ZERT CO2 injection experiment, International Journal of  Greenhouse Gas Control 7 202 217 pp. .  Ziv G., E. Baran, I. Rodríguez Iturbe, and S.A. Levin (2012). Trading off fish biodiversity, food  security, and hydropower in the Mekong River Basin, Proceedings of the National Academy of  Sciences of the United States of America 109 5609 5614 pp. .  Al Zoughool M., and D. Krewski (2009). Health effects of radon: a review of the literature,  International Journal of Radiation Biology 85 57 69 pp. .  Zuser A., and H. Rechberger (2011). Considerations of resource availability in technology  development strategies: The case study of photovoltaics, Resources, Conservation and Recycling 56  56 65 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 80053549460&partnerID=40&md5=1a2159a879459e86fb86c93f638f5245.  Zvinavashe E., H. Elbersen, M. Slingerland, S. Kolijn, and J. Sanders (2011). Cassava for food and  energy: exploring potential benefits of processing of cassava into cassava flour and bioenergy at  farmstead and community levels in rural Mozambique, Biofuels, Bioproducts and Biorefining 5 151 164 pp. .  Van der Zwaan B., L. Carmona, and T. Kober (2013). Potential for renewable energy jobs in the  Middle East, Energy Policy 60 296 304 pp. .   137 of 137        Working Group III Mitigation of Climate Change Chapter 8 Transport   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    8  Transport  CLAs:  LAs:  Chapter 8  IPCC WGIII AR5    Ralph Sims, Roberto Schaeffer   Felix Creutzig, Xochitl Cruz Núnez, Marcio D Agosto, Delia Dimitriu,  Maria Josefina Figueroa Meza, Lew Fulton, Shigeki Kobayashi, Oliver  Lah, Alan McKinnon, Peter Newman, Minggao Ouyang, James Jay  Schauer, Daniel Sperling, Geetam Tiwari   Adjo A. Amekudzi, Bruno Soares Moreira Cesar Borba, Helena Chum,  Philippe Crist, Han Hao, Jennifer Helfrich, Thomas Longden, André  Frossard Pereira de Lucena, Paul Peeters, Richard Plevin, Steve Plotkin,  Robert Sausen  Elizabeth Deakin, Suzana Kahn Ribeiro  Bruno Soares Moreira Cesar Borba    CAs:        REs  CSA:    1 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Chapter 8:    Transport  Contents  Chapter 8: Transport ............................................................................................................................... 2  Executive Summary ............................................................................................................................. 4  8.1 Freight and passenger transport (land, air, sea and water) ......................................................... 7  8.1.1 The context for transport of passengers and freight ............................................................. 9  8.1.2 Energy demands and direct / indirect emissions ................................................................. 11  . 8.2 New developments in emission trends and drivers  ................................................................... 13  8.2.1 Trends .................................................................................................................................. 13  . 8.2.1.1 Non CO2 greenhouse gas emissions, black carbon, and aerosols  ................................ 14  8.2.2 Drivers .................................................................................................................................. 15  8.3 Mitigation technology options, practices and behavioural aspects ........................................... 16  8.3.1 Energy intensity reduction   incremental vehicle technologies .......................................... 16  8.3.1.1 Light duty vehicles  ........................................................................................................ 17  . 8.3.1.2 Heavy duty vehicles ...................................................................................................... 17  8.3.1.3 Rail, waterborne craft, and aircraft............................................................................... 18  8.3.2 Energy intensity reduction   advanced propulsion systems ............................................... 18  8.3.2.1 Road vehicles   battery and fuel cell electric drives ..................................................... 19  8.3.2.2 Rail, waterborne craft, and aircraft............................................................................... 19  8.3.3 Fuel carbon intensity reduction ........................................................................................... 20  8.3.4 Comparative analysis ........................................................................................................... 21  8.3.5 Behavioural aspects ............................................................................................................. 22  8.4 Infrastructure and systemic perspectives ................................................................................... 24  8.4.1 Path dependencies of infrastructure and GHG emission impacts ....................................... 24  8.4.2 Path dependencies of urban form and mobility .................................................................. 25  8.4.2.1 Modal shift opportunities for passengers ..................................................................... 26  8.4.2.2 Modal shift opportunities for freight ............................................................................ 28  8.5 Climate change feedback and interaction with adaptation  ....................................................... 30  . 8.5.1 Accessibility and feasibility of transport routes ................................................................... 30  8.5.2 Relocation of production and reconfiguration of global supply chains ............................... 30  8.5.3 Fuel combustion and technologies ...................................................................................... 31  8.5.4 Transport infrastructure ...................................................................................................... 31  8.6 Costs and potentials .................................................................................................................... 32  8.7 Co benefits, risks and spillovers  ................................................................................................. 39  . 8.7.1 Socio economic, environmental, and health effects ........................................................... 39    2 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.7.2 Technical risks and uncertainties ......................................................................................... 42  8.7.3 Technological spillovers ....................................................................................................... 42  8.8 Barriers and opportunities .......................................................................................................... 44  8.8.1 Barriers and opportunities to reduce GHGs by technologies and practices  ....................... 44  . 8.8.2 Financing low carbon transport ........................................................................................... 49  8.8.3 Institutional, cultural, and legal barriers and opportunities ................................................ 49  8.9 Sectoral implications of transformation pathways and sustainable development .................... 50  8.9.1 Long term stabilization goals   integrated and sectoral perspectives ................................ 51  8.9.2 Sustainable development .................................................................................................... 55  8.10 Sectoral policies ........................................................................................................................ 57  8.10.1 Road transport ................................................................................................................... 57  8.10.2 Rail transport ..................................................................................................................... 61  8.10.3 Waterborne transport........................................................................................................ 62  8.10.4 Aviation .............................................................................................................................. 62  8.10.5 Infrastructure and urban planning  .................................................................................... 63  . 8.11 Gaps in knowledge and data ..................................................................................................... 64  8.12 Frequently asked questions ...................................................................................................... 65  References ........................................................................................................................................ 68     Dedication to Lee Schipper. This Transport chapter is dedicated to the memory of Leon Jay (Lee)  Schipper. A leading scientist in the field of energy research with emphasis on transport, Lee died on  16 August 2011 at the age of 64. He was a friend and colleague of many of the Chapter authors who  were looking forward to working with him in his appointed role as Review Editor. Lee s passing is a  great loss to the research field of transport, energy, and the environment and his expertise and  guidance in the course of writing this chapter was sorely missed by the author team, as were his  musical talents.    3 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Executive Summary  Reducing global transport greenhouse gas (GHG) emissions will be challenging since the continuing  growth in passenger and freight activity could outweigh all mitigation measures unless transport  emissions can be strongly decoupled from GDP growth (high confidence).  The transport sector produced 6.7 GtCO2 (7.0 GtCO2eq including non CO2 gases) of direct GHG  emissions in 2010 and hence was responsible for approximately 23% of total energy related CO2  emissions [8.1]. Growth in GHG emissions has continued since the Fourth Assessment Report (AR4)  in spite of more efficient vehicles (road, rail, water craft, and aircraft) and policies being adopted.  (robust evidence; high agreement)[Section 8.1, 8.3]   Without aggressive and sustained mitigation policies being implemented, transport emissions could  increase at a faster rate than emissions from the other energy end use sector and reach around 12  Gt CO2eq/yr by 2050. Transport demand per capita in developing and emerging economies is far  lower than in Organisation for Economic Co operation and Development (OECD) countries but is  expected to increase at a much faster rate in the next decades due to rising incomes and  development of infrastructure. Analyses of both sectoral and integrated model scenarios suggest a  higher emission reduction potential in the transport sector than the levels found possible in AR4 and  at lower costs. Since many integrated models do not contain a detailed representation of  infrastructural and behavioural changes, their results for transport can possibly be interpreted as  conservative. If pricing and other stringent policy options are implemented in all regions, substantial  decoupling of transport GHG emissions from gross domestic product (GDP) growth seems possible. A  strong slowing of light duty vehicle (LDV) travel growth per capita has already been observed in  several OECD cities suggesting possible saturation. (medium evidence, medium agreement) [8.6, 8.9,  8.10]  Avoided journeys and modal shifts due to behavioural change, uptake of improved vehicle and  engine performance technologies, low carbon fuels, investments in related infrastructure, and  changes in the built environment, together offer high mitigation potential (high confidence).  Direct (tank to wheel) GHG emissions from passenger and freight transport can be reduced by:     avoiding journeys where possible   by, for example, densifying urban landscapes, sourcing  localized products, internet shopping, restructuring freight logistics systems, and utilizing  advanced information and communication technologies (ICT);   modal shift to lower carbon transport systems   encouraged by increasing investment in  public  transport, walking and cycling infrastructure, and modifying roads, airports, ports, and railways  to become more attractive for users and minimize travel time and distance;  lowering energy intensity (MJ/passenger km or MJ/tonne km)   by enhancing vehicle and engine  performance, using lightweight materials, increasing freight load factors and passenger  occupancy rates, deploying new technologies such as electric three wheelers;   reducing carbon intensity of fuels (CO2eq/MJ)   by substituting oil based products with natural  gas, bio methane, or biofuels, electricity or hydrogen produced from low GHG sources .   In addition, indirect GHG emissions arise during the construction of infrastructure, manufacture of  vehicles, and provision of fuels (well to tank). (robust evidence; high agreement) [8.3, 8.4, 8.6 and  Chapters 10, 11, 12]  Both short  and long term transport mitigation strategies are essential if deep GHG reduction  ambitions are to be achieved (high confidence).  Short term mitigation measures could overcome barriers to low carbon transport options and help  avoid future lock in effects resulting, for example, from the slow turnover of vehicle stock and  infrastructure and expanding urban sprawl. Changing behaviour of consumers and businesses will  likely play an important role but is challenging and the possible outcomes, including modal shift, are    4 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    difficult to quantify. Business initiatives to decarbonize freight transport have begun, but need  support from policies that encourage shifting to low carbon modes such as rail or waterborne  options where feasible, and improving logistics. The impact of projected growth in world trade on  freight transport emissions may be partly offset in the near term by more efficient vehicles,  operational changes,  slow steaming  of ships, eco driving and fuel switching. Other short term  mitigation strategies include reducing aviation contrails and emissions of particulate matter  (including black carbon), tropospheric ozone and aerosol precursors (including NOx) that can have  human health and mitigation co benefits in the short term. (medium evidence, medium agreement)  [8.2, 8.3, 8.6, 8.10]   The mitigation potential of biofuels (particularly advanced  drop in  fuels for aircraft and other  vehicles) will depend on technology advances and sustainable feedstocks. (medium evidence;  medium agreement) [8.3]  The technical potential exists to substantially reduce the current CO2 emissions per passenger or  tonne kilometre for all modes by 2030 and beyond. Energy efficiency and vehicle performance  improvements range from 30 50% relative to 2010 depending on mode and vehicle type. Realizing  this efficiency potential will depend on large investments by vehicle manufacturers, which may  require strong incentives and regulatory policies in order to achieve GHG emissions reduction goals.  (medium evidence, medium agreement) [8.3, 8.6, 8.10]   Over the medium term (up to 2030) to long term (to 2050 and beyond), urban (re)development and  new infrastructure, linked with land use policies, could evolve to possibly reduce GHG intensity by  20 50% below 2010 baseline by 2050, through more compact and integrated transit, improved  cycling infrastructure, and walking oriented urban planning. Although high potential improvements  for aircraft efficiency are projected, improvement rates are expected to be slow due to long aircraft  life, and fuel switching options being limited, apart from biofuels. Widespread construction of high speed rail systems could partially reduce short to medium haul air travel demand. For the transport sector, a reduction in total CO2 emissions of 15-40% could be plausible compared to baseline activity growth in 2050. (medium evidence, medium agreement) [8.3, 8.4, 8.6, 8.9, 12.3, 12.5]  Barriers to decarbonizing transport for all modes differ across regions, but can be overcome in part  by reducing the marginal mitigation costs (medium evidence, medium agreement).   Financial, institutional, cultural, and legal barriers constrain transport technology uptake and  behavioural change. All of these barriers include the high investment costs needed to build low emissions transport systems, the slow turnover of stock and infrastructure, and the limited impact of  a carbon price on petroleum fuels already heavily taxed. Other barriers can be overcome by  communities, cities, and national governments which can implement a mix of behavioural measures,  technological advances, and infrastructural changes. Infrastructure investments ($/tCO2 avoided)  may appear expensive at the margin, but sustainable urban planning and related policies can gain  support when co benefits, such as improved health and accessibility, can be shown to offset some or  all of the mitigation costs. (medium evidence, medium agreement) [8.4, 8.7, 8.8]  Oil price trends, price instruments on emissions, and other measures such as road pricing and airport  charges can provide strong economic incentives for consumers to adopt mitigation measures.  Regional differences, however, will likely occur due to cost and policy constraints. Some near term  mitigation measures are available at low marginal costs but several longer term options may prove  more expensive. Full societal mitigation costs (USD/tCO2) of deep reductions by 2030 remain  uncertain but range from very low or negative (such as efficiency improvements for LDVs, long haul  heavy duty vehicles (HDVs) and ships) to more than 100 USD/tCO2 for some electric vehicles, aircraft,  and possibly high speed rail. Such costs may be significantly reduced in the future but the magnitude  of mitigation cost reductions is uncertain. (limited evidence, low agreement) [8.6, 8.9]    5 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    There are regional differences in transport mitigation pathways with major opportunities to shape  transport systems and infrastructure around low carbon options, particularly in developing and  emerging countries where most future urban growth will occur (robust evidence, high agreement).  Transport can be an agent of sustained urban development that prioritizes goals for equity and  emphasizes accessibility, traffic safety, and time savings for the poor while reducing emissions, with  minimal detriment to the environment and human health. Transformative trajectories vary with  region and country due to differences in the dynamics of motorization, age and type of vehicle fleets,  existing infrastructure, and urban development processes. In least developed countries, prioritizing  access to pedestrians and integrating non motorized and public transport services can result in  higher levels of economic and social prosperity. In fast growing emerging economies, investments in  mass transit and other low carbon transport infrastructure can help avoid future lock in to carbon  intensive modes. Mechanisms to accelerate the transfer and adoption of improved vehicle efficiency  and low carbon fuels to emerging and developing economies, and reducing the carbon intensity of  freight in emerging markets, could offset much of the growth in non OECD emissions by 2030. It  appears possible for LDV travel per capita in OECD countries to peak around 2035, whereas in non OECD countries it will likely continue to increase dramatically from a very low average today.  However, growth will eventually need to be slowed in all countries. (limited evidence; medium  agreement) [8.7, 8.9]  A range of strong and mutually supportive policies will be needed for the transport sector to  decarbonize and for the co benefits to be exploited (robust evidence, high agreement).   Decarbonizing the transport sector is likely to be more challenging than for other sectors, given the  continuing growth in global demand, the rapid increase in demand for faster transport modes in  developing and emerging economies, and the lack of progress to date in slowing growth of global  transport emissions in many OECD countries. Transport strategies associated with broader non climate policies at all government levels can usually target several objectives simultaneously to give  lower travel costs, improved mobility, better health, greater energy security, improved safety, and  time savings. Realizing the co benefits depends on the regional context in terms of economic, social,  and political feasibility as well as having access to appropriate and cost effective advanced  technologies. (medium evidence; high agreement)  [8.4, 8.7]   In rapidly growing developing economies, good opportunities exist for both structural and  technological change around low carbon transport. In OECD countries, advanced vehicle  technologies could play a bigger role than structural and behavioural change, since economic growth  will be slower than for non OECD countries. Policy changes can maximize the mitigation potential by  overcoming the barriers to achieving deep carbon reductions and optimizing the synergies. Pricing  strategies, when supported by education policies to help create social acceptance, can help reduce  travel demand and increase the demand for more efficient vehicles (for example, where fuel  economy standards exist) and induce a shift to low carbon modes (where good modal choice is  available). For freight, a range of fiscal, regulatory, and advisory policies can be used to incentivize  businesses to reduce the carbon intensity of their logistical systems. Since rebound effects can  reduce the CO2 benefits of efficiency improvements and undermine a particular policy, a balanced  package of policies, including pricing initiatives, could help to achieve stable price signals, avoid  unintended outcomes, and improve access, mobility, productivity, safety, and health. (medium  evidence; medium agreement) [8.7, 8.10]   Knowledge gaps in the transport sector  There is a lack of comprehensive and consistent assessments of the worldwide potential for GHG  emission reduction and especially costs of mitigation from the transport sector. Within this context,  the potential reduction is much less certain for freight than for passenger modes. For LDVs, the long term costs and high energy density potential for on board energy storage is not well understood.    6 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Also requiring evaluation is how best to manage the tradeoffs for electric vehicles between  performance, driving range and recharging time, and how to create successful business models.   Another area that requires additional research is in the behavioural economic analysis of the  implications of norms, biases, and social learning in decision making, and of the relationship  between transport and lifestyle. For example, how and when people will choose to use new types of  low carbon transport and avoid making unnecessary journeys is unknown. Consequently, the  outcomes of both positive and negative climate change impacts on transport services and scheduled  timetables have not been determined, nor have the cost effectiveness of carbon reducing measures  in the freight sector and their possible rebound effects. Changes in the transport of materials as a  result of the decarbonization of other sectors and adaptation of the built environment are unknown.  [8.11]  8.1 Freight and passenger transport (land, air, sea and water)  Greenhouse gas (GHG) emissions from the transport sector have more than doubled since 1970, and  have increased at a faster rate than any other energy end use sector to reach 7.0 Gt CO2eq in 2010  (IEA, 2012a; JRC/PBL, 2012; see Annex II.8). Around 80% of this increase has come from road  vehicles (see Figure 8.1). The final energy consumption for transport reached 27.4% of total end use  energy in 2010 (IEA, 2012b), of which around 40% was used in urban transport (IEA, 2013). The  global transport industry (including the manufacturers of vehicles, providers of transport services,  and constructors of infrastructure) undertakes research and development (R&D) activities to  become more carbon and energy efficient. Reducing transport emissions will be a daunting task  given the inevitable increases in demand and the slow turnover and sunk costs of stock (particularly  aircraft, trains, and large ships) and infrastructure. In spite of a lack of progress to date, the  transition required to reduce GHG emissions could arise from new technologies, implementation of  stringent policies, and behavioural change.  Figure 8.1. Direct GHG emissions (shown here by transport mode) rose 250% from 2.8 Gt CO2eq worldwide in 1970 to 7.0 Gt CO2eq in 2010 (IEA, 2012a; JRC/PBL, 2012; see Annex II.8). Note: Indirect emissions from production of fuels, vehicle manufacturing, infrastructure construction etc. are not included.   7 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Key developments in the transport sector since the AR4 (IPCC, 2007) include:    For each mode of transport, direct GHG emissions can be decomposed2 into:  activity   total passenger km/yr or freight tonne km/yr having a positive feedback loop to  the state of the economy but, in part, influenced by behavioural issues such as journey  avoidance and restructuring freight logistics systems;  system infrastructure and modal choice (NRC, 2009);   energy intensity   directly related to vehicle and engine design efficiency, driver behaviour  during operation (Davies, 2012), and usage patterns; and  fuel carbon intensity   varies for different transport fuels including electricity and hydrogen.  continued increase in annual average passenger km per capita, but  signs that LDV1   ownership and use may have peaked in some OECD countries (8.2);   deployment of technologies to reduce particulate matter and black carbon, particularly in  OECD countries (8.2);   renewed interest in natural gas as a fuel, compressed for road vehicles and liquefied for  ships (8.3);   increased number of electric vehicles (including 2 wheelers) and bus rapid transit systems,  but from a low base (8.3);   increased use of sustainably produced biofuels including for aviation (8.3, 8.10);   greater access to mobility services in developing countries (8.3, 8.9);   reduced carbon intensity of operations by freight logistics companies, the slow steaming of  ships, and the maritime industry imposing GHG emission mandates (8.3, 8.10);   improved comprehension that urban planning and developing infrastructure for pedestrians,  bicycles, buses and light rail can impact on modal choice while also addressing broader  sustainability concerns such as health, accessibility and safety (8.4, 8.7);   better analysis of comparative passenger and freight transport costs between modes (8.6);   emerging policies that slow the rapid growth of LDVs especially in Asia, including investing in  non motorized transport systems (8.10);  more fuel economy standards (MJ/km) and GHG emission vehicle performance standards  implemented for light and heavy duty vehicles (LDVs and HDVs) (8.10); and  widely implemented local transport management policies to reduce air pollution and traffic  congestion (8.10).  Each of these components has good potential for mitigation through technological developments,  behavioural change, or interactions between them, such as the deployment of electric vehicles  impacting on average journey distance and urban infrastructure (see Figure 8.2).                                                                 LDVs are motorized vehicles (passenger cars and commercial vans) below approximately 2.53.0 t net weight  with HDVs (heavy duty vehicles or  trucks  or  lorries ) usually heavier.   Based on the breakdown into A (total Activity), S (modal Structure), I (modal energy Intensity), and F (carbon  content of Fuels) using the  ASIF approach . Details of how this decomposition works and the science involved  can be found in (Schipper et al., 2000; Kamakaté and Schipper, 2009).  2 1   8 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Figure 8.2. Direct transport GHG emission reductions for each mode and fuel type option decomposed into activity (passenger or freight movements); energy intensity (specific energy inputs linked with occupancy rate); fuel carbon intensity (including non-CO2 GHG emissions); and system infrastructure and modal choice. These can be summated for each modal option into total direct GHG emissions. Notes: p-km = passenger-km; t-km = tonne-km; CNG = compressed natural gas; LPG = liquid petroleum gas (Creutzig et al., 2011; Bongardt et al., 2013). Deep long term emission reductions also require pricing signals and interactions between the  emission factors. Regional differences exist such as the limited modal choice available in some  developing countries and the varying densities and scales of cities (Banister, 2011a). Indirect GHG  emissions that arise during the construction of transport infrastructure, manufacture of vehicles, and  provision of fuels, are covered in Chapters 12, 10, and 7 respectively.  8.1.1 The context for transport of passengers and freight  Around 10% of the global population account for 80% of total motorized passenger kilometres (p km) with much of the world s population hardly travelling at all.  OECD countries dominate GHG  transport emissions (see Figure 8.3) although most recent growth has taken place in Asia, including  passenger kilometres travelled by low GHG emitting 2  to 3  wheelers that have more than doubled  since 2000 (see Figure 8.4). The link between GDP and transport has been a major reason for  increased GHG emissions (Schafer and Victor, 2000) though the first signs that decoupling may be  happening are now apparent (Newman and Kenworthy, 2011a; Schipper, 2011). Slower rates of  growth, or even reductions in the use of LDVs, have been observed in some OECD cities (Metz, 2010,  2013; Meyer et al., 2012; Goodwin and Van Dender, 2013a; Headicar, 2013) along with a     9 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    simultaneous increase in the use of mass transit systems (Kenworthy, 2013). The multiple factors  causing this decoupling, and how it can be facilitated more widely, are not well understood (ITF,  2011), (Goodwin and Van Dender, 2013). However,  peak  travel trends are not expected to occur in  most developing countries in the foreseeable future, although transport activity levels may  eventually plateau at lower GDP levels than for OECD countries due to higher urban densities and  greater infrastructure constraints (ADB, 2010; Figueroa and Ribeiro, 2013).    Figure 8.3. GHG emissions from transport sub-sectors by regions in 1970, 1990 and 2010 with international shipping and aviation shown separately. (IEA, 2012a; JRC/PBL, 2012; see Annex II.8). Inset shows the relative share of total GHG emissions for transport relative to GDP per capita from 1970 to 2010 for each region and the world. (Adapted from Schäfer et al., 2009; Bongardt et al., 2013 using data from (IEA, 2012a; JRC/PBL, 2012; see Annex II.8). As shown in Figure 8.3, the share of transport emissions tended to increase due to structural  changes as GDP per capita increased, i.e., countries became richer. The variance between North  America and other OECD countries (Western Europe and Pacific OECD) shows that the development  path of infrastructure and settlements taken by developing countries and economies in transition  (EITs) will have a significant impact on the future share of transport related emissions and,  consequently, total GHG emissions (see Section 12.4).    10 of 115   Final Draft  Chapter 8  IPCC WGIII AR5      Figure 8.4. Total passenger distance travelled by mode and region in 2000 and 2010 (IEA, 2012c) Note: Non-motorized modal shares are not included, but can be relatively high in Asia and Africa. For RC5 region definitions see Annex A.II.2. 8.1.2 Energy demands and direct / indirect emissions   Over 53% of global primary oil consumption in 2010 was used to meet 94% of the total transport  energy demand, with biofuels supplying approximately 2%, electricity 1%, and natural gas and other  fuels 3% (IEA, 2012b). LDVs consumed around half of total transport energy (IEA, 2012c). Aviation  accounted for 51% of all international passenger arrivals in 2011 (UNWTO, 2012) and 17% of all  tourist travel in 2005 (ICAO, 2007a; UNWTO and UNEP, 2008). This gave 43% of all tourism transport  CO2eq emissions, a share forecast to increase to over 50% by 2035 (Pratt et al., 2011). Buses and  trains carried about 34% of world tourists, private cars around 48%, and waterborne craft only a very  small portion (Peeters and Dubois, 2010). Freight transport consumed almost 45% of total transport  energy in 2009 with HDVs using over half of that (Figure 8.5). Ships carried around 80% (8.7 Gt) of  internationally traded goods in 2011 (UNCTAD, 2013) and produced about 2.7% of global CO2  emissions (Buhaug and et. al, 2009).    Figure 8.5. Final energy consumption of fuels by transport sub-sectors in 2009 for freight and passengers, with heat losses at around two thirds of total fuel energy giving an average conversion   11 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    efficiency of fuel to kinetic energy of around 32%. Note: Width of lines depicts total energy flows. (IEA, 2012d). Direct vehicle CO2 emissions per kilometre vary widely for each mode (see Figure 8.6). The  particularly wide range of boat types and sizes gives higher variance for waterborne than for other  modes of transport (Walsh and Bows, 2012). Typical variations for freight movement range from  ~2gCO2 /t km for bulk shipping to ~1,700 gCO2 /t km for short haul aircraft, whereas passenger  transport typically ranges from ~20 300 gCO2 /p km.  GHG emissions arising from the use of liquid  and gaseous fuels produced from unconventional reserves, such as from oil sands and shale deposits,  vary with the feedstock source and refining process. Although some uncertainty remains, GHG  emissions from unconventional reserves are generally higher per vehicle kilometre compared with  using conventional petroleum products (Brandt, 2009, 2011, 2012; Charpentier et al., 2009; ETSAP,  2010; IEA, 2010a; Howarth et al., 2011, 2012; Cathles et al., 2012).    Figure 8.6. Typical ranges of direct CO2 emissions per passenger kilometre and per tonne-kilometre for freight, for the main transport modes when fuelled by fossil fuels including thermal electricity generation for rail. (ADEME, 2007; US DoT, 2010; Der Boer et al., 2011; NTM, 2012; WBCSD, 2012). Sustainable transport , arising from the concept of sustainable development, aims to provide  accessibility for all to help meet the basic daily mobility needs consistent with human and ecosystem  health, but to constrain GHG emissions by, for example, decoupling mobility from oil dependence  and LDV use. Annual transport emissions per capita correlate strongly with annual income, both  within and between countries (Chapter 5) but can differ widely even for regions with similar income  per capita. For example, the United States has around 2.8 times the transport emissions per capita    12 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    than those of Japan (IEA, 2012a). In least developed countries (LDCs), increased motorized mobility  will produce large increases in GHG emissions but give significant social benefits such as better  access to markets and opportunities to improve education and health (Africa Union, 2009; Pendakur,  2011; Sietchiping et al., 2012). Systemic goals for mobility, climate, and energy security can help  develop the more general sustainable transport principles. Affordable, safe, equitable, and efficient  travel services can be provided with fairness of mobility access across and within generations (CST,  2002; ECMT, 2004; Bongardt et al., 2011; E C Environment, 2011; Zegras, 2011; Figueroa and Kahn  Ribeiro, 2013).    The following sections of this chapter outline how changes to the transport sector could reduce  direct GHG emissions over the next decades to help offset the significant global increase in demand  projected for movement of both passengers and freight. 8.2 New developments in emission trends and drivers  Assessments of transport GHG emissions require a comprehensive and differential understanding of  trends and drivers that impact on the movement of goods and people. Transport s share of total  national GHG emissions range from up to 30% in high income economies to less than 3% in LDCs,  mirroring the status of their industry and service sectors (Schäfer et al., 2009a; Bongardt et al.,  2011)(IEA, 2012a; JRC/PBL, 2012; see Annex II.8). Travel patterns vary with regional locations and  the modes available, and guide the development of specific emission reduction pathways.  Indicators such as travel activity, vehicle occupancy rates, and fuel consumption per capita can be  used to assess trends towards reducing emissions and reaching sustainability goals (WBCSD, 2004;  Dalkmann and Brannigan, 2007; Joumard and Gudmundsson, 2010; Kane, 2010; Litman, 2007;  Ramani et al., 2011). For example, petroleum product consumption to meet all transport demands in  2009 ranged from 52 GJ/capita in North America to less than 4 GJ/capita in Africa and India where  mobility for many people is limited to walking and cycling. Likewise, residents and businesses of  several cities in the United States consume over 100 GJ/capita each year on transport whereas those  in many Indian and Chinese cities use less than 2 GJ/capita ( Newman and Kenworthy, 2011a). For  freight, companies are starting to adopt green initiatives as a means of cost savings and  sustainability initiatives (Fürst and Oberhofer, 2012). Such programmes are also likely to reduce GHG  emissions, although the long term impact is difficult to assess.       8.2.1 Trends  As economies have shifted from agriculture to industry to service, the absolute GHG emissions from  transport (Figure 8.1) and the share of total GHG emissions by the transport sector (Chapter 5.2.1)  have risen considerably. Total LDV ownership is expected to double in the next few decades (IEA,  2009a) from the current level of around 1 billion vehicles (Sousanis, 2011). Two thirds of this growth  is expected in non OECD countries where increased demand for mobility is also being met by  motorized two wheelers and expansion of bus and rail public transport systems. However,  passenger kilometres travelled and per capita ownership of LDVs will likely remain much lower than  in OECD countries (Cuenot et al., 2012; Figueroa et al., 2013).  Air transport demand is projected to continue to increase in most OECD countries (see Section 8.9).  Investments in high speed rail systems could moderate growth rates over short  to medium haul  distances in Europe, Japan, China, and elsewhere (Park and Ha, 2006; Gilbert and Perl, 2010;  Akerman, 2011; Salter et al., 2011).   There is limited evidence that reductions to date in carbon intensity, energy intensity, and activity,  as demonstrated in China, Japan, and Europe, have adequately constrained transport GHG emissions  growth in the context of mitigation targets ). Recent trends suggest that economic, lifestyle, and  cultural changes will be insufficient to mitigate global increases in transport emissions without  stringent policy instruments, incentives, or other interventions being needed (see Section 8.10).    13 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.2.1.1 Non CO2 greenhouse gas emissions, black carbon, and aerosols   The transport sector emits non CO2 pollutants that are also climate forcers. These include methane,  volatile organic compounds (VOCs), nitrous oxides (NOx), sulphur dioxide (SO2), carbon monoxide  (CO), F gases, black carbon, and non absorbing aerosols (Ubbels, B., Rietveld, P., Peeters, 2002,  Chapter 5.2.2, Chapter 6.6.2.1). Methane emissions are largely associated with leakage from the  production of natural gas and the filling of compressed natural gas vehicles; VOCs, NOx and CO are  emitted by internal combustion engines; and F gas emissions generally from air conditioners  (including those in vehicles) and refrigerators. Contrails from aircraft and emissions from ships also  impact on the troposphere and the marine boundary layer, respectively (Fuglestvedt et al., 2009a;  Lee et al., 2010). Aviation emissions can also impact on cloud formation and therefore have an  indirect effect on climate forcing (Burkhardt and Kärcher, 2011).    Black carbon and non absorbing aerosols, emitted mainly during diesel engine operation, have short  lifetimes in the atmosphere of only days to weeks, but can have significant direct and indirect  radiative forcing effects and large regional impacts (Boucher et al., 2013). In North and South  America and Europe, over half the black carbon emissions result from combusting diesel and other  heavy distillate fuels (including marine oil), in vehicle engines (Bond et al., 2013). Black carbon  emissions are also significant in parts of Asia, Africa, and elsewhere from biomass and coal  combustion, but the relative contribution from transport is expected to grow in the future. There is  strong evidence that reducing black carbon emissions from HDVs, off road vehicles, and ships could  provide an important short term strategy to mitigate atmospheric concentrations of positive  radiative forcing pollutants (USEPA, 2012; Shindell et al., 2013; Chapter 6.6; WG I Chapter 7).  Conversely, transport is also a significant emitter of primary aerosols that scatter light and gases that  undergo chemical reactions to produce secondary aerosols. Primary and secondary organic aerosols,  secondary sulphate aerosols formed from sulphur dioxide emissions, and secondary nitrate aerosols  from nitrogen oxide emissions from ships, aircraft, and road vehicles, can have strong, local, and  regional cooling impacts (Boucher et al., 2013).   The relative contributions of different short term pollutants to radiative forcing in 2020 have been  equated by Unger et al. (2010) to having continuous constant GHG emissions since 2000.Although  this study did not provide a projection for future emissions scenarios, it did offer a qualitative  comparison of short  and long term impacts of different pollutants. Relative to CO2, major short term impacts stem from black carbon, indirect effects of aerosols and ozone from land vehicles, and  aerosols and methane emissions associated with ships and aircraft. Their relative impacts due to the  longer atmospheric lifetime of CO2 will be greatly reduced when integrated from the present time to  2100.   Although emissions of non CO2 GHGs and aerosols can be mitigated by reducing carbon intensity,  improving energy intensity, changing to lower carbon modes, and reducing transport activity, they  can also be significantly reduced by technologies that prevent their formation or lead to their  destruction using after treatments. Emission control devices such as diesel particulate filters and  selective catalytic reduction have fuel efficiency penalties that can lead to an increase in transport  CO2 emissions.   Non CO2 emissions from road transport and aviation and shipping activities in ports have historically  been constrained by local air quality regulations that are directed at near surface pollution and seek  to protect human health and welfare by reducing ozone, particulate matter, sulphur dioxide, and  toxic components or aerosols, including vanadium, nickel, and polycyclic aromatic hydrocarbons  (Verma et al. 2011). The importance of regional climate change in the context of mitigation has  prompted a growing awareness of the climate impact of these emissions. Policies are already in  place for reducing emissions of F gases, which are expected to continue to decrease with time (Prinn  et al., 2000). More efforts are being directed at potential programmes to accelerate control  measures to reduce emissions of black carbon, ozone precursors, aerosols, and aerosol precursors    14 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    (Lin and Lin, 2006). Emissions from road vehicles continue to decrease per unit of travel in many  regions due to efforts made to protect human health from air pollution. The implementation of  these controls could potentially be accelerated as a driver to mitigate climate change (Oxley et al.,  2012). Short term mitigation strategies that focus on black carbon and contrails from aircraft,  together with national and international programmes to reduce aerosol and sulphate emissions  from shipping, are being implemented (Buhaug and et. al, 2009; Lack, 2012). However, the human  health benefits from GHG emissions reductions and the co benefits of climate change mitigation  through black carbon reductions need to be better assessed (Woodcock et al., 2009).  8.2.2 Drivers   The major drivers that affect transport trends are travel time budgets, costs and prices, increased  personal income, and social and cultural factors (Schäfer, 2011). For a detailed discussion of effects  of urban form and structure on elasticities of vehicle kilometres travelled see Section 12.4.2.    Travel time budget. Transport helps determine the economy of a city or region based on the time  taken to move people and goods around. Travel time budgets are usually fixed and tied to both  travel costs and time costs (Noland, 2001; Cervero, 2001; Noland and Lem, 2002). Because cities vary  in the proportion of people using different transport modes, urban planners tend to try to adapt  land use planning to fit these modes in order to enable speeds of around 5 km/hr for walking, 20 30  km/hr for mass transit, and 40 50 km/hr for LDVs, though subject to great variability. Infrastructure  and urban areas are usually planned for walking, mass transit, or LDVs so that destinations can be  reached in half an hour on average (Newman and Kenworthy, 1999).   Urban travel time budgets for a typical commute between work and home average around 1.1 1.3  hours per traveller per day in both developed and developing economies (Zahavi and Talvitie, 1980;  van Wee et al., 2006). Higher residential density can save fuel for LDVs, but leads to more congested  commutes (Small and Verhoef, 2007; Downs, 2004). While new road construction can reduce LDV  travel time in the short run, it also encourages increased LDV demand, which typically leads to  increases in travel time to a similar level as before (Maat and Arentze, 2012). Moreover, land uses  quickly adapt to any new road transport infrastructure so that a similar travel time eventually  resumes (Mokhtarian and Chen, 2004).   Regional freight movements do not have the same fixed time demands, but rather are based more  on the need to remain competitive by limiting transport costs to a small proportion of the total costs  of the goods (Schiller et al. 2010). See also Section 12.4.2.4 on accessibility aspects of urban form.  Costs and prices. The relative decline of transport costs as a share of increasing personal  expenditure has been the major driver of increased transport demand in OECD countries throughout  the last century and more recently in non OECD countries (Mulalic et al., 2013). The price of fuel,  together with the development of mass transit systems and non motorized transport infrastructure,  are major factors in determining the level of LDV use versus choosing public transport, cycling, or  walking (Hughes et al., 2006). Transport fuel prices, heavily influenced by taxes, also impact on the  competition between road and rail freight. The costs of operating HDVs, aircraft, and boats increase  dramatically when fuel costs go up given that fuel costs are a relatively high share of total costs  (Dinwoodie, 2006). This has promulgated the designs of more fuel efficient engines and vehicle  designs (8.3) (IEA, 2009). Although the average life of aircraft and marine engines is two to three  decades and fleet turnover is slower than for road vehicles and small boats, improving their fuel  efficiency still makes good economic sense (IEA, 2009).   The high cost of developing new infrastructure requires significant capital investment that, together  with urban planning, can be managed and used as a tool to reduce transport demand and also  encourage modal shift (Waddell et al., 2007). Changing urban form through planning and  development can therefore play a significant role in the mitigation of transport GHG emissions (see  Section 8.4) (Kennedy et al., 2009). See also Section 12.5.2 on urban policy instruments.    15 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Social and cultural factors. Population growth and changes in demographics are major drivers for  increased transport demand. Economic structural change, particularly in non OECD countries, can  lead to increased specialization of jobs and a more gender diversified workforce, which can result in  more and longer commutes (McQuaid and Chen, 2012). At the household level, once a motorized  vehicle becomes affordable, even in relatively poor households, then it becomes a major item of  expenditure; however, ownership has still proven to be increasingly popular with each new  generation (Giuliano and Dargay, 2006; Lescaroux, 2010; Zhu et al., 2012). Thus, there is a high  growth rate in ownership of motorized two wheel vehicles and LDVs evident in developing countries,   resulting in increasing safety risks for pedestrians and non motorized modes (Nantulya  and Reich  2002; Pendakur, 2011). The development of large shopping centres and malls usually located outside  the city centre, allows many products to be purchased by a consumer following a single journey but  the travel distance to these large shopping complexes has tended to increase (Weltevreden, 2007).   For freight transport, economic globalization has increased the volume and distance of movement of  goods and materials (Henstra et al., 2007).    Modal choice can be driven by social factors that are above and beyond the usual time, cost, and  price drivers. For example, some urban dwellers avoid using mass transit or walking due to safety  and security issues. However, there is evidence that over the past decade younger people in some  OECD cities are choosing walking, cycling, and mass transit over LDVs (Parkany et al., 2004; Newman  and Kenworthy, 2011b; Delbosc and Currie, 2013; Kuhnimhof et al., 2013) although this trend could  change as people age (Goodwin and Van Dender, 2013b). Another example is that in some societies,  owning and driving a LDV can provide a symbolic function of status and a basis for sociability and  networking through various sign values such as speed, safety, success, career achievement, freedom,  masculinity, and emancipation of women (Mokhtarian and Salomon, 2001; Steg, 2005; Bamberg et  al., 2011; Carrabine and Longhurst, 2002; Miller, 2001; Sheller, 2004; Urry, 2007). In such cases, the  feeling of power and superiority associated with owning and using a LDV may influence driver  behaviour, for example, speeding without a concern for safety, or without a concern about fuel  consumption, noise, or emissions (Brozoviæ and Ando, 2009; Tiwari and Jain, 2012b). The possible  effects on travel patterns from declining incomes are unclear.  Lifestyle and behavioural factors are important for any assessment of potential change to low carbon transport options and additional research is needed to assess the willingness of people to  change (Ashton Graham, 2008; Ashton Graham and Newman, 2013). Disruptive technologies such as  driverless cars and consumer based manufacturing (e.g. 3 D printing) could impact on future  transport demands but these are difficult to predict. Likewise, the impact of new information  technology (IT) applications and telecommuting could potentially change travel patterns, reduce  trips, or facilitate interactions with the mode of choice (ITF, 2011). Conversely, increased demand for  tourism is expected to continue to be a driver for all transport modes (8.1; 10.4; Gössling et al.,  2009).  8.3 Mitigation technology options, practices and behavioural aspects  Technological improvements and new technology related practices can make substantial  contributions to climate change mitigation in the transport sector. This section focuses on energy  intensity reduction technology options for LDVs, HDVs, ships, trains and aircraft and fuel carbon  intensity reduction options related to the use of natural gas, electricity, hydrogen and biofuels. It  also addresses some technology related behavioural aspects concerning the uptake and use of new  technologies, behaviour of firms, and rebound effects. Urban form and modal shift options are  discussed in Section 8.4.  8.3.1 Energy intensity reduction   incremental vehicle technologies  Recent advances in LDVs in response to strong regulatory efforts in Japan, Europe, and the United  States have demonstrated that there is substantial potential for improving internal combustion    16 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    engines (ICEs) with both conventional and hybrid drive trains. Recent estimates suggest substantial  additional, unrealized potentials exist compared to similar sized, typical 2007 2010 vehicles, with up  to 50% improvements in vehicle fuel economy (in MJ/km or litres/100km units, or equal to 100%  when measured as km/MJ, km/l, or miles per gallon) (Bandivadekar et al., 2008; Greene and Plotkin,  2011). Similar or slightly lower potentials exist for HDVs, waterborne craft, and aircraft.  8.3.1.1 Light duty vehicles  As of 2011, leading edge LDVs had drive trains with direct injection gasoline or diesel engines (many  with turbochargers), coupled with automated manual or automatic transmissions with six or more  gears (SAE International, 2011). Drive train redesigns of average vehicles to bring them up to similar  levels could yield reductions in fuel consumption and GHG emissions of 25% or more (NRC, 2013). In  European Union 27 (EU27), the average tested emissions of 2011 model LDVs was 136 gCO2/km,  with some models achieving below 100 gCO2/km (EEA, 2012). In developing countries, vehicle  technology levels are typically lower, although average fuel economy can be similar since vehicle  size, weight, and power levels are also typically lower (IEA, 2012d).   Hybrid drive trains (ICE plus electric motor with battery storage) can provide reductions up to 35%  compared to similar non hybridized vehicles (IEA, 2012e) and have become mainstream in many  countries, but with only a small share of annual sales over the last decade except in Japan, where  over two million had been sold by 2012 (IEA, 2012e). There is substantial potential for further  advances in drive train design and operation, and for incremental technologies (NRC, 2013). There is  often a time lag between when new technologies first appear in OECD countries and when they  reach developing countries, which import mostly second hand vehicles (IEA, 2009b).  Lower fuel consumption can be achieved by reducing the loads that the engine must overcome, such  as aerodynamic forces, auxiliary components (including lighting and air conditioners), and rolling  resistance. Changes that reduce energy loads include improved aerodynamics, more efficient  auxiliaries, lower rolling resistance tyres, and weight reduction. With vehicle performance held  constant, reducing vehicle weight by 10% gives a fuel economy improvement of about 7% (EEA,  2006). Together, these non drive train changes offer potential fuel consumption reductions of  around 25% (ICCT, 2012a; NRC, 2013).  Combined with improved engines and drive train systems,  overall LDV fuel consumption for new ICE powered vehicles could be reduced by at least half by  2035 compared to 2005 (Bandivadekar et al., 2008; NRC, 2013). This predicted reduction is  consistent with the Global Fuel Economy Initiative target for new LDVs of a 50% reduction in average  fuel use per kilometre in 2030 compared to 2005 (Eads, 2010).  8.3.1.2 Heavy duty vehicles   Most modern medium and HDVs already have efficient diesel engines (up to 45% thermal efficiency),  and long haul trucks often have streamlined spoilers on their cabs to reduce drag, particularly in  OECD countries. Aerodynamic drag can also be reduced using other modifications offering up to 10%  reduction in fuel consumption (TIAX, 2009; NRC, 2010a; AEA, 2011). In non OECD countries, many  older trucks with relatively inefficient (and highly polluting) engines are common. Truck  modernization, along with better engine, tyre, and vehicle maintenance, can significantly improve  fuel economy in many cases.  Medium and HDVs in the United States can achieve a reduction in energy intensity of 30 50% by  2020 by using a range of technology and operational improvements (NRC, 2010a). Few similar  estimates are available in non OECD countries, but most technologies eventually will be applicable  for HDVs around the world.   Expanding the carrying capacity of HDVs in terms of both volume and weight can yield significant net  reductions in the energy intensity of trucks so long as the additional capacity is well utilized. A  comparison of the performance of 18 longer and heavier HDVs in nine countries (ITF/OECD, 2010)  concluded that higher capacity vehicles can significantly reduce CO2 emissions per t km. The use of    17 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    long combination vehicles rather than single trailer vehicles has been shown to cut direct GHG  emissions by up to 32% (Woodrooffe and Ash, 2001).   Trucks and buses that operate largely in urban areas with a lot of stop and go travel can achieve  substantial benefits from using electric hybrid or hydraulic hybrid drive trains. Typically a 20 30%  reduction in fuel consumption can be achieved via hybridization (Chandler et al., 2006; AEA, 2011).   8.3.1.3 Rail, waterborne craft, and aircraft  Rail is generally energy efficient, but improvements can be gained from multiple drive trains and  load reduction measures. For example, the high speed  Shinkansen  train in Japan gained a 40%  reduction of energy consumption by optimizing the length and shape of the lead nose, reducing  weight, and by using efficient power electronics (UIC, 2011); Amtrack in the United States employed  regenerative braking systems to reduce energy consumption by 8% (UIC, 2011); and in China,  electrification and other measures from 1975 to 2007 contributed to a 87% reduction in CO2  emission intensity of the rail system (He et al., 2010).  Shipping is a comparatively efficient mode of freight and passenger transport, although size and load  factor are important determinants for specific motorized craft, large and small. Efficiency of new built vessels can be improved by 5 30% through changes in engine and transmission technologies,  waste heat recovery, auxiliary power systems, propeller and rotor systems, aerodynamics and  hydrodynamics of the hull structure, air lubrication systems, electronically controlled engine systems  to give fuel efficient speeds, and weight reduction (IMO, 2009; Notteboom and Vernimmen, 2009;  (AEA, 2007; IEA, 2009; IMO, 2009; ICCT, 2011). Retrofit and maintenance measures can provide  additional efficiency gains of 4 20% (Buhaug and et. al, 2009) and operational changes, such as anti fouling coatings to cut water resistance, along with operation at optimal speeds, can provide 5 30%  improvement (Pianoforte, 2008; Corbett et al., 2009; WSC, 2011).   Several methods for improving waterborne craft efficiency are already in use. For example, wind  propulsion systems such as kites and parafoils can provide lift and propulsion to reduce fuel  consumption by up to 30%, though average savings may be much less (Kleiner, 2007). Photovoltaics  and small wind turbines can provide on board electricity and be part of  cold ironing  electric  systems in ports. For international shipping, combined technical and operational measures have  been estimated to potentially reduce energy use and CO2 emissions by up to 43% per t km between  2007 and 2020 and by up to 60% by 2050 (Crist, 2009; IMO, 2009).   Aircraft designs have received substantial, on going technology efficiency improvements over past  decades (ITF, 2009) typically offering a 20 30% reduction in energy intensity compared to older  aircraft models (IEA, 2009a). Further fuel efficiency gains of 40 50% in the 2030 2050 timeframe  (compared to 2005) could come from weight reduction, aerodynamic and engine performance  improvements, and aircraft systems design (IEA, 2009a). However, the rate of introduction of major  aircraft design concepts could be slow without significant policy incentives, regulations at the  regional or global level, or further increases in fuel prices (Lee, 2010).  Retrofit opportunities, such as  engine replacement and adding  winglets , can also provide significant reductions (Gohardani et al.;  2011, Marks, 2009). Improving air traffic management can reduce CO2 emissions through more  direct routings and flying at optimum altitudes and speeds (Dell Olmo and Lulli, 2003; Pyrialakou et  al., 2012). Efficiency improvements of ground service equipment and electric auxiliary power units  can provide some additional GHG reductions (Pyrialakou et al., 2012).  8.3.2 Energy intensity reduction   advanced propulsion systems  At present, most vehicles and equipment across all transport modes are powered by ICEs, with  gasoline and diesel as the main fuels for LDVs; gasoline for 2  and 3 wheelers and small water craft;  diesel for HDVs; diesel or heavy fuel oil for ships and trains (other than those using grid electricity);  and kerosene for aircraft turbine engines. New propulsion systems include electric motors powered  by batteries or fuel cells, turbines (particularly for rail), and various hybridized concepts. All offer    18 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    significant potential reductions in GHG, but will require considerable time to penetrate the vehicle  fleet due to slow stock turnover rates.  8.3.2.1 Road vehicles   battery and fuel cell electric drives   Battery electric vehicles (BEVs) emit no tailpipe emissions and have potentially very low fuel production emissions (when using low carbon electricity generation) (Kromer and Heywood, 2007).  BEVs operate at a drive train efficiency of around 80% compared with about 20 35% for  conventional ICE LDVs. At present, commercially available BEVs typically have a limited driving range  of about 100 160km, long recharge times of four hours or more (except with fast charging or  battery switching systems), and high battery costs that lead to relatively high vehicle retail prices  (Greene and Plotkin, 2011). Lithium ion (Li ion) batteries will likely improve but new battery  technologies (e.g., Li air, Li metal, Li sulphur) and ultra capacitors may be required to achieve much  higher energy and power densities (IEA, 2009b; NRC, 2013). Compressed air as an energy storage  medium for LDVs is thermo dynamically inefficient and would require high storage volume (Creutzig  et al., 2009).  Plug in hybrid electric vehicles (PHEVs) capable of grid recharging typically can operate on battery  electricity for 20 to 50 km, but emit CO2 when their ICE is operating. The electric range of PHEVs is  heavily dependent on the size of battery, design architectures, and control strategies for the  operation of each mode (Plotkin et al., 2001).    For HDVs, the use of BEVs is most applicable to light medium duty urban vehicles such as delivery  vans or garbage collection trucks whose drive cycles involve frequent stops and starts and do not  need a long range (TIAX, 2009; AEA, 2011). Transit buses are also good candidates for electrification  either with batteries or more commonly using overhead wire systems (IEA, 2009). Electric two wheelers with lower requirements for battery and motor capacities are a mature technology with  widespread acceptance, especially in developing countries (Weinert et al., 2008). For example, there  were over 120 million electric two wheelers in China by the end of 2010 (Wu et al., 2011).  Fuel cell vehicles (FCVs) can be configured with conventional, hybrid, or plug in hybrid drive trains.  The fuel cells generate electricity from hydrogen that may be generated on board (by reforming  natural gas, methanol, ammonia, or other hydrogen containing fuel), or produced externally and  stored on board after refuelling. FCVs produce no tailpipe emissions except water and can offer a  driving range similar to today s gasoline/diesel LDVs, but with a high cost increment. Fuel cells  typically operate with a conversion efficiency of 54 61%, (significantly better than ICEs can achieve),  giving an overall fuel cycle efficiency of about 35 49% for an LDV (JHFC, 2011).   Although a number of FCV LDVs, HDVs, and buses have been demonstrated and some are expected  to become commercially available within five years, overall it could take 10 years or longer for FCVs  to achieve commercial success based on current oil and vehicle purchase prices (IEA, 2012e).   8.3.2.2 Rail, waterborne craft, and aircraft  Diesel hybrid locomotives demonstrated in the UK and advanced types of hybrid drive trains under  development in the United States and Japan, could save 10 20% of diesel fuel plus around a 60%  reduction of NOx and particulate matter compared to conventional locomotives (JR East, 2011). A  shift to full electrification may enable many rail systems to reach very low CO2 emissions per  kilometre where electricity generation has been deeply decarbonized. Fuel cell systems for rail may  be attractive in areas lacking existing electricity infrastructure (IEA, 2012e).  Most ocean going ships will probably continue to use marine diesel engines for the foreseeable  future, given their high reliability and low cost. However, new propulsion systems are in  development. Full electrification appears unlikely given the energy storage requirements for long range operations, although on board solar power generation systems could be used to provide  auxiliary power and is already used for small craft (Crist, 2009). Fuel cell systems (commonly solid oxide) with electric motors could be used for propulsion, either with hydrogen fuel directly loaded    19 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    and stored on board or with on board reforming. However, the cost of such systems appears  relatively high, as are nuclear power systems as used in some navy vessels.   For large commercial aircraft, no serious alternative to jet engines for propulsion has been identified,  though fuel switching options are possible, including  drop in  biofuels (that are fungible with  petroleum products, can be blended from 0 to 100%, and are compatible with all existing engines) or  hydrogen. Hydrogen aircraft are considered only a very long run option due to hydrogen s low  energy density and the difficulty of storing it on board, which requires completely new aircraft  designs and likely significant compromises in performance (Cryoplane, 2003). For small, light aircraft,  advanced battery electric/motor systems could be deployed but would have limited range (Luongo  et al., 2009).   8.3.3 Fuel carbon intensity reduction  In principle, low carbon fuels from natural gas, electricity, hydrogen, and biofuels (including  biomethane) could all enable transport systems to be operated with low direct fuel cycle CO2eq  emissions, but this would depend heavily on their feedstocks and conversion processes.   Natural gas (primarily methane) can be compressed (CNG) to replace gasoline in Otto cycle (spark  ignition) vehicle engines after minor modifications to fuel and control systems. CNG can also be used  to replace diesel in compression ignition engines but significant modifications are needed. Denser  storage can be achieved by liquefaction of natural gas (LNG), which is successfully being used for  long haul HDVs and ships (Buhaug and et. al, 2009; Arteconi et al., 2010). The energy efficiency of  driving on CNG is typically similar to that for gasoline or diesel but with a reduction of up to 25% in  tailpipe emissions (CO2/km) because of differences in fuel carbon intensity. Lifecycle GHG analysis  suggests lower net reductions, in the range of 10 15% for natural gas fuel systems. They may also  provide a bridge to lower carbon biomethane systems from biogas (IEA, 2009).  Electricity can be supplied to BEVs and PHEVS via home or public rechargers. The varying GHG  emissions intensity of power grids directly affects lifecycle CO2eq emissions (IEA, 2012e). Since the  GHG intensity of a typical coal based power plant is about 1000 gCO2eq/kWh at the outlet (Wang,  2012a), for a BEV with efficiency of 200 Wh/km, this would equate to about 200 gCO2eq/km, which  is higher than for an efficient ICE or hybrid LDV. Using electricity generated from nuclear or  renewable energy power plants, or from fossil fuel plants with carbon dioxide capture and storage  (CCS), near zero fuel cycle emissions could result for BEVs. The numbers of EVs in any country are  unlikely to reach levels that significantly affect national electricity demand for at least one to two  decades, during which time electricity systems could be at least partially decarbonized and modified  to accommodate many EVs (IEA, 2012e).   Hydrogen used in FCVs, or directly in modified ICEs, can be produced by the reforming of biomass,  coal or natural gas (steam methane reforming is well established in commercial plants); via  commercial but relatively expensive electrolysis using electricity from a range of sources including  renewable; or from biological processes (IEA, 2009b). The mix of feedstocks largely determines the  well to wheel GHG emissions of FCVs. Advanced, high temperature and photo electrochemical  technologies at the R&D stage could eventually become viable pathways (Arvizu and Balaya, 2011).  Deployment of FCVs (8.3.2.1) needs to be accompanied by large, geographically focused,  investments into hydrogen production and distribution and vehicle refuelling infrastructure. Costs  can be reduced by strategic placement of stations (Ogden and Nicholas, 2011) starting with specific  locations ( lighthouse cities ) and a high degree of coordination between fuel suppliers, vehicle  manufacturers and policy makers is needed to overcome  chicken or egg  vehicle/fuel supply  problems (ITS UC Davis, 2011).  A variety of liquid and gaseous biofuels can be produced from various biomass feedstocks using a  range of conversion pathways (Chapter 11.A.3). The ability to produce and integrate large volumes  of biofuels cost effectively and sustainably are primary concerns of which policy makers should be    20 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    aware (Sims et al., 2011). In contrast to electricity and hydrogen, liquid biofuels are relatively  energy dense and are, at least in certain forms and blend quantities, compatible with the existing  petroleum fuel infrastructure and with all types of ICEs installed in LDVs, HDVs, waterborne craft,  and aircraft. Ethanol and biodiesel (fatty acid methyl ester, FAME) can be blended at low levels (10 15%) with petroleum fuels for use in unmodified ICEs. New ICEs can be cheaply modified during  manufacture to accommodate much higher blends as exemplified by  flex fuel  gasoline engines  where ethanol can reach 85% of the fuel blend (ANFAVEA, 2012). However, ethanol has about a 35%  lower energy density than gasoline, which reduces vehicle range particularly at high blend levels   that can be a problem especially for aircraft. Synthetic  drop in  biofuels have similar properties to  diesel and kerosene fuels. They can be derived from a number of possible feedstocks and conversion  processes, such as the hydro treatment of vegetable oils or the Fischer Tropsch conversion of  biomass (Shah, 2013). Bio jet fuels suitable for aircraft have been demonstrated to meet the very  strict fuel specifications required (Takeshita and Yamaji, 2008; Caldecott and Tooze, 2009).  Technologies to produce ligno cellulosic, Fisher Tropsch, algae based, and other advanced biofuels  are in development, but may need another decade or more to achieve widespread commercial use  (IEA, 2011a). Bio methane from suitably purified biogas or landfill gas can also be used in natural gas  vehicles (REN21, 2012).   Biofuels have direct, fuel cycle GHG emissions that are typically 30 90% lower per kilometre  travelled than those for gasoline or diesel fuels. However, since for some biofuels, indirect  emissions including from land use change can lead to greater total emissions than when using  petroleum products, policy support needs to be considered on a case by case basis (see Chapter  11.13 and, for example, Lapola et al., 2010; Plevin et al., 2010; Wang et al., 2011; Creutzig et al.,  2012).    8.3.4 Comparative analysis  The vehicle and power train technologies described above for reducing fuel consumption and  related CO2 emissions span a wide range and are not necessarily additive. When combined, and  including different propulsion and fuel systems, their overall mitigation potential can be evaluated as  an integrated fuel/vehicle system (see Section 8.6). However, to produce an overall mitigation  evaluation of the optimal design of a transport system, non CO2 emissions, passenger or freight  occupancy factors, and indirect GHG emissions from vehicle manufacture and infrastructure should  also be integrated to gain a full comparison of the relative GHG emissions across modes (see Section  8.4; Hawkins et al., 2012; Borken Kleefeld et al., 2013).  Taking LDVs as an example, a comparative assessment of current and future fuel consumption  reduction potentials per kilometre has been made (Figure 8.7), starting from a 2010 baseline  gasoline vehicle at about 8 lge3 /100km and 195 g/km CO2. Using a range of technologies, average  new LDV fuel economy can be doubled (in units of distance per energy, i.e., energy intensity cut by  50%). Further improvements can be expected for hybrids, PHEVs, BEVs, and FCVs, but several  hurdles must be overcome to achieve wide market penetration (see Section 8.8). Vehicle cost  increases due to new technologies could affect customers  willingness to pay, and thus affect market  penetration, although cost increases would be at least partly offset by fuel cost savings (see Section  8.6).                                                                3   Litre per gasoline equivalent  allows for a comparison between fuels with different energy  contents.    21 of 115   Final Draft  Chapter 8  IPCC WGIII AR5      Figure 8.7. Indicative fuel consumption reduction potential ranges for a number of LDV technology drive-train and fuel options in 2010 and 2030, compared with a baseline gasoline internal combustion engine (ICE) vehicle consuming 8 l/100km in 2010. (Based on NRC 2013, IEA, 2012b; Kobayashi et al., 2009; Plotkin et al., 2009).   8.3.5 Behavioural aspects  The successful uptake of more efficient vehicles, advanced technologies, new fuels, and the use of  these fuels and vehicles in  real life  conditions, involves behavioural aspects.   Purchase behaviour:  Few consumers attempt to minimize the lifecycle costs of vehicle  ownership (Greene, 2010a), which leads to a considerable imbalance of individual costs versus  society wide benefits. There is often a lack of interest in purchasing more fuel efficient vehicles  (Wozny and Allcott, 2010) due to imperfect information, information overload in decision  making, and consumer uncertainty about future fuel prices and vehicle life (Anderson et al.,  2011; Small, 2012). This suggests that in order to promote the most efficient vehicles, strong  policies such as fuel economy standards, sliding scale vehicle tax systems, or  feebate  systems  with a variable tax based on fuel economy or CO2 emissions may be needed (Section 8.10)  (Gallagher and Muehlegger, 2011). Vehicle characteristics are largely determined by the desires  of new car buyers in wealthier countries, so there may be a five year or longer lag before new  technologies reach second hand vehicle markets in large quantities, particularly through imports  to many developing countries (though this situation will likely change in the coming decades as  new car sales rise across non OECD countries) (IEA, 2009b).  New technologies/fuels: Consumers  unwillingness to purchase new types of vehicles with  significantly different attributes (such as smaller size, shorter range, longer refuelling or  recharging time, higher cost) is a potential barrier to introducing innovative propulsion systems  and fuels (Brozoviæ and Ando, 2009). This may relate simply to the perceived quality of various  attributes or to risk aversion from uncertainty (such as driving range anxiety for BEVs4) (Wenzel   Should a BEV run out of stored energy, it is less easy to refuel than is an ICE vehicle that runs out of gasoline.  With typical ranges around 100 160 km, BEV drivers can become anxious about failing to complete their  journey.  4                                                                22 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    and Ross, 2005). The extent to which policies must compensate by providing incentives varies  but may be substantial (Gallagher and Muehlegger, 2011).  On road fuel economy: The fuel economy of a vehicle as quoted from independent testing can  be up to 30% better than that actually achieved by an average driver on the road (IEA, 2009;)  TMO, 2010; ICCT, 2012). This gap reflects a combination of factors including inadequacies in the  test procedure, real world driving conditions (e.g., road surface quality, weather conditions),  driver behaviour, and vehicle age and maintenance. Also congested traffic conditions in OECD  cities differ from mixed mode conditions in some developing countries (Tiwari et al., 2008;  Gowri et al., 2009). Some countries have attempted to adjust for these differences in their public  vehicle fuel economy information. A significant reduction in the gap may be achievable by an  integrated approach  that includes better traffic management, intelligent transport systems,  and improved vehicle and road maintenance (IEA, 2012e).   Eco Driving: A 5 10% improvement in on road fuel economy can be achieved for LDVs through  efforts to promote  eco driving  (An et al., 2011; IEA, 2012d). Fuel efficiency improvements from  eco driving for HDVs are in the 5 20% range (AEA, 2011).  Driving behaviour with new types of vehicles: Taking electric vehicles (EVs) as an example,  day/night recharging patterns and the location of public recharging systems could affect how  much these vehicles are driven, when and where they are driven, and potentially their GHG  emissions impacts (Axsen and Kurani, 2012).   Driving rebound effects: Reactions to lowering the cost of travel (through fuel economy  measures or using budget airline operators) can encourage more travel, commonly known as the  (direct) rebound effect (Greene et al., 1999; for a general discussion of the rebound effect see  Section 5.6.1). In North America, fuel cost elasticity is in the range of a  0.05 to  0.30 (e.g., a 50%  cut in the fuel cost would result in a 2.5% to 15% increase in driving). Several studies show it is  declining (Hughes et al., 2006; Small and van Dender, 2007; EPA, 2012). The rebound effect is  larger when the marginal cost of driving (mostly gasoline) is a high share of household income.  The implication for non OECD countries is that the price elasticity of demand for vehicle travel  will be a function of household income. The rebound effect may be higher in countries with  more modal choice options or where price sensitivity is higher, but research is poor for most  countries and regions outside the OECD. Minimizing the rebound can be addressed by fuel taxes  or road pricing that offset the lower travel costs created by efficiency improvements or reduced  oil prices (see Section 8.10) (Hochman et al., 2010a; Rajagopal et al., 2011a; Chen and Khanna,  2012a).   Vehicle choice related rebounds: Other types of rebound effect are apparent, such as shifts to  purchasing larger cars concurrent with cheaper fuel or shifts from gasoline to diesel vehicles that  give lower driving costs (Schipper and Fulton, 2012). Shifts to larger HDVs and otherwise less  expensive systems can divert freight from lower carbon modes, mainly rail, and can also induce  additional freight movements (Umweltbundesamt, 2007; TML, 2008; Leduc, 2009; Gillingham et  al., 2013).  Company behaviour: Behavioural change also has a business dimension. Company decision  making can exert a strong influence on the level of transport emissions, particularly in the freight  sector (Rao and Holt, 2005). Freight business operators have a strong incentive to reduce energy  intensity, since fuel typically accounts for around one third of operating costs in the road freight  sector, 40% in shipping, and 55% in aviation (Bretzke, 2011). The resulting reductions in  transport costs can cause a rebound effect and generate some additional freight movement  (Matos and Silva, 2011). For company managers to switch freight transport modes often  requires a tradeoff of higher logistics costs for lower carbon emissions (Winebrake et al., 2008).  Many large logistics service providers have set targets for reducing the carbon intensity of their  operations by between 20% and 45% over the period from 2005/2007 to 2020, (McKinnon and  23 of 115     Final Draft  Chapter 8  IPCC WGIII AR5    Piecyk, 2012) whereas many smaller freight operators have yet to act (Oberhofer and Fürst,  2012).  8.4 Infrastructure and systemic perspectives  Transport modes, their infrastructures, and their associated urban fabric form a system that has  evolved into the cities and regions with which we are most familiar.  Walking cities  existed for 8000  years; some are being reclaimed around their walkability (Gehl, 2011).  Transit cities  were built and  developed around trams, trolley buses, and train systems since the mid 19th century (Cervero, 1998;  Newman and Kenworthy, 1999).  Automobile cities  evolved from the advent of cheap LDVs  (Brueckner, 2000) and have become the dominant paradigm since the 1950s, leading to automobile  dependence and auto mobility (Urry, 2007).  A region  can be defined and understood in terms of  the transport links to ports and airports regardless of the number and types of cities located there.  In all cases, the inter linkages between transport infrastructure and the built environment establish  path dependencies, which inform long term transport related mitigation options. For a general  discussion of urban form and infrastructure see Chapter 12.4.  8.4.1 Path dependencies of infrastructure and GHG emission impacts  Systemic change tends to be slow and needs to address path dependencies embedded in sunk costs,  high investment levels, and cultural patterns. Technological and behavioural change can either adapt  to existing infrastructures, or develop from newly constructed infrastructures, which could provide  an initial template for low carbon technologies and behaviour. Developments designed to improve  infrastructure in rapidly urbanizing developing countries will decisively determine the future energy  intensity of transport and concomitant emissions (Lefevre, 2009), and will require policies and  actions to avoid lock in.  The construction, operation, maintenance, and eventual disposal of transport infrastructure (such as  rail tracks, highways, ports, and airports), all result in GHG emissions. These infrastructure related  emissions are usually accounted for in the industry and building sectors. However, full accounting of  life cycle assessment (LCA) emissions from a transport perspective requires these infrastructure related emissions to be included along with those from vehicles and fuels (see Section 8.3.5). GHG  emissions per passenger kilometre (p km) or per tonne kilometre (t km) depend, inter alia, on the  intensity of use of the infrastructure and the share of tunnels, bridges, runways, etc. (Akerman,  2011; Chang and Kendall, 2011; UIC, 2012). In the United States, GHG emissions from infrastructure  built for LDVs, buses, and air transport amount to 17 45 g/p km, 3 17 g/p km, and 5 9 g/p km  respectively (Chester and Horvath, 2009) with rail typically between 3 11 g/p km (see Table 8.1).  Other than for rail, relevant regional infrastructure related GHG emissions research on this topic is  very preliminary. Opportunities exist to substantially reduce these infrastructure related emissions, for instance by up  to 40% in rail (Milford and Allwood, 2010), by the increased deployment of low carbon materials and  recycling of rail track materials at their end of life (Network Rail, 2009; Du and Karoumi, 2012).  When rail systems achieve modal shift from road vehicles, emissions from the rail infrastructure may  be partially offset by reduced emissions from road infrastructures (Akerman, 2011). To be policy relevant, LCA calculations that include infrastructure need to be contextualized with systemic effects  such as modal shifts (see Sections 8.4.2.3 and 8.4.2.4).     24 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Table 8.1: High-speed rail transport infrastructure GHG emissions based on LCA data. Mode/component  Swedish high speed rail  plans for Europabanan  infrastructure  Vehicle construction and  maintenance emissions;  Swedish high speed rail   Inter city express (ICE)  system study (Germany  and surrounds)   High speed rail  infrastructure (Europe)   US high speed rail plans  Emissions              Reference (gCO2eq/p km)   2.7  Amos et al.,  2010; Akerman,  2011   1.0   Akerman, 2011 Comment At 25 million passengers per year  Over full lifetime of high speed rail  vehicles  About half total emissions arise from  infrastructure including non high speed  stretches.  Low emission value for 90 trains per  track per day, high emission value for  25. Current EU network is at 6.3 g/p km  This 725 km line will emit 2.4  MtCO2eq/yr  9.7   Von Rozycki, et  al., 2003  Tuchschmid,  2009  Chang and  Kendall, 2011  3.1 10.9   3.2 g/p km  Note: Since LCA assumptions vary, the data can only be taken as indicative and not compared directly.    Existing vehicle stock, road infrastructure, and fuel supply infrastructure prescribe future use and  can lock in emission paths for decades while inducing similar investment because of economies of  scale (Shalizi and Lecocq, 2009). The life span of these infrastructures ranges from 50 to more than  100 years. This range makes the current development of infrastructure critical to the mode shift  opportunities of the future. For example, the successful development of the United States interstate  highway system resulted in a lack of development of an extensive passenger rail system, and this  determined a demand side lock in produced by the complementarity between infrastructure and  vehicle stock (Chapter 12.3.2). The construction of the highway system accelerated the growth of  road vehicle kilometres travelled (VKT) around 1970, and ex urban development away from city  centres created a second peak in road transport infrastructure investment post 1990 (Shalizi and  Lecocq, 2009). Conversely, the current rapid development of high speed rail infrastructure in China  (Amos et al., 2010) may provide low emission alternatives to both road transport and aviation.   Substantial additional rail traffic has been generated by constructing new lines (Chapter 12.4.2.5),  although a net reduction of emissions will only occur after achieving  a minimum of between 10 and  22 million passengers annually (Westin and Kageson, 2012).   Aviation and shipping require less fixed infrastructures and hence tend to have a relative low  infrastructure share of total lifecycle emissions. Rising income and partially declining airfares have  led to increased air travel (Schäfer, 2009), and this correlates not only with new construction and  expansion of airports, but also with shifting norms in travel behaviour (Randles and Mander, 2009).   8.4.2 Path dependencies of urban form and mobility  Transport demand and land use are closely inter linked. In low density developments with extensive  road infrastructure, LDVs will likely dominate modal choice for most types of trips. Walking and  cycling can be made easier and safer where high accessibility to a variety of activities are located  within relative short distances (Ewing and Cervero, 2010) and when safe cycle infrastructure and  pedestrian pathways are provided (Tiwari and Jain, 2012b; Schepers et al., 2013). Conversely the  stress and physical efforts of cycling and walking can be greater in cities that consistently prioritize  suburban housing developments, which leads to distances that accommodate the high speed  movement and volume of LDVs (Naess, 2006). In developing countries, existing high density urban  patterns are conducive to walking and cycling, both with substantial shares. However, safe  infrastructure for these modes is often lacking (Thynell et al., 2010; Gwilliam, 2013). Sustainable  urban planning offers tremendous opportunities (reduced transport demand, improved public    25 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    health from non motorized transport (NMT), less air pollution, and less land use externalities  (Banister, 2008; Santos et al., 2010; Bongardt et al., 2013; Creutzig et al., 2012). As an example, an  additional 1.1 billion people will live in Asian cities in the next 20 years (ADB, 2012a) and the  majority of this growth will take place in small medium sized cities that are at an early stage of  infrastructure development. This growth provides an opportunity to achieve the long term benefits  outlined above (Grubler et al., 2012) (see also 8.7 and Chapter 12.4.1).   Urban population density inversely correlates with GHG emissions from land transport (Kennedy et  al., 2009; Rickwood et al., 2011) and enables non motorized modes to be more viable (Newman and  Kenworthy, 2006). Disaggregated studies that analyze individual transport use confirm the  relationship between land use and travel (Echenique et al., 2012). Land use, employment density,  street design and connectivity, and high transit accessibility also contribute to reducing car  dependence and use (Handy et al., 2002; Ewing, 2008; Cervero and Murakami, 2009; Olaru et al.,  2011). The built environment has a major impact on travel behaviour (Naess, 2006; Ewing and  Cervero, 2010), but residential choice also plays a substantial role that is not easy to quantify (Cao et  al., 2009; Ewing and Cervero, 2010). There exists a non linear relationship between urban density  and modal choice (Chapter 12.4.2.1). For example, suburban residents drive more and walk less than  residents living in inner city neighbourhoods (Cao et al., 2009), but that is often true because public  transit is more difficult to deploy successfully in suburbs with low densities (Frank and Pivo, 1994).  Transport options that can be used in low density areas include para transit5 and car sharing, both of  which can complement individualized motorized transport more efficiently and with greater  customer satisfaction than can public transit (Baumgartner and Schofer, 2011). Demand responsive,  flexible transit, and car sharing services can have lower GHG emissions per passenger kilometre with  higher quality service than regional public transport (Diana et al., 2007; Mulley and Nelson, 2009;  Velaga et al., 2012; Loose, 2010).  The number of road intersections along the route of an urban journey, the number of destinations  within walking distance, and land use diversity issues, have been identified as key variables for  determining the modal choice of walking (Ewing and Cervero, 2010). Public transport use in the  United States is related to the variables of street network design and proximity to transit. Land use  diversity is a secondary factor.  8.4.2.1 Modal shift opportunities for passengers   Small but significant modal shifts from LDVs to bus rapid transit (BRT) have been observed where  BRT systems have been implemented. Approximately 150 cities worldwide have implemented BRT  systems, serving around 25 million passengers daily (Deng and Nelson, 2011; BRT Centre of  Excellence, EMBARQ, IEA and SIBRT, 2012). BRT systems can offer similar benefits and capacities as  light rail and metro systems at much lower capital costs (Deng and Nelson, 2011), but usually with  higher GHG emissions (depending on the local electricity grid GHG emission factor) (Table 8.2). High  occupancy rates are an important requirement for the economic and environmental viability of  public transport.                                                                Para transit, also called  community transit , is where flexible passenger transport minibuses (also termed  matatus and marshrutkas), shared taxis, and jitneys operate in areas with low population density without  following fixed routes or schedules.  5   26 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Table 8.2: Comparison of capital costs, direct CO2 emissions, and capacities for BRT, light rail, and metro urban mass transit options (IEA, 2012e).   Bus rapid transit  Light rail  13 40  25 77  Metro  27 330  3 37  Capital cost (million USD2010/km)  5 27  Length of network that can be  constructed for 1 USD2010 billion  cost (km)  World network length in 2011  (km)  37 200  2139  15,000  4 22  2 12  10,000  3 21  12 45  Direct CO2 intensity (gCO2/p km)  14 22  Capacity (thousand passengers  per hour per direction)  10 35    Public transit, walking, and cycling are closely related. A shift from non motorized transport (NMT)  to LDV transport occurred during the 20th century, initially in OECD countries and then globally.  However, a reversion to cycling and walking now appears to be happening in many cities  mostly in  OECD countries though accurate data is scarce (Bassett et al., 2008b; Pucher et al., 2011). Around  90% of all public transit journeys in the United States are accompanied with a walk to reach the final  destination and 70% in Germany (Pucher and Buehler, 2010). In Germany, the Netherlands,  Denmark, and elsewhere, cycling modal shares have increased since the 1970s and are now between  10 25% (Pucher and Buehler, 2008). Some carbon emission reduction has resulted from cycle  infrastructure deployment in some European cities (COP, 2010; Rojas Rueda et al., 2011; Creutzig et  al., 2012) and in some cities in South and North America (USCMAQ, 2008; Schipper et al., 2009;  Massink et al., 2011; USFHA, 2012). Walking and cycling trips vary substantially between countries,  accounting for over 50% of daily trips in the Netherlands and in many Asian and African cities  (mostly walking); 25 35% in most European countries; and approximately 5 10% in the United  States and Australia (Pucher and Buehler, 2010; Leather et al., 2011; Pendakur, 2011; Mees and  Groenhart, 2012).   The causes for high modal share of NMT differ markedly between regions depending on their  cultures and characteristics. For example, they tend to reflect low carbon urban policies in OECD  countries such as the Netherlands, while reflecting a lack of motorization in developing countries.  Land use and transport policies can influence the bicycle modal share considerably (Pucher and  Buehler, 2006), most notably by the provision of separate cycling facilities along heavily traveled  roads and at intersections, and traffic calming of residential neighbourhoods (Andrade et al., 2011;  NRC, 2011b). Many Indian and Chinese cities with traditionally high levels of walking are now  reporting dramatic decreases in this activity (Leather et al., 2011), with modal shifts to personal  transport including motorbikes and LDVs. Such shifts are to some degree inevitable, and are in part  desirable as they reflect economic growth. However, the maintenance of a healthy walking and  cycling modal share could be a sign of a liveable and attractive city for residents and businesses  (Bongardt et al., 2011; Gehl, 2011).  Deliberate policies based around urban design principles have increased modal shares of walking  and cycling in Copenhagen, Melbourne, and Bogota (Gehl, 2011). Public bicycle share systems have  created a new mode for cities (Shaheen et al., 2010), with many cities now implementing extensive  public cycling infrastructure, which results in increased bicycle modal share (DeMaio, 2009). Revising  electric bicycle standards to enable higher performance could increase the feasible commuting  range and encourage this low emissions personal transport mode. Electric bicycles offer many of the  benefits of LDVs in terms of independence, flexibility of routes, and scheduling freedom, but with  much lower emissions and improved health benefits.    27 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    With rising income and urbanization, there will likely be a strong pull toward increasing LDV  ownership and use in many developing countries. However, public transit mode shares have been  preserved at fairly high levels in cities that have achieved high population densities and that have  invested heavily in high quality transit systems (Cervero, 2004). Their efficiency is increased by  diverse forms of constraints on LDVs, such as reduced number of lanes, parking restrictions, and  limited access (La Branche, 2011). Investments in mass rapid transit, timed with income increases  and population size/density increases, have been successful in some Asian megacities (Acharya and  Morichi, 2007). As traffic congestion grows and freeway infrastructure reaches physical, political,  and economic limits, the modal share of public transit has increased in some OECD countries  (Newman and Kenworthy, 2011b).   High speed rail can substitute for short distance passenger air travel (normally up to around 800 km  but also for the 1500 km in the case of Beijing to Shanghai), as well as for most road travel over  those distances, and hence can mitigate GHG emissions (McCollum et al., 2010; IEA, 2008). With  optimized operating speeds and long distances between stops, and high passenger load factors,  energy use per passenger km could be as much as 65 to 80% less than air travel (IEA, 2008). A  notable example is China, which has shown a fast development of its high speed rail system. When  combined with strong land use and urban planning, a high speed rail system has the potential to  restructure urban development patterns, and may help to alleviate local air pollution, noise, road,  and air congestion (McCollum et al., 2010).   8.4.2.2 Modal shift opportunities for freight  Over the past few decades, air and road have increased their global share of the freight market at  the expense of rail and waterborne transport (European Environment Agency, 2011; Eom et al.,  2012). This has been due to economic development and the related change in the industry and  commodity mix, often reinforced by differential rates of infrastructure improvement and the  deregulation of the freight sector, which typically favours road transport. Inducing a substantial  reversal of recent freight modal split trends will be difficult, inter alia because of  structural  inelasticity  which confines shorter distance freight movements to the road network because of its  much higher network density (Rich et al., 2011). If growth in global truck travel between 2010 and  2050 could be cut by half from the projected 70% and shifted to expanded rail systems, about a 20%  reduction in fuel demand and CO2 could be achieved, with only about a fifth of this savings being  offset by increased rail energy use (IEA, 2009). The European Commission (EC) set an ambitious  target of having all freight movements using rail or waterborne modes over distances greater than  300 km by 2030, leading to major changes in modal shares (Figure 8.8) (Tavasszy and Meijeren,  2011; EC, 2013).      28 of 115   Final Draft    Chapter 8  IPCC WGIII AR5      Figure 8.8. Projected freight modal split in the EU-25 in 2030 comparing 2011 shares with future business-as-usual shares without target and with EU White Paper modal split target. Source: Based on Tavasszy and Meijeren, 2011. The capacity of the European rail network would have to at least double to handle this increase in  freight traffic and the forecast growth in rail passenger volumes, even if trains get longer and run  empty less often (den Boer et al., 2011). Longer term transformations need to take account of the  differential rates at which low carbon technologies could impact on the future carbon intensity of  freight modes. Applying current average energy intensity values (Section 8.3.1) may result in over estimates of the potential carbon benefits of the modal shift option. Although rail freight remains far  lower GHG emissions per tonne kilometre than road (Table 8.3), the rate of carbon related technical  innovation, including energy efficiency improvements, has been faster in HDV than rail freight and  HDV replacement rate is typically much shorter, which ensures a more rapid uptake of innovation.   The potential for shifting freight to greener modes is difficult in urban areas. Intra urban rail freight  movements are possible (Maes and Vanelslander, 2011), but city logistical systems are almost totally  reliant on road vehicles and are likely to remain so. The greater the distance of land haul for freight,  the more competitive the lower carbon modes become. Within cities, the concept of modal split  between passenger and freight movement can be related to the interaction.  Currently, large  amounts of freight on the so called  last mile  to a home or business are carried in LDVs and public  transport vehicles. With the rapid growth of on line retailing, much private car borne freight, which  seldom appears in freight transport statistics, will be transferred to commercial delivery vans.   Comparative analyses of conventional and on line retailing suggest that substituting a van delivery  for a personal shopping trip by private car can yield a significant carbon saving (Edwards et al., 2010).    At the international level, opportunities for switching freight from air to shipping services are limited.  The two markets are relatively discrete and the products they handle have widely differing monetary  values and time sensitivity. The deceleration of deep sea container vessels in recent years in  accordance with the  slow steaming  policies of the shipping lines has further widened the transit  time gap between sea and air services. Future increases in the cost of fuel may, however, encourage  businesses to economize on their use of air freight, possibly switching to sea air services in which  products are air freighted for only part of the way.  This merger of sea and air transport offers  substantial cost and CO2 savings for companies whose global supply chains are less time critical  (Conway, 2007; Terry, 2007).     29 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.5 Climate change feedback and interaction with adaptation    Transport is impacted by climate change both positively and negatively. These impacts are  dependent on regional variations in the nature and degree of climate change and the nature of local  transport infrastructure and systems. Adapting transport systems to the effects of climate in some  cases complement mitigations efforts while in others they have a counteracting effect. Little  research has so far been conducted on the inter relationship between adaptation and mitigation  strategies in the transport sector.  8.5.1 Accessibility and feasibility of transport routes  Decreases in the spatial and temporal extent of ice cover in the Arctic and Great Lakes region of  North America regions are opening new and shorter shipping routes over longer periods of the year  (Drobot et al., 2009; Stephenson et al., 2011). The expanded use of these routes could reduce GHG  emissions due to a reduction in the distance travelled. For example, the Northern Sea Route (NSR)  between Shanghai and Rotterdam is approximately 4,600 km shorter (about 40%) than the route via  the Suez Canal. The NSR passage takes 18 20 days compared to 28 30 days via the southern route  (Verny and Grigentin, 2009). Climate change will not only affect ice coverage, but may also increase  the frequency and severity of northern hemisphere blizzards and arctic cyclones, deterring use of  these shorter routes (Wassmann, 2011; Liu et al., 2012). It is, nevertheless, estimated that the  transport of oil and gas through the NSR could increase from 5.5 Mt in 2010 to 12.8 Mt by 2020 (Ho,  2010). The passage may also become a viable option for other bulk carriers and container shipping in  the near future (Verny & Grigentin, 2009; Schyen & Brathen, 2011). The economic viability of the  NSR is still uncertain without assessments of potentially profitable operation (Liu and Kronbak, 2010)  and other more pessimistic prospects for the trans Arctic corridors (Econ, 2007).  One possible  negative impact would be that the increase in shipping through these sensitive ecosystems could  lead to an increase in local environmental and climate change impacts unless additional emissions  controls are introduced along these shipping routes (Wassmann, 2011). Of specific concern are the  precursors of photochemical smog in this polar region that could lead to additional local positive  regional climate forcing (Corbett et al., 2010) and emissions of black carbon (see Section 8.2.2.1).  Measurement methods of black carbon emissions from ships and additional work to evaluate their  impact on the Arctic are needed before possible control measures can be investigated.    Changes in climate are also likely to affect northern inland waterways (Millerd, 2011). In summer,  these effects are likely to adversely affect waterborne craft when reductions in water levels impair  navigability and cut capacity (Jonkeren et al., 2007; Görgen, K. et al. 2010; Nilson, E. et al. 2012). On  the other hand, reduced winter freezing can benefit inland waterway services by extending the  season.  The net annual effect of climate change on the potential for shifting freight to this low carbon mode has yet to be assessed.   8.5.2 Relocation of production and reconfiguration of global supply chains  Climate change will induce changes to patterns of agricultural production and distribution (Ericksen  et al., 2009; Hanjra and Qureshi, 2010; Tirado et al., 2010; Nielsen and Vigh, 2012; Teixeira et al.,  2012). The effect of these changes on freight transport at different geographical scales are uncertain  (Vermeulen et al., 2012). In some scenarios, food supply chains become longer, generating more  freight movement (Nielsen and Vigh, 2012; Teixeira et al., 2012). These and other long supply lines  created by globalization could become increasingly vulnerable to climate change. A desire to reduce  climate risk may be one of several factors promoting a return to more localized sourcing in some  sectors (World Economic Forum and Accentura, 2009), a trend that would support mitigation.  Biofuel production may also be adversely affected by climate change inhibiting the switch to lower  carbon fuels (de Lucena et al., 2009).         30 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.5.3 Fuel combustion and technologies  Increased ambient temperatures and humidity levels are likely to affect nitrogen oxide, carbon  monoxide, methane, black carbon, and other particulate emissions from internal combustion  engines and how these gases interact with the atmosphere (STUMP et al., 1989; Rakopoulos, 1991;  Cooper and Ekstrom, 2005; Motallebi et al., 2008) Lin and Jeng, 1996; McCormick et al., 1997; Pidolal.  2012). Higher temperatures also lead to higher evaporative emissions of volatile organic compound  emissions (VOCs) (Roustan et al., 2011) and could lead to higher ozone levels (Bell et al., 2007). The  overall effects are uncertain and could be positive or negative depending on regional conditions  (Ramanathan & Carmichael, 2008).   As global average temperatures increase, the demand for on board cooling in both private vehicles  and on public transport will increase. The heating of vehicles could also grow as the frequency and  severity of cold spells increase. Both reduce average vehicle fuel efficiencies. For example, in a  passenger LDV, air conditioning can increase fuel consumption by around 3 10% (Farrington and  Rugh, 2000; IEA, 2009a). Extremes in temperature (both high and low) negatively impact on the  driving range of electric vehicles due to greater use of on board heating and air conditioning, and  thus will require more frequent recharging. In the freight sector, energy consumption and emissions  in the refrigeration of freight flows will also increase as the extent and degree of temperature control increases across the supply chains of food and other perishable products (James and James,  2010).  8.5.4 Transport infrastructure  Climate proofing and adaptation will require substantial infrastructure investments (see Section 8.4  and IPCC AR5, WG II, Chapter 15). This will generate additional freight transport if implemented  outside of the normal infrastructure maintenance and upgrade cycle. Climate proofing of transport  infrastructure can take many forms (ADB, 2011a; Highways Agency, 2011) varying in the amount of  additional  freight movement required. Resurfacing a road with more durable materials to withstand  greater temperature extremes may require no additional freight movement, whereas re routing a  road or rail link, or installing flood protection, are likely to generate additional logistics demands,  which have yet to be quantified.   Adaptation efforts are likely to increase transport infrastructure costs (Hamin & Gurran, 2009), and  influence the selection of projects for investment. In addition to inflating maintenance costs  (Jollands et al., 2007; Larsen et al., 2008), climate proofing would divert resources that could  otherwise be invested in extending networks and expanding capacity. This is likely to affect all  transport modes to varying degrees.  If, for example, climate proofing were to constrain the  development of a rail network more than road infrastructure, it might inhibit a modal shift to less  carbon intensive rail services.   The future choice of freight and passenger traffic between modes may also become more responsive  to their relative sensitivity to extreme weather events (Koetse and Rietveld, 2009; Taylor and Philp,  2010). The exposure of modes to climate risks include aviation (Eurocontrol, 2008), shipping (Becker  et al., 2012), and land transport (Hunt and Watkiss, 2011). Little attempt has been made to conduct  a comparative analysis of their climate risk profiles, to assess the effects on the modal choice  behaviour of individual travellers and businesses, or to take account of regional differences in the  relative vulnerability of different transport modes to climate change (Koetse and Rietveld, 2009).  Overall, the transport sector will be highly exposed to climate change and will require extensive  adaptation of infrastructure, operations, and service provision. It will also be indirectly affected by  the adaptation and decarbonization of the other sectors that it serves. Within the transport sector  there will be a complex interaction between adaptation and mitigation efforts. Some forms of  adaptation, such as infrastructural climate proofing, will be likely to generate more freight and  personal movement, while others, such as the NSR, could substantially cut transport distances and  related emissions.       31 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.6 Costs and potentials  For transport, the potential for reducing GHG emissions, as well as the associated costs, varies  widely across countries and regions. Appropriate policies and measures that can accomplish such  reductions also vary (see Section 8.10) (Kahn Ribeiro et al., 2007; Li, 2011). Mitigation costs and  potentials are a function of the stringency of climate goals and their respective GHG concentration  stabilization levels (Fischedick et al., 2011; Rogelj et al., 2013). This section presents estimates of  mitigation potentials and associated costs from the application of new vehicle and fuel technologies,  performance efficiency gains, operational measures, logistical improvements, electrification of  modes, and low carbon fuels and activity reduction for different transport modes (aviation, rail, road,  waterborne and cross modal). Potential CO2 emissions reductions from passenger km (p km) and  tonne km (t km) vary widely by region, technology, and mode according to how rapidly the  measures and applications can be developed, manufactured, and sold to buyers replacing existing  ones in vehicles an fuels or adding to the total fleet, and on the way they are used given travel  behaviour choices (Kok et al., 2011). In general, there is a larger emission reduction potential in the  transport sector, and at a lower cost, compared to the findings in AR4 (Kahn Ribeiro et al., 2007).  The efforts undertaken to reduce activity, to influence structure and modal shift, to lower energy  intensity, and to increase the use of low carbon fuels, will influence future costs and potentials.  Ranges of mitigation potentials have an upper boundary based on what is currently understood to  be technically achievable, but will most likely require strong policies to be achieved in the next few  decades (see Section 8.10). Overall reductions are sensitive to per unit transport costs (that could  drop with improved vehicle efficiency); resulting rebound effects; and shifts in the type, level, and  modal mix of activity. For instance, the deployment of more efficient, narrow body jet aircraft could  increase the number of commercially attractive, direct city to city connections, which may result in  an overall increase in fleet fuel use compared to hub based operations.   This assessment follows a bottom up approach to maintain consistency in assumptions. Table 8.3  outlines indicative direct mitigation costs using reference conditions as baselines, and illustrative  examples of existing vehicles and situations for road, aviation, waterborne, and rail (as well as for  some cross mode options) available in the literature. The data presented on the cost effectiveness  of different carbon reduction measures is less detailed than data on the potential CO2 savings due to  literature gaps. The number of studies assessing potential future GHG reductions from energy  intensity gains and use of low carbon fuels is larger than those assessing mitigation potentials and  cost from transport activity, structural change and modal shift, since they are highly variable by  location and background conditions.  Key assumptions made in this analysis were:   cost estimates  are based on societal costs and benefits of technologies, fuels, and other  measures, and take into account initial costs as well as operating costs and fuel savings;  existing transport options are compared to current base vehicles and activities, whereas  future options are compared to estimates of baseline future technologies and other  conditions;   fuel price projections are based on the IEA World Energy Outlook (IEA, 2012b) and exclude  taxes and subsidies where possible;  discount rates of 5% are used to bring future estimates back to present (2013) values,  though the literature considered has examined these issues mostly in the developed world  context; and  indirect responses that occur through complex relationships within sectors in the larger  socioeconomic system are not included (Stepp et al., 2009).  Results in Table 8.3 indicate that, for LDVs, efficiency improvement potentials of 50% in 2030 are  technically possible compared to 2010, with some estimates in the literature even higher (NRC,  2010b). Virtually all of these improvements appear to be available at very low, or even negative,    32 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    societal costs. Electric vehicles have a CO2 reduction cost highly correlated with the carbon intensity  of electricity generation: using relatively high carbon intensity electricity systems (~500600  gCO2/kWh), EVs save little CO2 compared to conventional LDVs and the mitigation cost can be many  hundreds of dollars per tonne; for very low carbon electricity (below 200 gCO2/kWh) the mitigation  cost drops below 200 USD2010/tCO2. In the future, with lower battery costs and low carbon electricity,  EVs could drop below 100 USD2010/tCO2 and even approach zero net cost.   For long haul HDVs, up to a 50% reduction in energy intensity by 2030 appears possible at negative  societal cost per tCO2 due to the very large volumes of fuel they use. HDVs used in urban areas  where their duty cycle does not require as much annual travel (and fuel use), have a wider range of  potentials and costs, reaching above 100 USD2010/t CO2. Similarly, inter city buses use more fuel  annually than urban buses, and as a result appear to have more low cost opportunities for CO2  reduction (IEA, 2009b; NRC, 2010b; TIAX, 2011).  Recent designs of narrow and wide body commercial aircraft are significantly more efficient than the  models they replace, and provide CO2 reductions at net negative societal cost when accounting for  fuel savings over 10 15 years of operation at 5% discount rate. An additional 30 40% CO2 reduction  potential is expected from future new aircraft in the 2020 2030 time frame, but the mitigation costs  are uncertain and some promising technologies, such as open rotor engines, appear expensive (IEA,  2009a; TOSCA, 2011).  For virtually all types of ocean going ships including container vessels, bulk carriers, and oil tankers,  the potential reduction in CO2 emissions is estimated to be over 50% taking into account a wide  range of technology and operational changes. Due to the large volume of fuel used annually by these  ships, the net cost of this reduction is likely to be negative (Buhaug and et. al, 2009; Crist, 2009).  Key factors in the long term decarbonization of rail transport will be the electrification of services  and the switch to low carbon electricity generation, both of which will vary widely by country.  Potential improvements of 35% energy efficiency for United States rail freight, 46% for European  Union rail freight and 56% for EU passenger rail services have been forecast for 2050 (Anderson et  al., 2011; Vyas et al., 2013) . The EU improvements will yield a 10 12% reduction in operating costs,  though no information is available on the required capital investment in infrastructure and  equipment.    Regarding fuel substitution in all modes, some biofuels have the potential for large CO2 reduction,  although net GHG impact assessments are complex (see Section 8.3 and Chapter 11, Bioenergy  Annex). The cost per tonne of CO2 avoided will be highly dependent on the net CO2 reduction and  the relative cost of the biofuel compared to the base fuel (e.g., gasoline or diesel), and any  technology changes required to the vehicles and fuel distribution network in order to accommodate  new fuels and blends. The mitigation cost is so sensitive that, for example, while an energy unit of  biofuel that cuts CO2 emissions by 80% compared to gasoline and costs 20% more has a mitigation  cost of about 80 USD/t CO2, if the biofuel s cost drops to parity with gasoline, the mitigation cost  drops to 0 USD/t CO2 (IEA, 2009b).  The mitigation potentials from reductions in transport activity consider, for example, that  walking  and cycle track networks can provide 20% (5 40% in sensitivity analyses) induced walking and cycle  journeys that would not have taken place without the new networks, and around 15% (0 35% in  sensitivity analyses) of current journeys less than 5 km made by car or public transport can be  replaced by walking or cycling  (Saelensminde, 2004). Urban journeys by car longer than 5km can be  replaced by combined use of non motorized and intermodal public transport services (Tirachini and  Hensher, 2012).         33 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Table 8.3: Selected CO2 mitigation potentials and costs for various modes in the transport sector with baselines of stock average fleet compared with 2010  new vehicles and 2030 projected vehicle based on available data. (See footnotes at end of Table).    34 of 115   Final Draft  Chapter 8  IPCC WGIII AR5        35 of 115   Final Draft  Chapter 8  IPCC WGIII AR5        36 of 115   Final Draft  Chapter 8  IPCC WGIII AR5        37 of 115   Final Draft  Chapter 8  IPCC WGIII AR5      Selected CO2 mitigation potentials resulting from changes in transport modes with different emission intensities (tCO2/p km or /t km) and associated levelized cost of conserved carbon (LCCC in USD2010/tCO2  saved). Estimates are indicative. Variations in emission intensities stem from variation in vehicle efficiencies and occupancy/load rates. Estimated LCCC for passenger road transport options are point estimates +/-100  USD2010/tCO2 based on central estimates of input parameters that are very sensitive to assumptions (e.g., specific improvement in vehicle fuel economy to 2030, specific biofuel CO2 intensity, vehicle costs, fuel  prices). They are derived relative to different baselines (see legend for colour coding) and need to be interpreted accordingly. Estimates for 2030 are based on projections from recent studies, but remain inherently  uncertain. LCCC for aviation and for freight transport are taken directly from the literature. Additional context to these estimates is provided in the two right most columns of the table (see Annex III, Section A.III.3  for data and assumptions on emission intensities and cost calculations and Annex II, Section A.II.3.1 for methodological issues on levelized cost metrics).  References: 1: IATA, 2009; 2: TOSCA, 2011; IEA, 2009; 3:Dell Olmo and Lulli, 2003; Pyrialakou et al., 2012 4: Bandivadekar, 2008; ICCT, 2010; Greene and Plotkin, 2011; IEA, 2012a; 5: IEA, 2012; 6: NRC, 2011a; 7: Sims  et al., 2011; 8: Chandler et al., 2006; 9: ICCT, 2010; NRC, 2010; IEA, 2012e; 10: ICCT. 2012; 11: NRC, 2012; 12: UNEP, 2011; 13: Chandler et al., 2006; IPCC, 2007; AEA, 2011; ITF, 2011; IEA, 2012d; 14: Hallmark et al.,  2013; 15: Goodwin and Lyons, 2010; Taylor and Philp, 2010; Ashton Graham et al., 2011; Höjer, et al., 2011; Salter et al., 2011; Pandey, 2006; 16: Behrendt et al 2010; 17:  Argonne National Lab., 2013; 18: UIC, 2011.  19: IEA, 2011a; 20: Crist, 2009; IMO, 2009; DNV, 2010; ICCT, 2011b; Lloyds Register and DNV, 2011; Eide et al., 2011 , 21: Crist, 2009; 22: IMO, 2009; 23: Lloyds Register and DNV, 2011 ; 24: DNV, 2010; 25:TIAX, 2009;  IEA, 2012c; 26: Lawson et al., 2007; AEA, 2011; 27: World Economic Forum / Accenture, 2009; 28: Lawson et al., 2007; 29: TFL, 2007; Eliasson, 2008, (Creutzig and He, 2009); 30: IMO, 2009; 31: Faber et al., 2012; 32:   IEA, 2009, IEA, 2010b; 33: Bioenergy Annex, Chapter 11; 34: TOSCA, 2011; 35: Marshall, 2011; 36:(ITDP, 2009); 37: Maloni et al., 2013; 38: (Andersson et al., 2011a); 39: Wang, 2012b; 40: (Saelensminde, 2004); 41:  (Tirachini and Hensher, 2012) ; 42 (DfT, 2010); 43: (Andersson et al., 2011a); 44: (Halzedine et al., 2009);  45: (Sharpe, 2010); 46: (Skinner et al., 2010a); 47: (Hill et al., 2012); 48: (IEA, 2012c); 49: Freight Transport  Association, 2013; 50: (SAFED, 2013);  51: (NTM, 2011); 52:(Jardine, 2009).    38 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.7 Co benefits, risks and spillovers  Mitigation in the transport sector has the potential to generate synergies and co benefits with other  economic, social, and environmental objectives. In addition to mitigation costs (see Section 8.6), the  deployment of mitigation measures will depend on a variety of other factors that relate to the  broader objectives that drive policy choices. The implementation of policies and measures can have  positive or negative effects on these other objectives   and vice versa. To the extent these effects  are positive, they can be deemed as  co benefits ; if adverse and uncertain, they imply risks.  Potential co benefits and adverse side effects of alternative mitigation measures (Section 8.7.1),  associated technical risks and uncertainties (Section 8.7.2), and public perceptions (Section 8.7.3)  can significantly affect investment decisions and individual behaviour as well as influence the  priority setting of policymakers. Table 8.7.1 provides an overview of the potential co benefits and  adverse side effects of the mitigation measures that are assessed in this chapter. In accordance with  the three sustainable development pillars described in Sections 4.2 and 4.8, the table presents  effects on objectives that may be economic, social, environmental, and health related. The extent to  which co benefits and adverse side effects will materialize in practice, and their net effect on social  welfare, differ greatly across regions. Both are strongly dependent on local circumstances and  implementation practices as well as on the scale and pace of the deployment of the different  mitigation measures (see Section 6.6).  8.7.1 Socio economic, environmental, and health effects  Transport relies almost entirely on oil with about 94% of transport fuels being petroleum products  (IEA, 2011b). This makes it a key area of energy security concern. Oil is also a major source of  harmful emissions that affect air quality in urban areas (see Section 8.2) (Sathaye et al., 2011b). In  scenario studies of European cities, a combination of public transit and cycling infrastructures,  pricing, and land use measures is projected to lead to notable co benefits. These include improved  energy security, reduced fuel spending, less congestion, fewer accidents, and increased public health  from more physical activity, less air pollution and less noise related stress (Costantini et al., 2007;  Greene, 2010b; Rojas Rueda et al., 2011; Rojas Rueda et al., 2012; Creutzig et al., 2012). However,  only a few studies have assessed the associated welfare effects comprehensively and these are  hampered by data uncertainties. Even more fundamental is the epistemological uncertainty  attributed to different social costs. As a result, the range of plausible social costs and benefits can be  large. For example, the social costs of the co dimensions congestion, air pollution, accidents, and  noise in Beijing were assessed to equate to between 7.5% to 15% of GDP (Creutzig and He, 2009).  Improving energy security, mobility access, traffic congestion, public health, and safety are all  important policy objectives that can possibly be influenced by mitigation actions (Jacobsen, 2003;  Goodwin, 2004; Hultkrantz et al., 2006; Rojas Rueda et al., 2011).  Energy security. Transport stands out in comparison to other energy end use sectors due to its  almost complete dependence on petroleum products (Sorrell and Speirs, 2009) (Cherp et al., 2012).  Thus, the sector suffers from both low resilience of energy supply and, in many countries, low  sufficiency of domestic resources. (For a broader discussion on these types of concerns see Section  6.6.2.2). The sector is likely to continue to be dominated by oil for one or more decades (Costantini  et al., 2009). For oil importing countries, the exposure to volatile and unpredictable oil prices affects  the terms of trade and their economic stability. Measuring oil independence is possible by  measuring the economic impact of energy imports (Greene, 2010b)Mitigation strategies for  transport (such as electrifying the sector and switching to biofuels) would decrease the sector s  dependence on oil and diversify the energy supply, thus increasing resilience (Leiby, 2007a; Shakya  and Shrestha, 2011) (Jewell et al., 2013). However, a shift away from oil could have implications for  energy exporters (see Chapter 14). Additionally, mitigation measures targeted at reducing the  overall transport demand such as more compact urban form with improved transport  infrastructure and journey distance reduction and avoidance (see Sections 8.4 and 12.4.2.1) may    39 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    reduce exposure to oil price volatility and shocks (Sovacool and Brown, 2010; Leung, 2011; Cherp et  al., 2012).  Access and mobility. Mitigation strategies that foster multi modality are likely to foster improved  access to transport services particularly for the poorest and most vulnerable members of society.  Improved mobility usually helps provide access to jobs, markets, and facilities such as hospitals and  schools (Banister, 2011b; Boschmann, 2011; Sietchiping et al., 2012). More efficient transport and  modal choice not only increases access and mobility it also positively affects transport costs for  businesses and individuals (Banister, 2011b). Transport systems that are affordable and accessible  foster productivity and social inclusion (Banister, 2008; Miranda and Rodrigues da Silva, 2012).    Employment impact. In addition to improved access in developing countries, a substantial number  of people are employed in the formal and informal public transport sector (UN Habitat, 2013). A  shift to public transport modes is likely to generate additional employment opportunities in this  sector (Santos et al., 2010) . However, the net effect on employment of a shift towards low carbon  transport remains unclear (UNEP, 2011).    Traffic congestion. Congestion is an important aspect for decision makers, in particular at the local  level, as it negatively affects journey times and creates substantial economic cost (Goodwin, 2004;  Duranton and Turner, 2011). For example, in the United States in 2000, time lost in traffic amounted  to around 0.7% of GDP (Federal Highway Administration, 2000) or approximately  85 billion USD2010.  This increased to 101 billion USD2010 in 2010, also being 0.7% of GDP, but with more accurate data  covering the cost per kilometre travelled of each major vehicle type for 500 urban centres (Schrank  et al., 2011). Time lost was valued at 1.2% of GDP in the UK (Goodwin, 2004); 3.4% in Dakar, Senegal;  4% in Manila, Philippines (Carisma and Lowder, 2007); 3.3% to 5.3% in Beijing, China (Creutzig and  He, 2009); 1% to 6% in Bangkok, Thailand (World Bank, 2002) and up to 10% in Lima, Peru where  people  on average spend around four hours in daily travel (JICA, 2005; Kunieda and Gauthier, 2007).  Modal shifts that reduce traffic congestion can simultaneously reduce GHG emissions and short lived  climate forcers. These include road congestion pricing, modal shifts from aviation to rail, and shifts  from LDVs to public transport, walking, and cycling (Cuenot et al., 2012). However, some actions that  seek to reduce congestion can induce additional travel demand, for example, expansions of airport  infrastructure or construction of roads to increase capacity (Goodwin, 2004; ECMT, 2007; Small and  van Dender, 2007).   Health. Exposure to vehicle exhaust emissions can cause cardiovascular, pulmonary, and respiratory  diseases and several other negative health impacts (McCubbin, D.R., Delucchi, 1999; Medley et al.,  2002a; Chapters 7.9.2, 8.2, and WG II Chapter 11.9). In Beijing, for example, the social costs of air  pollution were estimated to be as high as those for time delays from congestion (Creutzig and He,  2009). Various strategies to reduce fuel carbon intensity have varying implications for the many  different air pollutants. For example, many studies indicate lower carbon monoxide and  hydrocarbon emissions from the displacement of fossil based transport fuels with biofuels, but NOx  emissions are often higher. Advanced biofuels are expected to improve performance, such as the  low particulate matter emissions from ligno cellulosic ethanol (see Hill et al., 2009, Sathaye et al.,  2011 and Section 11.13.5). Strategies that target local air pollution, for example switching to electric  vehicles, have the potential to also reduce CO2 emissions (Yedla et al., 2005) and black carbon  emissions (UNEP and WMO, 2011) provided the electricity is sourced from low carbon sources.  Strategies to improve energy efficiency in the LDV fleet though fostering diesel powered vehicles  may affect air quality negatively (Kirchstetter et al., 2008; Schipper and Fulton, 2012) if not  accompanied by regulatory measures to ensure emission standards remain stable. The structure and  design of these strategies ultimately decides if this potential can be realized (see Section 8.2).  Transport also contributes to noise and vibration issues, which affect human health negatively (WHO,  2009; Oltean Dumbrava et al., 2013; Velasco et al., 2013). Transport related human inactivity has  also been linked to several chronic diseases (WHO, 2008). An increase in walking and cycling    40 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    activities could therefore lead to health benefits but conversely, may also lead to an increase in  traffic accidents and a larger lung intake of air pollutants (Kahn Ribeiro et al., 2012; Takeshita, 2012).  Overall, the benefits of walking and cycling significantly outweigh the risks due to pollution  inhalation (Rojas Rueda et al., 2011; Rabl and de Nazelle, 2012).   Assessing the social cost of public health is a contested area when presented as disability adjusted  life years (DALYs). A reduction in CO2 emissions through an increase in active travel and less use of  ICE vehicles gave associated health benefits in London (7,332 DALYs per million population per year)  and Delhi (12,516 (DALYs/million capita)/yr)   significantly more than from the increased use of  lower emission vehicles (160 (DALYs/million capita)/yr) in London, and 1,696 in Delhi) (Woodcock et  al., 2009). More generally, it has been found consistently across studies and methods that public  health benefits (induced by modal shift from LDVs to non motorized transport) from physical activity  outweighs those from improved air quality (Woodcock et al., 2009; Grabow et al. 2011; Maizlish et  al., 2013; Rojas Rueda et al., 2011; de Hartog et al., 2010). In a similar trend, reduced car use in  Australian cities has been shown to reduce health costs and improve productivity due to an increase  in walking (Trubka et al., 2010a).   Safety. The increase in motorized road traffic in most countries places an increasing incidence of  accidents with 1.27 million people killed globally each year, of which 91% occur in low and middle income countries (WHO, 2011). A further 20 to 50 million people suffer serious injuries (WHO, 2011).  By 2030, it is estimated that road traffic injuries will constitute the fifth biggest reason for premature  deaths (WHO, 2008). Measures to increase the efficiency of the vehicle fleet can also positively  affect the crash worthiness of vehicles if more stringent safety standards are adopted along with  improved efficiency standards (Santos et al., 2010). Lack of access to safe walking, cycling, and public  transport infrastructure remains an important element affecting the success of modal shift strategies,  in particular in developing countries (Sonkin et al., 2006; Tiwari and Jain, 2012b).    Fossil fuel displacement. Economists have criticized the assumption that each unit of energy  replaces an energy equivalent quantity of fossil energy, leaving total fuel use unaffected (Drabik and  de Gorter, 2011; Rajagopal et al., 2011b; Thompson et al., 2011). As with other energy sources,  increasing energy supply through the production of bioenergy affects energy prices and demand for  energy services, and these changes in consumption also affect net global GHG emissions (Hochman  et al., 2010b; Rajagopal et al., 2011b; Chen and Khanna, 2012b). The magnitude of the effect of  increased biofuel production on global fuel consumption is uncertain (Thompson et al., 2011) and  depends on how the world responds in the long term to reduced petroleum demand in regions using  increased quantities of biofuels. This in turn depends on the Organization of Petroleum Exporting  Countries  (OPEC) supply response and with China s and India s demand response to a given  reduction in the demand for petroleum in regions promoting biofuels, and the relative prices of  biofuels and fossil fuels including from hydraulic fracturing (fracking) (Gehlhar et al., 2010; Hochman  et al., 2010b; Thompson et al., 2011). Notably, if the percentage difference in GHG emissions  between an alternative fuel and the incumbent fossil fuel is less than the percentage rebound effect  (the fraction not displaced, in terms of GHG emissions), a net increase in GHG emissions will result  from promoting the alternative fuel, despite its nominally lower rating (Drabik and de Gorter, 2011).  If biofuels displace high carbon intensity oil from tar sands or heavy oils, the displacement effect  would provide higher GHG emission savings. Estimates of the magnitude of the petroleum rebound  effect cover a wide range and depend on modelling assumptions. Two recent modelling studies  suggest that biofuels replace about 30 70% of the energy equivalent quantity of petroleum based  fuel (Drabik and de Gorter, 2011; Chen and Khanna, 2012), while others find replacement can be as  low as 12 15% (Hochman et al., 2010b). Under other circumstances, the rebound can be negative.  The rebound effect is always subject to the policy context, and can be specifically avoided by global  cap and pricing instruments.    41 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.7.2 Technical risks and uncertainties  Different de carbonization strategies for transport have a number of technological risks and  uncertainties associated with them. Unsustainable mining of resources to supply low carbon  transport technologies such as batteries and fuel cells may create adverse side effects for the local  environment (Massari and Ruberti, 2013); (Eliseeva and Bünzli, 2011). Mitigation options from lower  energy intensity technologies (e.g., electric buses) and reduced fuel carbon intensity (e.g., biofuels)  are particularly uncertain regarding their technological viability, sources of primary energy, and  biomass and lifecycle emission reduction potential (see Section 8.3). Biofuels indicators are being  developed to ensure a degree of sustainability in their production and use (UNEP/GEF, 2013)  Sections 11.13.6 and 11.13.7). For shipping, there is potential for new and shorter routes such as  across the Arctic, but these may create risks to vulnerable ecosystems (see Section 8.5).  A focus on improving vehicle fuel efficiency may reduce GHG emissions and potentially improve air  quality, but without an increase in modal choice, it may not result in improved access and mobility  (Steg and Gifford, 2005). The shift toward more efficient vehicles, for example the increasing use of  diesel for the LDV fleet in Europe, has also created tradeoffs such as negatively affecting air quality  in cities (Kirchstetter et al., 2008). More generally, mitigation options are also likely to be subject to  rebound effects to varying degrees (see Sections 8.3 and 8.10).  8.7.3 Technological spillovers  Advancements in technologies developed for the transport sector may have technological spillovers  to other sectors. For example advancements in battery technology systems for consumer electronics  could facilitate the development of batteries for electric vehicles and vice versa (Rao and Wang,  2011). The production of land competitive biofuels can also have direct and indirect effects on  biodiversity, water, and food availability (see Sections 11.13.6 and 11.13.7). Other areas where  technological spillovers may occur include control and navigation systems and other information  technology applications.   42 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Table 8.4: Overview of potential co-benefits (green arrows) and adverse side effects (orange arrows) of the main mitigation measures in the transport sector. Arrows pointing up/down denote positive/negative effect on the respective objective/concern; a question mark (?) denotes an uncertain net effect. Co-benefits and adverse side-effects depend on local circumstances as well as on the implementation practice, pace, and scale (see Section 6.6). For an assessment of macroeconomic, cross-sectoral effects associated with mitigation policies (e.g., energy prices, consumption, growth, and trade), see Sections 3.9, 6.3.6, 13.2.2.3 and 14.4.2. For possible upstream effects of low-carbon electricity and biomass supply, see Sections 7.9 as well as 11.7 and 11.13.6. Mitigation  measures  Reduction of fuel  carbon intensity:   electricity, hydrogen,  CNG, biofuels, and  other fuels.  Effect on additional objectives/concerns                        Economic                                                         Social (including health)                                                 Environmental      Energy security (diversification, reduced oil  dependence, and exposure to oil price volatility)  (1,2,3,32,33,34,94)        ?  Technological spillovers (e.g., battery technologies  for consumer electronics) (17,18,44,55,90)  Energy security (reduced oil dependence and  exposure to oil price volatility) (1,2,3,32,33,34)  Health impact via urban air pollution (59,69) by       CNG, biofuels: net effect unclear (13,14,19,20,36,50)       Electricity, hydrogen: reducing most pollutants (13,20,21,36,58,63,92)       Shift to diesel: potentially increasing pollution (11,23,25)       Noise (electricity and fuel cell LDVs) (10,82,61,64 66)    Road safety (silent electric LDVs at low speed) (56)  Ecosystem impact of electricity and hydrogen via:          Urban air pollution (13,20,69,91,92,93)       Material use (unsustainable resource mining)  (17,18)  ?  Ecosystem impact of biofuels (24,41,42,89)    Reduction of energy  intensity.  Health impact via reduced urban air pollution (22,25,43,59,62,69,84)  Road safety (crash worthiness depending on the design of the standards)  (38,39,52,60)  Health impact for non motorized modes via        Increased activity (7,12,27,28,29,51,64,70,73,74)       Potentially higher exposure to air pollution (19,27,59,69,70,74)       Noise (modal shift and travel reduction) (58,61,64 66,81,82,83)  Ecosystem and biodiversity impact via reduced  urban air pollution (20,22,69,95)  Compact urban form  and improved  transport  infrastructure.  Modal shift.     Productivity (reduced urban congestion and travel  times, affordable and accessible transport)    (6,7,8,26,35,45,46,48,49)      Energy security (reduced oil dependence and  exposure to oil price volatility) (77 80,86)    Ecosystem impact via        urban air pollution (20,54,58,60,69)        land use competition (7,9,58,71,75)  ?  Equitable mobility access to employment opportunities, particularly in  developing countries (4,5,8,9,26,43,47,49)  Employment opportunities in the public transport    sector vs. car manufacturing jobs (38,76,89)   Road safety (via modal shift and/or infrastructure for pedestrians and  cyclists) (12,27,37,39,40,87,88)  Health impact (for non motorized transport modes)  (7,12,22,27,28,29,30,67,68,72,75)     Ecosystem impact via        urban air pollution (20,53,54,60,69)       new/shorter shipping routes (15,16,57)  Land use competition from transport  infrastructure (7,9,58,71,75)  Journey distance  reduction and  avoidance.  Energy security (reduced oil dependence and  exposure to oil price volatility) (31,77 80,86)    Productivity (reduced urban congestion, travel  times, walking) (6,7,8,26,45,46,49)  References: 1: (Greene, 2010b); 2: (Costantini et al., 2007); 3: (Bradley and Lefevre, 2006); 4: (Boschmann, 2011); 5: (Sietchiping et al., 2012); 6: (Cuenot et al., 2012); 7: Creutzig et al., 2012; 8:Banister, 2008; 9: (Geurs and Van Wee, 2004; Banister, 2008);10: (Creutzig and He, 2009); 11: (Leinert et al., 2013); 12: Rojas-Rueda et al., 2011; 13:(Sathaye et al., 2011b); 14: (Hill et al., 2009); 15: (Garneau et al., 2009); 16: (Wassmann, 2011); 17: (Eliseeva and Bünzli, 2011) 18: (Massari and Ruberti, 2013); 19: (Takeshita, 2012); 20: (Kahn Ribeiro et al., 2012); 21: (IEA, 2011a); 22: Woodcock et al., 2009; 23: (Schipper and Fulton, 2012); 24: see Section 11.13.6; 25: (Kirchstetter et al., 2008); 26: Banister, 2008; Miranda and Rodrigues da Silva, 2012; 27: (Rojas-Rueda et al., 2011; Rabl and de Nazelle, 2012; 28: (Jacobsen, 2003); 29: (Hultkrantz et al., 2006); 30: (Goodwin, 2004); 31: (Sorrell and Speirs, 2009); 32: (Jewell et al., 2013); 33: (Shakya and Shrestha, 2011); 34: (Leiby, 2007b); 35: (Duranton and Turner, 2011); 36: (Trubka et al., 2010a) 37: (WHO, 2011); 38: Santos et al., 2010; 39: (Tiwari and Jain, 2012b); 40: (Sonkin et al., 2006); 41: (Chum et al., 2011); 42: (Larsen et al., 2009); 43: (Steg and Gifford, 2005); 44: (Budde Christensen et al., 2012) 45: (Schrank et al., 2011); 46: (Carisma and Lowder, 2007); 47: (World Bank, 2002); 48: (JICA, 2005); 49: (Kunieda and Gauthier, 2007); 50: see Section 11.13.5; 51: (Maizlish et al., 2013); 52: (WHO, 2008); 53: (ICCT, 2012b); 54: (Yedla et al., 2005); 55: (Lu et al., 2013); 56: Schoon and Huijskens, 2011; 57: see Section 8.5; 58: see Section 12.8; 59: Medley et al. 2002; 60: Machado-Filho 2009; 61: Milner, Davies, and Wilkinson 2012; 62: Kim Oanh et al., 2012; 63: Fulton, et al., 2013; 64: de Nazelle et al., 2011; 65: (Twardella and Ndrepepa, 2011); 66: (Kawada, 2011); 67: (Grabow et al., 2012); 68: (Pucher et al., 2010); 69: Section 7.9.2 and WGII 11.9; 70: de Hartog et al., 2010; 71: Heath et al. 2006; 72: Saelens, et al. 2003; 73: (Sallis J.F., B.E. Saelens, L.D. Frank, T.L. Conway, D.J. Slymen, K.L. Cain, J.E. Chapman, and J. Kerr); 74: Hankey and Brauer, M. 2012; 75: Cervero and Sullivan 2011; 76: Mikler 2010; 77: Cherp et al. 2012; 78: Leung 2011; 79: Knox-Hayes et al., 2013; 80: Sovacool and Brown 2010; 81: WHO 2009; 82: Oltean-Dumbrava et al., 2013; 83: Velasco et al., 2013; 84: Smith et al., 2013; 86: see Section 8.4; 87: Schepers et al. 2013; 88: White 2004; 89: UNEP/GEF, 2013; 90: Rao and Wang 2011; 91: (Notter et al., 2010); 92: Sioshansi and Denholm, 2009; 93: (Zackrisson et al., 2010); 94: (Michalek et al., 2011); 95: See Section 8.2.2.1.     43 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.8 Barriers and opportunities  Barriers and opportunities are processes that hinder or facilitate deployment of new transport  technologies and practices. Reducing transport GHG emissions is inherently complex as increasing  mobility with LDVs, HDVs, and aircraft has been associated with increasing wealth for the past  century of industrialization (Meyer et al., 1965; Glaeser, 2011). The first signs of decoupling fossil  fuel based mobility from wealth generation are appearing in OECD countries (Kenworthy, 2013). To  decouple and reduce GHG emissions, a range of technologies and practices have been identified that  are likely to be developed in the short  and long terms (see Section 8.3), but barriers to their  deployment exist as do opportunities for those nations, cities, and regions willing to make low carbon transport a priority. There are many barriers to implementing a significantly lower carbon  transport system, but these can be turned into opportunities if sufficient consideration is given and  best practice examples are followed.   8.8.1 Barriers and opportunities to reduce GHGs by technologies and practices  The key transport related technologies and practices garnered from sections above are set out  below in terms of their impact on fuel carbon intensity, improved energy intensity of technologies,  system infrastructure efficiency, and transport demand reduction. Each has short  and long term  potentials to reduce transport GHG emissions that are then assessed in terms of their barriers and  opportunities (Table 8.5). (Details of policies follow in Section 8.10).   Psychological barriers can impede behavioural choices that might otherwise facilitate mitigation as  well as adaptation and environmental sustainability. Many individuals are engaged in ameliorative  actions to improve their local environment, although many could do more. Gifford (2011) outlined  barriers that included  limited cognition about the problem, ideological worldviews that tend to  preclude pro environmental attitudes and behaviour, comparisons with the responses of other  people, sunk costs and behavioural momentum, a dis credence toward experts and authorities,  perceived risks as a result of making change and positive but inadequate confidence to make  behavioural change.    The range of barriers to the ready adoption of the above technologies and practices have been  described in previous sections, but are summarized in Table 8.5 along with the opportunities  available. The challenges involved in removing barriers in each of the 16 elements listed depend on  the politics of a region. In most places, reducing fuel carbon and energy intensities are likely to be  relatively easy as they are technology based, though they can meet capital investment barriers in  developing regions and may be insufficient in the longer term. On the other hand, system  infrastructure efficiency and transport demand reduction options would require human  interventions and social change as well as public investment. Although these may not require as  much capital investment, they would still require public acceptance of any transport policy option  (see Section 8.10). As implementation approaches, public acceptance fluctuates, so political support  may be required at critical times (Pridmore and Miola, 2011).     44 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Table 8.5: Transport technologies and practices with potential for both short- and long-term GHG reduction and the related barriers and opportunities in terms of the policy arenas of fuel carbon intensity, energy intensity, infrastructure, and activity. Transport technology or  practice  Short term possibilities  Long term possibilities  Barriers  Opportunities  References  Fuel carbon intensity: fuel switching    1.  BEVs and PHEVs based  on renewable electricity.  BEV   Battery electric vehicle; PHEV   Plug in hybrid electric vehicle; FCV   Fuel cell vehicles; CHP   combined heat and power;  CNG   Compressed natural gas; LNG   Liquefied natural gas; CBG   Compressed biogas; LBG   Liquefied biogas)  Significant replacement of  ICE powered LDVs.  EV and battery costs reducing but  still high.  Lack of infrastructure, and  recharging standards not uniform.   Vehicle range anxiety.  Lack of capital and electricity in  some least developed countries.  Universal standards adopted for EV  rechargers. Demonstration in green  city areas with plug in infrastructure.   Decarbonized electricity.  Smart grids based on renewables.   EV subsidies.  New business models, such as  community car sharing.  Demonstration gas conversion  programmes that show cost and  health co benefits. Fixing gas leakage  in general.  Drop in fuels attractive for all vehicles.  Biofuels and bio electricity can be  produced together, e.g., sugarcane  ethanol and CHP from bagasse.  New biofuel options need to be  further tested, particularly for aviation  applications.  IEA 2007; Salter et al. 2011;  Alvarez et al. 2012     EPRI 2008; Beck 2009; IEA  2011; Salter et al. 2011; Kley et  al. 2011; Leurent & Windisch  2011; Graham Rowe et al.  2012    Rapid increase in use  likely over next decade  from a small base, so  only a small impact  likely in short term.  2.  CNG, LNG, CBG and LBG  displacing gasoline in  LDVs and diesel in HDVs.  Infrastructure available  in some cities so can  allow a quick ramp up  of gas vehicles in these  cities.  Niche markets continue  for first generation  biofuels (3% of liquid  fuel market, small  biogas niche markets).  Significant replacement of  HDV diesel use depends on  ease of engine conversion,  fuel prices and extent of  infrastructure.  Advanced and drop in  biofuels likely to be adopted  around 2020 2030, mainly  for aviation.  Insufficient government  programmes, conversion subsidies  and local gas infrastructure and  markets. Leakage of gas.   Some biofuels can be relatively  expensive, environmentally poor  and cause inequalities by inducing  increases in food prices.   3. Biofuels displacing  gasoline, diesel and  aviation fuel.  Ogden et al. 2004; Fargione et  al. 2010; IEA 2010;  Plevin et  al., 2010; Creutzig,  et al. 2011;  Salter et al., 2011; Pacca and  Moreira, 2011; Flannery et al.,  2012           45 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Energy intensity: efficiency of technologies  FEV   fuel efficient vehicles   ICE   internal combustion engine  4. Improved vehicle ICE  technologies and on board information and  communication  technologies (ICT) in fuel efficient vehicles.  Continuing fuel  efficiency  improvements across  new vehicles of all  types can show large,  low cost, near term  reductions in fuel  demand.  Likely to be a significant  source of reduction.  Behavioural issues (e.g.,  rebound effect). Consumer  choices can reduce vehicle  efficiency gains.  Insufficient regulatory support for  vehicle emissions standards.  On road performance deteriorates  compared with laboratory tests.  Creative regulations that enable quick  changes to occur without excessive  costs on emissions standards. China  and most OECD countries have  implemented standards.  Reduced registration tax can be  implemented for low CO2eq based  vehicles.   Schipper et al., 2000; Ogden et  al., 2004; Small and van  Dender, 2007; Sperling and  Gordon, 2009; Timilsina and   Dulal, 2009; Fuglestvedt et al.,  2009; Mikler, 2010; Salter et  al., 2011  Structure:  system infrastructure efficiency    5. Modal shift by public  transport displacing  private motor vehicle  use.  Rapid short term  growth already  happening.  Significant displacement  only where quality system  infrastructure and services  are provided.  Availability of rail, bus, ferry, and  other quality transit options.   Density of people to allow more  access to services.  Levels of services.  Time barriers on roads without right  of way  Public perceptions.  6. Modal shift by cycling  displacing private motor  vehicle use.  Modal shift by walking  displacing private motor  vehicle use.  Rapid short term  growth already  happening in many  cities.  Some growth but  depends on urban  planning and design  policies being  implemented.  Significant displacement  only where quality system  infrastructure is provided.  Significant displacement  where large scale adoption  of polycentric city policies  and walkable urban designs  are implemented.  Cultural barriers and lack of safe  cycling infrastructure and  regulations. Harsh climate.  Planning and design policies can  work against walkability of a city by  too easily allowing cars into walking  city areas.  Lack of density and integration with  transit.   Culture of walkability.  Demonstrations of quality cycling  infrastructure including cultural  programmes and bike sharing  schemes.  Large scale adoption of polycentric  city policies and walkable urban  designs creating walking city in historic  centres and new ones. Cultural  programmes.   Bassett et al., 2008; Garrard et  al., 2008; Salter et al., 2011;  Anon, 2012; Sugiyama et al.,  2012  Gehl, 2011; Höjer et al., 2011;  Leather et al., 2011; Salter et  al., 2011   Investment in quality transit  infrastructure, density of adjacent  land use, and high level of services  using innovative financing that builds  in these features.  Multiple co benefits especially where  walkability health benefits are a focus.   Kenworthy, 2008; Millard Ball  & Schipper, 2011; Newman  and Kenworthy 2011; Salter et  al., 2011; Buehler and Pucher,  2011;  Newman and Matan,  2013    7.   46 of 115   Final Draft  8. Urban planning by  reducing the distances to  travel within urban  areas.  Immediate impacts  where dense transit oriented development  (TOD) centres are built.  Significant reductions where  widespread polycentric city  policies are implemented.  Chapter 8  Urban development does not  always favour dense TOD centres  being built. TODs need quality  transit at their base. Integration of  professional areas required.   Widespread polycentric city policies  implemented with green TODs,  backed by quality transit. Multiple co benefits in sprawl costs avoided and  health gains.  IPCC WGIII AR5    Anon, 2004; Anon, 2009;  Naess, 2006; Ewing et al.,  2008; Cervero  and  Murakami,  2009; Cervero and  Murakami,  2010;  Cervero and Sullivan,  2011; Salter et al.,  2011;Lefevre; 2009  Gwilliam, 2003; ADB, 2011;  Creutzig et al., 2011; Shoup,  2011; Newman  and Matan,  2013  9. Urban planning by  reducing private motor  vehicle use through  parking and traffic  restraint.  Immediate impacts on  traffic density  observed.  Significant reductions only  where quality transport  alternatives are available.  Political barriers due to perceived  public opposition to increased  costs, traffic and parking  restrictions. Parking codes too  prescriptive for areas suited to  walking and transit.   High speed rail infrastructure  expensive.     Inadequacies in rail infrastructure  and service quality.  Much freight  moved over distances that are too  short for rail to be competitive.  Demonstrations of better transport  outcomes from combinations of traffic  restraint, parking and new  transit/walking infrastructure  investment.  Demonstrations of how to build  quality fast rail using innovative  finance.  Upgrading of inter modal facilities.  Electrification of rail freight services.   Worsening traffic congestion on road  networks and higher fuel cost will  favour rail.  10. Modal shift by displacing  aircraft and LDV trips  through high speed rail  alternatives.   11. Modal shift of freight by  displacing HDV demand  with rail.  Immediate impacts  after building rail  infrastructure.  Suitable immediately  for medium  and long distance freight and  port traffic.  Continued growth but only  short medium distance trips  suitable.  Substantial displacement  only if large rail  infrastructure improvements  made, the external costs of  freight transport are fully  internalized, and the quality  of rail services are  enhanced. EU target to have  30% of freight tonne km  moving more than 300 km  to go by rail (or water) by  2030.  Potential to develop beyond  current niches, though will  require significant  investment in new vessels  and port facilities.  (Park and Ha, 2006; Gilbert and  Perl, 2010; Akerman, 2011;  Salter et al., 2011)  IEA, 2009; Schiller et al., 2010;  Salter et al., 2011  12. Modal shift by displacing  truck and car use  through waterborne  transport.  Niche options already  available.  EU  Motorways of the  Sea  programme  demonstrates potential  to expand short sea  shipping share of  freight market.  Lack of vision for water transport  options and land locked population  centres. Long transit times.   Tightening controls on dirty bunker  fuel and SOx and NOx emissions  raising cost and reducing modal  competitiveness.  Demonstrations of quality waterborne  transport that can be faster and with  lower carbon emissions than  alternatives.  Fuglestvedt et al., 2009; Salter  et al. 2011    47 of 115   Final Draft  13. System optimization by  improved road systems,  freight logistics and  efficiency at airports and  ports.  Activity:  demand reduction  14. Mobility service  substitution by reducing  the need to travel  through enhanced  communications.   15. Behavioural change from  reducing private motor  vehicle use through  pricing policies, e.g,  network charges and  parking fees.  16. Behavioural change  resulting from education  to encourage gaining  benefits of less motor  vehicle use.  Continuing  improvements showing  immediate impacts.  Insufficient in long term to  significantly reduce carbon  emissions without changing  mode, reducing mobility, or  reducing fuel carbon  intensity.  Chapter 8  Insufficient regulatory support and  key performance indicators (KPIs)  covering logistics and efficiency.  Creative regulations and KPIs that  enable change to occur rapidly  without excessive costs.  IPCC WGIII AR5    Pels and Verhoef, 2004; A.  Zhang and Y. Zhang, 2006;  Fuglestvedt et al., 2009; Kaluza  et al., 2010; McKinnon, 2010;  Simaiakis and Balakrishnan,  2010; Salter et al., 2011    Niche markets growing  and ICT improving in  quality and reliability.  Significant reductions  possible after faster  broadband and quality  images available, though ICT  may increase the need for  some trips.   Significant reductions only  where quality transport  alternatives are available.  Technological barriers due to  insufficient broadband in some  regions.  Demonstrations of improved video conferencing system quality.  Golob and Regan, 2001; Choo  et al., 2005; Wang and Law,  2007; Yi and  Thomas, 2007;  Zhen et al., 2009; Salter et al.,  2011; Mokhtarian and  Meenakshisundaram, 2002   Litman, 2005, 2006; Salter et  al., 2011; Creutzig et al., 2012  Immediate impacts on  traffic density  observed.  Political barriers due to perceived  public opposition to increased  pricing costs. Lack of administrative  integration between transport,  land use and environment  departments in city municipalities.  Lack of belief by politicians and  professionals in the value of  educational behaviour change  programmes.  Demonstrations of better transport  outcomes from combinations of  pricing, traffic restraint, parking and  new infrastructure investment from  the revenue. Removing subsidies to  fossil fuels important for many co benefits.  Demonstrations of  travel smart   programmes linked to improvements  in sustainable transport infrastructure.  Cost effective and multiple co benefits.  Immediate impacts of  10 15% reduction of  LDV use are possible.  Significant reductions only  where quality transport  alternatives are available.  Pandey, 2006; Goodwin and  Lyons, 2010; Taylor and Philp,  2010; Ashton Graham et al.,  2011; Höjer et al., 2011; Salter  et al., 2011    48 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.8.2 Financing low carbon transport  Transport is a foundation for any economy as it enables people to be linked, goods to be exchanged,  and cities to be structured (Glaeser, 2011). Transport is critical for poverty reduction and growth in  the plans of most regions, nations, and cities. It therefore is a key area to receive development  funding. In past decades the amount of funding going to transport through various low carbon  mechanisms had been relatively low, but have had a recent increase. The projects registered in the  United Nations Environmental Programme (UNEP) pipeline database for the clean development  mechanism (CDM) shows only 42 projects out of 6707 were transport related (Kopp, 2012). The  Global Environment Facility (GEF) has approved only 28 projects in 20 years, and the World Bank s  Clean Technology Fund has funded transport projects for less than 17% of the total. If this  international funding does not improve, then transport could move from emitting 22% of energy related GHGs in 2009 to reach 80% by 2050 (ADB, 2012a). Conversely, national appropriate  mitigation measures (NAMAs) could attract low carbon financing in the transport area for the  developing world. To support sustainable transport system development, eight multi lateral  development banks have pledged to invest around  170 billion USD2010 over the next ten years  (Marton Lefevre, 2012).    A major part of funding sustainable transport could arise from the redirection of funding from  unsustainable transport (Sakamoto et al., 2010; UNEP, 2011; ADB, 2012b). In addition, land based  taxes or fees can capitalize on the value gains brought by sustainable transport infrastructures  (Chapter 12.5.2). For example, in locations close to a new rail system, revenue can be generated  from land based taxes and rates that are seen to rise by 20 50% compared to areas not adjacent to  such an accessible facility (Cervero 1994; Haider and Miller, 2000; Rybeck, 2004). Local municipal  financing by land value capture and land taxes could be a primary source of financing for public  transit and non motorized transport infrastructure, especially in rapidly urbanizing Asia (Chapter  12.5.2; Bongardt et al., 2013). For example, a number of value capture projects are underway as part  of the rapid growth in urban rail systems, including Indian cities (Newman et al., 2013). The ability to  fully outline the costs and benefits of low carbon transport projects will be critical to accessing these  new funding opportunities. R&D barriers and opportunities exist for all of these agendas in transport.  8.8.3 Institutional, cultural, and legal barriers and opportunities  Institutional barriers to low carbon transport include international standards required for new EV  infrastructure to enable recharging; low pricing of parking; lack of educational programmes for  modal shift; and polycentric planning policies that require the necessary institutional structures  (OECD, 2012; Salter et al., 2011). Cultural barriers underlie every aspect of transport, for example,  automobile dependence being built into a culture and legal barriers that can exist to prevent the  building of dense, mixed use community centres that reduce car dependence. Overall, there are  political barriers that combine most of the above (Pridmore and Miola, 2011).    Opportunities also exist. Low carbon transport elements in green growth programmes (OECD, 2011;  Hargroves and Smith, 2008) are likely to be the basis of changing economies because they shape  cities and create wealth (Glaeser, 2011; Newman et al., 2009). Those nations, cities, businesses, and  communities that grasp the opportunities to demonstrate these changes are likely to be the ones  that benefit most in the future (OECD, 2012). The process of decoupling economic growth from fossil  fuel dependence could become a major feature of the future economy (ADB, 2012a) with  sustainable transport being one of four key approaches. Overcoming the barriers to each technology  and practice (Table 8.5) could enable each to contribute to a more sustainable transport system and  realize the opportunities from technological and social changes when moving towards a  decarbonized economy of the future.     49 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.9 Sectoral implications of transformation pathways and sustainable  development  Scenarios that focus on possible reductions of energy use and CO2 emissions from transport are  sourced from either integrated models that incorporate a cross sector approach to modelling global  emissions reductions and other mitigation options, or sectoral models that focus solely on transport  and its specific potential for emissions reductions. A comparison of scenarios from both integrated  and sectoral models with a focus on long term concentration goals up until 2100 is conducted in this  section. This comparison is complemented by the results of the transport specific evaluation of cost  and potentials in Section 8.6 and supported by a broader integrated assessment in Chapter 66.   The integrated and sectoral model transport literature presents a wide range of future CO2  emissions reduction scenarios and offers two distinct forms of assessment. Both contemplate how  changes in passenger and freight activity, structure, energy intensity, and fuel carbon intensity could  each contribute to emissions reductions and assist the achievement of concentration goals.   The integrated model literature focuses upon systemic assessments of the impacts of macro economic policies (such as limits on global/regional emissions or the implementation of a carbon  tax) and reviews the relative contributions of a range of sectors to overall global mitigation efforts  (Section 6.2.1). Within the WG III AR5 Scenario Database (Annex II.10), transport specific variables  are not available for all scenarios. Therefore, the present analysis is based on a sub sample of almost  600 scenarios7. Due to the macro economic scale of their analysis, integrated models have a limited  ability to assess behaviour changes that may result from structural developments impacting on  modal shift or journey avoidance, Behavioural factors such as travel time and budget might  contribute up to 50% reduction of activity globally in 2100 compared to the 2005 baseline (Girod et  al., 2013).   Sectoral scenarios, however, are able to integrate results concerning emission reduction potentials  from sector specific interventions (such as vehicle taxation, parking fees, fuel economy standards,  promotion of modal shift, etc.). They can be instrumental in evaluating how policies that target  structural factors8 can impact on passenger and freight travel demand reductions (see Sections 8.4  and 8.10). Unlike integrated models, sectoral studies do not attempt to measure transport emissions  reductions with respect to the amounts that other sectors could contribute in order to reach long term concentration goals.                                                                 Section 6.2.2 and Annex II.10 provide details on the WG III AR5 Scenario Database, which is the source of  more than 1,200 integrated scenarios.   This section builds upon scenarios which were collated by Chapter 6 in the WG III AR5 Scenario Database  (Annex II.10) and compares them to global scale transport studies. The scenarios were grouped into baseline  and mitigation scenarios. As described in more detail in Chapter 6.3.2, the scenarios are further categorized  into bins based on 2100 concentrations: between 430 480 ppm CO2eq, 480 530 ppm CO2eq, 530 580 ppm  CO2eq, 580 650 ppm CO2eq, 650 720 ppm CO2eq, and >720 ppm CO2eq by 2100. An assessment of geo physical climate uncertainties, consistent with the dynamics of Earth System Models assessed in WGI, found  that the most stringent of these scenarios, leading to 2100 concentrations between 430 and 480 ppm CO2eq,  would lead to an end of century median temperature change between 1.6 to 1.8°C compared to pre industrial  times, although uncertainties in understanding of the climate system mean that the possible temperature  range is much wider than this. They were found to maintain temperature change below 2°C over the course of  the century with a likely chance. Scenarios in the concentration category of 650 720 ppm CO2eq correspond to  comparatively modest mitigation efforts, and were found to lead to median temperature rise of approximately  2.6 2.9°C in 2100 (Chapter 6.3.2). The x axis of Figures 8.9 to 8.12 show specific sample numbers for each  category of scenario reviewed.   These include land use planning that favours high density or polycentric urban forms; public transport  oriented developments with mixed uses; and high quality city environments.  8 7 6   50 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.9.1 Long term stabilization goals   integrated and sectoral perspectives  A diversity of transformation pathways highlights the possible range of decarbonization options for  transport (Section 6.8). Results from both integrated and sectoral models up until 2050 closely  match each other. Projected GHG emissions vary greatly in the long term scenarios, reflecting a wide  range in assumptions explored such as future population, economic growth, policies, technology  development, and acceptance (Section 6.2.3). Without policy interventions, a continuation of  current travel demand trends could lead to a more than doubling of transport related CO2 emissions  by 2050 and more than a tripling by 2100 in the highest scenario projections (Figure 8.9). The  convergence of results between integrated and sectoral model studies suggests that through  substantial, sustained, and directed policy interventions, transport emissions can be consistent with  limiting long term concentrations to 430 530 ppm CO2eq.   The growth of global transport demand could pose a significant challenge to the achievement of  potential emission reduction goals. The average transport demand growth from integrated scenarios  with respect to 2010 levels suggests that total passenger and freight travel will continue to grow in  the coming decades up to 2050, with most of this growth taking place within developing country  regions where large shares of future population and income growth are expected (Figure 8.10) (UN  Secretariat, 2007).  Figure 8.9. Direct global transport CO2 emissions. All results for passenger and freight transport are indexed relative to 2010 values for each scenario from integrated models grouped by CO2eq concentration levels by 2100, and sectoral studies grouped by baseline and policy categories. Sources: Integrated models - WG III AR5 Scenario Database (Annex II.10). Sectoral models - IEA, 2012b; IEA, 2011b; IEA, 2008; WEC, 2011a; EIA, 2011; IEEJ, 2011. Note: All figures in Section 8.9 show the full range of results for both integrated and sectoral studies. Where the data is sourced from the WG III AR5 Scenario Database a line denotes the median scenario and a box and bolder colours highlight the inter-quartile range. The specific observations from sectoral studies are shown as dots (policy) and squares (baseline) with bars for the ranges. n equals number of scenarios assessed in each category. A positive income elasticity and the relative price inelastic nature of passenger travel partially  explain the strength of the relationship between travel and income (Dargay, 2007; Barla et al., 2009).  Both integrated and sectoral model projections for total travel demand show that while demand in  non OECD countries grows rapidly, a lower starting point results in a much lower per capita level of  passenger travel in 2050 than in OECD countries (Figure 8.10) (IEA, 2009; Fulton et al., 2013).  Consistent with a recent decline in growth of LDV use in some OECD countries (Goodwin and Van  Dender, 2013b), integrated and sectoral model studies have suggested that decoupling of passenger  transport from GDP could take place after 2035 (IEA, 2012; Girod et al., 2012). However, with both  transport demand and GDP tied to population growth, decoupling may not be fully completed. At    51 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    higher incomes, substitution to faster travel modes, such as fast rail and air travel, explains why total  passenger and freight travel continues to rise faster than per capita LDV travel (Schäfer et al., 2009b).  Figure 8.10. Global passenger (p-km/capita/yr) and freight (t-km/capita/yr) regional demand projections out to 2050 based on integrated models for various CO2eq concentration levels by 2100 with normalized values (2010=1; wtr = With Respect To) highlighting growth and controlling differences in base year values across models. Source: WG III AR5 Scenario Database (Annex II.10). Freight transport increases in all scenarios at a slower pace than passenger transport, but still rises  as much as threefold by 2050 in comparison to 2010 levels. Freight demand has historically been  closely coupled to GDP, but there is potential for future decoupling. Over the long term, changes in  activity growth rates (with respect to 2010) for 430 530 ppm CO2eq scenarios from integrated  models suggest that decoupling freight transport demand from GDP can take place earlier than for  passenger travel. Modest decreases in freight activity per dollar of GDP suggest that a degree of  relative decoupling between freight and income has been occurring across developed countries  including Finland (Tapio, 2005), the UK (McKinnon, 2007a) and Denmark (Kveiborg and Fosgerau,  2007). Two notable exceptions are Spain and South Korea, which are at relatively later stages of  economic development (Eom et al., 2012). Where decoupling has occurred, it is partly associated  with the migration of economic activity to other countries (Corbertt and Winebrake, 2008; Corbertt  and Winebrake, 2011). See Sections 3.9.5 and 5.4.1 for a broader discussion of leakage.  Opportunities for decoupling could result from a range of changes, including a return to more  localized sourcing (McKinnon, 2007b); a major shift in the pattern of consumption to services and  products of higher value; the digitization of media and entertainment; and an extensive application  of new transport reducing manufacturing technologies such as 3 D printing (Birtchnell et al., 2013).   Due to the increases in total transport demand, fuel consumption also increases over time, but with  GHG emissions at a lower level if policies toward decarbonization of fuels and reduced energy  intensity of vehicles are successfully implemented. The integrated scenarios suggest that energy  intensity reductions for both passenger and freight transport could continue to occur if the present  level of fuel economy standards are sustained over time, or could decrease further with more  stringent concentration goals (Figure 8.11).     52 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Figure 8.11. Normalized energy intensity scenarios (indexed relative to 2010 values) out to 2100 for passenger (left panel) and freight transport (centre panel), and for fuel carbon intensity based on scenarios from integrated models grouped by CO2eq concentration levels by 2100 (right panel). Source: WG III AR5 Scenario Database (Annex II.10). Note n equals number of scenarios assessed in each category. Projected reductions in energy intensity for freight transport scenarios (EJ/bn t km) in the scenarios  show a wider spread (large ranges in Figure 8.11 between the 75th and 25th percentiles) than for  passengers (Figure 8.11), but still tend to materialize over time. Aviation and road transport have  higher energy intensities than rail and waterborne transport (Figure 8.6). Therefore, they account for  a larger share of emissions than their share of meeting service demands (Girod et al., 2013).  However, limited data availability makes the assessment of changes in modal structure challenging  as not all integrated models provide information at a sufficiently disaggregated level or fully  represent structural and behavioural choices. Sectoral studies suggest that achieving significant  reductions in aviation emissions will require reductions in the rate of growth of travel activity  through demand management alongside technological advances (Bows et al., 2009).   In addition to energy intensity reductions, fuel carbon intensity can be reduced further in stringent  mitigation scenarios and play an important role in the medium term with the potential for continued  improvement throughout the century (Figure 8.11). Scenarios suggest that fuel switching does not  occur to a great extent until after 2020 2030 (Fig 8.12) after which it occurs sooner in more  stringent concentration scenarios. The mix of fuels and technologies is difficult to foresee in the long  term, especially for road transport, but liquid petroleum fuels tend to dominate at least up until  2050 even in the most stringent mitigation scenario. Within some sectoral studies, assumed  breakthroughs in biofuels, fuel cell vehicles, and electrification of road vehicles help achieve deep  reductions in emissions by 2050 (Kahn Ribeiro et al., 2012; Williams et al., 2012). Other studies are  less confident about fuel carbon intensity reductions, arguing that advanced biofuels, low carbon  electricity, and hydrogen will all require time to make substantial contributions to mitigation efforts.  They therefore attribute greater potential for emission reductions to structural and behavioural  changes (Salter et al., 2011).     53 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Figure 8.12. Global shares of final fuel energy in the transport sector in 2020, 2050, and 2100 based on integrated models grouped by CO2eq concentration levels by 2100 and compared with sectoral models (grouped by baseline and policies) in 2050 (Source: Integrated models - WG III AR5 Scenario Database (Annex II.10). Sectoral models - IEA, 2012; IEA, 2011b; IEA, 2008; WEC, 2011a; EIA, 2011 and IEEJ, 2011). Note: Interpretation is similar to that for Figs. 8.9 and 8.10, except that the boxes between the 75th and 25th percentiles for integrated model results have different colours to highlight the fuel type. Model assumptions for future technology cost, performance, regulatory environment, consumer  choice, and fuel prices result in different shares of fuels that could replace fossil fuels (Table 8.3;  Krey and Clarke, 2011). Availability of carbon dioxide capture and storage (CCS) is also likely to have  major impact on fuel choices (Luckow et al., 2010; Sathaye et al., 2011b). Uncertainty is evident by  the wide ranges in all the pathways considered, and are larger after 2050 (Bastani et al., 2012; Wang  et al., 2012; Pietzcker et al., 2013). In terms of direct emissions reductions, biofuels tend to have a  more important role in the period leading up to 2050. In general, integrated models have been  criticized as being optimistic on fuel substitution possibilities, specifically with respect to lifecycle  emission assumptions and hence the utilization of biofuels (8.3; Section 11.A.4; Creutzig et al., 2012;  Pietzcker et al., 2013). However, scenarios from integrated models are consistent with sectoral  scenarios with respect to fuel shares in 2050 (Figure 8.12). Within the integrated model scenarios,  deeper emissions reductions associated with lower CO2eq concentrations in 2100 are consistent  with increasing market penetration of low carbon electricity and hydrogen in the latter part of the  century. Uncertainties as to which fuel becomes dominant, as well as on the role of energy efficiency  improvements and fuel savings, are relevant to the stringent mitigation scenarios (van der Zwaan et  al., 2013). Indeed, many scenarios show no dominant transport fuel source in 2100, with the median  values for electricity and hydrogen sitting between a 22 25% share of final energy, even for  scenarios consistent with limiting concentrations to 430 530 ppm CO2eq in 2100 (Figure 8.12).   Both the integrated and sectoral model literature present energy efficiency measures as having the  greatest promise and playing the largest role for emission reductions in the short term (Skinner et al.,  2010; Harvey, 2012; IEA, 2009; McKinnon and Piecyk, 2009; Sorrell et al., 2012). Since models  typically assume limited cost reduction impacts, they include slow transitions for new transport  technologies to reach large cumulative market shares. For example, a range of both sectoral and  integrated studies note that it will take over 15 20 years for either BEVs or FCVs to become  competitive with ICE vehicles (Baptista et al., 2010; Eppstein et al., 2011; IEA, 2011c; Girod et al.,  2012; Girod et al., 2013; Bosetti and Longden, 2013; van der Zwaan et al., 2013). Since integrated  models do not contain a detailed representation of infrastructural changes, their results can be  interpreted as a conservative estimate of possible changes to vehicles, fuels, and modal choices  (Pietzcker et al., 2013).     54 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    The sectoral literature presents a more positive view of transformational opportunities than do the  integrated models (IEA, 2008, 2012b; DOE/EIA, 2010; Kahn Ribeiro and Figueroa, 2012). Sectoral  studies suggest that up to 20% of travel demand could be reduced by avoided journeys or shifts to  low carbon modes (McCollum and Yang, 2009; Harvey, 2012; IEA, 2012d; Kahn Ribeiro and Figueroa,  2012; Anable et al., 2012; Huo and Wang, 2012). They also estimate that urban form and  infrastructure changes can play decisive roles in mitigation, particularly in urban areas where 70% of  the world s population is projected to live in 2050 (8.4 and Chapter 12.4), although the estimated  magnitude varies between 5% and 30% (Ewing, 2007; Creutzig and He, 2009; Echenique et al., 2012).  Altogether, for urban transport, 20 50% reduction in GHG emissions is possible between 2010 and  2050 compared to baseline urban development (Ewing, 2007; Eliasson, 2008; Creutzig and He, 2009;  Lefevre, 2009; Woodcock et al., 2009; Ewing and Cervero, 2010; Marshall, 2011; Echenique et al.,  2012; Viguié and Hallegatte, 2012; Salon et al., 2012; Creutzig et al., 2012). Since the lead time for  infrastructure development is considerable (Short and Kopp, 2005), such changes can only be made  on decadal time scales. Conversely, some developing countries with fast growing economies have  shown that rapid transformative processes in spatial development and public transport  infrastructure are possible. Further advances may be gaining momentum with a number of  significant initiatives for reallocating public funding to sustainable and climate friendly transport  (Bongardt et al., 2011; Wittneben et al., 2009; ADB, 2012; Newman and Matan, 2013).  8.9.2 Sustainable development  Within all scenarios, the future contribution of emission reductions from developing countries  carries especially large uncertainties. The accelerated pace with which both urbanization and  motorization are proceeding in many non OECD countries emphasizes serious constraints and  potentially damaging developments. These include road and public transport systems that are in dire  condition; limited technical and financial resources; the absence of infrastructure governance; poor  legal frameworks; and rights to innovate that are needed to act effectively and improve capacity  competences (Kamal Chaoui and Plouin, 2012; Lefevre, 2012). The outcome is a widening gap  between the growth of detrimental impacts of motorization and effective action (Kane, 2010; Li,  2011; Vasconcellos, 2011). A highly complex and changing context with limited data and information  further compromise transport sustainability and mitigation in non OECD countries (Dimitriou, 2006;  Kane, 2010; Figueroa et al., 2013). The relative marginal socio economic costs and benefits of  various alternatives can be context sensitive with respect to sustainable development (Amekudzi,  2011). Developing the analytical and data capacity for multi objective evaluation and priority setting  is an important part of the process of cultivating sustainability and mitigation thinking and culture in  the long term.   Potentials for controlling emissions while improving accessibility and achieving functional mobility  levels in the urban areas of rapidly growing developing countries can be improved with attention to  the manner in which the mobility of the masses progresses in their transition from slower  (walking/cycling) to faster motorized modes (Kahn Ribeiro et al., 2012). A major shift towards the  use of mass public transport guided by sustainable transport principles, including the maintenance  of adequate services and safe infrastructure for non motorized transport, presents the greatest  mitigation potential (Bongardt et al., 2011; La Branche, 2011). Supporting non motorized travel can  often provide access and also support development more effectively, more equitably, and with  fewer adverse side effects, than if providing for motorized travel (Woodcock et al., 2007). Transport  can be an agent of sustained urban development that prioritizes goals for equity and emphasizes  accessibility, traffic safety, and time savings for the poor with minimal detriment to the environment  and human health, all while reducing emissions (Amekudzi et al., 2011; Li, 2011; Kane, 2010; Li,  2011). The choice among alternative mitigation measures in the transport sector can be supported  by growing evidence on a large number of co benefits, while some adverse side effects exist that  need to be addressed or minimized (see Section 8.7) (Figueroa and Kahn Ribeiro, 2013; Creutzig and  He, 2009; Creutzig et al., 2012; Zusman et al., 2012).     55 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Box 8.1.Transport and sustainable development in developing countries Passenger and freight mobility are projected to double in developing countries by 2050 (IEA, 2012e).  This increase will improve access to markets, jobs, education, healthcare and other services by  providing opportunities to reduce poverty and increase equity (Africa Union, 2009; Vasconcellos,  2011; United Nations Human Settlements Programme, 2012). Well designed and well managed  transport infrastructure can also be vital for supporting trade and competitiveness (United Nations  Human Settlements Programme, 2012).  Driven by urbanization, a rapid transition from slow non motorized transport modes to faster modes using 2  or 3  wheelers, LDVs, buses, and light rail is  expected to continue (Schäfer et al., 2009a; Kumar, 2011). In rural areas of Africa and South Asia, the  development of all season, high quality roads is becoming a high priority (Africa Union, 2009; Arndt  et al., 2012). In many megacities, slum area development in peri urban fringes confines the urban  poor to a choice between low paying jobs near home or long commuting times for marginally higher  wages (Burdett and Sudjic, 2010). The poor have limited options to change living locations and can  afford few motorized trips, so they predominantly walk, which disproportionally burdens women  and children (Anand and Tiwari, 2006; Pendakur, 2011). The urban poor in OECD cities have similar  issues (Glaeser, 2011). Reducing vulnerability to climate change requires integrating the mobility  needs of the poor into planning that can help realize economic and social development objectives  (Amekudzi et al., 2011; Bowen et al., 2012).   Total transport emissions from non OECD countries will likely surpass OECD emissions by 2050 due  to motorization, increasing population and higher travel demand (Figure 8.10). However, estimated  average personal travel per capita in non OECD countries at will remain below the average in OECD  countries. With countries facing limits to transport infrastructure investment (Arndt et al., 2012), the  rapid mobility trends represents a major challenge in terms of traffic congestion, energy demand,  and related GHG emissions (IEA, 2012a). Failure to manage the growth of motorized mobility in the  near term will inevitably lead to higher environmental cost and greater difficulty to control emissions  in the long term (Schäfer et al., 2009a; Pietzcker et al., 2013).   A high modal share of public transport use characterizes developing cities (Estache and GóMez Lobo,  2005) and this prevalence is expected to continue (Deng and Nelson, 2011; Cuenot et al., 2012).  However, deficient infrastructure and inadequate services leads to the overloading of para transit  vans, minibuses, jeeps and shared taxis and the use of informal transport services (Cervero and  Golub, 2011). By combining technologies, providing new social arrangements, and incorporating a  long term sustainability and climate perspective to investment decisions, these services can be  recast and maintained as mobility resources since they service the poor living in inaccessible areas at  affordable prices (Figueroa et al., 2013). A central strategy that can have multiple health, climate,  environmental, and social benefits is to invest in the integration of infrastructure systems that  connect safe routes for walking and cycling with local public transport, thus giving it priority over  infrastructure for LDVs that serve only a small share of the population (Woodcock et al., 2009b;  Tiwari and Jain, 2012b). Opportunities for strategic sustainable urban transport development  planning exist that can be critical to develop medium sized cities where population increases are  expected to be large (Wittneben et al., 2009b; ADB, 2012b; Grubler et al., 2012). Vision, leadership,  and a coherent programme for action, adaptation, and consolidation of key institutions that can  harness the energy and engagement of all stakeholders in a city will be needed to achieve these  goals (Dotson, 2011). Today, more than 150 cities worldwide have implemented bus rapid transit  (BRT) systems. Innovative features such as electric transit buses (Gong et al., 2012) and the  ambitious high speed rail expansion in China provide evidence of a fast process of planning and  policy implementation.      56 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    8.10 Sectoral policies  Aggressive policy intervention is needed to significantly reduce fuel carbon intensity and energy  intensity of modes, encourage travel by the most efficient modes, and cut activity growth where  possible and reasonable (see Sections 8.3 and 8.9). In this section, for each major transport mode,  policies and strategies are briefly discussed by policy type as regulatory or market based, or to a  lesser extent as informational, voluntary, or government provided.  A full evaluation of policies  across all sectors is presented in Chapters 14 and 15.  Policies to support sustainable transport can  simultaneously provide co benefits (Table 8.4) such as improving local transport services and  enhancing the quality of environment and urban living, while boosting both climate change  mitigation and energy security (ECMT, 2004; WBCSD, 2004, 2007; World Bank, 2006; Banister, 2008;  IEA, 2009; Bongardt et al., 2011; Ramani et al., 2011; Kahn Ribeiro et al., 2012). The type of policies,  their timing, and chance of successful implementation are context dependent (Santos et al., 2010).  Diverse attempts have been made by transport agencies in OECD countries to define and measure  policy performance (OECD, 2000; CST, 2002; Banister, 2008; Ramani et al., 2011). The mobility needs  in non OECD countries highlight the importance of placing their climate related transport policies in  the context of goals for broader sustainable urban development goals (see Section 8.9; Kahn Ribeiro  et al., 2007; Bongardt et al., 2011).   Generally speaking, market based instruments, such as fuel carbon taxes and carbon cap and trade,  are effective at incentivizing all mitigation options simultaneously (Flachsland et al., 2011). However,  vehicle and fuel suppliers as well as end users, tend to react weakly to fuel price signals especially  for passenger travel (Creutzig et al., 2011; Yeh and McCollum, 2011). Market policies are  economically more efficient at reducing emissions than fuel carbon intensity standards (Holland et  al., 2009; Sperling and Yeh, 2010; Chen and Khanna, 2012a; Holland, 2012). However, financial  instruments, such as carbon taxes, must be relatively large to achieve reductions equivalent to those  possible with regulatory instruments. As a result, to gain large emissions reductions a suite of policy  instruments will be needed (NRC, 2011c; Sperling and Nichols, 2012), including voluntary schemes,  which have been successful in some circumstances, such as for the Japanese airline industry  (Yamaguchi, 2010).   8.10.1 Road transport  A wide array of policies and strategies has been employed in different circumstances to restrain  private LDV use, promote mass transit modes, manage traffic congestion and promote new fuels in  order to reduce fossil fuel use, air pollution, and GHG emissions. These policies and strategies  overlap considerably, often synergistically.   The scale of urban growth and population redistribution from rural to urban areas in emerging and  developing countries is expected to continue (see Section 8.2 and Chapter 12.2). This implies a large  increase in demand for motorized transport especially in medium size cities (Grubler et al., 2012). In  regions and countries presently with low levels of LDV ownership, opportunities exist for local and  national governments to manage future rising road vehicle demand in ways that support economic  growth, provide broad social benefits (Wright and Fulton, 2005; IEA, 2009; Kato et al., 2005) and  keep GHG emissions in bounds. Local history and social culture can help shape the specific problem,  together with equity implications and policy aspirations that ultimately determine what will become  acceptable solutions (Vasconcellos, 2001; Dimitriou, 2006; Kane, 2010; Li, 2011; Verma et al., 2011).  Even if non OECD countries pursue strategies and policies that encourage LDV use for a variety of  economic, social, and environmental motivations, per capita LDV travel in 2050 could remain far  below OECD countries. However, in many OECD countries, passenger LDV travel demand per capita  appears to have begun to flatten, partly driven by increasing levels of saturation and polices to  manage increased road transport demand (8.2.1; Millard Ball and Schipper, 2011; Schipper, 2011;  Goodwin, 2012; IEA, 2012c; Meyer et al., 2012). Even if this trend of slowing LDV demand eventually    57 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    heads downwards, it is unlikely to offset projected growth in total LDV emissions because, in the rest  of the world, populations and economies are likely to continue to grow along with LDV ownership.   Only with very aggressive policies in both OECD and non OECD countries would total global LDV use  stabilize in 2050. This is illustrated in a 2oC LDV transport scenario generated by Fulton et al. (2013),  using mainly IEA (2012c) data. In that policy scenario, LDV travel in OECD countries reaches a peak of  around 7500 vehicle km/capita in 2035 then drops by about 20% by 2050. By comparison, per capita  LDV travel in non OECD countries roughly quadruples from an average of around 500 vehicle  km/capita in 2012 to about 2000 vehicle km/capita in 2050, remaining well below the OECD average.   Many countries have significant motor fuel taxes that, typically, have changed little in recent years.  This indicates that such an economy wide market instrument is not a policy tool being used  predominantly to reduce GHG emissions. The typical approach increasingly being used is a suite of  regulatory and other complementary policies with separate instruments for vehicles and for fuels.  The challenge is to make them consistent and coherent. For instance, the fuel efficiency and GHG  emission standards for vehicles in Europe and the United States give multiple credits to plug in  electric vehicles (PEVs) and fuel cell vehicles (FCVs). Zero upstream emissions are assigned, although  this is technically incorrect but designed to be an implicit subsidy (Lutsey and Sperling, 2012).    Fuel choice and carbon intensity9. Flexible fuel standards that combine regulatory and market  features include the Californian low carbon fuel standard (LCFS) (Sperling and Nichols, 2012) and the  European Union fuel quality directive (FQD). Fuel carbon intensity reduction targets for 2020 (10%  for California and 6% for EU) are expected to be met by increasing use of low carbon biofuels,  hydrogen, and electricity. They are the first major policies in the world premised on the  measurement of lifecycle GHG intensities (Yeh and Sperling, 2010; Creutzig et al., 2011), although  implementation of lifecycle analyses can be challenging and sometimes misleading since it is difficult  to design implementable rules that fully include upstream emissions (Lutsey and Sperling, 2012);  emissions resulting from induced market effects; and emissions associated with infrastructure, the  manufacturing of vehicles, and the processing and distribution of fuels (LCA Annex II; Kendall and  Price, 2012).  Biofuel policies have become increasingly controversial as more scrutiny is applied to the  environmental and social equity impacts (Chapter 11.13). In 2007, the European Union and the  United States adopted aggressive biofuel policies (Yeh and Sperling, 2013). The effectiveness of  these policies remains uncertain, but follow up policies such as California s LCFS and EU s FQD  provide broader, more durable policy frameworks that harness market forces (allowing trading of  credits), and provide flexibility to industry in determining how best to reduce fuel carbon intensity.  Other related biofuel policies include subsidies (IEA, 2011d) and mandatory targets (REN21, 2012).   Vehicle energy intensity. The element of transport that shows the greatest promise of being on a  trajectory to achieve large reductions in GHG emissions by 2050 is reducing the energy and fuel  carbon intensities of LDVs. Policies are being put in place to achieve dramatic improvements in  vehicle efficiency, stimulating automotive companies to make major investments. Many countries  have now adopted aggressive targets and standards (Figure 8.13), with some standards criticized for  not representing real world conditions (Mock et al., 2012). Most are developed countries, but some  emerging economies, including China and India, are also adopting increasingly aggressive standards  (Wang et al., 2010).                                                               9  The following four sub sections group policies along the lines of the decomposition as outlined in 8.1 and  Figure 8.2    58 of 115   Final Draft  Chapter 8  IPCC WGIII AR5      Figure 8.13. Historic emissions and future (projected and mandated) carbon dioxide emissions targets for LDVs in selected countries and European Union, normalized by using the same New European Driving Cycle (NDEC) that claims to represent real-world driving conditions. Source: (ICCT, 2007, 2013) Notes: [1] China s target reflects gasoline LDVs only and may become higher if new energy vehicles are considered. [2] Gasoline in Brazil contains 22% ethanol but data here are converted to 100% gasoline equivalent. Regulatory standards focused on fuel consumption and GHG emissions vary in their design and  stringency. Some strongly stimulate reductions in vehicle size (as in Europe) and others provide  strong incentives to reduce vehicle weight (as in the United States) (CCC, 2011). All have different  reduction targets. As of April 2010, 17 European countries had implemented taxes on LDVs wholly or  partially related to CO2 emissions. Regulatory standards require strong market instruments and align  market signals with regulations as they become tighter over time. Examples are fuel and vehicle  purchase taxes and circulation taxes that can limit rebound effects. Several European countries have  established revenue neutral feebate schemes (a combination of rebates awarded to purchasers of  low carbon emission vehicles and fees charged to purchasers of less efficient vehicles) (Greene and  Plotkin, 2011). Annual registration fees can have similar effects if linked directly with carbon  emissions or with related vehicle attributes such as engine displacement, engine power, or vehicle  weight (CARB, 2012). One concern with market based policies is their differential impact across  population groups such as farmers needing robust vehicles to traverse rugged terrain and poor  quality roads. Equity adjustments can be made so that farmers and large families are not penalized  for having to buy a large car or van (Greene and Plotkin, 2011).    Standards are likely to spur major changes in vehicle technology, but in isolation are unlikely to  motivate significant shifts away from petroleum fuelled ICE vehicles. In the United States, a strong  tightening of standards through to 2025 is estimated to trigger only a 1% market share for PEVs if  only economics is considered (EPA, 2011).  A more explicit regulatory instrument to promote EVs and other new, potentially very low carbon  propulsion technologies is a zero emission vehicle mandate, as originally adopted by California in  1990 to improve local air quality, and which now covers almost 30% of the United States market.    59 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    This policy, now premised on reducing GHGs, requires about 15% of new vehicles in 2025 to be a mix  of PEVs and FCVs (CARB, 2012).   There are large potential efficiency improvements possible for medium and heavy duty vehicles  (HDVs) (see Section 8.3.1.2), but policies to pursue these opportunities have lagged those for LDVs.  Truck types, loads, applications, and driving cycles are much more varied than for LDVs and engines  are matched with very different designs and loads, thereby complicating policy making. However,  China implemented fuel consumption limits for HDVs in July 2012 (MIIT, 2011); in 2005 Japan set  modest fuel efficiency standards to be met by 2015 (Atabani et al., 2011); California, in 2011,  required compulsory retrofits to reduce aerodynamic drag and rolling resistance (Atabani et al.,  2011); the United States adopted standards for new HDVs and buses manufactured from 2014 to  2018 (Greene and Plotkin, 2011); and the EU intends to pursue similar actions including performance  standards and fuel efficiency labelling by 2014 (Kojima and Ryan, 2010). Aggressive air pollution  standards since the 1990s for NOx and particulate matter emissions from HDVs in many OECD  countries have resulted in a fuel consumption penalty in the past of 7% to 10% (IEA, 2009;  Tourlonias and Koltsakis, 2011). However, emission technology improvements and reductions in  black carbon emissions, which strongly impact climate change (see Section 8.2.2.1), will offset some  of the negative effect of this increased fuel consumption.   Activity reduction. A vast and diverse mix of policies is used to restrain and reduce the use of LDVs,  primarily by focusing on land use patterns, public transport options, and pricing. Other policy  strategies to reduce activity include improving traffic management (Barth and Boriboonsomsin,  2008), better truck routing systems (Suzuki, 2011), and smart real time information to reduce time  searching for a parking space. Greater support for innovative services using information and  communication technologies, such as dynamic ride sharing and demand responsive para transit  services (see Section 8.4), creates still further opportunities to shift toward more energy efficient  modes of travel.  Policies can be effective at reducing dependence on LDVs as shown by comparing Shanghai with  Beijing, which has three times as many LDVs even though the two cities have similar levels of  affluence, the same culture, and are of a similar population (Hao et al., 2011). Shanghai limited the  ownership of LDVs by establishing an expensive license auction, built fewer new roads, and invested  more in public transport, whereas Beijing built an extensive network of high capacity expressways  and did little to restrain car ownership or use until recently. The Beijing city administration has  curtailed vehicle use by forbidding cars to be used one day per week since 2008, and sharply limited  the number of new license plates issued each year since 2011 (Santos et al., 2010) Hao et al., 2011).  The main aims to reduce air pollution, traffic congestion, and costs of road infrastructure exemplify  how policies to reduce vehicle use are generally, but not always, premised on non GHG co benefits.  European cities have long pursued demand reduction strategies, with extensive public transport  supply, strict growth controls, and more recent innovations such as bicycle sharing. California seeks  to create more liveable communities by adopting incentives, policies, and rules to reduce vehicle use,  land use sprawl, and GHG emissions from passenger travel. The California law calls for 6 8%  reduction in GHG emissions from passenger travel per capita (excluding changes in fuel carbon  intensity and vehicle energy intensity) in major cities by 2020, and 13 16% per capita by 2035  (Sperling and Nichols, 2012).   The overall effectiveness of initiatives to reduce or restrain road vehicle use varies dramatically  depending on local commitment and local circumstances, and the ability to adopt synergistic policies  and practices by combining pricing, land use management, and public transport measures. A broad  mix of policies successfully used to reduce vehicle use in OECD countries, and to restrain growth in  emerging economies, includes pricing to internalize energy, environmental, and health costs;  strengthening land use management; and providing more and better public transport. Policies to  reduce LDV activity can be national, but mostly they are local, with the details varying from one local  administration to another.     60 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Some policies are intrinsically more effective than others. For instance, fuel taxes will reduce travel  demand but drivers are known to be relatively inelastic in their response (Hughes et al., 2006; Small  and van Dender, 2007). However, drivers are more elastic when price increases are planned and  certain (Sterner, 2007). Pricing instruments such as congestion charges, vehicle registration fees,  road tolls and parking management can reduce LDV travel by inducing trip chaining, modal shifts,  and reduced use of cars (Litman, 2006). Policies and practices of cities in developing countries can be  influenced by lending practices of development banks, such as the Rio+20 commitment to spend  approximately  170 billion USD2010 on more sustainable transport projects, with a focus on Asia (ADB,  2012c).    System efficiency. Improvements have been far greater in freight transport and aviation than for  surface passenger transport (rail and road). Freight transport has seen considerable innovation in  containerization and intermodal connections, as has aviation, though the effects on GHG emissions  are uncertain (and could be negative because of just in time inventory management practices). For  surface passenger travel, efforts to improve system efficiency and inter modality are hindered by  conflicting and overlapping jurisdictions of many public and private sector entities and tensions  between fiscal, safety, and equity goals.  Greater investment in roads than in public transport  occurred in most cities of developed countries through the second half of the 20th century (Owens,  1995; Goodwin, 1999). The 21st century, though, has seen increasing government investment in bus  rapid transit and rail transit in OECD countries (Yan and Crookes, 2010; Tenny, 2010) along with  increasing support for bicycle use.   Since the 1960s, many cities have instigated supportive policies and infrastructure that have resulted  in a stable growth in cycling (Servaas, 2000; Hook, 2003; TFL, 2007; NYC, 2012). Several European  cities have had high cycle transport shares for many years, but now even in London, UK, with  efficient public transport systems, the 2% cycle share of travel modes is targeted to increase to 5% of  journeys in 2026 as a result of a range of new policies (TFL, 2010). However, in less developed cities  such as Surabaya, Indonesia, 10% of total trips between 1 3 km are already by cycling (including  rickshaws) in spite of unsupportive infrastructure and without policies since there are few affordable  alternatives (Hook, 2003). Where cycle lanes have been improved, as in Delhi, greater uptake of  cycling is evident (Tiwari and Jain, 2012b).  8.10.2 Rail transport  Rail transport serves 28 billion passengers globally, carrying them around 2500 billion p km/yr10. Rail  also carries 11.4 billion tonne of freight (8845 billion t km/yr) (Johansson et al., 2012). Policies to  further improve system efficiency may improve competitiveness and opportunities for modal shift to  rail (Johansson et al., 2012). Specific energy and carbon intensities of rail transport are relatively  small compared to some other modes (see Section 8.3). System efficiency can also be assisted  through train driver education and training policies (Camagni et al., 2002).  Fuel intensity. Roughly one third of all rail transport is driven by diesel and two thirds by electricity  (Johansson et al., 2012). Policies to reduce fuel carbon intensity are therefore linked to a large  extent to those for decarbonizing electricity production (Chapter 7; DLR, 2012). For example,  Sweden and Switzerland are running their rail systems using very low carbon electricity (Gössling,  2011).  Energy intensity. Driven largely by corporate strategies, the energy intensity of rail transport has  been reduced by more than 60% between 1980 and 2001 in the United States (Sagevik, 2006).  Overall reduction opportunities of 45 50% are possible for passenger transport in the EU and 40 50% for freight (Andersson et al., 2011b). Recent national policies in the United Kingdom and                                                               10  By way of comparison, aviation moves 2.1 billion passengers globally (some 3900 billion p km/yr).    61 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Germany appear to have resulted in 73% rail freight growth over the period 1995 2007, partly  shifted from road freight.  System efficiency. China, Europe, Japan, Russia, United States and several Middle eastern and  Northern African countries continue (or are planning) to invest in high speed rail (HSR) (CRC, 2008).  It is envisaged that the worldwide track length of about 15,000 km in 2012 will nearly triple by 2025  due to government supporting policies, allowing HSR to better compete with medium haul aviation  (UIC, 2012).   8.10.3 Waterborne transport   Although waterborne transport is comparatively efficient in terms of gCO2/t km compared to other  freight transport modes (see Section 8.6), the International Maritime Organization (IMO) has  adopted mandatory measures to reduce GHG emissions from international shipping (IMO, 2011).  This is the first mandatory GHG reduction regime for an international industry sector and for the  standard to be adopted by all countries is a model for future international climate change co operation for other sectors (Yamaguchi, 2012). Public policies on emissions from inland waterways  are nationally or regionally based and currently focus more on the reduction of NOx and particulate  matter than on CO2. However, policy measures are being considered to reduce the carbon intensity  of this mode including incentives to promote  smart steaming , upgrade to new, larger vessels, and  switch to alternative fuels, mainly LNG (Panteia, 2013). Few if any, policies support the use of  biofuels, natural gas or hydrogen for small waterborne craft around coasts or inland waterways and  little effort has been made to assess the financial implications of market (and other) policies on  developing countries who tend to import and export low value to weight products, such as food and  extractible resources (Faber et al., 2010).  Energy intensity. IMO s Energy Efficiency Design Index (EEDI) is to be phased in between 2013 and  2025. It aims to improve the energy efficiency of certain categories of new ships and sets technical  standards (IMO, 2011). However, the EEDI may not meet the target if shipping demand increases  faster than fuel carbon and energy intensities improve. The voluntary Ship Energy Efficiency  Management Plan (SEEMP) was implemented in 2013 (IMO, 2011). For different ship types and sizes  it provides a minimum energy efficiency level. As much as 70% reduction of emissions from new  ships is anticipated with the aim to achieve approximately 25 30% reductions overall by 2030  compared with business as usual (IISD, 2011). It is estimated that, in combination, EEDI  requirements and SEEMP will cut CO2 emissions from shipping by 13% by 2020 and 23% by 2030  compared to a  no policy  baseline (Lloyds Register and DNV, 2011).     8.10.4 Aviation  After the Kyoto Protocol directed parties in Annex I to pursue international aviation GHG emission  limitation/reduction working through the International Civil Aviation Organization (ICAO) (Petersen,  2008), member states  are working together with the industry towards voluntarily improving  technologies, increasing the efficient use of airport infrastructure and aircraft, and adopting  appropriate economic measures (ICAO, 2007b; ICAO, 2010a). In 2010, ICAO adopted global  aspirational goals for the international aviation sector to improve fuel efficiency by an average of 2%  per annum until 2050 and to keep its global net carbon emissions from 2020 at the same level (ICAO,  2010b;Committee on Climate Change, 2009). These goals exceed the assumptions made in many  scenarios (Mayor and Tol, 2010).  Policy options in place or under consideration include regulatory instruments (fuel efficiency and  emission standards at aircraft or system levels); market based approaches (emission trading under  caps, fuel taxes, emission taxes, subsidies for fuel efficient technologies); and voluntary measures  including emission offsets (Daley & Preston, 2009). Environmental capacity constraints on airports  also exist and may change both overall volumes of air transport  and modal choice (Upham et al.,  2004; Evans, 2010). National policies affect mainly domestic aviation, which covers about 30 35% of    62 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    total air transport (IATA, 2009; Lee et al., 2009; Wood et al., 2010). A nationwide cap and trade  policy could have the unintended consequence of slowing aircraft fleet turnover and, through  diverted revenue, of delaying technological upgrades, which would slow GHG reductions, though to  what degree is uncertain (Winchester et al., 2013). In the UK, an industry group including airport  companies, aircraft manufacturers and airlines has developed a strategy for reducing GHG emissions  across the industry (Sustainable Aviation, 2012).  The inclusion of air transport in the EU emission trading scheme (ETS) is the only binding policy to  attempt to mitigate emissions in this sector (Anger, 2010; Petersen, 2008). (Preston et al., 2012)  estimated that the EU is currently responsible for 35% of global aviation emissions. The applicability  of ETS policy to non European routes (for flights to and from destinations outside the EU) (Malina et  al., 2012) has been delayed for one year, but the directive continues to apply to flights between  destinations in the EU following a proposal by the European Commission in November 2012 in  anticipation of new ICAO initiatives towards a global market based mechanism for all aviation  emissions (ICAO, 2012).   Taxing fuels, tickets, or emissions may reduce air transport volume with elasticities varying between  0.3 to  1.1 at national and international levels, but with strong regional differences (Europe has 40%  stronger elasticities than most other world regions, possibly because of more railway options).  Airport congestion adds considerable emissions (Simaiakis and Balakrishnan, 2010) and also tends to  moderate air transport demand growth to give a net reduction of emissions at network level (Evans  and Schäfer, 2011).   Fuel carbon intensity. Policies do not yet exist to introduce low carbon biofuels. However, the  projected GHG emission reductions from the possible future use of biofuels, as assumed by the  aviation industry, vary between 19% of its adopted total emission reduction goal (Sustainable  Aviation, 2008) to over 50% (IATA, 2009a), depending on the assumptions made for the other  reduction options that include energy efficiency, improved operation and trading emission permits.  Sustainable production issues also apply (see Section 8.3.3).   Energy intensity. The energy efficiency of aircraft has improved historically without any policies in  force, but with the rate of fuel consumption reducing over time from an initial 3 6% in the 1950s to  between 1% and 2% per year at the beginning of the 21st century (Bows et al., 2006; Fulton and  Eads, 2004; Peeters et al., 2009; Peeters and Middel, 2007; Pulles et al., 2002). This slower rate of  fuel reduction is possibly due to increasing lead times required to develop, certify, and introduce  new technology (Kivits et al., 2010).   System efficiency. The interconnectedness of aviation services can be a complicating factor in  adopting policies, but also lends itself to global agreements. For example, regional and national air  traffic controllers have the ability to influence operational efficiencies. The use of market policies to  reduce GHG emissions is compelling because it introduces a price signal that influences mitigation  actions across the entire system. But like other aspects of the passenger transport system, a large  price signal is needed with aviation fuels to gain significant reductions in energy use and emissions  (Tol, 2007, Dubois et al., 2008; Peeters and Dubois, 2010a, OECD & UNEP, 2011). Complementary  policies to induce system efficiencies include measures to divert tourists to more efficient modes  such as high speed rail. However, since short  and medium haul aircraft now have similar energy  efficiencies per passenger km compared to LDVs (Figure 8.6), encouraging people to take shorter  journeys (hence by road instead of by air), thereby reducing tourism total travel, has become more  important (Peeters & Dubois, 2010b). No country has adopted a low carbon tourism strategy (OECD  and UNEP, 2011).   8.10.5 Infrastructure and urban planning   Urban form has a direct effect on transport activity (see Chapter 12.4). As a consequence,  infrastructure policies and urban planning can provide major contributions to mitigation (see    63 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Chapter 12.5). A modal shift from LDVs to other surface transport modes could be partly incentivized  by policy measures that impose physical restrictions as well as pricing regimes. For example, LDV  parking management is a simple form of cost effective, pricing instrument (Barter et al., 2003;  Litman, 2006). Dedicated bus lanes, possibly in combination with a vehicle access charge for LDVs,  can be strong instruments to achieving rapid shifts to public transport (Creutzig and He, 2009).  Policies that support the integration of moderate to high density urban property development with  transit oriented development strategies that mix residential, employment, and shopping facilities  can encourage pedestrians and cyclists, thereby giving the dual benefits of reducing car dependence  and preventing urban sprawl (Newman and Kenworthy, 1996; Cervero, 2004; Olaru et al., 2011).  GHG emissions savings (Trubka et al., 2010a; Trubka et al., 2010b)  could result in co benefits of  health, productivity, and social opportunity (Trubka et al., 2010c; Ewing and Cervero, 2010; Höjer et  al., 2011) if LDV trips could be reduced using polycentric city design and comprehensive smart growth policies (Dierkers et al., 2008). Policies to support the building of more roads, airports, and  other infrastructure can help relieve congestion in the short term, but can also induce travel demand  (Duranton and Turner, 2011) and create GHG emissions from construction (Chester and Horvath,  2009).   8.11 Gaps in knowledge and data   The following gaps made assessing the mitigation potential of the transport sector challenging.   Gaps in the basic statistics are still evident on the costs and energy consumption of freight  transport, especially in developing countries.   Data and understanding relating to freight logistical systems and their economic implications are  poor, as are the future effects on world trade of decarbonization and climate change impacts.  Hence, it is difficult to design new low carbon freight policies.   Future technological developments and costs of batteries, fuel cells, and vehicle designs are  uncertain.   The infrastructure requirement for new low carbon transport fuels is poorly understood.   Cost of components for novel vehicle powertrains cannot be determined robustly since rates of  learning, cost decreases, and associated impacts are unknown.  Assessments of mitigating transport GHG emissions, the global potential, and costs involved are  inconsistent.   Prices of crude oil products fluctuate widely as do those for alternative transport fuels, leading  to large variations in scenario modelling assumptions.   A better knowledge of consumer travel behaviour is needed, particularly for aviation.   Limited understanding exists of how and when people will choose to buy and use new types of  low carbon vehicles or mobility services (such as demand responsive transit or car share).   There are few insights of behavioural economics to predict mobility systematically and whether  producers will incorporate low carbon technologies that may not maximize profit.   How travellers will respond to combinations of low carbon strategies (mixes of land use, transit,  vehicle options) is especially important for fast growing, developing countries where alternative  modes to the car centric development path could be deployed, is unknown.   Understanding how low carbon transport and energy technologies will evolve (via experience  curves and innovation processes) is not well developed. Most vehicles rely on stored energy, so  there is a need to better understand the cost and energy density of non hydrocarbon energy  storage mediums, such as batteries, super capacitors and pressure vessels.  Decoupling of transport GHG from economic growth needs further elaboration, especially the  policy frameworks that can enable this decoupling to accelerate in both OECD and non OECD  nations.     64 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    The rate of social acceptance of innovative concepts such as LDV road convoys, induction  charging of electric vehicles, and driverless cars (all currently being demonstrated) is difficult to  predict, as is the required level of related infrastructure investments. Recent rapid  developments in metro systems in several cities illustrate how quickly new transport systems  can be implemented when the demand, policies, and investments all come together and public  support is strong.  8.12 Frequently asked questions  FAQ 8.1: How much does the transport sector contribute to GHG emissions and how is this  changing?  The transport sector is a key enabler of economic activity and social connectivity. It supports  national and international trade and a large global industry has evolved around it. Its greenhouse gas  (GHG) emissions are driven by the ever increasing demand for mobility and movement of goods.  Together, the road, aviation, waterborne, and rail transport sub sectors currently produce almost  one quarter of total global energy related CO2 emissions [8.1]. Emissions have more than doubled  since 1970 to reach 7.0 Gt CO2eq by 2010 with about 80% of this increase coming from road vehicles.  Black carbon and other aerosols, also emitted during combustion of diesel and marine oil fuels, are  relatively short lived radiative forcers compared with carbon dioxide and their reduction is emerging  as a key strategy for mitigation [8.2].  Demands for transport of people and goods are expected to continue to increase over the next few  decades [8.9]. This will be exacerbated by strong growth of passenger air travel worldwide due to  improved affordability; by the projected demand for mobility access in non OECD countries that are  starting from a very low base; and by projected increases in freight movements. A steady increase of  income per capita in developing and emerging economies has already led to a recent rapid growth in  ownership and use of 2 wheelers, 3 wheelers and light duty vehicles (LDVs), together with the  development of new transport infrastructure including roads, rail, airports, and ports.    Reducing transport emissions will be a daunting task given the inevitable increases in demand.   Based on continuing current rates of growth for passengers and freight, and if no mitigation options  are implemented to overcome the barriers [8.8], the current transport sector s GHG emissions could  increase by up to 50% by 2035 at continued current rates of growth and almost double by 2050 [8.9].  An increase of transport s share of global energy related CO2 emissions would likely result. However,  in spite of lack of progress in many countries to date, new vehicle and fuel technologies, appropriate  infrastructure developments including for non motorized transport in cities, transport policies, and  behavioural changes could begin the transition required [8.3, 8.4, 8.9].  FAQ  8.2:  What  are  the  main  mitigation  options  and  potentials  for  reducing  GHG  emissions?  Decoupling transport from GDP growth is possible but will require the development and deployment  of appropriate measures, advanced technologies, and improved infrastructure. The cost effectiveness of these opportunities may vary by region and over time [8.6]. Delivering mitigation  actions in the short term will avoid future lock in effects resulting from the slow turnover of stock  (particularly aircraft, trains, and ships) and the long life and sunk costs of infrastructure already in  place [8.2, 8.4].    When developing low carbon transport systems, behavioural change and infrastructure investments  are often as important as developing more efficient vehicle technologies and using lower carbon  fuels [8.1, 8.3].     65 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Avoidance: Reducing transport activity can be achieved by avoiding unnecessary journeys, (for  example by tele commuting and internet shopping), and by shortening travel distances such as  through the densification and mixed zoning of cities.   Modal choice: Shifting transport options to more efficient modes is possible, (such as from  private cars to public transport, walking, and cycling), and can be encouraged by urban planning  and the development of a safe and efficient infrastructure.   Energy intensity:  Improving the performance efficiency of aircraft, trains, boats, road vehicles,  and engines by manufacturers continues while optimizing operations and logistics (especially for  freight movements) can also result in lower fuel demand.  Fuel carbon intensity:  Switching to lower carbon fuels and energy carriers is technically feasible,  such as by using sustainably produced biofuels or electricity and hydrogen when produced using  renewable energy or other low carbon technologies.   These four categories of transport mitigation options tend to be interactive, and emission reductions  are not always cumulative. For example, an eco driven, hybrid LDV, with four occupants, and fuelled  by a low carbon biofuel would have relatively low emissions per passenger kilometre compared with  one driver travelling in a conventional gasoline LDV. But if the LDV became redundant through  modal shift to public and non motorized transport, the overall emission reductions could only be  counted once.   Most mitigation options apply to both freight and passenger transport, and many are available for  wide deployment in the short term for land, air, and waterborne transport modes, though not  equally and at variable costs [8.6]. Bus rapid transit, rail, and waterborne modes tend to be relatively  carbon efficient per passenger or tonne kilometre compared with LDV, HDV, or aviation, but, as for  all modes, this varies with the vehicle occupancy rates and load factors involved. Modal shift of  freight from short  and medium haul aircraft and road trucks to high speed rail and coastal shipping  often offers large mitigation potential [Table. 8.3]. In addition, opportunities exist to reduce the  indirect GHG emissions arising during the construction of infrastructure; manufacture of vehicles;  and extraction, processing, and delivery of fuels.  The potentials for various mitigation options vary from region to region, being influenced by the  stage of economic development, status and age of existing vehicle fleet and infrastructure, and the  fuels available in the region. In OECD countries, transport demand reduction may involve changes in  lifestyle and the use of new information and communication technologies. In developing and  emerging economies, slowing the rate of growth of using conventional transport modes with  relatively high carbon emissions for passenger and freight transport by providing affordable, low carbon options could play an important role in achieving global mitigation targets. Potential GHG  emissions reductions from efficiency improvements on new vehicle designs in 2030 compared with  today range from 40 70% for LDVs, 30 50% for HDVs, up to 50% for aircraft, and for new ships when  combining technology and operational measures, up to 60% [Table 8.3].    Policy options to encourage the uptake of such mitigation options include implementing fiscal  incentives such as fuel and vehicle taxes, developing standards on vehicle efficiency and emissions,  integrating urban and transport planning, and supporting measures for infrastructure investments to  encourage modal shift to public transport, walking, and cycling [8.10]. Pricing strategies can reduce  travel demands by individuals and businesses, although successful transition of the sector may also  require strong education policies that help to create behavioural change and social acceptance. Fuel  and vehicle advances in the short to medium term will largely be driven through research  investment by the present energy and manufacturing industries that are endeavouring to meet  existing policies as well as to increase their market shares. However, in order to improve upon this  business as usual scenario and significantly reduce GHG emissions across the sector in spite of the  rapidly growing demand, more stringent policies will be needed.  To achieve an overall transition of    66 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    the sector will require rapid deployment of new and advanced technology developments,  construction of new infrastructure, and the stimulation of acceptable behavioural changes.   FAQ 8.3: Are there any co benefits associated with mitigation actions?  Climate change mitigation strategies in the transport sector can result in many co benefits [8.7].  However, realizing these benefits through implementing those strategies depends on the regional  context in terms of their economic, social, and political feasibility as well as having access to  appropriate and cost effective advanced technologies. In developing countries where most future  urban growth will occur, increasing the uptake, comfort, and safety of mass transit and non motorized transport modes can help improve mobility. In least developing countries, this may also  improve access to markets and therefore assist in fostering economic and social development. The  opportunities to shape urban infrastructure and transport systems to gain greater sustainability in  the short  to medium terms are also likely to be higher in developing and emerging economies than  in OECD countries where transport systems are largely locked in [8.4].   A reduction in LDV travel and ownership has been observed in several cities in OECD countries, but  demand for motorized road transport, including 2  and 3 wheelers, continues to grow in non OECD  nations where increasing local air pollution often results. Well designed policy packages can help  lever the opportunities for exploiting welfare, safety, and health co benefits [8.10]. Transport  strategies associated with broader policies and programmes can usually target several policy  objectives simultaneously. The resulting benefits can include lower travel costs, improved mobility,  better community health through reduced local air pollution and physical activities resulting from  non motorized transport, greater energy security, improved safety, and time savings through  reduction in traffic congestion.   A number of studies suggest that the direct and indirect benefits of sustainable transport measures  often exceed the costs of their implementation [8.6, 8.9]. However, the quantification of co benefits  and the associated welfare effects still need accurate measurement. In all regions, many barriers to  mitigation options exist [8.8], but a wide range of opportunities are available to overcome them and  give deep carbon reductions at low marginal costs in the medium  to long term [8.3, 8.4, 8.6, 8.9].  Decarbonizing the transport sector will be challenging for many countries, but by developing well designed policies that incorporate a mix of infrastructural design and modification, technological  advances, and behavioural measures, co benefits can result and lead to a cost effective strategy.        67 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    References  Acharya S., and S. Morichi (2007). Motorization and Role of Mass Rapid Transit in East Asian  Megacities, IATSS Research 31 6 16 pp. .  ADB (2010). Sustainable Transport Initiative: Operational Plan. Asian Development Bank, Philippines,  36 pp.  ADB (2011a). Guidelines for Climate Proofing Investment in the Transport Sector: Road Infrastructure  Projects. Asian Development Bank, Mandaluyong City, Philippines. 69 pp.  ADB (2011b). Parking Policy in Asian Cities. Asian Development Bank, Mandaluyong City, Philippines,  112 pp., (ISBN: 978 92 9092 352 7). .  ADB (2012a). Toward Green Urbanization in Asia and the Pacific. Asian Development Bank,  Mandaluyong City, Philippines.  ADB (2012b). Sustainable Transport Initiative. Asian Development Bank, Manila. 36 pp.  ADB (2012c). Billions to Benefit from Rio+20 Transport Commitment, Asian Development Bank .  Available at: http://www.adb.org/news/billions benefit rio20 transport commitment.  ADEME (2007). Emission Factors Guide: Emission Factors Calculation and Bibliographical Sources  Used. ADEME, Angers, France. 249 pp.  AEA (2007). Low Carbon Commercial Shipping. AEA Technology, Didcot, UK. 60 pp.  AEA (2011). Reduction and Testing of Greenhouse Gas (GHG) Emissions from Heavy Duty Vehicles    Lot 1: Strategy. European Commission   DG Climate Action. . Available at:  http://ec.europa.eu/clima/policies/transport/vehicles/docs/ec_hdv_ghg_strategy_en.pdf.  Africa Union (2009). Transport and the Millennium Development Goals in Africa. UN Economic  Commission for Africa.  Akerman J. (2011). The role of high speed rail in mitigating climate change   The Swedish case  Europabanan from a life cycle perspective, Transportation Research Part D: Transport and  Environment 16 208 217 pp. (DOI: 10.1016/j.trd.2010.12.004), (ISSN: 1361 9209).  Alvarez R.A., S.W. Pacala, J.J. Winebrake, W.L. Chameides, and S.P. Hamburg (2012). Greater focus  needed on methane leakage from natural gas infrastructure, Proceedings of the National Academy  of Sciences 1 6 pp. (DOI: 10.1073/pnas.1202407109).  Amekudzi A. (2011). Placing carbon reduction in the context of sustainable development priorities: a  global perspective, Carbon Management 2 413 423 pp. (DOI: 10.4155/cmt.11.43), (ISSN: 1758 3004).  Amekudzi A.A., A. Ramaswami, E. Chan, K. Lam, W. Hon Meng, and D. Zhu (2011). Contextualizing  carbon reduction initiatives: how should carbon mitigation be addressed by various cities  worldwide?, Carbon Management 2 363 365 pp. (DOI: 10.4155/cmt.11.40), (ISSN: 1758 3004).  Amos P., D. Bullock, and J. Sondhi (2010). High Speed Rail: The Fast Track to Economic  Development? World Bank, Beijing. 28 pp.    68 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    An F., R. Earley, and L. Green Weiskel (2011). Global Overview on Fuel Efficiency and Motor Vehicle  Emission Standards: Policy Options and Perspectives for International Co Operation. The Innovation  Center for Energy and Transportation, Beijing, Los Angeles, New York. 24 pp.  Anable J., C. Brand, M. Tran, and N. Eyre (2012). Modelling transport energy demand: A socio technical approach, Energy Policy 41 125 138 pp. (DOI: 10.1016/j.enpol.2010.08.020), (ISSN: 0301 4215).  Anand A., and G. Tiwari (2006). A Gendered Perspective of the Shelter Transport Livelihood Link:  The Case of Poor Women in Delhi, Transport Reviews 26 63 80 pp. (DOI:  10.1080/01441640500175615), (ISSN: 0144 1647).  Anderson S.T., R. Kellogg, and J.M. Sallee (2011). What Do Consumers Believe About Future  Gasoline Prices?, National Bureau of Economic Research Working Paper Series No. 16974 . Available  at: http://www.nber.org/papers/w16974.  Andersson E., M. Berg, B. L. Nelldal, and O. Fröidh (2011a). Rail Passenger Transport. Techno Economic Analysis of Energy and Greenhouse Gas Reductions. Royal Institute of Technology (KTH),  Stockholm. 43 pp.  Andersson E., M. Berg, B. L. Nelldal, and O. Fröidh (2011b). Rail Freight Transport. Techno Economic  Analysis of Energy and Greenhouse Gas Reductions. Royal Institute of Technology (KTH), Stockholm.  42 pp.  Andrade V., O.B. Jensen, H. Harder, and J.C.O. Madsen (2011). Bike Infrastructures and Design  Qualities: Enhancing Cycling, Danish Journal of Geoinformatics and Land Management 46 65 80 pp. .  Available at: http://ojs.statsbiblioteket.dk/index.php/tka/article/view/5734.  ANFAVEA (2012). Carta da Anfavea June/2012.  Arndt C., P. Chinowsky, K. Strzepek, and J. Thurlow (2012). Climate Change, Growth and  Infrastructure Investment: The Case of Mozambique, Review of Development Economics 16 463 475  pp. (DOI: 10.1111/j.1467 9361.2012.00674.x), (ISSN: 1467 9361).  Arteconi A., C. Brandoni, D. Evangelista, and F. Polonara (2010). Life cycle greenhouse gas analysis  of LNG as a heavy vehicle fuel in Europe, Applied Energy 87 2005 2013 pp. (DOI:  10.1016/j.apenergy.2009.11.012), (ISSN: 0306 2619).  Arvizu D.E., and P. Balaya (2012). Direct Solar Energy (Chapter 3). In: Renewable Energy Sources and  Climate Change Mitigation. Special Report of the Intergovernmental Panel on Climate Change [O.  Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, New York,  USA pp.333 400.  Ashton Graham C. (2008). Behavioural responses to peak oil and carbon pricing: Save 70 cents a litre  by driving less. Planning and Transport Research Centre.  Ashton Graham C., M. Burgess, O.V.D. Vandersteen, and R. Salter (2011). Influencing Travel  Choices. TNA Guidebook Series. In: Technologies for Climate Change Mitigation   Transport. UNEP  Riso Centre for Energy, Climate and Sustainable Development, Roskilde, Denmark pp.58 68(ISBN:  978 87 550 3901 8).    69 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Ashton Graham C., and P. Newman (2013). Living Smart in Australian Households: Sustainability  Coaching as an Effective Large Scale Behaviour Change Strategy. In: The Global Challenge Of  Encouraging Sustainable Living: Opportunities, Barriers, Policy and Practice. Edward Elgar, London,  UK pp.181 207.  Atabani A.E., I.A. Badruddin, S. Mekhilef, and A.S. Silitonga (2011). A review on global fuel  economy standards, labels and technologies in the transportation sector, Renewable and  Sustainable Energy Reviews 15 4586 4610 pp. (DOI: 10.1016/j.rser.2011.07.092), (ISSN: 1364 0321).  Axsen J., and K.S. Kurani (2012). Characterizing Residential Recharge Potential for Plug in Electric  Vehicles. Transportation Research Board. . Available at: http://trid.trb.org/view.aspx?id=1129899.  Bamberg S., S. Fujii, M. Friman, and T. Gärling (2011). Behaviour theory and soft transport policy  measures, Transport Policy 18 228 235 pp. (DOI: 10.1016/j.tranpol.2010.08.006), (ISSN: 0967070X).  Bandivadekar A., K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood, E. Kasseris, M. Kromer, and  M. Weiss (2008). On the Road in 2035: Reducing Transportation s Petroleum Consumption and GHG  Emissions. MIT Laboratory for Energy and the Environment, Cambridge, Massachusetts. 196 pp.  Banister D. (2008a). The Sustainable Mobility Paradigm, Transport Policy 15 73 80 pp. .  Banister D. (2011a). The trilogy of distance, speed and time, Journal of Transport Geography 19  950 959 pp. (DOI: 10.1016/j.jtrangeo.2010.12.004), (ISSN: 0966 6923).  Banister D. (2011b). Cities, mobility and climate change, Special section on Alternative Travel futures  19 1538 1546 pp. (DOI: 10.1016/j.jtrangeo.2011.03.009), (ISSN: 0966 6923).  Baptista P., M. Tomás, and C. Silva (2010). Plug in hybrid fuel cell vehicles market penetration  scenarios, International Journal of Hydrogen Energy 35 10024 10030 pp. (DOI:  10.1016/j.ijhydene.2010.01.086).  Barla P., B. Lamonde, L.F. Miranda Moreno, and N. Boucher (2009). Traveled distance, stock and  fuel efficiency of private vehicles in Canada: price elasticities and rebound effect, Transportation 36  389 402 pp. (DOI: 10.1007/s11116 009 9211 2), (ISSN: 0049 4488, 1572 9435).  Barter P., J. Kenworthy, and F. Laube (2003). Lessons from Asia on Sustainable Urban Transport. In:  Making Urban Transport Sustainable. Palgrave  Macmillan, Basingstoke UK pp.252 270.  Barth M., and K. Boriboonsomsin (2008). Real World Carbon Dioxide Impacts of Traffic Congestion,  Transportation Research Record: Journal of the Transportation Research Board 2058 163 171 pp.  (DOI: 10.3141/2058 20), (ISSN: 0361 1981).  Bassett D., J. Pucher, R. Buehler, D.L. Thompson, and S.E. Crouter (2008a). Walking, Cycling, and  Obesity Rates in Europe, North America, and Australia, Journal of Physical Activity and Health 5 795 814 pp. . Available at: http://policy.rutgers.edu/faculty/pucher/JPAH08.pdf.  Bastani P., J.B. Heywood, and C. Hope (2012). The effect of uncertainty on US transport related  GHG emissions and fuel consumption out to 2050, Transportation Research Part A: Policy and  Practice 46 517 548 pp. (DOI: 10.1016/j.tra.2011.11.011), (ISSN: 0965 8564).  Baumgartner D.S., and J.L. Schofer (2011). Forecasting Call N Ride Productivity In Low Density  Areas. Transportation Research Board, Transportation Research Board 90th Annual Meeting,  Washington DC, USA. 14 pp.    70 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Beck L. (2009). V2G   10: A Text About Vehicle to Grid, the Technology Which Enables a Future of  Clean and Efficient Electric Powered Transportation. Self Published, Delaware. 331 pp.  Becker A., S. Inoue, M. Fischer, and B. Schwegler (2012). Climate change impacts on international  seaports: knowledge, perceptions, and planning efforts among port administrators, Climatic Change  110 5 29 pp. (ISSN: 0165 0009).  Bell M.L., R. Goldberg, C. Hogrefe, P.L. Kinney, K. Knowlton, B. Lynn, J. Rosenthal, C. Rosenzweig,  and J.A. Patz (2007). Climate change, ambient ozone, and health in 50 US cities, Climatic Change 82  61 76 pp. (DOI: 10.1007/s10584 006 9166 7).  Birtchnell T., J. Urry, C. Cook, and A. Curry (2013). Freight Miles: The Impacts of 3D Printing on  Transport and Society. University of Lancaster, UK. 40 pp. Available at:  http://www.academia.edu/3628536/Freight_Miles_The_Impacts_of_3D_Printing_on_Transport_an d_Society.  Den Boer E., H. Van Essen, F. Brouwer, E. Pastori, and A. Moizo (2011). Potential of Modal Shift to  Rail Transport. CE Delft, Delft, Netherlands. 119 pp. Available at:  http://www.cedelft.eu/publicatie/potential_of_modal_shift_to_rail_transport/1163?PHPSESSID=85 969a496d79705462017a60f30353cc.  Der Boer E., M. Otten, and H. Van Essen (2011). STREAM International Freight 2011: Comparison of  various transport modes on an EU scale with the STREAM database. STREAM International Freight  2011. . Available at: http://www.shortsea.be/html_nl/publicaties/documents/CEDelft STREAMInternationalFreight2011.pdf.  Bongardt D., M. Breithaupt, and F. Creutzig (2010). Beyond the Fossil City: Towards low Carbon  Transport and Green Growth, Fifth Regional EST Forum. GTZ Working Paper, Bangkok, Thailand.  2010, .  Bongardt D., F. Creutzig, H. Hüging, K. Sakamoto, S. Bakker, S. Gota, and S. Böhler Baedeker  (2013). Low Carbon Land Transport: Policy Handbook. Routledge, New York, USA, 264 pp., (ISBN:  9781849713771). .  Bongardt D., D. Scmid, C. Huizenga, and T. Litman (2011). Sustainable Transport Evaluation:  Developing Practical Tools for Evaluation in the Context of the CSD Process. Partnership on  Sustainable Low Carbon Transport, Eschborn, Germany. 44 pp.  Borken Kleefeld J., J. Fuglestvedt, and T. Berntsen (2013). Mode, load, and specific climate impact  from passenger trips, Environmental Science & Technology 47 7608 7614 pp. .  Boschmann E.E. (2011). Job access, location decision, and the working poor: A qualitative study in  the Columbus, Ohio metropolitan area, Geoforum 42 671 682 pp. (DOI:  10.1016/j.geoforum.2011.06.005), (ISSN: 0016 7185).  Bosetti V., and T. Longden (2013). Light duty vehicle transportation and global climate policy: The  importance of electric drive vehicles, Energy Policy 58 209 219 pp. (DOI:  10.1016/j.enpol.2013.03.008), (ISSN: 0301 4215).  Boucher O., D.R. Artaxo, C.Bretherton, G. Feingold, P. Forster, V.Kerminen, Y. Kondo, H. Liao, U.  Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, and X. Zhang (2013). Clouds and  aerosols   Chapter 7. In: IPCC Fifth Assessment Report Climate Change 2013: The Physical Science  Basis  [Stocker, T.F., D. Qin, G. K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex    71 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    and P.M. Midgley (eds.)]. Intergovernmental Panel on Climate Change. Cambridge University Press,  New York, USA pp.571 657.  Bowen A., S. Cochrane, and S. Fankhauser (2012). Climate change, adaptation and economic  growth, Climatic Change 113 95 106 pp. (DOI: 10.1007/s10584 011 0346 8), (ISSN: 0165 0009).  Bows A., K. Anderson, and S. Mander (2009). Aviation in turbulent times, Technology Analysis &  Strategic Management 21 17 37 pp. (DOI: 10.1080/09537320802557228), (ISSN: 0953 7325).  Bradley R., and N. Lefevre (2006). Assessing Energy Security and Climate Change Policy Interactions.  International Energy Agency, Paris, France.  La Branche S. (2011). La gouvernance climatique face a la mobilité quotidienne. Le cas des Lyonnais,  Environnement urbain 5 10 pp. (DOI: 10.7202/1005874ar), (ISSN: 1916 4645).  Brandt A.R. (2009). Converting Oil Shale to Liquid Fuels with the Alberta Taciuk Processor: Energy  Inputs and Greenhouse Gas Emissions, Energy & Fuels 23 6253 6258 pp. (DOI: 10.1021/ef900678d),  (ISSN: 0887 0624, 1520 5029).  Brandt A.R. (2011). Upstream Greenhouse Gas (GHG) Emissions from Canadian Oil Sands as a  Feedstock for European Refineries. Stanford University, Stanford, USA. 51 pp. Available at:  https://circabc.europa.eu/d/d/workspace/SpacesStore/db806977 6418 44db a464 20267139b34d/Brandt_Oil_Sands_GHGs_Final.pdf.  Brandt A.R. (2012). Variability and Uncertainty in Life Cycle Assessment Models for Greenhouse Gas  Emissions from Canadian Oil Sands Production, Environmental Science & Technology 46 1253 1261  pp. (DOI: 10.1021/es202312p), (ISSN: 0013 936X, 1520 5851).  Bretzke W. R. (2011). Sustainable logistics: in search of solutions for a challenging new problem,  Logistics Research 3 179 189 pp. (DOI: 10.1007/s12159 011 0059 4), (ISSN: 1865 035X).  Brozoviæ N., and A.W. Ando (2009). Defensive purchasing, the safety (dis)advantage of light trucks,  and motor vehicle policy effectiveness, Transportation Research Part B: Methodological 43 477 493  pp. (DOI: 10.1016/j.trb.2008.09.002), (ISSN: 0191 2615).  BRT Centre of Excellence, EMBARQ, IEA and SIBRT (2012). Global BRT data. . Available at:  http://brtdata.org/.  Brueckner J.K. (2000). Urban Sprawl: Diagnosis and Remedies, International Regional Science Review  23 160 171 pp. . Available at: http://irx.sagepub.com/content/23/2/160.abstract.  Budde Christensen T., P. Wells, and L. Cipcigan (2012). Can innovative business models overcome  resistance to electric vehicles? Better Place and battery electric cars in Denmark, Special Section:  Frontiers of Sustainability 48 498 505 pp. (DOI: 10.1016/j.enpol.2012.05.054), (ISSN: 0301 4215).  Buehler R., and J. Pucher (2011). Making public transport financially sustainable, Transport Policy 18  126 138 pp. (DOI: 10.1016/j.tranpol.2010.07.002), (ISSN: 0967 070X).  Buhaug O., and et. al (2009). Second IMO GHG Study 2009. International Maritime Organization,  London, UK. 240 pp.    72 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Burdett R., and D. Sudjic (2010). The Endless City: The Urban Age Project by the London School of  Economics and Deutsche Bank s Alfred Herrhausen Sociey. Phaidon, London, 510 pp., (ISBN:  9780714859569). .  Burkhardt U., and B. Kärcher (2011). Global radiative forcing from contrail cirrus, Nature Climate  Change 1 54 58 pp. (DOI: 10.1038/nclimate1068), (ISSN: 1758 678X, 1758 6798).  Caldecott B., and S. Tooze (2009). Green Skies Thinking: Promoting the Development and  Commercialisation of Sustainable Bio Jet Fuels. Policy Exchange, London, UK. 27 pp.  Camagni R., M.C. Gibelli, and P. Rigamonti (2002). Urban mobility and urban form: the social and  environmental costs of different patterns of urban expansion, Ecological Economics 40 199 216 pp.  (DOI: 10.1016/S0921 8009(01)00254 3), (ISSN: 0921 8009).  Cao X., P.L. Mokhtarian, and S. Handy (2009). Examining the impacts of residential self selection on  travel behaviour: A focus on empirical findings, Transport Reviews 29 359 395 pp. .  CARB (2012). Zero Emission Vehicles 2012. . Available at:  http://www.arb.ca.gov/regact/2012/zev2012/zev2012.htm.  Carisma B., and S. Lowder (2007). Estimating the Economic Costs of Traffic Congestion: A Review of  Literature on Various Cities & Countries.  Carrabine E., and B. Longhurst (2002). Consuming the car: anticipation, use and meaning in  contemporary youth culture, The Sociological Review 50 181 196 pp. (DOI: 10.1111/1467 954X.00362), (ISSN: 1467 954X).  Cathles L.M., L. Brown, M. Taam, and A. Hunter (2012). A commentary on  The greenhouse gas  footprint of natural gas in shale formations  by R.W. Howarth, R. Santoro, and Anthony Ingraffea,  Climatic Change 113 525 535 pp. (DOI: 10.1007/s10584 011 0333 0), (ISSN: 0165 0009, 1573 1480).  CCC (2011). Meeting Carbon Budgets   3rd Progress Report to Parliament. Committee on Climate  Change. . Available at: http://www.theccc.org.uk/wp content/uploads/2011/06/CCC Progress Report_Interactive_3.pdf.  Cervero R. (1994). Rail Transit and Joint Development: Land Market Impacts in Washington, D.C. and  Atlanta, Journal of the American Planning Association 60 83 94 pp. (DOI:  10.1080/01944369408975554), (ISSN: 0194 4363, 1939 0130).  Cervero R. (1998). The Transit Metropolis: A Global Inquiry. Island Press, Washington, D.C., 480 pp.,  (ISBN: 1559635916 9781559635912). .  Cervero R. (2001). Road Expansion, Urban Growth, and Induced Travel: A Path Analysis. University of  California Transportation Center, Berkeley, USA. 30 pp. Available at:  http://EconPapers.repec.org/RePEc:cdl:uctcwp:qt05x370hr.  Cervero R. (2004). Transit Oriented Development in the United States: Experiences, Challenges and  Prospects. Transportation Research Board, Washington DC, USA. 534 pp.  Cervero R., and A. Golub (2011). Informal public transport: a global perspective. In: Urban Transport  in the Developing World : a Handbook of Policy and Practice. Edward Elgar Publishers, Cheltenham,  UK pp.488 547.    73 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Cervero R., and J. Murakami (2009). Rail and Property Development in Hong Kong: Experiences and  Extensions, Urban Studies 46 2019  2043 pp. (DOI: 10.1177/0042098009339431).  Cervero R., and J. Murakami (2010). Effects of built environments on vehicle miles traveled:  evidence from 370 US urbanized areas, Environment and Planning A 42 400 418 pp. . Available at:  http://www.envplan.com/abstract.cgi?id=a4236.  Cervero R., and C. Sullivan (2011). Green TODs: marrying transit oriented development and green  urbanism, International Journal of Sustainable Development & World Ecology 18 210 218 pp. .  Chandler K., E. Eberts, and L. Eudy (2006). New York City Transit Hybrid and CNG Transit Buses:  Interim Evaluation Results. National Renewable Energy Lab, Golden CO, Washington DC, USA. 64 pp.  Available at: http://www.afdc.energy.gov/pdfs/38843.pdf.  Chang B., and A. Kendall (2011). Life cycle greenhouse gas assessment of infrastructure construction  for California s high speed rail system, Transportation Research Part D: Transport and Environment  16 429 434 pp. (DOI: 10.1016/j.trd.2011.04.004), (ISSN: 1361 9209).  Charpentier A.D., J.A. Bergerson, and H.L. MacLean (2009). Understanding the Canadian oil sands  industry s greenhouse gas emissions, Environmental Research Letters 4 014005 pp. (DOI:  10.1088/1748 9326/4/1/014005), (ISSN: 1748 9326).  Chen X., and M. Khanna (2012a). The Market Mediated Effects of Low Carbon Fuel Policies,  AgBioForum 15 89 105 pp. . Available at: http://www.agbioforum.org/v15n1/v15n1a11 khanna.htm.  Cherp A., A. Adenikinju, A. Goldthau, F. Hernandez, L. Hughes, J. Jansen, J. Jewell, M. Olshanskaya,  R. Soares de Oliveira, B. Sovacool, and S. Vakulenko (2012). Chapter 5   Energy and Security. In:  Global Energy Assessment   Toward a Sustainable Future.Cambridge University Press, Cambridge, UK  and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg,  Austria pp.325 384(ISBN: 9781 10700 5198 hardback 9780 52118 2935 paperback).  Cherp A., and J. Jewell (2011). The three perspectives on energy security: intellectual history,  disciplinary roots and the potential for integration, Current Opinion in Environmental Sustainability 3  202 212 pp. (DOI: 10.1016/j.cosust.2011.07.001), (ISSN: 1877 3435).  Chester M.V., and A. Horvath (2009). Environmental assessment of passenger transportation should  include infrastructure and supply chains, Environmental Research Letters 4 024008 pp. . Available at:  http://stacks.iop.org/1748 9326/4/i=2/a=024008.  China aims to ride high speed trains into the future (2011). National Public Radio NPR.  Choo S., P.L. Mokhtarian, and I. Salomon (2005). Does telecommuting reduce vehicle miles  traveled? An aggregate time series analysis for the US, Transportation 32 37 64 pp. . Available at:  http://www.escholarship.org/uc/item/74t9663f.  Chum H., A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, A. Goss, W. Lucht, M.  Mapako, O. Masera Cerutti, T. McIntyre, T. Minowa, and K. Pingoud (2011). Bioenergy. In: IPCC  Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S.  Schlömer, C. von Stechow (eds)]. Cambridge University Press, New York, USA pp.209 331(ISBN: 978 1 107 60710 1).    74 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    City Cycling (2012). MIT Press, Cambridge, Mass, 393 pp., (ISBN: 9780262517812). .  Conway P. (2007). Sea change: Is air cargo about to reach maturity? Available at:  http://www.flightglobal.com/news/articles/sea change is air cargo about to reach maturity 218779/.  Cooper D.A., and M. Ekstrom (2005). Applicability of the PEMS technique for simplified NOX  monitoring on   board ships, Atmospheric Environment 39 127 137 pp. (DOI:  10.1016/j.atmosenv.2004.09.019).  COP (2010). Copenhagen City of Cyclists: Bicycle Account 2010. City of Copenhagen, The Technical  and Environmental Administration. . Available at: http://www.cycling embassy.dk/wp content/uploads/2011/05/Bicycle account 2010 Copenhagen.pdf.  Corbertt J., and J.J. Winebrake (2008). The impact of globalization on international maritime  transport activity: Past trends and future perspectives. In: Globalisation, Transport and the  Environment. Organisation for Economic Co operation and Development, Paris, France.  Corbertt J., and J.J. Winebrake (2011). Freight Transportation and the Environment. In: Intermodal  transportation: moving freight in a global economy. L.A. Hoel, G. Giuliano, M.D. Meyer, (eds.), Eno  Transportation Foundation, Washington, DC(ISBN: 9780971817555).  Corbett J.J., D.A. Lack, J.J. Winebrake, S. Harder, J.A. Silberman, and M. Gold (2010). Arctic shipping  emissions inventories and future scenarios, Atmospheric Chemistry and Physics 10 9689 9704 pp.  (DOI: 10.5194/acp 10 9689 2010), (ISSN: 1680 7316).  Corbett J.J., H. Wang, and J.J. Winebrake (2009). The effectiveness and costs of speed reductions on  emissions from international shipping, Transportation Research Part D: Transport and Environment  14 593 598 pp. (DOI: 10.1016/j.trd.2009.08.005), (ISSN: 1361 9209).  Costantini V., F. Gracceva, A. Markandya, and G. Vicini (2007). Security of energy supply:  Comparing scenarios from a European perspective, Energy Policy 35 210 226 pp. (DOI:  10.1016/j.enpol.2005.11.002), (ISSN: 0301 4215).  CRC (2008). Environmental regulations pertaining to rail: Developing best practice. Cooperative  Research Centre for Rail Innovation. . Available at: http://www.railcrc.net.au/project/r1102.  Creutzig F., and D. He (2009). Climate change mitigation and co benefits of feasible transport  demand policies in Beijing, Transportation Research Part D: Transport and Environment 14 120 131  pp. (DOI: doi: 10.1016/j.trd.2008.11.007), (ISSN: 1361 9209).  Creutzig F., E. McGlynn, J. Minx, and O. Edenhofer (2011a). Climate policies for road transport  revisited (I): Evaluation of the current framework, Energy Policy 39 2396 2406 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421511000760.  Creutzig F., R. Mühlhoff, and J. Römer (2012a). Decarbonizing urban transport in European cities:  four cases show possibly high co benefits, Environmental Research Letters 7 044042 pp. (ISSN: 1748 9326).  Creutzig F., R. Mühlhoff, and J. Römer (2012b). Decarbonizing urban transport in European cities:  four cases show possibly high co benefits, Environmental Research Letters 7 044042 pp. (DOI:  10.1088/1748 9326/7/4/044042), (ISSN: 1748 9326).    75 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Creutzig F., A. Papson, L. Schipper, and D.M. Kammen (2009). Economic and environmental  evaluation of compressed air cars, Environmental Research Letters 4 044011 pp. (DOI:  10.1088/1748 9326/4/4/044011), (ISSN: 1748 9326).  Creutzig F., A. Popp, R.J. Plevin, G. Luderer, J. Minx, and O. Edenhofer (2011b). Reconciling top down and bottom up modeling on future bioenergy deployment, Nature Climate Change.  Creutzig F., A. Popp, R. Plevin, G. Luderer, J. Minx, and O. Edenhofer (2012c). Reconciling top down  and bottom up modelling on future bioenergy deployment, Nature Climate Change 2 320 327 pp.  (DOI: 10.1038/nclimate1416), (ISSN: 1758 678X).  Creutzig F., A. Thomas, D.M. Kammen, and E. Deakin (2012d). Transport Demand Management in  Beijing, China: Progress and Challenges. In: Low Carbon Transport in Asia: Capturing Climate and  Development Co benefits. Earthscan, London.  Crist P. (2009). Greenhouse Gas Emissions Reduction Potential from International Shipping. JTRC  Discussion Paper. Joint Transport Research Centre of the OECD and the International Transport  Forum. . Available at:  http://www.internationaltransportforum.org/jtrc/discussionpapers/DP200911.pdf.  Cryoplane (2003). Liquid Hydrogen Fuelled Aircraft   System Analysis. Airbus Deutschland GmbH,  Hamburg. 80 pp.  CST (2002). Definition and Vision of Sustainable Transport. The Center for Sustainable  Transportation, Ontario, Canada. 4 pp.  Cuenot F., L. Fulton, and J. Staub (2012). The prospect for modal shifts in passenger transport  worldwide and impacts on energy use and CO2, Energy Policy 41 98 106 pp. (DOI:  10.1016/j.enpol.2010.07.017), (ISSN: 0301 4215).  Dalkmann H., and C. Brannigan (2007). Transport and climate change. A Sourcebook for Policy Makers in Developing Cities: Module 5e. Gesellschaft Für Technische Zusammenarbeit GTZ  Eschborn.  Dargay J. (2007). The effect of prices and income on car travel in the UK, Transportation Research  Part A: Policy and Practice 41 949 960 pp. (DOI: 10.1016/j.tra.2007.05.005), (ISSN: 0965 8564).  Davies N. (2012). What are the ingredients of successful travel behavioural change campaigns?,  Transport Policy 24 19 29 pp. (DOI: 10.1016/j.tranpol.2012.06.017), (ISSN: 0967 070X).  Delbosc A., and G. Currie (2013). Causes of Youth Licensing Decline: A Synthesis of Evidence,  Transport Reviews 33 271 290 pp. (DOI: 10.1080/01441647.2013.801929), (ISSN: 0144 1647).  Dell Olmo P., and G. Lulli (2003). A new hierarchical architecture for Air Traffic Management:  Optimisation of airway capacity in a Free Flight scenario, European Journal of Operational Research  144 179 193 pp. (DOI: 10.1016/S0377 2217(01)00394 0), (ISSN: 0377 2217).  DeMaio P. (2009). Bike sharing: History, Impacts, Models of Provision, and Future, Journal of Public  Transportation 12 41 56 pp. . Available at: http://www.nctr.usf.edu/jpt/pdf/JPT12 4DeMaio.pdf.  Deng T., and J.D. Nelson (2011). Recent Developments in Bus Rapid Transit: A Review of the  Literature, Transport Reviews 31 69 96 pp. (DOI: 10.1080/01441647.2010.492455), (ISSN: 0144 1647, 1464 5327).    76 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    DfT (2010). Future Aircraft Fuel Efficiencies Final Report. Department for Transport, London, UK. 92  pp. Available at:  https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4515/future aircraft fuel efficiency.pdf.  Diana M., L. Quadrifoglio, and C. Pronello (2007). Emissions of demand responsive services as an  alternative to conventional transit systems, Transportation Research Part D: Transport and  Environment 12 183 188 pp. (DOI: 10.1016/j.trd.2007.01.009), (ISSN: 1361 9209).  Dierkers G., E. Silsbe, S. Stott, S. Winkelman, and M. Wubben (2008). CCAP Transportation  Emissions Guidebook. Part One: Land Use, Transit & Travel Demand Management. Center for Clean  Air Policy, Washington DC, USA.  Dimitriou H.T. (2006). Towards a generic sustainable urban transport strategy for middle sized cities  in Asia: Lessons from Ningbo, Kanpur and Solo, Habitat International 30 1082 1099 pp. (DOI:  10.1016/j.habitatint.2006.02.001), (ISSN: 0197 3975).  Dinwoodie J. (2006). Rail freight and sustainable urban distribution: Potential and practice, Journal  of Transport Geography 14 309 320 pp. (DOI: 10.1016/j.jtrangeo.2005.06.001), (ISSN: 0966 6923).  DOE/EIA (2010). International Energy Outlook 2011. US Energy Information Administration,  Washington DC, USA.  Dotson R. (2011). Institutional and political support for urban transport. In: Urban Transport in the  Developing World : a Handbook of Policy and Practice. Edward Elgar Publishers, Cheltenham, UK  pp.262 304.  Downs A. (2004). Still Stuck in Traffic. Brookings Institution Press, Washington. . Available at:  http://www.brookings.edu/research/books/2004/stillstuckintraffic.  Drabik D., and H. de Gorter (2011). Biofuel policies and carbon leakage, AgBioForum 14 104 110 pp.  . Available at: file://localhost/Users/rjp/literature/d/Drabik%20 %20Biofuel%20policies%20and%20carbon%20leakage%202011.pdf.  Drobot S.D., J.A. Maslanik, and M.R. Anderson (2009). Interannual variations in the opening date of  the Prudhoe Bay shipping season: links to atmospheric and surface conditions, International Journal  of Climatology 29 197 203 pp. (DOI: 10.1002/joc.1725), (ISSN: 0899 8418).  Du G., and R. Karoumi (2012). Life cycle assessment of a railway bridge: comparison of two  superstructure designs, Structure and Infrastructure Engineering 9 1149 1160 pp. (DOI:  10.1080/15732479.2012.670250), (ISSN: 1573 2479).  Duranton G., and M.A. Turner (2011). The Fundamental Law of Road Congestion: Evidence from US  Cities, The American Economic Review 101 2616 2652 pp. (DOI: 10.1257/aer.101.6.2616).  Eads G. (2010). 50by50 Prospects and Progress Report for Global Fuel Economy Initiative. Global Fuel  Economy Initiative. 64 pp. Available at:  http://www.globalfueleconomy.org/Documents/Publications/prospects_and_progress_lr.pdf.  EC (2013). EU Transport in Figures. European Commission. 71 pp. Available at:  http://ec.europa.eu/transport/facts fundings/statistics/doc/2013/pocketbook2013.pdf.    77 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Echenique M.H., A.J. Hargreaves, G. Mitchell, and A. Namdeo (2012). Growing Cities Sustainably,  Journal of the American Planning Association 78 121 137 pp. (DOI:  10.1080/01944363.2012.666731), (ISSN: 0194 4363).  ECMT (2004). Assessment and Decision Making for Sustainable Transport. Organization of Economic  Co Operation and Development, Paris. 235 pp. Available at:  http://internationaltransportforum.org/pub/pdf/04Assessment.pdf.  ECMT (2007). Cutting Transport CO2 Emissions: What Progress? OECD, Paris, 264 pp. Available at:  http://www.internationaltransportforum.org/Pub/pdf/07CuttingCO2.pdf.  Econ (2007). Arctic Shipping 2030: From Russia with Oil, Stormy Passage or Arctic Great Game?  Commissioned by Norshipping, Oslo. 49 pp.  Edwards J.B., A.C. McKinnon, and S.L. Cullinane (2010). Comparative analysis of the carbon  footprints of conventional and online retailing: A  last mile  perspective, International Journal of  Physical Distribution & Logistics Management 40 103 123 pp. (DOI: 10.1108/09600031011018055),  (ISSN: 0960 0035).  EEA (2006). Technology to Improve the Fuel Economy of Light Trucks to 2015. Energy and  Environmental Analysis Inc.  EEA (2011). Monitoring the CO2 Emissions from New Passenger Cars in the EU: Summary of Data for  2010. European Environment Agency, Copenhagen.  EIA (2011). International Energy Outlook. U.S. Energy Information Administration, Washington D C,  USA. 292 pp. Available at: www.eia.gov/ieo/.  Eichhorst U. (2009). Adapting Urban Transport to Climate Change. Module 5f. Sustainable Transport:  A Sourcebook for Policy Makers in Developing Countries. Deutsche Gesellschaft Fur Technische  Zusammenarbeit (GTZ), Eschborn. 70 pp.  Eliasson J. (2008). Lessons from the Stockholm congestion charging trial, Transport Policy 15 395 404 pp. (DOI: 10.1016/j.tranpol.2008.12.004), (ISSN: 0967 070X).  Eliseeva S.V., and J. C.G. Bünzli (2011). Rare earths: jewels for functional materials of the future,  New Journal of Chemistry 35 1165 pp. (DOI: 10.1039/c0nj00969e), (ISSN: 1144 0546, 1369 9261).  Eom J., L. Schipper, and L. Thompson (2012). We keep on truckin : Trends in freight energy use and  carbon emissions in 11 IEA countries, Energy Policy 45 327 341 pp. (DOI:  10.1016/j.enpol.2012.02.040), (ISSN: 0301 4215).  EPA (2011). EPA and NHTSA Adopt First Ever Program to Reduce Greenhouse Gas Emissions and  Improve Fuel Efficiency of Medium and Heavy Duty Vehicles. Environmetal Protection Agency,  Washington DC, USA. 8 pp. Available at:  http://www.epa.gov/oms/climate/documents/420f11031.pdf.  EPA (2012). Final Rulemaking for 2017 2025 Light Duty Vehicle Greenhouse Gas Emission Standards  and Corporate Average Fuel Economy Standards. Environmetal Protection Agency, Washington DC,  USA. 555 pp. Available at: http://www.epa.gov/otaq/climate/documents/420r12016.pdf.    78 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Eppstein M.J., D.K. Grover, J.S. Marshall, and D.M. Rizzo (2011). An agent based model to study  market penetration of plug in hybrid electric vehicles, Energy Policy 39 3789 3802 pp. (DOI:  10.1016/j.enpol.2011.04.007).  EPRI (2008). The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart  Grid. Electric Power Research Institute, Palo Alto, USA. 64 pp.  Ericksen P.J., J.S.I. Ingram, and D.M. Liverman (2009). Food security and global environmental  change: emerging challenges, Environmental Science & Policy 12 373 377 pp. (DOI:  10.1016/j.envsci.2009.04.007), (ISSN: 1462 9011).  Estache A., and A. GóMez Lobo (2005). Limits to competition in urban bus services in developing  countries, Transport Reviews 25 139 158 pp. (DOI: 10.1080/0144164042000289654), (ISSN: 0144 1647, 1464 5327).  ETSAP (2010). Unconventional oil and gas production, Energy Technology Systems Analysis  Programme. Paris, France. 2010,  Available at: http://www.iea etsap.org/web/E TechDS/PDF/P02 Uncon%20oil&gas GS gct.pdf.  Eurocontrol (2008). The Challenges of Growth, Air Traffic Statistics and Forecasts, The European  Organisation for the Safety of Air Navigation. Eurocontrol, Brussels, Belgium. 40 pp. Available at:  http://www.eurocontrol.int/statfor.  European Commission, Transport and Environment (2011). Emissions from maritime transport. .  Available at: http://ec.europa.eu/environment/air/transport/ships.htm.  European Environment Agency (2011). Laying the Foundations for Greener Transport : TERM 2011 :  Transport Indicators Tracking Progress towards Environmental Targets in Europe. Publications Office  of the European Union, Luxembourg, 92 pp., (ISBN: 9789292132309 929213230X). .  Evans A. (2010). Simulating airline operational responses to environmental constraints. Clare  College, University of Cambridge, Cambridge, UK, 185 pp. Available at:  http://www.dspace.cam.ac.uk/handle/1810/226855.  Evans A., and A. Schäfer (2011). The impact of airport capacity constraints on future growth in the  US air transportation system, Journal of Air Transport Management 17 288 295 pp. (DOI: doi:  10.1016/j.jairtraman.2011.03.004), (ISSN: 0969 6997).  Ewing R. (2007). Growing Cooler:The Evidence on Urban Development and Climate Change. Urban  Land Institute, Chicago, 2007.  Ewing R. (2008). Characteristics, Causes, and Effects of Sprawl: A Literature Review. In: Urban  Ecology. Springer US, New York, USA pp.519 535(ISBN: 978 0 387 73412 5).  Ewing R., K. Bartholomew, S. Winkelman, J. Walters, and G. Anderson (2008). Urban development  and climate change, Journal of Urbanism: International Research on Placemaking and Urban  Sustainability 1 201 216 pp. (DOI: 10.1080/17549170802529316), (ISSN: 1754 9175).  Ewing R., and R. Cervero (2010). Travel and the Built Environment   A Meta Analysis, Journal of the  American Planning Association 76 265 294 pp. . Available at:  http://dx.doi.org/10.1080/01944361003766766.    79 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Faber J., D. Nelissen, G. Hon, H. Wang, and M. Tsimplis (2012). Regulated Slow Steaming in  Maritime Transport: An Assessment of Options, Costs and Benefits. International Council on Clean  Transportation (ICCT), Delft, Netherlands. 119 pp.  Fargione J.E., R.J. Plevin, and J.D. Hill (2010). The Ecological Impact of Biofuels, Annual Review of  Ecology and Systematics 41 351 377 pp. (DOI: 10.1146/annurev ecolsys 102209 144720), (ISSN:  1543 592X).  Farrington R., and J. Rugh (2000). Impact of Vehicle Air Conditioning on Fuel Economy, Tailpipe  Emissionsm and Electric Vehicle Range. National Renewable Energy Laboratory, Golden, Colorado. 12  pp.  Federal Highway Administration (2000). Operations Story. . Available at:  http://www.ops.fhwa.dot.gov/aboutus/opstory.htm.  Figueroa M.J., L. Fulton, and G. Tiwari (2013). Avoiding, transforming, transitioning: pathways to  sustainable low carbon passenger transport in developing countries, Current Opinion in  Environmental Sustainability 5 184 190 pp. (DOI: 10.1016/j.cosust.2013.02.006), (ISSN: 1877 3435).  Figueroa M.J., and S.K. Kahn Ribeiro (2013). Energy for road passenger transport and sustainable  development: assessing policies and goals interactions, Current Opinion in Environmental  Sustainability 5 152 162 pp. (DOI: 10.1016/j.cosust.2013.04.004), (ISSN: 1877 3435).  Fischedick M., R. Schaeffer, A. Adedoyin, M. Akai, T. Bruckner, L. Clarke, V. Krey, S. Savolainen, S.  Teske, D. Ürge Vorsatz, and R. Wright (2011). Mitigation Potential and Costs. In: IPCC Special Report  on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von  Stechow (eds)]. Cambridge University Press, Cambridge and New York pp.791 864.  Flachsland C., S. Brunner, O. Edenhofer, and F. Creutzig (2011). Climate policies for road transport  revisited (II): Closing the policy gap with cap and trade, Energy Policy 39 2100 2110 pp. (DOI:  10.1016/j.enpol.2011.01.053), (ISSN: 0301 4215).  Flannery T., R. Beale, G. Hueston, Climate Commission, and Australia. Dept. of Climate Change and  Energy Efficiency (2012). The Critical Decade: International Action on Climate Change. Climate  Commission Secretariat (Department of Climate Change and Energy Efficiency), Canberra, Australia,  75 pp., (ISBN: 9781922003676  1922003670). .  Frank L.D., and G. Pivo (1994). Impacts of mixed use and density on utilization of three modes of  travel: Single occupant vehicle, transit, and walking, Transportation Research Record: Journal of the  Transportation Research Board 1466 44 52 pp. .  Freight Transport Association (2013). Logistics Carbon Review. Tunbridge Wells, UK. 28 pp.  Fuglestvedt J., T. Berntsen, V. Eyring, I. Isaksen, D.S. Lee, and R. Sausen (2009a). Shipping  Emissions: From Cooling to Warming of Climate and Reducing Impacts on Health, Environmental  Science & Technology 43 9057 9062 pp. (DOI: 10.1021/es901944r), (ISSN: 0013 936X, 1520 5851).  Fuglestvedt J., T. Berntsen, V. Eyring, I. Isaksen, D.S. Lee, and R. Sausen (2009b). Shipping  Emissions: From Cooling to Warming of Climate and Reducing Impacts on Health, Environmental  Science & Technology 43 9057 9062 pp. (DOI: 10.1021/es901944r), (ISSN: 0013 936X, 1520 5851).    80 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Fulton L., O. Lah, and F. Cuenot (2013). Transport Pathways for Light Duty Vehicles: Towards a 2°  Scenario, Sustainability 5 1863 1874 pp. (DOI: 10.3390/su5051863), (ISSN: 2071 1050).  Fürst E., and P. Oberhofer (2012). Greening road freight transport: evidence from an empirical  project in Austria, Journal of Cleaner Production 33 67 73 pp. (DOI: 10.1016/j.jclepro.2012.05.027),  (ISSN: 0959 6526).  Gallagher K.S., and E. Muehlegger (2011). Giving green to get green? Incentives and consumer  adoption of hybrid vehicle technology, Journal of Environmental Economics and Management 61 1 15 pp. (DOI: 10.1016/j.jeem.2010.05.004), (ISSN: 0095 0696).  Garneau M. E., W.F. Vincent, R. Terrado, and C. Lovejoy (2009). Importance of particle associated  bacterial heterotrophy in a coastal Arctic ecosystem, Journal of Marine Systems 75 185 197 pp.  (DOI: 10.1016/j.jmarsys.2008.09.002), (ISSN: 0924 7963).  Garrard J., G. Rose, and S.K. Lo (2008). Promoting transportation cycling for women: the role of  bicycle infrastructure, Preventive Medicine 46 55 59 pp. (DOI: 10.1016/j.ypmed.2007.07.010), (ISSN:  0091 7435).  Gehl J. (2011). Cities for People. Island Press, Washington, D.C., 269 pp.  Gehlhar M., A. Somwaru, P.B. Dixon, M.T. Rimmer, and A.R. Winston (2010). Economywide  Implications from US Bioenergy Expansion, American Economic Review 100 172 77 pp. (DOI:  10.1257/aer.100.2.172).  Geurs K.T., and B. van Wee (2004). Accessibility evaluation of land use and transport strategies:  review and research directions, Journal of Transport Geography 12 127 140 pp. (DOI:  10.1016/j.jtrangeo.2003.10.005), (ISSN: 0966 6923).  Gifford R. (2011). The Dragons of Inaction: Psychological Barriers That Limit Climate Change  Mitigation and Adaptation, American Psychologist 66 290 302 pp. .  Gilbert R., and A. Perl (2010). Transport Revolutions: Moving People and Freight Without Oil. New  Society, Philadelphia, Pa., 432 pp., (ISBN: 9781550924534  1550924532). .  Gillingham K., M.J. Kotchen, D.S. Rapson, and G. Wagner (2013). Energy policy: The rebound effect  is overplayed, Nature 493 475 476 pp. (DOI: 10.1038/493475a), (ISSN: 0028 0836, 1476 4687).  Girod B., D.P. Vuuren, M. Grahn, A. Kitous, S.H. Kim, and P. Kyle (2013). Climate impact of  transportation A model comparison, Climatic Change 118 595 608 pp. (DOI: 10.1007/s10584 012 0663 6), (ISSN: 0165 0009, 1573 1480).  Girod B., D.P. van Vuuren, and S. Deetman (2012). Global travel within the 2°C climate target,  Energy Policy 45 152 166 pp. (DOI: 10.1016/j.enpol.2012.02.008), (ISSN: 0301 4215).  Giuliano G., and J. Dargay (2006). Car ownership, travel and land use: a comparison of the US and  Great Britain, Transportation Research Part A: Policy and Practice 40 106 124 pp. (DOI:  10.1016/j.tra.2005.03.002), (ISSN: 0965 8564).  Glaeser E. (2011). The Triumph of the City. Pan Macmillan, London, 338 pp., (ISBN: 0230709397  9780230709393 9780230709386 0230709389). .    81 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Gohardani A.S., G. Doulgeris, and R. Singh (2011). Challenges of future aircraft propulsion: A review  of distributed propulsion technology and its potential application for the all electric commercial  aircraft, Progress in Aerospace Sciences 47 369 391 pp. (DOI: 10.1016/j.paerosci.2010.09.001),  (ISSN: 0376 0421).  Golob T.F., and A.C. Regan (2001). Impacts of information technology on personal travel and  commercial vehicle operations: research challenges and opportunities, Implications of New  Information Technology 9 87 121 pp. (DOI: 10.1016/S0968 090X(00)00042 5), (ISSN: 0968 090X).  Gong H., M.Q. Wang, and H. Wang (2012). New energy vehicles in China: policies, demonstration,  and progress, Mitigation and Adaptation Strategies for Global Change 18 207 228 pp. (DOI:  10.1007/s11027 012 9358 6), (ISSN: 1381 2386, 1573 1596).  Goodwin P. (1999). Transformation of transport policy in Great Britain, Transportation Research Part  A: Policy and Practice 33 655 669 pp. (DOI: 10.1016/S0965 8564(99)00011 7), (ISSN: 09658564).  Goodwin P. (2004). The Economic Costs of Road Traffic Congestion. UCL (University College London),  The Rail Freight Group, London, UK.  Goodwin P. (2012). Three Views on Peak Car, World Transport Policy and Practice 17.  Goodwin P., and K. Van Dender (2013a).  Peak Car    Themes and Issues, Transport Reviews 33  243 254 pp. (DOI: 10.1080/01441647.2013.804133), (ISSN: 0144 1647, 1464 5327).  Goodwin P., and G. Lyons (2010). Public attitudes to transport: Interpreting the evidence,  Transportation Planning and Technology 33 3 17 pp. (ISSN: 0308 1060).  Gössling S. (2011). Carbon Management in Tourism: Mitigating the Impacts on Climate Change.  Routledge, UK, 350 pp., (ISBN: 0415566320). .  Gössling S., J.P. Ceron, G. Dubois, and C.M. Hall (2009). Hypermobile travellers. In: Climate Change  and Aviation. S. Gössling, P. Upham, (eds.), Earthscan, pp.131 149.  Gowri A., K. Venkatesan, and R. Sivanandan (2009). Object oriented methodology for intersection  simulation model under heterogeneous traffic conditions, Advances in Engineering Software 40  1000 1010 pp. (DOI: 10.1016/j.advengsoft.2009.03.015), (ISSN: 0965 9978).  Grabow M.L., S.N. Spak, T. Holloway, B. Stone, A.C. Mednick, and J.A. Patz (2012). Air Quality and  Exercise Related Health Benefits from Reduced Car Travel in the Midwestern United States,  Environmental Health Perspectives 120 68 76 pp. (DOI: 10.1289/ehp.1103440), (ISSN: 0091 6765).  Graham Rowe E., B. Gardner, C. Abraham, S. Skippon, H. Dittmar, R. Hutchins, and J. Stannard  (2012). Mainstream consumers driving plug in battery electric and plug in hybrid electric cars: A  qualitative analysis of responses and evaluations, Transportation Research Part A: Policy and Practice  46 140 153 pp. (DOI: 10.1016/j.tra.2011.09.008), (ISSN: 0965 8564).  Greene D.L. (2010a). How Consumers Value Fuel Economy: A Literature Review. U.S. Environmental  Protection Agency, Washington DC, USA. 79 pp. Available at:  http://www.epa.gov/otaq/climate/regulations/420r10008.pdf.  Greene D.L. (2010b). Measuring energy security: Can the United States achieve oil independence?,  Energy Policy 38 1614 1621 pp. (DOI: 10.1016/j.enpol.2009.01.041), (ISSN: 0301 4215).    82 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Greene D.L., J.R. Kahn, and R.C. Gibson (1999). The Energy Journal . Fuel Economy Rebound Effect  for U.S. Household Vehicles, The Energy Journal 20 1 31 pp. . Available at:  http://ideas.repec.org/a/aen/journl/1999v20 03 a01.html.  Greene D.L., and S.E. Plotkin (2011). Reducing greenhouse gas emissions from U.S. transportation,.  Pew Center on Global Climate Change.  Grubler A., X. Bai, T. Buettner, S. Dhakal, D. Fisk, T. Ichinose, J. Keristead, G. Sammer, D.  Satterthwaite, N. Schulz, N. Shah, J. Steinberger, and H. Weiz (2012). Urban Energy Systems. In:  Global Energy Assessment   Toward a Sustainable Future. International Institute for Applied Systems  Analysis and Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA  pp.1307 1400.  Gwilliam K. (2003). Urban transport in developing countries, Transport Reviews 23 197 216 pp.  (DOI: 10.1080/01441640309893), (ISSN: 0144 1647).  Gwilliam K. (2013). Cities on the move   Ten years after, Urban Transport in Developing Countries:  CODATU Special Issue 40 3 18 pp. (DOI: 10.1016/j.retrec.2012.06.032), (ISSN: 0739 8859).  Haider M., and E.J. Miller (2000). Effects of Transportation Infrastructure and Location on  Residential Real Estate Values Application of Spatial Autoregressive Techniques. Transportation  Research Board, Washington DC, USA. 1 7 pp.  Hallmark S.L., B. Wang, Y. Qiu, and R. Sperry (2013). Evaluation of In Use Fuel Economy for Hybrid  and Regular Transit Buses, Journal of Transportation Technologies 03 52 57 pp. (DOI:  10.4236/jtts.2013.31006), (ISSN: 2160 0473, 2160 0481).  Halzedine T., A. Primdore, D. Belissen, and J. Hulskotte (2009). EU Transport GHG: Routes to 2050?  Technical Options to Reduce GHG for Non Road Transport Modes. European Commission  Directorate General Environment, Brussels, Belgium. 58 pp. Available at:  http://www.eutransportghg2050.eu/cms/assets/UPDATED EU Transport GHG 2050 Paper 3 Technical options for non road modes 30 10 09.pdf.  Hamin E.M., and N. Gurran (2009). Urban form and climate change: Balancing adaptation and  mitigation in the U.S. and Australia, Habitat International 33 238 245 pp. (DOI:  10.1016/j.habitatint.2008.10.005), (ISSN: 0197 3975).  Handy S., M.G. Boarnet, R. Ewing, and R.E. Killingsworth (2002). How the built environment affects  physical activity: Views from urban planning, American Journal of Preventive Medicine 23 64 73 pp.  (DOI: doi: 10.1016/S0749 3797(02)00475 0), (ISSN: 0749 3797).  Hanjra M.A., and M.E. Qureshi (2010). Global water crisis and future food security in an era of  climate change, Food Policy 35 365 377 pp. (DOI: 10.1016/j.foodpol.2010.05.006), (ISSN: 0306 9192).  Hankey, J. M. J., and Brauer, M. (2012). Health impacts of the built environment: within urban  variability in physical inactivity, air pollution, and ischemic heart disease mortality., Environmental  Health Perspectives 120(2) 247 252 pp. .  Hao H., H. Wang, and M. Ouyang (2011). Comparison of policies on vehicle ownership and use  between Beijing and Shanghai and their impacts on fuel consumption by passenger vehicles, Energy  Policy 39 1016 1021 pp. (DOI: 10.1016/j.enpol.2010.11.039), (ISSN: 0301 4215).    83 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Hargroves C., and M. Smith (2008). The Natural Advantage of Nations. Earthscan, London, UK, 576  pp.  De Hartog J.J., H. Boogaard, H. Nijland, and G. Hoek (2010). Do the Health Benefits of Cycling  Outweigh the Risks?, Environmental Health Perspectives 118 1109 1116 pp. (DOI:  10.1289/ehp.0901747), (ISSN: 0091 6765).  Harvey L.D.D. (2012). Global climate oriented transportation scenarios, Energy Policy (DOI:  10.1016/j.enpol.2012.10.053), (ISSN: 0301 4215).  Hawkins T.R., O.M. Gausen, and A.H. Strmman (2012). Environmental impacts of hybrid and  electric vehicles a review, The International Journal of Life Cycle Assessment 17 997 1014 pp. (DOI:  10.1007/s11367 012 0440 9), (ISSN: 0948 3349, 1614 7502).  He J., W. Wu, and Y. Xu (2010). Energy Consumption of Locomotives in China Railways during 1975 2007, Journal of Transportation Systems Engineering and Information Technology 10 22 27 pp. (DOI:  10.1016/S1570 6672(09)60061 1), (ISSN: 1570 6672).  Headicar P. (2013). The Changing Spatial Distribution of the Population in England: Its Nature and  Significance for  Peak Car , Transport Reviews 33 310 324 pp. (DOI:  10.1080/01441647.2013.802751), (ISSN: 0144 1647, 1464 5327).  Heath G.W., R.C. Brownson, J. Kruger, R. Miles, K.E. Powell, and L.T. Ramsey (2006). The  effectiveness of urban design and land use and transport policies and practices to increase physical  activity: a systematic review., Journal of Physical Activity & Health 3.  Henstra D., C. Ruijgrok, and L. Tavasszy (2007). Globalized trade, logistics and intermodality:  European perspectives, Globalized Freight Transport 135 163 pp. .  Highways Agency (2011). Climate Change Risk Assessment. High Ways Agency Media Services.  Hill N., C. Brannigan, R. Smokers, A. Schroten, H. van Essen, and I. Skinner (2012). Developing a  Better Understanding of the Secondary Impacts and Key Sensitivities for the Decarbonisation of the  EU s Transport Sector by 2050. European Commission Directorate   General Climate Action and AEA  Technology, Brussels, Belgium. 112 pp. Available at:  http://www.eutransportghg2050.eu/cms/assets/Uploads/Reports/EU Transport GHG 2050 II Final Report 29Jul12.pdf.  Hill J., S. Polasky, E. Nelson, D. Tilman, H. Huo, L. Ludwig, J. Neumann, H. Zheng, and D. Bonta  (2009). Climate change and health costs of air emissions from biofuels and gasoline, Proceedings of  the National Academy of Sciences 106 2077 2082 pp. (DOI: 10.1073/pnas.0812835106).  Ho J. (2010). The implications of Arctic sea ice decline on shipping, Marine Policy 34 713 715 pp.  (DOI: 10.1016/j.marpol.2009.10.009), (ISSN: 0308 597X).  Hochman G., D. Rajagopal, and D. Zilberman (2010a). The effect of biofuels on crude oil markets,  AgBioForum 13 112 118 pp. . Available at: http://www.agbioforum.org/v13n2/v13n2a03 hochman.htm.  Höjer M., K.H. Dreborg, R. Engström, U. Gunnarsson Östling, and A. Svenfelt (2011a). Experiences  of the development and use of scenarios for evaluating Swedish environmental quality objectives,  Futures 43 498 512 pp. (DOI: 10.1016/j.futures.2011.02.003), (ISSN: 0016 3287).    84 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Höjer M., A. Gullberg, and R. Pettersson (2011b). Images of the Future City: Time and Space for  Sustainable Development. Springer, Dordrecht; Heidelberg [u.a.], 457 pp., (ISBN: 9789400706521  9400706529 9789400706538 9400706537). .  Holland S.P. (2012). Emissions taxes versus intensity standards: Second best environmental policies  with incomplete regulation, Journal of Environmental Economics and Management 63 375 387 pp.  (DOI: 10.1016/j.jeem.2011.12.002), (ISSN: 0095 0696).  Holland S.P., J.E. Hughes, and C.R. Knittel (2009). American Economic Journal: Economic Policy .  Greenhouse Gas Reductions under Low Carbon Fuel Standards?, American Economic Journal:  Economic Policy 1 106 46 pp. . Available at: http://ideas.repec.org/a/aea/aejpol/v1y2009i1p106 46.html.  Hook W. (2003). Preserving and Expanding the Role of Non Motorised Transport. GTZ Transport and  Mobility Group, Eschborn, Germany. 40 pp.  Howarth R.W., R. Santoro, and A. Ingraffea (2011). Methane and the greenhouse gas footprint of  natural gas from shale formations: A letter, Climatic Change 106 679 690 pp. (DOI: 10.1007/s10584 011 0061 5), (ISSN: 0165 0009, 1573 1480).  Howarth R.W., R. Santoro, and A. Ingraffea (2012). Venting and leaking of methane from shale gas  development: response to Cathles et al., Climatic Change 113 537 549 pp. (DOI: 10.1007/s10584 012 0401 0), (ISSN: 0165 0009, 1573 1480).  Hughes J.E., C.R. Knittel, and D. Sperling (2006). Evidence of a Shift in the Short Run Price Elasticity  of Gasoline Demand. National Bureau of Economic Research, Cambridge, USA. 33 pp. Available at:  http://www.nber.org/papers/w12530.  Hultkrantz L., G. Lindberg, and C. Andersson (2006). The value of improved road safety, Journal of  Risk and Uncertainty 32 151 170 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 33646696193&partnerID=40&md5=abf898e93f64ebf18026a62628a86d44.  Hunt A., and P. Watkiss (2011). Climate change impacts and adaptation in cities: a review of the  literature, Climatic Change 104 13 49 pp. . Available at: http://opus.bath.ac.uk/22301/.  Huo H., and M. Wang (2012). Modeling future vehicle sales and stock in China, Energy Policy 43 17 29 pp. (DOI: 10.1016/j.enpol.2011.09.063), (ISSN: 0301 4215).  IATA (2009). Aviation and Climate Change Pathway to Carbon Neutral Growth in 2020. International  Air Transport Association, Geneva. . Available at:  http://www.iata.org/SiteCollectionDocuments/AviationClimateChange_PathwayTo2020_email.pdf.  ICAO (2007a). Safety and Operational Issues Stemming from Dramatic Regional Growth and  Intensifying Environmental Concerns Have Created Challenging Times for Global Aviation.  International Civil Aviation Organisation, Montreal, Canada. 40 pp.  ICAO (2007b). Outlook for Air Transport to the Year 2025. International Civil Aviation Organization,  Quebec, Canada. 58 pp.  ICAO (2010a). Annual Report of the Council. International Civil Aviation Organization, Montreal,  Canada. 160 pp.    85 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    ICAO (2010b). Consolidated Statement of Continuing ICAO Policies and Practices Related to  Environmental Protection  Climate Change. International Civil Aviation Organization, Montreal,  Canada. 20 pp.  ICAO (2012). New ICAO Council High Level Group to Focus on Environmental Policy Challenges.  International Civil Aviation Organization, Montreal, Canada. 1 pp. Available at:  http://www.icao.int/Newsroom/Pages/new ICAO council high level group to focus on environmental policy challenges.aspx.  ICCT (2007). Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: A Global Update.  International Council on Clean Transportation, Washington DC, USA. 36 pp. Available at:  http://www.theicct.org/sites/default/files/publications/PV_standards_2007.pdf.  ICCT (2011). Reducing Greenhouse Gas Emissions from Ships: Cost Effectiveness of Available Options.  24 pp.  ICCT (2012a). Discrepancies between Type Approval and  real World  Fuel Consumption and CO2  Values. International Council on Clean Transportation, Washington DC, USA. 13 pp. Available at:  http://www.theicct.org/sites/default/files/publications/ICCT_EU_fuelconsumption2_workingpaper_ 2012.pdf.  ICCT (2012b). Estimated Cost of Emission Reduction Technologies for Light Duty Vehicles.  International Council on Clean Transportation, Washington DC, USA. 136 pp. Available at:  http://www.theicct.org/sites/default/files/publications/ICCT_LDVcostsreport_2012.pdf.  ICCT (2013). Global passenger vehicle standards, International Council on Clean Transportation .  Available at: http://www.theicct.org/info tools/global passenger vehicle standards.  IEA (2007). Energy Technology Essentials: Hydrogen Production & Distribution. International Energy  Agency, Paris. 4 pp.  IEA (2008). Energy Technology Perspectives   Scenarios & Strategies to 2050. International Energy  Agency, Paris. 650 pp.  IEA (2009a). Transport, Energy and CO2: Moving Toward Sustainability. International Energy Agency,  Paris, France. 418 pp.  IEA (2009b). Transport, Energy and CO2: Moving Toward Sustainability. International Energy Agency,  Paris, France. 418 pp.  IEA (2010a). World Energy Outlook 2010. International Energy Agency, OECD/IEA, Paris, France, 738  pp. Available at: https://www.iea.org/publications/freepublications/publication/weo2010.pdf.  IEA (2010b). Transport Energy Efficiency   Implementation of IEA Recommendations since 2009 and  next Steps. International Energy Agency, Paris, France. 60 pp. Available at:  https://www.iea.org/publications/freepublications/publication/transport_energy_efficiency.pdf.  IEA (2010c). Sustainable Production of Second Generation Biofuels: Potential and Perspectives in  Major Economies and Developing Countries. International Energy Agency, Paris, France. 16 pp.  Available at:  https://www.iea.org/publications/freepublications/publication/biofuels_exec_summary.pdf.    86 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    IEA (2011a). Technology Roadmap. Biofuels for Transport. International Energy Agency, Paris. 56 pp.  Available at: http://www.iea.org/publications/freepublications/publication/bioenergy.pdf.  IEA (2011b). World Energy Outlook 2011. International Energy Agency, OECD/IEA, Paris, 659 pp.,  (ISBN: 978 92 64 12413 4). .  IEA (2011c). Technology Roadmap: Electric and Plug in Hybrid Electric Vehicles (EV/PHEV).  International Energy Agency, Paris. 52 pp. Available at:  http://www.iea.org/publications/freepublications/publication/EV_PHEV_Roadmap.pdf.  IEA (2011d). Renewable Energy: Policy Considerations for Deploying Renewables. International  Energy Agency, Paris. 76 pp. Available at:  http://www.iea.org/publications/freepublications/publication/Renew_Policies.pdf.  IEA (2012a). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. 2012 Edition.  Available at: http://data.iea.org.  IEA (2012b). World Energy Outlook 2012. International Energy Agency, OECD/IEA, Paris, France, 690  pp., (ISBN: 978 92 64 18084 0). .  IEA (2012c). Mobility Model ( Momo ) database   Input data for the Energy Technology  Perspectives 2012 report. International Energy Agency.  IEA (2012d). Technology Roadmap: Fuel Economy of Road Vehicles. International Energy Agency,  Paris. 50 pp. Available at:  http://www.iea.org/publications/freepublications/publication/name,31269,en.html.  IEA (2012e). Energy Technology Perspectives 2012. International Energy Agency, Paris. 690 pp.  IEA (2013). Policy Pathways: A Tale of Renewed Cities. International Energy Agency, Paris, 98 pp.  IEEJ (2011). Asia/World Energy Outlook 2011. The Institute of Energy Economics, Japan. 68 pp.  IISD (2011). IMO environment committee adopts mandatory GHG emission reduction measures. .  Available at: http://climate l.iisd.org/news/imo environment committee adopts mandatory ghg reduction measures/.  IMO (2011). Mandatory energy efficiency measures for international shipping adopted at IMO  Environmental meeting, International Maritime Organization . Available at:  http://www.imo.org/MediaCentre/PressBriefings/Pages/42 mepc ghg.aspx.  IPCC (2007). Climate Change 2007  Mitigation for Climate Change, 4th Assessment Report.  Intergovernmental Panel on Climate Change, Working Group III. Cambridge University Press [B.  Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge and New York, 1076 pp.  Available at: http://www.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html.  ITDP (2009). Bus Rapid Transit Planning Guide. Institute for Transportation and Development Policy,  New York. 45 pp. Available at:  http://www.itdp.org/documents/Bus%20Rapid%20Transit%20Guide%20 %20Part%28Intro%29%202007%2009.pdf.  ITF (2009). Reducing Transport GHG Emissions: Opportunities and Costs. International Transport  Forum. . Available at: http://www.internationaltransportforum.org/Pub/pdf/09GHGsum.pdf.    87 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    ITF (2011). Trends in the Transport Sector. Annual Transport Statistics, International Transport  Forum, OECD/ITF, Paris. 92 pp. Available at:  www.internationaltransportforum.org/statistics/index.html.  ITF/OECD (2010). Moving Freight with Better Trucks. International Transport Forum, Paris, France.  45 pp. Available at:  http://www.internationaltransportforum.org/jtrc/infrastructure/heavyveh/TrucksSum.pdf.  Jacobsen P.L. (2003). Safety in numbers: More walkers and bicyclists, safer walking and bicycling,  Injury Prevention 9 205 209 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 0142139344&partnerID=40&md5=e7b87ddd40a59305865140d0a239d57b.  James S.J., and C. James (2010). The Food Cold Chain and Climate Change, Food Research  International 43 1944 1956 pp. .  Jardine C.N. (2009). Calculating the Carbon Dioxide Emissions of Flights. Environmental Change  Institute, Oxford, UK. 20 pp.  Jewell J., A. Cherp, and K. Riahi (2013). Energy security under de carbonization energy scenarios.,  Energy Policy 65 743 760 pp. .  JHFC (2011). JHFC Phase 2 Final Report. The Japan Hydrogen & Fuel Cell Demonstration Project.  Japan Hydrogen & Fuel Cell Demonstration Project.  JICA (2005). The Master Plan for Lima and Callo Metropolitan Area Urban Transportation in the  Republic of Peru; Chapter 6, Traffic Control and Management Conditions. Transport Council of Lima  and Callo, Ministry of Transportation and Communications of the Republic of Peru.  Johansson T.B., A. Patwardhan, N. Nakicenovic, L. Gomez Echeverri, and International Institute for  Applied Systems Analysis (2012). Global Energy Assessment (GEA). Cambridge University Press ;  International Institute for Applied Systems Analysis, Cambridge; Laxenburg, Austria, (ISBN:  9781107005198  1107005191  9780521182935  052118293X). .  Jollands N., M. Ruth, C. Bernier, and N. Golubiewski (2007). The climate s long term impact on New  Zealand infrastructure (CLINZI) project A case study of Hamilton City, New Zealand, Journal of  Environmental Management 83 460 477 pp. (DOI: 10.1016/j.jenvman.2006.09.022).  Jonkeren O., P. Rietveld, and J. van Ommeren (2007). Climate change and inland waterway  transport   Welfare effects of low water levels on the river Rhine, Journal of Transport Economics  and Policy 41 387 411 pp. (ISSN: 0022 5258).  Joumard R., and H. Gudmundsson (2010). Indicators of Environmental Sustainability in Transport:  An Interdisciplinary Approach to Methods. Institut National de Recherche Sur Les Transports et Leur  Sécurité, Bron, France, 426 pp.  JR East (2011). JR East Group Sustainability Report 2011. East Japanese Railway Company, Tokyo,  Japan. 92 pp.  JRC/PBL (2012). EDGAR version 4.2 FT2010, Joint Research Centre of the European Commission/PBL  Netherlands Environmental Assessment Agency . Available at:  http://edgar.jrc.ec.europa.eu/overview.php?v=42.    88 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Kahn Ribeiro S., and M.J. Figueroa (2012). Energy End Use: Transportation. In: Global Energy  Assessment   Toward a Sustainable Future. International Institute for Applied Systems Analysis and  Cambridge University Press, Vienna, Austria, Cambridge, UK and New York, NY, USA pp.575 648(ISBN: 9780 52118 2935).  Kahn Ribeiro S., and M. Figueroa (2013). Energy Systems . Energy Use in Transport and Sustainable  Development, Current Opinion in Environmental Sustainability.  Kahn Ribeiro S., M.J. Figueroa, F. Creutzig, S. Kobayashi, C. Dubeux, and J. Hupe (2012). Energy  End Use: Transportation. In: The Global Energy Assessment: Toward a more Sustainable Future.  IIASA, Laxenburg, Austria and Cambridge University Press, United Kingdom and New York, USA,  pp.93(ISBN: 9780 52118 2935).  Kahn Ribeiro S, K.S., G.J. Beuthe M,, L.D.S. Greene D,, N.P.J. Muromachi Y,, S.D. Plotkin S,, and  Z.P.J. Wit R, (2007). Transport and its infrastructure. In: Climate Change 2007: Mitigation.  Contribution of Working Group III to the Fourth Assessment. Cambridge University Press, Cambridge,  United Kingdom and New York, USA pp.324 385.  Kaluza P., A. Kölzsch, M.T. Gastner, and B. Blasius (2010). The complex network of global cargo ship  movements, Journal of The Royal Society Interface 7 1093 1103 pp. . Available at:  http://rsif.royalsocietypublishing.org/content/7/48/1093.abstract.  Kamakaté F., and L. Schipper (2009). Trends in truck freight energy use and carbon emissions in  selected OECD countries from 1973 to 2005, Energy Policy 37 3743 3751 pp. (DOI:  10.1016/j.enpol.2009.07.029), (ISSN: 0301 4215).  Kamal Chaoui L., and M. Plouin (2012). Cities and Green Growth: Case Study of the Paris/Ile de France Region. OECD Regional Development, Paris. 143 pp. Available at: http://www.oecd ilibrary.org/governance/oecd regional development working papers_20737009.  Kane L. (2010). Sustainable transport indicators for Cape Town, South Africa: Advocacy, negotiation  and partnership in transport planning practice, Natural Resources Forum 34 289 302 pp. .  Kato H., Y. Hayasi, and K. Jimbo (2005). A Framework for Benchmarking Environmental  Sustainability in Asian Mega Cities, Journal of the Eastern Asian Society for Transportation Studies 6  3214 3249 pp. .  Kawada T. (2011). Noise and Health   Sleep Disturbance in Adults, Journal of Occupational Health  53 413 416 pp. .  Kendall A., and L. Price (2012). Incorporating Time Corrected Life Cycle Greenhouse Gas Emissions  in Vehicle Regulations, Environmental Science & Technology 46 2557 2563 pp. (DOI:  10.1021/es203098j), (ISSN: 0013 936X).  Kennedy C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A.  Phdungsilp, A. Ramaswami, and G.V. Mendez (2009). Greenhouse Gas Emissions from Global Cities,  Environmental Science & Technology 43 7297 7302 pp. (DOI: 10.1021/es900213p), (ISSN: 0013 936X, 1520 5851).  Kennedy C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A.  Phdungsilp, A. Ramaswami, and G.V. Mendez (2011). Greenhouse Gas Emissions from Global Cities,  Environ. Sci. Technol. 43 7297 7302 pp. (DOI: doi: 10.1021/es900213p), (ISSN: 0013 936X).    89 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Kenworthy J.R. (2008). Chapter 9   Energy Use and CO2 Production in the Urban Passenger Transport  Systems of 84 International Cities: Findings and Policy Implications. In: Urban Energy Transition.  Elsevier, Amsterdam pp.211 236(ISBN: 978 0 08 045341 5).  Kenworthy J. (2013). Decoupling Urban Car Use and Metropolitan GDP Growth, World Transport  Policy and Practice 19.  Kim Oanh N.T., M.T. Thuy Phuong, and D.A. Permadi (2012). Analysis of motorcycle fleet in Hanoi  for estimation of air pollution emission and climate mitigation co benefit of technology  implementation, Atmospheric Environment 59 438 448 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84863438570&partnerID=40&md5=bf03bb981b19ddeaee96d820448e25f8.  Kirchstetter T.W., J. Aguiar, S. Tonse, D. Fairley, and T. Novakov (2008). Black carbon  concentrations and diesel vehicle emission factors derived from coefficient of haze measurements in  California: 1967   2003, Atmospheric Environment 42 480 491 pp. (DOI:  10.1016/j.atmosenv.2007.09.063).  Kleiner K. (2007). The shipping forecast, Nature 449 272 273 pp. (DOI: 10.1038/449272a), (ISSN:  0028 0836, 1476 4687).  Kley F., C. Lerch, and D. Dallinger (2011). New business models for electric cars A holistic  approach, Energy Policy 39 3392 3403 pp. (DOI: 10.1016/j.enpol.2011.03.036), (ISSN: 0301 4215).  Knox Hayes J., M.A. Brown, B.K. Sovacool, and Y. Wang (2013). Understanding attitudes toward  energy security: Results of a cross national survey, Global Environmental Change 23 609 622 pp.  (DOI: 10.1016/j.gloenvcha.2013.02.003), (ISSN: 0959 3780).  Kobayashi S., S. Plotkin, and S. Kahn Ribeiro (2009). Energy efficiency technologies for road  vehicles, Energy Efficiency 2 125 137 pp. .  Koetse M.J., and P. Rietveld (2009). The impact of climate change and weather on transport: An  overview of empirical findings, Transportation Research Part D: Transport and Environment 14 205 221 pp. (DOI: 10.1016/j.trd.2008.12.004), (ISSN: 1361 9209).  Kojima K., and L. Ryan (2010). Transport Energy Efficiency   Implementation of IEA  Recommendations since 2009 and next Steps. International Energy Agency, Paris. 60 pp. Available at:  http://ideas.repec.org/p/oec/ieaaaa/2010 9 en.html.  Kok R., J.A. Annema, and B. van Wee (2011). Cost effectiveness of greenhouse gas mitigation in  transport: A review of methodological approaches and their impact, Clean Cooking Fuels and  Technologies in Developing Economies 39 7776 7793 pp. (DOI: 10.1016/j.enpol.2011.09.023), (ISSN:  0301 4215).  Kopp A. (2012). Turning the Right Corner: Ensuring Development Through A Low Carbon Transport  Sector. World Bank, Washington DC. 181 pp.  Krey V., and L. Clarke (2011). Role of renewable energy in climate mitigation: a synthesis of recent  scenarios, Climate Policy 11 1131 1158 pp. (DOI: 10.1080/14693062.2011.579308).  Kromer M.A., and J.B. Heywood (2007). Electric Powertrains: Opportunities and Challenges in the  U.S. Light Duty Vehicle Fleet. Massachusetts Institute of Technology, Cambridge, USA. 157 pp.    90 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Available at: http://web.mit.edu/sloan auto lab/research/beforeh2/files/kromer_electric_powertrains.pdf.  Kuhnimhof T., D. Zumkeller, and B. Chlond (2013). Who Made Peak Car, and How? A Breakdown of  Trends over Four Decades in Four Countries, Transport Reviews 33 325 342 pp. (DOI:  10.1080/01441647.2013.801928), (ISSN: 0144 1647).  Kumar A. (2011). Understanding the Emerging Role of Motorcycles in African Cities: A Political  Economy Perspective. The World Bank.  Kunieda M., and A. Gauthier (2007). Gender and Urban Transport: Smart and Affordable   Module  7a. Sustainable Transport: A Sourcebook for Policy Makers in Developing Cities. Deutsche  Gesellschaft Fur Technische Zusammenarbeit (GTZ), Eschborn, Germany. 50 pp.  Kveiborg O., and M. Fosgerau (2007). Decomposing the decoupling of Danish road freight traffic  growth and economic growth, Transport Policy 14 39 48 pp. (DOI: 10.1016/j.tranpol.2006.07.002),  (ISSN: 0967 070X).  Lack D.A. (2012). Investigation of Appropriate Control Measures (abatement Technologies) to Reduce  Black Carbon Emissions from International Shipping. International Maritime Organization. 118 pp.  Lapola D.M., R. Schaldach, J. Alcamo, A. Bondeau, J. Koch, C. Koelking, and J.A. Priess (2010).  Indirect land use changes can overcome carbon savings from biofuels in Brazil, Proceedings of the  National Academy of Sciences 107 3388 3393 pp. (DOI: 10.1073/pnas.0907318107).  Larsen P.H., S. Goldsmith, O. Smith, M.L. Wilson, K. Strzepek, P. Chinowsky, and B. Saylor (2008).  Estimating future costs for Alaska public infrastructure at risk from climate change, Global  Environmental Change 18 442 457 pp. (DOI: 10.1016/j.gloenvcha.2008.03.005).  Larsen U., T. Johansen, and J. Schramm (2009). Ethanol as a Fuel for Road Transportation.  International Energy Agency, Technical University of Denmark,, Denmark. 115 pp.  Leather J., H. Fabian, S. Gota, and A. Mejia (2011). Walkability and Pedestrian Facilities in Asian  Cities State and Issues. Asian Development Bank, Manila, Philippines. 78 pp.  Leduc G. (2009). Longer and Heavier Vehicles: An Overview of Technical Aspects. Institute for  Prospective Technological Studies, Seville, Spain. 49 pp.  Lee J.J. (2010). Can we accelerate the improvement of energy efficiency in aircraft systems?, Energy  Conversion and Management 51 189 196 pp. (DOI: 10.1016/j.enconman.2009.09.011), (ISSN: 0196 8904).  Lee D.S., D.W. Fahey, P.M. Forster, P.J. Newton, R.C.N. Wit, L.L. Lim, B. Owen, and R. Sausen  (2009). Aviation and global climate change in the 21st century, Atmospheric Environment 43 3520 3537 pp. (DOI: 10.1016/j.atmosenv.2009.04.024), (ISSN: 1352 2310).  Lee D.S., G. Pitari, V. Grewe, K. Gierens, J.E. Penner, A. Petzold, M.J. Prather, U. Schumann, A. Bais,  T. Berntsen, D. Iachetti, L.L. Lim, and R. Sausen (2010). Transport impacts on atmosphere and  climate: Aviation, Atmospheric Environment 44 4678 4734 pp. (DOI:  10.1016/j.atmosenv.2009.06.005), (ISSN: 1352 2310).    91 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Lefevre B. (2009). Long term energy consumptions of urban transportation: A prospective  simulation of  transport land uses  policies in Bangalore, Energy Policy 37 940 953 pp. (DOI:  10.1016/j.enpol.2008.10.036), (ISSN: 0301 4215).  Lefevre B. (2012). Incorporating cities into the post 2012 climate change agreements, Environment  and Urbanization 24 575 595 pp. (DOI: 10.1177/0956247812456359), (ISSN: 0956 2478, 1746 0301).  Leiby P.N. (2007b). Estimating the Energy Security Benefits of Reduced U. S. Oil Imports. Oak Ridge  National Laboratory, Oak Ridge, USA. 38 pp.  Leinert S., H. Daly, B. Hyde, and B.Ó. Gallachóir (2013). Co benefits? Not always: Quantifying the  negative effect of a CO2 reducing car taxation policy on NOx emissions, Energy Policy 63 1151 1159  pp. (DOI: 10.1016/j.enpol.2013.09.063), (ISSN: 0301 4215).  Lescaroux F. (2010). Car Ownership in Relation to Income Distribution and Consumers  Spending  Decisions, Journal of Transport Economics and Policy (JTEP) 44 207 230 pp. . Available at:  http://www.ingentaconnect.com/content/lse/jtep/2010/00000044/00000002/art00005.  Leung G.C.K. (2011). China s energy security: Perception and reality, Energy Policy 39 1330 1337 pp.  (DOI: 10.1016/j.enpol.2010.12.005), (ISSN: 0301 4215).  Leurent F., and E. Windisch (2011). Triggering the development of electric mobility: a review of  public policies, European Transport Research Review 3 221 235 pp. (DOI: 10.1007/s12544 011 0064 3), (ISSN: 1867 0717).  Levinson D.M. (1999). Space, money, life stage, and the allocation of time, Transportation 26 141 171 pp. .  Li J. (2011). Decoupling urban transport from GHG emissions in Indian cities   A critical review and  perspectives, Energy Policy 39 3503 3514 pp. (DOI: 10.1016/j.enpol.2011.03.049), (ISSN: 0301 4215).  Litman T. (2005). Pay As You Drive Pricing and Insurance Regulatory Objectives, Journal of Insurance  Regulation 23 35 53 pp. .  Litman T. (2006). Parking Management: Strategies, Evaluation and Planning. Victoria Transport  Policy Institute.  Litman T. (2007). Developing Indicators for Comprehensive and Sustainable Transport Planning,  Transportation Research Record: Journal of the Transportation Research Board 2017 10 15 pp. (DOI:  10.3141/2017 02).  Liu J., J.A. Curry, H. Wang, M. Song, and R.M. Horton (2012). Impact of declining Arctic sea ice on  winter snowfall, Proceedings of the National Academy of Sciences of the United States of America  109 4074 4079 pp. . Available at: http://www.pnas.org/content/109/11/4074.  Liu M., and J. Kronbak (2010). The potential economic viability of using the Northern Sea Route  (NSR) as an alternative route between Asia and Europe, Journal of Transport Geography 18 434 444  pp. (DOI: 10.1016/j.jtrangeo.2009.08.004), (ISSN: 0966 6923).    92 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Lloyds Register and DNV (2011). Air pollution and energy efficiency: estimated CO2 emissions  reductions from introduction of mandatory technical and operational energy efficiency measures for  ships. International Maritime Organisation.  Loose W. (2010). The State of European Car Sharing. Bundesverband CarSharing E. V., Berlin,  Germany. 129 pp.  Lu L., X. Han, J. Li, J. Hua, and M. Ouyang (2013). A review on the key issues for lithium ion battery  management in electric vehicles, Journal of Power Sources 226 272 288 pp. (DOI:  10.1016/j.jpowsour.2012.10.060), (ISSN: 0378 7753).  De Lucena A.F.P., A.S. Szklo, R. Schaeffer, R.R. de Souza, B.S.M.C. Borba, I.V.L. da Costa, A.O.P.  Júnior, and S.H.F. da Cunha (2009). The vulnerability of renewable energy to climate change in  Brazil, Energy Policy 37 879 889 pp. (DOI: 10.1016/j.enpol.2008.10.029), (ISSN: 0301 4215).  Luckow P., M.A. Wise, J.J. Dooley, and S.H. Kim (2010). Large scale utilization of biomass energy  and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2  concentration limit scenarios, International Journal of Greenhouse Gas Control 4 865 877 pp. (DOI:  10.1016/j.ijggc.2010.06.002), (ISSN: 1750 5836).  Luongo C.A., P.J. Masson, T. Nam, D. Mavris, H.D. Kim, G.V. Brown, M. Waters, and D. Hall (2009).  Next Generation More Electric Aircraft: A Potential Application for HTS Superconductors, IEEE  Transactions on Applied Superconductivity 19 1055 1068 pp. (DOI: 10.1109/TASC.2009.2019021),  (ISSN: 1051 8223, 1558 2515).  Lutsey N., and D. Sperling (2012). Regulatory adaptation: Accommodating electric vehicles in a  petroleum world, Energy Policy 45 308 316 pp. (DOI: 10.1016/j.enpol.2012.02.038), (ISSN: 0301 4215).  Maat K., and T. Arentze (2012). Feedback Effects in the Relationship between the Built Environment  and Travel, disP   The Planning Review 48 6 15 pp. (DOI: 10.1080/02513625.2012.759341), (ISSN:  0251 3625, 2166 8604).  Machado Filho H. (2009). Brazilian low carbon transportation policies: Opportunities for  international support, Climate Policy 9 495 507 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 73649106533&partnerID=40&md5=8828f39e1dbdc479a441d3d28dd5de83.  Maes J., and T. Vanelslander (2011). The Use of Rail Transport as Part of the Supply Chain in an  Urban Logistics Context. In: City Distribution and Urban Freight Transport: Multiple Perspectives.  Edward Elgar Publishers, London pp.217 233.  Maizlish N., J. Woodcock, S. Co, B. Ostro, A. Fanai, and D. Fairley (2013). Health Cobenefits and  Transportation Related Reductions in Greenhouse Gas Emissions in the San Francisco Bay Area,  American Journal of Public Health 103 703 709 pp. (DOI: 10.2105/AJPH.2012.300939), (ISSN: 0090 0036, 1541 0048).  Malina R., D. McConnachie, N. Winchester, C. Wollersheim, S. Paltsev, and I.A. Waitz (2012). The  impact of the European Union Emissions Trading Scheme on US aviation, Journal of Air Transport  Management 19 36 41 pp. (DOI: 10.1016/j.jairtraman.2011.12.004), (ISSN: 09696997).    93 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Maloni M., J.A. Paul, and D.M. Gligor (2013). Slow steaming impacts on ocean carriers and shippers,  Maritime Economics & Logistics 15 151 171 pp. (DOI: 10.1057/mel.2013.2), (ISSN: 1479 2931, 1479 294X).  Marks P. (2009).  Morphing  winglets to boost aircraft efficiency, The New Scientist 201 22 23 pp.  (DOI: 10.1016/S0262 4079(09)60208 6), (ISSN: 0262 4079).  Marshall J.D. (2011). Energy Efficient Urban Form, Environmental Science & Technology 42 3133 3137 pp. (DOI: doi: 10.1021/es087047l), (ISSN: 0013 936X).  Marton Lefevre J. (2012). Rio+20 : Focusing on the solutions. . Available at:  http://www.goodplanet.info/eng/Contenu/Points de vues/Rio 20 Focusing on the solutions/(theme)/1518.  Massari S., and M. Ruberti (2013). Rare earth elements as critical raw materials: Focus on  international markets and future strategies, Resources Policy 38 36 43 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84873251739&partnerID=40&md5=cc64beb523adfb7f59929151d84cd831.  Massink R., M. Zuidgeest, J. Rijnsburger, O.L. Sarmiento, and M. van Maarseveen (2011). The  Climate Value of Cycling, Natural Resources Forum 35 100 111 pp. (DOI: 10.1111/j.1477 8947.2011.01345.x), (ISSN: 01650203).  Matos F.J.F., and F.J.F. Silva (2011). The rebound effect on road freight transport: Empirical  evidence from Portugal, Energy Policy 39 2833 2841 pp. (DOI: 10.1016/j.enpol.2011.02.056), (ISSN:  0301 4215).  Mayor K., and R.S.J. Tol (2010). The impact of European climate change regulations on international  tourist markets, Transportation Research Part D: Transport and Environment 15 26 36 pp. (DOI:  10.1016/j.trd.2009.07.002), (ISSN: 1361 9209).  McCollum D.L., G. Gould, and D.L. Greene (2010). Greenhouse Gas Emissions from Aviation and  Marine Transportation: Mitigation Potential and Policies. . Available at:  http://www.escholarship.org/uc/item/5nz642qb.  McCollum D., and C. Yang (2009). Achieving deep reductions in US transport greenhouse gas  emissions: Scenario analysis and policy implications, Energy Policy 37 5580 5596 pp. (DOI:  10.1016/j.enpol.2009.08.038), (ISSN: 0301 4215).  McCubbin, D.R., Delucchi M.A. (1999). The health costs of motor vehicle related air pollution,  Journal of Transport Economics and Policy 33 253 286 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 0033453278&partnerID=40&md5=e5a6b3277da328c8f5c065b5f83e003b.  McIntosh J., and P. Newman (2012). Value Capture: Financing the Next Rail Revolution. In: Value  Capture: Financing the Next Rail Revolution.  McKinnon A.C. (2007a). Decoupling of Road Freight Transport and Economic Growth Trends in the  UK: An Exploratory Analysis, Transport Reviews 27 37 64 pp. (DOI: 10.1080/01441640600825952),  (ISSN: 0144 1647).    94 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    McKinnon A.C. (2007b). Decoupling of Road Freight Transport and Economic Growth Trends in the  UK: An Exploratory Analysis, Transport Reviews 27 37 64 pp. (DOI: 10.1080/01441640600825952),  (ISSN: 0144 1647, 1464 5327).  McKinnon A. (2010). Green Logistics: the Carbon Agenda, Electronic Scientific Journal of Logistics 6  1 9 pp. . Available at: http://www.logforum.net/pdf/6_3_1_10.pdf.  McKinnon A.C., and A. Kreie (2010). Adaptive logistics: preparing logistical systems for climate  change. In: Proceedings of the Annual Logistics Research Network Conference 2010. Chartered  Institute of Logistics and Transport / University of Leeds, Leeds.  McKinnon A.C., and M. Piecyk (2009). Logistics 2050: Moving Goods by Road in a Very Low Carbon  World. In: Supply Chain Management in a Volatile World. Sweeney, E., Dublin.  McKinnon A., and M. Piecyk (2012). Setting targets for reducing carbon emissions from logistics:  current practice and guiding principles, Carbon Management 3 629 639 pp. (DOI:  10.4155/cmt.12.62), (ISSN: 1758 3004).  Medley A.J., C. M. Wong, T.Q. Thach, S. Ma, T. H. Lam, and H.R. Anderson (2002a).  Cardiorespiratory and all cause mortality after restrictions on sulphur content of fuel in Hong Kong:  an intervention study, The Lancet 360 1646 1652 pp. (DOI: 10.1016/S0140 6736(02)11612 6), (ISSN:  0140 6736).  Metz D. (2010). Saturation of Demand for Daily Travel, Transport Reviews 30 659 674 pp. (DOI:  10.1080/01441640903556361), (ISSN: 0144 1647, 1464 5327).  Metz D. (2013). Peak Car and Beyond: The Fourth Era of Travel, Transport Reviews 33 255 270 pp.  (DOI: 10.1080/01441647.2013.800615), (ISSN: 0144 1647, 1464 5327).  Meyer J.R., J.F. Kain, and M. Wohl (1965). The Urban Transportation Problem. Harvard University  Press, Cambridge, Mass., 427 pp., (ISBN: 0674931211 9780674931213). .  Meyer I., S. Kaniovski, and J. Scheffran (2012). Scenarios for regional passenger car fleets and their  CO2 emissions, Modeling Transport (Energy) Demand and Policies 41 66 74 pp. (DOI:  10.1016/j.enpol.2011.01.043), (ISSN: 0301 4215).  Michalek J.J., M. Chester, P. Jaramillo, C. Samaras, C. S.N. Shiau, and L.B. Lave (2011). Valuation of  plug in vehicle life cycle air emissions and oil displacement benefits, Proceedings of the National  Academy of Sciences 108 16554 16558 pp. (DOI: 10.1073/pnas.1104473108), (ISSN: 0027 8424,  1091 6490).  MIIT (2011). Fuel Consumption Limits for Heavy Duty Commercial Vehicles. Ministry of Industry and  Information Technology (MIIT) of the Government of the People s Republic of China, Beijing.  Mikler J. (2010). Apocalypse now or business as usual? Reducing the carbon emissions of the global  car industry, Cambridge Journal of Regions, Economy and Society 3 407 426 pp. (DOI:  10.1093/cjres/rsq022), (ISSN: 1752 1378, 1752 1386).  Milford R.L., and J.M. Allwood (2010). Assessing the CO2 impact of current and future rail track in  the UK, Transportation Research Part D: Transport and Environment 15 61 72 pp. (ISSN: 1361 9209).    95 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Millard Ball A., and L. Schipper (2011). Are We Reaching Peak Travel? Trends in Passenger Transport  in Eight Industrialized Countries, Transport Reviews 31 357 378 pp. (DOI:  10.1080/01441647.2010.518291), (ISSN: 0144 1647).  Miller D. (2001). Car cultures. . Available at: http://discovery.ucl.ac.uk/117850/.  Millerd F. (2011). The potential impact of climate change on Great Lakes international shipping,  CLIMATIC CHANGE 104 629 652 pp. (DOI: 10.1007/s10584 010 9872 z), (ISSN: 0165 0009).  Milner J., M. Davies, and P. Wilkinson (2012). Urban energy, carbon management (low carbon  cities) and co benefits for human health, Current Opinion in Environmental Sustainability 4 338 404  pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 84867626608&partnerID=40&md5=0b0d86183e33e9aabac3650a84a174b8.  Miranda H. de F., and A.N. Rodrigues da Silva (2012). Benchmarking sustainable urban mobility: The  case of Curitiba, Brazil, Transport Policy 21 141 151 pp. (DOI: 10.1016/j.tranpol.2012.03.009), (ISSN:  0967 070X).  Mock P., J. German, A. Bandivadekar, and I. Riemersma (2012). Discrepancies between type approval and  real world  fuel consumption and CO2 values. International Council on Clean  Transportation. . Available at:  http://www.theicct.org/sites/default/files/publications/ICCT_EU_fuelconsumption2_workingpaper_ 2012.pdf.  Mokhtarian P.L., and C. Chen (2004). TTB or not TTB, that is the question: a review and analysis of  the empirical literature on travel time (and money) budgets, Transportation Research Part A: Policy  and Practice 38 643 675 pp. (DOI: 10.1016/j.tra.2003.12.004), (ISSN: 0965 8564).  Mokhtarian P.L., and R. Meenakshisundaram (2002). Patterns of Telecommuting Engagement and  Frequency: A Cluster Analysis of Telecenter Users, Prometheus 20 21 37 pp. (DOI:  10.1080/08109020110110907), (ISSN: 0810 9028, 1470 1030).  Mokhtarian P.L., and I. Salomon (2001). How derived is the demand for travel? Some conceptual  and measurement considerations, Transportation Research Part A: Policy and Practice 35 695 719  pp. (DOI: 10.1016/S0965 8564(00)00013 6), (ISSN: 0965 8564).  Motallebi N., M. Sogutlugil, E. McCauley, and J. Taylor (2008). Climate change impact on California  on road mobile source emissions, Climatic Change 87 S293 S308 pp. (DOI: 10.1007/s10584 007 9354 0).  Mulalic I., J.N. Van Ommeren, and N. Pilegaard (2013). Wages and commuting: quasi natural  experiments  evidence from firms that relocate, The Economic Journal n/a n/a pp. (DOI:  10.1111/ecoj.12074), (ISSN: 00130133).  Mulley C., and J.D. Nelson (2009). Flexible transport services: A new market opportunity for public  transport, Symposium on Transport and Particular Populations 25 39 45 pp. (DOI:  10.1016/j.retrec.2009.08.008), (ISSN: 0739 8859).  Naess P. (2006). Urban Structure Matters: Residential Location, Car Dependence and Travel  Behaviour. Routledge, Oxfordshire, UK, 328 pp., (ISBN: 978 0415375740). .  Nantulya, V.M., Reich M.R. (2002). The neglected epidemic: Road traffic injuries in developing  countries, British Medical Journal 324 1139 1141 pp. . Available at:    96 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    http://www.scopus.com/inward/record.url?eid=2 s2.0 0037062095&partnerID=40&md5=1e876ab09e1717b5b75e30c9c4e96726.  De Nazelle A., M.J. Nieuwenhuijsen, J.M. Antó, M. Brauer, D. Briggs, C. Braun Fahrlander, N. Cavill,  A.R. Cooper, H. Desqueyroux, S. Fruin, G. Hoek, L.I. Panis, N. Janssen, M. Jerrett, M. Joffe, Z.J.  Andersen, E. van Kempen, S. Kingham, N. Kubesch, K.M. Leyden, J.D. Marshall, J. Matamala, G.  Mellios, M. Mendez, H. Nassif, D. Ogilvie, R. Peiró, K. Pérez, A. Rabl, M. Ragettli, D. Rodríguez, D.  Rojas, P. Ruiz, J.F. Sallis, J. Terwoert, J. F. Toussaint, J. Tuomisto, M. Zuurbier, and E. Lebret (2011).  Improving health through policies that promote active travel: A review of evidence to support  integrated health impact assessment, Environment International 37 766 777 pp. (DOI:  10.1016/j.envint.2011.02.003), (ISSN: 0160 4120).  Network Rail (2009). Comparing Environmental Impact of Conventional and High Speed Rail. New  Lines Rail, London, UK. 68 pp. Available at: http://www.networkrail.co.uk/newlinesprogramme/.  Newman P., T. Beatley, and H. Boyer (2009). Resilient Cities: Responding to Peak Oil and Climate  Change. Island Press, Washington, DC, 166 pp.  Newman P., and J. Kenworthy (1996). The land use   transport connection : An overview, Land Use  Policy 13 1 22 pp. (DOI: doi: 10.1016/0264 8377(95)00027 5), (ISSN: 0264 8377).  Newman P., and J. Kenworthy (1999). Sustainability and Cities: Overcoming Automobile  Dependence. Island Press, Washington, D.C., 464 pp.  Newman P., and J. Kenworthy (2006). Urban Design to Reduce Automobile Dependence, Opolis 2  35 52 pp. .  Newman P., and J. Kenworthy (2011a). Evaluating the Transport Sector s Contribution to  Greenhouse Gas Emissions and Energy Consumption. In: Technologies for Climate Change Mitigation   Transport Sector. UNEP Riso Center, pp.7 23. Available at: http://www.uneprisoe.org/TNA Guidebook Series.  Newman P., and J. Kenworthy (2011b). Peak car use   understanding the demise of automobile  dependence, World Transport Policy and Practice 17 31 42 pp. . Available at: http://www.eco logica.co.uk/pdf/wtpp17.2.pdf.  Newman P., and A. Matan (2013a). Green Urbanism in Asia. World Scientific, Singapore.  Newman P., and A. Matan (2013b). Green Urbanism in Asia : The Emerging Green Tigers. World  Scientific, Singapore, 243 pp., (ISBN: 9789814425476  9814425478). .  Nielsen J.O., and H. Vigh (2012). Adaptive lives. Navigating the global food crisis in a changing  climate, Global Environmental Change 22 659 669 pp. (DOI: 10.1016/j.gloenvcha.2012.03.010),  (ISSN: 0959 3780).  Noland R.B. (2001). Relationships between highway capacity and induced vehicle travel,  Transportation Research Part A: Policy and Practice 35 47 72 pp. (DOI: 10.1016/S0965 8564(99)00047 6), (ISSN: 0965 8564).  Noland R.B., and L.L. Lem (2002). A review of the evidence for induced travel and changes in  transportation and environmental policy in the US and the UK, Transportation Research Part D:  Transport and Environment 7 1 26 pp. (DOI: 10.1016/S1361 9209(01)00009 8).    97 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Notteboom T.E., and B. Vernimmen (2009). The effect of high fuel costs on liner service  configuration in container shipping, Journal of Transport Geography 17 325 337 pp. (DOI:  10.1016/j.jtrangeo.2008.05.003), (ISSN: 0966 6923).  Notter D.A., M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, and H. J. Althaus (2010).  Contribution of Li Ion Batteries to the Environmental Impact of Electric Vehicles, Environmental  Science & Technology 44 6550 6556 pp. (DOI: 10.1021/es903729a), (ISSN: 0013 936X).  NRC (2009). Driving and the Built Environment:The Effects of Compact Development on Motorized  Travel, Energy Use, and CO2 Emissions. National Academies Press, Washington, DC. . Available at:  http://www.nap.edu/openbook.php?record_id=12747.  NRC (2010a). Technologies and Approaches to Reducing the Fuel Consumption of Medium  and  Heavy Duty Vehicles. National Academies Press, Washington, D.C. 250 pp. Available at:  http://www.nap.edu/catalog.php?record_id=12845.  NRC (2010b). Technologies and Approaches to Reducing the Fuel Consumption of Medium  and  Heavy Duty Vehicles. National Academies Press, Washington, D.C. 250 pp.  NRC (2011a). Assessment of Fuel Economy Technologies for Light Duty Vehicles. US National  Research Council, Washington, D.C. 232 pp.  NRC (2011b). Bicycles 2011. Transportation Research Board, Washington, D.C., 125 pp., (ISBN:  9780309167673 0309167671). .  NRC (2011c). Policy Options for Reducing Energy Use and Greenhouse Gas Emissions from U.S.  Transportation:Special Report 307. The National Academies Press, Washington, D.C. 224 pp.  Available at: http://www.nap.edu/openbook.php?record_id=13194.  NRC (2013). Transitions to Alternative Vehicles and Fuels. National Academies Press, Washington,  D.C, 170 pp., (ISBN: 9780309268523). .  NTM (2011). Environmental data for international cargo and passenger air transport: calculation  methods, emission factors, mode specific issues. Network for Transport and Environment,  Stockholm. . Available at: www.ntmcalc.org.  NTM (2012). NTM CALC 4. . Available at: http://www.ntmcalc.org/index.html.  NYC (2012). NYC DOT   Bicyclists   Network and Statistics. . Available at:  http://www.nyc.gov/html/dot/html/bicyclists/bikestats.shtml.  Oberhofer P., and E. Fürst (2012). Environmental management in the transport sector: findings of a  quantitative survey, EuroMed Journal of Business 7 268 279 pp. (DOI:  10.1108/14502191211265325), (ISSN: 1450 2194).  OECD (2000). Environmentally Sustainable Transport: Future, Strategies and Best Practice.  Organization of Economic Co Operation and Development, Paris. 146 pp.  OECD (2011). Green Growth Indicators. OECD Publishing, Paris.  OECD (2012). Compact City Policies: A Comparative Assessment. OECD Publishing, Paris. 284 pp.    98 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    OECD, and UNEP (2011). Climate Change and Tourism Policy in OECD Countries. Organisation for  Economic Co Operation and Development / United Nations Environment Programme, Geneva. 100  pp.  Ogden J., and A. Lorraine (Eds.) (2011). Sustainable Transportation Energy Pathways. A Research  Summary for Decision Makers. Institute of Transportation Studies, University of California, Davis,  California, 333 pp. Available at: http://steps.ucdavis.edu/files/09 06 2013 STEPS Book A Research Summary for Decision Makers Sept 2011.pdf.  Ogden J., and M. Nicholas (2011). Analysis of a  cluster  strategy for introducing hydrogen vehicles in  Southern California, Energy Policy 39 1923 1938 pp. (DOI: 10.1016/j.enpol.2011.01.005), (ISSN:  0301 4215).  Ogden J.M., R.H. Williams, and E.D. Larson (2004). Societal lifecycle costs of cars with alternative  fuels/engines, Energy Policy 32 7 27 pp. (DOI: doi: 10.1016/S0301 4215(02)00246 X), (ISSN: 0301 4215).  Olaru D., B. Smith, and J.H.E. Taplin (2011). Residential location and transit oriented development  in a new rail corridor, Transportation Research Part A: Policy and Practice 45 219 237 pp. (DOI: doi:  10.1016/j.tra.2010.12.007), (ISSN: 0965 8564).  Oltean Dumbrava C., G. Watts, and A. Miah (2013). Transport infrastructure: making more  sustainable decisions for noise reduction, Journal of Cleaner Production 42 58 68 pp. (DOI:  10.1016/j.jclepro.2012.10.008), (ISSN: 0959 6526).  Owens S. (1995). From  predict and provide  to  predict and prevent ?: Pricing and planning in  transport policy, Transport Policy 2 43 49 pp. (DOI: 10.1016/0967 070X(95)93245 T), (ISSN: 0967 070X).  Oxley T., A. Elshkaki, L. Kwiatkowski, A. Castillo, T. Scarbrough, and H. ApSimon (2012). Pollution  abatement from road transport: cross sectoral implications, climate co benefits and behavioural  change, Environmental Science & Policy 19 20 16 32 pp. (DOI: 10.1016/j.envsci.2012.01.004), (ISSN:  1462 9011).  Pacca S., and J.R. Moreira (2011). A Biorefinery for Mobility?, Environmental Science & Technology  45 9498 9505 pp. (DOI: 10.1021/es2004667), (ISSN: 0013 936X, 1520 5851).  Pandey R. (2006). Looking beyond inspection and maintenance in reducing pollution from in use  vehicles, Environmental Economics and Policy Studies 7 435 457 pp. .  Panteia (2013). Contribution to Impact Assessment: Of Measures for Reducing Emissions of Inland  Navigation. European Commission Directorate General for Transport. European Commission  Directorate General for Transport, Zoetermeer, Netherlands. 241 pp.  Park Y., and H. K. Ha (2006). Analysis of the impact of high speed railroad service on air transport  demand, Transportation Research Part E: Logistics and Transportation Review 42 95 104 pp. (DOI:  10.1016/j.tre.2005.09.003), (ISSN: 1366 5545).  Parkany E., R. Gallagher, and Viveiros (2004). Are attitudes important in travel choice?,  Transportation Research Record 1894 127 139 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 19944381891&partnerID=40&md5=d7f2e80c556b74b7e95e62227c5092cb.    99 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Peeters P.M., and G. Dubois (2010). Tourism travel under climate change mitigation constraints,  Journal of Transport Geography 18 447 457 pp. (DOI: 10.1016/j.jtrangeo.2009.09.003).  Pels E., and E.T. Verhoef (2004). The economics of airport congestion pricing, Journal of Urban  Economics 55 257 277 pp. (DOI: doi: 10.1016/j.jue.2003.10.003), (ISSN: 0094 1190).  Pendakur V. (2011). Non motorized urban transport as neglected modes. In: Urban transport in the  developing world. H. Dimitriou, R. Gakenheimer, (eds.), Edward Elgar, Cheltenham, UK pp.203 231.  Pianoforte K. (2008). Marine coatings market: Increasing fuel efficiency through the  use of  innovative antifouling coatings is a key issue for ship owners and operators. Coatings World.  Pidol L., B. Lecointe, L. Starck, and N. Jeuland (2012). Ethanol biodiesel Diesel fuel blends:  Performances and emissions in conventional Diesel and advanced Low Temperature Combustions,  Fuel 93 329 338 pp. (DOI: 10.1016/j.fuel.2011.09.008), (ISSN: 0016 2361).  Pietzcker R., T. Longden, W. Chen, F. Sha, E. Kriegler, P. Kyle, and G. Luderer (2013). Long term  transport energy demand and climate policy: Alternative visions on Transport decarbonization in  Energy Economy Models, Energy 64 95 108 pp. .  Plevin R.J., M. O Hare, A.D. Jones, M.S. Torn, and H.K. Gibbs (2010). Greenhouse Gas Emissions  from Biofuels  Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously  Estimated, Environmental Science & Technology 44 8015 8021 pp. (DOI: 10.1021/es101946t), (ISSN:  0013 936X).  Plotkin S., D. Santini, A. Vyas, J. Anderson, M. Wang, J. He, and D. Bharathan (2001). Hybrid Electric  Vehicle Technology Assessment: Methodology, Analytical Issues, and Interim Results. Argonne  National Laboratory. . Available at: http://www.transportation.anl.gov/pdfs/TA/244.pdf.  Plotkin S.E., M.K. Singh, and Ornl (2009). Multi Path Transportation Futures Study : Vehicle  Characterization and Scenario Analyses. Available at: http://www.osti.gov/servlets/purl/968962 2I2Sit/.  Pratt L., L. Rivera, and A. Bien (2011). Tourism: investing in energy and resource efficiency. In:  Towards a Green Economy. United Nations Environment Programme, Nairobi, Kenya pp.410 446(ISBN: 978 92 807 3143 9).  Preston H., D.S. Lee, and P.D. Hooper (2012). The inclusion of the aviation sector within the  European Union s Emissions Trading Scheme: What are the prospects for a more sustainable aviation  industry?, Environmental Development 2 48 56 pp. (DOI: 10.1016/j.envdev.2012.03.008), (ISSN:  2211 4645).  Pridmore A., and A. Miola (2011). Public Acceptability of Sustainable Transport Measures: A Review  of the Literature Discussion Paper No. 2011 20. OECD. . Available at:  http://www.internationaltransportforum.org/jtrc/DiscussionPapers/DP201120.pdf.  Prinn R., R. Weiss, P. Fraser, P. Simmonds, D. Cunnold, F. Alyea, S. O Doherty, P. Salameh, B.  Miller, J. Huang, R. Wang, D. Hartley, C. Harth, L. Steele, G. Sturrock, P. Midgley, and A. McCulloch  (2000). A history of chemically and radiatively important gases in air deduced from  ALE/GAGE/AGAGE, Journal of Geophysical Research Atmospheres 105 17751 17792 pp. (DOI:  10.1029/2000JD900141), (ISSN: 0747 7309).    100 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Pucher J., and R. Buehler (2006). Why Canadians cycle more than Americans: A comparative analysis  of bicycling trends and policies, Transport Policy 13 265 279 pp. (DOI:  10.1016/j.tranpol.2005.11.001), (ISSN: 0967 070X).  Pucher J., and R. Buehler (2008). Making Cycling Irresistible: Lessons from The Netherlands,  Denmark and Germany, Transport Reviews 28 495 528 pp. (DOI: 10.1080/01441640701806612),  (ISSN: 0144 1647, 1464 5327).  Pucher J., and R. Buehler (2010). Walking and Cycling for Healthy Cities, Built Environment 36 391 414 pp. (DOI: 10.2148/benv.36.4.391).  Pucher J., R. Buehler, D.R. Bassett, and A.L. Dannenberg (2010). Walking and Cycling to Health: A  Comparative Analysis of City, State, and International Data, American Journal of Public Health 100  1986 1992 pp. (DOI: 10.2105/AJPH.2009.189324), (ISSN: 0090 0036, 1541 0048).  Pucher J., R. Buehler, and M. Seinen (2011). Bicycling renaissance in North America? An update and  re appraisal of cycling trends and policies, Transportation Research Part A: Policy and Practice 45  451 475 pp. (DOI: 10.1016/j.tra.2011.03.001), (ISSN: 0965 8564).  Pyrialakou V.D., M.G. Karlaftis, and P.G. Michaelides (2012). Assessing operational efficiency of  airports with high levels of low cost carrier traffic, Journal of Air Transport Management 25 33 36  pp. (DOI: 10.1016/j.jairtraman.2012.05.005), (ISSN: 09696997).  Pyrialakou V.D., M.G. Karlaftis, and P.G. Michaelides. Assessing operational efficiency of airports  with high levels of low cost carrier traffic, Journal of Air Transport Management (DOI:  10.1016/j.jairtraman.2012.05.005).  Rabl A., and A. de Nazelle (2012). Bene ts of shift from car to active transport, Transport Policy 19  121 131 pp. (DOI: 10.1016/j.tranpol.2011.09.008).  Rajagopal D., G. Hochman, and D. Zilberman (2011a). Indirect fuel use change (IFUC) and the  lifecycle environmental impact of biofuel policies, Energy Policy 39 228 233 pp. (ISSN: 0301 4215).  Rakopoulos C. (1991). INFLUENCE OF AMBIENT TEMPERATURE AND HUMIDITY ON THE  PERFORMANCE AND   EMISSIONS OF NITRIC OXIDE AND SMOKE OF HIGH SPEED DIESEL ENGINES IN  THE   ATHENS GREECE REGION, Energy Conversion and Management 31 447 458 pp. (DOI:  10.1016/0196 8904(91)90026 F).  Ramanathan V., and G. CaRmiChael (2008). Global and regional climate changes due to black  carbon, Nature Geoscience 4 221 227 pp. . Available at:  http://www.nature.com/ngeo/journal/v1/n4/abs/ngeo156.html.  Ramani T., J. Zietsman, H. Gudmundsson, R. Hall, and G. Marsden (2011). A Generally Applicable  Sustainability Assessment Framework for Transportation Agencies, Transportation Research Record:  Journal of the Transportation Research Board 2242 9 18 pp. .  Randles S., and S. Mander (2009). Aviation, consumption and the climate change debate:  Are you  going to tell me off for flying? , Technology analysis & strategic management 21 93 113 pp. .  Rao P., and D. Holt (2005). Do green supply chains lead to competitiveness and economic  performance?, International Journal of Operations & Production Management 25 898 916 pp. (DOI:  10.1108/01443570510613956), (ISSN: 0144 3577).    101 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Rao Z., and S. Wang (2011). A review of power battery thermal energy management, Renewable  and Sustainable Energy Reviews 15 4554 4571 pp. (DOI: 10.1016/j.rser.2011.07.096), (ISSN: 1364 0321).  REN21 (2012). Renewables 2012. Global Status Report. Renewable Energy for the 21st Century,  Paris. 172 pp. Available at:  http://www.ren21.net/REN21Activities/Publications/GlobalStatusReport/tabid/5434/Default.aspx.  Rich J., O. Kveiborg, and C.O. Hansen (2011). On structural inelasticity of modal substitution in  freight transport, Journal of Transport Geography 19 134 146 pp. (DOI:  10.1016/j.jtrangeo.2009.09.012), (ISSN: 0966 6923).  Rickwood P., G. Glazebrook, and G. Searle (2011). Urban Structure and Energy   A Review, Urban  Policy and Research 26 57 81 pp. (DOI: doi: 10.1080/08111140701629886), (ISSN: 0811 1146).  Rogelj J., D.L. McCollum, B.C. O/ Neill, and K. Riahi (2013). 2020 emissions levels required to limit  warming to below 2°C, Nature Climate Change 3 405 412 pp. (DOI: 10.1038/nclimate1758), (ISSN:  1758 6798).  Rojas Rueda D., A. de Nazelle, M. Tainio, and M.J. Nieuwenhuijsen (2011a). The health risks and  benefits of cycling in urban environments compared with car use: health impact assessment study,  British Medical Journal 343 1 8 pp. (DOI: http://dx.doi.org/10.1136/bmj.d4521).  Rojas Rueda D., A. de Nazelle, O. Teixidó, and M.J. Nieuwenhuijsen (2012). Replacing car trips by  increasing bike and public transport in the greater Barcelona metropolitan area: A health impact  assessment study, Environment International 49 100 109 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84866515038&partnerID=40&md5=f902551906abd1a9ebb80403535edcec.  Rojas Rueda D., A. de Nazelle, M. Tainio, and M.J. Nieuwenhuijsen (2011b). The health risks and  benefits of cycling in urban environments compared with car use: health impact assessment study,  British Medical Journal 343 1 8 pp. .  Roustan Y., M. Pausader, and C. Seigneur (2011). Estimating the effect of on road vehicle emission  controls on future air   quality in Paris, France, Atmospheric Environment 45 6828 6836 pp. (DOI:  10.1016/j.atmosenv.2010.10.010).  Von Rozycki C., H. Koeser, and H. Schwarz (2003). Ecology profile of the German high speed rail  passenger transport system, ICE, International Journal of Life Cycle Analysis 8 83 91 pp. .  Rybeck R. (2004). Using Value Capture to Finance Infrastructure and Encourage Compact  Development, Public Works Management & Policy 8 249 260 pp. (DOI:  10.1177/1087724X03262828), (ISSN: 1087724X, 00000000).  SAE International (2011). Automotive Engineering International Online. . Available at:  http://www.sae.org/mags/aei/.  Saelens, B.E., Sallis, J.F., Frank L.D. (2003). Environmental correlates of walking and cycling: Findings  from the transportation, urban design, and planning literatures, Annals of Behavioral Medicine 25  80 91 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 0037877920&partnerID=40&md5=fe4f6b0d4b2054e702e15283aeeeb3ff.    102 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Saelensminde K. (2004). Cost benefit analyses of walking and cycling track networks taking into  account insecurity, health effects and external costs of motorized traffic, Transportation Research  Part A: Policy and Practice 38 593 606 pp. (DOI: 10.1016/j.tra.2004.04.003), (ISSN: 0965 8564).  SAFED (2013). Safe and fuel efficient driving (SAFED) programme. UK Road Safety. . Available at:  http://www.uk roadsafety.co.uk/safed.htm.  Sagevik (2006). Transport and Climate Change. International Union of Railways, London, UK. .  Available at: http://www.rtcc.org/2007/html/soc_transport_uic.html.  Sakamoto K., H. Dalkmann, and D. Palmer (2010). A Paradigm Shift towards Sustainable  Low Carbon Transport. Institute for Transportation & Development Policy, New York, USA. 66 pp.  Sallis J.F., B.E. Saelens, L.D. Frank, T.L. Conway, D.J. Slymen, K.L. Cain, J.E. Chapman, and J. Kerr.  Neighborhood built environment and income: Examining multiple health outcomes, Social Science &  Medicine 68 1285 1293 pp. (DOI: DOI: 10.1016/j.socscimed.2009.01.017).  Salon D., M.G. Boarnet, S. Handy, S. Spears, and G. Tal (2012). How do local actions affect VMT? A  critical review of the empirical evidence, Transportation Research Part D: Transport and Environment  17 495 508 pp. (DOI: 10.1016/j.trd.2012.05.006), (ISSN: 1361 9209).  Salter R., S. Dhar, and P. Newman (2011). Technologies for Climate Change Mitigation   Transport.  United Nations Environment Program Riso Centre for Energy, Climate and Sustainable Development,  Denmark. 250 pp.  Santos G., H. Behrendt, L. Maconi, T. Shirvani, and A. Teytelboym (2010a). Part I: Externalities and  economic policies in road transport, Research in Transportation Economics 28 2 45 pp. (DOI:  10.1016/j.retrec.2009.11.002), (ISSN: 0739 8859).  Santos G., H. Behrendt, and A. Teytelboym (2010b). Part II: Policy instruments for sustainable road  transport, Research in Transportation Economics 28 46 91 pp. (DOI: 10.1016/j.retrec.2010.03.002),  (ISSN: 0739 8859).  Sathaye J., O. Lucon, A. Rahman, J. Christensen, F. Denton, J. Fujino, G. Heath, S. Kadner, M. Mirza,  H. Rudnick, A. Schlaepfer, and A. Shmakin (2011b). Renewable Energy in the Context of Sustainable  Development. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation  [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge,  UK and New York, NY, USA pp.707 789.  Schäfer A. (2009). Transportation in a Climate Constrained World. MIT Press, Cambridge, Mass., 356  pp., (ISBN: 9780262012676  0262012677  9780262512343  0262512343). .  Schäfer A. (2011). The Future of Energy for Urban Transport. In: Urban Transport in the Developing  World: A Handbook of Policy and Practice. Edward Elgar, Northampton, MA pp.113 136(ISBN: 978 0  85793 139 9).  Schäfer A., J.B. Heywood, H.D. Jacoby, and I. Waitz (2009a). Transportation in a Climate Constrained World. MIT Press, 356 pp., (ISBN: 978 0 262 51234 3). .  Schafer A., and D.G. Victor (2000). The future mobility of the world population, Transportation  Research Part A: Policy and Practice 34 171 205 pp. . Available at:    103 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    http://www.scopus.com/inward/record.url?eid=2 s2.0 0034083333&partnerID=40&md5=35370cd2eba8b4c48aef18b8dfc8dc7a.  Schepers P., M. Hagenzieker, R. Methorst, B. van Wee, and F. Wegman (2013). A conceptual  framework for road safety and mobility applied to cycling safety, Accident Analysis & Prevention 62  331 340 pp. .  Schiller P.L., E.C. Brun, and J.R. Kenworthy (2010). An Introduction to Sustainable Transport: Policy,  Planning and Implementation. Earthscan, London, 342 pp.  Schipper L. (2011). Automobile use, fuel economy and CO(2) emissions in industrialized countries:  Encouraging trends through 2008?, TRANSPORT POLICY 18 358 372 pp. (DOI:  10.1016/j.tranpol.2010.10.011), (ISSN: 0967 070X).  Schipper L., E. Deakin, C. McAndrews, L. Scholl, and K.T. Frick (2009). Considering Climate Change in  Latin American and Caribbean Urban Transportation: Concepts, Applications, and Cases. University  of California, Berkeley, USA. 112 pp.  Schipper L., and L. Fulton (2012). Dazzled by diesel? The impact on carbon dioxide emissions of the  shift to diesels in Europe through 2009, Energy Policy 54 3 10 pp. (DOI:  10.1016/j.enpol.2012.11.013), (ISSN: 0301 4215).  Schipper L., C. Marie Lilliu, and R. Gorham (2000). Flexing the Link Between Tranport and Green  House Gas Emissions. International Energy Agency, Paris, France. 86 pp.  Schoon C., and C. Huijskens (2011). Traffic Safety Consequences of Electrically Powered Vehicles.  SWOV, Leidschendam, NL. 50 pp. Available at: http://www.swov.nl/rapport/R 2011 11.pdf.  Schyen H., and S. Brathen (2011). The Northern Sea Route versus the Suez Canal: cases from bulk  shipping, Journal of Transport Geography 19 977 983 pp. (DOI: 10.1016/j.jtrangeo.2011.03.003),  (ISSN: 0966 6923).  Schrank D., T. Lomax, and W. Eisele (2011). 2011 URBAN MOBILITY REPORT. Texas Transportation  Institute, Texas, USA. 141 pp. Available at: http://www.news press.com/assets/pdf/A4179756927.PDF.  Servaas M. (2000). The significance of non motorised transport for developing countries.  Commissioned by the World Bank.  Shah Y.T. (2013). Biomass to Liquid Fuel via Fischer Tropsch and Related Syntheses. In: Advanced  Biofuels and Bioproducts. J.W. Lee, (ed.), Springer New York, New York, NY pp.185 208(ISBN: 978 1 4614 3347 7, 978 1 4614 3348 4).  Shaheen S., S. Guzman, and H. Zhang (2010). Bikesharing in Europe, the Americas, and Asia   Past,  Present, and Future, Transportation Research Record: Journal of the Transportation Research Board  2143 159 167 pp. .  Shakya S.R., and R.M. Shrestha (2011). Transport sector electrification in a hydropower resource  rich developing country: Energy security, environmental and climate change co benefits, Energy for  Sustainable Development 15 147 159 pp. (DOI: 10.1016/j.esd.2011.04.003), (ISSN: 0973 0826).    104 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Shalizi Z., and F. Lecocq (2009). Climate Change and the Economics of Targeted Mitigation in Sectors  with Long Lived Capital Stock. World Bank, Washington DC, USA. 41 pp. Available at:  http://ssrn.com/paper=1478816.  Sharpe R. (2010). Technical GHG Reduction Options for Fossil Fuel Based Road Transport. European  Commission Directorate General Environment, Brussels, Belgium. 50 pp. Available at:  http://www.eutransportghg2050.eu/cms/assets/Paper 1 preliminary.pdf.  Sheller M. (2004). Automotive Emotions: Feeling the Car, Theory, Culture & Society 21 221 242 pp.  (DOI: 10.1177/0263276404046068), (ISSN: 0263 2764, 1460 3616).  Shindell D.T., J.F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P.J. Young, Y.H. Lee, L.  Rotstayn, N. Mahowald, G. Milly, G. Faluvegi, Y. Balkanski, W.J. Collins, A.J. Conley, S. Dalsoren, R.  Easter, S. Ghan, L. Horowitz, X. Liu, G. Myhre, T. Nagashima, V. Naik, S.T. Rumbold, R. Skeie, K.  Sudo, S. Szopa, T. Takemura, A. Voulgarakis, J.H. Yoon, and F. Lo (2013). Radiative forcing in the  ACCMIP historical and future climate simulations, Atmospheric Chemistry and Physics 13 2939 2974  pp. (DOI: 10.5194/Acp 13 2939 2013), (ISSN: 1680 7316).  Short J., and A. Kopp (2005). Transport infrastructure: Investment and planning. Policy and research  aspects, Transport Policy 12 360 367 pp. (DOI: 10.1016/j.tranpol.2005.04.003), (ISSN: 0967 070X).  Shoup D.C. (2011). The High Cost of Free Parking. Planners Press, American Planning Association,  Chicago, 765 pp., (ISBN: 9781932364965). .  Sietchiping R., M.J. Permezel, and C. Ngomsi (2012). Transport and mobility in sub Saharan African  cities: An overview of practices, lessons and options for improvements, Special Section: Urban  Planning in Africa (pp. 155 191) 29 183 189 pp. (DOI: 10.1016/j.cities.2011.11.005), (ISSN: 0264 2751).  Simaiakis I., and H. Balakrishnan (2010). Impact of Congestion on Taxi Times, Fuel Burn, and  Emissions at Major Airports, Transportation Research Record: Journal of the Transportation Research  Board 2184 22 30 pp. (DOI: 10.3141/2184 03).  Sims R., P. Mercado, W. Krewitt, G. Bhuyan, D. Flynn, H. Holttinen, G. Jannuzzi, S. Khennas, Y. Liu,  M. O Malley, L.J. Nilsson, J. Ogden, K. Ogimoto, H. Outhred, O. Ullberg, and F. van Hulle (2011).  Integration of Renewable Energy into Present and Future Energy Systems. In: IPCC Special Report on  Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von  Stechow (eds)]. IPCC, Cambridge, United Kingdom and New York, NY, USA pp.609 705.  Skinner I., H. van Essen, H. Smokers, and N. Hill (2010a). Towards the Decarbonisation of EU s  Transport Sector by 2050. European Commission Directorate General Environment and AEA  Technology, Brussels, Belgium. 99 pp. Available at:  http://www.eutransportghg2050.eu/cms/assets/EU Transport GHG 2050 Final Report 22 06 10.pdf.  Small K.A. (2012). Energy policies for passenger motor vehicles, Transportation Research Part A:  Policy and Practice 46 874 889 pp. (DOI: 10.1016/j.tra.2012.02.017), (ISSN: 09658564).  Small K., and K. van Dender (2007). Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound  Effect, Energy Journal 28 25 51 pp. .    105 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Small K.A., and E.T. Verhoef (2007). The Economics of Urban Transportation. Routledge, New York,  276 pp., (ISBN: 9780415285155  0415285151  9780415285148 0415285143 9780203642306   0203642309). .  Sonkin B., P. Edwards, I. Roberts, and J. Green (2006). Walking, cycling and transport safety: an  analysis of child road deaths, Journal of the Royal Society of Medicine 99 402 405 pp. (DOI:  10.1258/jrsm.99.8.402), (ISSN: 0141 0768).  Sorrell S., M. Lehtonen, L. Stapleton, J. Pujol, and Toby Champion (2012). Decoupling of road  freight energy use from economic growth in the United Kingdom, Modeling Transport (Energy)  Demand and Policies 41 84 97 pp. (DOI: 10.1016/j.enpol.2010.07.007), (ISSN: 0301 4215).  Sorrell S., and J. Speirs (2009). UKERC Review of Evidence on Global Oil Depletion   Technical Report  1: Data Sources and Issues. UK Energy Research Centre, Sussex/ London, UK. 53 pp.  Sousanis J. (2011). World Vehicle Population Tops 1 Billion, WardsAuto . Available at:  http://wardsauto.com/ar/world_vehicle_population_110815.  Sovacool B.K., and M.A. Brown (2010). Competing Dimensions of Energy Security: An International  Perspective. In: Annual Review of Environment and Resources, Vol 35. A. Gadgil, D.M. Liverman,  (eds.), Annual Reviews, Palo Alto, USA pp.77 108(ISBN: 978 0 8243 2335 6).  Sperling D., and D. Gordon (2009). Two Billion Cars. Oxford University Press, New York, USA, 336 pp.  Sperling D., and M. Nichols (2012). California s Pioneering Transportation Strategy. Issues in Science  and Technology. . Available at: http://www.issues.org/28.2/sperling.html.  Sperling D., and S. Yeh (2010). Toward a global low carbon fuel standard, Transport Policy 17 47 49  pp. (DOI: 10.1016/j.tranpol.2009.08.009), (ISSN: 0967 070X).  Steg L. (2005). Car use: lust and must. Instrumental, symbolic and affective motives for car use,  Transportation Research Part A: Policy and Practice 39 147 162 pp. (DOI:  10.1016/j.tra.2004.07.001), (ISSN: 0965 8564).  Steg L., and R. Gifford (2005). Sustainable transportation and quality of life, Journal of Transport  Geography 13 59 69 pp. .  Stephenson S.R., L.C. Smith, and J.A. Agnew (2011). Divergent long term trajectories of human  access to the Arctic, NATURE CLIMATE CHANGE 1 156 160 pp. (DOI: 10.1038/NCLIMATE1120), (ISSN:  1758 678X).  Stepp M.D., J.J. Winebrake, J.S. Hawker, and S.J. Skerlos (2009). Greenhouse gas mitigation policies  and the transportation sector: The role of feedback effects on policy effectiveness, Energy Policy 37  2774 2787 pp. (DOI: 10.1016/j.enpol.2009.03.013), (ISSN: 0301 4215).  Sterner T. (2007). Fuel taxes: An important instrument for climate policy, Energy Policy 35 3194 3202 pp. (DOI: 10.1016/j.enpol.2006.10.025), (ISSN: 0301 4215).  STUMP F., S. TEJADA, W. RAY, D. DROPKIN, F. BLACK, W. CREWS, R. SNOW, P. SIUDAK, C. DAVIS, L.  BAKER, and N. PERRY (1989). THE INFLUENCE OF AMBIENT TEMPERATURE ON TAILPIPE EMISSIONS  FROM   1984 1987 MODEL YEAR LIGHT DUTY GASOLINE MOTOR VEHICLES, Atmospheric  Environment 23 307 320 pp. (DOI: 10.1016/0004 6981(89)90579 9).    106 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Sugiyama T., M. Neuhaus, and N. Owen (2012). Active Transport, the Built Environment, and  Human Health. In: Sustainable Environmental Design in Architecture. S.T. Rassia, P.M. Pardalos,  (eds.), Springer New York, New York, NY pp.43 65(ISBN: 978 1 4419 0744 8, 978 1 4419 0745 5).  Sustainable Aviation (2012). Sustainable Aviation CO2 Road Map. Sustainable Aviation, London, UK.  60 pp.  Suzuki Y. (2011). A new truck routing approach for reducing fuel consumption and pollutants  emission, Transportation Research Part D: Transport and Environment 16 73 77 pp. (DOI:  10.1016/j.trd.2010.08.003), (ISSN: 1361 9209).  Takeshita T. (2012). Assessing the co benefits of CO2 mitigation on air pollutants emissions from  road vehicles, Applied Energy 97 225 237 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84862322260&partnerID=40&md5=0d608a0d7d47b00c98629d006a1cfec8.  Takeshita T., and K. Yamaji (2008). Important roles of Fischer Tropsch synfuels in the global energy  future, Energy Policy 36 2773 2784 pp. (DOI: 10.1016/j.enpol.2008.02.044), (ISSN: 0301 4215).  Tapio P. (2005). Towards a theory of decoupling: degrees of decoupling in the EU and the case of  road traffic in Finland between 1970 and 2001, Transport Policy 12 137 151 pp. (DOI:  10.1016/j.tranpol.2005.01.001), (ISSN: 0967 070X).  Tavasszy L.A., and J. van Meijeren (2011). Modal Shift Target for Freight Transport Above 300km:  An Assessment. ACEA. . Available at:  http://www.acea.be/images/uploads/files/SAG_17_Modal_Shift_Target_for_Freight_Transport_Abo ve_300km.pdf.  Taylor M.A.P., and M. Philp (2010). Adapting to climate change   implications for transport  infrastructure, transport systems and travel behaviour, Road & Transport Research 19 66 79 pp.  (ISSN: 1037 5783).  Teixeira E.I., G. Fischer, H. van Velthuizen, C. Walter, and F. Ewert (2012). Global hot spots of heat  stress on agricultural crops due to climate change, Agricultural and Forest Meteorology (DOI:  10.1016/j.agrformet.2011.09.002), (ISSN: 0168 1923).  Tenny A. (2010). Why we fail to reduce urban road traffic volumes: Does it matter how planners  frame the problem?, Transport Policy 17 216 223 pp. (DOI: 10.1016/j.tranpol.2010.01.011), (ISSN:  0967 070X).  Terry L. (2007). Air Cargo Navigates Uncertain Skies   Inbound Logistics. . Available at:  http://www.inboundlogistics.com/cms/article/air cargo navigates uncertain skies/.  TFL (2007). Transport for London Annual Report and Statement of Accounts. Transport for London,  London, UK. 112 pp. Available at: http://www.tfl.gov.uk/assets/downloads/annual report and statement of accounts 06 07.pdf.  TFL (2010). Analysis of Cycling Potential   Travel for London. Transport for London, London, UK. 53  pp.  The New Transit Town: Best Practices in Transit Oriented Development (2004). Island Press,  Washington, DC, 253 pp., (ISBN: 1559631171). .    107 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Thompson W., J. Whistance, and S. Meyer (2011). Effects of US biofuel policies on US and world  petroleum product markets with consequences for greenhouse gas emissions, Energy Policy 39  5509 5518 pp. (ISSN: 0301 4215).  Thynell M., D. Mohan, and G. Tiwari (2010). Sustainable transport and the modernisation of urban  transport in Delhi and Stockholm, Cities 27 421 429 pp. (DOI: 10.1016/j.cities.2010.04.002), (ISSN:  0264 2751).  TIAX (2009). Assessment of Fuel Economy Technologies for Medium  and Heavy Duty Vehicles.  National Academy of Sciences, Washington DC, USA.  TIAX (2011). European Union Greenhouse Gas Reduction Potential for Heavy Duty Vehicles.  International Council on Clean Transportation, San Francisco, California. 69 pp.  Timilsina G.R., and H.B. Dulal (2009). A Review Of Regulatory Instruments To Control Environmental  Externalities From The Transport Sector. World Bank Publications, Washington DC, USA, 54 pp.  Available at:  http://www.worldbank.icebox.ingenta.com/content/wb/wps4301/2009/00000001/00000001/art04 867.  Tirachini A., and D.A. Hensher (2012). Multimodal Transport Pricing: First Best, Second Best and  Extensions to Non motorized Transport, Transport Reviews 32 181 202 pp. (DOI:  10.1080/01441647.2011.635318), (ISSN: 0144 1647, 1464 5327).  Tirado M.C., R. Clarke, L.A. Jaykus, A. McQuatters Gollop, and J.M. Frank (2010). Climate change  and food safety: A review, Climate Change and Food Science 43 1745 1765 pp. (DOI:  10.1016/j.foodres.2010.07.003), (ISSN: 0963 9969).  Tiwari G. (2002). Urban Transport Priorities: Meeting the Challenge of Socio economic Diversity in  Cities, a Case Study of Delhi, India, Cities 19 95 103 pp. .  Tiwari G., J. Fazio, S. Gaurav, and N. Chatteerjee (2008). Continuity Equation Validation for  Nonhomogeneous Traffic, Journal of Transportation Engineering 134 118 127 pp. (DOI:  10.1061/(ASCE)0733 947X(2008)134:3(118)), (ISSN: 0733 947X).  Tiwari G., and D. Jain (2012a). Accessibility and safety indicators for all road users: Case study Delhi  BRT, Journal of Transport Geography 22 87 95 pp. (DOI: 10.1016/j.jtrangeo.2011.11.020).  Tiwari G., and D. Jain (2012b). Accessibility and safety indicators for all road users: case study Delhi  BRT, Special Section on Rail Transit Systems and High Speed Rail 22 87 95 pp. (DOI:  10.1016/j.jtrangeo.2011.11.020), (ISSN: 0966 6923).  TML (2008). Effects of Adapting the Rules on Weights and Dimensions of Heavy Commercial Vehicles  as Established with Directive 96/53/EC. Transport & Mobility Leuven, Brussels. 315 pp.  TMO (2010). CO2 Uitstoot van Personenwagens in Norm En Praktijk   Analyse van Gegevens van  Zakelijke Rijders [CO2 Emissions from Passenger Cars in Standard and Practice   Analysis of Data  from Business Drivers].  TOSCA (2011). Techno Economic Analysis of Aircraft. Technology Opportunities and Strategies  towards Climate Friendly Transport.    108 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Tourlonias P., and G. Koltsakis (2011). Model based comparative study of Euro 6 diesel  aftertreatment concepts, focusing on fuel consumption, INTERNATIONAL JOURNAL OF ENGINE  RESEARCH 12 238 251 pp. (DOI: 10.1177/1468087411405104), (ISSN: 1468 0874).  Transit Oriented Development: Making It Happen (2009). Ashgate, Farnham, Surrey, England ;  Burlington, VT, USA, 291 pp., (ISBN: 9780754673156). .  Trubka R., P. Newman, and D. Bilsborough (2010a). The Costs of Urban Sprawl   Physical Activity  Links to Healthcare Costs and Productivity, Environment Design Guide GEN 85 1 13 pp. .  Trubka R., P. Newman, and D. Bilsborough (2010b). The Costs of Urban Sprawl   Infrastructure and  Transportation, Environment Design Guide GEN 83 1 6 pp. .  Trubka R., P. Newman, and D. Bilsborough (2010c). The Costs of Urban Sprawl   Greenhouse Gases,  Environment Design Guide GEN 84 1 16 pp. .  Tuchschmid M. (2009). Carbon Footprint of High Speed Railway Infrastructure (Pre Study).  Methodology and Application of High Speed Railway Operation of European Railways. The  International Union of Railways (UIC), Zürich.  Twardella D., and A. Ndrepepa (2011). Relationship between noise annoyance from road traffic  noise and cardiovascular diseases: A meta analysis, Noise and Health 13 251 pp. (DOI:  10.4103/1463 1741.80163), (ISSN: 1463 1741).  Ubbels, B., Rietveld, P., Peeters P. (2002). Environmental effects of a kilometre charge in road  transport: An investigation for the Netherlands, Transportation Research Part D: Transport and  Environment 7 255 264 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 0036643472&partnerID=40&md5=742008ed759dcebdb6cc7508b35cf3f1.  UIC (2011). World Rail Statistics. International Union of Railways, Paris. 2 pp. Available at:  http://www.uic.org/com/IMG/pdf/cp18_uic_stats_2010_en 2.pdf.  UIC (2012). High Speed Rail Fast Track to Sustainable Mobility. InternatIonal UnIon of Railways (UIC),  Paris. 18 pp.  Umweltbundesamt (2007). Longer and Heavier on German Roads: Do Megatrucks Contribute  towards Sustainable Transport. Umweltbundesamt, Dessau. 6 pp.  UN Secretariat U. (2007). World population prospects: the 2006 revision, PLACE: the Population  Division of the Department of Economic and Social Affairs of the UN Secretariat [http://earthtrends.  wri. org/text/population health/variable 379. html].  UNCTAD (2013). Review of Maritime Transport 2012. United Nations Conference on Trade and  Development, New York, USA, 194 pp., (ISBN: 9789211128604  : 9211128609). .  UNEP (2011). Towards a Green Economy: Pathways to Sustainable Development and Poverty  Eradication. United Nations Environment Programme, Nairobi, Kenya, 630 pp., (ISBN: 9280731432). .  UNEP, and WMO (2011). Integrated assessment of black carbon and tropospheric ozone. United  Nations Environment Programme and World Meteorological Organization. . Available at:  http://www.unep.org/dewa/Portals/67/pdf/Black_Carbon.pdf.    109 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    UNEP/GEF (2013). Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in  Developing Countries, United Nations Environment Programme and Global Environment Facility,. .  Available at:  http://www.unep.org/bioenergy/Portals/48107/publications/Global%20Assessment%20and%20Gui delines%20for%20Biofuels.pdf.  UN Habitat (2013). Planning and Design for Sustainable Urban Mobility   Global Report on Human  Settlements 2013. UN HABITAT, Nairobi, Kenya. 348 pp. Available at:  http://www.unhabitat.org/content.asp?catid=555&typeid=19&cid=12336.  United Nations Human Settlements Programme (2012). The State of Latin American and Caribbean  Cities 2012: Towards a New Urban Transition. (ISBN: 9789211333978  9211333970  9789211324686   9211324688). .  UNWTO (2012). UNWTO Tourism Highlights 2012. United Nations World Tourism Organization. .  Available at: http://mkt.unwto.org/en/publication/unwto tourism highlights 2013 edition.  UNWTO, and UNEP (2008). Climate Change and Tourism: Responding to Global Challenges. World  Tourism Organization; United Nations Environment Programme, Madrid; Paris, 269 pp., (ISBN:  9789284412341  928441234X  9789280728866  9280728865). .  Upham P., D. Raper, C. Thomas, M. McLellan, M. Lever, and A. Lieuwen (2004). Environmental  capacity and European air transport: stakeholder opinion and implications for modelling, Journal of  Air Transport Management 10 199 205 pp. (DOI: 10.1016/j.jairtraman.2003.10.016), (ISSN: 0969 6997).  Urry J. (2007). Mobilities. John Wiley & Sons, Hoboken, NJ, 336 pp., (ISBN: 978 0745634197). .  US DoT (2010). Public Transportation s Role in Responding to Climate Change. US Department of  Transportation Federal Transit Authority. . Available at:  http://www.fta.dot.gov/documents/PublicTransportationsRoleInRespondingToClimateChange2010. pdf.  USCMAQ (2008). SAFETEA LU 1808: CMAQ   Evaluation and Assessment. United States Congestion  Mitigation and Air Quality Improvement Program, Washington DC, USA. 158 pp. Available at:  http://www.fhwa.dot.gov/environment/air_quality/cmaq/safetealu1808.pdf.  USEPA (2012). Report to Congress on Black Carbon. Environmental Protection Agency, Washington D  C, USA. 288 pp.  USFHA (2012). Report to the U.S. Congress on the Outcomes of the Nonmotorized Transportation  Pilot Program SAFETEA LU Section 1807. US Department of Transportation. 105 pp.  Vasconcellos E. (2001). Urban Transport, Environment and Equity: The Case for Developing  Countries. Earthscan, London, 344 pp.  Vasconcellos E.A. (2011). Equity Evaluation of Urban Transport. In: Urban transport in the  developing world : a handbook of policy and practice. H.T. Dimitriou, Gakenheimer, (eds.), Edward  Elgar, Cheltenham, UK; Northhampton, MA pp.333 359(ISBN: 9781847202055  1847202055).  Velaga N.R., J.D. Nelson, S.D. Wright, and J.H. Farrington (2012). The Potential Role of Flexible  Transport Services in Enhancing Rural Public Transport Provision, Journal of Public Transportation 15  111 131 pp. .    110 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Velasco E., K.J.J. Ho, and A.D. Ziegler (2013). Commuter exposure to black carbon, carbon  monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand, Transportation  Research Part D: Transport and Environment 21 62 65 pp. (DOI: 10.1016/j.trd.2013.02.010), (ISSN:  1361 9209).  Verma V., P. Pakbin, K.L. Cheung, A.K. Cho, J.J. Schauer, M.M. Shafer, M.T. Kleinman, and C.  Sioutas (2011). Physicochemical and oxidative characteristics of semi volatile components of quasi ultrafine particles in an urban atmosphere, Atmospheric Environment 45 1025 1033 pp. (DOI:  10.1016/j.atmosenv.2010.10.044), (ISSN: 1352 2310).  Vermeulen S.J., P.K. Aggarwal, A. Ainslie, C. Angelone, B.M. Campbell, A.J. Challinor, J.W. Hansen,  J.S.I. Ingram, A. Jarvis, P. Kristjanson, C. Lau, G.C. Nelson, P.K. Thornton, and E. Wollenberg (2012).  Options for support to agriculture and food security under climate change, Environmental Science &  Policy 15 136 144 pp. (DOI: 10.1016/j.envsci.2011.09.003), (ISSN: 1462 9011).  Verny J., and C. Grigentin (2009). Container shipping on the Northern Sea Route, International  Journal of Production Economics 122 107 117 pp. (DOI: 10.1016/j.ijpe.2009.03.018), (ISSN: 0925 5273).  Viguié V., and S. Hallegatte (2012). Trade offs and synergies in urban climate policies, Nature  Climate Change 2 334 337 pp. (DOI: 10.1038/nclimate1434), (ISSN: 1758 678X).  Vyas A.D., D.M. Patel, and K.M. Bertram (2013). Potential for Energy Efficiency Improvement  Beyond the Light Duty Vehicle Sector. U.S. Department of Energy and Argonne National Laboratory,  Oak Ridge, US. 82 pp.  Waddell P., G.F. Ulfarsson, J.P. Franklin, and J. Lobb (2007). Incorporating land use in metropolitan  transportation planning, Transportation Research Part A: Policy and Practice 41 382 410 pp. (DOI:  10.1016/j.tra.2006.09.008), (ISSN: 0965 8564).  Wang M. (2012a). GREET1_2012 model. Argonne National Laboratory.  Wang H. (2012b). Cutting Carbon from Ships, International Council on Clean Transportation .  Available at: http://www.theicct.org/blogs/staff/cutting carbon ships.  Wang M.Q., J. Han, Z. Haq, W.E. Tyner, M. Wu, and A. Elgowainy (2011). Energy and greenhouse  gas emission effects of corn and cellulosic ethanol with technology improvements and land use  changes, Biomass and Bioenergy 35 1885 1896 pp. (ISSN: 0961 9534).  Wang Z., Y. Jin, M. Wang, and W. Wei (2010). New fuel consumption standards for Chinese  passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese  passenger vehicle fleet, Special Section on Carbon Emissions and Carbon Management in Cities with  Regular Papers 38 5242 5250 pp. (DOI: 10.1016/j.enpol.2010.05.012), (ISSN: 0301 4215).  Wang D., and F. Law (2007). Impacts of Information and Communication Technologies (ICT) on time  use and travel behavior: a structural equations analysis, Transportation 34 513 527 pp. (DOI:  10.1007/s11116 007 9113 0), (ISSN: 0049 4488).  Wang M., M. Wang, and S. Wang (2012). Optimal investment and uncertainty on China s carbon  emission abatement, Energy Policy 41 871 877 pp. (DOI: 10.1016/j.enpol.2011.11.077), (ISSN: 0301 4215).    111 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Wassmann P. (2011). Arctic marine ecosystems in an era of rapid climate change, Progress In  Oceanography 90 1 17 pp. (DOI: 10.1016/j.pocean.2011.02.002), (ISSN: 0079 6611).  WBCSD (2004). Mobility 2030: Meeting the Challenges to Sustainability. World Business Council for  Sustainable Development, Geneva. 180 pp. Available at:  http://www.wbcsd.org/web/publications/mobility/mobility full.pdf.  WBCSD (2007). Mobility for Development Facts & Trends. World Business Council for Sustainable  Development, Conches Geneva, Switzerland. 20 pp.  WBCSD (2012). GHG Protocol: Emission Factors from Cross Sector Tools. . Available at:  http://www.ghgprotocol.org/download?file=files/ghgp/tools/Emission Factors from Cross Sector Tools (August 2012).xlsx.  WEC (2011). Global Transport Scenarios 2050. World Energy Council, London. 71 pp.  Van Wee B., P. Rietveld, and H. Meurs (2006). Is average daily travel time expenditure constant? In  search of explanations for an increase in average travel time, Journal of Transport Geography 14  109 122 pp. (DOI: 10.1016/j.jtrangeo.2005.06.003), (ISSN: 0966 6923).  Weltevreden J.W.J. (2007). Substitution or complementarity? How the Internet changes city centre  shopping, Journal of Retailing and Consumer Services 14 192 207 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 33846354929&partnerID=40&md5=c37a228bb6aac63469209e5e92ae624a.  Wenzel T.P., and M. Ross (2005). The effects of vehicle model and driver behavior on risk, Accident  Analysis & Prevention 37 479 494 pp. (DOI: 10.1016/j.aap.2004.08.002), (ISSN: 0001 4575).  Westin J., and P. Kageson (2012). Can high speed rail offset its embedded emissions?,  Transportation Research Part D: Transport and Environment 17 1 7 pp. (DOI:  10.1016/j.trd.2011.09.006), (ISSN: 1361 9209).  White M.J. (2004). The arms race on American roads: The effect of sport utility vehicles and pickup  trucks on traffic safety, Journal of Law and Economics 47 333 355 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 10244249266&partnerID=40&md5=acc5151c6a3427b4656b63a87da3ad8c.  WHO (2008). Economic Valuation of Transport Related Health Effects Review of Methods and  Development of Practical Approaches with a Special Focus on Children. World Health Organization  Regional Office for Europe, Copenhagen, DK. 151 pp. Available at:  http://www.euro.who.int/__data/assets/pdf_file/0008/53864/E92127.pdf.  WHO (2009). Night Noise Guideline for Europe. World Health Organization Regional Office for  Europe, Copenhagen, DK. 184 pp. Available at: http://www.euro.who.int/document/e92845.pdf.  WHO (2011). Global Status Report on Road Safety. World Health Organization.  Williams J.H., A. DeBenedictis, R. Ghanadan, A. Mahone, J. Moore, W.R. Morrow, S. Price, and  M.S. Torn (2012). The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal  Role of Electricity, Science 335 53 59 pp. (DOI: 10.1126/science.1208365), (ISSN: 0036 8075, 1095 9203).    112 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Winchester N., C. Wollersheim, R. Clewlow, N.C. Jost, S. Paltsev, J.M. Reilly, and I.A. Waitz (2013).  The Impact of Climate Policy on US Aviation, Journal of Transport Economics and Policy (JTEP) 47 1 15 pp. . Available at:  http://www.ingentaconnect.com/content/lse/jtep/2013/00000047/00000001/art00001.  Winebrake J.J., J.J. Corbett, A. Falzarano, J.S. Hawker, K. Korfmacher, S. Ketha, and S. Zilora (2008).  Assessing Energy, Environmental, and Economic Tradeoffs in Intermodal Freight Transportation,  Journal of the Air & Waste Management Association 58 1004 1013 pp. (DOI: 10.3155/1047 3289.58.8.1004), (ISSN: 1096 2247).  Wittneben B., D. Bongardt, H. Dalkmann, W. Sterk, and C. Baatz (2009). Integrating Sustainable  Transport Measures into the Clean Development Mechanism. Transport Reviews 29, 91 113. (DOI:  10.1080/01441640802133494).  Wittneben B., D. Bongardt, H. Dalkmann, W. Sterk, and C. Baatz (2009b). Integrating Sustainable  Transport Measures into the Clean Development Mechanism, Transport Reviews 29 91 113 pp.  (DOI: 10.1080/01441640802133494), (ISSN: 0144 1647).  Wood F.R., A. Bows, and K. Anderson (2010). Apportioning aviation CO2 emissions to regional  administrations for monitoring and target setting, Transport Policy 17 206 215 pp. (DOI:  10.1016/j.tranpol.2010.01.010), (ISSN: 0967 070X).  Woodcock J., P. Edwards, C. Tonne, B.G. Armstrong, O. Ashiru, D. Banister, S. Beevers, Z. Chalabi,  Z. Chowdhury, and A. Cohen (2009a). Public health benefits of strategies to reduce greenhouse gas  emissions: urban land transport, The Lancet 374 1930 1943 pp. (DOI: 10.1016/S0140 6736(09)61714 1), (ISSN: 01406736).  Woodcock J., P. Edwards, C. Tonne, B.G. Armstrong, O. Ashiru, D. Banister, S. Beevers, Z. Chalabi,  Z. Chowdhury, and A. Cohen (2009b). Public health benefits of strategies to reduce greenhouse gas  emissions: urban land transport, The Lancet 374 1930 1943 pp. (DOI: 10.1016/S0140 6736(09)61714 1), (ISSN: 01406736).  Woodcock J., P. Edwards, C. Tonne, B.G. Armstrong, O. Ashiru, D. Banister, S. Beevers, Z. Chalabi,  Z. Chowdhury, A. Cohen, O.H. Franco, A. Haines, R. Hickman, G. Lindsay, I. Mittal, D. Mohan, G.  Tiwari, A. Woodward, and I. Roberts (2009c). Public health benefits of strategies to reduce  greenhouse gas emissions: urban land transport, The Lancet 374 1930 1943 pp. (DOI: doi:  10.1016/S0140 6736(09)61714 1), (ISSN: 0140 6736).  Woodcock, J., Banister, D., Edwards, P., Prentice, A.M., Roberts I. (2007). Energy and transport,  Lancet 370 1078 1088 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 34548767083&partnerID=40&md5=2453f1fa1d39375abcd22d22475b978e.  Woodrooffe J., and L. Ash (2001). Economic Efficiency of Long Combination Transport Vehicles in  Alberta. Woodrooffe and Associates. 31 pp. Available at:  http://www.transportation.alberta.ca/Content/docType61/production/LCVEconomicEfficiencyRepor t.pdf.  World Bank (2002). Cities on the Move : A World Bank Urban Transport Strategy Review. The World  Bank, Washington, D.C., 228 pp., (ISBN: 0821351486 9780821351482). .  World Bank (2006). Promoting Global Environmental Priorities in the Urban Transport Sector:  Experiences from the World Bank Group Global Environmental Facility Projects. The World Bank,  Washington, DC. 30 pp.    113 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    World Economic Forum, and Accentura (2009). Supply Chain Decarbonisation. Geneva.  Wozny N., and H. Allcott (2010). Gasoline Prices, Fuel Economy, and the Energy Paradox. MIT Center  for Energy and Environmental Research Policy, Cambridge, MA. 64 pp. Available at:  http://dspace.mit.edu/handle/1721.1/54753.  Wright L., and L. Fulton (2005). Climate Change Mitigation and Transport in Developing Nations,  Transport Reviews 25 691 717 pp. (DOI: 10.1080/01441640500360951), (ISSN: 0144 1647, 1464 5327).  WSC (2011). Design and Implementation of the Vessel Efficiency Incentive Scheme (EIS). World  Shipping Council and Japan s Ministry of Land, Infrastructure, Transport and Tourism, Tokyo. 16 pp.  Available at:  http://www.google.de/url?sa=t&rct=j&q=design%20and%20implementation%20of%20the%20vesse l%20efficiency%20incentive%20scheme%20(eis)&source=web&cd=1&ved=0CFAQFjAA&url=http%3A %2F%2Fwww.worldshipping.org%2FFinal_Final__EIS_July_2011_for_Letter.pdf&ei=ggXsT4rZCNDP4 QTM fiVBQ&usg=AFQjCNEvhebfk3O2wBE33eDctA3k9RLL_Q&cad=rja.  Wu C., L. Yao, and K. Zhang (2011). The red light running behavior of electric bike riders and cyclists  at urban intersections in China: An observational study, Accident Analysis & Prevention 49 186 192  pp. (DOI: 10.1016/j.aap.2011.06.001), (ISSN: 00014575).  Yamaguchi K. (2010). Voluntary CO2 emissions reduction scheme: Analysis of airline voluntary plan  in Japan, Air Transport, Global Warming and the Environment Selected Papers from the Air Transport  Research Society Meeting, Berkeley 15 46 50 pp. (DOI: 10.1016/j.trd.2009.07.004), (ISSN: 1361 9209).  Yamaguchi M. (2012). Policy and Measures. In: Climate Change Mitigation, A Balanced Approach to  Climate Change. Springer Publishing Company, London, UK pp.129 156.  Yan X., and R.J. Crookes (2010). Energy demand and emissions from road transportation vehicles in  China, Progress in Energy and Combustion Science 36 651 676 pp. (DOI:  10.1016/j.pecs.2010.02.003), (ISSN: 0360 1285).  Yedla S., R. Shrestha, and G. Anandarajah (2005). Environmentally sustainable urban transportation   comparative analysis of local emission mitigation strategies vis a vis GHG mitigation strategies,  Transport Policy 12 245 254 pp. .  Yeh S., and D. McCollum (2011). Optimizing the transportation climate mitigation wedge. In:  Sustainable Transport Energy Pathways. Institution of Transportation Studies, University of Davis,  California. pp.234 248. Available at: http://creativecommons.org/licences/by nc nd/3.0/.  Yeh S., and D. Sperling (2010). Low carbon fuel standards: Implementation scenarios and challenges,  Energy Policy 38 6955 6965 pp. (DOI: 10.1016/j.enpol.2010.07.012), (ISSN: 0301 4215).  Yeh S., and D. Sperling (2013). Low carbon fuel policy and analysis, Energy Policy 56 1 4 pp. (DOI:  10.1016/j.enpol.2013.01.008), (ISSN: 0301 4215).  Yi L., and H.R. Thomas (2007). A review of research on the environmental impact of e business and  ICT, Environment International 33 841 849 pp. (DOI: 10.1016/j.envint.2007.03.015), (ISSN: 0160 4120).    114 of 115   Final Draft  Chapter 8  IPCC WGIII AR5    Zackrisson M., L. Avellán, and J. Orlenius (2010). Life cycle assessment of lithium ion batteries for  plug in hybrid electric vehicles   Critical issues, Journal of Cleaner Production 18 1519 1529 pp. (DOI:  10.1016/j.jclepro.2010.06.004), (ISSN: 0959 6526).  Zahavi Y., and A. Talvitie (1980). Regularities in travel time and money expenditures, Transportation  Research Record: Journal of the Transportation Research Board 750 13 19 pp. .  Zegras C. (2011). Mainstreaming sustainable urban transport: putting the pieces together. In: Urban  transport in the developing world: a handbook of policy and practice. H.T. Dimitriou, R.A.  Gakenheimer, (eds.), Edward Elgar, Cheltenham, UK; Northhampton, MA pp.548 588(ISBN:  9781847202055  1847202055).  Zhang A., and Y. Zhang (2006). Airport capacity and congestion when carriers have market power,  Journal of Urban Economics 60 229 247 pp. (DOI: doi: 10.1016/j.jue.2006.02.003), (ISSN: 0094 1190).  Zhen F., Z. Wei, S. Yang, and X. Cao (2009). The impact of information technology on the  characteristics of urban resident travel: Case of Nanjing, Geographical Research 28 1307 1317 pp. .  Zhu C., Y. Zhu, R. Lu, R. He, and Z. Xia (2012). Perceptions and aspirations for car ownership among  Chinese students attending two universities in the Yangtze Delta, China, Journal of Transport  Geography 24 315 323 pp. (DOI: 10.1016/j.jtrangeo.2012.03.011), (ISSN: 0966 6923).  Zusman E., A. Srinivasan, and S. Dhakal (2012). Low Carbon Transport in Asia: Strategies for  Optimizing Co Benefits. Earthscan; Institute for Global Environmental Strategies, London; New York;  [s.l.], (ISBN: 9781844079148  1844079147  9781844079155  1844079155  9780203153833   0203153839). .  Van der Zwaan B., H. Rösler, T. Kober, T. Aboumahboub, K. Calvin, D. Gernaat, G. Marangoni, and  D. McCollum (2013). A Cross model Comparison of Global Long term Technology Diffusion under a  2C Climate Change Control Target., Climate Change Economics.       115 of 115   Working Group III Mitigation of Climate Change Chapter 9 Buildings   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    9  Buildings  CLAs:  LAs:  Chapter 9  IPCC WGIII AR5   Oswaldo Lucon, Diana Ürge Vorsatz  Azni Zain Ahmed, Hashem Akbari, Paolo Bertoldi, Luisa F. Cabeza,  Nicholas Eyre, Ashok Gadgil , L. D. Danny Harvey, Yi Jiang, Enoch  Liphoto, Sevastianos Mirasgedis, Shuzo Murakami, Jyoti Parikh,  Christopher Pyke, Maria Virginia Vilarino  Peter Graham, Ksenia Petrichenko, Jiyong Eom, Agnes Kelemen, Volker  Krey  Marilyn Brown, Tamás Pálvölgyi  Fonbeyin Henry Abanda, Katarina Korytarova    CAs:        REs  CSAs:    1 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Chapter 9:    Buildings  Contents    Executive Summary ............................................................................................................................. 4  9.1 Introduction .................................................................................................................................. 7  9.2 New developments in emission trends and drivers  ..................................................................... 8  . 9.2.1 Energy and GHG emissions from buildings ............................................................................ 8  9.2.2 Trends and drivers of thermal energy uses in buildings ...................................................... 12  9.2.3 Trends and drivers in energy consumption of appliances in buildings ............................... 16  9.3 Mitigation technology options and practices, behavioral aspects ............................................. 17  9.3.1 Key points from AR4 ............................................................................................................ 19  9.3.2 Technological developments since AR4 .............................................................................. 19  9.3.3 Exemplary New Buildings .................................................................................................... 19  9.3.3.1 Energy intensity of new high performance buildings .................................................. 19  9.3.3.2 Monitoring and commissioning of new and existing buildings .................................... 21  9.3.3.3 Zero energy/carbon and energy plus buildings  ........................................................... 21  . 9.3.3.4 Incremental cost of low energy buildings .................................................................... 22  9.3.4 Retrofits of existing buildings .............................................................................................. 24  9.3.4.1 Energy savings .............................................................................................................. 24  9.3.4.2 Incremental cost ........................................................................................................... 24  9.3.5 Appliances, consumer electronics, office equipment, and lighting .................................... 25  9.3.6 Halocarbons ......................................................................................................................... 26  9.3.7 Avoiding mechanical heating, cooling, and ventilation systems ......................................... 27  9.3.8 Uses of biomass ................................................................................................................... 27  9.3.9 Embodied energy and building materials lifecycle .............................................................. 27  9.3.10 Behavioural and lifestyle impacts ...................................................................................... 28  9.4 Infrastructure and systemic perspectives ................................................................................... 30  9.4.1 Urban form and energy supply infrastructure  .................................................................... 30  . 9.4.1.1 District Heating and cooling networks ......................................................................... 31  9.4.1.2 Electricity infrastructure interactions .......................................................................... 31  9.4.1.3 Thermal Energy Storage ............................................................................................... 32  9.4.2 Path Dependencies and lock in ........................................................................................... 32  9.5 Climate change feedback and interaction with adaptation  ....................................................... 34  . 9.6 Costs and potentials .................................................................................................................... 34  . 9.6.1 Summary of literature on aggregated mitigation potentials by key identity  ..................... 34  9.6.2 Overview of option specific costs and potentials ............................................................... 38    2 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   9.6.2.1  Costs of very high performance new construction .................................................... 38  9.6.2.2  Costs of deep retrofits ............................................................................................... 40  9.6.3 Assessment of key factors influencing robustness and sensitivity of costs and potentials 40  9.7 Co benefits, risks and spillovers .................................................................................................. 43  9.7.1 Overview .............................................................................................................................. 43  9.7.2 Socio economic effects ........................................................................................................ 45  9.7.2.1 Impacts on employment .............................................................................................. 45  9.7.2.2 Energy security ............................................................................................................. 46  9.7.2.3 Benefits related to workplace productivity  ................................................................. 46  . 9.7.2.4 Rebound effects ........................................................................................................... 46  9.7.2.5 Fuel poverty alleviation ................................................................................................ 47  9.7.3 Environmental and health effects ....................................................................................... 47  9.7.3.1 Health co benefits due to improved indoor conditions ............................................... 47  9.7.3.2 Health and environmental co benefits due to reduced outdoor air pollution ............ 48  9.7.3.3 Other environmental benefits  ..................................................................................... 49  . 9.8 Barriers and opportunities .......................................................................................................... 49  9.9 Sectoral implication of transformation pathways and sustainable development  ..................... 50  . 9.9.1. Introduction  ........................................................................................................................ 50  . 9.9.2. Overview of building sector energy projections ................................................................. 50  9.9.3. Key mitigation strategies as highlighted by the pathway analysis ...................................... 54  9.9.4. Summary and general observations of global building final energy use ............................ 57  9.10 Sectoral policies ........................................................................................................................ 57  9.10.1 Policies for Energy Efficiency in Buildings  ......................................................................... 57  . 9.10.1.1 Policy packages  .......................................................................................................... 63  . 9.10.1.2 A holistic approach ..................................................................................................... 63  9.10.2 Emerging policy instruments in buildings .......................................................................... 64  9.10.2.1. New developments in building codes (ordinance, regulation, or by laws) .............. 64  9.10.2.2. Energy efficiency obligation schemes and  white  certificates ................................. 64  9.10.3 Financing opportunities ..................................................................................................... 65  9.10.3.1. New financing schemes for deep retrofits ................................................................ 65  9.10.3.2. Opportunities in Financing for Green Buildings ........................................................ 66  9.10.4 Policies in developing countries ........................................................................................ 66  9.11 Gaps in knowledge and data ..................................................................................................... 67  9.12 Frequently asked questions ...................................................................................................... 68  References ........................................................................................................................................ 69    3 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Executive Summary  In 2010 buildings accounted for 32% of total global final energy use, 19% of energy related GHG  emissions (including electricity related), approximately one third of black carbon emissions, and an  eighth to a third of F gases (medium evidence, medium agreement). This energy use and related  emissions may double or potentially even triple by mid century due to several key trends. A very  important trend is the increased access for billions of people in developing countries to adequate  housing, electricity, and improved cooking facilities. The ways in which these energy related needs  will be provided will significantly determine trends in building energy use and related emissions. In  addition, population growth, migration to cities, household size changes, and increasing levels of  wealth and lifestyle changes globally will all contribute to significant increases in building energy use.  The substantial new construction that is taking place in developing countries represents both a  significant risk and opportunity from a mitigation perspective. [Sections 9.1, 9.2]  In contrast to a doubling or tripling, final energy use may stay constant or even decline by mid century, as compared to today's levels, if today's cost effective best practices and technologies are  broadly diffused (medium evidence, high agreement). The technology solutions to realize this  potential exist and are well demonstrated. New improved energy efficiency technologies have been  developed as existing energy efficiency opportunities have been taken up, so that the potential for  cost effective energy efficiency improvement has not been diminishing. Recent developments in  technology and know how enable construction and retrofit of very low  and zero energy buildings,  often at little marginal investment cost, typically paying back well within the building lifetime (high  agreement, robust evidence). In existing buildings 50 90% energy savings have been achieved  throughout the world through deep retrofits (high agreement, medium evidence). Energy efficient  appliances, lighting, information communication (ICT), and media technologies can reduce the  growth in the substantial increases in electricity use that are expected due to the proliferation of  equipment types used and their increased ownership and use (high agreement, robust evidence).  [9.2, 9.3]  Strong barriers hinder the market uptake of these cost effective opportunities, and large potentials  will remain untapped without adequate policies (robust evidence, high agreement). These barriers  include imperfect information, split incentives, lack of awareness, transaction costs, inadequate  access to financing, and industry fragmentation. In developing countries, corruption, inadequate  service levels, subsidized energy prices, and high discount rates are additional barriers. Market forces  alone are not likely to achieve the necessary transformation without external stimuli. Policy  intervention addressing all levels of the building and appliance lifecycle and use, plus new business  and financial models are essential. [9.8]  There is a broad portfolio of effective policy instruments available to remove these barriers, some  of them being implemented also in developing countries, thus saving emissions at large negative  costs (robust evidence, high agreement). Overall, the history of energy efficiency programmes in  buildings shows that 25 30% efficiency improvements have been available at costs substantially  lower than marginal supply. Dynamic developments in building related policies in some developed  countries have demonstrated the effectiveness of such instruments, as total building energy use has  started to decrease while accommodating continued economic, and in some cases, population  growth. Building codes and appliance standards with strong energy efficiency requirements that are  well enforced, tightened over time, and made appropriate to local climate and other conditions have  been among the most environmentally and cost effective. Net zero energy buildings are technically  demonstrated, but may not always be the most cost  and environmentally effective solutions.  Experience shows that pricing is less effective than programmes and regulation (medium agreement,  medium evidence). Financing instruments, policies, and other opportunities are available to improve  energy efficiency in buildings, but the results obtained to date are still insufficient to deliver the full  potential (medium agreement, medium evidence). Combined and enhanced, these approaches could  provide significant further improvements in terms of both enhanced energy access and energy    4 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   efficiency. Delivering low carbon options raises major challenges for data, research, education,  capacity building, and training. [9.10] Due to the very long lifespans of buildings and retrofits there is a very significant lock in risk  pointing to the urgency of ambitious and immediate measures (robust evidence, medium  agreement). Even if the most ambitious of currently planned policies are implemented,  approximately 80% of 2005 energy use in buildings globally will be  locked in  by 2050 for decades,  compared to a scenario where today's best practice buildings become the standard in new building  construction and existing building retrofit. As a result, the urgent adoption of state of the art  performance standards, in both new and retrofit buildings, avoids locking in carbon intensive options  for several decades. [9.4]  In addition to technologies and architecture, behaviour, lifestyle, and culture have a major effect  on buildings  energy use, presently causing 3 5 times differences in energy use for similar levels of  energy services (limited evidence, high agreement). In developed countries, evidence indicates that  behaviours informed by awareness of energy and climate issues can reduce demand by up to 20% in  the short term and 50% by 2050. Alternative development pathways exist that can moderate the  growth of energy use in developing countries through the provision of high levels of building services  at much lower energy inputs, incorporating certain elements of traditional lifestyles and architecture,  and can avoid such trends. In developed countries, the concept of  sufficiency' has also been  emerging, going beyond pure  efficiency . Reducing energy demand includes rationally meeting floor  space needs. [9.3]  Beyond energy cost savings, most mitigation options in this sector have other significant and  diverse co benefits (robust evidence, high agreement). Taken together, the monetizable co benefits  of many energy efficiency measures alone often substantially exceed the energy cost savings and  possibly the climate benefits (medium agreement, medium evidence), with the non monetizable  benefits often also being significant (high agreement, robust evidence). These benefits offer  attractive entry points for action into policy making, even in countries or jurisdictions where financial  resources for mitigation are limited (high agreement, robust evidence). These entry points include,  but are not limited to, energy security; lower need for energy subsidies; health (due to reduced  indoor and outdoor air pollution as well as fuel poverty alleviation) and environmental benefits;  productivity and net employment gains; alleviated energy and fuel poverties as well as reduced  energy expenditures; increased value for building infrastructure; improved comfort and services  (high agreement, medium evidence). However, these are rarely internalized by policies, while a  number of tools and approaches are available to quantify and monetize co benefits that can help this  integration (medium agreement, medium evidence). [9.7]  In summary, buildings represent a critical piece of a low carbon future and a global challenge for  integration with sustainable development (robust evidence, high agreement). Buildings embody  the biggest unmet need for basic energy services, especially in developing countries, while much  existing energy use in buildings in developed countries is very wasteful and inefficient. Existing and  future buildings will determine a large proportion of global energy demand. Current trends indicate  the potential for massive increases in energy demand and associated emissions. However, this  chapter shows that buildings offer immediately available, highly cost effective opportunities to  reduce (growth in) energy demand, while contributing to meeting other key sustainable  development goals including poverty alleviation, energy security, and improved employment. This  potential is more fully represented in sectoral models than in many integrated models, as the latter  do not represent any or all of the options to cost effectively reduce building energy use. Realizing  these opportunities requires aggressive and sustained policies and action to address every aspect of  the design, construction, and operation of buildings and their equipment around the world. The  significant advances in building codes and appliance standards in some jurisdictions over the last  decade already demonstrated that they were able to reverse total building energy use trends in  developed countries to its stagnation or reduction. However, in order to reach ambitious climate  goals, these need to be substantially up scaled to further jurisdictions, building types, and vintages.  [9.6, 9.9, 9.10] Table 9.1 summarizes some main findings of the chapter by key mitigation strategy.   5 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Table 9.1. Summary of chapter's main findings organized by major mitigation strategies (identities)   Mitigation  options  Carbon efficiency  Building integrated RES (BiRES,  BiPV). Fuel switching to low carbon fuels such as electricity  (9.4.1.2). Use of natural  refrigerants to reduce  halocarbon emissions (9.3.6).  Advanced biomass stoves  (9.3.8).  Solar electricity generation  through buildings  roof top  photo voltaic (PV) installations:  energy savings  15 to  58% of  BAU (Table 9.4)  Energy efficiency of technology High performance building envelope (HPE). Efficient appliances  (EA). Efficient lighting (EL). Efficient Heating, Ventilation, and Air Conditioning systems (eHVAC). Building automation and control  systems (BACS). Daylighting, heat pumps, indirect evaporative  cooling to replace chillers in dry climates, advances in digital  building automation and control systems, smart meters and grids  (9.3.2). Solar powered desiccant dehumidification.  System/ (infrastructure) efficiency Passive house standard (PHS). Nearly/net zero and energy plus energy buildings  (NZEB) (9.3.3.3). Integrated Design Process (IDP). Urban planning (UP), (9.4.1).  District heating/cooling (DH/C). Commissioning (C).Advanced building control  systems (9.3.3.2). High efficiency distributed energy systems, co generation,  trigeneration, load levelling, diurnal thermal storage, advanced management  (9.4.1.1).  Smart grids  (9.4.1.2). Utilization of waste heat (9.4.1.1)  Service demand  reduction  Behavioural change  (BC). Lifestyle  change (LSC).  Smart metering  (9.4.1.2)  Potential  reductions of  energy  use/emission s (versus  baseline BAU)  Cost effectiveness    Co benefits  (CB), adverse  side effects  (AE)  9.5% to  68% energy savings of BAU (Table 9.4). Energy savings  from advanced appliances: Ovens  45%, microwave ovens  75%,  Dishwashers   up to 45%, Clothes washers   28% (by 2030 globally),  Clothes Dryers   factor of 2 reduction, air conditioners  50 75%,  Ceiling fans  50 57%, Office computers and monitors   40%,  Circulation pumps for hydronic heating and cooling   40% (by 2020,  EU), Residential water heaters   factor of 4 improvement (Table  9.3). Also,  30 to  60% in fuel savings,  80 to 90% in indoor air  pollution levels from advanced biomass stoves as compared to open  fires (9.3.8)  Retrofit of separate measures: CCE: 0.01 0.10 USD2010/kWh (Fig.    9.13) .  Efficient Appliances: CCE:  0.09 USD2010/kWh/yr (9.3.4.2)  CB: Energy security; lower need for energy subsidies; health and environmental benefits CB: Employment impact;  enhanced asset value of  buildings; energy/fuel poverty  alleviation. AE: Energy  access/fuel poverty  Suboptimal measures,  subsidies to conventional fuels  CB: Employment; energy/fuel poverty alleviation; improved  productivity/competitiveness; asset value of buildings; improved  quality of life. AE: rebound and lock in effects  30 to  70% CO2 of BAU. PHS &NZEB/new versus conventional building:  83%  (residential heating energy) and  50% (commercial heating & cooling energy).  Deep retrofits   DRs (residential, Europe):   40 to  80%. IDP up to   70% final  energy by 2050 (Table 9.4); Potential global building final energy demand  reduction: IAMs  5 to  27%; bottom up models:  14 to  75% (Fig. 9.21).  Energy  savings by building type: (i) detached single family homes, total energy use    50 75%; (ii) multi family housing, space heating requirements   80 90%, (iii)  multi family housing in developing countries, cooling energy use   30%, heating  energy   60%; (iv) commercial buildings, total HVAC   25 50%; (v) lighting  retrofits of commercial buildings   30 60% (9.3.4.1)  PHS&NZEB/new (EU&USA), CCE: 0.7 0.2 USD2010/kWh (Figure 9.11, 9.12). DR  with energy savings of 60 75%: CCE of 0.05 0.25 USD2010/kWh (Fig. 9.13)  CB: Employment impact; improved productivity and competitiveness; enhanced  asset values of buildings; improved quality of life. AE: Rebound effect, lower  lifecycle energy use of low energy buildings in comparison to the conventional  (9.3.9)  Energy and infrastructure lock in (9.4.2), path dependency (9.4.2) fragmented  market and institutional structures, poor enforcement of regulations    20 to  40% of  BAU.   LSC ~   40%  electricity use  (Table 9.4).  Key barriers  Transaction costs, access to financing, principal agent problems,  fragmented market and institutional structures, poor feedback  Key policies  C tax, feed in tariffs extended  for small capacity; soft loans  for renewable technologies   public procurement, appliance standards, tax exemptions, soft  loans  Building codes, preferential loans, subsidised financing schemes, ESCOs, EPCs,  suppliers' obligations, white certificates, IDP into Urban Planning, Importance of  policy packages rather than single instruments (9.10.1.2)  Imperfect  information, risk  aversion, cognitive  and behavioural  patterns, lack of  awareness, poor  personnel  qualification  Awareness raising,  education, energy  audits, energy  labelling, building  certificates &  ratings, energy or  carbon tax,  personal carbon  allowance    6 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   9.1   Introduction  This chapter aims to update the knowledge on the building sector since the IPCC Fourth Assessment  Report (AR4) from a mitigation perspective. Buildings and activities in buildings are responsible for a  significant share of GHG emissions, but they are also the key to mitigation strategies. In 2010, the  building sector accounted for approximately 117 Exajoules (EJ) or 32% of global final energy  consumption and 30% of energy related CO2 emissions; and 51% of global electricity consumption.  Buildings contribute to a significant amount of F gas emissions , with large differences in reported  figures due to differing accounting conventions, ranging from around an eighth to a third of all such  emissions (9.3.6). The chapter argues that beyond a large emission role, mitigation opportunities in  this sector are also significant, often very cost effective, and are in many times associated with  significant co benefits that can exceed the direct benefits by orders of magnitude. The sector has  significant mitigation potentials at low or even negative costs. Nevertheless, without strong actions  emissions are likely to grow considerably and they may even double by mid century due to  several drivers. The chapter points out that certain policies have proven to be very effective and  several new ones are emerging. As a result, building energy use trends have been reversed to  stagnation or even reduction in some jurisdictions in recent years, despite the increases in affluence  and population.   The chapter uses a novel conceptual framework, in line with the general analytical framework of  WGIII AR5, which focuses on identities as an organizing principle. This section describes the identity  decomposition Chapter 9 chooses to apply for assessing the literature, resting on the general identity  framework described in Chapter 6. Building related emissions and mitigation strategies have been  decomposed by different identity logics. Commonly used decompositions use factors such as CO2  intensity, energy intensity, structural changes, and economic activity (Isaac and Van Vuuren, 2009;  Zhang et al., 2009), as well as the IPAT (Income Population Affluence Technology) approach  (MacKellar et al., 1995; O  Mahony et al., 2012). In this assessment, the review focuses on the main  decomposition logic described in Chapter 6, adopted and further decomposed into four identities key  to driving building sector emissions:   CO2 CI TEI SEI A   where CO2 is the emissions from the building sector; (identity i) CI is the carbon intensity; (identity ii)  TEI is the technological energy intensity; (identity iii) SEI is the structural\systemic energy intensity  and (identity iv) A is the activity. For a more precise interpretation of the factors, the following  conceptual equation demonstrates the different components:   CO2 CO2 FE UsefulE ES A pop CI TEI SEI pop   FE UsefulE ES pop pop in which FE is the final energy; UsefulE is the useful energy for a particular energy service (ES), as  occurring in the energy conversion chain, and pop is population. Gross Domestic Product (GDP) is  often used as the main decomposition factor for commercial building emissions). Because ES is often  difficult to rigorously define and measure, and UsefulE and ES are either difficult to measure or little  data are available, this chapter does not attempt a systematic quantitative decomposition, but rather  focuses on the main strategic categories for mitigation based on the relationship established in the  previous equation:    CO2 mitigation CEff TEff SI Eff DR   whereby (1) CEff, or carbon efficiency, entails fuel switch to low carbon fuels, building integrated  renewable energy sources, and other supply side decarbonization; (2) TEff, or technological efficiency,  focuses on the efficiency improvement of individual energy using devices; (3) SIEff, or  systemic/infrastructural efficiency, encompass all efficiency improvements whereby several energy using devices are involved, i.e., systemic efficiency gains are made, or energy use reductions due to    7 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   architectural, infrastructural, and systemic measures; and finally (4) DR, or demand reduction,  composes all measures that are beyond technological efficiency and decarbonization measures, such  as impacts on floor space, service levels, behaviour, lifestyle, use, and penetration of different  appliances. The four main emission drivers and mitigation strategies can be further decomposed into  more distinct sub strategies, but due to the limited space in this report and in order to maintain a  structure that supports convenient comparison between different sectoral chapters, we focus on  these four main identities during the assessment of literature in this chapter and use this  decomposition as the main organizing/conceptual framework.  9.2   New developments in emission trends and drivers  9.2.1    Energy and GHG emissions from buildings  Greenhouse gas (GHG) emissions from the building sector have more than doubled since 1970 to  reach 9.18 GtCO2eq in 2010 (Figure 9.1. ), representing 25% of total emissions without the  Agriculture, Forestry, and Land Use (AFOLU) sector; and 19% of all global 2010 GHG emissions (IEA,  2012a; JRC/PBL, 2012; see Annex II.8 ). Furthermore, they account for approximately one third of  black carbon emissions (GEA, 2012), and one eighth to one third of F gas emissions, depending  partially on the accounting convention used (UNEP, 2011a; EEA, 2013; US EPA, 2013; JRC/PBL, 2012;  IEA, 2012a; see Annex II.8).  Most of GHG emissions (6.02 Gt) are indirect CO2 emissions from electricity use in buildings, and  these have shown dynamic growth in the studied period in contrast to direct emissions, which have  roughly stagnated during these four decades (Figure 9.1). For instance, residential indirect emissions  quintupled and commercial emissions quadrupled.   Figure 9.2. shows the regional trends in building related CO2eq emissions. Organisation for Economic  Co operation Development (OECD) countries have the highest emissions, but the growth in this  region between 1970 and 2010 was moderate. For less developed countries, the emissions are low  with little growth. The largest growth has taken place in Asia where emissions in 1970 were similar to  those in other developing regions, but by today they are closing in on those of OECD countries.    Figure 9.1. Direct and emissions indirect (from electricity and heat production) in the building subsectors (IEA, 2012a; JRC/PBL, 2012; see Annex II.8 ).   8 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Figure 9.2. Regional direct and indirect emissions in the building subsectors (IEA, 2012; JRC/PBL, 2013; see Annex II.8). Due to the high share of indirect emissions in the sector, actual emission values very strongly depend  on emission factors mainly that of electricity production that are beyond the scope of this chapter.  Therefore, the rest of this chapter focuses on final energy use (rather than emissions) that is  determined largely by activities and measures within the sector.  In 2010 buildings accounted for 32% (24% for residential and 8% for commercial) of total global final  energy use (IEA, 2013), or 32.4 PWh, being one of the largest end use sectors worldwide. Space  heating represented 32 34% of the global final energy consumption in both the residential and the  commercial building sub sectors in 2010 (Figure 9.4). Moreover, in the commercial sub sector,  lighting was very important, while cooking and water heating were significant end uses in residential  buildings. In contrast to the dynamically growing total emissions, per capita final energy use did not  grow substantially over the two decades between 1990 and 2010 in most word regions (see Figure  9.3). This value stagnated in most regions during the period, except for a slight increase in the Former  Soviet Union (FSU) and a dynamic growth in North Africa and Middle East (MEA). Commercial energy  use has also grown only moderately in most regions on a per capita basis, with more dynamic growth  shown in Centrally Planned Asia (CPA), South Asia (SAS) and MEA. This indicates that most trends to  drive building energy use up have been compensated by efficiency gains. In many developing regions  this can largely be due to switching from traditional biomass to modern energy carriers that can be  utilized much more efficiently.    9 of 103 Final Draft  Chapter 9  IPCC WGIII AR5     Figure 9.3. Annual per capita final energy use of residential and commercial buildings for eleven regions (GEA RC11, see Annex II.2.4) in 1990 and 2010. Data from (IEA, 2013).   10 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Figure 9.4. World building final energy consumption by end-use in 2010. Source: (IEA, 2013). As shown in Section 9.9 global building energy use may double to triple by mid century due to  several key trends. An estimated 0.8 billion people lack access to adequate housing (UN Habitat,  2010) while an estimated 1.3 billion people lacked access to electricity in 2010 and about 3 billion  people worldwide relied on highly polluting and unhealthy traditional solid fuels for household  cooking and heating (IEA, 2012a; Pachauri et al., 2012) (see Section 14.3.2.1).The ways these energy  services will be provided will significantly influence the development of building related emissions. In  addition, migration to cities, decreasing household size, increasing levels of wealth and lifestyle  changes, including an increase in personal living space, the types and number of appliances and  equipment and their use  all contribute to significant increases in building energy use. Rapid  economic development accompanied by urbanization and shifts from informal to formal housing is  propelling significant building activity in developing countries (WBCSD, 2007). As a result, this  substantial new construction, which is taking place in these dynamically growing regions represents  both a significant risk and opportunity from a mitigation perspective.       11 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Box 9.1: Least Developed Countries (LDCs) in the context of the developing world 878 million people with an average 2 USD2010 per day of gross national income (The World Bank,  2013) live in the LDCs group. Rapid economic development, accompanied by urbanization, is  propelling large building activity in developing countries (WBCSD, 2007, 2009; ABC, 2008; Li and  Colombier, 2009; see also Chapter 12.3). The fast growing rates of new construction, which is  occurring in emerging economies, is not being witnessed in LDCs. This group of countries is still at the  fringe of modern development processes and has special needs in terms of access to housing,  modern energy carriers, and efficient and clean burning cooking devices (Zhang and Smith, 2007;  Duflo et al., 2008; WHO, 2009, 2011; Wilkinson et al., 2009; Hailu, 2012; Pachauri, 2012). Around  one third of the urban population in developing countries in 2010 did not have access to adequate  housing (UNHSP, 2010) and the number of slum dwellers is likely to rise in the near future (UN Habitat, 2011). In order to avoid locking in carbon intensive options for several decades, a shift to  electricity and modern fuels needs to be accompanied by energy saving solutions (technological,  architectural), as well as renewable sources, adequate management, and sustainable lifestyles  (WBCSD, 2006; Ürge Vorsatz et al., 2009; Wilkinson et al., 2009; US EERE, 2011; GEA, 2012;  Wallbaum et al., 2012). Modern knowledge and techniques can be used to improve vernacular  designs (Foruzanmehr and Vellinga, 2011). Principles of low energy design often provide comfortable  conditions much of the time, thereby reducing the pressure to install energy intensive cooling  equipment such as air conditioners. These principles are embedded in vernacular designs throughout  the world, and have evolved over centuries in the absence of active energy systems.   Beyond the direct energy cost savings, many mitigation options in this sector have significant and  diverse co benefits that offer attractive entry points for mitigation policy making, even in  countries/jurisdictions where financial resources for mitigation are limited. These co benefits include,  but are not limited to, energy security, air quality, and health benefits; reduced pressures to expand  energy generation capacities in developing regions; productivity, competitiveness, and net  employment gains; increased social welfare; reduced fuel poverty; decreased need for energy  subsidies and exposure to energy price volatility risks; improved comfort and services; and improved  adaptability to adverse climate events (Herrero et al.; Clinch and Healy, 2001).  9.2.2    Trends and drivers of thermal energy uses in buildings  Figure 9.5 shows projections of thermal energy uses in commercial and residential buildings in the  regions of the world from 2010 to 2050 (Ürge Vorsatz et al., 2013a). While energy consumption for  thermal uses in buildings in the developed countries (see North America and Western Europe)  accounts for most of the energy consumption in the world, its tendency is to grow little in the period  shown, while developing countries show an important increase. Commercial buildings represent  between 10 to 30% of total building sector thermal energy consumption in most regions of the world,  except for China, where heating and cooling energy consumption in commercial buildings is expected  to overtake that of residential buildings. Drivers to these trends and their developments are  discussed separately for heating/cooling and other building energy services because of conceptually  different drivers. Heating and cooling energy use in residential buildings can be decomposed by the  following key identities, from (Ürge Vorsatz et al., 2013a):   energyresidential h p area energy h p area   where energyresidential stands for the total residential thermal energy demand, [h] and [p/h] are the  activity drivers, with [h] being the number of households and the [p/h] number of persons (p) living  in each household, respectively. [area/p] is the use intensity driver, with the floor area (usually m2)  per person; and [energy/area] is the energy intensity driver, i.e., the annual thermal energy  consumption (usually kWh) per unit of floor area, also referred to as specific energy consumption.  For commercial buildings, the heating and cooling use is decomposed as     12 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   energycommercial GDP area energy   GDP area where energycommercial stands for the total commercial thermal energy demand, [GDP], i.e., nominal  Gross Domestic Product is the activity driver; [area/GDP] is the use intensity driver and  [energy/area]is the energy intensity driver, the annual thermal energy consumption (in kWh) per unit  of floor area (in m2), also referred to as specific energy consumption. The following figures illustrate  the main trends in heating and cooling energy use as well as its drivers globally and by region.    Figure 9.5.Total annual final thermal energy consumption (PWh/yr)] trends in eleven world regions (GEA RC11, see Annex II.2.4) for residential and commercial buildings. Historical data (1980 2000)   13 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   are from IEA statistics; projections (2010 2050) are based on a frozen efficiency scenario (ÜrgeVorsatz et al., 2013b). Heating and cooling energy use in residential and commercial buildings, respectively, and is expected  to grow by 79% and 83%, respectively, over the period 2010 2050 (Figure 9.6) in a business as usual  scenario. In residential buildings, both the growing number of households and the area per  household tend to increase energy consumption, while the decrease in the number of persons per  household and in specific energy consumption tend to decrease energy consumption. In commercial  buildings, the projected decrease area/GDP is 57%, while energy/area is expected to stay constant  over the period 2010 2030. Different tendencies of the drivers are shown for both residential and  commercial buildings in the world as whole (Figure 9.6) and in different world regions (Figure 9.7).  More detailed information about each driver trend can be found in (Ürge Vorsatz et al., 2013a).  These figures indicate that in some regions(e.g., NAM and WEU), strong energy building policies are  already resulting in declining or stagnating total energy use trends despite the increase in population  and service levels.  Figure 9.6.Trends in the different drivers for global heating and cooling thermal energy consumption in residential and commercial buildings. Sources: Historic data (1980 2000) from (Ürge-Vorsatz et al., 2013a); projection data (2010 2050) based on frozen efficiency scenario in (Ürge-Vorsatz et al., 2013b).   14 of 103 Final Draft  Chapter 9  IPCC WGIII AR5     15 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Figure 9.7. Trends in the drivers of heating and cooling thermal energy consumption of residential (first page) and commercial (this page) buildings in world regions (GEA RC11, see Annex II.2.4). Sources: Historic data (1980 2000) from (Ürge-Vorsatz et al., 2013a) and projections (2010 2050) based on a frozen efficiency scenario (Ürge-Vorsatz et al., 2013b). 9.2.3    Trends and drivers in energy consumption of appliances in buildings  In this chapter, we use the word  appliances  in a broader sense, covering all electricity using non thermal equipment in buildings, including lighting and ICT. Traditional large appliances, such as  refrigerators and washing machines, are still responsible for most household electricity consumption  (IEA, 2012c) albeit with a falling share related to the equipment for information technology and    16 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   communications (including home entertainment) accounting in most countries for 20% or more of  residential electricity consumption (Harvey, 2008). This rapid growth offers opportunities to roll out  more efficient technologies, but this effect to date has been outcompeted by the increased uptake of  devices and new devices coming to the market. Energy use of appliances can be decomposed as  shown in the following equation from (Cabeza et al., 2013a):  energy h a n energy   h n Where a is the sum overall appliances; [h] is the activity driver, the number of households; [n/h] is  the use intensity driver, i.e., the number of appliances of appliance type  a  per household; and  [energy] is the energy intensity driver (kWh/yr used per appliance). The number of appliances used  increased around the world. Figure 9.8 shows that the energy consumption of major appliances in  non OECD countries is already nearly equal to consumption in the OECD, due to their large  populations and widespread adoption of the main white appliances and lighting. In addition, while  fans are a minor end use in most OECD countries, they continue to be extremely important in the  warm developing countries.  Figure 9.8. Residential electricity consumption by enduse in a policy scenario from the Bottom-Up Energy Analysis System (BUENAS) model. Source: (Cabeza et al., 2013a). 9.3   Mitigation technology options and practices, behavioral aspects  This section provides a broad overview at the strategic and planning level of the technological  options, design practices, and behavioural changes that can achieve large reductions in building  energy use (50% 90% in new buildings, 50% 75% in existing buildings). Table 9.2 summarizes the  energy savings and CO2 emission reduction potential according to the factors introduced in Section  9.1  based on material presented in this section or in references given. A synthesis of documented  examples of large reductions in energy use achieved in real, new, and retrofitted buildings in a  variety of different climates, and of costs at the building level, is presented in this section, while  Section 9.4  reviews the additional savings that are possible at the community level and their  associated costs, and Section 9.6  presents a synthesis of studies of the costs, their trends, and with  integrated potential calculations at the national, regional, and global levels.    17 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Table 9.2. Savings or off-site energy use reductions achievable in buildings for various end uses due to on-site active solar energy systems, efficiency improvements, or behavioural changes.  End Use  On site C Free Energy  Supply(1)  20% 95% (2)  50% 100% (7)  50% 80% (12)  0 30% (17)  10 30%            10% 120%(32)    Device Efficiency  System Efficiency  Behavioural Change  Heating  Hot water  Cooling  Cooking  Lighting  Refrigerators   Dishwashers  Clothes washers  Clothes dryers  Office computers &  monitors  General electrical loads  (1) 30%(3)  80%(4)  60%(8) 75%(9)  50%(13) 75%(14)  25 75%(18) 80%(19)  75%(21); 83% (22) (23) 90% ; 99.83%   40% (25a)  17+%(27a)  30%(28a)  50+%(29a)  40%(31a)                (5) 90%   10% 30%(6)  50%(11)  50% 67%(16)  50%(20)  40%(10)  67%(15)  80% 93%(24)  70%(25)  30%(26); 50%(27)  75%(28)  60% 85%(29)  10% 15%(30) 100%(31)      Notes: Only active solar energy systems. Higher percentage contributions achievable if loads are first reduced through application of device, system, and behavioural efficiencies. Passive solar heating, cooling, ventilation, (2) and daylighting are considered under Systemic Efficiency. Space heating. Lower value representative of combisystems in Europe; upper value is best solar district heating systems with seasonal underground thermal energy storage, after a 5-year spinup (SAIC, 2013). (3) Replacement of 75% efficient furnace/boiler with 95% efficient unit (e.g., condensing natural gas boilers).(4) Replacement of 80% efficient furnace or boiler with ground-source heat pump with a seasonal COP for space heating of 4 (from ground-source heat pumps in well-insulated new buildings in Germany (DEE, 2011).(5) Reduction from a representative cold-climate heating energy intensity of 150 2 2 6) kWh/m /yr to 15 kWh/m /yr (Passive House standard, Section 9.3.2).( Typical value; 2°C cooler thermostat setting at heating season. Absolute savings is smaller but relative savings is larger the better the thermal envelope of the building (see also Section 9.3.9).(7) Water heaters. 50 80% of residential hot water needs supplied in Sydney, Australia and Germany (Harvey, 2007), while upper limit of 100% is conceivable in hot desert regions. (8) Replacement of a 60% efficient with a 95% efficient water heater (typical of condensing and (9) (0) modulating wall-hung natural gas heaters). Table 9.4. Elimination of standby and distribution heat losses in residential buildings (typically accounting for 30% water-heating energy use in North America ((Harvey, 2007) (1) through use of point-of-use on- demand water heaters. Shorter showers, switch from bathing to showering, and other hot-water-conserving behavior.(2) Air conditioning and dehumidification. Range for systems from central to (3) Southern Europe with a relatively large solar collector area in relation to the cooling load ((Harvey, 2007). Replacement of air conditioners having a COP of 3 (typical in North America) with others with a COP of 6 (4) (Japanese units); Table 9.4. Replacement of North American units with units incorporating all potential efficiency (5) improvements; Table 9.4. Reduction (even elimination) of cooling loads through better building orientation & (6) envelopes, provision for passive cooling, and reduction of internal heat gains (Harvey, 2007). Section 9.3.9. (7) Fans during tolerable brief periods eliminating cooling equipment in moderately hot climates. Cooking range, (8) (9 various ovens. Range pertains to various kinds of ovens; Table 9.4. Replacement of 10% 15% with 60% (20) efficient (traditional biomass) cookstoves (Rawat et al., 2010). Same recipe with different cooking practices; (2) Table 9.4 / Section 9.3.9. Replacement of 10 17 lm/W incandescent lamps with 50 70 lm/W compact fluorescent (Harvey, 2010).(22) Replacement of 15 lm/W incandescent lamps with (year 2030) LEDs, 100 160 (23) Replacement of 0.25 lm/W kerosene lamps ((Fouquet and Pearson, lm/W (McNeil et al., 2005; US DOE, 2006). (24) 2006) with future 150 lm/W LEDs. Reduction from average US office lighting energy intensity of the existing 2 2 (25) stock of 73 kWh/m /yr (Harvey, 2013) to 5 15 kWh/m /yr state-of-art systems (Harvey, 2013). Turning off not (25a) (26) 3 3 needed lights (6000 hours/yr out of 8760 hours/yr). Table 9.4 12.5 ft vs 18.5 ft (350 litres, 350 kWh/yr vs 3 520 litres, 500 kWh/yr) refrigerator-freezers or 18.5 vs 30.5 ft (860 litres, 700 kWh/yr) (Harvey, 2010). (27) (27a) (28) Elimination of a second ( beer ) fridge. Table 9.4 Fully loaded operation versus typical part-load operation (28a) by 2030 (Table 9.4). (29) Cold compared to hot water washing, based on relative contribution of (Table 9.4). water heating to total clothes washer energy use for the best US&EU models (Harvey, 2010).(29a) Table 9.4.(30) Operation at full load rather than at one-third to half load (Smith, 1997).(31)Air drying inside when there is no space heating requirement, or outside. (31a) Table 9.4. 32)Fraction of on-site electricity demand typically generated by onsite PV with low demand kept low through electricity-efficiency measures.   18 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   9.3.1    Key points from AR4  The AR4 Chapter 6 on Buildings (Levine et al., 2007) contains an extensive discussion of the wide  range of techniques and designs to reduce energy use in new buildings. A systemic approach is more  relevant to energy use than efficiencies of individual devices(pumps, motors, fans, heaters, chillers,  etc.) efficiencies, as are related net investment cost savings   usually several times higher (Levine et  al., 2007; Harvey, 2008). IDP allows for the systemic approach, which optimizes building performance  iteratively, and involves all design team members from the start (Montanya et al., 2009; Pope and  Tardiff, 2011). However, the conventional process of designing and constructing a building and its  systems is largely linear, in which design elements and system components are specified, built, and  installed without consideration of optimization opportunities in the following design and building  phases, thus losing key opportunities for the optimization of whole buildings as systems (Lewis, 2004).  As discussed in AR4, essential steps in the design of low energy buildings are: (1) building orientation,  thermal mass, and shape; (2) high performance envelope specification; (3) maximization of passive  features (day lighting, heating, cooling, and ventilation); (4) efficient systems meeting remaining  loads; (5) highest possible efficiencies and adequate sizing of individual energy using devices; and (6)  proper commissioning of systems and devices. Cost savings can substantially offset additional high performance envelope and higher efficiency equipment costs, of around 35 50% compared to  standard practices of new commercial buildings (or 50 80% with more advanced approaches).  Retrofits can routinely achieve 25 70% savings in total energy use (Levine et al., 2007; Harvey, 2009).  9.3.2    Technological developments since AR4  Since AR4, there have been important performance improvements and cost reductions in many  relevant technologies, and further significant improvements are expected. Examples include (1)  daylighting and electric lighting (Dubois and Blomsterberg, 2011); (2) household appliances (Bansal et  al., 2011); (3) insulation materials (Baetens et al., 2011; Korjenic et al., 2011; Jelle, 2011); (4) heat  pumps (Chua et al., 2010);(5) indirect evaporative cooling to replace chillers in dry climates (Jiang and  Xie, 2010); (6) fuel cells (Ito and Otsuka, 2011); (7) advances in digital building automation and  control systems (NBI, 2011); and (8) smart meters and grids as a means of reducing peak demand and  accommodating intermittent renewable electricity sources (Catania, 2012). Many of these measures  can individually reduce the relevant specific energy use by half or more. In addition to the new  technologies, practitioners have also increasingly applied more established technology and  knowledge both in new building construction and in the existing building retrofits. These practices  have been driven in part by targeted demonstration programmes in a number of countries. They  have been accompanied by a progressive strengthening of the energy provisions of building codes in  many countries, as well as by plans for significant further tightening in the near future (see also  Section 9.10  ). In the following sections we review the literature published largely since AR4  concerning the energy intensity of low energy new buildings and of deep retrofits of existing  buildings.  9.3.3    Exemplary New Buildings  This section presents an overview of the energy performance and incremental cost of exemplary  buildings from around the world, based on the detailed compilation of high performance buildings  presented in Harvey (2013) . The metrics of interest are the on site energy intensity annual energy  use per square meter of building floor area (kWh/m2/yr) for those energy uses (heating, cooling,  ventilation, and lighting) that naturally increase with the building floor area, and energy use per  person for those energy uses such as service hot water, consumer electronics, appliances, and  office equipment that naturally increase with population or the size of the workforce.   9.3.3.1    Energy intensity of new high performance buildings  The energy performance of new buildings have improved considerably since AR4, as demonstrated in  Table 9.3, which summarizes the specific energy consumption for floor area driven final energy uses  by climate type or region.     19 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Table 9.3. Typical and current best case specific energy consumption (kWh/m2/yr) for building loads directly related to floor area (Harvey, 2013). End Use  Climate  Region  Cold  Moderate  Moderate  Hot dry  Hot humid  All  All  Residential  Advanced  15 30  10 20  0 5  0 10  3 15  4 8  2 4  Typical  60 200  40 100  0 10  10 20  10 30  0 8  3 10  Commercial  Advanced  15 30  10 30  0 15  0 10  15 30  0 20  5 20  Typical  75 250  40 100  20 40  20 50  50 150  10 50  30 80  Heating  Heating  Cooling  Cooling  Cooling  Ventilation  Lighting  Notes: Lighting energy intensity for residential buildings is based on typical modern intensities times a factor of 0.3 0.4 to account for an eventual transition to LED lighting. Definitions here for climate regions for heating: Cold_> 3000 HDD; Moderate 1000 3000 HDD. Similarly for cooling: moderate < 750 CDD; hot-dry > 750 CDD; hot-humid > 750 CDD. HDD = heating degree days (K-day) and CCD = cooling-degree days (K-day). Energy intensity ranges for commercial buildings exclude hospitals and research laboratories. A number of voluntary standards for heating energy use have been developed in various countries  for residential buildings (see Table 1 in Harvey, 2013). The most stringent of standards with regard to  heating requirements is the Passive House standard, which prescribes a heating load (assuming a  uniform indoor temperature of 20C) of no more than 15 kWh/m2/yr irrespective of the climate. It  typically entails a high performance thermal envelope combined with mechanical ventilation with  heat recovery to ensure high indoor air quality. Approximately 57,000 buildings complied with this  standard in 31 European countries in 2012, covering 25.15 million square metres (Feist, 2012) with  examples as far north as Helsinki, with significantly more that meet or exceed the standard but have  not been certified due to the higher cost of certification. As seen from Table 9.3, this standard  represents a factor of 6 12 reduction in heating load in mild climates (such as Southern Europe) and  up to a factor of 30 reduction in cold climate regions with minimal insulation requirements. Where  buildings are not currently heated to comfortable temperatures, adoption of a high performance  envelope can aid in achieving comfortable conditions while still reducing heating energy use in  absolute terms.   Cooling energy use is growing rapidly in many regions where, with proper attention to useful  components of vernacular design combined with modern passive design principles, mechanical air  conditioning would not be needed. This use includes regions that have a strong diurnal temperature  variation (where a combination of external insulation, exposed interior thermal mass, and night  ventilation can maintain comfortable conditions), or a strong seasonal temperature variation (so that  the ground can be used to cool incoming ventilation air) or which are dry, thereby permitting  evaporative cooling or hybrid evaporative/mechanical cooling strategies to be implemented.   Combining insulation levels that meet the Passive House standard for heat demand in Southern  Europe with the above strategies, heating loads can be reduced by a factor of 6 12 (from 100 200  kWh/m2/yr to 10 15 kWh/m2/yr) and cooling loads by a factor of 10 (from < 30 kWh/m2/yr to < 3  kWh/m2/yr) (Schneiders et al., 2009). With good design, comfortable conditions can be maintained  80% of the time (and closer to 100% of the time if fans are used) without mechanical cooling in  relatively hot and humid regions such as Southern China (Ji et al., 2009), Vietnam (Nguyen et al.,  2011), Brazil (Grigoletti et al., 2008; Andreasi et al., 2010; Candido et al., 2011), and the tropics  (Lenoir et al., 2011).   In commercial buildings, specific energy consumption of modern office and retail buildings are  typically 200 500 kWh/m2/yr including all end uses, whereas advanced buildings have frequently  achieved less than 100 kWh/m2/yr in climates ranging from cold to hot and humid. The Passive    20 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   House standard for heating has been achieved in a wide range of different types of commercial  buildings in Europe. Sensible cooling loads (energy that must be removed from, e.g., the air inside a  building) can typically be reduced by at least a factor of four compared to recent new buildings    through measures to reduce cooling loads (often by a factor of 2 4) and through more efficient  systems in meeting reduced loads (often a factor of two). Dehumidification energy use is less  amenable to reduction but can be met through solar powered desiccant dehumidification with  minimal non solar energy requirements. Advanced lighting systems that include daylighting with  appropriate controls and sensors, and efficient electric lighting systems (layout, ballasts, luminaires)  typically achieve a factor of two reduction in energy intensity compared to typical new systems  (Dubois and Blomsterberg, 2011).  9.3.3.2    Monitoring and commissioning of new and existing buildings  Commissioning is the process of systematically checking that all components of building HVAC  (Heating, Ventilation and Air Conditioning) and lighting systems have been installed properly and  operate correctly. It often identifies problems that, unless corrected, increase energy use by 20% or  more, but is often not done (Piette et al., 2001). Advanced building control systems are a key to  obtaining very low energy intensities in commercial buildings. It routinely takes over one year or  more to adjust the control systems so that they deliver the expected savings(Jacobson et al., 2011)  through detailed monitoring of energy use once the building is occupied. Wagner et al. (2007) give an  example where monitoring of a naturally ventilated and passively cooled bank building in Frankfurt,  Germany lead to a reduction in primary energy intensity from about 200 kWh/m2/yr during the first  year of operation to 150 kWh/m2/yr during the third year (with a predicted improvement to 110  kWh/m2/yr during the fourth year). Post construction evaluation also provides opportunities for  improving the design and construction of subsequent buildings (Wingfield et al., 2011).  9.3.3.3    Zero energy/carbon and energy plus buildings  Net zero energy buildings (NZEBs) refer to buildings with on site renewable energy systems (such PV,  wind turbines, or solar thermal) that, over the year, generate as much energy as is consumed by the  building. NZEBs have varying definitions around the world, but these typically refer to a net balance  of on site energy, or in terms of a net balance of primary energy associated with fuels used by the  building and avoided through the net export of electricity to the power grid (Marszal et al., 2011).  Space heating and service hot water has been supplied in NZEBs either through heat pumps  (supplemented with electric resistance heating on rare occasions), biomass boilers, or fossil fuel powered boilers, furnaces, or cogeneration. (Musall et al., 2010) identify almost 300 net zero or  almost net zero energy buildings constructed worldwide (both commercial and residential. There  have also been some NZE retrofits of existing buildings. Several jurisdictions have adopted legislation  requiring some portion of, or all, new buildings to be NZEBs by specific times in the future (Kapsalaki  and Leal, 2011).   An extension of the NZEB concept is the Positive Energy Building Concept (having net energy  production) (Stylianou, 2011; Kolokotsa et al., 2011). Issues related to NZEBs include (1) the  feasibility of NZEBs; (2) minimizing the cost of attaining an NZEB, where feasible; (3) the cost of a  least cost NZEB in comparison with the cost of supplying a building s residual energy needs (after  implementing energy efficiency measures) from off site renewable energy sources; (4) the  sustainability of NZEBs; (5) lifecycle energy use; and (6) impact on energy use of alternative uses or  treatments of roofs.   To create a NZEB at minimal cost requires implementing energy saving measures in the building in  order of increasing cost up to the point where the next energy savings measure would cost more  than the cost of on site renewable energy systems. In approximately one third of NZEBs worldwide,  the reduction in energy use compared to local conventional buildings is about 60% (Musall et al.,  2010). Attaining net zero energy use is easiest in buildings with a large roof area (to host PV arrays) in  relation to the building s energy demand, so a requirement that buildings be NZEB will place a limit    21 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   on the achievable height and therefore on urban density. In Abu Dhabi, for example, NZEB is possible  in office buildings of up to five stories if internal heat gains and lighting and HVAC loads are  aggressively reduced (Phillips et al., 2009).   9.3.3.4    Incremental cost of low energy buildings  A large number of published studies on the incremental costs of specific low energy buildings are  reviewed in Harvey (2013). Summary conclusions from this review, along with key studies underlying  the conclusions, are given here, with Table 9.4 presenting a small selection to illustrate some of the  main findings.   In the residential sector, several studies indicate an incremental cost of achieving the Passive House  standard in the range of 6 16% of the construction cost (about 66 265 USD2010/m2) as compared to  standard construction. A variety of locations in the United States, show additional costs of houses  that achieve 34 76% reduction in energy use of about 30 163 USD2010/m2  this excludes solar PV for  both savings and costs (Parker, 2009). The extra cost of meeting the  Advanced  thermal envelope  standard in the UK, which reduces heating energy use by 44% relative to the 2006 regulations, has  been estimated at 7 9% (about 66 265 USD2010/m2) relative to a design the meets the 2006  mandatory regulations  which have since been strengthened (Davis Langdon and Element Energy,  2011).   Several cold climate studies indicate that if no simplification of the heating system is possible as a  result of reducing heating requirements, then the optimal (least lifecycle cost, excluding  environmental externalities) level of heating energy savings compared to recent code compliant  buildings is about 20 50% (Anderson et al., 2006; Hasan et al., 2008; Kerr and Kosar, 2011; Kurnitski  et al., 2011).However, there are several ways in which costs can be reduced: (1) if the reference  building has separate mechanical ventilation and hydronic heating, then the hydronic heating system  can be eliminated or at least greatly simplified in houses meeting the Passive House standard (Feist  and Schnieders, 2009); (2) perimeter heating units or heating vents can be eliminated with the use of  sufficiently insulated windows, thereby reducing plumbing or ductwork costs (Harvey and Siddal,  2008); (3) the building shape can be simplified (reducing the surface area to volume ratio), which  both reduces construction costs and makes it easier to reach any given low energy standard  (Treberspurg et al., 2010); and (4) in Passive Houses (where heating cost is negligibly small),  individual metering units in multi unit residential buildings could be eliminated (Behr, 2009). As well,  it can be expected that costs will decrease with increasing experience and large scale  implementation on the part of the design and construction industries. For residential buildings in  regions where cooling rather than heating is the dominate energy use, the key to low cost and  emissions is to achieve designs that can maintain comfortable indoor temperatures while permitting  elimination of mechanical cooling systems.   Available studies (such as in Table 9.4.) indicate that the incremental cost of low energy buildings in  the commercial sector is less than in the residential sector, due to the greater opportunities for  simplification of the HVAC system, and that it is possible for low energy commercial buildings to cost  less than conventional buildings. In particular, there are a number of examples of educational and  small office buildings that have been built to the Passive House standard at no additional cost  compared to similar conventional or less stringently low energy local buildings (Anwyl, 2011; Pearson,  2011)The Research Support Facilities Building (RSF) at the National Renewable Energy Laboratory  (NREL) in Golden, Colorado achieved a 67% reduction in energy use (excluding the solar PV offset) at  zero extra cost for the efficiency measures, as the design team was contractually obliged to deliver a  low energy building at no extra cost (Torcellini et al., 2010). Torcellini and Pless (2012) present many  opportunities for cost savings such that low energy buildings can often be delivered at no extra cost.  Other examples of low energy buildings (50 60% savings relative to standards at the time) that cost  less than conventional buildings are given in McDonell (2003) and IFE (2005). New Buildings Institute  (2012) reports examples of net zero energy buildings that cost no more than conventional buildings.  Even when low energy buildings cost more, the incremental costs are often small enough that they    22 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   can be paid back in energy cost savings within a few years or less (Harvey, 2013). The keys to  delivering low energy buildings at zero or little additional cost are through implementation of the  integrated design process (described in Section 9.3.1   ) and the design bid build process. Vaidya et al.  (2009) discuss how the traditional, linear design process leads to missed opportunities for energy  savings and cost reduction, often leading to the rejection of highly attractive energy savings  measures.  Table 9.4. Summary of estimates for extra investment cost required for selected very low-/zero-energy buildings. Case   Passive house  Projects  5 passive houses  Passive house  apartment block  12 very low or net  zero energy houses  10 buildings in the  SolarBauprogramme  Location  Central  Europe  Belgium Vienna United  States  Germany Type  New  Energy  performance  Passive house  standard  62 kWh/m /yr  total  Passive house  standard     < 100 kWh/m /yr primary energy   vs. 300 600    conventional   2 100 kWh/m /yr  total vs. 180    conventional     2 2 Extra investment costs 5 8% (143 225 USD2010/m ) 2 2 CCE    References (Bretzke, 2005;  Schnieders and  Hermelink, 2006)   (Audenaert et al.,  2008)  (Mahdavi and  Doppelbauer, 2010)  (Parker, 2009) (Wagner et al.,  2004)  New  New  New  New  16% (252 USD2010/m ) 5% (69 USD2010/m )  0.07 0.12 USD2010/kWh (CCE) Comparable to the difference  in costs between alternative  standards for interior finishes  10% lower cost 2         High performance  commercial buildings  Offices and  laboratory, Concordia  University  Welsh Information  and Technology Adult  Learning Centre  (CaolfanHyddgen)  2 Hypothetical 6,000 m   office building  2 10 story, 7,000 m   residential building  Leslie Shao Ming Sun  Field Station, Stanford  University  Hudson Valley Clean  Energy Headquarters  Vancouver  New    (McDonell, 2003) Montreal  New  2.30%   (Lemire and  Charneux, 2005)  (Pearson, 2011) Wales  New  Passive house  standard  No extra cost compared to  BREEAM  Excellent  standard    Las Vegas  Denmark California  New  New  New  42% of energy  savings  2 14 kWh/m /yr  (heating) vs. 45   NZEB USD2010 2,719  3.4% (115 USD2010/ m ) 4 10% more based on hard  construction costs  665 USD2010/month in  mortgage payments but  saves 823 USD2010/month in  energy costs  None None 24% (558 USD2010/m ) 259 USD2010/m 2 2 2       (Vaidya et al., 2009) (Marszal and  Heiselberg, 2009)  (NBI, 2011) New York  New  NZEB   (NBI, 2011) IAMU Office  EcoFlats Building  10 story, 7,000 m   residential building  Toronto towers  Multi family housing  Terrace housing  High rise housing  1950s MFH  1925 SFH  1929 MFH  19th century flat  2 Ankeny, IA  Portland,  OR  Denmark Toronto EU  EU  EU  Germany Denmark Germany UK  New  New  New  Retrofit  Retrofit  Retrofit  Retrofit  Retrofit  Retrofit  Retrofit  Retrofit  NZEB NZEB NZEB 194 / 95% 62 150 / 52% 86%  97 266/ 59% 84% 70% 81% 82 247/ 30% 90% 120 140 200/ 58% 82%  192 234/ 48% 59%        0.052  USD2010/kWh  0.014 0.023  USD2010/kWh  0.13 0.023  USD2010/kWh  0.018 0.028  USD2010/kWh  0.023 0.065  USD2010/kWh    0.071  USD2010/kWh  0.060 0.088   USD2010/kWh  0.068 0.140   USD2010/kWh  (NBI, 2011) (NBI, 2011) (Marszal and  Heiselberg, 2009)  (Kesik and Saleff,  2009)  (Petersdorff et al.,  2005)  (Petersdorff et al.,  2005)  (Waide et al., 2006) (Galvin, 2010) (Kragh and Rose,  2011)  (Hermelink, 2009) (United House,  2009)  53 124  USD2010/m 90 207 USD2010/m 2 2 2.5 5.8 USD2010/m /yr 48 416 USD2010/m 217 USD2010/m 2 2 2 167 340 USD2010/m 305 762 USD2010/m 2 2   23 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   9.3.4    Retrofits of existing buildings  As buildings are very long lived and a large proportion of the total building stock existing today will  still exist in 2050 in developed countries, retrofitting the existing stock is key to a low emission  building sector.   9.3.4.1    Energy savings  Numerous case studies of individual retrofit projects (in which measures, savings, and costs are  documented) are reviewed in Harvey (2013), but a few broad generalizations can be presented here.  (1) For detached single family homes, the most comprehensive retrofit packages have achieved  reductions in total energy use by 50 75%; (2) in multi family housing (such as apartment blocks), a  number of projects have achieved reductions in space heating requirements by 80 90%, approaching,  in many cases, the Passive House standard for new buildings; (3) relatively modest envelope  upgrades to multi family housing in developing countries such as China have achieved reductions in  cooling energy use by about one third to one half, and reductions in heating energy use by two thirds; (4) in commercial buildings, savings in total HVAC energy use achieved through upgrades to  equipment and control systems, but without changing the building envelope, are typically on the  order of 25 50%; (5) eventual re cladding of building facades especially when the existing façade is  largely glass with a high solar heat gain coefficient, no external shading, and no provision for passive  ventilation, and cooling  offers an opportunity for yet further significant savings in HVAC energy  use; and (6) lighting retrofits of commercial buildings in the early 2000s typically achieved a 30 60%  energy savings (Bertoldi and Ciugudeanu, 2005).  9.3.4.2    Incremental cost  Various isolated studies of individual buildings and systematic pilot projects involving many buildings,  reviewed in Harvey (2013), indicate potentials (with comprehensive insulation and window upgrades,  air sealing, and implementation of mechanical ventilation with heat recovery) reductions in heating  energy requirements of 50 75% in single family housing and 50 90% in multi family housing at costs  of about 100 400 USD2010/m2 above that which would be required for a routine renovation. For a  small selection of these studies, see Table 9.4. In the commercial sector, significant savings can often  be achieved at very low cost simply through retro commissioning of equipment. Mills (2011)  evaluated the benefits of commissioning and retro commissioning for a sample of 643 buildings  across the United States and reports a 16% median whole building energy savings in California, with  a mean payback time of 1.1 years. Rdsj et al. (2010) showed that among the 60 demonstration  projects reviewed, the average primary energy demand savings was 76%, and 13 of the projects  reached or almost reached the Passive House standard. Although retrofits generally entail a large  upfront cost, they also generate large annual cost savings, and so are often attractive from a purely  economic point of view. Korytarova and Ürge Vorsatz (2012) note that shallow retrofits can result in  greater lifecycle costs than deep retrofits. Mata et al. (2010) studied 23 retrofit measures for  buildings in Sweden and report a simple technical potential for energy savings in the residential  sector of 68% of annual energy use. They estimated a cost per kWh saved between  0.09  USD2010/kWh (appliance upgrades) and +0.45 USD2010/kWh (façade retrofit). Polly et al. (2011)  present a method for determining optimal residential energy efficiency retrofit packages in the  United States, and identify near cost neutral packages of measures providing between 29% and 48%  energy savings across eight US locations. Lewis (2004) has compiled information from several studies  in old buildings in Europe and indicates that the total and marginal cost of conserved energy both  tend to be relatively uniform for savings of up to 70 80%, but increase markedly for savings of  greater than 80% or for final heating energy intensities of less than about 40 kWh/m2/yr.   24 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Table 9.5. Potential savings in energy consumption by household appliances and equipment. Item  Televisions  Savings potential  Average energy use of units sold in the United States (largely LCDs) was426  kWh/yr in 2008 and 102 kWh/yr in 2012. Further reductions (30 50% below LCD  TVs) are expected with use of organic LED backlighting (likely commercially  available by 2015).  Energy savings of best available TVs compared to market norms are 32 45% in  Europe, 44 58% in North America, and 55 60% in Australia  70% reduction in on mode power draw expected from 2011 to 2015 At least a factor of 10 million potential reduction in the energy required per  computation (going well beyond the so called Feynman limit).  40% minimum potential savings compared to the best standards, 27% savings at  0.11 USD2010/kWh CCE (Costs of Conserved Energy)  50% savings potential (in Europe), largely through more efficient cooking practices  alone  25% and 45% potential savings through advanced technology in natural gas and  conventional electric ovens, respectively, and 75% for microwave ovens  Typically only 40 45% loaded, increasing energy use per place setting by 77 97%  for 3 dishwashers studied  Current initiative targets 17% less electricity, 35% less water than best US standard  Global 28% potential savings by 2030 relative to business as usual Factor of two difference between best and average units on the market in Europe  (0.27 kWh/kg vs 0.59 kWh/kg). More than a factor of 2 reduction in going from  United States average to European heat pump dryer (820 kWh/yr vs 380 kWh/yr)  Potential of < 0.005 W for adapters and chargers, < 0.05 for large appliances ( zero   in both cases) (typical mid 2000s standby power draw: 5 15 W)  COP (a measure of efficiency) of 2.5 3.5 in Europe and United States, 5.0 6.5 in  Japan (implies up to 50% energy savings)  COP of 4.2 6.8 for air conditioners such that the cost of saving electricity does not  exceed the local cost of electricity, and a potential COP of 7.3 10.2 if all available  energy saving measures were to be implemented (implies a 50 75% savings for a  given cooling load and operating pattern).  50 57% energy savings potential 60% less energy consumption by best available equipment compared to typically used equipment  40% savings from existing low to zero cost measures only 40% savings from projected energy use in 2020 in Europe (relative to a baseline  with efficiencies as of 2004) due to legislated standards already in place  Efficacies (lm/W) (higher is better): standard incandescent, 15; CFL, 60; best  currently available white light LEDs, 100; current laboratory LEDs, 250   50 80% reduction in water use by water saving fixtures compared to older standard  fixtures  Typical efficiency factor (EF) for gas and electric water heaters in the USA is 0.67  and 0.8 in EU, while the most efficient heat pump water heaters have EF=2.35 and  an EF of 3.0 is foreseeable (factor of 4 improvement)   Reference  (Howard et al., 2012;  Letschert et al., 2012)  Televisions  Computer monitors  Computing  Refrigerator freezer units  Cooking  Ovens  Dishwashers  Dishwashers  Clothes washers  Clothes Dryers    (Park, 2013)  (Park et al., 2013) (Koomey et al., 2013) (Bansal et al., 2011;  McNeil and Bojda, 2012)  (Fechter and Porter, 1979;  Oberascher et al., 2011)  (Mugdal, 2011; Bansal et  al., 2011)  (Richter, 2011) (Bansal et al., 2011) (Letschert et al., 2012) (Werle et al., 2011) Standby loads  Air conditioners  Air conditioners  ( Matthews, 2011),  (Harvey, 2010) for mid  2000s data  (Waide et al., 2011)   (Shah et al., 2013)  Ceiling fans  Package of household  appliances in Portugal  Office computers and  monitors  Circulation pumps for  hydronic heating and  cooling  Residential lighting  Residential water using  fixtures  Residential water heaters  (Letschert et al., 2012;  Sathaye et al., 2013)  (da Graca et al., 2012) (Mercier and Morrefield,  2009)  (Bidstrup, 2011) (Letschert et al., 2012) (Harvey, 2010) (Letschert et al., 2012) 9.3.5    Appliances, consumer electronics, office equipment, and lighting  Residential appliances have dramatically improved in efficiency over time, particularly in OECD  countries (Barthel and Götz, 2013; Labanca and Paolo, 2013) due to polices such as efficiency  standards, labels, and subsides and technological progress. Improvements are also appearing in  developing countries such as China (Barthel and Götz, 2013) and less developed countries, such as  Ghana (Antwi Agyei, 2013). Old appliances consume 650 TWh worldwide, which is almost 14% of  total residential electricity consumption (Barthel and Götz, 2013).  Table 9.5 summarizes potential reductions in unit energy by household appliances and equipment  through improved technologies. The saving potentials identified for individual equipment are  typically 40 50%. Indeed, energy use by the most efficient appliances available today is often 30 50% less than required by standards; the European A+++ model refrigerator, for example, consumes  50 % less electricity than the current regulated level in the EU (Letschert et al., 2013a), while the  most efficient televisions awarded under the Super efficient Equipment and Appliance Deployment    25 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   (SEAD) initiative use 33 44% less electricity than similar televisions(Ravi et al., 2013). Aggregate  energy consumption by these items is expected to continue to grow rapidly as the types and number  of equipment proliferate, and ownership rates increase with wealth. This will occur unless standards  are used to induce close to the maximum technically achievable reduction in unit energy  requirements. Despite projected large increase in the stock of domestic appliances, especially in  developing countries, total appliance energy consumption could be reduced if the best available  technology were installed (Barthel and Götz, 2013; Letschert et al., 2013b). This could yield energy  savings of 2600 TWh/yr by 2030 between the EU, United States, China and India (Letschert et al.,  2013a). Ultra low power micro computers in a wide variety of appliances and electronic equipment  also have the potential to greatly reduce energy use through better control (Koomey et al., 2013).  Conversely, new types of electronic equipment for ICT (e.g., satellite receivers, broadband home  gateways, etc.), broadband and network equipment ,and dedicated data centre buildings are  predicted to increase their energy consumption (Fettweis and Zimmermann, 2008; Bolla et al., 2011;  Bertoldi, 2012).Solid State Lighting (SSL) is revolutionizing the field of lighting. In the long term,  inorganic light emitting diodes (LEDs) are expected to become the most widely used light sources.  White LEDs have shown a steady growth in efficacy for more than fifteen years, with average values  of 65 70 lm/W (Schäppi and Bogner, 2013) and the best products achieving 100 lm/W (Moura et al.,  2013). LED lighting will soon reach efficacy level above all the other commercially available light  source (Aman et al., 2013), including high efficiency fluorescent lamps.  9.3.6    Halocarbons  The emissions of F gases (see Chapter 1 Table 1.1 and Chapter 5.3.1) related to the building sector  primarily originate from cooling/refrigeration and insulation with foams. The sector s share of total F gas emissions is subject to high variation due to uncertainties, lack of detailed reporting and  differences in accounting conventions. The following section discusses the role of the buildings sector  in F gas emissions under these constraints.  F gases are used in buildings through several types of products and appliances, including  refrigeration, air conditioning, in foams (such as for insulation) as blowing agents, fire extinguishers,  and aerosols. The resulting share of the building sector in the total F gas emissions, similarly to  indirect CO2 emissions from electricity generation, depends on their attribution. Inventories, such as  EDGAR (JRC/PBL, 2012), are related to the production and sales of these gases and differing  accounting conventions attribute emissions based on the point of their use, emissions, or production  (UNEP, 2011a; EEA, 2013; US EPA, 2013). IPCC emission categories provide numbers to different  sources of emission but do not systematically attribute these to sectors. Attribution can be done  using a production or consumption perspective, rendering different sectoral shares (see Chapter  5.2.3.3). Compounding this variation, there are uncertainties resulting from the lack of attribution of  the use of certain emission categories to different sectors they are used in and uncertainties in  reported figures for the same emissions by different sources.   As a guidance on the share of F gases in the building sector, for example, EDGAR (JRC/PBL, 2012;  Annex II.9) attributed 12% of direct F gas emissions to the building sector in 2010 (JRC/PBL, 2012;  Annex II.9). Of a further share of 22.3% of F gas emissions (21% from HFC and SF6 production and  1.3% from foam blowing) a substantial part can be allocated to the buildings sector. The greatest  uncertainty of attribution of IPCC categories to the buildings sector is the share of Refrigeration and  Air Conditioning Equipment (2F1a). This totals to up to one third for the share of (direct plus indirect)  buildings in F gas emissions.   As another proxy, EDGAR estimates that HFCs represent the largest share (GWP adjusted) in the total  F gas emissions, at about 76% of total 2010 F gas emissions (JRC/PBL, 2012). Global HFC emissions  are reported to be 760 MtCO2eq by Edgar (JRC/PBL, 2012); and 1100 MtCO2eq by the US EPA (2010).  These gases are used mostly (55% of total in 2010) in refrigeration and air conditioning equipment in  homes, other buildings and industrial operations (UNEP, 2011a).     26 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   While F gases represent a small fraction of the current total GHG emissions   around 2% (see  Chapter 1.2 and Chapter 5.2), their emissions are projected to grow in the coming decades, mostly  due to increased demand for cooling and because they are the primary substitutes for ozone depleting substances (US EPA, 2013).   Measures to reduce these emissions include the phase out of HFCs and minimisation of the need for  mechanical cooling through high performance buildings, as discussed in the following sections. The  use of F gases as an expanding agent in polyurethane foam has been banned in the EU since 2008,  and by 2005, 85% of production had already been shifted to hydrocarbons (having a much lower  GWP). In Germany, almost all new refrigerators use natural refrigerants (isobutane, HC 600a, and  propane, HC 29), which have great potential to reduce emissions during the operation and servicing  of HFC containing equipment (McCulloch, 2009; Rhiemeier and Harnisch, 2009). Their use in  insulation materials saves heating and cooling related CO2 emissions and thus their use in these  materials still typically has a net benefit to GHG emissions, but a lifecycle assessment is required to  determine the net effect on a case by case basis.   9.3.7    Avoiding mechanical heating, cooling, and ventilation systems  In many parts of the world, high performance mechanical cooling systems are not affordable,  especially those used for residential housing. The goal, then is to use principles of low energy design  to provide comfortable conditions as much of the time as possible, thereby reducing the pressure to  later install energy intensive cooling equipment such as air conditioners. These principles are  embedded in vernacular designs throughout the world, which evolved over centuries in the absence  of mechanical heating and cooling systems. For example, vernacular housing in Vietnam (Nguyen et  al., 2011) experienced conditions warmer than 31°C only 6% of the time. The natural and passive  control system of traditional housing in Kerala, India has been shown to maintain bedroom  temperatures of 23 29°C even as outdoor temperatures vary from 17 36°C on a diurnal time scale  (Dili et al., 2010). While these examples show that vernacular architecture can be an energy efficient  option, in order to promote the technology, it is necessary to consider the cultural and convenience  factors and perceptions concerning  modern  approaches, as well as the environmental performance,  that influence the decision to adopt or abandon vernacular approaches (Foruzanmehr and Vellinga,  2011). In some cases, modern knowledge and techniques can be used to improve vernacular designs.  9.3.8    Uses of biomass  Biomass is the single largest source of energy for buildings at the global scale, and it plays an  important role for space heating, production of hot water, and for cooking in many developing  countries.(IEA, 2012d) Compared to open fires, advanced biomass stoves provide fuel savings of 30 60% and reduce indoor air pollution levels by 80 90% for models with chimneys (Ürge Vorsatz et al.,  2012b). For example, in the state of Arunachal Pradesh, India, advanced cookstoves with an  efficiency of 60%, has been used in place of traditional cookstoves with an efficiency of 6 8% (Rawat  et al., 2010). Gasifier and biogas cookstoves have also undergone major developments since AR4.  9.3.9    Embodied energy and building materials lifecycle  Research published since AR4 confirms that the total lifecycle energy use of low energy buildings is  less than that of conventional buildings, in spite of generally greater embodied energy in the  materials and energy efficiency features (Citherlet and Defaux, 2007; GEA, 2012). However, the  embodied energy and carbon in construction materials is especially important in regions with high  construction rates, and the availability of affordable low carbon, low energy materials that can be  part of high performance buildings determines construction related emissions substantially in rapidly  developing countries (Sartori and Hestnes, 2007; Karlsson and Moshfegh, 2007; Ramesh et al., 2010).  A review of lifecycle assessment, lifecycle energy analysis, and material flow analysis in buildings  (conventional and traditional) can be found in (Cabeza et al., 2013). Recent research indicates that  wood based wall systems entail 10 20% less embodied energy than traditional concrete systems  (Upton et al., 2008; Sathre and Gustavsson, 2009) and that concrete framed buildings entail less    27 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   embodied energy than steel framed buildings (Xing et al., 2008). Insulation materials entail a wide  range of embodied energy per unit volume, and the time required to pay back the energy cost of  successive increments insulation through heating energy savings increases as more insulation is  added. However, this marginal payback time is less than the expected lifespan of insulation (50 years)  even as the insulation level is increased to that required to meet the Passive House standard (Harvey,  2007). The embodied energy of biomass based insulation products is not lower than that of many  non biomass insulation products when the energy value of the biomass feedstock is accounted for,  but is less if an energy credit can be given for incineration with cogeneration of electricity and heat,  assuming the insulation is extracted during demolition of the building at the end of its life (Ardente et  al., 2008).  9.3.10    Behavioural and lifestyle impacts  Chapter 2 discusses behavioural issues in a broad sense. There are substantial differences in building  energy use in the world driven largely by behaviour and culture. Factors of 3 to 10 differences can be  found worldwide in residential energy use for similar dwellings with same occupancy and comfort  levels (Zhang et al., 2010), and up to 10 times difference in office buildings with same climate and  same building functions with similar comfort and health levels (Batty et al., 1991; Zhaojian and  Qingpeng, 2007; Zhang et al., 2010; Grinshpon, 2011; Xiao, 2011). The major characteristics of the  lower energy use buildings are windows that can be opened for natural ventilation, part time & part  space control of indoor environment (thermal and lighting), and variably controllable indoor thermal  parameters (temperature, humidity, illumination and fresh air). These are traditional approaches to  obtain suitable indoor climate and thermal comfort. However since the spread of globalized supply of  commercial thermal conditioning heating/cooling solutions tend towards fully controlled indoor  climates through mechanic systems and these typically result in a significantly increased energy  demand (TUBESRC, 2009). An alternative development pathway to the ubiquitous use of fully  conditioned spaces by automatically operated mechanical systems is to integrate key elements of the  traditional lifestyle in buildings, in particular the  part time and part space  indoor climate  conditioning, passive design for indoor thermal and lighting and take mechanic system only for the  remaining needs when the passive approaches cannot meet the comfort demand. By relative  innovation technologies towards further improvements in indoor service levels, such pathways can  reach the energy use levels below 30 kWhe/m2/yr on world average (TUBESRC, 2009; Murakami et al.,  2009), as opposed to the 30 50 kWhe/m2/yr achievable through presently taken building  development pathways utilizing fully automatized full thermal conditioning (Murakami et al., 2009;  Yoshino et al., 2011).  Behaviour and local cultural factors can drive basic energy use practices, such as how people and  organizations adjust their thermostats during different times of the year. During the cooling season,  increasing the thermostat setting from 24°C to 28°C will reduce annual cooling energy use by more  than a factor of three for a typical office building in Zurich and by more than a factor of two in Rome  (Jaboyedoff et al., 2004), and by a factor of two to three if the thermostat setting is increased from  23°C to 27°C for night time air conditioning of bedrooms in apartments in Hong Kong (Lin and Deng,  2004). Thermostat settings are also influenced by dress codes and cultural expectations towards  attires, and thus major energy savings can be achieved through changes in attire standards, for  example Japan s  Cool Biz  initiative to relax certain business dress codes to allow higher thermostat  settings (GEA, 2011).   Behaviour and lifestyle are crucial drivers of building energy use in more complex ways, too. Figure  9.9 shows the electricity use for summer cooling in apartments of the same building (occupied by  households of similar affluence and size) in Beijing (Zhaojian and Qingpeng, 2007), ranging from 0.5  to 14.2 kWh/m2/yr. The use difference is mainly caused by different operating hours of the split air conditioner units. Opening windows during summer and relying on natural ventilation can reduce the  cooling load while maintaining indoor air quality in most warm climate countries (Batty et al., 1991),  compared to solely relying on mechanical ventilation (Yoshino et al., 2011). Buildings with high performance centralized air conditioning can use much more energy than decentralized split units    28 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   that operate part time and for partial space cooling, with a factor of 9 found by (Zhaojian and  Qingpeng, 2007; Murakami et al., 2009), as also illustrated in Figure 9.10. There are similar findings  for other energy end uses, such as clothes dryers (the dominant practice in laundering in the United  States) consuming about 600 1000 kWh/yr, while drying naturally is dominant in developing and  even in many developed countries (Grinshpon, 2011).      Figure 9.9. Annual measured electricity per unit of floor space for cooling in an apartment block in Beijing (Peng et al., 2012). Figure 9.10. Annual total electricity use per unit of floor space of buildings on a university campus in Beijing, China, 2006 (Peng et al., 2012).     29 of 103 Final Draft  Chapter 9  IPCC WGIII AR5     Figure 9.11. Annual unit area electricity use per unit of floor space of buildings on a university campus in Philadelphia, USA, 2006 (Peng et al., 2012).  Quantitative modeling of the impact of future lifestyle change on energy demand shows that, in  developed countries where energy service levels are already high, lifestyle change can produce  substantial energy use reductions. In the United States, for example, the short term behavioural  change potential is estimated to be at least 20% (Dietz et al., 2009) and over long periods of time,  much more substantial reductions (typically 50%) are possible, even in developed countries with  relatively low consumptions (Fujino et al., 2008; Eyre et al., 2010). Similar absolute reductions are not  possible in developing countries where energy services demands need to grow to satisfy  development needs. However, the rate of growth can be reduced by lower consumption lifestyles  (Wei et al., 2007; Sukla et al., 2008). For more on consumption, see also Section 4.4.  Energy use of buildings of similar functions and occupancies can vary by a factor of 2 10, depending  on culture and behaviour. For instance, Figure 9.10 and Figure 9.11 show the electricity usage of the  HVAC system at two university campuses (in Philadelphia and Beijing) with similar climates and  functions. The differences arise from: operating hours of lighting and ventilation (24h/day vs.  12h/day); full mechanical ventilation in all seasons versus natural ventilation for most of the year;  and district cooling with selective re heating versus seasonal decentralized air conditioning. When  the diversity of users  activities is taken into account, different technologies may be needed to satisfy  the energy service demand. Therefore, buildings and their energy infrastructure need to be designed,  built, and used taking into account culture, norms, and occupant behaviour. One universal standard  of  high efficiency  based on certain cultural activities may increase the energy usage in buildings with  other cultural backgrounds, raising costs and emissions without improving the living standards. This  is demonstrated in a recent case study of 10  low energy demonstration buildings  in China built in  international collaborations. Most of these demonstration buildings use more energy in operation  than ordinary buildings with the same functions and service levels (Xiao, 2011). Although several  energy saving technologies have been applied, occupant behaviours were also restricted by, for  instance, using techniques only suitable for full time and full space cooling.   9.4   Infrastructure and systemic perspectives  9.4.1    Urban form and energy supply infrastructure  Land use planning influences greenhouse gas emissions in several ways, including through the energy  consumption of buildings. More compact urban form tends to reduce consumption due to lower per  capita floor areas, reduced building surface to volume ratio, increased shading, and more    30 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   opportunities for district heating and cooling systems (Ürge Vorsatz et al., 2012a). Greater  compactness often has tradeoffs in regions with significant cooling demand, as it tends to increase  the urban heat island effect. However, the overall impact of increased compactness is to reduce GHG  emissions. Broader issues of the implications of urban form and land use planning for emissions are  discussed in Chapter 12.5. Energy using activities in buildings and their energy supply networks co evolve. While the structure of the building itself is key to the amount of energy consumed, the  energy supply networks largely determine the energy vector used, and therefore the carbon intensity  of supply. Changing fuels and energy supply infrastructure to buildings will be needed to deliver large  emissions reductions even with the major demand reductions outlined in Section 9.3  . This section  therefore focuses on the interaction of buildings with the energy infrastructure, and its implications  for use of lower carbon fuels.   9.4.1.1    District Heating and cooling networks  Heating and cooling networks facilitate mitigation where they allow the use of higher efficiency  systems or the use of waste heat or lower carbon fuels (e.g., solar heat and biomass) than can be  used cost effectively at the scale of the individual building. High efficiency distributed energy systems,  such as gas engines and solid oxide fuel cell cogeneration, generate heat and electricity more  efficiently than the combination of centralized power plants and heating boilers, where heat can be  used effectively. District energy systems differ between climate zones. Large scale district heating  systems of cold climate cities predominantly provide space heating and domestic hot water. There  are also some examples that utilize non fossil heat sources, for example biomass and waste  incineration (Holmgren, 2006). Despite their energy saving benefits, fossil fuel district heating  systems cannot alone deliver very low carbon buildings. In very low energy buildings, hot water is the  predominant heating load, and the high capital and maintenance costs of district heating  infrastructure may be uneconomic (Thyholt and Hestnes, 2008; Persson and Werner, 2011). The  literature is therefore presently divided on the usefulness of district heating to serve very low energy  buildings. In regions with cold winters and hot summers, district energy systems can deliver both  heating and cooling, usually at the city block scale, and primarily to commercial buildings. Energy  savings of 30% can be achieved using trigeneration, load levelling, diurnal thermal storage, highly efficient refrigeration, and advanced management (Nagota et al., 2008). Larger benefits are possible  by using waste heat from incineration plants (Shimoda et al., 1998) and heat or cold from water  source heat pumps (Song et al., 2007).  9.4.1.2    Electricity infrastructure interactions  Universal access to electricity remains a key development goal in developing countries. The capacity,  and therefore cost, of electricity infrastructure needed to supply any given level of electricity services  depends on the efficiency of electricity use. Electricity is the dominant energy source for cooling and  appliances, but energy use for heating is dominated by direct use of fossil fuels in most countries.  Electrification of heating can therefore be a mitigation measure, depending on the levels of  electricity decarbonization and its end use efficiency. Heat pumps may facilitate this benefit as they  allow electrification to be a mitigation technology at much lower levels of electricity decarbonization  (Lowe, 2007). Ground source heat pumps already have a high market share in some countries with  low cost electricity and relatively efficient buildings (IEA HPG, 2010). There is a growing market for  low cost air source heat pumps in mid latitude countries (Cai et al., 2009; Howden Chapman et al.,  2009; Singh et al., 2010a). In many cases the attractions are that there are not pre existing whole house heating systems and that air source heat pumps can provide both heating and cooling. A  review of scenario studies indicates heating electrification may have a key role in decarbonization  (Sugiyama, 2012), with heat pumps usually assumed to be the preferred heating technology (IEA,  2010a). This would imply a major technology shift from direct combustion of fossil fuels for building  heating. Electricity use, even at high efficiency, will increase winter peak demand (Cockroft and Kelly,  2006) with implications for generation and distribution capacity that have not been fully assessed;  there are challenges in retrofitting to buildings not designed for heating with low temperature    31 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   systems (Fawcett, 2011),and the economics of a high capital cost heating system, such as a heat  pump, in a low energy building are problematic. The literature is inconclusive on the role and scale of  electrification of heating as a mitigation option, although it is likely to be location dependent.  However, significant energy demand reduction is likely to be critical to facilitate universal  electrification (Eyre, 2011), and therefore transition pathways with limited efficiency improvement  and high electrification are implausible. Electricity infrastructure in buildings will need increasingly to  use information technology in  smart grids  to provide consumer information and enable demand  response to assist load balancing (see Chapter 7.12.3).   9.4.1.3    Thermal Energy Storage  Thermal energy storage can use diurnal temperature variations to improve load factors, and  therefore reduce heating and cooling system size, which will be particularly important if heating is  electrified. Thermal storage technologies could also be important in regions with electricity systems  using high levels of intermittent renewable energy. The use of storage in a building can smooth  temperature fluctuation and can be implemented by sensible heat (e.g., changing building envelope  temperature), or by storing latent heat using ice or phase change materials, in either passive or  active systems (Cabeza et al., 2011). Both thermochemical energy storage (Freire González, 2010)  and underground thermal energy storage (UTES) with ground source heat pumps (GSHP) (Sanner et  al., 2003) are being studied for seasonal energy storage in buildings or district heating and cooling  networks, although UTES and GSHP are already used for short term storage (Paksoy et al., 2009).  9.4.2    Path Dependencies and lock in  Buildings and their energy supply infrastructure are some of the longest lived components of the  economy. Buildings constructed and retrofitted in the next few years to decades will determine  emissions for many decades, without major opportunities for further change. Therefore the sector is  particularly prone to lock in, due to favouring incremental change (Bergman et al., 2008),  traditionally low levels of innovation (Rohracher, 2001), and high inertia (Brown and Vergragt, 2008).    32 of 103 Final Draft  Chapter 9  IPCC WGIII AR5     Figure 9.12. Final building heating and cooling energy use scenarios from 2005 to 2050 from the Global Energy Assessment (GEA), organized by eleven regions (Ürge-Vorsatz et al., 2012a). Notes: Green bars, indicated by arrows with numbers (relative to 2005 values), represent the opportunities through the GEA state-of-the-art scenario, while the yellow bars with black numbers show the size of the lock-in risk (difference between the sub-optimal and state-of-the-art scenario). Percent figures are relative to 2005 values. For region definitions see Annex II.2.4. When a major retrofit or new construction takes place, state of the art performance levels discussed  in Section 9.3   are required to avoid locking in sub optimal outcomes. Sunk costs of district heating,  in particular, can be a disincentive to investments in very low energy buildings. Without the highest  achievable performance levels, global building energy use will rise (Ürge Vorsatz et al., 2012a). This  implies that a major reduction in building energy use will not take place without strong policy efforts,  and particularly the use of building codes that require adoption of the ambitious performance levels  set out in Section 9.3   as soon as possible. Recent research (Ürge Vorsatz et al., 2012a) finds that by  2050 the size of the lock in risk is equal to almost 80% of 2005 global building heating and cooling  final energy use (see Figure 9.12). This is the gap between a scenario in which today s best cost effective practices in new construction and retrofits become standard after a transitional period, and  a scenario in which levels of building energy performance are changed only to today s best policy  ambitions. This alerts us that while there are good developments in building energy efficiency  policies, significantly more advances can and need to be made if ambitious climate goals are to be  reached, otherwise significant emissions can be  locked in  that will not be possible to mitigate for  decades. The size of the lock in risk varies significantly by region: e.g., in South East Asia (including  India) the lock in risk is over 200% of 2005 final heating and cooling energy use.    33 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   9.5   Climate change feedback and interaction with adaptation  Buildings are sensitive to climate change, which influences energy demand and its profile. As climate  warms, cooling demand increases and heating demand decreases (Day et al., 2009; Isaac and Van  Vuuren, 2009; Hunt and Watkiss, 2011), while passive cooling approaches become less effective  (Artmann et al., 2008; Chow and Levermore, 2010). Under a +3.7°C scenario by 2100, the worldwide  reduction in heating energy demand due to climate change may reach 34% in 2100, while cooling  demand may increase by 70%+; net energy demand could reach  6% by 2050 and + 5% by 2100; with  significant regional differences, e.g., 20%+ absolute reductions in heating demand in temperate  Canada and Russia; cooling increasing by 50%+ in warmer regions and even higher increases in cold  regions (Isaac and Van Vuuren, 2009). Other regional and national studies (Mansur et al., 2008; van  Ruijven et al., 2011; Wan et al., 2011; Xu et al., 2012) reveal the same general tendencies, with  energy consumption in buildings shifting from fossil fuels to electricity and affecting peak loads (Isaac  and Van Vuuren, 2009; Hunt and Watkiss, 2011), especially in warmer regions (Aebischer et al., 2007).  Emissions implications of this shift are related to the fuels and technologies locally used for heat and  power generation: a global reference scenario from Isaac and Van Vuuren (2009b) shows a net  increase in residential emissions of 0.3+Gt C (1.1+ Gt CO2eq) by 2100.   There is a wide range of sensitivities but also many opportunities to respond to changing climatic  conditions in buildings: modified design goals and engineering specifications increase resilience  (Gerdes et al.; Pyke et al., 2012). There is no consensus on definitions of climate adaptive buildings,  but several aims include minimizing energy consumption for operation, mitigating GHG emissions,  providing adaptive capacity and resilience to the building stock, reducing costs for maintaining  comfort, minimizing the vulnerability of occupants to extreme weather conditions, and reducing risks  of disruption to energy supply and addressing fuel poverty (Roaf et al., 2009), (Atkinson et al., 2009).  Adaptation and mitigation effects may be different by development and urbanization level, climate  conditions and building infrastructure. Contemporary strategies for adapting buildings to climate  change still often emphasize increasing the physical resilience of building structure and fabric to  extreme weather and climatic events, but this can lead to decreased functional adaptability and  increased embodied energy and associated GHG emissions. Increased extremes in local weather patterns can lead to sub optimal performance of buildings that were designed to provide thermal  comfort  passively  using principles of bioclimatic design. In such circumstances, increased  uncertainty over future weather patterns may encourage demand for mechanical space heating  and/or cooling regardless of the climate zone.  There are also several opportunities for heat island reduction, air quality improvement, and radiation  management (geo engineering) through building roofs and pavements, which constitute over 60% of  most urban surfaces and with co benefits such as improved air quality (Ihara et al., 2008; Taha, 2008).  Simulations estimate reductions in urban temperatures by up to 0.7 K (Campra et al., 2008; Akbari et  al., 2008; Oleson et al., 2010; Millstein and Menon, 2011). Akbari et al., (2008) and Akbari et al.,  (2012)estimated that changing the solar reflectance of a dark roof (0.15) to an aged white roof (0.55)  results in a one time offset of 1 to 2.5 tCO2 per 10 m2 of roof area through enhanced reflection.  Global CO2 one time offset potentials from cool roofs and pavements amount to 78 GtCO2 (Menon et  al., 2010). Increasing the albedo of a 1 m2 area by 0.01 results in a global temperature reduction of  3x10 15 K and offsets emission of 7 kg CO2 (Akbari et al., 2012).  9.6   Costs and potentials  9.6.1 Summary of literature on aggregated mitigation potentials by key identity  The chapter's earlier sections have demonstrated that there is a broad portfolio of different  technologies and practices available to cut building related emissions significantly. However,  whereas these potentials are large at an individual product/building level, an important question is to  determine what portion of the stock they apply to, and what the overall potential is if we consider    34 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   the applicability, feasibility, and replacement dynamics, together with other constraints (Wada et al.,  2012). Figure 9.13 and the corresponding Table 9.6 synthesize the literature on a selection of  regional studies on potentials through different types of measures, aggregated to stocks of the  corresponding products/buildings at the regional level. The studies are organized by the four key  identities discussed at the beginning of the chapter, translating into the four key mitigation strategies  that apply to this sector   i.e., carbon efficiency, technological efficiency, systemic efficiency, and  energy service demand reduction. However, as pointed out earlier, it is often not possible to  precisely distinguish one category from the other, especially given the different categorizations in the  studies, therefore the binning should be treated as indicative only. The potentials illustrated in the  table and figure are usually given for final energy use (if not specified otherwise) and are mostly  presented as a percentage of the respective baseline energy, specified in the original source. The  figure demonstrates that the high potentials at the individual product/building level translate into  relatively high potentials also at stock aggregated levels: mitigation or energy saving potentials often  go beyond 30% to even 60% of the baseline energy use/emission of the stock the measures apply to.  The figure also attests that each of the four key mitigation strategies relevant to buildings can bring  very large reductions, although systemic efficiency seems to bring higher results than other  strategies, and energy service demand reduction has been so far estimated to bring the most modest  results from among these strategies, although studies less often assess these options systematically.   Figure 9.13. Regional studies on aggregated mitigation potentials grouped by key identity (i.e., main mitigation strategy). Note: Values correspond to the percentage reduction as compared to baseline, if available, otherwise to base year, for the cases as numbered in Table 9.6. The efficiency and cost studies presented here represent a single snapshot in time, implying that as  this potential is being captured by policies or measures, the remaining potential dwindles. This has  not been reinforced by experience and research. Analyses have shown that technological  improvement keeps replenishing the potential for efficiency improvement, so that the potential for  cost effective energy efficiency improvement has not been diminishing in spite of continuously  improving standards (NAS, 2010). The National Academy of Science (NAS) study (NAS, 2010) of the  energy savings potentials of energy efficiency technologies and programmes across all sectors in the  United States note that  [s]tudies of technical and economic energy savings potential generally  capture energy efficiency potential at a single point in time based on technologies that are available  at the time a study is conducted. But new efficiency measures continue to be developed and to add  to the long term efficiency potential.  These new efficiency opportunities continue to offer  substantial cost effective additional energy savings potentials after previous potentials have been  captured so that the overall technical potential has been found to remain at the same order of  magnitude for decades (NAS, 2010).   35 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Table 9.6. Summary of literature on aggregated mitigation potentials in buildings categorized by key mitigation strategies Reg  CARBON EFFICIENCY  EU (1)  AU (2), AT (3)  CA (4), DK (5)  FL (6), DE (7)  IT (8), JP (9)  NL (10), ES (11)  SE (12), CH (13)  UK (14), US (15)  IL (16)  Additional solar domestic hot water system  HW  T  RS  2010 20    46%,  35%,   31%,  32%,   19%,  30%,   45%,  15%,   32%,  48%,   20%,  35%,   31%,  58%  32%  68.4%  20%, pr.e  Description of mitigation measures/package (year)  End uses  Type  Sector  Base end yrs  % change to  baseline  % change to  base yr  Solar electricity generation through buildings  roof top PV installations   elect  T  BS  yearly    All available rooftops are accounted for producing solar energy  An optimal implementation of the Spanish Technical Building Code and usage of 17% of the  ES (17)  available roof surface area  TECHNICAL EFFICIENCY  Significant efforts to fully exploit the potential for EE, all cost effective RES for heat and  World (18)  electricity generation, production of bio fuels, EE equipment  The cost effective energy saving targets, assumed for each end use on the basis of several  US (19)  earlier studies, are achieved by 2030   Wide diffusion of heat pumps and other energy conservation measures, e.g., replacement of  NO (20)  windows, additional insulation, heat recovery etc.  Building energy code and building energy labeling are widely implemented, the requirements  TH (21)  towards NZEBs are gradually strengthened by 2030  Northern Europe  Improvements in lamp, ballast, luminaire technology, use of task/ambient lighting, reduction of  (22)  illuminance levels, switch on time, manual dimming, switch off occupancy sensors, daylighting  Implementation of Technical Code of Buildings for Spain, using insulation and construction  Cat, ES (23)  solutions that ensure the desired thermal coefficients  BH (24)  UK (25)  CN (26)  Implementation of the envelope codes requiring that the building envelope is well insulated  and efficient glazing is used  Fabric improvements, HVAC changes (including ventilation heat recovery), lighting and  appliance improvements and renewable energy generation  Best Practice Scenario (BPS) examined the potential of an achievement of international best practice efficiency in broad energy use today  El.  W  T  T E  BS  BS  yearly  2009  2007 50  2010 30  2005 35  by 2030  2011  2005 15  1 year  2005 30  2009 30      ALL  ALL  ALL  ALL  L  H/C  C  ALL  APPL  T  T E  T  T  T  T  T  T  T  BS  BS  BS  CS  CS  BS  CS  CS  RS, CS  29%  68%  9.50%  51%  50%        35%      21%      29%  25%  50% (CO2)      36 of 103 Final Draft  SYSTEMIC EFFICIENCY  World (27)  World (28)  World (29)  US (30)  EU27 (31)  DK (32)  Chapter 9  IPCC WGIII AR5   Today's cost effective best practice integrated design & retrofit becomes a standard  The goal of halving global energy related CO2 emissions by 2050 (compared to 2005 levels); the  deployment of existing and new low carbon technologies  High performance thermal envelope, maximized the use of passive solar energy for heating,  ventilation and daylighting, EE equipment and systems  Advanced technologies, infrastructural improvements and some displacement of existing stock,  configurations of the built environment that reduce energy requirements for mobility, but not  yet commercially available  Accelerated renovation rates up to 4%; 100 % refurbishment at high standards; in 2010 20 % of  the new built buildings are at high EE standard; 100%   by 2025  Energy consumption for H in new RS will be reduced by 30% in 2005, 2010, 2015 and 2020;  renovated RS are upgraded to the energy requirements applicable for the new ones  Compliance with the standard comparable to the MINERGIE P5, the Passive House and the  standard A of the 2000 Watt society with low carbon systems for H and W  Buildings comply with zero energy standard (no heating demand)  H/C  ALL  ALL  ALL  ALL  H  H/W  H/W  H/W  T E  T E  T  T E  T  T E  T  T  T  BS  BS  BS  BS  RS  RS  RS  RS  BS  2005 50  2007 50  2005 50  2010 50  2004 30  2005 50  2000 50  2000 50  2010 20  2008 50  2005  1 year  70%  34%  48%  59%  66%    60%  65%    30%      40%  71%  82%  68%  72%  25%(pr.e)        50% (CO2)  58%      CH (33)  The proportion of very high energy performance dwellings increases by up to 30% of the total  stock in 2020; the share of nearly zero and ZEBs makes up 6%  ENERGY SERVICE DEMAND REDUCTION  EE retrofits, information acceleration, learning by doing and the increase in energy price. Some  FR (35)  barriers to EE, sufficiency in H consumption are overcome  Influence of five lifestyle factors reflecting consumers  behavioral patterns on residential  US (36)  electricity consumption was analyzed  LT (37)  Change in lifestyle towards saving energy and reducing waste  DE (34)  H  El.  ALL  T  T  T  BS  RS  RS  21%  40%  44%  16%  (existing  buildings)  13% (new  buildings)  US (38)  Commissioning as energy saving measure applied in 643 commercial buildings  ALL  T  CS  1 year    Notes: 1) The Table presents the potential of final energy use reduction (if another is not specified) compared to the baseline and/or base year for the end-uses given in the column 3 and for the sectors indicated in the column 5. 2) H space heating; C space cooling; W hot water; L lighting; APPL appliances; ALL all end-uses; BS the whole building sector; RS residential sector; CS commercial sector; T technical; T-E techno-economical; EE energy efficiency; RES renewable energy sources; HVAC heating, ventilation and air-conditioning; ZEB zeroenergy building; pr.e. primary energy; EL. electricity; red. reduction; approximately approximately.3) Reg. region, WO world, N.Eu Northern Europe, Cat Catalonia. *References: 1 - (Anisimova, 2011), 2 15 - (IEA, 2002), 16 - (Yue and Huang, 2011), 17 - (Vardimon, 2011), 18 - (Izquierdo et al., 2011), 19 - (GPI, 2010), 20 - (Brown et al., 2008a), 21 - (Sartori et al., 2009), 22 - (Pantong et al., 2011), 23 - (Dubois and Blomsterberg, 2011), 24 - (Garrido-Soriano et al., 2012), 25 - (Radhi, 2009), 26 - (Taylor et al., 2010), 27 - (Zhou et al., 2011a), 28 - (ÜrgeVorsatz et al., 2012c), 29 (IEA, 2010b), 30 -(Harvey, 2010), 31 - (Laitner et al., 2012) , 32 -(Eichhammer et al., 2009), 33 -(Tommerup and Svendsen, 2006), 34 -(Chan and Yeung, 2005), 35 - (Siller et al., 2007), 36 - (Schimschar et al., 2011), 37 - (Giraudet et al., 2012), 38 - (Sanquist et al., 2012), 39 -(Streimikiene and Volochovic, 2011), 40 (Mills, 2011).   37 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 9.6.2 Overview of option specific costs and potentials  Since the building sector comprises a very large number of end uses, in each of these many different  types of equipment being used, and for each of which several mitigation alternatives exist, giving a  comprehensive account of costs and potentials of each, or even many, is out of the scope of this  report. The next two sections focus on selected key mitigation options and discuss their costs and  potentials in more depth. Section 9.6.2 focuses on whole building approaches for new and  retrofitted buildings, while the Section 9.6.3 analyzes a selection of important technologies  systematically. Finally, Section 9.6.5 discusses the sensitivity of the findings from the earlier section  to various assumptions and inputs.  9.6.2.1 Costs of very high performance new construction  There is increasing evidence that very high performance new construction can be achieved at little,  or occasionally even at negative, additional costs (Ürge Vorsatz, Eyre, Graham, Harvey, et al., 2012;  Harvey, 2013 and Section 9.3).There are various methodologies applied to understand and  demonstrate the cost effectiveness of whole building new construction and retrofit, including  project based incremental cost accounting, population studies, and comparative modelling (Kats,  2009). For commercial buildings, there are instances where these methods have found no additional  cost in meeting standards as high as the Passive House standard; see Section 9.3  , and (Lang  Consulting, 2013), or where the cost of low energy buildings has been less than that of buildings  meeting local energy codes. Surveys of delivered full building construction costs in the United States  and Australia comparing conventional and green buildings ain variety of circumstances have been  consistently unable to detect a significant difference in delivered price between these two  categories. Rather, they find a wide range of variation costs irrespective of performance  features(Davis Langdon, 2007; Urban Green Council and Langdon, 2009). Collectively, these studies,  along with evidence in 9.3  and the tables in this section indicate that significant improvements in  design and operational performance can be achieved today under the right circumstances at  relatively low or potentially no increases, or even decreases, in total cost.   The cost and feasibility of achieving various ZNEB definitions have shown that such goals are rarely  cost effective by conventional standards; however, specific circumstances, operational goals, and  incentives can make them feasible (Boehland, 2008; Meacham, 2009). Table 9.4 in Section 9.3.3    highlights selected published estimates of the incremental cost of net zero energy buildings; even  for these buildings, there are cases where there appears to have been little additional cost (e.g.,  NREL Laboratory).The costs of new ZNEBs are heavily dependent on supporting policies, such as net  metering and feed in tariffs, and anticipated holding times, beyond the factors described below for  all buildings. Unlike residential buildings, high performance commercial buildings can cost less to  build than standard buildings, even without simplifying the design, because the cost savings from the  downsizing in mechanical and electricity equipment that is possible with a high performance  envelope can offset the extra cost of the envelope. In other cases, the net incremental design and  construction cost can be reduced to the point that the time required to payback the initial  investment through operating cost savings is quite attractive.  Figure 9.14 shows the resulting cost effectiveness from a set of documented best practices from  different regions measured in cost of conserved energy (CCE). The figure demonstrates well that,  despite the very broad typical variation in construction costs due to different designs and non energy related extra investments, high performance new construction can be highly cost effective.  Several examples confirming the point established in Section 9.3  that even negative CCEs can be  achieved for commercial buildings   i.e., that the project is profitable already at the investment  stage, or that the high performance building costs less than the conventional one. Cost effectiveness  requires that the investments are optimized with regard to the additional vs. reduced (e.g.,  simplified or no heating system, ductwork, etc.) investment requirements and no non energy related  luxury  construction investments are included (see 9.3 for further discussion of ensuring cost   38 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 effectiveness at the individual building level). It is also important to note that very high performance  construction is still at the demonstration/early deployment level in many jurisdictions, and further  cost reductions are likely to occur (see, e.g., GEA, 2012). Figure 9.14 also shows that higher savings  compared to the baseline come at a typically lower cost per unit energy saving   i.e., deeper  reductions from the baseline tend to increase the cost efficiency.   Although converting energy saving costs to mitigation costs introduces many problems, especially  due to the challenges of emission factors, Figure 9.15 displays the associated mitigation cost  estimates of selected points from Figure 9.14 to illustrate potential trends in cost of conserved  carbon (CCC). The result is a huge range of CCC, which extends from three digit negative costs to  triple digit positive costs per ton of CO2 emissions avoided.       Figure 9.14. Cost of conserved energy as a function of energy performance improvement (kWh/m2/yr difference to baseline) to reach Passive House or more stringent performance levels, for new construction by different building types and climate zones in Europe1 1 The data for the case studies presented in Figure 9.14 Figure 9.16 are coming from various sources  (Hermelink, 2006; Galvin, 2010; ETK, 2011; Gardiner and Theobald, 2011; Nieminen, 2011; Energy Institute  Vorarlberg, 2013; PHI, 2013; Harvey, 2013). A discount rate of 3% and the lifetime of 30 years for retrofit and  40 years for new buildings have been assumed.    39 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Figure 9.15. Cost of conserved carbon as a Figure 9.16. Cost of conserved energy as a function function of specific energy consumption for selected of energy saving in percent for European retrofitted best practices shown in Figure 9.14. buildings by building type and climate zones. 9.6.2.2 Costs of deep retrofits  Studies have repeatedly indicated the important distinction between conventional  shallow   retrofits, often reducing energy use by only 10 30%, and aggressive  deep  retrofits (i.e., 50% or  more relative to baseline conditions, especially when considering the lock in effect. Korytarova and  Ürge Vorsatz (2012) evaluated a range of existing building types to characterize different levels of  potential energy savings under different circumstances. They describe the potential risk for shallow  retrofits to result in lower levels of energy efficiency and higher medium term mitigation costs when  compared to performance based policies promoting deep retrofits. Figure 9.16 presents the costs of  conserved energy related to a selection of documented retrofit best practices, especially at the  higher end of the savings axis. The figure shows that there is sufficient evidence that deep retrofits  can be cost effective in many climates, building types, and cultures. The figure further shows that,  while the cost range expands with very large savings, there are many examples that indicate that  deep retrofits do not necessarily need to cost more in specific cost terms than the shallow retrofits   i.e., their cost effectiveness can remain at equally attractive levels for best practices. Retrofits  getting closer to 100% savings start to get more expensive, mainly due to the introduction of  presently more expensive PV and other building integrated renewable energy generation  technologies.  9.6.3 Assessment of key factors influencing robustness and sensitivity of costs and  potentials  Costs and potentials of the measures described in previous sections depend heavily on various  factors and significantly influence the cost effectiveness of the investments. While these  investments vary with the types of measures, a few common factors can be identified.     40 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 For the cost effectiveness of energy saving investments, the state of efficiency of the baseline is  perhaps the most important determining factor. For instance, a  passive house  represents a factor  of 10 20 improvement when compared to average building stocks, but only a fraction of this when  compared to, for instance, upcoming German new building codes. Figure 9.16 and Figure 9.17 both  vary the baseline for the respective measure.  CCE figures and thus 'profitability , fundamentally depend on the discount rate and assumed lifetime  of the measure, and CCC depends further on the background emission factor and energy price.  Figure 9.17 illustrates, for instance, the major role discount rate, emission factor, and energy price  play when determining costs and cost effectiveness. Beyond the well quantifiable influences, further  parameters that contribute to the variability of the cost metrics are climate type, geographic region,  building type, etc.      41 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Figure 9.17. Sensitivity analysis of the key parameters: Top: CCC for new buildings in response to the variation in fuel price; middle: CCE for retrofit buildings in response to the variation in discount rate for selected data points shown inFigure 9.14, Figure 9.15 and Figure 9.16; bottom: CCC for new buildings in response to the variation in emission factor.   42 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 9.7   Co benefits, risks and spillovers  9.7.1    Overview  Mitigation measures depend on and interact with a variety of factors that relate to broader  economic, social, and/or environmental objectives that drive policy choices. Positive side effects are  deemed  co benefits ; if adverse and uncertain, they imply risks.2 Potential co benefits and adverse  side effects of alternative mitigation measures (Sections 9.7.1  9.7.3), associated technical risks, and  uncertainties, as well as their public perception (see the relevant discussion in Sections 9.3.10    and  9.8  ), can significantly affect investment decisions, individual behaviour, and policymaking priority  settings. Table 9.7 provides an overview of the potential co benefits and adverse side effects of the  mitigation measures assessed in accordance with sustainable development pillars (Chapter 4). The  extent to which co benefits and adverse side effects will materialize in practice, as well as their net  effect on social welfare, differ greatly across regions. It is strongly dependent on local circumstances,  implementation practices, scale, and pace of measures deployment (see Section 6.6). Ürge Vorsatz  et al. (2009) and GEA (2012), synthesizing previous research efforts (Mills and Rosenfeld,  1996),recognize the following five major categories of co benefits attributed to mitigation actions in  buildings: (1) health effects (e.g., reduced mortality and morbidity from improved indoor and  outdoor air quality), (2) ecological effects (e.g., reduced impacts on ecosystems due to the improved  outdoor environment), (3) economic effects (e.g., decreased energy bill payments, employment  creation, improved energy security, improved productivity), (4) service provision benefits (e.g.,  reduction of energy losses during energy transmission and distribution), and (5) social effects (e.g.,  fuel poverty alleviation, increased comfort due to better control of indoor conditions and the  reduction of outdoor noise, increased safety). Taken together, the GEA (2012) found that only the  monetizable co benefits associated with energy efficiency in buildings are at least twice the resulting  operating cost savings.  On the other hand, some risks are also associated with the implementation of mitigation actions in  buildings emanating mostly from limited energy access and fuel poverty issues due to higher  investment and (sometimes) operating costs, health risks in sub optimally designed airtight buildings,  and the use of sub standard energy efficiency technologies including risks of premature failure. The  IPCC AR4 (Levine et al., 2007) and other major recent studies (UNEP, 2011b; GEA, 2012) provide a  detailed presentation and a comprehensive analysis of such effects. Here, a review of recent  advances focuses on selected co benefits/risks, with a view to providing methods, quantitative  information, and examples that can be utilized in the decision making process.     Co benefits and adverse side effects describe effects in non monetary units without yet evaluating the net  effect on overall social welfare. Please refer to the respective sections in the framing chapters (particularly 2.4,  3.6.3, and 4.8) as well as to the glossary in Annex I for concepts and definitions.  2   43 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Table 9.7. Overview of potential co-benefits (green arrows) and adverse side-effects (orange arrows) associated with mitigation actions in buildings. Please refer to Sections 7.9, 11.7, and 11.13 for possible upstream effects of low-carbon electricity and biomass supply on additional objectives. Cobenefits and adverse side-effects depend on local circumstances as well as on the implementation practice, pace, and scale (see Section 6.6). For an assessment of macroeconomic, cross-sectoral effects associated with mitigation policies (e.g., on energy prices, consumption, growth, and trade), see Sections 3.9, 6.3.6, 13.2.2.3 and 14.4.2. Buildings in developing countries  Buildings in developed countries  Co benefits / Adverse side effects  References  Retrofits of existing buildings  Fuel switching / RES  incorporation / green roofs  Exemplary new buildings  Commercial buildings  Residential buildings  Economic  Employment impact  Energy security  Productivity  Enhanced asset values of buildings  Lower need for energy subsidies  Disaster resilience  Social  Fuel poverty alleviation (reduced  demand for energy)  Fuel poverty alleviation (in cases  of increases in the cost of energy)  Energy access (in cases of  increases in the cost of energy, high  investment costs needed, etc.)  Noise impact, thermal comfort)  Increased productive time for  women and children (for replaced  traditional cookstoves)  Rebound effect         X  X  X X  X  X   X  X    X X X X X X   X   X X X X X X   X   X X X X X X       X X X   X     X   X  X    X  X      X       X     X       Behavioural changes  Efficient equipment  X  X  X X  X  X X  X  X       X    X X  X      X X X X   X       X X  X        (Scott et al., 2008; Pollin et al., 2009; Ürge Vorsatz et al., 2010; Gold et al., 2011)  (IEA, 2007; Dixon et al., 2010; Borg and  Kelly, 2011; Steinfeld et al., 2011)  (Fisk, 2002; Kats et al., 2003; Loftness et al.,  2003; Singh et al., 2010b)  (Miller et al., 2008; Brounen and Kok, 2011;  Deng et al., 2012)  (Ürge Vorsatz et al., 2009; GEA, 2012)  (Berdahl, 1995; Mills, 2003; Coaffee, 2008)    (Herrero et al.; Healy, 2004; Liddell and  Morris, 2010; Hills, 2011; Ürge Vorsatz and  Tirado Herrero, 2012)  (GEA, 2012; Rao, 2013)  (GEA, 2012); for a more in depth discussion  please see Section 7.9.1  (Jakob, 2006; Stoecklein and Skumatz,  2007)  (Reddy et al., 2000; Lambrou and Piana,  2006; Hutton et al., 2007; Anenberg et al.,  2013)(Wodon and Blackden, 2006)  (Greening et al., 2000; Sorrell, 2007; Hens  et al., 2009; Sorrell et al., 2009; Druckman  et al., 2011; Ürge Vorsatz et al., 2012a)      (Levy et al., 2003; Aunan et al., 2004;  Mirasgedis et al., 2004; Chen et al., 2007;  Crawford Brown et al., 2012; Milner et al.,  2012); see Section 7.9.2  (Bruce et al., 2006; Zhang and Smith, 2007;  Duflo et al., 2008; WHO, 2009; Wilkinson et  al., 2009; Howden Chapman and Chapman,  2012; Milner et al., 2012); WGII Section  11.9.  (Fisk, 2002; Singh et al., 2010b; Howden Chapman and Chapman, 2012; Milner et  al., 2012)  X  X  X X      X X X   X     X   X      X  X  X X X X X X    Health/Environmental  Health impact due to:  reduced outdoor pollution              X  X  X     X     X     X     X     X      X reduced indoor pollution  X      X     X X    improved indoor environmental  conditions  X  X  X X X X     X   44 of 103 Final Draft  Co benefits / Adverse side effects  Chapter 9  IPCC WGIII AR5 References  Buildings in developing countries  Buildings in developed countries  Retrofits of existing buildings  Fuel switching / RES  incorporation / green roofs  Exemplary new buildings  Commercial buildings  Residential buildings  fuel poverty alleviation  X    X X X   X X    Behavioural changes  Efficient equipment  insufficient ventilation (sick  building syndrome), sub standard  energy efficiency technologies, etc.  Ecosystem impact  Reduced water consumption and  sewage production  Urban heat island effect  X  X  X X X   X     (Herrero et al.; Healy, 2004; Liddell and  Morris, 2010; Hills, 2011; Ürge Vorsatz and  Tirado Herrero, 2012)  (Fisk, 2002; GEA, 2012; Milner et al., 2012)  X  X  X X  X  X X    X X X X X X X X X X X X   X    X  X     (Aunan et al., 2004; Mirasgedis et al., 2004;  Ürge Vorsatz et al., 2009; Cam, 2012)  (Kats et al., 2005; Bansal et al., 2011)  (Cam, 2012; Xu et al., 2012b); see Sections  9.5 and  12.8  9.7.2    Socio economic effects  9.7.2.1    Impacts on employment  Studies (Scott et al., 2008; Pollin et al., 2009; Kuckshinrichs et al., 2010; Köppl et al., 2011; ILO, 2012)  have found that greater use of renewables and energy efficiency in the building sector results in  positive economic effects through job creation, economic growth, increase of income, and reduced  needs for capital stock in the energy sector. These conclusions, however, have been criticized on  grounds that include, among others, the accounting methods used, the efficacy of using public funds  for energy projects instead of for other investments, and the possible inefficiencies of investing in  labour intensive activities (Alvarez et al., 2010; Carley et al., 2011; Gülen, 2011). A review of the  literature on quantification of employment effects of energy efficiency and mitigation measures in  the building sector is summarized in Figure 9.18. The bulk of the studies reviewed, which mainly  concern developed economies, point out that the implementation of mitigation interventions in  buildings generates on average 13 (range of 0.7 to 35.5) job years per million USD2010 spent. This  range does not change if only studies estimating net employment effects are considered. Two  studies (Scott et al., 2008; Gold et al., 2011) focus on cost savings from unspent energy budgets that  can be redirected in the economy, estimating that the resulting employment effects range between  6.0 and 10.2 job years per million USD2010 spent. Several studies (Pollin et al., 2009; Ürge Vorsatz et  al., 2010; Wei et al., 2010; Carley et al., 2011) agree that building retrofits and investments in clean  energy technologies are more labour intensive than conventional approaches (i.e., energy  production from fossil fuels, other construction activities). However, to what extent investing in  clean energy creates more employment compared to conventional activities depends also on the  structure of the economy in question, level of wages, and if the production of equipment and  services to develop these investments occurs or not inside the economy under consideration. To this  end, the estimation of net employment benefits instead of gross effects is of particular importance  for an integrated analysis of energy efficiency implications on the economy. Investing in clean  technologies may create new job activities (e.g., in solar industry, in the sector of new building  materials etc.), but the vast majority of jobs can be in traditional areas (Pollin et al., 2009) albeit with  different skills required (ILO, 2012).      45 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Figure 9.18. Employment effects attributed to GHG mitigation initiatives in the building sector.  Sources used: USA: (Scott et al., 2008; Bezdek, 2009; Hendricks et al., 2009; Pollin et al., 2009; Garrett-Peltier, 2011; Gold et al., 2011). Hungary: (Ürge-Vorsatz et al., 2010). Ontario, Canada: (Pollin and Garrett-Peltier, 2009). Germany: (Kuckshinrichs et al., 2010). Denmark: (Ege et al., 2009). EU: (ETUC, 2008). Greece: (Markaki et al., 2013) France: (ADEME, 2008). All studies from the USA, Hungary, Ontario Canada and Greece include the direct, indirect and induced employment effects. In (ADEME, 2008) and (ETUC, 2008) only the direct effects are taken into account. (Ege et al., 2009) includes the direct and indirect effects while this information is not provided in (Kuckshinrichs et al., 2010). 9.7.2.2    Energy security  Implementation of mitigation measures in the buildings sector can play an important role in  increasing the sufficiency of resources to meet national energy demand at competitive and stable  prices and improving the resilience of the energy supply system. Specifically, mitigation actions  result in: (1) strengthening power grid reliability through the enhancement of properly managed on site generation and the reduction of the overall demand, which result in reduced power  transmission and distribution losses and constraints (Kahn, 2008; Passey et al., 2011); (2) reducing  cooling related peak power demand and shifting demand to off peak periods (Borg and Kelly, 2011;  Steinfeld et al., 2011); and (3) increasing the diversification of energy sources as well as the share of  domestic energy sources used in a specific energy system (see for example (Dixon et al., 2010). A  more general discussion on energy security is provided in Section 6.6.  9.7.2.3    Benefits related to workplace productivity  Investment in low carbon technologies related to air conditioning and wall thermal properties during  construction or renovation improves workplace productivity, as evidenced by a meta analysis of  several studies (Fisk, 2002; Kats et al., 2003; Loftness et al., 2003; Ries et al., 2006; Sustainability  Victoria and Kador Group, 2007; Miller et al., 2009; Singh et al., 2010b). On average, energy efficient  buildings may result in increased productivity by 1 9% or even higher for specific activities or case  studies (Figure 9.16). The productivity gains can be attributed to: (1) reduced working days lost to  asthma and respiratory allergies; (2) fewer work hours affected by flu, respiratory illnesses,  depression, and stress; and (3) improved worker performance from changes in thermal comfort and  lighting. Productivity gains can rank among the highest value co benefits when these are monetized,  especially in countries with high labour costs (GEA, 2012).   9.7.2.4    Rebound effects  Improvements in energy efficiency can be offset by increases in demand for energy services due to  the rebound effect. The general issues relating to the effect are set out in Sections 3.9.5 and5.6.The  rebound effect is of particular importance in buildings because of the high proportion of energy  efficiency potential in this sector. Studies related to buildings form a major part of the two major    46 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 reviews of rebound (Greening et al., 2000; Sorrell, 2007). Direct rebound effects tend to be in the  range 0 30% for major energy services in buildings such as heating and cooling (Sorrell et al., 2009;  Ürge Vorsatz et al., 2012b) in developed countries. For energy services where energy is a smaller  fraction of total costs, e.g., electrical appliances, there is less evidence, but values are lower and less  than 20% (Sorrell, 2007). Somewhat higher rebound levels have been found for lower income groups  (Roy, 2000; Hens et al., 2009), implying that efficiency contributes positively to energy service  affordability and development goals which are often the purposes of efficiency policies in these  countries. However, there is limited evidence outside OECD countries (Roy, 2000; Ouyang et al.,  2010) and further research is required here. Studies of indirect rebound effects for buildings tend to  show low values, e.g., 7% for thermostat changes (Druckman et al., 2011). Some claims have been  made that indirect rebound effects may be very large (Brookes, 2000; Saunders, 2000), even  exceeding 100%, so that energy efficiency improvement would increase energy use. These claims  may have had some validity for critical  general purpose technologies  such as steam engines during  intensive periods of industrialization (Sorrell, 2007), but there is no evidence to support large  rebound effects for energy efficiency in buildings. Declining energy use in developed countries with  strong policies for energy efficiency in buildings indicates rebound effects are low (see Section 9.2  ).  Rebound effects should be taken into account in building energy efficiency policies, but do not alter  conclusions about their importance and cost effectiveness in climate mitigation (Sorrell, 2007).  9.7.2.5    Fuel poverty alleviation  Fuel poverty is a condition in which a household is unable to guarantee a certain level of  consumption of domestic energy services (especially heating) or suffers disproportionate  expenditure burdens to meet these needs (Boardman, 1991; BERR, 2001; Healy and Clinch, 2002;  Buzar, 2007; Ürge Vorsatz and Tirado Herrero, 2012). As such, it has a range of negative effects on  the health and welfare of fuel poor households. For instance, indoor temperatures that are too low  affect vulnerable population groups like children, adolescent, or the elderly (Liddell and Morris,  2010; Marmot Review Team, 2011) and increase excess winter mortality rates (The Eurowinter  Group, 1997; Wilkinson et al., 2001; Healy, 2004). A more analytical discussion on the potential  health impacts associated with fuel poverty is presented in Section 9.7.3   . Despite the fact that  some mitigation measures (e.g., renewables) may result in higher consumer energy prices  aggravating energy poverty, substantially improving the thermal performance of buildings (such as  Passive house) and educating residents on appropriate energy management can largely alleviate fuel  poverty. Several studies have shown that fuel poverty related monetized co benefits make up over  30% of the total benefits of energy efficiency investments and are more important than those arising  from avoided emissions of greenhouses gases and other harmful pollutants like SO2, NOx, and PM10  (Clinch and Healy, 2001; Tirado Herrero and Ürge Vorsatz, 2012).   9.7.3    Environmental and health effects  9.7.3.1    Health co benefits due to improved indoor conditions  The implementation of energy efficiency interventions in buildings improves indoor conditions  resulting in significant co benefits for public health, through: (1) reduction of indoor air pollution, (2)  improvement of indoor environmental conditions, and (3) alleviation of fuel poverty particularly in  cold regions. In developing countries, inefficient combustion of traditional solid fuels in households  produces significant gaseous and particulate emissions known as products of incomplete  combustion (PICs), and results in significant health impacts, particularly for women and children,  who spend longer periods at home (Zhang and Smith, 2007; Duflo et al., 2008; Wilkinson et al., 2009).  Indoor air pollution from the use of biomass and coal was responsible for 2 million premature deaths  and 41 million disability adjusted life years (DALYs) worldwide in 2004(WHO, 2009), with recent  estimates (Lim et al., 2012)reaching as high as 3.5 million premature deaths in 2010. Another half a  million premature deaths are attributed to household cook fuel s contribution to outdoor air    47 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 pollution, making a total of about 4 million (see WGII Chapter 11.9.1.3). Several climate mitigation  options such as improved cookstoves, switching to cleaner fuels, changing behaviours, and switching  to more efficient and less dangerous lighting technologies address not only climate change but also  these health issues (Anenberg et al., 2012; Smith et al., 2013; Rao et al., 2013). Wilkinson et al.  (2009) showed that the implementation of a national programme promoting modern low emissions  stove technologies in India could result in significant health benefits amounting to 12,500 fewer  DALYs per million population in one year. Bruce et al. (2006) investigated the health benefits and the  costs associated with the implementation of selected interventions aiming at reducing indoor air  pollution from the use of solid fuels for cooking/space heating in various world regions (Table 9.8). Table 9.8. Healthy years gained per thousand USD2010 spent in implementing interventions aiming at reducing indoor air pollution. (Source: Bruce et al., 2006). Intervention  Sub Saharan  Africa  Latin  America  and  Caribbean Middle  East  and  North  Africa  ~1.2  ~9.7  2.03 2.52  Europe  and  Central  Asia  0.70 0.76  5.07 5.56  n.a.  South  Asia  East Asia  and the  Pacific  Access to cleaner fuels:  LPG  Access to cleaner fuels:  Kerosene  Improved stoves    1.30  1.79  0.66 1.19  11.1 15.4  36.7 45.9  1.46 8.77  0.84 0.98  1.70 2.97  14.8 25.8  62.4 70.7  0.55 9.30  4.11 79.5  1.58 3.11  In both developed and developing countries, better insulation, ventilation, and heating systems in  buildings improve the indoor conditions and result in fewer respiratory diseases, allergies and  asthma as well as reduced sick building syndrome (SBS) symptoms (Fisk, 2002; Singh et al., 2010b).  On the other hand, insufficient ventilation in airtight buildings has been found to affect negatively  their occupants' health, as has the installation of sub standard energy efficiency technologies due to  in situ toxic chemicals (Fisk, 2002; GEA, 2012; Milner et al., 2012). Of particular importance is the  alleviation of fuel poverty in buildings, which is associated with excess mortality and morbidity  effects, depression, and anxiety (Green and Gilbertson, 2008). It is estimated that over 10% to as  much as 40% of excess winter deaths in temperate countries is related to inadequate indoor  temperatures (Clinch and Healy, 2001; Marmot Review Team, 2011). In countries such as Poland,  Germany, or Spain, this amounts to several thousand   up to 10,000   excess annual winter deaths.  These figures suggest that in developed countries, fuel poverty may be causing premature deaths  per year similar to or higher than that of road traffic accidents (Bonnefoy and Sadeckas, 2006; Ürge Vorsatz, Wójcik Gront, Herrero, Labzina, et al., 2012; TiradoHerrero et al., 2012). Improved  residential insulation is expected to reduce illnesses associated with room temperature thus provide  non energy benefits, such as reduced medical expenses and reduced loss of income due to unpaid  sick leave from work and school. A study in the UK found that for each USD2010 1 invested for  warming homes reduces the healthcare costs by USD2010 0.49 (Liddell, 2008). Such findings suggest  that addressing fuel poverty issues and the resulting health impacts in developing nations are even  more important, as a greater share of the population is affected (WHO, 2011).  9.7.3.2    Health and environmental co benefits due to reduced outdoor air pollution  The implementation of mitigation measures in the building sector reduces the consumption of fossil  fuels and electricity, thus improving the outdoor air quality and resulting in: (1) reduced mortality  and morbidity, particularly in developing countries and big cities(Smith et al., 2010; Harlan and    48 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Ruddell, 2011) (see Section 12.8); and (2) less stresses on natural and anthropogenic ecosystems  (see Section 7.9.1).Quantification and valuation of these benefits is possible, andallowsthem to be  integrated into cost benefit analysis. Many studies ( see for example Levy et al., 2003; Aunan et al.,  2004; Mirasgedis et al., 2004; Chen et al., 2007; Crawford Brown et al., 2012)have monetized the  health and environmental benefits attributed to reduced outdoor air pollution that result from the  implementation of energy efficiency measures in buildings. The magnitude of these benefits is of the  order of 8 22% of the value of energy savings in developed countries (Levy et al., 2003; Naess Schmidt et al., 2012), and even higher in developing nations (see Chapter 6.6). Markandya et al.  (2009) estimated that the health benefits expressed in USD2010 per ton of CO2 not emitted from  power plants (through for example the implementation of electricity conservation interventions) are  in the range of 2 USD2010/tCO2 in EU, 7 USD2010/tCO2 in China and 46 USD2010/tCO2 in India,  accounting for only the mortality impacts associated with PM2.5 emissions. Please refer to Section  5.7 for higher estimates in the assessed literature.  9.7.3.3    Other environmental benefits  Energy efficiency measures that are implemented in buildings result in several other environmental  benefits. Specifically, using energy efficient appliances such as washing machines and dishwashers in  homes results in considerable water savings (Bansal et al., 2011). More generally, a number of  studies show that green design in buildings is associated with lower demand for water, resulting in  reduced costs and emissions from the utilities sector. For example, (Kats et al., 2005) evaluated 30  green schools in Massachusetts and found an average water use reduction of 32% compared to  conventional schools, achieved through the reuse of the rain water and other non potable water as  well as the installation of water efficient appliances (e.g., in toilets) and advanced controls. Also, the  implementation of green roofs, roof gardens, balcony gardens, and sky terraces as well as green  facades/walls in buildings, results in: (1) reducing heat gains for buildings in hot climates; (2)  reducing the heat island effect; (3) improving air quality; (4) enhancing urban biodiversity, especially  with the selection of indigenous vegetation species; (5) absorbing CO2 emissions, etc.(Cam, 2012; Xu  et al., 2012b) (see Gill et al., 2007 and Section 12.5.2.2).  9.8   Barriers and opportunities  Strong barriers many to particular to the buildings sector hinder the market uptake of largely  cost effective opportunities to achieve energy efficiency improvements shown in earlier sections.  Large potentials will remain untapped without adequate policies that induce the needed changes in  private decisions and professional practices. Barriers and related opportunities vary considerably by  location, building type, culture, and stakeholder groups, as vary the options to overcome them, such  as policies, measures, and innovative financing schemes. A vast literature on barriers and  opportunities in buildings enumerates and describes these factors (Brown et al., 2008b) (Ürge Vorsatz et al., 2012a). (Power, 2008), (Lomas, 2009) (Mlecnik, 2010), (Short, 2007), (Hegner, 2010)  (Stevenson, 2009), (Pellegrini Masini and Leishman, 2011), (Greden), (Collins, 2007), (Houghton,  2011), (Kwok, 2010), (Amundsen, 2010) and (Monni, 2008).  Barriers include imperfect information, transaction costs, limited capital, externalities, subsidies, risk  aversion, principal agent problems, fragmented market and institutional structures, poor feedback,  poor enforcement of regulations, cultural aspects, cognitive and behavioural patterns, as well as  difficulties concerning patent protection and technology transfer. In less developed areas, lack of  awareness, financing, qualified personnel, economic informality, and generally insufficient service  levels lead to suboptimal policies and measures thus causing lock in effects in terms of emissions.  The pace of policy uptake is especially important in developing countries because ongoing  development efforts that do not consider co benefits may lock in suboptimal technologies and  infrastructure and result in high costs in future years (Williams et al., 2012).     49 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 9.9   Sectoral implication of transformation pathways and sustainable  development  9.9.1. Introduction  The purpose of this section is to review both the integrated as well as sectoral bottom up modelling  literature from the perspective of what main trends are projected for the future building emissions  and energy use developments, and the role of major mitigation strategies outlined in Section 9.1  .  The section complements the analysis in Section 6.8 with more details on findings from the building  sector. The two key pillars of the section are (1) a statistical analysis of a large population of  scenarios from integrated models (665 scenarios in total) grouped by their long term CO2 equivalent  (CO2eq) concentration level by 2100, complemented by the analysis of sectoral models (grouped by  baseline and advanced scenario, since often these do not relate to concentration goals); and (2) a  more detailed analysis of a small selection of integrated and end use/sectoral models. The source of  the integrated models is the AR5 Scenario Database (see Section 6.2.2 for details), and those of the  sectoral models are (WBCSD, 2009; GPI, 2010; Laustsen, 2010; Harvey, 2010; WEO, 2011; Ürge Vorsatz et al., 2012a; IEA, 2012c).  9.9.2. Overview of building sector energy projections  Figure 9.19, together with Figure 9.20 and Figure 9. 21 indicate that without action, global building  final energy use could double or possibly triple by mid century. While the median of integrated  model scenarios forecast an approximate75% increase as compared to 2010 (Figure 9.19), several  key scenarios that model this sector in greater detail foresee a larger growth, such as: AIM, Message,  and the Global Change Assessment Model (GCAM), all of which project an over 150% baseline  growth (Figure 9.20). The sectoral/bottom up literature, however, indicates that this growing trend  can be reversed and the sector s energy use can stagnate, or even decline, by mid century, under  advanced scenarios.    The projected development in building final energy use is rather different in the sectoral (bottom up) and integrated modelling literature, as illustrated in Figure 9.19, Figure 9.20, and Figure 9. 21.  For instance, the integrated model literature foresees an increase in building energy consumption in  most scenarios with almost none foreseeing stabilization, whereas the vast majority of ambitious  scenarios from the bottom up/sectoral literature stabilize or even decline despite the increases in  wealth, floorspace, service levels, and amenities (see Section 9.2). Several stringent mitigation  scenarios from integrated models are above baseline scenarios from the sectoral literature (Figure  9.20). In general, the sectoral literature sees deeper opportunities for energy use reductions in the  building sector than integrated models.    50 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Figure 9.19. Development of normalized annual global building final energy demand (2010=100) until 2050 in the integrated modelling literature, grouped by the three levels of long-term CO2eq concentration level by 21003 (245 scenarios with 430 530 ppm CO2eq, 156 scenarios with 530 650 ppm CO2eq, and 177 scenarios exceeding 720 ppm CO2eq for category descriptions see Chapter 6.3.3; see box plots) and sectoral/bottom-up literature (9 baseline scenarios and 9 advanced scenarios; see square, triangle and circle symbols). Sectoral scenarios covering appliances (A) only are denoted as squares, scenarios covering heating/cooling/water heating (HCW) as triangles, scenarios covering heating/cooling/water heating/lighting/appliances (HCWLA) as circles. Filled symbols are for baseline scenario, whereas empty symbols are for advanced scenarios.  As the focus on selected scenarios in Figure 9.21 suggests, thermal energy use can be reduced more  strongly than energy in other building end uses: reductions in the total are typically as much as, or  less than, decreases in heating and cooling (sometimes with hot water) energy use scenarios. Figure  9. 21 shows that deep reductions are foreseen only in the thermal energy uses by bottom up/sectoral scenarios, but appliances can be reduced only moderately, even in sectoral studies. This  indicates that mitigation is more challenging for non thermal end uses and is becoming increasingly  important for ambitious mitigation over time, especially in advanced heating and cooling scenarios  where this energy use can be successfully pushed down to a fraction of its 2005 levels. These  This section builds upon emissions scenarios, which were collated by Chapter 6 in the AR5 scenario database (Section  6.2.2), and compares them to detailed building sector studies. The scenarios were grouped into baseline and mitigation  scenarios. As described in more detail in Section 6.3.2, the scenarios are further categorized into bins based on 2100  concentrations: between 430 480 ppm CO2eq, 480 530 ppm CO2eq, 530 580 ppm CO2eq, 580 650 ppm CO2eq, 650 720  ppm CO2eq, and >720 ppm CO2eq by 2100.  An assessment of geo physical climate uncertainties consistent with the  dynamics of Earth System Models assessed in WGI found that the most stringent of these scenarios   leading to 2100  concentrations between 430 and 480 ppmvCO2eq   would lead to an end of century median temperature change between  1.6 to 1.8°C compared to pre industrial times, although uncertainties in understanding of the climate system mean that the  possible temperature range is much wider than this range. They were found to maintain temperature change below 2°C  over the course of the century with a likely chance. Scenarios in the concentration category of 650 720 ppm CO2eq  correspond to comparatively modest mitigation efforts, and were found to lead to median temperature rise of  approximately 2.6 2.9°C in 2100 (see Section 6.3.2 for details).  3   51 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 findings confirm the more theoretical discussions in this chapter, i.e., that in thermal end uses  deeper reductions can be expected while appliance energy use will be more difficult to reduce or  even limit its growth. For instance (Ürge Vorsatz et al., 2012d) show a 46% reduction in heating and  cooling energy demand as compared to 2005   even under baseline assumptions on wealth and  amenities increases. In contrast, the selected integrated models that focus on detailed building  sector modelling project very little reduction in heating and cooling.  Another general finding is that studies show significantly larger reduction potentials by 2050 than by  2030, pointing to the need for a longer term, strategic policy planning, due to long lead times of  building infrastructure modernization (see Section 9.4  ). In fact, most of these studies and scenarios  show energy growth through 2020, with the decline starting later, suggesting that  patience  and  thus policy permanence is vital for this sector in order to be able to exploit its large mitigation  potentials.   Figure 9.20. Annual global final energy demand development in the building sector by 2050 in selected sectoral models for baseline (left) and advanced (right) scenarios, for total energy (HCWLA, heating/cooling/hot water/lighting/appliances),thermal energy (HCW, includes heating/cooling/hot water), and appliances (A); compared to selected integrated models. Dashed lines show integrated models, solid lines show other sectoral/bottom-up models. Sources as indicated in Section 9.9.1.4. For the analysis to follow, we have chosen seven illustrative integrated models with two scenarios each, covering the full  range of year 2050 final energy use in all no policy scenarios in the AR5 scenario database and their 450ppmv scenario  counterparts. These no policy scenarios are MESSAGE V.4_EMF27 Base EERE, IMAGE 2.4_AMPERE2 Base LowEI OPT, AIM Enduse[Backcast] 1.0_LIMITS StrPol, BET 1.5_EMF27 Base FullTech, TIAM WORLD 2012.2_EMF27 Base FullTech, GCAM  3.0_AMPERE3 Base, and POLES AMPERE_AMPERE3 Base. The mitigation scenario counterparts are MESSAGE V.4_EMF27 450 EERE, IMAGE 2.4_AMPERE2 450 LowEI OPT, AIM Enduse[Backcast] 1.0_LIMITS StrPol 450, BET 1.5_EMF27 450 FullTech, TIAM WORLD 2012.2_EMF27 450 FullTech, GCAM 3.0_AMPERE3 CF450, and POLES AMPERE_AMPERE3 CF450.  In addition, sectoral/bottom up models and scenarios were also included. The no policy/baseline scenarios are BUENAS  Baseline, 3CSEP HEB Frozen efficiency, LAUSTSEN Baseline, WEO'10Current Policies, ETP'10 Baseline, Ecofys Baseline, and  Greenpeace Energy Revolution 2010 Baseline. The advanced scenarios are BUENAS EES&L, 3CSEP HEB Deep efficiency,  LAUSTSEN Factor 4, WEO'10 450 Scenario, ETP'10 BLUE Map, Ecofys TER, and Greenpeace Energy Revolution 2010  Revolution.  4   52 of 103 Final Draft  Chapter 9  IPCC WGIII AR5   Figure 9. 21. Building final energy use in EJ/yr in 2050 (2030 for the Bottom-Up Energy Analysis System (BUENAS) model) for advanced scenarios, modelling four groups of building end-uses as compared to reference ones. Blue bars show scenarios from integrated models meeting 480 580 ppm CO2eq concentration in 2100, orange/red bars are from sectoral models. Sources as indicated in Section 9.9.1 The trends noted above are very different in the different world regions. As Figure 9.22  demonstrates, both per capita and total final building energy use is expected to decline or close to  stabilize even in baseline scenarios in OECD countries. In contrast, the Latin American and Asian  regions will experience major growth both for per capita and total levels, even in the most stringent  mitigation scenarios. MAF will experience major growth for total levels, but growth is not projected  for per capita levels even in baseline scenarios. This is likely due mainly to the fact that fuel switching  from traditional biomass to modern energy carriers results in significant conversion efficiency gains,  thus allowing substantial increases in energy service levels without increasing final energy use.    53 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 Figure 9.22. Normalized total (for first two sets of boxes) and per capita (for next two sets of boxes) buildings final energy demand in 2010 and 2050 for each of the RC5 regions (Annex II.2.2) in scenarios from integrated models (2010=100). The absolute values of the medians are also shown with the unit of EJ for total buildings final energy demand and the unit of GJ for per capita buildings final energy demand (229 scenarios with 430 530 ppm CO2eq and 154 scenarios exceeding 720ppm CO2eq for category descriptions see Section 6.3.2). Note that the 2010 absolute values are not equal for the two CO2eq concentration categories because for most integrated models 2010 is a modeling year implying some variation across models, such as in the treatment of traditional biomass. Sources as indicated in Section 9.9.1. 9.9.3. Key mitigation strategies as highlighted by the pathway analysis  The diversity of the development in final energy demand even among the most stringent mitigation  scenarios suggests that different models take different foci for their building mitigation strategies.  While most mitigation and advanced bottom up/sectoral scenarios show flat or reducing global final    54 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 building energy use, a few integrated models achieve stringent mitigation from rather high final  energy demand levels, thereby focusing on energy supply side measures for reducing emissions.  These scenarios have about twice as high per capita final energy demand levels in 2050 as the lowest  mitigation scenarios. This suggests a focus on energy supply side measures for decarbonization. In  general, Figure 9.19, Figure 9.20, and Figure 9. 21 all demonstrate that integrated models generally  place a larger focus on supply side solutions than on final energy reduction opportunities in the  building sector (see Section 6.8)   except for a small selection of studies.   Fuel switching to electricity that is increasingly being decarbonized is a robust mitigation strategy as  shown in Sections 6.3.4 and 6.8. However, as Figure 9.23a indicates, this is not fully the case in the  buildings sector. The total share of electricity in this sector is influenced little by mitigation  stringency except for the least ambitious scenarios: it exhibits an autonomous increase from about  28% of final energy in 2010 to 50% and more in 2050 in almost all scenarios, i.e., the use of more  electricity as a share of building energy supply is an important baseline trend in the sector.  Compared to this robust baseline trend, the additional electrification in mitigation scenarios is rather  modest (see also Section 6.8.4).   Figure 9.23b indicates that the higher rates of energy growth (x axis) in the models involve generally  higher rates of electricity growth (y axis). The two increases are nearly proportional, so that the  rates of electricity demand share growth, of which level is indicated by 45o lines, remain mostly  below 2% per year even in the presence of climate policy.   Figure 9.23. Left panel: The development in the share of electricity in global final energy demand until 2050 in integrated model scenarios (167 scenarios with 430 530 ppm CO2eq, 138 scenarios with ppm 530 650 CO2eq, and 149 scenarios exceeding 720 ppm CO2eq for category descriptions see Chapter 6.3.3), and right panel decomposition of the annual change in electricity demand share into final energy demand change rate and electricity demand change rate (each gray line indicates a set of points with the same annual change in electricity demand share). Sources as indicated in Section 9.9.1. The seven selected integrated models see a very different development in the fuel mix (Figure 9. 24).  In the baseline scenarios, interestingly, most scenarios show a fairly similar amount of power use;  and the difference in total building final energy use largely stems from the differences in the use of  other fuels. Particularly large differences are foreseen in the use of natural gas and oil, and, to a  lesser extent, biomass. Mitigation scenarios are somewhat more uniform: mostly a bit over half of  their fuel mix is comprised of electricity, with the remaining part more evenly distributed among the  other fuels except coal that disappears from the portfolio, although some scenarios exclude further    55 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 individual fuels (such as no biomass in MESSAGE, no oil in BET, no natural gas in Image) by scenarios  outcomes.   Figure 9. 24. Global buildings final energy demands by fuel for the seven baseline scenarios of seven integrated models and their corresponding mitigation scenarios (480 580 ppm CO2eq concentration in 2100). Sources as indicated in Section 9.9.1.    56 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 9.9.4. Summary and general observations of global building final energy use  The material summarized in this section concludes that without action, global building final energy  use may double or potentially even triple by mid century, but with ambitious action it can possibly  stabilize or decline as compared to its present levels. However, the integrated and sectoral models  do not fully agree with regard to the extent of mitigation potential and the key mitigation strategy,  although there is a very wide variation among integrated models with some more agreement across  sectoral models  conclusions.  The broad mitigation strategy for buildings implied by sectoral analysis is first to significantly reduce  demand for both primary fuels and electricity by using available technologies for energy efficiency  improvement, many of which are cost effective without a carbon price. To the extent this is  insufficient, further mitigation can be achieved through additional use of low and zero carbon  electricity, from a combination of building integrated renewable energy and substitution of fossil  fuels with low carbon electricity.  The broad mitigation strategies for buildings implied by integrated models, however, include a  greater emphasis on switching to low carbon energy carriers (predominantly electricity). These  strategies place less emphasis on reducing energy demand, possibly because many integrated  models do not represent all technical options to reduce building energy consumption cost effectively  which are covered in sectoral studies and because of the implicit assumption of general equilibrium  models that all cost effective opportunities had been taken up already in the baseline which is at  odds with empirical data from the buildings sector. Integrated model outputs tend to show energy  demand reduction over the coming decades, followed by a more significant role for decarbonization  of energy supply (with, in some cases, heavy reliance on bioenergy with carbon dioxide capture and  storage (CCS) to offset remaining direct emissions from buildings and the other end use sectors).  To summarize, sectoral studies show there is a larger potential for energy efficiency measures to  reduce building sector final energy use than is most typically shown by integrated models. This  indicates that some options for demand reductions in the buildings sector are not included, or at  least not fully deployed, by integrated models because of different model assumptions and/or level  of richness in technology/option representation (see Section 6.8).  9.10   Sectoral policies  This section first outlines the policy options to promote energy efficiency in buildings, then provides  more detail on the emerging policy instruments since AR4, then focuses on the key new instruments  for financing and finally considers the policy issues specific to developing countries.   9.10.1    Policies for Energy Efficiency in Buildings  Section 9.8 shows that many strong barriers prevent the full uptake of energy saving measures.  Market forces alone will not achieve the necessary transformation towards low carbon buildings  without external policy intervention to correct market failures and to encourage new business and  financial models that overcome the first investment cost hurdle, which is one of the key barriers.  There is a broad portfolio of effective policy instruments available that show reductions of emissions  at low and negative costs; many of them have been implemented in developed countries and, more  recently, in developing countries. When these policies are implemented in a coordinated manner,  they can be effective in reversing the trend of growing energy consumption. This chapter shows that  building energy use has fallen in several European countries in recent years where strong policies  have been implemented. Beside technological improvement in energy efficiency, which has been so  far the main focus of most polices, policymakers have recently focused on the need to change  consumer behaviour and lifestyle, based on the concept of sufficiency. Particularly in developed  countries, the existing building stock is large and renewed only very slowly, and therefore it is  important to introduce policies that specifically target the existing stock, e.g., aiming at accelerating    57 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 rates of energy refurbishment and avoiding lock in to suboptimal retrofits   for example, the case of  China (Dongyan, 2009). Policies also need to be dynamic, with periodic revision to follow technical  and market changes; in particular, regulations need regular strengthening, for example for  equipment minimum efficiency standards (Siderius and Nakagami, 2013) or building codes (Weiss et  al., 2012). Recently there has been more attention to enforcement, which is needed if countries are  to achieve the full potential of implemented or planned policies (Ellis et al., 2009; Weiss et al., 2012).   The most common policies for the building sector are summarized in Table 9.9, which includes some  examples of the results achieved. Policy instruments for energy efficiency in buildings may be  classified in the following categories: (1) Regulatory measures are one of the most effective and  cost effective instruments, for example, building codes and appliance standards (Boza Kiss et al.,  2013) if properly enforced (Weiss et al., 2012); see also (Koeppel and Ürge Vorsatz, 2007;  McCormick and Neij, 2009). Standards need to be set at appropriate levels and periodically  strengthened to avoid lock in to sub optimal performance. (2) Information instruments including  equipment energy labels, building labels and certificates, and mandatory energy audits can be  relatively effective on their own depending on their design, but can also support other instruments,  in particular standards(Kelly, 2012; Boza Kiss et al., 2013). (3) Direct market intervention instruments  include public procurement, which can have an important role in transforming the market. More  recently, governments have supported the development of energy service companies (ESCOs) (see  section 9.10.3   ). (4) Economic Instruments include several options, including both tradable permits,  taxes, and more focussed incentives. Tradable permits (often called market based instruments)  include tradable white certificates (see section 9.10.2   ), as well as broader carbon markets (see  Chapter 13). Taxes include energy and carbon taxes and have increasingly been implemented to  accelerate energy efficiency (Orlov 2013). They are discussed in more detail in Chapter 15, and can  complement and reinforce other policy instruments in the building sector. Sector specific tax  exemptions and reductions, if appropriately structured, can provide a more effective mechanism  than energy taxes (UNEP SBCI, 2007). Options include tax deductions building retrofits (Valentini and  Pistochini, 2011), value added tax exemption, and various tax reliefs (Dongyan, 2009), as well as  exemptions from business taxes for CDM projects (RSA, 2009). More focussed incentives include low  interest loans and incentives which can be very effective in enlarging the market for new efficient  products and to overcoming first cost barriers for deep retrofits (McGilligan et al., 2010). (5)  Voluntary agreements include programmes such as industry agreements. Their effectiveness  depends on the context and on accompanying policy measures (Bertoldi, 2011). (6) Advice and  leadership programmes include policies such as information campaigns, advice services, and public  leadership programmes to build public awareness and capacity.  A large number of countries have successfully adopted building sector policies. The most popular  instruments in developing countries so far have been appliance standards, public procurement, and  leadership programmes. The Table 9.9 provides more detailed descriptions of the various  instruments, a brief identification of some key issues related to their success, and a quantitative  evaluation of their environmental and cost effectiveness from the literature. Although there is a  significant spread in the results, and the samples are small for conclusive judgments on individual  instruments, the available studies indicate that among the most cost effective instruments have  been building codes and labels, appliance standards and labels, supplier obligations, public  procurement, and leadership programmes. Most of these are regulatory instruments. However,  most instruments have best practice applications that have achieved CO2 reductions at low or  negative social costs, signalling that a broad portfolio of tools is available to governments to cost effectively cut building related emissions.   Appliance standards and labels, building codes, promotion of ESCOs, Clean Development  Mechanisms and Joint Implementation (CDM JI), and financing tools (grants and subsidies) have so  far performed as the most environmentally effective tools among the documented cases. However,  the environmental effectiveness also varies a lot by case. Based on a detailed analysis of policy    58 of 103 Final Draft  Chapter 9  IPCC WGIII AR5 evaluations, virtually any of these instruments can perform very effectively (environmentally and/or  cost wise) if tailored to local conditions and policy settings, and if implemented and enforced well  (Boza Kiss et al., 2013). Therefore, it is likely that the choice of instrument is less crucial than  whether it is designed, applied, implemented, and enforced well and consistently. Most of these  instruments are also effective in developing countries, where it is essential that the co benefits of  energy efficiency policies (see Section 10.7) are well mapped, quantified and well understood by the  policy makers (Ryan and Campbell, 2012; Koeppel and Ürge Vorsatz, 2007). Policy integration with  other policy domains is particularly effective to leverage these co benefits in developing countries,  and energy efficiency goals can often be pursued more effectively through other policy goals that  have much higher ranking in political agendas and thus may enjoy much more resources and a  stronger political momentum than climate change mitigation.    59 of 103 Final Draft  Chapter 9  IPCC WGIII AR5  Table 9.9. Policies for energy efficiency in buildings, their environmental effectiveness, i.e., emission reduction impact and societal costeffectiveness. Source: Based on (Boza-Kiss et al., 2013). Policy title and brief definition  Further information, comments Environmental effectiveness (selected best  practices of annual CO2 emission reduction)  Cost effectiveness of CO2 emission reduction (selected  best practices, USD2010/tCO2  per yr)  EU region: <36.5  USD2010/tCO2 ES: 0.17 USD2010/tCO2  LV:  206  USD2010/tCO2    JP: 51  USD2010/tCO2 (Top  Runner)  Mor: 13  USD2010/tCO2  AU:  52  USD2010/tCO2  US:  82  USD2010/tCO2  EU:  245 USD2010/tCO2  References Building codes are sets of  standards for buildings or  building systems determining  minimum requirements of  energy performance.  Appliance standards (MEPS) are  rules or guidelines for a  particular product class that set  a minimum efficiency level, and  usually prohibit the sale of  underperforming products.  Lately standards have also been adopted for existing buildings  (Desogus et al., 2013). Traditionally typical low enforcement  has resulted in lower than projected savings. Building codes  need to be regularly strengthened to be effective.   Most OECD countries have adopted MEPS (in the EU under  the Eco design Directive). Voluntary agreements with  equipment manufacturers are considered as effective  alternatives in some jurisdictions. The Japanese Top Runners  Schemes have proven as successful as MEPS (Siderius and  Nakagami, 2013)(). Developing countries may suffer a  secondary effect, receiving products banned from other  markets or inefficient second hand products.  Examples include voluntary endorsement labelling (e.g.,  Energy Star) and mandatory energy labelling (e.g., the EU  energy label). Technical specifications for the label should be  regularly updated to adjust to the best products on the  market. MEPS and labels are usually co ordinated policy  measures with common technical analysis.  Building labels could be mandatory (for example in the EU) or  voluntary (such as BREEAM, CASBEE, Effinergie, LEED,  European GreenBuilding label, Minergie and PassivHaus).  Labels are beginning to influence market prices(Brounen and  Kok, 2011).  Audits should be mandatory and subsidized (in particular for  developing countries). Audits are reinforced by incentives or  regulations that require the implementation of the cost effective recommended measures.  EU: 35 45 MtCO2 (2010 2011) LV: 0.002 MtCO2/yr in 2016 (estimated in 2008)  ES: 0.35 MtCO2/yr in 2012  UK : 0.02 MtCO2/yr by 2020 (estimated in 2011)  JP: 0.1 MtCO2/yr in 2025 (Top Runner Scheme,  2007)  US: 158 MtCO2 cumulative in 2030 (2010),  updating the standard   18 MtCO2/yr in 2040  (2010)  KE: 0.3 MtCO2/yr (for lighting only)  BF: 0.01 MtCO2/yr (lighting only)    EU: 237 MtCO2 (1995 2020) OECD N Am: 792 MtCO2 (1990 2010)  OECD EU: 211 MtCO2 (1990 2010)  NL: 0.11 MtCO2/yr (1995 2004)  DK: 0.03 MtCO2/yr (2004)  SK: 0.05 MtCO2 (during 2008 2010) for mandatory  certification  SK: 0.001 MtCO2 (during 2008 2010) for  promoting voluntary certification and audits  SK: 0.001 MtCO2 (during 2008 2010) for  promoting voluntary certification and audits  FI: 0.036 MtCO2 (2010)  [1,2,3,4]    [5, 6, 7,8]  Energy labelling is the  mandatory (or voluntary)  provision of information about  the energy/other resource use  of end use products at the point  of sale.  Building labels and certificates  rate buildings related to their  energy performance and provide  credible information about it to  users/buyers.  Mandatory energy audits  measure the energy  performance of existing  buildings and identify cost effective improvement  potentials.  Sustainable public procurement  is the organized purchase by  public bodies following pre set  procurement regulations  incorporating energy  performance /sustainability  requirements.   AU:  38 USD2010/tCO2 [9,10,11]  EU: 27  USD2010/tCO2 (2008 2010) for mandatory  certification  DK: almost 0  USD2010/tCO2  FI: 27.7  USD2010/tCO2 (2010)  mandatory audit programme  [12]  [2, 12, 13]   Setting a high level of efficiency requirement for all the  products that the public sector purchases, as well as requiring  energy efficient buildings when renting or constructing them,  can achieve a significant market transformation, because the  public sector is responsible for a large share of these  purchases and investments. In the EU the EED requires  Member States to procure only most efficient equipment. In  the US this is carried out under FEMP.  SK: 0.01 MtCO2 (introduction of sustainable  procurement principle) (2011 2013)  CN: 3.7 MtCO2 (1993 2003)  MX: 0.002 MtCO2 (2004 2005)  UK: 0.34 MtCO2 (2011)  AT: 0.02 MtCO2 (2010)  SK: 0.03 USD2010/tCO2 CN:  10 USD2010/tCO2    (FI, 2005; Van  WieMcGrory  et al., 2006;  Gov t of  Slovakia,  2011; LDA,  2011)  [12, 14, 15,  16]    60 of 103 Final Draft  Policy title and brief definition  Further information, comments Chapter 9  Environmental effectiveness (selected best  practices of annual CO2 emission reduction)  IPCC WGIII AR5  Cost effectiveness of CO2 emission reduction (selected  best practices, USD2010/tCO2  per yr)  EU: mostly at no cost  AT: no cost  HU: <1 USD2010/tCO2  US: Public sector: B/C ratio 1.6,  Private sector: 2.1  References Promotion of energy services  (ESCOs) aims to increase the  market and quality of energy  service offers, in which savings  are guaranteed and investment  needs are covered from cost  savings.  Energy Efficiency Obligations  and White Certificates set,  record and prove that a certain  amount of energy has been  saved at the point of end use.  Schemes may incorporate  trading.  Carbon markets limit the total  amount of allowed emissions.  Carbon emission allowances are  then distributed and traded.  Energy performance contracting (EPC) schemes enable ESCOs  or similar (Duplessis et al., 2012) . Many countries have  recently adopted policies for the promotion of EPC delivered  via ESCOs (Marino et al., 2011).  EU:40 55MtCO2 by 2010  AT: 0.016 MtCO2/yr in 2008 2010  US: 3.2 MtCO2/yr  CN: 34 MtCO2  [2, 17,18] Suppliers' obligations and white certificates have been  introduced in Italy, France, Poland, the UK, Denmark and the  Flemish Region of Belgium and in Australia. In all the White  Certificates schemes the targets imposed by governments  have been so far exceeded (Bertoldi, Rezessy, Oikonomou et  al., 2010).  Carbon cap and trade for the building sector is an emerging  policy instrument (e.g., the Tokyo CO2 Emission Reduction  Program, which imposes a cap on electricity and energy  emissions for large commercial buildings), although the  program is currently under change due to the special measure  for the Great East Japan Earthquake.  Fiscal tools can be powerful, because the increased (relative)  price of polluting energy sources or less sustainable products  is expected to cause a decrease in consumption. However,  depending on price electricity, the tax typically should be  quite substantial to have an effect on behaviour and energy  efficiency investments.   Examples include reduced VAT, accelerated depreciation, tax  deductions, feebates etc.  FR: 6.6 MtCO2/yr (2006 2009) IT: 21.5 MtCO2 (2005 2008)  UK: 24.2 MtCO2/yr (2002 2008)  DK: 0.5 MtCO2/yr (2006 2008)  Flanders (BE): 0.15 MtCO2 (2008 2016))  CDM: 1267 MtCO2 (average cumulative saving per  project for 32 registered CDM projects on  residential building efficiency, 2004 2012)  JI: 699 MtCO2 (cumulative) from the single JI  project on residential building energy efficiency  (2006 2012)  SE: 1.15 MtCO2/yr (2006)  DE: 24 MtCO2 cummulative (1999 2010)  DK: 2.3 MtCO2 (2005)  NL: 3.7  4.85 MtCO2/yr (1996 2020)  Energy and carbon tax is levied  on fossil fuels or on energy using  products, based on their energy  demand and/or their carbon  content respectively.  Use of taxation can be  considered as a type of subsidy,  representing a transfer of funds  to investors in energy efficiency.  Grants and subsidies are  economic incentives, in the form  of funds transfer.  FR: 36  USD2010/tCO2 IT: 12  USD2010/tCO2  UK: 24  USD2010/tCO2  DK: 66  USD2010/tCO2  Flanders (BE): 201   USD2010/tCO2    CDM end use energy efficiency  projects, In: 113 to 96  USD2010/tCO2    JI projects (buildings): between  122 and 238 USD2010/tCO2   SE: 8.5 USD2010/tCO2 DE: 96 USD2010/tCO2  ee  NL:  421 to  552 USD2010/tCO2  (2000 2020)  TH: 26.5 USD2010/tCO2   [19, 20, 21,  22, 23, 24, 25,  26,  27]    [28, 29, 30]  [31, 32, 33,  34]  Soft loans (including  preferential mortgages) are  given for carbon reduction  measures with low interest  rates.   Incentives (e.g., grants and subsidies) for investments in  energy efficiency, as provided for building renovation in  Estonia, Poland and Hungary      Governmental a fiscal incentive to banks, which offer  preferential interest rates  to  customers and also incentives  based on the performances achieved, e.g., in Germany(CO2 Rehabilitation Program).   TH: 2.04 MtCO2 (2006 2009) IT: 0.65 MtCO2 (2006 2010)  FR: 1 MtCO2 (2002)  US: 88 MtCO2 (2006)  DK: 170 MtCO2 cummulative (1993 2003) UK: 1.41 MtCO2 (2008 2009)  CZ: 0.05 MtCO2 (2007)  AU: 0.7 MtCO2 (2009 2011)  FR: 0.4 MtCO2 (2002 2006)  TH: 0.3 MtCO2 (2008 2009) LT: 0.33 MtCO2/yr (2009 2020)  PL: 0.98 MtCO2 (2007 2010)  [35, 36, 37]  DK: 0.5  USD2010/tCO2 UK: 84.8  USD2010/tCO2  FR: 17.9  USD2010/tCO2  TH: 108  USD2010/tCO2 (total  cost of loan)    [35, 37, 38,  39]  [37, 40]    61 of 103 Final Draft  Policy title and brief definition  Further information, comments Chapter 9  Environmental effectiveness (selected best  practices of annual CO2 emission reduction)  IPCC WGIII AR5  Cost effectiveness of CO2 emission reduction (selected  best practices, USD2010/tCO2  per yr)  FI: 0.15  USD2010/tCO2 NL: 14  USD2010/tCO2  DK: 39  USD2010/tCO2    References Voluntary and negotiated  agreements are tailored  contracts between an authority  and another entity, aimed at  meeting a predefined level of  energy savings.  Awareness raising and  information campaigns, are  programs transmitting general  messages to the whole  population. Individual feedback  is characterized by the provision  of tailored information.  Voluntary programmes can be also applied in the built  environment as in the Netherlands and Finland, where  housing association and public property owners agree on  energy efficiency targets with the government. Some  voluntary agreements have a binding character; as the agreed  objectives are binding. At city level, an example is the  Covenant of Mayors  Information campaigns to stimulate behavioural changes  (e.g., to turn down the thermostat by 1 °C during the heating  season) as well as investments in energy efficiency  technologies; new developments are seen in the area of  smart metering and direct feedback.  FI: 9.2 MtCO2 NL: 2.5 MtCO2 (2008 2020)  DK: 0.09 MtCO2/yr (1996)    [2, 13, 41, 42]  BR: 6 12 MtCO2/yr (2005)  UK: 0.01 MtCO2/yr (2005)  EU: 0.0004 MtCO2 (2009)  FI: 0.001 MtCO2/yr (2010)  UK: 0.25% household energy saving/yr, that is 0.5  MtCO2/yr (cumulated 2011 2020) (billing and  metering)  IE: 0.033 MtCO2 (2006 2010) BR:  69  USD2010/tCO2 UK: 8.4  USD2010/tCO2  EU: 40.2  USD2010/tCO2  US: 20 98  USD2010/tCO2   [2, 43, 44, 45,  46]  Public Leadership Programmes  ZA: 25  USD2010/tCO2     are public practices going  [2, 47]  BR: 6.5 12.2 MtCO2/yr  BR:   125  USD2010/tCO2  beyond the minimum  requirements in order to lead by  example and demonstrate good  examples.  Notes: Country codes (ISO 3166): AT-Austria; AU-Australia; BE- Belgium; BF- Burkina Faso; BR- Brazil; CN- China; CZ-Czech Republic; DE- Germany; DK- Denmark; ES- Spain; EUEuropean Union; FI- Finland; FR-France; HU- Hungary; IE- Ireland; IN-India; IT-Italy; JP- Japan; KE- Kenya; LT- Lithuania; LV- Latvia; Mor Morocco; MX- Mexico; NL-The Netherlands; OECD EU- OECD countries in Europe; OECD N-Am: OECD countries in North-America; PL- Poland; SE-Sweden; SK- Slovak Republic; SL- Slovenia; TH- Thailand; UKUnited Kingdom; US- United States; ZA South Africa. References: [1](EC, 2003);[2] (Koeppel and Ürge-Vorsatz, 2007);[3](DECC, 2011); [4] (Gov t of Latvia, 2011);[5](Kainou, 2007);[6] (AHAM, 2010); [7] (En.lighten, 2010);[8] (US EERE, 2010); [9] (IEA, 2003) [10] (Wiel and McMahon, 2005); [11] (Luttmer, 2006); [12] (Gov t of Slovakia, 2011); [13] (Government of Finland, 2011); [14] (FI, 2005); [15] (Van WieMcGrory et al., 2006);[16] (LDA, 2011); [17] (AEA, 2011); [19] (MNDH, 2011); [20] (Lees, 2006); [21] (Lees, 2008); [22] (Lees, 2011); [23] (Pavan, 2008); [24] (Bertoldi and Rezessy, 2009); [25](Bertoldi et al., 2010b); [26] (Giraudet et al., 2011); [27] (Langham et al., 2010); [28] (BETMG, 2012); [29] (UNEP Risoe, 2012); [30] (Bertoldi et al., 2013b); [31](Knigge and Görlach, 2005); [32] (Price et al., 2005); [33] (EPC, 2008); [34] (IEA, 2012b); [35] (GMCA, 2009); [36] (APERC, 2010); [37] (BPIE, 2010); [38] (Missaoui and Mourtada, 2010); [39] (Hayes et al., 2011); [40] (Galvin, 2012); [41] (Rezessy and Bertoldi, 2010); [42] (MIKR, 2011); [43] (Uitdenbogerd et al., 2009); [44] (CPI, 2011); [45] (UK DE, 2011); [46] (CB, 2012); [47] (Government of Ireland, 2011).   62 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    9.10.1.1    Policy packages  No single policy is sufficient to achieve the potential energy savings and that combination (packages)  of polices can have combined results that are bigger than the sum of the individual policies  (Harmelink et al., 2008; Tambach et al., 2010; Weiss et al., 2012; Murphy et al., 2012). The EU s the  Energy Efficiency Directive (EED) (European Union, 2012) has, since 2008, required Member States  to describe co ordinated packages of policies in their National Energy Efficiency Action Plans (NEEAP).  Market transformation of domestic appliances in several developed countries has been achieved  through a combination of minimum standards, energy labels, incentives for the most efficient  equipment, and an effective communication campaign for end users (Boza Kiss et al., 2013). The  specific policies, regulations, programmes and incentives needed are highly dependent on the  product, market structure, institutional capacity, and the background conditions in each country.  Other packages of measures are mandatory audits and financial incentives for the retrofitting of  existing buildings, with incentives linked to the implementation of the audit findings and minimum  efficiency requirements; voluntary programmes coupled with tax exemptions and other financial  incentives (Murphy et al., 2012); and suppliers' obligations and white certificates (and, in France, tax  credits)in addition to equipment labelling and standards   in order to promote products beyond the  standards  requirements (Bertoldi, Rezessy, Oikonomou et al., 2010).  9.10.1.2    A holistic approach  Energy efficiency in buildings requires action beyond the point of investment in new buildings,  retrofit, and equipment. A holistic approach considers the whole lifespan of the building, including  master planning, lifecycle assessment and integrated building design to obtain the broadest impact  possible, and therefore needs to begin at the neighbourhood or city level (see Chapter 12). In the  holistic approach, building codes, design, operation, maintenance, and post occupancy evaluation  are coordinated. Continuous monitoring of building energy use and dynamic codes allow policies to  close the gap between design goals and actual building energy performance.The use of modern  technologies to provide feedback on consumption in real time allows adjustment of energy  performance and as a function of external energy supply. Dynamic information can also be used for  energy certificates and databases to disclose building energy performance. Moreover, studies on  durability and climate change mitigation show that the lifespan of a technical solution is as  important as the choice of material, which signals to the importance of related policies such as eco design directives and mandatory warranties (Mequignon et al., 2013a; b).   Another challenge is the need to develop the skills and training to deliver, maintain, and manage low  carbon buildings. To implement the large number of energy saving projects (building retrofits or new  construction) a large, skilled workforce is needed to carry out high quality work at relatively low cost.   Implementation and enforcement of policies are key components of effective policy. These two  components used together are the only way to ensure that the expected results of the policy are  achieved. Developed countries are now increasing attention to proper implementation and  enforcement (Jollands et al., 2010), for example, to survey equipment efficiency when minimum  standards are in place and to check compliance with building codes. For example, EU Member States  are required to develop independent control systems for their building labelling schemes (European  Union, 2012). Public money invested in implementation and enforcement will be highly cost  effective (Tambach et al., 2010), as it contributes to the overall cost effectiveness of policies. In  addition to enforcement, ex post evaluation of policies is needed to assess their impact and to  review policy design and stringency or to complement it with other policies. Implementation and  enforcement is still a major challenge for developing countries that lack much of the capacity (e.g.,  testing laboratories for equipment efficiency) and knowledge to implement policies such as  standards, labels and building codes.    63 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    9.10.2    Emerging policy instruments in buildings  Recent reports have comprehensively reviewed building related policies (IPCC, 2007; GEA, 2012);  the remainder of this chapter focuses on recent developments and important emerging instruments.  While technical efficiency improvements are still needed and are important to reduce energy  demand (Alcott, 2008), increases in energy use are driven primarily by increasing demand for energy  services (e.g., built space per capita and additional equipment). To address this, policies need to  influence consumer behaviour and lifestyle (Herring, 2006; Sanquist et al., 2012) and the concept of  sufficiency has been introduced in the energy efficiency policy debate (Herring, 2006; Oikonomou et  al., 2009). Policies to target sufficiency aim at capping or discouraging increasing energy use due to  increased floor space, comfort levels, and equipment. Policy instruments in this category include: (1)  personal carbon trading (i.e., carbon markets with equitable personal allocations)   this has not yet  been introduced and its social acceptability (Fawcett, 2010) and implementation (Eyre, 2010) have  to be further demonstrated; (2) property taxation (e.g., related to a building s CO2 emissions); and  (3) progressive appliance standards and building codes, for example, with absolute consumption  limits (kWh/person/year) rather than efficiency requirements (kWh/m2/year) (Harris et al., 2007).  In order to reduce energy demand, policies may include promoting density, high space utilization,  and efficient occupant behaviour as increased floor space entails more energy use. This might be  achieved, for example, through incentives for reducing energy consumption   the so called energy  saving feed in tariff (Bertoldi et al., 2010a, 2013a).  9.10.2.1. New developments in building codes (ordinance, regulation, or by laws)  A large number of jurisdictions have now set, or are considering, very significant strengthening of  the requirements for energy performance in building codes. There are debates about the precise  level of ambition that is appropriate, especially with regard to NZEB mandates, which can be  problematic (see 9.3  ). The EU is requiring its Member States to introduce building codes set at the  cost optimal point using a lifecycle calculation, both for new buildings and those undergoing major  renovation. As a result, by the end of 2020, all new buildings must be nearly zero energy by law.  Many Member States (e.g., Denmark, Germany) have announced progressive building codes to  gradually reduce the energy consumption of buildings towards nearly net zero levels. There is also  action within local jurisdictions, e.g., the city of Brussels has mandated that all new social and public  buildings must meet Passive house levels from 2013, while all new buildings have to meet these  norms from 2015 (MoniteurBelge, 2011; BE, 2012; CSTC.be, 2012). In China, building codes have  been adopted that seek saving of 50% from pre existing levels, with much increased provision for  enforcement, leading to high expected savings (Zhou et al., 2011b).As demonstrated in sections 9.2  and 9.9, the widespread proliferation of these ambitious building codes, together with other policies  to encourage efficiency, have already contributed to total building energy use trends stabilizing, or  even slowing down.  9.10.2.2. Energy efficiency obligation schemes and  white  certificates  Energy efficiency obligation schemes with or without so called  white certificates  as incentive  schemes have been applied in some Member States of the European Union (Bertoldi et al., 2010a)  and Australia (Crossley, 2008), with more recent uses in Brazil and India. White certificates evolved  from non tradable obligations on monopoly energy utilities, also known as suppliers' obligations or  energy efficiency resources standards, largely but not only in the United States. Market liberalization  initially led to a reduction in such activity (Ürge Vorsatz et al., 2012b), driven by a belief that such  approaches were not needed in, or incompatible with, competitive markets, although this is not  correct (Vine et al., 2003). Their main use has been in regulated markets driven by obligations on  energy companies to save energy (Bertoldi and Rezessy, 2008).The use of suppliers  obligations  began in the UK in 2000, and these obligations are now significant in a number of EU countries,  notably UK, France and Italy (Eyre et al., 2009). Energy supplier obligation schemes are a key part of    64 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    EU policy for energy efficiency and the Energy Efficiency Directive (European Union, 2012) requires  all EU Member States to introduce this policy or alternative schemes. Precise objectives, traded  quantity and rules differ across countries. Cost effectiveness is typically very good (Bertoldi, 2012).  However, white certificates tend to incentivize low cost, mass market measures rather than deep  retrofits, and therefore there are concerns that this policy approach may not be best suited to future  policy objectives (Eyre et al., 2009).  9.10.3    Financing opportunities  9.10.3.1. New financing schemes for deep retrofits  Energy efficiency in buildings is not a single market: it covers a diverse range of end use equipment  and technologies and requires very large numbers of small, dispersed projects with a diverse range  of decision makers. As the chapter has demonstrated, many technologies in the building sector are  proven and economic: if properly financed, the investment costs are paid back over short periods  from energy cost savings. However, many potentially attractive energy investments do not meet the  short term financial return criteria of businesses, investors, and individuals, or there is no available  financing. While significant savings are possible with relatively modest investment premiums, a first cost sensitive buyer, or one lacking financing, will never adopt transformative solutions. Major  causes of this gap are the shortage of relevant finance and of delivery mechanisms that suit the  specifics of energy efficiency projects and the lack in some markets of pipelines of bankable  energy efficiency projects. Creative business models from energy utilities, businesses, and financial  institutions can overcome first cost hurdles (Veeraboina and Yesuratnam, 2013). One innovative  example is for energy efficiency investment funds to capitalize on the lower risk of mortgage lending  on low energy housing; the funds to provide such investment can be attractive to socially  responsible investment funds. In Germany, through the KfW development bank, energy efficiency  loans with low interest rate are offered making it attractive to end users. The scheme has triggered  many building refurbishments (Harmelink et al., 2008).   Another example is the 'Green Deal , which is a new initiative by the UK government designed to  facilitate the retrofitting of energy saving measures to all buildings. Such schemes allows for charges  on electricity bills in order to recoup costs of buildings energy efficiency improvements by private  firms to consumers (Bichard and Thurairajah, 2013). The finance is tied to the energy meter rather  than the building owner. The Green Deal was expected primarily to finance short payback measures  previously covered by the suppliers  obligation, rather than deep retrofits. However, the UK  government does not subsidize the loan interest rate, and commercial interest rates are not  generally attractive to end users. Take up of energy efficiency in the Green Deal is therefore  expected to be much lower than in a supplier obligation (Rosenow and Eyre, 2013).   In areas of the United States with Property Assessed Clean Energy (PACE) legislation in place,  municipality governments offer a specific bond to investors and then use this to finance lending to  consumers and businesses for energy retrofits (Headen et al., 2010). The loans are repaid over the  assigned term (typically 15 or 20 years) via an annual assessment on their property tax bill. Legal  concerns about the effect of PACE lending on mortgages for residential buildings (Van Nostrand,  2011) have resulted in the approach being mainly directed to non domestic buildings.   ESCOs provide solutions for improving energy efficiency in buildings by guaranteeing that energy  savings are able to repay the efficiency investment, thus overcoming financial constraints to energy  efficiency investments. The ESCO model has been found to be effective in developed countries such  as Germany (Marino et al., 2011) and the United States. In the last decade ESCOs have been created  in number of developing countries (e.g., China, Brazil, and South Korea) supported by international  financial institutions and their respective governments (UNEP SBCI, 2007; Da li, 2009). Since the  introduction of an international cooperation project by the Chinese government and World Bank in  1998, a market based energy performance contract mechanism and ESCO industry has developed in    65 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    China (Da li, 2009) with Chinese government support. Policies for the support of ESCOs in developing  countries include the creation of a Super ESCOs (Limaye, 2011) by governmental agencies. Financing  environments for ESCOs need to be improved to ensure they operate optimally and sources of  financing, such as debt and equity, need to be located. Possible financing sources are commercial  banks, venture capital firms, equity funds, leasing companies, and equipment manufacturers (Da li,  2009). In social housing in Europe, funding can be provided through Energy Performance Certificates  (EPC), in which an ESCO invests in a comprehensive refurbishment and repays itself through the  generated savings. Social housing operators and ESCOs have established the legal, financial, and  technical framework to do this (Milin and Bullier, 2011).   9.10.3.2. Opportunities in Financing for Green Buildings  The existing global green building market is valued at approximately 550 billion USD2010 and is  expected to grow through to 2015, with Asia anticipated to be the fastest growing region (Lewis,  2010). A survey on responsible property investing (RPI) (UNEP FI, 2009), covering key markets  around the world, has shown it is possible to achieve a competitive advantage and greater return on  property investment by effectively tackling environmental and social issues when investing in real  estate (UNEP FI and PRI signatories, 2008). For example, in Japan, new rental apartment buildings  equipped with solar power systems and energy saving devices had significantly higher occupancy  rates than the average for other properties in the neighbourhood, and investment return rates were  also higher (MLIT, 2010a; b). A survey comparing rent and vacancy rates of buildings (Watson, 2010)  showed rents for LEED certified buildings were consistently higher than for uncertified buildings. In  many municipalities in Japan, assessment by the Comprehensive Assessment System for Built  Environment Efficiency (CASBEE) and notification of assessment results are required at the time of  construction (Murakami et al., 2004). Several financial products are available that provide a discount  of more than 1% on housing loans, depending on the grade received by the CASBEE assessment. This  has been contributing to the diffusion of green buildings through financial schemes (IBEC, 2009). In  addition, a housing eco point system was implemented in 2009 in Japan, broadly divided between a  home appliances eco point system and a housing eco point system. In the housing eco point system,  housing which satisfies the Top Runner level standards are targeted, both newly constructed and  existing buildings. This programme has contributed to the promotion of green buildings, with  160,000 (approximately 20% of the total market) applications for subsidies for newly constructed  buildings in 2010. In existing buildings, the number of window replacements has increased, and has  attracted much attention (MLIT, 2012).  9.10.4    Policies in developing countries  Economic instruments and incentives are very important means to encourage stakeholders and  investors in the building sector to adopt more energy efficient approaches in the design,  construction, and operation of buildings (Huovila, 2007). This section provides an overview of  financial instruments commonly applied in the developing world to promote emissions reduction in  building sector.   In terms of carbon markets, the Clean Development Mechanism (CDM) has a great potential to  promote energy efficiency and lower emissions in building sector. However, until recently it has  bypassed the sector entirely, due to some methodological obstacles to energy efficiency projects  (Michaelowa et al., 2009). However, a  whole building  baseline and monitoring methodology  approved in 2011 may pave the way for more building projects (Michaelowa and Hayashi, 2011).  Since 2009, the share of CDM projects in the buildings sector has increased, particularly with regard  to efficient lighting schemes (UNEP Risoe, 2012). The voluntary market has complemented the CDM  as a financing mechanism, for example for solar home systems projects (Michaelowa et al., 2009;  Michaelowa and Hayashi, 2011).     66 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Public benefits charges are financing mechanisms meant to raise funds for energy efficiency  measures and to accelerate market transformation in both developed and developing countries  (UNEP SBCI, 2007). In Brazil, all energy distribution utilities are required to spend a minimum of 1%  of their revenue on energy efficiency interventions while at least a quarter of this fund is expected to  be spent on end user efficiency projects (UNEP SBCI, 2007).   Utility demand side management (DSM) may be the most viable option to implement and finance  energy efficiency programs in smaller developing countries (Sarkar and Singh, 2010). In a developing  country context, it is common practice to house DSM programmes within the local utilities due to  their healthy financial means and strong technical and implementation capacities, for example, in  Argentina, South Africa, Brazil, India, Thailand, Uruguay and Vietnam (Winkler and Van Es, 2007;  Sarkar and Singh, 2010). Eskom, the South African electricity utility, uses its DSM funds mainly to  finance load management and energy efficiency improvement including millions of free issued  compact fluorescent lamps that have been installed in households (Winkler and Van Es, 2007).    Capital subsidies, grants and subsidized loans are among the most frequently used instruments for  implementation of increased energy efficiency projects in buildings. Financial subsidy is used as the  primary supporting fund in the implementation of retrofit projects in China (Dongyan, 2009). In  recent years, the World Bank Group has steadily increased energy efficiency lending to the highest  lending ever in the fiscal year of 2009 of USD2010 3.3 billion, of which USD2010 1.7 billion committed  investments in the same year alone (Sarkar and Singh, 2010). Examples include energy efficient  lighting programmes in Mali, energy efficiency projects in buildings in Belarus, carbon finance  blended innovative financing to replace old chillers (air conditioning) with energy efficient and  chlorofluorocarbon free (CFC) chillers in commercial buildings in India (Sarkar and Singh, 2010). The  Government of Nepal has been providing subsidies in the past few years to promote the use of solar  home systems (SHS) in rural households (Dhakal and Raut, 2010). The certified emission reductions  (CERs) accumulated from this project were expected to be traded in order to supplement the  financing of the lighting program. The Global Environmental Facility (GEF) has directed a significant  share of its financial resources to SHS and the World Bank similarly has provided a number of loans  for SHS projects in Asia (Wamukonya, 2007). The GEF has provided a grant of 219 million USD2010 to  finance 23 off grid SHS projects in 20 countries (Wamukonya, 2007).   9.11   Gaps in knowledge and data  Addressing these main gaps and problems would improve the understanding of mitigation in  buildings:  The lack of adequate bottom up data leads to a dominance of top down and supply focused  decisions about energy systems.  Misinformation and simplified techniques pose risks to providing a full understanding of  integrated and regionally adequate building systems, and this leads to fragmented actions  and weaker results.  Weak or poor information about opportunities and costs affects optimal decisions and  appropriate allocation of financial resources.  Energy indicators relate to efficiency, but rarely to sufficiency.  Improved and more comprehensive databases on real, measured building energy use, and  capturing behaviour and lifestyles are necessary to develop exemplary practices from niches  to standard.  Continuous monitoring and constant modification of performance and dynamics of codes  would allow implementation to catch up with the potential for efficiency improvements and  co benefits; this would also provide better feedback to the policymaking process, to  education, to capacity building, and to training.    67 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Quantification and monetization of (positive and negative) externalities over the building life  cycle should be well integrated into decision making processes.  9.12   Frequently asked questions  FAQ 9.1. What are the recent advances in building sector technologies and know how  since the AR4 that are important from a mitigation perspective?  Recent advances in information technology, design, construction, and know how have opened new  opportunities for a transformative change in building sector related emissions that can contribute to  meeting ambitious climate targets at socially acceptable costs, or often at net benefits. Main  advances do not lie in major technological developments, but rather in their extended systemic  application, partially as a result of advanced policies, as well as in improvements in the performance  and reductions in the cost of several technologies. For instance, there are over 57,000 buildings  meeting Passive House standard and  nearly zero energy  new construction has become the law in  the 27 Member States of the European Union. Even higher energy performance levels are being  successfully applied to new and existing buildings, including non residential buildings. The costs have  been gradually declining; for residential buildings at the level of Passive house standard they account  for 5 8% of conventional building costs, and some net zero or nearly zero energy commercial  buildings having been built at equal or even lower costs than conventional ones (see 9.3  and 9.7  ).   FAQ 9.2. How much could the building sector contribute to ambitious climate change  mitigation goals, and what would be the costs of such efforts?  According to the GEA  efficiency  pathway, by 2050 global heating and cooling energy use could  decrease by as much as 46% as compared to 2005, if today s best practices in construction and  retrofit know how are broadly deployed(Ürge Vorsatz et al., 2012c)). This is despite the over 150%  increase in floor area during the same period, as well as significant increase in thermal comfort, as  well as the eradication of fuel poverty (Ürge Vorsatz et al., 2012c). The costs of such scenarios are  also significant, but according to most models, the savings in energy costs typically more than  exceed the investment costs. For instance, GEA (2012) projects an approximately 24 billion USD2010  in cumulative additional investment needs for realizing these advanced scenarios, but estimates an  over 65 billion USD2010 in cumulative energy cost savings until 2050.   FAQ 9.3. Which policy instrument(s) have been particularly effective and/or cost effective  in reducing building sector GHG emission (or their growth, in developing countries)?   Policy instruments in the building sector have proliferated since the AR4, with new instruments such  as white certificates, preferential loans, grants, progressive building codes based on principles of  cost optimum minimum requirements of energy performance and life cycle energy use calculation,  energy saving feed in tariffs as well as suppliers  obligations, and other measures introduced in  several countries. Among the most cost effective instruments have been building codes and labels,  appliance standards and labels, supplier obligations, public procurement and leadership programs.  Most of these are regulatory instruments. However, most instruments have best practice  applications that have achieved CO2 reductions at low or negative social costs, signalling that a broad  portfolio of tools is available to governments to cut building related emissions cost effectively.  Appliance standards and labels, building codes, promotion of ESCOs, CDM and JI, and financing tools  (grants and subsidies) have so far performed as the most environmentally effective tools among the  documented cases. However, the environmental effectiveness also varies a lot by case. Based on a  detailed analysis of policy evaluations, virtually any of these instruments can perform very effective  (environmentally and/or cost wise) if tailored to local conditions and policy settings, and if  implemented and enforced well (Boza Kiss et al., 2013). Therefore it is likely that the choice of  instrument is less crucial than whether it is designed, applied, implemented and enforced well and  consistently.    68 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    References  ABC (2008). Building energy efficiency: why green buildings are key to Asia s future. Hong Kong.  ADEME (2008). Activities Related to Renewable Energy & Energy Efficiency: Markets, Employment  and Energy Stakes Situation 2006 2007   Projections 2012. Agence de l Environnement et La Maîtrise  de l Energie Direction Exécutive de La Stratégie et de La Recherche Service Observation Economie et  Evaluation, Angers, France. 139 pp.  AEA (2011). Second National Energy Efficiency Action Plan of the Republic of Austria 2011. Austrian  Energy Agency, Vienna: Federal Ministry of Economy, Family and Youth., Austria. 119 pp.  Aebischer B., G. Catenazzi, and M. Jakob (2007). Impact of climate change on thermal comfort,  heating and cooling energy demand in Europe, Proceedings ECEEE Summer Study 859 870 pp. .  AHAM (2010). Energy Efficient and Smart Appliance Agreement of 2010. Association of Home  Appliance Manufacturers.  Akbari H., H. Damon Matthews, and D. Seto (2012). The long term effect of increasing the albedo of  urban areas, Environmental Research Letters 7 024004 pp. (DOI: 10.1088/1748 9326/7/2/024004),  (ISSN: 1748 9326).  Akbari H., S. Menon, and A. Rosenfeld (2008). Global cooling: increasing world wide urban albedos  to offset CO2, Climatic Change 94 275 286 pp. (DOI: 10.1007/s10584 008 9515 9), (ISSN: 0165 0009,  1573 1480).  Alcott B. (2008). The sufficiency strategy: Would rich world frugality lower environmental impact?,  Ecological Economics 64 770 786 pp. (DOI: 10.1016/j.ecolecon.2007.04.015), (ISSN: 0921 8009).  Alvarez G.C., R.M. Jara, J.R.R. Julián, and J.I.G. Bielsa (2010). Study of the Effects on Employment of  Public Aid to Renewable Energy Sources. Universidad Rey Juan Carlos, Madrid, Spain. 52 pp. Available  at: http://www.voced.edu.au/word/49731.  Aman M.M., G.B. Jasmon, H. Mokhlis, and A.H.A. Bakar (2013). Analysis of the performance of  domestic lighting lamps, Energy Policy 52 482 500 pp. (DOI: 10.1016/j.enpol.2012.09.068), (ISSN:  0301 4215).  Amundsen H.A. (2010). Overcoming barriers to climate change adaptation a question of multilevel  governance?, Environment and Planning C: Government and Policy 28 276 289 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 77953333390&partnerID=40&md5=f66b5281061c5e9bd52ec3b162e29f28.  Anderson R., C. Christensen, and S. Horowitz (2006). Analysis of residential system strategies  targeting least cost solutions leading to net zero energy homes, ASHRAE Transactions 112 330 341  pp. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta.  Andreasi W.A., R. Lamberts, and C. Candido (2010). Thermal acceptability assessment in buildings  located in hot and humid regions in Brazil, Building and Environment 45 1225 1232 pp. (DOI:  10.1016/j.buildenv.2009.11.005), (ISSN: 0360 1323).  Anenberg S.C., K. Balakrishnan, J. Jetter, O. Masera, S. Mehta, J. Moss, and V. Ramanathan (2013).  Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits, Environmental    69 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Science & Technology 47 3944 3952 pp. . Available at:  http://pubs.acs.org/doi/full/10.1021/es304942e.  Anenberg S.C., J. Schwartz, D. Shindell, M. Amann, G. Faluvegi, Z. Klimont, G. Janssens Maenhout,  L. Pozzoli, R. Van Dingenen, E. Vignati, L. Emberson, N.Z. Muller, J.J. West, M. Williams, V.  Demkine, W.K. Hicks, J. Kuylenstierna, F. Raes, and V. Ramanathan (2012). Global Air Quality and  Health Co benefits of Mitigating Near Term Climate Change through Methane and Black Carbon  Emission Controls, Environmental Health Perspectives 120 831 839 pp. (DOI: 10.1289/ehp.1104301),  (ISSN: 0091 6765).  Anisimova N. (2011). The capability to reduce primary energy demand in EU housing, Energy and  Buildings 43 2747 2751 pp. (DOI: 10.1016/j.enbuild.2011.06.029), (ISSN: 03787788).  Antwi Agyei E. (2013). Refrigerator energy efficiency project. . Available at:  http://www.energyguide.org.gh/page.php?page=429§ion=57&typ=1.  Anwyl J. (2011). Passivhaus architecture for schools, case study: Hadlow College. London, UK. .  Available at: http://www.ukpassivhausconference.org.uk/2011 conference presentations day one 24th october 2011.  APERC (2010). Compendium of Energy Efficiency Policies of APEC Economies Thailand. Asia Pacific  Energy Research Centre, Japan. 13 pp. Available at:  http://aperc.ieej.or.jp/file/2014/1/27/CEEP2012_Thailand.pdf.  Ardente F., M. Beccali, M. Cellura, and M. Mistretta (2008). Building energy performance: A LCA  case study of kenaf fibres insulation board, Energy and Buildings 40 1 10 pp. (DOI:  10.1016/j.enbuild.2006.12.009), (ISSN: 03787788).  Artmann N., D. Gyalistras, H. Manz, and P. Heiselberg (2008). Impact of climate warming on passive  night cooling potential, Building Research and Information 36 111 128 pp. .  Atkinson J.G.B., T. Jackson, and E. Mullings Smith (2009). Market influence on the low carbon  energy refurbishment of existing multi residential buildings, Energy Policy 37 2582 2593 pp. (DOI:  10.1016/j.enpol.2009.02.025), (ISSN: 0301 4215).  Audenaert A., S. De Cleyn, and B. Vankerckhove (2008). Economic analysis of passive houses and  low energy houses compared with standard houses, Energy Policy 36 47 55 pp. .  Aunan K., J. Fang, H. Vennemo, K. Oye, and H.M. Seip (2004). Co benefits of climate policy lessons  learned from a study in Shanxi, China, Energy Policy 32 567 581 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421503001563.  Baetens R., B.P. Jelle, and A. Gustavsen (2011). Aerogel insulation for building applications: A state of the art review, Energy and Buildings 43 761 769 pp. (DOI: 10.1016/j.enbuild.2010.12.012), (ISSN:  03787788).  Bansal P., E. Vineyard, and O. Abdelaziz (2011). Advances in household appliances   a review,  Applied Thermal Engineering 31 3748 3760 pp. (DOI: 10.1016/j.applthermaleng.2011.07.023), (ISSN:  1359 4311).  Barthel C., and T. Götz (2013). What Users Can Save with Energy and Water Efficient Washing  Machines. Wuppertal Institute for Climate, Environment and Energy., Wuppertal, Germany. 22 pp.    70 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Batty W.J., H. Al Hinai, and S.D. Probert (1991). Natural cooling techniques for residential buildings  in hot climates, Applied Energy 39 301 337 pp. (DOI: 10.1016/0306 2619(91)90002 F), (ISSN: 0306 2619).  BE (2012). Bruxelles, pionniere dans le  standard passif . . Available at:  http://www.bruxellesenvironnement.be/Templates/news.aspx?id=36001&langtype=2060&site=pr.  Behr (2009). Utility bills in Passive Houses   doing away with metered billing, Conference Proceedings  377 382 pp. Passive House Institute, Darmstadt, Germany, Frankfurt am Main.  Berdahl P. (1995). Building energy efficiency and fire safety aspects of reflective coatings, Energy  and buildings 22 187 191 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/037877889500921J.  Bergman N., L. Whitmarsh, and J. Köhler (2008). Transition to Sustainable Development in the UK  Housing Sector: From Case Study to Model Implementation. Tyndall Centre for Climate Change  Research, School of Environmental Sciences, University of East Anglia., 32 pp.  BERR (2001). UK Fuel Poverty Strategy. Department for Business Enterprise and Regulatory Reform,  UK, London, UK. 158 pp.  Bertoldi P. (2011). Assessment and Experience of White Certificate Schemes in the European Union.  JRC European Commission.  Bertoldi P. (2012). Energy Efficiency Policies and white certificates: analysis of experiences in the  European Union. JRC European Commission.  Bertoldi P., and C.N. Ciugudeanu (2005). Successful Examples of Efficient Lighting. European  Commission, DG JRC, Institute for Environment and Sustainability, Renewable Energies Unit, Ispra,  Italy. . Available at: http://www.eu greenlight.org/pdf/GL_Reports/GL_Report_2005.pdf.  Bertoldi P., and S. Rezessy (2008). Tradable white certificate schemes: fundamental concepts,  Energy Efficiency 1 237 255 pp. (DOI: 10.1007/s12053 008 9021 y), (ISSN: 1570 646X).  Bertoldi P., and S. Rezessy (2009). Energy Saving Obligations and Tradable White Certificates, Ispra,  Italy. Joint Research Centre of the European Commission.  Bertoldi P., S. Rezessy, E. Lees, P. Baudry, A. Jeandel, and N. Labanca (2010a). Energy supplier  obligations and white certificate schemes: Comparative analysis of experiences in the European  Union, Energy Policy 38 1455 1469 pp. (DOI: 10.1016/j.enpol.2009.11.027), (ISSN: 0301 4215).  Bertoldi P., S. Rezessy, and V. Oikonomou (2013a). Rewarding energy savings rather than energy  efficiency: Exploring the concept of a feed in tariff for energy savings, Energy Policy 56 526 535 pp.  (DOI: 10.1016/j.enpol.2013.01.019), (ISSN: 0301 4215).  Bertoldi P., S. Rezessy, V. Oikonomou, and B. Boza Kiss (2010b). Rewarding Energy Savings Rather  than Energy Efficiency, The Climate for Efficiency is Now 13 pp. Pacific Grove, CA.  Bertoldi P., S. Rezessy, S. Steuwer, V. Oikonomou, and N. Labanca (2013b). Where to place the  saving obligation: energy end users or suppliers?, Energy Policy 63 328 337 pp. .  BETMG (2012). The Tokyo Cap and Trade Program Results of the First Fiscal Year of Operation  (Provisional Results). Bureau of Environment of Tokyo Metropolitan Government.    71 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Bezdek R. (2009). Green Collar Jobs in the U.S. and Colorado. American Solar Energy Society, Boulder,  Colorado. 67 pp. Available at: http://www.misi net.com/publications/ASES JobsRpt09.pdf.  Bichard E., and N. Thurairajah (2013). Behaviour change strategies for energy efficiency in owner occupied housing, Construction Innovation: Information, Process, Management 13 165 185 pp. (DOI:  10.1108/14714171311322147), (ISSN: 1471 4175).  Bidstrup N. (2011). Circulators   From voluntary A G labelling to legislation in EU, EEDAL (Energy  Efficient Domestic Appliances and Lighting) 2011. Grundfos Managements A/S, Copenhagen. 24 May  2011, 18 pp. Available at:  http://www.eedal.dk/Conference/Programme%20and%20Presentations.aspx.  Boardman B. (1991). Fuel Poverty: From Cold Homes to Affordable Warmth. Belhaven Press, London,  UK, 267 pp., (ISBN: 1852931396). .  Boehland J. (2008). Building on Aldo Leopold s Legacy: The Aldo Leopold Foundation aims to uphold  the land ethic in its new headquarters., Green Source . Available at:  http://greensource.construction.com/projects/0804_AldoLeopoldLegacyCenter.asp.  Bolla R., F. Davoli, R. Bruschi, K. Christensen, F. Cucchietti, and S. Singh (2011). The potential  impact of green technologies in next generation wireline networks: Is there room for energy saving  optimization?, IEEE Communications Magazine 49 80 86 pp. (DOI: 10.1109/MCOM.2011.5978419),  (ISSN: 0163 6804).  Bonnefoy X., and D. Sadeckas (2006). A study on the prevalence, perception, and public policy of  fuel poverty  in European countries., Joint action to combat energy poverty in Europe: research and  policy challenges , 27 September, 2006. Somerville College, University of Oxford,Oxford. 2006,   Borg S.P., and N.J. Kelly (2011). The effect of appliance energy efficiency improvements on domestic  electric loads in European households, Energy and Buildings 43 2240 2250 pp. .  Boza Kiss B., S. Moles Grueso, and D. Ürge Vorsatz (2013). Evaluating policy instruments to foster  energy efficiency for the sustainable transformation of buildings, Current Opinion in Environmental  Sustainability 5 163 176 pp. (DOI: 10.1016/j.cosust.2013.04.002), (ISSN: 1877 3435).  BPIE (2010). Cost Optimality, Discussing Methodology and Challenges within the Recast Energy  Performance of Buildings Directive. BPIE, Brussels, Belgium. 39 pp. Available at:  http://www.buildup.eu/publications/12072.  Bretzke A. (2005). Planning and Construction of the Passive House Primary School in Kalbacher Höhe  15, Frankfurt Am Main. Hochbauamt Der Stadt Frankfurt, Germany. 6 pp.  Brookes L. (2000). Energy efficiency fallacies revisited, Energy Policy 28 355 366 pp. (DOI: doi:  10.1016/S0301 4215(00)00030 6), (ISSN: 0301 4215).  Brounen D., and N. Kok (2011). On the economics of energy labels in the housing market, Journal of  Environmental Economics and Management 62 166 179 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0095069611000337.  Brown R., S. Borgeson, J. Koomey, and P. Biermayer (2008a). U.S. Building Sector Energy Efficiency  Potential. Environmental Energy Technologies Division,Ernest Orlando Lawrence Berkeley National  Laboratory University of California, Berkeley, California. 33 pp.    72 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Brown M., J. Chandler, M. Lapsa, and B. Sovacool (2008b). Carbon Lock In: Barriers To Deploying  Climate Change Mitigation Technologies. Oak Ridge National Laboratory US. . Available at:  http://www.ornl.gov/sci/eere/PDFs/ORNLTM 2007 124_rev200801.pdf.  Brown H.S., and P.J. Vergragt (2008). Bounded socio technical experiments as agents of systemic  change: The case of a zero energy residential building, Technological Forecasting and Social Change  75 107 130 pp. (DOI: 10.1016/j.techfore.2006.05.014), (ISSN: 00401625).  Bruce N., E. Rehfuess, S. Mehta, G. Hutton, K. Smith, D.T. Jamison, J.G. Breman, A.R. Measham, G.  Alleyne, and M. Claeson (2006). Indoor air pollution. In: Disease control priorities in developing  countries. World Bank, Washington, D.C. pp.793 815(ISBN: 0 8213 0821361791).  Buzar S. (2007). Energy Poverty in Eastern Europe: Hidden Geographies of Deprivation. Ashgate,  Surrey, UK, 190 pp., (ISBN: 0754671305). .  Cabeza L.F., C. Barreneche, L. Miró, M. Martínez, A.I. Fernández, Parikh, and D. Ürge Vorsatz  (2013). Low carbon materials and low embodied energy materials in buildings: a review, Renewable  and Sustainable Energy Reviews 23 536 542 pp. .  Cabeza L.F., A. Castell, C. Barreneche, A. de Gracia, and A.I. Fernández (2011). Materials Used as  PCM in Thermal Energy Storage in Buildings: A Review, Renewable and Sustainable Energy Reviews  15 1675 1695 pp. (DOI: 10.1016/j.rser.2010.11.018), (ISSN: 13640321).  Cabeza L.F., D. Ürge Vorsatz, M. McNeil, C. Barreneche, and S. Serrano (2013a). Energy  consumption of appliances in buildings. in press.  Cai W.G., Y. Wu, Y. Zhong, and H. Ren (2009). China building energy consumption: Situation,  challenges and corresponding measures, Energy Policy 37 2054 2059 pp. (DOI:  10.1016/j.enpol.2008.11.037), (ISSN: 0301 4215).  Cam W.C. N. (2012). Technologies for Climate Change Mitigation: Building Sector. UNEP Risoe  Centre on Energy, Climate and Sustainable Development, Roskilde, Denmark, 197 pp., (ISBN: 978 87 92706 57 7). .  Campra P., M. Garcia, Y. Canton, and A. Palacios Orueta (2008). Surface temperature cooling trends  and negative radiative forcing due to land use change toward greenhouse farming in southeastern  Spain, Journal of Geophysical Research 113 (DOI: 10.1029/2008JD009912), (ISSN: 0148 0227).  Candido C., R. de Dear, and R. Lamberts (2011). Combined thermal acceptability and air movement  assessments in a hot humid climate, Building and Environment 46 379 385 pp. (DOI:  10.1016/j.buildenv.2010.07.032), (ISSN: 0360 1323).  Carley S., S. Lawrence, A. Brown, A. Nourafshan, and E. Benami (2011). Energy based economic  development, Renewable and Sustainable Energy Reviews 15 282 295 pp. .  Catania T. (2012). Appliances and the smart grid, ASHRAE Journal 52 72 76 pp. (ISSN: 00012491).  CB (2012). Changing Behaviour EU project. . Available at: http://www.energychange.info/.  Chan A.T., and V.C.H. Yeung (2005). Implementing building energy codes in Hong Kong: energy  savings, environmental impacts and cost, Energy and Buildings 37 631 642 pp. (DOI:  10.1016/j.enbuild.2004.09.018), (ISSN: 0378 7788).    73 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Chen C., B. Chen, B. Wang, C. Huang, J. Zhao, Y. Dai, and H. Kan (2007). Low carbon energy policy  and ambient air pollution in Shanghai, China: a health based economic assessment., The Science of  the total environment 373 13 21 pp. . Available at: http://ukpmc.ac.uk/abstract/MED/17207519.  Chow D.H.., and G.J. Levermore (2010). The effects of future climate change on heating and cooling  demands in office buildings in the UK, Building Services Engineering Research and Technology 31  307 323 pp. .  Chua K.J., S.K. Chou, and W.M. Yang (2010). Advances in heat pump systems: A review, Applied  Energy 87 3611 3624 pp. (DOI: 10.1016/j.apenergy.2010.06.014), (ISSN: 03062619).  Citherlet S., and T. Defaux (2007). Energy and environmental comparison of three variants of a  family house during its whole life span, Building and Environment 42 591 598 pp. (DOI:  10.1016/j.buildenv.2005.09.025), (ISSN: 03601323).  Clinch J.P., and J.D. Healy (2001). Cost benefit analysis of domestic energy efficiency, Energy Policy  29 113 124 pp. (ISSN: 0301 4215).  Coaffee J. (2008). Risk, resilience, and environmentally sustainable cities, Energy Policy 36 4633 4638 pp. . Available at: http://www.sciencedirect.com/science/article/pii/S0301421508004977.  Cockroft J., and N. Kelly (2006). A comparative assessment of future heat and power sources for the  UK domestic sector, Energy Conversion and Management 47 2349 2360 pp. (DOI:  10.1016/j.enconman.2005.11.021), (ISSN: 0196 8904).  Collins P.D. (2007). Time is money, Environment Business 15 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 34248386964&partnerID=40&md5=628015e0d1ac2279004d45215de562ea.  CPI (2011). Information Tools for Energy Demand Reduction in Existing Residential Buildings CPI  Report. Climate Policy Initiative, San Francisco, CA. 32 pp.  Crawford Brown D., T. Barker, A. Anger, and O. Dessens (2012). Ozone and PM related health co benefits of climate change policies in Mexico, Environmental Science & Policy 17 33 40 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S1462901111001961.  Crossley D. (2008). Tradeable energy efficiency certificates in Australia, Energy Efficiency 1 267 281  pp. (DOI: 10.1007/s12053 008 9018 6), (ISSN: 1570 646X).  CSTC.be (2012). Centre Scientifique et Technique de la Construction. . Available at:  http://www.cstc.be/homepage/index.cfm?cat=information.  Da li Gan (2009). Energy service companies to improve energy efficiency in China: barriers and  removal measures, Procedia Earth and Planetary Science 1 1695 1704 pp. (DOI:  10.1016/j.proeps.2009.09.260), (ISSN: 1878 5220).  Davis Langdon (2007). The Cost & Benefit of Achieving Green Buildings. Davis Langdon & SEAH  International. 8 pp. Available at:  http://www.davislangdon.com/upload/StaticFiles/AUSNZ%20Publications/Info%20Data/InfoData_Gr een_Buildings.pdf.  Davis Langdon, and Element Energy (2011). Cost of Building to the Code for Sustainable Homes.  Department for Communities and Local Government, London, UK. 90 pp. Available at:    74 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6378/1972728.pd f.  Day A.R., P.G. Jones, and G.G. Maidment (2009). Forecasting future cooling demand in London,  Energy and Buildings 41 942 948 pp. .  DECC (2011). UK Report on Articles 4 and 14 of the EU End Use Efficiency and Energy Services  Directive (ESD). Update on Progress against the 2007 UK National Energy Efficiency Action Plan.  Department of Energy and Climate Change, London, UK. 43 pp.  DEE (2011). Heat Pumps in the UK: How Hot Can They Get? Delta Energy and Environment,  Edinburgh, UK. 7 pp.  Deng Y., Z. Li, and J.M. Quigley (2012). Economic returns to energy efficient investments in the  housing market: Evidence from Singapore, Regional Science and Urban Economics 42 506 515 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S016604621100055X.  Desogus G., L. Di Pilla, S. Mura, G.L. Pisano, and R. Ricciu (2013). Economic efficiency of social  housing thermal upgrade in Mediterranean climate, Energy and Buildings 57 354 360 pp. (DOI:  10.1016/j.enbuild.2012.11.016), (ISSN: 0378 7788).  Dhakal S., and A.K. Raut (2010). Potential and bottlenecks of the carbon market: The case of a  developing country, Nepal, Energy Policy 38 3781 3789 pp. (DOI: 10.1016/j.enpol.2010.02.057),  (ISSN: 0301 4215).  Dietz T., G.T. Gardner, J. Gilligan, P.C. Stern, and M.P. Vandenbergh (2009). Household actions can  provide a behavioral wedge to rapidly reduce US carbon emissions, Proceedings of the National  Academy of Sciences 106 18452  18456 pp. (DOI: 10.1073/pnas.0908738106).  Dili A.S., M.A. Naseer, and T.Z. Varghese (2010). Passive control methods of Kerala traditional  architecture for a comfortable indoor environment: Comparative investigation during various    periods of rainy season, Building and Environment 45 2218 2230 pp. (DOI:  10.1016/j.buildenv.2010.04.002), (ISSN: 0360 1323).  Dixon R.K., E. McGowan, G. Onysko, and R.M. Scheer (2010). US energy conservation and efficiency  policies: Challenges and opportunities, Energy Policy 38 6398 6408 pp. .  Dongyan L. (2009). Fiscal and tax policy support for energy efficiency retrofit for existing residential  buildings in China s northern heating region, Energy Policy 37 2113 2118 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v37y2009i6p2113 2118.html.  Druckman A., M. Chitnis, S. Sorrell, and T. Jackson (2011). Missing carbon reductions? Exploring  rebound and backfire effects in UK households, Energy Policy 39 3572 3581 pp. (DOI: doi:  10.1016/j.enpol.2011.03.058), (ISSN: 0301 4215).  Dubois M. C., and A. Blomsterberg (2011). Energy saving potential and strategies for electric lighting  in future North European, low energy office buildings: A literature review, Energy and Buildings 43  2572 2582 pp. (DOI: 10.1016/j.enbuild.2011.07.001), (ISSN: 03787788).  Duflo E., M. Greenstone, and R. Hanna (2008). Indoor air pollution, health and economic well being,  Surveys and Perspectives Integrating Environment and Society 1 7 16 pp. . Available at:  http://sapiens.revues.org/130.    75 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Duplessis B., J. Adnot, M. Dupont, and F. Racapé (2012). An empirical typology of energy services  based on a well developed market: France, Energy Policy 45 268 276 pp. (DOI:  10.1016/j.enpol.2012.02.031), (ISSN: 0301 4215).  EC (2003). Directive 2002/91/EC of the European Parliament and of the Council of 16 December  2002 on the energy performance of buildings., Official Journal of the European Communities 46 65 71 pp. .  EEA (2013). Production, imports, exports and consumption of Fluorinated gases (F gases) for years  2007 2011 in the EU 27 (Mt CO2 eq, GWP TAR), European Environment Agency . Available at:  http://www.eea.europa.eu/data and maps/figures/production imports exports and consumption.  Ege C., T. Bang Hansen, and J. Juul (2009). Green Jobs: Examples of Energy and Climate Initiatives  That Generate Employment. United Federation of Danish Workers 3F in Collaboration with The  Ecological Council, Copenhagen, Denmark, 48 pp.  Eichhammer W., T. Fleiter, B. Schlomann, S. Faberi, M. Fioretto, N. Piccioni, S. Lechtenböhmer, A.  Schüring, and G. Resch (2009). Study on the Energy Savings Potentials in EU Member States,  Candidate Countries and EEA Countries. The European Commission Directorate General Energy and  Transport, Brussels, Belgium. 313 pp.  Ellis M., I. Barnsley, and S. Holt (2009). Barriers to maximising compliance with energy efficiency  policy   ECEEE, eceee 2009 Summer Study proceedings. European Council for an Energy Efficient  Economy, La Colle sur Loup, France. 2009, 341 351 pp. Available at:  http://www.eceee.org/conference_proceedings/eceee/2009/Panel_2/2.072.  En.lighten (2010). Country Lighting Assessments   European Union. En.lighten, UNEP. . Available at:  http://www.olela.net/infomap/files/clas/CLA_EUU.pdf.  Energy Institute Vorarlberg (2013). Passive house retrofit kit. . Available at:  http://www.energieinstitut.at/retrofit/.  EPA (2010). Transition to low GWP alternatives in unitary air conditioning,  Fact Sheet. United States  Environmental Protection Agency.  EPC (2008). Economic Instruments to Reach Energy and Climate Change Targets. Economic Policy  Committee, Brussels, Belgium. 29 pp.  ETK (2011). Építõipari Költségbecslési Segédlet [Handbook of Construction Costs Estimates 2011].  Budapest: ETK.  ETUC (2008). Climate Change and Employment: Impact on Employment in the European Union 25 of  Climate Change and CO2 Emission Reduction Measures by 2030. European Trade Union  Confederation, Brussels, Belgium, 206 pp. Available at:  http://www.unizar.es/gobierno/consejo_social/documents/070201ClimateChang Employment.pdf.  European Union (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25  October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and  repealing Directives  2004/8/EC and 2006/32/EC, Official Journal of European Union. L315 1 56 pp. .  Eyre N. (2010). Policing carbon: design and enforcement options for personal carbon trading,  Climate Policy 10 432 446 pp. (DOI: 10.3763/cpol.2009.0010), (ISSN: 1469 3062).    76 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Eyre N. (2011). Efficiency, Demand Reduction or Electrification?, Proceedings: Energy Efficiency First:  The Foundation of a Low Carbon Society. European Council for an Energy Efficient Economy Summer  Study 3 1391 1400 pp. ECEEE, Presqu ile de Giens, France.  Eyre N., J. Anable, C. Brand, R. Layberry, and N. Strachan (2010). The way we live from now on:  lifestyle and energy consumption. In: Energy 2050: the transition to a secure low carbon energy  system for the UK. P. Ekins, J. Skea, M. Winskel, (eds.), Earthscan, London pp.258 293(ISBN:  1849710848).  Eyre N., M. Pavan, and L. Bodineau (2009). Energy Company Obligations to Save Energy in Italy, the  UK and France: What have we learnt?, eceee 2009 Summer Study proceedings. European Council for  an Energy Efficient Economy, La Colle sur Loup, France. 2009, 429 439 pp.  Fawcett T. (2010). Personal carbon trading: A policy ahead of its time?, Energy Efficiency Policies and  Strategies with regular papers. 38 6868 6876 pp. (DOI: 10.1016/j.enpol.2010.07.001), (ISSN: 0301 4215).  Fawcett T. (2011). The future role of heat pumps in the domestic sector, Energy Efficiency First: The  Foundation of a Low Carbon Society. European Council for an Energy Efficient Economy Summer  Study 3 1547 1558 pp. ECEEE, Presqu ile de Giens, France.  Fechter J.V., and L.G. Porter (1979). Kitchen Range Energy Consumption. Office of Energy  Conservation, U.S. Department of Energy, Washington, D.C. 60 pp.  Feist W. (2012). Master plan for the European Energy revolution put forth, 16th International  Passive House Conference 2012 6 pp. Hanover, Germany  Feist W., and J. Schnieders (2009). Energy efficiency   a key to sustainable housing, European  Physical Journal Special Topics 176 141 153 pp. (DOI: 10.1140/epjst/e2009 01154 y), (ISSN: 1951 6355).  Fettweis G., and E. Zimmermann (2008). ICT energy trends   Trends and challenges, The 11th  International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) 4 pp.  Finland.  FI (2005). Innovation and Public Procurement. Review of Issues at Stake. Fraunhofer Institute.  Fisk W.J. (2002). How IEQ affects health, productivity, ASHRAE Journal American Society of Heating  Refrigerating and Airconditioning Engineers 44 56 60 pp. . Available at: http://doas.psu.edu/fisk.pdf.  Foruzanmehr A., and M. Vellinga (2011). Vernacular architecture: questions of comfort and  practicability, Building Research and Information 39 274 285 pp. (DOI:  10.1080/09613218.2011.562368), (ISSN: 0961 3218).  Fouquet R., and P.J.G. Pearson (2006). Seven centuries of energy services: The price and use of light  in the United Kingdom (1300 2000), Energy Journal 27 139 177 pp. (ISSN: 0195 6574).  Freire González J. (2010). Empirical evidence of direct rebound effect in Catalonia, Energy Policy 38  2309 2314 pp. (DOI: 10.1016/j.enpol.2009.12.018), (ISSN: 0301 4215).  Fujino J., G. Hibino, T. Ehara, Y. Matsuoka, T. Masui, and M. Kainuma (2008). Back casting analysis  for 70% emission reduction in Japan by 2050, Climate Policy 8 S108 S124 pp. . Available at:  http://www.ingentaconnect.com/content/earthscan/cpol/2008/00000008/a00101s1/art00009.    77 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Galvin R. (2010). Thermal upgrades of existing homes in Germany: The building code, subsidies, and  economic efficiency, Energy and Buildings 42 834 844 pp. (DOI: 10.1016/j.enbuild.2009.12.004),  (ISSN: 0378 7788).  Galvin R. (2012). German Federal policy on thermal renovation of existing homes: A policy  evaluation, Sustainable Cities and Society 4 58 66 pp. (DOI: 10.1016/j.scs.2012.05.003), (ISSN: 2210 6707).  Gardiner, and Theobald (2011). International Construction Cost Survey. Gardiner & Theobald LLP,  London, UK. 20 pp. Available at:  http://www.gardiner.com/assets/files/files/973bd8f7bd7c6f4038153dc47a3705fc26138616/ICCS%2 02011%20%C2%A3%20Version.pdf.  Garrett Peltier H. (2011). Employment Estimates for Energy Efficiency Retrofits of Commercial  Buildings. Political Economy Research Institute, Amherst, MA, USA, 7 pp. Available at:  http://www.peri.umass.edu/fileadmin/pdf/research_brief/PERI_USGBC_Research_Brief.pdf.  Garrido Soriano N., M. Rosas Casals, A. Ivancic, and M.D. Álvarez del Castillo (2012). Potential  energy savings and economic impact of residential buildings under national and regional efficiency  scenarios. A Catalan case study, Energy and Buildings 49 119 125 pp. (DOI:  10.1016/j.enbuild.2012.01.030), (ISSN: 0378 7788).  GEA (2011). GEA Database. International Institute for Applied Systems Analysis, Laxenburg, Austria. .  Available at: http://www.iiasa.ac.at/.  GEA (2012). Global Energy Assessment. Cambridge University Press, Laxenburg, Austria, 1802 pp.  Gerdes A., C. Kottmeier, and A. Wagner. Climate and Construction, International Conference 24 and  25 October 2011, Karlsruhe, Germany / Competence Area  Earth and Environment  KIT Scientific  Reports; 7618 367 pp. KIT Scientific Publishing, (ISBN: 978 3 86644 876 6). .  Gill S.E., J.F. Handley, and S. Pauleit (2007). Adapting cities for climate change: The role of the green  infrastructure, Built Environment (1978 ) 33 115 133 pp. .  Giraudet L.G., C. Guivarch, and P. Quirion (2011). Comparing and Combining Energy Saving Policies:  Will Proposed Residential Sector Policies Meet French Official Targets?, The Energy Journal 32 (DOI:  10.5547/ISSN0195 6574 EJ Vol32 SI1 12), (ISSN: 01956574).  Giraudet L. G., C. Guivarch, and P. Quirion (2012). Exploring the potential for energy conservation in  French households through hybrid modeling, Energy Economics 34 426 445 pp. (DOI:  10.1016/j.eneco.2011.07.010), (ISSN: 0140 9883).  GMCA (2009). Lessons Learned From Energy Efficiency Finance Programs in the Building Sector.  Prepared for European Climate Foundation, GreenMax Capital Advisors, New York, USA. 54 pp.  Gold R., S. Nadel, J. Laitner, and A. deLaski (2011). Appliance and Equipment Efficiency Standards: A  Money Maker and Job Creator. American Council for an Energy Efficient Economy, Appliance  Standards Awareness Project, Washington, D.C., Boston, MA, 28 pp. Available at:  http://www.appliance standards.org/sites/default/files/Appliance and Equipment Efficiency Standards Money Maker Job Creator.pdf.  Gov t of Latvia (2011). Second National Energy Efficiency Action Plan of Latvia 2011   2013.  Government of Latvia. . Available at: http://ec.europa.eu/energy/efficiency/end use_en.htm.    78 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Gov t of Slovakia (2011). Energy Efficiency Action Plan 2011 2013. Government of Slovakia.  Government of Finland (2011). Finland s Second National Energy Efficiency Action Plan (NEEAP 2) 27  June 2011. Government of Finland. . Available at: http://ec.europa.eu/energy/efficiency/end use_en.htm.  Government of Ireland (2011). National Action Plan on Green Public Procurement. Government of  Ireland.  GPI (2010). Energy [R]evolution. A Sustainable World Energy Outlook 2010 World Energy Scenario.  European Renewable Energy Council (EREC), Brussels, Belgium, 259 pp.  Da Graca G.C., A. Augusto, and M.M. Lerer (2012). Solar powered net zero energy houses for  southern Europe: Feasibility study, Solar Energy 86 634 646 pp. (DOI:  10.1016/j.solener.2011.11.008), (ISSN: 0038 092X).  Greden L.V.A. Reducing the risk of natural ventilation with flexible design, International Solar Energy  Conference 2006 639 649 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 36048952082&partnerID=40&md5=3a4215b25926aa2ed94ea73b738bb860.  Green G., and J. Gilbertson (2008). Warm Front Better Health: Health Impact Evaluation of the  Warm Front Scheme. Centre for Regional Economic and Social Research, Sheffield, UK. 25 pp.  Available at:  http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC0QFjAA&url=http%3 A%2F%2Fwww.apho.org.uk%2Fresource%2Fview.aspx%3FRID%3D53281&ei=Zy_6Uv3hOsPpswaKwo GYAg&usg=AFQjCNHdMI2DjMei6aCG9VGTJ3HSdignAA&sig2=5hWAJNrpnUNcWsOe2K4jAQ&bvm=bv .61190604,d.Yms.  Greening L.A., D.L. Greene, and C. Difiglio (2000). Energy efficiency and consumption   the  rebound effect   a survey, Energy Policy 28 389 401 pp. (DOI: doi: 10.1016/S0301 4215(00)00021 5), (ISSN: 0301 4215).  Grigoletti G., M.A. Sattler, and A. Morello (2008). Analysis of the thermal behaviour of a low cost,  single family, more sustainable house in Porto Alegre, Brazil, Energy and Buildings 40 1961 1971 pp.  (DOI: 10.1016/j.enbuild.2008.05.004), (ISSN: 0378 7788).  Grinshpon M. (2011). A Comparison of Residential Energy Consumption Between the United States  and China. Tsinghua University, Beijing, 94 pp.  Gülen G. (2011). Defining, Measuring and Predicting Green Jobs. Copenhagen Consensus Center,  Lowell, USA. 33 pp. Available at: http://www.lsarc.ca/Predicting%20Green%20Jobs.pdf.  Hailu Y.G. (2012). Measuring and monitoring energy access: Decision support tools for policymakers  in Africa, Energy Policy.  Harlan S.L., and D.M. Ruddell (2011). Climate change and health in cities: impacts of heat and air  pollution and potential co benefits from mitigation and adaptation, Current Opinion in  Environmental Sustainability 3 126 134 pp. .  Harmelink M., L. Nilsson, and R. Harmsen (2008). Theory based policy evaluation of 20 energy  efficiency instruments, Energy Efficiency 1 131 148 pp. (DOI: 10.1007/s12053 008 9007 9), (ISSN:  1570 646X).    79 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Harris J., R. Diamond, M. Iyer, C. Payne, C. Blumstein, and H. P. Siderius (2007). Towards a  Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation, Energy  Efficiency 1 175 188 pp. . Available at: http://escholarship.org/uc/item/09v4k44b.  Harvey L.D.D. (2007). Net climatic impact of solid foam insulation produced with halocarbon and  non halocarbon blowing agents, Building and Environment 42 2860 2879 pp. (DOI:  10.1016/j.buildenv.2006.10.028), (ISSN: 0360 1323).  Harvey L.D.D. (2008). Energy Savings by Treating Buildings as Systems, Physics of Sustainable Energy:  Using Energy Efficiently and Producing it Renewably 1044 67 87 pp. American Institute of Physics,  Berkeley, California.  Harvey L.D.D. (2009). Reducing energy use in the buildings sector: measures, costs, and examples,  Energy Efficiency 2 139 163 pp. .  Harvey L.D.D. (2010). Energy and the New Reality 1: Energy Efficiency and the Demand for Energy  Services. Earthscan, London, and Washington, DC, 672 pp., (ISBN: 1849710724). .  Harvey L.D.D. (2013). Recent Advances in Sustainable Buildings: Review of the Energy and Cost  Performance of the State of The Art Best Practices from Around the World. Social Science Research  Network, Rochester, NY. 281 309 pp. Available at: http://papers.ssrn.com/abstract=2343677.  Harvey L.D.D., and M. Siddal (2008). Advanced glazing systems and the economics of comfort,  Green Building Magazine 30 35 pp. .  Hasan A., M. Vuolle, and K. Sirén (2008). Minimisation of life cycle cost of a detached house using  combined simulation and optimisation, Building and Environment 43 2022 2034 pp. (DOI:  10.1016/j.buildenv.2007.12.003), (ISSN: 03601323).  Hayes S., S. Nadel, C. Granda, and K. Hottel (2011). What Have We Learned from Energy Efficiency  Financing Programs? Washington, DC, US: American Council for an Energy Efficient Economy.  Headen R.C., S.W. Bloomfield, M. Warnock, and C. Bell (2010). Property Assessed Clean Energy  Financing: The Ohio Story, The Electricity Journal 24 47 56 pp. (DOI: 10.1016/j.tej.2010.11.004).  Healy J.D. (2004). Housing, Fuel Poverty, and Health: A Pan European Analysis. Ashgate, Surrey, UK,  266 pp.  Healy J.D., and J.P. Clinch (2002). Fuel poverty, thermal comfort and occupancy: results of a national  household survey in Ireland, Applied Energy 73 329 343 pp. (ISSN: 0306 2619).  Hegner H. D. (2010). Sustainable construction in Germany   Assessment system of the Federal  Government for office and administration buildings [Nachhaltiges Bauen in Deutschland    Bewertungssystem des Bundes für Büro  und Verwaltungsbauten], Stahlbau 79 407 417 pp. (DOI:  10.1002/stab.201001335), (ISSN: 00389145).  Hendricks B., B. Goldstein, R. Detchon, and K. Shickman (2009). Rebuilding America: A National  Policy Framework for Investment in Energy Efficiency Retrofits. Center for American Progress, Energy  Future Coalition, Washington, D.C. 56 pp. Available at:  http://www.americanprogress.org/issues/2009/08/pdf/rebuilding_america.pdf.  Hens H., W. Parijs, and M. Deurinck (2009). Energy consumption for heating and rebound effects,  Energy and Buildings 42 105 110 pp. (ISSN: 0378 7788).    80 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Hermelink A. (2006). Reality Check: The Example SOLANOVA, Hungary, Sustainable energy systems  for the buildings: Challenges and changes 15 pp. Vienna, Austria.  Hermelink A. (2009). How Deep to Go: Remarks on How to Find the Cost Optimal Level for Building  Renovation. Ecofys, Koln, Germany. 18 pp.  Herrero S.T., D. Ürge Vorsatz, and J.D. Healy Alleviating fuel poverty in Hungary through residential  energy efficiency: a social cost benefit analysis. . Available at:  http://www.webmeets.com/files/papers/AIEE/2012/434/Tirado%20et%20al_paper1.pdf.  Herring H. (2006). Energy efficiency a critical view, Energy 31 10 20 pp. (DOI:  10.1016/j.energy.2004.04.055), (ISSN: 0360 5442).  Hills J. (2011). Fuel Poverty: The Problem and Its Measurement. Centre for Analysis of Social  Exclusion: The London School of Economics and Political Science, London, UK. 192 pp. Available at:  http://eprints.lse.ac.uk/39270/1/CASEreport69(lsero).pdf.  Holmgren K. (2006). Role of a district heating network as a user of waste heat supply from various  sources   the case of Göteborg, Applied Energy 83 1351 1367 pp. (DOI:  10.1016/j.apenergy.2006.02.001), (ISSN: 0306 2619).  Houghton A. (2011). Health impact assessments a tool for designing climate change resilience into  green building and planning projects, Journal of Green Building 6 66 87 pp. (DOI:  10.3992/jgb.6.2.66), (ISSN: 15526100).  Howard A.J., Z. Baron, and K. Kaplan (2012). Transformation of an industry: A history of energy  efficiency in televisions, ACEEE Summer Study on Energy Efficiency in Buildings 9 190 203 pp.  American Council for an Energy Efficient Economy.  Howden Chapman P., and R. Chapman (2012). Health co benefits from housing related policies,  Current Opinion in Environmental Sustainability 4 414 419 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1877343512001066.  Howden Chapman P., H. Viggers, R. Chapman, D. O Dea, S. Free, and K. O Sullivan (2009). Warm  homes: Drivers of the demand for heating in the residential sector in New Zealand, Energy Policy 37  3387 3399 pp. (DOI: doi: 10.1016/j.enpol.2008.12.023), (ISSN: 0301 4215).  Hunt A., and P. Watkiss (2011). Climate change impacts and adaptation in cities: a review of the  literature, Climatic change 1 37 pp. .  Huovila P. (2007). Buildings and Climate Change: Status, Challenges, and Opportunities. United  Nations Environmental Programme, Nairobi, Kenya, 78 pp.  Hutton G., E. Rehfuess, and F. Tediosi (2007). Evaluation of the costs and benefits of interventions  to reduce indoor air pollution, Energy for Sustainable Development 11 34 43 pp. . Available at:  http://www.who.int/entity/indoorair/interventions/iap_cba_esd_article.pdf.  IBEC (2009). CASBEE property appraisal manual. Institute for Building Environment and Energy  Conservation.  IEA (2002). Potential for Building Integrated Photovoltaics. Photovoltaic Power System Programme.  International Energy Agency, Paris, France. 11 pp.    81 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    IEA (2003). Cool Appliances Policy Strategies for Energy Efficient Homes. International Energy Agency,  Paris, Paris, France, 233 pp., (ISBN: 92 64 19661 7   2003). .  IEA (2007). Energy Security and Climate Policy: Assessing Interactions. International Energy  Agency/Organisation for Economic Co Operation and Development, Paris, France, 145 pp.  IEA (2010a). Energy Technology Perspectives 2010. International Energy Agency, Paris, France. 706  pp.  IEA (2010b). Policy Pathways: Energy Performance Certification of Buildings. International Energy  Agency, Paris, France. 64 pp. Available at:  http://www.iea.org/publications/freepublications/publication/name,3923,en.html.  IEA (2012a). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. International  Energy Agency, Paris, 138 pp. Available at: http://data.iea.org.  IEA (2012b). Policies and Measures Database. International Energy Agency, Paris, France.  IEA (2012c). Energy Technology Perspectives 2012: Pathways to a Clean Energy System. International  Energy Agency, Paris, France, 700 pp.  IEA (2012d). Energy Balances of Non OECD Countries. 2012 Edition. International Energy Agency,  Paris, France. 554 pp.  IEA (2013). IEA Online Data Services. . Available at: http://data.iea.org/ieastore/statslisting.asp.  IEA HPG (2010). Retrofit Heat Pumps for Buildings: Final Report. Boras, IEA Heat Pump Centre,  Sweden. 144 pp.  IFE (2005). Engineering a Sustainable World: Design Process and Engineering Innovations for the  Center for Health and Healing at the Oregon Health and Science University, River Campus.  Ihara T., Y. Kikegawa, K. Asahi, Y. Genchi, and H. Kondo (2008). Changes in year round air  temperature and annual energy consumption in office building areas by urban heat island  countermeasures and energy saving measures, Applied Energy 85 12 25 pp. .  ILO (2012). Working towards Sustainable Development: Opportunities for Decent Work and Social  Inclusion in a Green Economy. International Labour Office, Geneva, Switzerland, 288 pp., (ISBN: 978 92 2 126378 4). .  IPCC (2007). Contribution of Working Group III to the Fourth Assessment Report of the  Intergovernmental Panel on Climate Change, 2007 [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A.  Meyer (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 851  pp.  Isaac M., and D.P. Van Vuuren (2009). Modeling global residential sector energy demand for heating  and air conditioning in the context of climate change, Energy Policy 37 507 521 pp. .  Ito Y., and K. Otsuka (2011). Commercialization of Residential PEFC Cogeneration System,,  Proceedings of International Gas Union Research Conference.    82 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Izquierdo S., C. Montanés, C. Dopazo, and N. Fueyo (2011). Roof top solar energy potential under  performance based building energy codes: The case of Spain, Solar Energy 85 208 213 pp. (DOI:  10.1016/j.solener.2010.11.003), (ISSN: 0038 092X).  Jaboyedoff P., C.A. Roulet, V. Dorer, A. Weber, and A. Pfeiffer (2004). Energy in air handling units    results of the AIRLESS European Project, Energy and Buildings 36 391 399 pp. (DOI:  10.1016/j.enbuild.2004.01.047).  Jacobson C.A., S. Narayanan, K. Otto, P. Ehrlich, and K. Aström (2011). Building Control Systems  Study Notes on Low Energy Buildings: European Design and Control.  Jakob M. (2006). Marginal costs and co benefits of energy efficiency investments: The case of the  Swiss residential sector, Energy Policy 34 172 187 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S030142150400271X.  Jelle B.P. (2011). Traditional, state of the art and future thermal building insulation materials and  solutions   Properties, requirements and possibilities, Energy and Buildings 43 2549 2563 pp. (DOI:  10.1016/j.enbuild.2011.05.015), (ISSN: 03787788).  Ji Y., K.J. Lomas, and M.J. Cook (2009). Hybrid ventilation for low energy building design in south  China, Building and Environment 44 2245 2255 pp. (DOI: 10.1016/j.buildenv.2009.02.015), (ISSN:  0360 1323).  Jiang Y., and X. Xie (2010). Theoretical and testing performance of an innovative indirect  evaporative chiller, Solar Energy 84 2041 2055 pp. (ISSN: 0038092x).  Jollands N., P. Waide, M. Ellis, T. Onoda, J. Laustsen, K. Tanaka, P. de T Serclaes, I. Barnsley, R.  Bradley, and A. Meier (2010). The 25 IEA energy efficiency policy recommendations to the G8  Gleneagles Plan of Action, Energy Policy 38 6409 6418 pp. (DOI: 10.1016/j.enpol.2009.11.090),  (ISSN: 0301 4215).  JRC/PBL (2012). Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2  FT2010. European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency. . Available at: http://edgar.jrc.ec.europa.eu.  Kahn E. (2008). Avoidable transmission cost is a substantial benefit of solar PV, The Electricity  Journal 21 41 50 pp. .  Kainou K. (2007). Why Do Top Runner Energy Efficiency Standard Regulations Result in Large  Positive or Negative Costs?   Risk of Investment in High Efficiency Products and Risk of Government  Regulation Failure. Research Institute of Economy, Trade and Industry, IAA, Japan.  Kapsalaki M., and V. Leal (2011). Recent progress on net zero energy buildings, Advances in Building  Energy Research 5 129 162 pp. .  Karlsson J.F., and B. Moshfegh (2007). A comprehensive investigation of a low energy building in  Sweden, Renewable Energy 32 1830 1841 pp. (DOI: 10.1016/j.renene.2006.10.009), (ISSN: 0960 1481).  Kats G. (2009). Greening Our Built World: Costs, Benefits, and Strategies. Island Press, Washington,  D.C., 280 pp., (ISBN: 159726668X). .    83 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Kats G., L. Alevantis, A. Berman, E. Mills, and J. Perlman (2003). The Costs and Financial Benefits of  Green Buildings. Sustainable Building Task Force. 120 pp. Available at:  http://www.usgbc.org/Docs/Archive/MediaArchive/607_Kats_AB184.pdf.  Kats G., J. Perlman, and S. Jamadagni (2005). National Review of Green Schools: Costs, Benefits, and  Implications for Massachusetts. Good Energies, Washington, D.C., 66 pp. Available at:  www.azdeq.gov/ceh/download/natreview.pdf.  Kelly G. (2012). Sustainability at home: Policy measures for energy efficient appliances, Renewable  and Sustainable Energy Reviews 16 6851 6860 pp. (DOI: 10.1016/j.rser.2012.08.003), (ISSN: 1364 0321).  Kerr R., and D. Kosar (2011). Gas use roadmap to zero energy homes, ASHRAE Transactions 117  340 347 pp. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta.  Kesik T., and I. Saleff (2009). Tower Renewal Guidelines for the Comprehensive Retrofit of Multi Unit  Residential Buildings in Cold Climates. Faculty of Architecture, Landscape, and Design, University of  Toronto, Toronto, Canada, 259 pp.  Knigge M., and M. Görlach (2005). Effects of Germany s Ecological Tax Reforms on the Environment,  Employment and Technological Innovation. Ecologic Institute for International and European  Environmental Policy GmbH, Berlin, Germany. 15 pp. Available at:  http://www.ecologic.eu/download/projekte/1850 1899/1879/1879_summary.pdf.  Koeppel S., and D. Ürge Vorsatz (2007). Assessment of Policy Instruments for Reducing Greenhouse  Gas Emissions from Buildings. United Nations Environment Programme Sustainable Buildings and  Construction Initiative, Nairobi, Kenya. 12 pp.  Kolokotsa D., D. Rovas, E. Kosmatopoulos, and K. Kalaitzakis (2011). A roadmap towards intelligent  net zero  and positive energy buildings, Solar Energy 85 3067 3084 pp. (DOI:  10.1016/j.solener.2010.09.001), (ISSN: 0038092X).  Koomey J.G., H.S. Matthews, and E. Williams (2013). Smart everything: Will intelligent systems  reduce resource use?, Annual Review of Environment and Resources 38 311 343 pp. .  Köppl A., C. Kettner, D. Kletzan Slamanig, H. Schnitzer, M. Titz, A. Damm, K. Steininger, B.  Wolkinger, H. Artner, and A. Karner (2011). EnergyTransition 2012\2020\2050 Strategies for the  Transition to Low Energy and Low Emission Structures (Final Report). Österreichisches Institut Für  Wirtschaftsforschung, Vienna, Austria. 38 pp.  Korjenic A., V. Petránek, J. Zach, and J. Hroudová (2011). Development and performance evaluation  of natural thermal insulation materials composed of renewable resources, Energy and Buildings 43  2518 2523 pp. (DOI: 10.1016/j.enbuild.2011.06.012), (ISSN: 03787788).  Korytarova K., and D. Ürge Vorsatz (2012). Energy savings potential in Hungarian public buildings.  Scenarios for 2030 and beyond., International Energy Workshop 2012, Cape Town, 19 21 June 2012  11 pp. South Africa.  Kragh J., and J. Rose (2011). Energy renovation of single family houses in Denmark utilising long term financing based on equity, Applied Energy 88 2245 2253 pp. (DOI:  10.1016/j.apenergy.2010.12.049), (ISSN: 0306 2619).    84 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Kuckshinrichs W., T. Kronenberg, and P. Hansen (2010). The social return on investment in the  energy efficiency of buildings in Germany, Energy Policy 38 4317 4329 pp. .  Kurnitski J., A. Saari, T. Kalamees, M. Vuolle, J. Niemelä, and T. Tark (2011). Cost optimal and nearly  zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB  national implementation, Energy and Buildings 43 3279 3288 pp. (DOI:  10.1016/j.enbuild.2011.08.033), (ISSN: 03787788).  Kwok A.G.A. (2010). Addressing climate change in comfort standards, Building and Environment 45  18 22 pp. (DOI: 10.1016/j.buildenv.2009.02.005), (ISSN: 03601323).  Labanca N., and B. Paolo (2013). First steps towards a deeper understanding of energy efficiency  impacts in the age of systems, Proceedings of eceee 2013 Summer Study: Rethink, Renew, Restart.  Belambra Les Criques, Toulon/Hyeres, France . Available at:  http://publications.jrc.ec.europa.eu/repository/handle/111111111/28670.  Laitner J.A.S., S. Nadel, R.N. Elliott, H. Sachs, and A.S. Khan (2012). The Long Term Energy Efficiency  Potential: What the Evidence Suggests. American Council for an Energy Efficient Economy,  Washington, D.C. 96 pp.  Lambrou Y., and G. Piana (2006). Energy and Gender Issues in Rural Sustainable Development. Food  and Agriculture Organization of the United Nations, Rome, Italy, 41 pp.  Lang Consulting (2013). 1000 passivehouses in Austria   Interactive documentation network on  passive houses. . Available at: http://www.langconsulting.at/index.php/en/the passive house.  Langham E., C. Dunstan, G. Walgenwitz, P. Denvir, A. Lederwasch, and J. Landler (2010). Building  Our Savings   Reduced Infrastructure Costs from Improving Building Energy Efficiency. Institute for  Sustainable Futures and Energetics, Univers Ity of Technology Sydney, Sydney, Australia. 103 pp.  Available at: http://ee.ret.gov.au/energy efficiency/strategies and initiatives/national construction code/building our savings reduced infrastructure costs improving building energy efficiency.  Laustsen J. (2010). The Factor Four Model Supporting Policies to Reduce Energy Use in Buildings by a  Factor of Four. International Energy Agency (IEA), Paris, France.  LDA (2011). Case Studies: LDA_BEEP, Greater London Authority . Available at:  http://www.london.gov.uk/rp/docs/casestudies/LDA_BEEP_v4.pdf.  Lees E. (2006). Evaluation of the Energy Efficiency Commitment 2002 05. Department for  Environment and Rural Affairs, UK. 81 pp.  Lees E. (2008). Evaluation of the Energy Efficiency Commitment 2005 08. Department of Energy and  Climate Change, UK. 105 pp.  Lees E. (2011). Experience of EU Energy Efficiency Obligations   Diverse but Delivering, Bucharest  Forum/ Joint European Commission and European Council for an Energy Efficient Economy seminar  on Energy Efficiency Obligations. Brussels, Belgium. 30 September  2011,   Lemire N., and R. Charneux (2005). Energy Efficient Laboratory Design, ASHRAE Journal 47 58 60,62 64 pp. (ISSN: 00012491).    85 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Lenoir A., F. Thellier, and F. Garde (2011). Towards net zero energy buildings in hot climate, Part 2:  Experimental feedback, ASHRAE Transactions 117 458 465 pp. American Society of Heating,  Refrigerating and Air Conditioning Engineers, Atlanta.  Letschert V., S.R. Can, M. McNeil, P. Kalavase, A.H. Fan, and G. Dreyfus (2013a). Energy Efficiency  Appliance Standards: Where do we stand, how far can we go and how do we get there? An analysis  across several economies, eceee summer study proceedings. European Council for an Energy  Efficient Economy, Toulon/ Hyeres, France. 2013, 1759 1768 pp.  Letschert V.E., L. B. Desroches, J. Ke, and M.A. McNeil (2012). Estimate of Technical Potential for  Minimum Efficiency Performance Standards in 13 Major World Economies. Lawrance Berkeley  National Laboratory, Berkeley, CA. 31 pp. Available at: http://ies.lbl.gov/publications/estimate technical potential minimum .  Letschert V., L. B. Desroches, J. Ke, and M. McNeil (2013b). How Far Can We Raise the Bar?  Revealing the Potential of Best Available Technologies Energy, Energy Efficiency 59 72 82 pp. .  Levine M., Ürge Vorsatz, D., Blok, K., Geng,L., Harvey, D., Lang, S., Levermore, G., Mongameli  Mehlwana, A., Mirasgedis, S., Novikova, A., Rilling, J., and Yoshino, H. (2007). Residential and  commercial buildings. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the  Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R.  Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge University Press, Cambridge, United  Kingdom and New York, NY, USA., pp.387 446.  Levy J., Y. Nishioka, and J. Spengler (2003). The public health benefits of insulation retrofits in  existing housing in the United States, Environmental Health: A Global Access Science Source 2 .  Available at: http://www.ehjournal.net/content/2/1/4.  Lewis M. (2004). Energy Efficient Laboratory Design, American Society of Heating, Refrigerating and  Air Conditioning Engineers Journal 46 Supplement 22 30 pp. (ISSN: 00012491).  Lewis R. (2010). Green Building In Asia   Issues for Responsible Investors. Responsible Research, 9 pp.  Li J., and M. Colombier (2009). Managing carbon emissions in China through building energy  efficiency, Journal of environmental management 90 2436 2447 pp. .  Liddell C. (2008). The Impact of Fuel Poverty on Children. Save the Children/ University of Ulster,  Belfast. 20 pp.  Liddell C., and C. Morris (2010). Fuel poverty and human health: A review of recent evidence, Energy  policy 38 2987 2997 pp. .  Lim S.S., T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair Rohani, M. Amann, H.R. Anderson,  K.G. Andrews, and M. Aryee (2012). A comparative risk assessment of burden of disease and injury  attributable to 67 risk factors and risk factor clusters in 21 regions, 1990 2010: a systematic analysis  for the Global Burden of Disease Study 2010, The lancet 380 2224 2260 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0140673612617668.  Limaye D.R., and E.S. Limaye (2011). Scaling up energy efficiency: the case for a Super ESCO, Energy  Efficiency 4 133 144 pp. (DOI: 10.1007/s12053 011 9119 5), (ISSN: 1570 646X, 1570 6478).    86 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Lin J. T., and Y.K. Chuah (2011). A study on the potential of natural ventilation and cooling for large  spaces in subtropical climatic regions, Building and Environment 46 89 97 pp. (DOI:  10.1016/j.buildenv.2010.07.007), (ISSN: 0360 1323).  Lin Z.P., and S.M. Deng (2004). A study on the characteristics of nighttime bedroom cooling load in  tropics and subtropics, Building and Environment 39 1101 1114 pp. (DOI:  10.1016/j.buildenv.2004.01.035).  Loftness V., V. Hartkopf, B. Gurtekin, D. Hansen, and R. Hitchcock (2003). Linking Energy to Health  and Productivity in the Built Environment, 2003 Greenbuild Conference. Center for Building  Performance and Diagnostics, Carnegie Mellon University. 2003, 12 pp. Available at:  http://mail.seedengr.com/documents/LinkingEnergytoHealthandProductivity.pdf.  Lomas K.J. (2009). Decarbonizing national housing stocks: Strategies, barriers and measurement,  Building Research and Information 37 187 191 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 61449104947&partnerID=40&md5=473d914e21d7753337cba231fe505604.  Lowe R. (2007). Technical options and strategies for decarbonizing UK housing, Building Research &  Information 35 412 425 pp. (DOI: 10.1080/09613210701238268), (ISSN: 0961 3218).  Luttmer M. (2006). Evaluation of Labelling of Appliances in the Netherlands: Case study executed  within the framework of the AID EE project. Active Implementation of the Proposed Directive on  Energy Efficiency.  MacKellar F.L., W. Lutz, C. Prinz, and A. Goujon (1995). Population, Households and CO2 Emissions,  Population and Development Review 21 849 865 pp. (DOI: 10.2307/2137777).  Mahdavi A., and E.M. Doppelbauer (2010). A performance comparison of passive and low energy  buildings, Energy and Buildings 42 1314 1319 pp. .  Mansur E.T., R. Mendelsohn, and W. Morrison (2008). Climate change adaptation: A study of fuel  choice and consumption in the US energy sector, Journal of Environmental Economics and  Management 55 175 193 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0095069607001040.  Marino A., P. Bertoldi, S. Rezessy, and B. Boza Kiss (2011). A snapshot of the European energy  service market in 2010 and policy recommendations to foster a further market development, Energy  Policy 39 6190 6198 pp. (DOI: 10.1016/j.enpol.2011.07.019), (ISSN: 0301 4215).  Markaki M., A. Belegri Roboli, P. Michaelides, S. Mirasgedis, and D.P. Lalas (2013). The impact of  clean energy investments on the Greek economy: An input output analysis (2010 2020), Energy  Policy 57 263 275 pp. .  Markandya A., B. Armstrong, S. Hales, A. Chiabai, P. Criqui, S. Mima,, C. Tonne, and P. Wilkinson  (2009). Public health benefits of strategies to reduce greenhouse gas emissions: low carbon  electricity generation, The Lancet 374 2006 2015 pp. (DOI: 10.1016/S0140 6736(09)61715 3).  Marmot Review Team (first) (2011). The Health Impacts of Cold Homes and Fuel Poverty. Friends of  the Earth and the Marmot Review Team, London, UK. 42 pp.  Marszal A.J., and P. Heiselberg (2009). A Literature Review of Zero Energy Buildings (ZEB) Definitions.  Aalborg University Department of Civil Engineering, Aalborg, DK. 24 pp.    87 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Marszal A.J., P. Heiselberg, J.S. Bourrelle, E. Musall, K. Voss, I. Sartori, and A. Napolitano (2011).  Zero Energy Building   A review of definitions and calculation methodologies, Energy and Buildings  43 971 979 pp. (DOI: 10.1016/j.enbuild.2010.12.022), (ISSN: 03787788).  Mata E., A.S. Kalagasidis, and F. Johnsson (2010). Assessment of retrofit measures for reduced  energy use in residential building stocks Simplified costs calculation, SB10mad Sustainable Buildings  Conference 10 pp. Green Building Council Espana, Madrid, Spain.  Matthews M. (2011). Solutions for zero standby and no load consumption, presentation at EEDAL,  EEDAL (Energy Efficient Domestic Appliances and Lighting) 2011. Copenhagen. 24 May  2011,   Available at: http://www.eedal.dk/Conference/Programme%20and%20Presentations.aspx.  McCormick K., and L. Neij (2009). Experience of Policy Instruments for Energy Efficiency in Buildings  in the Nordic Countries. International Institute for Industrial Environmental Economics (IIIEE) Lund  University, Lund, Sweden. 67 pp.  McCulloch A. (2009). Evidence for improvements in containment of fluorinated hydrocarbons    during use: an analysis of reported European emissions, Environmental Science & Policy 12 149 156  pp. (DOI: 10.1016/j.envsci.2008.12.003).  McDonell G. (2003). Displacement ventilation, The Canadian Architect 48 32 33 pp. .  McGilligan C., M. Sunikka Blank, and S. Natarajan (2010). Subsidy as an agent to enhance the  effectiveness of the energy performance certificate, Energy Policy 38 1272 1287 pp. (ISSN:  03014215).  McNeil M.A., and N. Bojda (2012). Cost effectiveness of high efficiency appliances in the U.S.  residential sector: A case study, Energy Policy 45 33 42 pp. (DOI: 10.1016/j.enpol.2011.12.050),  (ISSN: 0301 4215).  McNeil M.A., R.D.V. Buskirk, and V.E. Letschert (2005). The Value of Standards and Labelling: An  international cost benefit analysis tool for Standards & Labelling programs with results for Central  American Countries, ECEEE Summer Study 897 904 pp. European Council for an Energy Efficient  Economy, Mandelieu La Napoule, France . Available at:  http://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2005c/Panel_4/42 60vanbuskirk.  Meacham J. (2009). Solara: a case study in zero net energy design for affordable housing, ZNE  Workshop.4 February  2009,  Available at: http://www.solaripedia.com/files/713.pdf.  Menon S., H. Akbari, S. Mahanama, I. Sednev, and R. Levinson (2010). Radiative forcing and  temperature response to changes in urban albedos and associated CO2 offsets, Environmental  Research Letters 5 014005 pp. (DOI: 10.1088/1748 9326/5/1/014005), (ISSN: 1748 9326).  Mequignon M., L. Adolphe, F. Thellier, and H. Ait Haddou (2013a). Impact of the lifespan of building  external walls on greenhouse gas index, Building and Environment 59 654 661 pp. (DOI:  10.1016/j.buildenv.2012.09.020), (ISSN: 0360 1323).  Mequignon M., H. Ait Haddou, F. Thellier, and M. Bonhomme (2013b). Greenhouse gases and  building lifetimes, Building and Environment 68 77 86 pp. (DOI: 10.1016/j.buildenv.2013.05.017),  (ISSN: 0360 1323).    88 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Mercier C., and L. Morrefield (2009). Commercial Office Plug Load Savings and Assessment:  Executive Summary. California Energy Commission, Public Interest Energy Research. . Available at:  http://newbuildings.org/commercial office plug load savings and assessment executive summary.  Michaelowa A., and D. Hayashi (2011). Waking up the sleeping giant   how the new benchmark  methodology can boost CDM in the building sector, Trading Carbon Magazine 5 32 34 pp. .  Michaelowa A., D. Hayashi, and M. Marr (2009). Challenges for energy efficiency improvement  under the CDM   the case of energy efficient lighting, Energy Efficiency 2 353 367 pp. (DOI:  10.1007/s12053 009 9052 z), (ISSN: 1570 646X, 1570 6478).  MIKR (2011). Second National Energy Efficiency Plan for The Netherlands. The Minister of the  Interior and Kingdom Relations.  Milin C., and A. Bullier (2011). Energy Retrofitting of Social Housing through Energy Performance  Contracts: A Feedback from the FRESH Project: France, Italy, United Kingdom and Bulgaria.  Intelligent Energy Europe, Brussels, Belgium.  Miller N.G., D. Pogue, Q.D. Gough, and S.M. Davis (2009). Green buildings and productivity, The  Journal of Sustainable Real Estate 1 65 89 pp. . Available at:  http://ares.metapress.com/index/6402637N11778213.pdf.  Miller N., J. Spivey, and A. Florance (2008). Does green pay off?, Journal of Real Estate Portfolio  Management 14 385 400 pp. . Available at:  http://ares.metapress.com/index/M5G300025P233U24.pdf.  Mills E. (2003). Climate change, insurance and the buildings sector: technological synergisms  between adaptation and mitigation, Building Research & Information 31 257 277 pp. . Available at:  http://www.tandfonline.com/doi/abs/10.1080/0961321032000097674.  Mills E. (2011). Building Commissioning. A Golden Opportunity for Reducing Energy Costs and  Greenhouse Gas Emissions., Energy Efficiency 4 145 173 pp. . Available at:  http://cx.lbl.gov/documents/2009 assessment/lbnl cx cost benefit.pdf.  Mills E., and A. Rosenfeld (1996). Consumer non energy benefits as a motivation for making energy efficiency improvements, Energy 21 707 720 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/0360544296000059.  Millstein D., and S. Menon (2011). Regional climate consequences of large scale cool roof and  photovoltaic array deployment, Environmental Research Letters 6 034001 pp. (DOI: 10.1088/1748 9326/6/3/034001), (ISSN: 1748 9326).  Milner J., M. Davies, and P. Wilkinson (2012). Urban energy, carbon management (low carbon  cities) and co benefits for human health, Current Opinion in Environmental Sustainability 4 398 404  pp. . Available at: http://www.sciencedirect.com/science/article/pii/S1877343512001182.  Mirasgedis S., E. Georgopoulou, Y. Sarafidis, C. Balaras, A. Gaglia, and D.P. Lalas (2004). CO2  emission reduction policies in the Greek residential sector: A methodological framework for their  economic evaluation, Energy Conversion and Management 45 537 557 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0196890403001602.    89 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Missaoui R., and A. Mourtada (2010). Instruments and Financial Mechanisms of energy efficiency  measures in building sector. World Energy Council and French Environment and Energy  Management Agency.  Mlecnik E. (2010). Adoption of Highly Energy Efficient Renovation Concepts, Open House  International 35 39 48 pp. (ISSN: 0168 2601).  MLIT (2010a). Dwellings by Occupancy Status (9 Groups) and Occupied Buildings other than Dwelling  by Type of Building (4 Groups)   Major Metropolitan Areas. Ministry of Land, Infrastructure,  Transport and Tourism Japan. . Available at: http://www.e stat.go.jp/SG1/estat/Xlsdl.do?sinfid=000007454534.  MLIT (2010b). Dwellings by Type of Dwelling (2 Groups) and Tenure of Dwelling (9 Groups) and  Occupied Buildings other than Dwelling by Type of Occupied Buildings other than Dwelling (4  Groups) and Tenure of Occupied Buildings other than Dwelling (2 Groups) and Households and  Household Members by Type of Household (4 Groups)   Major Metropolitan Areas. Ministry of Land,  Infrastructure, Transport and Tourism Japan. . Available at: http://www.e stat.go.jp/SG1/estat/Xlsdl.do?sinfid=000007454536.  MLIT (2012). Housing Starts: New Construction Starts of Dwellings by Owner Occupant Relation.  Ministry of Land, Infrastructure, Transport and Tourism Japan.  MNDH (2011). Second National Energy Efficiency Action Plan of Hungary until 2016 with an outlook  to 2020. Budapest. Ministry of National Development of Hungary.  Moniteur Belge (2011). Lois, Decrets, Ordonnances et Reglements. Ministere de La Region de  Bruxelles Capitale. 59148 59379 pp.  Monni S. (2008). Multilevel climate policy: the case of the European Union, Finland and Helsinki,  Environmental Science and Policy 11 743 755 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 54249169015&partnerID=40&md5=9876aba889c0d8bb44c209a6d77472e0.  Montanya E.C., D. Keith, and J. Love (2009). Integrated Design & UFAD, ASHRAE Journal 51 30 32,34 38,40 pp. (ISSN: 00012491).  Moura P.S., G.L. López, J.I. Moreno, and A.T.D. Almeida (2013). The role of Smart Grids to foster  energy efficiency, Energy Efficiency 6 621 639 pp. (DOI: 10.1007/s12053 013 9205 y), (ISSN: 1570 646X, 1570 6478).  Mugdal S. (2011). Ecodesign of domestic ovens, hobs and grills., EEDAL (Energy Efficiency Domestic  Appliances and Lighting) 2011. Danish Energy Association, Copenhagen. 24 May  2011,  Available at:  http://www.eedal.dk/Conference/Programme%20and%20Presentations.aspx.  Murakami S., K. Iwamra, Y. Sakamoto, T. Yashiro, K. Bogaki, M. Sato, T. Ikaga, and J. Endo (2004).  CASBEE; comprehensive assessment system for building environmental efficiency (Environmental  Engineering), Journal of architecture and building science 199 204 pp. (ISSN: 13419463).  Murakami S., M.D. Levine, H. Yoshino, T. Inoue, T. Ikaga, Y. Shimoda, S. Miura, T. Sera, M. Nishio, Y.  Sakamoto, and W. Fujisaki (2009). Overview of energy consumption and GHG mitigation  technologies in the building sector of Japan, Energy Efficiency 2 179 194 pp. (DOI: 10.1007/s12053 008 9040 8), (ISSN: 1570 646X).    90 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Murphy L., F. Meijer, and H. Visscher (2012). A qualitative evaluation of policy instruments used to  improve energy performance of existing private dwellings in the Netherlands, Energy Policy 45 459 468 pp. (DOI: 10.1016/j.enpol.2012.02.056), (ISSN: 0301 4215).  Musall E., T. Weiss, A. Lenoir, K. Voss, F. Garde, and M. Donn (2010). Net Zero energy solar  buildings: an overview and analysis on worldwide building projects, EuroSun conference 9 pp. .  Naess Schmidt H.S., M.B. Hansen, and C. von Utfall Danielsson (2012). Multiple Benefits of Investing  in Energy Efficient Renovation of Buildings: Impact on Public Finances. Copenhagen Economics,  Copenhagen, Denmark.  Nagota T., Y. Shimoda, and M. Mizuno (2008). Verification of the energy saving effect of the district  heating and cooling system simulation of an electric driven heat pump system, Energy and  Buildings 40 732 741 pp. .  NAS (2010). Real Prospects for Energy Efficiency in the United States. National Academies Press,  Washington, D.C, 329 pp., (ISBN: 9780309137164). .  NBI (2011). A Search for Deep Energy Savings. Northwest Energy Efficiency Alliance, Portland,  Oregon, USA.  New Buildings Institute (2012). Getting to Zero 2012 Status Update: A First Look at the Costs and  Features of Zero Energy Commercial Buildings. New Buildings Institute, Vancouver, Washington. 46  pp. Available at: http://newbuildings.org/sites/default/files/GettingtoZeroReport_0.pdf.  Nguyen A.T., Q.B. Tran, D.Q. Tran, and S. Reiter (2011). An investigation on climate responsive  design strategies of vernacular housing in Vietnam, Building and Environment 46 2088 2106 pp.  (DOI: 10.1016/j.buildenv.2011.04.019), (ISSN: 0360 1323).  Nieminen J. (2011). Passive and Zero Energy Buildings in Finland. VTT Technical Research Centre of  Finland, Finland.  Van Nostrand J.M. (2011). Legal Issues in Financing Energy Efficiency: Creative Solutions for Funding  the Initial Capital Costs of Investments in Energy Efficiency Measures, George Washington Journal of  Energy and Environmental Law 2 1 16 pp. .  O  Mahony T., P. Zhou, and J. Sweeney (2012). The driving forces of change in energy related CO2  emissions in Ireland: A multi sectoral decomposition from 1990 to 2007, Energy Policy 44 256 267  pp. (DOI: 10.1016/j.enpol.2012.01.049), (ISSN: 0301 4215).  Oberascher C., R. Stamminger, and C. Pakula (2011). Energy efficiency in daily food preparation,  International Journal of Consumer Studies 35 201 211 pp. (DOI: 10.1111/j.1470 6431.2010.00963.x),  (ISSN: 1470 6423).  Oikonomou V., F. Becchis, L. Steg, and D. Russolillo (2009). Energy saving and energy efficiency  concepts for policy making, Energy Policy 37 4787 4796 pp. (DOI: 10.1016/j.enpol.2009.06.035),  (ISSN: 0301 4215).  Oleson K.W., G.B. Bonan, and J. Feddema (2010). Effects of white roofs on urban temperature in a  global climate model, Geophysical Research Letters 37 (DOI: 10.1029/2009GL042194), (ISSN: 0094 8276).    91 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Ouyang J., E. Long, and K. Hokao (2010). Rebound effect in Chinese household energy efficiency and  solution for mitigating it, Energy 35 5269 5276 pp. (DOI: doi: 10.1016/j.energy.2010.07.038), (ISSN:  0360 5442).  Pachauri S. (2012). Demography, urbanisation and energy demand, Energy for Development 81 94  pp. .  Pachauri S., A. Brew hammond, D.F. Barnes, S. Gitonga, V. Modi, G. Prasad, A. Rath, H. Zerriffi, and  J. Sathaye (2012). Chapter 19: Energy Access for Development   IIASA. International Institute for  Applied Systems Analysis, Laxenburg, Austria. 1401 1458 pp. Available at:  http://www.iiasa.ac.at/web/home/research/Flagship Projects/Global Energy Assessment/Chapte19.en.html.  Paksoy H., A. Snijders, and L. Stiles (2009). State of the art review of underground thermal energy  storage systems for heating and cooling buildings. In: World Energy Engineering Congress 2009.  pp.1465 1480.  Pantong K., S. Chirarattananon, and P. Chaiwiwatworakul (2011). Development of Energy  Conservation Programs for Commercial Buildings based on Assessed Energy Saving Potentials., 9th  Eco Energy and Materials Science and Engineering Symposium 9 70   83 pp. Energy Procedia, Chiang  Rai, Thailand.  Park W.Y. (2013). Assessment of SEAD Global Efficiency Medals for Televisions. Lawrence Berkeley  National Laboratory, Berkeley, CA. 31 pp. Available at:  http://www.superefficient.org/~/media/Files/TV%20Awards/Assessment%20of%20SEAD%20Global %20Efficiency%20Medals%20for%20TVs_FINAL.pdf.  Park W.Y., A. Phadke, and N. Shah (2013). Efficiency improvement opportunities for personal  computer monitors: implications for market transformation programs, Energy Efficiency 6 545 569  pp. (DOI: 10.1007/s12053 013 9191 0), (ISSN: 1570 646X).  Parker D.S. (2009). Very low energy homes in the United States: Perspectives on performance from  measured data, Energy and buildings 41 512 520 pp. .  Passey R., T. Spooner, I. MacGill, M. Watt, and K. Syngellakis (2011). The potential impacts of grid connected distributed generation and how to address them: A review of technical and non technical  factors, Energy Policy 39 6280 6290 pp. .  Pavan M. (2008). Tradable energy efficiency certificates: the Italian experience, Energy Efficiency 1  257 266 pp. (DOI: 10.1007/s12053 008 9022 x), (ISSN: 1570 646X).  Pearson A. (2011). Passive performer, CIBSE Journal 34 40 pp. .  Pellegrini Masini G., and C. Leishman (2011). The role of corporate reputation and employees   values in the uptake of energy efficiency in office buildings, Energy Policy 39 5409 5419 pp. (DOI:  10.1016/j.enpol.2011.05.023), (ISSN: 03014215).  Peng C., D. Yan, R. Wu, C. Wang, X. Zhou, and Y. Jiang (2012). Quantitative description and  simulation of human behavior in residential buildings, Building Simulation 5 85 94 pp. (DOI:  10.1007/s12273 011 0049 0), (ISSN: 1996 3599, 1996 8744).  Persson U., and S. Werner (2011). Heat Distribution and the Future Competitiveness of District  Heating, Applied Energy 88 568 576 pp. (DOI: 10.1016/j.apenergy.2010.09.020), (ISSN: 0306 2619).    92 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Petersdorff C., T. Boermans, J. Harnisch, O. Stobbe, S. Ullrich, and S. Wortmann (2005). Cost Effective Climate Protection in the Building Stock of the New EU Members: Beyond the EU Energy  Performance of Buildings Directive. European Insulation Manufacturers Association, Germany. .  Available at: http://www.eurima.org/uploads/ModuleXtender/Publications/44/ECOFYS4 5_report_EN.pdf.  PHI (2013). Passive House Building Database.  Passive House Institute (PHI). . Available at:  http://www.passivhausprojekte.de/projekte.php.  Phillips D., M. Beyers, and J. Good (2009). Building Height and Net Zero; How High Can You Go?,  Ashrae Journal 51 26 35 pp. (ISSN: 0001 2491).  Piette M.A., S.K. Kinney, and P. Haves (2001). Analysis of an information monitoring and diagnostic  system to improve building operations, Energy and Buildings 33 783 791 pp. (DOI: 10.1016/S0378 7788(01)00068 8), (ISSN: 0378 7788).  Pollin R., and H. Garrett Peltier (2009). Building a Green Economy: Employment Effects of Green  Energy Investments for Ontario. Political Economy Research Institute (PERI), Amherst, MA. 31 pp.  Available at:  http://www.peri.umass.edu/fileadmin/pdf/other_publication_types/green_economics/Green_Econ omy_of_Ontario.PDF.  Pollin R., J. Heintz, and H. Garrett Peltier (2009). The Economic Benefits of Investing in Clean Energy:  How the Economic Stimulus Program and New Legislation Can Boost US Economic Growth and  Employment. Department of Economics and Political Economy Research Institute, USA. 1 65 pp.  Polly B., M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff (2011).  A Method for Determining Optimal Residential Energy Efficiency Retrofit Packages. US National  Renewable Energy Laboratory, Golden, CO, USA. 61 pp.  Pope S., and M. Tardiff (2011). Integrated design process: Planning and team engagement, ASHRAE  Transactions 117 433 440 pp. American Society of Heating, Refrigerating and Air Conditioning  Engineers, Atlanta.  Power A. (2008). Does demolition or refurbishment of old and inefficient homes help to increase our  environmental, social and economic viability?, Energy Policy 36 4487 4501 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 55549099866&partnerID=40&md5=1079ffd415d57cb8ccc511ed8d55cce4.  Price L., C. Galitsky, J. Sinton, E. Worrell, and W. Graus (2005). Tax and Fiscal Policies for Promotion  of Industrial Energy Efficiency: A Survey of International Experience. California, US: Lawrence  Berkeley National Laboratory, USA.  Pyke C.R., S. McMahon, L. Larsen, N.B. Rajkovich, and A. Rohloff (2012). Development and analysis  of Climate Sensitivity and Climate Adaptation opportunities indices for buildings, Building and  Environment 55 141 149 pp. (DOI: 10.1016/j.buildenv.2012.02.020), (ISSN: 03601323).  Radhi H. (2009). Can envelope codes reduce electricity and CO2 emissions in different types of  buildings in the hot climate of Bahrain?, Energy 34 205 215 pp. (DOI: 10.1016/j.energy.2008.12.006),  (ISSN: 0360 5442).  Ramesh T., R. Prakash, and K.K. Shukla (2010). Life cycle energy analysis of buildings: An overview,  Energy and Buildings 42 1592 1600 pp. (DOI: 10.1016/j.enbuild.2010.05.007), (ISSN: 03787788).    93 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Rao N.D. (2013). Distributional impacts of climate change mitigation in Indian electricity: The  influence of governance, Energy Policy 61 1344 1356 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0301421513004588.  Rao S., S. Pachauri, F. Dentener, P. Kinney, Z. Klimont, K. Riahi, and W. Schoepp (2013). Better air  for better health: Forging synergies in policies for energy access, climate change and air pollution,  Global Environmental Change 23 1122 1130 pp. (DOI: 10.1016/j.gloenvcha.2013.05.003), (ISSN:  0959 3780).  Ravi K., P. Bennich, M. Walker, A. Lising, and S. Pantano (2013). The SEAD Global Efficiency Medal  Competition: Accelerating Market Transformation for Efficient Televisions in Europe, European  Council for an Energy Efficient Economy 2013 Summer Study.  Rawat J.S., D. Sharma, G. Nimachow, and O. Dai (2010). Energy efficient chulha in rural Arunachal  Pradesh, Current Science 98 1554 1555 pp. (ISSN: 0011 3891).  Reddy A.K., W. Annecke, K. Blok, D. Bloom, and B. Boardman (2000). Energy and Social Issues.  United Nations Developement Programme and the World Energy Council, USA. 39 60 pp. Available  at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.196.4978&rep=rep1&type=pdf.  Rezessy S., and P. Bertoldi (2010). Financing Energy Efficiency: Forging the Link between Financing  and Project Implementation. European Commission, Brussels, Belgium. 45 pp.  Rhiemeier J. M., and J. Harnisch (2009). F Gases (HFCs, PFCs and SF6). Ecofys, Utrecht, The  Netherlands. 59 pp. Available at: http://www.ecofys.com/files/files/serpec_fgases_report.pdf.  Richter P. (2011). Dishwasher household loads and their impact on the energy consumption.  Copenhagen, Denmark. . Available at:  http://www.eedal.dk/Conference/Programme%20and%20Presentations.aspx.  Ries R., M.M. Bilec, N.M. Gokhan, and K.L.S. Needy (2006). The economic benefits of green  buildings: a comprehensive case study, The Engineering Economist 51 259 295 pp. . Available at:  http://www.tandfonline.com/doi/abs/10.1080/00137910600865469.  Roaf S., D. Crichton, and F. Nicol (2009). Adapting Buildings and Cities for Climate Change : A 21st  Century Survival Guide. Architectural Press/Elsevier, Kidlington, 385 pp., (ISBN: 9781856177207  1856177203). .  Rdsj A., E. Prendergast, E. Mlecnik, T. Haavik, and P. Parker (2010). From Demonstration Projects  to Volume Markets: Market Development for Advanced Housing Renovation. International Energy  Agency, Solar Heating and Cooling Program, Task 37, Paris, France. 85 pp. Available at: www.iea shc.org/task37/index.html.  Rohracher H. (2001). Managing the Technological Transition to Sustainable Construction of  Buildings: A Socio Technical Perspective, Technology Analysis & Strategic Management 13 137 150  pp. (DOI: 10.1080/09537320120040491), (ISSN: 0953 7325).  Rosenow J., and N. Eyre (2013). The Green Deal and the Energy Company Obligation, Proceedings of  the ICE   Energy 166 127 136 pp. .  Roy J. (2000). The rebound effect: some empirical evidence from India, Energy Policy 28 433 438 pp.  (DOI: doi: 10.1016/S0301 4215(00)00027 6), (ISSN: 0301 4215).    94 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    RSA (2009). Taxation Laws Amendment Bill, Insertion of Section 12K in Act 58 of 1962: Exemption of  Certified Emission Reductions. Republic of South Africa.  Van Ruijven B.J., D.P. van Vuuren, B.J.M. de Vries, M. Isaac, J.P. van der Sluijs, P.L. Lucas, and P.  Balachandra (2011). Model projections for household energy use in India, Energy Policy 39 7747 7761 pp. . Available at: http://www.sciencedirect.com/science/article/pii/S0301421511007105.  Ryan L., and N. Campbell (2012). Spreading the Net: The Multi Benefits of Energy Efficiency  Improvements. International Energy Agency, Paris, France. 36 pp.  SAIC (2013). Drake Landing Solar Community, Energy Report for June 2013. Science Applications  International Corporation (SAIC Canada), McLean, VA. 3 pp. Available at:  http://www.dlsc.ca/reports/DLSC_June2013ReportSummary_v1.0.pdf.  Sanner B., C. Karytsas, D. Mendrinos, and L. Rybach (2003). Current Status of Ground Source Heat  Pumps and Underground Thermal Energy Storage in Europe, Geothermics 32 579 588 pp. (DOI:  10.1016/S0375 6505(03)00060 9), (ISSN: 03756505).  Sanquist T.F., H. Orr, B. Shui, and A.C. Bittner (2012). Lifestyle factors in U.S. residential electricity  consumption, Energy Policy 42 354 364 pp. (DOI: 10.1016/j.enpol.2011.11.092), (ISSN: 0301 4215).  Sarkar A., and J. Singh (2010). Financing energy efficiency in developing countries lessons learned  and remaining challenges, Energy Policy 38 5560 5571 pp. (DOI: 10.1016/j.enpol.2010.05.001),  (ISSN: 0301 4215).  Sartori I., and A. Hestnes (2007). Energy use in the life cycle of conventional and low energy  buildings: A review article, Energy and Buildings 39 249 257 pp. (DOI:  10.1016/j.enbuild.2006.07.001), (ISSN: 03787788).  Sartori I., B.J.W. Wachenfeldt, and A.G.H. Hestnes (2009). Energy demand in the Norwegian  building stock: Scenarios on potential reduction, Energy Policy 37 1614 1627 pp. (DOI:  10.1016/j.enpol.2008.12.031), (ISSN: 0301 4215).  Sathaye N., A. Phadke, N. Shah, and V. Letschert (2013). Potential Global Benefits of Improved  Ceiling Fan Efficiency. Lawrence Berkeley National Laboratory, Berkeley, CA. . Available at:  http://www.superefficient.org/en/Resources/~/media/Files/SEAD%20Ceiling%20Fan%20Analysis/Fi nal%20SEAD%20Ceiling%20Fans%20Report.pdf.  Sathre R., and L. Gustavsson (2009). Using wood products to mitigate climate change: External costs  and structural change, Applied Energy 86 251 257 pp. (DOI: 10.1016/j.apenergy.2008.04.007), (ISSN:  03062619).  Saunders H.D. (2000). A view from the macro side: rebound, backfire, and Khazzoom Brookes,  Energy Policy 28 439 449 pp. (DOI: doi: 10.1016/S0301 4215(00)00024 0), (ISSN: 0301 4215).  Schäppi B., and T. Bogner (2013). Top Quality and efficiency lighting with LED lamps? Available at:  http://www.buildup.eu/news/36457.  Schimschar S., K. Blok, T. Boermans, and A. Hermelink (2011). Germany s path towards nearly zero energy buildings   Enabling the greenhouse gas mitigation potential in the building stock, Energy  Policy 39 3346 3360 pp. .    95 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Schneiders J., A. Wagner, and H. Heinrich (2009). Certification as a European Passive House planner,  13th International Passive House Conference 2009, 17 18 April, Passive House Institute, Darmstadt,  Germany, Frankfurt am Main.  Schnieders J., and A. Hermelink (2006). CEPHEUS results: measurements and occupants  satisfaction  provide evidence for Passive Houses being an option for sustainable building, Energy Policy 34 151 171 pp. (DOI: 10.1016/j.enpol.2004.08.049), (ISSN: 0301 4215).  Scott M.J., J.M. Roop, R.W. Schultz, D.M. Anderson, and K.A. Cort (2008). The impact of DOE  building technology energy efficiency programs on US employment, income, and investment, Energy  Economics 30 2283 2301 pp. .  Shah N., A. Phadke, and P. Waide (2013). Cooling the Planet: Opportunities for Deployment of  Superefficient Room Air Conditioners. Lawrence Berkeley National Laboratory, Berkeley, California. .  Available at: http://ies.lbl.gov/publications/cooling planet opportunities deployment superefficient room air conditioners.  Shimoda Y., M. Mizuno, S. Kametani, and T. Kanaji (1998). Evaluation of low level thermal energy  flow in the Osaka prefectural area, International Journal of Global Energy Issues 11 178 87 pp. .  Short C.A. (2007). Exploiting a hybrid environmental design strategy in a US continental climate,  Building Research and Information 35 119 143 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 33947376005&partnerID=40&md5=6dc6051140312890699208b8fea6ad23.  Siderius P.J.S., and H. Nakagami (2013). A MEPS is a MEPS is a MEPS: comparing Ecodesign and Top  Runner schemes for setting product efficiency standards, Energy Efficiency 6 1 19 pp. (DOI:  10.1007/s12053 012 9166 6), (ISSN: 1570 646X, 1570 6478).  Siller T., M. Kost, and D. Imboden (2007). Long term energy savings and greenhouse gas emission  reductions in the Swiss residential sector, Energy Policy 35 529 539 pp. (DOI:  10.1016/j.enpol.2005.12.021), (ISSN: 0301 4215).  Singh H., A. Muetze, and P.C. Eames (2010a). Factors influencing the uptake of heat pump  technology by the UK domestic sector, Renewable Energy 35 873 878 pp. (ISSN: 0960 1481).  Singh A., M. Syal, S.C. Grady, and S. Korkmaz (2010b). Effects of green buildings on employee health  and productivity, American journal of public health 100 1665 1668 pp. . Available at:  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920980/.  Smith C.B. (1997). Electrical energy management in buildings. In: CRC Handbook of Energy Efficiency.  CRC Press, Boca Roton pp.305 336.  Smith K.R., H. Frumkin, K. Balakrishnan, C.D. Butler, Z.A. Chafe, I. Fairlie, P. Kinney, T. Kjellstrom,  D.L. Mauzerall, T.E. McKone, A.J. McMichael, and M. Schneider (2013). Energy and Human Health,  Annual Review of Public Health 34 159 188 pp. (DOI: 10.1146/annurev publhealth 031912 114404).  Smith K.R., M. Jerrett, H.R. Anderson, R.T. Burnett, V. Stone, R. Derwent, R.W. Atkinson, A. Cohen,  S.B. Shonkoff, and D. Krewski (2010). Public health benefits of strategies to reduce greenhouse gas  emissions: health implications of short lived greenhouse pollutants, The Lancet 374 2091 2103 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S0140673609617165.    96 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Song Y., Y. Akashi, and J.J. Yee (2007). Effects of utilizing seawater as a cooling source system in a  commercial complex, Energy and buildings 39 1080 1087 pp. .  Sorrell S. (2007). The Rebound Effect: An Assessment of the Evidence for Economy Wide Energy  Savings from Improved Energy Efficiency. UK Energy Research Centre, (ISBN: ISBN 1 903144 0 35). .  Sorrell S., J. Dimitropoulos, and M. Sommerville (2009). Empirical estimates of the direct rebound  effect: A review, Energy Policy 37 1356 1371 pp. (DOI: doi: 10.1016/j.enpol.2008.11.026), (ISSN:  0301 4215).  Steinfeld J., A. Bruce, and M. Watt (2011). Peak load characteristics of Sydney office buildings and  policy recommendations for peak load reduction, Energy and Buildings 43 2179 2187 pp. .  Stevenson F. (2009). Post occupancy evaluation and sustainability: A review, Proceedings of the  Institution of Civil Engineers: Urban Design and Planning 162 123 130 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 77956208499&partnerID=40&md5=09754b92abec93a14f09be1858b31f81.  Stoecklein A., and L.A. Skumatz (2007). Zero and low energy homes in New Zealand: The value of  non energy benefits and their use in attracting homeowners, ECEEE Summer Study Proceedings.  Streimikiene D., and A. Volochovic (2011). The impact of household behavioral changes on GHG  emission reduction in Lithuania, Renewable and Sustainable Energy Reviews 15 4118 4124 pp. (DOI:  10.1016/j.rser.2011.07.027), (ISSN: 1364 0321).  Stylianou M. (2011). Smart net zero energy buildings and their integration in the electrical grid,  ASHRAE Transactions 117 322 329 pp. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta.  Sugiyama M. (2012). Climate change mitigation and electrification, Energy Policy 44 464 468 pp.  (DOI: 10.1016/j.enpol.2012.01.028), (ISSN: 0301 4215).  Sukla P.R., S. Dhar, and D. Mahapatra (2008). Low carbon society scenarios for India, Climate Policy  8 S156 S176 pp. . Available at:  http://www.ingentaconnect.com/content/earthscan/cpol/2008/00000008/a00101s1/art00012  http://dx.doi.org/10.3763/cpol.2007.0498.  Sustainability Victoria, and Kador Group (2007). Employee Productivity in a Sustainable Building:  Pre  and Post Occupancy Studies in 500 Collins Street. Sustainability Victoria, Melbourne, Victoria. 42  pp.  Taha H. (2008). Urban Surface Modification as a Potential Ozone Air quality Improvement Strategy  in California: A Mesoscale Modelling Study, Boundary Layer Meteorology 127 219 239 pp. (DOI:  10.1007/s10546 007 9259 5), (ISSN: 0006 8314, 1573 1472).  Tambach M., E. Hasselaar, and L. Itard (2010). Assessment of current Dutch energy transition policy  instruments for the existing housing stock, Energy Policy 38 981 996 pp. (DOI: doi:  10.1016/j.enpol.2009.10.050), (ISSN: 0301 4215).  Taylor S., A. Peacock, P. Banfill, and L. Shao (2010). Reduction of greenhouse gas emissions from UK  hotels in 2030, Building and Environment 45 1389 1400 pp. (DOI: 10.1016/j.buildenv.2009.12.001),  (ISSN: 0360 1323).    97 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    The Eurowinter Group (1997). Cold exposure and winter mortality from ischaemic heart disease,  cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe, The  Lancet 349 1341 1346 pp. (DOI: 10.1016/S0140 6736(96)12338 2), (ISSN: 01406736).  Thyholt M., and A.G. Hestnes (2008). Heat Supply to Low Energy Buildings in District Heating Areas:  Analyses of ´CO2 Emissions and Electricity Supply Security, Energy and Buildings 40 131 139 pp.  (DOI: 10.1016/j.enbuild.2007.01.016), (ISSN: 0378 7788).  Tirado Herrero S., J.L. López Fernández, and P. Martín García (2012). Pobreza Energética En Espana,  Potencial de Generación de Empleo Directo de La Pobreza Derivado de La Rehabilitación Energética  de Viviendas. Asociación de Ciencias Ambientales, Madrid.  Tommerup H., and S. Svendsen (2006). Energy savings in Danish residential building stock, Energy  and Buildings 38 618 626 pp. (DOI: 10.1016/j.enbuild.2005.08.017), (ISSN: 0378 7788).  Torcellini P., and S. Pless (2012). Controlling capital costs in high performance office buildings: A  review of best practices for overcoming cost barriers, ACEEE Summer Study on Energy Efficiency in  Buildings 3 350 366 pp. American Council for an Energy Efficient Economy, CA.  Torcellini P., S. Pless, C. Lobato, and T. Hootman (2010). Main Street Net Zero Energy Buildings: The  Zero Energy Method in Concept and Practice, The ASME 2010 4th International Conference on  Energy Sustainability National Renewable Energy Laboratory, Phoenix, Arizona, USA.  Treberspurg M., R. Smutny, and R. Grünner (2010). Energy monitoring in existing Passive House  housing estates in Austria, Conference Proceedings 35 41 pp. Passive House Institute, Darmstadt,  Germany, Dresden.  TUBESRC (2009). Annual Report on China Building Energy Ef ciency. China Architecture and Building  Press, Beijing, China.  Uitdenbogerd D., M. Scharp, and J. Kortman (2009). BewareE: Using an Energy Services Database in  a Five Step Approach for the Development of Projects About Energy Saving with Household  Behaviour, Proceedings European Council for an Energy Efficient Economy 2009 Summer Study. 1 6  June 2009, La Colle sur Loup, France.  UK DE (2011). UK Report on Articles 4 and 14 of the EU End Use Efficiency and Energy Services  Directive. UK Department of Energy.  UNEP (2011a). HFCs: A Critical Link in Protecting Climate and the Ozone Layer. United Nations  Environment Programme, Nairobi, Kenya. 35 pp. Available at:  http://www.unep.org/dewa/portals/67/pdf/HFC_report.pdf.  UNEP (2011b). Towards a Green Economy: Pathways to Sustainable Development and Poverty  Eradication. United Nations Environment Programme, Nairobi, Kenya, 44 pp. Available at:  www.unep.org/greeneconomy.  UNEP FI (2009). Energy Efficiency & the Finance Sector   a Survey on Lending Activities and Policy  Issues. United Nations Environment Programme Finance Initiative, Geneva, Switzerland. 68 pp.  UNEP FI and PRI signatories (2008). Principles Responsible Investment for Building responsible  property portfolios. United Nations Environment Programme, Finance Initiative.    98 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    UNEP Risoe (2012). CDM Pipeline Analysis and Database. . Available at:  http://cdmpipeline.org/overview.htm.  UNEP SBCI (2007). Assessment of Policy Instrument for Reducing Greenhouse Gas Emissions from  Buildings. United Nations Environment Programme Sustainable Buildings and Construction Initiative,  Paris, France. 12 pp.  UN Habitat (2010). State of the World s Cities 2010/2011. UN HABITAT, 224 pp., (ISBN:  9781849711753). .  UN Habitat (2011). Cities and Climate Change   Global Report on Human Settlements 2011. UN Habitat.  UNHSP (2010). The Challenge of Slums : Global Report on Human Settlements 2010. Earthscan  Publications, London; Sterling, VA.  United House (2009). Green Living: Case Study of a Victorian Flat s Eco Improvement. United House,  Swanley, UK. . Available at: http://www.unitedhouse.net/uploads/documents/victorian flat eco improvment.pdf on 24 Sept 2011.  Upton B., R. Miner, M. Spinney, and L.S. Heath (2008). The greenhouse gas and energy impacts of  using wood instead of alternatives in residential construction in the United States, Biomass and  Bioenergy 32 1 10 pp. (DOI: 10.1016/j.biombioe.2007.07.001), (ISSN: 09619534).  Urban Green Council, and D. Langdon (2009). Cost of Green in NYC. US Green Building Council,  Washington, D.C. 32 pp.  Ürge Vorsatz D., D. Arena, S. Tirado Herrero, and A. Butcher (2010). Employment Impacts of a  Large Scale Deep Building Energy Retrofit Programme in Hungary. Center for Climate Change and  Sustainable Energy Policy (3CSEP) of Central European University, Budapest, Hungary.  Ürge Vorsatz D., L.F. Cabeza, C. Barreneche, S. Serrano, and K. Patrichendo (2013a). Heating and  cooling energy trends and drivers in buildings, Renewable & Sustainable Energy Reviews in press.  Ürge Vorsatz D., N. Eyre, P. Graham, D. Harvey, E. Hertwich, Y. Jiang, C. Kornevall, M. Majumdar,  J.E. McMahon, S. Mirasgedis, S. Murakami, and A. Novikova (2012a). Chapter 10   Energy End Use: Buildings. In: Global Energy Assessment Towards a Sustainable Future. Cambridge University  Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems  Analysis, Laxenburg, Austria, Laxenburg, Austria pp.649 760.  Ürge Vorsatz D., N. Eyre, P. Graham, C. Kornevall, L.D.D. Harvey, M. Majumdar, M. McMahon, S.  Mirasgedis, S. Murakami, A. Novikova, and J. Yi (2012b). Energy End Use: Buildings. In: Global  Energy Assessment: Toward a more Sustainable Future. IIASA, Laxenburg, Austria and Cambridge  University Press, Cambridge, United Kingdom and New York, NY, USA., .  Ürge Vorsatz D., A. Novikova, and M. Sharmina (2009). Counting good: quantifying the co benefits  of improved efficiency in buildings, European Council for an Energy Efficient Economy Summer Study  185 195 pp. La Colle sur Loup, France.  Ürge Vorsatz D., K. Petrichenko, M. Antal, M. Staniec, M. Labelle, E. Ozden, and E. Labzina (2012c).  Best Practice Policies for Low Energy and Carbon Buildings. A Scenario Analysis. Research Report  Prepared by the Center for Climate Change and Sustainable Policy (3CSEP) for the Global Best    99 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Practice Network for Buildings. Central European University (CEU) and Global Buildings Performance  Network.  Ürge Vorsatz D., K. Petrichenko, M. Staniec, and E. Jiyong (2013b). Energy use in buildings in a long term perspective, Current Opinion in Environmental Sustainability 5 141 151 pp. .  Ürge Vorsatz D., and S. Tirado Herrero (2012). Building synergies between climate change  mitigation and energy poverty alleviation, Energy Policy 49 83 90 pp. (DOI:  10.1016/j.enpol.2011.11.093), (ISSN: 0301 4215).  Ürge Vorsatz D., E. Wójcik Gront, S.T. Herrero, E. Labzina, and P. Foley (2012d). Employment  Impacts of a Large Scale Deep Building Energy Retrofit Programme in Poland [C1]. Prepared for the  European Climate Foundation by The Centre for Climate Change and Sustainable Energy Policy  (3CSEP). Central European University, Budapest, Hungary.  US DOE (2006). Energy Savings Potential of Solid State Lighting in General Illumination Applications.  US Department of Energy. 2 pp. Available at:  http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_energy_savings_potential_report_ 2006_final4.pdf.  US EERE (2010). Multi Year Program Plan Building Regulatory Programs. U. S. Department of Energy  Energy Efficiency and Renewable Energy, Washington, D.C. 108 pp. Available at:  http://apps1.eere.energy.gov/buildings/publications/pdfs/corporate/regulatory_programs_mypp.pd f.  US EERE (2011). Appliances and Commercial Equipment Standards, US Department of Energy, Energy  Efficiency & Renewable Energy . Available at:  http://www1.eere.energy.gov/buildings/appliance_standards/index.html.  US EPA (2013). Overview of Greenhouse  Gases. Emissions of Fluorinated Gases. United States  Environmental Protection Agency. . Available at:  http://epa.gov/climatechange/ghgemissions/gases/fgases.html.  Vaidya P., L.V. Greden, Eijadi, T. McDougall, and R. Cole (2009). Integrated cost estimation  methodology to support high performance building design, Energy Efficiency 2 69 85 pp. (DOI:  10.1007/s12053 008 9028 4), (ISSN: 1570 646X).  Valentini G., and P. Pistochini (2011). The 55% tax reductions for building retrofitting in Italy: the  results of the ENEA s four years activities, 6th EEDAL Conference, Copenhagen.  Vardimon R. (2011). Assessment of the potential for distributed photovoltaic electricity production  in Israel, Renewable Energy 36 591 594 pp. (DOI: 10.1016/j.renene.2010.07.030), (ISSN: 0960 1481).  Veeraboina P., and G. Yesuratnam (2013). Significance of design for energy conservation in  buildings: building envelope components, International Journal of Energy Technology and Policy 9  34 52 pp. (DOI: 10.1504/IJETP.2013.055814).  Vine E., J. Hamrin, N. Eyre, D. Crossley, M. Maloney, and G. Watt (2003). Public policy analysis of  energy efficiency and load management in changing electricity businesses., Energy Policy 31 405 430 pp. .    100 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Wada K., K. Akimoto, F. Sano, J. Oda, and T. Homma (2012). Energy efficiency opportunities in the  residential sector and their feasibility, Energy 48 5 10 pp. (DOI: 10.1016/j.energy.2012.01.046),  (ISSN: 0360 5442).  Wagner A., S. Herkel, G. Löhnert, and K. Voss (2004). Energy efficiency in commercial buildings:  Experiences and results from the German funding program SolarBau, EuroSolar. 2004,  Available at:  http://eetd.lbl.gov/news/events/2005/06/20/energy efficiency in commercial buildings experiences and results from the ge.  Wagner A., M. Kleber, and C. Parker (2007). Monitoring of results of a naturally ventilated and  passively cooled office building in Frankfurt, Germany, International Journal of Ventilation 6 3 20  pp. .  Waide P., P. Guertler, and W. Smith (2006). High Rise Refurbishment: The energy efficient upgrade  of multi story residences in the European Union. International Energy Agency.  Waide P., F. Klinckenberg, L. Harrington, and J. Scholand (2011). Learning from the best: The  potential for energy savings from upward alignment of equipment energy efficiency requirements?  Copenhagen. . Available at:  http://www.eedal.dk/Conference/Programme%20and%20Presentations.aspx.  Wallbaum H., Y. Ostermeyer, C. Salzer, and E. Zea Escamilla (2012). Indicator based sustainability  assessment tool for affordable housing construction technologies, Ecological Indicators 18 353 364  pp. (DOI: 10.1016/j.ecolind.2011.12.005), (ISSN: 1470 160X).  Wamukonya N. (2007). Solar home system electrification as a viable technology option for Africa s  development, Energy Policy 35 6 14 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v35y2007i1p6 14.html.  Wan K.K.W., D.H.W. Li, W. Pan, and J.C. Lam (2011). Impact of climate change on building energy  use in different climate zones and mitigation and adaptation implications, Applied Energy 97 274 282 pp. . Available at: http://www.sciencedirect.com/science/article/pii/S0306261911007458.  Watson R. (2010). Green Building Market and Impact Report 2010. GreenBiz Group, USA.  WBCSD (2006). Energy Efficiency in Buildings Executive Brief #1: Our vision: A world where buildings  consume zero net energy. WBCSD.  WBCSD (2007). Energy Efficiency in Buildings Facts & Trends. World Business Council for Sustainable  Development, Geneva, Switzerland.  WBCSD (2009). Energy Efficiency in Buildings: Transforming the Market. World Business Council for  Sustainable Development, Geneva, Switzerland, 67 pp. Available at:  http://www.wbcsd.org/transformingthemarketeeb.aspx.  Wei Y., L. Liu, Y. Fan, and G. Wu (2007). The impact of lifestyle on energy use and CO2 emission: An  empirical analysis of China s residents, Energy Policy 35 247 257 pp. (DOI: doi:  10.1016/j.enpol.2005.11.020), (ISSN: 0301 4215).  Wei M., S. Patadia, and D.M. Kammen (2010). Putting renewables and energy efficiency to work:  How many jobs can the clean energy industry generate in the US?, Energy Policy 38 919 931 pp. .    101 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Weiss J., E. Dunkelberg, and T. Vogelpohl (2012). Improving policy instruments to better tap into  homeowner refurbishment potential: Lessons learned from a case study in Germany, Energy Policy  44 406 415 pp. . Available at: http://ideas.repec.org/a/eee/enepol/v44y2012icp406 415.html.  WEO (2011). World Energy Outlook 2011. International Energy Agency, Paris, France, 660 pp., (ISBN:  978 92 64 12413 4). .  Werle R., E. Bush, B. Josephy, J. Nipkow, and C. Granda (2011). Energy efficient heat pump driers    European experiences and efforts in the USA and Canada, Energy Efficient Domestic Appliances and  Lighting Copenhagen . Available at:  http://www.eedal.dk/Conference/Programme%20and%20Presentations.aspx.  WHO (2009). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major  Risks. World Health Organization, Geneva, Switzerland, 62 pp., (ISBN: 9789241563871). .  WHO (2011). Health in the Green Economy: Health Co Benefits of Climate Change Mitigation,  Housing Sector. World Health Organization, Geneva, Switzerland, 121 pp., (ISBN: 978 92 4 150171  2). .  Van Wie McGrory L., P. Coleman, D. Fridley, J. Harris, and E. Villasenor (2006). Two Paths to  Transforming Markets Through Public Sector Energy Efficiency: Bottom Up Vs. Top Down, 2006  American Council for an Energy Efficient Economy Summer Study on Energy Efficiency in Buildings.  Washington, D.C. 6 2006, .  Wiel S., and J.E. McMahon (2005). Energy Efficiency Labels and Standards: A Guidebook for  Appliances, Equipment, and Lighting   2nd Edition. Lawrence Berkeley National Laboratory, Berkeley,  CA, 316 pp. Available at: http://www.escholarship.org/uc/item/01d3r8jg#page 2.  Wilkinson P., M. Landon, B. Armstrong, S. Stevenson, S. Pattenden, M. McKee, and T. Fletcher  (2001). Cold Comfort: The Social and Environmental Determinants of Excess Winter Deaths in  England, 1986 96. Policy Press, Bristol, UK, 24 pp., (ISBN: 1861343558 9781861343550). .  Wilkinson P., K.R. Smith, M. Davies, H. Adair, B.G. Armstrong, M. Barrett, N. Bruce, A. Haines, I.  Hamilton, and T. Oreszczyn (2009). Public health benefits of strategies to reduce greenhouse gas  emissions: household energy, The Lancet 374 1917 1929 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S014067360961713X.  Williams C., A. Hasanbeigi, G. Wu, and L. Price (2012). International Experience with Quantifying the  Co Benefits of Energy Efficiency and Greenhouse Gas Mitigation Programs and Policies. Report  LBNL 5924E. Lawrence Berkeley National Laboratory, USA. . Available at:  http://eaei.lbl.gov/sites/all/files/LBL_5924E_Co benefits.Sep_.2012.pdf.  Wingfield J., M. Bell, D. Miles Shenton, and J. Seavers (2011). Elm Tree Mews Field Trial    Evaluation and Monitory of Dwellings Performance, Final Technical Report. Centre for the Built  Environment, Leeds Metropolitan University, UK. . Available at:  http://www.leedsmet.ac.uk/as/cebe/projects/elmtree/elmtree_finalreport.pdf.  Winkler H., and D. Van Es (2007). Energy efficiency and the CDM in South Africa: constraints and  opportunities, Journal of Energy in Southern Africa 18 29 38 pp. . Available at:  http://www.eri.uct.ac.za/jesa/volume18/18 1jesa winkler.pdf.  Wodon Q., and C.M. Blackden (2006). Gender, Time Use and Poverty in Sub Saharan Africa. World  Bank, 152 pp., (ISBN: 0 8213 6561 4). .    102 of 103 Final Draft  Chapter 9  IPCC WGIII AR5    Xiao J. (2011). Research on the operation energy consumption and the renewable energy systems of  several demonstration public buildings in China. World Sustainable Building Conference, Helsinki.  Xing S., Z. Xu, and G. Jun (2008). Inventory analysis of LCA on steel  and concrete construction office  buildings, Energy and Buildings 40 1188 1193 pp. (DOI: 10.1016/j.enbuild.2007.10.016), (ISSN:  03787788).  Xu P., Y.J. Huang, N. Miller, N. Schlegel, and P. Shen (2012a). Impacts of climate change on building  heating and cooling energy patterns in California, Energy 44 792 804 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0360544212003921.  Xu T., J. Sathaye, H. Akbari, V. Garg, and S. Tetali (2012b). Quantifying the direct benefits of cool  roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions,  Building and Environment 48 1 6 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S036013231100254X.  Yoshino H., T. Hu, M. Levine, and Y. Jiang (2011). Total Energy use in Building   Analysis and  evaluation methods., International Symposium on Heating, Ventilating and Air Conditioning (ISBN:  ISBN 13: 9789628513802). .  Yue C. D., and G. R. Huang (2011). An evaluation of domestic solar energy potential in Taiwan  incorporating land use analysis, Energy Policy 39 7988 8002 pp. (DOI: 10.1016/j.enpol.2011.09.054),  (ISSN: 0301 4215).  Zhang M., H. Mu, Y. Ning, and Y. Song (2009). Decomposition of energy related CO2 emission over  1991 2006 in China, Ecological Economics 68 2122 2128 pp. (DOI: 10.1016/j.ecolecon.2009.02.005),  (ISSN: 0921 8009).  Zhang J.J., and K.R. Smith (2007). Household air pollution from coal and biomass fuels in China:  measurements, health impacts, and interventions, Environmental Health Perspectives 115 848 pp. .  Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892127/.  Zhang S., X. Yang, Y. Jiang, and Q. Wei (2010). Comparative analysis of energy use in China building  sector: current status, existing problems and solutions, Frontiers of Energy and Power Engineering in  China 4 2 21 pp. (DOI: 10.1007/s11708 010 0023 z), (ISSN: 1673 7393, 1673 7504).  Zhang H., and H. Yoshino (2010). Analysis of indoor humidity environment in Chinese residential  buildings, Building and Environment 45 2132 2140 pp. (DOI: 10.1016/j.buildenv.2010.03.011), (ISSN:  0360 1323).  Zhaojian L., and J.Y.W. Qingpeng (2007). Survey and analysis on influence of environment  parameters and residents  behaviours on air conditioning energy consumption in a residential  building, Heating Ventilating & Air Conditioning.  Zhou N., D. Fridley, M. McNeil, N. Zheng, V. Letschert, J. Ke, and Y. Saheb (2011a). Analysis of  potential energy saving and CO2 emission reduction of home appliances and commercial equipments  in China, Energy Policy 39 4541 4550 pp. (DOI: 10.1016/j.enpol.2011.04.027), (ISSN: 0301 4215).  Zhou N., M. McNeil, and M. Levine (2011b). Assessment of Building Energy Saving Policies and  Programs in China during the 11th Five Year Plan. Lawrence Berkeley National Laboratory, Berkeley,  CA. 19 pp.      103 of 103 Working Group III Mitigation of Climate Change Chapter 10 Industry   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    10  Industry  CLAs:  LAs:  Chapter 10  IPCC WGIII AR5  Manfred Fischedick, Joyashree Roy  Amr Abdel Aziz, Adolf Acquaye, Julian Allwood, Jean Paul Ceron, Yong  Geng, Haroon Kheshgi, Alessandro Lanza, Daniel Perczyk, Lynn Price,  Estela Santalla, Claudia Sheinbaum, Kanako Tanaka  Giovanni Baiocchi, Katherine Calvin, Kathryn Daenzer, Shyamasree  Dasgupta, Gian Delgado, Salah El Haggar, Tobias Fleiter, Ali Hasanbeigi,  Samuel Höller, Jessica Jewell, Yacob Mulugetta, Maarten Neelis,  Stephane de la Rue du Can, Nickolas Themelis, Kramadhati S.  Venkatagiri, María Yetano Roche  Roland Clift, Valentin Nenov  María Yetano Roche    CAs:      REs:  CSA:        1 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Chapter 10:    Industry  Contents    Executive Summary ............................................................................................................................ 4  10.1 Introduction ................................................................................................................................ 7  10.2 New developments in extractive mineral industries, manufacturing industries and services 10  10.3 New developments in emission trends and drivers ................................................................. 12  10.3.1 Industrial CO2 Emissions .................................................................................................... 17  10.3.2 Industrial Non CO2 GHG Emissions ................................................................................... 18  10.4 Mitigation technology options, practices and behavioural aspects ......................................... 20  10.4.1 Iron and Steel .................................................................................................................... 24  10.4.2 Cement .............................................................................................................................. 26  10.4.3 Chemicals (Plastics/Fertilizers/Others) ............................................................................. 27  10.4.4 Pulp and Paper .................................................................................................................. 28  10.4.5 Non Ferrous (Aluminium/others) ..................................................................................... 29  10.4.6 Food Processing ................................................................................................................ 30  10.4.7 Textiles and Leather .......................................................................................................... 31  10.4.8 Mining ............................................................................................................................... 32  10.5 Infrastructure and systemic perspectives ................................................................................ 32  10.5.1 Industrial clusters and parks (meso level) ........................................................................ 33  10.5.2 Cross sectoral cooperation (macro level) ......................................................................... 33  10.5.3 Cross sectoral implications of mitigation efforts .............................................................. 34  10.6 Climate change feedback and interaction with adaptation ..................................................... 35  10.7 Costs and potentials ................................................................................................................. 35  10.7.1 CO2 Emissions .................................................................................................................... 36  10.7.2 Non CO2 emissions ............................................................................................................ 39  10.7.3 Summary results on costs and potentials ......................................................................... 39  10.8 Co benefits, risks and spillovers ............................................................................................... 43  10.8.1 Socio economic and environmental effects  ..................................................................... 43  . 10.8.2 Technological risks and uncertainties ............................................................................... 45  10.8.3 Public perception .............................................................................................................. 46  10.8.4 Technological spillovers .................................................................................................... 46  10.9 Barriers and opportunities ....................................................................................................... 48  10.9.1 Energy efficiency for reducing energy requirements ........................................................ 48      2 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.9.2 Emissions efficiency, fuel switching, and carbon dioxide capture and storage ................ 50  10.9.3 Material efficiency  ............................................................................................................ 50  . 10.9.4 Product demand reduction ............................................................................................... 50  10.9.5 Non CO2 greenhouse gases ............................................................................................... 50  10.10 Sectoral implications of transformation pathways and sustainable development  ............... 51  . 10.10.1 Industry transformation pathways ................................................................................. 51  10.10.2 Transition, sustainable development, and investment  .................................................. 53  . 10.11 Sectoral policies ...................................................................................................................... 56  10.11.1 Energy efficiency ............................................................................................................. 57  10.11.2 Emissions efficiency ........................................................................................................ 59  10.11.3 Material efficiency  .......................................................................................................... 59  . 10.12 Gaps in knowledge and data .................................................................................................. 60  10.13 Frequently Asked Questions ................................................................................................... 61  10.14 Appendix: Waste .................................................................................................................... 63  10.14.1 Introduction .................................................................................................................... 63  10.14.2 Emissions trends  ............................................................................................................. 63  . 10.14.3 Technological options for mitigation of emissions from waste ...................................... 66  10.14.4 Summary results on costs and potentials ....................................................................... 71  References ........................................................................................................................................ 74        3 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Executive Summary  An absolute reduction in emissions from the industry sector will require deployment of a broad set  of mitigation options beyond energy efficiency measures (medium evidence, high agreement). In  the last two to three decades there has been continued improvement in energy and process  efficiency in industry, driven by the relatively high share of energy costs. In addition to energy  efficiency, other strategies such as emissions efficiency (including e.g., fuel and feedstock switching,  carbon dioxide capture and storage (CCS)), material use efficiency (e.g., less scrap, new product  design), recycling and re use of materials and products, product service efficiency (e.g., car sharing,  maintaining buildings for longer, longer life for products), or demand reductions (e.g., less mobility  services, less product demand) are required in parallel (medium evidence, high agreement). [Section  10.4, 10.7]   Industry related greenhouse gas (GHG) emissions have continued to increase and are higher than  GHG emissions from other end use sectors (high confidence). Despite the declining share of industry  in global gross domestic product (GDP), global industry and waste/wastewater GHG emissions grew  from 10.4 GtCO2eq in 1990 to 13.0 GtCO2eq in 2005 to 15.5 GtCO2eq in 2010. Total global GHG  emissions for industry and waste/wastewater in 2010, which nearly doubled since 1970, were  comprised of direct energy related CO2 emissions of 5.3 GtCO2eq, indirect CO2 emissions from  production of electricity and heat for industry of 5.2 GtCO2eq, process CO2 emissions of 2.6 GtCO2eq,  non CO2 GHG emissions of 0.9 GtCO2eq, and waste/wastewater emissions of 1.5 GtCO2eq. 2010  direct and indirect emissions were dominated by CO2 (85.1%) followed by CH4 (8.6%), HFC (3.5%),  N2O (2.0%), PFC (0.5%) and SF6 (0.4%) emissions. Currently, emissions from industry are larger than  the emissions from either the buildings or transport end use sectors and represent just over 30% of  global GHG emissions in 2010 (just over 40% if Agriculture, Forestry, and Other Land Use (AFOLU)  emissions are not included). (high confidence) [10.2, 10.3]   Globally, industrial GHG emissions are dominated by the Asia region, which was also the region  with the fastest emission growth between 2005 and 2010 (high confidence). In 2010, over half  (52%) of global GHG emissions from industry and waste/wastewater were from the Asia region  (ASIA), followed by the member countries of the Organisation for Economic Co operation and  Development in 1990 (OECD 1990) (25%), Economies in Transition (EIT) (9%), Middle East and Africa  (MAF) (8%), and Latin America (LAM) (6%). Between 2005 and 2010, GHG emissions from industry  grew at an average annual rate of 3.5% globally, comprised of 7% average annual growth in the ASIA  region, followed by MAF (4.4%), LAM (2%), and the EIT countries (0.1%), but declined in the OECD 1990 countries ( 1.1%). [10.3]  The energy intensity of the sector could be reduced by approximately up to 25% compared to  current level through the wide scale deployment of best available technologies, particularly in  countries where these are not in practice and for non energy intensive industries (robust evidence,  high agreement). Despite long standing attention to energy efficiency in industry, many options for  improved energy efficiency remain. [10.4]  Through innovation, additional reductions of approximately up to 20% in energy intensity may  potentially be realized before approaching technological limits in some energy intensive industries  (limited evidence, medium agreement). Barriers to implementing energy efficiency relate largely to  the initial investment costs and lack of information. Information programmes are the most prevalent  approach for promoting energy efficiency, followed by economic instruments, regulatory  approaches, and voluntary actions. [10.4, 10.9, 10.11]   Besides sector specific technologies, cross cutting technologies and measures applicable in both  large energy intensive industries and Small and Medium Enterprises (SMEs) can help to reduce  GHG emissions (robust evidence, high agreement). Cross cutting technologies such as efficient  motors, electronic control systems, and cross cutting measures such as reducing air or steam leaks      4 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  help to optimize performance of industrial processes and improve plant efficiency cost effectively  with both energy savings and emissions benefits [10.4].  Long term step change options can include a shift to low carbon electricity, radical product  innovations (e.g., alternatives to cement), or carbon dioxide capture and storage (CCS). Once  demonstrated, sufficiently tested, cost effective, and publicly accepted, these options may contribute to significant climate change mitigation in the future (medium evidence, medium  agreement). [10.4]   The level of demand for new and replacement products has a significant effect on the activity level  and resulting GHG emissions in the industry sector (medium evidence, high agreement). Extending  product life and using products more intensively could contribute to reduction of product demand  without reducing the service. Absolute emission reductions can also come through changes in  lifestyle and their corresponding demand levels, be it directly (e.g. for food, textiles) or indirectly  (e.g. for product/service demand related to tourism). [10.4]  Mitigation activities in other sectors and adaptation measures may result in increased industrial  product demand and corresponding emissions (robust evidence, high agreement). Production of  mitigation technologies (e.g., insulation materials for buildings) or material demand for adaptation  measures (e.g., infrastructure materials) contribute to industrial GHG emissions. [10.4, 10.6]  Collaboration within and across industrial sectors at different levels, e.g., sharing of infrastructure,  information, waste and waste management facilities, heating, and cooling, may provide further  mitigation potential in certain regions or industry types (robust evidence, high agreement). The  formation of industrial clusters, industrial parks, and industrial symbiosis are emerging trends in  many developing countries, especially with SMEs. [10.5]  Several emission reducing options in the industrial sector are cost effective and profitable  (medium evidence, medium agreement). While options in cost ranges of 20 50, 0 20, and even  below 0 USD2010/tCO2eq exist, to achieve near zero emission intensity levels in the industry sector  would require additional realization of long term step change options (e.g., CCS) associated with  higher levelized costs of conserved carbon (LCCC) in the range of 50 150 USD2010/tCO2. However,  mitigation costs vary regionally and depend on site specific conditions. Similar estimates of costs for  implementing material efficiency, product service efficiency, and service demand reduction  strategies are not available. [10.7]  Mitigation measures in the industry sector are often associated with co benefits (robust evidence,  high agreement). Co benefits of mitigation measures could drive industrial decisions and policy  choices. They include enhanced competitiveness through cost reductions, new business  opportunities, better environmental compliance, health benefits through better local air and water  quality and better work conditions, and reduced waste, all of which provide multiple indirect private  and social benefits. [10.8]  Unless barriers to mitigation in industry are resolved, the pace and extent of mitigation in industry  will be limited and even profitable measures will remain untapped (robust evidence, high  agreement). There are a broad variety of barriers to implementing energy efficiency in the industry  sector; for energy intensive industry, the issue is largely initial investment costs for retrofits, while  barriers for other industries include both cost and a lack of information. For material efficiency,  product service efficiency, and demand reduction, there is a lack of experience with implementation  of mitigation measures and often there are no clear incentives for either the supplier or consumer.  Barriers to material efficiency include lack of human and institutional capacities to encourage  management decisions and public participation. [10.9]  There is no single policy that can address the full range of mitigation measures available for  industry and overcome associated barriers (robust evidence, high agreement). In promoting energy  efficiency, information programs are the most prevalent approach, followed by economic      5 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  instruments, regulatory approaches and voluntary actions. To date, few policies have specifically  pursued material or product service efficiency. [10.11]  While the largest mitigation potential in industry lies in reducing CO2 emissions from fossil fuel  use, there are also significant mitigation opportunities for non CO2 gases. Key opportunities  comprise, for example, reduction of HFC emissions by leak repair, refrigerant recovery and recycling,  and proper disposal and replacement by alternative refrigerants (ammonia, HC, CO2). Nitrous oxide  (N2O) emissions from adipic and nitric acid production can be reduced through the implementation  of thermal destruction and secondary catalysts. The reduction of non CO2 GHGs also faces numerous  barriers. Lack of awareness, lack of economic incentives, and lack of commercially available  technologies (e.g., for HFC recycling and incineration) are typical examples. [10.4, 10.7, 10.9]  Long term scenarios for industry highlight improvements in emissions efficiency as an important  future mitigation strategy (robust evidence, high agreement). Detailed industry sector scenarios fall  within the range of more general long term integrated scenarios. Improvements in emissions  efficiency in the mitigation scenarios result from a shift from fossil fuels to electricity with low (or  negative) CO2 emissions and use of CCS for industry fossil fuel use and process emissions. The crude  representation of materials, products, and demand in scenarios limits the evaluation of the relative  importance of material efficiency, product service efficiency, and demand reduction options. (robust  evidence, high agreement) [6.8, 10.10]  The most effective option for mitigation in waste management is waste reduction, followed by re use and recycling and energy recovery (robust evidence, high agreement) [10.4, 10.14]. Direct  emissions from the waste sector almost doubled during the period from 1970 to 2010.  Approximately only 20% of municipal solid waste (MSW) is recycled and approximately 13.5 % is  treated with energy recovery while the rest is deposited in open dumpsites or landfills.  Approximately 47% of wastewater produced in the domestic and manufacturing sectors is still  untreated. As the share of recycled or reused material is still low, waste treatment technologies and  energy recovery can also result in significant emission reductions from waste disposal. Reducing  emissions from landfilling through treatment of waste by anaerobic digestion has the largest cost  range, going from negative cost to very high cost. Also, advanced wastewater treatment  technologies may enhance GHG emissions reduction in the wastewater treatment but they tend to  concentrate in the higher costs options (medium evidence, medium agreement). [10.14].  A key challenge for the industry sector is the uncertainty, incompleteness, and quality of data  available in the public domain on energy use and costs for specific technologies on global and  regional scales that can serve as a basis for assessing performance, mitigation potential, costs, and  for developing policies and programmes with high confidence. Bottom up information on cross sector collaboration and demand reduction as well as their implications for mitigation in industry is  particularly limited. Improved modelling of material flows in integrated models could lead to a  better understanding of material efficiency and demand reduction strategies and the associated  mitigation potentials. [10.12]      6 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.1   Introduction  This chapter provides an update to developments on mitigation in the industry sector since the IPCC  (Intergovernmental Panel on Climate Change) Fourth Assessment Report (AR4) (IPCC, 2007), but has  much wider coverage. Industrial activities create all the physical products (e.g., cars, agricultural  equipment, fertilizers, textiles, etc.) whose use delivers the final services that satisfy current human  needs. Compared to the industry chapter in AR4, this chapter analyzes industrial activities over the  whole supply chain, from extraction of primary materials (e.g., ores) or recycling (of waste  materials), through product manufacturing, to the demand for the products and their services. It  includes a discussion of trends in activity and emissions, options for mitigation (technology,  practices, and behavioural aspects), estimates of the mitigation potentials of some of these options  and related costs, co benefits, risks and barriers to their deployment, as well as industry specific  policy instruments. Findings of integrated models (long term mitigation pathways) are also  presented and discussed from the sector perspective. In addition, at the end of the chapter, the  hierarchy in waste management and mitigation opportunities are synthesized, covering key waste related issues that appear across all chapters in the Working Group III contribution to the Fifth  Assessment Report.  Figure 10.1, which shows a breakdown of total global anthropogenic GHG emissions in 2010 based  on Baj¾elj et al. (2013), illustrates the logic that has been used to distinguish the industry sector from  other sectors discussed in this report. The figure shows how human demand for energy services, on  the left, is provided by economic sectors, through the use of equipment in which devices create heat  or work from final energy. In turn, the final energy has been created by processing a primary energy  source. Combustion of carbon based fuels leads to the release of GHG emissions as shown on the  right. The remaining anthropogenic emissions arise from chemical reactions in industrial processes,  from waste management and from the agriculture and land use changes discussed in Chapter 11.     Figure 10.1. A Sankey diagram showing the system boundaries of the industry sector and demonstrating how global anthropogenic emissions in 2010 arose from the chain of technologies and systems required to deliver final services triggered by human demand. The width of each line is proportional to GHG emissions released, and the sum of these widths along any vertical slice through the diagram is the same, representing all emissions in 2010 (Baj¾elj et al., 2013).     7 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Mitigation options can be chosen to reduce GHG emissions at all stages in Figure 10.1, but caution is  needed to avoid  double counting . The figure also demonstrates that care is needed when allocating  emissions to specific products and services ( carbon footprints , for example) while ensuring that the  sum of all  footprints  adds to the sum of all emissions.  Emissions from industry (30% of total global GHG emissions) arise mainly from material processing,  i.e., the conversion of natural resources (ores, oil, biomass) or scrap into materials stocks which are  then converted in manufacturing and construction into products. Production of just iron and steel  and non metallic minerals (predominately cement) results in 44% of all carbon dioxide (CO2)  emissions (direct, indirect, and process related) from industry. Other emission intensive sectors are  chemicals (including plastics) and fertilizers, pulp and paper, non ferrous metals (in particular  aluminium), food processing (food growing is covered in Chapter 11), and textiles.   Decompositions of GHG emissions have been used to analyze the different drivers of global industry related emissions. An accurate decomposition for the industry sector would involve great  complexity, so instead this chapter uses a simplified conceptual expression to identify the key  mitigation opportunities available within the sector:  G   G E M P S E M P S   where G is the GHG emissions of the industrial sector within a specified time period (usually one  year), E is industrial sector energy consumption and M is the total global production of materials in  that period. P is stock of products created from these materials (including both consumables and  durables added to existing stocks), and S is the services delivered in the time period through use of  those products.  The expression is indicative only, but leads to the main mitigation strategies discussed in this  chapter:  G/E is the emissions intensity of the sector expressed as a ratio to the energy used: the GHG  emissions of industry arise largely from energy use (directly from combusting fossil fuels, and  indirectly through purchasing electricity and steam), but emissions also arise from industrial  chemical reactions. In particular, producing cement, chemicals, and non ferrous metals leads to  the inevitable release of significant  process emissions  regardless of energy supply. We refer to  reductions in G/E as emissions efficiency for the energy inputs and the processes.  E/M is the energy intensity: approximately three quarters of industrial energy use is required to  create materials from ores, oil or biomass, with the remaining quarter used in the downstream  manufacturing and construction sectors that convert materials to products. The energy required  can in some cases (particularly for metals and paper) be reduced by production from recycled  scrap, and can be further reduced by material re use, or by exchange of waste heat and  exchange of by products between sectors. Reducing E/M is the goal of energy efficiency.  M/P is the material intensity of the sector: the amount of material required to create a product and  maintain the stock of a product depends both on the design of the product and on the scrap  discarded during its production. Both can be reduced by material efficiency.  P/S is the product service intensity: the level of service provided by a product depends on its  intensity of use. For consumables (e.g., food or detergent) that are used within the accounting  period in which they are produced, service is provided solely by the production within that  period. For durables that last for longer than the accounting period (e.g., clothing), services are  provided by the stock of products in current use. In this case P is the flow of material required to  replace retiring products and to meet demand for increases in total stock. Thus for consumables,  P/S can be reduced by more precise use (for example using only recommended doses of  detergents or applying fertilizer precisely) while for durables, P/S can be reduced both by using      8 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  durable products for longer and by using them more intensively. We refer to reductions in P/S as  product service efficiency.  S: The total global demand for service is a function of population, wealth, lifestyle, and the whole  social system of expectations and aspirations. If the total demand for service were to reduce, it  would lead to a reduction in industrial emissions, and we refer to this as demand reduction.  Figure 10.2 expands on this simplified relationship to illustrate the main options for GHG emissions  mitigation in industry (circled numbers). The figure also demonstrates how international trade of  products leads to significant differences between  production  and  consumption  measures of  national emissions, and demonstrates how the  waste  industry, which includes material recycling as  well as options like  waste to energy  and disposal, has a significant potential for influencing future  industrial emissions.     Figure 10.2. A schematic illustration of industrial activity over the supply chain. Options for climate change mitigation in the industry sector are indicated by the circled numbers: (1) Energy efficiency (e.g., through furnace insulation, process coupling, or increased material recycling); (2) Emissions efficiency (e.g., from switching to non-fossil fuel electricity supply, or applying CCS to cement kilns); (3a) Material efficiency in manufacturing (e.g., through reducing yield losses in blanking and stamping sheet metal or re-using old structural steel without melting); (3b) Material efficiency in product design (e.g., through extended product life, light-weight design, or de-materialization); (4) Product-Service efficiency (e.g., through car sharing, or higher building occupancy); (5) Service demand reduction (e.g., switching from private to public transport). Figure 10.2 clarifies the terms used for key sectors in this chapter:  Industry  refers to the totality of  activities involving the physical transformation of materials within which  extractive industry   supplies feedstock to the energy intensive  materials industries  which create refined materials.  These are converted by  manufacturing  into products and by  construction  into buildings and  infrastructure.  Home scrap  from the materials processing industries,  new scrap  from downstream  construction and manufacturing, and products retiring at end of life are processed in the  waste  industry.  This  waste  may be recycled (particularly bulk metals, paper, glass and some plastics), may  be re used to save the energy required for recycling, or may be discarded to landfills or incinerated  (which can lead to further emissions on one hand and energy recovery on the other hand).      9 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.2   New developments in extractive mineral industries, manufacturing  industries and services  World production trends of mineral extractive industries, manufacturing, and services, have grown  steadily in the last 40 decades (Figure 10.3). However, service sector share in the world GDP  increased from 50% in 1970 to 70% in 2010; while the industry world GDP share decreased from  38.2 to 26.9% (World Bank, 2013).   Figure 10.3. World s growth of main minerals and manufacturing products (1970=1). Sources: (WSA, 2012a; FAO, 2013; Kelly and Matos, 2013). Concerning extractive industries for metallic minerals, from 2005 to 2012 annual mining production  of iron ore, gold, silver, and copper increased by 10%, 1%, 2%, and 2% respectively (Kelly and Matos,  2013). Most of the countries in Africa, Latin America, and the transition economies produce more  than they use; whereas use is being driven mainly by consumption in China, India, and developed  countries (UNCTAD, 2008)1. Extractive industries of rare earths are gaining importance because of  their various uses in high tech industry (Moldoveanu and Papangelakis, 2012). New mitigation  technologies, such as hybrid and electric vehicles (EVs), electricity storage and renewable  technologies, increase the demand for certain minerals, such as lithium, gallium, and phosphates  (Bebbington and Bury, 2009). Concerns over depletion of these minerals have been raised, but  important research on extraction methods as well as increasing recycling rates are leading to  increasing reserve estimates for these materials (Graedel et al., 2011; Resnick Institute, 2011;  Moldoveanu and Papangelakis, 2012; Eckelman et al., 2012). China accounts for 97% of global rare  earth extraction (130 Mt in 2010) (Kelly and Matos, 2013).  Regarding manufacturing production, the annual global production growth rate of steel, cement,  ammonia, aluminium, and paper the most energy intensive industries ranged from 2% to 6%  between 2005 and 2012 (Table 10.1). Many trends are responsible for this development (e.g.,  urbanization significantly triggered demand on construction materials). Over the last decades, as a                                                                For example, in 2008, China imported 50% of the world s total iron ore exports and produced about 50% of  the world s pig iron (Kelly and Matos, 2013). India demanded 35% of world´s total gold production in 2011  (WGC, 2011), and the United States consumes 33% of world´s total silver production in 2011 (Kelly and Matos,  2013).  1     10 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  general trend, the world has witnessed decreasing industrial activity in developed countries with a  major downturn in industrial production due to the economic recession in 2009 (Kelly and Matos,  2013). There is continued increase in industrial activity and trade of some developing countries. The  increase in manufacturing production and consumption has occurred mostly in Asia. China is the  largest producer of the main industrial outputs. In many middle income countries industrialization  has stagnated, and in general Africa and Least Developed Countries (LDCs) have remained  marginalized (UNIDO, 2009; WSA, 2012a). In 2012, 1.5 billion tonnes of steel (212 kg/cap) were  manufactured; 46% was produced and consumed in mainland China (522 kg/cap). China also  dominates global cement production, producing 2.2 billion tonnes (1,561 kg/cap) in 2012, followed  by India with only 250 Mt (202 kg/cap) (Kelly and Matos, 2013; UNDESA, 2013). More subsector  specific trends are in Section 10.4.   Table 10.1: Total production of energy-intensive industrial goods for the World Top-5 Producers of Each Commodity: 2005, 2012, and Average Annual Growth Rate (AAGR) (FAO, 2013; Kelly and Matos, 2013) Commodity/Country  2005  2012  AAGR (Mt)  (Mt)  Iron ore  World  China  Australia  Brazil  India  Russia     Cement  World  China  India  U.S.  Brazil  Iran     Ammonia  World  China  India  Russia  U.S.   Trinidad & Tobago     1540  3000  420  1300  262  280  140  97       2310  3400  1040  2150  145  101  37  33       121.0  137.0  37.8  44.0  10.8  12.0  10.0  10.0  8.0  4.2  9.5  5.5  250  74  70  65        2% 2% 2% 0% 2% 4% 525  375  245     10% 18% 10% 4% 8% Commodity/ Country 2005  (Mt)  2012  (Mt)     1500  720  108  91  76  76    AAGR Steel World China Japan U.S. India Russia    1130  349  113  95  46  66  4% 11% 1% 1% 8% 2% 100  0.4%       6% 11% 8% 4% 10% 10% Aluminium World China Russia Canada U.S. Australia 31.9  7.8  3.7  2.9  2.5  1.9     44.9  19.0  4.2  2.7  2.0  1.9    5% 14% 2% 1% 3% 0% Paper World China U.S. Japan Germany Indonesia 364.7  60.4  83.7  31.0  21.7  7.2     401.1  106.3  75.5  26.0  22.6  11.5  1% 8% 1% 2% 1% 7%       11 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Globally large scale production dominates energy intensive industries; however small  and medium sized enterprises are very important in many developing countries. This brings additional challenges  for mitigation efforts (Worrell et al., 2009; Roy, 2010; Ghosh and Roy, 2011).   Another important change in the world´s industrial output over the last decades has been the rise in  the proportion of international trade. Manufactured products are not only traded, but the  production process is increasingly broken down into tasks that are themselves outsourced and/or  traded; i.e., production is becoming less vertically integrated. In addition to other drivers such as  population growth, urbanization, and income increase, the rise in the proportion of trade has been  driving production increase for certain countries (Fisher Vanden et al., 2004; Liu and Ang, 2007;  Reddy and Ray, 2010; OECD, 2011). The economic recession of 2009 reduced industrial production  worldwide because of consumption reduction, low optimism in credit market, and a decline in world  trade (Nissanke, 2009). More discussion on GHG emissions embodied in trade is presented in  Chapter 14. Similar to industry, the service sector is heterogeneous and has significant proportion of  small and medium sized enterprises. The service sector covers heterogeneous economic activities  such as public administration, finance, education, trade, hotels, restaurants, and health. Activity  growth in developing countries and structural shift with rising income is driving service sector  growth (Fisher Vanden et al., 2004; Liu and Ang, 2007; Reddy and Ray, 2010; OECD, 2011). OECD  countries are shifting from manufacturing towards service oriented economies (Sun, 1998; Schäfer,  2005; US EIA, 2010), however, this is also true for some non OECD countries. For example, India has  almost 64% 66% (World Bank, 2013) of GDP contribution from service sector.   10.3   New developments in emission trends and drivers  Global industry and waste/wastewater GHG emissions grew from 10.42 GtCO2eq in 1990 to 12.98  GtCO2eq in 2005 to 15.51 GtCO2eq in 2010. These emissions are larger than the emissions from  either the buildings or transport end use sectors and represent just over 30% of global GHG  emissions in 2010 (just over 40% if AFOLU emissions are not included). These total emissions are  comprised of:  Direct energy related CO2 emissions for industry2   Indirect CO2 emissions from production of electricity and heat for industry3   Process CO2 emissions  Non CO2 GHG emissions  Direct emissions for waste/wastewater   Figure 10.4 shows global industry and waste/wastewater direct and indirect GHG emissions by  source from 1970 to 2010. Table 10.2 shows final and primary energy4 and GHG emissions for  industry by emission type (direct energy related, indirect from electricity and heat production,  process CO2, and non CO2), and for waste/wastewater for five world regions and the world total.5  Figure 10.5 shows global industry and waste/wastewater direct and indirect GHG emissions by  region from 1970 to 2010. This regional breakdown shows that:                                                               2 3  This also includes CO2 emissions from non energy uses of fossil fuels.   The methodology for calculating indirect CO2 emissions is based on de la Rue du Can and Price (2008) and  described in Annex II, A.II.5.   4 5   See Glossary in Annex I for definition of primary energy.   The IEA also recently published CO2 emissions with electricity and heat allocated to end use sectors (IEA,  2012a). However, the methodology used in this report differs slightly from the IEA approach as explained in  Annex II, A.II.5      12 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Over half (52%) of global GHG emissions from industry and waste/wastewater are from the  ASIA region, followed by OECD 1990 (25%), EIT (9.4%), MAF (7.6%), and LAM (5.7%).  Between 2005 and 2010, GHG emissions from industry grew at an average annual rate of  3.5% globally, comprised of 7.0% average annual growth in the ASIA region, followed by  MAF (4.4%), LAM (2.0%), and the EIT countries (0.1%), but declined in the OECD 1990  countries ( 1.1%).  Regional trends are further discussed in Chapter 5, Section 5.2.1.      13 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Table 10.3 provides 2010 direct and indirect GHG emissions by source and gas. 2010 direct and  indirect emissions were dominated by CO2 (85.1%), followed by methane (CH4) (8.6%),  hydrofluorocarbons (HFC) (3.5%), nitrous oxide (N2O) (2.0%), Perfluorocarbons (PFC) (0.5%) and  sulphur hexafluoride (SF6) (0.4%) emissions.  Figure 10.4. Total global industry and waste/wastewater direct and indirect GHG emissions by source, 1970 2010 (GtCO2eq) (de la Rue du Can and Price, 2008; IEA, 2012a; JRC/PBL, 2012). See also Annex II.9, Annex II.5. Note: For statistical reasons Cement production only covers process CO2 emissions (i.e., emissions from cement-forming reactions); energy-related direct emissions from cement production are included in other industries CO2 emissions.     14 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Figure 10.5. Total global industry and waste/wastewater direct and indirect GHG emissions by region, 1970 2010 (GtCO2eq) (de la Rue du Can and Price, 2008; IEA, 2012a; JRC/PBL, 2012). See also Annex II.9, Annex II.5.     15 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Table 10.2: Industrial final energy (EJ), industrial primary energy (EJ), and GHG emissions (GtCO2eq) by emission type (direct energy-related, indirect from electricity and heat production, process CO2, and non-CO2), and waste/wastewater for five world regions and the world total (IEA, 2012a; b; c; JRC/PBL, 2012). For definitions of regions see Annex II (Metrics and Methodology).         Direct (energy related)  Indirect (electricity +  heat)  Process CO2 emissions  Non CO2 GHG  emissions  Waste/wastewater  Total  Direct (energy related)  Indirect (electricity +  heat)  Process CO2 emissions  Non CO2 GHG  emissions  Waste/wastewater  Total  Direct (energy related)  Indirect (electricity +  heat)  Process CO2 emissions  Non CO2 GHG  emissions  Waste/wastewater  Total  Direct (energy related)  Indirect (electricity +  heat)  Process CO2 emissions  Non CO2 GHG  emissions  Waste/wastewater  Total  Direct (energy related)  Indirect (electricity +  heat)  Process CO2 emissions  Non CO2 GHG  emissions  Waste/wastewater  Total  Direct (energy related)  Indirect (electricity +  heat)  Process CO2 emissions  Non CO2 GHG  emissions  Waste/wastewater  Total  Final Energy (EJ)  1990  2005  20.89  42.83              2010  56.8          56.8  13.68          13.68  9.45          9.45  11.43          11.43  42.45        Primary Energy (EJ)  1990  20.89  5.25        26.14  21.98  6.84        28.82  5.85  0.97        6.82  5.59  1.12        6.71  40.93  11.25      2005  42.83  15.11        57.93  13.47  4.1        17.56  8.64  1.67        10.31  8.91  1.99        10.9  45.63  10.92      2010  56.8  24.38        81.17  13.68  3.42        17.1  9.45  1.93        11.38  11.43  2.58        14.01  42.45  9.71      GHG Emissions  (GtCO2eq)  1990  2005  2010  1.21  2.08  2.92  0.65  0.31  0.05  0.35  2.57  0.79  1.09  0.32  0.11  0.12  2.38  0.19  0.08  0.08  0.03  0.1  0.48  0.22  0.14  0.08  0.02  0.10  0.56  1.55  1.31  0.57  0.35  2.14  0.83  0.25  0.54  5.84  0.41  0.59  0.23  0.12  0.13  1.42  0.26  0.15  0.11  0.03  0.14  0.68  0.3  0.24  0.15  0.02  0.16  0.86  1.36  1.37  0.56  0.35  0.4  4.04  4.41  4.48  1.87  0.77  1.37  12.85  3.08  1.49  0.27  0.60  8.36  0.45  0.51  0.23  0.12  0.15  1.4  0.28  0.17  0.13  0.03  0.14  0.75  0.37  0.29  0.21  0.02  0.17  1.07  1.24  1.19  0.52  0.44  0.39  3.79  5.27  5.25  2.59  0.89  1.45  15.38  ASIA      20.89  42.83  21.98  13.47              EIT      21.98  13.47  5.85  8.64          5.85  5.59                8.64  8.91        LAM  MAF      5.59  8.91  40.93  45.63              OECD 1990          40.93  45.63  42.45  52.18  95.25  119.47  133.81  95.25  0      0      0      25.42          0.5  56.55  52.16  4.28  119.47  133.81  3.96  33.78      42.01      3.27  1.36  0.55  World              1.17  95.25  119.47  133.81  120.67  153.25  175.82  10.26  Note: Includes energy and non-energy use. Non-energy use covers those fuels that are used as raw materials in the different sectors and are not consumed as a fuel or transformed into another fuel. Also includes construction.     16 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Table 10.3: Industry and waste/wastewater direct and indirect GHG emissions by source and gas, 2010 (in MtCO2eq) (IEA, 2012a; JRC/PBL, 2012). Source  Gas  2010  Emissions  (MtCO2eq)  2,127 18.87 8.77 52.45 4.27 1,159 206.9 139.71 11.86 4.91 1,352.35 5,246.79 Source Gas 2010 Emissions  (MtCO2eq)  627.34 32.50 11.05  666.75 108.04 3,222.24 40.59 15.96 9.06 20.48 332.38 24.33 Ferrous and non  ferrous metals  CO2  CH4  SF6  PFC  N2O  CO2  HFC  N2O  SF6  CH4  CO2  CO2  Landfill, Waste  Incineration and  Others  Wastewater  treatment  CH4 CO2 N2 O CH4 N2 O CO2 SF6 N2 O CH4 PFC HFC N2 O Chemicals  Other industries  Cement*  Indirect (electricity +  heat)  Gas  Indirect   Gas Carbon dioxide  Methane  Hydrofluorocarbons  CO2  CH4  HFC  2010  Emissions  (MtCO2eq)  13,139 1,326.93 539.28  2010 Emissions  (MtCO2eq)  N2 O PFC SF6 303.35 72.93 61.21  Nitrous oxide Perfluorocarbons Sulphur  hexafluoride  Carbon Dioxide Equivalent (total of all gasses) CO2eq 15,443 Note: *CO2 emissions from cement-forming reactions only; cement energy-related direct emissions are included in other industries CO2 emissions. 10.3.1    Industrial CO2 Emissions  As shown in Table 10.3, industrial CO2 emissions were 13.21 GtCO2 in 2010. These emissions were  comprised of 5.27 GtCO2 direct energy related emissions, 5.25 GtCO2 indirect emissions from  electricity and heat production, 2.59 GtCO2 from process CO2 emissions and 0.03 GtCO2 from  waste/wastewater. Process CO2 emissions are comprised of process related emissions of 1.352  GtCO2 from cement production,6 0.477 GtCO2 from production of chemicals, 0.242 GtCO2 from lime  production, 0.134 GtCO2 from coke ovens, 0.074 GtCO2 from non ferrous metals production, 0.072  GtCO2 from iron and steel production, 0.061 GtCO2 from ferroalloy production, 0.060 GtCO2 from  limestone and dolomite use, 0.049 GtCO2 from solvent and other product use, 0.042 GtCO2 from  production of other minerals and 0.024 GtCO2 from non energy use of lubricants/waxes (JRC/PBL,  2012). Total industrial CO2 values include emissions from mining and quarrying, from manufacturing,  and from construction.   Energy intensive processes in the mining sector include excavation, mine operation, material  transfer, mineral preparation, and separation. Energy consumption for mining7 and quarrying, which  is included in  other industries  in Figure 10.4, represents about 2.7% of worldwide industrial energy  use, varying regionally, and a significant share of national industrial energy use in Botswana and  Namibia (around 80%), Chile (over 50%), Canada (30%), Zimbabwe (18.6%), Mongolia (16.5%), and  South Africa (almost 15%) in 2010 (IEA, 2012b; c).                                                                6 7  Another source, Boden et al., 2013, indicates that cement process CO2 emissions in 2010 were 1.65 GtCO2.   Discussion of extraction of energy carriers (e.g., coal, oil, and natural gas) takes place in Chapter 7.      17 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Manufacturing is a subset of industry that includes production of all products (e.g., steel, cement,  machinery, textiles) except for energy products, and does not include energy used for construction.  Manufacturing is responsible for about 98% of total direct CO2 emissions from the industrial sector  (IEA, 2012b; c). Most manufacturing CO2 emissions arise due to chemical reactions and fossil fuel  combustion largely used to provide the intense heat that is often required to bring about the  physical and chemical transformations that convert raw materials into industrial products. These  industries, which include production of chemicals and petrochemicals, iron and steel, cement, pulp  and paper, and aluminium, usually account for most of the sector s energy consumption in many  countries. In India, the share of energy use by energy intensive manufacturing industries in total  manufacturing energy consumption is 62% (INCCA, 2010), while it is about 80% in China (NBS, 2012).  Overall reductions in industrial energy use/manufacturing value added were found to be greatest in  developing economies during 1995 2008. Low income developing economies had the highest  industrial energy intensity values while developed economies had the lowest. Reductions in intensity  were realized through technological changes (e.g., changes in product mix, adoption of energy efficient technologies, etc.) and structural change in the share of energy intensive industries in the  economy. During 1995 2008, developing economies had greater reductions in energy intensity while  developed economies had greater reductions through structural change (UNIDO, 2011).  The share of non energy use of fossil fuels (e.g., the use of fossil fuels as a chemical industry  feedstock, of refinery and coke oven products, and of solid carbon for the production of metals and  inorganic chemicals) in total manufacturing final energy use has grown from 20% in 2000 to 24% in  2009 (IEA, 2012b; c). Fossil fuels used as raw materials/feedstocks in the chemical industry may  result in CO2 emissions at the end of their life span in the disposal phase if they are not recovered or  recycled (Patel et al., 2005). These emissions need be accounted for in the waste disposal sector's  emissions, although data on waste imports/exports and ultimate disposition are not consistently  compiled or reliable (Masanet and Sathaye, 2009). Subsector specific details are also in Section 10.4.   Trade is an important factor that influences production choice decisions and hence CO2 emissions at  the country level. Emission inventories based on consumption rather than production reflect the fact  that products produced and exported for consumption in developed countries are an important  contributing factor of the emission increase for certain countries such as China, particularly since  2000 (Ahmad and Wyckoff, 2003; Wang and Watson, 2007; Peters and Hertwich, 2008; Weber et al.,  2008). Chapter 14 provides an in depth discussion and review of the literature related to trade,  embodied emissions, and consumption based emissions inventories.  10.3.2    Industrial Non CO2 GHG Emissions  Table 10.4 provides emissions of non CO2 gases for some key industrial processes (JRC/PBL, 2012).  N2O emissions from adipic acid and nitric acid production and PFC emissions from aluminium  production decreased while emissions from HFC 23 from HCFC 22 production increased from 0.075  GtCO2eq in 1990 to 0.207 GtCO2eq in 2010. In the period from 1990 2010, fluorinated gases (F gases) and N2O were the most important non CO2 GHG emissions in manufacturing industry. Most of  the F gases arise from the emissions from different processes including the production of aluminium  and HCFC 22 and the manufacturing of flat panel displays, magnesium, photovoltaics, and  semiconductors. The rest of the F gases correspond mostly to HFCs that are used in refrigeration  equipment used in industrial processes. Most of the N2O emissions from the industrial sector are  contributed by the chemical industry, particularly from the production of nitric and adipic acids (EPA,  2012a).        18 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Table 10.4: Emissions of non-CO2 GHGs for key industrial processes (JRC/PBL, 2012)8 Emissions (MtCO2eq) Process HFC-23 from HCFC-22 production ODS substitutes (Industrial process refrigeration)9 PFC, SF6, NF3 from flat panel display manufacturing N2O from adipic acid and nitric acid production PFCs and SF6 from photovoltaic manufacturing PFCs from aluminium production SF6 from manufacturing of electrical equipment HFCs, PFCs, SF6 and NF3 from semiconductor manufacturing SF6 from magnesium manufacturing CH4 and N2O from other industrial processes 1990 75 0 0 232 0 107 12 7 12 3 2005 194 13 4 153 0 70 7 21 9 5 2010 207 21 6 104 1 52 10 17 8 6   A summary of the issues and trends that concern developing countries and Least Developed  Countries (LDCs) in this chapter is found in Box 10.1.  Box 10.1. Issues regarding Developing and Least Developed Countries (LDCs) Reductions in energy intensity (measured as final energy use per industrial GDP) from 1995 to 2008  were larger in developing economies than in developed economies (UNIDO, 2011). The shift from  energy intensive industries towards high tech sectors (structural change) was the main driving force  in developed economies, while the energy intensity reductions in large developing economies such  as China, India, and Mexico and transition economies such as Azerbaijan and Ukraine were related to  technological changes (Reddy and Ray, 2010; Price et al., 2011; UNIDO, 2011; Sheinbaum Pardo et  al., 2012; Roy et al., 2013). Brazil is a special case were industrial energy intensity increased (UNIDO,  2011; Sheinbaum et al., 2011). The potential for industrial energy efficiency is still very important for  developing countries (see Sections 10.4 and 10.7), and possible industrialization development opens  the opportunity for the installation of new plants with highly efficient energy and material  technologies and processes (UNIDO, 2011).  Other strategies for mitigation in developing countries such as emissions efficiency (e.g., fuel  switching) depend on the fuel mix and availability for each country. Product service efficiency (e.g.,  using products more intensively) and reducing overall demand for product services must be  accounted differently depending on the country s income and development levels. Demand  reduction strategies are more relevant for developed countries because of higher levels of  consumption. However, some strategies for material efficiency such as manufacturing lighter  products (e.g., cars) and modal shifts in the transport sector that reduce energy consumption in  industry can have an important role in future energy demand (see Chapter 8.4.2.2).                                                                Note: the data from US EPA (EPA, 2012a) show emissions of roughly the same magnitude, but differ in total  amounts per source as well as the growth trends. The differences are significant in some particular sources like  HFC 23 from HCFC 22 production, PFCs from aluminium production and N2O from adipic acid and nitric acid  production.   9 8  ODS substitutes values from (EPA, 2012a).      19 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  LDCs have to be treated separately because of their small manufacturing production base. The share  of manufacturing value added (MVA) in the GDP of LDCs in 2011 was 9.7% (7.2% Africa LDCs; Asia  and the Pacific LDCs 13.3% and no data for Haiti), while it was 21.8% in developing countries and  16.5% in developed countries. The LDCs  contribution to world MVA represented only 0.46% in 2010  (UNIDO, 2011; UN, 2013).  In most LDCs, the share of extractive industries has increased (in many cases with important  economic, social, and environmental problems (Maconachie and Hilson, 2013), while that of  manufacturing either decreased in importance or stagnated, with the exceptions of Tanzania and  Ethiopia where their relative share of agriculture decreased while manufacturing, services, and  mining increased (UNCTAD, 2011; UN, 2013).   Developed and developing countries are changing their industrial structure, from low technology to  medium and high technology products (level of technology in production process), but LDCs remain  highly concentrated in low technology products. The share of low technology products in the years  1995 and 2009 in LDCs MVA was 68% and 71%, while in developing countries it was 38% and 30%  and in developed countries 33% and 21%, respectively (UNIDO, 2011).  Among other development strategies, two alternative possible scenarios could be envisaged for the  industrial sector in LDCs: (1) continuing with the present situation of concentration in labour  intensive and resource intensive industries or (2) moving towards an increase in the production  share of higher technology products (following the trend in developing countries). The future  evolution of the industrial sector will be successful only if the technologies adopted are consistent  with the resource endowments of LDCs. However, the heterogeneity of LDCs circumstances needs to  be taken into account when analyzing major trends in the evolution of the group. A report prepared  by the United Nations Framework Convention on Climate Change (UNFCCC) Secretariat summarizes  the findings of 70 Technology Needs Assessments (TNA) submitted, including 24 from LDCs.  Regarding the relationship between low carbon and sustainable development, the relevant  technologies for most of the LDCs are related to poverty and hunger eradication, avoiding the loss of  resources, time and capital. Almost 80% of LDCs considered the industrial structure in their TNA,  evidencing that they consider this sector as a key element in their development strategies. The  technologies identified in the Industrial sector and the proportion of countries selecting them are:  fuel switching (42%), energy efficiency (35%), mining (30%), high efficiency motors (25%), and  cement production (25%) (UNFCCC SBASTA, 2009).   A low carbon development strategy facilitated by access to financial resources, technology transfer,  technologies, and capacity building would contribute to make the deployment of national mitigation  efforts politically viable. As adaptation is the priority in almost all LDCs, industrial development  strategies and mitigation actions look for synergies with national adaptation strategies.  10.4   Mitigation technology options, practices and behavioural aspects   Figure 10.2, and its associated identity, define six options for climate change mitigation in industry.   Energy efficiency (E/M): Energy is used in industry to drive chemical reactions, to create heat,  and to perform mechanical work. The required chemical reactions are subject to thermodynamic  limits. The history of industrial energy efficiency is one of innovating to create  best available  technologies  and implementing these technologies at scale to define a reference  best practice  technology , and investing and controlling installed equipment to raise  average performance   nearer to  best practice  (Dasgupta et al., 2012).  Energy efficiency has been an important strategy for industry for various reasons for a long time.  Over the last four decades there has been continued improvement in energy efficiency in  energy intensive industries and  best available technologies  are increasingly approaching  technical limits. However, many options for energy efficiency improvement remain and there is      20 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  still significant potential to reduce the gap between actual energy use and the best practice in  many industries and in most countries. For all, but particularly for less energy intensive  industries, there are still many energy efficiency options both for process and system wide  technologies and measures. Several detailed analyses related to particular sectors estimate the  technical potential of energy efficiency measures in industry to be around the range of up to  25% (Schäfer, 2005; Allwood et al., 2010; UNIDO, 2011; Saygin et al., 2011b; Gutowski et al.,  2013). Through innovation, additional reductions of approximately up to 20% in energy intensity  may potentially be realized before approaching technological limits in some energy intensive  industries (Allwood et al., 2010).  In industry, energy efficiency opportunities are found within sector specific processes as well as  in systems such as steam systems, process heating systems (furnaces and boilers), and electric  motor systems (e.g., pumps, fans, air compressor, refrigerators, material handling). As a class of  technology, electronic control systems help to optimize performance of motors, compressors,  steam combustion, heating, etc. and improve plant efficiency cost effectively with both energy  savings and emissions benefits, especially for Small and Medium Enterprises (SMEs) (Masanet,  2010).  Opportunities to improve heat management include better heat exchange between hot and cold  gases and fluids, improved insulation, capture and use of heat in hot products, and use of  exhaust heat for electricity generation or as an input to lower temperature processes (US DoE,  2004a, 2008). However, the value of these options is in many cases limited by the low  temperature of  waste heat   industrial heat exchangers generally require a temperature  difference of ~200°C and the difficulty of exchanging heat out of solid materials. Recycling can also help to reduce energy demand, as it can be a strategy to create material with  less energy. Recycling is already widely applied for bulk metals (steel, aluminium, and copper in  particular), paper, and glass and leads to an energy saving when producing new material from  old avoids the need for further energy intensive chemical reactions. Plastics recycling rates in  Europe are currently around 25% (Plastics Europe, 2012) due to the wide variety of compositions  in common use in small products, and glass recycling saves little energy as the reaction energy is  small compared to that needed for melting (Sardeshpande et al., 2007). Recycling is applied  when it is cost effective, but in many cases leads to lower quality materials, is constrained by  lack of supply because collection rates while high for some materials (particularly steel) are not  100%, and because with growing global demand for material, available supply of scrap lags total  demand. Cement cannot be recycled, although concrete can be crushed and down cycled into  aggregates or engineering fill. However, although this saves on aggregate production, it may  lead to increased emissions, due to energy used in concrete crushing and refinement and  because more cement is required to achieve target properties (Dosho, 2008).   Emissions efficiency (G/E): In 2008, 42% of industrial energy supply was from coal and oil with  20% from gas, and the remainder from electricity and direct use of renewable energy sources.  These shares are forecast to change to 30% and 24% respectively by 2035 (IEA, 2011a) resulting  in lower emissions per unit of energy, as discussed in Chapter 7. Switching to natural gas also  favours more efficient use of energy in industrial combined heat and power (CHP) installations  (IEA, 2008, 2009a) For several renewable sources of energy, CHP (IEA, 2011b) offers useful load  balancing opportunities if coupled with low grade heat storage; this issue is discussed further in  Section 7.5.1. The use of wastes and biomass in the energy industry is currently limited, but  forecast to grow (IEA, 2009b). The cement industry incinerates (with due care for e.g.,  dioxins/furans) municipal solid waste and sewage sludge in kilns, providing ~17% of the thermal  energy required by European Union (EU) cement production in 2004 (IEA ETSAP, 2010). The  European paper industry reports that over 50% of its energy supply is from biomass (CEPI, 2012).  If electricity generation is decarbonized, greater electrification, for example appropriate use of  heat pumps instead of boilers (IEA, 2009b; HPTCJ, 2010), could also reduce emissions. Solar  21 of 112           Final Draft  Chapter 10  IPCC WGIII AR5  thermal energy for drying, washing, and evaporation may also be developed further (IEA, 2009c)  although to date this has not been implemented widely (Sims et al., 2011).   The International Energy Agency (IEA) forecasts that a large part of emission reduction in  industry will occur by Carbon dioxide capture and storage (CCS) (up to 30% in 2050) (IEA, 2009c).  Carbon dioxide capture and storage is largely discussed in Chapter 7. In gas processing  (Kuramochi et al., 2012a) and parts of the chemical industry (ammonia production without  downstream use of CO2), there might be early opportunities for application of CCS as the CO2 in  vented gas is already highly concentrated (up to 85%), compared to cement or steel (up to 30%).  Industrial utilization of CO2 was assessed in the IPCC Special Report on Carbon Dioxide Capture  and Storage (SRCCS) (Mazzotti et al., 2005) and it was found that potential industrial use of CO2  was rather small and the storage time of CO2 in industrial products often short. Therefore  industrial uses of CO2 are unlikely to contribute to a great extent to climate change mitigation.  However, currently CO2 use is subject of various industrial RD&DD projects (Research and  Development, Demonstration and Diffusion).  In terms of non CO2 emissions from industry, HFC 23 emissions, which arise in HCFC 22  production, can be reduced by process optimization and by thermal destruction. N2O emissions  from adipic and nitric acid production have decreased almost by half between 1990 and 2010  (EPA, 2012a) due to the implementation of thermal destruction and secondary catalysts.  Hydrofluorocarbons used as refrigerants can be replaced by alternatives (e.g., ammonia,  hydrofluoro olefins, HC, CO2). Replacement is also an appropriate measure to reduce HFC  emissions from foams (use of alternative blowing agents) or solvent uses. Emission reduction (in  the case of refrigerants) is possible by leak repair, refrigerant recovery and recycling, and proper  disposal. Emissions of PFCs, SF6 and nitrogen trifluoride (NF3) are growing rapidly due to flat  panel display manufacturing. Ninety eight percent of these emissions are in China (EPA, 2012a)  and can be countered by fuelled combustion, plasma, and catalytic technologies.   Material efficiency in production (M/P): Material efficiency delivering services with less new  material is a significant opportunity for industrial emissions abatement, that has had relatively  little attention to date (Allwood et al., 2012). Two key strategies would significantly improve  material efficiency in manufacturing existing products:   Reducing yield losses in materials production, manufacturing, and construction.  Approximately one tenth of all paper, a quarter of all steel, and a half of all aluminium  produced each year is scrapped (mainly in downstream manufacturing) and internally  recycled   see Figure 10.2. This could be reduced by process innovations and new  approaches to design (Milford et al., 2011).  Re using old material. A detailed study (Allwood et al., 2012, chap. 15) Chapter 15) on re use  of structural steel in construction concluded that there are no insurmountable technical  barriers to re use, that there is a profit opportunity, and that the potential supply is growing.  Material efficiency in product design (M/P). Although new steels and production techniques  have allowed relative light weighting of cars, in practice cars continue to become heavier as they  are larger and have more features. However, many products could be one third lighter without  loss of performance in use (Carruth et al., 2011) if design and production were optimized. At  present, the high costs of labour relative to materials and other barriers inhibit this opportunity,  except in industries such as aerospace where the cost of design and manufacture for lightness is  paid back through reduced fuel use. Substitution of one material by another is often technically  possible (Ashby, 2009), but options for material substitution as an abatement strategy are  limited: global steel and cement production exceeds 200 and 380 (kg/cap)/yr respectively, and  no other materials capable of delivering the same functions are available in comparable  quantities; epoxy based composite materials and magnesium alloys have significantly higher  embodied energy than steel or aluminium (Ashby, 2009) (although for vehicles this may be  22 of 112           Final Draft  Chapter 10  IPCC WGIII AR5  worthwhile if it allows significant savings in energy during use); wood is kiln dried, so in effect is  energy intensive (Puettmann and Wilson, 2005); and blast furnace slag and fly ash from coal fired power stations can substitute to some extent for cement clinker.   Using products more intensively (P/S). Products, such as food, that are intended to be  consumed in use are in many cases used inefficiently, and estimates show that up to one third of  all food in developed countries is wasted (Gustavsonn et al., 2011). This indicates the  opportunity for behaviour change to reduce significantly the demand for industrial production of  what currently become waste without any service provision. In contrast to these consumable  products, most durable goods are owned in order to deliver a  product service  rather than for  their own sake, so potentially the same level of service could be delivered with fewer products.  Using products for longer could reduce demand for replacement goods, and hence reduce  industrial emissions (Allwood et al., 2012). New business models could foster dematerialization  and more intense use of products. The ambition of the  sustainable consumption  agenda and  policies (see Section 10.11 and Chapter 3) aims towards this goal, although evidence of its  application in practice remains scarce.   Reducing overall demand for product services (S) (see Box 10.2). Industrial emissions would be  reduced if overall demand for product services were reduced (Kainuma et al., 2013)   if the  population chose to travel less (e.g., through more domestic tourism or telecommuting), heat or  cool buildings only to the degree required, or reduce unnecessary consumption or products.  Clear evidence that, beyond some threshold of development, populations do not become  happier  (as reflected in a wide range of socio economic measures) with increasing wealth,  suggests that reduced overall consumption might not be harmful in developed economies  (Layard, 2011; Roy and Pal, 2009; GEA, 2012), and a literature questioning the ultimate policy  target of GDP growth is growing, albeit without clear prescriptions about implementation  (Jackson, 2011).    Box 10.2. Service demand reduction and mitigation opportunities in industry sector: Besides technological mitigation measures, an additional mitigation option (see Figure 10.2.) for the  industry sector involves the end uses of industrial products that provide services to consumers (e.g.,  diet, mobility, shelter, clothing, amenities, health care and services, hygiene). Assessment of the  mitigation potential associated with this option is nascent, however, and important knowledge gaps  exist (for a more general review of sustainable consumption and production (SCP) policies, see  Section 10.11.3 and 4.4.3). The nature of the linkage between service demand and the demand for  industrial products is different and shown here through two examples representing both a direct and  an indirect link:  clothing demand, which is linked directly to the textile industry products (strong link)  tourism demand, which is linked directly to mobility and shelter demand but also indirectly to  industrial materials demand (weak link)  Clothing demand: Even in developed economies, consumers appear to have no absolute limit to  their demand for clothing, and if prices fall, will continue to purchase more garments: during the  period 2000 2005, the advent of  fast fashion  in the UK led to a drop in prices, but an increase in  sales equivalent to one third more garments per year per person with consequent increases in  material production and hence industrial emissions (Allwood et al., 2008). This growth in demand  relates to  fashion ,  conspicuous consumption  (Roy and Pal, 2009) rather than  need , and has  triggered a wave of interest in concepts like  sustainable lifestyle/fashion . While much of this  interest is related to marketing new fabrics linked to environmental claims, authors such as Fletcher  (2008) have examined the possibility that  commodity  clothing, which can be discarded easily,      23 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  would be used for longer and valued more, if given personal meaning by some shared activity or  association.  Tourism demand: GHG emissions triggered by tourism significantly contribute to global  anthropogenic CO2 emissions. Estimates show a range between 3.9% to 6% of global emissions, with  a best estimate of 4.9% (UNWTO et al., 2008). Worldwide, three quarters (75%) of tourism related  emissions are generated by transport and just over 20% by accommodation (UNWTO et al., 2008). A  minority of travellers (frequent travellers using the plane over long distances) (Gössling et al., 2009)  are responsible for the greater share of these emissions (Gössling et al., 2005; TEC and DEEE, 2008;  de Bruijn et al., 2010) (see Sections 8.1.2 and 8.2.1).  Mitigation options for tourism (Gössling, 2010; Becken and Hay, 2012) include technical,  behavioural, and organizational aspects. Many mitigation options and potentials are the same as  those identified in the transport and buildings chapters (see Chapters 8 and 9). However, the  demand reduction of direct tourism related products delivered by the industry in addition to  products for buildings and other infrastructure e.g., snow lifts and associated accessories, artificial  snow, etc. can also impact the industry sector as they determine product and material demand of  the sector. Thus, the industry sector has only limited influence on emissions from tourism (via  reduction of the embodied emissions), but is affected by decisions in mitigation measures in  tourism. For example, a sustainable lifestyle resulting in a lower demand for transportation can  reduce demand for steel to manufacture cars and contribute to lessen emissions in the industry  sector.   A business as usual (BAU) scenario (UNWTO et al., 2008) projects emissions from tourism to grow by  130% from 2005 to 2035 globally; notably the emissions of air transport and accommodation will  triple. Two alternative scenarios show that the contribution of technology is limited in terms of  achievable mitigation potentials and that even when combining technological and behavioural  potentials, no significant reduction can be achieved in 2035 compared to 2005. Insufficient  technological mitigation potential and the need for drastic changes in the forms of tourism (e.g.,  reduction in long haul travel (UNWTO et al., 2008)), in the place of tourism (Gössling et al., 2010;  Peeters and Landré, 2011) and in the uses of leisure time, implying changes in lifestyles (Ceron and  Dubois, 2005; Dubois et al., 2011) are the limiting factors.   Several studies show that for some countries (e.g., the UK) an unrestricted growth of tourism would  consume the whole carbon budget compatible with the +2°C target by 2050 (Bows et al., 2009; Scott  et al., 2010). However, some authors also point out that by reducing demand in some small  subsectors of tourism (e.g., long haul, cruises) effective emission reductions may be reached with a  minimum of damage to the sector (Peeters and Dubois, 2010).  Tourism is an example of human activity where the discussion of mitigation is not only technology driven, but strongly correlated with lifestyles. For many other activities, the question is how certain  mitigation goals would result in consequences for the activity level with indirect implications for  industry sector emissions.   In the rest of this section, the application of these six strategies, where it exists, is reviewed for the  major emitting industrial sectors.  10.4.1    Iron and Steel   Steel continues to dominate global metal production, with total crude steel production of around  1490 Mt in 2011. In 2011, China produced 46% of the world's steel. Other significant producers  include the EU 27 (12%), the United States (8%), Japan (7%), India (5%) and Russia (5%) (WSA,  2012b). Seventy percent (70%) of all steel is made from pig iron produced by reducing iron oxide in a  blast furnace using coke or coal before reduction in an oxygen blown converter (WSA, 2011). Steel is  also made from scrap (23%) or from iron oxide reduced in solid state (direct reduced iron, 7%)      24 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  melted in electric arc furnaces before refining. The specific energy intensity of steel production  varies by technology and region. Global steel sector emissions were estimated to be 2.6 GtCO2 in  2006, including direct and indirect emissions (IEA, 2009c; Oda et al., 2012a).   Energy efficiency. The steel industry is pursuing: improved heat and energy recovery from process  gases, products and waste streams; improved fuel delivery through pulverized coal injection;  improved furnace designs and process controls; and reduced number of temperature cycles through  better process coupling such as in Endless Strip Production (ESP) (Arvedi et al., 2008) and use of  various energy efficiency technologies  (Worrell et al., 2010; Xu et al., 2011a)including coke dry  quenching and top pressure recovery turbines (LBNL and AISI, 2010). Efforts to promote energy  efficiency and to reduce the production of hazardous wastes are the subject of both international  guidelines on environmental monitoring (International Finance Corporation, 2007) and regional  benchmarks on best practice techniques (EC, 2012a).   Emissions efficiency: The coal and coke used in conventional iron making is emissions intensive;  switching to gas based direct reduced iron (DRI) and oil and natural gas injection has been used,  where economic and practicable. However, DRI production currently occurs at smaller scale than  large blast furnaces (Cullen et al., 2012), and any emissions benefit depends on the emissions  associated with increased electricity use for the required electronic arc furnace (EAF) process.  Charcoal, another coke substitute, is currently used for iron making, notably in Brazil (Taibi et al.;  Henriques Jr. et al., 2010), and processing to improve charcoal s mechanical properties is another  substitute under development, although extensive land area is required to produce wood for  charcoal. Other substitutions include use of ferro coke as a reductant (Takeda et al., 2011) and the  use of biomass and waste plastics to displace coal (IEA, 2009c). The Ultra Low CO2 Steelmaking  (ULCOS) programme has identified four production routes for further development: top gas  recycling applied to blast furnaces, HIsarna (a smelt reduction technology), advanced direct  reduction, and electrolysis. The first three of these routes would require CCS (discussion of the costs,  risks, deployment barriers and policy aspects of CCS can be found Sections 7.8.2, 7.9, 7.10, and 7.12),  and the fourth would reduce emissions only if powered by low carbon electricity. Hydrogen fuel  might reduce emissions if a cost effective emissions free source of hydrogen were available at scale,  but at present this is not the case. Hydrogen reduction is being investigated in the United States.  (Pinegar et al., 2011) and in Japan as Course 50 (Matsumiya, 2011). Course 50 aims to reduce CO2  emissions by approximately 30% by 2050 through capture, separation and recovery. Molten oxide  electrolysis (Wang et al., 2011) could reduce emissions if a low or CO2 free electricity source was  available. However this technology is only at the very early stages of development and identifying a  suitable anode material has proved difficult.   Material efficiency: Material efficiency offers significant potential for emissions reductions in the  iron and steel sector (Allwood et al., 2010) and cost savings (Roy et al., 2013). Milford et al. (2011)  examined the impact of yield losses along the steel supply chain and found that 26% of global liquid  steel is lost as process scrap, so its elimination could have reduced sectoral CO2 emissions by 16% in  2008. Cooper et al. (2012) estimate that nearly 30% of all steel produced in 2008 could be re used in  future. However, in many economies steel is relatively cheap in comparison to labour, and this  difference is amplified by tax policy, so economic logic currently drives a preference for material  inefficiency to reduce labour costs (Skelton and Allwood, 2013b).  Reduced product and service demand: Commercial buildings in developed economies are currently  built with up to twice the steel required by safety codes, and are typically replaced after around 30 60 years (Michaelis and Jackson, 2000; Hatayama et al., 2010; Pauliuk et al., 2012). The same service  (e.g., office space provision) could be achieved with one quarter of the steel, if safety codes were  met accurately and buildings replaced not as frequently, but after 80 years. Similarly, there is a  strong correlation between vehicle fuel consumption and vehicle mass. For example, in the UK, 4  or  5 seater cars are used for around 4 hours per week by 1.6 people (DfT, 2011), so a move towards  smaller, lighter fuel efficient vehicles (FEVs), used for more hours per week by more people could      25 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  lead to a four fold or more reduction in steel requirements, while providing a similar mobility  service. There is a well known tradeoff between the emissions embodied in producing goods and  those generated during use, so product life extension strategies should account for different  anticipated rates of improvement in embodied and use phase emissions (Skelton and Allwood,  2013a).  10.4.2    Cement   Emissions in cement production arise from fuel combustion (to heat limestone, clay, and sand to  1450°C) and from the calcination reaction. Fuel emissions (0.8 GtCO2 (IEA, 2009d) around 40% of the  total) can be reduced through improvements in energy efficiency and fuel switching while process  emissions (the calcination reaction, ~50% of the total) are unavoidable, so can be reduced through  reduced demand, including through improved material efficiency. The remaining 10% of CO2  emissions arise from grinding and transport (Bosoaga et al., 2009).  Energy efficiency. Estimates of theoretical minimum primary energy consumption for thermal (fuel)  energy use ranges between 1.6 and 1.85 GJ/t (Locher, 2006). For large new dry kilns, the  best  possible  energy efficiency is 2.7 GJ/t clinker with electricity consumption of 80 kWh/t clinker or  lower (Muller and Harnish, 2008).  International best practice  final energy ranges from 1.8 to 2.1 to  2.9 GJ/t cement and primary energy ranges from 2.15 to 2.5 to 3.4 GJ/t cement for production of  blast furnace slag, fly ash, and Portland cement, respectively (Worrell et al., 2008b). Klee et al.  (2011) shows that CO2 emissions intensities have declined in most regions of the world, with a 2009  global average intensity (excluding emissions from the use of alternative fuels) of 633 kg CO2 per  tonne of cementitious product, a decline of 6% since 2005 and 16% since 1990. Many options still  exist to improve the energy efficiency of cement manufacturing (Muller and Harnish, 2008; Worrell  et al., 2008a; Worrell and Galitsky, 2008; APP, 2010).   Emissions efficiency and fuel switching: The majority of cement kilns burn coal (IEA/WBCSD, 2009),  but fossil or biomass wastes can also be burned. While these alternatives have a lower CO2 intensity  depending on their exact composition (Sathaye et al., 2011) and can result in reduced overall CO2  emissions from the cement industry (CEMBUREAU, 2009), their use can also increase overall energy  use per tonne of clinker produced if the fuels require pre treatment such as drying (Hand, 2007).  Waste fuels have been used in cement production for the past 20 years in Europe, Japan, the United  States, and Canada (GTZ/Holcim, 2006; Genon and Brizio, 2008); The Netherlands and Switzerland  use 83% and 48% waste, respectively, as a cement fuel (WBCSD, 2005). It is important that wastes  are burned in accordance with strict environmental guidelines as emissions resulting from such  wastes can cause adverse environmental impacts such as extremely high concentrations of  particulates in ambient air, ground level ozone, acid rain, and water quality deterioration  (Karstensen, 2007; EPA, 201210).   Cement kilns can be fitted to harvest CO2, which could then be stored, but this has yet to be piloted  and  commercial scale CCS in the cement industry is still far from deployment  (Naranjo et al.,  2011). CCS potential in the cement sector has been investigated in several recent studies: IEAGHG,  2008; Barker et al., 2009; Croezen and Korteland, 2010; Bosoaga et al., 2009. A number of emerging  technologies aim to reduce emissions and energy use in cement production (Hasanbeigi et al.,  2012b), but there are regulatory, supply chain, product confidence and technical barriers to be  overcome before such technologies (such as geopolymer cement) could be widely adopted (Van  Deventer et al., 2012).  Material efficiency: Almost all cement is used in concrete to construct buildings and infrastructure  (van Oss and Padovani, 2002). For concrete, which is formed by mixing cement, water, sand, and  aggregates, two applicable material efficiency strategies are: using less cement initially and reusing                                                               10  See: http://www2.epa.gov/enforcement/cement manufacturing enforcement initiative      26 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  concrete components at end of first product life (distinct from down cycling of concrete into  aggregate which is widely applied). Less cement can be used by placing concrete only where  necessary, for example Orr et al. (2010) use curved fabric moulds to reduce concrete mass by 40%  compared with a standard, prismatic shape. By using higher strength concrete, less material is  needed; CO2 savings of 40% have been reported on specific projects using  ultra high strength   concretes (Muller and Harnish, 2008). Portland cement comprises 95% clinker and 5% gypsum, but  cement can be produced with lower ratios of clinker through use of additives such as blast furnace  slag, fly ash from power plants, limestone, and natural or artificial pozzolans. The weighted average  clinker to cement ratio for the companies participating in the WBCSD GNR project was 76% in 2009  (WBCSD, 2011). In China, this ratio was 63% in 2010 (NDRC, 2011a). In India the ratio is 80% but  computer optimization is improving this (India Planning Commission, 2007). Reusing continuous  concrete elements is difficult because it requires elements to be broken up but remain undamaged.  Concrete blocks can be reused, as masonry blocks and bricks are reused already, but to date there is  little published literature in this area.   Reduced product and service demand: Cement, in concrete, is used in the construction of buildings  and infrastructure. Reducing demand for these products can be achieved by extending their  lifespans or using them more intensely. Buildings and infrastructure have lifetimes less than 80 years  less than 40 years in East Asia (Hatayama et al., 2010), however their core structural elements  (those that drive demand for concrete) could last over 200 years if well maintained. Reduced  demand for building and infrastructure services could be achieved by human settlement design,  increasing the number of people living and working in each building, or decreasing per capita  demand for utilities (water, electricity, waste), but has as yet had little attention.  10.4.3    Chemicals (Plastics/Fertilizers/Others)   The chemicals industry produces a wide range of different products on scales ranging over several  orders of magnitude. This results in methodological and data collection challenges, in contrast to  other sectors such as iron and steel or cement (Saygin et al., 2011a). However, emissions in this  sector are dominated by a relatively small number of key outputs: ethylene, ammonia, nitric acid,  adipic acid and caprolactam used in producing plastics, fertilizer, and synthetic fibres. Emissions arise  both from the use of energy in production and from the venting of by products from the chemical  processes. The synthesis of chlorine in chlor alkali electrolysis is responsible for about 40% of the  electricity demand of the chemical industry.  Energy efficiency: Steam cracking for the production of light olefins, such as ethylene and propylene,  is the most energy consuming process in the chemical industry, and the pyrolysis section of steam  cracking consumes about 65% of the total process energy (Ren et al., 2006). Upgrading all steam  cracking plants to best practice technology could reduce energy intensity by 23% (Saygin et al.,  2011a; b) with a further 12% saving possible with best available technology. Switching to a biomass based route to avoid steam cracking could reduce CO2 intensity (Ren and Patel, 2009) but at the cost  of higher energy use, and with high land use requirements. Fertilizer production accounts for around  1.2% of world energy consumption (IFA, 2009), mostly to produce ammonia (NH3). 22% energy  savings are possible (Saygin et al., 2011b) by upgrading all plants to best practice technology. Nitrous  oxide (N2O) is emitted during production of adipic and nitric acids. By 2020 annual emissions from  these industries are estimated to be 125 MtCO2eq (EPA, 2012a). Many options exist to reduce  emissions, depending on plant operating conditions (Reimer et al., 2000). A broad survey of options  in the petrochemicals industry is given by Neelis et al. (2008). Plastics recycling saves energy, but to  produce a high value recycled material, a relatively pure waste stream is required: impurities greatly  degrade the properties of the recycled material. Some plastics can be produced from mixed waste  streams, but generally have a lower value than virgin material. A theoretical estimate suggest that  increasing use of combined heat and power plants in the chemical and petrochemical sector from      27 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  current levels of 10 to 25% up to 100% would result in energy savings up to 2 EJ for the activity level  in 2006 (IEA, 2009e).  Emissions efficiency: There are limited opportunities for innovation in the current process of  ammonia production via the Haber Bosch process (Erisman et al., 2008). Possible improvements  relate to the introduction of new N2O emission reduction technologies in nitric acid production such  as high temperature catalytic N2O decomposition (Melián Cabrera et al., 2004) which has been  shown to reduce N2O emissions by up to 70 90% (BIS Production Partner, 2012; Yara, 2012). While  implementation of this technology has been largely completed in regions pursuing carbon emission  reduction (e.g., the EU through the Emissions Trading Scheme (ETS) or China and other developing  countries through Clean Development Mechanism (CDM), the implementation of this technology still  offers large mitigation potential in other regions like the former Soviet Union and the United States  (Kollmus and Lazarus, 2010). Fuel switching can also lead to significant emission reductions and  energy savings. For example, natural gas based ammonia production results in 36% emission  reductions compared to naphtha, 47% compared to fuel oil and 58% compared to coal. The total  potential mitigation arising from this fuel switching would amount to 27 MtCO2eq /year GHG  emissions savings (IFA, 2009).   Material efficiency: Many of the material efficiency measures identified above can be applied to the  use of plastics, but this has had little attention to date, although Hekkert et al. (2000) anticipate a  potential 51% saving in emissions associated with the use of plastic packaging in the Netherlands  from application of a number of material efficiency strategies. More efficient use of fertilizer gives  benefits both in reduced direct emissions of N2O from the fertilizer itself and from reduced fertilizer  production (Smith et al., 2008).   10.4.4    Pulp and Paper   Global paper production has increased steadily during the last three decades (except for a minor  production decline associated with the 2008 financial crisis) (FAO, 2013), with global demand  expansion currently driven by developing nations. Fuel and energy use are the main sources of GHG  emissions during the forestry, pulping, and manufacturing stages of paper production.  Energy efficiency: A broad range of energy efficiency technologies are available for this sector,  reviewed by Kramer et al. (2009), and Laurijssen et al. (2012). Over half the energy used in paper  making is to create heat for drying paper after it has been laid and Laurijssen et al. (2010) estimate  that this could be reduced by ~32% by the use of additives, an increased dew point, and improved  heat recovery. Energy savings may also be obtained from emerging technologies (Jacobs and IPST,  2006; Worrell et al., 2008b; Kong et al., 2012) such as black liquor gasification, which uses the by product of the chemical pulping process to increase the energy efficiency of pulp and paper mills  (Naqvi et al., 2010). With commercial maturity expected within the next decade (Eriksson and  Harvey, 2004), black liquor gasification can be used as a waste to energy method with the potential  to achieve higher overall energy efficiency (38% for electricity generation) than the conventional  recovery boiler (9 14% efficiency) while generating an energy rich syngas from the liquor (Naqvi et  al., 2010). The syngas can also be utilized as a feedstock for production of renewable motor fuels  such as bio methanol, dimethyl ether, and FT diesel or hydrogen (Pettersson and Harvey, 2012).  Gasification combined cycle systems have potential disadvantages (Kramer et al., 2009), including  high energy investments to concentrate sufficient black liquor solids and higher lime kiln and  causticizer loads compared to Tomlinson systems. Paper recycling generally saves energy and may  reduce emissions (although electricity in some primary paper making is derived from biomass  powered CHP plants) and rates can be increased (Laurijssen et al., 2010b). Paper recycling is also  important as competition for biomass will increase with population growth and increased use of  biomass for fuel.      28 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Emissions efficiency: Direct CO2 emissions from European pulp and paper production reduced from  0.57 to 0.34 ktCO2 per kt of paper between 1990 and 2011, while indirect emissions reduced from  0.21 to 0.09 ktCO2 per kt of paper (CEPI, 2012). Combined heat and power (CHP) accounted for 95%  of total on site electricity produced by EU paper makers in 2011, compared to 88% in 1990 (CEPI,  2012), so has little further potential in Europe, but may offer opportunities globally. The global pulp  and paper industry usually has ready access to biomass resources and it generates approximately a  third of its own energy needs from biomass (IEA, 2009c), 53% in the EU (CEPI, 2012). Paper recycling  can have a positive impact on energy intensity and CO2 emissions over the total lifecycle of paper  production (Miner, 2010; Laurijssen et al., 2010). Recycling rates in Europe and North America  reached 70% and 67% in 2011, respectively11 (CEPI, 2012), leaving a small range for improvement  when considering the limit of 81% estimated by (CEPI, 2006). In Europe, the share of recovered  paper used in paper manufacturing has increased from roughly 33% in 1991 to around 44% in 2009  (CEPI, 2012). The emissions consequences of forestry associated with paper production are  discussed in Chapter 11.  Material efficiency: Higher material efficiency could be achieved through increased use of duplex  printing, print on demand, improved recycling yields and the manufacturing of lighter paper.  Recycling yields could be improved by the design of easy to remove inks and adhesives and less  harmful de inking chemicals; paper weights for newspapers and office paper could be reduced from  45 and 80 g/m2 to 42 and 70 g/m2 respectively and might lead to a 37% saving in papers used for  current service levels (Van den Reek, 1999; Hekkert et al., 2002).   Reduced demand: Opportunities to reduce demand for paper products in the future include printing  on demand, removing print to allow paper re use (Leal Ayala et al., 2012), and substituting e readers  for paper. The latter has been the subject of substantial academic research (e.g., Gard and Keoleian,  2002; Reichart and Hischier, 2003) although the substitution of electronic media for paper has mixed  environmental outcomes, with no clear statistics yet on whether such media reduces paper demand,  or whether it leads to a net reduction in emissions.  10.4.5    Non Ferrous (Aluminium/others)   Annual production of non ferrous metals is small compared to steel, and is dominated by aluminium,  with 56 Mt made globally in 2009, of which 18 Mt was through secondary (recycled) production.  Production is expected to rise to 97 Mt by 2020 (IAI, 2009). Magnesium is also significant, but with  global primary production of only 653 Kt in 2009 (IMA, 2009) is dwarfed by aluminium.  Energy efficiency: Aluminium production is particularly associated with high electricity demand.  Indirect (electricity related) emissions account for over 80% of total GHG emissions in aluminium  production. The sector accounts for 3.5% of global electricity consumption (IEA 2008) and energy  accounts for nearly 40% of aluminium production costs.   Aluminium can be made from raw materials (bauxite) or through recycling. Best practice primary  aluminium production from alumina production through ingot casting consumes 174 GJ/t  primary energy (accounting for electricity production, transmission, distribution losses) and 70.6 GJ/t  final energy (Worrell et al., 2008b). Best practice for electrolysis which consumes roughly 85% of  the energy used for production of primary aluminium is about 47 GJ/t final energy while the  theoretical energy requirement is 22 GJ/t final energy (BCS Inc., 2007). Best practice for recycled  aluminium production is 7.6 GJ/t primary energy and 2.5 GJ/t final energy (Worrell et al., 2008b),  although in reality, recycling uses much more energy due to pre processing of scrap,  sweetening   with virgin aluminium and downstream processing after casting. The U.S. aluminium industry  consumes almost three times the theoretical minimum energy level (BCS Inc., 2007). The options for                                                                American Forest and Paper Association, Paper Recycles   Statistics   Paper & Paperboard Recovery  http://www.paperrecycles.org/statistics/paper paperboard recovery.   11     29 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  new process development in aluminium production multipolar electrolysis cells, inert anodes and  carbothermic reactions have not yet reached commercial scale (IEA, 2012d). The IEA estimates that  application of best available technology can reduce energy use for aluminium production by about  10% compared with current levels (IEA, 2012d).   At present, post consumer scrap makes up only 20% of total aluminium recycling (Cullen and  Allwood, 2013), which is dominated by internal  home  or  new  scrap (see Figure 10.2.). As per  capita stock levels saturate in the 21st century, there could be a shift from primary to secondary  aluminium production (Liu et al., 2012a) if recycling rates can be increased, and the accumulation of  different alloying elements in the scrap stream can be controlled. These challenges will require  improved end of life management and even new technologies for separating the different alloys (Liu  et al., 2012a).  Emissions efficiency: Data on emissions intensities for a range of non ferrous metals are given by  (Sjardin, 2003). The aluminium industry alone contributed 3% of CO2 emissions from industry in 2006  (Allwood et al., 2010). In addition to CO2 emissions resulting from electrode and reductant use, the  production of non ferrous metals can result in the emission of high global warming potential (GWP)  GHGs, for example PFCs (such as CF4) in aluminium or SF6 in magnesium. PFCs result from carbon in  the anode and fluorine in the cryolite. The reaction can be minimized by controlling the process to  prevent a drop in alumina concentrations, which triggers the process12.   Material efficiency: For aluminium, there are significant carbon abatement opportunities in the area  of material efficiency and demand reduction. From liquid aluminium to final product, the yield in  forming and fabrication is only 59%, which could be improved by near net shape casting and  blanking and stamping process innovation (Milford et al., 2011). For chip scrap produced from  machining operations (in aluminium, for example (Tekkaya et al., 2009) or magnesium (Wu et al.,  2010)) extrusion, processes are being developed to bond scrap in the solid state to form a relatively  high quality product potentially offering energy savings of up to 95% compared to re melting.  Aluminium building components (window frames, curtain walls, and cladding) could be reused when  a building is demolished (Cooper and Allwood, 2012) and more modular product designs would  allow longer product lives and an overall reduction in demand for new materials (Cooper et al.,  2012).  10.4.6    Food Processing  The food industry as discussed in this chapter includes all processing beyond the farm gate, while  everything before is in the agriculture industry and discussed in Chapter 11. In the developed world,  the emissions released beyond the farm gate are approximately equal to those released before.  Garnett (2011) suggests that provision of human food drives around 17.7 GtCO2eq in total.  Energy efficiency: The three largest uses of energy in the food industry in the United States are  animal slaughtering and processing, wet corn milling, fruit and vegetable preservation, accounting  for 19%, 15%, and 14% of total use, respectively (US EIA, 2009). Increased use of heat exchanger  networks or heat pumps (Fritzson and Berntsson, 2006; Sakamoto et al., 2011), combined heat and  power, mechanical dewatering compared to rotary drying (Masanet et al., 2008), and thermal and  mechanical vapour recompression in evaporation further enhanced by use of reverse osmosis can  deliver energy use efficiency. Many of these technologies could also be used in cooking and drying in  other parts of the food industry. Savings in energy for refrigeration could be made with better  insulation and reduced ventilation in fridges and freezers. Dairy processing is also among the most  energy  and carbon intensive activities within the global food production industry, with estimated  annual emissions of over 128 MtCO2 (Xu and Flapper, 2009, 2011). Within dairy processing, cheese                                                               http://www.aluminum.org/Content/NavigationMenu/TheIndustry/Environment/ReducingPFCEmissionsinthe AluminumIndustry/default.htm.  12     30 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  production is the most energy intensive sector (Xu et al., 2009). Ramirez and Block (2006) report that  EU dairy operations, having improved in the 1980s and 1990s, are now reaching a plateau of energy  intensity, but Brush et al. (2011) provide a survey of best practice opportunities for energy efficiency  in dairy operations.  Emissions efficiency: The most cost effective reduction in CO2 emissions from food production is by  switching from heavy fuel oil to natural gas. Other ways of improving emissions efficiency involve  using lower emission modes of transport (Garnett, 2011). In transporting food, there is a tradeoff  between local sourcing and producing the food in areas where there are other environmental  benefits (Sim et al., 2007; Edwards Jones et al., 2008). Landfill emissions associated with food waste  could be reduced by use of anaerobic digestion processes (Woods et al., 2010).   Demand reduction: Overall demand for food could be reduced without sacrificing well being (GEA,  2012). Up to one third of food produced for human consumption is wasted in either in the  production/retailing stage, or by consumers ((Gunders, 2012) estimates 40% waste in the United  States). Gustavsonn et al. (2011) suggest that, in developed countries, consumer behaviour could be  changed, and  best before dates  reviewed. Increasing cooling demand, the globalization of the food  system with corresponding transport distances, and the growing importance of processed  convenience food are also important drivers (GEA, 2012). Globally, approximately 1.5 billion out of 5  billion people over the age of 20 are overweight and 500 million are obese (Beddington et al., 2011).  Demand for high emission food such as meat and dairy products could be replaced by demand for  other, lower emission foods. Meat and dairy products contribute to half of the emissions from food  (when the emissions from the up stream processes are included) according to Garnett (2009), while  Stehfest et al. (2009) puts the figure at 18% of global GHG emissions, and Wirsenius (2003) estimates  that two thirds of food related phytomass is consumed by animals, which provide just 13% of the  gross energy of human diets. Furthermore, demand is set to double by 2050, as developing nations  grow wealthier and eat more meat and dairy foods (Stehfest et al., 2009; Garnett, 2009). In order to  maintain a constant total demand for meat and dairy, Garnet (2009) suggests that by 2050 average  per capita consumption should be around 25 kg meat and 50 litres of milk per week, which is around  four times less than current averages in developed economies.  10.4.7    Textiles and Leather  In 2009, textiles and leather manufacturing consumed 2.15 EJ final energy globally. Global  consumption is dominated by Asia, which was responsible for 65% of total world energy use for  textiles and leather manufacturing in 2009. In the United States, about 45% of the final energy used  for textile mills is natural gas, about 35% is net electricity (site), and 14% coal (US EIA, 2009). In  China, final energy consumption for textiles production is dominated by coal (39%) and site  electricity (38%) (NBS, 2012). In the US textile industry, motor driven systems and steam systems  dominate energy end uses. Around 36% of the energy input to the US textile industry is lost onsite,  with motor driven systems responsible for 13%, followed by energy distribution and boiler losses of  8% and 7%, respectively (US DoE, 2004b).   Energy and emissions efficiency: Numerous energy efficiency technologies and measures exist that  are applicable to the textile industry (CIPEC, 2007; Hasanbeigi and Price, 2012). For Taiwan, Province  of China, Hong et al. (2010) report energy savings of about 1% in textile industry following the  adoption of energy saving measures in 303 firms (less than 10% of the total number of local textile  firms in 2005) (Chen Chiu, 2009). In India, CO2 emissions reductions of at least 13% were calculated  based on implementation of operations and maintenance improvements, fuel switching, and  adoption of five energy efficient technologies (Velavan et al., 2009).  Demand reduction: see Box 10.2.       31 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.4.8    Mining  Energy efficiency: The energy requirements of mining are dominated by grinding (comminution) and  the use of diesel powered material handling equipment (US DoE, 2007; Haque and Norgate, 2013).  The major area of energy usage up to 40% of the total is in electricity for commination (Smith,  2012). Underground mining requires more energy than surface mining due to greater requirements  for hauling, ventilation, water pumping, and other operations (US DoE, 2007). Strategies for GHG  mitigation are diverse. An overall scheme to reduce energy consumption is the implementation of  strategies that upgrade the ore body concentration before crushing and grinding, through resource  characterization by geo metallurgical data and methods (Bye, 2005, 2007, 2011; CRC ORE, 2011;  Smith, 2012). Selective blast design, combined with ore sorting and gangue rejection, significantly  improve the grade of ore being fed to the crusher and grinding mill, by as much as 2.5 fold, this leads  to large reductions of energy usage compared to business as usual (CRC ORE, 2011; Smith, 2012).   There is also a significant potential to save energy in comminution through the following options:  more crushing, less grinding, using more energy efficient crushing technologies, removing minerals  and gangue from the crushing stage, optimizing the particle size feed for grinding mills from crushing  mills, selecting target product size(s) at each stage of the circuit, using advanced flexible  comminution circuits, using more efficient grinding equipment, and by improving the design of new  comminution equipment (Smith, 2012).  Other important energy savings opportunities are in the following areas: a) separation processes    mixers, agitators and froth flotation cells, b) drying and dewatering in mineral processing, c)  materials movement, d) air ventilation and conditioning opportunities, e) processing site energy  demand management and waste heat recovery options, f) technology specific for lighting, motors,  pumps and fans and air compressor systems, and g) improvement in energy efficiency of product  transport from mine site to port (Rathmann, 2007; Raaz and Mentges, 2009; Daniel et al., 2010;  Norgate and Haque, 2010; DRET, 2011; Smith, 2012).   Recycling represents an important source of world s metal supply and it can be increased as a means  of waste reduction (see Section 10.14) energy saving in metals production. In recent years, around  36% of world s gold supply was from recycled scrap (WGC, 2011), 25% of silver (SI and GFMS, 2013),  and 35 % of copper (ICSG, 2012).  Emissions efficiency: Substitution of onsite fossil fuel electricity generators with renewable energy is  an important mitigation strategy. Cost effectiveness depends on the characteristics of each site  (Evans & Peck, 2011; Smith, 2012).  Material efficiency: In the extraction of metal ores, one of the greatest challenges for energy  efficiency enhancement is that of recovery ratio, which refers to the percentage of valuable ore  within the total mine material. Lower grades inevitably require greater amounts of material to be  moved per unit of product. The recovery ratio for metals averages about 4.5% (US DoE, 2007). The  grade  of recyclable materials is often greater than the one of ores being currently mined; for this  reason, advancing recycling for mineral commodities would bring improvements in the overall  energy efficiency (IIED, 2002).  10.5   Infrastructure and systemic perspectives  Improved understanding of interactions among different industries, and between industry and other  economic sectors, is becoming more important in a mitigation and sustainable development context.  Strategies adopted in other sectors may lead to increased (or decreased) emissions from the  industry sector. Collaborative activities within and across the sector may enhance the outcome of  climate change mitigation. Initiatives to adopt a system wide view face a barrier as currently  practiced system boundaries often pose a challenge. A systemic approach can be at different levels,  namely, at the micro level (within a single company, such as process integration and cleaner      32 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  production), the meso level (between three or more companies, such as eco industrial parks) and  the macro level (cross sectoral cooperation, such as urban symbiosis or regional eco industrial  network). Systemic collaborative activities can reduce the total consumption of materials and energy  and can contribute to the reduction of GHG emissions. The rest of this section focuses mainly on the  meso  and macro levels as micro level options have already been covered in Section 10.4.  10.5.1    Industrial clusters and parks (meso level)  Small and medium enterprises (SMEs) often suffer not only from difficulties arising due to their size  and lack of access to information, but also from being isolated while in operation (Sengenberger and  Pyke, 1992). Clustering of SMEs usually in the form of industrial parks can facilitate growth and  competitiveness (Schmitz, 1995). In terms of implementation of mitigation options, SMEs in  clusters/parks can benefit from by products exchange (including waste heat) and infrastructure  sharing, as well as joint purchase (e.g., of energy efficient technologies). Cooperation in eco industrial parks (EIPs) reduces the cumulative environmental impact of the whole industrial park  (Geng and Doberstein, 2008). Such an initiative reduces the total consumption of virgin materials  and final waste and improves the efficiency of companies and their competitiveness. Since the  extraction and transformation of virgin materials is usually energy intensive, EIP efforts can abate  industrial GHG emissions. For example, in order to encourage target oriented cooperation, Chinese  eco industrial park standards  contain quantitative indicators for material reduction and recycling,  as well as pollution control (Geng et al., 2009). Two pioneering eco industrial parks in China achieved  over 80% solid waste reuse ratio and over 82% industrial water reuse ratio during 2002 2005 (Geng  et al., 2008). The Japanese eco town project in Kawasaki achieved substitution of 513,000 tonnes of  raw material, resulting in the avoidance of 1% of the current total landfill in Japan during 1997 2006  (van Berkel et al., 2009).  In order to encourage industrial symbiosis13 at the industrial cluster level, different kinds of technical  infrastructure (e.g., pipelines) as well as non technical infrastructure (e.g., information exchange  platforms) are necessary so that both material and energy use can be optimized (Côté and Hall,  1995). Although additional investment for infrastructure building is unavoidable, such an investment  can bring both economic and environmental benefits. In India there have been several instances  where the government has taken proactive approaches to provide land and infrastructure, access to  water, non conventional (MSW based) power to private sector industries such as chemicals, textile,  paper, pharmaceutical companies, cement operating in clusters (IBEF, 2013). A case study in the  Tianjin Economic Development Area in northern China indicates that the application of an integrated  water optimization model (e.g., reuse of treated wastewater by other firms) can reduce the total  water related costs by 10.4%, fresh water consumption by 16.9% and wastewater discharge by  45.6% (Geng et al., 2007). As an additional consequence, due to the strong energy water nexus,  energy use and release of GHG emissions related to fresh water provision or wastewater treatment  can be reduced.  10.5.2    Cross sectoral cooperation (macro level)  Besides inter industry cooperation, opportunities arise from the geographic proximity of urban and  industrial areas, leading to transfer of urban refuse as a resource to industrial applications, and vice  versa (Geng et al., 2010a). For instance, the cement industry can accept as their inputs not only  virgin materials such as limestone and coal, but also various wastes/industrial by products (see  Section 10.4), thus contributing up to 15 20% CO2 emission reduction (Morimoto et al., 2006;  Hashimoto et al., 2010). In Northern Europe (e.g., Sweden, Finland, and Denmark), for example, both  exhaust heat from industries and heat generated from burning municipal wastes are supplied to                                                                Note that industrial symbiosis is further covered in Chapter 4 (Sustainable Development and Equity), Section  4.4.3.3  13     33 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  local municipal users through district heating (Holmgren and Gebremedhin, 2004). Industrial waste  can also be used to reduce conventional fuel demand in other sectors. For example, the European  bio DME project14 aims to supply heavy duty trucks and industry with dimethyl ether fuel made  from black liquor produced by the pulp industry. However, careful design of regional recycling  networks has to be undertaken because different types of waste have different characteristics and  optimal collection and recycling boundaries and therefore need different infrastructure support  (Chen et al., 2012).   The reuse of materials recovered from urban infrastructures can reduce the demand for primary  products (e.g., ore) and thus contribute to climate change mitigation in extractive industries  (Klinglmair and Fellner, 2010). So far, reuse of specific materials is only partly established and  potential for future urban mining is growing as urban stock of materials still increases. While in the  2011 fiscal year in Japan only 5.79 Mt of steel scrap came from the building sector, 13.6 Mt were  consumed by the building sector. In total, urban stock of steel is estimated to be 1.33 Gt in Japan  where the total annual crude steel production was 0.106 Gt (NSSMC, 2013).   10.5.3    Cross sectoral implications of mitigation efforts  Currently much attention is focused on improving energy efficiency within the industry sector (Yeo  and Gabbai, 2011). However, many mitigation strategies adopted in other sectors significantly affect  activities of the industrial sector and industry related GHG emissions. For example, consumer  preference for lightweight cars can incentivize material substitution for car manufacturing (e.g.,  potential lightweight materials: see Chapter 8), growing demand for rechargeable vehicle batteries  (see Chapter 8) and the demand for new materials (e.g., innovative building structures or thermal  insulation for buildings: see Chapter 9; high temperature steel demand by power plants: see Chapter  7). These materials or products consume energy at the time of manufacturing, so changes outside  the industry sector that lead to changes in demand for energy saving products within the industry  sector can be observed over a long period of time (ICCA, 2009). Thus, for a careful assessment of  mitigation options, a lifecycle perspective is needed so that a holistic emission picture (including  embodied emissions) can be presented. For instance, the increase in GHG emissions from increased  aluminium production could under specific circumstances be larger than the GHG savings from  vehicle weight reduction (Geyer, 2008). Kim et al. (2010)have, however, indicated that in about two  decades, closed loop recycling can significantly reduce the impacts of aluminium intensive vehicles.   Increasing demand on end use related mitigation technologies could contribute to potential material  shortages. Moss et al. (2011) examined market and political risks for 14 metals that are used in  significant quantities in the technologies of the EU s Strategic Energy Technology Plan (SET Plan) so  that metal requirements and associated bottlenecks in green technologies, such as electric vehicles,  low carbon lighting, electricity storage and fuel cells and hydrogen, can be recognized.  Following a systemic perspective enables the identification of unexpected outcomes and even  potential conflicts between different targets when implementing mitigation options. For example,  the quality of many recycled metals is maintained solely through the addition of pure primary  materials (Verhoef et al., 2004), thus perpetuating the use of these materials and creating a  challenge for the set up of closed loop recycling (e.g., automotive aluminium, (Kim et al., 2011)).  Additionally, due to product retention (the period of use) and growing demand, secondary materials  needed for recycling are limited.                                                                Production of DME from biomass and utilization of fuel for transport and industrial use. Project website at:  http://www.biodme.eu.  14     34 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.6   Climate change feedback and interaction with adaptation   There is currently a distinct lack of knowledge on how climate change feedbacks may impact  mitigation options and potentials as well as costs in industry15.  Insights into potential synergy effects (how adaptation options could reduce emissions in industry)  or tradeoffs (how adaptation options could lead to additional emissions in industry) are also lacking.  However, it can be expected that many adaptation options will generate additional industrial  product demand and will lead to additional emissions in the sector. Improving flood defence, for  example, in response to sea level rise may lead to a growing demand for materials for embankment  and similar infrastructure. Manufacturers of textile products, machinery for agriculture or  construction, and heating/cooling equipment may be affected by changing product requirements in  both number and quality due to climate change. There is as yet no comprehensive assessment of  these effects, nor any estimate on market effects resulting from changes in demand for products.   10.7   Costs and potentials  The six main categories of mitigation options discussed in Section 10.4 for manufacturing industries  can deliver GHG emission reduction benefits at varying levels and at varying costs over varying time  periods across subsectors and countries. There is not much comparable, comprehensive, detailed  quantitative information and literature on costs and potentials associated with each of the  mitigation options. Available mitigation potential assessments (e.g., UNIDO, 2011; IEA, 2012d) are  not always supplemented by cost estimates. Also, available cost estimates (e.g.,  McKinsey&Company, 2009; Akashi et al., 2011) are not always comparable across studies due to  differences in the treatment of costs and energy price estimates across regions. There are many  mitigation potential assessments for individual industries (examples are included in Section 10.4)  with varying time horizons; some studies report the mitigation potential of energy efficiency  measures with associated initial investment costs which do not account for the full life time energy  cost savings benefits of investments, while other studies report marginal abatement costs based on  selected technological options. Many sector  or system specific mitigation potential studies use the  concept of cost of conserved energy (CCE) that accounts for annualized initial investment costs,  operation and maintenance (O&M) costs, and energy savings using either social or private discount  rates (Hasanbeigi et al., 2010b). Those mitigation options with a CCE below the unit cost of energy  are referred to as  cost effective . Some studies (e.g., McKinsey&Company, 2009) identify  negative  abatement costs  by including the energy cost savings in the abatement cost calculation.   The sections below provide an assessment of option specific potential and associated cost estimates  using information available in the literature (including underlying databases used by some of such  studies) and expert judgement (see Annex III, Technology specific cost and performance parameters)  and distinguish mitigation of CO2 and non CO2 emissions. Generally, the assessment of costs is  relatively more uncertain but some indicative results convey information about the wide cost range  (costs per tonne of CO2 reduction) within which various options can deliver GHG reduction benefit.  The inclusion of additional multiple benefits of mitigation measures might change the cost effectiveness of a technology completely, but are not included in this section. Co benefits are  discussed in section 10.8.                                                                 There is limited literature on the impacts of climate change on industry (e.g., availability of water for the  food industry and in general for cooling and processing in many different industries), and these are dealt  within WG 2 of AR 5, Chapter 10.  15     35 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.7.1    CO2 Emissions  Quantitative assessments of CO2 emission reduction potential for the industrial sector explored in  this section are mainly based on: (1) studies with a global scope (e.g., IEA, UNIDO), (2) marginal  abatement cost studies and (3) various information sources on available technology at industrial  units along with plant level and country specific data. IEA estimates a global mitigation potential for  the overall industry sector of 5.5 to 7.5 GtCO2 for the year 2050 (IEA, 2012d)16. The IEA report  (2012d) shows a range of 50% reduction in four key sectors (iron and steel, cement, chemicals, and  paper) and in the range of 20% for the aluminium sector. From a regional perspective, China and  India comprise 44% of this potential. In terms of how different options contribute to industry  mitigation potential, with regard to CO2 emissions reduction compared with 2007 values, the IEA  report (IEA, 2009c) shows implementation of end use fuel efficiency can achieve 40%, fuel and  feedstock switching can achieve 21%, recycling and energy recovery can achieve 9%, and CCS can  achieve 30%. McKinsey (2009) provides a global mitigation potential estimate for the overall industry  sector of 6.9 GtCO2 for 2030. The potential is found to be the largest for iron and steel, followed by  chemicals and cement at 2.4, 1.9 and 1.0 GtCO2 for the year 2030, respectively  (McKinsey&Company, 2010). The United Nations Industrial Development Organization (UNIDO)  analyzed the potential of energy savings based on universal application of best available  technologies. All the potential mitigation values are higher in developing countries (30 to 35%)  compared with developed countries (15%) (UNIDO, 2011).  Other studies addressing the industrial sector as a whole found potential for future improvements in  energy intensity of industrial production to be in the range of up to 25% of current global industrial  final energy consumption per unit output (Schäfer, 2005; Allwood et al., 2010; UNIDO, 2011; Saygin  et al., 2011b; Gutowski et al., 2013) (see Section 10.4  ). Additional savings can be realized in the  future through adoption of emerging technologies currently under development or that have not yet  been fully commercialized (Kong et al., 2012; Hasanbeigi et al., 2012b, 2013a). Examples of  industries from India show that specific energy consumption is steadily declining in all energy  intensive sectors (Roy et al., 2013), and a wide variety of measures at varying costs have been  adopted by the energy intensive industries (Figure 10.6.). However, all sectors still have energy  savings potential when compared to world best practice (Dasgupta et al., 2012).                                                                     Expressed here in the form of a deployment potential (difference between the 6°C and 2°C scenarios, 6DS  and 2DS) rather than the technical potential.  16     36 of 112       Final Draft  Chapter 10  IPCC WGIII AR5    Figure 10.6. Range of unit cost of avoided CO2 emissions (USD2010/tCO2) in India. Source: Database of energy efficiency measures adopted by the winners of the National Awards on Energy Conservations for aluminium (26 measures), cement (42), chemicals (62), ISP: integrated steel plant (30), pulp and paper (46), and textile (75) industry in India during the period of 2007 2012 (BEE, 2012). Bottom up country analyses provide energy savings estimates for specific industrial sub sectors  based on individual energy efficiency technologies and measures. Because results vary among  studies, these estimates should not be considered as the upper bound of energy saving potential but  rather should give at least an orientation about the general possibilities.   In the cement sector, global weighted average thermal energy intensity could drop to 3.2 GJ/t  clinker and electric energy intensity to 90 kWh/t cement by 2050 (IEA/WBCSD, 2009). Emissions of  510 MtCO2 would be saved if all current cement kilns used best available technology and increased  use of clinker substitutes (IEA, 2009c). Oda et al. (2012b) found large differences in regional thermal  energy consumption for cement manufacture, with the least efficient region consuming 75% more  energy than the best in 2005. Even though processing alternative fuels requires additional electricity  consumption (Oda et al., 2012b), their use could reduce cement sector emissions by 0.16 GtCO2eq  per year by 2030 (Vattenfall, 2007) although increasing costs may in due course limit uptake  (IEA/WBCSD, 2009). Implementing commercial scale CCS in the cement industry could contribute to  climate change mitigation, but would increase cement production costs by 40 90% (IEAGHG, 2008).  From the cumulative energy savings potential for China´s cement industry (2010 to 2030), 90% is  assessed as cost effective using a discount rate of 15% (Hasanbeigi et al., 2012a). Electricity and fuel  savings of 6 and 1.5 times the total electricity and fuel use in the Indian cement industry in 2010,  respectively, can be realized for the period 2010 2030, almost all of which is assessed as cost effective using a discount rate of 15% (Morrow III et al., 2013a). About 50% of the electricity used by  Thailand s cement industry in 2005 could have been saved (16% cost effectively), while about 20% of  the fuel use could have been reduced (80% cost effectively using a discount rate of 30%) (Hasanbeigi  et al., 2010a, 2011). Some subnational level information also shows negative CO2 abatement costs  associated with emissions reductions in the cement sector (e.g., (CCAP, 2005)).   Nearly 60% of the estimated electricity savings and all of the fuel savings of the Chinese steel  industry for the period 2010 2030 can be realized cost effectively using a discount rate of 15%  (Hasanbeigi et al., 2013c). Total technical primary energy savings potential of the Indian steel  industry from 2010 2030 is equal to around 87% of total primary Indian steel industry energy use in  2007, of which 91% of the electricity savings and 64% of the fuel savings can be achieved cost effectively using a discount rate of 15% (Morrow III et al., 2013b). Akashi et al. (2011) indicate that  the largest potential for CO2 emissions savings for some energy intensive industries remains in China  and India. They also indicate that with associated costs under 100 USD/tCO2 in 2030 the use of      37 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  efficient blast furnaces in the steel industry in China and India can reduce total emissions by 186  MtCO2 and 165 MtCO2, respectively. This represents a combined total of 75% of the global CO2  emissions reduction potential for this technology.   Total technical electricity and fuel savings potential for China s pulp and paper industry in 2010 are  estimated to be 4.3% and 38%, respectively. All of the electricity and 70% of the fuel savings can be  realized cost effectively using a discount rate of 30% (Kong et al., 2013). Fleiter et al. (2012a) found  energy saving potentials for the German pulp and paper industry of 21% and 16% of fuel and  electricity demand in 2035, respectively. The savings result in 3 MtCO2 emissions reduction with  two thirds of this savings having negative private abatement cost (Fleiter et al., 2012a). Zafeiris  (2010) estimates energy saving potential of 6.2% of the global energy demand of the pulp and paper  industry in year 2030. More than 90% of the estimated savings potential can be realized at negative  cost using a discount rate of 30% (Zafeiris, 2010). The energy intensity of the European pulp and  paper industry reduced from 16 to 13.5 GJ per tonne of paper between 1990 and 2008 (Allwood et  al., 2012, p. 318; CEPI, 2012). However, energy intensity of the European pulp and paper industry  has now stabilized, and few significant future efficiency improvements are forecasted.  In non ferrous production (aluminium/others), energy accounts for nearly 40% of aluminium  production costs. IEA forecasts a maximum possible 12% future saving in energy requirements by  future efficiencies. In food processing, reductions between 5% and 35% of total CO2 emissions can  be made by investing in increased heat exchanger networks or heat pumps (Fritzson and Berntsson,  2006). Combined heat and power can reduce energy demand by 20 30%. Around 83% of the energy  used in wet corn milling is for dewatering, drying, and evaporation processes (Galitsky et al., 2003),  while 60% of that used in fruit and vegetable processing is in boilers (Masanet et al., 2008). Thermal  and mechanical vapour recompression in drying allows for estimated 15 20% total energy savings,  which could be increased further by use of reverse osmosis (Galitsky et al., 2003). Cullen et al. (2011)  suggest that about 88% savings in energy for refrigeration could be made with better insulation, and  reduced ventilation in refrigerators and freezers.   There is very little data available on mineral extractive industries in general. Some analyses reveal  that investments in state of the art equipment and further research could reduce energy  consumption by almost 50% (SWEEP, 2011; US DoE, 2007).   Allwood et al. (2010) assessed different strategies to achieve a 50% cut in the emissions of five  sectors (cement, steel, paper, aluminium, and plastics) assuming doubling of demand by 2050. They  found that gains in efficiency could result in emissions intensity reductions in the range of 21% 40%.  Further reductions to reach the required 75% reduction in emissions intensity can only be achieved  by implementing strategies at least partly going beyond the sectors boundaries: i.e., non destructive  recycling, reducing demand through light weighting, product life extension, increasing intensity of  product use or substitution for other materials, and radical process innovations notwithstanding  significant implementation barriers (see Section 10.9).  Mitigation options can also be analyzed from the perspective of some industry wide technologies.  Around two thirds of electricity consumption in the industrial sector is used to drive motors  (McKane and Hasanbeigi, 2011). Steam generation represents 30% of global final industrial energy  use. Efficiency of motor systems and steam systems can be improved by 20 25% and 10%,  respectively (GEA, 2012; Brown et al., 2012). Improvements in the design and especially the  operation of motor systems, which include motors and associated system components in  compressed air, pumping, and fan systems (McKane and Hasanbeigi, 2010, 2011; Saidur, 2010), have  the potential to save 2.58 EJ in final energy use globally (IEA, 2007). McKane and Hasanbeigi (2011)  developed energy efficiency supply curve models for the United States, Canada, the European  Union, Thailand, Vietnam, and Brazil and found that the cost effective potential for electricity  savings in motor system energy use compared to the base year varied between 27% and 49% for  pumping, 21% and 47% for compressed air, and 14% and 46% for fan systems. The total technical      38 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  saving potential varied between 43% and 57% for pumping, 29% and 56% for compressed air, and  27% and 46% for fan systems. Ways to reduce emissions from many industries include more efficient  operation of process heating systems (LBNL and RDC, 2007; Hasanuzzaman et al., 2012) and steam  systems (NREL et al., 2012), minimized waste heat loss and waste heat recovery (US DoE, 2004a,  2008), advanced cooling systems, use of cogeneration (or combined heat and power) (Oland, 2004;  Shipley et al., 2008; Brown et al., 2013), and use of renewable energy sources. Recent analysis show,  for example, that recuperators can reduce furnace energy use by 25% while economizers can reduce  boiler energy use by 10% to 20%, both with payback periods typically under two years  (Hasanuzzaman et al., 2012).  According to data from McKinsey (2010) on marginal abatement costs (MACs) for cement, iron, and  steel and chemical sectors, and from Akashi et al. (2011) for cement and iron and steel, around 40%  mitigation potential in industry can be realized cost effectively. Due to methodological reasons,  MACs always have to be discussed with caution. It has to be considered that the information about  the direct additional cost associated with additional reduction of CO2 through technological options  is limited. Moreover, for MACs system perspectives and system interdependencies are not typically  taken into account (McKinsey&Company, 2010; Akashi et al., 2011).  Unless barriers to mitigation in industry are resolved, the pace and extent of mitigation in industry  will be limited, and even cost effective measures will remain untapped. Various barriers that block  technology adoption despite low direct costs are often not appropriately accounted for in mitigation  cost assessments. Such barriers are discussed in Section 10.9.  In the long term, however, it may be more relevant to look at radically new ways of producing  energy intensive products. Low carbon cement and concrete might become relevant (Hasanbeigi et  al., 2012b); however, from current perspective cost assessments for these technologies are  connected with high uncertainties.  10.7.2    Non CO2 emissions  Emissions of non CO2 gases from different industrial sources are projected to be 0.70 GtCO2eq in the  year 2030 (EPA, 2013), dominated by HFC 23 from HCFC 22 production (46%) and N2O from nitric  acid and from adipic acid (24%). In 2030, it is projected that HFC 23 emissions will be related mainly  to the production of HCFC 22 for feedstock use, as its use as refrigerant will be phased out in 2035  (Miller and Kuijpers, 2011). The EPA (2013) provides marginal abatement costs for all non CO2  emissions. Emissions resulting from the production of flat panel displays and from photovoltaic (PV)  manufacturing are projected to be small (2 and 12 MtCO2eq respectively in 2030), but particularly  uncertain due to limited information on emissions rates, use of fluorinated gases and production  growth rates.  10.7.3    Summary results on costs and potentials   Based on the available bottom up information from literature and through expert consultation, a  global picture of the four industrial key sub sectors (iron and steel, cement, chemicals, and pulp and  paper) is assessed and presented in Figure 10.7 to Figure 10.10 below. Detailed justification of the  figures and description of the options are provided in Annex III. Globally, in 2010, these four selected  sub sectors contributed 5.3 GtCO2 direct energy  and process related CO2 emissions (see Section  10.3): iron and steel 1.9 GtCO2, non metallic minerals (which includes cement) 2.6 GtCO2, chemicals  and petrochemicals 0.6 GtCO2, and pulp and paper 0.2 GtCO2. This amounts to 73% of all direct17  energy  and process related CO2 emissions from the industry sector.                                                               17  These values do not include indirect emissions from electricity and heat production.      39 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  For each of the sub sectors, only selected mitigation options are covered (for other feasible options  in the industry sector refer to Section 10.4): energy efficiency, shift in raw material use to less  carbon intensive alternatives (e.g., reducing the clinker to cement ratio, recycling etc.), fuel mix  options, end of pipe emission abatement options such as carbon dioxide capture and storage (CCS),  use of decarbonized electricity and options for the two most important current sources of non CO2  GHG emissions (HFC 23 emissions from HFC 22 production and N2O emissions from nitric and adipic  acid production) in the chemical industry. The potentials are given related to the 2010 emission  intensity or absolute emissions. Cost estimates relate to the current costs (expressed in USD2010) of  the abatement options unless otherwise stated.   Potentials and costs to decarbonize the electricity sector are covered in Chapter 7. To ensure  consistency with that chapter, no estimates are given for the costs related to decarbonizing the  electricity mix for the industrial sector.  Costs and potentials are global averages, but based on region specific information. The technology  options are given relative to the global average emission intensity. Some options are not mutually  exclusive and potentials can therefore not always be added. As such, none of the individual options  can yield full GHG emission abatement, because of the multiple emission sources included (e.g., in  the chemical sector CCS and fuel mix improvements cannot reduce N2O emissions).  Costs relate to costs of abatement taking into account total incremental operational and capital  costs. The figures give indicatively the costs of implementing different options; they also exclude  options related to material efficiency (e.g., reduction of demand), but include some recycling options  (although not in pulp and paper). Figure 10.7 about cement production includes process CO2  emissions.   Emissions after implementing potential options to reduce the GHG emission intensity of iron and  steel, cement, pulp and paper sectors are presented in tCO2/t product compared to 2010 global  average respectively. Future relevant scenarios are also presented. However, for the chemical sector  due to its heterogeneity in terms of products and processes the information is presented in terms of  total emissions. This can be an under representation of relatively higher mitigation potential in e.g.,  ammonia production. In addition, unknown/unexplored options such as hydrogen/electricity based  chemicals and fuels are not included, so it is worth noting that the options are exemplary. In the  cement industry (Figure 10.7.), the potential and costs for clinker substitution and fuel mix changes  are dependent on regional availability and the price of clinker substitutes and alternative fuels.  Negative cost options in cement manufacturing are in switching to best practice clinker to cement  ratio. In the iron and steel industry (Figure 10.8.), a shift from blast furnace based steelmaking to  electric arc furnace steelmaking provides significant negative cost opportunities. However, this  potential is highly dependent on scrap availability. The chemical sector (Figure 10.9) includes options  related to energy efficiency improvements and options related to reduction of N2O emissions from  nitric and adipic acid production and HFC 23 emissions from HFC 22 production. In pulp and paper  manufacturing (Figure 10.10), the estimates exclude increased recycling because the effect on CO2  emissions is uncertain.   The costs of the abatement options shown in Figure 10.7 vary widely between individual regions and  from plant to plant in the cement industry. Factors influencing the costs include typical capital stock  turnover rates (some measures can only be applied when plants are replaced), relative energy costs,  etc. For clinker substitution and fuel mix improvements, costs depend heavily on the regional  availability and price of clinker substitutes and alternative fuels.      40 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Figure 10.7. Indicative CO2 emission intensities and levelized cost of conserved carbon in cement production for various production practices/technologies and in 450ppm scenarios of selected models (AIM, DNE21+, IEA ETP 2DS) (for data and methodology, see Annex III).   Figure 10.8. Indicative CO2 emission intensities and levelized cost of conserved carbon in steel production for various production practices/technologies and in 450ppm scenarios of selected models (AIM, DNE21+, and IEA ETP 2DS). For data and methodology, see Annex III. For all subsectors, negative abatement cost options exist to a certain extent for shifting to best  practice technologies and for fuel shifting. While options in cost ranges of 0 20 and 20 50  USD2010/tCO2eq are somewhat limited, larger opportunities exist in the 50 150 USD2010/tCO2eq range  (particularly since CCS is included here). The feasibility of CCS depends on global CCS developments.  CCS is currently not yet applied (with some exceptions) at commercial scale in the cement, iron and  steel, chemical, or pulp/ paper industries.     41 of 112       Final Draft  Chapter 10  IPCC WGIII AR5    Figure 10.9. Indicative global indirect (left) and direct (right) CO2eq emissions and levelized cost of conserved carbon resulting from chemicals production for various production practices/technologies and CO2 emissions in IEA ETP 2DS scenario (for data and methodology, see Annex III). Notes: Graph includes energy related emissions (including process emissions from ammonia production), N2O emissions from nitric and adipic acid production and HFC-23 emissions from HFC22 production. Costs for N2O abatement from nitric/adipic acid production and for HFC-23 abatement in HFC-22 production based on EPA (2013) and Miller and Kuijpers (2011), respectively.   Figure 10.10. Indicative global indirect (left) and direct (right) CO2 emission intensities and levelized cost of conserved carbon in paper production for various production practices/technologies and in IEA ETP 2DS scenario (for data and methodology, see Annex III).       42 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  10.8   Co benefits, risks and spillovers  In addition to mitigation costs and potentials (see Section 10.7), the deployment of mitigation  measures will depend on a variety of other factors that relate to broader economic, social, and  environmental objectives that drive decisions in the industry sector and policy choices. The  implementation of mitigation measures can have positive or negative effects on these other  objectives. To the extent that these side effects are positive, they can be deemed  co benefits ; if  adverse and uncertain, they imply risks.18 Co benefits and adverse side effects of mitigation  measures (10.8.1), the associated technical risks and uncertainties (10.8.2) as well as their public  perception (10.8.3) and technological spillovers (10.8.4), can significantly affect investment  decisions, individual behaviour, and policymaker priorities. Table 10.5 provides an overview of the  potential co benefits and adverse side effects of the mitigation measures that are assessed in this  chapter. In accordance with the three sustainable development pillars described in Chapter 4, the  table presents effects on objectives that may be economic, social, environmental, and health  related. The extent to which co benefits and adverse side effects will materialize in practice as well  as their net effect on social welfare differ greatly across regions, and is strongly dependent on local  circumstances and implementation practices, as well as on the scale and pace of the deployment of  the different mitigation measures (see Section 6.6).  10.8.1    Socio economic and environmental effects  Social embedding of technologies depends on compatibility with existing systems, social acceptance,  divisibility, eco friendliness, relative advantage, etc. (Geels and Schot, 2010; Roy et al., 2013). A  typical example is the tradeoff or the choice that is made between investing in mitigation in industry  and adaptation in the absence of right incentives for mitigation action (Chakraborty and Roy, 2012a).  Slow diffusion of mitigation options (UNIDO, 2011) can be overcome by focusing on, and explicit  consideration of, non direct cost related characteristics of the technologies (Fleiter et al., 2012). It is  unanimously understood that maintaining competitiveness of industrial products in the market place  is an important objective of industries, so implementation of mitigation measures will be a major  favoured strategy for industries if they contribute to cost reduction (Bernstein et al., 2007; Winkler  et al., 2007; Bassi et al., 2009). Increasing demand for energy in many countries has led to imports  and increasing investment in high cost reliable electric power generation capacity; so mitigation via  implementation of energy efficiency measures help to reduce import dependency and investment  pressure (Winkler et al., 2007). Labour unions are increasingly expressing their desire for policies to  address climate change and support for a transition to  green  jobs (Räthzel and Uzzell, 2012). Local  air and water pollution in areas near industries have led to regulatory restrictions in almost all  countries. In many countries, new industrial developments face increasing public resistance and  litigation. If mitigation options deliver local air pollution benefits, they will have indirect value and  greater acceptance.   The literature (cited in the following sections and in Table 10.5) documents that mitigation measures  interact with multiple economic, social, and environmental objectives, although these associated  impacts are not always quantified. In general, quantifying the corresponding welfare effects that a  mitigation technology or practice entails is challenging, because very localized and different  stakeholders may have different perspectives of the corresponding losses and gains (Fleiter et al.,  2012d) (see Chapters 2.4, 3.6.3, 4.2, and 6.6). It is important to note that co benefits need to be  assessed together with direct benefits to overcome barriers in implementation of the mitigation  options (e.g., training requirements, losses during technology installation) (Worrell et al., 2003),                                                                Co benefits and adverse side effects describe effects in non monetary units without yet evaluating the net  effect on overall social welfare. Please refer to the respective sections in the framing chapters (particularly  Sections 2.4, 3.6.3, and 4.8) as well as to the glossary in Annex I for concepts and definitions.  18     43 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  which may appear otherwise larger for SMEs or isolated enterprises (Crichton, 2006; Zhang and  Wang, 2008; Ghosh and Roy, 2011).  Energy efficiency (E/M): Energy efficiency includes a wide variety of measures that also achieve  economic efficiency and natural/energy resource saving, which contribute to the achievement of  environmental goals and other macro benefits (Roy et al., 2013). At the company level, the impact of  energy efficient technology is often found to enhance productivity growth (Zuev et al., 1998; Boyd  and Pang, 2000; Murphy, 2001; Worrell et al., 2003; Gallagher, 2006; Winkler et al., 2007; Zhang and  Wang, 2008; May et al., 2013). Other benefits to companies, industry, and the economy as a whole  come in the form of reduced fuel consumption requirements19 and imports as well as reduced  requirements for new electricity general capacity addition (Sarkar et al., 2003; Geller et al., 2006;  Winkler et al., 2007; Sathaye and Gupta, 2010) which contribute to energy security (see sections  6.6.2.2 and 7.9.1). Energy security in the industrial sector is primarily affected by concerns related to  the sufficiency of resources to meet national energy demand at competitive and stable prices.  Supply side vulnerabilities in this sector arise if there is a high share of imported fuels in the  industrial energy mix (Cherp et al., 2012a). Cherp et al. (2012a) estimate that the overall  vulnerability of industrial energy consumption is lower than in the transport and residential and  commercial (R&C) sectors in most countries. Nevertheless, since mitigation policies in industry  would likely lead to higher energy efficiency (see footnote 19), they may reduce exposure to energy  supply and price shocks (Gnansounou, 2008; Kruyt et al., 2009; Sovacool and Brown, 2010; Cherp et  al., 2012b). Reduced fossil fuel burning brings associated reduced costs (Winkler et al., 2007), and  reduced local impacts on ecosystems related to fossil fuel extraction and waste disposal liability (Liu  and Diamond, 2005; Zhang and Wang, 2008; Chen et al., 2012; Ren et al., 2012; Hasanbeigi et al.,  2013b; Lee and van de Meene, 2013; Xi et al., 2013; Liu et al., 2013)(see also Sections 7.9.2 and  7.9.3). In addition, other possible benefits of reduced reliance on fossil fuels include increases in  employment and national income (Sathaye and Gupta, 2010) with new business opportunities  (Winkler et al., 2007; Nidumolu et al., 2009; Wei et al., 2010; Horbach and Rennings, 2013). There is  wide consensus in the literature on local air pollution reduction benefits from energy efficiency  measures in industries (Winkler et al., 2007; Bassi et al., 2009; Ren et al., 2012), such as positive  health effects, increased safety and working conditions, and improved job satisfaction (Getzner,  2002; Worrell et al., 2003; Wei et al., 2010; Walz, 2011; Zhang et al., 2011; Horbach and Rennings,  2013)(see also Sections 7.9.2, 7.9.3 and WGII 11.9). Energy efficient technologies can also have  positive impacts on employment (Getzner, 2002; Wei et al., 2010; UNIDO, 2011; OECD/IEA, 2012).  Despite these multiple co benefits, sometimes the relatively large initial investment required and  the relatively long payback period of some energy efficiency measures can be a disincentive and an  affordability issue, especially for small and medium enterprises, since the co benefits are often not  monetized (Brown, 2001; Thollander et al., 2007; Ghosh and Roy, 2011; UNIDO, 2011).   Emission efficiency (G/E): The literature documents well that increases in emissions efficiency can  lead to multiple benefits (see Table 10.5). Local air pollution reduction is well documented as co benefit of emissions efficiency measures (Winkler et al., 2007; Bassi et al., 2009; Ren et al., 2012).  Associated health benefits (Aunan et al., 2004; Haines et al., 2009) and reduced ecosystem impacts  (please refer to Section 7.9.2 for details) are society wide benefits while reductions in emission related taxes or payment liabilities (Metcalf, 2009) are specific to industries even though compliance  costs might increase (Dasgupta et al., 2000; Mestl et al., 2005; Rivers, 2010). The net effect of these  benefits and costs has not been studied comprehensively. Quantification of benefits is often done on  a case by case basis. For example, Mestl et al. (2005) found that the environmental and health  benefits of using electric arc furnaces for steel production in the city of Tiyuan (China) could  potentially lead to higher benefits than other options, despite being the most costly option. For                                                                Please see Section 10.4 and references cited therein, e.g., (Schäfer, 2005; Allwood et al., 2010; UNIDO, 2011;  Saygin et al., 2011b; Gutowski et al., 2013).  19     44 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  India, a detailed study (Chakraborty and Roy, 2012b) of 13 energy intensive industrial units showed  that several measures to reduce GHG emissions were adopted because the industries could realize  positive effects on their own economic competitiveness, resource conservation such as water, and  an enhanced reputation/public image for their commitment to corporate social responsibility  towards a global cause.   If existing barriers (see Section 10.9) can be overcome, industrial applications of CCS deployed in the  future could provide environmental co benefits because CCS enabled facilities have very low  emissions rates for critical pollutants even without specific policies being in place for those emissions  (Kuramochi et al., 2012b) (see Section 7.9.2 and Figure 7.8 for the air pollution effects of CCS  deployment in power plants).  Mitigations options to reduce PFC emissions from aluminium production, N2O emissions from adipic  and nitric acid production (EPA, 2010a), and PFC emissions from semiconductor manufacturing  (ISMI, 2005) have proven to enhance productivity and reduce the cost of production.  Simultaneously, these measures provide health benefits and better working conditions for labour  and local ambient air quality (Heijnes et al., 1999) 20.   Material efficiency (M/P): There is a wide range of benefits to be harnessed from implementing  material efficiency options. Private benefits to industry in terms of cost reduction (Meyer et al.,  2007) can enhance competitiveness, but national and subnational sales revenue might decline in the  medium term due to reduction in demand for intermediate products used in manufacturing  (Thomas, 2003). Material use efficiency increases can often be realized via cooperation in industrial  clusters (see Section 10.5), while associated infrastructure development (new industrial parks) and  associated cooperation schemes lead to additional societal gains (e.g., more efficient use of land  through bundling activities) (Lowe, 1997; Chertow, 2000). With the reduction in need for virgin  materials (Allwood et al., 2013; Stahel, 2013) which is also in tandem with waste hierarchy (see  Section 10.14.2, Figure 10.16) which prioritizes prevention, mining related social conflicts can  decrease (Germond Duret, 2012), health and safety can be enhanced, recycling related employment  can increase, the amount of waste material (see Section 10.14.2.1 and Figure 10.11) going into  landfills can decrease, and new business opportunities related to material efficiency can emerge  (Clift and Wright, 2000; Rennings and Zwick, 2002; Widmer et al., 2005; Clift, 2006; Zhang and Wang,  2008; Walz, 2011; Allwood et al., 2011; Raghupathy and Chaturvedi, 2013; Menikpura et al., 2013).  Demand reductions (P/S and S): Demand reduction through adoption of new diverse lifestyles (see  Section 10.14.3.2) (Roy and Pal, 2009; GEA, 2012; Kainuma et al., 2012; Allwood et al., 2013) and  implementation of healthy eating (see Section 11.4) and sufficiency goals can result in multiple co benefits related to health that enhance human well being (GEA, 2012). Well being indicators can be  developed to evaluate industrial economic activities in terms of multiple effects of sustainable  consumption on a range of policy objectives (GEA, 2012).  10.8.2    Technological risks and uncertainties  There are some specific risks and uncertainties with adoption of mitigation options in industry.  Potential health, safety, and environmental risks could arise from additional mining activities as  some mitigation technologies could substantially increase the need for specific materials (e.g., rare  earths, see Section 7.9.2) and the exploitation of new extraction locations or methods. Industrial  production is closely linked to extractive industry (see Figure 10.2) and there are risks associated  with closing mines if post closure measures for environmental protection are not adopted due to a  lack of appropriate technology or resources. Carbon dioxide capture and storage for industry is an  example of a technological option subject to several risks and uncertainties (see Section 10.7 and                                                               20  See also EPA Voluntary Aluminum Industrial Partnership: http://www.epa.gov/highgwp/aluminum pfc/faq.html.       45 of 112       Final Draft  Chapter 10  IPCC WGIII AR5  Chapters 7.5.5, 7.6.4 and 7.9.4 for more in depth discussion on CO2 storage, transport, and the  public perception thereof, respectively).  Specific literature on accidents and technology failure related to mitigation measures in the industry  sector is lacking. In general, industrial activities are subject to the main categories of risks and  emergencies, namely natural disasters, malicious activities, and unexpected consequences arising  from overly complex systems (Mitroff and Alpaslan, 2003; Olson and Wu, 2010). For example,  accident process safety is still a major issue for the chemical industry. Future improvements in  process safety will likely involve a holistic integration of complementary activities and be supported  by several layers of detail (Pitblado, 2011).  10.8.3    Public perception  From a socio constructivist perspective, the social response to industrial activity depends on three  sets of factors related to: 1) the dynamics of regional development and the historical place of  industry in the community, 2) the relationship between residents and the industry and local  governance capacities, and 3) the social or socio economic impacts experienced (Fortin and Gagnon,  2006). Public hearings and stakeholder participation especially on environmental and social impact  assessments prior to issuance of permission to operate has become mandatory in almost all  countries, and industry expenditures for social corporate responsibility are now often disclosed.  Mitigation measures in the industry sector might be considered socially acceptable if associated with  co benefits, such as reducing GHG emissions while also improving local environmental quality as a  whole (e.g., energy efficiency measures that reduce local emissions). Public perception related to  mitigation actions can be influenced by national political positions in international negotiations and  media.  Research on public perception and acceptance with regard to industrial applications of CCS is lacking  (for the general discussion of CCS see Chapter 7). To date, broad evidence related to whether public  perception of CCS for industrial applications will be significantly different from CCS in power  generation units is not available, since CCS is not yet in place in the industry sector (Section 10.7).  Mining activities have generated social conflicts in different parts of the world (Martinez Alier, 2001;  World Bank, 2007; Germond Duret, 2012; Guha, 2013). The Observatory of Mining Conflicts in Latin  America (OMCLA) reported more than 150 active mining conflicts in the region, most of which  started in the 2000s21. Besides this general experience, the potential for interactions between social  tensions and mitigation initiatives in this sector are unknown.  10.8.4    Technological spillovers  Spillovers are difficult to measure, but existing studies (Bouoiyour and Akhawayn, 2005) show that a  technology gap is one of the conditions for positive spillovers. Sections 10.4 and 10.7 have already  shown that there is gap between the world best practices in energy efficiency and industrial  practices in many countries. As such, cross country investment in mitigation technologies can  enhance positive spillovers in host countries. In the industrial technology context, multinational  companies try to minimize imitation probability and technology leakage, but studies show that  spillover works faster through supply chain linkage inter industry (Kugler, 2006; Bitzer and Kerekes,  2008; Zhao et al., 2010). In general, studies suggest that technology spillovers in the mitigation  context depend on additional technology policies besides direct investment (Gillingham et al., 2009;  Le and Pomfret, 2011; Wang et al., 2012a; Costantini et al., 2013; Jeon et al., 2013). These results are  relevant for investments on industrial mitigation technologies as well.                                                               21  Observatorio de Conflictos Mineros de América Latina. Available at: http:// www.conflictosmineros.net.      46 of 112       Final Draft    Chapter 10  IPCC WGIII AR5  Table 10.5: Overview of potential co-benefits (green arrows) and adverse side-effects (orange arrows) of the main mitigation measures in the industry sector. Arrows pointing up/down denote positive/negative effect on the respective objective or concern. Co-benefits and adverse side-effects depend on local circumstances as well as on the implementation practice, pace, and scale (see Chapter 6.6.). For possible upstream effects of low-carbon energy supply (incl CCS), see Section 7.9. For possible upstream effects of biomass supply, see Chapter 11.7 and 11.13.6. For an assessment of macroeconomic, crosssectoral effects associated with mitigation policies (e.g., on energy prices, consumption, growth, and trade), see Chapters 3.9, 6.3.6, 13.2.2.3, and 14.4.2. Numbers correspond to references below table. Mitigation  measures  Technical energy  efficiency  improvements via  new processes  and technologies  CO2 and non CO2 emissions  intensity  reduction  Effect on additional objectives/concerns                        Economic                                                         Social (including health)                                                     Environmental          Energy security (via reduced energy  intensity) [1, 2, 3, 4, 13, 29, 57];  Employment impact [14, 15, 19, 28]  Competitiveness and Productivity [4, 5,  6, 7, 8, 9, 10, 11, 12]   Technological spillovers in DCs (due to  supply chain linkages) [59, 60, 61]  Competitiveness [31, 55] and  productivity [52, 53]  Health impact via reduced local pollution [16]  Ecosystem impact via  New business opportunities [4, 17 20]  Fossil fuel extraction [21]  Water availability and quality [26]  Local pollution [11, 22 24, 25] and   Safety, working conditions and job satisfaction [5,  Waste [11, 27]  19, 20]  Health impact via reduced local air pollution [30,  31, 32, 33, 53] and better work conditions (PFC  from aluminium) [58]  New business opportunities [11, 39 43]  Local conflicts (reduced resource extraction) [58]  Health impacts and safety concerns [49]  Material  efficiency of  goods, recycling  Product demand  reductions        National sales tax revenue in medium  term [35]   Employment impact in waste recycling  market [44, 45]  New infrastructure for industrial clusters  [36, 37]   Competitiveness in manufacturing [38]   National sales tax revenue in medium  term [35]      Ecosystem impact via Local air pollution [4, 25, 30, 31, 34, 52]  Water pollution [54]  Water conservation [56]  Ecosystem impact via reduced local air and  water pollution, waste material disposal  [42, 46]   Use of raw/virgin materials and natural  resources implying reduced unsustainable  resource mining [47, 48]   Local conflicts through inequity in consumption New diverse lifestyle concept [48, 50, 51]  Post consumption waste [48] [1] (Sovacool and Brown, 2010); [2] (Geller et al., 2006); [3] (Gnansounou, 2008); [4] (Winkler et al., 2007); [5] (Worrell et al., 2003); [6] (Boyd and Pang, 2000); [7] (May et al., 2013); [8] (Goldemberg, 1998); [9]  (Murphy, 2001); [10] (Gallagher, 2006); [11] (Zhang and Wang, 2008); [12] (Roy et al., 2013); [13] see Section 10.4 and references cited therein; [14] (UNIDO, 2011); [15] (OECD/IEA, 2012); [16] (Zhang et al., 2011);  [17] (Nidumolu et al., 2009); [18] (Horbach and Rennings, 2013); [19] (Getzner, 2002); [20] (Wei et al., 2010); [21] (Liu and Diamond, 2005); [22] (Hasanbeigi et al., 2013a); [23] (Xi et al., 2013); [24] (Chen et al.,  2012); [25] (Ren et al., 2012); [26] (Zhelev, 2005); [27] (Lee and van de Meene, 2013); [28] (Sathaye and Gupta, 2010); [29] (Sathaye and Gupta, 2010); [30] (Mestl et al., 2005); [31] (Chakraborty and Roy, 2012a);  [32]  (Haines et al., 2009); [33] (Aunan et al., 2004); [34] (Bassi et al., 2009); [35] (Thomas, 2003); [36] (Lowe, 1997); [37] (Chertow, 2000); [38] (Meyer et al., 2007); [39] (Widmer et al., 2005); [40] (Raghupathy and  Chaturvedi, 2013); [41] (Clift and Wright, 2000); [42] (Allwood et al., 2011); [43] (Clift, 2006); [44] (Walz, 2011); [45] (Rennings and Zwick, 2002); [46] (Menikpura et al., 2013); [47] (Stahel, 2013); [48] (Allwood et al.,  2013); [49] (GEA, 2012); [50] (Kainuma et al., 2012); [51] (Roy and Pal, 2009); [52] (EPA, 2010b); [53] (ISMI, 2005); [54] (Heijnes et al., 1999); [55] (Rivers, 2010)); [56] (Chakraborty and Roy, 2012b); [57] (Sarkar et al.,  2003); [58] (Germond Duret, 2012); [59] (Kugler, 2006); [60] (Bitzer and Kerekes, 2008); [61] (Zhao et al., 2010).      47 of 112       Final Draft    Chapter 10  IPCC WGIII AR5  10.9   Barriers and opportunities   Besides uncertainties in financial costs of mitigation options assessed in 10.7, a number of non financial barriers and opportunities assessed in this section hinder or facilitate implementation of  measures to reduce GHG emissions in industry. Barriers must be overcome to allow implementation  (see Flannery and Kheshgi, 2005), however, in general they are not sufficiently captured in  integrated model studies and scenarios (see Section 10.10). Barriers that are often common across  sectors are given in Chapter 3. Table 10.6 summarizes barriers and opportunities for the major  mitigation options listed in Section 10.4.  Typically, barriers and opportunities can be distinguished into the following categories:  Technology: includes maturity, reliability, safety, performance, cost of technology options and  systems, and gaps in information  Physical: includes availability of infrastructure, geography, and space available  Institutional and legal: includes regulatory frameworks and institutions that may enable  investment  Cultural: includes public acceptance, workforce capacity (e.g., education, training, and  knowledge), and cultural norms.  10.9.1    Energy efficiency for reducing energy requirements  Even though energy consumption can be a significant cost for industry, a number of barriers limit  industrial sector steps to minimize energy use via energy efficiency measures. These barriers include:  failure to recognize the positive impact of energy efficiency on profitability, short investment  payback thresholds (two to eight years (IEA, 2012e)), industrial organizational and behavioural  barriers to implementing change; limited access to capital; impact of non energy policies on energy  efficiency; public acceptance of unconventional manufacturing processes; and a wide range of  market failures (Bailey et al., 2009; IEA, 2009d). While large energy intensive industries such as  iron and steel, and mineral processing are often aware of potential cost savings and consider  energy efficiency in investment decisions, this is less common in the commercial and service sectors  where the energy cost share is usually low, or for smaller companies where overhead costs for  energy management and training personnel can be prohibitive (UNIDO, 2011; Ghosh and Roy, 2011;  Schleich and Gruber, 2008; Fleiter et al., 2012e; Hasanbeigi et al., 2009). Of course, investment  decisions also consider investment risks, which are generally not reflected in the cost estimates  assessed in Section 10.7. The importance of barriers depends on specific circumstances. For  example, by surveying the Swedish foundry industry, Rohdin et al. (2007) found that access to capital  was reported to be the largest barrier, followed by technical risk and other barriers.   Cogeneration, or combined heat and power (CHP), is an energy efficiency option that can not only  reduce GHG emissions by improving system energy efficiency, but can also reduce system cost and  decrease dependence on grid power. For industry, however, (IEA, 2009d) CHP faces a complex set of  economic, regulatory, social, and political barriers that restrain its wider use including: market  restriction securing a fair market value for electricity exported to the grid; high upfront costs  compared to large power plants; difficulty concentrating suitable heat loads and lack of integrated  planning; grid access; non transparent and technically demanding interconnection procedures; lack  of consumer and policymaker knowledge about CHP energy, cost and emission savings; and industry  perceptions that CHP is an investment outside their core business. Regulatory barriers can stem  from taxes, tariffs, or permits. For a cogeneration project of an existing facility, the electricity price  paid to a cogeneration facility is the most important variable in determining the project s success    more so than capital costs, operating and maintenance cost, and even fuel costs (Meidel, 2005).  Prices are affected by rules for electricity markets, which differ from region to region, and which can  form either incentives or barriers for cogeneration (Meidel, 2005).      48 of 112       Final Draft    Chapter 10  IPCC WGIII AR5  Table 10.6: Barriers (-) and opportunities (+) for greenhouse gas emission reduction options in industry. References and discussion appear in respective subsections of 10.9.   Technological  Aspects:  Technology  Energy Efficiency for reducing energy requirements  + many options available   technical risk   + cogeneration mature in heavy industry   non transparent and technically demanding interconnection  procedures for cogeneration  Emissions efficiency, fuel switching  and CCS  + fuels and technologies readily available  retrofit challenges  + large potential scope for CCS in  cement production, iron and steel, and  petrochemicals   limited CCS technology development,  demonstration and maturity for industry  applications  Material efficiency  + options available Product demand  reduction   slower technology  turnover can slow  technology  improvement and  operational  emission reduction  Non CO2 GHGs  +/ approaches and  technologies available for  some sources   lack of lower cost  technology for PFC  emission reduction in  existing aluminium  production plants  lack of control of HFC  leakage in refrigeration  systems  Technological  Aspects:  Physical   + less energy and fuel use, lower cooling needs, smaller size  concentrating suitable heat loads for cogeneration   retrofit constraints on cogeneration  lack of sufficient feedstock to meet  demand   CCS retrofit constraints   lack of CO2 pipeline infrastructure   limited scope and lifetime for industrial  CO2 utilization  + reduction in raw  and waste materials   transport  infrastructure and  industry proximity  for material/waste  reuse  fragmented and  weak institutions  + reduction in raw  materials and  disposed products  Institutional  and Legal  impact of non energy policies  + energy efficiency policies (10.11)   market barriers   regulatory, tax/tariff and permitting of cogeneration  +/  grid access for cogeneration  regulatory and  legal instruments  generally do not  take account of  externalities  +/ user  preferences drive  demand   lack of certification of  refrigeration systems   regulatory barriers to  HFC alternatives in  aerosols  lack of  information/education  about solvent  replacements   lack of awareness of  alternative refrigerants  Cultural  lack of trained personnel  +/  attention to energy efficiency   lack of acceptance of unconventional manufacturing processes   cogeneration outside core business   lack of consumer and policymaker knowledge of cogeneration  social acceptance of CCS    +/ public  participation   human capacity for  management  decisions  Financial  access to capital and short investment payback requirements  high overhead costs for small or less energy intensive industries  +/  factoring in efficiency into investment decisions (e.g., energy  management)  + cogeneration economic in many cases  +/  market value of grid power for cogeneration   high capital cost for cogeneration   lack of sufficient financial incentive for  widespread CCS deployment   liability risk for CCS   high CCS capital cost and long project  development times   upfront cost and  potentially longer  payback period  +reduced production  costs  businesses,  governments, and  labour favour  increased  production  recycled HFCs not cost  competitive with new  HFCs   cost of HFC incineration      49 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    10.9.2    Emissions efficiency, fuel switching, and carbon dioxide capture and storage  There are a number of challenges associated with feedstock and energy substitution in industry.  Waste materials and biomass as fuel and feedstock substitutes are limited by their availability, and  hence competition could drive up prices and make industrial applications less attractive (IEA, 2009b).  A decarbonized power sector would offer new opportunities to reduce CO2 intensity of some  industrial processes via use of electricity, however, decarbonization of power also has barriers  (assessed in Chapter 7.9).   The application of CCS to the industries covered in this chapter share many of the barriers to its  application to power generation (see Chapter 7.9). Barriers for application of CCS in industry include  space constraints when applied in retrofit situations (Concawe, 2011); high capital costs and long  project development times; investment risk associated with poorly defined liability; the trade exposed nature of many industries, which can limit viable CCS business models; current lack in  general of financial incentives to offset the additional cost of CCS; and the immaturity of CO2 capture  technology for cement, iron and steel, and petrochemical industries (Kheshgi et al., 2012).   10.9.3    Material efficiency  There are technically feasible opportunities to improve material efficiency in industry (Allwood et al.,  2011). One opportunity is a circular economy, which is a growing model across various countries and  which aims to systematically fulfil the hierarchy principles of material efficiency  reduce, re use,  recycle  (see Section 10.14). This approach however, has barriers which include a lack of human and  institutional capacities to encourage management decisions and public participation (Geng and  Doberstein, 2008), as well as fragmented and weak institutions (Geng et al., 2010b). Improving  material efficiency by integrating different industries (see Section 10.5) is often limited by specific  local conditions, infrastructure requirements (e.g., pipelines) and the complexity of multiple users  (Geng et al., 2010b).  10.9.4    Product demand reduction  Improved product design or material properties, respectively, can help to extend the product s  lifetime and can lead to lower product demand. However it has to be considered that extended  lifetime may not actually satisfy current user preferences, and the user may choose to replace an  older, functioning product with a new one (van Nes and Cramer, 2006; Allwood et al., 2011). In  addition, continually providing newer products may result in lower operational emissions (e.g.,  improved energy efficiency). In this case, longer product lifetimes might not automatically lead to  lower overall emissions. For example, from a lifecycle balance point of view, it may be better to  replace specific energy intensive products such as washing machines, before their end of life to  make use of more efficient substitutes (Scholl et al., 2010; Intlekofer et al., 2010; Fischer et al., 2012;  Agrawal et al., 2012).   Businesses are rewarded for growing sales volumes and can prefer process innovation over product  innovation (e.g. EIO 2011; 2012). Existing markets generally do not take into account negative  externalities associated with resource use nor do they adequately incorporate the risks of resource related conflicts (Bleischwitz et al., 2012; Transatlantic Academy, 2012), yet existing national  accounting systems based on GDP indicators also support the pursuit of actions and policies that aim  to increase demand spending for more products (Jackson, 2009; Roy and Pal, 2009). Labour unions  often have an ambivalent position in terms of environmental policies and partly see environmental  goals as threat for their livelihood (Räthzel and Uzzell, 2012).  10.9.5    Non CO2 greenhouse gases  Non CO2 greenhouse gas emissions are an important contributor to industry process emissions (note  that emissions of CO2 from calcination are another important contributor: for barriers to controlling      50 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    these emissions by CO2 capture and storage see Section 10.9.2). Barriers to preventing or avoiding  the release of HFCs, CFCs, HCFCs, PFC, and SF6 in industry and from its products include: lack of  awareness of alternative refrigerants and lack of guidance as to their use in a given or new system  (UNEP and EC, 2010); lack of certification and control of leakage of HFCs from refrigeration (Heijnes  et al., 1999); cost of recycled HFCs in markets where there is direct competition from newly  produced HFCs (Heijnes et al., 1999); lack of information and communication and education about  solvent replacements (Heijnes et al., 1999) (IPCC/TEAP, 2005); cost of adaptation of existing  aluminium production for PFC emission reduction and the absence of lower cost technologies in  such situations (Heijnes et al., 1999); cost of incineration of HFCs emitted in HCFC production  (Heijnes et al., 1999); regulatory barriers to alternatives to some HFC use in aerosols (IPCC/TEAP,  2005). (UNEP, 2010) found that there are technically and economically feasible substitutes for  HCFCs, however, transitional costs remain a barrier for smaller enterprises. 10.10   Sectoral implications of transformation pathways and sustainable  development  This section assesses transformation pathways for the industry sector over the 21st century by  examining a wide range of published scenarios. The section draws conclusions from scenarios  generated by integrated models assessed in Chapter 6 (see Table 6.1) which span a wide range of  possible energy future pathways and which rely on a wide range of assumptions (e.g., population,  economic growth, policies, and technology development and its acceptance). Against that  background, scenarios for the industrial sector over the 21st century associated with different  atmospheric CO2eq concentrations in 2100 are assessed in Section 10.10.1, and corresponding  implications for sustainable development and investment are assessed in Section 10.10.2 from a  sector perspective.   10.10.1    Industry transformation pathways  The different possible trajectories for industry final energy demand (globally and for different  regions), emissions, and carbon intensity under a wide range of CO2eq concentrations over the 21st  century are shown in Figure 10.11, Figure 10.12 and Figure 10.1322. These scenarios exhibit  economic growth in general over the 21st century as well as growth specifically in the industry  sector. Detailed scenarios of the industry sector extend to 2050 and exhibit increasing material  production  e.g., iron/steel and cement (Sano et al., Article in Press, 2013; IEA, 2009b; Akashi et al.,  2013). Scenarios generated by general equilibrium models, which include economic feedbacks (see  Table 6.1), implicitly include changes in material flow due to, for example, changes in prices that may  be driven by a price on carbon; however, these models do not generally provide detailed subsectoral  material flows. Options for reducing material demand and inter input substitution elasticities (Roy et  al., 2006; Sanstad et al., 2006) are used with various assumptions in the models that can better be  characterized as gaps in integrated models currently in use.   Final energy (FE) demand from industry increases in most scenarios, as seen in Figure 10.11(a) driven  by the growth of the industry sector; however, FE is weakly dependent on the CO2eq concentration  in 2100 of the scenarios, and the range of FE demand spanned by the scenarios becomes wide in the  latter half of the century (compare also Figure 6.37). In these scenarios, energy productivity                                                               22  This section builds upon emissions scenarios, which were collated by Chapter 6 in the AR5 scenario database (see  Section 6.2.2), and compares them to detailed scenarios for industry referenced in this section. The scenarios included  both baseline and mitigation scenarios. As described in more detail in Section 6.3.2, the scenarios shown in this section are  categorized into bins based on 2100 concentrations: between 430  530 ppm CO2eq, 530 650 ppm CO2eq, and >650 ppm  CO2eq by 2100. The relation between these bins of emission scenarios and the increase in global mean temperature since  pre industrial times is reviewed in Section 6.3.2.      51 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    improvements help to limit the increase in FE. For example, results of the DNE21+ and AIM models  include a 56% and 114% increase in steel produced from 2010 to 2050 and a decrease in FE per unit  production of 20 22% and 28 34% (these are the ranges spanned by the reference, 550 and 450  ppm CO2eq scenarios for each model), respectively (Akashi et al., 2013; Sano et al., 2013, Article in  Press). While energy efficiency of industry improves with time, the growth of CCS in some scenarios  leads to increases in FE demand. Growth of final energy for cement production to 2050, for example,  is seen in Figure 10.11(a) due to energy required for CCS in the cement industry mitigation scenarios  (i.e., going from AIM cement >650 ppm CO2eq scenario to the <650 ppm CO2eq scenarios).   Figure 10.12 shows the regional breakdown of final energy demand by world regions for different  scenarios for the industrial sector. Over the 21st century, scenarios indicate that the growth of  industry FE demand continues to be greatest in Asia, followed by the Middle East and Africa,  although at a slower growth rate than seen over the last decade (see Section 10.3). The OECD 1990,  Latin America, and Reforming Economies regions are expected to comprise a decreasing fraction of  the world s industrial FE.  After 2050, emissions from industry, including indirect emissions resulting from industrial electricity  demand become very low, and in some scenarios even negative as seen in Figure 10.11(b). The  emission intensity of FE shown in Figure 10.11(c) decreases in most scenarios over the century, and  decreases more strongly for low CO2eq concentration levels. A decrease in emission intensity is  generally the dominant mechanism for decrease in direct plus indirect emissions in the <650 ppm  CO2eq scenarios shown in Figure 10.11. In scenarios with strong decreases in emission intensity, this  is generally due to some combination of application of CCS to direct industry emissions, and a shift  to a lower carbon carrier of energy   for example, a shift to low  or negative carbon sources of  electricity. Low carbon electricity is assessed in Chapter 7 and bioenergy with CCS which could in  theory result in net CO2 removal from the atmosphere is assessed in Chapters 7, and Sections  11.13.3, and 11.13.5.  Figure 10.13 shows the projected changes in the shares of industry sector energy carriers electricity, solids (primarily coal), and liquids, gases and hydrogen from 2010 to 2100 for 120  scenarios (compare also Figures 6.38 with low carbon fuel shares in industrial final energy).  Scenarios for all CO2eq concentration levels show an increase in the share of electricity in 2100  compared to 2010, and generally show a decrease in the share of liquids/gases/hydrogen. Some of  the <650 ppm CO2eq scenarios show an increase in the share of solids in 2100 compared to 2010 and  some show a decrease. For the >650 ppm CO2eq scenarios, the change in shares from 2010 to 2100  is generally smaller than the change in shares for the <650 ppm CO2eq scenarios. A shift towards  solids could lead to reduced emissions if the scenarios include the applicatin of CCS to the emissions  from solids. A shift towards electricity could lead to reduced emissions if the electricity generation is  from low emission energy sources. The strong decrease in indirect emissions from electricity  demand in most 430 530 ppm CO2eq scenarios is shown in Figure 6.33 (see Chapter 6.8), with  electricity emissions already negative in some scenarios by 2050. Each pathway implies some degree  of lock in of technology types and their supporting infrastructure, which has important implications;  e.g., iron/steel in the basic oxygen furnace (BOF) route might follow a pathway with a higher solid  fuel share but with CCS for direct emissions reduction by the industry. A decarbonized power sector  provides the means to reduce the emission intensity of electricity use in the industrial sector, but  barriers, such as a lack of a sufficient carbon price, exist (IEA, 2009b; Bassi et al., 2009) Barriers to  decarbonization of electricity are discussed in more detail in Section 7.10.  The IEA (2012d) 2DS scenario (Figure 10.14) shows a primary contribution to mitigation in 2050 from  energy efficiency followed by recycling and energy recovery, fuel and feedstock switching, and a  strong application of CCS to direct emissions. Carbon dioxide capture and storage has limited  application before 2030, since CO2 capture has yet to be applied at commercial scale in major  industries such as cement or iron/steel and faces various barriers (see Section 10.9). Increased      52 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    application of CCS is a precondition for rapid transitions and associated high levels of technology  development and investment as well as social acceptance. The AIM 450 CO2eq scenario (Akashi et  al., 2013) has, for example, a stronger contribution from CCS than the IEA 2DS from 2030 onward,  whereas the DNE21+ 450 ppm CO2eq scenario (Sano et al., Article in Press, 2013) has a weaker  contribution as shown in Figure 10.14. These more detailed industry sector scenarios fall within the  range of the full set of scenarios shown in Figure 10.11.  10.10.2    Transition, sustainable development, and investment  Transitions in industry will require significant investment and offer opportunities for sustainable  development (e.g., employment). Investment and development opportunities may be greatest in  regions where industry is growing, particularly because investment in new facilities provides the  opportunity to  leapfrog , or avoid the use of less efficient higher emissions technologies present in  existing facilities, thus offering the opportunity for more sustainable development (for discussion of  co benefits and adverse side effects when implementing mitigation options, see Section 10.8).   The wide range of scenarios implies that there will be massive investments in the industry sector  over the 21st century. Mitigation scenarios generally imply an even greater investment in industry  with shifts in investment focus. For example, due to an intensive use of mitigation technologies in  the IEA s Blue Scenarios (IEA, 2009d), global investments in industry are 2 2.5 trillion USD higher by  the middle of the century than in the reference case; successfully deploying these technologies  requires not only consideration of competing investment options, but also removal of barriers and  seizing new opportunities (see Section 10.9).   The stringent mitigation scenarios discussed in Section 10.10.1 envisage emission intensity  reductions, in particular due to deployment of CCS. However, public acceptance of widespread  diffusion of CCS might hinder the realization of such scenarios. Taking the potential resistance into  account, some alternative mitigation scenarios may require reduction of energy service demand  (Kainuma et al., 2013). For the industry sector, options to reduce material demand or reduce  demand for products becomes important as the latter does not rely on investment challenges,  although they face a different set of barriers and can have high transaction costs (see Section 10.9).  Industry related climate change mitigation options vary widely and may positively or negatively  affect employment. As such, identifying mitigation options that enhance positive effects (e.g., due to  some energy efficiency improvements) and minimize the negative outcomes is therefore critical.  Some studies have argued that climate change mitigation policies can lead to unemployment and  economic downturn (e.g. Babiker and Eckaus, 2007; Chateau et al., 2011) because such policies can  threaten labour demand (e.g. Martinez Fernandez et al., 2010) and can be regressive (Timilsina,  2009). Alternatively, other studies suggest that environmental regulation could stimulate eco innovation and investment in more efficient production techniques and result in increased  employment (OECD, 2009). Particularly, deployment of efficient energy technologies can lead to  higher employment (Wei et al., 2010; UNIDO, 2011) depending on how redistribution of investment  funds takes place within an economy (Sathaye and Gupta, 2010).       53 of 112       Final Draft    Chapter 10  IPCC WGIII AR5      Figure 10.11. Industry sector scenarios over the 21st century that lead to low (430 530 ppm CO2eq), medium (530 650 ppm CO2eq) and high (>650 ppm CO2eq) atmospheric CO2eq concentrations in 2100 (see Table 6.3 for definitions of categories). All results are indexed relative to 2010 values for each scenario. Panels show: (a) final energy demand; (b) direct plus indirect CO2eq emissions; (c) emission intensity (emissions from (b) divided by energy from (a)). Indirect emissions are emissions from industrial electricity demand. The median scenario (horizontal line symbol) surrounded by the darker colour bar (inner quartiles of scenarios) and lighter bar (full range) represent those 120 scenarios assessed in Chapter 6 with model default technology assumptions which submitted detailed final energy and emissions data for the industrial sector; white bars show the full range of scenarios including an additional 408, with alternate economic, resource, and technology assumptions (e.g., altering the economic and population growth rates, excluding some technology options or increasing response of energy efficiency improvement). Symbols are provided for selected scenarios for industry and industry sub-sectors (iron and steel, and cement) for the IEA ETP (IEA, 2012d), AIM Enduse model (Akashi et al., 2013 and Table 6.1) and DNE21+ (Sano et al., 2013a, b; and Table 6.1) for their baseline, 550 ppm and 450 ppm CO2eq scenarios to 2050.     54 of 112       Final Draft    Chapter 10  IPCC WGIII AR5      Figure 10.12. Final energy demand from the industry sector shown for the RC5 regions (see Annex II.2 for definition) over the 21st century. Bars are compiled using information from 105 of those 120 scenarios assessed in Chapter 6, with model default technology assumptions that submitted detailed final energy and emissions data for the industrial sector. Bar height corresponds to the median scenario with respect to final energy demand relative to 2010; breakdown fractions correspond to the mean of scenarios.   Figure 10.13. The ternary panel on the left provides the industry final energy share trajectories across three groups of energy carriers: electricity, solids, and liquids-gases-hydrogen. The path of each scenario s trajectory is shown by a single line with symbols at the start in 2010 (the diamond towards     55 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    the lower right accounts for 3 of 120 trajectories generated from one model that start in 2010 at a higher solids and lower liquids, gases, hydrogen share than the remainder of the trajectories which start at the upper diamond), in 2050 and at the end in 2100. The lines in the three panels on the right show the shares of energy carriers for each of the trajectories in the ternary diagram in 2100; the diamonds show the average share across a panel s models in 2010. Results are shown for those 120 scenarios assessed in Chapter 6, with model default technology assumptions that submitted detailed final energy and emissions data for the industrial sector.   Figure 10.14. Mitigation of direct CO2eq annual emissions in five major industrial sectors: iron/steel, cement, chemicals/petrochemicals, pulp/paper, and aluminium. The left panel shows results from IEA scenarios (IEA, 2012d), broken down by mitigation option. The top of the bar shows the IEA 4DS low demand scenario, the bottom bar is the 2DS low demand scenario. The bar layers show the mitigation options that contribute to the emission difference from the 4DS to the 2DS low demand scenario. The right panel shows mitigation by CCS of direct industrial emissions in IEA, AIM Enduse (Akashi et al., 2013 and Table 6.1) and DNE21+ (Sano et al., 2013a, b; and Table 6.1) scenarios are shown for those subsectors where CCS was reported.  10.11   Sectoral policies  It is important to note that there is no single policy that can address the full variety of mitigation  options for the industry sector. In addition to overarching policies (see Chapter 15 in particular, and  Chapters 14 and 16), combinations of sectoral policies are needed. The diverse and relatively even  mix of policy types in the industrial sector reflects the fact that there are numerous barriers to  energy and material efficiency in the sector (see Section 10.9), and that industry is quite  heterogeneous. In addition, the level of energy efficiency of industrial facilities varies significantly,  both within subsectors and within and across regions. Most countries or regions use a mix of policy  instruments, many of which interact. For example, energy audits for energy intensive manufacturing  firms are also regularly combined with voluntary/negotiated agreements and energy management  schemes (Anderson and Newell, 2004; Price and Lu, 2011; Rezessy and Bertoldi, 2011; Stenqvist and  Nilsson, 2012). Tax exemptions are often combined with an obligation to conduct energy audits  (Tanaka, 2011). Current practice acknowledges the importance of policy portfolios (e.g., (Brown et  al., 2011)), as well as the necessity to consider national contexts and unintended behaviour of      56 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    industrial companies. In terms of the latter, carbon leakage is relevant in the discussion of policies  for industry (for a more in depth analysis of carbon leakage see Chapter 5).   So far only a few national governments have evaluated their industry specific policy mixes (Reinaud  and Goldberg, 2011). For the UK, Barker et al. (2007) modelled the impact of the UK Climate Change  Agreements (CCAs) and estimated that from 2000 to 2010 they would result in a reduction of total  final demand for energy of 2.6% and a reduction in CO2 emissions of 3.3%. The CCAs established  targets for industrial energy efficiency improvements in energy intensive industrial sectors; firms  that met the targets qualified for a reduction of 80% on the Climate Change Levy (CCL) rates on  energy use in these sectors. Barker et al. (2007) also show that the macro economic effect on the UK  economy from the policies was positive.  In addition to dedicated sector specific mitigation policies, co benefits (see Section 10.8 and this  report s framing chapters) should be considered. For example, local air quality standards have an  indirect effect on mitigation as they set incentives for substitution of inefficient production  technologies. Given the priorities of many governments, these indirect policies have played a  relatively more effective role than climate policies, e.g. in India (Roy, 2010).   10.11.1    Energy efficiency  The use of energy efficiency policy in industry has increased appreciably in many IEA countries as  well as major developing countries since the late 1990s (Roy, 2007; Worrell et al., 2009; Tanaka,  2011; Halsnaes et al., 2014). A review of 575 policy measures found that, as of 2010, information  programmes are the most prevalent (40%), followed by economic instruments (35%), and measures  such as regulatory approaches and voluntary actions (24%) (Tanaka, 2011). Identification of energy  efficiency opportunities through energy audits is the most popular measure, followed by subsidies,  regulations for equipment efficiency, and voluntary/negotiated agreements. A classification of the  various types of policies and their coverage are shown in Figure 10.15 and experiences in a range of  these policies are analyzed below.  Greenhouse gas cap and trade and carbon tax schemes that aim to enhance energy efficiency in  energy intensive industry have been established in developed countries, particularly in the last  decade, and are recently emerging in some developing countries. The largest example of these  economic instruments by far is the European Emissions Trading Scheme (ETS). A more in depth  analysis of these overarching mechanisms is provided in Chapter 15.   Among regulatory approaches, regulations and energy efficiency standards for equipment have  increased dramatically since 1992 (Tanaka, 2011). With regards to target driven policies, one of the  key initiatives for realizing the energy intensity reduction goals in China was the Top 1000 Energy Consuming Enterprises programme that required the establishment of energy saving targets, energy  use reporting systems and energy conservation plans, adoption of incentives and investments, and  audits and training. The programme resulted in avoided CO2 emissions of approximately 400 MtCO2  compared to a business as usual baseline, and has been expanded to include more facilities under  the new Top 10,000 enterprise programme. (Lin et al., 2011; Price et al., 2011; NDRC, 2011b)      57 of 112       Final Draft    Chapter 10  IPCC WGIII AR5      Figure 10.15. Selected policies for energy efficiency in industry and their coverage (from Tanaka, 2011). Many firms (in particular SMEs) with rather low energy costs as a share of their revenue allocate  fewer resources to improving energy efficiency, resulting in a low level of knowledge about the  availability of energy efficiency options (Gruber and Brand, 1991; Ghosh and Roy, 2011). Energy  audits help to overcome such information barriers (Schleich, 2004) and can result in the faster  adoption of energy efficient measures (Fleiter et al., 2012b). The effectiveness of 22 industrial  energy auditing programmes in 15 countries has been reviewed by Price and Lu (2011), who give  recommendations on the success factors (e.g., use of public databases for benchmarking, use of  incentives for participation in audits).   Energy Management Systems (EnMS) are a collection of business processes, carried out at plants  and firms, designed to encourage and facilitate systematic improvement in energy efficiency. The  typical elements of EnMS include maintenance checklists, measurement processes, performance  indicators and benchmarks, progress reporting, and on site energy managers (McKane, 2007). The  adoption of EnMS schemes in industry can be mandatory, as in Japan, Italy, Turkey, or Portugal  (Tanaka, 2011) or voluntary, and can be guided by standards, such as the international standard ISO  5000123. Backlund et al. and Thollander and Palm (2012; 2013) argue that improvement in practices  identified by EnMS and audits should be given a greater role in studies of potential for energy  efficiency, as most studies concentrate only on the technological and economical potentials.   There are a number of case studies that argue for the environmental and economic effectiveness of  EnMS and energy audits (Anderson and Newell, 2004; Ogawa et al., 2011; Shen et al., 2012). Some  studies report very quick payback for energy efficiency investments identified during such  assessments (Price et al., 2008). For example, a programme in Germany offering partial subsidies to                                                               23  http://www.iso.org/iso/home/standards/management standards/iso50001.htm.      58 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    SMEs for energy audits was found to have saved energy at a cost to the German government of 2.4 5.7 USD2010/tCO2 (Fleiter et al., 2012c). In another case, the energy audit program by the Energy  Conservation Centre of Japan (ECCJ), was found to provide positive net benefits for society, defined  as the net benefit to private firms minus the costs to government, of 65 USD2010/tCO2 (Kimura and  Noda, 2010). On the other hand, there are also studies that report mixed results of some mandatory  EMS and energy audits, where some companies did not achieve any energy efficiency improvements  (Kimura and Noda, 2010).  Many countries use benchmarking to compare energy use among different facilities within a  particular sector (Tanaka, 2008; Price and McKane, 2009). In the Netherlands, for example, the  Benchmarking Covenants encourage companies to compare themselves to others and to commit to  becoming among the most energy efficient in the world. However, in many countries high quality  energy efficiency data for benchmarking is lacking (Saygin et al., 2011b).  Negotiated, or voluntary agreements (VAs), have been found in various assessments to be effective  and cost efficient (Rezessy and Bertoldi, 2011). Agreement programmes (e.g., in Ireland, France, the  Netherlands, Denmark, UK, Sweden) were often responsible for increasing the adoption of energy efficiency and mitigation technologies by industries beyond what would have been otherwise  adopted without the programmes (Price et al., 2010; Stenqvist and Nilsson, 2012). Some key factors  contributing to successful VAs appear to be a strong institutional framework, a robust and  independent monitoring and evaluation system, credible mechanisms for dealing with non compliance, capacity building and very importantly accompanying measures such as free or  subsidized energy audits, mandatory energy management plans, technical assistance, information  and financing for implementation (Rezessy and Bertoldi, 2011), as well as dialogue between industry  and government (Yamaguchi, 2012). Further discussion and examples of the effectiveness of VAs can  be found in Chapter 15.   10.11.2    Emissions efficiency  Policies directed at increasing energy efficiency (discussed above) most often result in reduction of  CO2 intensity as well, in particular when the aim is to make the policy part of a wider policy mix  addressing multiple policy objectives. Examples of emissions efficiency policy strategies include  support schemes and fiscal incentives for fuel switching, R&D programmes for CCS, and inclusion of  reduction of non CO2 gases in voluntary agreements (e.g., Japanese voluntary action plan Keidanren,  see Chapter 15).   Regarding gases with a relatively high GWP such as HFCs, PFCs, and SF6, successful policy examples  exist for capture in the power sector (e.g., Japan (Nishimura and Sugiyama, 2008)), but there is not  much experience in the industry sector. The CDM has driven abatement of the industrial gases HFC 23 and N2O in developing countries because of monetary incentives (Michaelowa and Buen, 2012)24.  Including high GWP emissions within the same cap and trade programme (and therefore prices) as  energy related emissions may draw opposition from the industries concerned, so special  programmes for these gases could be a better alternative (Hall, 2007). Another option suggested is  to charge an upfront fee that would then be refunded when the gases are later captured and  destroyed (Hall, 2007).  10.11.3    Material efficiency  Policy instruments for material or resource use efficiency in general are only just starting to be  promoted for mitigation of GHG emissions in industry; consequently, effective communication to  industry on the need and potential for an integrated approach is still lacking (Lettenmeier et al.,                                                               24  For a more in depth analysis of CDM as a policy instrument, see Chapter 13, Sections 13.7.2 and 13.13.1.2.  59 of 112           Final Draft    Chapter 10  IPCC WGIII AR5    2009). Similarly, waste management policies are still not driven by climate concerns, although the  potential for GHG emission reductions through waste management is increasingly recognized and  accounted for (see Section 10.14/Appendix: Waste), (e.g., (Worrell and van Sluisveld, 2013). Several  economic instruments (e.g., taxes and charges) related to waste disposal have been shown to be  effective in preventing waste, although they do not necessarily lead to improved design measures  being taken further upstream (Hogg et al., 2011).   A number of policy packages are directly and indirectly aimed at reducing material input per unit of  product or unit of service demand25. Some examples are the European Action Plan on Sustainable  Consumption and Production (SCP) and Sustainable Industry (EC, 2008a), the EU s resource  efficiency strategy and roadmap (EC, 2011, 2012b), and Germany s resource efficiency programme,  ProgRess (BMU, 2012). SCP policies include both voluntary and regulatory instruments, such as the  EU Eco design Directive, as well as the Green Public Procurement policies. Aside from setting a  framework and long term goals for future legislation and setting up networks and knowledge bases,  these packages include few specific policies and, most importantly, do not set quantitative targets  nor explicitly address the link between material efficiency and GHG emission reductions.  Some single policies (as opposed to policy packages) related to material efficiency do include an  assessment of their impacts in terms of GHG emissions. For example, in the UK s National Industrial  Symbiosis Programme (NISP) brokers exchange resources between companies (for an explanation of  industrial symbiosis, see Section 10.5). An assessment of the savings through the NISP estimated  that over 6 MtCO2eq were saved over the first five years (Laybourn and Morrissey, 2009). The PIUS Check initiative by the German state of North Rhine Westphalia (NRW) offers audits to companies  where the relevant material flows are analyzed and recommendations for improvements are made.  These PIUS checks have been particularly successful in metal processing industries, and it is  estimated that they have saved 20 thousand tonnes of CO2 (EC, 2009).  In the Asia and Pacific region there are a number of region specific policy instruments for climate  change mitigation through SCP, such as the China Refrigerator Project, which realized emissions  reductions of about 11 MtCO2 between 1999 and 2005 by combining several practices including  sustainable product design, technological innovation, eco labelling, and awareness raising of  consumers and retailers (SWITCH Asia Network Facility, 2009). However, there is still a lack of solid  ex post assessments on SCP policy impacts.   Besides industry specific policies there are policies with a different sector focus that influence  industrial activity indirectly, by reducing the need for products (e.g., car pooling incentive schemes  can lead to the production of less cars) or industrial materials (e.g., vehicle fuel economy targets can  incentivize the design of lighter vehicles). A strategic approach in order to reflect the economy wide  resource use and the global risks may consist of national accounting systems beyond GDP26 (Jackson,  2009; Roy and Pal, 2009; Arrow et al., 2010; GEA, 2012), including systems to account for increasing  resource productivity (OECD, 2008; Bringezu and Bleischwitz, 2009) and of new international  initiatives to spur systemic eco innovations in key areas such as cement and steel production, light weight cars, resource efficient construction, and reducing food waste.   10.12   Gaps in knowledge and data  The key challenge for making an assessment of the industry sector is the diversity in practices, which  results in uncertainty, lack of comparability, incompleteness, and quality of data available in the                                                                SCP policies are also covered in Chapter 4 (Sustainable Development and Equity, Section 4.4.3.1 SCP policies  and programmes)  26 25  For example, the EU s  Beyond GDP Initiative : http://www.beyond gdp.eu/      60 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    public domain on process and technology specific energy use and costs. This diversity makes  assessment of mitigation potential with high confidence at global and regional scales extremely  difficult. Sector data are generally collected by industry/trade associations (international or  national), are highly aggregated, and generally give little information about individual processes. The  enormous variety of processes and technologies adds to the complexity of assessment (Tanaka,  2008, 2012; Siitonen et al., 2010).  Other major gaps in knowledge identified are:  A systematic approach and underlying methodologies to avoid double counting due to the  many different ways of attributing emissions (10.1).  An in depth assessment of mitigation potential and associated costs achievable particularly  through material efficiency and demand side options (10.4).  Analysis of climate change impacts on industry and industry specific mitigation options, as  well as options for adaptation (10.6)  Comprehensive information on sector and sub sector specific option based mitigation  potential and associated costs based on a comparable methodology and transparent  assumptions (10.7)  Effect on long term scenarios of demand reduction strategies through an improved  modelling of material flows, inclusion of regional producer behaviour model parameters in  integrated models (10.10).   Understanding of the net impacts of different types of policies, the mitigation potential of  linked policies e.g., resource efficiency/energy efficiency policies, as well as policy as drivers  of carbon leakage effects (10.11).   10.13   Frequently Asked Questions   FAQ 10.1. How much does the industry sector contribute to GHG emissions?   Global industrial GHG emissions accounted for just over 30% of global GHG emissions in 2010. Global  industry and waste/wastewater GHG emissions grew from 10 GtCO2eq in 1990 to 13 GtCO2eq in  2005 to 15 GtCO2eq in 2010. Over half (52%) of global GHG emissions from industry and  waste/wastewater are from the ASIA region, followed by OECD 1990 (25%), EIT (9%), MAF (8%), and  LAM (6%). GHG emissions from industry grew at an average annual rate of 3.5% globally between  2005 and 2010. This included 7% average annual growth in the ASIA region, followed by MAF (4.4%)  and LAM (2%), and the EIT countries (0.1%), but declined in the OECD 1990 countries ( 1.1%). (10.3)  In 2010, industrial GHG emissions were comprised of direct energy related CO2 emissions of 5.3  GtCO2eq, 5.2 GtCO2eq indirect CO2 emissions from production of electricity and heat for industry,  process CO2 emissions of 2.6 GtCO2eq, non CO2 GHG emissions of 0.9 GtCO2eq, and  waste/wastewater emissions of 1.5 GtCO2eq.  2010 direct and indirect emissions were dominated by CO2 (85.1%) followed by CH4 (8.6%), HFC  (3.5%), N2O (2.0%), PFC (0.5%) and SF6 (0.4%) emissions. Between 1990 and 2010, N2O emissions  from adipic acid and nitric acid production and PFC emissions from aluminium production decreased  while HFC 23 emissions from HCFC 22 production increased. In the period 1990 2005, fluorinated  gases (F gases) were the most important non CO2 GHG source in manufacturing industry. (10.3)      61 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    FAQ 10.2. What are the main mitigation options in the industry sector and what is the  potential for reducing GHG emissions?   Most industry sector scenarios indicate that demand for materials (steel, cement, etc.) will increase  by between 45% to 60% by 2050 relative to 2010 production levels. To achieve an absolute  reduction in emissions from the industry sector will require a broad set of mitigation options going  beyond current practices. Options for mitigation of GHG emissions from industry fall into the  following categories: energy efficiency, emissions efficiency (including fuel and feedstock switching,  carbon dioxide capture and storage), material efficiency (for example through reduced yield losses in  production), re use of materials and recycling of products, more intensive and longer use of  products, and reduced demand for product services. (10.4, 10.10)  In the last two to three decades there have been strong improvements in energy and process  efficiency in industry, driven by the relatively high share of energy costs. Many options for energy  efficiency improvement still remain, and there is still potential to reduce the gap between actual  energy use and the best practice in many industries. Based on broad deployment of best available  technologies, the GHG emissions intensity of the sector could be reduced through energy efficiency  by approximately 25%. Through innovation, additional reductions of approximately 20% in energy  intensity may potentially be realized before approaching technological limits in some energy  intensive industries. (10.4, 10.7)   In addition to energy efficiency, material efficiency using less new material to provide the same  final service is an important and promising option for GHG reductions that has had little attention  to date. Long term step change options, including a shift to low carbon electricity or radical product  innovations (e.g., alternatives to cement), may have the potential to contribute to significant  mitigation in the future. (10.4)  FAQ 10.3. How will the level of product demand, interactions with other sectors, and  collaboration within the industry sector affect emissions from industry?   The level of demand for new and replacement products has a significant effect on the activity level  and resulting GHG emissions in the industry sector. Extending product life and using products more  intensively could contribute to reduction of product demand without reducing the service. However,  assessment of such strategies needs a careful net balance (including calculation of energy demand in  the production process and associated GHG emissions). Absolute emission reductions can also come  about through changes in lifestyle and their corresponding demand levels, be it directly (e.g., for  food, textiles) or indirectly (e.g., for product/service demand related to tourism) (10.4).   Mitigation strategies in other sectors may lead to increased emissions in industry if they require  enhanced use of energy intensive materials (e.g., higher production of solar cells (PV) and insulation  materials for buildings). Moreover, collaborative interactions within the industry sector and between  the industry sector and other economic sectors have significant potential for mitigation (e.g., heat  cascading). In addition, inter sectoral cooperation, i.e., collaborative interactions among industries in  industrial parks or with regional eco industrial networks, can contribute to mitigation. (10.5)  FAQ 10.4. What are the barriers to reducing emissions in industry and how can these be  overcome? Are there any co benefits associated with mitigation actions in industry?   Implementation of mitigation measures in industry faces a variety of barriers. Typical examples  include: the expectation of high return on investment (short payback period); high capital costs and  long project development times for some measures; lack of access to capital for energy efficiency  improvements and feedstock/fuel change; fair market value for cogenerated electricity to the grid;  and costs/lack of awareness of need for control of HFC leakage. In addition, businesses today are  mainly rewarded for growing sales volumes and can prefer process innovation over product      62 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    innovation. Existing national accounting systems based on GDP indicators also support the pursuit of  actions and policies that aim to increase demand for products and do not trigger product demand  reduction strategies. (10.9)  Addressing the causes of investment risk, and better provisioning of user demand in the pursuit of  human well being could enable the reduction of industry emissions. Improvements in technologies,  efficient sector specific policies (e.g., economic instruments, regulatory approaches and voluntary  agreements), and information and energy management programmes could all contribute to  overcome technological, financial, institutional, legal, and cultural barriers. (10.9, 10.11)  Implementation of mitigation measures in industries and related policies might gain momentum if  co benefits (10.8) are considered along with direct economic costs and benefits (10.7). Mitigation  actions can improve cost competitiveness, lead to new market opportunities, and enhance  corporate reputation through indirect social and environmental benefits at the local level.  Associated positive health effects can enhance public acceptance. Mitigation can also lead to job  creation and wider environmental gains such as reduced air and water pollution and reduced  extraction of raw materials which in turn leads to reduced GHG emissions. (10.8)  10.14   Appendix: Waste  10.14.1    Introduction  Waste generation and reuse is an integral part of human activity. Figure 10.2 and Section 10.4 have  shown how industries enhance resource use efficiency through recycling or reuse before discarding  resources to landfills, which follows the waste hierarchy shown in Figure 10.16. Several mitigation  options exist at the pre consumer stage. Most important is reduction in waste during production  processes. With regard to post consumer waste, associated GHG emissions heavily depend on how  waste is treated.   This section provides a summary of knowledge on current emissions from wastes generated from  various economic activities (focusing on solid waste and wastewater) and discusses the mitigation  options to reduce emissions and recover materials and energy from solid wastes.   10.14.2    Emissions trends  10.14.2.1    Solid waste disposal  The  hierarchy of waste management  as shown in Figure 10.16, places waste reduction at the top,  followed by re use, recycling, energy recovery (including anaerobic digestion), treatment without  energy recovery (including incineration and composting) and four types of landfills ranging from  modern sanitary landfills that treat liquid effluents and also attempt to capture and use the  generated biogas, through to traditional non sanitary landfills (waste designated sites that lack  controlled measures) and open burning. Finally, at the bottom of the pyramid are crude disposal  methods in the form of waste dumps (designated or non designated waste disposal sites without  any kind of treatment) that are still dominant in many parts of the world. The hierarchy shown in  Figure 10.16 provides general guidance. However, lifecycle assessment of the overall impacts of a  waste management strategy for specific waste composition and local circumstances may change the  priority order (EC, 2008b).      63 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Figure 10.16. The hierarchy of waste management. The priority order and colour coding is based on the five main groups of waste hierarchy classification (Prevention; Preparing for Re-Use; Recycling; Other Recovery e.g., Energy Recovery; and Disposal) outlined by the European Commission (EC, 2008b). Municipal solid wastes (MSW) are the most visible and troublesome residues of human society. The  total amount of MSW generated globally has been estimated at about 1.5 Gt per year (Themelis,  2007) and it is expected to increase to approximately 2.2 Gt by 2025 (Hoornweg and Bhada Tata,  2012). Of the current amount, approximately 300 Mt are recycled, 200 Mt are treated with energy  recovery, another 200 Mt are disposed in sanitary landfills, and the remaining 800 Mt are discarded  in non sanitary landfills or dumps. Thus, much of the recoverable matter in MSW is dispersed  through mixing with other materials and exposure to reactive environmental conditions. The  implications for GHG and other emissions are related not only to the direct emissions from waste  management, but also to the emissions from production of materials to replace those lost in the  waste.  Figure 10.17 presents global emissions from waste from 1970 until 2010 based on EDGAR version  4.2. Methane emissions from solid waste disposal almost doubled between 1970 and 2010. The drop  in CH4 emissions from solid waste disposal sites (SWDS) starting around 1990 is most likely related to  the decrease in such emissions in Europe and the United States. However, it is important to note  that the First Order Decay (FOD) model used in estimating emissions from solid waste disposal sites  in the EDGAR database does not account for climate and soil micro climate conditions like California  Landfill Methane Inventory Model (CALMIM) (see Spokas et al., 2011; Spokas and Bogner, 2011;  Bogner et al., 2011).       64 of 112       Final Draft    Chapter 10  IPCC WGIII AR5      Figure 10.17. Global waste emissions MtCO2eq/year, global waste emissions per GDP and global waste emissions per capita referred to 1970 values. Based on (JRC/PBL, 2012). (See Annex II.9) Global waste emissions per unit of GDP decreased 27% from 1970 to 1990 and 34% from 1990 to  2010, with a decrease of 48% for the entire period (1970 2010). Global waste emissions per capita  increased 10% between 1970 and 1990, decreased 5% from 1990 to 2010, with a net increase of 5%  for the entire period 1970 2010 (Figure 10.17). Several reasons may explain these trends: GHG  emissions from waste in EU, mainly from solid waste disposal on land and wastewater handling  decreased by 19.4% in the decade 2000 2009; the decline is notable when compared to total EU27  emissions over the same period, which decreased by 9.3 %27. Energy production from waste in the  EU in 2009 was more than double that generated in 2000, while biogas has experienced a 270%  increase in the same period. With the introduction of the Landfill Directive 10 1999/31/EC, the EU  has established a powerful tool to reduce the amount of biodegradable municipal waste disposed in  landfills (Blodgett and Parker, 2010). Moreover, methane emissions from landfills in the United  States decreased by approximately 27% from 1990 to 2010. This net emissions decrease can be  attributed to many factors, including changes in waste composition, an increase in the amount of  landfill gas collected and combusted, a higher frequency of composting, and increased rates of  recovery of degradable materials for recycling, e.g., paper and paperboard (EPA, 2012b).   China's GHG emissions in the waste sector increased rapidly in the 1981 to 2009 period, along with  the growing scale of waste generation by industries as well as households in urban and rural areas  (Qu and Yang, 2011). A 79% increase in landfill methane emissions was estimated between 1990 (2.4  Mt) and 2000 (4.4 Mt) due to changes in both the amount and composition of municipal waste  generated (Streets et al., 2001) and emission of China s waste sector will peak at 33.2 MtCO2eq in  2024 (Qu and Yang, 2011). In India (INCCA, 2010), the waste sector contributed 3% of total national                                                                Eurostat 2013, available at  http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Climate_change_ _driving_forces.  27     65 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    CO2 emission equivalent of which 22% is from municipal solid waste and the rest are from domestic  wastewater (40%) and industrial wastewater (38%). Domestic wastewater is the dominant source of  CH4 in India. The decrease of GHG emissions in the waste sector in the EU and the United States  from 1990 to 2009 has not been enough to compensate for the increase of emissions in other  regions resulting in an overall increasing trend of total waste related GHG emissions in that period.   10.14.2.2    Wastewater   Methane and nitrous oxide emissions from wastewater steadily increased during the last decades  reaching 667 and 108 MtCO2eq in 2010, respectively. Methane emissions from domestic/commercial  and industrial categories are responsible for 86% of wastewater GHG emissions during the period  1970 2010, while the domestic/commercial sector was responsible for approximately 80% of the  methane emissions from wastewater category.   10.14.3    Technological options for mitigation of emissions from waste   10.14.3.1    Pre consumer waste  Waste reduction  Pre consumer (or post industrial) waste is the material diverted from the waste stream during a  manufacturing process that does not reach the end user. This does not include the reutilization of  materials generated in a process that can be re used as a substitute for raw materials (10.4) without  being modified in any way. Waste reduction at the pre consumer stage can be achieved by  optimizing the use of raw materials, e.g., arranging the pattern of pieces to be cut on a length of  fabric or metal sheet enable maximum utilization of material with minimum of waste.  Recycling and reuse  Material substitution through waste generated from an industrial process or manufacturing chain  can lead to reduction in total energy requirements (10.4) and hence emissions. Section 10.4  discusses options for recycling and reuse in the manufacturing industries. The same section also  discusses the use of municipal solid waste as energy source or feedstock, e.g., for the cement  industry, as well as the possible use of industrial waste for mineralization approaches for CCS.   10.14.3.2    Post consumer waste  Pre consumer (or post industrial) waste is the material resulting from a manufacturing process,  which joins the waste stream and does not reach the end use. The top priority of the post consumer  waste management is reduction followed by re use and recycling.   Waste reduction  To a certain extent, the amount of post consumer waste is related to lifestyle. On a per capita basis,  Japan and the EU have about 60% of the US waste generation rates based significantly on different  consumer behavior and regulations. Globally, a visionary goal of  zero waste  assists countries in  designing waste reduction strategies, technologies, and practices, keeping in mind other resource  availability like land. Home composting has been successfully used in some regions, which reduces  municipal waste generation rates (Favoino and Hogg, 2008; Andersen et al., 2010).  Non technological behavioural strategies aim to avoid or reduce waste, for instance by decoupling  waste generation from economic activity levels such as GDP (Mazzanti and Zoboli, 2008). In addition,  strategies are in place that aim to enhance the use of materials and products that are easy to  recycle, reuse, and recover (10.4) in close proximity facilities. Examples in the building sector are  discussed in Chapter 9.       66 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Post consumer waste can be linked with pre consumer material through the principle of Extended  Producer Responsibility (EPR) in order to divert the waste going to landfills. This principle or policy is  the explicit attribution of responsibility to the waste generating parties, preferably already in the  pre consumer phase. In Germany, for example, the principle of producer responsibility for their  products in the post consuming phase is made concrete by the issuing of regulations (de Jong, 1997).  Sustainable consumption and production and its influence on waste minimization are discussed also  in Section 10.11.   Recycling/reuse  If reduction of post consumer waste cannot be achieved, reuse and recycling is the next priority in  order to reduce the amount of waste produced and to divert it from disposal (Valerio, 2010).  Recycling of post consumer waste can be achieved with high economic value to protect the  environment and conserve the natural resources (El Haggar, 2010). Section 10.4 discusses this in the  context of reuse in industries. Chapter 9 discusses some examples of recycling/reuse options in the  building sector.  As cities have become hotspots of material flows and stock density (Baccini and Brunner, 2012, p.  31) (see Chapter 12), MSW can be seen as a material reservoir that can be mined. This can be done  not only through current recycling and/or energy recovery processes (10.4), but also by properly  depositing and concentrating substances (e.g., metals, paper, plastic) in order to make their  recuperation technically and economically viable in the future. The current amount of materials  accumulated mainly in old/mature settlements, for the most part located in developed countries  (Graedel, 2010), exceeds the amount of waste currently produced (Baccini and Brunner, 2012, p. 50).   With a high degree of agreement, it has been suggested that urban mining (as a contribution  towards a zero waste scenario) could reduce important energy inputs of material future demands in  contrast to domestically produced and, even more important for some countries, imported  materials, while contributing to future material accessibility.   Landfilling and methane capture from landfills  It has been estimated (Themelis and Ulloa, 2007) that annually about 50 Mt of methane is generated  in global landfills, 6 Mt of which are captured at sanitary landfills. Sanitary landfills that are equipped  to capture methane at best capture 50% of the methane generated; however, significantly higher  collection efficiencies have been demonstrated at certain well designed and operated landfills with  final caps/covers of up to 95%.  The capital investment needed to build a sanitary landfill is less than 30% of a waste to energy  (WTE) plant of the same daily capacity. However, because of the higher production of electricity  (average of 0.55 MWh of electricity per metric tonne of MSW in the U.S. vs 0.1 MWh for a sanitary  landfill), a WTE plant is usually more economic over its lifetime of 30 years or more (Themelis and  Ulloa, 2007). In other regions, however, the production of methane from landfills may be lower due  to the reduction of biodegradable fraction entering the landfills or operating costs may be lower.  Therefore, economics of both options may be different in such cases.  Landfill aeration  Landfill aeration can be considered as an effective method for GHG emissions reduction in the future  (Ritzkowski and Stegmann, 2010). In situ aeration is one technology that introduces ambient air into  MSW landfills to enhance biological processes and to inhibit methane production (Chai et al., 2013).  Ambient air is introduced in the landfill via a system of gas wells, which results in accelerated aerobic  stabilization of deposited waste. The resulting gas is collected and treated (Heyer et al., 2005; Prantl  et al., 2006). Biological stabilization of the waste using in situ aeration provides the possibility to      67 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    reduce both the actual emissions and the emission potential of the waste material (Prantl et al.,  2006).  Landfill aeration, which is not widely applied yet, is a promising technology for treating the residual  methane from landfills utilizing landfill gas for energy when energy recovery becomes economically  unattractive (Heyer et al., 2005; Ritzkowski et al., 2006; Rich et al., 2008). In the absence of  mandatory environmental regulations that require the collection and flaring of landfill gas, landfill  aeration might be applied to closed landfills or landfill cells without prior gas collection and disposal  or utilization. For an in situ aerated landfill in northern Germany, for example, landfill aeration  achieved a reduction in methane emissions by 83% to 95% under strictly controlled conditions  (Ritzkowski and Stegmann, 2010). Pinjing et al. (2011) show that landfill aeration is associated with  increased N2O emissions.  Composting and Anaerobic Digestion  Municipal solid waste (MSW) contains  green  wastes such as leaves, grass, and other garden and  park residues, and also food wastes. Generally, green wastes are source separated and composted  aerobically (i.e., in presence of oxygen) in windrows. However, food wastes contain meat and other  substances that, when composted in windrows, emit unpleasant odours. Therefore, food wastes  need to be anaerobically digested in closed biochemical reactors. The methane generated in these  reactors can be used in a gas engine to produce electricity, or for heating purposes. Source  separation, collection, and anaerobic digestion of food wastes are costly and so far have been  applied to small quantities of food wastes in a few cities (e.g., Barcelona, Toronto, Vienna (Arsova,  2010)), except in cases where some food wastes are co digested with agricultural residues. In  contrast, windrow composting is practiced widely; for example, 62% of the U.S. green wastes (22.7  million tonnes) were composted aerobically in 2006 (Arsova et al., 2008), while only 0.68 million  tonnes of food wastes (i.e., 2.2% of total food wastes (EPA, 2006a)) were recovered.   Energy Recovery from Waste  With the exception of metals, glass, and other inorganic materials, MSW consists of biogenic and  petrochemical compounds made of carbon and hydrogen atoms.   The energy contained in solid wastes can be recovered by means of several thermal treatment  technologies including combustion of as received solid wastes on a moving grate, shredding of MSW  and combustion on a grate or fluidized bed, mechanical biological treatment (MBT) of MSW into  compost, refuse derived fuel (RDF) or biogas from anaerobic digestion, partial combustion and  gasification to a synthetic gas that is then combusted in a second chamber, and pyrolysis of source separated plastic wastes to a synthetic oil. At this time, an estimated 90% of the world's WTE  capacity (i.e., about 180 Mt per year) is based on combustion of as received MSW on a moving  grate; the same is true of the nearly 120 new WTE plants that were built worldwide in the period of  2000 2007 (Themelis, 2007).   WTE plants require sophisticated Air Pollution Control (APC) systems that constitute a large part of  the plant. In the last twenty years, because of the elaborate and costly APC systems, modern WTE  plants have become one of the cleanest high temperature industrial processes (Nzihou et al., 2012).  Source separation of high moisture organic wastes from the MSW increases the thermal efficiency of  WTE plants.   Most of the mitigation options mentioned above require expenditures and, therefore, are more  prevalent in developed countries with higher GDP levels. A notable exception to this general rule is  China, where government policy has encouraged the construction of over 100 WTE plants during the  first decade of the 21st century (Dong, 2011). Figure 10.18 shows the share of different management  practices concerning the MSW generated in several nations (Themelis and Bourtsalas, 2013). Japan,      68 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    with about 75% WTE and 25% recycling, is at the top of this graph while China, with 18% WTE and  less than 3% recycling, is at the level of Slovakia.  The average chemical energy stored in MSW is about 10 MJ/kg (lower heating value, LHV),  corresponding to about 2.8 MWh per tonne. The average net thermal efficiency of U.S. WTE plants  (i.e., electricity to the grid) is 20%, which corresponds to 0.56 MWh per tonne of MSW. However,  additional energy can be recovered from the exhaust steam of the turbine generator. For example,  some plants in Denmark and elsewhere recover 0.5 MWh of electricity plus 1 MWh of district  heating. A full discussion of the R1 factor, used in the EU for defining overall thermal efficiency of a  WTE plant can be found in Themelis et al. (2013).  Studies of the biogenic and fossil based carbon based on C14 C12 measurements on stack gas of  nearly forty WTE plants in the United States have shown the about 65% of the carbon content of  MSW is biogenic (i.e., from paper, food wastes, wood, etc.) (Themelis et al., 2013) .    Figure 10.18. Management practices concerning MSW in several nations (based on World Bank and national statistics, methodology described in Themelis and Bourtsalas (2013).     69 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    10.14.3.3    Wastewater  As a preventive measure, primary and secondary aerobic and land treatment help reduce CH4  emissions during wastewater treatment. Alternatively, CH4 emissions from wastewater including  sludge treatment under anaerobic conditions can be captured and used as an energy source  (Karakurt et al., 2012). Nitrous oxide is mainly released during biological nitrogen removal in  wastewater treatment plants, primarily in aerated zones thus improved plant design and operational  strategies (availability of dissolved oxygen, chemical oxygen demand and nitrogen ratio COD/N) have  to be achieved in order to avoid the stripping of nitrous emissions (Kampschreur et al., 2009; Law et  al., 2012).  Most developed countries rely on centralized aerobic/anaerobic wastewater treatment plants to  handle their municipal wastewater. In developing countries, there is little or no collection and  treatment of wastewater, anaerobic systems such as latrines, open sewers, or lagoons (Karakurt et  al., 2012). Approximately 47% of wastewater produced in the domestic and manufacturing sectors is  untreated, particularly in South and Southeast Asia, but also in Northern Africa as well as Central and  South America (Flörke et al., 2013). Wastewater treatment plants are highly capital intensive but  inflexible to adapt to growing demands, especially in rapidly expanding cities. Therefore, innovations  related to decentralized wastewater infrastructure are becoming promising. These innovations  include satellite systems, actions to achieve reduced wastewater flows, recovery and utilization of  the energy content present in wastewater, recovery of nutrients, and the production of water for  recycling, which will be needed to address the impacts of population growth and climate change  (Larsen et al., 2013).   Industrial wastewater from the food industry usually has both high biochemical and chemical oxygen  demand and suspended solid concentrations of organic origin that induce a higher GHG production  per volume of wastewater treated compared to municipal wastewater treatment. The  characteristics of the wastewater and the off site GHG emissions have a signi cant impact on the  total GHG emissions attributed to the wastewater treatment plants (Bani Shahabadi et al., 2009). For  example, in the food processing industry with aerobic/anaerobic/hybrid process, the biological  processes in the treatment plant made for the highest contribution to GHG emissions in the aerobic  treatment system, while off site emissions are mainly due to material usage and represent the  highest emissions in anaerobic and hybrid treatment systems. Industrial cluster development in  developing countries like China and India are enhancing wastewater treatment and recycling (see  also Section 10.5).   Regional variation in wastewater quality matters in terms of performance of technological options.  Conventional systems may be technologically inadequate to handle the locally produced sewage in  arid areas like the Middle East. In these areas, domestic wastewater are up to five times more  concentrated in the amount of biochemical and/or chemical oxygen demand per volume of sewage  in comparison with United States and Europe, causing large amounts of sludge production. In these  cases, choosing an appropriate treatment technology for the community could be a sustainable  solution for wastewater management and emissions control. Example solutions include upflow  anaerobic sludge blanket, hybrid reactors, soil aquifer treatment, approaches based on pathogens  treatment, and reuse of the treated effluent for agricultural reuse (Bdour et al., 2009).   Wetlands can be a sustainable solution for municipal wastewater treatment due to their low cost,  simple operation and maintenance, minimal secondary pollution, favourable environmental  appearance, and other ecosystem service bene ts (Mukherjee, 1999; Chen et al., 2008, 2011;  Mukherjee and Gupta, 2011). It has been demonstrated that wetlands are a less energy intensive  option than conventional wastewater treatment systems despite differences in costs across  technologies and socio economic contexts (Gao et al., 2012), but such systems are facing challenges  in urban areas from demand for land for other economic activities (Mukherjee, 1999).       70 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    It has been highlighted that wastewater treatment with anaerobic sludge digestion and methane  recovery and use for energy purposes reduces methane emissions (Bani Shahabadi et al., 2009; Foley  et al., 2010; Massé et al., 2011; Fine and Hadas, 2012; Abbasi et al., 2012; Liu et al., 2012b; Wang et  al., 2012b). Anaerobic digestion also provides an efficient means to reduce pollutant loads when  high strength organic wastewater (food waste, brewery, animal manure) have to be treated (Shin et  al., 2011), although adequate regulatory policy incentives are needed for widespread  implementation in developed and developing countries (Massé et al., 2011).   Advanced treatment technologies such as membrane filtration, ozonation, aeration efficiency,  bacteria mix, and engineered nanomaterials (Xu et al., 2011b; Brame et al., 2011) may enhance GHG  emissions reduction in wastewater treatment, although some such technologies, for example  membranes, have increased the competitiveness and decentralization (Fane, 2007; Libralato et al.,  2012).  The existence of a shared location and infrastructure can also facilitate the identification and  implementation of more synergy opportunities to reduce industrial water provision and wastewater  treatment, therefore abating GHG emissions from industry. The concept of eco industrial parks is  discussed in Section 10.5 above.  10.14.4    Summary results on costs and potentials  Figure 10.19 and Figure 10.20 present the potentials and costs of selected mitigation options to  reduce the GHG emissions of the two waste sectors that represent 90% of waste related emissions:  solid waste disposal (0.67 GtCO2eq) and domestic wastewater (0.77 GtCO2eq) emissions (JRC/PBL,  2012). For solid waste, potentials are presented in tCO2eq/t solid waste and for wastewater and in  tCO2eq/t BOD5 as % compared to current global average.  Six mitigation options for solid waste and three mitigation options for wastewater are assessed and  presented in the figures. The reference case and the basis for mitigation potentials were derived  from IPCC 2006 guidelines. Abatement costs and potentials are based on EPA (2006b; 2013).   The actual costs and potentials of the abatement options vary widely across regions and design of a  treatment methodology. Given that technology options to reduce emissions from industrial and  municipal waste are the same, it is not further distinguished in the approach. Furthermore, the  potential of reductions from emissions from landfills are directly related to climatic conditions as  well as to the age and amount of landfill, both of which are not included in the chosen approach.  Emission factors are global annual averages (derived from IPCC 2006 guideline aggregated regional  averages). The actual emission factor differs between types of waste, climatic regions, and age of the  landfill, explaining the wide range for each technology. The mitigation potential for waste is derived  by comparing the emission range from a reference technology (e.g., a landfill) with the emission  range for a chosen technology. The GHG coverage for solid waste is focused on methane, which is  the most significant emission from landfilling; other GHG gases such as N2O only play a minor role in  the landfill solid waste sector and are neglected in this study (except for composting).  In the case of landfills, the top five emitting countries account for 27% of the total abatement  potential in the sector (United States 2%, China 6%, Mexico 9%, Malaysia 3%, and Russia 2%). The  distribution of the remaining potential per region is: Africa 16%, Central and South America 9%,  Middle East 9%, Europe 19%, Eurasia 2%, Asia 15%, and North America 4% (EPA, 2013).  In the case of wastewater, 58% of the abatement potential is concentrated in the top five emitting  countries (United States 7%, Indonesia 9%, Mexico 10%, Nigeria 10%, and China 23%). The  distribution of the remaining potential per region is: Africa 5%, Central and South America 5%,  Middle East 14%, Europe 5%, Eurasia 4%, and Asia 10% (EPA, 2013).        71 of 112       Final Draft    Chapter 10  IPCC WGIII AR5      Figure 10.19. Indicative CO2eq emission intensities and levelized cost of conserved carbon of municipal solid waste disposal practices/technologies (for data and methodology, see Annex III). The United States EPA has produced two studies with cost estimates of abatement in the solid waste  sector (EPA, 2006b, 2013) which found a large range for options to reduce landfill (e.g., incineration,  anaerobic digestion, and composting) of up to 590 USD2010/tCO2eq if the technology is only  implemented for the sake of GHG emission reduction. However, the studies highlight that there are  significant opportunities for CH4 reductions in the landfill sector at carbon prices below 20 USD2010.  Improving landfill practices mainly by flaring and CH4 utilization are low cost options, as both  generate costs in the lower range (0   50 USD2010/tCO2eq).   The costs of the abatement options shown vary widely between individual regions and from plant to  plant. The cost estimates should, for that reason, be regarded as indicative only and depend on a  number of factors including capital stock turnover, relative energy costs, regional climate conditions,  waste fee structures, etc. Furthermore, the method does not reflect the time variation in solid waste  disposal and the degradation process as it assumes that all potential methane is released the year  the solid waste is disposed.    Figure 10.20. Indicative CO2eq emission intensities and levelized cost of conserved carbon of different wastewater treatments (for underlying data and methodology, see Annex III). The unit tonne biological oxygen demand (t BOD) stands for the organic content of wastewater  ( loading ) and represents the oxygen consumed by wastewater during decomposition. The average  for domestic wastewater is in a range of 110 400 mg/ l and is directly connected to climate  conditions. Costs and potentials are global averages, but based on region specific information.  Options that are more often used in developing countries are not considered since data availability is  limited. However, options like septic tanks, open sewers, and lagoons are low cost options with an  impact of reducing GHG emission compared to untreated wastewater that is stored in a stagnant  sewer under open and warm conditions.  The methane correction factor applied is based on the IPCC guidelines and gives an indication of the  amount of methane that is released by applying the technology; furthermore emissions from N2O  have not been included as they play an insignificant role in domestic wastewater. Except in countries  with advanced centralized wastewater treatment plants with nitrification and denitrification steps  (IPCC, 2006), establishing a structured collection system for wastewater will always have an impact  on GHG emissions in the waste sector.       72 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Cost estimates of abatement in the domestic wastewater are provided in EPA (2006b; 2013), which  find a large range for the options of 0 to 530 USD2010/tCO2eq with almost no variation across options.  The actual costs of the abatement options shown vary widely between individual regions and from  the design set up of a treatment methodology. Especially for wastewater treatment, the cost ranges  largely depend on national circumstances like climate conditions (chemical process will be  accelerated under warm conditions), economic development, and cultural aspects. The data  availability for domestic wastewater options, especially on costs, is very low and would result in  large ranges, which imply large uncertainties for each of the option. Mitigation potentials for landfills  (in terms of % of potential above emissions for 2030) is double compared with wastewater (EPA,  2013). The mitigation potential for wastewater tends to concentrate in the higher costs options due  to the significant costs of constructing public wastewater collection systems and centralized  treatment facilities.       73 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    References  Abbasi T., S.M. Tauseef, and S.A. Abbasi (2012). Anaerobic digestion for global warming control and  energy generation An overview, Renewable and Sustainable Energy Reviews 16 3228 3242 pp.  (DOI: 10.1016/j.rser.2012.02.046), (ISSN: 1364 0321).  Agrawal V.V., M. Ferguson, L.B. Toktay, and V.M. Thomas (2012). Is Leasing Greener Than Selling?,  Management Science 58 523 533 pp. (DOI: 10.1287/mnsc.1110.1428), (ISSN: 0025 1909).  Ahmad N., and A. Wyckoff (2003). Carbon Dioxide Emissions Embodied in International Trade of  Goods. Organisation for Economic Co Operation and Development, Paris. . Available at:  http://www.oecd ilibrary.org/content/workingpaper/421482436815.  Akashi O., T. Hanaoka, T. Masui, and M. Kainuma (2013). Halving global GHG emissions by 2050  without depending on nuclear and CCS, Climatic Change 1 12 pp. (DOI: 10.1007/s10584 013 0942 x), (ISSN: 0165 0009, 1573 1480).  Akashi O., T. Hanaoka, Y. Matsuoka, and M. Kainuma (2011). A projection for global CO2 emissions  from the industrial sector through 2030 based on activity level and technology changes, Energy 36  1855 1867 pp. (DOI: 10.1016/j.energy.2010.08.016), (ISSN: 0360 5442).  Allwood J.M., M.F. Ashby, T.G. Gutowski, and E. Worrell (2011). Material efficiency: A white paper,  Resources, Conservation and Recycling 55 362 381 pp. (DOI: 10.1016/j.resconrec.2010.11.002),  (ISSN: 0921 3449).  Allwood J.M., M.F. Ashby, T.G. Gutowski, and E. Worrell (2013). Material efficiency: providing  material services with less material production, Philosophical Transactions of the Royal Society A:  Mathematical, Physical and Engineering Sciences 371 2 15 pp. (DOI: 10.1098/rsta.2012.0496).  Allwood J.M., J.M. Cullen, M.A. Carruth, D.R. Cooper, M. McBrien, R.L. Milford, M. Moynihan, and  A.C.H. Patel (2012). Sustainable Materials: With Both Eyes Open. UIT Cambridge Ltd, Cambridge,  England, 373 pp., (ISBN: 9781906860059). .  Allwood J.M., J.M. Cullen, and R.L. Milford (2010). Options for Achieving a 50% Cut in Industrial  Carbon Emissions by 2050, Environmental Science & Technology 44 1888 1894 pp. (DOI: doi:  10.1021/es902909k), (ISSN: 0013 936X).  Allwood J.M., S.E. Laursen, S.N. Russell, C.M. de Rodríguez, and N.M.P. Bocken (2008). An  approach to scenario analysis of the sustainability of an industrial sector applied to clothing and  textiles in the UK, Journal of Cleaner Production 16 1234 1246 pp. (DOI:  10.1016/j.jclepro.2007.06.014), (ISSN: 0959 6526).  Andersen J.K., A. Boldrin, T.H. Christensen, and C. Scheutz (2010). Greenhouse gas emissions from  home composting of organic household waste, Waste management (New York, N.Y.) 30 2475 2482  pp. (DOI: 10.1016/j.wasman.2010.07.004), (ISSN: 1879 2456).  Anderson S., and R.G. Newell (2004). Information programs for technology adoption: the case of  energy efficiency audits, Resource and Energy Economics 26 27 50 pp. .  APP (2010). Energy Efficiency and Resource Saving Technologies in the Cement Industry. Asia Pacific  Partnership on Clean Development and Climate. 232 pp. Available at:      74 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    http://www.asiapacificpartnership.org/pdf/Projects/Cement/APP_Booklet_of_Cement_Technology. pdf.  Arrow K.J., P. Dasgupta, L.H. Goulder, K.J. Mumford, and K. Oleson (2010). Sustainability and the  Measurement of Wealth. National Bureau of Economic Research, Cambridge, MA. 42 pp. Available  at: http://www.nber.org/papers/w16599.  Arsova L. (2010). Anaerobic digestion of food waste: Current status, problems and an alternative  product. Columbia University.  Arsova L., R. van Haaren, N. Golstein, S.M. Kaufman, and N.J. Themelis (2008). State of Garbage in  America, BioCycle 49 22 27 pp. . Available at: http://www.biocycle.net/2008/12/22/the state of garbage in america 3/.  Arvedi G., F. Mazzolari, A. Bianchi, G. Holleis, J. Siegl, and A. Angerbauer (2008). The Arvedi Endless  Strip Production line (ESP): from liquid steel to hot rolled coil in seven minutes, Revue de Métallurgie  105 398 407 pp. (DOI: 10.1051/metal:2008057), (ISSN: 0035 1563, 1156 3141).  Ashby M.F. (2009). Materials and the Environment: Eco Informed Material Choice. Butterworth Heinemann, Burlington, MA, USA, (ISBN: 978 1856176088). .  Aunan K., J. Fang, H. Vennemo, K. Oye, and H.M. Seip (2004). Co benefits of climate policy lessons  learned from a study in Shanxi, China, Energy Policy 32 567 581 pp. (DOI: 10.1016/S0301 4215(03)00156 3), (ISSN: 0301 4215).  Babiker M.H., and R.S. Eckaus (2007). Unemployment effects of climate policy, Environmental  Science & Policy 10 600 609 pp. (DOI: 10.1016/j.envsci.2007.05.002), (ISSN: 1462 9011).  Baccini P., and P.H. Brunner (2012). Metabolism of the Anthroposphere: Analysis, Evaluation,  Design. MIT Press, Cambridge, MA, 405 pp., (ISBN: 9780262016650). .  Backlund S., P. Thollander, J. Palm, and M. Ottosson (2012). Extending the energy efficiency gap,  Energy Policy 51 392 396 pp. (DOI: 10.1016/j.enpol.2012.08.042), (ISSN: 0301 4215).  Bailey M., R. Lauman, G. Wicks, and B. Crumrine (2009). Get  er Done! How to Implement Energy  Efficiency Projects by Understanding Organizational Behavior and Decision Making, ACEEE Summer  Study on Energy Efficiency in Industry. 2009, .  Baj¾elj B., J.M. Allwood, and J.M. Cullen (2013). Designing Climate Change Mitigation Plans That  Add Up, Environmental Science & Technology 47 8062 8069 pp. (DOI: 10.1021/es400399h), (ISSN:  0013 936X).  Bani Shahabadi M., L. Yerushalmi, and F. Haghighat (2009). Impact of process design on  greenhouse gas (GHG) generation by wastewater treatment plants, Water Research 43 2679 2687  pp. (DOI: 10.1016/j.watres.2009.02.040), (ISSN: 0043 1354).  Barker T., P. Ekins, and T. Foxon (2007). Macroeconomic effects of efficiency policies for energy intensive industries: The case of the UK Climate Change Agreements, 2000 2010, Energy Economics  29 760 778 pp. (DOI: 10.1016/j.eneco.2006.12.008), (ISSN: 0140 9883).  Barker D.J., S.A. Turner, P.A. Napier Moore, M. Clark, and J.E. Davison (2009). CO2 Capture in the  Cement Industry, Energy Procedia 1 87 94 pp. (DOI: 16/j.egypro.2009.01.014), (ISSN: 1876 6102).      75 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Bassi A.M., J.S. Yudken, and M. Ruth (2009). Climate policy impacts on the competitiveness of  energy intensive manufacturing sectors, Energy Policy 37 3052 3060 pp. (DOI:  10.1016/j.enpol.2009.03.055), (ISSN: 0301 4215).  BCS Inc. (2007). U.S. Energy Requirements for Aluminum Production: Historical Perspective,  Theoretical Limits and Current Practices. Technical Report Prepared for the United States Department  of Energy, Industrial Technologies Program. U.S. Department of Energy, Washington, DC. . Available  at:  http://www1.eere.energy.gov/manufacturing/industries_technologies/aluminum/pdfs/al_theoretic al.pdf.  Bdour A.N., M.R. Hamdi, and Z. Tarawneh (2009). Perspectives on sustainable wastewater  treatment technologies and reuse options in the urban areas of the Mediterranean region,  Desalination 237 162 174 pp. (DOI: 10.1016/j.desal.2007.12.030), (ISSN: 0011 9164).  Bebbington A.J., and J.T. Bury (2009). Institutional challenges for mining and sustainability in Peru,  Proceedings of the National Academy of Sciences 106 17296  17301 pp. (DOI:  10.1073/pnas.0906057106).  Becken S., and J.E. Hay (2012). Climate Change and Tourism: From Policy to Practice. Routledge,  London, UK, 344 pp., (ISBN: 9781136471742). .  Beddington J., M. Asaduzzaman, A. Fernandez, M. Clark, M. Guillou, M. Jahn, L. Erda, T. Mamo, N.  van Bo, C.A. Nobre, R. Scholes, Sharma R, and J. Wakhungu (2011). Achieving Food Security in the  Face of Climate Change: Summary for Policymakers from the Commission on Sustainable Agriculture  and Climate Change. Copenhagen. 20 pp. Available at:  http://cgspace.cgiar.org/bitstream/handle/10568/10701/Climate_food_commission SPM Nov2011.pdf?sequence=6.  BEE (2012). Database of energy efficiency measures adopted by the winners of the National Awards  on Energy Conservations (Years 2008 2012), Bureau of Energy Efficiency, Ministry of Power,  Government of India . Available at: http://www.emt india.net/eca2013/2013.htm.  Van Berkel R., T. Fujita, S. Hashimoto, and Y. Geng (2009). Industrial and urban symbiosis in Japan:  Analysis of the Eco Town program 1997 2006, Journal of Environmental Management 90 1544 1556  pp. (DOI: 10.1016/j.jenvman.2008.11.010), (ISSN: 0301 4797).  Bernstein L., J. Roy, K.C. Delhotal, J. Harnisch, R. Matsuhashi, L. Price, K. Tanaka, E. Worrell, F.  Yamba, and Z. Fengqi (2007). Industry. In: Climate Change 2007: Mitigation. Contribution of Working  Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B.  Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge University Press,, Cambridge,  United Kingdom and New York, NY, USA pp.449 488(ISBN: 978 0 521 70598 1).  BIS Production Partner (2012). Strong reduction in emissions with the help of BIS Production  Partner, Bilfinger Berger Industrial Services . Available at: http://en.productionpartner.com/About us/News/Strong reduction in emissions with the help of BIS Production Partner.  Bitzer J., and M. Kerekes (2008). Does foreign direct investment transfer technology across borders?  New evidence, Economics Letters 100 355 358 pp. (DOI: 10.1016/j.econlet.2008.02.029), (ISSN:  0165 1765).      76 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Bleischwitz R., B. Bahn Walkowiak, F. Ekardt, H. Feldt, and L. Fuhr (2012). International Resource  Politics. New Challenges Demanding New Governance Approaches for a Green Economy. Heinrich  Böll Stiftung, Berlin. 95 pp. Available at: http://www.boell.de/ecology/resources/resource governance ecology publication international resource politics 14873.html.  Blodgett J., and L. Parker (2010). Greenhouse Gas Emission Drivers: Population, Economic  Development and Growth, and Energy Use. Congressional Research Service, Washington, DC. 36 pp.  Available at: http://crs.ncseonline.org/NLE/CRSreports/10Apr/RL33970.pdf.  BMU (2012). German Resource Efficiency Programme (ProgRess). Federal German Ministry for the  Environment, Nature Conservation and Nuclear Safety (Bundesministerium Für Umwelt, Naturschutz  Und Reaktorsicherheit, BMU), Berlin. 124 pp. Available at: http://www.bmu.de/fileadmin/bmu import/files/pdfs/allgemein/application/pdf/progress_en_bf.pdf.  Boden T.A., G. Marland, and R.J. Andres (2013). Global, Regional, and National Fossil Fuel CO2  Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.  Department of Energy, Oakridge, Tenn. USA. 1 pp. Available at:  http://cdiac.ornl.gov/trends/emis/tre_glob.html.  Bogner J.E., K.A. Spokas, and J.P. Chanton (2011). Seasonal greenhouse gas emissions (methane,  carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California  cover soils, Journal of environmental quality 40 1010 1020 pp. (DOI: 10.2134/jeq2010.0407), (ISSN:  0047 2425).  Bosoaga A., O. Masek, and J.E. Oakey (2009). CO2 Capture Technologies for Cement Industry,  Energy Procedia 1 133 140 pp. (DOI: 16/j.egypro.2009.01.020), (ISSN: 1876 6102).  Bouoiyour J., and A. Akhawayn (2005). Labour Productivity, Technological Gap and Spillovers  Evidence from Moroccan Manufacturing Industries, The African Finance Journal 7 1 17 pp. .  Available at: http://ideas.repec.org/a/afj/journl/v7y2005i2p1 17.html.  Bows A., K. Anderson, and P. Peeters (2009). Air Transport, Climate Change and Tourism, Tourism  and Hospitality Planning & Development 6 7 20 pp. (DOI: 10.1080/14790530902847012).  Boyd G.A., and J.X. Pang (2000). Estimating the linkage between energy efficiency and productivity,  Energy Policy 28 289 296 pp. .  Brame J., Q. Li, and P.J.J. Alvarez (2011). Nanotechnology enabled water treatment and reuse:  emerging opportunities and challenges for developing countries, Trends in Food Science &  Technology 22 618 624 pp. (DOI: 10.1016/j.tifs.2011.01.004), (ISSN: 0924 2244).  Bringezu S., and R. Bleischwitz (2009). Sustainable Resource Management: Global Trends, Visions  and Policies. Greenleaf Publishing, 345 pp., (ISBN: 9781906093266). .  Brown M.A. (2001). Market failures and barriers as a basis for clean energy policies, Energy Policy 29  1197 1207 pp. .  Brown M.A., M. Cox, and P. Baer (2013). Reviving manufacturing with a federal cogeneration policy,  Energy Policy 52 264 276 pp. (DOI: 10.1016/j.enpol.2012.08.070), (ISSN: 0301 4215).  Brown T., A. Gambhir, N. Florin, and P. Fennell (2012). Reducing CO2 Emissions from Heavy Industry:  A Review of Technologies and Considerations for Policy Makers. Imperial College London, London,  UK. 32 pp. Available at: http://www3.imperial.ac.uk/climatechange/publications.      77 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Brown M.A., R. Jackson, M. Cox, R. Cortes, B. Deitchman, and M.V. Lapsa (2011). Making Industry  Part of the Climate Solution: Policy Options to Promote Energy Efficiency. Oak Ridge National  Laboratory (ORNL), Oakridge, Tenn. USA. 299 pp. Available at:  http://info.ornl.gov/sites/publications/Files/Pub23821.pdf.  De Bruijn K., R. Dirven, E. Eijgelaar, and P. Peeters (2010). Travelling Large in 2008: The Carbon  Footprint of Dutch Holidaymakers in 2008 and the Development since 2002. NHTV NRIT Research NBTC NIPO Research, Vlissigen, Netherlands, 43 pp. Available at:  http://books.google.com/books?id=MVSvYgEACAAJ.  Brush A., E. Masanet, and E. Worrell (2011). Energy Efficiency Improvement and Cost Saving  Opportunities for the Dairy Processing Industry. Lawrence Berkeley National Laboratory, Berkeley,  CA. 137 pp. Available at: http://escholarship.org/uc/item/3pb7n796.  Bye A. (2005). The development and application of a 3D geotechnical model for mining optimisation,  sandsloot open pit platinum mine, South Africa, SME Annual Meeting: Got Mining. Society for  Mining, Metallurgy and Exploration, Littleton, Colorado, USA. 2005, 8 pp. Available at:  www.saimm.co.za/Journal/v106n02p097.pdf.  Bye A. (2007). The application of multi parametric block models to the mining process, Journal of  The South African Institute of Mining and Metallurgy 107 51 58 pp. .  Bye A. (2011). Case Studies Demonstrating Value from Geometallurgy Initiatives, First AusIMM  International Geometallurgy Conference (GeoMet). 2011,  Available at:  http://www.ausimm.com.au/publications/epublication.aspx?ID=12887.  Carruth M.A., J.M. Allwood, and M.C. Moynihan (2011). The technical potential for reducing metal  requirements through lightweight product design, Resources, Conservation and Recycling 57 48   60  pp. (DOI: 10.1016/j.resconrec.2011.09.018), (ISSN: 0921 3449).  CCAP (2005). Reducing CO2 Emissions from California s Cement Sector. Center for Clean Air Policy,  Washington, DC. 13 pp. Available at: http://ccap.org/assets/Reducing CO2 Emissions from Californias Cement Sector_CCAP October 2005.pdf.  CEMBUREAU (2009). Sustainable Cement Production   Co Processing of Alternative Fuels and Raw  Materials in the European Cement Industry. CEMBUREAU, Brussels, Belgium. 19 pp. Available at:  http://www.cembureau.eu/sites/default/files/Sustainable%20cement%20production%20Brochure.p df.  CEPI (2006). Europe Global Champion in Paper Recycling: Paper Industries Meet Ambitious Target.  Confederation of European Paper Industries, Brussels, Belgium. . Available at:  http://www.cepi.org/system/files/public/documents/pressreleases/recycling/2006/PRRECYCLING.p df.  CEPI (2012). Key Statistics 2011   European Pulp and Paper Industry. Confederation of European  Paper Industries, Brussels, Belgium. 32 pp. Available at:  http://www.cepi.org/system/files/public/documents/publications/statistics/Key%20Statistics%2020 11%20FINAL.pdf.  Ceron J. P., and G. Dubois (2005). More mobility means more impact on climate change: prospects  for household leisure mobility in France, Belgeo 1 2 103 120 pp. . Available at:      78 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    http://en.youscribe.com/catalogue/tous/practical life/more mobility means more impact on climate change prospects for 382812.  Chai X., Y. Hao, T. Shimaoka, H. Nakayama, T. Komiya, and Y. Zhao (2013). The effect of aeration  position on the spatial distribution and reduction of pollutants in the landfill stabilization process   a  pilot scale study, Waste management & research: the journal of the International Solid Wastes and  Public Cleansing Association, ISWA 31 41 49 pp. (DOI: 10.1177/0734242X12462285), (ISSN: 1399 3070).  Chakraborty D., and J. Roy (2012a). Climate Change Adaptation and Mitigation Strategies:  Responses from Select Indian Energy Intensive Industrial Units. 1. Department of Management  Studies, Indian Institute of Science, Bangalore and Public Affairs Centre, Bangalore.  Chakraborty D., and J. Roy (2012b). Accounting for Corporate Water Use: Estimating Water  Footprint of an Indian Paper Production Unit, Journal of Indian Accounting Review 16 34 42 pp. .  Chateau J., A. Saint Martin, and T. Manfredi (2011). Employment Impacts of Climate Change  Mitigation Policies in OECD: A General Equilibrium Perspective, OECD Environment Working Papers  32 32 pp. (DOI: http://dx.doi.org/10.1787/5kg0ps847h8q en), (ISSN: 1997 0900 (online)).  Chen Z.M., B. Chen, J.B. Zhou, Z. Li, Y. Zhou, X.R. Xi, C. Lin, and G.Q. Chen (2008). A vertical  subsurface flow constructed wetland in Beijing, Communications in Nonlinear Science and Numerical  Simulation 13 1986 1997 pp. (DOI: 10.1016/j.cnsns.2007.02.009), (ISSN: 10075704).  Chen Chiu L. (2009). Industrial Policy and Structural Change in Taiwan s Textile and Garment  Industry, Journal of Contemporary Asia 39 512 529 pp. (DOI: 10.1080/00472330903076743).  Chen X., T. Fujita, S. Ohnishi, M. Fujii, and Y. Geng (2012). The Impact of Scale, Recycling Boundary,  and Type of Waste on Symbiosis and Recycling, Journal of Industrial Ecology 16 129 141 pp. (DOI:  10.1111/j.1530 9290.2011.00422.x), (ISSN: 1530 9290).  Chen G.Q., L. Shao, Z.M. Chen, Z. Li, B. Zhang, H. Chen, and Z. Wu (2011). Low carbon assessment  for ecological wastewater treatment by a constructed wetland in Beijing, Ecological Engineering 37  622 628 pp. (DOI: 10.1016/j.ecoleng.2010.12.027), (ISSN: 0925 8574).  Cherp A., A. Adenikinju, A. Goldthau, F. Hernandez, L. Hughes, J. Jansen, J. Jewell, M. Olshanskaya,  R. Soares de Oliveira, B. Sovacool, and S. Vakulenko (2012a). Chapter 5   Energy and Security. In:  Global Energy Assessment   Toward a Sustainable Future.Cambridge University Press, Cambridge, UK  and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg,  Austria pp.325 384(ISBN: 9781 10700 5198 hardback 9780 52118 2935 paperback).  Cherp A., A. Adenikinju, A. Goldthau, F. Hernandez, L. Hughes, J. Jansen, J. Jewell, M. Olshanskaya,  R. Soares de Oliveira, B. Sovacool, and S. Vakulenko (2012b). Energy and Security. In: Global Energy  Assessment: Toward a Sustainable Future. N. Nakicenovic, A. Patwardhan, L. Gomez Echeverri, T.  Johansson, (eds.), Cambridge Univeristy Press, Laxenburg, Austria; Cambridge, UK & New York, USA  pp.325 384.  Chertow M.R. (2000). INDUSTRIAL SYMBIOSIS: Literature and Taxonomy, Annual Review of Energy  and the Environment 25 313 337 pp. .      79 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    CIPEC (2007). Benchmarking and Best Practices in Canadian Wet Processing. Canadian Industry  Program for Energy Conservation, Ottawa, Canada. 40 pp. Available at:  http://publications.gc.ca/collections/collection_2013/rncan nrcan/M4 43 2006 eng.pdf.  Clift R. (2006). Sustainable development and its implications for chemical engineering, Chemical  Engineering Science 61 4179 4187 pp. (DOI: 10.1016/j.ces.2005.10.017), (ISSN: 0009 2509).  Clift R., and L. Wright (2000). Relationships Between Environmental Impacts and Added Value Along  the Supply Chain, Technological Forecasting and Social Change 65 281 295 pp. (DOI: 10.1016/S0040 1625(99)00055 4), (ISSN: 0040 1625).  Concawe (2011). The Potential for Application of CO2 Capture and Storage in EU Oil Refineries.  Brussels. 65 pp. Available at: http://bellona.org/ccs/uploads/media/Report_11 7 2011_CCS_in_EU_refineries.pdf.  Cooper D.R., and J.M. Allwood (2012). Reusing steel and aluminum components at end of product  life, Environmental science & technology 46 10334 10340 pp. (DOI: 10.1021/es301093a), (ISSN:  1520 5851).  Cooper D.R., A.C.H. Patel, M. Moynihan, J.M. Allwood, and T. Cooper (2012). Increasing the life of  steel and aluminium (products) to save carbon, To be submitted to the Journal of Resources,  Conservation and Recycling.  Costantini V., M. Mazzanti, and A. Montini (2013). Environmental performance, innovation and  spillovers. Evidence from a regional NAMEA, Ecological Economics 89 101 114 pp. (DOI:  10.1016/j.ecolecon.2013.01.026), (ISSN: 0921 8009).  Côté R., and J. Hall (1995). Industrial parks as ecosystems, Journal of Cleaner Production 3 41 46 pp.  (DOI: 10.1016/0959 6526(95)00041 C), (ISSN: 0959 6526).  CRC ORE (2011). Annual Report: Transforming Resource Extraction, 2010 11. Cooperative Research  Center for Optimising Resource Extraction, St Lucia, Queensland, Australia. 68 pp. Available at:  http://issuu.com/melraassina/docs/crc_ore_annual_report_2010 11.  Crichton D. (2006). Climate Change and Its Effects on Small Businesses in the UK. AXA Insurance UK  Plc., London, UK, (ISBN: 978 0 9554108 0 2). .  Croezen H., and M. Korteland (2010). Technological Developments in Europe: A Long Term View of  CO2 Efficient Manufacturing in the European Region. CE Delft, Delft. 87 pp. Available at: www.ce.nl.  Cullen J.M., and J.M. Allwood (2013). Mapping the Global Flow of Aluminum: From Liquid  Aluminum to End Use Goods, Environmental Science & Technology 47 3057 3064 pp. (DOI:  10.1021/es304256s), (ISSN: 0013 936X).  Cullen J.M., J.M. Allwood, and M.D. Bambach (2012). Mapping the Global Flow of Steel: From  Steelmaking to End Use Goods, Environmental Science & Technology 46 13048 13055 pp. (DOI:  10.1021/es302433p), (ISSN: 0013 936X).  Cullen J.M., J.M. Allwood, and E.H. Borgstein (2011). Reducing Energy Demand: What Are the  Practical Limits?, Environmental Science & Technology 45 1711 1718 pp. (DOI: 10.1021/es102641n),  (ISSN: 0013 936X).      80 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Daniel M., G. Lane, and E. McLean (2010). Efficiency, Economics, Energy and Emissions   Emerging  Criteria for Comminution Circuit Decision Making, XXV International Mineral Processing Congress.  Coalition for Eco Efficient Comminution, Brisbane, QLD, Australia. 2010, 9 pp. Available at:  http://www.ceecthefuture.org/wp content/uploads/2013/01/Daniel_711_p3523.pdf.  Dasgupta S., H. Hettige, and D. Wheeler (2000). What Improves Environmental Compliance?  Evidence from Mexican Industry, Journal of Environmental Economics and Management 39 39 66  pp. .  Dasgupta S., J. Roy, A. Bera, A. Sharma, and P. Pandey (2012). Growth accounting for six energy  intensive industries in India, The Journal of Industrial Statistics, Central Statistics Office, Ministry of  Statistics and Programme Implementation, Government of India 1 1 15 pp. . Available at:  http://mospi.nic.in/mospi_new/upload/JIS_2012/Gr_Acc_Six_En_I.pdf.  Van Deventer J.S.J., J.L. Provis, and P. Duxson (2012). Technical and commercial progress in the  adoption of geopolymer cement, Minerals Engineering 29 89 104 pp. (DOI:  10.1016/j.mineng.2011.09.009), (ISSN: 0892 6875).  DfT (2011). National Travel Survey 2010. Department for Transport, London, UK. 9 pp. Available at:  https://www.gov.uk/government/publications/national travel survey 2010.  Dong Y. (2011). Development of Waste To Energy in China; and Case Study of the Guangzhou Likeng  WTE plant. Columbia University and the Global WTERT Council, New York, 94 pp.  Dosho Y. (2008). Sustainable concrete waste recycling, Proceedings of the ICE   Construction  Materials 161 47 62 pp. (DOI: 10.1680/coma.2008.161.2.47), (ISSN: 1747 650X, 1747 6518).  DRET (2011). Analyses of Diesel Use for Mine Haul and Transport Operations. Department of  Resources, Energy and Tourism, Australian Government, Canberra. 20 pp. Available at:  http://energyefficiencyopportunities.gov.au/industry sectors/mining/.  Dubois G., P. Peeters, J. P. Ceron, and S. Gössling (2011). The future tourism mobility of the world  population: Emission growth versus climate policy, Transportation Research Part A: Policy and  Practice 45 1031 1042 pp. (DOI: 10.1016/j.tra.2009.11.004), (ISSN: 0965 8564).  EC (2008a). Sustainable Consumption and Production and Sustainable Industrial Policy Action Plan.  {SEC(2008) 2110} {SEC(2008) 2111}. European Commission, DG Environment, Copenhagen. 13 pp.  Available at: http://ec.europa.eu/environment/eussd/escp_en.htm.  EC (2008b). Directive 2008/98/EC of the European Parliament and of the Council of 19 November  2008 on waste and repealing certain Directives. Official Journal of the European Communities, L312,  51, 3 30. . Available at: http://eur lex.europa.eu/JOHtml.do?uri=OJ:L:2008:312:SOM:EN:HTML.  EC (2009). Economic Analysis of Resource Efficiency Policies. European Commission, DG  Environment, Copenhagen. 97 pp. Available at:  http://ec.europa.eu/environment/enveco/resource_efficiency/.  EC (2011). A Resource Efficient Europe   Flagship Initiative under the Europe 2020 Strategy.  European Commission, Brussels. 17 pp.  EC (2012a). Best Available Technologies (BAT) Reference Document for Iron and Steel Production,  Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). European  Commission, Brussels. 623 pp.      81 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    EC (2012b). Roadmap to a Resource Efficient Europe. European Commission, Brussels. . Available at:  http://ec.europa.eu/environment/resource_efficiency/index_en.htm.  Eckelman M.J., B.K. Reck, and T.E. Graedel (2012). Exploring the Global Journey of Nickel with  Markov Chain Models, Journal of Industrial Ecology 16 334 342 pp. (DOI: 10.1111/j.1530 9290.2011.00425.x), (ISSN: 1530 9290).  Edwards Jones G., L. Mila i Canals, N. Hounsome, M. Truninger, G. Koerber, B. Hounsome, P. Cross,  E.H. York, A. Hospido, K. Plassmann, I.M. Harris, R.T. Edwards, G.A.S. Day, A.D. Tomos, S.J. Cowell,  and D.L. Jones (2008). Testing the assertion that  local food is best : the challenges of an evidence based approach, Trends in Food Science & Technology 19 265 274 pp. (DOI:  10.1016/j.tifs.2008.01.008), (ISSN: 0924 2244).  EIO (2011). The Eco Innovation Challenge: Pathways to a Resource Efficient Europe. Eco Innovation  Observatory, Funded by the European Commission, DG Environment, Brussels. 124 pp.  EIO (2012). The Eco Innovation Gap: An Economic Opportunity for Business. Eco Innovation  Observatory, Funded by the European Commission, DG Environment, Brussels. 86 pp.  El Haggar S. (2010). Sustainable Industrial Design and Waste Management: Cradle to Cradle for  Sustainable Development. Elsevier Academic Press, San Diego, CA, 421 pp., (ISBN: 9780080550145). .  EPA (2006a). Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts  and Figures for 2006. U.S. Environmental Protection Agency, Washington, DC.  EPA (2006b). Global Mitigation of Non CO2 Greenhouse Gas Emissions. United States Environmental  Protection Agency Office of Air and Radiation, Washington, D.C., USA. 438 pp.  EPA (2010a). Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the  Nitric Acid Production Industry. U.S. Environmental Protection Agency, Washington, DC. 31 pp.  Available at: http://www.epa.gov/nsr/ghgdocs/nitricacid.pdf.  EPA (2010b). Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the  Iron and Steel Industry. U.S. Environmental Protection Agency.  EPA (2012a). Global Anthropogenic Non CO2 Greenhouse Gas Emissions: 1990 2030. U.S.  Environmental Protection Agency, Washington, DC. 188 pp. Available at:  http://www.epa.gov/climatechange/Downloads/EPAactivities/EPA_Global_NonCO2_Projections_De c2012.pdf.  EPA (2012b). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 2010. U.S. Environmental  Protection Agency, Washington, DC. 28 pp. Available at:  http://www.epa.gov/climatechange/ghgemissions/usinventoryreport/archive.html.  EPA (2013). Global Mitigation of Non CO2 Greenhouse Gases: 2010 2030. United States  Environmental Protection Agency, Washington, D.C., USA. 410 pp. Available at:  http://www.epa.gov/climatechange/Downloads/EPAactivities/MAC_Report_2013.pdf.  Eriksson H., and S. Harvey (2004). Black liquor gasification consequences for both industry and  society, Energy 29 581 612 pp. (DOI: 10.1016/j.energy.2003.09.005), (ISSN: 0360 5442).      82 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Erisman J.W., M.A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter (2008). How a century of  ammonia synthesis changed the world, Nature Geoscience 1 636 639 pp. (DOI: 10.1038/ngeo325),  (ISSN: 1752 0894).  Evans & Peck (2011). Assessment of the Potential for Renewable Energy Projects and Systems in the  Pilbara. Autralian Department of Industry, Canberra. 230 pp. Available at:  http://www.innovation.gov.au/energy/documents/clean energy program/acre/studies/warrea pilbara.pdf.  Fane A.G. (2007). Sustainability and membrane processing of wastewater for reuse, Desalination  202 53 58 pp. (DOI: 10.1016/j.desal.2005.12.038), (ISSN: 0011 9164).  FAO (2013). FAOSTAT. . Available at:  http://faostat.fao.org/site/626/DesktopDefault.aspx?PageID=626#ancor.  Favoino E., and D. Hogg (2008). The potential role of compost in reducing greenhouse gases, Waste  management & research: the journal of the International Solid Wastes and Public Cleansing  Association, ISWA 26 61 69 pp. (ISSN: 0734 242X).  Fine P., and E. Hadas (2012). Options to reduce greenhouse gas emissions during wastewater  treatment for agricultural use, Science of The Total Environment 416 289 299 pp. (DOI:  10.1016/j.scitotenv.2011.11.030), (ISSN: 0048 9697).  Fischer S., S. Steger, N.D. Jordan, M. O Brien, and P. Schepelmann (2012). Leasing Society.  European Parliement, Directorate General for Internal Policies, Brussels. 62 pp. Available at:  http://www.europarl.europa.eu/committees/en/studies.html.  Fisher Vanden K., G.H. Jefferson, H. Liu, and Q. Tao (2004). What is driving China s decline in energy  intensity?, Resource and Energy Economics 26 77 97 pp. (DOI: 10.1016/j.reseneeco.2003.07.002),  (ISSN: 0928 7655).  Flannery B.P., and H.S. Kheshgi (2005). An industry perspective on successful deployment and global  commercialization of innovative technologies for GHG management, Intergovernmental Panel on  Climate Change Workshop on Industry, Technology Development, Transfer and Diffusion.  Intergovernmental Panel on Climate Change, Tokyo, Japan. 2005, 24 pp.  Fleiter T., D. Fehrenbach, E. Worrell, and W. Eichhammer (2012a). Energy efficiency in the German  pulp and paper industry   A model based assessment of saving potentials, Energy 40 84 99 pp. (DOI:  10.1016/j.energy.2012.02.025), (ISSN: 0360 5442).  Fleiter T., E. Gruber, W. Eichhammer, and E. Worrell (2012b). The German energy audit program for  firms   a cost effective way to improve energy efficiency?, Energy Efficiency  http://dx.doi.org/10.1007/s12053 012 9157 7.  Fleiter T., E. Gruber, W. Eichhammer, and E. Worrell (2012c). The German energy audit program for  firms    a cost effective way to improve energy efficiency?, Energy Efficiency 5 447 469 pp. .  Fleiter T., S. Hirzel, and E. Worrell (2012d). The characteristics of energy efficiency measures   a  neglected dimension, Energy Policy 51 502 513 pp. (DOI: 10.1016/j.enpol.2012.08.054), (ISSN: 0301 4215).      83 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Fleiter T., J. Schleich, and P. Ravivanpong (2012e). Adoption of energy efficiency measures in  SMEs An empirical analysis based on energy audit data from Germany, Energy Policy 51 863 875  pp. (DOI: 10.1016/j.enpol.2012.09.041), (ISSN: 0301 4215).  Fletcher K. (2008). Sustainable Fashion and Textiles: Design Journeys. Earthscan, Oxford, U.K., 254  pp., (ISBN: 9781844074815). .  Flörke M., E. Kynast, I. Bärlund, S. Eisner, F. Wimmer, and J. Alcamo (2013). Domestic and industrial  water uses of the past 60 years as a mirror of socio economic development: A global simulation  study, Global Environmental Change 23 144 156 pp. (DOI: 10.1016/j.gloenvcha.2012.10.018), (ISSN:  0959 3780).  Foley J., D. de Haas, K. Hartley, and P. Lant (2010). Comprehensive life cycle inventories of  alternative wastewater treatment systems, Water Research 44 1654 1666 pp. (DOI:  10.1016/j.watres.2009.11.031), (ISSN: 0043 1354).  Fortin M. J., and C. Gagnon (2006). Interpreting major industrial landscapes: Social follow up on  meanings, the case of two aluminium smelters, Alcan (Alma, Canada) and Pechiney (Dunkirk,  France), Environmental Impact Assessment Review 26 725 745 pp. (DOI:  10.1016/j.eiar.2006.06.002), (ISSN: 0195 9255).  Fritzson A., and T. Berntsson (2006). Energy efficiency in the slaughter and meat processing  industry opportunities for improvements in future energy markets, Journal of Food Engineering 77  792 802 pp. (DOI: 10.1016/j.jfoodeng.2005.08.005), (ISSN: 02608774).  Galitsky C., E. Worrell, and M. Ruth (2003). Energy Efficiency Improvement and Cost Saving  Opportunities for the Corn Wet Milling Industry. US Environmental Protection Agency, Washington,  DC. 92 pp.  Gallagher K.S. (2006). Limits to leapfrogging in energy technologies? Evidence from the Chinese  automobile industry, Energy Policy 34 383 394 pp. .  Gao R.Y., L. Shao, J.S. Li, S. Guo, M.Y. Han, J. Meng, J.B. Liu, F.X. Xu, and C. Lin (2012). Comparison  of greenhouse gas emission accounting for a constructed wetland wastewater treatment system,  Ecological Informatics 12 85 92 pp. (DOI: 10.1016/j.ecoinf.2012.05.007), (ISSN: 1574 9541).  Gard D.L., and G.A. Keoleian (2002). Digital versus Print: Energy Performance in the Selection and  Use of Scholarly Journals, Journal of Industrial Ecology 6 115 132 pp. (DOI:  10.1162/108819802763471825), (ISSN: 1530 9290).  Garnett T. (2009). Livestock related greenhouse gas emissions: impacts and options for policy  makers, Environmental Science & Policy 12 491 503 pp. (DOI: 10.1016/j.envsci.2009.01.006), (ISSN:  1462 9011).  Garnett T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the  food system (including the food chain)?, Food Policy 36, Supplement 1 S23 S32 pp. (DOI:  10.1016/j.foodpol.2010.10.010), (ISSN: 0306 9192).  GEA (2012). Global Energy Assessment Toward a Sustainable Future. Cambridge University Press,  Cambridge UK and New York, NY, USA and the International Institute for Applied Systems Analysis,  Laxenburg, Austria, 1882 pp., (ISBN: 9780 52118 2935). .      84 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Geels F.W., and J.W. Schot (2010). Part 1: The Dynamics of Transitions: A Socio Technical  Perspective. In: Transitions to sustainable development : new directions in the study of long term  transformative change (eds. J. Grin, J. Rotmans and J.W. Schot). Routledge, New York pp.397(ISBN:  9780415876759 0415876753).  Geller H., P. Harrington, A.H. Rosenfeld, S. Tanishima, and F. Unander (2006). Polices for increasing  energy efficiency: Thirty years of experience in OECD countries, Energy Policy 34 556 573 pp. (DOI:  10.1016/j.enpol.2005.11.010), (ISSN: 0301 4215).  Geng Y., R. Côté, and F. Tsuyoshi (2007). A quantitative water resource planning and management  model for an industrial park level, Regional Environmental Change 7 123 135 pp. (DOI:  10.1007/s10113 007 0026 4), (ISSN: 1436 3798, 1436 378X).  Geng Y., and B. Doberstein (2008). Developing the circular economy in China: Challenges and  opportunities for achieving  leapfrog development , International Journal of Sustainable  Development & World Ecology 15 231 239 pp. (DOI: 10.3843/SusDev.15.3:6), (ISSN: 1350 4509).  Geng Y., T. Fujita, and X. Chen (2010a). Evaluation of innovative municipal solid waste management  through urban symbiosis: a case study of Kawasaki, Journal of Cleaner Production 18 993 1000 pp.  (DOI: 10.1016/j.jclepro.2010.03.003), (ISSN: 0959 6526).  Geng Y., X. Wang, Q. Zhu, and H. Zhao (2010b). Regional initiatives on promoting cleaner  production in China: a case of Liaoning, Journal of Cleaner Production 18 1502 1508 pp. (DOI:  10.1016/j.jclepro.2010.06.028), (ISSN: 0959 6526).  Geng Y., P. Zhang, R.P. Côté, and T. Fujita (2009). Assessment of the National Eco Industrial Park  Standard for Promoting Industrial Symbiosis in China, Journal of Industrial Ecology 13 15 26 pp.  (DOI: 10.1111/j.1530 9290.2008.00071.x), (ISSN: 1530 9290).  Geng Y., P. Zhang, R.P. Côté, and Y. Qi (2008). Evaluating the applicability of the Chinese eco industrial park standard in two industrial zones, International Journal of Sustainable Development &  World Ecology 15 543 552 pp. (DOI: 10.1080/13504500809469850), (ISSN: 1350 4509).  Genon G., and E. Brizio (2008). Perspectives and limits for cement kilns as a destination for RDF,  Waste management (New York, N.Y.) 28 2375 2385 pp. (DOI: 10.1016/j.wasman.2007.10.022),  (ISSN: 0956 053X).  Germond Duret C. (2012). Extractive Industries and the Social Dimension of Sustainable  Development: Reflection on the Chad Cameroon Pipeline, Sustainable Development (DOI:  10.1002/sd.1527), (ISSN: 1099 1719).  Getzner M. (2002). The quantitative and qualitative impacts of clean technologies on employment,  Journal of Cleaner Production 10 305 319 pp. .  Geyer R. (2008). Parametric assessment of climate change impacts of automotive material  substitution, Environmental Science and Technology 42 6973 6979 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 51949084412&partnerID=40&md5=44228ce12a2f785fd87a95a26981c779.  Ghosh D., and J. Roy (2011). Approach to Energy Efficiency among Micro, Small and Medium  Enterprises in India: Results of a Field Survey. United Nations Industrial Development Organization,  Vienna. 42 pp.      85 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Gillingham K., R.G. Newell, and K. Palmer (2009). Energy Efficiency Economics and Policy. National  Bureau of Economic Research, Cambridge, MA. 40 pp. Available at:  http://www.nber.org/papers/w15031.  Gnansounou E. (2008). Assessing the energy vulnerability: Case of industrialised countries, Energy  Policy 36 3734 3744 pp. . Available at: http://ideas.repec.org/a/eee/enepol/v36y2008i10p3734 3744.html.  Goldemberg J. (1998). Leapfrog energy technologies, Energy Policy 26 729 741 pp. .  Gössling S. (2010). Carbon Management in Tourism: Mitigating the Impacts on Climate Change.  Routledge, New York, 358 pp., (ISBN: 978 0 415 56633 9). .  Gössling S., J. P. Ceron, G. Dubois, and M.C. Hall (2009). Hypermobile travellers. In: Climate change  and aviation. Issues, Challenges and solutions. Eds Upham, P. and Gössling, S. Earthscan, London  pp.131 151(ISBN: 9781844076208).  Gössling S., C.M. Hall, P.M. Peeters, and D. Scott (2010). The Future of Tourism: Can Tourism  Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective, Tourism  Recreation Research 35 119 130 pp. (ISSN: 0250 8281).  Gössling S., P. Peeters, J. P. Ceron, G. Dubois, T. Patterson, and R.B. Richardson (2005). The eco efficiency of tourism, Ecological Economics 54 417 434 pp. (DOI: 10.1016/j.ecolecon.2004.10.006),  (ISSN: 0921 8009).  Graedel T.E. (2010). Metal Stocks in Society: Scientific Synthesis. United Nations Environment  Programme, Nairobi, Kenya, 48 pp., (ISBN: 9789280730821). .  Graedel T.E., J. Allwood, J. P. Birat, M. Buchert, C. Hagelüken, B.K. Reck, S.F. Sibley, and G.  Sonnemann (2011). What Do We Know About Metal Recycling Rates?, Journal of Industrial Ecology  15 355 366 pp. (DOI: 10.1111/j.1530 9290.2011.00342.x), (ISSN: 1530 9290).  Gruber E., and M. Brand (1991). Promoting energy conservation in small and medium sized  companies, Energy Policy 19 279 287 pp. .  GTZ/Holcim (2006). Guidelines on Co Processing Waste Materials in Cement Production. Deutsche  Gesellschaft Für Tchnische Zusammenarbeit GmbH, Eschborn. 135 pp. Available at:  http://www.coprocem.org/Guidelines/unterordner/guideline_coprocem_v06 06.pdf/view.  Guha A. (2013). The Macro Costs of Forced Displacement of the Farmers in India: A Micro Level  Study, European Journal of Development Research advance online publication 31 January 2013  (DOI: 10.1057/ejdr.2012.37).  Gunders D. (2012). Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fork to  Landfill. National Resources Defence Council, Washington, DC. 26 pp. Available at:  http://www.nrdc.org/food/files/wasted food IP.pdf.  Gustavsonn J., C. Cederberg, U. Sonesson, R. van Otterdijk, and A. Meybeck (2011). Global Food  Losses and Food Waste. United Nations Food and Agriculture Organization., Düsseldorf. 38 pp.  Gutowski T.G., S. Sahni, J.M. Allwood, M.F. Ashby, and E. Worrell (2013). The energy required to  produce materials: constraints on energy intensity improvements, parameters of demand,      86 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences  371 20120003 pp. (DOI: 10.1098/rsta.2012.0003), (ISSN: 1364 503X, 1471 2962).  Haines A., A.J. McMichael, K.R. Smith, I. Roberts, J. Woodcock, A. Markandya, B.G. Armstrong, D.  Campbell Lendrum, A.D. Dangour, M. Davies, N. Bruce, C. Tonne, M. Barrett, and P. Wilkinson  (2009). Public health benefits of strategies to reduce greenhouse gas emissions: overview and  implications for policy makers, The Lancet 374 2104 2114 pp. .  Hall D.S. (2007). Mandatory Regulation of Nontraditional Greenhouse Gases: Policy Options for  Industrial Process Emissions and Non CO2 Gases. Resources for the Future, Washington, DC. 6 pp.  Available at:  http://www.rff.org/Publications/Pages/CPF_AssessingUSClimatePolicyOptions_IB14.aspx.  Halsnaes K., A. Garg, J. Christensen, H.Y. Fyn, M. Karavai, E.L. Rovere, M. Bramley, X. Zhu, C.  Mitchell, J. Roy, K. Tanaka, H. Katayama, C. Mena, I. Obioh, I. Bashmakov, S. Mwakasonda, M. K.  Lee, M. Vinluan, Y.J. Huang, and L. Segafredo (2014). Climate change mitigation policy paradigms national objectives and alignments, Mitigation and Adaptation Strategies for Global Change 19 45 71 pp. (DOI: 10.1007/s11027 012 9426 y), (ISSN: 1381 2386, 1573 1596).  Hand A. (2007). Technology Options for the Cement Industry with the Use of Alternative Fuels, Alf Cemind Workshop. KHD Humboldt Wedag GmbH, Athens, Greece. 2007, 35 pp. Available at:  http://alf cemind.com/docs/presentations/KHD%20presentation.pdf.  Haque N., and T. Norgate (2013). Estimation of greenhouse gas emissions from ferroalloy  production using life cycle assessment with particular reference to Australia, Journal of Cleaner  Production 39 220 230 pp. (DOI: 10.1016/j.jclepro.2012.08.010), (ISSN: 0959 6526).  Hasanbeigi A., M. Arens, and L. Price (2013a). Emerging Energy Efficiency and Greenhouse Gas  Mitigation Technologies for the Iron and Steel Industry. Lawrence Berkeley National Laboratory,  Berkeley, CA. 125 pp. Available at: http://china.lbl.gov/sites/all/files/6106e steel tech.pdf.  Hasanbeigi A., A. Lobscheid, H. Lu, L. Price, and Y. Dai (2013b). Quantifying the co benefits of  energy efficiency policies: A case study of the cement industry in Shandong Province, China, Science  of The Total Environment 458 460 624 636 pp. .  Hasanbeigi A., C. Menke, and P. Pont (2009). Barriers to energy efficiency improvement and  decision making behavior in Thai industry, Energy Efficiency 3 33 52 pp. (DOI: 10.1007/s12053 009 9056 8), (ISSN: 1570 646X, 1570 6478).  Hasanbeigi A., C. Menke, and A. Therdyothin (2010a). The use of conservation supply curves in  energy policy and economic analysis: The case study of Thai cement industry, Energy Policy 38 392 405 pp. (DOI: 10.1016/j.enpol.2009.09.030), (ISSN: 0301 4215).  Hasanbeigi A., C. Menke, and A. Therdyothin (2011). Technical and cost assessment of energy  efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry,  Energy Efficiency 4 93 113 pp. (DOI: 10.1007/s12053 010 9079 1), (ISSN: 1570 646X, 1570 6478).  Hasanbeigi A., W. Morrow, E. Masanet, J. Sathaye, and T. Xu (2012a). Assessment of Energy  Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China.  Lawrence Berkeley National Laboratory, Berkeley, CA. 51 pp.      87 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Hasanbeigi A., W. Morrow, J. Sathaye, E. Masanet, and T. Xu (2013c). A bottom up model to  estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese  iron and steel industry, Energy 50 315 325 pp. (DOI: 10.1016/j.energy.2012.10.062), (ISSN: 0360 5442).  Hasanbeigi A., and L. Price (2012). A review of energy use and energy efficiency technologies for the  textile industry, Renewable and Sustainable Energy Reviews 16 3648 3665 pp. (DOI:  10.1016/j.rser.2012.03.029), (ISSN: 1364 0321).  Hasanbeigi A., L. Price, and E. Lin (2012b). Emerging energy efficiency and CO2 emission reduction  technologies for cement and concrete production: A technical review, Renewable and Sustainable  Energy Reviews 16 6220 6238 pp. (DOI: 10.1016/j.rser.2012.07.019), (ISSN: 1364 0321).  Hasanbeigi A., L. Price, H. Lu, and W. Lan (2010b). Analysis of energy efficiency opportunities for the  cement industry in Shandong Province, China: A case study of 16 cement plants, Energy 35 3461 3473 pp. (DOI: 10.1016/j.energy.2010.04.046), (ISSN: 0360 5442).  Hasanuzzaman M., N.A. Rahim, M. Hosenuzzaman, R. Saidur, I.M. Mahbubul, and M.M. Rashid  (2012). Energy savings in the combustion based process heating in industrial sector, Renewable and  Sustainable Energy Reviews 16 4527 4536 pp. (DOI: 10.1016/j.rser.2012.05.027), (ISSN: 1364 0321).  Hashimoto S., T. Fujita, Y. Geng, and E. Nagasawa (2010). Realizing CO2 emission reduction through  industrial symbiosis: A cement production case study for Kawasaki, Resources Conservation and  Recycling 54 704 710 pp. (DOI: 10.1016/j.resconrec.2009.11.013).  Hatayama H., I. Daigo, Y. Matsuno, and Y. Adachi (2010). Outlook of the World Steel Cycle Based on  the Stock and Flow Dynamics, Environmental Science & Technology 44 6457 6463 pp. (DOI:  10.1021/es100044n), (ISSN: 0013 936X).  He P., N. Yang, H. Gu, H. Zhang, and L. Shao (2011). N2O and NH3 emissions from a bioreactor  landfill operated under limited aerobic degradation conditions, Journal of Environmental Sciences 23  1011 1019 pp. (DOI: 10.1016/S1001 0742(10)60574 8), (ISSN: 1001 0742).  Heijnes H., M. van Brummelen, and K. Blok (1999). Reduction of the Emissions of HFC s, PFC s and  SF6 in the European Union. Ecofys, Utrecht, Netherlands. 58 pp.  Hekkert M.P., L.A.. Joosten, E. Worrell, and W.C. Turkenburg (2000). Reduction of CO2 emissions by  improved management of material and product use: the case of primary packaging, Resources,  Conservation and Recycling 29 33 64 pp. (DOI: 10.1016/S0921 3449(99)00056 7), (ISSN: 0921 3449).  Hekkert M.P., J. van den Reek, E. Worrell, and W.C. Turkenburg (2002). The impact of material  efficient end use technologies on paper use and carbon emissions, Resources, Conservation and  Recycling 36 241 266 pp. (DOI: 10.1016/S0921 3449(02)00081 2), (ISSN: 0921 3449).  Henriques Jr. M.F., F. Dantas, and R. Schaeffer (2010). Potential for reduction of CO2 emissions and  a low carbon scenario for the Brazilian industrial sector, Energy Policy 38 1946 1961 pp. (DOI:  10.1016/j.enpol.2009.11.076), (ISSN: 0301 4215).  Heyer K. U., K. Hupe, M. Ritzkowski, and R. Stegmann (2005). Pollutant release and pollutant  reduction   Impact of the aeration of landfills, Waste Management 25 353 359 pp. (DOI:  10.1016/j.wasman.2005.02.007), (ISSN: 0956 053X).      88 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Hogg D., C. Sherrington, and T. Vergunst (2011). A Comparative Study on Economic Instruments  Promoting Waste Prevention. Eunomia Research and Consulting Ltd, Bristol. 185 pp. Available at:  http://www.eunomia.co.uk/shopimages/Waste%20Prevention%20Final%20Report%2023.12.2011.p df.  Holmgren K., and A. Gebremedhin (2004). Modelling a district heating system: Introduction of  waste incineration, policy instruments and co operation with an industry, Energy Policy 32 1807 1817 pp. (DOI: 10.1016/S0301 4215(03)00168 X), (ISSN: 0301 4215).  Hong G. B., T. L. Su, J. D. Lee, T. C. Hsu, and H. W. Chen (2010). Energy conservation potential in  Taiwanese textile industry, Energy Policy 38 7048 7053 pp. (DOI: 10.1016/j.enpol.2010.07.024),  (ISSN: 0301 4215).  Hoornweg D., and P. Bhada Tata (2012). What a Waste: A Global Review of Solid Waste  Management. World Bank, Washington D.C. 116 pp. Available at:  http://go.worldbank.org/BCQEP0TMO0.  Horbach J., and K. Rennings (2013). Environmental innovation and employment dynamics in  different technology fields   an analysis based on the German Community Innovation Survey 2009,  Journal of Cleaner Production 57 158 165 pp. .  HPTCJ (2010). Survey of Availability of Heat Pumps in the Food and Beverage Sector. Heat Pump and  Thermal Technology Centre of Japan, Tokyo, Japan. 61 pp. Available at:  http://www.hptcj.or.jp/e/publication/tabid/360/Default.aspx.  IAI (2009). Global Aluminium Recycling: A Cornerstone of Sustainable Development. International  Aluminium Institute, London, UK. 36 pp. Available at: http://www.world aluminium.org/cache/fl0000181.pdf.  IBEF (2013). MSMEs and the Growing Role of Industrial Clusters. A Report by Indian Brand Equity  Foundation. India Brand Equity Foundation, Haryana, India. 10 pp. Available at:  http://www.ibef.org/download/MSME 040213.pdf.  ICCA (2009). Innovations for Greenhouse Gas Reductions   Life Cycle Quantification of Carbon  Abatement Solutions Enabled by the Chemical Industry. International Council of Chemical  Associations, Brussels. 108 pp.  ICSG (2012). The World Copper Factbook 2012. International Copper Study Group, Lisbon, Portugal.  59 pp. Available at: http://www.icsg.org/index.php/component/jdownloads/finish/170/1188.  IEA (2007). Tracking Industrial Energy Efficiency and CO2 Emissions. International Energy Agency,  Paris. 324 pp.  IEA (2008). Combined Heat and Power: Evaluating the Benefits of Greater Global Investment.  International Energy Agency, Paris, France. 39 pp. Available at:  http://www.iea.org/publications/freepublications/publication/chp_report.pdf.  IEA (2009a). Cogeneration and District Energy. Sustainable Energy Technologies for Today... and  Tomorrow. International Energy Agency, Paris, France. 42 pp. Available at: http://www.oecd ilibrary.org/energy/cogeneration and district energy_9789264077171 en.      89 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    IEA (2009b). Energy Technology Perspectives 2010. Scenarios and Strategies to 2050. International  Energy Agency, Paris. 710 pp. Available at:  http://www.iea.org/publications/freepublications/publication/name,26100,en.html.  IEA (2009c). Energy Technology Transitions for Industry. Strategies for the Next Industrial Revolution.  International Energy Agency, Paris.  IEA (2009d). Energy Technology Transitions for Industry. Strategies for the Next Industrial Revolution.  International Energy Agency, Paris. 6 pp. Available at:  http://www.iea.org/Textbase/npsum/industry2009sum.pdf.  IEA (2009e). Chemical and Petrochemical Sector: Potential of Best Practice Technology and Other  Measures for Improving Energy Efficiency. International Energy Agency, Paris. 60 pp. Available at:  http://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf.  IEA (2011a). World Energy Outlook 2011 Special Report: Are We Entering a Golden Age of Gas?  International Energy Agency, Paris. . Available at:  http://www.worldenergyoutlook.org/goldenageofgas/.  IEA (2011b). Co Generation and Renewables: Solutions for a Low Carbon Energy Future.  International Energy Agency, Paris, France. 35 pp. Available at:  http://www.iea.org/publications/freepublications/publication/name,3980,en.html.  IEA (2012a). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. 2012 Edition.  International Energy Agency, Paris. 83 pp. Available at: http://data.iea.org.  IEA (2012b). Energy Balances of OECD Countries. International Energy Agency, Paris, 330 pp., (ISBN:  9789264180390 (PDF); 9789264173828 (print)). .  IEA (2012c). Energy Balances of Non OECD Countries. International Energy Agency, Paris, 540 pp.,  (ISBN: 9789264174672 (PDF); 9789264174665 (print)). .  IEA (2012d). Energy Technology Perspectives 2012: Pathways to a Clean Energy System. International  Energy Agency (IEA), Paris, France, 690 pp., (ISBN: 978 92 64 17488 7). .  IEA (2012e). World Energy Outlook 2012. Organisation for Economic Co Operation and  Development, Paris, France, 690 pp., (ISBN: 9789264181342 (PDF) ; 9789264180840 (print)). .  IEA ETSAP (2010). Cement Production. International Energy Agency Energy Technology Network,  Paris. 8 pp. Available at: www.etsap.org.  IEA/WBCSD (2009). Cement Technology Roadmap 2009: Carbon Emissions Reductions up to 2050.  International Energy Agency/World Business Council for Sustainable Development, Paris. 36 pp.  Available at:  http://www.wbcsd.org/Pages/EDocument/EDocumentDetails.aspx?ID=11423&NoSearchContextKey =true.  IEAGHG (2008). CO2 Capture in the Cement Industry. IEA Greenhouse Gas R&D Programme,  Cheltenham, UK. 221 pp. Available at: www.ieagreen.org.uk.  IFA (2009). Fertilizers, Climate Change and Enhancing Agricultural Productivity Sustainably.  International Fertilizer Industry Association, Paris, France. . Available at:      90 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    www.fertilizer.org/ifa/content/download/23000/329421/version/1/file/2009_ifa_climate_change.p df.  IIED (2002). The Report of the Mining, Minerals and Sustainable Development Project. International  Institute for Environment and Development, London. 476 pp. Available at:  http://www.iied.org/sustainable markets/key issues/business and sustainable development/mining minerals and sustainable development.  IMA (2009). Year Ending Statistics: 2009. International Magnesium Association, Wauconda, IL. 1 pp.  Available at: http://www.intlmag.org/files/yend2009rev.pdf.  INCCA (2010). India: Greenhouse Gas Emissions 2007. Indian Network for Climate Change  Assessment. Ministry of Environment and Forests, Government of India, New Delhi, India. 84 pp.  Available at: http://moef.nic.in/downloads/public information/Report_INCCA.pdf.  India Planning Commission (2007). Report of the Task Force for the Eleventh Five Year Plan (2007 12) on Cement Submitted to the Planning Commission of India. India Planning Commission, New  Delhi, India. 154 pp. Available at:  http://planningcommission.nic.in/aboutus/committee/wrkgrp11/wg11_cement.pdf.  International Finance Corporation (2007). Environmental, Health and Safety Guidelines for  Integrated Steel Mills. International Finance Corporation, Washington, DC. 27 pp. Available at:  http://www.ifc.org/wps/wcm/connect/0b9c2500488558848064d26a6515bb18/Final%2B %2BIntegrated%2BSteel%2BMills.pdf?MOD=AJPERES&id=1323161945237.  Intlekofer K., B. Bras, and M. Ferguson (2010). Energy Implications of Product Leasing,  Environmental Science & Technology 44 4409 4415 pp. (DOI: 10.1021/es9036836), (ISSN: 0013 936X).  IPCC (2006). Chapter 2: Stationary Combusion, Table 2.2 [D.R. Gomez, J.D. Watterson, B.B.  Americano, C. Ha, G. Marland, E. Matsika, L.N. Namayanga, B. Osman Elasha, J.D. Kalenga Saka, K.  Treanton (eds.)]. In: IPCC Guidelines for Greenhouse Gas Inventories Volume 2: Energy. pp.15.  Available at: http://www.ipcc nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pd.  IPCC (2007). Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III  to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge  University Press, Cambridge United Kingdom and New York, NY, USA. 851 pp. Available at:  http://www.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html.  IPCC/TEAP (2005). Special Report on Safeguarding the Ozone Layer and the Global Climate System:  Issues Related to Hydrofluorocarbons and Perfluorocarbons [D. de Jager, M. Manning, L. Kuijpers  (eds.)]. Intergovernmental Panel on Climate Change, Addis Ababa. 720 pp.  ISMI (2005). Reduction of Perfluorocompound (PFC) Emissions: 2005 State of the Technology Report.  Sematech, Inc., New York. 80 pp. Available at:  http://www.sematech.org/docubase/document/4693aeng.pdf.  Jackson T. (2009). Prosperity without Growth: Economics for a Finite Planet. Earthscan Publications,  London, 264 pp., (ISBN: 9781844078943). .      91 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Jackson T. (2011). Societal transformations for a sustainable economy, Natural Resources Forum 35  155 164 pp. (DOI: 10.1111/j.1477 8947.2011.01395.x), (ISSN: 1477 8947).  Jacobs, and IPST (2006). Pulp and Paper Industry: Energy Bandwidth Study. Report for American  Institute of Chemical Engineers (AIChE). Jacobs Greenville and Institute of Paper Science and  Technology (IPST) at Georgia Institute of Technology, Atlanta. 116 pp. Available at:  http://www1.eere.energy.gov/industry/forest/pdfs/doe_bandwidth.pdf.  Jeon Y., B.I. Park, and P.N. Ghauri (2013). Foreign direct investment spillover effects in China: Are  they different across industries with different technological levels?, China Economic Review 26 105 117 pp. (DOI: 10.1016/j.chieco.2013.05.001), (ISSN: 1043 951X).  De Jong P. (1997). The Structure of the Dutch Waste Sector and Impediments for Waste Reduction,  Waste Management & Research 15 641 658 pp. (ISSN: 0734242x).  JRC/PBL (2012). Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2  FT2010. European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency. . Available at: http://edgar.jrc.ec.europa.eu.  Kainuma M., K. Miwa, T. Ehara, O. Akashi, and Y. Asayama (2013). A low carbon society: global  visions, pathways, and challenges, Climate Policy 13 6 22 pp. .  Kainuma M., P.R. Shukla, and K. Jiang (2012). Framing and modeling of a low carbon society: An  overview, Energy Economics 34, Supplement 3 S316 S324 pp. .  Kampschreur M.J., H. Temmink, R. Kleerebezem, M.S.M. Jetten, and M.C.M. van Loosdrecht  (2009). Nitrous oxide emission during wastewater treatment, Water Research 43 4093 4103 pp.  (DOI: 10.1016/j.watres.2009.03.001), (ISSN: 0043 1354).  Karakurt I., G. Aydin, and K. Aydiner (2012). Sources and mitigation of methane emissions by  sectors: A critical review, Renewable Energy 39 40 48 pp. (DOI: 10.1016/j.renene.2011.09.006),  (ISSN: 0960 1481).  Karstensen K.H. (2007). A Literature Review on Co Processing of Alternative Fuels and Raw Materials  and Hazardous Wastes in Cement Kilns. Department for Environmental Affairs and Tourism, Republic  of South Africa, Pretoria, South Africa. 420 pp. Available at: http://www.aitec ambiente.org/Portals/2/docs/pubblici/Documenti/Raccolta%20bibliografica/Coprocessing%20literat ure%20review%202007.pdf.  Kelly T.D., and G.R. Matos (2013). Historical statistics for mineral and material commodities in the  United States (2013 version): U.S. Geological Survey Data Series 140. . Available at:  http://minerals.usgs.gov/ds/2005/140/.  Kheshgi H.S., H. Thomann, N.A. Bhore, R.B. Hirsch, M.E. Parker, and G. Teletzke (2012).  Perspectives on CCS Cost and Economics, SPE Economics & Management 4 pp. 24 31 pp. . Available  at: https://www.onepetro.org/journal paper/SPE 139716 PA.  Kim H. J., G.A. Keoleian, and S.J. Skerlos (2011). Economic Assessment of Greenhouse Gas  Emissions Reduction by Vehicle Lightweighting Using Aluminum and High Strength Steel, Journal of  Industrial Ecology 15 64 80 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 79951741778&partnerID=40&md5=75f547396a1bb6a3fe9752ca3305352e.      92 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Kim H. J., C. McMillan, G.A. Keoleian, and S.J. Skerlos (2010). Greenhouse Gas Emissions Payback  for Lightweighted Vehicles Using Aluminum and High Strength Steel, Journal of Industrial Ecology 14  929 946 pp. . Available at: http://www.scopus.com/inward/record.url?eid=2 s2.0 78650144733&partnerID=40&md5=9aed1688a221972175249aabd21d91ad.  Kimura O., and F. Noda (2010). Effectiveness of Energy Audit Programs in Japan. Central Research  Institute of the Electric Power Industry (CRIEPI), Tokyo, Japan. 48 pp. Available at:  http://criepi.denken.or.jp/jp/kenkikaku/report/detail/Y09009.html.  Klee H., R. Hunziker, R. van der Meer, and R. Westaway (2011). Getting the numbers right: a  database of energy performance and carbon dioxide emissions for the cement industry, Greenhouse  Gas Measurement and Management 1 109 118 pp. (DOI: 10.1080/20430779.2011.579357).  Klinglmair M., and J. Fellner (2010). Urban Mining in Times of Raw Material Shortage, Journal of  Industrial Ecology 14 666 679 pp. (DOI: 10.1111/j.1530 9290.2010.00257.x), (ISSN: 1530 9290).  Kollmus A., and M. Lazarus (2010). Industrial N2O Projects Under the CDM: The Case of Nitric Acid  Production. Stockholm Environment Institute, Stockholm. 3 pp.  Kong L., A. Hasanbeigi, and L. Price (2012). Emerging Energy Efficiency and Greenhouse Gas  Mitigation Technologies for the Pulp and Paper Industry. Lawrence Berkeley National Laboratory,  Berkeley, CA. 111 pp. Available at: http://china.lbl.gov/sites/all/files/lbl 5956e pulp and paperrev dec 2012.pdf.  Kong L., A. Hasanbeigi, L. Price, and H. Liu (2013). Analysis of Energy Efficiency Opportunities for the  Pulp and Paper Industry in China. Lawrence Berkeley National Laboratory, Berkeley, CA. 49 pp.  Available at: http://china.lbl.gov/sites/all/files/6107e ppi csc.pdf.  Kramer K.J., E. Masanet, T. Xu, and E. Worrell (2009). Energy Efficiency Improvement and Cost  Saving Opportunities for the Pulp and Paper Industry: An ENERGY STAR Guide for Energy and Plant  Managers. Lawrence Berkeley National Laboratory, Berkeley, CA. 176 pp. Available at:  http://www.energystar.gov/ia/business/industry/downloads/Pulp_and_Paper_Energy_Guide.pdf.  Kruyt B., D.P. van Vuuren, H.J.M. de Vries, and H. Groenenberg (2009). Indicators for energy  security, Energy Policy 37 2166 2181 pp. .  Kugler M. (2006). Spillovers from foreign direct investment: Within or between industries?, Journal  of Development Economics 80 444 477 pp. . Available at:  http://ideas.repec.org/a/eee/deveco/v80y2006i2p444 477.html.  Kuramochi T., A. Ramírez, W. Turkenburg, and A. Faaij (2012a). Comparative assessment of CO2  capture technologies for carbon intensive industrial processes, Progress in Energy and Combustion  Science 38 87 112 pp. (DOI: 10.1016/j.pecs.2011.05.001), (ISSN: 0360 1285).  Kuramochi T., A. Ramírez, W. Turkenburg, and A. Faaij (2012b). Effect of CO2 capture on the  emissions of air pollutants from industrial processes, International Journal of Greenhouse Gas  Control 10 310 328 pp. (DOI: 10.1016/j.ijggc.2012.05.022), (ISSN: 1750 5836).  Larsen T.A., K.M. Udert, and Lienert Judit (2013). Source Separation and Decentralization for  Wastewater Management. IWA Publishing Alliance House, London, UK, 491 pp., (ISBN:  9781843393481). .      93 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Laurijssen J., A. Faaij, and E. Worrell (2012). Benchmarking energy use in the paper industry: a  benchmarking study on process unit level, Energy Efficiency 6 49 63 pp. (DOI: 10.1007/s12053 012 9163 9), (ISSN: 1570 646X, 1570 6478).  Laurijssen J., F.J. De Gram, E. Worrell, and A. Faaij (2010a). Optimizing the energy efficiency of  conventional multi cylinder dryers in the paper industry, Energy 35 3738 3750 pp. (DOI:  10.1016/j.energy.2010.05.023), (ISSN: 0360 5442).  Laurijssen J., M. Marsidi, A. Westenbroek, E. Worrell, and A. Faaij (2010b). Paper and biomass for  energy?: The impact of paper recycling on energy and CO2 emissions, Resources, Conservation and  Recycling 54 1208 1218 pp. (DOI: 10.1016/j.resconrec.2010.03.016), (ISSN: 0921 3449).  Law Y., L. Ye, Y. Pan, and Z. Yuan (2012). Nitrous oxide emissions from wastewater treatment  processes, Philosophical transactions of the Royal Society of London. Series B, Biological sciences 367  1265 1277 pp. (DOI: 10.1098/rstb.2011.0317), (ISSN: 1471 2970).  Layard R. (2011). Happiness: Lessons from a New Science. Penguin Books, London, UK, 384 pp.,  (ISBN: 9780241952795). .  Laybourn P., and M. Morrissey (2009). National Industrial Symbiosis Programme   The Pathway to a  Low Carbon Sustainable Economy. National Industrial Symbiosis Programme, Birmingham. 53 pp.  Available at: www.wrap.org.uk/sites/files/wrap/Pathway%20Report.pdf.  LBNL, and AISI (2010). The State of the Art Clean Technologies (SOACT) for Steelmaking Handbook,  2nd Edition. Lawrence Berkeley National Laboratory Berkeley, California American Iron and Steel  Institute, Washington, DC. 138 pp. Available at:  http://asiapacificpartnership.org/pdf/Projects/Steel/SOACT Handbook 2nd Edition.pdf.  LBNL, and RDC (2007). Improving Process Heating System Performance: A Sourcebook for Industry.  Second Edition. Lawrence Berkeley National Laboratory and Resource Dynamics Corporation,  Washington, DC. 114 pp. Available at:  http://www1.eere.energy.gov/manufacturing/tech_deployment/pdfs/process_heating_sourcebook 2.pdf.  Le H.Q., and R. Pomfret (2011). Technology spillovers from foreign direct investment in Vietnam:  horizontal or vertical spillovers?, Journal of the Asia Pacific Economy 16 183 201 pp. (DOI:  10.1080/13547860.2011.564746), (ISSN: 1354 7860).  Leal Ayala D.R., J.M. Allwood, M. Schmidt, and I. Alexeev (2012). Toner Print Removal from Paper  by Long and Ultrashort Pulsed Lasers, Proceedings of the Royal Society A: Mathematical, Physical and  Engineering Science 468 2272 2293 pp. (DOI: 10.1098/rspa.2011.0601), (ISSN: 1364 5021, 1471 2946).  Lee T., and S. van de Meene (2013). Comparative studies of urban climate co benefits in Asian cities:  an analysis of relationships between CO2 emissions and environmental indicators, Journal of Cleaner  Production 58 15 24 pp. .  Lettenmeier M.T., S. Samus, S. Veuro, and H. Rohn (2009). Connection between material and  energy efficiency, UNIDO workshop on Green Industry for a Low Carbon Future. Vienna. 7 December   2009, .      94 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Libralato G., A. Volpi Ghirardini, and F. Avezzu (2012). To centralise or to decentralise: an overview  of the most recent trends in wastewater treatment management, Journal of environmental  management 94 61 68 pp. (DOI: 10.1016/j.jenvman.2011.07.010), (ISSN: 1095 8630).  Lin J., D. He, P. He, M. Hu, and H. Lu (2011). The Race Is On: China Kick Starts Its Clean Economy.  ClimateWorks Foundation, San Francisco. 20 pp. Available at:  http://www.climateworks.org/download/?id=86f8db38 1272 41da 8fe9 4f9aa0021d13.  Liu N., and B.W. Ang (2007). Factors shaping aggregate energy intensity trend for industry: Energy  intensity versus product mix, Energy Economics 29 609 635 pp. (DOI: 10.1016/j.eneco.2006.12.004),  (ISSN: 0140 9883).  Liu G., C.E. Bangs, and D.B. Müller (2012a). Stock dynamics and emission pathways of the global  aluminium cycle, Nature Climate Change (DOI: 10.1038/nclimate1698), (ISSN: 1758 678X).  Liu J., and J. Diamond (2005). China s environment in a globalizing world, Nature 435 1179 1186 pp.  (DOI: 10.1038/4351179a), (ISSN: 0028 0836).  Liu X., X. Gao, W. Wang, L. Zheng, Y. Zhou, and Y. Sun (2012b). Pilot scale anaerobic co digestion of  municipal biomass waste: Focusing on biogas production and GHG reduction, Renewable Energy 44  463 468 pp. (DOI: 10.1016/j.renene.2012.01.092), (ISSN: 0960 1481).  Liu F., Z. Klimont, Q. Zhang, J. Cofala, L. Zhao, H. Huo, B. Nguyen, W. Schöpp, R. Sander, B. Zheng,  C. Hong, K. He, M. Amann, and C. Heyes (2013). Integrating mitigation of air pollutants and  greenhouse gases in Chinese cities: development of GAINS City model for Beijing, Journal of Cleaner  Production 58 25 33 pp. (DOI: 10.1016/j.jclepro.2013.03.024), (ISSN: 0959 6526).  Locher F.W. (2006). Cement: Principles of Production and Use. Verlag Bau+Technik, Düsseldorf, 535  pp., (ISBN: 9783764004200). .  Lowe E.A. (1997). Creating by product resource exchanges: Strategies for eco industrial parks,  Journal of Cleaner Production 5 57 65 pp. .  Maconachie R., and G. Hilson (2013). Editorial introduction: the extractive industries, community  development and livelihood change in developing countries, Community Development Journal 48  347 359 pp. (DOI: 10.1093/cdj/bst018), (ISSN: 0010 3802, 1468 2656).  Martinez Alier J. (2001). Mining conflicts, environmental justice, and valuation, Journal of Hazardous  Materials 86 153 170 pp. (DOI: 10.1016/S0304 3894(01)00252 7), (ISSN: 0304 3894).  Martinez Fernandez C., C. Hinojosa, and G. Miranda (2010). Green Jobs and Skills: The Local Labour  Market Implications of Addressing Climate Change. Organisation for Economics Cooperation and  Development, Paris, France. 55 pp. Available at: http://www.oecd.org/regional/leed/44683169.pdf.  Masanet E. (2010). Energy Benefits of Electronic Controls at Small and Medium Sized U.S.  Manufacturers, Journal of Industrial Ecology 14 696 702 pp. (DOI: 10.1111/j.1530 9290.2010.00286.x), (ISSN: 1530 9290).  Masanet et al. (2008). Energy Efficiency Improvements and Cost Saving Opportunities for the Fruit  and Vegetable Processing Industry. Lawrence Berkeley National Laboratory Berkeley, California  American Iron and Steel Institute, Berkeley, CA. 175 pp.      95 of 112       Final Draft    Chapter 10  IPCC WGIII AR5    Masanet E., and J. Sathaye (2009). Challenges and opportunities in accounting for non energy use  CO2 emissions: an editorial comment, Climatic Change 95 395 403 pp. (DOI: 10.1007/s10584 009 9636 9), (ISSN: 0165 0009, 1573 1480).  Massé D.I., G. Talbot, and Y. Gilbert (2011). On farm biogas production: A method to reduce GHG  emissions and develop more sustainable livestock operations, Animal Feed Science and Technology  166 167 436 445 pp. (DOI: 10.1016/j.anifeedsci.2011.04.075), (ISSN: 0377 8401).  Matsumiya T. (2011). Steelmaking technology for a sustainable society, Calphad 35 627 635 pp.  (DOI: 10.1016/j.calphad.2011.02.009), (ISSN: 0364 5916).  May G., M. Taisch, B. Stahl, and V. Sadr (2013). Toward Energy Efficient Manufacturing: A Study on  Practices and Viewpoint of the Industry. IFIP Advances in Information and Communication  Technology. In: Advances in Production Management Systems. Competitive Manufacturing for  Innovative Products and Services. C. Emmanouilidis, M. Taisch, D. Kiritsis, (eds.), Springer Berlin  Heidelberg, pp.1 8.  Mazzanti M., and R. Zoboli (2008). Waste generation, waste disposal and policy effectiveness  Evidence on decoupling from the European Union, Resources, Conservation and Recycling 52 1221 1234 pp. (DOI: 10.1016/j.resconrec.2008.07.003).  Mazzotti M., J. Abanades, R. Allam, K. Lackner, F. Meunier, E. Rubin, J. Sanchez, K. Yogo, and R.  Zevenhoven (2005). Mineral carbonation and industrial uses of CO2500,000 km2 of drained peatlands in the  world including under forests, with CO2 emissions having increased from 1.06 GtCO2/yr in 1990 to  1.30 GtCO2/yr in 2008, despite a decreasing trend in Annex I countries, from 0.65 to 0.49 GtCO2/yr,  primarily due to natural and artificial rewetting of peatlands. In Southeast Asia, CO2 emissions from  drained peatlands in 2006 were 0.61 +/- 0.25 GtCO2/yr (Hooijer et al., 2010). Satellite estimates  indicate that peat fires in equatorial Asia emitted on average 0.39 GtCO2 eq/yr over the period  1997 2009 (van der Werf et al., 2010), but only 0.2 GtCO2 eq/yr over the period 1998 2009. This  lower figure is consistent with recent independent FAO estimates over the same period and region.  Mangrove ecosystems have declined in area by 20% (36 Mha) since 1980, although the rate of loss  has been slowing in recent years, reflecting an increased awareness of the value of these ecosystems  (FAO, 2007). A recent study estimated that deforestation of mangroves released 0.07 to 0.42  GtCO2/yr (Donato et al., 2011).                                                               5 6 7  http://edgar.jrc.ec.europa.eu/index.php   http://faostat.fao.org/   Parties to the UNFCCC report net GHG emissions according to IPCC methodologies (IPCC, 2003, 2006). Reporting is based  on a range of methods and approaches dependent on available data and national capacities, from default equations and  emission factors applicable to global or regional cases and assuming instantaneous emissions of all carbon that will be  eventually lost from the system following human action (Tier 1) to more complex approaches such as model based spatial  analyses (Tier 3).    21 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Box 11.2. AFOLU GHG emissions from fires  Burning vegetation releases CO2, CH4, N2O, ozone precursors and aerosols (including black carbon)  to the atmosphere. When vegetation regrows after a fire, it takes up CO2 and nitrogen.  Anthropogenic land management or land conversion fire activities leading to permanent clearance  or increasing levels of disturbance result in net emissions to the atmosphere over time. Satellite detection of fire occurrence and persistence has been used to estimate fire emissions (e.g., GFED 2.0  database; (van der Werf et al., 2006). It is hard to separate the causes of fire as natural or  anthropogenic, especially as the drivers are often combined. An update of the GFED methodology  now distinguishes FOLU deforestation and degradation fires from other management fires (GFED 3.0  database; (van der Werf et al., 2010); Figure 11.6). The estimated tropical deforestation and  degradation fire emissions were 1.39 GtCO2eq/yr during 1997 to 2009 (total carbon including CO2,  CH4, CO and black carbon), 20% of all fire emissions. Carbon dioxide FOLU fire emissions are already  included as part of the global models results such as those presented in Table 1.1 and Figures 11.6  and 11.7. According to (FAOSTAT, 2013)8, in 2010 the non CO2 component of deforestation and  forest degradation fires totalled 0.1 GtCO2eq/yr, with forest management and peatland fires (Box  11.1) responsible for an additional 0.2 GtCO2eq/yr.  11.3   Mitigation technology options and practices, and behavioural aspects  Greenhouse gases can be reduced by supply side mitigation options (i.e., by reducing GHG emissions  per unit of land/animal, or per unit of product), or by demand side options (e.g., by changing  demand for food and fibre products, reducing waste). In IPCC AR4, the forestry chapter (Nabuurs et  al., 2007) considered some demand side options, but the agriculture chapter focused on supply side  options only (Nabuurs et al., 2007; Smith et al., 2007). In this section, we discuss only supply side  options (Section 11.3.1). Demand side options are discussed in Section 11.4.  Mitigation activities in the AFOLU sector can reduce climate forcing in different ways:  Reductions in CH4 or N2O emissions from croplands, grazing lands, and livestock.  Conservation of existing carbon stocks, e.g., conservation of forest biomass, peatlands, and soil  carbon that would otherwise be lost.  Reductions of carbon losses from biota and soils, e.g., through management changes within the  same land use type (e.g., reducing soil carbon loss by switching from tillage to no till cropping)  or by reducing losses of carbon rich ecosystems, e.g., reduced deforestation, rewetting of  drained peatlands.  Enhancement of carbon sequestration in soils, biota, and long lived products through increases  in the area of carbon rich ecosystems such as forests (afforestation, reforestation), increased  carbon storage per unit area, e.g., increased stocking density in forests, carbon sequestration in  soils, and wood use in construction activities.  Changes in albedo resulting from land use and land cover change that increase reflection of  visible light.  Provision of products with low GHG emissions that can replace products with higher GHG  emissions for delivering the same service (e.g., replacement of concrete and steel in buildings  with wood, some bioenergy options; see Section 11.13).                                                                FOLU GHG emissions by fires include, as per IPCC GHG guidelines, all fires on managed land. Most current  FOLU estimates are limited however to fires associated to deforestation, forest management and peat fires.  Emissions from prescribed burning of savannahs are reported under agriculture. Both CO2 and non CO2  emissions are accounted under these FOLU components, but CO2 emissions dominate.  8   22 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Reductions of direct (e.g., agricultural machinery, pumps, fishing craft) or indirect (e.g.,  production of fertilizers, emissions resulting from fossil energy use in agriculture, fisheries,  aquaculture, and forestry or from production of inputs); though indirect emission reductions  are accounted for in the energy end use sectors (buildings, industry, energy generation,  transport) so are not discussed further in detail in this chapter.  11.3.1    Supply side mitigation options  Mitigation potentials for agricultural mitigation options were given on a  per area  and  per animal   in AR4 (Nabuurs et al., 2007; Smith et al., 2007). All options are summarized in Table 11.2 with  impacts on each GHG noted, and a categorization of technical mitigation potential, ease of  implementation, and availability (supported by recent references). These mitigation options can  have additive positive effects, but can also work in opposition, e.g., zero tillage can reduce the  effectiveness of residue incorporation. Most mitigation options were described in detail in AR4 so  are not described further here; additional practices that were not considered in AR4, i.e., biochar,  reduced emissions from aquaculture, and bioenergy are described in Boxes 11.3, 11.4, and 11.5,  respectively.  In addition to the per area and per animal mitigation options described in AR4, more attention has  recently been paid to options that reduce emissions intensity by improving the efficiency of  production (i.e., less GHG emissions per unit of agricultural product; (Burney et al., 2010; Bennetzen  et al., 2012); a reduction in emissions intensity has long been a feature of agricultural emissions  reduction and is one component of a process more broadly referred to as sustainable intensification  (Tilman et al., 2009; Godfray et al., 2010; Smith, 2013; Garnett et al., 2013). This process does not  rely on reducing inputs per se, but relies on the implementation of new practices that result in an  increase in product output that is larger than any associated increase in emissions (Smith, 2013).  Even though per area emissions could increase, there is a net benefit since less land is required for  production of the same quantity of product. The scope to reduce emissions intensity appears  considerable since there are very large differences in emissions intensity between different regions  of the world (Herrero et al., 2013). Sustainable intensification is discussed further in Section 11.4.2,  and trends in changes in emissions intensity are discussed further in Section 11.6. Table 11.2 Summary of supply-side mitigation options in the AFOLU sector. Technical Mitigation Potential: Area = (tCO2eq/ha)/yr; Animal = percent reduction of enteric emissions. Low = < 1; <5% (light colour), Medium = 1 10; 5 15% (medium colour), High = >10, >15% (dark colour); Ease of Implementation (acceptance or adoption by land manager): Difficult (light colour), Medium (medium colour), Easy, i.e., universal applicability (dark colour); Timescale for Implementation: Long-term (at research and development stage; light colour), Mid-term (trials in place, within 5 10 years; medium colour), Immediate (technology available now, dark colour). Technical Mitigation  Potential  Ease of  Implementation  Timescale for  implementation  Categories  Practices and Impacts    Forestry  Reducing deforestation   Afforestation/Reforestati on  C: Conservation of existing C pools in forest vegetation and soil by  controlling deforestation protecting forest in reserves, and controlling  other anthropogenic disturbances such as fire and pest outbreaks.  Reducing slash and burn agriculture, reducing forest fires.  CH4, N2O: Protection of peatland forest, reduction of wildfires. C: Improved biomass stocks by planting trees on non forested  agricultural lands. This can include either monocultures or mixed  species plantings. These activities may also provide a range of other  social, economic, and environmental benefits.       1            2  3, 4, 5     23 of 179   References    Final Draft   Forest management    Chapter 11  C: Management of forests for sustainable timber production including  extending rotation cycles, reducing damage to remaining trees,  reducing logging waste, implementing soil conservation practices,  fertilization, and using wood in a more efficient way, sustainable  extortion of wood energy  CH4, N2O: Wildfire behaviour modification. C: Protecting secondary forests and other degraded forests whose  biomass and soil C densities are less than their maximum value and  allowing them to sequester C by natural or artificial regeneration,  rehabilitation of degraded lands, long term fallows.  CH4, N2O : Wildfire behaviour modification.   C: High input carbon practices, e.g., improved crop varieties, crop  rotation, use of cover crops, perennial cropping systems, agricultural  biotechnology.  N2O: Improved N use efficiency. C: Fertilizer input to increase yields and residue inputs (especially  important in low yielding agriculture).  N2O: Changing N fertilizer application rate, fertilizer type, timing,  precision application, inhibitors.  C: Reduced tillage intensity; residue retention.   IPCC WGIII AR5       6, 7, 8, 9   Forest restoration          10, 11, 12 13, 14         15, 16, 17   Land based agriculture  Cropland management  Croplands   plant  management    Croplands   nutrient  management    Croplands    tillage/residues  management      Croplands   water  management                              18  19, 20 21, 22, 23, 24,  25, 105, 106  17, 24, 26, 27 Croplands   rice  management  Rewet peatlands drained  for agriculture  Croplands   set aside and  LUC    Biochar application    Grazing Land  Management  Grazing lands   plant  management  N2O:  CH4: C: Improved water availability in cropland including water harvesting  and application.  CH4: Decomposition of plant residues. N2O: Drainage management to reduce emissions, reduce N runoff  leaching.  C: Straw retention.  CH4: Water management, mid season paddy drainage. N2O: Water management, N fertilizer application rate, fertilizer type,  timing, precision application.  C: Ongoing CO2 emissions from reduced drainage (but CH4 emissions  may increase).  C: Replanting to native grasses and trees. Increase C sequestration. N2O: N inputs decreased resulting in reduced N2O. C: Soil amendment to increase biomass productivity, and sequester C  (biochar was not covered in AR4 so is described in Box 11.3).  N2O: Reduced N inputs will reduce emissions.   C: Improved grass varieties/sward composition, e.g., deep rooting  grasses, increased productivity, and nutrient management. Appropriate  stocking densities, carrying capacity, fodder banks, and improved  grazing management.  N2O C: Appropriate stocking densities, carrying capacity management,  fodder banks and improved grazing management, fodder production,  and fodder diversification.  CH4 N2O: Stocking density, animal waste management. C: Improved use of fire for sustainable grassland management. Fire  prevention and improved prescribed burning.    C: The establishment of vegetation that does not meet the definitions  of afforestation and reforestation (e.g., Atriplex spp.).  CH4: Increased grazing by ruminants may increase net emissions. N2O: Reduced N inputs will reduce emissions.   C: Soil carbon restoration on peatlands; and avoided net soil carbon  emissions using improved land management.  CH4: May increase.  Land reclamation (afforestation, soil fertility management, water  conservation soil nutrients enhancement, improved fallow).                                                              28, 96, 97 96  29      30  31, 32, 98 32, 98, 99 33    34, 35, 36, 37,  38    39, 40, 41 39, 42   43, 44, 45   Grazing lands   animal  management      Grazing land    fire management  Revegetation  Revegetation      Other  Organic soils    restoration     Degraded soils    restoration          46  43, 47                                                     48        49      100, 101,  102, 103, 104      24 of 179     Final Draft   Biosolid applications    Livestock  Livestock   feeding  Chapter 11  C: Use of animal manures and other biosolids for improved  management of nitrogen; integrated livestock agriculture techniques.  N2O CH4: Improved feed and dietary additives to reduce emissions from  enteric fermentation; including improved forage, dietary additives  (bioactive compounds, fats), ionophores/antibiotics, propionate  enhancers, archaea inhibitors, nitrate and sulphate supplements.  CH4: Improved breeds with higher productivity (so lower emissions per  unit of product) or with reduced emissions from enteric fermentation;  microbial technology such as archaeal vaccines, methanotrophs,  acetogens, defaunation of the rumen, bacteriophages and probiotics;  improved fertility.  CH4: Manipulate bedding and storage conditions, anaerobic digesters;  biofilters, dietary additives.  N2O: Manipulate livestock diets to reduce N excreta, soil applied and  animal fed nitrification inhibitors, urease inhibitors, fertilizer type, rate  and timing, manipulate manure application practices, grazing  management.  C: Mixed production systems can increase land productivity and  efficiency in the use of water and other resources and protect against  soil erosion as well as serve carbon sequestration objectives.  N2O: Reduced N inputs will reduce emissions. C: Mixed production systems such as double cropping systems and  mixed crop livestock systems can increase land productivity and  efficiency in the use of water and other resources as well as serve  carbon sequestration objectives. Perennial grasses (e.g., bamboo) can  in the same way as woody plants be cultivated in shelter belts and  riparian zones/buffer strips provide environmental services and  supports C sequestration and biomass production.  N2O: Reduced N inputs will reduce emissions. C: Integrating feedstock production with conversion, typically  producing animal feed that can reduce demand for cultivated feed  such as soy and corn and can also reduce grazing requirements. Using  agricultural and forestry residues for energy production.   N2O: Reduced N inputs will reduce emissions.         IPCC WGIII AR5         26    50, 51, 52, 53,  54, 55, 56, 57,  58, 59  54, 55, 56, 58, 60, 61, 62, 63,  64, 65, 66, 67,  68, 69, 70, 71  56, 58, 72, 73 56, 58, 72, 74,  75, 76, 77, 78  Livestock   breeding and  other long term  management      Manure management            Integrated systems  Agroforestry (including  agropastoral and  agrosilvopastoral systems)    Other mixed biomass  production systems              79, 80, 81, 82,  83, 84, 85, 86,  87, 88    82, 89, 90    Integration of biomass  production with  subsequent processing in  food and bioenergy  sectors    Bioenergy (see Box 11.5  and Section 11.13)  1           91, 92, 93, 94,  95              (Van Bodegom et al., 2009); 2(Malmsheimer et al., 2008); 3(Reyer et al., 2009); 4(Sochacki et al., 2012); 5(IPCC, 6 7 8 9 2000); (DeFries and Rosenzweig, 2010); (Takimoto et al., 2008); (Masera et al., 2003); (Silver et al., 2000); 10 (Dezzeo et al., 2005); 11(Ito, 2005); 12(Sow et al., 2013); 13(Reyer et al., 2009); 14(Palm et al., 2004); 15(Godfray 16 17 18 19 et al., 2010); (Burney et al., 2010); (Conant et al., 2007); (Huang and Tang, 2010); (Lemke et al., 2010); 20 21 22 23 (Eagle and Olander, 2012); (Snyder et al., 2007); (Akiyama et al., 2010); (Barton et al., 2011); 24(Powlson 25 26 27 28 et al., 2011); (van Kessel et al., 2013); (Farage et al., 2007); (Smith, 2012); (Abdalla et al., 2013); 29 30 31 32 (Bayala et al., 2008); (Yagi et al., 1997); (Tyagi et al., 2010); (Feng et al., 2013); 33(Lohila et al., 2004); 34 (Seaquist et al., 2008); 35(Mbow, 2010); 36(Assogbadjo et al., 2012); 37(Laganiere et al., 2010); 38(Bayala et al., 2011); 39(Singh et al., 2010); 40(Woolf et al., 2010); 41(Lehmann et al., 2003); 42(Taghizadeh-Toosi et al., 2011); 43 (Franzluebbers and Stuedemann, 2009); 44(Follett and Reed, 2010); 45(McSherry and Ritchie, 2013); 46(Saggar et al., 2004); 47(Thornton and Herrero, 2010); 48(Harper et al., 2007); 49(Smith and Wollenberg, 2012); 50 (Beauchemin et al., 2008); 51(Beauchemin et al., 2009); 52(Martin et al., 2010); 53(Grainger and Beauchemin, 2011); 54(Clark, 2013); 55(Cottle et al., 2011); 56(Eckard et al., 2010); 57(Sauvant and Giger-Reverdin, 2007); 58 (Hristov et al., 2013); 59(Bryan et al., 2013); 60(Attwood and McSweeney, 2008); 61(Attwood et al., 2011); 62 (Hegarty et al., 2007); 63(Hook et al., 2010); 64(Janssen and Kirs, 2008); 65(Martin et al., 2010); 66(Morgavi et al., 67 68 69 70 2008); (Morgavi et al., 2010); (Place and Mitloehner, 2010); (Waghorn and Hegarty, 2011); (Wright and 71 72 73 74 Klieve, 2011); (Yan et al., 2010) (Chadwick et al., 2011); (Petersen and Sommer, 2011); (de Klein et al., 75 76 77 78 2010); (de Klein and Eckard, 2008); (Dijkstra et al., 2011) (Schils et al., 2013); (VanderZaag et al., 2011); 79 80 81 82 (Oke and Odebiyi, 2007); (Rice, 2008); (Takimoto et al., 2008); (Lott et al., 2009); 83(Sood and Mitchell, 2011); 84(Assogbadjo et al., 2012); 85(Wollenberg et al., 2012); 86(Semroc et al., 2012); 87Souza et al. (2012); 88 (Luedeling and Neufeldt, 2012); 89(Heggenstaller et al., 2008); 90(Herrero et al., 2010); 91(Dale et al., 2009); 92 (Dale et al., 2010); 93Sparovek et al. (2007); 94(Sood and Mitchell, 2011); 95(Vermeulen et al., 2012); 96(Metay et 97 98 99 100 101 al., 2007) ; (Rochette, 2008); (Ma et al., 2009); (Yao et al., 2010); (Arnalds, 2004); (Batjes, 2004); 102 103 104 105 (Hardner et al., 2000); (May et al., 2004); (Zhao et al., 2005); (Huang and Tang, 2010); 106(Kim et al., 2013).   25 of 179     Final Draft   Box 11.3 Biochar Chapter 11  IPCC WGIII AR5   This box summarizes the mitigation potential for biochar technologies, which were not considered in  AR4. Biomass C stabilization could be combined with (or substitute) bioenergy capture as part of a  land based mitigation strategy (Lehmann, 2007). Heating biomass with air excluded (pyrolysis)  generates energy containing volatiles and gases. Hydrogen and O are preferentially eliminated,  creating a stable (biologically recalcitrant) C rich co product (char). By adding char to soil as  biochar   a system can be established that may have a higher carbon abatement than typical bioenergy  alternatives (Woolf et al., 2010). The gain is probably highest where efficient bioenergy is  constrained by a remote, seasonal, or diffuse biomass resource (Shackley et al., 2012). The benefit of  pyrolysis biochar systems (PBS) is increased considerably if allowance is made for the indirect effects  of using biochar via the soil. These effects include increased crop and biomass production and  decreased N2O and CH4 emissions. Realizing the mitigation potential for biochar technologies will be  constrained by the need for sustainable feedstock acquisition, competing biomass use options are an  important influence of the production process on biochar properties. Considering sustainable  feedstock production and targeting biochar deployment on less fertile land, Woolf et al. (2010)  calculated maximum global abatement of 6.6 GtCO2eq/yr from 2.27 Gt biomass C. Allowing for  competition for virgin non waste biomass the value was lower (3.67 GtCO2eq/yr from 1.01 Gt  biomass C), accruing 240 480 GtCO2eq abatement within 100 years.  Meta analysis shows that in experimental situations crop productivity has, on average, been  enhanced by circa 15% near term, but with a wide range of effects (Jeffery et al., 2011; Biederman  and Harpole, 2013). This range is probably explained by the nature and extent of pre existing soil  constraints. The Woolf et al. (2010) analysis accordingly assumed crop yield increases of 0 90%  (relative). Relaxing this assumption by one half decreased projected abatement by 10%. Decreasing  an assumed 25% suppression on soil N2O flux by the same proportion had a smaller impact.  Beneficial interactions of biochar and the soil N cycle are beginning to be understood with effects on  mineralization, nitrification, denitrification, immobilization and adsorption persisting at least for days  and months after biochar addition (Nelissen et al., 2012; Clough et al., 2013). Although the often  large suppression of soil N2O flux observed under laboratory conditions can be increasingly  explained (Cayuela et al., 2013), this effect is not yet predictable and there has been only limited  validation of N2O suppression by biochar in planted field soils (Liu et al., 2012; Van Zwieten et al.,  2013) or over longer timeframes (Spokas, 2013). The potential to gain enhanced mitigation using  biochar by tackling gaseous emissions from manures and fertilizers before and after application to  soil are less well explored (Steiner et al., 2010; Angst et al., 2013). The abatement potential for PBS  remains most sensitive to the absolute stability of the C stored in biochar. Estimates of  half life   have been inferred from wildfire charcoal (Lehmann, 2007) or extrapolated from direct short term  observation. These give values that range from <50 to >10,000 years, but predominantly between  100 1000 years (Singh et al., 2012; Spokas, 2013). Nonetheless, the assumption made by Woolf et  al. (2010) for the proportion of biochar C that is stable long term (85%) is subject to refinement and  field validation.  Demonstration of the equipment and infrastructure required for effective use of energy products  from biomass pyrolysis is still limited, especially across large and small unit scales. Preliminary  analyses shows, however, that the break even cost of biochar production is likely to be location  and  feedstock specific (Shackley et al., 2012; Field et al., 2013). Until economic incentives are established  for the stabilization of C, biochar adoption will depend on predictable, positive effects on crop  production. This requires more research on the use of biochar as a regular low dose soil input, rather  than single applications at rates >10t/ha, which have so far been the norm (Sohi, 2012). Product  standards are also required, to ensure that biochar is produced in a way that does not create or  conserve problematic concentrations of toxic contaminants, and to support regulated deployment  strategies (IBI Biochar, 2012; Downie et al., 2012).    26 of 179     Final Draft   Box 11.4 Aquaculture Chapter 11  IPCC WGIII AR5   Aquaculture is defined as the farming of fish, shellfish, and aquatic plants (Hu et al., 2013). Although  it is an ancient practice in some parts of world, this sector of the food system is growing rapidly.  Since the mid 1970s, total aquaculture production has grown at an average rate of 8.3% per year  (1970 2008; (Hu et al., 2013). The estimated aquaculture production in 2009 was 55.10 Mt, which  accounts for approximately 47% of all the fish consumed by humans (Hu et al., 2013). The sector is  diverse, being dominated by shellfish and herbivorous and omnivorous pond fish, either entirely or  partly utilizing natural productivity, but globalizing trade and favourable economic conditions are  driving intensive farming at larger scales (Bostock et al., 2010). Potential impacts of aquaculture, in  terms emissions of N2O, have recently been considered (Williams and Crutzen, 2010; Hu et al.,  2012). Global N2O emissions from aquaculture in 2009 were estimated to be 93 ktN2O N (~43  MtCO2eq), and will increase to 383 ktN2O N (~178 MtCO2eq) by 2030, which could account for 5.7%  of anthropogenic N2O N emissions if aquaculture continues to grow at the present growth rate  (~7.1%/yr; (Hu et al., 2012)) .  Some studies have focused on rice fish farming, which is a practice associated with wet rice  cultivation in Southeast Asia, providing protein, especially for subsistence oriented farmers  (Bhattacharyya et al., 2013). Cultivation of fish along with rice increases emissions of CH4 (Frei et al.,  2007; Bhattacharyya et al., 2013), but decreases N2O emissions, irrespective of the fish species used  (Datta et al., 2009; Bhattacharyya et al., 2013). Although rice fish farming systems might be globally  important in terms of climate change, they are also relevant for local economy, food security, and  efficient water use (shared water), which makes it difficult to design appropriate mitigation  measures, because of the tradeoffs between mitigation measures and rice and fish production  (Datta et al., 2009; Bhattacharyya et al., 2013). Feeding rate and dissolved oxygen (DO)  concentration could affect N2O emissions from aquaculture systems significantly, and nitrification  and denitrification processes were equally responsible for the emissions of N2O in these systems.  Measures to control N2O from aquaculture are described by Hu et al. (2012), and include the  maintenance of optimal operating conditions of the system, such as appropriate pH and  temperature, sufficient DO and good quality feed. Additionally, two potential ways to minimize N2O  emissions from aquaculture systems include  Aquaponic Aquaculture  (polyculture consisting of fish  tanks (aquaculture) and plants that are cultivated in the same water cycle (hydroponic)), and  Bioflocs Technology (BFT) Aquaculture (which involves the development and control of  heterotrophic bacteria in flocs within the fish culture component), where the growth of  heterotrophic bacteria is stimulated, leading to nitrogen uptake (Hu et al., 2012).    Box 11.5 Bioenergy Bioenergy deployment offers significant potential for climate change mitigation, but also carries  considerable risks. The SRREN (IPCC, 2011) suggested potential bioenergy deployment levels to be  between 100 300 EJ. This assessment agrees on a technical bioenergy potential of around 100 EJ,  and possibly 300 EJ and higher. Integrated models project between 15 245 EJ/yr deployment in  2050, excluding traditional bioenergy. Achieving high deployment levels would require, amongst  others, extensive use of agricultural residues and second generation biofuels to mitigate adverse  impacts on land use and food production, and the co processing of biomass with coal or natural gas  with carbon dioxide capture and storage (CCS) to produce low net GHG emitting transportation fuels  and/or electricity. Integration of crucial sectoral research (albedo effects, evaporation,  counterfactual land carbon sink assumptions) into transformation pathways research, and  exploration of risks of imperfect policy settings (for example, in absence of a global CO2 price on land  carbon) is subject of further research (Sections 11.9, 11.13.2, 11.13.4). Small scale bioenergy  systems aimed at meeting rural energy needs synergistically provide mitigation and energy access  benefits. Decentralized deployment of biomass for energy, in combination with improved  cookstoves, biogas, and small scale biopower, could improve livelihoods and health of around 2.6    27 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   billion people. Both mitigation potential and sustainability hinges crucially on the protection of land  carbon (high density carbon ecosystems), careful fertilizer application, interaction with food  markets, and good land and water management. Sustainability and livelihood concerns might  constrain beneficial deployment of dedicated biomass plantations to lower values (Sections 11.13.3,  11.13.5, 11.13.7).  Lifecycle assessments for bioenergy options demonstrate a plethora of pathways, site specific  conditions and technologies produce a wide range of climate relevant effects. Specifically, LUC  emissions, N2O emissions from soil and fertilizers, co products, process design and process fuel use,  end use technology, and reference system can all influence the total attributional lifecycle emissions  of bioenergy use. The large variance for specific pathways points to the importance of management  decisions in reducing the lifecycle emissions of bioenergy use. The total marginal global warming  impact of bioenergy can only be evaluated in a comprehensive setting that also addresses  equilibrium effects, e.g., indirect land use change (iLUC) emissions, actual fossil fuel substitution,  and other effects. Structural uncertainty in modelling decisions renders such evaluation exercises  uncertain. Available data suggest a differentiation between options that offer low lifecycle emissions  under good land use management (e.g., sugarcane, Miscanthus, and fast growing tree species) and  those that are unlikely to contribute to climate change mitigation (e.g., corn and soybean), pending  new insights from more comprehensive consequential analyses (Sections 8.7, 11.13.4).  Coupling bioenergy and CCS (BECCS) has attracted particular attention since AR4 because it offers  the prospect of negative emissions. Until 2050, the economic potential is estimated to be between  2 10 GtCO2 per year. Some climate stabilization scenarios see considerable higher deployment  towards the end of the century, even in some 580 650 ppm scenarios, operating under different  time scales, socioeconomic assumptions, technology portfolios, CO2 prices, and interpreting BECCS  as part of an overall mitigation framework. Technological challenges and potential risks of BECCS  include those associated with the provision of the biomass feedstock as well as with the capture,  transport and long term underground storage of CO2. BECCS faces large challenges in financing and  currently no such plants have been built and tested at scale (Sections 7.5.5, 7.9, 11.13.3).  Land demand and livelihoods are often affected by bioenergy deployment. Land demand for  bioenergy depends on (1) the share of bioenergy derived from wastes and residues; (2) the extent to  which bioenergy production can be integrated with food and fibre production, and conservation to  minimize land use competition; (3) the extent to which bioenergy can be grown on areas with little  current production; and (4) the quantity of dedicated energy crops and their yields. Considerations  of tradeoffs with water, land, and biodiversity are crucial to avoid adverse effects. The total impact  on livelihood and distributional consequences depends on global market factors, impacting income  and income related food security, and site specific factors such as land tenure and social  dimensions. The often site specific effects of bioenergy deployment on livelihoods have not yet been  comprehensively evaluated (Section 11.13.7).  11.3.2    Mitigation effectiveness (non permanence: saturation, human and natural  impacts, displacement)  Since carbon sequestration in soil and vegetation and the retention of existing carbon stocks forms a  significant component of the mitigation potential in the AFOLU sector, this section considers the  factors affecting this strategy compared to avoided GHG emissions.  Non permanence/reversibility. Reversals are the release of previously sequestered carbon, which  negates some or all of the benefits from sequestration that has occurred in previous years. This issue  is sometimes referred to as  non permanence  (Smith, 2005) . Various types of carbon sinks (e.g.,  afforestation/reforestation, agricultural soil C) have an inherent risk of future reversals.   Certain types of mitigation activities (e.g., avoided N2O from fertilizer, emission reductions from  changed diet patterns or reduced food chain losses) are effectively permanent since the emissions,    28 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   once avoided, cannot be re emitted. The same applies to the use of bioenergy to displace fossil fuel  emissions (Section 11.13) or the use of biomass based products to displace more emissions intensive  products (e.g., wood in place of concrete or steel) in construction.   Reversals may be caused by natural events that affect yields/growth. In some cases (e.g., frost  damage, pest infestation, or fire; (Reichstein et al., 2013), these effects may be temporary or short term. Although these events will affect the annual increment of C sequestration, they may not result  in a permanent decline in carbon stocks. In other cases, such as stand replacing forest fires, insect or  disease outbreaks, or drought, the declines may be more profound. Although a substantial loss of  above ground stored carbon could occur following a wildfire, whether this represents a loss depends  on what happens following the fire and whether the forest recovers, or changes to a lower carbon storage state (see Box 11.2). Similarly, some systems are naturally adapted to fire and carbon stocks  will recover following fire, whereas in other cases the fire results in a change to a system with a  lower carbon stock (e.g., (Brown and Johnstone, 2011). For a period of time following fire (or other  disruptive event), the stock of carbon will be less than that before the fire. Similarly, emissions of  non CO2 gases also need to be considered.   The permanence of the AFOLU carbon stock relates to the longevity of the stock, i.e., how long the  increased carbon stock remains in the soil or vegetation. This is linked to consideration of the  reversibility of the increased carbon stock (Smith, 2005), as discussed in Section 11.5.2.   Saturation. Substitution of fossil fuel and material with biomass, and energy intensive building  materials with wood can continue in perpetuity. In contrast, it is often considered that carbon  sequestration in soils (Guldea et al., 2008) or vegetation cannot continue indefinitely. The carbon  stored in soils and vegetation reaches a new equilibrium (as the trees mature or as the soil carbon  stock saturates). As the soils/vegetation approach the new equilibrium, the annual removal  (sometimes referred to as the sink strength) decreases until it becomes zero at equilibrium. This  process is called saturation (Smith, 2005; Körner, 2006, 2009; Johnston et al., 2009b) , and the  uncertainty associated with saturation has been estimated (Kim and McCarl, 2009). An alternative  view is that saturation does not occur, with studies from old growth forests, for example, showing  that they can continue to sequester C in soil and dead organic matter even if net living biomass  increment is near zero (e.g., (Luyssaert et al., 2008). Peatlands are unlikely to saturate in carbon  storage, but the rate of C uptake may be very slow (see Box 11.1).   Human and natural impacts. Soil and vegetation carbon sinks can be impacted upon by direct  human induced, indirect human induced, and natural changes (Smith, 2005). All of the mitigation  practices discussed in Section 11.3.1 arise from direct human induced impacts (deliberate  management). Both sink processes and carbon stocks can be affected by natural factors such as soil  and hydrological conditions. Indirect human induced changes can impact carbon sinks and are  influenced by human activity, but are not directly related to the management of that piece of land;  examples include climate change and atmospheric nitrogen deposition. For some tree species, rising  concentrations of tropospheric ozone caused by human activities may counteract the effects of  increased atmospheric CO2 or N deposition on tree growth (Sitch et al., 2008; Matyssek et al., 2010).  Natural changes that threaten to impact the efficacy of mitigation measures are discussed in Section  11.5.  Displacement/leakage. Displacement/leakage arises from a change in land use or land management  that causes a positive or negative change in emissions elsewhere. This can occur within or across  national boundaries, and the efficacy of mitigation practices must consider the leakage implications.  For example, if reducing emissions in one place leads to increased emissions elsewhere, no net  reduction occurs; the emissions are simply displaced (Powlson et al., 2011; Kastner et al., 2011b; a),  however, this assumes a one to one correspondence. Murray et al. (2004) estimated the leakage  from different forest carbon programmes and this varied from <10% to >90% depending on the  nature of the activity. West et al. (2010) examined the impact of displaced activities in different    29 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   geographic contexts; for example, land clearing in the tropics will release twice the carbon, but only  produce half the crop yield of temperate areas. Indirect land use change is an important component  to consider for displaced emissions and assessments of this are an emerging area. Indirect land use  change is discussed further in Section 11.4 and in relation to bioenergy in Section 11.13.  The timing of mitigation benefits from actions (e.g., bioenergy, forest management, forest products  use/storage) can vary as a result both of the nature of the activity itself (e.g., from the temporal  pattern of soil or forest sequestration compared to biomass substitution), and rates of adoption.  Timing thus needs to be considered when judging the effectiveness of a mitigation action. Cherubini  et al. (2012) modelled the impact of timing of benefits for three different wood applications (fuel,  non structural panels, and housing construction materials) and showed that the options provide  mitigation over different timeframes, and thus have different impacts on CO2 concentrations and  radiative forcing. The temporal pattern of emissions and removals is especially important in  mitigating emissions of short lived gases through carbon sequestration (Lauder et al., 2013).   Additionality: Another consideration for gauging the effectiveness of mitigation is determining  whether the activity would have occurred anyway, with this encompassed in the concept of  additionality  (see Glossary).  Impacts of climate change: An area of emerging activity is predicting the likely impacts of climate  change on mitigation potential, both in terms of impacts on existing carbon stocks, but also on the  rates of carbon sequestration. This is discussed further in Section 11.5.  11.4   Infrastructure and systemic perspectives  Only supply side mitigation options are considered in Section 11.3. In this section, we consider  infrastructure and systemic perspectives, which include potential demand side mitigation options in  the AFOLU sector. Since infrastructure is a minor issue in AFOLU compared to energy end use  sectors, this section focusses on systemic perspectives.  11.4.1    Land: a complex, integrated system  Mitigation in the AFOLU sector is embedded in the complex interactions between socioeconomic  and natural factors simultaneously affecting land systems (Turner et al., 2007). Land is used for a  variety of purposes, including housing and infrastructure (Chapter 12), production of goods and  services through agriculture, aquaculture and forestry, and absorption or deposition of wastes and  emissions (Dunlap and Catton, Jr., 2002). Agriculture and forestry are important for rural livelihoods  and employment (Coelho et al., 2012), while aquaculture and fisheries can be regionally important  (FAO, 2012). More than half of the planet s total land area (134 Mkm2) is used for urban and  infrastructure land, agriculture, and forestry. Less than one quarter shows relatively minor signs of  direct human use (Erb et al., 2007; Ellis et al., 2010); Figure 11.9). Some of the latter areas are  inhabited by indigenous populations, which depend on the land for the supply of vitally important  resources (Read et al., 2010).  Land use change is a pervasive driver of global environmental change (Foley et al., 2005, 2011) .  From 1950 to 2005, farmland (cropland plus pasture) increased from 28 to 38% of the global land  area excluding ice sheets and inland waters (Hurtt et al., 2011). The growth of farmland area (+33%)  was lower than that of population, food production, and gross domestic product (GDP) due to  increases in yields and biomass conversion efficiency (Krausmann et al., 2012). In the year 2000,  almost one quarter of the global terrestrial net primary production (one third of the above ground  part) was  appropriated  by humans. This means that it was either lost because the net primary  productivity (the biomass production of green plants, net primary production, NPP) of agro ecosystems or urban areas was lower than that of the vegetation they replaced or it was harvested  for human purposes, destroyed during harvest or burned in human induced fires (Imhoff et al.,    30 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   2004; Haberl et al., 2007). The fraction of terrestrial NPP appropriated by humans doubled in the last  century (Krausmann et al., 2013), exemplifying the increasing human domination of terrestrial  ecosystems (Ellis et al., 2010). Growth trajectories of the use of food, energy, and other land based  resources, as well as patterns of urbanization and infrastructure development are influenced by  increasing population and GDP, as well as the on going agrarian industrial transition (Haberl et al.,  2011b; Kastner et al., 2012).  Growing resource use and land demand for biodiversity conservation and carbon sequestration  (Soares Filho et al., 2010), result in increasing competition for land (Harvey and Pilgrim, 2011);  Section 11.4.2). Influencing ongoing transitions in resource use is a major challenge (WBGU, 2011;  Fischer Kowalski, 2011). Changes in cities, e.g., in terms of infrastructure, governance, and demand,  can play a major role in this respect (Seto et al., 2012; Seitzinger et al., 2012; Chapter 12).  Many mitigation activities in the AFOLU sector affect land use or land cover and, therefore, have  socioeconomic as well as ecological consequences, e.g., on food security, livelihoods, ecosystem  services or emissions (Sections 11.1; 11.4.5; 11.7). Feedbacks involved in implementing mitigation in  AFOLU may influence different, sometimes conflicting, social, institutional, economic, and  environmental goals (Madlener et al., 2006). Climate change mitigation in the AFOLU sector faces a  complex set of interrelated challenges (Sections 11.4.5; 11.7):  Full GHG impacts, including those from feedbacks (e.g., iLUC) or leakage, are often difficult to  determine (Searchinger et al., 2008).  Feedbacks between GHG reduction and other important objectives such as provision of  livelihoods and sufficient food or the maintenance of ecosystem services and biodiversity are  not completely understood.  Maximizing synergies and minimizing negative effects involves multi dimensional optimization  problems involving various social, economic, and ecological criteria or conflicts of interest  between different social groups (Martinez Alier, 2002).   Changes in land use and ecosystems are scale dependent and may proceed at different speeds,  or perhaps even move in different directions, at different scales.  11.4.2    Mitigation in AFOLU   feedbacks with land use competition  Driven by economic and population growth, increased demand for food and bioenergy as well as  land demand for conservation and urbanization (e.g., above ground biomass carbon losses  associated with land clearing from new urban areas in the pan tropics are estimated to be 5% of the  tropical deforestation and land use change emissions, (Seto et al., 2012a); Section 12.2), competition  for land is expected to intensify (Smith et al., 2010; Woods et al., 2010). Maximization of one output  or service (e.g., crops) often excludes, or at least negatively affects, others (e.g., conservation;  (Phalan et al., 2011). Mitigation in the AFOLU sector may affect land use competition. Reduced  demand for AFOLU products generally decreases inputs (fertilizer, energy, machinery) and land  demand. The ecological feedbacks of demand side options are mostly beneficial since they reduce  competition for land and water (Smith et al., 2013b).  Some supply side options, though not all, may intensify competition for land and other resources.  Based on Figure 11.9 one may distinguish three cases:  Optimization of biomass flow cascades; that is, increased use of residues and by products,  recycling of biogenic materials and energetic use of wastes (WBGU, 2009). Such options  increase resource use efficiency and may reduce competition, but there may also be tradeoffs.  For example, using crop residues for bioenergy or roughage supply may leave less C and  nutrients on cropland, reduce soil quality and C storage in soils, and increase the risk of losses of  carbon through soil erosion. Residues are also often used as forage, particularly in the tropics.  Forest residues are currently also used for other purposes, e.g., chipboard manufacture, pulp    31 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   and paper production (González Estrada et al., 2008; Blanco Canqui and Lal, 2009; Muller, 2009;  Ceschia et al., 2010).  Increases in yields of cropland (Burney et al., 2010; Foley et al., 2011; Tilman et al., 2011;  Mueller et al., 2012; Lobell et al., 2013), grazing land or forestry and improved livestock feeding  efficiency (Steinfeld et al., 2010; Thornton and Herrero, 2010) can reduce land competition if  yield increases relative to any additional inputs and the emission intensity (i.e., GHG emissions  per unit of product) decreases. This may result in tradeoffs with other ecological, social, and  economic costs (IAASTD, 2009) although these can to some extent be mitigated if intensification  is sustainable (Tilman et al., 2011). Another caveat is that increases in yields may result in  rebound effects that increase consumption (Lambin and Meyfroidt, 2011; Erb, 2012) or provide  incentives to farm more land (Matson and Vitousek, 2006), and hence may fail to spare land  (Section 11.10).  Land demanding options reduce GHG emissions by harnessing the potential of the land for  either C sequestration or growing energy crops (including food crops used as feedstocks for  bioenergy production). These options result in competition for land (and sometimes other  resources such as water) that may have substantial social, economic, and ecological effects  (positive or negative; (UNEP, 2009, p. 2009; WBGU, 2009; Chum et al., 2011; Coelho et al.,  2012). Such options may increase pressures on ecosystems (e.g., forests) and GHG emissions  related to direct and indirect LUC, contribute to price increases of agricultural products, or  negatively affect livelihoods of rural populations. These possible impacts need to be balanced  against possible positive effects such as GHG reduction, improved water quality (Townsend et  al., 2012), restoration of degraded land (Harper et al., 2007), biodiversity protection (Swingland  et al., 2002), and job creation(Chum et al., 2011; Coelho et al., 2012).  Therefore, an integrated energy/agriculture/land use approach for mitigation in AFOLU can help to  optimize synergies and mitigate negative effects ((Popp et al., 2011; Smith, 2012; Creutzig et al.,  2012; Smith et al., 2013b).      32 of 179     Final Draft   Chapter 11  IPCC WGIII AR5     Figure 11.9. Global land use and biomass flows arising from human economic activity in 2000 from the cradle to the grave. Values in Gt dry matter biomass/yr. Figure source: (Smith et al., 2013b). If a source reported biomass flows in energy units, the numbers were converted to dry matter assuming a gross energy value of 18.5 MJ/kg. The difference between inputs and outputs in the consumption compartment is assumed to be released to the atmosphere (respiration, combustion); small differences may result from rounding. Note that data sources a) area: (Erb et al., 2007; Schneider et al., 2009; FAO, 2010) ; b) biomass flows: (Wirsenius, 2003; Sims et al., 2006; Krausmann et al., 2008; FAOSTAT, 2012; Kummu et al., 2012) are incomplete; more research is needed to close data gaps between different statistical sources such as agricultural, forestry, and energy statistics (Section 11.11). Unused forests are pristine forests not harvested or otherwise used. 11.4.3    Demand side options for reducing GHG emissions from AFOLU  Some changes in demand for food and fibre can reduce GHG emissions in the production chain  (Table 11.3) through (i) a switch to the consumption of products with higher GHG emissions in the  process chain to products with lower GHG emissions and (ii) by making land available for other GHG  reduction activities e.g., afforestation or bioenergy (Section 11.4.4). Food demand change is a  sensitive issue due to the prevalence of hunger, malnutrition, and the lack of food security in many  regions (Godfray et al., 2010). Sufficient production of, and equitable access to, food are both critical  for food security (Misselhorn et al., 2012). GHG emissions may be reduced through changes in food  demand without jeopardizing health and well being by (1) reducing losses and wastes of food in the  supply chain as well as during final consumption; (2) changing diets towards less GHG intensive food,  e.g., substitution of animal products with plant based food, while quantitatively and qualitatively  maintaining adequate protein content, in regions with high animal product consumption; and (3)  reduction of overconsumption in regions where this is prevalent. Substituting plant based diets for  animal based diets is complex since, in many circumstances, livestock can be fed on plants not  suitable for human consumption or growing on land with high soil carbon stocks not suitable for    33 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   cropping; hence, food production by grazing animals contributes to food security in many regions of  the world (Wirsenius, 2003; Gill et al., 2010).    Table 11.3 Overview of demand-side mitigation options in the AFOLU sector Measure  Reduced losses  in the food  supply chain  Changes in  human diets  towards less  emission intensive  products  Demand side  options related  to wood and  forestry  Description  Reduced losses in the food supply chain and in final consumption  reduces energy use and GHG emissions from agriculture,  transport, storage and distribution, and reduce land demand.  Where appropriate, reduced consumption of food items with high  GHG emissions per unit of product, to those with low GHG  products can reduce GHG emissions. Such demand changes can  reduce energy inputs in the supply chain and reduces land  demand. Wood harvest in forests releases GHG and at least temporarily  reduces forest C stocks. Conservation of wood (products) through  more efficient use or replacement with recycled materials and  replacing wood from illegal logging or destructive harvest with  wood from certified sustainable forestry (Section 11.10) can save  GHG emissions. Substitution of wood for non renewable resources  can reduce GHG emissions, e.g., when wood is substituted for  emission intensive materials such as aluminium, steel, or concrete  in buildings. Integrated optimization of C stocks in forests and in  long lived products, as well as the use of by products and wastes  for energy, can deliver the highest GHG benefits.  References  (Godfray et al., 2010;  Gustavsson et al.,  2011), see text.  (Stehfest et al., 2009;  FAO, 2011), see text  (Gustavsson et al.,  2006; Werner et al.,  2010; Ingerson, 2011),  see text.    Reductions of losses in the food supply chain   Globally, rough estimates suggest that ~30 40% of all  food produced is lost in the supply chain from harvest to consumption (Godfray et al., 2010). Energy  embodied in wasted food is estimated at ~36 EJ/yr (FAO, 2011). In developing countries, up to 40% is  lost on farm or during distribution due to poor storage, distribution, and conservation technologies  and procedures. In developed countries, losses on farm or during distribution are smaller, but the  same amount is lost or wasted in service sectors and at the consumer level (Foley et al., 2005; Parfitt  et al., 2010; Godfray et al., 2010; Gustavsson et al., 2011; Hodges et al., 2011). However,  uncertainties related to losses in the food supply chain are large and more research is needed.  Not all losses are (potentially) avoidable because losses in households also include parts of products  normally not deemed edible (e.g., peels of some fruits and vegetables). According to Parfitt et al.  (2010), in the UK, 18% of the food waste is unavoidable, 18% is potentially avoidable, and 64% is  avoidable. Data for Austria, Netherlands, Turkey, the United Kingdom, and the United States,  derived with a variety of methods, show that food wastes at the household level in industrialized  countries are 150 300 kg per household per year (Parfitt et al., 2010). According to a top down  mass flow modelling study based on FAO commodity balances completely covering the food supply  chain, but excluding non edible fractions, food loss values range from 120 170 kg/cap/yr in Sub Saharan Africa to 280 300 kg/cap/yr in Europe and North America. Losses ranging from 20% in Sub Saharan Africa to more than 30% in the industrialized countries were calculated (Gustavsson et al.,  2011).  A range of options exist to reduce wastes and losses in the supply chain: investments into  harvesting, processing and storage technologies in the developing countries, awareness raising,  taxation and other incentives to reduce retail and consumer related losses primarily in the  developed countries. Different options can help to reduce losses (i.e., increase efficiency) in the    34 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   supply chain and at the household level. Substantial GHG savings could be realized by saving one  quarter of the wasted food according to (Gustavsson et al., 2011); see Table 11.4.  Changes in human diets   Land use and GHG effects of changing diets require widespread  behavioural changes to be effective; i.e., a strong deviation from current trajectories (increasing  demand for food, in particular for animal products). Cultural, socioeconomic and behavioural  aspects of implementation are discussed in Sections 11.4.5 and 11.7.  Studies based on Lifecycle Assessment (LCA) methods show substantially lower GHG emissions for  most plant based food than for animal products (Carlsson Kanyama and González, 2009; Pathak et  al., 2010; Bellarby et al., 2012; Berners Lee et al., 2012), although there are exceptions, e.g.,  vegetables grown in heated greenhouses or transported by airfreight (Carlsson Kanyama and  González, 2009). A comparison of three meals served in Sweden with similar energy and protein  content based on (1) soy, wheat, carrots, and apples, (2) pork, potatoes, green beans, and oranges,  and (3) beef, rice, cooked frozen vegetables, and tropical fruits revealed GHG emissions of 0.42  kgCO2eq for the first option, 1.3 kgCO2eq for the second, and 4.7 kgCO2eq for the third, i.e., a factor  of >10 difference (Carlsson Kanyama and González, 2009). Most LCA studies quoted here use  attributional LCA; differences to results from consequential LCA (see Annex II) are generally not large  enough to reverse the picture (Thomassen et al., 2008). The GHG benefits of plant based food over  animal products hold when compared per unit of protein (González et al., 2011). In addition to plant based foods having lower emissions than animal based ones, GHG emissions of livestock products  also vary considerably; emissions per unit of protein are highest for beef and lower for pork, chicken  meat, eggs and dairy products (de Vries and de Boer, 2010) due to their feed and land use  intensities. Figure 11.10 presents a comparison between milk and beef for different production  systems and regions of the world (Herrero et al., 2013). Beef production can use up to five times  more biomass for producing 1 kg of animal protein than dairy. Emissions intensities for the same  livestock product also vary largely between different regions of the world due to differences in agro ecology, diet quality, and intensity of production (Herrero et al., 2013). In overall terms, Europe and  North America have lower emissions intensities per kg of protein than Africa, Asia, and Latin  America. This shows that the highest potential for improving emissions intensities lies in developing  countries, if intensification strategies can be matched to local resources and contexts.    35 of 179     Final Draft   Chapter 11  IPCC WGIII AR5     Figure 11.10. Biomass use efficiencies for the production of edible protein from (top) beef and (bottom) milk for different production systems and regions of the world (Herrero et al., 2013). Studies based on integrated modelling show that changes in diets strongly affect future GHG  emissions from food production (Stehfest et al., 2009; Popp et al., 2010; Davidson, 2012). Popp et al.  (2010) estimated that agricultural non CO2 emissions (CH4 and N2O) would triple by 2055 to 15.3  GtCO2eq/yr if current dietary trends and population growth were to continue. Technical mitigation  options on the supply side, such as improved cropland or livestock management, alone could reduce  that value to 9.8 GtCO2eq/yr, whereas emissions were reduced to 4.3 GtCO2eq/yr in a  decreased  livestock product  scenario and to 2.5 GtCO2eq/yr if both technical mitigation and dietary change  were assumed. Hence, the potential to reduce GHG emissions through changes in consumption was  found to be substantially higher than that of technical mitigation measures. Stehfest et al., (2009)  evaluated effects of dietary changes on CO2 (including C sources/sinks of ecosystems), CH4, and N2O  emissions. In a  business as usual  scenario largely based on FAO (2006), total GHG emissions were  projected to reach 11.9 GtCO2eq/yr in 2050. The following changes were evaluated: no ruminant  meat, no meat, and a diet without any animal products. Changed diets resulted in GHG emission  savings of 34 64% compared to the  business as usual  scenario; a switch to a  healthy diet   recommended by the Harvard Medical School would save 4.3 GtCO2eq/yr ( 36%). Adoption of the  healthy diet  (which includes a meat, fish and egg consumption of 90 g/cap/day) would reduce  global GHG abatement costs to reach a 450 ppm CO2eq concentration target by ~50% compared to  the reference case (Stehfest et al., 2009). The analysis assumed nutritionally sufficient diets; reduced  supply of animal protein was compensated by plant products (soy, pulses, etc.). Considerable  cultural and social barriers against a widespread adoption of dietary changes to low GHG food may  be expected (Davidson, 2012; Smith et al., 2013, 11.4.5).  A limitation of food related LCA studies is that they have so far seldom considered the emissions  resulting from LUC induced by changing patterns of food production (Bellarby et al., 2012) . A recent  study (Schmidinger and Stehfest, 2012) found that cropland and pastures required for the  production of beef, lamb, calf, pork, chicken, and milk could annually sequester an amount of carbon  equivalent to 30 470% of the GHG emissions usually considered in LCA of food products if the land    36 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   were to be reforested. Land related GHG costs differ greatly between products and depend on the  time horizon (30 100 yr) assumed (Schmidinger and Stehfest, 2012) . If cattle production contributes  to tropical deforestation (Zaks et al., 2009; Bustamante et al., 2012; Houghton et al., 2012), land use  related GHG emissions are particularly high (Cederberg et al., 2011). These findings underline the  importance of diets for GHG emissions in the food supply chain (Garnett, 2011; Bellarby et al., 2012).  A potential co benefit is a reduction in diet related health risks in regions where overconsumption of  animal products is prevalent (McMichael et al., 2007).  Demand side options related to wood and forestry   A comprehensive global, long term dataset on  carbon stocks in long lived wood products in use (excluding landfills) shows an increase from  approximately 2.2 GtC in 1900 to 6.9 GtC in 2008 (Lauk et al., 2012). Per capita, carbon stored in  wood products amounted to ~1.4 tC/cap in 1900 and ~1.0 tC/cap in 2008. The net yearly  accumulation of long lived wood products in use varied between 35 and 91 MtC/yr in the period  1960 2008 (Lauk et al., 2012). The yearly accumulation of C in products and landfills was ~200  MtC/yr in the period 1990 2008 (Pan et al., 2011). If more long lived wood products were used, C  sequestration and mitigation could be enhanced.  Increased wood use does not reduce GHG emissions under all circumstances because wood harvest  reduces the amount of carbon stored in the forest, at least temporarily, and increases in wood  harvest levels may result in reduced long term carbon storage in forests (Ingerson, 2011; Böttcher et  al., 2012; Holtsmark, 2012; Lamers and Junginger, 2013). Reducing wood consumption, e.g., through  paper recycling, can reduce GHG emissions (Acuff and Kaffine, 2013), as may the use of wood from  sustainable forestry in place of emission intensive materials such as concrete, steel, or aluminium.  Recent studies suggest that, where technically possible, substitution of wood from sustainably  managed forests for non wood materials in the construction sector (concrete, steel, etc.) in single family homes, apartment houses, and industrial buildings, reduces GHG emissions in most cases  (Werner et al., 2010; Sathre and O Connor, 2010; Ximenes and Grant, 2013). Most of the emission  reduction results from reduced production emissions, whereas the role of carbon sequestration in  products is relatively small (Sathre and O Connor, 2010). Werner et al. (2010) show that GHG  benefits are highest when wood is primarily used for long lived products, the lifetime of products is  maximized, and energy use of woody biomass is focused on by products, wood wastes, and end of lifecycle use of long lived wood products.  11.4.4    Feedbacks of changes in land demand  Mitigation options in the AFOLU sector, including options such as biomass production for energy, are  highly interdependent due to their direct and indirect impacts on land demand. Indirect  interrelationships, mediated via area demand for food production, which in turn affects the area  available for other purposes, are difficult to quantify and require systemic approaches. Table 11.4  (Smith et al., 2013b) shows the magnitude of possible feedbacks in the land system in 2050. It first  reports the effect of single mitigation options compared to a reference case, and then the combined  effect of all options. The reference case is similar to the (FAO, 2006a) projections for 2050 and  assumes a continuation of on going trends towards richer diets, considerably higher cropland yields  (+54%) and moderately increased cropland areas (+9%). The diet change case assumes a global  contract and converge scenario towards a nutritionally sufficient low animal product diet (8% of  food calories from animal products). The yield growth case assumes that yields in 2050 are 9%  higher than those in the reference case, according to the  Global Orchestration  scenario in (MEA,  2005). The feeding efficiency case assumes on average 17% higher livestock feeding efficiencies than  the reference case. The waste reduction case assumes a reduction of the losses in the food supply  chain by 25% (Section 11.4.3). The combination of all options results in a substantial reduction of  cropland and grazing areas (Smith et al., 2013b), even though the individual options cannot simply  be added up due to the interactions between the individual compartments.    37 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Table 11.4 shows that demand side options save GHG by freeing up land for bioenergy or  afforestation and related carbon sequestration. The effect is strong and non linear, and more than  cancels out reduced C sequestration potentials on farmland. Demand side potentials are substantial  compared to supply side mitigation potentials (Section 11.3), but implementation may be difficult  (Sections 11.7; 11.8). Estimates of GHG savings from bioenergy are subject to large uncertainties  related to the assumptions regarding power plants, utilization pathway, energy crop yields, and  effectiveness of sustainability criteria (Sections 11.4.5; 11.7; 11.13).  Table 11.4 Changes in global land use and related GHG reduction potentials in 2050 assuming the implementation of options to increase C sequestration on farmland, and use of spared land for either biomass production for energy or afforestation. Afforestation and biomass for bioenergy are both assumed to be implemented only on spare land and are mutually exclusive (Smith et al., 2013b). Cases  Food  crop  area  Livestock  grazing  area  C sink on  Afforestati farm on of spare  land*  land**,1  Biomass  for  bioenergy  on spare  land**,2  GtCO2eq/yr 6.1 11.0 7.3 7.2 10.1 16.5 1.2 9.4 2.1 17.0 1.4 11.4 1.4 11.1 1.9 15.6 3.2 25.6 Total  mitigation  potential  Difference in  mitigation  from  reference  case    0 0.7 7.3 0.2 1.9 0.2 1.6 0.6 6.0 1.5 15.6   Reference  Diet change  Yield growth  Feeding  efficiency  Waste  reduction  Combined  [Gha]  1.60  1.38  1.49  1.53  1.50  1.21  4.07   3.87   4.06   4.04   3.82   3.58   3.5 3.2 3.4 3.4 3.3 2.9 4.6 12.9  5.3 20.2  4.8 14.8  4.8 14.5  5.2 18.9  6.1 28.5  * Potential for C sequestration on cropland for food production and livestock grazing land with improved soil C management. The potential C sequestration rate was derived from Smith et al., (2008). ** Spare land is cropland or grazing land not required for food production, assuming increased but still sustainable stocking densities of livestock based on Haberl et al., (2011); Erb et al., (2012). 1 Assuming 11.8 (tCO2eq/ha)/yr (Smith et al., 2000). 2 Assumptions were as follows. High bioenergy value: short-rotation coppice or energy grass directly replaces fossil fuels, energy return on investment 1:30, dry-matter biomass yield 190 GJ/ha/yr (WBGU, 2009). Low bioenergy value: ethanol from maize replaces gasoline and reduces GHG by 45%, energy yield 75 GJ/ha/yr (Chum et al., 2011). Some energy crops may, under certain conditions, sequester C in addition to delivering bioenergy; the effect is context-specific and was not included. Whether bioenergy or afforestation is a better option to use spare land for mitigation needs to be decided on a case-by-case basis.  The systemic effects of land demanding mitigation options such as bioenergy or afforestation  depend not only on their own area demand, but also on land demand for food and fibre supply  (Chum et al., 2011; Coelho et al., 2012; Erb et al., 2012b). In 2007, energy crops for transport fuels  covered about 26.6 Mha or 1.7% of global cropland (UNEP, 2009). Assumptions on energy crop  yields (Section 11.13) are the main reason for the large differences in estimates of future area  demand of energy crops in the next decades, which vary from <100 Mha to >1000 Mha, i.e., 7 70%  of current cropland (Sims et al., 2006; Smeets et al., 2007; Pacca and Moreira, 2011; Coelho et al.,  2012). Increased pressure on land systems may also emerge when afforestation claims land, or  forest conservation restricts farmland expansion (Murtaugh and Schlax, 2009; Popp et al., 2011).  Land demanding mitigation options may result in feedbacks such as GHG emissions from land  expansion or agricultural intensification, higher yields of food crops, higher prices of agricultural  products, reduced food consumption, displacement of food production to other regions and    38 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   consequent land clearing, as well as impacts on biodiversity and non provisioning ecosystem services  (Plevin et al., 2010; Popp et al., 2012). Restrictions to agricultural expansion due to forest conservation, increased energy crop area,  afforestation and reforestation may increase costs of agricultural production and food prices. In a  modelling study, conserving C rich natural vegetation such as tropical forests was found to increase  food prices by a factor of 1.75 until 2100, due to restrictions of cropland expansion, even if no  growth of energy crop area was assumed (Wise et al., 2009). Food price indices (weighted average of  crop and livestock products) are estimated to increase until 2100 by 82% in Africa, 73% in Latin  America, and 52% in Pacific Asia if large scale bioenergy deployment is combined with strict forest  conservation, compared to a reference scenario without forest conservation and bioenergy (Popp et  al., 2011). Further trade liberalization can lead to lower costs of food, but also increases the pressure  on land, especially on tropical forests (Schmitz et al., 2011).  Increased land demand for GHG mitigation can be partially compensated by higher agricultural yield  per unit area (Popp et al., 2011). While yield increases can lead to improvements in output from less  land, generate better economic returns for farmers, help to reduce competition for land, and  alleviate environmental pressures (Burney et al., 2010; Smith et al., 2010), agricultural intensification  if poorly implemented incurs economic costs (Lotze Campen et al., 2010) and may also create social  and environmental problems such as nutrient leaching, soil degradation, pesticide pollution, impact  on animal welfare, and many more (IAASTD, 2009). Maintaining yield growth while reducing  negative environmental and social effects of agricultural intensification is, therefore, a central  challenge, requiring sustainable management of natural resources as well as the increase of  resource efficiency (DeFries and Rosenzweig, 2010), two components of sustainable intensification  (Garnett et al., 2013).  Additional land demand may put pressures on biodiversity, as LUC is one of the most important  drivers of biodiversity loss (Sala et al., 2000). Improperly managed large scale agriculture (or  bioenergy) may negatively affect biodiversity (Groom et al., 2008), which is a key prerequisite for the  resilience of ecosystems, i.e., their ability to adapt to changes such as climate change, and to  continue to deliver ecosystem services in the future (Díaz et al., 2006; Landis et al., 2008). However,  implementing appropriate management, such as establishing bioenergy crops or plantations for  carbon sequestration in already degraded ecosystems areas represents an opportunity where  bioenergy can be used to achieve positive environmental outcomes (e.g., (Hill et al., 2006; Semere  and Slater, 2007; Campbell et al., 2008; Nijsen et al., 2012). Because climate change is also an  important driver of biodiversity loss (Sala et al., 2000), bioenergy for climate change mitigation may  also be beneficial for biodiversity if it is planned with biodiversity conservation in mind (Heller and  Zavaleta, 2009; Dawson et al., 2011); Section 11.13).   Tradeoffs related to land demand may be reduced through multifunctional land use, i.e., the  optimization of land to generate more than one product or service such as food, animal feed, energy  or materials, soil protection, wastewater treatment, recreation, or nature protection (de Groot,  2006; DeFries and Rosenzweig, 2010); Section 11.7). This also applies to the potential use of ponds  and other small water bodies for raising fish fed with agricultural waste (Pullin et al., 2007).  11.4.5    Sustainable development and behavioural aspects  The assessment of impacts of AFOLU mitigation options on sustainable development requires an  understanding of a complex multilevel system where social actors make land use decisions aimed at  various development goals, one of them being climate change mitigation. Depending on the specific  objectives, the beneficiaries of a particular land use choice may differ. Thus tradeoffs between  global, national, and local concerns and various stakeholders need to be considered (see also Section  4.3.7 and WGII Chapter 20). The development context provides opportunities or barriers for AFOLU  (May et al., 2005; Madlener et al., 2006; Smith and Trines, 2006; Smith et al., 2007; Angelsen, 2008;    39 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Howden et al., 2008; Corbera and Brown, 2008; Cotula et al., 2009; Cattaneo et al., 2010; Junginger  et al., 2011; Section 11.8 and Figure 11.11).    Figure 11.11. Dynamic interactions between the development context and AFOLU Further, AFOLU measures have additional effects on development, beyond improving the GHG  balance (Foley et al., 2005; Alig et al., 2010; Calfapietra et al., 2010; Busch et al., 2011; Smith et al.,  2013b; Branca et al., 2013; Albers and Robinson, 2013). These effects can be positive (co benefits) or  negative (adverse side effects) and do not necessarily overlap geographically, socially or in time  (Section 11.7 and Figure 11.11). This creates the possibility of tradeoffs, because an AFOLU measure  can bring co benefits to one social group in one area (e.g., increasing income), while bringing  adverse side effects to others somewhere else (e.g., reducing food availability).  Table 11.5 summarizes the issues commonly considered when assessing the above mentioned  interactions at various levels between sustainable development and AFOLU.      40 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Table 11.5 Issues related to AFOLU measures and sustainable development Dimensions  Social and  human assets  Natural assets  Issues Population growth and migration, level of education, human capacity, individual  skills, indigenous and traditional knowledge, cultural values, equity and health,  animal welfare, organizational capacity  Availability of natural resources (land, forest, water, agricultural land, minerals,  fauna), GHG balance, ecosystem integrity, biodiversity conservation, ecosystem  services, the productive capacity of ecosystems, ecosystem health and resilience  Availability of infrastructure and technology and industrial capacity, technology  development, appropriateness, acceptance  State of  infrastructure  and technology  Economic  factors  Institutional  arrangements  Credit capacity, employment creation, income, wealth distribution/distribution  mechanisms, carbon finance, available capital/investments, market access  Land tenure and land use rights, participation and decision making mechanisms  (e.g., through Free, Prior and Informed Consent), sectoral and cross sectoral  policies, investment in research, trade agreements and incentives, benefit sharing  mechanisms, existence and forms of social organization,  Based on Madlener et al. (2006), Sneddon et al. (2006), Pretty (2008), Corbera and Brown (2008), Macauley and Sedjo (2011), and de Boer et al. (2011). Social complexity: Social actors in the AFOLU sector include individuals (farmers, forest users), social  groups  (communities,  indigenous  groups),  private  companies  (e.g.,  concessionaires,  food producer  multinationals), subnational authorities, and national states (see Table 11.6).    Table 11.6 Characterization of social actors in AFOLU Social actors  Individuals (legal and illegal  forest users , farmers)  Social groups (communities,  indigenous peoples)  Sub national authorities  (provinces, states)  State (national level)  Characterization Rather small scale interventions, although some can be medium scale   Decisions taken rather at the local level  Small to medium interventions Decisions taken at the local or regional levels  Medium to large interventions Decisions taken at the national or sub national level, depending on the  governance structure  Rather large interventions Decisions taken at the national level, often in line with international  agreements  Rather large interventions. Decisions can be taken within a specific  region/country, in another country, or at global level (e.g., for  multinational companies). National and international markets play a  key role in decision making  Corporate (at the national  or multinational levels)    Spatial scale refers on the one hand to the size of an intervention (e.g., in number of hectares) and  on the other hand to the biophysical characterization of the specific land (e.g., soil type, water  availability, slope). Social interactions tend to become more complex the bigger the area of an  AFOLU intervention, on a social biophysical continuum: family/farm   neighbourhood   community   village   city   province   country   region   globe. Impacts from AFOLU measures on sustainable  development are different along this spatial scale continuum (Table 11.6). The challenge is to  provide landscape governance that responds to societal needs as well as biophysical capacity at  different spatial scales (Görg, 2007; Moilanen and Arponen, 2011; van der Horst and Vermeylen,  2011).   Temporal scale: As the concept of sustainable development includes current and future generations,  the impacts of AFOLU over time need to be considered (see Chapter 4). Positive and negative  impacts of AFOLU measures can be realized at different times. For instance, while reducing    41 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   deforestation has an immediate positive impact on reducing GHG emissions, reforestation will have  a positive impact on C sequestration over time. Further, in some circumstances, there is the risk of  reversing current emission reductions in the future (see Section 11.3.2 on non permanence).  Behavioural aspects: Level of education, cultural values and tradition, as well as access to markets  and technology, and the decision power of individuals and social groups, all influence the perception  of potential impacts and opportunities from AFOLU measures, and consequently have a great impact  on local land management decisions (see Chapters 2, 3, and 4; Guthinga, 2008; Durand and Lazos,  2008; Gilg, 2009; Bhuiyan et al., 2010; Primmer and Karppinen, 2010; Durand and Vázquez, 2011).  When decisions are taken at a higher administrative level (e.g., international corporations, regional  authorities or national states), other factors or values play an important role, including national and  international development goals and priorities, policies and commitments, international markets or  corporate image (see Chapters 3 and 4). Table 11.7 summarizes the emerging behavioural aspects  regarding AFOLU mitigation measures.      42 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Table 11.7 Emerging behavioural aspects relevant for AFOLU mitigation measures  Change  in  Consumption patterns  Emerging behavioural aspects in AFOLU Dietary change: Several changes in diet can potentially reduce GHG emissions, including reduction  of food waste and reduction of or changes in meat consumption (especially in industrialized  countries). On the other hand, increasing income and evolving lifestyles with increasing  consumption of animal protein in developing countries are projected to increase food related GHG  emissions.  The potential of reducing GHG emissions in the food sector needs to be understood in a wider and  changing socio cultural context that determines nutrition.  Potential drivers of change: Health awareness and information, income increase, lifestyle  References 1, 2,3, 4, 5  Large scale land acquisition: The acquisition of (long term rights) of large areas of farmland in  lower income countries, by transnational companies, agribusiness, investments funds or  government agencies. There are various links between these acquisitions and GHG emissions in the  AFOLU sector. On one hand because some acquisitions are aimed at producing energy crops  (through non food or  flex crops ), on the other because these can cause the displacement of  peoples and activity, increasing GHG leakage.  Impacts on livelihood, local users rights, local employment, economic activity, or on biodiversity  conservation are of concern.  Potential drivers of change: International markets and their mechanisms, national and international  policies  References 6, 7, 8  Switching to low carbon products: Land managers are sensitive to market changes. The promotion  of low carbon products as a means for reducing GHG emissions can increase the land area  dedicated to these products. Side effects from this changes in land management (positive and  negative), and acceptability of products and technologies at the production and consumption sides  are context related and cannot be generalized  Potential drivers of change: International agreements and markets, accessibility to rural energy,  changes in energy demand  References 9, 10, 11  Certification: Labelling, certification, or other information based instruments have been developed  for promoting behavioural changes towards more sustainable products (Section 11.10). Recently,  the role of certification in reducing GHG while improving sustainability has been explored, especially  for bioenergy (Section 11.13).  Potential drivers of change: Consumer awareness, international agreements, cross national sector  policies and initiatives.  References 11, 12, 13, 14  Increasing interest in conservation and sustainable (land) management: Changing management  practices towards more sustainable ones as alternative for gaining both environmental and social  co benefits, including climate change mitigation, is gaining recognition. Concerns about specific  management practices, accountability methods of co benefits, and sharing mechanisms seem to be  elements of concerns when promoting a more sustainable management of natural resources.  Potential drivers of change: Policies and international agreements and their incentive mechanisms,  schemes for payments for environmental services.  References 15, 16, 17, 18, 19  1 6 Stehfest et al. (2009); 2Roy et al. (2012); 3González et al. (2011); 4Popp et al. (2010); 5Schneider et al. (2011); Cotula (2012); 7Messerli et al. (2013); 8German et al. (2013); 9Muys et al. (2013); 10MacMillan Uribe et al. (2012); 11 Chakrabarti (2010); 12Karipidis et al. (2010); 13Auld et al. (2008); 14Diaz-Chavez (2011); 15Calegari et al. (2008); 16 Deal et al. (2012); 17DeFries and Rosenzweig (2010); 18Hein and van der Meer (2012);19 Lippke et al. (2003). Land use policies (Section 11.10) have the challenge of balancing impacts considering these  parameters: social complexity, spatial scale, temporal scale, and behavioural aspects. Vlek and Keren  (1992) and Vlek (2004) indicate the following dilemmas relevant to land management decisions:  Who should take the risks, when (this generation or future generations) and where (specific place)  co benefits and potential adverse effects will take place, and how to mediate between individual vs.    Management  priorities  Relation between  producers and  consumers  Production and  consumption  patterns  Production patterns  43 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   social benefits. Addressing these dilemmas is context specific. Nevertheless, the fact that a wide  range of social actors need to face these dilemmas explains, to a certain extent, disagreements  about environmental decision making in general, and land management decisions in particular  (Villamor et al., 2011; Le et al., 2012); see Section 11.10) . 11.5   Climate change feedback and interaction with adaptation (includes  vulnerability)  When reviewing the inter linkages between climate change mitigation and adaptation within the  AFOLU sector the following issues need to be considered: (i) the impact of climate change on the  mitigation potential of a particular activity (e.g., forestry and agricultural soils) over time, (ii)  potential synergies/tradeoffs within a land use sector between mitigation and adaptation objectives,  and (iii) potential tradeoffs across sectors between mitigation and adaptation objectives.   Mitigation and adaptation in land based ecosystems are closely interlinked through a web of  feedbacks, synergies, and tradeoffs (Section 11.8). The mitigation options themselves may be  vulnerable to climatic change (Section 11.3.2) or there may be possible synergies or tradeoffs  between mitigation and adaptation options within or across AFOLU sectors.  The IPCC WGI presents feedbacks between climate change and the carbon cycle (WGI Chapter 6; (Le  Quéré et al., 2013), while WGII assesses the impacts of climate change on terrestrial ecosystems  (WGII Chapter 4) and crop production systems (WGII Chapter 7), including vulnerability and  adaptation. This section focuses particularly on the impacts of climate change on mitigation  potential of land use sectors and interactions that arise with adaptation, linking to the relevant  chapters of WGI and WGII reports.  11.5.1    Feedbacks between ALOFU and climate change  AFOLU activities can either reduce or accelerate climate change by affecting biophysical processes  (e.g., evapotranspiration, albedo) and change in GHG fluxes to and from the atmosphere (WGI).  Whether a particular ecosystem is functioning as sink or source of GHG emission may change over  time, depending on its vulnerability to climate change and other stressors and disturbances. Hence,  mitigation options available today (Section 11.3) in the AFOLU sectors may no longer be available in  the future.  There is robust evidence that human induced land use changes have led to an increased surface  albedo (WGI Chapter 8; (Myhre and Shindell, 2013). Changes in evapotranspiration and surface  roughness may counteract the effect of changes in albedo. Land use changes affect latent heat flux  and influence the hydrological cycle. Biophysical climate feedbacks of forest ecosystems differ  depending on regional climate regime and forest types. For example, a decrease in tropical forests  has a positive climate forcing through a decrease in evaporative cooling (Bala et al., 2007; Bonan,  2008). An increase in coniferous boreal forests compared to grass and snow provides a positive  climate forcing through lowering albedo (Bala et al., 2007; Bonan, 2008; Swann et al., 2010). There is  currently low agreement on the net biophysical effect of land use changes on the global mean  temperature (WGI Chapter 8; (Myhre and Shindell, 2013). By contrast, the biogeochemical effects of  LUC on radiative forcing through emissions of GHG is positive (WGI Chapter 8; Sections 11.2.2;  11.2.3).  11.5.2    Implications of climate change on terrestrial carbon pools and mitigation  potential of forests  Projections of the global carbon cycle to 2100 using  Coupled Model Intercomparison Project Phase  5 (CMIP5) Earth System Models  (WGI Chapter 6; (Le Quéré et al., 2013) that represent a wider range  of complex interactions between the carbon cycle and the physical climate system consistently    44 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   estimate a positive feedback between climate and the carbon cycle, i.e., reduced natural sinks or  increased natural CO2 sources in response to future climate change. Implications of climate change  on terrestrial carbon pools biomes and mitigation potential of forests.  Rising temperatures, drought, and fires may lead to forests becoming a weaker sink or a net carbon  source before the end of the century (Sitch et al., 2008). Pervasive droughts, disturbances such as  fire and insect outbreaks, exacerbated by climate extremes and climate change put the mitigation  benefits of the forests at risk (Canadell and Raupach, 2008; Phillips et al., 2009; Herawati and  Santoso, 2011). Forest disturbances and climate extremes have associated carbon balance  implications (Millar et al., 2007; Kurz et al., 2008; Zhao and Running, 2010; Potter et al., 2011;  Davidson, 2012; Reichstein et al., 2013). Allen et al. (2010) suggest that at least some of the world s  forested ecosystems may already be responding to climate change.  Experimental studies and observations suggest that predicted changes in temperature, rainfall  regimes, and hydrology may promote the die back of tropical forests (e.g., (Nepstad et al., 2007).  The prolonged drought conditions in the Amazon region during 2005 contributed to a decline in  above ground biomass and triggered a release of 4.40 to 5.87 GtCO2 (Phillips et al., 2009). Earlier  model studies suggested Amazon die back in the future (Cox et al., 2013; Huntingford et al., 2013).  However, recent model estimates suggest that rainforests may be more resilient to climate change,  projecting a moderate risk of tropical forest reduction in South America and even lower risk for  African and Asian tropical forests (Gumpenberger et al., 2010; Cox et al., 2013; Huntingford et al.,  2013).  (Arcidiacono Bársony et al., 2011) suggest that the mitigation benefits from deforestation reduction  under REDD+ (Section 11.10.1) could be reversed due to increased fire events, and climate induced  feedbacks, while (Gumpenberger et al., 2010) conclude that the protection of forests under the  forest conservation (including REDD) programmes could increase carbon uptake in many tropical  countries, mainly due to CO2 fertilization effects, even under climate change conditions.   11.5.3    Implications of climate change on peatlands, grasslands, and croplands  Peatlands: Wetlands, peatlands, and permafrost soils contain higher carbon densities relative to  mineral soils, and together they comprise extremely large stocks of carbon globally (Davidson and  Janssens, 2006). Peatlands cover approximately 3% of the Earth s land area and are estimated to  contain 350 550 Gt of carbon, roughly between 20 to 25% of the world s soil organic carbon stock  (Gorham, 1991; Fenner et al., 2011). Peatlands can lose CO2 through plant respiration and aerobic  peat decomposition (Clair et al., 2002) and with the onset of climate change, may become a source  of CO2 (Koehler et al., 2010). Large carbon losses are likely from deep burning fires in boreal  peatlands under future projections of climate warming and drying (Flannigan et al., 2009). A study by  Fenner et al. (2011) suggests that climate change is expected to increase the frequency and severity  of drought in many of the world s peatlands which, in turn, will release far more GHG emissions than  thought previously. Climate change is projected to have a severe impact on the peatlands in  northern regions where most of the perennially frozen peatlands are found (Tarnocai, 2006).  According to Schuur et al. (2008), the thawing permafrost and consequent microbial decomposition  of previously frozen organic carbon, is one of the most significant potential feedbacks from  terrestrial ecosystems to the atmosphere in a changing climate. Large areas of permafrost will  experience thawing (WGI Chapter 12), but uncertainty over the magnitude of frozen carbon losses  through CO2 or CH4 emissions to the atmosphere are large, ranging between 180 and 920 GtCO2 by  the end of the 21st century under the Representative Concentration Pathways (RCP) 8.5 scenario  (WGI Chapter 6; (Le Quéré et al., 2013).  Grasslands: Tree cover and biomass in savannah has increased over the past century (Angassa and  Oba, 2008; Witt et al., 2009; Lunt et al., 2010; Rohde and Hoffman, 2012) leading to increased  carbon storage per hectare (Hughes et al., 2006; Liao et al., 2006; Throop and Archer, 2008; Boutton    45 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   et al., 2009), which has been attributed to land management, rising CO2, climate variability, and  climate change. Climate change and CO2 may affect grazing systems by altering species composition;  for example, warming will favour tropical (C4) species over temperate (C3) species but CO2 increase  would favour C3 grasses (Howden et al., 2008).  Croplands: Climate change impacts on agriculture will affect not only crop yields, but also soil  organic carbon (SOC) levels in agricultural soils (Rosenzweig and Tubiello, 2007). Such impacts can be  either positive or negative, depending on the particular effect considered, which highlights the  uncertainty of the impacts. Elevated CO2 alone are expected to have positive effects on soil carbon  storage, because of increased above  and below ground biomass production in agro ecosystems.  Similarly, the lengthening of the growing season under future climate will allow for increased carbon  inputs into soils. Warmer temperatures could have negative impacts on SOC, by speeding  decomposition and by reducing inputs by shortening crop lifecycles (Rosenzweig and Tubiello, 2007),  but increased productivity could increase SOC stocks (Gottschalk et al., 2012).  11.5.4    Potential adaptation options to minimize the impact of climate change on carbon  stocks in forests and agricultural soils  Forests: Forest ecosystems require a longer response time to adapt, the development and  implementation of adaptation strategies is also lengthy (Leemans and Eickhout, 2004; Ravindranath,  2007). Some examples of the adaptation practices (Murthy et al., 2011) are as follows: anticipatory  planting of species along latitude and altitude, assisted natural regeneration, mixed species forestry,  species mix adapted to different temperature tolerance regimes, fire protection and management  practices, thinning, sanitation and other silvicultural practices, in situ and ex situ conservation of  genetic diversity, drought and pest resistance in commercial tree species, adoption of sustainable  forest management practices, increase in Protected Areas and linking them wherever possible to  promote migration of species, forests conservation and reduced forest fragmentation enabling  species migration, and energy efficient fuel wood cooking devices to reduce pressure on forests.  Agricultural soils: On current agricultural land, mitigation and adaptation interaction can be  mutually re enforcing, particularly for improving resilience to increased climate variability under  climate change (Rosenzweig and Tubiello, 2007). Many mitigation practices implemented locally for  soil carbon sequestration will increase the ability of soils to hold soil moisture and to better  withstand erosion and will enrich ecosystem biodiversity by establishing more diversified cropping  systems, and may also help cropping systems to better withstand droughts and floods, both of which  are projected to increase in frequency and severity under a future warmer climate (Rosenzweig and  Tubiello, 2007).  11.5.5    Mitigation and adaptation synergies and tradeoffs  Mitigation choices taken in a particular land use sector may further enhance or reduce resilience to  climate variability and change within or across sectors. In light of the multiple, and often competing,  pressures on land (Section 11.4), and shifting demographics and consumption patterns (e.g.,  (O Brien et al., 2004; Sperling et al., 2008; Hunsberger and Evans, 2012). Land use choices driven by  mitigation concerns (e.g., forest conservation, afforestation) may have consequences for adaptive  responses and/or development objectives of other sectors (e.g., expansion of agricultural land). For  example, reducing emissions from deforestation and degradation may also yield co benefits for  adaptation by maintaining biodiversity and other ecosystem goods and services, while plantations, if  they reduce biological diversity may diminish adaptive capacity to climate change (e.g., (Chum et al.,  2011). Primary forests tend to be more resilient to climate change and other human induced  environmental changes than secondary forests and plantations (Thompson et al., 2009). The impact  of plantations on the carbon balance is dependent on the land use system they replace, while  plantation forests are often monospecies stands, they may be more vulnerable to climatic change  (see IPCC WGII Chapter 4). Smith and Olesen (2010) identified a number of synergies between    46 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   options that deliver mitigation in agriculture while also enhancing resilience to future climate  change, the most prominent of which was enhancement of soil carbon stocks.  Adaptation measures in return may help maintain the mitigation potential of land use systems. For  example, projects that prevent fires and restore degraded forest ecosystems also prevent release of  GHGs and enhance carbon stocks (CBD and GiZ, 2011). Mitigation and adaptation benefits can also  be achieved within broader level objectives of AFOLU measures, which are linked to sustainable  development considerations. Given the exposure of many livelihoods and communities to multiple  stressors, recommendations from case studies suggest that climate risk management strategies  need to appreciate the full hazard risk envelope, as well as the compounding socioeconomic  stressors (O Brien et al., 2004; Sperling et al., 2008). Within this broad context, the potential  tradeoffs and synergies between mitigation, adaptation, and development strategies and measures  need to be considered. Forest and biodiversity conservation, protected area formation, and mixed species forestry based afforestation are practices that can help to maintain or enhance carbon  stocks, while also providing adaptation options to enhance resilience of forest ecosystems to climate  change (Ravindranath, 2007). Use of organic soil amendments as a source of fertility could  potentially increase soil carbon (Gattinger et al., 2012). Most categories of adaptation options for  climate change have positive impacts on mitigation. In the agriculture sector, cropland adaptation  options that also contribute to mitigation are  soil management practices that reduce fertilizer use  and increase crop diversification; promotion of legumes in crop rotations; increasing biodiversity,  the availability of quality seeds and integrated crop/livestock systems; promotion of low energy  production systems; improving the control of wildfires and avoiding burning of crop residues; and  promoting efficient energy use by commercial agriculture and agro industries  (FAO, 2008, 2009a).  Agroforestry is an example of mitigation adaptation synergy in agriculture sector, since trees planted  sequester carbon and tree products provide livelihood to communities, especially during drought  years (Verchot et al., 2007).  11.6   Costs and potentials  This section deals with economic costs and potentials of climate change mitigation (emission  reduction or sequestration of carbon) within the AFOLU sector. Economic mitigation potentials are  distinguished from technical or market mitigation potentials (Smith, 2012). Technical mitigation  potentials represent the full biophysical potential of a mitigation option, without accounting for  economic or other constraints. These estimates account for constraints and factors such as land  availability and suitability (Smith, 2012), but not any associated costs (at least explicitly). By  comparison, economic potential refers to mitigation that could be realized at a given carbon price  over a specific period, but does not take into consideration any socio cultural (for example, lifestyle  choices) or institutional (for example, political, policy, and informational) barriers to practice or  technology adoption. Economic potentials are expected to be lower than the corresponding  technical potentials. Also, policy incentives (e.g., a carbon price; see also Section 11.10) and  competition for resources across various mitigation options, tend to affect the size of economic  mitigation potentials in the AFOLU sector (McCarl and Schneider, 2001). Finally, market potential is  the realized mitigation outcome under current or forecast market conditions encompassing  biophysical, economic, socio cultural, and institutional barriers to, as well as policy incentives for,  technological and/or practice adoption, specific to a sub national, national or supra national market  for carbon. Figure 11.12 (Smith, 2012) provides a schematic view of the three types of mitigation  potentials.  Economic (as well as market) mitigation potentials tend to be context specific and are likely to vary  across spatial and temporal scales. Unless otherwise stated, in the rest of this section, economic  potentials are expressed in million tonnes (Mt) of mitigation in carbon dioxide equivalent (CO2eq)  terms, that can arise from an individual mitigation option or from an AFOLU sub sector at a given    47 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   cost per tonne of CO2eq. (USD/tCO2eq) over a given period to 2030, which is  additional  to the  corresponding baseline or reference case levels.  Various supply side mitigation options within the AFOLU sector are described in Section 11.3, and  Section 11.4 considers a number of potential demand side options. Estimates for costs and  potentials are not always available for the individual options described. Also, aggregate estimates  covering both the supply  and demand side options for mitigation within the AFOLU sector are  lacking, so this section mostly focuses on the supply side options. Key uncertainties and sensitivities  around mitigation costs and potentials in the AFOLU sector are (1) carbon price, (2) prevailing  biophysical and climatic conditions, (3) existing management heterogeneity (or differences in the  baselines), (4) management interdependencies (arising from competition or co benefits across  tradition production, environmental outcomes and mitigation strategies or competition/co benefits  across mitigation options), (5) the extent of leakage, (6) differential impact on different GHGs  associated with a particular mitigation option, and (7) timeframe for abatement activities and the  discount rate. In this section, we (a) provide aggregate mitigation potentials for the AFOLU sector  (because these wereprovided separately for agriculture and forestry in AR4), (b) provide estimates  of global mitigation costs and potentials published since AR4, and (c) provide a regional  disaggregation of the potentials to show how potential, and the portfolio of available options, varies  in different world regions.  Figure 11.12. Relationship between technical, economic, and market potential (based on (Smith, 2012) 11.6.1    Approaches to estimating economic mitigation potentials  Bottom up and top down modelling approaches are used to estimate AFOLU mitigation potentials  and costs. While both approaches provide useful estimates for mitigation costs and potentials,  comparing bottom up and top down estimates is not straightforward.   Bottom up estimates are typically derived for discrete abatement options in agriculture at a specific  location or time, and are often based on detailed technological, engineering and process  information, and data on individual technologies (DeAngelo et al., 2006). These studies provide  estimates of how much technical potential of particular AFOLU mitigation options will become  economically viable at certain carbon dioxide equivalent prices. Bottom up mitigation responses are  typically restricted to input management (for example, changing practices with fertilizer application    48 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   and livestock feeding) and mitigation costs estimates are considered  partial equilibrium  in that the  relevant input output prices (and, sometimes, quantities such as area or production levels) are held  fixed. As such, unless adjusted for potential overlaps and tradeoffs across individual mitigation  options, adding up various individual estimates to arrive at an aggregate for a particular landscape or  at a particular point in time could be misleading.  With a 'systems' approach, top down models (described in Chapter 6; Section 11.9) typically take  into account possible interactions between individual mitigation options. These models can be  sector specific or economy wide, and can vary across geographical scales: sub national, national,  regional, and global. Mitigation strategies in top down models may include a broad range of  management responses and practice changes (for example, moving from cropping to grazing or  grazing to forestry) as well as changes in input output prices (for example, land and commodity  prices). Such models can be used to assess the cost competitiveness of various mitigation options  and implications across input output markets, sectors, and regions over time for large scale  domestic or global adoption of mitigation strategies. In top down modelling, dynamic cost effective  portfolios of abatement strategies are identified incorporating the lowest cost combination of  mitigation strategies over time from across sectors, including agricultural, forestry, and other land based sectors across the world that achieve the climate stabilization target (see Chapter 6). Top down estimates for 2030 are included in this section, and are revisited in Section 11.9 when  considering the role of the AFOLU sector in transformation pathways.  Providing consolidated estimates of economic potentials for mitigation within the AFOLU sector as a  whole is complicated because of complex interdependencies, largely stemming from competing  demands on land for various agricultural and forestry (production and mitigation) activities, as well  as for the provision of many ecosystem services (Smith et al., 2013a). These interactions are  discussed in more detail in Section 11.4.  11.6.2    Global estimates of costs and potentials in the AFOLU sector  Through combination of forestry and agriculture potentials from IPCC AR4, total mitigation  potentials for the AFOLU sector are estimated to be ~3 to ~7.2 GtCO2eq/yr in 2030 at 20 and 100  USD/tCO2eq, respectively (Figure 11.13), including only supply side options in agriculture (Smith et  al., 2007) and a combination of supply  and demand side options for forestry(Nabuurs et al., 2007).     Figure 11.13. Mitigation potential for the AFOLU sector, plotted using data from IPCC AR4 (Nabuurs et al., 2007; Smith et al., 2007). Whiskers show the range of estimates (+/- 1 standard deviation) for agricultural options for which estimates are available.   49 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Estimates of global economic mitigation potentials in the AFOLU sector published since AR4 are  shown in Figure 11.14, with AR4 estimates shown for comparison (IPCC, 2007a).  Figure 11.14. Estimates of economic mitigation potentials in the AFOLU sector published since AR4, (AR4 estimates shown for comparison, denoted by arrows), including bottom-up, sectoral studies, and top-down, multi-sector studies. Some studies estimate potential for agriculture and forestry, others for one or other sector. Supply-side mitigation potentials are estimated for around 2030, but studies range from estimates for 2025 (Rose et al., 2012) to 2035 (Rose and Sohngen, 2011). Studies are collated for those reporting potentials at up to ~20 USD/tCO2eq (actual range 1.64 21.45), up to ~50 USD/tCO2eq (actual range 31.39 50.00), and up to ~100 USD/tCO2eq (actual range 70.0 120.91). Demand-side options (shown on the right-hand side of the figure) are for ~2050 and are not assessed at a specific carbon price, and should be regarded as technical potentials. Smith et al. (2013) values are mean of the range. Not all studies consider the same options or the same GHGs; further details are given in the text.   Table 11.8 summarizes the ranges of global economic mitigation potentials from AR4 (Nabuurs et al.,  2007; Smith et al., 2007), and studies published since AR4 that are shown in full in Figure 11.14, for  agriculture, forestry, and AFOLU combined.      50 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Table 11.8 Ranges of global mitigation potential (GtCO2eq/yr) reported since IPCC AR4. All values are for 2030 except demand-side options that are for ~2050 (full data shown in Figure 11.14)   Agriculture only1  Forestry only  AFOLU total1,2  Demand side options  1 up to 20  USD/tCO2eq  0 1.59  0.01 1.45  0.12 3.03    up to 50  USD/tCO2eq  0.03 2.6  0.11 9.5  0.5 5.06    up to 100  USD/tCO2eq  0.26 4.6  0.2 13.8  0.49 10.6    Technical  potential only        0.76 8.55  All lower range values for agriculture are for non-CO2 GHG mitigation only and do not include soil C sequestration 2 AFOLU total includes only estimates where both agriculture and forestry have been considered together. As described in Section 11.3, since AR4, more attention has been paid to options that reduce  emissions intensity by improving the efficiency of production (i.e., less GHG emissions per unit of  agricultural product; (Burney et al., 2010; Bennetzen et al., 2012). As agricultural and silvicultural  efficiency have improved over recent decades, emissions intensities have declined (Figure 11.15).  Whilst emissions intensity has increased (1960s to 2000s) by 45% for cereals, emissions intensities  have decreased by 38% for milk, 50% for rice, 45% for pig meat, 76% for chicken, and 57% for eggs.    Figure 11.15. GHG emissions intensities of selected major AFOLU commodities for decades 1960s 2000s, based on (Tubiello et al., 2012). i) Cattle meat, defined as GHG (enteric fermentation + manure management of cattle, dairy and non-dairy)/meat produced; ii) Pig meat, defined as GHG (enteric fermentation + manure management of swine, market and breeding) /meat produced; iii) Chicken meat, defined as GHG (manure management of chickens)/meat produced; iv) Milk, defined as GHG (enteric fermentation + manure management of cattle, dairy)/milk produced; v) Eggs, defined as GHG (manure management of chickens, layers)/egg produced; vi) Rice, defined as GHG (rice cultivation)/rice produced; vii) Cereals, defined as GHG (synthetic fertilizers)/cereals produced; viii) Wood, defined as GHG (carbon loss from harvest)/roundwood produced. Data Source: (FAOSTAT, 2013). The implementation of mitigation measures can contribute to further decrease emission intensities  of AFOLU commodities (Figure 11.16; which shows changes of emissions intensities when a  commodity specific mix of mitigation measures is applied). For cereal production, mitigation  measures considered include improved cropland agronomy, nutrient and fertilizer management,  tillage and residue management, and the establishment of agro forestry systems. Improved rice  management practices were considered for paddy rice cultivation. Mitigation measures applied in  the livestock sector include improved feeding and dietary additives. Countries can improve emission  intensities of AFOLU commodities through increasing production at the same level of input, the  implementation of mitigation measures, or a combination of both. In some regions, increasing  current yields is still an option with a significant potential to improve emission intensities of  agricultural production. Foley et al. (2011) analyzed current and potential yields that could be  achieved for 16 staple crops using available agricultural practices and technologies and identified    51 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   large  yield gaps , especially across many parts of Africa, Latin America, and Eastern Europe. Better  crop management practices can help to close yield gaps and improve emission intensities if  measures are selected that also have a mitigation potential.  Figure 11.16. Potential changes of emission intensities of major AFOLU commodities through implementation of commodity-specific mitigation measures (left panel) and related mitigation costs (right panel). Commodities and GHG emission sources are defined as in Figure 11.15, except for roundwood, expressed as the amount of carbon sequestered per unit roundwood from reforestation and afforestation within dedicated plantation cycles. Agricultural emission intensities represent regional averages, calculated based on 2000 2010 data (FAOSTAT, 2013) for selected commodities. Data on mitigation potentials and costs of measures are calculated using the mean values reported by (Smith et al., 2008) and the maximum and minimum are defined by the highest and lowest values for four climate zones for cereals and rice, or five geographical regions for milk and cattle meat. Emission intensities and mitigation potentials of roundwood production are calculated using data from Sathaye et al. (2005; 2006), FAO (2006), and IPCC (2006); maximum and minimum values are defined by the highest and lowest values for 10 geographical regions. The right panel shows the mitigation costs (in USD/tCO2eq) of commodity-specific mitigation measures (1:3 quartile range).   Mitigation potentials and costs differ largely between AFOLU commodities (Figure 11.16). While  average abatement costs are low for roundwood production under the assumption of perpetual  rotation, costs of mitigation options applied in meat and dairy production systems have a wide range  (1:3 quartile range: 58 856 USD/tCO2eq). Calculations of emission intensities are based on the  conservative assumption that production levels stay the same after the application of the mitigation  option. However, some mitigation options can increase production. This would not only improve  food security but could also increase the cost effectiveness of mitigation actions in the agricultural  sector.  Agriculture and forestry related mitigation could cost effectively contribute to transformation  pathways associated with long run climate change management (Sections 11.9 and 6.3.5).  Transformation pathway modelling includes LUC, as well as land management options that reduce  emissions intensities and increase sequestration intensities. However, the resulting transformation  pathway emissions (sequestration) intensities are not comparable to those discussed here.  Transformation pathways are the result of integrated modelling and the resulting intensities are the  net result of many effects. The intensities capture mitigation technology adoption, but also changes  in levels of production, land cover change, mitigation technology competition, and model specific  definitions for sectors/regions/and assigned emissions inventories. Mitigation technology  competition, in particular, can lead to intensification (and increases in agricultural emissions  intensities) that support cost effective adoption of other mitigation strategies, such as afforestation  or bioenergy (Sections 11.9 and 6.3.5).  11.6.3    Regional disaggregation of global costs and potentials in the AFOLU sector  Figure 11.17 shows the economically viable mitigation opportunities in AFOLU in 2030 by region and  by main mitigation option at carbon prices of up to 20, 50, and 100 USD/tCO2eq. The composition of    52 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   the agricultural mitigation portfolio varies greatly with the carbon price (Smith, 2012), with low cost  options such as cropland management being favoured at low carbon prices, but higher cost options  such as restoration of cultivated organic soils being more cost effective at higher prices. Figure 11.17  also reveals some very large differences in mitigation potential, and different ranking of most  effective options, between regions. Across all AFOLU options, Asia has the largest mitigation  potential, with the largest mitigation in both forestry and agriculture, followed by LAM, OECD 1990,  MAF, and EIT.  Figure 11.17. Economic mitigation potentials in the AFOLU sector by region. Agriculture values are from Smith et al. (2007). Forestry values are from Nabuurs et al. (2007). For forestry, 20 USD values correspond to low , and 100 USD values correspond to high values from Nabuurs et al. (2007). Values of 50 USD represent the mean of the high and low values from Nabuurs et al. (2007).   Differences between the most effective forestry options in each region (Figure 11.18) are particularly  striking, with reduced deforestation dominating the forestry mitigation potential LAM and MAF, but  very little potential in OECD 1990 and EIT. Forest management, followed by afforestation, dominate  in OECD 1990, EIT, and Asia (Figure 11.18). Among agricultural options, among the most striking of  regional differences are the rice management practices for which almost all of the global potential is  in Asia, and the large potential for restoration of organic soils also in Asia (due to cultivated  Southeast Asian peats), and OECD 1990 (due to cultivated northern peatlands; Figure 11.18).  Figure 11.18. Regional differences in forestry options, shown as a proportion of total potential   53 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   available in forestry in each region. Global forestry activities (annual amount sequestered or emissions avoided above the baseline for forest management, reduced deforestation and afforestation), at carbon prices up to 100 USD/tCO2 are aggregated to regions from results from three models of global forestry and land use: the Global Timber Model (GTM; Sohngen and Sedjo, 2006), the Generalized Comprehensive Mitigation Assessment Process (Sathaye et al., 2006), and the Dynamic Integrated Model of Forestry and Alternative Land Use (Benítez et al., 2007). 11.7   Co benefits, risks, and spillovers  Implementation of AFOLU mitigation measures (Section 11.3) will result in a range of outcomes  beyond changes in GHG balances with respect to institutional, economic, social, and environmental  objectives. To the extent these effects are positive, they can be deemed  co benefits ; if adverse and  uncertain, they imply risks.9 A global assessment of the co benefits and adverse side effects of  AFOLU mitigation measures is challenging for a number of reasons. First, co benefits and adverse  side effects depend on the development context and the scale of the intervention (size), i.e.,  implementing the same AFOLU mitigation measure in two different areas (different countries or  different regions within a country) can have different socio economic, institutional, or  environmental effects (Forner et al., 2006; Koh and Ghazoul, 2008; Trabucco et al., 2008; Zomer et  al., 2008; Alves Finco and Doppler, 2010; Alig et al., 2010, p. 201; Colfer, 2011; Davis et al., 2013;  Muys et al., 2013; Albers and Robinson, 2013). Thus the effects are site specific and generalizations  are difficult. Second, these effects do not necessarily overlap geographically, socially, or over the  same time scales (Section 11.4.5). Third, there is no general agreement on attribution of co benefits  and adverse side effects to specific AFOLU mitigation measures; and fourth there are no  standardized metrics for quantifying many of these effects. Modelling frameworks are being  developed that allow an integrated assessment of multiple outcomes at landscape (Bryant et al.,  2011), project (Townsend et al., 2012), and smaller (Smith et al., 2013a) scales. Table 11.9 presents  an overview of the potential effects from AFOLU mitigation measures, while the text presents the  most relevant co benefits and potential adverse side effects from the recent literature. Maximizing co benefits of AFOLU mitigation measures can increase efficiency in achieving the  objectives of other international agreements, including the United Nations Convention to Combat  Desertification (UNCCD, 2011), or the Convention on Biological Diversity (CBD), and mitigation  actions may also contribute to a broader global sustainability agenda (Harvey et al., 2010; Gardner et  al., 2012; see Chapter 4). In many cases, implementation of these agendas is limited by capital, and  mitigation may provide a new source of finance (Tubiello et al., 2009).  Box 11.6 Challenges for mitigation in developing countries in the AFOLU sector Mitigation challenges related to the AFOLU sector  The contribution of developing countries to future GHG emissions is expected to be very significant  due to projected increases in food production by 2030 driving short term land conversion in these  countries. Mitigation efforts in the AFOLU sector rely mainly on reduction of GHG emissions and an  increase in carbon sequestration (Table 11.2). Potential activities include reducing deforestation,  increasing forest cover, agroforestry, agriculture and livestock management, and production of  sustainable renewable energy (Sathaye et al., 2005; Smith et al., 2013b). Although agriculture and  forestry are important sectors for GHG abatement (Section 11.2.3), it is likely that technology alone  will not be sufficient to deliver the necessary transitions to a low GHG future (Alig et al., 2010;  Section 11.3.2). Other barriers include access to market and credits, technical capacities to                                                                Co benefits and adverse side effects describe effects in non monetary units without yet evaluating the net  effect on overall social welfare. Please refer to the respective sections in the framing chapters as well as to the  glossary in Annex I for concepts and definitions   particularly 2.4, 3.6.3, and 4.8.  9   54 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   implement mitigation options, including accurate reporting of emission levels and emission factors  based on activity data, and institutional frameworks and regulations (Corbera and Schroeder, 2011;  Mbow et al., 2012; Sections 11.7; 11.8). Additionally, the diversity of circumstances among  developing countries makes it difficult to establish the modelled relationships between GDP and CO2  emissions per capita found by using the Kaya identity. This partly arises from the wide gap between  rural and urban communities, and the difference in livelihoods (e.g., the use of fuel wood, farming  practices in various agro ecological conditions, dietary preferences with a rising middle class in  developing countries, development of infrastructure, and behavioural change, etc.; Lambin and  Meyfroidt, 2011). Also, some mitigation pathways raise the issue of non permanence and leakage  that can lead to the transfer activities to non protected areas, which may threaten conservation  areas in countries with low capacities (Lippke et al., 2003; Jackson and Baker, 2010; Section 11.3.2).  Critical issues to address are the co benefits and adverse side effects associated with changed  agricultural production, the necessary link between mitigation and adaptation, and how to manage  incentives for a substantial GHG abatement initiative without compromising food security (Smith  and Wollenberg, 2012; Sections 11.5; 11.7). The challenge is to strike a balance between emissions  reductions/adaptation and development/poverty alleviation priorities, or to find policies that co deliver. Mitigation pathways in developing countries should address the dual need for mitigation  and adaptation through clear guidelines to manage multiple options (Section 11.5.4). Prerequisites  for the successful implementation of AFOLU mitigation projects are ensuring that (a) communities  are fully engaged in implementing mitigation strategies, (b) any new strategy is consistent with  ongoing policies or programmes, and (c) a priori consent of small holders is given. Extra effort is  required to address equity issues including gender, challenges, and prospects (Mbow et al., 2012).  Mitigation challenges related to the bioenergy sector  Bioenergy has a significant mitigation potential, provided that the resources are developed  sustainably and that bioenergy systems are efficient (Chum et al., 2011; Section 11.9.1). Bioenergy  production can be integrated with food production in developing countries, e.g., through suitable  crop rotation schemes, or use of by products and residues (Berndes et al., 2013). If implemented  sustainably this can result in higher food and energy outcomes and hence reduce land use  competition. Some bioenergy options in developing countries include perennial cropping systems,  use of biomass residues and wastes, and advanced conversion systems (Beringer et al., 2011; Popp  et al., 2011; Box 7.1). Agricultural and forestry residues can provide low carbon and low cost  feedstock for bioenergy. Biomass from cellulosic bioenergy crops feature substantially in future  energy systems, especially in the framework of global climate policy that aims at stabilizing CO2  concentration at low levels (Popp et al., 2011; Section 11.13). The large scale use of bioenergy is  controversial in the context of developing countries because of the risk of reducing carbon stocks  and releasing carbon to the atmosphere (Bailis and McCarthy, 2011), threats to food security in  Africa (Mbow, 2010), and threats to biodiversity via the conversion of forests to biofuel (e.g., palm  oil) plantations. Several studies underline the inconsistency between the need for bioenergy and the  requirement for, e.g., Africa, to use its productive lands for sustainable food production (Cotula et  al., 2009). Efficient biomass production for bioenergy requires a range of sustainability requirements  to safeguard food production, biodiversity, and terrestrial carbon storage.  11.7.1    Socio economic effects  AFOLU mitigation measures can affect institutions and living conditions of the various social groups  involved. This section includes potential effects of AFOLU mitigation measures on three dimensions  of sustainable development: institutional, social, and economic (Section 11.4.5).  AFOLU mitigation measures may have impacts on land tenure and land use rights for several social  groups including indigenous peoples, local communities and other social groups, dependant on  natural assets. Co benefits from AFOLU mitigation measures can be clarification of land tenure and  harmonization of rights, while adverse side effects can be lack of recognition of customary rights,    55 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   loss of tenure or possession rights, and even displacement of social groups (Sunderlin et al., 2005;  Chhatre and Agrawal, 2009; Blom et al., 2010; Sikor et al., 2010; Robinson et al., 2011; Rosemary,  2011; Larson, 2011; Rosendal and Andresen, 2011). Whether an impact on land tenure and use  rights is positive or negative depends upon two factors: (a) the institutions regulating land tenure  and land use rights (e.g., laws, policies), and (b) the level of enforcement by such institutions  (Corbera and Brown, 2008; Araujo et al., 2009; Rosemary, 2011; Larson et al., 2013; Albers and  Robinson, 2013). More research is needed on specific tenure forms (e.g., individual property, state  ownership or community rights), and on the specific effects from tenure and rights options, on  enabling AFOLU mitigation measures and co benefits in different regions under specific  circumstances (Sunderlin et al., 2005; Katila, 2008; Chhatre and Agrawal, 2009; Blom et al., 2010;  Sikor et al., 2010; Robinson et al., 2011; Rosemary, 2011; Larson, 2011; Rosendal and Andresen,  2011).   AFOLU mitigation measures can support enforcement of sectoral policies (e.g., conservation policies)  as well as cross sectoral coordination (e.g., facilitating a landscape view for policies in the  agriculture, energy, and forestry sectors (Brockhaus et al., 2013). However, AFOLU mitigation  activities can also introduce or reduce clashes with existing policies in other sectors (e.g., if a  conservation policy covers a forest area, where agricultural land is promoted by another policy  (Madlener et al., 2006; Halsnaes and Verhagen, 2007; Smith et al., 2007; Beach et al., 2009; Alig et  al., 2010; Jackson and Baker, 2010; DeFries and Rosenzweig, 2010; Pettenella and Brotto, 2011;  Section 11.10).  An area of increasing concern since AR4 is the potential impact of AFOLU mitigation measures on  food security. Efforts to reduce hunger and malnutrition will increase individual food demand in  many developing countries, and population growth will increase the number of individuals requiring  secure and nutritionally sufficient food production. Thus, a net increase in food production is an  essential component for securing sustainable development (Ericksen et al., 2009; FAO, WFP, and  IFAD, 2012). AFOLU mitigation measures linked to increases in food production (e.g., agroforestry,  intensification of agricultural production, or integrated systems) can increase food availability and  access especially at the local level, while other measures (e.g., forest or energy crop plantations) can  reduce food production at least locally (Foley et al., 2005; McMichael et al., 2007; Pretty, 2008;  Godfray et al., 2010; Jackson and Baker, 2010; Graham Rowe, 2011; Jeffery et al., 2011).  Regarding human health reduced emissions from agriculture and forestry may also improve air, soil,  and water quality (Smith et al., 2013a), thereby indirectly providing benefits to human health and  well being. Demand side measures aimed at reducing the proportion of livestock products in human  diets that are high in animal products are also associated with multiple health benefits (McMichael  et al., 2007; Stehfest et al., 2009; Marlow et al., 2009). AFOLU mitigation measures, particularly in  the livestock sector, can have an impact on animal welfare (Sundrum, 2001; Lund and Algers, 2003;  Keeling et al., 2011; Kehlbacher et al., 2012; Koknaroglu and Akunal, 2013).  A major area of concern is related to the potential impacts of AFOLU mitigation measures on equity  (Sections 3.3; 4.2; 4.7; 4.8). Depending on the actual and perceived distribution of socio economic  benefits, responsibilities (burden sharing), as well the access to decision making, financing  mechanisms, and technology, AFOLU mitigation measures can promote inter  and intra generational  equity (Di Gregorio et al., 2013). Conversely, depending on the policy instruments and the  implementation schemes of these mitigation measures, they can increase inequity and land  conflicts, or marginalize small scale farm/forest owners or users (Robinson et al., 2011; Kiptot et al.,  2012; Huettner, 2012; Mattoo and Subramanian, 2012). Potential impacts on equity and benefit sharing mechanisms arise for AFOLU activities using forestry measures in developing countries  including conservation, restoration, reduced deforestation and degradation, as well as sustainable  management and afforestation/reforestation (Combes Motel et al., 2009; Cattaneo et al., 2010;  Rosemary, 2011).    56 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Large scale land acquisition (often referred to as  land grabbing ) related to the promotion of AFOLU  mitigation measures (especially for production of bioenergy crops) and its links to sustainable  development in general, and equity in particular, are emerging issues in the literature (Cotula et al.,  2009; Scheidel and Sorman, 2012; Mwakaje, 2012; Messerli et al., 2013; German et al., 2013).  In many cases, the implementation of agricultural and forestry systems with positive impacts  mitigating climate change are limited by capital, and carbon payments or compensation mechanisms  may provide a new source of finance (Tubiello et al., 2009). For instance, in some cases, mitigation  payments can help to make production of non timber forest products (NTFP) economically viable,  further diversifying income at the local level (Singh, 2008). However, depending on the accessibility  of the financing mechanisms (payments, compensation, or other) economic benefits can become  concentrated, marginalizing many local stakeholders (Combes Motel et al., 2009; Alig et al., 2010;  Asante et al., 2011; Asante and Armstrong, 2012; Section 11.8). The realization of economic co benefits is related to the design of the specific mechanisms and depends upon three main variables:  (a) the amount and coverage of these payments, (b) the recipient of the payments, and (c) timing of  payments (ex ante or ex post; (Corbera and Brown, 2008; Skutsch et al., 2011). Further  considerations on financial mechanisms and carbon payments, both within and outside UNFCCC  agreements, are described in Section 11.10.   Financial flows supporting AFOLU mitigation measures (e.g., those resulting from the REDD+) can  have positive effects on conserving biodiversity, but could eventually create conflicts with  conservation of biodiversity hotspots, when their respective carbon stocks are low (Gardner et al.,  2012; Section 11.10). Some authors propose that carbon payments can be complemented with  biodiversity payments as an option for reducing tradeoffs with biodiversity conservation (Phelps et  al., 2010a). Bundling of ecosystem service payments, and links to carbon payments, is an emerging  area of research (Deal and White, 2012).  11.7.2    Environmental effects  Availability of land and land competition can be affected by AFOLU mitigation measures. Different  stakeholders may have different views on what land is available, and when considering several  AFOLU mitigation measures for the same area, there can be different views on the importance of the  goods and ecosystem services provided by the land, e.g., some AFOLU measures can increase food  production but reduce water availability or other environmental services. Thus decision makers need  to be aware of potential site specific tradeoffs within the sector. A further potential adverse side effect is that of increasing land rents and food prices due to a reduction in land availability for  agriculture in developing countries (Muller, 2009; Smith et al., 2010, 2013b; Rathmann et al., 2010;  Godfray et al., 2010; de Vries and de Boer, 2010; Harvey and Pilgrim, 2011; Amigun et al., 2011;  Janzen, 2011; Cotula, 2012; Scheidel and Sorman, 2012; Haberl et al., 2013a).  AFOLU mitigation options can promote conservation of biological diversity (Smith et al., 2013a) both  by reducing deforestation (Chhatre et al., 2012; Murdiyarso et al., 2012; Putz and Romero, 2012;  Visseren Hamakers et al., 2012), and by using reforestation/afforestation to restore biodiverse  communities on previously developed farmland (Harper et al., 2007). However, promoting land use  changes (e.g., through planting monocultures on biodiversity hot spots) can have adverse side effects, reducing biodiversity (Koh and Wilcove, 2008; Beringer et al., 2011; Pandit and Grumbine,  2012; Hertwich, 2012; Gardner et al., 2012; Ziv et al., 2012).  In addition to potential climate impacts, land use intensity drives the three main N loss pathways  (nitrate leaching, denitrification, and ammonia volatilization) and typical N balances for each land  use indicate that total N losses also increase with increasing land use intensity (Stevenson et al.,    57 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   2010). Leakages from the N cycle can cause air (e.g., ammonia (NH3+), nitrogen oxides (NOx))10, soil  nitrate (NO3 ) and water pollution (e.g., eutrophication), and agricultural intensification can lead to a  variety of other adverse environmental impacts (Smith et al., 2013a). Combined strategies (e.g.,  diversified crop rotations and organic N sources) or single process strategies (e.g., reduced N rates,  nitrification inhibitors, and changing chemical forms of fertilizer) can reduce N losses (Bambo et al.,  2009; Gardner and Drinkwater, 2009). Integrated systems may be an alternative approach to reduce  leaching (Section 11.10).  AFOLU mitigation measures can have either positive or negative impacts on water resources, with  responses dependant on the mitigation measure used, site conditions (e.g., soil thickness and slope,  hydrological setting, climate; Yu et al., 2013) and how the particular mitigation measure is managed.  There are two main components: water yield and water quality. Water yields can be manipulated  with forest management, through afforestation, reforestation, forest thinning, or deforestation. In  general, reduction in water yields in afforestation/reforestation projects has been reported in both  groundwater or surface catchments (Jackson et al., 2005), or where irrigation water is used to  produce bioenergy crops. For water supply security, it is important to consider the relative yield  reduction and this can have severe consequences in dry regions with inherent water shortages  (Wang et al., 2011c). Where there is a water imbalance, however, this additional water use can be  beneficial by reducing the efflux of salts (Jackson et al., 2005). Another aspect of water yield is the  reduction of flood peaks, and also prolonged periods of water flow, because discharge is stabilized  (Jackson et al., 2005), however low flows can be reduced because of increased forest water use.  Water quality can be affected by AFOLU in several ways. For example, minimum tillage systems have  been reported to reduce water erosion and thus sedimentation of water courses (Lal, 2011).  Deforestation is well known to increase erosion and thus efflux of silt; avoiding deforestation will  prevent this. In other situations, watershed scale reforestation can result in the restoration of water  quality (e.g., (Townsend et al., 2012). Furthermore, strategic placement of tree belts in lands  affected by dryland salinity can remediate the affected lands by lowering the water table (Robinson  et al., 2004) . Various types of AFOLU mitigation can result in degradation of water sources through  the losses of pesticides and nutrients to water (Smith et al., 2013a).                                                               10  Please see Section 7.9.2 and WGII Section 11.9 for a discussion of health effects related to air pollution.    58 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   Table 11.9 Summary of potential co-benefits (green arrows) and adverse side-effects (orange arrows) from AFOLU mitigation measures; arrows pointing up/down denote positive/negative effect on the respective issue. These effects depend on the specific context (including bio-physical, institutional, and socioeconomic aspects) as well as on the scale of implementation. For an assessment of macroeconomic, cross-sectoral effects associated with mitigation policies (e.g., on energy prices, consumption, growth, and trade), see Sections 3.9, 6.3.6, 13.2.2.3, and 14.4.2. Note: Co-benefits/adverse side-effects of bioenergy are discussed in Section 11.13.   Issue  Land tenure and use  rights  Sectoral policies  Cross sectoral policies  Participative  mechanisms  Benefit sharing  mechanisms  Food security  Potential co benefit or adverse side effect  Improving ( ) or diminishing ( ) tenure and use rights for local communities and  indigenous peoples, including harmonization of land tenure and use regimes (e.g., with  customary rights)  Promoting ( ) or contradicting ( ) the enforcement of sectoral (forest and/or  agriculture) policies  Cross sectoral coordination ( ) or clashes ( ) between forestry, agriculture, energy,  and/or mining policies  Creation/use of participative mechanisms ( ) for decision making regarding land  management (including participation of various social groups, e.g., indigenous peoples  or local communities)  Creation/use of benefits sharing mechanisms ( ) from AFOLU mitigation measures  Increase ( ) or decrease ( ) on food availability and access  Scale  Local to  national  National  Local to  national  Local to  national  Local to  national  Local to  national  Local/sub national  Local to  national  Local to  trans boundary  Local to  global  Local to  global  Local  AFOLU mitigation measure  Forestry (4, 5, 6, 8, 9, 12, 20)  Institutional  Forestry (2, 5, 6, 9, 20); land based agriculture (7, 11,  20)  Forestry (7, 20); agriculture (7, 11, 20)  Forestry (4, 5, 6, 8, 9, 14, 20); agriculture (20, 32);  integrated systems (20, 34)  Forestry (4, 5, 6, 8, 20)  Forestry (18, 19); agriculture (7, 15, 18, 19, 23, 28,  30); livestock (2, 3, 19, 35, 36); integrated systems  (18, 19); biochar (17, 26)   Forestry (4, 5, 6, 8, 20); agriculture (20, 28);  integrated systems (2); livestock (2, 3, 35); biochar (2)  Livestock (2, 31, 35, 37, 38)  Forestry (4, 5, 6, 9, 20)  Social  Local/traditional  knowledge  Animal welfare  Cultural values   Recognition ( ) or denial ( ) of indigenous and local knowledge in managing  (forest/agricultural) land  Changes in perceived or measured animal welfare (perceived due to cultural values or  measured, e.g., through amount of stress hormones)  Respect and value cultural habitat and traditions ( ), reduce ( ), or increase ( )  existing conflicts or social discomfort (4, 5, 6, 20, 8)  Impacts on health due to dietary changes, especially in societies with a high  consumption of animal protein ( )   Promote ( ) or not ( ) equal access to land, decision making, value chain, and markets  as well as to knowledge  and benefit sharing mechanisms   Increase ( ) or decrease ( ) in income. There are concerns regarding income  distribution ( )  Employment creation ( ) or reduction of employment (especially for small farmers or  local communities) ( )  Access ( ) or lack of access ( ) to new financing schemes  Human health  Equity  Income  Changes in demand patterns (31, 36)  Forestry (4, 5, 6, 8, 9, 10, 20); agriculture (11, 23, 32)  Forestry (6, 7, 8, 16, 20, 21, 22); agriculture (16, 19,  20, 23, 28); livestock (2, 3); integrated systems (7,  20); biochar (24); changes in demand patterns (2)  Forestry (8, 20); agriculture (20, 23); livestock (2, 3);  integrated systems (7, 20)  Forestry (6, 8, 16, 20); agriculture (16, 20); livestock  (2, 3)  Economic  Employment  Financing mechanisms  Local  Local to  global       59 of 179      Final Draft   Economic activity  Land availability  Chapter 11  Diversification and increase in economic activity ( ) while concerns on equity ( )  Competition between land uses and risk of activity or community displacement ( )   Local  Local to  trans boundary  Local to  trans boundary  Local to  global  Local to  trans boundary  Local to  trans boundary  Local  Local to  national  Local to  trans boundary  Local  IPCC WGIII AR5   Forestry (6, 7, 8, 20); land based agriculture (16, 19,  20, 23, 28); livestock (2, 3)  Forestry and land based agriculture (5, 6, 15, 18, 20,  29, 30); livestock (2, 3, 29, 40)  Forestry (1, 19, 20, 27); on conservation and forest  management (1, 19, 21, 27, 30); agriculture and  integrated systems (15, 19, 20, 28, 30)  See Section 11.5  Agriculture (19, 23, 30, 35); livestock (2, 3, 30)  Biodiversity  Albedo  Environmental  N and P cycles  Monocultures can reduce biodiversity ( ). Ecological restoration increases biodiversity  and ecosystem services ( ) by 44 and 25% respectively (28). Conservation, forest  management, and integrated systems can keep biodiversity ( ) and/or slow  desertification ( )   Positive impacts ( ) on albedo and evaporation and interactions with ozone  Impacts on N and P cycles in water ( / ) especially from monocultures or large  agricultural areas  Monocultures and /or short rotations can have negative impacts on water availability  ( ). Potential water depletion due to irrigation ( ). Some management practices can  support regulation of the hydrological cycle and protection of watersheds ( )  Soil conservation ( ) and improvement of soil quality and fertility ( ). Reduction of  erosion. Positive or negative carbon mineralization priming effect ( / )  Increase ( ) or decrease ( ) on fibre availability as well as non timber/non wood  products output   Increase ( ) or reduction ( ) of resilience, reduction of disaster risks ( )  Water resources  Forestry (1, 19, 20, 27); land based agriculture (30,  44); integrated systems (2, 30, 44)  Forestry (44, 45); land based agriculture (13, 19, 23,  28, 30); integrated systems biochar (39, 40)  Forestry (18, 19, 41, 42); agriculture (7, 15, 18, 19,  23, 28, 30); integrated systems (18, 19)  Forestry, integrated systems (11, 33; see Section  11.5)  Agriculture (20, 46, 47)  Soil  New products  Ecosystem resilience  Technology innovation  Local to  Forestry (7, 13, 25); agriculture (23); livestock (2, 3)  and transfer  global  Technology  Can facilitate acceptance of sustainable technologies ( )  Local to  Forestry (7, 13, 25); livestock (2, 3, 35)  Acceptance  national  Notes: AFOLU mitigation measures are grouped following the structure given in Table 11.2 Sources: 1Trabucco et al., 2008; 2Steinfeld et al., 2010; 3Gerber et al., 2010; 4Sikor et al., 2010; 5Rosemary, 2011; 6Pettenella and Brotto, 2011; 7Jackson and Baker, 2010; 8 Corbera and Schroeder, 2011; 9Colfer, 2011; 10Blom et al., 2010; 11Halsnaes and Verhagen, 2007; 12Larson, 2011; 13Lichtfouse et al., 2009; 14Thompson et al., 2011; 15 Graham-Rowe, 2011; 16Tubiello et al., 2009; 17Barrow, 2012; 18Godfray et al., 2010; 19Foley et al., 2005 ; 20Madlener et al., 2006; 21Strassburg et al., 2012; 22Canadell and 23 24 25 26 27 28 29 Raupach, 2008; Pretty, 2008; Galinato et al., 2011; Macauley and Sedjo, 2011; Jeffery et al., 2011; Benayas et al., 2009; Foley et al., 2011; Haberl et al., 2013; 30 31 32 33 34 35 36 Smith et al., 2013; Stehfest et al., 2009; Chhatre et al., 2012; Seppälä et al., 2009; Murdiyarso et al., 2012; de Boer et al., 2011; McMichael et al., 2007; 37 Koknaroglu and Akunal, 2013; 38Kehlbacher et al., 2012; 39Zimmerman et al., 2011; 40Luo et al., 2011; 41Mirle, 2012; 42Albers and Robinson, 2013; 43Smith et al., 2013a; 44 Chatterjee and Lal, 2009; 45Smith, 2008; 46Ziv et al., 2012; 47Beringer et al., 2011; 48Douglas et al., 2009     Technology  Infrastructure  Increase ( ) or decrease ( ) in availability of and access to infrastructure. Competition  for infrastructure for agriculture ( ), can increase social conflicts  Promote ( ) or delay ( ) technology development and transfer  60 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   AFOLU mitigation measures can have several impacts on soil. Increasing or maintaining carbon  stocks in living biomass (e.g., through forest or agroforestry systems) will reduce wind erosion by  acting as wind breaks and may increase crop production; and reforestation, conservation, forest  management, agricultural systems, or bioenergy systems can be used to restore degraded or  abandoned land (Smith et al., 2008; Stickler et al., 2009; Chatterjee and Lal, 2009; Wicke et al.,  2011b; Sochacki et al., 2012). Silvo pastoral systems can help to reverse land degradation while  providing food (Steinfeld et al., 2008, 2010; Janzen, 2011). Depending on the soil type, production  temperature regimes, the specific placement and the feedstock tree species, biochar can have  positive or negative carbon mineralization priming effects over time (Zimmerman et al., 2011; Luo et  al., 2011).  AFOLU mitigation options can promote innovation, and many technological supply side mitigation  options outlined in Section 11.3 also increase agricultural and silvicultural efficiency. At any given  level of demand for agricultural products, intensification increases output per unit area and would  therefore, if all else were equal, allow the reduction in farmland area, which would in turn free land  for C sequestration and/or bioenergy production (Section 11.4). For example, a recent study  calculated potentially large GHG reductions from global agricultural intensification by comparing the  past trajectory of agriculture (with substantial yield improvements), with a hypothetical trajectory  with constant technology (Burney et al., 2010). However, in real world situations increases in yield  may result in feedbacks such as increased consumption ( rebound effects ; see Section 11.4; Lambin  and Meyfroidt, 2011; Erb, 2012).  11.7.3    Public perception  Mitigation measures that support sustainable development are likely to be viewed positively in  terms of public perception, but a large scale drive towards mitigation without inclusion of key  stakeholder communities involved would likely not be greeted favourably (Smith and Wollenberg,  2012). However, there are concerns about competition between food and AFOLU outcomes, either  because of an increasing use of land for biofuel plantations (Fargione et al., 2008; Alves Finco and  Doppler, 2010) , or afforestation/reforestation (Mitchell et al., 2012), or by blocking the  transformation of forest land into agricultural land (Harvey and Pilgrim, 2011).  Further, lack of clarity regarding the architecture of the future international climate regime and the  role of AFOLU mitigation measures is perceived as a potential threat for long term planning and  long term investments (Streck, 2012; Visseren Hamakers et al., 2012). Certain technologies, such as  animal feed additives and genetically modified organisms are banned in some jurisdictions due to  perceived health and/or environmental risks. Public perception is often as important as scientific  evidence of hazard/risk in considering government policy regarding such technologies (Royal Society,  2009; Smith and Wollenberg, 2012).  11.7.4    Spillovers  Emerging knowledge on the importance of ecosystems services as a means for addressing climate  change mitigation and adaptation have brought attention to the role of ecosystem management for  achieving several development goals, beyond climate change adaptation and mitigation. This  knowledge has enhanced the creation of ecosystem markets (Section 11.10). In some jurisdictions  ecosystem markets are developing (MEA, 2005; Engel et al., 2008; Deal and White, 2012; Wünscher  and Engel, 2012)and these allow valuation of various components of land use changes, in addition to  mitigation (Mayrand and Paquin, 2004; Barbier, 2007). Different approaches are used; in some cases  the individual components (both co benefits and adverse side effects) are considered singly  (bundled), in other situations they are considered together (stacked) (Deal and White, 2012).  Ecosystem market approaches can serve as a framework to assess the benefits of mitigation actions  from project, to regional and national level (Farley and Costanza, 2010). Furthermore, designing  ecosystem market approaches yields methodologies for the evaluation of individual components      61 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   (e.g., water quality response to reforestation, timber yield), and other types of ecosystem service  (e.g., biodiversity, social amenity; Bryan et al., 2013).  11.8   Barriers and opportunities  Barriers and opportunities refer to the conditions provided by the development context (Section  11.4.5). These conditions can enable and facilitate (opportunities) or hinder (barriers) the full use of  AFOLU mitigation measures. AFOLU programmes and policies can help to overcome barriers, but  countries being affected by many barriers will need time, financing, and capacity support. In some  cases, international negotiations have recognized these different circumstances among countries  and have proposed corresponding approaches (e.g., a phased approach in the REDD+, Green Climate  Fund; Section 11.10). Corresponding to the development framework presented in Section 11.4.5, the  following types of barriers and benefits are discussed: socio economic, environmental, institutional,  technological, and infrastructural.  11.8.1    Socio economic barriers and opportunities  The design and coverage of the financing mechanisms is key to successful use of the AFOLU  mitigation potential (Section 11.10; Chapter 16). Questions remain over which costs will be covered  by such mechanisms. If financing mechanisms fail to cover at least transaction and monitoring costs,  they will become a barrier to the full implementation of AFOLU mitigation. According to some  studies, opportunity costs also need to be fully covered by any financing mechanism for the AFOLU  sector, especially in developing countries, as otherwise AFOLU mitigation measures would be less  attractive compared to returns from other land uses (Angelsen, 2008; Cattaneo et al., 2010; Böttcher  et al., 2012). Conversely, if financing mechanisms are designed to modify economic activity, they  could provide an opportunity to leverage a larger proportion of AFOLU mitigation potential.   Scale of financing sources can become either a barrier (if a relevant financial volume is not secured)  or create an opportunity (if financial sources for AFOLU suffice) for using AFOLU mitigation potential  (Streck, 2012; Chapter 16). Another element is the accessibility to AFOLU financing for farmers and  forest stakeholders (Tubiello et al., 2009, p. 200; Havemann, 2011; Colfer, 2011). Financial concerns,  including reduced access to loan and credits, high transaction costs or reduced income due to price  changes of carbon credits over the project duration, are potential risks for AFOLU measures,  especially in developing countries, and when land holders use market mechanisms (e.g.,  Afforestation and Reforestation (A/R) Clean Development Mechanism (CDM); Madlener et al., 2006).  Poverty is characterized not only by low income, but also by insufficient food availability in terms of  quantity and/or quality, limited access to decision making and social organization, low levels of  education and reduced access to resources (e.g., land or technology; UNDP International Poverty  Centre, 2006). High levels of poverty can limit the possibilities for using AFOLU mitigation options,  because of short term priorities and lacking resources. In addition, poor communities have limited  skills and sometimes lack of social organization that can limit the use and scaling up of AFOLU  mitigation options, and can increase the risk of displacement, with other potential adverse side effects (Smith and Wollenberg, 2012; Huettner, 2012). This is especially relevant when forest land  sparing competes with other development needs e.g., increasing land for agriculture or promoting  some types of mining (Forner et al., 2006), or when large scale bioenergy compromises food security  (Nonhebel, 2005; Section 11.13).  Cultural values and social acceptance can determine the feasibility of AFOLU measures, becoming a  barrier or an opportunity depending of the specific circumstances (de Boer et al., 2011).  11.8.2    Institutional barriers and opportunities  Transparent and accountable governance and swift institutional establishment are very important  for a sustainable implementation of AFOLU mitigation measures. This includes the need to have      62 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   clear land tenure and land use rights regulations and a certain level of enforcement, as well as clarity  about carbon ownership (Palmer, 2011; Thompson et al., 2011; Markus, 2011; Rosendal and  Andresen, 2011; Murdiyarso et al., 2012 Sections 11.4.5; 11.10; Chapters 14; 15).  Lack of institutional capacity (as a means for securing creation of equal institutions among social  groups and individuals) can reduce feasibility of AFOLU mitigation measures in the near future,  especially in areas where small scale farmers or forest users are the main stakeholders (Laitner et  al., 2000; Madlener et al., 2006; Thompson et al., 2011a). Lack of an international agreement that  supports a wide implementation of AFOLU measures can become a major barrier for realizing the  mitigation potential from the sector globally (Section 11.10; Chapter 13).  11.8.3    Ecological barriers and opportunities  Mitigation potential in the agricultural sector is highly site specific, even within the same region or  cropping system (Baker et al., 2007; Chatterjee and Lal, 2009). Availability of land and water for  different uses need to be balanced, considering short  and long term priorities, and global  differences in resource use. Consequently, limited resources can become an ecological barrier and  the decision of how to use them needs to balance ecological integrity and societal needs (Jackson,  2009).  At the local level, the specific soil conditions, water availability, GHG emission reduction potential as  well as natural variability and resilience to specific systems will determine the level of realization of  mitigation potential of each AFOLU measure (Baker et al., 2007; Halvorson et al., 2011). Frequent  droughts in Africa and changes in the hydro meteorological events in Asia and Central and South  America are important in defining the specific regional potential (Bradley et al., 2006; Rotenberg and  Yakir, 2010). Ecological saturation (e.g., soil carbon or yield) means that some AFOLU mitigation  options have their own limits (Section 11.5). The fact that many AFOLU measures can provide  adaptation benefits provides an opportunity for increasing ecological efficiency (Guariguata et al.,  2008; van Vuuren et al., 2009; Robledo et al., 2011); Section 11.5).  11.8.4    Technological barriers and opportunities  Technological barriers refer to the limitations in generating, procuring, and applying science and  technology to identify and solve an environmental problem. Some mitigation technologies are  already applied now (e.g., afforestation, cropland, and grazing land management, improved livestock  breeds and diets) so there are no technological barriers for these options, but others (e.g., some  livestock dietary additives, crop trait manipulation) are still at the development stage (see Table  11.2).  The ability to manage and re use knowledge assets for scientific communication, technical  documentation and learning is lacking in many areas where mitigation could take place. Future  developments present opportunities for additional mitigation to be realized if efforts to deliver ease of use and range of use are guaranteed. There is also a need to adapt technology to local needs by  focusing on existing local opportunities (Kandji et al., 2006), as proposed in Nationally Appropriate  Mitigation Actions (NAMAs) (Section 11.10).  Barriers and opportunities related to monitoring, reporting, and verification of the progress of  AFOLU mitigation measures also need be considered. Monitoring activities, aimed at reducing  uncertainties, provide the opportunity of increasing credibility in the AFOLU sector. However there  are technical challenges. For instance, monitoring carbon in forests with high spatial variability in  species composition and tree density can pose a technical barrier to the implementation of some  AFOLU activities (e.g., REDD+; Baker et al., 2010; Section 11.10). The IPCC National Greenhouse Gas  Inventory Guidelines (Paustian et al., 2006) also provide an opportunity, because they offer standard  scientific methods that countries already use to report AFOLU emissions and removals under the  UNFCCC. Also, field research in high biomass forests (Gonzalez et al., 2010) shows that remote      63 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   sensing data and Monte Carlo quantification of uncertainty offer a technical opportunity for  implementing REDD+ (Section 11.10). Exploiting the existing human skills within a country is  essential for realizing full AFOLU potential. A lack of trained people can therefore become a barrier  to implementation of appropriate technologies (Herold and Johns, 2007).  Technology improvement and technology transfer are two crucial components for the sustainable  increase of agricultural production in developed and developing regions with positive impacts in  terms of mitigation, soil, and biodiversity conservation (Tilman et al., 2011). International and  national policy instruments are relevant to foster technology transfer and to support research and  development (Section 11.10.4), overcoming technological barriers.  11.9   Sectoral implications of transformation pathways and sustainable  development  Some climate change management objectives require large scale transformations in human  societies, in particular in the production and consumption of energy and the use of the land  resource. Chapter 6 describes alternative  transformation pathways  of societies over time from now  into the future, consistent with different climate change outcomes. Many pathways that foresee  large efforts in mitigation will have implications for sustainable development, and corrective actions  to move toward sustainability may be possible. However, impacts on development are context  specific and depend upon scale and institutional agreements of the AFOLU options, and not merely  on the type of option (see Sections 11.4 for development context and systemic view, 11.7 for  potential co benefits and adverse effects, and 11.8 for opportunities and challenges). To evaluate  sectoral implications of transformation pathways, it is useful to first characterize the pathways in  terms of mitigation technologies and policy assumptions.  11.9.1    Characterization of transformation pathways  Uncertainty about reference AFOLU emissions is significant both historically (Section 11.2) and in  projections (Section 6.3.1.3). The transformation projections of the energy system, AFOLU emissions  and land use are characterized by the reference scenario, as well as the abatement policy  assumptions regarding eligible abatement options, regions covered, and technology costs over time.  Many mitigation scenarios suggest a substantial cost effective mitigation role for land related  mitigation assuming idealized policy implementation, with immediate, global, and comprehensive  availability of land related mitigation options. However, policy implementation of large scale land based mitigation will be challenging. In addition, the transformation pathways often ignore, or only  partially cover, important mitigation risks, costs, and benefits (e.g., transaction costs or Monitoring  Reporting and Verification (MRV) costs), and other developmental issues including intergenerational  debt or non monetary benefits (Ackerman et al., 2009; Lubowski and Rose, 2013).   In recent idealized implementation scenarios from a model comparison study, land related changes  can represent a significant share of emissions reductions (Table 11.10). In these scenarios, models  assume an explicit terrestrial carbon stock incentive, or a global forest protection policy, as well as  an immediate global mitigation policy in general. Bioenergy is consistently deployed (because it is  considered to reduce net GHG emissions over time; see Section 6.3.5), and agricultural emissions are  priced. Note that bioenergy related mitigation is not captured in Table 11.10. The largest land  emission reductions occur in net CO2 emissions, which also have the greatest variability across  models. Some models exhibit increasing land CO2 emissions under mitigation, as bioenergy  feedstock production leads to LUC, while other models exhibit significant reductions with protection  of existing terrestrial carbon stocks and planting of new trees to increase carbon stocks. Land related  CO2 and N2O mitigation is more important in the nearer term for some models. Land related N2O  and CH4 reductions are a significant part of total N2O and CH4 reductions, but only a small fraction of  baseline emissions, suggesting that models have cost effective reasons to keep N2O and CH4      64 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   emissions. Emissions reductions from land increase only slightly with the stringency of the  atmospheric concentration goal, as energy and industry emission reductions increase faster with  target stringency. This result is consistent with previous studies (Rose et al., 2012). Land based CO2  reductions can be over 100% of baseline emissions, from the expansion of managed and unmanaged  forests for sequestration. Emissions reductions from individual land related technologies, especially bioenergy, are not  generally reported in transformation pathway studies. In part, this is due to emphasis on the energy  system, but also other factors that make it difficult to uniquely quantify mitigation by technology. An  exception is Rose et al. (2012) who reported agriculture, forest carbon, and bioenergy abatement  levels for various atmospheric concentration goals. Cumulatively, over the century, bioenergy was  the dominant strategy, followed by forestry, and then agriculture. Bioenergy cumulatively generated  approximately 5 to 52 GtCO2eq and 113 to 749 GtCO2eq mitigation by 2050 and 2100, respectively.  In total, land related strategies contributed 20 to 60% of total cumulative abatement to 2030, 15 to  70% to 2050, and 15 to 40% to 2100.  Within models, there is a positive correlation between emissions reductions and GHG prices.  However, across models, it is less clear, as some estimate large reductions with a low GHG price,  while others estimate low reductions despite a high GHG price (Rose et al., 2012). For the most part,  these divergent views are due to differences in model assumptions and are difficult to disentangle.  Overall, while a tighter target and higher carbon price results in a decrease in land use emissions,  emissions decline at a decreasing rate. This is indicative of the rising relative cost of land mitigation,  the increasing demand for bioenergy, and subsequent increasing need for overall energy system  GHG abatement and energy consumption reductions. For additional discussion of land s potential  role in transformation pathways, especially regarding physical land use and bioenergy, see sections  6.3.2.4 and 6.3.5.  Table 11.10 Cumulative land-related emissions reductions, land reduction share of global reductions, and percent of baseline land emissions reduced for CH4, CO2, and N2O in idealized implementation 550 and 450 ppm CO2eq scenarios. The number of scenarios is indicated for each GHG and atmospheric concentration goal. Negative values represent increases in emissions (Kriegler et al., 2013). Bioenergy-related mitigation is not captured in the table.         min max min max min max min max min max min max min max min max 550 ppm 2010 2010 2050  2100  17.5 51.4 46.0 201.7 43.2 129.8 543.0 733.4 8.4 25.5 27.7 96.6 2.5 53.9 587.7 903.5 20% 40% 12% 48% 61% 90% 0% 47% 20% 42% 4% 17% 65% 87% 1% 19% 450 ppm  2010 2010 2030  2050  0.0  4.5  12.7  50.5  20.3  50.8  286.6  550.5  3.1  8.4  9.7  29.3  3.7  5.6  301.4  596.9  22%  30%  20%  73%  53%  78%  2%  69%  20%  31%  8%  47%  61%  83%  1%  46%  CH4  (n=5/5)  CO2  Cumulative global land (n=11/10) related emissions reductions  N2O  (GtCO2eq)  (n=4/4)  Sum  (n=4/4)  CH4    CO2    N2O    Sum    2010 2030  3.5 9.8 20.2 280.9 3.1 8.2 8.7 295.2 25% 37% 43% 74% 52% 95% 11% 70% 2010 2100  52.3 208.6 153.9 744.6 25.5 96.8 69.7 940.3 16% 36% 4% 15% 65% 85% 1% 17% Land reductions share of  total global emissions  reductions      65 of 179      Final Draft   CH4    CO2    N2O    Sum    Chapter 11  min max min max min max min max 3% 8% 42% 373% 4% 10% 4% 97% 8% 16% 89% 417% 6% 16% 1% 100% 10% 28% 0% 504% 8% 22% 7% 73% 0%  10%  42%  381%  4%  12%  2%  99%  IPCC WGIII AR5   2%  18%  104%  423%  6%  17%  1%  101%  10% 30% 0% 512% 8% 22% 8% 76% Percent of baseline land  emissions reduced    Models project increased deployment of, and dependence on, modern bioenergy (i.e., non traditional bioenergy that is produced centrally to service communities rather than individual  household production for heat and cooking), with some models projecting up to 95 EJ per year by  2030, and up to 245 EJ per year by 2050. Models universally project that the majority of agriculture  and forestry mitigation, and bioenergy primary energy, will occur in developing and transitional  economies (Section 6.3.5).  More recently, the literature has begun analyzing more realiztic policy contexts. This work has  identified a number of policy coordination and implementation issues. There are many dimensions  to policy coordination: technologies, sectors, regions, climate and non climate policies, and timing.  There are three prominent issues. First, there is coordination between mitigation activities. For  instance, increased bioenergy incentives without global terrestrial carbon stock incentives or global  forest protection policy, could result in substantial land conversion and emissions with large scale  deployment of energy crops. The projected emissions come primarily from the displacement of  pasture, grassland, and natural forest (Sections 6.3.5 and 11.4.3). Energy cropland expansion also  results in non energy cropland conversion. These studies find that ignoring land conversion  emissions with energy crop expansion, results in the need for deeper emissions reductions in the  fossil and industrial sectors, and increased total mitigation costs. However, illustrative scenarios by  (Calvin et al., 2013a) suggest that extensive forest protection policies may be needed for managing  bioenergy driven deforestation. Note that providing energy crops, especially while protecting  terrestrial carbon stocks, could result in a significant increase in food prices, potentially further  exacerbated if also expanding forests (Wise et al., 2009; Popp et al., 2011; Reilly et al., 2012; Calvin  et al., 2013a see also Sections 11.4.3 and 11.13.7). In addition to competition between energy crops  and forest carbon strategies, there is also competition between avoided deforestation and  afforestation mitigation strategies, but synergies between forest management and afforestation  (Rose and Sohngen, 2011). Bioenergy sustainability policies across sectors also need to be  coordinated (Frank et al., 2013).  The second major concern is coordination of mitigation activity over time. The analyses noted in the  previous paragraph assume the ability to globally protect or incentivize all, or a portion, of forest  carbon stocks. A few studies to date have evaluated the implications of staggered forest carbon  incentives   across regions and forest carbon activities. For instance, (Calvin et al., 2009) estimate  land CO2 emissions increases of 4 and 6 GtCO2/yr in 2030 and 2050, respectively, from scenarios with  staggered global regional climate policies that include forest carbon incentives. And, Rose and  Sohngen (2011) find that fragmented or delayed forest carbon policy could accelerate deforestation.  They project 60 100 GtCO2 of leakage by 2025 with a carbon price of 15 USD2010/tCO2 that rises at  5% per year. Regional agriculture and forestry mitigation supply costs are also affected by regional  participation/non participation, with non participating regions potentially increasing the mitigation  costs for participating regions (Golub et al., 2009). Staggered adoption of land mitigation policies will  likely have institutional and socioeconomic implications as well (Madlener et al., 2006). Institutional  issues, especially clarification of land tenure and property rights and equity issues (Section 11.7), will  also be critical for successful land mitigation in forestry over time (Palmer, 2011; Gupta, 2012;  Karsenty et al., 2014).      66 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   Finally, the type of incentive structure has implications. International land related mitigation  projects are currently regarded as high risk carbon market investments, which may affect market  appeal. Also, mitigation scenarios assume that all emissions and sequestration changes are priced  (similar to capping all emissions). However, mitigation, especially in agriculture and forestry, may be  sought through voluntary markets, where mitigation suppliers choose whether to participate  (Section 11.10). For instance, Rose et al. (2013) estimate reduced mitigation potential, as well as  over crediting, for United States agriculture and forestry with voluntary mitigation supply incentives,  e.g., mitigation decreased 25 55% at 15 USD2010/tCO2eq due to non participant leakage and non additional crediting.  11.9.2    Implications of transformation pathways for the AFOLU sector  Transformation pathways indicate that a combination of forces can result in very different projected  landscapes relative to today, even in baseline scenarios (Section 6.3.5). For instance, (Popp et al.,  2013) evaluate three models, and show that projected 2030 baseline changes from today alone vary  sharply across models in all regions (Figure 11.19). See Section 6.3.5 for global land cover change  results for a broader set of studies and policy contexts. In the examples in Figure 11.19, projections  exhibit growth and reductions in both non energy cropland (e.g., ASIA), and energy cropland (e.g.,  ASIA, OECD 1990, EIT). Furthermore, different kinds of land are converted when baseline cropland  expands (e.g., MAF). Mitigation generally induces greater land cover changes than in baseline  scenarios, but there are very different potential transformation visions. Overall, it is difficult to  generalize on regional land cover effects of mitigation. For the same atmospheric concentration  goal, some models convert significant area, some do not. There is energy cropland expansion in  many regions that supports the production of bioenergy. Less consistent is the response of forest  land, primarily due to differences in the land carbon options/policies modelled (Section 6.3.5).  Finally, there is relatively modest additional land conversion in the 450 ppm, compared to the 550  ppm, scenarios, which is consistent with the declining role of land related mitigation with policy  stringency.      67 of 179      Final Draft   Chapter 11  IPCC WGIII AR5     Figure 11.19. Regional land cover change by 2030 from 2005 from three models for baseline (left) and idealized policy implementation 550 ppm CO2eq (centre) and 450 ppm CO2eq (right) scenarios. (Popp et al., 2013). The implications of transformation pathway scenarios with large regional expansion of forest cover  for carbon sequestration, depends in part on how the forest area increases (Figure 11.19; Popp et  al., 2013). If forest areas increase through the expansion of natural vegetation, biodiversity and a  range of other ecosystem services provided by forests could be enhanced. If afforestation occurs  through large scale plantation, however, some negative impacts on biodiversity, water, and other  ecosystem services could arise, depending on what land cover the plantation replaces and the  rotation time (Section 11.7). Similar issues arise with large scale bioenergy, and environmental  impacts of energy crop plantations, which largely depend upon where, how, and at what scale they  are implemented, and how they are managed (Davis et al., 2013; see Section 11.13.6). Not  surprisingly, the realiztic policy coordination and implementation issues discussed in Section 11.9.1  could have significant land use consequences, and additional policy design research is essential to  better characterize mitigation costs, net emissions, and other social implications.  11.9.3    Implications of transformation pathways for sustainable development  The implications of the transformation pathways on sustainable development are context  and time specific. A detailed discussion of the implications of large scale LUC, competition between different      68 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   demands for land, and the feedbacks between LUC and other services provided by land is provided  in Section 11.4, potential co benefits and adverse side effects are discussed in Section 11.7, and  Section 6.6 compares potential co benefits and adverse side effects across sectors, while Section  11.8 presents the opportunities and barriers for promoting AFOLU mitigation activities in the future.  Finally, Section 11.13 discusses the specific implications of increasing bioenergy crops.  11.10   Sectoral policies  Climate change and different policy and management choices interact. The interrelations are  particularly strong in agriculture and forestry: climate has a strong influence on these sectors that  also constitute sources of GHG as well as sinks (Golub et al., 2009). The land provides a multitude of  ecosystem services, climate change mitigation being just one of many services that are vital to  human well being. The nature of the sector means that there are, potentially, many barriers and  opportunities as well as a wide range of potential impacts related to the implementation of AFOLU  mitigation options (Sections 11.7 and 11.8). Successful mitigation policies need to consider how to  address the multi functionality of the sector. Furthermore, physical environmental limitations are  central for the implementation of mitigation options and associated policies (Pretty, 2013). The cost effectiveness of different measures is hampered by regional variability. National and international  agricultural and forest climate policies have the potential to redefine the opportunity costs of  international land use in ways that either complement or hinder the attainment of climate change  mitigation goals (Golub et al., 2009). Policy interactions could be synergistic (e.g., research and  development investments and economic incentives for integrated production systems) or conflicting  (e.g., policies promoting land conversion vs. conservation policies) across the sector (see Table  11.11). Additionally, adequate policies are needed to orient practices in agriculture and in forestry  toward global sharing of innovative technologies for the efficient use of land resources to support  effective mitigation options (see Table 11.2).  Forty three countries in total (as of December 2010) have proposed NAMAs to the UNFCCC.  Agriculture and forestry activities were considered as ways to reduce their GHG emissions in 59 and  94% of the proposed NAMAs. For the least developed countries, the forestry sector was quoted in all  the NAMAs, while the agricultural sector was represented in 70% of the NAMAs (Bockel et al., 2010).  Policies related to the AFOLU sector that affect mitigation are discussed below according to the  instruments through which they may be implemented (economic incentives, regulatory and control  approaches, information, communication and outreach, research and development). Economic  incentives (e.g., special credit lines for low carbon agriculture, sustainable agriculture and forestry  practices, tradable credits, payment for ecosystem services) and regulatory approaches (e.g.,  enforcement of environmental law to reduce deforestation, set aside policies, air and water  pollution control reducing nitrate load and N2O emissions) have been effective in different cases.  Investments in research, development, and diffusion (e.g., improved fertilizer use efficiency,  livestock improvement, better forestry management practices) could result in positive and  synergistic impacts for adaptation and mitigation (Section 11.5). Emphasis is given to REDD+,  considering its development in recent years, and relevance for the discussion of mitigation policies in  the forestry sector. 11.10.1    Economic incentives  Emissions trading: Carbon markets occur under both compliance schemes and as voluntary  programmes. A review of existing offset programmes was provided by Kollmuss et al. (2010). More  details are also presented in Section 15.5.3. Compliance markets (Kyoto offset mechanisms,  mandatory cap and trade systems, and other mandatory GHG systems) are created and regulated by  mandatory national, regional, or international carbon reduction regimes (Kollmuss et al., 2010). The  three Kyoto Protocol mechanisms are very important for the regulatory market: CDM, Joint  Implementation (JI) and the Emissions Trading System (ETS). Currently, AFOLU projects in CDM only      69 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   include specific types of projects: for agriculture   methane avoidance (manure management),  biogas projects, agricultural residues for biomass energy; for forestry   reforestation and  afforestation. By June 2013, the total number of registered CDM projects was 6989, 0.6 and 2.5% of  this total being related to afforestation/reforestation and agriculture, respectively (UNFCCC   CDM);  therefore, finance streams coming from A/R CDM Projects are marginal from the global perspective.  An analysis of A/R CDM projects suggests crucial factors for the performance of these projects are  initial funding support, design, and implementation guided by large organizations with technical  expertise, occurrence on private land (land with secured property rights attached), and that most  revenue from Certified Emission Reductions (CERs) is directed back to local communities (Thomas et  al., 2010).  There are compliance schemes outside the scope of the Kyoto Protocol, but these are carried out  exclusively at the national level, with no relation to the Protocol. In 2011, Australia started the  Carbon Farming Initiative (CFI) that allows farmers and investors to generate tradable carbon offsets  from farmland and forestry projects. This followed several years of state based and voluntary  activity that resulted in 65,000 ha of A/R projects (Mitchell et al., 2012). Another example is The  Western Arnhem Land Fire Abatement Project (WALFA), a fire management project in Australia  initiated in 2006 that produces a tradable carbon offset through the application of improved fire  management using traditional management practices of indigenous land owners (Whitehead et al.,  2008; Bradstock et al., 2012). Alberta s offset credit system is a compliance mechanism for entities  regulated under the province s mandatory GHG emission intensity based regulatory system  (Kollmuss et al., 2010). In the case of N2O emissions from agriculture, the Alberta Quantification  Protocol for Agricultural N2O Emissions Reductions issues C offset credits for on farm reductions of  N2O emissions and fuel use associated with the management of fertilizer, manure, and crop residues  for each crop type grown. Other N2O emission reduction protocols (e.g., Millar et al., 2010) are being  considered for the Verified Carbon Standard, the American Carbon Registry, and the Climate Action  Reserve (Robertson et al., 2013).  Agriculture and Forestry activities are not covered by the European Union Emissions Trading Scheme  (EU ETS), which is by far the largest existing carbon market. Forestry entered the New Zealand Kyoto  Protocol compliant ETS in 2008, and mandatory reporting for agriculture began in 2012, although full  entry of agriculture into the scheme has been delayed indefinitely. Agricultural participants include  meat processors, dairy processors, nitrogen fertilizer manufacturers and importers, and live animal  exporters, although some exemptions apply (Government of New Zealand). California s Cap and Trade Regulation took effect on January 1, 2012, with amendments to the Regulation effective  September 1, 2012. The enforceable compliance obligation began on January 1, 2013. Four types of  projects were approved as eligible to generate carbon credits to regulated emitters in California:  avoidance of methane emissions from installation of anaerobic digesters on farms, carbon  sequestration in urban and rural forestry, and destruction of ozone depleting substances (California  Environmental Protection Agency).  Voluntary carbon markets operate outside of the compliance markets. By enabling businesses,  governments, non governmental organizations (NGOs), and individuals to purchase offsets that  were created either in the voluntary market or through the CDM, they can offset their emissions  (Verified or Voluntary Emissions Reductions (VERs)). The voluntary offset market includes a wide  range of programmes, entities, standards, and protocols (e.g., Community & Biodiversity Standards,  Gold Standard, Plan Vivo among others) to improve the quality and credibility of voluntary offsets.  The most common incentives for the quantity buyers of carbon credits in the private sector are  corporate social responsibility and public relations. Forest projects are increasing in the voluntary  markets. Transactions of carbon credits from this sector totalled 133 million USD in 2010, 95% of  them in voluntary markets (Peters Stanley et al., 2011).  Reducing emissions from deforestation; reducing emissions from forest degradation; conservation of  forest carbon stocks; sustainable management of forests; and enhancement of forest carbon stocks      70 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   (REDD+): REDD+ consists of forest related activities implemented voluntarily by developing countries  that may, in isolation or jointly lead to significant climate change mitigation11. REDD+ was introduced  in the agenda of the UNFCCC in 2005, and has since evolved to an improved understanding of the  potential positive and negative impacts, methodological issues, safeguards, and financial aspects  associated with REDD+ implementation. Here, we first address the REDD+ discussions under the  UNFCCC, but also introduce other REDD+ related initiatives. The novel aspects of REDD+ under the  Convention, relative to previous forest related mitigation efforts by developing countries under the  UNFCCC are its national and broader coverage, in contrast to project based mitigation activities12  (e.g., under the CDM of the Kyoto Protocol). Its main innovation is its results based approach, in  which payments are done ex post in relation to a mitigation outcome already achieved, as opposed  to project based activities, where financing is provided ex ante in relation to expected outcomes. A  phased approach to REDD+ was agreed at the UNFCCC, building from the development of national  strategies or action plans, policies and measures, and evolving into results based actions that should  be fully measured, reported, and verified   MRV (UNFCCC Dec. 1/16). REDD+ payments are expected  for results based actions, and although the UNFCCC has already identified potential ways to pay for  these13, the financing architecture for the REDD+ mechanism is still under negotiation under the  UNFCCC.   Meanwhile, and as a result to the explicit request from the UNFCCC for early actions in REDD+,  different regional and global programmes and partnerships address forest management and  conservation and readiness for REDD+ (Table 11.11), while some REDD+ strategies have started in  countries with significant forest cover (see Box 11.7 for examples). Initiatives include multilateral  activities (e.g., UN REDD Programme, Forest Carbon Partnership Facility, Forest Investment  Program), bilateral activities (e.g., Tanzania Norway, Indonesia Norway), country driven initiatives  (in addition to 16 UN REDD Programme countries, the Programme also supports 31 other partner  countries across Africa, Asia Pacific, and Latin America and the Caribbean; UN REDD Programme    Support to Partner Countries).  REDD+ can be a very cost effective option for mitigating climate change and could supply a large  share of global abatement of emissions from the AFOLU sector from the extensive margin of  forestry, especially through reducing deforestation in tropical regions (Golub et al., 2009). Issues of  concern for REDD+ implementation have been captured under REDD+ safeguards in line with the  UNFCCC Cancun Agreement. To respond to the requirements outlined in the UNFCCC agreement, a  number of steps need to be considered in the development of country level safeguard information  systems for REDD+ including defining social and environmental objectives, assessing potential  benefits and risks from REDD+, assessing current safeguard systems, drafting a strategic plan or  policy, and establishing a governance system.                                                               Decision 1/CP.16 (FCCC/CP/2010/7/Add.1 , paragraph 70)  Encourages developing countries to contribute to  mitigation actions in the forest sector by undertaking the following activities, as deemed appropriate by each  Party and in accordance with their respective capabilities and national circumstances   reducing emissions  from deforestation; reducing emissions from forest degradation; conservation of forest carbon stocks;  sustainable management of forests; and enhancement of forest carbon stocks .  12 Decision 1/CP.16 (FCCC/CP/2010/7/Add.1 , paragraph 73)  Decides that the activities undertaken by Parties  referred to in paragraph 70 above should be implemented in phases, beginning with the development of  national strategies or action plans, policies and measures, and capacity building, followed by the  implementation of national policies and measures and national strategies or action plans that could involve  further capacity building, technology development and transfer and results based demonstration activities,  and evolving into results based actions that should be fully measured, reported and verified .  13 Decision 2/CP.17 (FCCC/CP/2011/9/Add.1, paragraph 65)  Agrees that results based finance provided to  developing country Parties that is new, additional and predictable may come from a wide variety of sources,  public and private, bilateral and multilateral, including alternative sources .  11     71 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   A growing body of literature has analyzed different aspects related to the implementation,  effectiveness, and scale of REDD+, as well as the interactions with other social and environmental  co benefits (e.g., (Angelsen et al., 2008; Levin et al., 2008; Larson, 2011; Gardner et al., 2012)).  Results based REDD+ actions, which are entitled to results based finance, require internationally  agreed rules for MRV. Measuring and monitoring the results will most likely rely on a combination of  remotely sensed data with ground based inventories. The design of a REDD policy framework (and  specifically its rules) can have a significant impact on monitoring costs (Angelsen et al., 2008;  Böttcher et al., 2009). Forest governance is another central aspect in recent studies, including  debate on decentralization of forest management, logging concessions in public owned  commercially valuable forests, and timber certification, primarily in temperate forests (Agrawal et  al., 2008). Although the majority of forests continue to be formally owned by governments, there  are indications that the effectiveness of forest governance is increasingly independent of formal  ownership (Agrawal et al., 2008). However, there are widespread concerns that REDD+ will increase  costs on forest dependent peoples and in this context, stakeholders rights, including rights to  continue sustainable traditional land use practices, appear as a precondition for REDD development  (Phelps et al., 2010b).  Some studies have addressed the potential displacement of emissions (i.e., a reduction of emissions  in one place resulting in an increase of emissions elsewhere (or leakage)  (Santilli et al., 2005; Forner  et al., 2006; Nabuurs et al., 2007; Strassburg et al., 2008, 2009; Section 11.3.2). The national  coverage of REDD+ might ameliorate the issue of emissions displacement, a major drawback of  project based approaches (Herold and Skutsch, 2011). To minimize transnational displacement of  emissions, REDD+ needs to stimulate the largest number of developing countries to engage  voluntarily. There are also concerns about the impacts of REDD+ design and implementation options  on biodiversity conservation, as areas of high C content and high biodiversity are not necessarily  coincident. Some aspects of REDD+ implementation that might affect biodiversity include site  selection, management strategies, and stakeholder engagement (Harvey et al., 2010). From a  conservation biology perspective, it is also relevant where the displacement occurs, as deforestation  and exploitation of natural resources could move from areas of low conservation value to those of  higher conservation value, or to other natural ecosystems, threatening species native to these  ecosystems (Harvey et al., 2010). Additionally, transnational displacement could cause deforestation  to move into relatively intact areas of high biodiversity value, or into countries that currently have  little deforestation (Putz and Redford, 2009).          72 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   Box 11.7 Examples of REDD+ initiatives at national scale in different regions with significant extension of forest cover Amazon Fund: The Amazon Fund in Brazil was officially created in 2008 by a presidential decree. The  Brazilian Economic and Social Development Bank (BNDES) was given the responsibility of managing  it. The Norwegian government played a key role in creating the fund by donating funds to the  initiative in 2009. Since then, the Amazon Fund has received funds from two more donors: the  Federal Republic of Germany and Petrobrás, Brazil s largest oil company. As of February 2013, 1.03  billion USD has been pledged, with 227 million USD approved for activities (Amazon Fund).  UN REDD Democratic Republic of Congo: The Congo Basin rainforests are the second largest after  Amazonia. In 2009, Democratic Republic of the Congo (DRC), with support of UN REDD Programme  and Forest Carbon Partnership Facility (FCPC), started planning the implementation stages of REDD+  readiness. The initial DRC National Programme transitioned into the full National Programme  (Readiness Plan) after it was approved by the UN REDD Programme Policy Board in 2010 (UN REDD  Programme). The budget comprises 5.5 million USD2010 and timeframe is 2010 2013.  Indonesia Norway REDD+ Partnership: In 2010, the Indonesia Norway REDD+ Partnership was  established through an agreement between governments of the two countries. The objective was to  support Indonesia s efforts to reduce emissions from deforestation and degradation of forests and  peatlands. Indonesia agreed to take systematic and decisive action to reduce its forest and peat related GHG emissions, whereas Norway agreed to support those efforts by making available up to 1  billion USD2010, exclusively on a payment for results basis over the next few years  (UN REDD  Programme). In 2013, Indonesia s government has extended the moratorium on new forest  concessions for a further two years, protecting an additional 14.5 Mha of forest.  Taxes, charges, subsidies: Financial regulations are another approach to pollution control. A range of  instruments can be used: pollution charges, taxes on emission, taxes on inputs, and subsidies  (Jakobsson et al., 2002). Nitrogen taxes are one possible instrument, since agricultural emissions of  N2O mainly derive from the use of nitrogenous fertilizers. An analysis of the tax on the nitrogen  content of synthetic fertilizers in Sweden indicated that direct N2O emissions from agricultural soils  in Sweden (the tax abolished in 2010) would have been on average 160 tons or 2% higher without  the tax (Mohlin, 2013). Additionally, the study showed that removal of the N tax could completely  counteract the decreases in CO2 emissions expected from the future tax increase on agricultural CO2.  The mitigation potential of GHG weighted consumption taxes on animal food products was  estimated for the EU using a model of food consumption (Wirsenius et al., 2011). A 7% reduction of  current GHG emission in European Union (EU) agriculture was estimated with a GHG weighted tax  on animal food products of 79 USD2010/tCO2eq (60 EUR2010/tCO2eq). Low interest loans can also  support the transition to sustainable agricultural practices as currently implemented in Brazil, the  second largest food exporter, through the national programme (launched in 2010; Plano ABC).  11.10.2    Regulatory and Control Approaches  Deforestation control and land planning (protected areas and land sparing/set aside policies): The  rate of deforestation in the tropics and relative contribution to anthropogenic carbon emissions has  been declining (Houghton, 2012; see Section 11.2 for details). Public policies have had a significant  impact by reducing deforestation rates in some tropical countries (see, e.g., Box 11.8).          73 of 179      Final Draft   Box 11.8 Deforestation control in Brazil Chapter 11  IPCC WGIII AR5   The Brazilian Action Plan for the Prevention and Control of Deforestation in the Legal Amazon  (PPCDAm) includes coordinated efforts among federal, state, and municipal governments, and civil  organizations, remote sensing monitoring, significant increase of new protected areas (Soares Filho  et al., 2010), and combination of economic and regulatory approaches. For example, since 2008  federal government imposed sanctions to municipalities with very high deforestation rates, subsidies  were cut and new credit policies made rural credit dependent on compliance with environmental  legislation (Macedo et al., 2012; Nolte et al., 2013).  Since agricultural expansion is one of the drivers of deforestation (especially in tropical regions), one  central question is if intensification of agriculture reduces cultivated areas and results in land sparing  by concentrating production on other land. Land sparing would allow released lands to sequester  carbon, provide other environmental services, and protect biodiversity (Fischer et al., 2008). In the  United States, over 13 Mha of former cropland are enrolled in the US Conservation Reserve Program  (CRP), with biodiversity, water quality, and carbon sequestration benefits (Gelfand et al., 2011). In  1999, China launched the Grain for Green Program or Sloping Land Conversion Program as a national  measure to increase vegetation cover and reduce erosion. Cropland and barren land were targeted  and over 20 Mha of land were converted into mostly tree based plantations. Over its first 10 years  between ~800 to 1700 MtCO2eq (Moberg, 2011) were sequestered.  Environmental regulation (GHG and their precursors emissions control): In many developed  countries, environmental concerns related to water and air pollution since the mid 1990s led to the  adoption of laws and regulations that now mandate improved agricultural nutrient management  planning (Jakobsson et al., 2002). Some policy initiatives deal indirectly with N leakages and thus  promote the reduction of N2O emissions. The EU Nitrates Directive (1991) sets limits on the use of  fertilizer N and animal manure N in nitrate vulnerable zones. Across the 27 EU Member States,  39.6% of territory is subject to related action programmes. However, in terms of the effectiveness of  environmental policies and agriculture, there has been considerable progress in controlling point  pollution, but efforts to control non point pollution of nutrients have been less successful, and  potential synergies from various soil management strategies could be better exploited. Emission  targets for the AFOLU sector were also introduced by different countries (e.g., Climate Change Acts  in UK and Scotland; European Union).   Bioenergy targets: Many countries worldwide, by 2012, have set targets or mandates or both for  bioenergy, to deliver to multiple policy objectives, such as climate change mitigation, energy  security, and rural development. The bulk of mandates continue to come from the EU 27 but 13  countries in the Americas, 12 in Asia Pacific, and 8 in Africa have mandates or targets in place  (Petersen, 2008); www.biofuelsdigest.com). For the sustainability of biofuels implementation, land use planning and governance are central (Tilman et al., 2009), as related policy and legislation, e.g.,  in agriculture, forestry, environment and trade, can strongly influence the development of bioenergy  programmes (Jull et al., 2007). A recent study analyzed the consequences of renewable targets of EU  member states on the CO2 sink of EU forests, and indicated a decrease in the forest sink by 4 11%  (Böttcher et al., 2012). Another possible tradeoff of biofuel targets is related to international trade.  Global trade in biofuels might have a major impact on other commodity markets (e.g., vegetable oils  or animal fodder) and has already caused a number of trade disputes, because of subsidies and non tariff barriers (Oosterveer and Mol, 2010).  11.10.3    Information schemes  Acceptability by land managers and practicability of mitigation measures (Table 11.2) need to be  considered, because the efficiency of a policy is determined by the cost of achieving a given goal  (Sections 11.4.5; 11.7). Therefore, costs related to education and communication of policies should  be taken into account (Jakobsson et al., 2002). Organizations created to foster the use of science in      74 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   environmental policy, management, and education can facilitate the flow of information from  science to society, increasing awareness of environmental problems (Osmond et al., 2010). In the  agriculture sector, non profit conservation organizations (e.g., The Sustainable Agriculture Network  (SAN)) and governments (e.g., Farming for a Better Climate, Scotland) promote the social and  environmental sustainability of activities by developing standards and educational campaigns.   Certification schemes also support sustainable agricultural practices (Sections 11.4.5; 11.7). Climate friendly criteria reinforce existing certification criteria and provide additional value. Different  certification systems also consider improvements in forest management, reduced deforestation and  carbon uptake by regrowth, reforestation, agroforestry, and sustainable agriculture. In the last 20  years, forest certification has been developed as an instrument for promoting sustainable forest  management. Certification schemes encompass all forest types, but there is a concentration in  temperate forests (Durst et al., 2006). Approximately 8% of global forest area has been certified  under a variety of schemes and 25% of global industrial roundwood comes from certified forests  (FAO, 2009b). Less than 2% of forest area in African, Asian, and tropical American forests are  certified, and most certified forests (82%) are large and managed by the private sector (ITTO, 2008).  In the forestry sector, many governments have worked towards a common understanding of  sustainable forest management (Auld et al., 2008). Certification bodies certify that farms or groups  comply with standards and policies (e.g., Rainforest Alliance Certified). In some, specific voluntary  climate change adaptation and mitigation criteria are included.  Forest certification as an instrument to promote sustainable forest management (SFM) and  biodiversity maintenance was evaluated by (Rametsteiner and Simula, 2003) they indicated that  standards used for issuing certificates upon compliance are diverse, but often include elements that  set higher than minimum standards.   Further, independent audits are an incentive for improving forest management. In spite of many  difficulties, forest certification was considered successful in raising awareness, disseminating  knowledge on the SFM concept worldwide, and providing a tool for a range of applications other  than the assessment of sustainability, e.g., verifying carbon sinks. Another evaluation of certification  schemes for conserving biodiversity (Harvey et al., 2008) indicated some constraints that probably  also apply to climate friendly certification: weakness of compliance or enforcement of standards,  transaction costs and paperwork often limit participation, and incentives are insufficient to attract  high levels of participation. Biofuel certification is a specific case as there are multiple actors and  several successive segments of biofuel production pathways: feedstock production, conversion of  the feedstock to biofuels, wholesale trade, retail, and use of biofuels in engines (Gnansounou, 2011).  Because of the length and the complexity of biofuel supply chains assessing sustainability is  challenging (Kaphengst et al., 2009)      75 of 179      Final Draft   Chapter 11  IPCC WGIII AR5   Table 11.11 Some regional and global programs and partnerships related to illegal logging, forest management and conservation and REDD+ Programme/Institution/Source Forest Law Enforcement and Governance  (FLEG) /  World Bank/  www.worldbank.org/eapfleg  Improving Forest Law Enforcement and  Governance in the European  Neighbourhood Policy East Countries and  Russia (ENPI FLEG)/EU/  www.enpi fleg.org  Forest Law Enforcement, Governance and  Trade (FLEGT)/European Union/  www.euflegt.efi.int/  Context  Illegal logging and lack of appropriate forest governance are  major obstacle to countries to alleviate poverty, to develop  their natural resources and to protect global and local  environmental services and values   Regional cooperation in the European Neighbourhood Policy  Initiative East Countries (Armenia, Azerbaijan, Belarus,  Georgia, Moldova, and Ukraine), and Russia following up on  the St. Petersburg Declaration  Illegal logging has a devastating impact on some of the world s  most valuable forests. It can have not only serious  environmental, but also economic and social consequences.  Objectives and Strategies Support regional forest law enforcement and governance (FLEG) Support governments, civil society, and the private sector in participating countries in the  development of sound and sustainable forest management practices, including reducing the  incidence of illegal forestry activities.  Program on Forests (PROFOR)/multiple  donors including the European Union,  European countries, Japan and the World  Bank/  www.profor.info  UN REDD Programme/United Nations/  www.un redd.org  Well managed forests have the potential to reduce poverty,  spur economic development, and contribute to a healthy local  and global environment  REDD+ Partnership/International effort (50  different countries)/  www.reddpluspartnership.org  Forest Investment Program (FIP)/Strategic  Climate Fund (a multi donor Trust Fund  within the Climate Investment Funds)  www.climateinvestmentfunds.org/cif/  Forest Carbon Partnership (FCPF)/World  Bank/  www.forestcarbonpartnership.org  Indonesia Australia Forest Carbon  Partnership/  www.iafcp.or.id  The UN collaborative initiative on Reducing Emissions from  Deforestation and forest Degradation (REDD) in developing  countries was launched in 2008 and builds on the convening  role and technical expertise of the FAO, UNDP, and the UNEP.   The UNFCCC has encouraged the Parties to coordinate their  efforts to reduce emissions from deforestation and forest  degradation. As a response, countries attending the March  2010 International Conference on the Major Forest Basins,  hosted by the Government of France, agreed on the need to  forge a strong international partnership on REDD+.   Reduction of deforestation and forest degradation and  promotion of sustainable forest management, leading to  emission reductions and the protection of carbon terrestrial  sinks.  Assistance to developing countries to implement REDD+ by  providing value to standing forests.  Australia s assistance on climate change and builds on long term practical cooperation between Indonesia and Australia.   Exclude illegal timber from markets, to improve the supply of legal timber and to increase the  demand for responsible wood products. Central elements are trade accords to ensure legal  timber trade and support good forest governance in the partner countries. There are a number  of countries in Africa, Asia, South and Central America currently negotiating FLEGT Voluntary  Partnership Agreements (VPAs) with the European Union.   Provide in depth analysis and technical assistance on key forest questions related to livelihoods,  governance, financing, and cross sectoral issues. PROFOR activities comprise analytical and  knowledge generating work that support the strategy s objectives of enhancing forests'  contribution to poverty reduction, sustainable development and the protection of  environmental services.  The Programme supports national REDD+ readiness efforts in 46 partner countries (Africa, Asia Pacific, and Latin America) through (i) direct support to the design and implementation of REDD+  National Programmes; and (ii) complementary support to national REDD+ action (common  approaches, analyses, methodologies, tools, data, and best practices).   The REDD+ Partnership serves as an interim platform for its partner countries to scale up actions  and finance for REDD+ initiatives in developing countries (including improving the effectiveness,  efficiency, transparency, and coordination of REDD+ and financial instruments), to facilitate  knowledge transfer, capacity enhancement, mitigation actions and technology development,  and transfer among others.  Support developing countries  efforts to REDD and promote sustainable forest management by  providing scaled up financing to developing countries for readiness reforms and public and  private investments, identified through national REDD readiness or equivalent strategies.  Builds the capacity of developing countries to reduce emissions from deforestation and forest  degradation and to tap into any future system of REDD+.  The Partnership supports strategic policy dialogue on climate change, the development of  Indonesia's National Carbon Accounting System, and implementing demonstration activities in  Central Kalimantan.        76 of 179     Final Draft   Chapter 11  IPCC WGIII AR5   11.10.4    Voluntary actions and agreements  Innovative agricultural practices and technologies can play a central role in climate change  mitigation and adaptation, with policy and institutional changes needed to encourage the innovation  and diffusion of these practices and technologies to developing countries. Under the UNFCCC, the  2007 Bali Action Plan identified technology development and transfer as a priority area. A  Technology Mechanism was established by Parties at the COP16 in 2010  to facilitate the  implementation of enhanced action on technology development and transfer, to support action on  mitigation and adaptation, in order to achieve the full implementation of the Convention  (UNFCCC).  For agriculture, (Burney et al., 2010) indicated that investment in yield improvements compared  favourably with other commonly proposed mitigation strategies.  Additionally, adaptation measures in agriculture can also generate significant mitigation effects.  Lobell et al. (2013)investigated the co benefits of adaptation measures on farm level that reduced  GHG emissions from LUC. The study focused on investments in research for developing and  deploying new technologies (e.g., disease resistant or drought tolerant crops, or soil management  techniques). It concluded that broad based efforts to adapt agriculture to climate change have  mitigation co benefits that are associated with lower costs than many activities focusing on  mitigation, especially in developed countries.  11.11   Gaps in knowledge and data  Data and knowledge gaps include:  Improved global high resolution data sets of crop production systems (including crop  rotations, variety selection, fertilization practices, and tillage practices), grazing areas  (including quality, intensity of use, management), and freshwater fisheries and aquaculture,  also comprising subsistence farming.  Globally standardized and homogenized data on soil as well as forest degradation and a  better understanding of the effects of degradation on carbon balances and productivity.  Improved understanding of the mitigation potential, interplay, and costs as well as  environmental and socio economic consequences of land use based mitigation options such  as improved agricultural management, forest conservation, bioenergy production, and  afforestation on the national, regional, and global scale.  Better understanding of the effect of changes in climate parameters, rising CO2  concentrations and N deposition on productivity and carbon stocks of different types of  ecosystems, and the related consequences for land based climate change mitigation  potentials.  11.12   Frequently Asked Questions  FAQ 11.1 How much does AFOLU contribute to GHG emissions and how is this changing?  Agriculture and land use change, mainly deforestation of tropical forests, contribute greatly to  anthropogenic greenhouse gas emissions and are expected to remain important during the 21st  century. Annual GHG emissions (mainly CH4 and N2O) from agricultural production in 2000 2010  were estimated at 5.0 5.8 GtCO2eq/yr, comprising about 10 12% of global anthropogenic emissions.  Annual GHG flux from land use and land use change activities accounted for approximately 4.3 5.5  GtCO2eq/yr, or about 9 11% of total anthropogenic greenhouse gas emissions. The total  contribution of the AFOLU sector to anthropogenic emissions is therefore around one quarter of the  global anthropogenic total.      77 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   FAQ 11.2 How will mitigation actions in AFOLU affect GHG emissions over different  timescales?  There are many mitigation options in the AFOLU sector that are already being implemented, e.g.,  afforestation, reducing deforestation, cropland and grazing land management, fire management,  and improved livestock breeds and diets. These can be implemented now. Others (such as some  forms of biotechnology and livestock dietary additives) are still in development and may not be  applicable for a number of years. In terms of the mode of action of the options, in common with  other sectors, non CO2 greenhouse gas emission reduction is immediate and permanent. However, a  large portion of the mitigation potential in the AFOLU sector is carbon sequestration in soils and  vegetation. This mitigation potential differs, in that the options are time limited (the potential  saturates), and the enhanced carbon stocks created are reversible and non permanent. There is,  therefore, a significant time component in the realization and the duration of much of the mitigation  potential available in the AFOLU sector.  FAQ 11.3 What is the potential of the main mitigation options in AFOLU for reducing GHG  emissions?  In general, available top down estimates of costs and potentials suggest that AFOLU mitigation will  be an important part of a global cost effective abatement strategy. However, potentials and costs of  these mitigation options differ greatly by activity, regions, system boundaries, and the time horizon.  Especially, forestry mitigation options   including reduced deforestation, forest management,  afforestation, and agro forestry   are estimated to contribute 0.2 13.8 GtCO2/yr of economically  viable abatement in 2030 at carbon prices up to 100 USD/tCO2eq. Global economic mitigation  potentials in agriculture in 2030 are estimated to be up to 0.5 10.6 GtCO2eq/yr. Besides supply side based mitigation, demand side mitigation options can have a significant impact on GHG emissions  from food production. Changes in diet towards plant based and hence less GHG intensive food can  result in GHG emission savings of 0.7 7.3 GtCO2eq/yr in 2050, depending on which GHGs and diets  are considered. Reducing food losses and waste in the supply chain from harvest to consumption  can reduce GHG emissions by 0.6 6.0 GtCO2eq/yr.  FAQ 11.4 Are there any co benefits associated with mitigation actions in AFOLU?  In several cases, the implementation of AFOLU mitigation measures may result in an improvement in  land management and therefore have socio economic, health, and environmental benefits: For  example, reducing deforestation, reforestation, and afforestation can improve local climatic  conditions, water quality, biodiversity conservation, and help to restore degraded or abandoned  land. Soil management to increase soil carbon sequestration may also reduce the amount of wind  and water erosion due to an increase in surface cover. Further considerations on economic co benefits are related to the access to carbon payments either within or outside the UNFCCC  agreements and new income opportunities especially in developing countries (particularly for  labour intensive mitigation options such as afforestation).  FAQ 11.5 What are the barriers to reducing emissions in AFOLU and how can these be  overcome?  There are many barriers to emission reduction. Firstly, mitigation practices may not be implemented  for economic reasons (e.g., market failures, need for capital investment to realize recurrent savings),  or a range of factors including risk related, political/bureaucratic, logistical, and educational/societal  barriers. Technological barriers can be overcome by research and development; logistical and  political/bureaucratic barriers can be overcome by better governance and institutions; education  barriers can be overcome through better education and extension networks; and risk related  barriers can be overcome, for example, through clarification of land tenure uncertainties.      78 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   11.13   Appendix Bioenergy: Climate effects, mitigation options, potential  and sustainability implications  11.13.1    Introduction  SRREN (IPCC, 2011) provided a comprehensive overview on bioenergy (Chum et al., 2011). However,  a specific bioenergy Appendix in the context of the AR5 report is necessary because (1) many of the  more stringent mitigation scenarios (resulting in 450 ppm, but also 550 ppm CO2eq concentration by  2100, see Section 11.9.1) heavily rely on a large scale deployment of bioenergy with carbon dioxide  capture and storage (BECCS); (2) there has been a large body of literature published since SRREN,  which complement and update the analysis presented in this last report; (3) bioenergy is important  for many chapters (Chapters 6; 7; 8; 10; 11), and also policy chapters, which makes it more useful to  treat it in a single section instead of in many scattered chapter sections throughout the report.  Chapter 11 is the appropriate location for the Appendix, as bioenergy analysis relies crucially on  land use assessments.  Bioenergy is energy derived from biomass, which can be deployed as solid, liquid, and gaseous fuels  for a wide range of uses, including transport, heating, electricity production, and cooking (Chum et  al., 2011). Bioenergy has a significant mitigation potential, but there are issues to consider, such as  the sustainability of practices and the efficiency of bioenergy systems (Chum et al., 2011). Bioenergy  systems can cause both positive and negative effects and their deployment needs to balance a range  of environmental, social, and economic objectives that are not always fully compatible. The  consequences of bioenergy implementation depend on (1) the technology used; (2) the location,  scales, and pace of implementation; (3) the land category used (forest, grassland, marginal lands,  and crop lands); and (4) the business models and practices adopted   including how these integrate  with or displace the existing land use.  As an update to the SRREN, this report presents (1) a more fine grained assessment of the technical  bioenergy potential reflecting diverse perspectives in the literature, (2) recent potential estimates on  technological solutions such as BECCS, (3) an in depth description of different lifecycle emission  accounting methods and their results; (4) a small increase in uncertainty on the future economic  bioenergy potential; (5) a comprehensive assessment of diverse livelihood and sustainability effects  of bioenergy deployment, identifying the need for systematic aggregation.  11.13.2    Technical bioenergy potential  The technical bioenergy potential, also known as the technical primary biomass potential for  bioenergy, is the amount of the theoretical bioenergy output obtainable by full implementation of  demonstrated technologies or practices (IPCC, 2011). Unfortunately there is no standard  methodology to estimate the technical bioenergy potential, which leads to diverging estimates.  Most of the recent studies estimating technical bioenergy potentials assume a  food/fibre first  principle  and exclude deforestation, eventually resulting in an estimate of the  environmentally  sustainable bioenergy potential  when a comprehensive range of environmental constraints is  considered (Batidzirai et al., 2012).  Recently published estimates that are based in this extended definition of global technical bioenergy  potentials in 2050 span a range of almost three orders of magnitude, from <50 EJ/yr to >1,000 EJ/yr  (Smeets et al., 2007; Field et al., 2008; Haberl et al., 2010; Batidzirai et al., 2012). For example,  SRREN reported global technical bioenergy potentials of 50 500 EJ/yr for the year 2050 (Chum et al.,  2011), and the Global Energy Assessment gave a range of 160 270 EJ/yr (Johansson et al., 2012). The  discussion following the publication of these global reports has not resulted in a consensus on the  magnitude of the future global technical bioenergy potential, but has helped to better understand  some of its many structural determinants (Wirsenius et al., 2011; Berndes, 2012; Erb et al., 2012a).  How much biomass for energy is technically available in the future depends on the evolution of a      79 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   multitude of social, political, and economic factors, e.g., land tenure and regulation, trade, and  technology (Dornburg et al., 2010).  Figure 11.20 shows estimates of the global technical bioenergy potential in 2050 by resource  categories. Ranges were obtained from assessing a large number of studies based on a food/fibre  first principle and various restrictions regarding resource limitations and environmental concerns but  no explicit cost considerations (Hoogwijk et al., 2005; Smeets et al., 2007; Smeets and Faaij, 2007;  van Vuuren et al., 2009; Hakala et al., 2009; Dornburg et al., 2010; Haberl et al., 2010, 2011a; Gregg  and Smith, 2010; Chum et al., 2011; GEA, 2012; Rogner et al., 2012)Most studies agree that the  technical bioenergy in 2050 is at least approximately 100 EJ/yr with some modelling assumptions  leading to estimates exceeding 500 EJ/yr (Smeets et al., 2007). As stated, different views about  sustainability and socio ecological constraints lead to very different estimates, with some studies  reporting much lower figures.  Figure 11.20. Global Technical Bioenergy Potential by main resource category for the year 2050. The figure shows the ranges in the estimates by major resource category of the global technical bioenergy potential. The color grading is intended to show qualitatively the degree of agreement in the estimates, from blue (large agreement in the literature) to purple (medium agreement) to red (small agreement). In addition, reducing traditional biomass demand by increasing its use efficiency could release the saved biomass for other energy purposes with large benefits from a sustainable development perspective.   As shown in Figure 11.20, the total technical bioenergy potential is composed of several resource  categories that differ in terms of their absolute potential, the span of the ranges which also reflect  the relative agreement/disagreement in the literature and the implications of utilizing them.  Regional differences which are not addressed here are also important as the relative size of each  biomass resource within the total potential and its absolute magnitude vary widely across countries  and world regions.  Forest and Agriculture residues. Forest residues (Smeets and Faaij, 2007; Smeets et al., 2007;  Dornburg et al., 2010; Haberl et al., 2010; Gregg and Smith, 2010; Rogner et al., 2012) include  residues from silvicultural thinning and logging; wood processing residues such as sawdust, bark, and      80 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   black liquor; and dead wood from natural disturbances, such as storms and insect outbreaks  (irregular source). The use of these resources is in general beneficial and any adverse side effects  can be mitigated by controlling residue removal rates considering biodiversity, climate, topography,  and soil factors. There is a near term tradeoff, particularly within temperate and boreal regions, in  that organic matter retains organic C for longer if residues are left to decompose slowly instead of  being used for energy. Agricultural residues (Smeets et al., 2007; Hakala et al., 2009; Haberl et al.,  2010, 2011a; Gregg and Smith, 2010; Chum et al., 2011; Rogner et al., 2012) include manure, harvest  residues (e.g., straw), and processing residues (e.g., rice husks from rice milling) and are also in  general beneficial. However, mitigating potential adverse side effects such as the loss of soil C associated to harvesting agriculture residues is more complex as they depend on the different crops,  climate, and soil conditions (Kochsiek and Knops, 2012; Repo et al., 2012). Alternative uses of  residues (bedding, use as fertilizer) need to be considered. Residues have varying collection and  processing costs (in both agriculture and forestry) depending on residue quality and dispersal, with  secondary residues often having the benefits of not being dispersed and having relatively constant  quality. Densification and storage technologies would enable cost effective collections over larger  areas. Optimization of crop rotation for food and bioenergy output and the use of residues in biogas  plants may result in higher bioenergy yields from residues without food energy competition.  Optimal forest harvesting is defined as the fraction of sustainable harvest levels (often set equal to  net annual increment) in forests available for wood extraction, which is additional to the projected  biomass demand for producing other forest products. This includes both biomass suitable for other  uses (e.g., pulp and paper production) and biomass that is not used commercially (Smeets and Faaij,  2007; Chum et al., 2011). The resource potential depends on both environmental and socio economic factors. For example, the change in forest management and harvesting regimes due to  bioenergy demand depends on forest ownership and the structure of the associated forest industry.  Also, the forest productivity and C stock response to changes in forest management and  harvesting depend on the character of the forest ecosystem, as shaped by historic forest  management and events such as fires, storms, and insect outbreaks, but also on the management  scheme (e.g., including replanting after harvest, soil protection, recycling of nutrients, and soil types  (Jonker et al., 2013; Lamers et al., 2013). In particular, optimizing forest management for mitigation  is a complex issue with many uncertainties and still subject to scientific debate. Intensive forest  management activities of the early  to mid twentieth century as well as other factors such as  recovery from past overuse, have led to strong forest C sinks in many OECD regions (Pan et al., 2011;  Loudermilk et al., 2013; Nabuurs et al., 2013; Erb et al., 2013). However, the capacity of these sinks  is being reduced as forests approach saturation (Smith, 2005; Körner, 2006; Guldea et al., 2008;  Nabuurs et al., 2013; Sections 11.2.3, 11.3.2). Active forest management, including management for  bioenergy, is therefore important for sustaining the strength of the forest carbon sink well into the  future (Nabuurs et al., 2007, 2013; Canadell and Raupach, 2008; Ciais et al., 2008), although  countries should realize that for some old forest areas, conserving carbon stocks may be  preferential, and that the actively managed forests may for some time (decades) act as sources.  Organic wastes include waste from households and restaurants, discarded wood products such as  paper, construction, and demolition wood waste, and waste waters suitable for anaerobic biogas  production (Haberl et al., 2010; Gregg and Smith, 2010). Organic waste may be dispersed and also  heterogeneous in quality but the health and environmental gains from collection and proper  management through combustion or anaerobic digestion can be significant. Competition with  alternative uses of the wastes may limit this resource potential.  Dedicated biomass plantations include annual (cereals, oil, and sugar crops) and perennial plants  (e.g., switchgrass, Miscanthus) and tree plantations (both coppice and single stem plantations (e.g.,  willow, poplar, eucalyptus, pine; (Hoogwijk et al., 2005, 2009; Smeets et al., 2007; van Vuuren et al.,  2009; Dornburg et al., 2010; Wicke et al., 2011b; Haberl et al., 2011a). The range of estimates of  technical bioenergy potentials from that resource in 2050 is particularly large (<50 to >500 EJ/yr).      81 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Technical bioenergy potentials from dedicated biomass plantations are generally calculated by  multiplying (1) the area deemed available for energy crops by (2) the yield per unit area and year  (Batidzirai et al., 2012; Coelho et al., 2012). Some studies have identified a sizable technical potential  (up to 100 EJ) for bioenergy production using marginal and degraded lands (e.g., saline land) that are  currently not in use for food production or grazing (Nijsen et al., 2012). However, how much land is  really unused and available is contested (Erb et al., 2007; Haberl et al., 2010; Coelho et al., 2012).  Contrasting views on future technical bioenergy potentials from dedicated biomass plantations can  be explained by differences in assumptions regarding feasible future agricultural crop yields,  livestock feeding efficiency, land availability for energy crops and yields of energy crops (Dornburg et  al., 2010; Batidzirai et al., 2012; Erb et al., 2012a). Most scientists agree that increases in food crop  yields and higher feeding efficiencies and lower consumption of animal products results in higher  technical bioenergy potential. Also, there is a large agreement that careful policies for  implementation focused on land use zoning approaches (including nature conservation and  biodiversity protection), multifunctional land use, integration of food and energy production,  avoidance of detrimental livelihood impacts, e.g., on livestock grazing and subsistence farming, and  consideration of equity issues, and sound management of impacts on water systems are crucial for  sustainable solutions.  Reduced traditional biomass demand. A substantial quantity of biomass will become available for  modern applications by improving the end use efficiency of traditional biomass consumption for  energy, mostly in households but also within small industries (such as charcoal kilns, brick kilns, etc.).  Traditional bioenergy represents approximately 15% of total global energy use and 80% of current  bioenergy use (35 EJ/yr) and helps meeting the cooking needs of ~2.6 billion people (Chum et al.,  2011; IEA, 2012b). Traditional bioenergy use covers several end uses including cooking, water, and  space heating, and small industries (such as brick and pottery kilns, bakeries, and many others).  Cooking is the dominant end use; it is mostly done in open fires and rudimentary stoves, with  approximately 10 20% conversion efficiency, leading to very high primary energy consumption.  Advanced woodburning and biogas stoves can potentially reduce biomass fuel consumption by 60%  or more (Jetter et al., 2012) and further lower the atmospheric radiative forcing, reducing CO2  emissions, and in many cases black carbon emissions, by up to 90% (Anenberg et al., 2013).  Assuming that actual savings reach on average from 30 60% of current consumption, the total  bioenergy potential from reducing traditional bioenergy demand can be estimated at 8 18 EJ/yr. An  unknown fraction of global traditional biomass is consumed in a non environmentally sustainable  way, leading to forest degradation and deforestation. Detailed country studies have estimated the  fraction of non renewable biomass from traditional bioenergy use to vary widely, e.g., from 1.6% for  the Democratic Republic of Congo to 73% for Burundi (CDM SSC WG, 2011) with most countries in  the range between 10 30% (i.e., meaning that 70 90% of total traditional bioenergy use is managed  sustainably). Thus a fraction of the traditional biomass saved through better technology, should not  be actually used for other energy purposes but simply not consumed to help restore the local  ecosystems.  11.13.3    Bioenergy conversion: technologies and management practices  Numerous conversion technologies can transform biomass to heat, power, liquid, and gaseous fuels  for use in the residential, industrial, transport, and power sectors (see (Chum et al., 2011; GEA,  2012) for a comprehensive coverage of each alternative, and Figure 11.21 for the pathways  concerning liquid and gaseous fuels). Since SRREN, the major advances in the large scale production  of bioenergy include the increasing use of hybrid biomass fossil fuel systems. For example, the use of  current commercial coal and biomass co combustion technologies are the lowest cost technology to  implement renewable energy policies, enabled by the large scale pelletized feedstocks trade  (REN21, 2013; Junginger et al., 2014). Direct biopower use is also increasing commercially on a global  scale (REN21, 2013, p. 21). In fact, using biomass for electricity and heat, for example, co firing of  woody biomass with coal in the near term and large heating systems coupled with networks for      82 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   district heating, and biochemical processing of waste biomass, are among the most cost efficient  and effective biomass applications for GHG emission reduction in modern pathways (Sterner and  Fritsche, 2011).   Integrated gasification combined cycle (IGCC) technologies for co production of electricity and liquid  fuels from coal and biomass with higher efficiency than current commercial processes are in  demonstration phase to reduce cost (Williams et al., 2011; GEA, 2012; Larson et al., 2012). Coupling  of biomass and natural gas for fuels is another option for liquid fuels (Baliban et al., 2013) as the  biomass gasification technology development progresses. Simulations suggest that integrated  gasification facilities are technically feasible (with up to 50% biomass input; Meerman et al., 2011),  and economically attractive with a CO2 price of about 66 USD2010/tCO2 (50 EUR2010/tCO2) (Meerman  et al., 2012). Many gasification technology developments around the world are in pilot,  demonstration, operating first commercial scale for a variety of applications (see examples in  Bacovsky et al., 2013; Balan et al., 2013).   Many pathways and feedstocks (Figure 11.21) can lead to biofuels for aviation. The development of  biofuel standards started and enabled testing of 50% biofuel in jet fuel for commercial domestic and  transatlantic flights by consortia of governments, aviation industry, and associations (IEA, 2010;  REN21, 2013). Advanced 'drop in' fuels, such as iso butanol, synthetic aviation kerosene from  biomass gasification or upgrading of pyrolysis liquids, can be derived through a number of possible  conversion routes such as hydro treatment of vegetable oils, iso butanol, and Fischer Tropsch  synthesis from gasification of biomass (Hamelinck and Faaij, 2006; Bacovsky et al., 2010; Meerman  et al., 2011, 2012; Rosillo Calle et al., 2012); see also Chapter 8). In specific cases, powering electric  cars with electricity from biomass has higher land use efficiency and lower global warming potential  (GWP) effects than the usage of bioethanol from biofuel crops for road transport across a range of  feedstocks, conversion technologies, and vehicle classes (Campbell et al., 2009; Schmidt et al.,  2011)14, though costs are likely to remain prohibitive for considerable time (van Vliet et al., 2011a; b;  Schmidt et al., 2011).  The number of routes from biomass to a broad range of biofuels, shown in Figure 11.21, includes  hydrocarbons connecting today s fossil fuels industry in familiar thermal/catalytic routes such as  gasification (Williams et al., 2011; Larson et al., 2012) and pyrolysis (Brown et al., 2011; Bridgwater,  2012; Elliott, 2013; Meier et al., 2013). In addition, advances in genomic technology, the emphasis in  systems approach, and the integration between engineering, physics, chemistry, and biology bring  together many new approaches to biomass conversion (Liao and Messing, 2012) such as (1)  biomolecular engineering (Li et al., 2010; Favaro et al., 2012; Peralta Yahya et al., 2012; Lee et al.,  2013; Yoon et al., 2013) deconstruction of lignocellulosic biomass through combinations of mild  thermal and biochemical routes in multiple sequential or consolidated steps using similar  biomolecular engineering tools (Rubin, 2008; Chundawat et al., 2011; Beckham et al., 2012; Olson et  al., 2012; Tracy et al., 2012; Saddler and Kumar, 2013; Kataeva et al., 2013); and (2) advances in  (bio)catalysis and basic understanding of the synthesis of cellulose are leading to routes for many  fuels and chemicals under mild conditions (Serrano Ruiz et al., 2010; Carpita, 2012; Shen et al., 2013;  Triantafyllidis et al., 2013; Yoon et al., 2013). Fundamental understanding of biofuels production  increased for microbial genomes by forward engineering of cyanobacteria, microalgae, aiming to  arrive at minimum genomes for synthesis of biofuels or chemicals (Chen and Blankenship, 2011;  Eckert et al., 2012; Ungerer et al., 2012; Jones and Mayfield, 2012; Kontur et al., 2012; Lee et al.,  2013).                                                               14  Biomass can be used for electric transport and biofuels within one pathway (Macedo et al., 2008)      83 of 179       Final Draft   Chapter 11  IPCC WGIII AR5     Figure 11.21. Production pathways to liquid and gaseous fuels from biomass and, for comparison from fossil fuels (adapted from GEA, 2012; Turkenburg et al., 2012). Bioenergy coupled with CCS (Spath and Mann, 2004; Liu et al., 2010) is seen as an option to mitigate  climate change through negative emissions if CCS can be successfully deployed (Cao and Caldeira  2010; Lenton and Vaughan 2009). BECCS features prominently in long run mitigation scenarios  (Sections 6.3.2 and 6.3.5) for two reasons: (1) The potential for negative emissions may allow shifting  emissions in time; and (2) in scenarios, negative emissions from BECCS compensate for residual  emissions in other sectors (most importantly transport) in the second half of the 21st century. As  illustrated in Figure 11.22, BECCS is markedly different than fossil CCS because it not only reduces  CO2 emissions by storing C in long term geological sinks, but it continually sequesters CO2 from the  air through regeneration of the biomass resource feedstock.  BECCS deployment is in the development and exploration stages. The most relevant BECCS project is  the  Illinois Basin   Decatur Project   that is projected to inject 1 MtCO2/yr (Gollakota and McDonald,  2012; Senel and Chugunov, 2013). In the United States, two ethanol fuel production by fermentation  facilities are currently integrated commercially with carbon dioxide capture, pipeline transport, and  use in enhanced oil recovery in nearby facilities at a rate of about 0.2 MtCO2/yr (DiPietro et al.,  2012). Altogether, there are 16 global BECCS projects in exploration stage (Karlsson and Byström,  2011).  Critical to overall CO2 storage is the realization of a lignocellulosic biomass supply infrastructure for  large scale commodity feedstock production and efficient advanced conversion technologies at  scale; both benefit from cost reductions and technological learning as does the integrated system  with CCS, with financial and institutional conditions that minimize the risks of investment and  facilitate dissemination (Eranki and Dale, 2011; IEA, 2012c, 2013). Integrated analysis is needed to  capture system and knock on effects for bioenergy potentials. A nascent feedstock infrastructure for  densified biomass trading globally could indicate decreased pressure on the need for closely co located storage and production (IEA, 2011; Junginger et al., 2014).  The overall technical potential is estimated to be around 10 GtCO2 storage per year for both  Integrated Gasification Combined Cycle (IGCC) CCS co firing (IGCC with co gasification of biomass),  and Biomass Integrated Gasification Combined Cycle (BIGCC) CCS dedicated, and around 6 GtCO2  storage for biodiesel based on gasification and Fischer Tropsch synthesis (FT diesel), and 2.7 GtCO2  for biomethane production (Koornneef et al., 2012, 2013). Another study estimates the potential      84 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   capacity (similar to technical potential) to be between 2.4 and 10 GtCO2 per year for 2030 2050  (McLaren, 2012). The economic potential, at a CO2 price of around 70 USD/t is estimated to be  around 3.3 GtCO2, 3.5 GtCO2, 3.1 GtCO2 and 0.8 GtCO2 in the corresponding four cases, judged to be  those with highest economic potential (Koornneef et al., 2012, 2013). Potentials are assessed on a  route by route basis and cannot simply be added, as they may compete and substitute each other.  Practical figures might be not much higher than 2.4 GtCO2 per year at 70 250 USD/tCO2 (McLaren,  2012). Altogether, until 2050, the economic potential is anywhere between 2 10 GtCO2 per year.  Some climate stabilization scenarios see considerable higher deployment towards the end of the  century, even in some 580 650 ppm scenarios, operating under different time scales, socioeconomic  assumptions, technology portfolios, CO2 prices, and interpreting BECCS as part of an overall  mitigation framework (e.g., Rose et al., 2012; Kriegler et al., 2013; Tavoni and Socolow, 2013).  Possible climate risks of BECCS relate to reduction of land carbon stock, feasible scales of biomass  production and increased N2O emissions, and potential leakage of CO2, which has been stored in  deep geologic reservoirs (Rhodes and Keith, 2008). The assumptions of sufficient spatially  appropriate CCS capture, pipeline, and storage infrastructure are uncertain. The literature highlights  that BECCS as well as CCS deployment is dependent on strong financial incentives, as they are not  cost competitive otherwise (Sections 7.5.5; 7.6.4; 7.9; 7.12).          85 of 179       Final Draft     Chapter 11  IPCC WGIII AR5   Figure 11.22. Illustration of the sum of CO2eq (GWP100)15 emissions from the process chain of alternative transport and power generation technologies both with and without CCS. (*Differences in C-density between forest biomass and switchgrass are taken into account but not calorific values (balance-of-plant data are for switchgrass, ref. Larson et al., 2012). Specific emissions vary with biomass feedstock and conversion technology combinations, as well as lifecycle GHG calculation boundaries. For policy relevant purposes, counterfactual and market-mediated aspects (e.g., iLUC), changes in soil organic carbon, or changes in surface albedo need also to be considered, possibly leading to significantly different outcomes, quantitatively (Section 11.13.4, Figures 11.23 and 11.24). Unit: gCO2eq/MJEl (left y-axis, electricity); gCO2eq/MJ combusted (right y-axis, transport fuels). Direct CO2 emissions from energy conversion ( vented and stored ) are adapted from the mean values in Tables 12.7, 12.8, and 12.15 of ref. [1], which are based on the work of refs. [2, 3], and characterized with the emission metrics in ref. [4]. Impacts upstream in the supply chain associated with feedstock procurement (i.e., sum of GHGs from mining/cultivation, transport, etc.) are adapted from refs. [5, 6] and Figure 11.23 (median values). 1   Larson, et al. (2012); 2Woods, et al., (2007) ; 3Liu et al. (2010); 4Guest et al. (2013); 5Turconi et al. (2013); 6Jaramillo et al. (2008)                                                              15  Global Warming Potential over 100 years. See Glossary and Section 1.2.5.      86 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Figure 11.22 illustrates some GHG effects associated with BECCS pathways. Tradeoffs between CO2  capture rate and feedstock conversion efficiency are possible. Depicted are pathways with the  highest removal rate but not necessarily with the highest feedstock conversion rate. Among all  BECCS pathways, those based on integrated gasification combined cycle produce most significant  geologic storage potential from biomass, alone (shown in Figure 11.23, electricity) or coupled with  coal. Fischer Tropsch diesel fuel production with biomass as feedstock and CCS attached to plant  facilities could enable BECCS for transport; uncertainties in input factors, and output metrics warrant  further research (van Vliet et al., 2009). Fischer Tropsch diesel would also allow net removal but at  lower rates than BIGCC.  Economics of scale in power plant size are crucial to improve economic viability of envisaged BECCS  projects. Increasing power plant size requires higher logistic challenges in delivering biomass.   Scales of 4,000 to 10,000 Mg/day needed for >600 MW power plants could become feasible as the  biomass feedstock supply logistic development with manageable logistic costs if biomass is derived  from high yield monocrops; logistical costs are more challenging when biomass is derived from  residues (e.g., (Argo et al., 2013; Junginger et al., 2014). Large scale biomass production with flexible  integrated polygeneration facilities for fuels and/or power can improve the techno economic  performance, currently above market prices to become more economically competitive over time  (Meerman et al., 2011). In the future, increased operating experience of BECCS IGCC CCS through  technological improvements and learning could enable carbon neutral electricity and, in  combination with CCS, could result in net removal of CO2 (Figure 11.22). BECCS is among the lowest  cost CCS options for a number of key industrial sectors (Meerman et al., 2013). It should be noted  that primary empiric cost and performance data for dedicated bioenergy plants are not yet available  and needed for comprehensively assessing BECCS. The current status of CCS and on going research  issues are discussed in Sections 7.5.5 and 7.6.4. Social concerns constitute a major barrier for  implement demonstration and deployment projects.   Integrated bio refineries continue to be developed; for instance, 10% of the ethanol or  corresponding sugar stream goes into bio products in Brazil (REN21, 2012) including making  ethylene for polymers (IEA ETSAP and IRENA, 2013, p.  ). Multi product bio refineries could produce  a wider variety of co products to enhance the economics of the overall process, facilitating learning  in the new industry (IEA, 2011); Lifecycle Analyses (LCAs) for these systems are complex (Pawelzik et  al., 2013).   There are alternatives to land based bioenergy. Microalgae, for example, offer a high end technical  potential. However, it might be compromised by water supply, if produced in arid land, or by  impacts on ocean ecosystems. To make microalgae cost competitive, maximizing algal lipid content  (and then maximizing growth rate) require technological breakthroughs (Davis et al., 2011a; Sun et  al., 2011; Jonker and Faaij, 2013). The market potential depends on the co use of products for food,  fodder, higher value products, and fuel markets (Chum et al., 2011).   Similarly, lignocellulosic feedstocks produced from waste or residues, or grown on land unsupportive  of food production (e.g., contaminated land for remediation as in previously mined land) have been  suggested to reduce socio environmental impact. In addition, lignocellulosic feedstocks can be bred  specifically for energy purposes, and can be harvested by coupling collection and pre processing  (densification and others) in depots prior to final conversion, which could enable delivery of more  uniform feedstocks throughout the year (Eranki and Dale, 2011; U.S. DOE, 2011; Argo et al., 2013).  Various conversion pathways are in research and development (R&D), near commercialization, or in  early deployment stages in several countries (see Section 2.6.3 in Chum et al., 2011). More  productive land is also more economically attractive for cellulosic feedstocks, in which case  competition with food production is more likely. Depending on the feedstock, conversion process,  prior land use, and land demand, lignocellulosic bioenergy can be associated with high or low GHG  emissions (e.g., Davis et al., 2011b). Improving agricultural lands and reducing non point pollution      87 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   emissions to watersheds remediate nitrogen run off and increase overall ecosystems  health (Van  Dam et al., 2009a; b; Gopalakrishnan et al., 2012). Also regeneration of saline lands by salt tolerant  tree and grass species can have a large potential on global scale as demonstrated by Wicke et al.  (2011).  A range of agro ecological options to improve agricultural practices such as no/low tillage  conservation, agroforestry, etc., have potential to increase yields (e.g., in sub Saharan Africa), while  also providing a range of co benefits such as increased soil organic matter. Such options require a  much lower level of investment and inputs and are thus more readily applicable in developing  countries, while also holding a low risk of increased GHG emissions (Keating et al., 2013)(Keating et  al., 2013).  Substantial progress has also been achieved in the last four years in small scale bioenergy  applications in the areas of technology innovation, impact evaluation and monitoring, and in large scale implementation programmes. For example, advanced combustion biomass cookstoves, which  reduce fuel use by more than 60% and hazardous pollutant as well as short lived climate pollutants  by up to 90%, are now in the last demonstration stages or commercial (Kar et al., 2012; Anenberg et  al., 2013). Innovative designs include micro gasifiers, stoves with thermoelectric generators to  improve combustion efficiency and provide electricity to charge LED lamps while cooking, stoves  with advanced combustion chamber designs, and multi use stoves (e.g., cooking and water heating  for bathing (Ürge Vorsatz et al., 2012; Anenberg et al., 2013). Biogas stoves, in addition to providing  clean combustion, help reduce the health risks associated with the disposal of organic wastes. There  has also been a boost in cookstove dissemination efforts ranging from regional (multi country)  initiatives (Wang et al., 2013b) to national, and project level interventions. In total, more than 200  cookstove large scale projects are in place worldwide, with several million efficient cookstoves  installed each year (Cordes, 2011). A Global Alliance for Clean Cookstoves has been launched that is  promoting the adoption of 100 million clean and efficient cookstoves per year by 2030 and several  countries have launched National Cookstove Programs in recent years (e.g., Mexico, Peru, Honduras,  and others). Many cookstove models are now manufactured in large scale industrial facilities using  state of the art materials and combustion design technology. Significant efforts are also in place to  develop international standards and regional stove testing facilities. In addition to providing tangible  local health and other sustainable benefits, replacing traditional open fires with efficient biomass  cookstoves has a global mitigation potential estimated in between 0.6 and 2.4 GtCO2eq/yr (Ürge Vorsatz et al., 2012).  Small scale decentralized biomass power generation systems based on biomass combustion and  gasification and biogas production systems have the potential to meet the electricity needs of rural  communities in the developing countries. The biomass feedstocks for these small scale systems  could come from residues of crops and forests, wastes from livestock production, and/or from small scale energy plantations (Faaij, 2006).  11.13.4    GHG emission estimates of bioenergy production systems  The combustion of biomass generates gross GHG emissions roughly equivalent to the combustion of  fossil fuels. If bioenergy production is to generate a net reduction in emissions, it must do so by  offsetting those emissions through increased net carbon uptake of biota and soils. The appropriate  comparison is then between the net biosphere flux in the absence of bioenergy compared to the net  biosphere flux in the presence of bioenergy production. Direct and indirect effects need to be  considered in calculating these fluxes.   Bioenergy systems directly influence local and global climate through (i) GHG emissions from fossil  fuels associated with biomass production, harvest, transport, and conversion to secondary energy  carriers (von Blottnitz and Curran, 2007; van der Voet et al., 2010); (ii) CO2 and other GHG emissions  from biomass or biofuel combustion (Cherubini et al., 2011); (iii) atmosphere ecosystem exchanges      88 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   of CO2 following land disturbance (Berndes et al., 2013; Haberl, 2013); (iv) climate forcing resulting  from emissions of short lived GHGs like black carbon and other chemically active gases (NOx, CO,  etc.) (Tsao et al., 2012; Jetter et al., 2012); (v) climate forcing resulting from alteration of biophysical  properties of the land surface affecting the surface energy balance (e.g., from changes in surface  albedo, heat and water fluxes, surface roughness, etc.; (Bonan, 2008; West et al., 2010a; Pielke Sr. et  al., 2011); and (vi) GHGs from land management and perturbations to soil biogeochemistry, e.g., N2O  from fertilizers, CH4, etc. (Cai, 2001; Allen et al., 2009). Indirect effects include the partial or  complete substitution of fossil fuels and the indirect transformation of land use by equilibrium  effects. Hence, the total climate forcing of bioenergy depends on feedstock, site specific climate and  ecosystems, management conditions, production pathway, end use, and on the interdependencies  with energy and land markets.   In contrast, bioenergy systems have often been assessed (e.g., in LCA studies, integrated models,  policy directives, etc.) under the assumption that the CO2 emitted from biomass combustion is  climate neutral16 because the carbon that was previously sequestered from the atmosphere will be  re sequestered if the bioenergy system is managed sustainably (Chum et al., 2011; Creutzig et al.,  2012). The shortcomings of this assumption have been extensively discussed in environmental  impact studies and emission accounting mechanisms (Searchinger et al., 2009; Searchinger, 2010;  Cherubini et al., 2011; Haberl, 2013).  Studies also call for a consistent and case specific carbon stock/flux change accounting that  integrates the biomass system with the global carbon cycle (Mackey et al., 2013). As shown in  Chapter 8 of WGI (Myhre and Shindell, 2013) and (Plattner et al., 2009; Fuglestvedt et al., 2010), the  climate impacts can be quantified at different points along a cause effect chain, from emissions to  changes in temperature and sea level rise. While a simple sum of the net CO2 fluxes over time can  inform about the skewed time distribution between sources and sinks ( C debt ; (Marland and  Schlamadinger, 1995; Fargione et al., 2008; Bernier and Paré, 2013), understanding the climate  implication as it relates to policy targets (e.g., limiting warming to 2°C) requires models and/or  metrics that also include temperature effects and climate consequence (Smith et al., 2012c; Tanaka  et al., 2013). While the warming from fossil fuels is nearly permanent as it persists for thousands of  years, direct impacts from renewable bioenergy systems cause a perturbation in global temperature  that is temporary and even at times cooling if terrestrial carbon stocks are not depleted (House et  al., 2002; Cherubini et al., 2013; Joos et al., 2013; Mackey et al., 2013). The direct, physical climate  effects at various end points need to be fully understood and characterized   despite the  measurement challenges that some climate forcing mechanisms can entail (West et al., 2010b;  Anderson Teixeira et al., 2012), and coherently embedded in mitigation policy scenarios along with  the possible counterfactual effects. For example, in the specific case of existing forests that may  continue to grow if not used for bioenergy, some studies employing counterfactual baselines show  that forest bioenergy systems can temporarily have higher cumulative CO2 emissions than a fossil  reference system (for a time period ranging from a few decades up to several centuries; (Repo et al.,  2011; Mitchell et al., 2012; Pingoud et al., 2012; Bernier and Paré, 2013; Guest et al., 2013; Helin et  al., 2013; Holtsmark, 2013).                                                                The neutrality perception is linked to a misunderstanding of the guidelines for GHG inventories, e.g., IPCC    Land Use, Land Use Change and Forestry (2000) states  Biomass fuels are included in the national energy and  carbon dioxide emissions accounts for informational purposes only. Within the energy module biomass  consumption is assumed to equal its regrowth. Any departures from this hypothesis are counted within the  Land Use Change and Forestry Model.  Carbon neutrality is valid if the countries account for LUC in their  inventories for self produced bioenergy.  16     89 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   In some cases, cooling contributions from changes in surface albedo can mitigate or offset these  effects (Arora and Montenegro, 2011; O Halloran et al., 2012; Anderson Teixeira et al., 2012;  Hallgren et al., 2013).  Accounting always depends on the time horizon adopted when assessing climate change impacts,  and the assumed baseline, and hence includes value judgements (Schwietzke et al., 2011; Cherubini  et al., 2013; Klverpris and Mueller, 2013).  Two specific contributions to the climate forcing of bioenergy, not addressed in detail in SRREN  include N2O and biogeophysical factors.  Nitrous oxide emissions: For first generation crop based biofuels, as with food crops (see Chapter  11), emissions of N2O from agricultural soils is the single largest contributor to direct lifecycle GHG  emissions, and one of the largest contributors across many biofuel production cycles (Smeets et al.,  2009a; Hsu et al., 2010). Emission rates can vary by as much as 700% between different crop types  for the same site, fertilization rate, and measurement period (Kaiser and Ruser, 2000; Don et al.,  2012; Yang et al., 2012). Increased estimates of N2O emissions alone can convert some biofuel  systems from apparent net sinks to net sources (Crutzen et al., 2007; Smith et al., 2012c).  Improvements in nitrogen use efficiency and nitrogen inhibitors can substantially reduce emissions  of N2O (Robertson and Vitousek, 2009). For some specific crops, such as sugarcane, N2O emissions  can be low (Macedo et al., 2008; Seabra et al., 2011) or high (Lisboa et al., 2011). Other bioenergy  crops require minimal or zero N fertilization and can reduce GHG emissions relative to the former  land use where they replace conventional food crops (Clair et al., 2008).   Biogeophysical factors: Land cover changes or land use disturbances of the surface energy balance,  such as surface albedo, surface roughness, and evapotranspiration influence the climate system  (Betts, 2001; Marland et al., 2003; Betts et al., 2007; Bonan, 2008; Jackson et al., 2008; Mahmood et  al., 2013). Perturbations to these can lead to both direct and indirect climate forcings whose impacts  can differ in spatial extent (global and/or local) (Bala et al., 2007; Davin et al., 2007). Surface albedo  is found to be the dominant direct biogeophysical climate impact mechanism linked to land cover  change at the global scale, especially in areas with seasonal snow cover (Claussen et al., 2001;  Bathiany et al., 2010), with radiative forcing effects possibly stronger than those of the co occuring  C cycle changes (Randerson et al., 2006; Lohila et al., 2010; Bright et al., 2011; Cherubini et al., 2012;  O Halloran et al., 2012). Land cover changes can also affect other biogeophysical factors like  evapotranspiration and surface roughness, which can have important local (Loarie et al., 2011;  Georgescu et al., 2011) and global climatic consequences (Bala et al., 2007; Swann et al., 2010,  2011). Biogeophysical climate impacts from changes in land use are site specific and show variations  in magnitude across different geographic regions and biomes (Bonan, 2008; Anderson, 2010; Pielke  Sr. et al., 2011; Anderson Teixeira et al., 2012). Biogeophysical impacts should be considered in  climate impact assessments and in the design of land use policies to adequately assess the net  impacts of land use mitigation options (Jackson et al., 2008; Betts, 2011; Arora and Montenegro,  2011) as their size may be comparable to impacts from changes to the C cycle.   Figure 11.23 illustrates the range of lifecycle global direct climate impact (in g CO2 equivalents per  MJ, after characterization with GWP time horizon=100 years) attributed to major global bioenergy  products reported in the peer reviewed literature after 2010. Results are broadly comparable to  those of Chapter 2 in SRREN (Figures 2.10 and 2.11 in SRREN; Chum et al., 2011) Those figures  displayed negative emissions, resulting from crediting emission reduction due to substitution effects.  This appendix refrains from allocating credits to feedstocks to avoid double accounting.  Significant variation in the results reflects the wide range of conversion technologies and the  reported performances in addition to analyst assumptions affecting system boundary completeness,  emission inventory completeness, and choice of allocation method (among others). Additional  site specific  land use considerations such as changes in soil organic carbon stocks ( SOC), changes in  surface albedo ( albedo), and the skewed time distribution of terrestrial biogenic CO2 fluxes can      90 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   either reduce or compound land use impacts and are presented to exemplify that, for some  bioenergy systems, these impacts can be greater in magnitude than lifecycle impacts from feedstock  cultivation and bioenergy product conversion.  Site specific  land use considerations are  geographically explicit and highly sensitive to background climate conditions, soil properties,  biomass yields, and land management regimes. The figure reveals that studies find very different  values depending on the boundaries of analysis chosen, site specific effects, and management  methods. Nonetheless, it is clear that fuels from sugarcane, perennial grasses, crop residues, and  waste cooking oil are more beneficial than other fuels (LUC emissions can still be relevant, see Figure  11.23). Another important result is that albedo effects and site specific CO2 fluxes are highly variable  for different forest systems and environmental conditions and determine the total climate forcing of  bioenergy from forestry.  Figure 11.23. Direct CO2eq (GWP100) emissions from the process chain or land-use disturbances of major bioenergy product systems, not including impacts from LUC (see Figure 11.24). The interpretation of values depends also on baseline assumption about the land carbon sink when appropriate and the intertemporal accounting frame chosen, and should also consider information from Figure 11.24. The lower and upper bounds of the bars represent the minimum and the maximum value reported in the literature. Whenever possible, peer-reviewed scientific literature published post SRREN is used (but results are comparable). Note that narrow ranges may be an artefact of the number of studies for a given case. Results are disaggregated in a manner showing the impact of Feedstock production (in gCO2eq/MJ lower heating value (LHV) of feedstock) and the contributions from end product/conversion technology. Results from conversion into final energy products Heat, Power, and Transport fuels include the contribution from Feedstock production and are shown in gCO2eq/MJ of final product. For some pathways, additional site-specific climate forcing agents apply and are presented as separate values to be added or subtracted from the value indicated by the median in the Feedstock bar (dark grey). Final products are also affected by these factors, but this is not displayed here. References: Corn 1 7; Oil crops 1, 8, 8 12; Crop residues 1, 4, 13 24; Sugarcane 2, 3, 5, 6, 25 27; Palm Oil 2, 3, 10, 28 31; Perennial grasses 1, 3, 11, 18, 22, 32 40; Short Rotation Woody Crops 1, 3, 6, 12, 22, 33, 35, 37, 38, 41 53; Forestry 5, 6, 38, 49, 54 66; Biogas, open storage: 67 69; Biogas, closed storage 69 71; Waste cooking oil: 22, 72 74. Note that the biofuels technologies for transport from lignocellulosic feedstocks, short rotation woody crops, and crop residues, including collection and delivery, are developing so larger ranges are expected than for more mature commercial technologies such as sugarcane ethanol and waste cooking oil (WCO)       91 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   biodiesel. The biogas electricity bar represents scenarios using LCAs to explore treating mixtures of a variety of lignocellulosic feedstocks (e.g., ensiled grain or agricultural residues or perennial grasses) with more easily biodegradable wastes (e.g., from animal husbandry), to optimize multiple outputs. Some of the scenarios assume CH4 leakage, which leads to very high lifecycle emissions. Gelfand et al. (2013); 2Nemecek et al. (2012); 3Hoefnagels et al. (2010); 4Kaufman et al. (2010); 5Cherubini et al. 6 7 8 9 10 (2009); Cherubini (2012); Wang et al. (2011b); Milazzo et al. (2013); Goglio et al. (2012); Stratton et al. (2011); 11Fazio and Monti (2011); 12Börjesson and Tufvesson (2011); 13Cherubini and Ulgiati (2010); 14Li et al. 15 16 17 18 (2012); Luo et al. (2009); Gabrielle and Gagnaire (2008); Smith et al. (2012b); Anderson-Teixeira et al. (2009); 19Nguyen et al. (2013); 20Searcy and Flynn (2008); 21Giuntoli et al. (2013); 22Whitaker et al. (2010); 23 Wang et al. (2013a); 24Patrizi et al. (2013); 25Souza et al. (2012a); 26Seabra et al. (2011); 27Walter et al. (2011); 28 Choo et al. (2011); 29Harsono et al. (2012); 30Siangjaeo et al. (2011); 31Silalertruksa and Gheewala (2012); 32 Smeets et al. (2009b); 33Tiwary and Colls (2010); 34Wilson et al. (2011); 35Brandao et al. (2011); 36Cherubini 37 38 39 40 and Jungmeier (2010); Don et al. (2012); Pucker et al. (2012); Monti et al. (2012); Bai et al. (2010); 41 Bacenetti et al. (2012); 42Budsberg et al. (2012); 43González-García et al. (2012a); 44González-García (2012b) ; 45 Stephenson et al. (2010); 46Hennig and Gawor (2012);47Buonocore et al. (2012); 48Gabrielle et al. (2013); 49 Dias and Arroja (2012); 50González-García et al. (2012b); 51Roedl (2010); 52Djomo et al. (2011); 53Njakou 54 55 56 57 Djomo et al. (2013); McKechnie et al. (2011); Pa et al. (2012); Puettmann et al. (2010); Guest et al. (2011); 58 59 60 61 Valente et al. (2011); Whittaker et al. (2011); Bright and Strmman (2009); Felder and Dones (2007); 62 Solli et al. (2009); 63Lindholm et al. (2011); 64Mallia and Lewis (2013); 65Bright et al. (2010); 66Bright and Strmman (2010); 67Rehl et al. (2012); 68Blengini et al. (2011); 69Boulamanti et al. (2013); 70Lansche and Müller 71 72 73 74 (2012); De Meester et al. (2012); Sunde et al. (2011); Thamsiriroj and Murphy (2011); Talens Peiró et al. (2010) 1 Direct and indirect land use change: Direct land use change occurs when bioenergy crops displace  other crops or pastures or forests, while ILUC results from bioenergy deployment triggering the  conversion to cropland of lands, somewhere on the globe, to replace some portion of the displaced  crops (Searchinger et al., 2008; Klverpris et al., 2008; Delucchi, 2010; Hertel et al., 2010). Direct LUC  to establish biomass cropping systems can increase the net GHG emissions, for example, if carbon rich ecosystems such as wetlands, forests, or natural grasslands are brought into cultivation (Gibbs  et al., 2008; UNEP, 2009, p. 2009; Chum et al., 2011). Biospheric C losses associated with LUC from  some bioenergy schemes can be, in some cases, more than hundred times larger than the annual  GHG savings from the assumed fossil fuel replacement (Gibbs et al., 2008; Chum et al., 2011).  Impacts have been shown to be significantly reduced when a dynamic baseline includes future  trends in global agricultural land use (Klverpris and Mueller, 2013). Albeit at lower magnitude,  beneficial LUC effects can also be observed, for example, when some semi perennial crops,  perennial grasses or woody plants replace annual crops grown with high fertilizer levels, or where  such plants are produced on lands with carbon poor soils (Tilman et al., 2006; Harper et al., 2010;  Sterner and Fritsche, 2011; Sochacki et al., 2012). In particular, Miscanthus improves soil organic  carbon reducing overall GHG emissions (Brandao et al., 2011); degraded USA Midwest land for  economic agriculture, over a 20 year period, shows successional perennial crops without the initial  carbon debt and indirect land use costs associated with food based biofuels (Gelfand et al., 2013).  Palm oil, when grown on more marginal grasslands, can deliver a good GHG balance and net carbon  storage in soil (Wicke et al., 2008). Such lands represent a substantial potential for palm oil  expansion in Indonesia without deforestation and draining peat lands (Wicke et al., 2011a).  In long term rotation forests, the increased removal of biomass for bioenergy may be beneficial or  not depending on the site specific forest conditions (Cherubini et al., 2012b). For long term rotation  biomass, the carbon debt (increased cumulative CO2 emissions for a duration in the order of a  rotation cycle or longer) becomes increasingly important (Schlamadinger and Marland, 1996;  Marland and Schlamadinger, 1997; Fargione et al., 2008; McKechnie et al., 2011; Hudiburg et al.,  2011). Calculations of specific GHG emissions from long term rotation forests need to account for  the foregone CO2 accumulation (Searchinger, 2010; Holtsmark, 2012; Pingoud et al., 2012; Haberl et  al., 2012).   If part of a larger forest is used as a feedstock for bioenergy while the overall forest carbon stock  increases (the so called landscape perspective), then the overall mitigation effects is positive, in  particular over several harvesting cycles making use of the faster carbon sequestration rates of      92 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   younger forests (Daigneault et al., 2012; Ximenes et al., 2012; Lamers and Junginger, 2013; Latta et  al., 2013). (Nabuurs et al., 2013), observe first signs of a carbon sink saturation in European forest  biomass and suggest to focus less on the forest biomass sink strength but to consider a mitigation  strategy that maximizes the sum of all the possible components: (1) carbon sequestration in forest  biomass; (2) soil and wood products; and (3) the effects of material and energy substitution of  woody biomass. In general, the use of easily decomposable residues and wastes for bioenergy can  produce GHG benefits (Zanchi et al., 2012), similarly to increasing the biomass outtake from forests  affected by high mortality rates (Lamers et al., 2013), whereas the removal of slowly decomposing  residues reduces soil carbon accumulation at a site and results in net emissions (Repo et al., 2011).  The anticipation of future bioenergy markets may promote optimized forest management practices  or afforestation of marginal land areas to establish managed plantations, so contributing to  increased forest carbon stocks (Sedjo and Tian, 2012). Rather than leading to wide scale loss of  forest lands, growing markets for tree products can provide incentives for maintaining or increasing  forest stocks and land covers, and improving forest health through management (Eisenbies et al.,  2009; Dale et al., 2013). If managed to maximize CO2 storage rate over the long term, long term  rotation forests offer low cost mitigation options, in particular, when woody products keep carbon  within the human built environment over long time scales (e.g., wood substituting for steel joist;  (Lippke et al., 2011).  Indirect land use change is difficult to ascertain because the magnitude of these effects must be  modelled (Nassar et al., 2011) raising important questions about model validity and uncertainty  (Liska and Perrin, 2009; Plevin et al., 2010; Khanna et al., 2011; Gawel and Ludwig, 2011; Wicke et  al., 2012) and policy implications (DeCicco, 2013; Finkbeiner, 2013; Plevin et al., 2013). Available  model based studies have consistently found positive and, in some cases, high emissions from LUC  and ILUC, mostly of first generation biofuels (Figure 11.23), albeit with high variability and  uncertainty in results (Hertel et al., 2010; Taheripour et al., 2011; Dumortier et al., 2011; Havlík et  al., 2011; Chen et al., 2012; Timilsina et al., 2012; Warner et al., 2013). Causes of the great  uncertainty include: incomplete knowledge on global economic dynamics (trade patterns, land use  productivity, diets, use of by products, fuel prices, and elasticities); selection of specific policies  modelled; and the treatment of emissions over time (O Hare et al., 2009; Khanna et al., 2011; Wicke  et al., 2012). In addition, LUC modelling philosophies and model structures and features (e.g.,  dynamic vs. static model) differ among studies. Variations in estimated GHG emissions from biofuel induced LUC are also driven by differences in scenarios assessed, varying assumptions, inconsistent  definitions across models (e.g., LUC, land type), specific selection of reference scenarios against  which (marginal) LUC is quantified, and disparities in data availability and quality. The general lack of  thorough sensitivity and uncertainty analysis hampers the evaluation of plausible ranges of  estimates of GHG emissions from LUC.   Wicke et al. (2012) identified the need to incorporate the impacts of ILUC prevention or mitigation  strategies in future modelling efforts, including the impact of zoning and protection of carbon stocks,  selective sourcing from low risk areas, policies and investments to improve agricultural productivity,  double cropping, agroforestry schemes, and the (improved) use of degraded and marginal lands (see  Box 7.1). Indirect land use change is mostly avoided in the modelled mitigation pathways in Chapter  6. The relatively limited fuel coverage in the literature precludes a complete set of direct  comparisons across alternative and conventional fuels sought by regulatory bodies and researchers.  GHG emissions from LUC can be reduced, for instance through production of bioenergy co products  that displace additional feedstock requirements, thus decreasing the net area needed (e.g., for corn,  Wang et al., 2011a; for wheat, (Berndes et al., 2011). Proper management of livestock and  agriculture can lead to improved resource efficiency, lower GHG emissions, and lower land use while  releasing land for bioenergy production as demonstrated for Europe (de Wit et al., 2013) and  Mozambique (van der Hilst et al., 2012b). For land transport, cellulosic biomass, such as Miscanthus,  has been suggested as a relatively low carbon source for bioethanol that could be produced at scale,      93 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   but only if ILUC can be avoided by not displacing food and other commodities and if comprehensive  national land management strategies are developed (e.g., Dornburg et al., 2010; Scown et al., 2012).  Negative ILUC values are theoretically possible (RFA, 2008). Producing biofuels from wastes and  sustainably harvested residues, and replacing first generation biofuel feedstocks with lignocellulosic  crops (e.g., grasses) would induce little or no iLUC (Davis et al., 2011b; Scown et al., 2012). While  ILUC quantifications remain uncertain, lower agricultural yields, land intensive diets, and livestock  feeding efficiencies, stronger climate impacts and higher energy crop production levels can result in  higher LUC related GHG emissions. Strong global and regional governance (forest protection,  zoning), technological change in agriculture and biobased options, and high yield bioenergy crops  and use of residues and degraded land (if available) could all reduce iLUC (Van Dam et al., 2009a; b;  Wicke et al., 2009; Fischer et al., 2010; de Wit et al., 2011, 2013; van der Hilst et al., 2012a; Rose et  al., 2013). As with any other renewable fuel, bioenergy can replace or complement fossil fuel. The  fossil fuel replacement effect, relevant when a global cap on CO2 emissions is absent, is discussed in  Chapter 8.7. Indirect effects are not restricted to indirect GHG effects of production of biomass in  agricultural systems; there are also indirect (market mediated) effects of wood energy, but also  effects in terms of biodiversity threats, environmental degradation, and external social costs, which  are not considered here.      94 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Figure 11.24. Estimates of GHGLUC emissions GHG emissions from biofuel production-induced LUC (as gCO2eq/MJfuel produced) over a 30-year time horizon organized by fuel(s), feedstock, and study. Assessment methods, LUC estimate types and uncertainty metrics are portrayed to demonstrate the diversity in approaches and differences in results within and across any given category. Points labeled a on the Y-axis represent a commonly used estimate of lifecycle GHG emissions associated with the direct supply chain of petroleum gasoline (frame A) and diesel (frame B). These emissions are not directly comparable to GHGLUC because the emission sources considered are different, but are potentially of interest for scaling comparison. Based on Warner et al. (2013). Please note: These estimates of global LUC are highly uncertain, unobservable, unverifiable,       95 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   and dependent on assumed policy, economic contexts, and inputs used in the modelling. All entries are not equally valid nor do they attempt to measure the same metric despite the use of similar naming conventions (e.g., ILUC). In addition, many different approaches to estimating GHGLUC have been used. Therefore, each paper has its own interpretation and any comparisons should be made only after careful consideration. *CO2eq includes studies both with and without CH4 and N2O accounting. 11.13.5    Aggregate future potential deployment in integrated models  In SRREN scenarios (IPCC, 2011), bioenergy is projected to contribute 80 190 EJ/yr to global primary  energy supply by 2050 for 50% of the scenarios in the two mitigation levels modelled. The min to  max ranges were 20 265 EJ/yr for the less stringent scenarios and 25 300 EJ for the tight mitigation  scenarios (<440 ppm). Many of these scenarios coupled bioenergy with CCS. The Global Energy  Assessment (GEA, 2012) scenarios project 80 140 EJ by 2050, including extensive use of agricultural  residues and second generation bioenergy to try to reduce the adverse impacts on land use and  food production, and the co processing of biomass with coal or natural gas with CCS to make low net  GHG emitting transport fuels and or electricity.   Traditional biomass demand is steady or declines in most scenarios from 34 EJ/yr. The transport  sector increases nearly ten fold from 2008 to 18 20 EJ/yr while modern uses for heat, power,  combinations, and industry increase by factors of 2 4 from 18 EJ in 2008 (Fischedick et al., 2011).  The 2010 International Energy Agency (IEA) model projects a contribution of 12 EJ/yr (11%) by 2035  to the transport sector, including 60% of advanced biofuels for road and aviation. Bioenergy supplies  5% of global power generation in 2035, up from 1% in 2008. Modern heat and industry doubles their  contributions from 2008 (IEA, 2010). The future potential deployment level varies at the global and  national level depending on the technological developments, land availability, financial viability, and  mitigation policies.   The AR5 transformation pathway studies suggest that modern bioenergy could play a significant role  within the energy system (Section 6.3.5) providing 5 to 95 EJ/yr in 2030, 10 to 245 EJ/yr in 2050, and  105 to 325 EJ/yr in 2100 under idealized full implementation scenarios (see also Figure 7.12), with  immediate, global, and comprehensive incentives for land related mitigation options. The scenarios  project increasing deployment of bioenergy with tighter climate change targets, both in a given year  as well as earlier in time (see Figure 6.20). Models project increased dependence, as well as  increased deployment, of modern bioenergy, with some models projecting 35% of total primary  energy from bioenergy in 2050, and as much as 50% of total primary energy from modern bioenergy  in 2100. Bioenergy s share of regional total electricity and liquid fuels could be significant up to  35% of global regional electricity from biopower by 2050, and up to 70% of global regional liquid  fuels from biofuels by 2050. However, the cost effective allocation of bioenergy within the energy  system varies across models. Several sectoral studies, focusing on biophysical constraints, model  assumptions (e.g., estimated increase in crop yields over large areas), current observations, suggest  to focus on the lower half of the ranges reported above (Field et al., 2008; Campbell et al., 2008;  Johnston et al., 2009a, 2011; Haberl et al., 2013b).  BECCS features prominently in many mitigation scenarios. BECCS is deployed in greater quantities  and earlier in time the more stringent the climate policy (Section 6.3.5). Whether BECCS is essential  for mitigation, or even sufficient, is unclear. In addition, the likelihood of BECCS deployment is  difficult to evaluate and depends on safety confirmations, affordability and public acceptance (see  Section 11.13.3 for details). BECCS may also affect the cost effective emissions trajectory (Richels et  al., In Review; Rose et al., 2013).   Some integrated models are cost effectively trading off lower land carbon stocks and increased land  N2O emissions for the long run mitigation benefits of bioenergy (Rose et al., 2013; Popp et al., 2013).  The models find that bioenergy could contribute effectively to climate change mitigation despite  land conversion and intensification emissions. However, as discussed below and in Section 11.9,      96 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   policy implementation and coordination are factors to consider. In these models, constraining  bioenergy has a cost. For instance, limiting global bioenergy availability to 100 EJ/year tripled  marginal abatement costs and doubled consumption losses associated with transformation  pathways (Rose et al., 2013). Overall outcomes may depend strongly on governance of land use and  deployment of best practices in agricultural production (see sections above). Progressive  developments in governance of land and modernization of agriculture and livestock and effective  sustainability frameworks can help realize large parts of the technical bioenergy potential with low  associated GHG emissions.  With increasing scarcity of productive land, the growing demand for food and bioenergy could  induce substantial LUC causing high GHG emissions and/or increased agricultural intensification and  higher N2O emissions unless wise integration of bioenergy into agriculture and forestry landscapes  occurs (Delucchi, 2010). Consideration of LUC emissions in integrated models show that valuing or  protecting global terrestrial carbon stocks reduces the potential LUC related GHG emissions of  energy crop deployment, and could lower the cost of achieving climate change objectives, but could  exacerbate increases in agricultural commodity prices (Popp et al., 2011; Reilly et al., 2012). Many  integrated models are investigating idealized policy implementation pathways, assuming global  prices on GHG (including the terrestrial land carbon stock); if such conditions cannot be realized,  certain types of bioenergy could lead to additional GHG emissions. More specifically, if the global  terrestrial land carbon stock remains unprotected, large GHG emissions from bioenergy related LUC  alone are possible (Melillo et al., 2009; Wise et al., 2009; Creutzig et al., 2012; Calvin et al., 2013b).  In summary, recent integrated model scenarios project between 10 245 EJ/yr modern bioenergy  deployment in 2050. Good governance and favourable conditions for bioenergy development may  facilitate higher bioenergy deployment while sustainability and livelihood concerns might constrain  deployment of bioenergy scenarios to low values (see Section 11.13.6).  11.13.6    Bioenergy and sustainable development  The nature and extent of the impacts of implementing bioenergy depend on the specific system, the  development context, and on the size of the intervention (Section 11.4.5). The effects on livelihoods  have not yet been systematically evaluated in integrated models (Davis et al., 2013; Muys et al.,  2013; Creutzig et al., 2013), even if human geography studies have shown that bioenergy  deployment can have strong distributional impacts (Davis et al., 2013; Muys et al., 2013). The total  effects on livelihoods will be mediated by global market dynamics, including policy regulations and  incentives, the production model and deployment scale, and place specific factors such as  governance, land tenure security, labour and financial capabilities, among others (Creutzig et al.,  2013).  Bioenergy projects can be economically beneficial, e.g., by raising and diversifying farm incomes and  increasing rural employment through the production of biofuels for domestic use (Gohin, 2008) or  export markets (Wicke et al., 2009; Arndt et al., 2011).          97 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Box 11.9 Examples of co-benefits from biofuel production Brazilian sugar cane ethanol production provides six times more jobs than the Brazilian petroleum  sector and spreads income benefits across numerous municipalities (de Moraes et al., 2010). Worker  income is higher than in nearly all other agricultural sectors (de Moraes et al., 2010; Satolo and  Bacchi, 2013) and several sustainability standards have been adopted (Viana and Perez, 2013). When  substituting gasoline, ethanol from sugar cane also eliminates lead compounds and reduces noxious  emissions (Goldemberg et al., 2008). Broader strategic planning, understanding of cumulative  impacts, and credible and collaborative decision making processes can help to enhance biodiversity  and reverse ecological fragmentation, address direct and iLUC, improve the quality and durability of  livelihoods, and other sustainability issues (Duarte et al., 2013).     Co benefits of palm oil production have been reported in the major producer countries, Malaysia  and Indonesia (Sumathi et al., 2008; Lam et al., 2009) as well as from new producer countries  (Garcia Ulloa et al., 2012). Palm oil production results in employment creation as well as in  increment state and individual income (Sumathi et al., 2008; Tan et al., 2009; Lam et al., 2009; Sayer  et al., 2012; von Geibler, 2013). When combined with agroforestry, palm oil plantations can increase  food production locally and have a positive impact on biodiversity (Lam et al., 2009; Garcia Ulloa et  al., 2012) and when palm oil plantations are installed on degraded land further co benefits on  biodiversity and carbon enhancement (Sumathi et al., 2008; Garcia Ulloa et al., 2012; Sayer et al.,  2012). Further, due to its high productivity, palm oil plantations can produce the same bioenergy  input using less land than other bio energy crops (Sumathi et al., 2008; Tan et al., 2009). Certification  in palm oil production can become a means for increasing sustainable production of biofuels (Tan et  al., 2009; Edser, 2012; von Geibler, 2013).   Similarly, co benefits from the production of Jatropha as a biofuel crop in developing countries have  been reported, mainly when Jatropha is planted on degraded land. These include increases in  individuals income (Garg et al., 2011; Arndt et al., 2012), improvement in energy security at the local  level (Muys et al., 2013; von Maltitz and Setzkorn, 2013), and reducing soil erosion (Garg et al.,  2011).  The establishment of large scale biofuels feedstock production can also cause smallholders, tenants,  and herders to lose access to productive land, while other social groups such as workers, investors,  company owners, biofuels consumers, and populations who are more responsible for GHG emission  reductions enjoy the benefits of this production (van der Horst and Vermeylen, 2011). This is  particularly relevant where large areas of land are still unregistered or are being claimed and under  dispute by several users and ethnic groups (Dauvergne and Neville, 2010). Furthermore, increasing  demand for first generation biofuels is partly driving the expansion of crops like soy and oil palm,  which in turn contribute to promote large scale agribusinesses at the expense of family and  community based agriculture, in some cases (Wilkinson and Herrera, 2010). Biofuels deployment  can also translate into reductions of time invested in on farm subsistence and community based  activities, thus translating into lower productivity rates of subsistence crops and an increase in intra community conflicts as a result of the uneven share of collective responsibilities (Mingorría et al.,  2010).   Bioenergy deployment is more beneficial when it is not an additional land use activity expanding  over the landscape, but rather integrates into existing land uses and influences the way farmers and  forest owners use their land. Various studies indicate the ecosystem services and values that  perennial crops have in restoring degraded lands, via agroforestry systems, controlling erosion, and  even in regional climate effects such as improved water retention and precipitation (Faaij, 2006;  Wicke et al., 2011c; Immerzeel et al., 2013). Examples include adjustments in agriculture practices  where farmers, for instance, change their manure treatment to produce biogas, reduce methane      98 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   losses and reduce N losses. Changes in management practice may swing the net GHG balance of  options and also have clear sustainable development implications (Davis et al., 2013).  Small scale bioenergy options can provide cost effective alternatives for mitigating climate change,  at the same time helping advance sustainable development priorities, particularly in rural areas of  developing countries. IEA (2012b) estimates that 2.6 billion people worldwide depend on traditional  biomass for cooking, while 84% of these belong to rural communities. Use of low quality fuels and  inefficient cooking and heating devices leads to pollution resulting in nearly 4 million premature  deaths every year, and a range of chronic illnesses and other health problems (Lim et al., 2012; see  Section 9.7.3.1). Modern small scale bioenergy technologies such as advanced/efficient cook stoves,  biogas for cooking and village electrification, biomass gasifiers, and bagasse based co generation  systems for decentralized power generation, can provide energy for rural communities with energy  services that also promote rural development (IEA, 2011). Such bioenergy systems reduce CO2  emissions from unsustainable biomass harvesting and short lived climate pollutants, e.g., black  carbon, from cleaner combustion (Chung et al., 2012). Scaling up clean cookstove initiatives could  not only save 2 million lives a year, but also significantly reduce GHG emissions (Section 11.13.3).  Efficient biomass cook stoves and biogas stoves at the same time provide multiple benefits: reduce  pressure on forests and biodiversity, reduce exposure to smoke related health hazards, reduce  drudgery for women in collecting fuelwood, and save money if purchasing fuels (Martin et al., 2011).  Bene ts from the dissemination of improved cookstoves outweigh their costs by seven fold, when  their health, economic, and environmental benefits are accounted for (Garcia Frapolli et al., 2010).   Table 11.12 presents the implications of bioenergy options in the light of social, institutional,  environmental, economic, and technological conditions. The relationship between bioenergy and  these conditions is complex and there could be negative or positive implications, depending on the  type of bioenergy option, the scale of the production system and the local context. While biofuels  can allow the reduction of fossil fuel use and of GHG emissions, they often shift environmental  burdens towards land use related impacts (i.e., eutrophication, acidification, water depletion,  ecotoxicity; EMPA, 2012; Smith and Torn, 2013; Tavoni and Socolow, 2013). Co benefits and adverse  side effects do not necessarily overlap, neither geographically nor socially (Dauvergne and Neville,  2010; Wilkinson and Herrera, 2010; van der Horst and Vermeylen, 2011). The main potential co benefits are related to access to energy and impacts on the economy and well being, jobs creation,  and improvement of local resilience (Walter et al., 2011; Creutzig et al., 2013). Main risks of crop based bioenergy for sustainable development and livelihoods include competition on arable land  (Haberl et al., 2013b) and consequent impact on food security, tenure arrangements, displacement  of communities and economic activities, creation of a driver of deforestation, impacts on  biodiversity, water, and soil, or increment in vulnerability to climate change, and unequal  distribution of benefits (Sala et al., 2000; Hall et al., 2009; German et al., 2011; Thompson et al.,  2011b; SREX, 2012).  Good governance is an essential component of a sustainable energy system. Integrated studies that  compare impacts of bioenergy production between different crops and land management strategies  show that the overall impact (both ecological and socio economic) depends strongly on the  governance of land use and design of the bioenergy system see van der Hilst et al. (2012) in the  European context, and Van Dam et al. (2009a; b) for different crops and scenarios in Argentina). Van  Eijck et al. (2012) show similar differences in impacts between the production and use of Jatropha  based on smallholder production versus plantation models. This implies that governance and  planning have a strong impact on the ultimate result and impact of large scale bioenergy  deployment. Legislation and regulation of bioenergy as well as voluntary certification schemes are  required to guide bioenergy production system deployment so that the resources and feedstocks be  put to best use, and that (positive and negative) socioeconomic and environmental issues are  addressed as production grows (van Dam et al., 2010). There are different options, from voluntary to  legal and global agreements, to improve governance of biomass markets and land use that still      99 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   require much further attention (Verdonk et al., 2007). The integration of bioenergy systems into  agriculture and forest landscapes can improve land and water use efficiency and help address  concerns about environmental impacts of present land use (Berndes et al., 2004, 2008; Börjesson  and Berndes, 2006; Sparovek et al., 2007; Gopalakrishnan et al., 2009, 2011a; b, 2012; Dimitriou et  al., 2009, 2011; Dornburg et al., 2010; Batidzirai et al., 2012; Parish et al., 2012; Baum et al., 2012;  Busch, 2012), but the global potentials of such systems are difficult to determine (Berndes and  Börjesson, 2007; Dale and Kline, 2013). Similarly, existing and emerging guiding principles and  governance systems influence biomass resources availability (Stupak et al., 2011). Certification  approaches can be useful, but they should be accompanied by effective territorial policy frameworks  (Hunsberger et al., 2012).      Table 11.12 Potential institutional, social, environmental, economic and technological implications of bioenergy options at local to global scale Institutional  May contribute to energy independence (+), especially at the local level (reduce  dependency on fossil fuels) (2, 20, 32, 39,50)  Can improve (+) or decrease ( ) land tenure and use rights for local stakeholders (2, 17, 38,  50)  Cross sectoral coordination (+) or conflicts ( ) between forestry, agriculture, energy, and/or  mining (2, 13, 26, 31, 60)  Impacts on labor rights among the value chain (2, 6, 17)  Promoting of participative mechanisms for small scale producers (14, 15)  Social  Competition with food security including food availability (through reduced food production  at the local level), food access (due to price volatility), usage (as food crops can be diverted  towards biofuel production), and consequently to food stability. Bio energy derived from  residues, wastes, or by products is an exception (1,2, 7, 9, 12, 18, 23)   Integrated systems (including agroforestry) can improve food production at the local level  creating a positive impact towards food security (51, 52, 53, 69, 73, 74). Further, biomass  production combined with improved agricultural management can avoid such competition  and bring investment in agricultural production systems with overall improvements of  management as a result (as observed in Brazil) (60, 63 66, 67, 70, 71).  Increasing (+) or decreasing ( ) existing conflicts or social tension (9, 14, 19, 26)  Impacts on traditional practices: using local knowledge in production and treatment of  bioenergy crops (+) or discouraging local knowledge and practices ( ) (2, 50)  Displacement of small scale farmers (14, 15, 19). Bioenergy alternatives can also empower  local farmers by creating local income opportunities.   Promote capacity building and new skills (3, 15, 50)  Gender impacts (2, 4, 14, 15, 27)  Efficient biomass techniques for cooking (e.g., biomass cookstoves) can have positive  impacts on health, especially for women and children in developing countries (42, 43, 44)  Environmental  Biofuel plantations can promote deforestation and/or forest degradation, under weak or no  regulation (1, 8, 22).   When used on degraded lands, perennial crops offer large scale potential to improve soil  carbon and structure, abate erosion and salinity problems. Agroforestry schemes can have  multiple benefits including increased overall biomass production, increase biodiversity and  higher resilience to climate changes. (59, 64, 65, 69, 73)  Some large scale bio energy crops can have negative impacts on soil quality, water  pollution, and biodiversity. Similarly potential adverse side effects can be a consequence of  increments in use of fertilizers for increasing productivity (7, 12, 26, 30). Experience with  sugarcane plantations has shown that they can maintain soil structure (56) and application  of pesticides can be substituted by the use of natural predators and parasitoids (57, 71).   Can displace activities or other land uses (8, 26)     +  +/   +/   +/   +      Scale  Local to national  Local  Local to national  Local to national  Local to national  Scale  Local to global  +  Local  +/   +/   +/   +  +/   +      Local to national  Local  Local  Local  Local to national  Local to national  Scale  Local to global  +  Local to global  /+  Local to  transboundary  Local to global        100 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Local to  transboundary  Local to  transboundary  Local to national  Local to global  Scale  Local  Local to national  Local to global  Local to regional  Local to regional  National   Local to regional  Scale  Local to global  Local  Local  Local  Smart modernization and intensification can lead to lower environmental impacts and more  efficient land use (75, 76).  Creating bio energy plantations on degraded land can have positive impacts on soil and  biodiversity (12)  There can be tradeoffs between different land uses, reducing land availability for local  stakeholders (45, 46, 47,48, 49). Multicropping system provide bioenergy while better  maintaining ecological diversity and reducing land use competition (58).  Ethanol utilization leads to the phaseout of lead addititives and methyl tertiary butyl ether  (MBTE) and reduces sulfur, particulate matter, and carbon monoxide emissions (55)  Economic  Increase in economic activity, income generation, and income diversification (1, 2, 3, 12, 20,  21, 27, 54)  Increase (+) or decrease ( ) market opportunities (16, 27, 31)  Contribute to the changes in prices of feedstock (2, 3, 5, 21)  May promote concentration of income and/or increase poverty if sustainability criteria and  strong governance is not in place (2, 16, 26)  Using waste and residues may create socio economic benefits with little environmental  risks (2, 41, 36)  Uncertainty about mid  and long term revenues (6, 30)  Employment creation (3, 14, 15)  Technological  Can promote technology development and/or facilitate technology transfer (2, 27, 31)  Increasing infrastructure coverage (+). However if access to infrastructure and/or  technology is reduced to few social groups it can increase marginalization ( ) (27, 28, 29)  Bioenergy options for generating local power or to use residues may increase labor  demand, creating new job opportunities. Participatory technology development also  increases acceptance and appropriation (6, 8, 10, 37, 40)  Technology might reduce labor demand ( ). High dependent of tech. transfer and/or  acceptance  1 +  +  /+  +    +  +/   +/     +    +    +  +/   +    Alves Finco and Doppler (2010); 2Amigun et al. (2011); 3Arndt et al. (2012); 4Arndt et al. (2011); 5Arndt et 6 7 8 9 al.(2012); Awudu and Zhang (2012); Beringer et al. (2011); Borzoni (2012); Bringezu et al. (2012); 10 11 12 13 Cacciatore et al. (2012); Cançado et al. (2006); Danielsen et al. (2009); Diaz-Chavez (2011); 14Duvenage 15 16 17 18 et al. (2013); Ewing and Msangi (2009); Gasparatos et al. (2011); German and Schoneveld (2012); Haberl et al. (2011a); 19Hall et al. (2009); 20Hanff et al. (2011); 21Huang et al. (2012); 22Koh and Wilcove (2008); 23 Koizumi (2013); 24Kyu et al. (2010); 25Madlener et al. (2006); 26Martinelli and Filoso (2008); 27Mwakaje (2012); 28 Oberling et al. (2012); 29Schut et al. (2010); 30Selfa et al. (2011); 31Steenblik (2007); 32Stromberg and Gasparatos (2012); 33Searchinger et al. (2009); 34Searchinger et al. (2008); 35Smith and Searchinger (2012); 36 Tilman et al. (2009); 37Van de Velde et al. (2009); 38von Maltitz and Setzkorn (2013); 39Wu and Lin (2009); 40 Zhang et al. (2011); 41Fargione et al. (2008); 42Jerneck and Olsson (2013); 43Gurung and Oh (2013); 44 O Shaughnessy et al. (2013); 45German et al. (2013); 46Cotula (2012); 47Mwakaje (2012); 48Scheidel and Sorman (2012); 49Haberl et al.(2013b); 50Muys et al. (2013); 51Egeskog et al. (2011); 52Diaz-Chavez (2012); 53 Ewing and Msangi (2009); 54de Moraes et al. (2010); 55Goldemberg (2007); 56Walter et al. (2011); 57Macedo (2005); 58Langeveld et al. (2013); 59Van Dam et al. (2009a; b); 60van Dam et al. (2010); 61van Eijck et al. (2012); 62 van Eijck et al. (2014); 63Martínez et al. (2013); 64van der Hilst et al. (2010); 65van der Hilst et al. (2012); 66van der Hilst and Faaij (2012); 67van der Hilst et al. (2012b); 68Hoefnagels et al. (2013); 69Immerzeel et al. (2013); 70 Lynd et al. (2011); 71Smeets et al. (2008); 72Smeets and Faaij (2010); 73Wicke et al. (2013); 74Wiskerke et al. (2010); 75De Wit et al. (2011); 76de Wit et al. (2013) 11.13.7    Tradeoffs and synergies with land, water, food, and biodiversity  This section summarizes results from integrated models (models that have a global aggregate view,  but cannot disaggregate place specific effects in biodiversity and livelihoods discussed above) on  land, water, food, and biodiversity. In these models, at any level of future bioenergy supply, land  demand for bioenergy depends on (1) the share of bioenergy derived from wastes and residues  (Rogner et al., 2012); (2) the extent to which bioenergy production can be integrated with food or  fiber production, which ideally results in synergies (Garg et al., 2011; Sochacki et al., 2013) or at least  mitigates land use competition (Berndes et al., 2013); (3) the extent to which bioenergy can be  grown on areas with little current or future production, taking into account growing land demand for      101 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   food (Nijsen et al., 2012); and (4) the volume of dedicated energy crops and their yields (Haberl et  al., 2010; Batidzirai et al., 2012; Smith et al., 2012d). Energy crop yields per unit area may differ by  factors of >10 depending on differences in natural fertility (soils, climate), energy crop plants,  previous land use, management and technology (Johnston et al., 2009a; Lal, 2010; Beringer et al.,  2011; Pacca and Moreira, 2011; Smith et al., 2012a; Erb et al., 2012a). Assumptions on energy crop  yields are one of the main reasons for the large differences in estimates of future area demand of  energy crops (Popp et al., 2013). Likewise, assumptions on yields, strategies, and governance on  future food/feed crops have large implications for assessments of the degree of land competition  between biofuels and these land uses (Batidzirai et al., 2012; de Wit et al., 2013).  However, across models, there are very different potential landscape transformation visions in all  regions (Sections 6.3.5 and 11.9.). Overall, it is difficult to generalize on regional land cover effects of  mitigation. Some models assume significant land conversion while other models do not. In idealized  implementation scenarios, there is expansion of energy cropland and forest land in many regions,  with some models exhibiting very strong forest land expansion and others very little by 2030. Land  conversion is increased in the 450 ppm scenarios compared to the 550 ppm scenarios, but at a  declining share, a result consistent with a declining land related mitigation rate with policy  stringency. The results of these integrated model studies need to be interpreted with caution, as not  all GHG emissions and biogeophysical or socio economic effects of bioenergy deployment are  incorporated into these models, and as not all relevant technologies are represented (e.g., cascade  utilization).   Large scale bioenergy production from dedicated crops may affect water availability and quality (see  Section 6.6.2.6), which are highly dependent on (1) type and quantity of local freshwater resources;  (2) necessary water quality; (3) competition for multiple uses (agricultural, urban, industrial, power  generation), and (4) efficiency in all sector end uses (Gerbens Leenes et al., 2009; Coelho et al.,  2012). In many regions, additional irrigation of energy crops could further intensify existing  pressures on water resources (Popp et al., 2011). Studies indicate that an exclusion of severe water  scarce areas for bioenergy production (mainly to be found in the Middle East, parts of Asia, and  western United States) would reduce global technical bioenergy potentials by 17% until 2050 (van  Vuuren et al., 2009). A model comparison study with five global economic models shows that the  aggregate food price effect of large scale lignocellulosic bioenergy deployment (i.e., 100 EJ globally  by the year 2050) is significantly lower (+5% on average across models) than the potential price  effects induced by climate impacts on crop yields (+25% on average across models (Lotze Campen et  al., 2013). Possibly hence, ambitious climate change mitigation need not drive up global food prices  much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g., from  forests, does not directly compete for agricultural land. Effective land use planning and strict  adherence to sustainability criteria need to be integrated to large scale bioenergy projects to  minimize competitions for water (for example, by excluding the establishment of biofuel projects in  irrigated areas). If bioenergy is not managed properly, additional land demand and associated LUC  may put pressures on biodiversity (Groom et al., 2008; see Section 6.6.2.5). However, implementing  appropriate management, such as establishing bioenergy crops in degraded areas represents an  opportunity where bioenergy can be used to achieve positive environmental outcomes (Nijsen et al.,  2012).          102 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   References  Abdalla M., B. Osborne, G. Lanigan, D. Forristal, M. Williams, P. Smith, and M.B. Jones (2013).  Conservation tillage systems: a review of its consequences for greenhouse gas emissions, Soil Use  and Management 29 199 209 pp. (DOI: 10.1111/sum.12030), (ISSN: 02660032).  Ackerman F., S.J. DeCanio, R.B. Howarth, and K. Sheeran (2009). Limitations of integrated  assessment models of climate change, Climatic Change 95 297 315 pp. (DOI: 10.1007/s10584 009 9570 x), (ISSN: 0165 0009, 1573 1480).  Acuff K., and D.T. Kaffine (2013). Greenhouse gas emissions, waste and recycling policy, Journal of  Environmental Economics and Management 65 74 86 pp. (DOI: 10.1016/j.jeem.2012.05.003), (ISSN:  00950696).  Agrawal A., A. Chhatre, and R. Hardin (2008). Changing Governance of the World s Forests, Science  320 1460 1462 pp. (DOI: 10.1126/science.1155369), (ISSN: 0036 8075, 1095 9203).  Akiyama H., X. Yan, and K. Yagi (2010). Evaluation of effectiveness of enhanced efficiency fertilizers  as mitigation options for N2O and NO emissions from agricultural soils: meta analysis: Mitigation  options for N2O and NO emissions, Global Change Biology 16 1837 1846 pp. (DOI: 10.1111/j.1365 2486.2009.02031.x), (ISSN: 13541013, 13652486).  Albers H.J., and E.J.Z. Robinson (2013). A review of the spatial economics of non timber forest  product extraction: Implications for policy, Ecological Economics 92 87 95 pp. (DOI:  10.1016/j.ecolecon.2012.01.021), (ISSN: 09218009).  Alig R., G. Latta, D. Adams, and B. McCarl (2010). Mitigating greenhouse gases: The importance of  land base interactions between forests, agriculture, and residential development in the face of  changes in bioenergy and carbon prices, Forest Policy and Economics 12 67 75 pp. (DOI:  10.1016/j.forpol.2009.09.012), (ISSN: 1389 9341).  Allen C.D., A.K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger,  A. Rigling, D.D. Breshears, E. Hogg, and others (2010). A global overview of drought and heat induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and  Management 259 660 684 pp. .  Allen D.E., D.S. Mendham, Bhupinderpal Singh, A. Cowie, W. Wang, R.C. Dalal, and R.J. Raison  (2009). Nitrous oxide and methane emissions from soil are reduced following afforestation of  pasture lands in three contrasting climatic zones, Soil Research 47 443 458 pp. . Available at:  http://dx.doi.org/10.1071/SR08151.  Alves Finco M.V., and W. Doppler (2010). Bioenergy and sustainable development: The dilemma of  food security in the Brazilian savannah, Energy for Sustainable development 14 194 199 pp. .  Amazon Fund Fundo Amazônia. . Available at:  http://www.amazonfund.gov.br/FundoAmazonia/fam/site_en.  Amigun B., J.K. Musango, and W. Stafford (2011). Biofuels and sustainability in Africa, Renewable  and Sustainable Energy Reviews 15 1360 1372 pp. (DOI: 10.1016/j.rser.2010.10.015), (ISSN: 1364 0321).      103 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Anderson K. (2010). Globalization s effects on world agricultural trade, 1960 2050, Philosophical  Transactions of the Royal Society B: Biological Sciences 365 3007  3021 pp. (DOI:  10.1098/rstb.2010.0131).  Anderson R.C., N.A. Krueger, T.B. Stanton, T.R. Callaway, T.S. Edrington, R.B. Harvey, Y.S. Jung, and  D.J. Nisbet (2008). Effects of select nitrocompounds on in vitro ruminal fermentation during  conditions of limiting or excess added reductant, Bioresource Technology 99 8655 8661 pp. .  Anderson Teixeira K.J., S.C. Davis, M.D. Masters, and E.H. Delucia (2009). Changes in soil organic  carbon under biofuel crops, GCB Bioenergy 1 75 96 pp. (DOI: 10.1111/j.1757 1707.2008.01001.x),  (ISSN: 1757 1707).  Anderson Teixeira K.J., P.K. Snyder, T.E. Twine, S.V. Cuadra, M.H. Costa, and E.H. DeLucia (2012).  Climate regulation services of natural and agricultural ecoregions of the Americas, Nature Climate  Change 2 177 181 pp. (DOI: 10.1038/nclimate1346), (ISSN: 1758 678X).  Anenberg S.C., K. Balakrishnan, J. Jetter, O. Masera, S. Mehta, J. Moss, and V. Ramanathan (2013).  Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits, Environmental  Science & Technology 47 3944 3952 pp. (DOI: 10.1021/es304942e), (ISSN: 0013 936X).  Angassa A., and G. Oba (2008). Effects of management and time on mechanisms of bush  encroachment in southern Ethiopia, African Journal of Ecology 46 186 196 pp. (DOI: 10.1111/j.1365 2028.2007.00832.x), (ISSN: 1365 2028).  Angelsen A. (2008). Moving Ahead with REDD: Issues, Options and Implications. CIFOR, Bogor Barat,  Indonesia, 172 pp., (ISBN: 9789791412766). .  Angelsen A., C. Streck, L. Peskett, J. Brown, and C. Luttrell (2008). What Is the Right Scale for REDD?  The Implications of National, Subnational and Nested Approaches. CIFOR, Bogor Barat, Indonesia. 6  pp. Available at:  http://62.225.2.55/files/methods_science/redd/application/pdf/what_is_the_right_scale_for_redd. pdf.  Angst T.E., C.J. Patterson, D.S. Reay, P. Anderson, T.A. Peshkur, and S.P. Sohi (2013). Biochar  Diminishes Nitrous Oxide and Nitrate Leaching from Diverse Nutrient Sources, Journal of  Environment Quality 42 672 pp. (DOI: 10.2134/jeq2012.0341), (ISSN: 0047 2425).  Araujo C., C.A. Bonjean, J. L. Combes, P. Combes Motel, and E.J. Reis (2009). Property rights and  deforestation in the Brazilian Amazon, Ecological Economics 68 2461 2468 pp. (DOI:  10.1016/j.ecolecon.2008.12.015), (ISSN: 0921 8009).  Arcidiacono Bársony C., P. Ciais, N. Viovy, and N. Vuichard (2011). REDD Mitigation, Procedia  Environmental Sciences 6 50 59 pp. (DOI: 10.1016/j.proenv.2011.05.006), (ISSN: 18780296).  Argo A.M., E.C. Tan, D. Inman, M.H. Langholtz, L.M. Eaton, J.J. Jacobson, C.T. Wright, D.J. Muth,  M.M. Wu, Y. W. Chiu, and R.L. Graham (2013). Investigation of biochemical biorefinery sizing and  environmental sustainability impacts for conventional bale system and advanced uniform biomass  logistics designs, Biofuels, Bioproducts and Biorefining 7 282 302 pp. (DOI: 10.1002/bbb.1391),  (ISSN: 1932 1031).  Arnalds A. (2004). Carbon sequestration and the restoration of land health: an example from  Iceland, Climatic Change 65 333 346 pp. .      104 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Arndt C., R. Benfica, and J. Thurlow (2011). Gender Implications of Biofuels Expansion in Africa: The  Case of Mozambique, World Development 39 1649 1662 pp. (DOI:  10.1016/j.worlddev.2011.02.012), (ISSN: 0305 750X).  Arndt C., K. Pauw, and J. Thurlow (2012). Biofuels and economic development: A computable  general equilibrium analysis for Tanzania, Energy Economics 34 1922 1930 pp. (DOI:  10.1016/j.eneco.2012.07.020), (ISSN: 0140 9883).  Arora V.K., and A. Montenegro (2011). Small temperature benefits provided by realistic  afforestation efforts, Nature Geoscience 4 514 518 pp. (DOI: 10.1038/ngeo1182), (ISSN: 1752 0894).  Asante P., and G.W. Armstrong (2012). Optimal forest harvest age considering carbon sequestration  in multiple carbon pools: A comparative statics analysis, Journal of Forest Economics 18 145 156 pp.  (DOI: 10.1016/j.jfe.2011.12.002), (ISSN: 1104 6899).  Asante P., G.W. Armstrong, and W.L. Adamowicz (2011). Carbon sequestration and the optimal  forest harvest decision: A dynamic programming approach considering biomass and dead organic  matter, Journal of Forest Economics 17 3 17 pp. (DOI: 10.1016/j.jfe.2010.07.001), (ISSN: 1104 6899).  Assogbadjo A.E., R.G. Kakai, F.G. Vodouhe, C.A.M.S. Djagoun, J.T.C. Codjia, and B. Sinsin (2012).  Biodiversity and socioeconomic factors supporting farmers  choice of wild edible trees in the  agroforestry systems of Benin (West Africa), Forest Policy and Economics 14 41 49 pp. .  Attwood G.T., E. Altermann, W.J. Kelly, S.C. Leahy, L. Zhang, and M. Morrison (2011). Exploring  rumen methanogen genomes to identify targets for methane mitigation strategies, Animal Feed  Science and Technology 166 167 65 75 pp. (DOI: 10.1016/j.anifeedsci.2011.04.004), (ISSN: 0377 8401).  Attwood G.T., and C.S. McSweeney (2008). Methanogen genomics to discover targets for methane  mitigation technologies and options for alternative H2 utilisation in the rumen, Australian Journal of  Experimental Agriculture 48 28 37 pp. .  Auld G., L.H. Gulbrandsen, and C.L. McDemott (2008). Certification Schemes and the Impacts on  Forests and Forestry. Annual Review of Environment and Resources. 33, 187 211. (DOI:  10.1146/annurev.environ.33.013007.103754).  Awudu I., and J. Zhang (2012). Uncertainties and sustainability concepts in biofuel supply chain  management: A review, Renewable and Sustainable Energy Reviews 16 1359 1368 pp. (DOI:  10.1016/j.rser.2011.10.016), (ISSN: 1364 0321).  Baccini A., S.J. Goetz, W.S. Walker, N.T. Laporte, M. Sun, D. Sulla Menashe, J. Hackler, P.S.A. Beck,  R. Dubayah, M.A. Friedl, S. Samanta, and R.A. Houghton (2012). Estimated carbon dioxide  emissions from tropical deforestation improved by carbon density maps, Nature Climate Change 2  182 185 pp. (DOI: 10.1038/nclimate1354), (ISSN: 1758 678X).  Bacenetti J., S.G. Garcia, A. Mena, and M. Fiala (2012). Life cycle assessment: an application to  poplar for energy cultivated in Italy, Journal of agricultural engineering 43 72 78 pp. .  Bacovsky D., M. Dallos, and M. Wörgetter (2010). Status of 2nd Generation Biofuels  Demonstration  Facilities in June 2010: A Report to IEA Bioenergy Task 39. . Available at:  http://library.certh.gr/libfiles/PDF/GEN SPIN 711 STATUS by BACOVSKY in RPT BIOENERGY TASK 39 PP 126 Y JUL 2010.pdf.      105 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Bacovsky D., L. Nikolaus, O. Monica, and W. Manfred (2013). Status of Advanced Biofuels  Demonstration Facilities in 2012. International Energy Agency Bioenergy. 209 pp. Available at:  http://demoplants.bioenergy2020.eu/files/Demoplants_Report_Final.pdf.  Bai Y., L. Luo, and E. Voet (2010). Life cycle assessment of switchgrass derived ethanol as transport  fuel, The International Journal of Life Cycle Assessment 15 468 477 pp. (DOI: 10.1007/s11367 010 0177 2), (ISSN: 0948 3349).  Bailis R., and H. McCarthy (2011). Carbon impacts of direct land use change in semiarid woodlands  converted to biofuel plantations in India and Brazil, GCB Bioenergy 3 449 460 pp. (DOI:  10.1111/j.1757 1707.2011.01100.x), (ISSN: 1757 1707).  Baker J.M., T.E. Ochsner, R.T. Venterea, and T.J. Griffis (2007). Tillage and soil carbon  sequestration What do we really know?, Agriculture, Ecosystems & Environment 118 1 5 pp. .  Baker D.J., G. Richards, A. Grainger, P. Gonzalez, S. Brown, R. DeFries, A. Held, J. Kellndorfer, P.  Ndunda, D. Ojima, P. E. Skrovseth, C. Souza Jr., and F. Stolle (2010). Achieving forest carbon  information with higher certainty: A five part plan, Environmental Science & Policy 13 249 260 pp.  (DOI: 10.1016/j.envsci.2010.03.004), (ISSN: 1462 9011).  Bala G., K. Caldeira, M. Wickett, T.J. Phillips, D.B. Lobell, C. Delire, and A. Mirin (2007). Combined  climate and carbon cycle effects of large scale deforestation, Proceedings of the National Academy  of Sciences 104 6550 6555 pp. (DOI: 10.1073/pnas.0608998104).  Balan V., D. Chiaramonti, and S. Kumar (2013). Review of US and EU initiatives toward  development, demonstration, and commercialization of lignocellulosic biofuels, Biofuels,  Bioproducts and Biorefining 7 732 759 pp. .  Baliban R.C., J.A. Elia, and C.A. Floudas (2013). Biomass and natural gas to liquid transportation  fuels: process synthesis, global optimization, and topology analysis, Industrial & Engineering  Chemistry Research 52 3381 3406 pp. .  Barbier E.B. (2007). Valuing ecosystem services as productive inputs, Economic Policy 22 177 229  pp. .  Barrow C.J. (2012). Biochar: Potential for countering land degradation and for improving agriculture,  Applied Geography 34 21 28 pp. (DOI: 10.1016/j.apgeog.2011.09.008), (ISSN: 0143 6228).  Barton L., K. Butterbach Bahl, R. Kiese, and D.V. Murphy (2011). Nitrous oxide fluxes from a grain legume crop (narrow leafed lupin) grown in a semiarid climate: Soil N2O from a grain legume crop,  Global Change Biology 17 1153 1166 pp. (DOI: 10.1111/j.1365 2486.2010.02260.x), (ISSN:  13541013).  Bathiany S., M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler (2010). Combined biogeophysical  and biogeochemical effects of large scale forest cover changes in the MPI earth system model,  Biogeosciences 7 1383 1399 pp. (DOI: 10.5194/bg 7 1383 2010), (ISSN: 1726 4189).  Batidzirai B., E. Smeets, and A. Faaij (2012). Harmonising bioenergy resource potentials    Methodological lessons from review of state of the art bioenergy potential assessments, Renewable  and Sustainable Energy Reviews 16 6598 6630 pp. .  Batjes N.H. (2004). Estimation of soil carbon gains upon improved management within croplands  and grasslands of Africa, Environment, Development and Sustainability 6 133 143, pp. .      106 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Baum S., A. Bolte, and M. Weih (2012). Short rotation coppice (SRC) plantations provide additional  habitats for vascular plant species in agricultural mosaic landscapes, Bioenergy Research 5 573 583  pp. .  Bayala J., L.K. Heng, M. van Noordwijk, and S.J. Ouedraogo (2008). Hydraulic redistribution study in  two native tree species of agroforestry parklands of West African dry savanna, Acta Oecologica 34  370 378 pp. . Available at: http://www.sciencedirect.com/science/article/pii/S1146609X08001033.  Bayala J., A. Kalinganire, Z. Tchoundjeu, P. Sinclair, and D. Garrity (2011). Conservation Agriculture  with Trees in the West African Sahel: A Review. World Agroforestry Centre, Bamako, Mali, 72 pp.,  (ISBN: 978 92 9059 295 2). .  Beach R.H., A.J. Daigneault, B.A. Mccarl, and S. Rose (2009). Modeling Alternative Policies for  Forestry and Agricultural Bioenergy Production and GHG Mitigation. Washington, D.C. 27 pp.  Beauchemin K.A., M. Kreuzer, F. O Mara, and T.A. McAllister (2008). Nutritional management for  enteric methane abatement: a review, Australian Journal of Experimental Agriculture 48 21 27 pp.  (DOI: 10.1071/EA07199), (ISSN: 0816 1089).  Beauchemin K.A., T.A. McAllister, and S.M. McGinn (2009). Dietary mitigation of enteric methane  from cattle, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural  Resources 4 1 18 pp. . Available at:  http://www.cabi.org/cabreviews/?loadmodule=review&page=4051&reviewid=112308&Site=167.  Beckham G.T., Z. Dai, J.F. Matthews, M. Momany, C.M. Payne, W.S. Adney, S.E. Baker, and M.E.  Himmel (2012). Harnessing glycosylation to improve cellulase activity, Energy biotechnology    Environmental biotechnology 23 338 345 pp. (DOI: 10.1016/j.copbio.2011.11.030), (ISSN: 0958 1669).  Bellarby J., R. Tirado, A. Leip, F. Weiss, J.P. Lesschen, and P. Smith (2012). Livestock greenhouse gas  emissions and mitigation potential in Europe, Global Change Biology n/a n/a pp. (DOI:  10.1111/j.1365 2486.2012.02786.x), (ISSN: 1365 2486).  Benayas J.M.R., A.C. Newton, A. Diaz, and J.M. Bullock (2009). Enhancement of Biodiversity and  Ecosystem Services by Ecological Restoration: A Meta Analysis, Science 325 1121 1124 pp. (DOI:  10.1126/science.1172460), (ISSN: 0036 8075, 1095 9203).  Benítez P.C., I. McCallum, M. Obersteiner, and Y. Yamagata (2007). Global potential for carbon  sequestration: Geographical distribution, country risk and policy implications, Ecological Economics  60 572 583 pp. (DOI: 10.1016/j.ecolecon.2005.12.015), (ISSN: 0921 8009).  Bennetzen E.H., P. Smith, J. F. Soussana, and J.R. Porter (2012). Identity based estimation of  greenhouse gas emissions from crop production: Case study from Denmark, European Journal of  Agronomy 41 66 72 pp. (DOI: 10.1016/j.eja.2012.03.010), (ISSN: 11610301).  Beringer T., W. Lucht, and S. Schaphoff (2011). Bioenergy production potential of global biomass  plantations under environmental and agricultural constraints, GCB Bioenergy 3 299 312 pp. (DOI:  10.1111/j.1757 1707.2010.01088.x), (ISSN: 1757 1707).  Berndes G. (2012). Bioenergy s contribution to climate change mitigation   a matter of perspectives,  Biofuels, Bioproducts and Biorefining 6 233 235 pp. (DOI: 10.1002/bbb.1343), (ISSN: 1932 1031).      107 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Berndes G., S. Ahlgren, P. Börjesson, and A.L. Cowie (2013). Bioenergy and land use change state  of the art, Wiley Interdisciplinary Reviews: Energy and Environment 2 282 303 pp. (DOI:  10.1002/wene.41), (ISSN: 2041 840X).  Berndes G., N. Bird, and A. Cowie (2011). Bioenergy, Land Use Change and Climate Change  Mitigation. Technical Report. International Energy Agency. . Available at:  http://www.ieabioenergy.com/LibItem.aspx?id=6927.  Berndes G., and P. Börjesson (2007). Multifunctional Bioenergy Systems. The AGS Pathways Report  2007: EU1. AGS   Alliance for Global Sustainability: Swiss Federal Institute of Technology,  Massachusetts Institute of Technology, Chalmers University of Technology, Tokyo University. 26 pp.  Berndes G., P. Börjesson, M. Ostwald, and M. Palm (2008). Multifunctional biomass production  systems   an introduction with presentation of specific applications in India and Sweden, Biofuels,  Bioproducts and Biorefining 2 16 25 pp. .  Berndes G., F. Fredriksson, and P. Börjesson (2004). Cadmium accumulation and Salix based  phytoextraction on arable land in Sweden, Agriculture, Ecosystems & Environment 103 207 223 pp. .  Berners Lee M., C. Hoolohan, H. Cammack, and C.N. Hewitt (2012). The relative greenhouse gas  impacts of realistic dietary choices, Energy Policy 43 184 190 pp. (DOI:  10.1016/j.enpol.2011.12.054), (ISSN: 0301 4215).  Bernier P., and D. Paré (2013). Using ecosystem CO2 measurements to estimate the timing and  magnitude of greenhouse gas mitigation potential of forest bioenergy, GCB Bioenergy 5 67 72 pp. .  Betts R.A. (2001). Biogeophysical impacts of land use on present day climate: near surface  temperature change and radiative forcing, Atmospheric Science Letters 2 39 51 pp. (DOI:  10.1006/asle.2001.0037), (ISSN: 1530 261X).  Betts R.A. (2011). Mitigation: A sweetener for biofuels, Nature Clim. Change 1 99 101 pp. (ISSN:  1758 678X).  Betts R.A., P.D. Falloon, K.K. Goldewijk, and N. Ramankutty (2007). Biogeophysical effects of land  use on climate: Model simulations of radiative forcing and large scale temperature change,  Agricultural and Forest Meteorology 142 216 233 pp. (DOI: 10.1016/j.agrformet.2006.08.021),  (ISSN: 0168 1923).  Bhattacharyya P., D.P. Sinhababu, K.S. Roy, P.K. Dash, P.K. Sahu, R. Dandapat, S. Neogi, and S.  Mohanty (2013). Effect of fish species on methane and nitrous oxide emission in relation to soil C, N  pools and enzymatic activities in rainfed shallow lowland rice fish farming system, Agriculture,  Ecosystems & Environment 176 53 62 pp. (DOI: 10.1016/j.agee.2013.05.015), (ISSN: 01678809).  Bhuiyan M.A.H., R. Islam, C. Siwar, and S.M. Ismail (2010). Educational Tourism and Forest  Conservation: Diversification for Child Education, Procedia   Social and Behavioral Sciences 7 19 23  pp. (DOI: 10.1016/j.sbspro.2010.10.003), (ISSN: 1877 0428).  Biederman L.A., and W.S. Harpole (2013). Biochar and its effects on plant productivity and nutrient  cycling: a meta analysis, GCB Bioenergy 5 202 214 pp. (DOI: 10.1111/gcbb.12037), (ISSN: 17571693).  Blanco Canqui H., and R. Lal (2009). Crop Residue Removal Impacts on Soil Productivity and  Environmental Quality, Critical Reviews in Plant Sciences 28 139 163 pp. (DOI:  10.1080/07352680902776507), (ISSN: 0735 2689, 1549 7836).      108 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Blengini G.A., E. Brizio, M. Cibrario, and G. Genon (2011). LCA of bioenergy chains in Piedmont  (Italy): A case study to support public decision makers towards sustainability, Resources,  Conservation and Recycling 57 36 47 pp. (DOI: 10.1016/j.resconrec.2011.10.003), (ISSN: 0921 3449).  Blom B., T. Sunderland, and D. Murdiyarso (2010). Getting REDD to work locally: lessons learned  from integrated conservation and development projects, Environmental Science & Policy 13 164 172  pp. .  Von Blottnitz H., and M.A. Curran (2007). A review of assessments conducted on bio ethanol as a  transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective,  Journal of Cleaner Production 15 607 619 pp. (DOI: 10.1016/j.jclepro.2006.03.002), (ISSN: 0959 6526).  Bockel L., A. Gentien, M. Tinlot, and M. Bromhead (2010). From Nationally Appropriate Mitigation  Actions (NAMAs) to Low Carbon Development in Agriculture: NAMAs as Pathway at Country Level.  Food and Agricultural Organization. 32 pp. Available at: http://www.nama database.org/index.php/From_Nationally_Appropriate_Mitigation_Actions_(NAMAs)_to_Low Carbon_Development_in_Agriculture.  Van Bodegom J.A., A. Jan, H. Savenije, and M. Wit (Eds.) (2009). Forests and Climate Change:  Adaptation and Mitigation. Tropenbos International, Wageningen, The Netherlands, 160 pp., (ISBN:  9789051131000). .  Boden T., G. Marland, and R. Andres (2011). Global CO2 Emissions from Fossil Fuel Burning, Cement  Manufacture, and Gas Flaring: 1751 2008. . Available at:  http://cdiac.ornl.gov/trends/emis/meth_reg.html.  De Boer I., C. Cederberg, S. Eady, S. Gollnow, T. Kristensen, M. Macleod, M. Meul, T. Nemecek, L.  Phong, G. Thoma, H. van der Werf, A. Williams, and M. Zonderland Thomassen (2011).  Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability  assessment, Carbon and Nitrogen Cycles 3 423 431 pp. (DOI: 10.1016/j.cosust.2011.08.007), (ISSN:  1877 3435).  Bonan G.B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of  Forests, Science 320 1444 1449 pp. (DOI: 10.1126/science.1155121), (ISSN: 0036 8075, 1095 9203).  Börjesson P., and G. Berndes (2006). The prospects for willow plantations for wastewater treatment  in Sweden, Biomass and Bioenergy 30 428 438 pp. .  Börjesson P., and L.M. Tufvesson (2011). Agricultural crop based biofuels resource efficiency and  environmental performance including direct land use changes, Journal of Cleaner Production 19 108 120 pp. .  Bostock J., B. McAndrew, R. Richards, K. Jauncey, T. Telfer, K. Lorenzen, D. Little, L. Ross, N.  Handisyde, I. Gatward, and R. Corner (2010). Aquaculture: global status and trends, Philosophical  Transactions of the Royal Society B: Biological Sciences 365 2897 2912 pp. (DOI:  10.1098/rstb.2010.0170), (ISSN: 0962 8436, 1471 2970).  Böttcher H., K. Eisbrenner, S. Fritz, G. Kindermann, F. Kraxner, I. McCallum, and M. Obersteiner  (2009). An assessment of monitoring requirements and costs of  Reduced Emissions from  Deforestation and Degradation , Carbon Balance and Management 4 7 pp. (DOI: 10.1186/1750 0680 4 7), (ISSN: 1750 0680).      109 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Böttcher H., P.J. Verkerk, M. Gusti, P. HavlÍk, and G. Grassi (2012). Projection of the future EU  forest CO2 sink as affected by recent bioenergy policies using two advanced forest management  models, GCB Bioenergy 4 773 783 pp. (DOI: 10.1111/j.1757 1707.2011.01152.x), (ISSN: 1757 1707).  Boulamanti A.K., S. Donida Maglio, J. Giuntoli, and A. Agostini (2013). Influence of different  practices on biogas sustainability, Biomass and Bioenergy 53 149 161 pp. (DOI:  10.1016/j.biombioe.2013.02.020), (ISSN: 0961 9534).  Boutton T.W., J.D. Liao, T.R. Filley, and S.R. Archer (2009). Belowground Carbon Storage and  Dynamics Accompanying Woody Plant Encroachment in a Subtropical Savanna. SSSA Special  Publications. In: Soil Carbon Sequestration and the Greenhouse Effect. Soil Science Society of  America, Madison, WI, USA pp.181 205.  Bradley R.S., M. Vuille, H.F. Diaz, and W. Vergara (2006). Threats to Water Supplies in the Tropical  Andes, Science 312 1755  1756 pp. (DOI: 10.1126/science.1128087).  Bradstock R.A., G.J. Cary, I. Davies, D.B. Lindenmayer, O. Price, and R.J. Williams (2012). Wildfires,  fuel treatment and risk mitigation in Australian eucalypt forests: insights from landscape scale  simulation, Journal of Environmental Management 105 66 75 pp. .  Branca G., H. Hissa, M.C. Benez, K. Medeiros, L. Lipper, M. Tinlot, L. Bockel, and M. Bernoux  (2013). Capturing synergies between rural development and agricultural mitigation in Brazil, Land  Use Policy 30 507 518 pp. (DOI: 10.1016/j.landusepol.2012.04.021), (ISSN: 0264 8377).  Brandao M., L. Mila i Canals, and R. Clift (2011). Soil organic carbon changes in the cultivation of  energy crops: Implications for GHG balances and soil quality for use in LCA, Biomass and Bioenergy  35 2323 2336 pp. (DOI: 10.1016/j.biombioe.2009.10.019), (ISSN: 0961 9534).  Bridgwater A.V. (2012). Upgrading biomass fast pyrolysis liquids, Environmental Progress &  Sustainable Energy 31 261 268 pp. (DOI: 10.1002/ep.11635), (ISSN: 1944 7450).  Bright R.M., and A.H. Strmman (2009). Life Cycle Assessment of Second Generation Bio ethanol  Produced from Scandinavian Boreal Forest Resources:  A Regional Analysis for Middle Norway,  Journal of Industrial Ecology 13 514 531 pp. .  Bright R.M., and A.H. Strmman (2010). Fuel mix, Vehicle technologies, and Transport Demand  Affect Prospects for Biofuels in Northern Europe, Environmental Science & Technology 44 2261 2269  pp. .  Bright R.M., A.H. Strmman, and T.R. Hawkins (2010). Environmental Assessment of Wood based  Biofuel Production and Consumption Scenarios in Norway, Journal of Industrial Ecology 14 422 439  pp. .  Bright R.M., A.H. Strmman, and G.P. Peters (2011). Radiative Forcing Impacts of Boreal Forest  Biofuels: A Scenario Study for Norway in Light of Albedo, Environmental Science & Technology 45  7570 7580 pp. (DOI: 10.1021/es201746b), (ISSN: 0013 936X).  Bringezu S., M. O Brien, and H. Schütz (2012). Beyond biofuels: Assessing global land use for  domestic consumption of biomass: A conceptual and empirical contribution to sustainable  management of global resources, Land Use Policy 29 224 232 pp. (DOI:  16/j.landusepol.2011.06.010), (ISSN: 0264 8377).      110 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Brockhaus M., M. Di Gregorio, and S. Mardiah (2013). Governing the design of national REDD +: An  analysis of the power of agency, Forest Policy and Economics (DOI: 10.1016/j.forpol.2013.07.003),  (ISSN: 1389 9341).  Brown E.G., R.C. Anderson, G.E. Carstens, H. Gutierrez Banuelos, J.L. McReynolds, L.J. Slay, T.R.  Callaway, and D.J. Nisbet (2011). Effects of oral nitroethane administration on enteric methane  emissions   and ruminal fermentation in cattle, Animal Feed Science and Technology 166 67 275 281  pp. (DOI: 10.1016/j.anifeedsci.2011.04.017), (ISSN: 0377 8401).  Brown C.D., and J.F. Johnstone (2011). How does increased fire frequency affect carbon loss from  fire? A case study in the northern boreal forest, International Journal of Wildland Fire 20 829 837  pp. (DOI: 10.1071/WF10113).  Bryan E., C. Ringler, B. Okaba, J. Koo, M. Herrero, and S. Silvestri (2013). Can agriculture support  climate change adaptation, greenhouse gas mitigation and rural livelihoods? Insights from Kenya,  Climatic Change 118 151 165 pp. (DOI: 10.1007/s10584 012 0640 0), (ISSN: 1473300800).  Bryant J.R., V.O. Snow, R. Cichota, and B.H. Jolly (2011). The effect of situational variability in  climate and soil, choice of animal type and N fertilisation level on nitrogen leaching from pastoral  farming systems around Lake Taupo, New Zealand, Agricultural Systems 104 271 280 pp. (DOI:  10.1016/j.agsy.2010.11.001), (ISSN: 0308 521X).  Budsberg E., M. Rastogi, M.E. Puettmann, J. Caputo, S. Balogh, T.A. Volk, R. Gustafson, and L.  Johnson (2012). Life cycle assessment for the production of bioethanol from willow biomass crops  via biochemical conversion, Forest Products Journal 62 305 pp. .  Buonocore E., P.P. Franzese, and S. Ulgiati (2012). Assessing the environmental performance and  sustainability of bioenergy production in Sweden: A life cycle assessment perspective, Energy 37 69 78 pp. (DOI: 10.1016/j.energy.2011.07.032).  Burney J.A., S.J. Davis, and D.B. Lobell (2010). Greenhouse gas mitigation by agricultural  intensification, Proceedings of the National Academy of Sciences 107 12052 12057 pp. (DOI:  10.1073/pnas.0914216107).  Busch G. (2012). GIS based tools for regional assessments and planning processes regarding  potential environmental effects of poplar SRC, Bioenergy Research 5 584 605 pp. .  Busch J., F. Godoy, W.R. Turner, and C.A. Harvey (2011). Biodiversity co benefits of reducing  emissions from deforestation under alternative reference levels and levels of finance, Conservation  Letters 4 101 115 pp. (DOI: 10.1111/j.1755 263X.2010.00150.x), (ISSN: 1755 263X).  Bustamante M.M.C., C.A. Nobre, R. Smeraldi, A.P.D. Aguiar, L.G. Barioni, L.G. Ferreira, K. Longo, P.  May, A.S. Pinto, and J.P.H.B. Ometto (2012). Estimating greenhouse gas emissions from cattle  raising in Brazil, Climatic Change 1 19 pp. . Available at:  http://www.springerlink.com/index/WT2702446216702X.pdf.  Cacciatore M.A., D.A. Scheufele, and B.R. Shaw (2012). Labeling renewable energies: How the  language surrounding biofuels can influence its public acceptance, Energy Policy 51 673 682 pp.  (DOI: 10.1016/j.enpol.2012.09.005), (ISSN: 0301 4215).  Cai Y. I. (2001). A study on land use/cover change: the need for a new integrated approach,  Geographical Research . Available at: http://en.cnki.com.cn/Article_en/CJFDTotal DLYJ200106000.htm.      111 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Calegari A., W.L. Hargrove, D. dos S. Rheinheimer, R. Ralisch, D. Tessier, S. Tourdonnet, and M. de  F. Guimaraes (2008). Impact of Long Term No Tillage and Cropping System Management on Soil  Organic Carbon in an Oxisol: A Model for Sustainability, Agronomy Journal 100 1013 1019 pp. .  Calfapietra C., B. Gielen, D. Karnosky, R. Ceulemans, and G. Scarascia Mugnozza (2010). Response  and potential of agroforestry crops under global change, Environmental Pollution 158 1095 1104 pp.  (DOI: 10.1016/j.envpol.2009.09.008), (ISSN: 0269 7491).  California Environmental Protection Agency Air Resources Board   Homepage. . Available at:  http://www.arb.ca.gov/homepage.htm.  Calvin K., P. Patel, A. Fawcett, L. Clarke, K. Fisher Vanden, J. Edmonds, S.H. Kim, R. Sands, and M.  Wise (2009). The distribution and magnitude of emissions mitigation costs in climate stabilization  under less than perfect international cooperation: SGM results, Energy Economics 31 S187 S197 pp.  (DOI: 10.1016/j.eneco.2009.06.014), (ISSN: 01409883).  Calvin K., M. Wise, P. Kyle, P. Patel, L. Clarke, and J. Edmonds (2013a). Trade offs of different land  and bioenergy policies on the path to achieving climate targets, Climatic Change in press (DOI: DOI:  10.1007/s10584 013 0897 y).  Calvin K., M. Wise, P. Luckow, P. Kyle, L. Clarke, and J. Edmonds (2013b). Implications of uncertain  future fossil energy resources on bioenergy use and terrestrial carbon emissions, Climatic Change 1 12 pp. (DOI: 10.1007/s10584 013 0923 0), (ISSN: 0165 0009).  Campbell J.E., D.B. Lobell, and C.B. Field (2009). Greater Transportation Energy and GHG Offsets  from Bioelectricity Than Ethanol, Science 324 1055 1057 pp. . Available at:  http://www.sciencemag.org/content/324/5930/1055.abstract.  Campbell J.E., D.B. Lobell, R.C. Genova, and C.B. Field (2008). The Global Potential of Bioenergy on  Abandoned Agriculture Lands, Environmental Science & Technology 42 5791 5794 pp. (DOI:  10.1021/es800052w), (ISSN: 0013 936X).  Canadell J.G., and M.R. Raupach (2008). Managing Forests for Climate Change Mitigation, Science  320 1456 1457 pp. (DOI: 10.1126/science.1155458), (ISSN: 0036 8075, 1095 9203).  Cançado J.E.D., P.H.N. Saldiva, L.A.A. Pereira, L.B.L.S. Lara, P. Artaxo, L.A. Martinelli, M.A. Arbex,  A. Zanobetti, and A.L.F. Braga (2006). The impact of sugar cane burning emissions on the  respiratory system of children and the elderly, Environmental health perspectives 114 725 729 pp.  (ISSN: 0091 6765).  Carlsson Kanyama A., and A.D. González (2009). Potential contributions of food consumption  patterns to climate change, The American Journal of Clinical Nutrition 89 1704S 1709S pp. (DOI:  10.3945/ajcn.2009.26736AA), (ISSN: 0002 9165, 1938 3207).  Carpita N.C. (2012). Progress in the biological synthesis of the plant cell wall: new ideas for  improving biomass for bioenergy, Current Opinion in Biotechnology 23 330 337 pp. (DOI:  10.1016/j.copbio.2011.12.003), (ISSN: 0958 1669).  Cattaneo A., R. Lubowski, J. Busch, A. Creed, B. Strassburg, F. Boltz, and R. Ashton (2010). On  international equity in reducing emissions from deforestation, Environmental Science & Policy 13  742 753 pp. (DOI: 10.1016/j.envsci.2010.08.009), (ISSN: 1462 9011).      112 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Cayuela M.L., M.A. Sánchez Monedero, A. Roig, K. Hanley, A. Enders, and J. Lehmann (2013).  Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?,  Scientific Reports 3 (DOI: 10.1038/srep01732), (ISSN: 2045 2322).  CBD, and GiZ (2011). Biodiversity and Livelihoods: REDD plus Benefits. Secretariat of the Convention  on Biological Diversity and Deutsche Gesellschaft Für Internationale Zusammenarbeit (GIZ) GmbH,  Canada. 41 pp. Available at: https://www.cbd.int/doc/publications/for redd en.pdf.  CDM SSC WG (2011). Thirty Third Meeting Report, Annex 8: Call for Public Inputs in Relation to  Standardized Approaches for Facilitating the Baseline Emission Calculations under SSC CDM  Methodologies for Displacement of Non Renewable Biomass. UNFCCC, Bonn, Germany. 52 pp.  Available at: http://cdm.unfccc.int/Panels/ssc_wg/meetings/033/ssc_033_an08.pdf.  Cederberg C., U.M. Persson, K. Neovius, S. Molander, and R. Clift (2011). Including carbon  emissions from deforestation in the carbon footprint of Brazilian beef, Environmental Science &  Technology 45 1773 1779 pp. . Available at: http://pubs.acs.org/doi/abs/10.1021/es103240z.  Ceschia E., P. Béziat, J.F. Dejoux, M. Aubinet, C. Bernhofer, B. Bodson, N. Buchmann, A. Carrara, P.  Cellier, P. Di Tommasi, and others (2010). Management effects on net ecosystem carbon and GHG  budgets at European crop sites, Agriculture, Ecosystems & Environment 139 363 383 pp. .  Chadwick D., S. Sommer, R. Thorman, D. Fangueiro, L. Cardenas, B. Amon, and T. Misselbrook  (2011). Manure management: Implications for greenhouse gas emissions, Animal Feed Science and  Technology 166 67 514 531 pp. (DOI: 10.1016/j.anifeedsci.2011.04.036), (ISSN: 0377 8401).  Chakrabarti S. (2010). Factors influencing organic food purchase in India   expert survey insights,  British Food Journal 112 902 915 pp. (DOI: 10.1108/00070701011067497), (ISSN: 0007 070X).  Chatterjee A., and R. Lal (2009). On farm assessment of tillage impact on soil carbon and associated  soil quality parameters, Soil and Tillage Research 104 270 277 pp. (DOI: 10.1016/j.still.2009.03.006),  (ISSN: 0167 1987).  Chen M., and R.E. Blankenship (2011). Expanding the solar spectrum used by photosynthesis,  Trends in plant science 16 427 431 pp. .  Chen X., M. Khanna, H. Huang, and H. Önal (2012). Meeting the Mandate for Biofuels: Implications  for Land Use, Food, and Fuel Prices.  Cherubini F., N.D. Bird, A. Cowie, G. Jungmeier, B. Schlamadinger, and S. Woess Gallasch (2009).  Energy  and greenhouse gas based LCA of biofuel and bioenergy systems: Key issues, ranges and  recommendations, Resources, Conservation, and Recycling 53 434 447 pp. (DOI:  10.1016/j.resconrec.2009.03.013), (ISSN: 0921 3449).  Cherubini F., R.M. Bright, and A.H. Stromman (2013). Global climate impacts of forest bioenergy:  what, when and how to measure?, Environmental Research Letters in press.  Cherubini F., G. Guest, and A. Strmman (2012). Application of probability distributions to the  modeling of biogenic CO2 fluxes in life cycle assessment, GCB Bioenergy 4 784 798 pp. (DOI:  10.1111/j.1757 1707.2011.01156.x), (ISSN: 1757 1707).  Cherubini F., and G. Jungmeier (2010). LCA of a biorefinery concept producing bioethanol,  bioenergy, and chemicals from switchgrass, The International Journal of Life Cycle Assessment 15 53 66 pp. (DOI: 10.1007/s11367 009 0124 2), (ISSN: 0948 3349).      113 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Cherubini F., G.P. Peters, T. Berntsen, A.H. Strmman, and E. Hertwich (2011). CO2 emissions from  biomass combustion for bioenergy: atmospheric decay and contribution to global warming, GCB  Bioenergy 3 413 426 pp. (DOI: 10.1111/j.1757 1707.2011.01102.x), (ISSN: 1757 1707).  Cherubini F., and S. Ulgiati (2010). Crop residues as raw materials for biorefinery systems   A LCA  case study, Applied Energy 87 47 57 pp. (DOI: 10.1016/j.apenergy.2009.08.024), (ISSN: 0306 2619).  Chhatre A., and A. Agrawal (2009). Trade offs and synergies between carbon storage and livelihood  benefits from forest commons, Proceedings of the National Academy of Sciences 106 17667 17670  pp. .  Chhatre A., S. Lakhanpal, A.M. Larson, F. Nelson, H. Ojha, and J. Rao (2012). Social safeguards and  co benefits in REDD+: a review of the adjacent possible, Current Opinion in Environmental  Sustainability 4 654 660 pp. (DOI: 10.1016/j.cosust.2012.08.006), (ISSN: 1877 3435).  Choo Y.M., H. Muhamad, Z. Hashim, V. Subramaniam, C.W. Puah, and Y. Tan (2011). Determination  of GHG contributions by subsystems in the oil palm supply chain using the LCA approach, The  International Journal of Life Cycle Assessment 16 669 681 pp. (DOI: 10.1007/s11367 011 0303 9),  (ISSN: 0948 3349).  Chum H., A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, A.G. Eng, W. Lucht, M.  Mapako, O.M. Cerutti, T. McIntyre, T. Minowa, and K. Pingoud (2011). Bioenergy. In: IPCC Special  Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S.  Schlömer, C. von Stechow (eds)],. Cambridge University Press, Cambridge, United Kingdom and New  York, NY, USA pp.209 332.  Chundawat S.P.S., G.T. Beckham, M.E. Himmel, and B.E. Dale (2011). Deconstruction of  Lignocellulosic Biomass to Fuels and Chemicals, Annual Review of Chemical and Biomolecular  Engineering 2 121 145 pp. (DOI: 10.1146/annurev chembioeng 061010 114205).  Chung C.E., V. Ramanathan, and D. Decremer (2012). Observationally constrained estimates of  carbonaceous aerosol radiative forcing, Proceedings of the National Academy of Sciences 109  11624 11629 pp. .  Ciais P., M.J. Schelhaas, S. Zaehle, S.L. Piao, A. Cescatti, J. Liski, S. Luyssaert, G. Le Maire, E. D.  Schulze, O. Bouriaud, A. Freibauer, R. Valentini, and G.J. Nabuurs (2008). Carbon accumulation in  European forests, Nature Geoscience 1 425 429 pp. (DOI: 10.1038/ngeo233), (ISSN: 1752 0894).  Clair T.A., P. Arp, T.. Moore, M. Dalva, and F. R. Meng (2002). Gaseous carbon dioxide and  methane, as well as dissolved organic carbon losses from a small temperate wetland under a  changing climate, Environmental Pollution 116, Supplement 1 S143 S148 pp. (DOI: 10.1016/S0269 7491(01)00267 6), (ISSN: 0269 7491).  Clair S.S., J. Hillier, and P. Smith (2008). Estimating the pre harvest greenhouse gas costs of energy  crop production, Biomass and Bioenergy 32 442 452 pp. (DOI: 10.1016/j.biombioe.2007.11.001),  (ISSN: 0961 9534).  Clark H. (2013). Nutritional and host effects on methanogenesis in the grazing ruminant, Animal 7  Suppl 1 41 48 pp. (DOI: 10.1017/S1751731112001875), (ISSN: 1751 732X).      114 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Claussen M., V. Brovkin, and A. Ganopolski (2001). Biogeophysical versus biogeochemical feedbacks  of large scale land cover change, Geophys. Res. Lett. 28 1011 1014 pp. (DOI:  10.1029/2000gl012471), (ISSN: 0094 8276).  Clough T., L. Condron, C. Kammann, and C. Müller (2013). A Review of Biochar and Soil Nitrogen  Dynamics, Agronomy 3 275 293 pp. (DOI: 10.3390/agronomy3020275), (ISSN: 2073 4395).  Coelho S., O. Agbenyega, A. Agostini, K.H. Erb, H. Haberl, M. Hoogwijk, R. Lal, O. Lucon, O. Masera,  and J.R. Moreira (2012). Chapter 20   Land and Water: Linkages to Bioenergy. In: Global Energy  Assessment   Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New  York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria,  Cambridge, UK pp.1459 1526(ISBN: 9780521182935).  Colfer C.J.P. (2011). Marginalized Forest Peoples  Perceptions of the Legitimacy of Governance: An  Exploration, World Development 39 2147 2164 pp. (DOI: 10.1016/j.worlddev.2011.04.012), (ISSN:  0305 750X).  Combes Motel P., R. Pirard, and J. L. Combes (2009). A methodology to estimate impacts of  domestic policies on deforestation: Compensated Successful Efforts for  avoided deforestation   (REDD), Ecological Economics 68 680 691 pp. (DOI: 10.1016/j.ecolecon.2008.06.001), (ISSN: 0921 8009).  Conant R.T., M. Easter, K. Paustian, A. Swan, and S. Williams (2007). Impacts of periodic tillage on  soil C stocks: A synthesis, Soil and Tillage Research 95 1 10 pp. (DOI: 10.1016/j.still.2006.12.006),  (ISSN: 01671987).  Corbera E., and K. Brown (2008). Building Institutions to Trade Ecosystem Services: Marketing Forest  Carbon in Mexico, World Development 36 1956 1979 pp. (DOI: 10.1016/j.worlddev.2007.09.010),  (ISSN: 0305 750X).  Corbera E., and H. Schroeder (2011). Governing and implementing REDD+, Environmental Science &  Policy 14 89 99 pp. (DOI: 10.1016/j.envsci.2010.11.002), (ISSN: 1462 9011).  Cordes L. (2011). Igniting Change: A Strategy for Universal Adoption of Clean Cookstoves and Fuels.  Global Alliance for Clean Cookstoves, Washington DC, USA. . Available at: www.cleancookstoves.org.  Cottle D.J., J.V. Nolan, and S.G. Wiedemann (2011). Ruminant enteric methane mitigation: a review,  Animal Production Science 51 491 pp. (DOI: 10.1071/AN10163), (ISSN: 1836 0939).  Cotula L. (2012). The international political economy of the global land rush: A critical appraisal of  trends, scale, geography and drivers, Journal of Peasant Studies 39 649 680 pp. (DOI:  10.1080/03066150.2012.674940), (ISSN: 0306 6150).  Cotula L., S. Vermeulen, R. Leonard, and J. Keeley (2009). Land Grab or Development Opportunity?  Agricultural Investment and International Land Deals in Africa. 130 p. pp.  Cox P.M., D. Pearson, B.B. Booth, P. Friedlingstein, C. Huntingford, C.D. Jones, and C.M. Luke  (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability,  Nature 494 341 344 pp. (DOI: 10.1038/nature11882), (ISSN: 0028 0836).  Creutzig F., E. Corbera, S. Bolwig, and C. Hunsberger (2013). Integrating place specific livelihood and  equity outcomes into global assessments of bioenergy deployment, Environmental Research Letters  8 035047 (11pp) pp. (DOI: 10.1088/1748 9326/8/3/035047), (ISSN: 1748 9326).      115 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Creutzig F., A. Popp, R. Plevin, G. Luderer, J. Minx, and O. Edenhofer (2012). Reconciling top down  and bottom up modelling on future bioenergy deployment, Nature Climate Change 2 320 327 pp.  (DOI: 10.1038/nclimate1416), (ISSN: 1758 678X).  Crutzen P.J., A.R. Mosier, K.A. Smith, and W. Winiwarter (2007). N2O release from agro biofuel  production negates global warming reduction by replacing fossil fuels, Atmospheric Chemistry and  Physics Discussions 7 11191 11205 pp. (DOI: 10.5194/acpd 7 11191 2007), (ISSN: 1680 7375).  Daigneault A., B. Sohngen, and R. Sedjo (2012). Economic Approach to Assess the Forest Carbon  Implications of Biomass Energy, Environmental Science & Technology 46 5664 5671 pp. (DOI:  10.1021/es2030142), (ISSN: 0013 936X).  Dale B.E., M.S. Allen, M. Laser, and L.R. Lynd (2009). Protein feeds coproduction in biomass  conversion to fuels and chemicals, Biofuels, Bioproducts and Biorefining 3 219 230 pp. (DOI:  10.1002/bbb.132), (ISSN: 1932 1031).  Dale V.H., and K.L. Kline (2013). Issues in using landscape indicators to assess land changes,  Ecological Indicators 28 91 99 pp. .  Dale V.H., K.L. Kline, D. Perla, and A. Lucier (2013). Communicating about bioenergy sustainability,  Environmental management 51 279 290 pp. .  Dale V.H., R. Lowrance, P. Mulholland, and G.P. Robertson (2010). Bioenergy sustainability at the  regional scale, Ecology and Society 15 23 pp. . Available at:  https://www.kbs.msu.edu/images/stories/docs/robertson/Dale_et_al._2010_SSSAJ.pdf.  Van Dam J., A.P.C. Faaij, J. Hilbert, H. Petruzzi, and W.C. Turkenburg (2009a). Large scale bioenergy  production from soybeans and switchgrass in Argentina: Part A: Potential and economic feasibility  for national and international markets, Renewable and Sustainable Energy Reviews 13 1710 1733  pp. .  Van Dam J., A.P. Faaij, J. Hilbert, H. Petruzzi, and W.C. Turkenburg (2009b). Large scale bioenergy  production from soybeans and switchgrass in Argentina: Part B. Environmental and socio economic  impacts on a regional level, Renewable and Sustainable Energy Reviews 13 1679 1709 pp. .  Van Dam J., M. Junginger, and A.P.C. Faaij (2010). From the global efforts on certification of  bioenergy towards an integrated approach based on sustainable land use planning, Renewable and  Sustainable Energy Reviews 14 2445 2472 pp. (DOI: 16/j.rser.2010.07.010), (ISSN: 1364 0321).  Danielsen F., H. Beukema, N.D. Burgess, F. Parish, C.A. Brühl, P.F. Donald, D. Murdiyarso, B.  Phalan, L. Reijnders, M. Struebig, and E.B. Fitzherbert (2009). Biofuel Plantations on Forested  Lands: Double Jeopardy for Biodiversity and Climate, Conservation Biology 23 348 358 pp. (DOI:  10.1111/j.1523 1739.2008.01096.x), (ISSN: 1523 1739).  Datta A., D.R. Nayak, D.P. Sinhababu, and T.K. Adhya (2009). Methane and nitrous oxide emissions  from an integrated rainfed rice fish farming system of Eastern India, Agriculture, Ecosystems &  Environment 129 228 237 pp. (DOI: 10.1016/j.agee.2008.09.003), (ISSN: 01678809).  Dauvergne P., and K.J. Neville (2010). Forests, food, and fuel in the tropics: the uneven social and  ecological consequences of the emerging political economy of biofuels, Journal of Peasant Studies 37  631 660 pp. .      116 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Davidson E.A. (2012). Representative concentration pathways and mitigation scenarios for nitrous  oxide, Environmental Research Letters 7 024005 pp. (DOI: 10.1088/1748 9326/7/2/024005), (ISSN:  1748 9326).  Davidson E.A., and I.A. Janssens (2006). Temperature sensitivity of soil carbon decomposition and  feedbacks to climate change, Nature 440 165 173 pp. (DOI: 10.1038/nature04514), (ISSN: 0028 0836, 1476 4679).  Davin E.L., N. de Noblet Ducoudré, and P. Friedlingstein (2007). Impact of land cover change on  surface climate: Relevance of the radiative forcing concept, Geophys. Res. Lett. 34 L13702 pp. (DOI:  10.1029/2007gl029678), (ISSN: 0094 8276).  Davis R., A. Aden, and P.T. Pienkos (2011a). Techno economic analysis of autotrophic microalgae  for fuel production, Applied Energy 88 3524 3531 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0306261911002406.  Davis S.C., R.M. Boddey, B.J.R. Alves, A.L. Cowie, B.H. George, S.M. Ogle, P. Smith, M. van  Noordwijk, and M.T. van Wijk (2013). Management swing potential for bioenergy crops, GCB  Bioenergy 5 623 638 pp. (DOI: 10.1111/gcbb.12042), (ISSN: 1757 1707).  Davis S.C., W.J. Parton, S.J.D. Grosso, C. Keough, E. Marx, P.R. Adler, and E.H. DeLucia (2011b).  Impact of second generation biofuel agriculture on greenhouse gas emissions in the corn growing  regions of the US, Frontiers in Ecology and the Environment 10 69 74 pp. (DOI: 10.1890/110003),  (ISSN: 1540 9295).  Dawson T.P., S.T. Jackson, J.I. House, I.C. Prentice, and G.M. Mace (2011). Beyond Predictions:  Biodiversity Conservation in a Changing Climate, Science 332 53 58 pp. (DOI:  10.1126/science.1200303), (ISSN: 0036 8075, 1095 9203).  Deal R.L., B. Cochran, and G. LaRocco (2012). Bundling of ecosystem services to increase forestland  value and enhance sustainable forest management, Forest Policy and Economics 17 69 76 pp. .  Deal R.L., and R. White (2012). Integrating forest products with ecosystem services: A global  perspective, Forest Policy and Economics 17 1 2 pp. .  DeAngelo B.J., F.C. de la Chesnaye, R.H. Beach, A. Sommer, and B.C. Murray (2006). The Energy  Journal . Methane and Nitrous Oxide Mitigation in Agriculture, The Energy Journal 89 108 pp. .  DeCicco J. (2013). Biofuel s carbon balance: doubts, certainties and implications, Climatic Change  121 801 814 pp. (DOI: 10.1007/s10584 013 0927 9), (ISSN: 0165 0009).  DeFries R., and C. Rosenzweig (2010). Toward a whole landscape approach for sustainable land use  in the tropics, Proceedings of the National Academy of Sciences 107 19627  19632 pp. (DOI:  10.1073/pnas.1011163107).  Delucchi M.A. (2010). Impacts of biofuels on climate change, water use, and land use, Annals of the  New York Academy of Sciences 1195 28 45 pp. (DOI: 10.1111/j.1749 6632.2010.05457.x), (ISSN:  1749 6632).  Dezzeo, N., Chacon, and N. (2005). Carbon and nutrients loss in aboveground biomass a long a fire  induced forest savanna gradient in the Gran Sabana, Southern Venezuela, Forest Ecology and  Management 209 343 352 pp. . Available at: ndzzeo@oikos.ivic.ve.      117 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Dias A.C., and L. Arroja (2012). Environmental impacts of eucalypt and maritime pine wood  production in Portugal, Journal of Cleaner Production 37 368 376 pp. (DOI:  10.1016/j.jclepro.2012.07.056), (ISSN: 0959 6526).  Díaz S., J. Fargione, F.S. Chapin, and D. Tilman (2006). Biodiversity loss threatens human well being,  PLoS Biology 4 e277 pp. .  Diaz Chavez R.A. (2011). Assessing biofuels: Aiming for sustainable development or complying with  the market?, Energy Policy 39 5763 5769 pp. (DOI: 10.1016/j.enpol.2011.03.054), (ISSN: 0301 4215).  Diaz Chavez R.A. (2012). Land use for integrated systems: A bioenergy perspective, Environmental  Development 3 91 99 pp. (DOI: 10.1016/j.envdev.2012.03.018), (ISSN: 2211 4645).  Dijkstra J., O. Oenema, and A. Bannink (2011). Dietary strategies to reducing N excretion from  cattle: implications for methane emissions, Current Opinion in Environmental Sustainability 3 414 422 pp. (DOI: 10.1016/j.cosust.2011.07.008), (ISSN: 1877 3435).  Dimitriou I., C. Baum, S. Baum, G. Busch, U. Schulz, J. Köhn, N. Lamersdorf, P. Leinweber, P.  Aronsson, M. Weih, G. Berndes, and A. Bolte (2009). Short Rotation Coppice (SRC) cultivation and  local impact on the environment, Landbauforschung vTI Agriculture and Forestry Research 3 159 162 pp. .  Dimitriou I., C. Baum, S. Baum, G. Busch, U. Schulz, J. Köhn, N. Lamersdorf, P. Leinweber, P.  Aronsson, M. Weih, G. Berndes, and A. Bolte (2011). Quantifying environmental effects of short  rotation coppice (SRC) on biodiversity, soil and water, IEA Bioenergy Task 43.  Ding X.Z., R.J. Long, M. Kreuzer, J.D. Mi, and B. Yang (2010). Methane emissions from yak (Bos  grunniens) steers grazing or kept indoors and fed diets with varying forage: concentrate ratio during  the cold season on the Qinghai Tibetan Plateau, Animal Feed Science and Technology 162 91 98  pp. .  DiPietro P., P. Balash, and M. Wallace (2012). A Note on Sources of CO2 Supply for Enhanced Oil Recovery Operations, SPE Economics & Management 69 74 pp.   Djomo S.N., O.E. Kasmioui, and R. Ceulemans (2011). Energy and greenhouse gas balance of  bioenergy production from poplar and willow: a review, GCB Bioenergy 3 181 197 pp. (DOI:  10.1111/j.1757 1707.2010.01073.x), (ISSN: 1757 1707).  Don A., B. Osborne, A. Hastings, U. Skiba, M.S. Carter, J. Drewer, H. Flessa, A. Freibauer, N.  Hyvönen, M.B. Jones, G.J. Lanigan, Ü. Mander, A. Monti, S.N. Djomo, J. Valentine, K. Walter, W.  Zegada Lizarazu, and T. Zenone (2012). Land use change to bioenergy production in Europe:  implications for the greenhouse gas balance and soil carbon, GCB Bioenergy 4 372 391 pp. (DOI:  10.1111/j.1757 1707.2011.01116.x), (ISSN: 1757 1707).  Donato D.C., J.B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen (2011).  Mangroves among the most carbon rich forests in the tropics, Nature Geoscience 4 293 297 pp.  (DOI: 10.1038/ngeo1123), (ISSN: 1752 0894).  Dornburg V., D. van Vuuren, G. van de Ven, H. Langeveld, M. Meeusen, M. Banse, M. van  Oorschot, J. Ros, G. Jan van den Born, H. Aiking, M. Londo, H. Mozaffarian, P. Verweij, E. Lysen,  and A. Faaij (2010). Bioenergy revisited: Key factors in global potentials of bioenergy, Energy and  Environmental Science 3 258 267 pp. (DOI: 10.1039/b922422j), (ISSN: 1754 5692).      118 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Douglas E., A. Beltrán Przekurat, D. Niyogi, R. Pielke Sr, and C. Vörösmarty (2009). The impact of  agricultural intensification and irrigation on land atmosphere interactions and Indian monsoon  precipitation A mesoscale modeling perspective, Global and Planetary Change 67 117 128 pp. .  Downie A., P. Munroe, A. Cowie, L. Van Zwieten, and D.M.S. Lau (2012). Biochar as a  Geoengineering Climate Solution: Hazard Identification and Risk Management, Critical Reviews in  Environmental Science and Technology 42 225 250 pp. (DOI: 10.1080/10643389.2010.507980),  (ISSN: 1064 3389, 1547 6537).  Duarte C.G., K. Gaudreau, R.B. Gibson, and T.F. Malheiros (2013). Sustainability assessment of  sugarcane ethanol production in Brazil: A case study of a sugarcane mill in Sao Paulo state,  Ecological Indicators 30 119 129 pp. (DOI: 10.1016/j.ecolind.2013.02.011), (ISSN: 1470 160X).  Dumortier J., D.J. Hayes, M. Carriquiry, F. Dong, X. Du, A. Elobeid, J.F. Fabiosa, and S. Tokgoz  (2011). Sensitivity of Carbon Emission Estimates from Indirect Land Use Change, Applied Economic  Perspectives and Policy 33 428 448 pp. (DOI: 10.1093/aepp/ppr015), (ISSN: 2040 5790, 2040 5804).  Dunlap R.E., and W.R. Catton, Jr. (2002). Which Function(s) of the Environment Do We Study? A  Comparison of Environmental and Natural Resource Sociology, Society & Natural Resources 15 239 249 pp. (DOI: 10.1080/089419202753445070), (ISSN: 0894 1920, 1521 0723).  Durand L., and E. Lazos (2008). The Local Perception of Tropical Deforestation and its Relation to  Conservation Policies in Los Tuxtlas Biosphere Reserve, Mexico, Human Ecology 36 383 394 pp.  (DOI: 10.1007/s10745 008 9172 7), (ISSN: 0300 7839).  Durand L., and L.B. Vázquez (2011). Biodiversity conservation discourses. A case study on scientists  and government authorities in Sierra de Huautla Biosphere Reserve, Mexico, Land Use Policy 28 76 82 pp. (DOI: 10.1016/j.landusepol.2010.04.009), (ISSN: 0264 8377).  Durst P.B., P.J. McKenzie, C.L. Brown, and S. Appanah (2006). Challenges facing certification and  eco labelling of forest products in developing countries, International Forestry Review 8 193 200  pp. . Available at: http://www.bioone.org/doi/abs/10.1505/ifor.8.2.193.  Duvenage I., C. Langston, L.C. Stringer, and K. Dunstan (2013). Grappling with biofuels in Zimbabwe:  depriving or sustaining societal and environmental integrity?, Journal of Cleaner Production 42 132 140 pp. (DOI: 10.1016/j.jclepro.2012.11.011), (ISSN: 0959 6526).  Eagle A.J., and L.P. Olander (2012). Chapter 3: Greenhouse Gas Mitigation with Agricultural Land  Management Activities in the United States A Side by Side Comparison of Biophysical Potentia. In:  Advances in Agronomy. Academic Press, New York, NY pp.79 179(ISBN: 0065 2113).  Eckard R.J., C. Grainger, and C.A.M. de Klein (2010). Options for the abatement of methane and  nitrous oxide from ruminant production: A review, Livestock Science 130 47 56 pp. (DOI:  10.1016/j.livsci.2010.02.010), (ISSN: 1871 1413).  Eckert C., A. Dubini, J. Yu, P. King, M. Ghirardi, M. Seibert, and P. C. Maness (2012). Hydrogenase  Genes and Enzymes Involved in Solar Hydrogen Production. In: State of the Art and Progress in  Production of Biohydrogen. Biosciences Center, National Renewable Energy Laboratory, Golden, CO,  USA pp.8 24 (17)(ISBN: 978 1 60805 411 4).  Edser C. (2012). Inaugural report shows impressive uptake of RSPO certified sustainable palm oil in  2011, Focus on Surfactants 2012 1 2 pp. (DOI: 10.1016/S1351 4210(12)70119 1), (ISSN: 1351 4210).      119 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Egeskog A., G. Berndes, F. Freitas, S. Gustafsson, and G. Sparovek (2011). Integrating bioenergy and  food production A case study of combined ethanol and dairy production in Pontal, Brazil, Energy  for Sustainable Development 15 8 16 pp. (DOI: 10.1016/j.esd.2011.01.005), (ISSN: 0973 0826).  Van Eijck J., H. Romijn, E. Smeets, R. Bailis, M. Rooijakkers, N. Hooijkaas, P. Verweij, and A. Faaij  (2014). Comparative analysis of key socio economic and environmental impacts of smallholder and  plantation based jatropha biofuel production systems in Tanzania, Biomass and Bioenergy 61 25 45  pp. (DOI: 10.1016/j.biombioe.2013.10.005), (ISSN: 0961 9534).  Van Eijck J., E. Smeets, and A. Faaij (2012). The economic performance of jatropha, cassava and  Eucalyptus production systems for energy in an East African smallholder setting, GCB Bioenergy 4  828 845 pp. (DOI: 10.1111/j.1757 1707.2012.01179.x), (ISSN: 1757 1707).  Eisenbies M.H., E.D. Vance, W.M. Aust, and J.R. Seiler (2009). Intensive utilization of harvest  residues in southern pine plantations: quantities available and implications for nutrient budgets and  sustainable site productivity, BioEnergy Research 2 90 98 pp. .  Elliott D.C. (2013). Transportation fuels from biomass via fast pyrolysis and hydroprocessing, Wiley  Interdisciplinary Reviews: Energy and Environment 2 525 533 pp. (DOI: 10.1002/wene.74), (ISSN:  2041 840X).  Ellis E.C., K. Klein Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty (2010). Anthropogenic  transformation of the biomes, 1700 to 2000, Global Ecology and Biogeography 19 589 606 pp. (DOI:  10.1111/j.1466 8238.2010.00540.x), (ISSN: 1466 8238).  EMPA (2012). Harmonisation and Extension of the Bioenergy Inventories and Assessment: End  Report. EMPA, Bern, Switzerland. 97 pp. Available at:  http://www.empa.ch/plugin/template/empa/*/125527/ /l=1.  Engel S., S. Pagiola, and S. Wunder (2008). Designing payments for environmental services in theory  and practice: An overview of the issues, Ecological Economics 65 663 674 pp. (DOI:  10.1016/j.ecolecon.2008.03.011), (ISSN: 0921 8009).  Eranki P.L., and B.E. Dale (2011). Comparative life cycle assessment of centralized and distributed  biomass processing systems combined with mixed feedstock landscapes, GCB Bioenergy 3 427 438  pp. (DOI: 10.1111/j.1757 1707.2011.01096.x), (ISSN: 1757 1707).  Erb K. H. (2012). How a socio ecological metabolism approach can help to advance our  understanding of changes in land use intensity, Ecological Economics 76 8 14 pp. (DOI:  10.1016/j.ecolecon.2012.02.005), (ISSN: 0921 8009).  Erb K. H., V. Gaube, F. Krausmann, C. Plutzar, A. Bondeau, and H. Haberl (2007). A comprehensive  global 5 min resolution land use data set for the year 2000 consistent with national census data,  Journal of Land Use Science 2 191 224 pp. (DOI: 10.1080/17474230701622981), (ISSN: 1747 423X).  Erb K. H., H. Haberl, and C. Plutzar (2012a). Dependency of global primary bioenergy crop potentials  in 2050 on food systems, yields, biodiversity conservation and political stability, Energy Policy 47  260 269 pp. (DOI: 10.1016/j.enpol.2012.04.066), (ISSN: 0301 4215).  Erb K. H., T. Kastner, S. Luyssaert, R.A. Houghton, T. Kuemmerle, P. Olofsson, and H. Haberl (2013).  Bias in the attribution of forest carbon sinks, Nature Climate Change 3 854 856 pp. (DOI:  10.1038/nclimate2004), (ISSN: 1758 678X, 1758 6798).      120 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Erb K. H., A. Mayer, F. Krausmann, C. Lauk, C. Plut, J. Steinberger, and H. Haberl (2012b). The  interrelations of future global bioenergy potentials, food demand and agricultural technology. In:  Socioeconomic and Environmental Impacts of Biofuels: Evidence from Developing Nations. A.  Gasparatos, P. Stromberg, (eds.), Cambridge University Press, Cambridge, UK pp.27 52.  Ericksen P.J., J.S. Ingram, and D.M. Liverman (2009). Food security and global environmental  change: emerging challenges, Environmental Science & Policy 12 373 377 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1462901109000653.  Eugene M., C. Martin, M.M. Mialon, D. Krauss, G. Renand, and M. Doreau (2011). Dietary linseed  and starch supplementation decreases methane production of fattening bulls, Animal Feed Science  and Technology 166 167 330 337 pp. .  Ewing M., and S. Msangi (2009). Biofuels production in developing countries: assessing tradeoffs in  welfare and food security, Environmental Science & Policy 12 520 528 pp. (DOI:  10.1016/j.envsci.2008.10.002), (ISSN: 1462 9011).  Faaij A. (2006). Modern Biomass Conversion Technologies, Mitigation and Adaptation Strategies for  Global Change 11 335 367 pp. (DOI: 10.1007/s11027 005 9004 7), (ISSN: 1381 2386, 1573 1596).  FAO (2006a). World Agriculture: Towards 2030/2050   Interim Report. Prospects for Food, Nutrition,  Agriculture and Major Commodity Groups. Food and Agriculture Organization of the United Nations  (FAO), Rome, 71 pp. Available at: http://www.fao.org/es/ESD/AT2050web.pdf.  FAO (2006b). Global Planted Forest Thematic Study, Results and Analysis. Planted Forests and Trees  Working Paper FP38E. Rome, Italy, Food and Agriculture Organization of the United Nations. 168 pp.  Available at: http://www.fao.org/forestry/12139 03441d093f070ea7d7c4e3ec3f306507.pdf.  FAO (2007). The World s Mangroves: 1980 2005. Food and Agricultural Organization of the United  Nations, Rome. 153 pp. Available at: http://www.fao.org/docrep/010/a1427e/a1427e00.htm.  FAO (2008). The State of Food and Agriculture 2008   Biofuels: Prospects, Risks and Opportunities.  Food and Agricultural Organization, Rome, Italy. 128 pp. Available at: http://www.un energy.org/publications/98 the state of food and agriculture 2008 biofuels prospects risks and opportunities.  FAO (2009a). The State of Food Insecurity in the World. Economic Crises   Impacts and Lessons  Learned. Rome, Italy. 58 pp. Available at: http://www.fao.org/docrep/012/i0876e/i0876e00.htm.  FAO (2009b). State of the World s Forests 2009. Food and Agriculture Organization of the United  Nations, Rome, Italy. 168 pp. Available at: http://www.fao.org/docrep/011/i0350e/i0350e00.htm.  FAO (2010). Global Forest Resources Assessment 2010. Rome, Italy. . Available at:  http://www.fao.org/forestry/fra/fra2010/en/.  FAO (2011). Energy Smart Food for People and Climate. Food and Agriculture Organization of the  United Nations (FAO), Rome, Italy. 66 pp. Available at:  http://www.fao.org/docrep/014/i2454e/i2454e00.pdf.  FAO (2012). The State of World Fisheries and Aquaculture. Food and Agricultural Organization,  Rome. 209 pp.      121 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   FAO, WFP, and IFAD (2012). The State of Food Insecurity in the World 2012. Economic Growth Is  Necessary but Not Sufficient to Accelerate Reduction of Hunger and Malnutrition. Food and  Agricultural Organization of the United Nations, Rome, Italy. 61 pp. Available at:  http://www.fao.org/docrep/016/i3027e/i3027e00.htm.  FAOSTAT (2012). FAO Statistics. Food and Agriculture Organization of the United Nations, Rome,  Italy. 352 pp.  FAOSTAT (2013). FAOSTAT database, Food and Agriculture Organization of the United Nations .  Available at: http://faostat.fao.org/.  Farage, P.K., Ardo, J., Olsson, L., Rienzi, E.A., Ball, A.S., Pretty, and J.N. (2007). The potential for soil  carbon sequestration in three tropical dryland farming systems of Africa and Latin America: A  modelling approach, Soil and Tillage Research 94 457 472 pp. .  Fargione J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne (2008). Land Clearing and the Biofuel  Carbon Debt, Science 319 1235 1238 pp. (DOI: 10.1126/science.1152747), (ISSN: 0036 8075).  Farley J., and R. Costanza (2010). Payments for ecosystem services: From local to global, Ecological  Economics 69 2060 2068 pp. .  Favaro L., T. Jooste, M. Basaglia, S.H. Rose, M. Saayman, J.F. Görgens, S. Casella, and W.H. van Zyl  (2012). Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol,  Bioengineered 4 97 102 pp. (DOI: 10.4161/bioe.22268), (ISSN: 2165 5979, 2165 5987).  Fazio S., and A. Monti (2011). Life cycle assessment of different bioenergy production systems  including perennial and annual crops, Biomass and Bioenergy 35 4868 4878 pp. (DOI:  10.1016/j.biombioe.2011.10.014), (ISSN: 0961 9534).  Felder R., and R. Dones (2007). Evaluation of ecological impacts of synthetic natural gas from wood  used in current heating and car systems, Biomass and Bioenergy 31 403 415 pp. (DOI:  10.1016/j.biombioe.2006.08.005), (ISSN: 0961 9534).  Feng J., C. Chen, Y. Zhang, Z. Song, A. Deng, C. Zheng, and W. Zhang (2013). Impacts of cropping  practices on yield scaled greenhouse gas emissions from rice fields in China: A meta analysis,  Agriculture, Ecosystems & Environment 164 220 228 pp. (DOI: 10.1016/j.agee.2012.10.009), (ISSN:  01678809).  Fenner A.L., S.S. Godfrey, and M.C. Bull (2011). Using social networks to deduce whether residents  or dispersers spread parasites in a lizard population: Social networks and parasite transmission,  Journal of Animal Ecology 80 835 843 pp. (DOI: 10.1111/j.1365 2656.2011.01825.x), (ISSN:  00218790).  Field C.B., J.E. Campbell, and D.B. Lobell (2008). Biomass energy: the scale of the potential resource,  Trends in Ecology and Evolution 23 65 72 pp. (DOI: 10.1016/j.tree.2007.12.001), (ISSN: 0169 5347).  Field J.L., C.M.H. Keske, G.L. Birch, M.W. DeFoort, and M.F. Cotrufo (2013). Distributed biochar and  bioenergy coproduction: a regionally specific case study of environmental benefits and economic  impacts, GCB Bioenergy 5 177 191 pp. (DOI: 10.1111/gcbb.12032), (ISSN: 17571693).  Finkbeiner M. (2013). Indirect Land Use Change (iLUC) within Life Cycle Assessment (LCA)   Scientific  Robustness and Consistency with International Standards. Publication of the Association of the      122 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   German Biofuel Industry, Berlin, Germany. 65 pp. Available at:  http://www.fediol.eu/data/RZ_VDB_0030_Vorstudie_ENG_Komplett.pdf.  Fischedick M., R. Schaeffer, A. Adedoyin, M. Akai, T. Bruckner, L. Clarke, V. Krey, I. Savolainen, S.  Teske, D. Ürge Vorsatz, and R. Wright (2011). Mitigation Potential and Costs. In: IPCC Special Report  on Renewable Energy Sources and Climate change Mitigation [O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C.von  Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA  pp.791 864.  Fischer J., B. Brosi, G.C. Daily, P.R. Ehrlich, R. Goldman, J. Goldstein, D.B. Lindenmayer, A.D.  Manning, H.A. Mooney, L. Pejchar, J. Ranganathan, and H. Tallis (2008). Should agricultural policies  encourage land sparing or wildlife friendly farming?, Frontiers in Ecology and the Environment 6  380 385 pp. (DOI: 10.1890/070019), (ISSN: 1540 9295).  Fischer G., S. Prieler, H. Van Velthuizen, G. Berndes, A. Faaij, M. Londo, and M. De Wit (2010).  Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land  use scenarios, Biomass and bioenergy 34 173 187 pp. .  Fischer Kowalski M. (2011). Analyzing sustainability transitions as a shift between socio metabolic  regimes, Environmental Innovation and Societal Transitions 1 152 159 pp. (DOI:  16/j.eist.2011.04.004), (ISSN: 2210 4224).  Flannigan M., B. Stocks, M. Turetsky, and M. Wotton (2009). Impacts of climate change on fire  activity and fire management in the circumboreal forest, Global Change Biology 15 549 560 pp.  (DOI: 10.1111/j.1365 2486.2008.01660.x), (ISSN: 1365 2486).  FLEG Regional Forest Law Enforcement and Governance (FLEG) Initiatives. . Available at:  http://www.worldbank.org/en/topic/forests/brief/fleg regional forest law enforcement governance.  Foley J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C.  Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz,  I.C. Prentice, N. Ramankutty, and P.K. Snyder (2005). Global Consequences of Land Use, Science 309  570 574 pp. (DOI: 10.1126/science.1111772), (ISSN: 0036 8075, 1095 9203).  Foley P.A., D.A. Kenny, J.J. Callan, T.M. Boland, and F.P. O Mara (2009). Effect of DL malic acid  supplementation on feed intake, methane emission, and rumen fermentation in beef cattle, Journal  of Animal Science 87 1048 1057 pp. (DOI: 10.2527/jas.2008 1026), (ISSN: 0021 8812, 1525 3163).  Foley J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C.  O Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S.  Polasky, J. Rockstrom, J. Sheehan, S. Siebert, D. Tilman, and D.P.M. Zaks (2011). Solutions for a  cultivated planet, Nature 478 337 342 pp. (DOI: 10.1038/nature10452), (ISSN: 0028 0836).  Follett R.F., and D.A. Reed (2010). Soil Carbon Sequestration in Grazing Lands: Societal Benefits and  Policy Implications, Rangeland Ecology & Management 63 4 15 pp. (DOI: 10.2111/08 225.1), (ISSN:  1550 7424, 1551 5028).  Forner C., J. Blaser, F. Jotzo, and C. Robledo (2006). Keeping the forest for the climate s sake:  avoiding deforestation in developing countries under the UNFCCC, Climate Policy 6 275 294 pp.  (DOI: 10.1080/14693062.2006.9685602), (ISSN: 1469 3062).      123 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Frank S., H. Böttcher, P. Havlík, H. Valin, A. Mosnier, M. Obersteiner, E. Schmid, and B. Elbersen  (2013). How effective are the sustainability criteria accompanying the European Union 2020 biofuel  targets?, GCB Bioenergy n/a n/a pp. (DOI: 10.1111/j.1757 1707.2012.01188.x), (ISSN: 1757 1707).  Franzluebbers A.J., and J.A. Stuedemann (2009). Soil profile organic carbon and total nitrogen  during 12 years of pasture management in the Southern Piedmont USA, Agriculture, Ecosystems &  Environment 129 28 36 pp. (DOI: 10.1016/j.agee.2008.06.013), (ISSN: 01678809).  Frei M., M.A. Razzak, M.M. Hossain, M. Oehme, S. Dewan, and K. Becker (2007). Methane  emissions and related physicochemical soil and water parameters in rice fish systems in Bangladesh,  Agriculture, Ecosystems & Environment 120 391 398 pp. (DOI: 10.1016/j.agee.2006.10.013), (ISSN:  01678809).  Fuglestvedt J.S., K.P. Shine, T. Berntsen, J. Cook, D.S. Lee, A. Stenke, R.B. Skeie, G.J.M. Velders, and  I.A. Waitz (2010). Transport impacts on atmosphere and climate: Metrics, Atmospheric Environment  44 4648 4677 pp. .  Gabrielle B., and N. Gagnaire (2008). Life cycle assessment of straw use in bio ethanol production: A  case study based on biophysical modelling, Biomass and Bioenergy 32 431 441 pp. (DOI:  10.1016/j.biombioe.2007.10.017), (ISSN: 0961 9534).  Gabrielle B., P. Maupu, and E. Vial (2013). Life cycle assessment of eucalyptus short rotation  coppices for bioenergy production in southern France, GCB Bioenergy 5 30 42 pp. (DOI:  10.1111/gcbb.12008), (ISSN: 1757 1707).  Galinato S.P., J.K. Yoder, and D. Granatstein (2011). The economic value of biochar in crop  production and carbon sequestration, Energy Policy 39 6344 6350 pp. (DOI:  10.1016/j.enpol.2011.07.035), (ISSN: 0301 4215).  Garcia Frapolli E., A. Schilmann, V. Berrueta, H. Riojas Rodriguez, R. Edwards, M. Johnson, A.  Guevara Sangines, C. Armendariz, and O.R. Masera (2010). Beyond Fuelwood Savings: Valuing the  economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico,  Ecological Economics 69 2598 2605 pp. .  Garcia Ulloa J., S. Sloan, P. Pacheco, J. Ghazoul, and L.P. Koh (2012). Lowering environmental costs  of oil palm expansion in Colombia, Conservation Letters 5 366 375 pp. (DOI: 10.1111/j.1755 263X.2012.00254.x), (ISSN: 1755263X).  Gardner T.A., N.D. Burgess, N. Aguilar Amuchastegui, J. Barlow, E. Berenguer, T. Clements, F.  Danielsen, J. Ferreira, W. Foden, V. Kapos, S.M. Khan, A.C. Lees, L. Parry, R.M. Roman Cuesta, C.B.  Schmitt, N. Strange, I. Theilade, and I.C.G. Vieira (2012). A framework for integrating biodiversity  concerns into national REDD+ programmes, Biological Conservation 154 61 71 pp. (DOI:  10.1016/j.biocon.2011.11.018), (ISSN: 0006 3207).  Garg K.K., L. Karlberg, S.P. Wani, and G. Berndes (2011). Jatropha production on wastelands in  India: opportunities and trade offs for soil and water management at the watershed scale, Biofuels,  Bioproducts and Biorefining 5 410 430 pp. (DOI: 10.1002/bbb.312), (ISSN: 1932 1031).  Garnett T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the  food system (including the food chain)?, Food Policy 36, Supplement 1 S23 S32 pp. (DOI:  10.1016/j.foodpol.2010.10.010), (ISSN: 0306 9192).      124 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Garnett T., M.C. Appleby, A. Balmford, I.J. Bateman, T.G. Benton, P. Bloomer, B. Burlingame, M.  Dawkins, L. Dolan, D. Fraser, M. Herrero, I. Hoffmann, P. Smith, P.K. Thornton, C. Toulmin, S.J.  Vermeulen, and H.C.J. Godfray (2013). Sustainable Intensification in Agriculture: Premises and  Policies, Science 341 33 34 pp. (DOI: 10.1126/science.1234485), (ISSN: 0036 8075, 1095 9203).  Gasparatos A., P. Stromberg, and K. Takeuchi (2011). Biofuels, ecosystem services and human  wellbeing: Putting biofuels in the ecosystem services narrative, Agriculture, Ecosystems &  Environment 142 111 128 pp. (DOI: 16/j.agee.2011.04.020), (ISSN: 0167 8809).  Gattinger A., A. Muller, M. Haeni, C. Skinner, A. Fliessbach, N. Buchmann, P. Mader, M. Stolze, P.  Smith, N.E. H. Scialabba, and U. Niggli (2012). Enhanced top soil carbon stocks under organic  farming, Proceedings of the National Academy of Sciences 109 18226 18231 pp. (DOI:  10.1073/pnas.1209429109), (ISSN: 0027 8424, 1091 6490).  Gawel E., and G. Ludwig (2011). The iLUC dilemma: How to deal with indirect land use changes  when governing energy crops?, Land Use Policy 28 846 856 pp. (DOI:  10.1016/j.landusepol.2011.03.003), (ISSN: 0264 8377).  GEA (2012). Global Energy Assessment   Toward a Sustainable Future. Cambridge University Press,  Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis,  Laxenburg, Austria, 1802 pp.  Von Geibler J. (2013). Market based governance for sustainability in value chains: conditions for  successful standard setting in the palm oil sector, Journal of Cleaner Production 56 39 53 pp. (DOI:  10.1016/j.jclepro.2012.08.027), (ISSN: 0959 6526).  Gelfand I., R. Sahajpal, X. Zhang, R.C. Izaurralde, K.L. Gross, and G.P. Robertson (2013). Sustainable  bioenergy production from marginal lands in the US Midwest, Nature 493 514 517 pp. (DOI:  10.1038/nature11811), (ISSN: 0028 0836, 1476 4687).  Gelfand I., T. Zenone, P. Jasrotia, J. Chen, S.K. Hamilton, and G.P. Robertson (2011). Carbon debt of  Conservation Reserve Program (CRP) grasslands converted to bioenergy production, Proceedings of  the National Academy of Sciences of the United States 108 13864 13869 pp. .  Georgescu M., D.B. Lobell, and C.B. Field (2011). Direct climate effects of perennial bioenergy crops  in the United States, Proceedings of the National Academy of Sciences 108 4307 4312 pp. (DOI:  10.1073/pnas.1008779108), (ISSN: 0027 8424, 1091 6490).  Gerbens Leenes W., A.Y. Hoekstra, and T.H. Van der Meer (2009). The water footprint of bioenergy,  Proceedings of the National Academy of Sciences 106 10219 10223 pp. . Available at:  http://www.pnas.org/content/106/25/10219.short.  Gerber P., H.A. Mooney, J. Dijkman, S. Tarawali, and C. de Haan (Eds.) (2010). Livestock in a  Changing Landscpape. Experiences and Regional Perspectives. Island Press, Washington, D.C., 189  pp., (ISBN: 9781597266734). .  German L., and G. Schoneveld (2012). A review of social sustainability considerations among EU approved voluntary schemes for biofuels, with implications for rural livelihoods, Energy Policy 51  765 778 pp. (DOI: 10.1016/j.enpol.2012.09.022), (ISSN: 0301 4215).  German L., G.C. Schoneveld, and D. Gumbo (2011). The Local Social and Environmental Impacts of  Smallholder Based Biofuel Investments in Zambia, Ecology and Society 16 (DOI: 10.5751/es 04280 160412), (ISSN: 1708 3087).      125 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   German L., G. Schoneveld, and E. Mwangi (2013). Contemporary Processes of Large Scale Land  Acquisition in Sub Saharan Africa: Legal Deficiency or Elite Capture of the Rule of Law?, World  Development 48 1 18 pp. (DOI: 10.1016/j.worlddev.2013.03.006), (ISSN: 0305 750X).  Gibbs H.K., M. Johnston, J.A. Foley, T. Holloway, C. Monfreda, N. Ramankutty, and D. Zaks (2008).  Carbon payback times for crop based biofuel expansion in the tropics: the effects of changing yield  and technology, Environmental Research Letters 3 034001 (10pp) pp. (DOI: 10.1088/1748 9326/3/3/034001), (ISSN: 1748 9326).  Gilg A. (2009). Perceptions about land use, Land Use Policy 26, Supplement 1 S76 S82 pp. (DOI:  10.1016/j.landusepol.2009.08.018), (ISSN: 0264 8377).  Gill M., P. Smith, and J.M. Wilkinson (2010). Mitigating climate change: the role of domestic  livestock, Animal 4 323 333 pp. (DOI: 10.1017/S1751731109004662).  Giuntoli J., A.K. Boulamanti, S. Corrado, M. Motegh, A. Agostini, and D. Baxter (2013).  Environmental impacts of future bioenergy pathways: the case of electricity from wheat straw bales  and pellets, GCB Bioenergy 5 497 512 pp. (DOI: 10.1111/gcbb.12012), (ISSN: 1757 1707).  Gnansounou E. (2011). Assessing the sustainability of biofuels: A logic based model, Energy 36  2089 2096 pp. (DOI: 10.1016/j.energy.2010.04.027), (ISSN: 03605442).  Godfray H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson,  S.M. Thomas, and C. Toulmin (2010). Food Security: The Challenge of Feeding 9 Billion People,  Science 327 812 818 pp. (DOI: 10.1126/science.1185383), (ISSN: 0036 8075, 1095 9203).  Goglio P., E. Bonari, and M. Mazzoncini (2012). LCA of cropping systems with different external  input levels for energetic purposes, Biomass and Bioenergy 42 33 42 pp. (DOI:  10.1016/j.biombioe.2012.03.021), (ISSN: 0961 9534).  Gohin A. (2008). Impacts of the European Biofuel Policy on the Farm Sector: A General Equilibrium  Assessment, Applied Economic Perspectives and Policy 30 623 641 pp. (DOI: 10.1111/j.1467 9353.2008.00437.x), (ISSN: 2040 5790, 2040 5804).  Goldemberg J. (2007). Ethanol for a sustainable energy future, science 315 808 810 pp. .  Goldemberg J., S.T. Coelho, and P. Guardabassi (2008). The sustainability of ethanol production  from sugarcane, Energy Policy 36 2086 2097 pp. .  Goldewijk K.K., A. Beusen, G. van Drecht, and M. de Vos (2011). The HYDE 3.1 spatially explicit  database of human induced global land use change over the past 12,000 years, Global Ecology and  Biogeography 20 73 86 pp. (DOI: 10.1111/j.1466 8238.2010.00587.x), (ISSN: 1466 822X).  Gollakota S., and S. McDonald (2012). CO2 capture from ethanol production and storage into the Mt  Simon Sandstone, Greenhouse Gases: Science and Technology 2 346 351 pp. .  Golub A., T. Hertel, H.L. Lee, S. Rose, and B. Sohngen (2009). The opportunity cost of land use and  the global potential for greenhouse gas mitigation in agriculture and forestry, Resource and Energy  Economics 31 299 319 pp. .  González A.D., B. Frostell, and A. Carlsson Kanyama (2011). Protein efficiency per unit energy and  per unit greenhouse gas emissions: Potential contribution of diet choices to climate change  mitigation, Food Policy 36 562 570 pp. (DOI: 10.1016/j.foodpol.2011.07.003), (ISSN: 0306 9192).      126 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Gonzalez P., R.P. Neilson, J.M. Lenihan, and R.J. Drapek (2010). Global patterns in the vulnerability  of ecosystems to vegetation shifts due to climate change, Global Ecology and Biogeography 19 755 768 pp. (DOI: 10.1111/j.1466 8238.2010.00558.x), (ISSN: 1466 8238).  González Estrada E., L.C. Rodriguez, V.K. Walen, J.B. Naab, J. Koo, J.W. Jones, M. Herrero, and P.K.  Thornton (2008). Carbon sequestration and farm income in West Africa: Identifying best  management practices for smallholder agricultural systems in northern Ghana, Ecological Economics  67 492   502 pp. .  González García S., J. Bacenetti, R.J. Murphy, and M. Fiala (2012a). Present and future  environmental impact of poplar cultivation in the Po Valley (Italy) under different crop management  systems, Journal of Cleaner Production 26 56 66 pp. (DOI: 10.1016/j.jclepro.2011.12.020), (ISSN:  0959 6526).  González García S., M.T. Moreira, G. Feijoo, and R.J. Murphy (2012b). Comparative life cycle  assessment of ethanol production from fast growing wood crops (black locust, eucalyptus and  poplar), Biomass and Bioenergy 39 378 388 pp. (DOI: 10.1016/j.biombioe.2012.01.028), (ISSN: 0961 9534).  Gopalakrishnan G., M.C. Negri, and W. Salas (2012). Modeling biogeochemical impacts of bioenergy  buffers with perennial grasses for a row crop field in Illinois, Global Change Biology Bioenergy 4 739 750 pp. (DOI: doi: 10.1111/j.1757 1707.2011.01145.x).  Gopalakrishnan G., M.C. Negri, and S. Snyder (2011a). A novel framework to classify marginal land  for sustainable biomass feedstock production, Journal of Environmental Quality 40 1593 1600 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S0306261911002406.  Gopalakrishnan G., M.C. Negri, and S. Snyder (2011b). Redesigning agricultural landscapes for  sustainability using bioenergy crops: quantifying the tradeoffs between agriculture, energy and the  environment, Aspects of Applied Biology 112 139 146 pp. .  Gopalakrishnan G., M.C. Negri, M. Wang, M. Wu, S.W. Snyder, and L. Lafreniere (2009). Biofuels,  land and water: a systems approach to sustainability, Environmental Science & Technology 43 6094 6100 pp. .  Görg C. (2007). Landscape governance: The  politics of scale  and the  natural  conditions of places,  Pro Poor Water? The Privatisation and Global Poverty Debate 38 954 966 pp. (DOI:  10.1016/j.geoforum.2007.01.004), (ISSN: 0016 7185).  Gorham E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic  warming, Ecological Applications 1 182 195 pp. .  Gottschalk P., J.U. Smith, M. Wattenbach, J. Bellarby, E. Stehfest, N. Arnell, T.J. Osborn, and P.  Smith (2012). How will organic carbon stocks in mineral soils evolve under future climate? Global  projections using RothC for a range of climate change scenarios, Biogeosciences Discussions 9 411 451 pp. (DOI: 10.5194/bgd 9 411 2012), (ISSN: 1810 6285).  Government of New Zealand New Zealand climate change information. . Available at:  http://www.climatechange.govt.nz/.  Graham Rowe D. (2011). Agriculture: Beyond food versus fuel, Nature 474 S6 S8 pp. (DOI:  10.1038/474S06a), (ISSN: 0028 0836).      127 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Grainger C., and K.A. Beauchemin (2011). Can enteric methane emissions from ruminants be  lowered without lowering their production?, Animal Feed Science and Technology 166 167 308 320  pp. (DOI: 10.1016/j.anifeedsci.2011.04.021), (ISSN: 0377 8401).  Grainger C., T. Clarke, K.A. Beauchemin, S.M. McGinn, and R.J. Eckard (2008). Supplementation  with whole cottonseed reduces methane emissions and can profitably increase milk production of  dairy cows offered a forage and cereal grain diet, Australian Journal of Experimental Agriculture 48  73 76 pp. .  Grainger C., R. Williams, T. Clarke, A.G. Wright, and R.J. Eckard (2010). Supplementation with whole  cottonseed causes long term reduction of methane emissions from lactating dairy cows offered a  forage and cereal grain diet, Journal of Dairy Science 93 2612 2619 pp. .  Gregg J.S., and S.J. Smith (2010). Global and regional potential for bioenergy from agricultural and  forestry residue biomass, Mitigation and Adaptation Strategies for Global Change 15 241 262 pp.  (DOI: 10.1007/s11027 010 9215 4), (ISSN: 1381 2386, 1573 1596).  Di Gregorio M., M. Brockhaus, T. Cronin, E. Muharrom, L. Santoso, S. Mardiah, and M.  Büdenbender (2013). Equity and REDD+ in the Media: a Comparative Analysis of Policy Discourses,  Ecology and Society 18 (DOI: 10.5751/ES 05694 180239).  Groom M., E. Gray, and P. Townsend (2008). Biofuels and Biodiversity: Principles for Creating Better  Policies for Biofuel Production, Conservation Biology 22 602 609 pp. (DOI: 10.1111/j.1523 1739.2007.00879.x), (ISSN: 1523 1739).  De Groot R. (2006). Function analysis and valuation as a tool to assess land use conflicts in planning  for sustainable, multi functional landscapes, Landscape and Urban Planning 75 175 186 pp. .  Guariguata M.R., J.P. Cornelius, B. Locatelli, C. Forner, and G.A. Sánchez Azofeifa (2008). Mitigation  needs adaptation: Tropical forestry and climate change, Mitigation and Adaptation Strategies for  Global Change 13 793 808 pp. (DOI: 10.1007/s11027 007 9141 2), (ISSN: 1381 2386, 1573 1596).  Guest G., R.M. Bright, F. Cherubini, O. Michelsen, and A.H. Strmman (2011). Life Cycle Assessment  of Biomass based Combined Heat and Power Plants, Journal of Industrial Ecology 15 908 921 pp.  (DOI: 10.1111/j.1530 9290.2011.00375.x), (ISSN: 1530 9290).  Guest G., R.M. Bright, F. Cherubini, and A.H. Strmman (2013). Consistent quantification of climate  impacts due to biogenic carbon storage across a range of bio product systems, Environmental  Impact Assessment Review 43 21 30 pp. .  Guldea S., H. Chung, W. Amelung, C. Chang, and J. Six (2008). Soil carbon saturation controls labile  and stable carbon pool dynamics, Soil Science Society of America Journal 72 605 612 pp. (DOI:  10.2136/sssaj2007.0251).  Gumpenberger M., K. Vohland, U. Heyder, B. Poulter, K. Macey, A. Rammig, A. Popp, and W.  Cramer (2010). Predicting pan tropical climate change induced forest stock gains and losses implications for REDD, Environmental Research Letters 5 014013 (15pp) pp. (DOI: 10.1088/1748 9326/5/1/014013), (ISSN: 1748 9326).  Gupta J. (2012). Glocal forest and REDD+ governance: win win or lose lose?, Current Opinion in  Environmental Sustainability 4 620 627 pp. (DOI: 10.1016/j.cosust.2012.09.014), (ISSN: 1877 3435).      128 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Gurung A., and S.E. Oh (2013). Conversion of traditional biomass into modern bioenergy systems: A  review in context to improve the energy situation in Nepal, Renewable Energy 50 206 213 pp. (DOI:  10.1016/j.renene.2012.06.021), (ISSN: 0960 1481).  Gustavsson J., C. Cederberg, U. Sonesson, R. van Otterdijk, and A. Meybeck (2011). Global Food  Losses and Food Waste. Extent, Causes and Prevention. Food and Agricultural Organization of the  United Nations, Rome. 29 pp.  Gustavsson L., K. Pingoud, and R. Sathre (2006). Carbon Dioxide Balance of Wood Substitution:  Comparing Concrete  and Wood Framed Buildings, Mitigation and Adaptation Strategies for Global  Change 11 667 691 pp. (DOI: 10.1007/s11027 006 7207 1), (ISSN: 1381 2386).  Guthinga P.M. (2008). Understanding local communitities  perceptions of existing forest  management regimes of Kenyan rainforest, International Journal of Social Forestry (IJSF) 1 145 166  pp. .  Haberl H. (2013). Net land atmosphere flows of biogenic carbon related to bioenergy: towards an  understanding of systemic feedbacks., Global Change Biology Bioenergy.  Haberl H., T. Beringer, S.C. Bhattacharya, K. H. Erb, and M. Hoogwijk (2010). The global technical  potential of bio energy in 2050 considering sustainability constraints, Current Opinion in  Environmental Sustainability 2 394 403 pp. (DOI: 10.1016/j.cosust.2010.10.007), (ISSN: 1877 3435).  Haberl H., K. H. Erb, F. Krausmann, A. Bondeau, C. Lauk, C. Müller, C. Plutzar, and J.K. Steinberger  (2011a). Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change,  diets and yields, Biomass and Bioenergy 35 4753 4769 pp. (DOI: 10.1016/j.biombioe.2011.04.035),  (ISSN: 0961 9534).  Haberl H., K.H. Erb, F. Krausmann, V. Gaube, A. Bondeau, C. Plutzar, S. Gingrich, W. Lucht, and M.  Fischer Kowalski (2007). Quantifying and mapping the human appropriation of net primary  production in earth s terrestrial ecosystems, Proceedings of the National Academy of Sciences 104  12942  12947 pp. (DOI: 10.1073/pnas.0704243104).  Haberl H., M. Fischer Kowalski, F. Krausmann, J. Martinez Alier, and V. Winiwarter (2011b). A  socio metabolic transition towards sustainability? Challenges for another Great Transformation,  Sustainable Development 19 1 14 pp. (DOI: 10.1002/sd.410), (ISSN: 1099 1719).  Haberl H., C. Mbow, X. Deng, E.G. Irwin, S. Kerr, T. Kuemmerle, O. Mertz, P. Meyfroidt, and B.L.  Turner II (2013a). Finite Land Resources and Competition. Strüngmann Forum Reports. In:  Rethinking global land use in an urban era, edited by Karen C. Seto and Anette Reenberg. MIT Press,  Cambridge, MA pp.33 67(ISBN: 9780262026901).  Haberl H., E. D. Schulze, C. Körner, B.E. Law, B. Holtsmark, and S. Luyssaert (2013b). Response:  complexities of sustainable forest use, GCB Bioenergy 5 1 2 pp. (DOI: 10.1111/gcbb.12004), (ISSN:  17571693).  Haberl H., D. Sprinz, M. Bonazountas, P. Cocco, Y. Desaubies, M. Henze, O. Hertel, R.K. Johnson, U.  Kastrup, P. Laconte, E. Lange, P. Novak, J. Paavola, A. Reenberg, S. van den Hove, T. Vermeire, P.  Wadhams, and T. Searchinger (2012). Correcting a fundamental error in greenhouse gas accounting  related to bioenergy, Energy Policy 45 18 23 pp. (DOI: 10.1016/j.enpol.2012.02.051), (ISSN: 0301 4215).      129 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Hakala K., M. Kontturi, and K. Pahkala (2009). Field biomass as global energy source, Agricultural  and Food Science 18 347 365 pp. (ISSN: 1459 6067).  Hall J., S. Matos, L. Severino, and N. Beltrao (2009). Brazilian biofuels and social exclusion:  established and concentrated ethanol versus emerging and dispersed biodiesel, Journal of Cleaner  Production 17, Supplement 1 S77 S85 pp. (DOI: 10.1016/j.jclepro.2009.01.003), (ISSN: 0959 6526).  Hallgren W., C.A. Schlosser, E. Monier, D. Kicklighter, A. Sokolov, and J. Melillo (2013). Climate  impacts of a large scale biofuels expansion, Geophysical Research Letters 40 1624 1630 pp. (DOI:  10.1002/grl.50352), (ISSN: 1944 8007).  Halsnaes K., and J. Verhagen (2007). Development based climate change adaptation and mitigation    conceptual usues and lessons learned in studies in developing countries, Mitigation and Adaptation  Strategies for Global Change Volume 12 665 684 pp. .  Halvorson J.J., J.M. Gonzalez, and A.E. Hagerman (2011). Repeated applications of tannins and  related phenolic compounds are retained by soil and affect cation exchange capacity, Soil Biology  and Biochemistry 43 1139 1147 pp. (DOI: 10.1016/j.soilbio.2011.01.023), (ISSN: 0038 0717).  Hamelinck C.N., and A.P. Faaij (2006). Outlook for advanced biofuels, Energy Policy 34 3268 3283  pp. .  Hanff E., M. H. Dabat, and J. Blin (2011). Are biofuels an efficient technology for generating  sustainable development in oil dependent African nations? A macroeconomic assessment of the  opportunities and impacts in Burkina Faso, Renewable and Sustainable Energy Reviews 15 2199 2209 pp. (DOI: 10.1016/j.rser.2011.01.014), (ISSN: 1364 0321).  Hansen M.C., S.V. Stehman, and P.V. Potapov (2010). Quantification of global gross forest cover  loss, Proceedings of the National Academy of Sciences of the United States of America 107 8650 8655 pp. (DOI: 10.1073/pnas.0912668107), (ISSN: 0027 8424).  Hardner J.J., P.C. Frumhoff, and D.C. Goetze (2000). Prospects for mitigating carbon, conserving  biodiversity, and promoting socioeconomic development objectives through the clean development  mechanism, Mitigation and Adaptation Strategies for Global Change 5 61 80 pp. (DOI:  10.1023/A:1009685323704), (ISSN: 1381 2386, 1573 1596).  Harper R.J., A.C. Beck, P. Ritson, M.J. Hill, C.D. Mitchell, D.J. Barrett, K.R.J. Smettem, and S.S. Mann  (2007). The potential of greenhouse sinks to underwrite improved land management, Ecological  Engineering 29 329 341 pp. .  Harper R.J., S.J. Sochacki, K.R.J. Smettem, and N. Robinson (2010). Bioenergy Feedstock Potential  from Short Rotation Woody Crops in a Dryland Environment , Energy & Fuels 24 225 231 pp. (DOI:  10.1021/ef9005687), (ISSN: 0887 0624).  Harris N.L., S. Brown, S.C. Hagen, S.S. Saatchi, S. Petrova, W. Salas, M.C. Hansen, P.V. Potapov, and  A. Lotsch (2012). Baseline Map of Carbon Emissions from Deforestation in Tropical Regions, Science  336 1573 1576 pp. (DOI: 10.1126/science.1217962), (ISSN: 0036 8075, 1095 9203).  Harsono S.S., A. Prochnow, P. Grundmann, A. Hansen, and C. Hallmann (2012). Energy balances  and greenhouse gas emissions of palm oil biodiesel in Indonesia, GCB Bioenergy 4 213 228 pp. (DOI:  10.1111/j.1757 1707.2011.01118.x), (ISSN: 1757 1707).      130 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Harvey C.A., B. Dickson, and C. Kormos (2010). Opportunities for achieving biodiversity  conservation through REDD, Conservation Letters 3 53 61 pp. (DOI: 10.1111/j.1755 263X.2009.00086.x).  Harvey C.A., O. Komar, R. Chazdon, B.G. Ferguson, B. Finegan, D.M. Griffith, M. Martinez Ramos,  H. Morales, R. Nigh, L. Soto Pinto, M. van Breugel, and M. Wishnie (2008). Integrating agricultural  landscapes with biodiversity conservation in the Mesoamerican hotspot, Conservation Biology 22 8 15 pp. . Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1523 1739.2007.00863.x/full.  Harvey M., and S. Pilgrim (2011). The new competition for land: Food, energy, and climate change,  Food Policy 36 S40 S51 pp. .  Havemann T. (2011). Financing Mitigation in Smallholder Agricultural Systems: Issues and  Opportunities. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS),  Copenhagen, Denmark. 27 pp. Available at: http://cgspace.cgiar.org/handle/10568/6576.  Havlík P., U.A. Schneider, E. Schmid, H. Böttcher, S. Fritz, R. Skalský, K. Aoki, S.D. Cara, G.  Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Mosnier, T. Sauer, and M. Obersteiner (2011).  Global land use implications of first and second generation biofuel targets, Energy Policy 39 5690 5702 pp. (DOI: 10.1016/j.enpol.2010.03.030), (ISSN: 0301 4215).  Hegarty R.S., J.P. Goopy, R.M. Herd, and B. McCorkell (2007). Cattle selected for lower residual feed  intake have reduced daily methane production, Journal of Animal Science 85 1479 1486 pp. (DOI:  10.2527/jas.2006 236), (ISSN: 0021 8812, 1525 3163).  Heggenstaller A.H., R.P. Anex, M. Liebman, D.N. Sundberg, and L.R. Gibson (2008). Productivity and  Nutrient Dynamics in Bioenergy Double Cropping Systems, Agronomy Journal 100 1740 pp. (DOI:  10.2134/agronj2008.0087), (ISSN: 1435 0645).  Hein L., and P.J. van der Meer (2012). REDD+ in the context of ecosystem management, Current  Opinion in Environmental Sustainability 4 604 611 pp. (DOI: 10.1016/j.cosust.2012.09.016), (ISSN:  1877 3435).  Helin T., L. Sokka, S. Soimakallio, K. Pingoud, and T. Pajula (2013). Approaches for inclusion of  forest carbon cycle in life cycle assessment   a review, GCB Bioenergy 5 475 486 pp. (DOI:  10.1111/gcbb.12016), (ISSN: 1757 1707).  Heller N.E., and E.S. Zavaleta (2009). Biodiversity management in the face of climate change: A  review of 22 years of recommendations, Biological Conservation 142 14 32 pp. (DOI:  10.1016/j.biocon.2008.10.006), (ISSN: 00063207).  Hennig C., and M. Gawor (2012). Bioenergy production and use: Comparative analysis of the  economic and environmental effects, Energy Conversion and Management 63 130 137 pp. (DOI:  10.1016/j.enconman.2012.03.031), (ISSN: 0196 8904).  Herawati H., and H. Santoso (2011). Tropical forest susceptibility to and risk of fire under changing  climate: A review of fire nature, policy and institutions in Indonesia, Forest Policy and Economics 13  227 233 pp. .  Herold M., and T. Johns (2007). Linking requirements with capabilities for deforestation monitoring  in the context of the UNFCCC REDD process, Environmental Research Letters 2 045025 pp. (DOI:  10.1088/1748 9326/2/4/045025), (ISSN: 1748 9326).      131 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Herold M., and M. Skutsch (2011). Monitoring, reporting and verification for national REDD+  programmes: two proposals, Environmental Research Letters 6 doi:10.1088/1748 9326/6/1/014002  pp. .  Herrero M., R.T. Conant, P. Havlík, A.N. Hristov, P. Smith, P. Gerber, M. Gill, K. Butterbach Bahl, B.  Henderson, and P.K. Thornton (2013). Greenhouse gas mitigation potentials in the livestock sector  (in review), Nature Climate Change.  Herrero M., P.K. Thornton, A.M. Notenbaert, S. Wood, S. Msangi, H.A. Freeman, D. Bossio, J.  Dixon, M. Peters, J. van de Steeg, J. Lynam, P.P. Rao, S. Macmillan, B. Gerard, J. McDermott, C.  Sere, and M. Rosegrant (2010). Smart Investments in Sustainable Food Production: Revisiting Mixed  Crop Livestock Systems, Science 327 822 825 pp. (DOI: 10.1126/science.1183725), (ISSN: 0036 8075, 1095 9203).  Hertel T.W., A.A. Golub, A.D. Jones, M. O Hare, R.J. Plevin, and D.M. Kammen (2010). Effects of US  Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market mediated  Responses, BioScience 60 223 231 pp. (DOI: 10.1525/bio.2010.60.3.8), (ISSN: 0006 3568, 1525 3244).  Hertwich E. (2012). Biodiversity: Remote responsibility, Nature 486 36 37 pp. (DOI:  10.1038/486036a), (ISSN: 0028 0836).  Hill J., E. Nelson, D. Tilman, S. Polasky, and D. Tiffany (2006). Environmental, economic, and  energetic costs and benefits of biodiesel and ethanol biofuels, Proceedings of the National Academy  of Sciences 103 11206 11210 pp. (DOI: 10.1073/pnas.0604600103), (ISSN: 0027 8424, 1091 6490).  Van der Hilst F., V. Dornburg, J.P.M. Sanders, B. Elbersen, A. Graves, W.C. Turkenburg, H.W.  Elbersen, J.M.C. van Dam, and A.P.C. Faaij (2010). Potential, spatial distribution and economic  performance of regional biomass chains: The North of the Netherlands as example, Agricultural  Systems 103 403 417 pp. .  Van der Hilst F., and A.P. Faaij (2012). Spatiotemporal cost supply curves for bioenergy production  in Mozambique, Biofuels, Bioproducts and Biorefining 6 405 430 pp. .  Van der Hilst F., J.P. Lesschen, J.M.C. van Dam, M. Riksen, P.A. Verweij, J.P.M. Sanders, and A.P.C.  Faaij (2012a). Spatial variation of environmental impacts of regional biomass chains, Renewable and  Sustainable Energy Reviews 16 2053 2069 pp. (DOI: 10.1016/j.rser.2012.01.027), (ISSN: 1364 0321).  Van der Hilst F., J.A. Verstegen, D. Karssenberg, and A.P.C. Faaij (2012b). Spatiotemporal land use  modelling to assess land availability for energy crops   illustrated for Mozambique, GCB Bioenergy 4  859 874 pp. (DOI: 10.1111/j.1757 1707.2011.01147.x), (ISSN: 1757 1707).  Hodges R.J., J.C. Buzby, and B. Bennett (2011). Postharvest Losses and Waste in Developed and Less  Developed Countries: Opportunities to Improve Resource Use, The Journal of Agricultural Science  149 37 45 pp. (DOI: 10.1017/S0021859610000936).  Hoefnagels R., M. Banse, V. Dornburg, and A. Faaij (2013). Macro economic impact of large scale  deployment of biomass resources for energy and materials on a national level A combined  approach for the Netherlands, Energy Policy 59 727 744 pp. (DOI: 10.1016/j.enpol.2013.04.026),  (ISSN: 0301 4215).      132 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Hoefnagels R., E. Smeets, and A. Faaij (2010). Greenhouse gas footprints of different biofuel  production systems, Renewable and Sustainable Energy Reviews 14 1661 1694 pp. (DOI:  10.1016/j.rser.2010.02.014), (ISSN: 1364 0321).  Holtsmark B. (2012). Harvesting in boreal forests and the biofuel carbon debt, Climatic Change 112  415 428 pp. (DOI: 10.1007/s10584 011 0222 6), (ISSN: 0165 0009, 1573 1480).  Holtsmark B. (2013). The outcome is in the assumptions: analyzing the effects on atmospheric CO2  levels of increased use of bioenergy from forest biomass, Global Change Biology Bioenergy in print.  Hoogwijk M., A. Faaij, B. Eickhout, B. De Vries, and W. Turkenburg (2005). Potential of biomass  energy out to 2100, for four IPCC SRES land use scenarios, Biomass and Bioenergy 29 225 257 pp.  (DOI: 10.1016/j.biombioe.2005.05.002), (ISSN: 09619534).  Hoogwijk M., A. Faaij, B. de Vries, and W. Turkenburg (2009). Exploration of regional and global  cost supply curves of biomass energy from short rotation crops at abandoned cropland and rest  land under four IPCC SRES land use scenarios, Biomass and Bioenergy 33 26 43 pp. (DOI:  10.1016/j.biombioe.2008.04.005), (ISSN: 0961 9534).  Hooijer A., S. Page, J.G. Canadell, M. Silvius, J. Kwadijk, H. Wösten, and J. Jauhiainen (2010).  Current and future CO2 emissions from drained peatlands in Southeast Asia, Biogeosciences 7 1505 1514 pp. .  Hook S.E., A. Wright, and B.W. McBride (2010). Methanogens: Methane Producers of the Rumen  and Mitigation Strategies, Archaea 2010 (DOI: 10.1155/2010/945785), (ISSN: 1472 3646).  Van der Horst D., and S. Vermeylen (2011). Spatial scale and social impacts of biofuel production,  Biomass and Bioenergy 35 2435 2443 pp. (DOI: 10.1016/j.biombioe.2010.11.029), (ISSN: 0961 9534).  Houghton R.A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from  changes in land use and land management 1850 2000, Tellus B 55 378 390 pp. .  Houghton R.. (2012). Carbon emissions and the drivers of deforestation and forest degradation in  the tropics, Current Opinion in Environmental Sustainability 4 597 603 pp. (DOI:  10.1016/j.cosust.2012.06.006), (ISSN: 1877 3435).  Houghton R.A. (2013). The emissions of carbon from deforestation and degradation in the tropics:  past trends and future potential, Carbon Management 4 539 546 pp. (DOI: 10.4155/cmt.13.41),  (ISSN: 1758 3004).  Houghton R.A., J.I. House, J. Pongratz, G.R. van der Werf, R.S. DeFries, M.C. Hansen, C. Le Quéré,  and N. Ramankutty (2012). Carbon emissions from land use and land cover change, Biogeosciences  9 5125 5142 pp. (DOI: 10.5194/bg 9 5125 2012), (ISSN: 1726 4189).  House J.I., I. Colin Prentice, and C. Le Quéré (2002). Maximum impacts of future reforestation or  deforestation on atmospheric CO2, Global Change Biology 8 1047 1052 pp. .  Howden S.M., S.J. Crimp, and C.J. Stokes (2008). Climate change and Australian livestock systems:  impacts, research and policy issues, Australian Journal of Experimental Agriculture 48 780 788 pp. .  Hristov A.N., J. Oh, C. Lee, R. Meinen, F. Montes, T. Ott, J. Firkins, A. Rotz, C. Dell, A. Adesogan, W.  Yang, J. Tricarico, E. Kebreab, G. Waghorn, J. Dijkstra, and S. Oosting (2013). Food Value Chain      133 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Transformations in Developing Countries. FAO, Food and Agriculture Organization of the United  Nations, Rome, Italy. 210 pp.  Hsu D.D., D. Inman, G.A. Heath, E.J. Wolfrum, M.K. Mann, and A. Aden (2010). Life Cycle  Environmental Impacts of Selected U.S. Ethanol Production and Use Pathways in 2022,  Environmental Science & Technology 44 5289 5297 pp. (DOI: 10.1021/es100186h), (ISSN: 0013 936X).  Hu Z., J.W. Lee, K. Chandran, S. Kim, and S.K. Khanal (2012). Nitrous Oxide (N2O) Emission from  Aquaculture: A Review, Environmental Science & Technology 46 6470 6480 pp. (DOI:  10.1021/es300110x), (ISSN: 0013 936X, 1520 5851).  Hu Z., J.W. Lee, K. Chandran, S. Kim, K. Sharma, A.C. Brotto, and S.K. Khanal (2013). Nitrogen  transformations in intensive aquaculture system and its implication to climate change through  nitrous oxide emission, Bioresource Technology 130 314 320 pp. (DOI:  10.1016/j.biortech.2012.12.033), (ISSN: 09608524).  Huang M., and G.P. Asner (2010). Long term carbon loss and recovery following selective logging in  Amazon forests, Global Biogeochemical Cycles 24 15 pp. (DOI: 201010.1029/2009GB003727).  Huang Y., and Y. Tang (2010). An estimate of greenhouse gas (N2O and CO2) mitigation potential  under various scenarios of nitrogen use efficiency in Chinese croplands: Mitigating n induced ghg  emission in China, Global Change Biology 16 2958 2970 pp. (DOI: 10.1111/j.1365 2486.2010.02187.x), (ISSN: 13541013).  Huang J., J. Yang, S. Msangi, S. Rozelle, and A. Weersink (2012). Biofuels and the poor: Global  impact pathways of biofuels on agricultural markets, Food Policy 37 439 451 pp. (DOI:  10.1016/j.foodpol.2012.04.004), (ISSN: 0306 9192).  Hudiburg T.W., B.E. Law, C. Wirth, and S. Luyssaert (2011). Regional carbon dioxide implications of  forest bioenergy production, Nature Climate Change 1 419 423 pp. (DOI: 10.1038/nclimate1264),  (ISSN: 1758 678X).  Huettner M. (2012). Risks and opportunities of REDD+ implementation for environmental integrity  and socio economic compatibility, Environmental Science & Policy 15 4 12 pp. (DOI:  10.1016/j.envsci.2011.10.002), (ISSN: 1462 9011).  Hughes R.F., S.R. Archer, G.P. Asner, C.A. Wessman, C. McMURTRY, J. Nelson, and R.J. Ansley  (2006). Changes in aboveground primary production and carbon and nitrogen pools accompanying  woody plant encroachment in a temperate savanna, Global Change Biology 12 1733 1747 pp. (DOI:  10.1111/j.1365 2486.2006.01210.x), (ISSN: 1365 2486).  Hunsberger C., S. Bolwig, E. Corbera, and F. Creutzig (2012). Livelihood impacts of biofuel crop  production: mediating factors and implications for governance, Governing Sustainable Biofuels:  Markets, Certification and Technology. Copenhagen Biofuels Research Network   COBREN,  Copenhagen, 19 20 November 2012. 2012, .  Hunsberger C., and T.P. Evans (2012). Chapter 3   Land. In: Fith Global Environment Outlook (GEO 5).  United Nations Environment Programme (UNEP), London pp.65   97.  Huntingford C., P. Zelazowski, D. Galbraith, L.M. Mercado, S. Sitch, R. Fisher, M. Lomas, A.P.  Walker, C.D. Jones, B.B.B. Booth, Y. Malhi, D. Hemming, G. Kay, P. Good, S.L. Lewis, O.L. Phillips,  O.K. Atkin, J. Lloyd, E. Gloor, J. Zaragoza Castells, P. Meir, R. Betts, P.P. Harris, C. Nobre, J.      134 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Marengo, and P.M. Cox (2013). Simulated resilience of tropical rainforests to CO2 induced climate  change, Nature Geoscience 6 268 273 pp. (DOI: 10.1038/ngeo1741), (ISSN: 1752 0894).  Hurtt G., L. Chini, S. Frolking, R. Betts, J. Feddema, G. Fischer, J. Fisk, K. Hibbard, R. Houghton, A.  Janetos, C. Jones, G. Kindermann, T. Kinoshita, K. Klein Goldewijk, K. Riahi, E. Shevliakova, S.  Smith, E. Stehfest, A. Thomson, P. Thornton, D. van Vuuren, and Y. Wang (2011). Harmonization of  land use scenarios for the period 1500 2100: 600 years of global gridded annual land use  transitions, wood harvest, and resulting secondary lands, Climatic Change 109 117 161 pp. (DOI:  10.1007/s10584 011 0153 2), (ISSN: 0165 0009).  IAASTD (2009). Agriculture at a Crossroads: Global Report. International Assessment of Agricultural  Knowledge, Science and Technology for Development (IAASTD). 590 pp.  IBI Biochar (2012). Standardized Product Definition and Product Testing Guidelines for Biochar That  Is Used in Soil | International Biochar Initiative. International Biochar Initiative. 47 pp. Available at:  http://www.biochar international.org/characterizationstandard.  IEA (2010). Energy Technology Perspectives 2010. Scenarios & Strategies to 2050. International  Energy Agency, Paris, France. 706 pp.  IEA (2011). Energy for All: Financing Access for the Poor. Special Early Excerpt of the World Energy  Outlook 2011. Organisation for Economic Co Operation and Development/International Energy  Agency, Paris, France. 48 pp.  IEA (2012a). Tracking Clean Energy Progress. Energy Technology Perspectives 2012 Excerpt as IEA  Input to the Clean Energy Ministerial. Paris, France. 82 pp. Available at:  https://www.iea.org/publications/freepublications/publication/Tracking_Clean_Energy_Progress.pd f.  IEA (2012b). World Energy Outlook 2012. OECD/IEA, Paris, France. 690 pp. Available at:  http://www.worldenergyoutlook.org/publications/weo 2012/#d.en.26099.  IEA (2012c). Technology Roadmaps: Bioenergy for Heat and Power. International Energy Agency,  Paris, France. 62 pp.  IEA (2013). World Energy Outlook 2013. OECD, Paris, France. 708 pp. Available at:  http://www.worldenergyoutlook.org/publications/weo 2013/.  IEA ETSAP, and IRENA (2013). Production of Bio Ethylene: Technology Brief. Nternational Renewable  Energy Agency and Energy Technology Systems Analysis Programme of the International Energy  Agency. 20 pp. Available at: http://www.irena.org/DocumentDownloads/Publications/IRENA ETSAP%20Tech%20Brief%20I13%20Production_of_Bio ethylene.pdf.  Imhoff M.L., L. Bounoua, T. Ricketts, C. Loucks, R. Harriss, and W.T. Lawrence (2004). Global  patterns in human consumption of net primary production, Nature 429 870 873 pp. (DOI:  10.1038/nature02619), (ISSN: 0028 0836).  Immerzeel D.J., P. Verweij, F. Hilst, and A.P. Faaij (2013). Biodiversity impacts of bioenergy crop  production: a state of the art review, GCB Bioenergy.  Ingerson A. (2011). Carbon storage potential of harvested wood: summary and policy implications,  Mitigation and Adaptation Strategies for Global Change 16 307 323 pp. (DOI: 10.1007/s11027 010 9267 5), (ISSN: 1381 2386, 1573 1596).      135 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   IPCC (1996). Climate Change 1995: The Science of Climate Change. Contribution of Working Group I  to the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [J.T.  Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, K. Maskell (eds.)].  Intergovernmental Panel on Climate Change, Cambridge, United Kingdom. 588 pp. Available at:  internal pdf://IPCC 1995 Climate change 1260781312/IPCC 1995 Climate change.pdf.  IPCC (2000). Special Report on Land Use, Land Use Change and Forestry (R.T. Watson, I. Noble, B.  Bolin, N.H. Ravindranath, D.J. Verardo, and D.J. Dokken, Eds.). Cambridge University Press,  Cambridge, MA, 377 pp.  IPCC (2001). Climate Change 2001: Impacts Adaptation and Vulnerability. A Report of the Working  Group II. Summary for Policy Makers. [J.J. McCarthy, O.F. Canziani, N.A. Leary, D. J. Dokken, K.S.  White (eds.)]. IPCC, Geneva. 18 pp. Available at: http://www.grida.no/publications/other/ipcc_tar/.  IPCC (2003). Good Practice Guidance for Land Use, Land Use Change and Forestry [J. Penman, M.  Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, F.  Wagner (eds.)]. IPCC/OECD/IEA/IGES, Hayama, Japan, 580 pp.  IPCC (2006). 2006 National Greenhouse Gas Inventory Guidelines [S. Eggelston, L. Buendia, K. Miwa,  T. Ngara, K. Tanabe (eds.)]. Institute of Global Environmental Strategies (IGES), Kanagawa, Japan. 20  pp.  IPCC (2007a). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth  Assessment Report [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A: Meyer (eds)].  Intergovernmental Panel on Climate Change, Geneva. 851 pp. Available at:  http://www.ipcc.ch/pdf/assessment report/ar4/wg3/ar4 wg3 index.pdf.  IPCC (2007b). Climate Change 2007: Impacts, Adaptation and Vunerability. Contribution of Working  Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.  Cambridge, United Kingdom and New York, NY, USA.  IPCC (2011). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation.  Cambridge University Press, United Kingdom and New York, NY, USA. 1075 pp.  Ito A. (2005). Modelling of carbon cycle and fire regime in an east Siberian larch forest, Ecological  Modelling 187 121 139 pp. (DOI: 10.1016/j.ecolmodel.2005.01.037), (ISSN: 03043800).  ITTO (2008). Developing Forest Certification: Towards Increasing the Comparability and Acceptance  of Forest Certification Systems Worldwide. International Tropical Timber Organization, Yokohama,  Japan, 126 pp., (ISBN: 4902045397 9784902045390). .  Jackson T. (2009). Prosperity without Growth. Economics for a Finite Planet. Earthscan, UK and USA,  264 pp., (ISBN: 1844078949). .  Jackson R.B., and J.S. Baker (2010). Opportunities and Constraints for Forest Climate Mitigation,  BioScience 60 698 707 pp. (DOI: 10.1525/bio.2010.60.9.7), (ISSN: 0006 3568, 1525 3244).  Jackson R.B., K.A. Farley, W.A. Hoffman, E.G. Jobbágy, and R.L. McCulley (2007). Carbon and water  tradeoffs in conversions to forests and shrublands. In: Terrestrial Ecosystems in a Changing World.  Springer, pp.237 246.      136 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Jackson R.B., E.G. Jobbágy, R. Avissar, S.B. Roy, D.J. Barrett, C.W. Cook, K.A. Farley, D.C. Le Maitre,  B.A. McCarl, and B.C. Murray (2005). Trading water for carbon with biological carbon sequestration,  Science 310 1944 pp. .  Jackson R.B., J.T. Randerson, J.G. Canadell, R.G. Anderson, R. Avissar, D.D. Baldocchi, G.B. Bonan,  K. Caldeira, N.S. Diffenbaugh, C.B. Field, and others (2008). Protecting climate with forests,  Environmental Research Letters 3 044006 pp. (ISSN: 1748 9326).  Jain A.K., P. Meiyappan, Y. Song, and J.I. House (2013). Estimates of Carbon Emissions from  Historical Land Use and Land Cover Change, Biogeosciences submitted.  Jakobsson E.B., E.B. Sommer, P. De Clercq, G. Bonazzi, and B. Schröder (2002). The policy  implementation of nutrient management legislation and effects in some European Countries, The  Final Workshop of the EU Concerted Action Nutrient Management Legislation in European Countries  NUMALEC 13 pp. Gent, Belgium.  Janssen P.H., and M. Kirs (2008). Structure of the Archaeal Community of the Rumen, Applied and  Environmental Microbiology 74 3619 3625 pp. (DOI: 10.1128/AEM.02812 07), (ISSN: 0099 2240).  Janzen H.H. (2011). What place for livestock on a re greening earth?, Animal Feed Science and  Technology 166 67 783 796 pp. (DOI: 10.1016/j.anifeedsci.2011.04.055), (ISSN: 0377 8401).  Jaramillo P., W.M. Griffin, and H.S. Matthews (2008). Comparative Analysis of the Production Costs  and Life Cycle GHG Emissions of FT Liquid Fuels from Coal and Natural Gas, Environmental Science &  Technology 42 7559 7565 pp. (DOI: 10.1021/es8002074), (ISSN: 0013 936X, 1520 5851).  Jeffery S., F.G.A. Verheijen, M. van der Velde, and A.C. Bastos (2011). A quantitative review of the  effects of biochar application to soils on crop productivity using meta analysis, Agriculture,  Ecosystems & Environment 144 175 187 pp. (DOI: 10.1016/j.agee.2011.08.015), (ISSN: 0167 8809).  Jerneck A., and L. Olsson (2013). A smoke free kitchen: initiating community based co production  for cleaner cooking and cuts in carbon emissions, Journal of Cleaner Production 60 208 215 pp. (DOI:  10.1016/j.jclepro.2012.09.026), (ISSN: 0959 6526).  Jetter J., Y. Zhao, K.R. Smith, B. Khan, T. Yelverton, P. DeCarlo, and M.D. Hays (2012). Pollutant  Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and  Implications for Metrics Useful in Setting International Test Standards, Environmental Science &  Technology 46 10827 10834 pp. (DOI: 10.1021/es301693f), (ISSN: 0013 936X).  Johnston M., J.A. Foley, T. Holloway, C. Kucharik, and C. Monfreda (2009a). Resetting global  expectations from agricultural biofuels, Environmental Research Letters 4 014004 (9pp) pp. (DOI:  10.1088/1748 9326/4/1/014004), (ISSN: 1748 9326).  Johnston M., R. Licker, J.A. Foley, T. Holloway, N.D. Mueller, C. Barford, and C.J. Kucharik (2011).  Closing the gap: global potential for increasing biofuel production through agricultural  intensification, Environmental Research Letters 6.  Johnston A.E., P.R. Poulton, and K. Coleman (2009b). Chapter 1 Soil Organic Matter. In: Advances in  Agronomy. Elsevier, pp.1 57(ISBN: 9780123748171).  Jones C.S., and S.P. Mayfield (2012). Algae biofuels: versatility for the future of bioenergy, Current  Opinion in Biotechnology 23 346 351 pp. (DOI: 10.1016/j.copbio.2011.10.013), (ISSN: 0958 1669).      137 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Jonker J.G.G., and A.P.C. Faaij (2013). Techno economic assessment of micro algae as feedstock for  renewable bio energy production, Applied Energy 102 461 475 pp. .  Jonker J.G.G., M. Junginger, and A. Faaij (2013). Carbon payback period and carbon offset parity  point of wood pellet production in the South eastern United States, GCB Bioenergy n/a n/a pp.  (DOI: 10.1111/gcbb.12056), (ISSN: 1757 1707).  Joos F., R. Roth, J.S. Fuglestvedt, G.P. Peters, I.G. Enting, W. von Bloh, V. Brovkin, E.J. Burke, M.  Eby, N.R. Edwards, T. Friedrich, T.L. Frölicher, P.R. Halloran, P.B. Holden, C. Jones, T. Kleinen, F.  Mackenzie, K. Matsumoto, M. Meinshausen, G. K. Plattner, A. Reisinger, J. Segschneider, G.  Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A.J. Weaver (2013). Carbon  dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a  multi model analysis, Atmospheric Chemistry and Physics Discussions 12 19799 19869 pp. (DOI:  10.5194/acpd 12 19799 2012), (ISSN: 1680 7375).  Joosten H. (2010). The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions  in All Countries of the World. Wetlands International, Wageningen, Netherlands. 36 pp. Available at:  http://www.wetlands.org/WatchRead/Currentpublications/tabid/56/mod/1570/articleType/ArticleV iew/articleId/2418/The Global Peatland CO2 Picture.aspx.  JRC/PBL (2012). European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR), release version  4.2 FT2010. . Available at: http://edgar.jrc.ec.europa.eu.  Jull C., P.C. Redondo, V. Mosoti, and J. Vapnek (2007). Recent Trends in the Law and Policy of  Bioenergy Production, Promotion and Use. FAO, Food and Agriculture Organization of the United  Nations, Rome, Italy. 55 pp.  Junginger M., J. van Dam, S. Zarrilli, F. Ali Mohamed, D. Marchal, and A. Faaij (2011). Opportunities  and barriers for international bioenergy trade, Energy Policy 39 2028 2042 pp. (DOI:  16/j.enpol.2011.01.040), (ISSN: 0301 4215).  Junginger M., C.S. Goh, and A. Faaij (2014). International Bioenergy Trade: History, Status & Outlook  on Securing Sustainable Bioenergy Supply, Demand and Markets. 233 pp., (ISBN: 978 94 007 6982 3). .  Kaiser E. A., and R. Ruser (2000). Nitrous oxide emissions from arable soils in Germany   An  evaluation of six long term field experiments, Journal of Plant Nutrition and Soil Science 163 249 259  pp. (DOI: 10.1002/1522 2624(200006)163:3<249::AID JPLN249>3.0.CO;2 Z), (ISSN: 1522 2624).  Kandji S.T., L.V. Verchot, and J. Mackensen (2006). Climate Change and Variability in the Sahel  Region: Impacts and Adaptation Strategies in the Agricultural Sector. World Agroforestry Centre  (ICRAF)/United Nations Environment Programme (UNEP), Nairobi, Kenya. 58 pp.  Kaphengst T., M.S. Ma, and S. Schlegel (2009). At a Tipping Point? How the Debate on Biofuel  Standards Sparks Innovative Ideas for the General Future of Standardization and Certification  Schemes, Journal of Cleaner Production 17 99 101 pp. .  Kar A., I.H. Rehman, J. Burney, S.P. Puppala, R. Suresh, L. Singh, V.K. Singh, T. Ahmed, N.  Ramanathan, and V. Ramanathan (2012). Real time assessment of black carbon pollution in Indian  households due to traditional and improved biomass cookstoves, Environmental Science &  Technology 46 2993 3000 pp. .      138 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Karipidis P., E. Tsakiridou, S. Aggelopoulos, and A. Belidis (2010). Consumers  purchasing and store  switching intentions in respect of eco marked products, International Journal of Economics and  Business Research 2 511 524 pp. (DOI: 10.1504/IJEBR.2010.035702), (ISSN: 1756 9850).  Karsenty A., A. Vogel, and F. Castell (2014).  Carbon rights , REDD+ and payments for environmental  services, Environmental Science & Policy 35 20 29 pp. (DOI: 10.1016/j.envsci.2012.08.013), (ISSN:  1462 9011).  Kastner T., K. H. Erb, and S. Nonhebel (2011a). International wood trade and forest change: A global  analysis, Global Environmental Change 21 947 956 pp. (DOI: 16/j.gloenvcha.2011.05.003), (ISSN:  0959 3780).  Kastner T., M. Kastner, and S. Nonhebel (2011b). Tracing distant environmental impacts of  agricultural products from a consumer perspective, Ecological Economics 70 1032 1040 pp. (DOI:  16/j.ecolecon.2011.01.012), (ISSN: 0921 8009).  Kastner T., M.J.I. Rivas, W. Koch, and S. Nonhebel (2012). Global changes in diets and the  consequences for land requirements for food, Proceedings of the National Academy of Sciences 109  6868 6872 pp. (DOI: 10.1073/pnas.1117054109), (ISSN: 0027 8424, 1091 6490).  Kataeva I., M.B. Foston, S. J. Yang, S. Pattathil, A.K. Biswal, F.L.P. Ii, M. Basen, A.M. Rhaesa, T.P.  Thomas, P. Azadi, V. Olman, T.D. Saffold, K.E. Mohler, D.L. Lewis, C. Doeppke, Y. Zeng, T.J.  Tschaplinski, W.S. York, M. Davis, D. Mohnen, Y. Xu, A.J. Ragauskas, S. Y. Ding, R.M. Kelly, M.G.  Hahn, and M.W.W. Adams (2013). Carbohydrate and lignin are simultaneously solubilized from  unpretreated switchgrass by microbial action at high temperature, Energy & Environmental Science 6  2186 2195 pp. (DOI: 10.1039/C3EE40932E), (ISSN: 1754 5706).  Katila P. (2008). Devolution of Forest Related Rights: Comparative Analyses of Six Developing  Countries. University of Helsinki, Vikki Tropical Resources Institute, Helsinki, Finland, 162 pp., (ISBN:  978 952 10 4518 9). .  Kato E., T. Kinoshita, A. Ito, M. Kawamiya, and Y. Yamagata (2011). Evaluation of spatially explicit  emission scenario of land use change and biomass burning using a process based biogeochemical  model, Journal of Land Use Science 8 104 122 pp. (DOI: 10.1080/1747423X.2011.628705), (ISSN:  1747 423X).  Kaufman A.S., P.J. Meier, J.C. Sinistore, and D.J. Reinemann (2010). Applying life cycle assessment  to low carbon fuel standards How allocation choices influence carbon intensity for renewable  transportation fuels, Energy Policy 38 5229 5241 pp. (DOI: 10.1016/j.enpol.2010.05.008), (ISSN:  0301 4215).  Keating B.A., P.S. Carberry, and J. Dixon (2013). Agricultural intensification and the food security  challenge in Sub Saharan Africa. In: Agro Ecological Intensification of Agricultural Systems in the  African Highlands. Routledge, US and Canada pp.20 35(ISBN: 978 0 415 53273 0).  Keeling L.J., J. Rushen, and I.J.H. Duncan (2011). Understanding animal welfare. In: Animal welfare.  M.C. Appleby, J.A. Mench, I. a. S. Olsson, B.O. Hughes, (eds.), CABI, Wallingford, UK pp.13 26(ISBN:  978 1 84593 659 4).  Kehlbacher A., R. Bennett, and K. Balcombe (2012). Measuring the consumer benefits of improving  farm animal welfare to inform welfare labelling, Food Policy 37 627 633 pp. (DOI:  10.1016/j.foodpol.2012.07.002), (ISSN: 0306 9192).      139 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Van Kessel C., R. Venterea, J. Six, M.A. Adviento Borbe, B. Linquist, and K.J. van Groenigen (2013).  Climate, duration, and N placement determine N 2 O emissions in reduced tillage systems: a meta analysis, Global Change Biology 19 33 44 pp. (DOI: 10.1111/j.1365 2486.2012.02779.x), (ISSN:  13541013).  Khanna M., C.L. Crago, and M. Black (2011). Can biofuels be a solution to climate change? The  implications of land use change related emissions for policy, Interface Focus 1 233 247 pp. (DOI:  10.1098/rsfs.2010.0016), (ISSN: 2042 8898, 2042 8901).  Kim D. G., G. Hernandez Ramirez, and D. Giltrap (2013). Linear and nonlinear dependency of direct  nitrous oxide emissions on fertilizer nitrogen input: A meta analysis, Agriculture, Ecosystems &  Environment 168 53 65 pp. (DOI: 10.1016/j.agee.2012.02.021), (ISSN: 01678809).  Kim M.K., and B.A. McCarl (2009). Uncertainty discounting for land based carbon sequestration,  Journal of Agricultural and Applied Economics 41 1 11 pp. .  Kiptot, E., Franzel, and S. (2012). Gender and agroforestry in Africa: a review of women s  participation, Agroforest Systems 84 35 58 pp. .  De Klein C.A.M., and R.J. Eckard (2008). Targeted technologies for nitrous oxide abatement from  animal agriculture, Australian Journal of Experimental Agriculture 48 14 20 pp. . Available at:  http://dx.doi.org/10.1071/EA07217.  De Klein C.A.M., R.J. Eckard, and T.J. van der Weerden (2010). Nitrous Oxide Emissions from the  Nitrogen Cycle in Livestock Agriculture: Estimation and Mitigation. In: Nitrous Oxide and Climate  Change. K. Smith, (ed.), Earthscan Publications, London pp.107 144(ISBN: 978 1 84407 757 1).  Klverpris J.H., and S. Mueller (2013). Baseline time accounting: Considering global land use  dynamics when estimating the climate impact of indirect land use change caused by biofuels, The  International Journal of Life Cycle Assessment 18 319 330 pp. .  Klverpris J., H. Wenzel, M. Banse, L.M. i Canals, and A. Reenberg (2008). Conference and  workshop on modelling global land use implications in the environmental assessment of biofuels,  The International Journal of Life Cycle Assessment 13 178 183 pp. (DOI: 10.1065/lca2008.03.381),  (ISSN: 0948 3349, 1614 7502).  Kochsiek A.E., and J.M. Knops (2012). Maize cellulosic biofuels: soil carbon loss can be a hidden cost  of residue removal, GCB Bioenergy 4 229 233 pp. .  Koehler K.A., S.M. Kreidenweis, P.J. DeMott, M.D. Petters, A.J. Prenni, and O. Möhler (2010).  Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation, Atmos.  Chem. Phys. 10 11955 11968 pp. (DOI: 10.5194/acp 10 11955 2010), (ISSN: 1680 7324).  Koh L.P., and J. Ghazoul (2008). Biofuels, biodiversity, and people: Understanding the conflicts and  finding opportunities, Biological Conservation 141 2450 2460 pp. (DOI:  10.1016/j.biocon.2008.08.005), (ISSN: 0006 3207).  Koh L.P., and D.S. Wilcove (2008). Is oil palm agriculture really destroying tropical biodiversity?,  Conservation Letters 1 60 64 pp. (DOI: 10.1111/j.1755 263X.2008.00011.x), (ISSN: 1755 263X).  Koizumi T. (2013). Biofuel and food security in China and Japan, Renewable and Sustainable Energy  Reviews 21 102 109 pp. (DOI: 10.1016/j.rser.2012.12.047), (ISSN: 1364 0321).      140 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Koknaroglu H., and T. Akunal (2013). Animal welfare: An animal science approach, 59th  International Congress of Meat Science and Technology, 18 23 August 2013 Izmir/Turkey 95 821 827  pp. (DOI: 10.1016/j.meatsci.2013.04.030), (ISSN: 0309 1740).  Kollmuss A., M. Lazarus, C.M. Lee, M. LeFranc, and C. Polycarp (2010). Handbook of Carbon Offset  Programs Trading Systems, Funds, Protocols and Standards. Earthscan, London, 240 pp., (ISBN: 978 1 84407 929 2(Hb)). .  Kontur W.S., D.R. Noguera, and T.J. Donohue (2012). Maximizing reductant flow into microbial H2  production, Current Opinion in Biotechnology 23 382 389 pp. (DOI: 10.1016/j.copbio.2011.10.003),  (ISSN: 0958 1669).  Koornneef J., P. van Breevoort, C. Hamelinck, C. Hendriks, M. Hoogwijk, K. Koop, M. Koper, T.  Dixon, and A. Camps (2012). Global potential for biomass and carbon dioxide capture, transport and  storage up to 2050, International Journal of Greenhouse Gas Control 11 117 132 pp. (DOI:  10.1016/j.ijggc.2012.07.027), (ISSN: 1750 5836).  Koornneef J., P. van Breevoort, P. Noothout, C. Hendriks,  uchien Luning, and A. Camps (2013).  Global Potential for Biomethane Production with Carbon Capture, Transport and Storage up to 2050,  GHGT 11 37 6043 6052 pp. (DOI: 10.1016/j.egypro.2013.06.533), (ISSN: 1876 6102).  Körner C. (2006). Plant CO2 responses: an issue of definition, time and resource supply, New  Phytologist 172 393 411 pp. (DOI: 10.1111/j.1469 8137.2006.01886.x), (ISSN: 0028 646X, 1469 8137).  Körner C. (2009). Biologische Kohlenstoffsenken: Umsatz und Kapital nicht verwechseln (Biological  Carbon Sinks: Turnover Must Not Be Confused with Capital), Gaia   Ecological Perspectives for  Science and Society 18 288 293 pp. .  Krausmann F., K. H. Erb, S. Gingrich, H. Haberl, A. Bondeau, V. Gaube, C. Lauk, C. Plutzar, and T.  Searchinger (2013). Global human appropriation of net primary production doubled in the 20th  century, Proceedings of the National Academy of Sciences of the USA submitted.  Krausmann F., K. H. Erb, S. Gingrich, C. Lauk, and H. Haberl (2008). Global patterns of  socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply,  consumption and constraints, Ecological Economics 65 471 487 pp. (DOI:  16/j.ecolecon.2007.07.012), (ISSN: 0921 8009).  Krausmann F., S. Gingrich, H. Haberl, K. H. Erb, A. Musel, T. Kastner, N. Kohlheb, M.  Niedertscheider, and E. Schwarzlmüller (2012). Long term trajectories of the human appropriation  of net primary production: Lessons from six national case studies, Ecological Economics 77 129 138  pp. (DOI: 10.1016/j.ecolecon.2012.02.019), (ISSN: 0921 8009).  Kriegler E., P. Weyant, G. Blanford, V. Krey, L. Clarke, J. Edmonds, A. Fawcett, G. Luderer, K. Riahi,  R. Richels, S.K. Rose, M. Tovani, and D.P. van Vuuren (2013). The role of technology for achieving  climate policy objectives: overview of the EMF27 study on global technology and climate policy  strategies, Climatic Change in press (DOI: 10.1007/s10584 013 0953 7).  Kummu M., H. de Moel, M. Porkka, S. Siebert, O. Varis, and P.J. Ward (2012). Lost food, wasted  resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser  use, Science of The Total Environment 438 477 489 pp. (DOI: 10.1016/j.scitotenv.2012.08.092),  (ISSN: 0048 9697).      141 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Kurz W.A., G. Stinson, G.J. Rampley, C.C. Dymond, and E.T. Neilson (2008). Risk of natural  disturbances makes future contribution of Canada s forests to the global carbon cycle highly  uncertain, Proceedings of the National Academy of Sciences 105 1551 pp. .  Kyu H.H., K. Georgiades, and M.H. Boyle (2010). Biofuel Smoke and Child Anemia in 29 Developing  Countries: A Multilevel Analysis, Annals of Epidemiology 20 811 817 pp. (DOI:  10.1016/j.annepidem.2010.07.096), (ISSN: 1047 2797).  Laganiere J., D.A. Angers, and D. Pare (2010). Carbon accumulation in agricultural soils after  afforestation: a meta analysis: SOC accumulation following deforestation, Global Change Biology 16  439 453 pp. (DOI: 10.1111/j.1365 2486.2009.01930.x), (ISSN: 13541013, 13652486).  Laitner J.A.S., S.J. DeCanio, and I. Peters (2000). Incorporating Behavioral, Social and Organizational  Phenomena in the Assessment of Climate Change Mitigation Options. In: Society, Behaviour and  Climate Change Mitigation. E. Jochem, (ed.), Kluwer, Amsterdam pp.1 64.  Lal R. (2010). Managing soils for a warming earth in a food insecure and energy starved world,  Journal of Plant Nutrition and Soil Science 173 4 15 pp. (DOI: 10.1002/jpln.200900290), (ISSN: 1522 2624).  Lal R. (2011). Sequestering carbon in soils of agro ecosystems, Food Policy 36 S33 S39 pp. (DOI:  10.1016/j.foodpol.2010.12.001), (ISSN: 03069192).  Lam M.K., K.T. Tan, K.T. Lee, and A.R. Mohamed (2009). Malaysian palm oil: Surviving the food  versus fuel dispute for a sustainable future, Renewable and Sustainable Energy Reviews 13 1456 1464 pp. (DOI: 10.1016/j.rser.2008.09.009), (ISSN: 1364 0321).  Lambin E.F., and P. Meyfroidt (2011). Global land use change, economic globalization, and the  looming land scarcity, Proceedings of the National Academy of Sciences 108 3465 3472 pp. (DOI:  10.1073/pnas.1100480108), (ISSN: 0027 8424, 1091 6490).  Lamers P., and M. Junginger (2013). The  debt  is in the detail: A synthesis of recent temporal forest  carbon analyses on woody biomass for energy, Biofuels, Bioproducts and Biorefining 7 373 385 pp.  (DOI: 10.1002/bbb.1407), (ISSN: 1932 1031).  Lamers P., H.M. Junginger, C.C. Dymond, and A. Faaij (2013). Damaged forests provide an  opportunity to mitigate climate change, GCB Bioenergy in press.  Landis D.A., M.M. Gardiner, W. Van Der Werf, and S.M. Swinton (2008). Increasing corn for biofuel  production reduces biocontrol services in agricultural landscapes, Proceedings of the National  Academy of Sciences 105 20552 20557 pp. . Available at:  http://www.pnas.org/content/105/51/20552.short.  Langeveld J.W., J. Dixon, H. van Keulen, and P.M. Quist Wessel (2013). Analyzing the effect of  biofuel expansion on land use in major producing countries: evidence of increased multiple  cropping, Biofuels, Bioproducts and Biorefining 8 49 58 pp. . Available at:  http://onlinelibrary.wiley.com/doi/10.1002/bbb.1432/abstract.  Lansche J., and J. Müller (2012). Life cycle assessment of energy generation of biogas fed combined  heat and power plants: Environmental impact of different agricultural substrates, Engineering in Life  Sciences 12 313 320 pp. (DOI: 10.1002/elsc.201100061), (ISSN: 1618 2863).      142 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Larson A.M. (2011). Forest tenure reform in the age of climate change: Lessons for REDD+, Global  Environmental Change 21 540 549 pp. (DOI: 10.1016/j.gloenvcha.2010.11.008), (ISSN: 0959 3780).  Larson A.M., M. Brockhaus, W.D. Sunderlin, A. Duchelle, A. Babon, T. Dokken, T.T. Pham, I.A.P.  Resosudarmo, G. Selaya, A. Awono, and T. B. Huynh (2013). Land tenure and REDD+: The good, the  bad and the ugly, Global Environmental Change 23 678 689 pp. (DOI:  10.1016/j.gloenvcha.2013.02.014), (ISSN: 0959 3780).  Larson E.D., Z. Li, and R.H. Williams (2012). Chapter 12   Fossil Energy. In: Global Energy Assessment   Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA  and the International Institute for Applied Systems Analysis, Laxenburg, Austria pp.901 992(ISBN:  052118293X).  Latta G.S., J.S. Baker, R.H. Beach, S.K. Rose, and B.A. McCarl (2013). A multi sector intertemporal  optimization approach to assess the GHG implications of U.S. forest and agricultural biomass  electricity expansion, Journal of Forest Economics 19 361 383 pp. (DOI: 10.1016/j.jfe.2013.05.003),  (ISSN: 1104 6899).  Lauder A.R., I.G. Enting, J.O. Carter, N. Clisby, A.L. Cowie, B.K. Henry, and M.R. Raupach (2013).  Offsetting methane emissions   An alternative to emission equivalence metrics, International  Journal of Greenhouse Gas Control 12 419 429 pp. (DOI: 10.1016/j.ijggc.2012.11.028), (ISSN:  17505836).  Lauk C., H. Haberl, K. H. Erb, S. Gingrich, and F. Krausmann (2012). Global socioeconomic carbon  stocks in long lived products 1900 2008, Environmental Research Letters 7 34 44 pp. (DOI:  10.1088/1748 9326/7/3/034023), (ISSN: 1748 9326).  Le Q.B., R. Seidl, and R.W. Scholz (2012). Feedback loops and types of adaptation in the modelling  of land use decisions in an agent based simulation, Environmental Modelling & Software 27 28 83 96 pp. (DOI: 10.1016/j.envsoft.2011.09.002), (ISSN: 1364 8152).  Lee S. J., S. J. Lee, and D. W. Lee (2013). Design and development of synthetic microbial platform  cells for bioenergy, Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation 4 2 94 pp.  (DOI: 10.3389/fmicb.2013.00092).  Leemans R., and B. Eickhout (2004). Another reason for concern: regional and global impacts on  ecosystems for different levels of climate change, Global Environmental Change Part A 14 219 228  pp. .  Lehmann J. (2007). Bio energy in the black, Frontiers in Ecology and the Environment 5 381 387 pp.  (DOI: 10.1890/1540 9295(2007)5[381:BITB]2.0.CO;2), (ISSN: 1540 9295).  Lehmann J., J.P. da Silva Jr, C. Steiner, T. Nehls, W. Zech, and B. Glaser (2003). Nutrient availability  and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer,  manure and charcoal amendments, Plant and soil 249 343 357 pp. . Available at:  http://link.springer.com/article/10.1023/A:1022833116184.  Lemke R.L., A.J. VandenBygaart, C.A. Campbell, G.P. Lafond, and B. Grant (2010). Crop residue  removal and fertilizer N: Effects on soil organic carbon in a long term crop rotation experiment on a  Udic Boroll, Agriculture, Ecosystems & Environment 135 42 51 pp. (DOI:  10.1016/j.agee.2009.08.010), (ISSN: 01678809).      143 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Levin K., C. McDermott, and B. Cashore (2008). The climate regime as global forest governance: can  reduced emissions from Deforestation and Forest Degradation (REDD) initiatives pass a  dual  effectiveness  test?, International Forestry Review 10 538 549 pp. (DOI: 10.1505/ifor.10.3.538),  (ISSN: 1465 5489).  Lewis S.L., G. Lopez Gonzalez, B. Sonke, K. Affum Baffoe, T.R. Baker, L.O. Ojo, O.L. Phillips, J.M.  Reitsma, L. White, J.A. Comiskey, M.N. Djuikouo, C.E.N. Ewango, T.R. Feldpausch, A.C. Hamilton,  M. Gloor, T. Hart, A. Hladik, J. Lloyd, J.C. Lovett, J.R. Makana, Y. Malhi, F.M. Mbago, H.J.  Ndangalasi, J. Peacock, K.S.H. Peh, D. Sheil, T. Sunderland, M.D. Swaine, J. Taplin, D. Taylor, S.C.  Thomas, R. Votere, and H. Woll (2009). Increasing carbon storage in intact African tropical forests,  Nature 457 1003 U3 pp. (DOI: 10.1038/nature07771), (ISSN: 0028 0836).  Li H., A.F. Cann, and J.C. Liao (2010). Biofuels: Biomolecular Engineering Fundamentals and  Advances, Annual Review of Chemical and Biomolecular Engineering 1 19 36 pp. (DOI:  10.1146/annurev chembioeng 073009 100938).  Li X., E. Mupondwa, S. Panigrahi, L. Tabil, and P. Adapa (2012). Life cycle assessment of densified  wheat straw pellets in the Canadian Prairies, The International Journal of Life Cycle Assessment 17  420 431 pp. (DOI: 10.1007/s11367 011 0374 7), (ISSN: 0948 3349).  Liao J.D., T.W. Boutton, and J.D. Jastrow (2006). Storage and dynamics of carbon and nitrogen in  soil physical fractions following woody plant invasion of grassland, Soil Biology and Biochemistry 38  3184 3196 pp. (DOI: 10.1016/j.soilbio.2006.04.003), (ISSN: 00380717).  Liao J.C., and J. Messing (2012). Energy biotechnology, Current Opinion in Biotechnology 23 287 289  pp. (DOI: 10.1016/j.copbio.2012.03.005), (ISSN: 0958 1669).  Lichtfouse E., M. Navarrete, P. Debaeke, V. Souchere, C. Alberola, and J. Ménassieu (2009).  Agronomy for sustainable agriculture. A review, Agronomy for Sustainable Development 29 1 6 pp.  (DOI: 10.1051/agro:2008054), (ISSN: 1774 0746).  Lim S., T. Vos, A.D. Flaxman, G. Danaei, K. Shibuja, and et al. (2012). A Comparative Risk  Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters  in 21 regions, 1990 2010: A Systematic Analysis for the Global Burden of Disease Study 2010, The  Lancet 380 2224 2260 pp. .  Lindholm E. L., J. Stendahl, S. Berg, and P. A. Hansson (2011). Greenhouse gas balance of harvesting  stumps and logging residues for energy in Sweden, Scandinavian Journal of Forest Research 26 586 594 pp. (DOI: 10.1080/02827581.2011.615337), (ISSN: 0282 7581).  Lippke, B. Garcia, J.P., Manrique, and C. (2003). The Impact of Forests and Forest Management on  Carbon Storage. Rural Technology Initiative, College of Forest Resources, University of Washington,  Seattle. 7 pp.  Lippke B., E. Oneil, R. Harrison, K. Skog, L. Gustavsson, and R. Sathre (2011). Life cycle impacts of  forest management and wood utilization on carbon mitigation: knowns and unknowns, Carbon  Management 2 303 333 pp. (DOI: 10.4155/cmt.11.24), (ISSN: 1758 3004).  Lisboa C.C., K. Butterbach Bahl, M. Mauder, and R. Kiese (2011). Bioethanol production from  sugarcane and emissions of greenhouse gases   known and unknowns, GCB Bioenergy 3 277 292 pp.  (DOI: 10.1111/j.1757 1707.2011.01095.x), (ISSN: 1757 1707).      144 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Liska A.J., and R.K. Perrin (2009). Indirect land use emissions in the life cycle of biofuels: regulations  vs science, Biofuels, Bioproducts and Biorefining 3 318 328 pp. (DOI: 10.1002/bbb.153), (ISSN: 1932 1031).  Liu G., E.D. Larson, R.H. Williams, T.G. Kreutz, and X. Guo (2010). Making Fischer  Tropsch fuels and  electricity from coal and biomass: performance and cost analysis, Energy & Fuels 25 415 437 pp. .  Liu X., J. Qu, L. Li, A. Zhang, Z. Jufeng, J. Zheng, and G. Pan (2012). Can biochar amendment be an  ecological engineering technology to depress N2O emission in rice paddies? A cross site field  experiment from South China, Ecological Engineering 42 168 173 pp. (DOI:  10.1016/j.ecoleng.2012.01.016), (ISSN: 09258574).  Loarie S.R., D.B. Lobell, G.P. Asner, Q. Mu, and C.B. Field (2011). Direct impacts on local climate of  sugar cane expansion in Brazil, Nature Climate Change 1 105 109 pp. (DOI: 10.1038/nclimate1067),  (ISSN: 1758 678X).  Lobell D.B., U.L.C. Baldos, and T.W. Hertel (2013). Climate adaptation as mitigation: the case of  agricultural investments, Environmental Research Letters 8 15 28 pp. (DOI: 10.1088/1748 9326/8/1/015012), (ISSN: 1748 9326).  Lohila A., M. Aurela, J. P. Tuovinen, and T. Laurila (2004). Annual CO2 exchange of a peat field  growing spring barley or perennial forage grass, Journal of Geophysical Research: Atmospheres 109  n/a n/a pp. (DOI: 10.1029/2004JD004715), (ISSN: 2156 2202).  Lohila A., K. Minkkinen, J. Laine, I. Savolainen, J. P. Tuovinen, L. Korhonen, T. Laurila, H.  Tietäväinen, and A. Laaksonen (2010). Forestation of boreal peatlands: Impacts of changing albedo  and greenhouse gas fluxes on radiative forcing, Journal of Geophysical Research 115 (DOI:  10.1029/2010JG001327), (ISSN: 0148 0227).  Lott J.E., C.K. Ong, and C.R. Black (2009). Understorey microclimate and crop performance in a< i>  Grevillea robusta based agroforestry system in semi arid Kenya, Agricultural and Forest  Meteorology 149 1140 1151 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0168192309000434.  Lotze Campen H., M. von Lampe, P. Kyle, S. Fujimori, P. Havlik, H. van Meijl, T. Hasegawa, A. Popp,  C. Schmitz, A. Tabeau, H. Valin, D. Willenbockel, and M. Wise (2013). Impacts of increased  bioenergy demand on global food markets: an AgMIP economic model intercomparison, Agricultural  Economics n/a n/a pp. (DOI: 10.1111/agec.12092), (ISSN: 1574 0862).  Lotze Campen H., A. Popp, T. Beringer, C. Müller, A. Bondeau, S. Rost, and W. Lucht (2010).  Scenarios of global bioenergy production: The trade offs between agricultural expansion,  intensification and trade, Ecological Modelling 221 2188 2196 pp. .  Loudermilk E.L., R.M. Scheller, P.J. Weisberg, J. Yang, T.E. Dilts, S.L. Karam, and C. Skinner (2013).  Carbon dynamics in the future forest: the importance of long term successional legacy and climate fire interactions, Global Change Biology 19 3502 3515 pp. (DOI: 10.1111/gcb.12310), (ISSN: 1365 2486).  Lubowski R.N., and S.K. Rose (2013). The Potential for REDD+: Key Economic Modeling Insights and  Issues, Review of Environmental Economics and Policy 7 67 90 pp. (DOI: 10.1093/reep/res024),  (ISSN: 1750 6816, 1750 6824).      145 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Luedeling E., and H. Neufeldt (2012). Carbon sequestration potential of parkland agroforestry in the  Sahel, Climatic Change 115 443 461 pp. (DOI: 10.1007/s10584 012 0438 0), (ISSN: 0165 0009, 1573 1480).  Lund V., and B. Algers (2003). Research on animal health and welfare in organic farming a  literature review, Livestock Production Science 80 55 68 pp. (DOI: 10.1016/S0301 6226(02)00321 4),  (ISSN: 0301 6226).  Lunt I.D., L.M. Winsemius, S.P. McDonald, J.W. Morgan, and R.L. Dehaan (2010). How widespread  is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland  woodland and coastal ecosystems in Victoria from 1989 to 2005, Journal of Biogeography 37 722 732 pp. (DOI: 10.1111/j.1365 2699.2009.02255.x), (ISSN: 1365 2699).  Luo Y., M. Durenkamp, M. De Nobili, Q. Lin, and P.C. Brookes (2011). Short term soil priming effects  and the mineralisation of biochar following its incorporation to soils of different pH, Soil Biology and  Biochemistry 43 2304 2314 pp. (DOI: 10.1016/j.soilbio.2011.07.020), (ISSN: 0038 0717).  Luo L., E. Voet, G. Huppes, and H. Udo de Haes (2009). Allocation issues in LCA methodology: a case  study of corn stover based fuel ethanol, The International Journal of Life Cycle Assessment 14 529 539 pp. (DOI: 10.1007/s11367 009 0112 6), (ISSN: 0948 3349).  Luyssaert S., E. D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B.E. Law, P. Ciais, and J. Grace  (2008). Old growth forests as global carbon sinks, Nature 455 213 215 pp. (DOI:  10.1038/nature07276), (ISSN: 0028 0836).  Lynd L.R., R.A. Aziz, C.H. de Brito Cruz, A.F.A. Chimphango, L.A.B. Cortez, A. Faaij, N. Greene, M.  Keller, P. Osseweijer, and T.L. Richard (2011). A global conversation about energy from biomass: the  continental conventions of the global sustainable bioenergy project, Interface focus 1 271 279 pp. .  Ma J., E. Ma, H. Xu, K. Yagi, and Z. Cai (2009). Wheat straw management affects CH4 and N2O  emissions from rice fields, Soil Biology and Biochemistry 41 1022 1028 pp. (DOI:  10.1016/j.soilbio.2009.01.024), (ISSN: 00380717).  Macauley M.K., and R.A. Sedjo (2011). Forests in climate policy: technical, institutional and  economic issues in measurement and monitoring, Mitigation and Adaptation Strategies for Global  Change 16 499 513 pp. (DOI: 10.1007/s11027 010 9276 4), (ISSN: 1381 2386, 1573 1596).  Macedo I.C. (2005). Sugar Cane s Energy: Twelve Studies on Brazilian Sugar Cane Agribusiness and  Its Sustainability. UNICA, Sao Paulo, Brazil, 237 pp.  Macedo M.N., R.S. DeFries, D.C. Morton, C.M. Stickler, G.L. Galford, and Y.E. Shimabukuro (2012).  Decoupling of deforestation and soy production in the southern Amazon during the late 2000s,  Proceedings of the National Academy of Sciences 109 1341 1346 pp. (DOI:  10.1073/pnas.1111374109), (ISSN: 0027 8424, 1091 6490).  Macedo I.C., J.E.A. Seabra, and J.E.A.R. Silva (2008). Green house gases emissions in the production  and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020,  Biomass and Bioenergy 32 582 595 pp. (DOI: 10.1016/j.biombioe.2007.12.006), (ISSN: 0961 9534).  Machmuller A., C.R. Soliva, and M. Kreuzer (2003). Methane suppressing effect of myristic acid in  sheep as affected by dietary calcium and forage proportion, British Journal of Nutrition 90 529 540  pp. .      146 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Mackey B., I.C. Prentice, W. Steffen, J.I. House, D. Lindenmayer, H. Keith, and S. Berry (2013).  Untangling the confusion around land carbon science and climate change mitigation policy, Nature  Climate Change 3 552 557 pp. (DOI: 10.1038/nclimate1804), (ISSN: 1758 678X).  MacMillan Uribe A.L., D.M. Winham, and C.M. Wharton (2012). Community supported agriculture  membership in Arizona. An exploratory study of food and sustainability behaviours, Appetite 59  431 436 pp. (DOI: 10.1016/j.appet.2012.06.002), (ISSN: 0195 6663).  Madlener R., C. Robledo, B. Muys, and J.T.B. Freja (2006). A Sustainability Framework for Enhancing  the Long Term Success of Lulucf Projects, Climatic Change 75 241 271 pp. (DOI: 10.1007/s10584 005 9023 0), (ISSN: 0165 0009, 1573 1480).  Mahmood R., R.A. Pielke, K.G. Hubbard, D. Niyogi, P.A. Dirmeyer, C. McAlpine, A.M. Carleton, R.  Hale, S. Gameda, A. Beltrán Przekurat, B. Baker, R. McNider, D.R. Legates, M. Shepherd, J. Du, P.D.  Blanken, O.W. Frauenfeld, U. s. Nair, and S. Fall (2013). Land cover changes and their  biogeophysical effects on climate, International Journal of Climatology n/a n/a pp. (DOI:  10.1002/joc.3736), (ISSN: 1097 0088).  Mallia E., and G. Lewis (2013). Life cycle greenhouse gas emissions of electricity generation in the  province of Ontario, Canada, The International Journal of Life Cycle Assessment 18 377 391 pp. (DOI:  10.1007/s11367 012 0501 0), (ISSN: 0948 3349).  Malmsheimer R.W., P. Heffernan, S. Brink, D. Crandall, F. Deneke, C. Galik, E. Gee, J.A. Helms, N.  McClure, and M. Mortimer (2008). Forest management solutions for mitigating climate change in  the United States, Journal of Forestry 106 173 239 pp. . Available at:  http://152.99.88.238/KFRICAB/IMG/006/002/157431.pdf#page=173.  Von Maltitz G.P., and K.A. Setzkorn (2013). A typology of Southern African biofuel feedstock  production projects, Biomass and Bioenergy 59 33 59 pp. (DOI: 10.1016/j.biombioe.2012.11.024),  (ISSN: 0961 9534).  Mao H.L., J.K. Wang, Y.Y. Zhou, and J.X. Liu (2010). Effects of addition of tea saponins and soybean  oil on methane production, fermentation and microbial population in the rumen of growing lambs,  Livestock Science 129 56 62 pp. .  Markus L. (2011). From CDM to REDD+   What do we know for setting up effective and legitimate  carbon governance?, Ecological Economics 70 1900 1907 pp. (DOI:  10.1016/j.ecolecon.2011.02.003), (ISSN: 0921 8009).  Marland G., R.A. Pielke Sr., M. Apps, R. Avissar, R.A. Betts, K.J. Davis, P.C. Frumhoff, S.T. Jackson,  L.A. Joyce, P. Kauppi, J. Katzenberger, K.G. MacDicken, R.P. Neilson, J.O. Niles, D. dutta S. Niyogi,  R.J. Norby, N. Pena, N. Sampson, and Y. Xue (2003). The climatic impacts of land surface change and  carbon management, and the implications for climate change mitigation policy, Climate Policy 3  149 157 pp. (DOI: 10.1016/S1469 3062(03)00028 7), (ISSN: 1469 3062).  Marland G., and B. Schlamadinger (1995). Biomass fuels and forest management strategies: how do  we calculate the greenhouse gas emissions benefits?, Energy 20 1131 1140 pp. .  Marland G., and B. Schlamadinger (1997). Forests for carbon sequestration or fossil fuel  substitution? A sensitivity analysis, Biomass and Bioenergy 13 389 397 pp. (DOI: 10.1016/S0961 9534(97)00027 5), (ISSN: 0961 9534).      147 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Marlow H.J., W.K. Hayes, S. Soret, R.L. Carter, E.R. Schwab, and J. Sabaté (2009). Diet and the  environment: does what you eat matter?, The American Journal of Clinical Nutrition 89 1699S 1703S  pp. (DOI: 10.3945/ajcn.2009.26736Z), (ISSN: 0002 9165, 1938 3207).  Martin C., D.P. Morgavi, and M. Doreau (2010). Methane mitigation in ruminants: from microbe to  the farm scale, Animal 4 351 365 pp. (DOI: 10.1017/S1751731109990620).  Martin C., J. Rouel, J.P. Jouany, M. Doreau, and Y. Chilliard (2008). Methane output and diet  digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil, Journal  of Animal Science 86 2642 2650 pp. (DOI: 10.2527/jas.2007 0774), (ISSN: 0021 8812, 1525 3163).  Martinelli L.A., and S. Filoso (2008). Expansion of sugarcane ethanol production in Brazil:  environmental and social challenges, Ecological applications: a publication of the Ecological Society  of America 18 885 898 pp. (ISSN: 1051 0761).  Martínez S.H., J. van Eijck, M.P. da Cunha, A. Walter, J.J. Guilhoto, and A. Faaij (2013). Analysis of  socio economic impacts of sustainable sugarcane ethanol production by means of inter regional  input output analysis: A case study on Northeast Brazil, Renewable & Sustainable Energy Reviews 28  290 316 pp. .  Martinez Alier J. (2002). The Environmentalism of the Poor: A Study of Ecological Conflicts and  Valuation. Edward Elgar Publishing, Cheltenham, UK and Northampton, USA, 325 pp., (ISBN:  9781840649093). .  Masera O.R., J.F. Garza Caligaris, M. Kanninen, T. Karjalainen, J. Liski, G.J. Nabuurs, A. Pussinen,  B.H.J. de Jong, and G.M.J. Mohren (2003). Modeling carbon sequestration in afforestation,  agroforestry and forest management projects: the CO2FIX V.2 approach, Ecological Modelling 164  177 199 pp. (DOI: 10.1016/S0304 3800(02)00419 2), (ISSN: 03043800).  Matson P.A., and P.M. Vitousek (2006). Agricultural Intensification: Will Land Spared from Farming  be Land Spared for Nature?, Conservation Biology 20 709 710 pp. (DOI: 10.1111/j.1523 1739.2006.00442.x), (ISSN: 1523 1739).  Mattoo A., and A. Subramanian (2012). Equity in Climate Change: An Analytical Review, World  Development 40 1083 1097 pp. (DOI: 10.1016/j.worlddev.2011.11.007), (ISSN: 0305 750X).  Matyssek R., G. Wieser, R. Ceulemans, H. Rennenberg, H. Pretzsch, K. Haberer, M. Löw, A.J. Nunn,  H. Werner, and P. Wipfler (2010). Enhanced ozone strongly reduces carbon sink strength of adult  beech (Fagus sylvatica)   Resume from the free air fumigation study at Kranzberg Forest,  Environmental Pollution 158 2527 2532 pp. (DOI: 10.1016/j.envpol.2010.05.009), (ISSN: 02697491).  May, P., Boyd, E., Chang, M., V. Neto, and F.C. (2005). Incorporating sustainable development into  carbon forest projects in Brazil and Bolivia, Estudos Sociedade e Agricultura 1 23 p pp. .  May P.H., F. Veiga, and M. Chang (2004). Local Sustainable Development Effects of Forest Carbon  Projects in Brazil and Bolivia: A View from the Field. Environmental Economics Programme, London,  132 pp., (ISBN: Earthprint Limited). .  Mayrand K., and M. Paquin (2004). Payments for Environmental Services: A Survey and Assessment  of Current Schemes. UNISFERA International Centre for the Commission of Environmental  Cooperation of North America, Montreal, Montreal. 60 pp.      148 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Mbow C. (2010). Africa s risky gamble, Global Change, IGBP Secretariat, number 75 of June 2010 75  20 23 pp.   Mbow, C., Skole, D., Dieng, M., Justice, C., Kwesha, D., Mane, L., E. Gamri, M., V. Vordzogbe, V.,  Virji, and H. (2012). Challenges and Prospects for REDD+ in Africa: Desk Review Of REDD+  Implementation in Africa. GLP IPO, Copenhagen, 70 pp.  McCarl B.A., and U.A. Schneider (2001). Greenhouse Gas Mitigation in U.S. Agriculture and Forestry,  Science 294 2481 2482 pp. (DOI: 10.1126/science.1064193), (ISSN: 0036 8075, 1095 9203).  McKechnie J., S. Colombo, J. Chen, W. Mabee, and H.L. MacLean (2011). Forest Bioenergy or Forest  Carbon? Assessing Trade Offs in Greenhouse Gas Mitigation with Wood Based Fuels, Environmental  Science & Technology 45 789 795 pp. (DOI: 10.1021/es1024004), (ISSN: 0013 936X).  McLaren D. (2012). A comparative global assessment of potential negative emissions technologies,  Special Issue: Negative emissions technology 90 489 500 pp. (DOI: 10.1016/j.psep.2012.10.005),  (ISSN: 0957 5820).  McMichael A.J., J.W. Powles, C.D. Butler, and R. Uauy (2007). Food, livestock production, energy,  climate change, and health, The Lancet 370 1253 1263 pp. (DOI: 10.1016/S0140 6736(07)61256 2),  (ISSN: 01406736).  McSherry M.E., and M.E. Ritchie (2013). Effects of grazing on grassland soil carbon: a global review,  Global Change Biology 19 1347 1357 pp. (DOI: 10.1111/gcb.12144), (ISSN: 13541013).  MEA (2005). Millennium Ecosystem Assessment. United National Environment Program, New York,  Nairobi. 155 pp.  Meerman J.C., M.M.J. Knoope, A. Ramírez, W.C. Turkenburg, and A.P.C. Faaij (2013). Technical and  economic prospects of coal  and biomass fired integrated gasification facilities equipped with CCS  over time, International Journal of Greenhouse Gas Control 16 311 323 pp. (DOI:  10.1016/j.ijggc.2013.01.051), (ISSN: 1750 5836).  Meerman J.C., A. Ramirez, W.C. Turkenburg, and A.P.C. Faaij (2011). Performance of simulated  flexible integrated gasification polygeneration facilities. Part A: A technical energetic assessment,  Renewable and Sustainable Energy Reviews 15 2563 2587 pp. .  Meerman J.C., A. Ramírez, W.C. Turkenburg, and A.P.C. Faaij (2012). Performance of simulated  flexible integrated gasification polygeneration facilities, Part B: Economic evaluation., Renewable  and Sustainable Energy Reviews 16 6083 6102 pp. .  De Meester S., J. Demeyer, F. Velghe, A. Peene, H. Van Langenhove, and J. Dewulf (2012). The  environmental sustainability of anaerobic digestion as a biomass valorization technology,  Bioresource Technology 121 396 403 pp. (DOI: 10.1016/j.biortech.2012.06.109), (ISSN: 0960 8524).  Meier D., B. van de Beld, A.V. Bridgwater, D.C. Elliott, A. Oasmaa, and F. Preto (2013). State of the art of fast pyrolysis in IEA bioenergy member countries, Renewable and Sustainable Energy Reviews  20 619 641 pp. (DOI: 10.1016/j.rser.2012.11.061), (ISSN: 1364 0321).  Melillo J.M., J.M. Reilly, D.W. Kicklighter, A.C. Gurgel, T.W. Cronin, S. Paltsev, B.S. Felzer, X. Wang,  A.P. Sokolov, and C.A. Schlosser (2009). Indirect Emissions from Biofuels: How Important?, Science  326 1397 1399 pp. (DOI: 10.1126/science.1180251), (ISSN: 0036 8075, 1095 9203).      149 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Messerli P., A. Heinimann, M. Giger, T. Breu, and O. Schönweger (2013). From  land grabbing  to  sustainable investments in land: potential contributions by land change science, Current Opinion in  Environmental Sustainability 5 528 534 pp. (DOI: 10.1016/j.cosust.2013.03.004), (ISSN: 1877 3435).  Metay A., R. Oliver, E. Scopel, J. M. Douzet, J. Aloisio Alves Moreira, F. Maraux, B.J. Feigl, and C.  Feller (2007). N2O and CHsub>4 emissions from soils under conventional and no till  management practices in Goiânia (Cerrados, Brazil), Geoderma 141 78 88 pp. (DOI:  10.1016/j.geoderma.2007.05.010), (ISSN: 00167061).  Milazzo M.F., F. Spina, A. Vinci, C. Espro, and J.C.J. Bart (2013). Brassica biodiesels: Past, present  and future, Renewable and Sustainable Energy Reviews 18 350 389 pp. (DOI:  10.1016/j.rser.2012.09.033), (ISSN: 1364 0321).  Millar N., G.P. Robertson, P.R. Grace, R.J. Gehl, and J.P. Hoben (2010). Nitrogen fertilizer  management for nitrous oxide (N 2 O) mitigation in intensive corn (Maize) production: an emissions  reduction protocol for US Midwest agriculture, Mitigation and Adaptation Strategies for Global  Change 15 185 204 pp. (DOI: 10.1007/s11027 010 9212 7).  Millar C.I., N.L. Stephenson, and S.L. Stephens (2007). Climate change and forests of the future:  managing in the face of uncertainty, Ecological applications 17 2145 2151 pp. .  Mingorría S., G. Gamboa, and A. Alonso Fradejas (2010). Metabolismo Socio Ecológico de  Comunidades Campesinas Q eqchi  Y La Expansión de La Agro Industria de Cana de Azúcar Y Palma  Africana : Valle Del Río Polochic, Guatemala. Instituto de Ciencia Y Technología Ambientales and  Instituto de Estudios Agrarios Y Rurales, Barcelona and Mexico, 166 pp., (ISBN: 9789929561175). .  Van Minnen J.G., K.K. Goldewijk, E. Stehfest, B. Eickhout, G. van Drecht, and R. Leemans (2009).  The importance of three centuries of land use change for the global and regional terrestrial carbon  cycle, Climatic Change 97 123 144 pp. (DOI: 10.1007/s10584 009 9596 0), (ISSN: 0165 0009).  Mirle C. (2012). The industrialization of animal agriculture: implications for small farmers, rural  communities, the environment, and animals in the developing world. The 10th European  International Farming Systems Association Symposium in Aarhus, Denmark, July 1 4.  Workshop 1.3:  Understanding agricultural structural changes and their impacts, to support inclusive policy dialogue  and formulation. Available at: http://www.ifsa2012.dk/downloads/WS1_3/ChetanaMirle.pdf.  Misselhorn A., P. Aggarwal, P. Ericksen, P. Gregory, L. Horn Phathanothai, J. Ingram, and K. Wiebe  (2012). A vision for attaining food security, Current Opinion in Environmental Sustainability 4 7 17  pp. (DOI: 10.1016/j.cosust.2012.01.008), (ISSN: 1877 3435).  Mitchell C.D., R.J. Harper, and R.J. Keenan (2012). Current status and prospects of carbon forestry  in Australia, Australian Forestry 75 200 212 pp. (ISSN: 0004 9158).  Moberg J. (2011). The Chinese Grain for Green Program   assessment of the land reform s carbon  mitigation potential. Department of Energy and Environment, Chalmers University of Technology,  Göteborg, Sweden, 54 pp.  Mohlin K. (2013). Essays on Environmental Taxation and Climate Policy. Göteborgs Universitet.  Handelshögskolan, Department of Economics, Sweden, 155 pp. Available at:  https://gupea.ub.gu.se/handle/2077/33425.  Moilanen A., and A. Arponen (2011). Administrative regions in conservation: Balancing local  priorities with regional to global preferences in spatial planning, Ecoregional scale monitoring within      150 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   conservation areas, in a rapidly changing climate 144 1719 1725 pp. (DOI:  10.1016/j.biocon.2011.03.007), (ISSN: 0006 3207).  Monti A., L. Barbanti, A. Zatta, and W. Zegada Lizarazu (2012). The contribution of switchgrass in  reducing GHG emissions, Global Change Biology Bioenergy 4 (DOI: 10.1117j.1757 1707.2011.01142.x).  De Moraes M.A.F.D., C.C. da Costa, J.J.M. Guilhoto, L.G.A. de Souza, and F.C.R. de Oliveira (2010).  Social Externalities of Fuels. In: Ethanol and Bioelectricity: Sugarcane in the Future of the Energy  Matrix. UNICA Brazilian Sugarcane Industry Association, Sao Paulo, Brazil pp.44 75.  Morgavi D.P., E. Forano, C. Martin, and C.J. Newbold (2010). Microbial ecosystem and  methanogenesis in ruminants, animal 4 1024 1036 pp. (DOI: 10.1017/S1751731110000546).  Morgavi D.P., J.P. Jouany, and C. Martin (2008). Changes in methane emission and rumen  fermentation parameters induced by refaunation in sheep, Australian Journal of Experimental  Agriculture 48 69 72 pp. (DOI: http://dx.doi.org/10.1071/EA07236).  Mueller N.D., J.S. Gerber,, M. Johnston, D.K. Ray, N. Ramankutty, and J.A. Foley (2012). Closing  yield gaps through nutrient and water management, Nature 490 254  257 pp. . Available at:  http://dx.doi.org/10.1038/nature11420.  Muller A. (2009). Sustainable agriculture and the production of biomass for energy use, Climatic  Change 94 319 331 pp. (DOI: 10.1007/s10584 008 9501 2), (ISSN: 0165 0009, 1573 1480).  Murdiyarso D., M. Brockhaus, W.D. Sunderlin, and L. Verchot (2012). Some lessons learned from  the first generation of REDD+ activities, Current Opinion in Environmental Sustainability 4 678 685  pp. (DOI: 10.1016/j.cosust.2012.10.014), (ISSN: 1877 3435).  Murray B.C., B.A. McCarl, and H. C. Lee (2004). Estimating Leakage from Forest Carbon  Sequestration Programs, Land Economics 80 109 124 pp. (DOI: 10.3368/le.80.1.109), (ISSN: 0023 7639, 1543 8325).  Murtaugh P.A., and M.G. Schlax (2009). Reproduction and the carbon legacies of individuals, Global  Environmental Change 19 14 20 pp. .  Murthy I.K., R. Tiwari, and N.H. Ravindranath (2011). Climate change and forests in India:  adaptation opportunities and challenges, Mitigation and Adaptation Strategies for Global Change 16  161 175 pp. (DOI: 10.1007/s11027 010 9261 y), (ISSN: 1381 2386, 1573 1596).  Muys B., L. Norgrove, T. Alamirew, R. Birech, E. Chirinian, Y. Delelegn, A. Ehrensperger, C.A.  Ellison, A. Feto, B. Freyer, J. Gevaert, S. Gmünder, R.E.E. Jongschaap, M. Kaufmann, J. Keane, M.  Kenis, B. Kiteme, J. Langat, R. Lyimo, V. Moraa, J. Muchugu, A. Negussie, C. Ouko, M.W. Rouamba,  I. Soto, M. Wörgetter, R. Zah, and R. Zetina (2013). Integrating mitigation and adaptation into  development: the case of Jatropha curcas in sub Saharan Africa, Global Change Biology Bioenergy  Accepted for publication (DOI: 10.1111/gcbb.12070), (ISSN: 1757 1707).  Mwakaje A.G. (2012). Can Tanzania realise rural development through biofuel plantations? Insights  from the study in Rufiji District, Energy for Sustainable Development 16 320 327 pp. (DOI:  10.1016/j.esd.2012.07.001), (ISSN: 0973 0826).  Myhre G., and D. Shindell (2013). Anthopogenic and Natural Radiative Forcing. Intergovernmental  Panel on Climate Change, Cambridge UK. 124 pp.      151 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Nabuurs G. J., M. Lindner, P.J. Verkerk, K. Gunia, P. Deda, R. Michalak, and G. Grassi (2013). First  signs of carbon sink saturation in European forest biomass, Nature Climate Change 3 792 796 pp. .  Nabuurs G.J., O. Masera, K. Andrasko, P. Benitez Ponce, R. Boer, M. Dutschke, E. Elsiddig, J. Ford Robertson, P. Frumhoff, T. Karjalainen, O. Krankina, W.A. Kurz, M. Matsumoto, W. Oyhantcabal,  N.H. Ravindranath, M.J.S. Sanchez, and X. Zhang (2007). Forestry. In: Climate Change 2007:  Contribution of Working Group III to the Fourth Assessment Report of the Intergovenmental Panel on  Climate Change. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, (eds.), Cambridge  University Press, Cambridge, UK and New York, USA pp.541 584.  Nassar A.M., L. Harfuch, L.C. Bachion, and M.R. Moreira (2011). Biofuels and land use changes:  searching for the top model, Interface Focus rsfs20100043 pp. (DOI: 10.1098/rsfs.2010.0043), (ISSN:  2042 8898, 2042 8901).  Nelissen V., T. Rütting, D. Huygens, J. Staelens, G. Ruysschaert, and P. Boeckx (2012). Maize  biochars accelerate short term soil nitrogen dynamics in a loamy sand soil, Soil Biology and  Biochemistry 55 20 27 pp. (DOI: 10.1016/j.soilbio.2012.05.019), (ISSN: 00380717).  Nemecek T., K. Weiler, K. Plassmann, J. Schnetzer, G. Gaillard, D. Jefferies, T. García Suárez, H.  King, and L. Mila i Canals (2012). Estimation of the variability in global warming potential of  worldwide crop production using a modular extrapolation approach, Journal of Cleaner Production  31 106 117 pp. (DOI: 10.1016/j.jclepro.2012.03.005), (ISSN: 0959 6526).  Nepstad D.C., I.M. Tohver, D. Ray, P. Moutinho, and G. Cardinot (2007). Mortality of large trees and  lianas following experimental drought in an Amazon forest, Ecology 88 2259 2269 pp. . Available at:  http://www.esajournals.org/doi/abs/10.1890/06 1046.1.  Newbold C.J., J.O. Ouda, S. López, N. Nelson, H. Omed, R.J. Wallace, and A.R. Moss (2002).  Propionate precursors as possible alternative electron acceptors to methane in ruminal  fermentation. In: Greenhouse Gases and Animal Agriculture. J. Takahashi, B.A. Young, (eds.), Elsevier,  Amsterdam pp.151 154.  Nguyen T.L.T., J.E. Hermansen, and L. Mogensen (2013). Environmental performance of crop  residues as an energy source for electricity production: The case of wheat straw in Denmark, Applied  Energy 104 633 641 pp. (DOI: 10.1016/j.apenergy.2012.11.057), (ISSN: 0306 2619).  Nijsen M., E. Smeets, E. Stehfest, and D.P. Vuuren (2012). An evaluation of the global potential of  bioenergy production on degraded lands, GCB Bioenergy 4 130 147 pp. (DOI: 10.1111/j.1757 1707.2011.01121.x), (ISSN: 1757 1707).  Njakou Djomo S., O. El Kasmioui, T. De Groote, L.S. Broeckx, M.S. Verlinden, G. Berhongaray, R.  Fichot, D. Zona, S.Y. Dillen, J.S. King, I.A. Janssens, and R. Ceulemans (2013). Energy and climate  benefits of bioelectricity from low input short rotation woody crops on agricultural land over a two year rotation, Applied Energy 111 862 870 pp. (DOI: 10.1016/j.apenergy.2013.05.017), (ISSN: 0306 2619).  Nolan J.V., R.S. Hegarty, J. Hegarty, I.R. Godwin, and R. Woodgate (2010). Effects of dietary nitrate  on fermentation, methane production and digesta kinetics in sheep, Animal Production Science 50  801 806 pp. .  Nolte C., A. Agrawal, K.M. Silvius, and B.S. Soares Filho (2013). Governance regime and location  influence avoided deforestation success of protected areas in the Brazilian Amazon, Proceedings of      152 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   the National Academy of Sciences 110 4956 4961 pp. (DOI: 10.1073/pnas.1214786110), (ISSN: 0027 8424, 1091 6490).  Nonhebel S. (2005). Renewable energy and food supply: will there be enough land?, Renewable and  Sustainable Energy Reviews 9 191 201 pp. .  O Brien K., R. Leichenko, U. Kelkar, H. Venema, G. Aandahl, H. Tompkins, A. Javed, S. Bhadwal, S.  Barg, L. Nygaard, and others (2004). Mapping vulnerability to multiple stressors: climate change and  globalization in India, Global Environmental Change Part A 14 303 313 pp. .  O Halloran T.L., B.E. Law, M.L. Goulden, Z. Wang, J.G. Barr, C. Schaaf, M. Brown, J.D. Fuentes, M.  Göckede, A. Black, and V. Engel (2012). Radiative forcing of natural forest disturbances, Global  Change Biology 18 555 565 pp. .  O Hare M., R.J. Plevin, J.I. Martin, A.D. Jones, A. Kendall, and E. Hopson (2009). Proper accounting  for time increases crop based biofuels  greenhouse gas deficit versus petroleum, Environmental  Research Letters 4 24 32 pp. (DOI: 10.1088/1748 9326/4/2/024001), (ISSN: 1748 9326).  O Shaughnessy S.M., M.J. Deasy, C.E. Kinsella, J.V. Doyle, and A.J. Robinson (2013). Small scale  electricity generation from a portable biomass cookstove: Prototype design and preliminary results,  Applied Energy 102 374 385 pp. (DOI: 10.1016/j.apenergy.2012.07.032), (ISSN: 0306 2619).  Oberling D.F., M. Obermaier, A. Szklo, and E.L. La Rovere (2012). Investments of oil majors in liquid  biofuels: The role of diversification, integration and technological lock ins, Biomass and Bioenergy 46  270 281 pp. (DOI: 10.1016/j.biombioe.2012.08.017), (ISSN: 0961 9534).  Odongo N.E., R. Bagg, G. Vessie, P. Dick, M.M. Or Rashid, S.E. Hook, J.T. Gray, E. Kebreab, J.  France, and B.W. McBride (2007). Long term effects of feeding monensin on methane production in  lactating dairy cows, Journal of Dairy Science 90 1781 1788 pp. (ISSN: 0022 0302).  Oke D.O., and K.A. Odebiyi (2007). Traditional cocoa based agroforestry and forest species  conservation in Ondo State, Nigeria, Agriculture, ecosystems & environment 122 305 311 pp. .  Available at: http://www.sciencedirect.com/science/article/pii/S0167880907000540.  Olson D.G., J.E. McBride, A. Joe Shaw, and L.R. Lynd (2012). Recent progress in consolidated  bioprocessing, Current Opinion in Biotechnology 23 396 405 pp. (DOI:  10.1016/j.copbio.2011.11.026), (ISSN: 0958 1669).  Oosterveer P., and A.P. Mol (2010). Biofuels, trade and sustainability: a review of perspectives for  developing countries, Biofuels, Bioproducts and Biorefining 4 66 76 pp. . Available at:  http://onlinelibrary.wiley.com/doi/10.1002/bbb.194/full.  Osmond D.L., N.M. Nadkarni, C.T. Driscoll, E. Andrews, A.J. Gold, S.R.B. Allred, A.R. Berkowitz,  M.W. Klemens, T.L. Loecke, M.A. McGarry, K. Schwarz, M.L. Washington, and P.M. Groffman  (2010). The role of interface organizations in science communication and understanding, Frontiers in  Ecology and the Environment 8 306 313 pp. (DOI: 10.1890/090145), (ISSN: 1540 9295).  Pa A., J. Craven, X. Bi, S. Melin, and S. Sokhansanj (2012). Environmental footprints of British  Columbia wood pellets from a simplified life cycle analysis, The International Journal of Life Cycle  Assessment 17 220 231 pp. (DOI: 10.1007/s11367 011 0358 7), (ISSN: 0948 3349).  Pacca S., and J.R. Moreira (2011). A Biorefinery for Mobility?, Environmental Science & Technology  45 9498 9505 pp. (DOI: 10.1021/es2004667), (ISSN: 0013 936X).      153 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Palm, C., Tomich, T., V. Noordwijk, M., Vosti, S., Gockowski, J., Alegre, J., Verchot, and L. (2004).  Mitigation GHG emissions in the humid tropics: case studies from the alternative to slash and burn  program (ASB)., Environment, Development and Sustainability 6 145 162 pp. . Available at:  http://link.springer.com/article/10.1023%2FB%3AENVI.0000003634.50442.ca.  Palmer C. (2011). Property rights and liability for deforestation under REDD+: Implications for  permanence  in policy design, Ecological Economics 70 571 576 pp. (DOI:  10.1016/j.ecolecon.2010.10.011), (ISSN: 0921 8009).  Pan Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, S.L.  Lewis, J.G. Canadell, P. Ciais, R.B. Jackson, S.W. Pacala, A.D. McGuire, S. Piao, A. Rautiainen, S.  Sitch, and D. Hayes (2011). A Large and Persistent Carbon Sink in the World s Forests, Science 333  988 993 pp. (DOI: 10.1126/science.1201609), (ISSN: 0036 8075, 1095 9203).  Pandit M.K., and R.E. Grumbine (2012). Potential Effects of Ongoing and Proposed Hydropower  Development on Terrestrial Biological Diversity in the Indian Himalaya, Conservation Biology 26  1061 1071 pp. (DOI: 10.1111/j.1523 1739.2012.01918.x), (ISSN: 1523 1739).  Parfitt J., M. Barthel, and S. Macnaughton (2010). Food waste within food supply chains:  quantification and potential for change to 2050, Philosophical Transactions of the Royal Society B:  Biological Sciences 365 3065  3081 pp. (DOI: 10.1098/rstb.2010.0126).  Parish E.S., M.R. Hilliard, L.M. Baskaran, V.H. Dale, N.A. Griffiths, P.J. Mulholland, A. Sorokine, N.A.  Thomas, M.E. Downing, and R.S. Middleton (2012). Multimetric spatial optimization of switchgrass  plantings across a watershed, Biofuels, Bioproducts and Biorefining 6 58 72 pp. . Available at:  http://onlinelibrary.wiley.com/doi/10.1002/bbb.342/abstract.  Pathak H., N. Jain, A. Bhatia, J. Patel, and P.K. Aggarwal (2010). Carbon footprints of Indian food  items, Agriculture, Ecosystems & Environment 139 66 73 pp. (DOI: 10.1016/j.agee.2010.07.002),  (ISSN: 0167 8809).  Patrizi N., D. Caro, F.M. Pulselli, A.B. Bjerre, and S. Bastianoni (2013). Environmental feasibility of  partial substitution of gasoline with ethanol in the Province of Siena (Italy), Journal of Cleaner  Production 47 388 395 pp. (DOI: 10.1016/j.jclepro.2012.11.023), (ISSN: 0959 6526).  Pawelzik P., M. Carus, J. Hotchkiss, R. Narayan, S. Selke, M. Wellisch, M. Weiss, B. Wicke, and M.K.  Patel (2013). Critical aspects in the life cycle assessment (LCA) of bio based materials   Reviewing  methodologies and deriving recommendations, Resources, Conservation and Recycling 73 211 228  pp. (DOI: 10.1016/j.resconrec.2013.02.006), (ISSN: 0921 3449).  Peralta Yahya P.P., F. Zhang, S.B. del Cardayre, and J.D. Keasling (2012). Microbial engineering for  the production of advanced biofuels, Nature 488 320 328 pp. (DOI: 10.1038/nature11478), (ISSN:  0028 0836).  Petersen J. E. (2008). Energy production with agricultural biomass: environmental implications and  analytical challenges , European Review of Agricultural Economics 35 385 408 pp. (DOI:  10.1093/erae/jbn016), (ISSN: 0165 1587, 1464 3618).  Petersen S.O., and S.G. Sommer (2011). Ammonia and nitrous oxide interactions: Roles of manure  organic matter   management, Animal Feed Science and Technology 166 67 503 513 pp. (DOI:  10.1016/j.anifeedsci.2011.04.077), (ISSN: 0377 8401).      154 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Peters Stanley M., K. Hamilton, T. Marcello, and M. Sjardin (2011). Back to the Future: State of the  Voluntary Carbon Markets 2011. Ecosystem Marketplace & Bloomberg New Energy Finance,  Washington, D.C. and New York, NY, USA. 93 pp.  Pettenella D., and L. Brotto (2011). Governance features for successful REDD+ projects organization,  Forest Policy and Economics 18 46 52 pp. (DOI: 10.1016/j.forpol.2011.09.006), (ISSN: 1389 9341).  Phalan B., M. Onial, A. Balmford, and R.E. Green (2011). Reconciling Food Production and  Biodiversity Conservation: Land Sharing and Land Sparing Compared, Science 333 1289 1291 pp.  (DOI: 10.1126/science.1208742), (ISSN: 0036 8075, 1095 9203).  Phelps J., M.C. Guerrero, D.A. Dalabajan, B. Young, and E.L. Webb (2010a). What makes a  REDD country?, Global environmental change 20 322 332 pp. .  Phelps J., E.L. Webb, and A. Agrawal (2010b). Does REDD+ Threaten to Recentralize Forest  Governance?, Science 328 312  313 pp. (DOI: 10.1126/science.1187774).  Phillips O.L., L.E.O.C. Aragao, S.L. Lewis, J.B. Fisher, J. Lloyd, G. López González, Y. Malhi, A.  Monteagudo, J. Peacock, C.A. Quesada, and others (2009). Drought sensitivity of the Amazon  rainforest, Science 323 1344 pp. .  Phillips O.L., Y. Malhi, N. Higuchi, W.F. Laurance, P.V. Nunez, R.. Vasquez, S.G. Laurance, L.V.  Ferreira, M. Stern, S. Brown, and J. Grace (1998). Changes in the carbon balance of tropical forests:  Evidence from long term plots, Science 282 439 442 pp. .  Pielke Sr. R.A., A. Pitman, D. Niyogi, R. Mahmood, C. McAlpine, F. Hossain, K.K. Goldewijk, U. Nair,  R. Betts, S. Fall, M. Reichstein, P. Kabat, and N. de Noblet (2011). Land use/land cover changes and  climate: modeling analysis and observational evidence, Wiley Interdisciplinary Reviews: Climate  Change 2 828 850 pp. (DOI: 10.1002/wcc.144), (ISSN: 1757 7799).  Pingoud K., T. Ekholm, and I. Savolainen (2012). Global warming potential factors and warming  payback time as climate indicators of forest biomass use, Mitigation and Adaptation Strategies for  Global Change 17 369 386 pp. (DOI: 10.1007/s11027 011 9331 9), (ISSN: 1381 2386, 1573 1596).  Place S.E., and F.M. Mitloehner (2010). Invited review: Contemporary environmental issues: A  review of the dairy industry s role in climate change and air quality and the potential of mitigation  through improved production efficiency, Journal of Dairy Science 93 3407 3416 pp. (DOI:  10.3168/jds.2009 2719), (ISSN: 0022 0302).  Plattner G. K., T. Stocker, P. Midgley, and M. Tignor (2009). IPCC expert meeting on the science of  alternative metrics, IPCC Working Group I Technical Support Unit, Bern.  Plevin R.J., M.A. Delucchi, and F. Creutzig (2013). Using Attributional Life Cycle Assessment to  Estimate Climate Change Mitigation Benefits Misleads Policy Makers, Journal of Industrial Ecology 18  73 83 pp. (DOI: 10.1111/jiec.12074), (ISSN: 1530 9290).  Plevin R.J., M. O Hare, A.D. Jones, M.S. Torn, and H.K. Gibbs (2010). Greenhouse Gas Emissions  from Biofuels  Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously  Estimated, Environmental Science & Technology 44 8015 8021 pp. (DOI: 10.1021/es101946t), (ISSN:  0013 936X).      155 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Pongratz J., C.H. Reick, R.A. Houghton, and J. House (2013). Terminology as a key uncertainty in net  land use flux estimates, Earth System Dynamics Discussions 4 677 716 pp. (DOI: 10.5194/esdd 4 677 2013), (ISSN: 2190 4995).  Popp A., J.P. Dietrich, H. Lotze Campen, D. Klein, N. Bauer, M. Krause, T. Beringer, D. Gerten, and  O. Edenhofer (2011). The economic potential of bioenergy for climate change mitigation with special  attention given to implications for the land system, Environmental Research Letters 6 34 44 pp.  (DOI: 10.1088/1748 9326/6/3/034017), (ISSN: 1748 9326).  Popp A., M. Krause, J.P. Dietrich, H. Lotze Campen, M. Leimbach, T. Beringer, and N. Bauer (2012).  Additional CO2 emissions from land use change   Forest conservation as a precondition for  sustainable production of second generation bioenergy, Ecological Economics 74 64 70 pp. (DOI:  10.1016/j.ecolecon.2011.11.004), (ISSN: 0921 8009).  Popp A., H. Lotze Campen, and B. Bodirsky (2010). Food consumption, diet shifts and associated  non CO2 greenhouse gases from agricultural production, Global Environmental Change 20 451 462  pp. .  Popp A., S. Rose, K. Calvin, D. Vuuren, J. Dietrich, M. Wise, E. Stehfest, F. Humpenöder, P. Kyle, J.  Vliet, N. Bauer, H. Lotze Campen, D. Klein, and E. Kriegler (2013). Land use transition for bioenergy  and climate stabilization: model comparison of drivers, impacts and interactions with other land use  based mitigation options, Climatic Change 1 15 pp. (DOI: 10.1007/s10584 013 0926 x), (ISSN: 0165 0009).  Potter C., S. Klooster, C. Hiatt, V. Genovese, and J.C. Castilla Rubio (2011). Changes in the carbon  cycle of Amazon ecosystems during the 2010 drought, Environmental Research Letters 6 1 5 pp. .  Poulter B., L. Aragao, U. Heyder, M. Gumpenberger, J. Heinke, F. Langerwisch, A. Rammig, K.  Thonicke, and W. Cramer (2010). Net biome production of the Amazon Basin in the 21st century,  Global Change Biology 16 2062 2075 pp. (DOI: 10.1111/j.1365 2486.2009.02064.x), (ISSN: 1354 1013).  Powlson D.S., A.P. Whitmore, and K.W.T. Goulding (2011). Soil carbon sequestration to mitigate  climate change: a critical re examination to identify the true and the false, European Journal of Soil  Science 62 42 55 pp. (DOI: 10.1111/j.1365 2389.2010.01342.x), (ISSN: 1365 2389).  Pretty J. (2008). Agricultural sustainability: concepts, principles and evidence, Philosophical  Transactions of the Royal Society B: Biological Sciences 363 447 465 pp. (DOI:  10.1098/rstb.2007.2163), (ISSN: 0962 8436, 1471 2970).  Pretty J. (2013). The Consumption of a Finite Planet: Well Being, Convergence, Divergence and the  Nascent Green Economy, Environmental and Resource Economics 55 475 499 pp. (DOI:  10.1007/s10640 013 9680 9), (ISSN: 0924 6460, 1573 1502).  Primmer E., and H. Karppinen (2010). Professional judgment in non industrial private forestry:  Forester attitudes and social norms influencing biodiversity conservation, Forest Policy and  Economics 12 136 146 pp. (DOI: 10.1016/j.forpol.2009.09.007), (ISSN: 1389 9341).  Pucker J., R. Zwart, and G. Jungmeier (2012). Greenhouse gas and energy analysis of substitute  natural gas from biomass for space heat, Biomass and Bioenergy 38 95 101 pp. (DOI:  10.1016/j.biombioe.2011.02.040), (ISSN: 0961 9534).      156 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Puettmann M.E., R. Bergman, S. Hubbard, L. Johnson, B. Lippke, E. Oneil, and F.G. Wagner (2010).  Cradle to gate life cycle inventory of the U.S. Wood products production:  CORRIM Phase I and  Phase II products, Wood and Fiber Science 42 15 28 pp. .  Pullin R.S.V., R. Froese, and D. Pauly (2007). Indicators for the sustainability of aquaculture. In:  Ecological and Genetic Implications of Aquaculture Activities. T.M. Bert, (ed.), Kluwer Academic  Publishers, Dordrecht, The Netherlands pp.53 72.  Putz, and Redford (2009). Dangers of carbon based conservation, Global Environmental Change 19  397 522 pp. .  Putz F.E., and C. Romero (2012). Helping curb tropical forest degradation by linking REDD+ with  other conservation interventions: a view from the forest, Current Opinion in Environmental  Sustainability 4 670 677 pp. (DOI: 10.1016/j.cosust.2012.10.003), (ISSN: 1877 3435).  Le Quéré C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters,  G.R. van der Werf, A. Ahlström, R.M. Andrew, L. Bopp, J.G. Canadell, P. Ciais, S.C. Doney, C.  Enright, P. Friedlingstein, C. Huntingford, A.K. Jain, C. Jourdain, E. Kato, R.F. Keeling, K. Klein  Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M.R. Raupach, J. Schwinger, S. Sitch, B.D.  Stocker, N. Viovy, S. Zaehle, and N. Zeng (2013). The global carbon budget 1959 2011, Earth System  Science Data 5 165 185 pp. (DOI: 10.5194/essd 5 165 2013), (ISSN: 1866 3516).  Rametsteiner E., and M. Simula (2003). Forest certification an instrument to promote sustainable  forest management?, Journal of Environmental Management 67 87 98 pp. (DOI: 10.1016/S0301 4797(02)00191 3), (ISSN: 03014797).  Randerson J.T., H. Liu, M.G. Flanner, S.D. Chambers, Y. Jin, P.G. Hess, G. Pfister, M.C. Mack, K.K.  Treseder, L.R. Welp, F.S. Chapin, J.W. Harden, M.L. Goulden, E. Lyons, J.C. Neff, E.A.G. Schuur, and  C.S. Zender (2006). The Impact of Boreal Forest Fire on Climate Warming, Science 314 1130 1132  pp. (DOI: 10.1126/science.1132075).  Rathmann R., A. Szklo, and R. Schaeffer (2010). Land use competition for production of food and  liquid biofuels: An analysis of the arguments in the current debate, Renewable Energy 35 14 22 pp. .  Ravindranath N.H. (2007). Mitigation and adaptation synergy in forest sector, Mitigation and  Adaptation Strategies for Global Change 12 843 853 pp. (DOI: 10.1007/s11027 007 9102 9), (ISSN:  1381 2386, 1573 1596).  Read J.M., J.M.V. Fragoso, K.M. Silvius, J. Luzar, H. Overman, A. Cummings, S.T. Giery, and L.F. de  Oliveira (2010). Space, Place, and Hunting Patterns among Indigenous Peoples of the Guyanese  Rupununi Region, Journal of Latin American Geography 9 213 243 pp. (ISSN: 1548 5811).  Rehl T., J. Lansche, and J. Müller (2012). Life cycle assessment of energy generation from biogas Attributional vs. consequential approach, Renewable and Sustainable Energy Reviews 16 3766 3775  pp. (DOI: 10.1016/j.rser.2012.02.072), (ISSN: 1364 0321).  Reichstein M., M. Bahn, P. Ciais, D. Frank, M.D. Mahecha, S.I. Seneviratne, J. Zscheischler, C. Beer,  N. Buchmann, D.C. Frank, D. Papale, A. Rammig, P. Smith, K. Thonicke, M. van der Velde, S. Vicca,  A. Walz, and M. Wattenbach (2013). Climate extremes and the carbon cycle, Nature 500 287 295  pp. (DOI: 10.1038/nature12350), (ISSN: 0028 0836, 1476 4687).  Reilly J., J. Melillo, Y. Cai, D. Kicklighter, A. Gurgel, S. Paltsev, T. Cronin, A. Sokolov, and A.  Schlosser (2012). Using Land To Mitigate Climate Change: Hitting the Target, Recognizing the Trade     157 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   offs, Environmental Science & Technology 46 5672 5679 pp. (DOI: 10.1021/es2034729), (ISSN: 0013 936X, 1520 5851).  REN21 (2012). Renewables 2012 Global Status Report. REN21 Secretariat, Paris, France. 176 pp.  Available at:  http://www.ren21.net/Resources/Publications/REN21Publications/Renewables2012GlobalStatusRe port.aspx.  REN21 (2013). Renewables 2013 Global Status Report. REN21 Secretariat, Paris, France. 178 pp.  Available at: http://www.ren21.net/ren21activities/globalstatusreport.aspx.  Repo A., R. Känkänen, J. P. Tuovinen, R. Antikainen, M. Tuomi, P. Vanhala, and J. Liski (2012).  Forest bioenergy climate impact can be improved by allocating forest residue removal, GCB  Bioenergy 4 202 212 pp. .  Repo A., M. Tuomi, and J. Liski (2011). Indirect carbon dioxide emissions from producing bioenergy  from forest harvest residues, GCB Bioenergy 3 107 115 pp. (DOI: 10.1111/j.1757 1707.2010.01065.x), (ISSN: 1757 1707).  Reyer C., M. Guericke, and P.L. Ibisch (2009). Climate change mitigation via afforestation,  reforestation and deforestation avoidance: and what about adaptation to environmental change?,  New Forests 38 15 34 pp. (DOI: 10.1007/s11056 008 9129 0), (ISSN: 0169 4286, 1573 5095).  RFA (2008). Indirect Effects of Biofuels:  Study by the Renewable Fuels Agency. Renewable Fuels  Agency, London, UK. 92 pp.  Rhodes J., and D. Keith (2008). Biomass with capture: negative emissions within social and  environmental constraints: an editorial comment, Climatic Change 87 321 328 pp. (DOI:  10.1007/s10584 007 9387 4), (ISSN: 0165 0009).  Rice R.A. (2008). Agricultural intensification within agroforestry: the case of coffee and wood  products, Agriculture, ecosystems & environment 128 212 218 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0167880908001874.  Richels R., J. Merrick, G. Blanford, and S. Rose (In Review). Trade offs Between Mitigation Costs and  Temperature Change, Climatic Change.  Robertson G.P., T.W. Bruulsema, R.J. Gehl, D. Kanter, D.L. Mauzerall, C.A. Rotz, and C.O. Williams  (2013). Nitrogen climate interactions in US agriculture, Biogeochemistry 114 41 70 pp. (DOI:  10.1007/s10533 012 9802 4), (ISSN: 0168 2563, 1573 515X).  Robertson G.P., and P.M. Vitousek (2009). Nitrogen in Agriculture: Balancing the Cost of an  Essential Resource, Annual Review of Environment and Resources 34 97 125 pp. (DOI:  10.1146/annurev.environ.032108.105046), (ISSN: 1543 5938).  Robinson N., R.J. Harper, K.R.J. Smettem, and J.F. McGrath (2004). Tree placement strategies for  salinity control in dryland farming systems of southern Australia, 13th International Soil Conservation  Organization  Conference 6 pp. Brisbrane, Australia . Available at:  http://www.tucson.ars.ag.gov/isco/isco13/PAPERS%20R Z/ROBINSON.pdf.  Robinson B.E., M. Holland, and L. Naughton Treves (2011). Does secure land tenure save forest? A  review of the relationship between land tenure and tropical deforestation. CCAFS Working Paper      158 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   no.7. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). . Available  at: http://cgspace.cgiar.org/handle/10568/10720.  Robledo C., N. Clot, A. Hammill, and B. Riché (2011). The role of forest ecosystems in community based coping strategies to climate hazards: Three examples from rural areas in Africa, Forest Policy  and Economics 24 20 28 pp. (DOI: 10.1016/j.forpol.2011.04.006), (ISSN: 13899341).  Rochette P. (2008). No till only increases N2O emissions in poorly aerated soils, Soil and Tillage  Research 101 97 100 pp. (DOI: 10.1016/j.still.2008.07.011), (ISSN: 01671987).  Roedl A. (2010). Production and energetic utilization of wood from short rotation coppice a life  cycle assessment, The International Journal of Life Cycle Assessment 15 567 578 pp. (DOI:  10.1007/s11367 010 0195 0), (ISSN: 0948 3349).  Rogner H.H., R.F. Aguilera, C.L. Archer, R. Bertani, S.C. Bhattacharya, I. Bryden, R.R. Charpentier,  M.B. Dusseault, L. Gagnon, Y. Goswami, H. Haberl, M.M. Hoogwijk, A. Johnson, P. Odell, H.  Wagner, and V. Yakushev (2012). Chapter 7   Energy resources and potentials. In: Global Energy  Assessment: Toward a Sustainable Future. L. Gomez Echeverri, T.B. Johansson, N. Nakicenovic, A.  Patwardhan, (eds.), IIASA and Cambridge University Press, Laxenburg, Austria, Cambridge, UK  pp.425 512.  Rohde R.F., and M.T. Hoffman (2012). The historical ecology of Namibian rangelands: Vegetation  change since 1876 in response to local and global drivers, Science of The Total Environment 416 276 288 pp. (DOI: 10.1016/j.scitotenv.2011.10.067), (ISSN: 00489697).  Rose S.K., H. Ahammad, B. Eickhout, B. Fisher, A. Kurosawa, S. Rao, K. Riahi, and D.P. van Vuuren  (2012). Land based mitigation in climate stabilization, Energy Economics 34 365 380 pp. (DOI:  10.1016/j.eneco.2011.06.004), (ISSN: 0140 9883).  Rose S., R. Beach, K. Calvin, B. McCarl, J. Petrusa, B. Sohngen, R. Youngman, A. Diamant, F. de la  Chesnaye, J. Edmonds, R. Rosenzweig, and M. Wise (2013). Estimating Global Greenhouse Gas  Emissions Offset Supplies: Accounting for Investment Risks and Other Market Realties. EPRI, Palo  Alto, CA. 23 pp.  Rose S.K., and B. Sohngen (2011). Global forest carbon sequestration and climate policy design,  Environment and Development Economics 16 429 454 pp. (DOI: 10.1017/S1355770X11000027),  (ISSN: 1355 770X, 1469 4395).  Rosemary L. (2011). REDD+, transparency, participation and resource rights: the role of law,  Environmental Science & Policy 14 118 126 pp. (DOI: 10.1016/j.envsci.2010.11.008), (ISSN: 1462 9011).  Rosendal G.K., and S. Andresen (2011). Institutional design for improved forest governance through  REDD: Lessons from the global environment facility, Ecological Economics 70 1908 1915 pp. (DOI:  10.1016/j.ecolecon.2011.04.001), (ISSN: 0921 8009).  Rosenzweig C., and F.N. Tubiello (2007). Adaptation and mitigation strategies in agriculture: an  analysis of potential synergies, Mitigation, Adaptation Strategies to Global Change 12 855 873 pp.  (DOI: 10.1007/s11027 007 9103 8).  Rosillo Calle F., S. Teelucksingh, D. Thrän, and M. Seiffert (2012). The Potential Role of Biofuels in  Commercial Air Transport   Biojetfuel. IEA, Paris, France. 56 pp.      159 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Rotenberg E., and D. Yakir (2010). Contribution of Semi Arid Forests to the Climate System, Science  327 451  454 pp. (DOI: 10.1126/science.1179998).  Roy P., T. Orikasa, M. Thammawong, N. Nakamura, Q. Xu, and T. Shiina (2012). Life cycle of meats:  An opportunity to abate the greenhouse gas emission from meat industry in Japan, Journal of  Environmental Management 93 218 224 pp. (DOI: 10.1016/j.jenvman.2011.09.017), (ISSN: 0301 4797).  Royal Society (2009). Reaping the Benefits: Science and the Sustainable Intensification of Global  Agriculture. The Royal Society, London. 86 pp.  Rubin E.M. (2008). Genomics of cellulosic biofuels, Nature 454 841 845 pp. (DOI:  10.1038/nature07190), (ISSN: 0028 0836).  Saatchi S.S., N.L. Harris, S. Brown, M. Lefsky, E.T.A. Mitchard, W. Salas, B.R. Zutta, W. Buermann,  S.L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman, and A. Morel (2011). Benchmark map of forest  carbon stocks in tropical regions across three continents, Proceedings of the National Academy of  Sciences of the United States of America 108 9899 9904 pp. (DOI: 10.1073/pnas.1019576108), (ISSN:  0027 8424).  Saddler J., and L. Kumar (2013). Special Issue from the NSERC Bioconversion network workshop:  pretreatment and fractionation of biomass for biorefinery/biofuels, Biotechnology for Biofuels 6 17  pp. (DOI: 10.1186/1754 6834 6 17), (ISSN: 1754 6834).  Saggar S., R.M. Andrew, K.R. Tate, C.B. Hedley, N.J. Rodda, and J.A. Townsend (2004). Modelling  nitrous oxide emissions from dairy grazed pastures, Nutrient Cycling in Agroecosystems 68 243 255  pp. . Available at: http://link.springer.com/article/10.1023/B:FRES.0000019463.92440.a3.  Sala O.E., F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber Sanwald, L.F.  Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff,  M.T. Sykes, B.H. Walker, M. Walker, and D.H. Wall (2000). Global Biodiversity Scenarios for the Year  2100, Science 287 1770 1774 pp. (DOI: 10.1126/science.287.5459.1770), (ISSN: 0036 8075, 1095 9203).  Sandor R.L., E.C. Bettelheim, and I.R. Swingland (2002). An overview of a free market approach to  climate change and conservation, Philosophical Transactions of the Royal Society of London Series a Mathematical Physical and Engineering Sciences 360 1607 1620 pp. (ISSN: 1364 503X).  Santilli M., P. Moutinho, S. Schwartzman, D. Nepstad, L. Curran, and C. Nobre (2005). Tropical  Deforestation and the Kyoto Protocol, Climatic Change 71 267 276 pp. (DOI: 10.1007/s10584 005 8074 6), (ISSN: 0165 0009, 1573 1480).  Sathaye J., W. Makundi, L. Dale, P. Chan, and K. Andrasko (2005). Generalized Comprehensive  Mitigation Assessment Process (GCOMAP): A Dynamic Partial Equilibrium Model for. U.S.  Environmental Protection Agency, Washington, D.C. 93 pp. Available at:  http://eetd.lbl.gov/sites/all/files/lbnl 58291.pdf.  Sathaye J., W. Makundi, L. Dale, P. Chan, and K. Andrasko (2006). GHG Mitigation Potential, Costs  and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach, The Energy Journal Multi Greenhouse Gas Mitigation and Climate Policy 127 162 pp. (ISSN: 0195 6574).      160 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Sathre R., and J. O Connor (2010). Meta analysis of greenhouse gas displacement factors of wood  product substitution, Environmental Science & Policy 13 104 114 pp. (DOI:  10.1016/j.envsci.2009.12.005), (ISSN: 1462 9011).  Satolo L., and M. Bacchi (2013). Impacts of the Recent Expansion of the Sugarcane Sector on  Municipal per Capita Income in Sao Paulo State, ISRN Economics 2013 14 pp. .  Sauvant D., and S. Giger Reverdin (2007). Empirical modelling meta analysis of digestive  interactions and CH4 production in ruminants. In: Energy and protein metabolism and nutrition. I.  Ortigues Marty, N. Miraux, W. Brand Williams, (eds.), Wageningen Academic Publishers,  Wageningen, The Netherlands pp.561 563(ISBN: 978 90 8686 041 8).  Sayer J., J. Ghazoul, P. Nelson, and A. Klintuni Boedhihartono (2012). Oil palm expansion  transforms tropical landscapes and livelihoods, Global Food Security 1 114 119 pp. (DOI:  10.1016/j.gfs.2012.10.003), (ISSN: 2211 9124).  Scheidel A., and A.H. Sorman (2012). Energy transitions and the global land rush: Ultimate drivers  and persistent consequences, Global transformations, social metabolism and the dynamics of socio environmental conflicts 22 588 595 pp. (DOI: 10.1016/j.gloenvcha.2011.12.005), (ISSN: 0959 3780).  Schils R.L.M., J. Eriksen, S.F. Ledgard, T.V. Vellinga, P.J. Kuikman, J. Luo, S.O. Petersen, and G.L.  Velthof (2013). Strategies to mitigate nitrous oxide emissions from herbivore production systems,  Animal 7 29 40 pp. (DOI: 10.1017/S175173111100187X).  Schlamadinger B., and G. Marland (1996). The role of forest and bioenergy strategies in the global  carbon cycle, Biomass and Bioenergy 10 275 300 pp. (DOI: 10.1016/0961 9534(95)00113 1), (ISSN:  0961 9534).  Schmidinger K., and E. Stehfest (2012). Including CO2 implications of land occupation in LCAs method and example for livestock products, The International Journal of Life Cycle Assessment 17  962 972 pp. (DOI: 10.1007/s11367 012 0434 7), (ISSN: 0948 3349, 1614 7502).  Schmidt J., V. Gass, and E. Schmid (2011). Land use changes, greenhouse gas emissions and fossil  fuel substitution of biofuels compared to bioelectricity production for electric cars in Austria,  Biomass and Bioenergy 35 4060 4074 pp. (DOI: 10.1016/j.biombioe.2011.07.007), (ISSN: 0961 9534).  Schmitz C., A. Biewald, H. Lotze Campen, A. Popp, J.P. Dietrich, B. Bodirsky, M. Krause, and I.  Weindl (2011). Trading more food: Implications for land use, greenhouse gas emissions, and the  food system, Global Environmental Change 22 189 209 pp. (DOI: 10.1016/j.gloenvcha.2011.09.013),  (ISSN: 0959 3780).  Schneider A., M.A. Friedl, and D. Potere (2009). A new map of global urban extent from MODIS  satellite data, Environmental Research Letters 4 12 pp. (DOI: 10.1088/1748 9326/4/4/044003), (ISSN:  1748 9326).  Schneider U.A., P. Havlík, E. Schmid, H. Valin, A. Mosnier, M. Obersteiner, H. Böttcher, R. Skalský,  J. Balkoviè, T. Sauer, and S. Fritz (2011). Impacts of population growth, economic development, and  technical change on global food production and consumption, Agricultural Systems 104 204 215 pp.  (DOI: 10.1016/j.agsy.2010.11.003), (ISSN: 0308 521X).      161 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Schut M., M. Slingerland, and A. Locke (2010). Biofuel developments in Mozambique. Update and  analysis of policy, potential and reality, Energy Policy 38 5151 5165 pp. (DOI:  10.1016/j.enpol.2010.04.048), (ISSN: 0301 4215).  Schuur E.A.G., J. Bockheim, J.G. Canadell, E. Euskirchen, C.B. Field, S.V. Goryachkin, S. Hagemann,  P. Kuhry, P.M. Lafleur, H. Lee, G. Mazhitova, F.E. Nelson, A. Rinke, V.E. Romanovsky, N.  Shiklomanov, C. Tarnocai, S. Venevsky, J.G. Vogel, and S.A. Zimov (2008). Vulnerability of  Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle, BioScience 58 701  pp. (DOI: 10.1641/B580807), (ISSN: 0006 3568).  Schwietzke S., W.M. Griffin, and H.S. Matthews (2011). Relevance of Emissions Timing in Biofuel  Greenhouse Gases and Climate Impacts, Environmental Science & Technology 45 8197 8203 pp.  (DOI: 10.1021/es2016236), (ISSN: 0013 936X).  Scown C.D., W.W. Nazaroff, U. Mishra, B. Strogen, A.B. Lobscheid, E. Masanet, N.J. Santero, A.  Horvath, and T.E. McKone (2012). Lifecycle greenhouse gas implications of US national scenarios for  cellulosic ethanol production, Environmental Research Letters 7 014011 pp. (DOI: 10.1088/1748 9326/7/1/014011), (ISSN: 1748 9326).  Seabra J.E., I.C. Macedo, H.L. Chum, C.E. Faroni, and C.A. Sarto (2011). Life cycle assessment of  Brazilian sugarcane products: GHG emissions and energy use, Biofuels, Bioproducts and Biorefining 5  519 532 pp. (DOI: 10.1002/bbb.289), (ISSN: 1932 1031).  Seaquist, J. W., Hickler, T., Eklundh, L., Ardö, J.,  and Heumann, and B. W. (2008). Disentangling the  effects of climate and people on Sahel vegetation dynamics, Biogeosciences Discussions 5 3045 3067 pp. .  Searchinger T.D. (2010). Biofuels and the need for additional carbon, Environmental Research  Letters 5 11 pp. (DOI: 10.1088/1748 9326/5/2/024007), (ISSN: 1748 9326).  Searchinger T.D., S.P. Hamburg, J. Melillo, W. Chameides, P. Havlik, D.M. Kammen, G.E. Likens,  R.N. Lubowski, M. Obersteiner, M. Oppenheimer, G. Philip Robertson, W.H. Schlesinger, and G.  David Tilman (2009). Fixing a Critical Climate Accounting Error, Science 326 527 528 pp. (DOI:  10.1126/science.1178797).  Searchinger T., R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, and  T. H. Yu (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions  from Land Use Change, Science 319 1238 1240 pp. (DOI: 10.1126/science.1151861), (ISSN: 0036 8075, 1095 9203).  Searcy E., and P.C. Flynn (2008). Processing of Straw/Corn Stover: Comparison of Life Cycle  Emissions, International Journal of Green Energy 5 423 437 pp. (DOI:  10.1080/15435070802498010), (ISSN: 1543 5075).  Sedjo R., and X. Tian (2012). Does Wood Bioenergy Increase Carbon Stocks in Forests?, Journal of  Forestry 110 304 311 pp. .  Seitzinger S.P., U. Svedin, C.L. Crumley, W. Steffen, S.A. Abdullah, C. Alfsen, W.J. Broadgate, F.  Biermann, N.R. Bondre, J.A. Dearing, L. Deutsch, S. Dhakal, T. Elmqvist, N. Farahbakhshazad, O.  Gaffney, H. Haberl, S. Lavorel, C. Mbow, A.J. McMichael, J.M.F. deMorais, P. Olsson, P.F. Pinho,  K.C. Seto, P. Sinclair, M.S. Smith, and L. Sugar (2012). Planetary Stewardship in an Urbanizing  World: Beyond City Limits, AMBIO 41 787 794 pp. (DOI: 10.1007/s13280 012 0353 7), (ISSN: 0044 7447, 1654 7209).      162 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Selfa T., L. Kulcsar, C. Bain, R. Goe, and G. Middendorf (2011). Biofuels Bonanza?: Exploring  community perceptions of the promises and perils of biofuels production, Biomass and Bioenergy 35  1379 1389 pp. (DOI: 10.1016/j.biombioe.2010.09.008), (ISSN: 0961 9534).  Semere T., and F.M. Slater (2007). Ground flora, small mammal and bird species diversity in  miscanthus (Miscanthus giganteus) and reed canary grass (Phalaris arundinacea) fields, Biomass and  Bioenergy 31 20 29 pp. (ISSN: 09619534).  Semroc B.L., G. Schroth, C.A. Harvey, Y. Zepeda, and F. Boltz (2012). Climate Change mitigation in  agroforestry systems. linking smallholders to forest carbon markets. In: Climate Change Mitigation  and Agriculture. E. Wollenberg, M. L. Tapio Bistrom, M. Grieg Gran, A. Nihart, (eds.), Routledge,  London New York pp.360 369(ISBN: 1849713936).  Senel O., and N. Chugunov (2013). CO2 Injection in a Saline Formation: Pre Injection Reservoir  Modeling and Uncertainty Analysis for Illinois Basin   Decatur Project, Energy Procedia 37 4598 4611 pp. (DOI: 10.1016/j.egypro.2013.06.368), (ISSN: 1876 6102).  Seppälä R., A. Buck, and P. Katila (Eds.) (2009). Adaptation of Forests and People to Climate Change.  A Global Assessment Report. International Union of Forest Research Organizations, Helsinki, 224 pp.,  (ISBN: 978 3 901347 80 1). .  Serrano Ruiz J.C., R.M. West, and J.A. Dumesic (2010). Catalytic Conversion of Renewable Biomass  Resources to Fuels and Chemicals, Annual Review of Chemical and Biomolecular Engineering 1 79 100 pp. (DOI: 10.1146/annurev chembioeng 073009 100935).  Seto K.C., B. Güneralp, and L.R. Hutyra (2012a). Global forecasts of urban expansion to 2030 and  direct impacts on biodiversity and carbon pools, Proceedings of the National Academy of Sciences  109 16083 16088 pp. (DOI: 10.1073/pnas.1211658109), (ISSN: 0027 8424, 1091 6490).  Seto K.C., A. Reenberg, C.G. Boone, M. Fragkias, D. Haase, T. Langanke, P. Marcotullio, D.K.  Munroe, B. Olah, and D. Simon (2012b). Urban Land Teleconnections and Sustainability,  Proceedings of the National Academy of Sciences 109 7687 7692 pp. (DOI:  10.1073/pnas.1117622109), (ISSN: 0027 8424, 1091 6490).  Shackley S., S. Carter, T. Knowles, E. Middelink, S. Haefele, S. Sohi, A. Cross, and S. Haszeldine  (2012). Sustainable gasification biochar systems? A case study of rice husk gasification in Cambodia,  Part I: Context, chemical properties, environmental and health and safety issues, Energy Policy 42  49 58 pp. (DOI: 10.1016/j.enpol.2011.11.026), (ISSN: 03014215).  Shen H., C. Poovaiah, A. Ziebell, T. Tschaplinski, S. Pattathil, E. Gjersing, N. Engle, R. Katahira, Y.  Pu, R. Sykes, F. Chen, A. Ragauskas, J. Mielenz, M. Hahn, M. Davis, C.N. Stewart, and R. Dixon  (2013). Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high  biofuel production, Biotechnology for Biofuels 6 71 pp. . Available at:  http://www.biotechnologyforbiofuels.com/content/6/1/71.  Siangjaeo S., S.H. Gheewala, K. Unnanon, and A. Chidthaisong (2011). Implications of land use  change on the life cycle greenhouse gas emissions from palm biodiesel production in Thailand,  Energy for Sustainable Development 15 1 7 pp. (DOI: 10.1016/j.esd.2011.01.002), (ISSN: 0973 0826).  Sikor T., J. Stahl, T. Enters, J.C. Ribot, N. Singh, W.D. Sunderlin, and L. Wollenberg (2010). REDD plus, forest people s rights and nested climate governance, Global Environmental Change 20 423 425 pp. (DOI: 10.1016/j.gloenvcha.2010.04.007), (ISSN: 0959 3780).      163 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Silalertruksa T., and S.H. Gheewala (2012). Environmental sustainability assessment of palm  biodiesel production in Thailand, Energy 43 306 314 pp. (DOI: 10.1016/j.energy.2012.04.025), (ISSN:  0360 5442).  Silver W., R. Ostertag, and A. Lugo (2000). The potential for carbon sequestration through  reforestation of abandoned tropical agricultural and pasture lands, Restoration ecology 8 394 407  pp. .  Sims R., A. Hastings, B. Schlamadinger, G. Taylor, and P. Smith (2006). Energy crops: current status  and future prospects, Global Change Biology 12 2054 2076 pp. (DOI: 10.1111/j.1365 2486.2006.01163.x), (ISSN: 1365 2486).  Singh P.P. (2008). Exploring biodiversity and climate change benefits of community based forest  management, Global Environmental Change 18 468 478 pp. (DOI:  10.1016/j.gloenvcha.2008.04.006), (ISSN: 0959 3780).  Singh B.P., A.L. Cowie, and R.J. Smernik (2012). Biochar Carbon Stability in a Clayey Soil As a  Function of Feedstock and Pyrolysis Temperature, Environmental Science & Technology 46 11770 11778 pp. (DOI: 10.1021/es302545b), (ISSN: 0013 936X, 1520 5851).  Singh B.P., B.J. Hatton, B. Singh, A.L. Cowie, and A. Kathuria (2010). Influence of Biochars on  Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils, Journal of Environment  Quality 39 1224 pp. (DOI: 10.2134/jeq2009.0138), (ISSN: 1537 2537).  Sitch S., C. Huntingford, N. Gedney, P.E. Levy, M. Lomas, S.L. Piao, R. Betts, P. Ciais, P. Cox, P.  Friedlingstein, C.D. Jones, I.C. Prentice, and F.I. Woodward (2008). Evaluation of the terrestrial  carbon cycle, future plant geography and climate carbon cycle feedbacks using five Dynamic Global  Vegetation Models (DGVMs), Global Change Biology 14 2015 2039 pp. (DOI: 10.1111/j.1365 2486.2008.01626.x), (ISSN: 1365 2486).  Skutsch M., B. Vickers, Y. Georgiadou, and M. McCall (2011). Alternative models for carbon  payments to communities under REDD+: A comparison using the Polis model of actor inducements,  Environmental Science & Policy 14 140 151 pp. (DOI: 10.1016/j.envsci.2010.12.005), (ISSN: 1462 9011).  Smeets E.M.W., L.F. Bouwman, E. Stehfest, D.P. Van VUUREN, and A. Posthuma (2009a).  Contribution of N2O to the greenhouse gas balance of first generation biofuels, Global Change  Biology 15 1 23 pp. (DOI: 10.1111/j.1365 2486.2008.01704.x), (ISSN: 1365 2486).  Smeets E.M.W., and A.P.C. Faaij (2007). Bioenergy potentials from forestry in 2050, Climatic Change  81 353 390 pp. (DOI: 10.1007/s10584 006 9163 x), (ISSN: 0165 0009, 1573 1480).  Smeets E.M., and A.P. Faaij (2010). The impact of sustainability criteria on the costs and potentials  of bioenergy production Applied for case studies in Brazil and Ukraine, Biomass and Bioenergy 34  319 333 pp. .  Smeets E.M.W., A.P.C. Faaij, I.M. Lewandowski, and W.C. Turkenburg (2007). A bottom up  assessment and review of global bio energy potentials to 2050, Progress in Energy and Combustion  Science 33 56 106 pp. (DOI: 10.1016/j.pecs.2006.08.001), (ISSN: 0360 1285).  Smeets E., M. Junginger, A. Faaij, A. Walter, P. Dolzan, and W. Turkenburg (2008). The  sustainability of Brazilian ethanol An assessment of the possibilities of certified production,  Biomass and Bioenergy 32 781 813 pp. (DOI: 10.1016/j.biombioe.2008.01.005), (ISSN: 09619534).      164 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Smeets E.M.W., I.M. Lewandowski, and A.P.C. Faaij (2009b). The economical and environmental  performance of miscanthus and switchgrass production and supply chains in a European setting,  Renewable and Sustainable Energy Reviews 13 1230 1245 pp. (DOI: 10.1016/j.rser.2008.09.006),  (ISSN: 1364 0321).  Smith P. (2005). An overview of the permanence of soil organic carbon stocks: Influence of direct  human induced, indirect and natural effects, European Journal of Soil Science 56 673 680 pp. .  Smith P. (2008). Land use change and soil organic carbon dynamics, Nutrient Cycling in  Agroecosystems 81 169 178 pp. (DOI: 10.1007/s10705 007 9138 y), (ISSN: 1385 1314, 1573 0867).  Smith P. (2012). Agricultural greenhouse gas mitigation potential globally, in Europe and in the UK:  what have we learnt in the last 20 years?, Global Change Biology 18 35 43 pp. (DOI: 10.1111/j.1365 2486.2011.02517.x), (ISSN: 1365 2486).  Smith P. (2013). Delivering food security without increasing pressure on land, Global Food Security 2  18 23 pp. (DOI: 10.1016/j.gfs.2012.11.008), (ISSN: 22119124).  Smith P., M.R. Ashmore, H.I.J. Black, P.J. Burgess, C.D. Evans, T.A. Quine, A.M. Thomson, K. Hicks,  and H.G. Orr (2013a). In: Angeler D, ed. The role of ecosystems and their management in regulating  climate, and soil, water and air quality, Journal of Applied Ecology 50 812 829 pp. (DOI:  10.1111/1365 2664.12016), (ISSN: 00218901).  Smith W.K., C.C. Cleveland, S.C. Reed, N.L. Miller, and S.W. Running (2012a). Bioenergy Potential of  the United States Constrained by Satellite Observations of Existing Productivity, Environmental  Science & Technology 46 3536 3544 pp. (DOI: 10.1021/es203935d), (ISSN: 0013 936X).  Smith W.N., B.B. Grant, C.A. Campbell, B.G. McConkey, R.L. Desjardins, R. Kröbel, and S.S. Malhi  (2012b). Crop residue removal effects on soil carbon: Measured and inter model comparisons,  Agriculture, Ecosystems & Environment 161 27 38 pp. (DOI: 10.1016/j.agee.2012.07.024), (ISSN:  0167 8809).  Smith P., P.J. Gregory, D.P. van Vuuren, M. Obersteiner, P. Havlík, M. Rounsevell, J. Woods, E.  Stehfest, and J. Bellarby (2010). Competition for land, Philosophical Transactions of the Royal  Society B: Biological Sciences 365 2941  2957 pp. (DOI: 10.1098/rstb.2010.0127).  Smith P., H. Haberl, A. Popp, K. Erb, C. Lauk, R. Harper, F.N. Tubiello, A. de Siqueira Pinto, M. Jafari,  S. Sohi, O. Masera, H. Böttcher, G. Berndes, M. Bustamante, H. Ahammad, H. Clark, H. Dong, E.A.  Elsiddig, C. Mbow, N.H. Ravindranath, C.W. Rice, C. Robledo Abad, A. Romanovskaya, F. Sperling,  M. Herrero, J.I. House, and S. Rose (2013b). How much land based greenhouse gas mitigation can  be achieved without compromising food security and environmental goals?, Global Change Biology  19 2285 2302 pp. (DOI: 10.1111/gcb.12160), (ISSN: 1365 2486).  Smith P., D. Martino, Z. Cai, D. Gwary, H.H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O Mara, C. Rice,  R.J. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, S. Rose, U.  Schneider, and S. Towprayoon (2007). Agriculture. In: Chapter 8 of Climate change 2007: Mitigation.  Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on  Climate Change. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, (eds.), Cambridge  University Press, Cambridge, UK and New York, USA pp.497 540.  Smith P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O Mara, C. Rice,  B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, S.  Towprayoon, M. Wattenbach, and J. Smith (2008). Greenhouse gas mitigation in agriculture,      165 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Philosophical Transactions of the Royal Society B: Biological Sciences 363 789 813 pp. (DOI:  10.1098/rstb.2007.2184), (ISSN: 0962 8436, 1471 2970).  Smith K.A., A.R. Mosier, P.J. Crutzen, and W. Winiwarter (2012c). The role of N2O derived from  crop based biofuels, and from agriculture in general, in Earth s climate, Philosophical Transactions of  the Royal Society B: Biological Sciences 367 1169 1174 pp. (DOI: 10.1098/rstb.2011.0313), (ISSN:  0962 8436, 1471 2970).  Smith P., and J.E. Olesen (2010). Synergies between the mitigation of, and adaptation to, climate  change in agriculture, Journal of Agricultural Science 148 543 552 pp. . Available at:  http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=7796512.  Smith P., D.S. Powlson, J.U. Smith, P. Falloon, and K. Coleman (2000). Meeting Europe s climate  change commitments: quantitative estimates of the potential for carbon mitigation by agriculture,  Global Change Biology 6 525 539 pp. (DOI: 10.1046/j.1365 2486.2000.00331.x), (ISSN: 1365 2486).  Smith K.A., and T.D. Searchinger (2012). Crop based biofuels and associated environmental  concerns, GCB Bioenergy 4 479 484 pp. (DOI: 10.1111/j.1757 1707.2012.01182.x), (ISSN: 1757 1707).  Smith L., and M. Torn (2013). Ecological limits to terrestrial biological carbon dioxide removal,  Climatic Change 118 89 103 pp. (DOI: 10.1007/s10584 012 0682 3), (ISSN: 0165 0009).  Smith P., and E. Trines (2006). COMMENTARY: Agricultural measures for mitigating climate change:  will the barriers prevent any benefits to developing countries?, International Journal of Agricultural  Sustainability 4 173 175 pp. .  Smith P., and E. Wollenberg (2012). Achieving mitigation through synergies with adaptation. In:  Climate Change Mitigation and Agriculture. E. Wollenberg, A. Nihart, M. Tapio Biström, M. Grieg Gran, (eds.), Earthscan, London, UK pp.50 57.  Smith W.K., M. Zhao, and S.W. Running (2012d). Global Bioenergy Capacity as Constrained by  Observed Biospheric Productivity Rates, BioScience 62 911 922 pp. (DOI:  10.1525/bio.2012.62.10.11), (ISSN: 0006 3568, 1525 3244).  Sneddon C., R.B. Howarth, and R.B. Norgaard (2006). Sustainable development in a post Brundtland  world, Ecological Economics 57 253 268 pp. .  Snyder C.S., T.W. Bruulsema, and T.L. Jensen (2007). Greenhouse Gas Emissions from Cropping  Systems and the Influence of Fertilizer Management. International Plant Nutrition Institute,  Norcross, Georgia, USA. 36 pp. Available at: http://npg.ipni.net/article/NPG 3004.  Soares Filho B., P. Moutinho, D. Nepstad, A. Anderson, H. Rodrigues, R. Garcia, L. Dietzsch, F.  Merry, M. Bowman, L. Hissa, R. Silvestrini, and C. Maretti (2010). Role of Brazilian Amazon  protected areas in climate change mitigation, Proceedings of the National Academy of Sciences 107  10821 10826 pp. . Available at: http://www.pnas.org/content/107/24/10821.short.  Sochacki S.J., R.J. Harper, and K.R.J. Smettem (2012). Bio mitigation of carbon following  afforestation of abandoned salinized farmland, GCB Bioenergy 4 193 201 pp. (DOI: 10.1111/j.1757 1707.2011.01139.x), (ISSN: 17571693).      166 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Sochacki S.J., R.J. Harper, K.R.J. Smettem, B. Dell, and H. Wu (2013). Evaluating a sustainability  index for nutrients in a short rotation energy cropping system, GCB Bioenergy 5 315 326 pp. (DOI:  10.1111/j.1757 1707.2012.01202.x), (ISSN: 1757 1707).  Sohi S.P. (2012). Carbon storage with benefits, Science 338 1034 1035 pp. .  Sohngen B., and R. Sedjo (2006). Carbon Sequestration in Global Forests Under Different Carbon  Price Regimes, The Energy Journal 27 109 pp. . Available at:  http://www.iaee.org/en/publications/ejarticle.aspx?id=2188.  Solli C., M. Reenaas, A. Strmman, and E. Hertwich (2009). Life cycle assessment of wood based  heating in Norway, The International Journal of Life Cycle Assessment 14 517 528 pp. (DOI:  10.1007/s11367 009 0086 4), (ISSN: 0948 3349).  Sood K.K., and C.P. Mitchell (2011). Household level domestic fuel consumption and forest resource  in relation to agroforestry adoption: Evidence against need based approach, Biomass and Bioenergy  35 337 345 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0961953410003028.  Souza S.P., M.T. de Ávila, and S. Pacca (2012a). Life cycle assessment of sugarcane ethanol and palm  oil biodiesel joint production, Biomass and Bioenergy 44 70 79 pp. (DOI:  10.1016/j.biombioe.2012.04.018), (ISSN: 0961 9534).  Souza H.N. de, R.G.M. de Goede, L. Brussaard, I.M. Cardoso, E.M.G. Duarte, R.B.A. Fernandes, L.C.  Gomes, and M.M. Pulleman (2012b). Protective shade, tree diversity and soil properties in coffee  agroforestry systems in the Atlantic Rainforest biome, Agriculture, Ecosystems & Environment 146  179 196 pp. (DOI: 10.1016/j.agee.2011.11.007), (ISSN: 01678809).  Sow M., C. Hély, C. Mbow, and B. Sambou (2013). Fuel and fire behavior analysis for early season  prescribed fire planning in Sudanian and Sahelian savannas, Journal of Arid Environments 89 84 93  pp. (DOI: 10.1016/j.jaridenv.2012.09.007), (ISSN: 01401963).  Sparovek G., G. Berndes, A. Egeskog, F.L.M. de Freitas, S. Gustafsson, and J. Hansson (2007).  Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and  environmental concerns, Biofuels, Bioproducts and Biorefining 1 270 282 pp. (DOI: 10.1002/bbb.31),  (ISSN: 1932 1031).  Spath P.L., and M.K. Mann (2004). Biomass Power and Conventional Fossil Systems with and without  CO2 Sequestration   Comparing the Energy Balance, Greenhouse Gas Emissions and Economics.  National Renewable Energy Laboratory (NREL), Golden, CO. 38 pp. Available at:  http://www.nrel.gov/docs/fy04osti/32575.pdf.  Sperling F., C. Validivia, R. Quiroz, R. Valdivia, L. Angulo, A. Seimon, and I. Noble (2008).  Transitioning to Climate Resilient Development: Perspectives from Communities in Peru. The World  Bank, Washington, D.C. 103 pp.  Spokas K.A. (2013). Impact of biochar field aging on laboratory greenhouse gas production  potentials, GCB Bioenergy 5 165 176 pp. (DOI: 10.1111/gcbb.12005), (ISSN: 17571693).  SREX I.P. on C.C. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate  Change Adaption. Cambridge University Press, New York, N.Y, 582 pp., (ISBN: 9781107025066). .      167 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Steenblik R. (2007). Biofuels   At What Cost? Government Support for Ethanol in Selected OECD.  International Institute for Sustainable Development, Winnipeg, Canada. 82 pp. Available at:  http://www.iisd.org/publications/pub.aspx?id=895.  Stehfest E., L. Bouwman, D.P. Vuuren, M.G.J. Elzen, B. Eickhout, and P. Kabat (2009). Climate  benefits of changing diet, Climatic Change 95 83 102 pp. (DOI: 10.1007/s10584 008 9534 6), (ISSN:  0165 0009, 1573 1480).  Steiner C., K.C. Das, N. Melear, and D. Lakly (2010). Reducing Nitrogen Loss during Poultry Litter  Composting Using Biochar, Journal of Environment Quality 39 1236 pp. (DOI:  10.2134/jeq2009.0337), (ISSN: 1537 2537).  Steinfeld H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. de Haan (2008). Livestock s Long  Shadow. Environmental Issues and Options. Food and Agriculture Organization of the United Nations  (FAO), Rome, 416 pp. Available at: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM.  Steinfeld H., H.A. Mooney, F. Schneider, and L.E. Neville (2010). Livestock in a Changing Landscape.  Volume 1. Drivers, Consequences, and Responses. Island Press, Washington, DC, 416 pp., (ISBN: ISBN 13: 9781597266703). .  Stephenson A.L., P. Dupree, S.A. Scott, and J.S. Dennis (2010). The environmental and economic  sustainability of potential bioethanol from willow in the UK, Bioresource Technology 101 9612 9623  pp. (DOI: 10.1016/j.biortech.2010.07.104), (ISSN: 0960 8524).  Sterner M., and U. Fritsche (2011). Greenhouse gas balances and mitigation costs of 70 modern  Germany focused and 4 traditional biomass pathways including land use change effects, Biomass  and Bioenergy 35 4797 4814 pp. (DOI: 10.1016/j.biombioe.2011.08.024), (ISSN: 0961 9534).  Stevenson B.A., R.L. Parfitt, L.A. Schipper, W.T. Baisden, and P. Mudge (2010). Relationship  between soil delta(15)N, C/N and N losses across land uses   in New Zealand, Agriculture Ecosystems  & Environment 139 736 741 pp. (DOI: 10.1016/j.agee.2010.10.020), (ISSN: 0167 8809).  Stickler C.M., D.C. Nepstad, M.T. Coe, D.G. McGRATH, H.O. Rodrigues, W.S. Walker, B.S. Soares Filho, and E.A. Davidson (2009). The potential ecological costs and cobenefits of REDD: a critical  review and case study from the Amazon region, Global Change Biology 15 2803 2824 pp. (DOI:  10.1111/j.1365 2486.2009.02109.x), (ISSN: 1365 2486).  Stocker B.D., K. Strassmann, and F. Joos (2011). Sensitivity of Holocene atmospheric CO2 and the  modern carbon budget to early human land use: analyses with a process based model,  Biogeosciences 8 69 88 pp. (DOI: 10.5194/bg 8 69 2011), (ISSN: 1726 4170).  Strassburg B.B.N., A.S.L. Rodrigues, M. Gusti, A. Balmford, S. Fritz, M. Obersteiner, R.K. Turner,  and T.M. Brooks (2012). Impacts of incentives to reduce emissions from deforestation on global  species extinctions, Nature Climate Change 2 350 355 pp. (DOI: 10.1038/nclimate1375), (ISSN:  1758 678X).  Strassburg B., K. Turner, B. Fisher, R. Schaeffer, and A. Lovett (2008). An empirically derived  mechanism of combined incentives to Reduce Emissions from Deforestation. CSERGE Working Paper  ECM 08 01. . Available at: http://www.sciencedirect.com/science/article/pii/S0048969798003398.  Strassburg B., R.K. Turner, B. Fisher, R. Schaeffer, and A. Lovett (2009). Reducing emissions from  deforestation The  combined incentives  mechanism and empirical simulations, Global  Environmental Change 19 265 278 pp. (DOI: 10.1016/j.gloenvcha.2008.11.004), (ISSN: 09593780).      168 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Stratton R.W., H.M. Wong, and J.I. Hileman (2011). Quantifying Variability in Life Cycle Greenhouse  Gas Inventories of Alternative Middle Distillate Transportation Fuels, Environmental Science &  Technology 45 4637 4644 pp. (DOI: 10.1021/es102597f), (ISSN: 0013 936X).  Streck C. (2012). Financing REDD+: matching needs and ends, Current Opinion in Environmental  Sustainability 4 628 637 pp. (DOI: 10.1016/j.cosust.2012.10.001), (ISSN: 1877 3435).  Stromberg P., and A. Gasparatos (2012). Biofuels at the confluence of energy security, rural  development and food security: a developing country perspective. In: Socio economic and  environmental impacts of biofuels. Evidence from developing countries. Cambridge University Press,  Cambridge, UK and New York, USA pp.1 375.  Stupak I., B. Lattimore, B.D. Titus, and C. Tattersall Smith (2011). Criteria and indicators for  sustainable forest fuel production and harvesting: A review of current standards for sustainable  forest management, Biomass and Bioenergy 35 3287 3308 pp. (DOI:  10.1016/j.biombioe.2010.11.032), (ISSN: 09619534).  Sumathi S., S.P. Chai, and A.R. Mohamed (2008). Utilization of oil palm as a source of renewable  energy in Malaysia, Renewable and Sustainable Energy Reviews 12 2404 2421 pp. (DOI:  10.1016/j.rser.2007.06.006), (ISSN: 1364 0321).  Sun A., R. Davis, M. Starbuck, A. Ben Amotz, R. Pate, and P.T. Pienkos (2011). Comparative cost  analysis of algal oil production for biofuels, Energy 36 5169 5179 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0360544211003975.  Sunde K., A. Brekke, and B. Solberg (2011). Environmental Impacts and Costs of Hydrotreated  Vegetable Oils, Transesterified Lipids and Woody BTL A Review, Energies 4 845 877 pp. (ISSN:  1996 1073).  Sunderlin W.D., A. Angelsen, B. Belcher, P. Burgers, R. Nasi, L. Santoso, and S. Wunder (2005).  Livelihoods, forests, and conservation in developing countries: An Overview, World Development 33  1383 1402 pp. (DOI: 10.1016/j.worlddev.2004.10.004), (ISSN: 0305 750X).  Sundrum A. (2001). Organic livestock farming: A critical review, Livestock Production Science 67 207 215 pp. (DOI: 10.1016/S0301 6226(00)00188 3), (ISSN: 0301 6226).  Swann A., I. Fung, and J. Chiang (2011). Mid latitude afforestation shifts general circulation and  tropical precipitation, PNAS.  Swann A.L., I.Y. Fung, S. Levis, G.B. Bonan, and S.C. Doney (2010). Changes in Arctic vegetation  amplify high latitude warming through the greenhouse effect, Proceedings of the National Academy  of Sciences 107 1295 pp. .  Swingland I.R., E.C. Bettelheim, J. Grace, G.T. Prance, and L.S. Saunders (2002). Carbon,  biodiversity, conservation and income: an analysis of a free market approach to land use change and  forestry in developing and developed countries, Philosophical Transactions of the Royal Society of  London Series a Mathematical Physical and Engineering Sciences 360 1563 1565 pp. (ISSN: 1364 503X).  Taghizadeh Toosi A., T.J. Clough, L.M. Condron, R.R. Sherlock, C.R. Anderson, and R.A. Craigie  (2011). Biochar Incorporation into Pasture Soil Suppresses in situ Nitrous Oxide Emissions from  Ruminant Urine Patches, Journal of Environment Quality 40 468 pp. (DOI: 10.2134/jeq2010.0419),  (ISSN: 1537 2537).      169 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Taheripour F., T.W. Hertel, and W.E. Tyner (2011). Implications of biofuels mandates for the global  livestock industry: a computable general equilibrium analysis, Agricultural Economics 42 325 342 pp.  (DOI: 10.1111/j.1574 0862.2010.00517.x), (ISSN: 1574 0862).  Takimoto, A., Nair, P.K.R., Nair, and V.D. (2008). Carbon stock and sequestration potential of  traditional and improved agroforestry systems in the West African Sahel, Agriculture, Ecosystems  and Environment 159 166 pp. .  Talens Peiró L., L. Lombardi, G. Villalba Méndez, and X. Gabarrell i Durany (2010). Life cycle  assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used  cooking oil (UCO), Energy 35 889 893 pp. (DOI: 10.1016/j.energy.2009.07.013), (ISSN: 0360 5442).  Tan K.T., K.T. Lee, A.R. Mohamed, and S. Bhatia (2009). Palm oil: Addressing issues and towards  sustainable development, Renewable and Sustainable Energy Reviews 13 420 427 pp. (DOI:  10.1016/j.rser.2007.10.001), (ISSN: 1364 0321).  Tanaka K., D.J.A. Johansson, B.C. O Neill, and J.S. Fuglestvedt (2013). Emission metrics under the  2°C climate stabilization target, Climatic Change 117 933 941 pp. (DOI: 10.1007/s10584 013 0693 8), (ISSN: 0165 0009, 1573 1480).  Tarnocai C. (2006). The effect of climate change on carbon in Canadian peatlands, Global and  planetary Change 53 222 232 pp. .  Tavoni M., and R. Socolow (2013). Modeling meets science and technology: an introduction to a  special issue on negative emissions, Climatic Change 118 1 14 pp. (DOI: 10.1007/s10584 013 0757 9), (ISSN: 0165 0009).  Thamsiriroj T., and J.D. Murphy (2011). The impact of the life cycle analysis methodology on  whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities  constructed after 2017, Renewable Energy 36 50 63 pp. (DOI: 10.1016/j.renene.2010.05.018), (ISSN:  0960 1481).  Thomas S., P. Dargusch, S. Harrison, and J. Herbohn (2010). Why are there so few afforestation and  reforestation Clean Development Mechanism projects?, Land Use Policy 27 880 887 pp. . Available  at: http://www.sciencedirect.com/science/article/pii/S026483770900204X.  Thomassen M.A., R. Dalgaard, R. Heijungs, and I. de Boer (2008). Attributional and consequential  LCA of milk production, The International Journal of Life Cycle Assessment 13 339 349 pp. (DOI:  10.1007/s11367 008 0007 y), (ISSN: 0948 3349, 1614 7502).  Thompson M.C., M. Baruah, and E.R. Carr (2011a). Seeing REDD+ as a project of environmental  governance, Environmental Science & Policy 14 100 110 pp. (DOI: 10.1016/j.envsci.2010.11.006),  (ISSN: 1462 9011).  Thompson I., B. Mackey, S. McNulty, and A. Mosseler (2009). Forest Resilience, Biodiversity, and  Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems  | CAKE: Climate Adaptation Knowledge Exchange. Secretariat of the Convention on Biological  Diversity, Montreal. 67 pp. Available at: http://www.cakex.org/virtual library/1233.  Thompson W., J. Whistance, and S. Meyer (2011b). Effects of US biofuel policies on US and world  petroleum product markets with consequences for greenhouse gas emissions, Energy Policy 39  5509 5518 pp. (DOI: 10.1016/j.enpol.2011.05.011), (ISSN: 0301 4215).      170 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Thornton P.K., and M. Herrero (2010). Potential for Reduced Methane and Carbon Dioxide  Emissions from Livestock and Pasture Management in the Tropics, Proceedings of the National  Academy of Sciences 107 19667 19672 pp. (DOI: 10.1073/pnas.0912890107), (ISSN: 0027 8424,  1091 6490).  Throop H.L., and S.R. Archer (2008). Shrub (Prosopis velutina) encroachment in a semidesert  grassland: spatial temporal changes in soil organic carbon and nitrogen pools, Global Change  Biology 14 2420 2431 pp. (DOI: 10.1111/j.1365 2486.2008.01650.x), (ISSN: 1365 2486).  Tilman D., C. Balzer, J. Hill, and B.L. Befort (2011). Global food demand and the sustainable  intensification of agriculture, Proceedings of the National Academy of Sciences 108 20260 20264 pp.  (DOI: 10.1073/pnas.1116437108), (ISSN: 0027 8424, 1091 6490).  Tilman D., J. Hill, and C. Lehman (2006). Carbon Negative Biofuels from Low Input High Diversity  Grassland Biomass, Science 314 1598 1600 pp. (DOI: 10.1126/science.1133306), (ISSN: 0036 8075,  1095 9203).  Tilman D., R. Socolow, J.A. Foley, J. Hill, E. Larson, L. Lynd, S. Pacala, J. Reilly, T. Searchinger, C.  Somerville, and R. Williams (2009). Beneficial Biofuels  The Food, Energy, and Environment  Trilemma, Science 325 270 271 pp. (DOI: 10.1126/science.1177970), (ISSN: 0036 8075, 1095 9203).  Timilsina G.R., J.C. Beghin, D. van der Mensbrugghe, and S. Mevel (2012). The impacts of biofuels  targets on land use change and food supply: A global CGE assessment, Agricultural Economics 43  315 332 pp. (DOI: 10.1111/j.1574 0862.2012.00585.x), (ISSN: 1574 0862).  Tiwary A., and J. Colls (2010). Mitigating secondary aerosol generation potentials from biofuel use in  the energy sector, Science of The Total Environment 408 607 616 pp. (DOI:  10.1016/j.scitotenv.2009.10.019), (ISSN: 0048 9697).  Townsend P.V., R.J. Harper, P.D. Brennan, C. Dean, S. Wu, K.R.J. Smettem, and S.E. Cook (2012).  Multiple environmental services as an opportunity for watershed restoration, Forest Policy and  Economics 17 45 58 pp. .  Trabucco A., R.J. Zomer, D.A. Bossio, O. van Straaten, and L.V. Verchot (2008). Climate change  mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case  studies, Agriculture, Ecosystems & Environment 126 81 97 pp. (DOI: 10.1016/j.agee.2008.01.015),  (ISSN: 0167 8809).  Tracy B.P., S.W. Jones, A.G. Fast, D.C. Indurthi, and E.T. Papoutsakis (2012). Clostridia: the  importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery  applications, Current Opinion in Biotechnology 23 364 381 pp. (DOI: 10.1016/j.copbio.2011.10.008),  (ISSN: 0958 1669).  Triantafyllidis K., A. Lappas, and M. Stöcker (2013). The Role of Catalysis for the Sustainable  Production of Bio Fuels and Bio Chemicals. Elsevier, Oxford, UK, 608 pp., (ISBN: 0444563326). .  Tsao C. C., J.E. Campbell, M. Mena Carrasco, S.N. Spak, G.R. Carmichael, and Y. Chen (2012).  Increased estimates of air pollution emissions from Brazilian sugar cane ethanol, Nature Climate  Change 2 53 57 pp. (DOI: 10.1038/nclimate1325), (ISSN: 1758 678X, 1758 6798).  Tubiello F.N., A. Rahman, W. Mann, J. Schmidhuber, M. Koleva, and A. Müller (2009). Carbon  financial mechanisms for agriculture and rural development: challenges and opportunities along the  Bali roadmap. An editorial essay, Climatic Change 97 3 21 pp. .      171 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Tubiello F., M. Salvatore, S. Rossi, and A. Ferrara (2012). Analysis of global emissions, carbon  intensity and efficiency of food production, Energia Ambiente e Innovazione Anno 2012 87 93 pp. .  Available at: http://www.enea.it/it/produzione scientifica/EAI/anno 2012/n. 4 5 luglio ottobre parte I/analysis of global emissions carbon intensity and efficiency of food production.  Tubiello F.N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith (2013). The FAOSTAT  database of greenhouse gas emissions from agriculture, Environmental Research Letters 8 1 11 pp.  (DOI: 10.1088/1748 9326/8/1/015009), (ISSN: 1748 9326).  Turconi R., A. Boldrin, and T. Astrup (2013). Life cycle assessment (LCA) of electricity generation  technologies: Overview, comparability and limitations, Renewable and Sustainable Energy Reviews  28 555 565 pp. (DOI: 10.1016/j.rser.2013.08.013), (ISSN: 1364 0321).  Turkenburg W.C., D.J. Arent, R. Bertani, A. Faaij, M. Hand, W. Krewitt, E.D. Larson, J. Lund, M.  Mehos, T. Merrigan, C. Mitchell, J.R. Moreira, W. Sinke, V. Sonntag O Brien, B. Thresher, W. van  Sark, E. Usher, and E. Usher (2012). Chapter 11   Renewable Energy. In: Global Energy Assessment    Toward a Sustainable Future.Cambridge University Press, Cambridge, UK and New York, NY, USA and  the International Institute for Applied Systems Analysis, Laxenburg, Austria pp.761 900(ISBN: 9781  10700 5198 HARDBACK 9780 52118 2935 PAPERBACK).  Turner B.L., E.F. Lambin, and A. Reenberg (2007). The emergence of land change science for global  environmental change and sustainability, Proceedings of the National Academy of Sciences 104  20666  20671 pp. (DOI: 10.1073/pnas.0704119104).  Tyagi L., B. Kumari, and S.N. Singh (2010). Water management   A tool for methane mitigation  from irrigated paddy fields, Science of The Total Environment 408 1085 1090 pp. (DOI:  10.1016/j.scitotenv.2009.09.010), (ISSN: 00489697).  U.S. DOE (2011). Billion Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. U.S.  Department of Energy, Washington, DC. 235 pp.  U.S. EPA (2006). Global Mitigation of Non CO2 Greenhouse Gases (EPA Report 430 R 06 005). .  Available at: http://www.epa.gov/climatechange/economics/international.html.  U.S. EPA (2011). Draft: Global Antropogenic Non CO2 Greenhouse Gas Emissions: 1990   2030.  Washington, DC. . Available at: internal pdf://US EPA_NonCO2_Projections_2011_draft 2650857473/US EPA_NonCO2_Projections_2011_draft.pdf.  U.S. EPA (2013). U.S. Environmental Protection Agency Global Emissions Database, Global  Emissions . Available at: http://www.epa.gov/climatechange/ghgemissions/global.html.  UNCCD (2011). UNCCD Statement at UNFCCC COP17 SBSTA, Agenda Item Three. 28 November 2011.  United Nations Convention to Combat Desertification, Bonn. 45 pp.  UNDP International Poverty Centre (2006). What Is Poverty? Concept and Measures. United Nations  Development Programme, Brasilia, Brazil. 24 pp. Available at: www.ipc undp.org/pub/IPCPovertyInFocus9.pdf.  UNEP (2009). Assessing Biofuels, Towards Sustainable Production and Use of Resources. United  Nations Environment Programme (UNEP), Division of Technology, Industry and Ecocnomics, Paris,  120 pp.      172 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   UNEP WCMC (2011). The UK National Ecosystem Assessment: Technical Report. UK National  Ecosystem Assessment, Cambridge, UK. 6 pp. Available at: http://uknea.unep wcmc.org/Resources/tabid/82/Default.aspx.  UNFCCC United Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/2860.php.  UNFCCC   CDM CDM: CDM insights   intelligence about the CDM at the end of each month. .  Available at: http://cdm.unfccc.int/Statistics/Public/CDMinsights/index.html.  Ungerer J., L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. Yu (2012). Sustained photosynthetic  conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803, Energy &  Environmental Science 5 8998 9006 pp. .  UN REDD Programme UN REDD Programme. . Available at: http://www.un redd.org/.  UN REDD Programme   Support to Partner Countries UN REDD Programme   Support to Partner  Countries. . Available at: http://www.un redd.org/Partner_Countries/tabid/102663/Default.aspx.  Ürge Vorsatz D., N. Eyre, P. Graham, D. Harvey, E. Hertwich, Y. Jiang, and C. Kornevall (2012).  Towards Sustainable Energy End Use: Buildings Chapter 10. In: Global Energy Assessment.  Cambridge University Press, Cambridge pp.649 760.  Valente C., R. Spinelli, and B.G. Hillring (2011). LCA of environmental and socio economic impacts  related to wood energy production in alpine conditions: Valle di Fiemme (Italy), Journal of Cleaner  Production 19 1931 1938 pp. (DOI: 10.1016/j.jclepro.2011.06.026), (ISSN: 0959 6526).  VanderZaag A.C., S. Jayasundara, and C. Wagner Riddle (2011). Strategies to mitigate nitrous oxide  emissions from land applied manure, Animal Feed Science and Technology 166 167 464 479 pp.  (DOI: 10.1016/j.anifeedsci.2011.04.034), (ISSN: 0377 8401).  Van de Velde L., W. Verbeke, M. Popp, J. Buysse, and G. Van Huylenbroeck (2009). Perceived  importance of fuel characteristics and its match with consumer beliefs about biofuels in Belgium,  Energy Policy 37 3183 3193 pp. (DOI: 10.1016/j.enpol.2009.04.022), (ISSN: 0301 4215).  Venter O., W.F. Laurance, T. Iwamura, K.A. Wilson, R.A. Fuller, and H.P. Possingham (2009).  Harnessing Carbon Payments to Protect Biodiversity, Science 326 1368 1368 pp. (DOI:  10.1126/science.1180289), (ISSN: 0036 8075, 1095 9203).  Verchot L.V., M. Noordwijk, S. Kandji, T. Tomich, C. Ong, A. Albrecht, J. Mackensen, C. Bantilan,  K.V. Anupama, and C. Palm (2007). Climate change: linking adaptation and mitigation through  agroforestry, Mitigation and Adaptation Strategies for Global Change 12 901 918 pp. (DOI:  10.1007/s11027 007 9105 6), (ISSN: 1381 2386, 1573 1596).  Verdonk M., C. Dieperink, and A.P.C. Faaij (2007). Governance of the emerging bio energy markets,  Energy Policy 35 3909 3924 pp. .  Vermeulen S.J., B.M. Campbell, and J.S.I. Ingram (2012). Climate Change and Food Systems, Annual  Review of Environment and Resources 37 195 222 pp. (DOI: 10.1146/annurev environ 020411 130608), (ISSN: 1543 5938, 1545 2050).      173 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Viana K.R.O., and R. Perez (2013). Survey of sugarcane industry in Minas Gerais, Brazil: Focus on  sustainability, Biomass and Bioenergy 58 149 157 pp. (DOI: 10.1016/j.biombioe.2013.08.006), (ISSN:  0961 9534).  Villamor G.B., M. van Noordwijk, Q.B. Le, B. Lusiana, R. Matthews, and P.L.G. Vlek (2011). Diversity  deficits in modelled landscape mosaics, Ecological Informatics 6 73 82 pp. (DOI:  10.1016/j.ecoinf.2010.08.003), (ISSN: 1574 9541).  Visseren Hamakers I.J., C. McDermott, M.J. Vijge, and B. Cashore (2012). Trade offs, co benefits  and safeguards: current debates on the breadth of REDD+, Current Opinion in Environmental  Sustainability 4 646 653 pp. (DOI: 10.1016/j.cosust.2012.10.005), (ISSN: 1877 3435).  Vlek C. (2004). Environmental Versus Individual Risk Taking: Perception, Decision, Behavior. In:  Encyclopedia of Applied Psychology. Elsevier, New York pp.825 840(ISBN: 978 0 12 657410 4).  Vlek C., and G. Keren (1992). Behavioral decision theory and environmental risk management:  Assessment and resolution of four  survival  dilemmas, Acta Psychologica 80 249 278 pp. (DOI:  10.1016/0001 6918(92)90050 N), (ISSN: 0001 6918).  Van Vliet O., M. van den Broek, W. Turkenburg, and A. Faaij (2011a). Combining hybrid cars and  synthetic fuels with electricity generation and carbon capture and storage, Energy Policy 39 248 268  pp. (DOI: 10.1016/j.enpol.2010.09.038), (ISSN: 0301 4215).  Van Vliet O., A.S. Brouwer, T. Kuramochi, M. van den Broek, and A. Faaij (2011b). Energy use, cost  and CO2 emissions of electric cars, Journal of Power Sources 196 2298 2310 pp. (DOI:  10.1016/j.jpowsour.2010.09.119), (ISSN: 0378 7753).  Van Vliet O.P., A.P. Faaij, and W.C. Turkenburg (2009). Fischer Tropsch diesel production in a well to wheel perspective: a carbon, energy flow and cost analysis, Energy Conversion and Management  50 855 876 pp. .  Van der Voet E., R.J. Lifset, and L. Luo (2010). Life cycle assessment of biofuels, convergence and  divergence, Biofuels 1 435 449 pp. (DOI: 10.4155/bfs.10.19), (ISSN: 1759 7269, 1759 7277).  De Vries M., and I.J.M. de Boer (2010). Comparing environmental impacts for livestock products: A  review of life cycle assessments, Livestock Science 128 1 11 pp. (DOI: 10.1016/j.livsci.2009.11.007),  (ISSN: 1871 1413).  Van Vuuren D.P., J. van Vliet, and E. Stehfest (2009). Future bio energy potential under various  natural constraints, Energy Policy 37 4220 4230 pp. (DOI: 16/j.enpol.2009.05.029), (ISSN: 0301 4215).  Waghorn G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable  sheep and goat production Progress and challenges, Animal Feed Science and Technology 147 116 139 pp. .  Waghorn G.C., and R.S. Hegarty (2011). Lowering ruminant methane emissions through improved  feed conversion efficiency, Animal Feed Science and Technology 166 167 291 301 pp. (DOI:  10.1016/j.anifeedsci.2011.04.019), (ISSN: 0377 8401).  Walter A., P. Dolzan, O. Quilodrán, J.G. de Oliveira, C. da Silva, F. Piacente, and A. Segerstedt  (2011). Sustainability assessment of bio ethanol production in Brazil considering land use change,      174 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   GHG emissions and socio economic aspects, Energy Policy 39 5703 5716 pp. (DOI:  10.1016/j.enpol.2010.07.043), (ISSN: 0301 4215).  Wang M.Q., J. Han, Z. Haq, W.E. Tyner, M. Wu, and A. Elgowainy (2011a). Energy and greenhouse  gas emission effects of corn and cellulosic ethanol with technology improvements and land use  changes, Biomass and Bioenergy 35 1885 1896 pp. (DOI: 10.1016/j.biombioe.2011.01.028), (ISSN:  0961 9534).  Wang M., H. Huo, and S. Arora (2011b). Methods of dealing with co products of biofuels in life cycle  analysis and consequent results within the U.S. context, Energy Policy 39 5726 5736 pp. (DOI:  10.1016/j.enpol.2010.03.052), (ISSN: 0301 4215).  Wang L., J. Littlewood, and R.J. Murphy (2013a). Environmental sustainability of bioethanol  production from wheat straw in the UK, Renewable and Sustainable Energy Reviews 28 715 725 pp.  (DOI: 10.1016/j.rser.2013.08.031), (ISSN: 1364 0321).  Wang X., O.R. Masera, K. Troncoso, M.X. Rivera, and J. Franco (2013b). What Have We Learned  about Household Biomass Cooking in Central America? The World Bank. 1 134 pp. Available at:  http://documents.worldbank.org/curated/en/2013/01/17524967/learned household biomass cooking central america.  Wang Y., P. Yu, K. H. Feger, X. Wei, G. Sun, M. Bonell, W. Xiong, S. Zhang, and L. Xu (2011c). Annual  runoff and evapotranspiration of forestlands and non forestlands in selected basins of the Loess  Plateau of China, Ecohydrology 4 277 287 pp. (DOI: 10.1002/eco.215), (ISSN: 19360584).  Warner E., Y. Zhang, D. Inman, and G. Heath (2013). Challenges in the estimation of greenhouse gas  emissions from biofuel induced global land use change, Biofuels, Bioproducts and Biorefining n/a n/a pp. (DOI: 10.1002/bbb.1434), (ISSN: 1932 1031).  WBGU (2009). Future Bioenergy and Sustainable Land Use. Earthscan, London, 393 pp.  WBGU (2011). Welt Im Wandel. Gesellschaftsvertrag Für Eine Große Transformation.  Wissenschaftlicher Beirat Globale Umweltveränderungen (WBGU), Berlin, 421 pp., (ISBN: 978 3 936191 46 2). .  Van der Werf G.R., J.T. Randerson, L. Giglio, G.J. Collatz, P.S. Kasibhatla, A.F. Arellano Jr, and  others (2006). Interannual variability of global biomass burning emissions from 1997 to 2004,  Atmospheric Chemistry and Physics Discussions 6 3175 3226 pp. . Available at: http://hal.archives ouvertes.fr/hal 00301203/.  Van der Werf G.R., J.T. Randerson, L. Giglio, G.J. Collatz, M. Mu, P.S. Kasibhatla, D.C. Morton, R.S.  DeFries, Y. Jin, and T.T. van Leeuwen (2010). Global fire emissions and the contribution of  deforestation, savanna, forest, agricultural, and peat fires (1997 2009), Atmospheric Chemistry and  Physics 10 11707 11735 pp. (DOI: 10.5194/acp 10 11707 2010), (ISSN: 1680 7316).  Werner F., R. Taverna, P. Hofer, E. Thürig, and E. Kaufmann (2010). National and global greenhouse  gas dynamics of different forest management and wood use scenarios: a model based assessment,  Environmental Science & Policy 13 72 85 pp. (DOI: 10.1016/j.envsci.2009.10.004), (ISSN: 1462 9011).  West P.C., H.K. Gibbs, C. Monfreda, J. Wagner, C.C. Barford, S.R. Carpenter, and J.A. Foley (2010a).  Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land,  Proceedings of the National Academy of Sciences 107 19645 19648 pp. (DOI:  10.1073/pnas.1011078107), (ISSN: 0027 8424, 1091 6490).      175 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   West P.C., G.T. Narisma, C.C. Barford, C.J. Kucharik, and J.A. Foley (2010b). An alternative approach  for quantifying climate regulation by ecosystems, Frontiers in Ecology and the Environment 9 126 133 pp. .  Whitaker J., K.E. Ludley, R. Rowe, G. Taylor, and D.C. Howard (2010). Sources of variability in  greenhouse gas and energy balances for biofuel production: a systematic review, GCB Bioenergy 2  99 112 pp. (DOI: 10.1111/j.1757 1707.2010.01047.x), (ISSN: 1757 1707).  Whitehead P., P. Purdon, J. Russel Smith, P.M. Cooke, and S. Sutton (2008). The management of  climate change through prescribed Savanna burning: Emerging contributions of indigenous people in  Northern Australia, Public Administration and Development Special Issue: Symposium on Climate  Change, Governance and Environmental Services 28 374 385 pp. .  Whittaker C., N. Mortimer, R. Murphy, and R. Matthews (2011). Energy and greenhouse gas  balance of the use of forest residues for bioenergy production in the UK, Biomass and Bioenergy 35  4581 4594 pp. (DOI: 10.1016/j.biombioe.2011.07.001), (ISSN: 0961 9534).  Wicke B., V. Dornburg, M. Junginger, and A. Faaij (2008). Different palm oil production systems for  energy purposes and their greenhouse gas implications, Biomass and Bioenergy 32 1322 1337 pp. .  Wicke B., R. Sikkema, V. Dornburg, and A. Faaij (2011a). Exploring land use changes and the role of  palm oil production in Indonesia and Malaysia, Land Use Policy 28 193 206 pp. (DOI:  10.1016/j.landusepol.2010.06.001), (ISSN: 0264 8377).  Wicke B., E.M.W. Smeets, R. Akanda, L. Stille, R.K. Singh, A.R. Awan, K. Mahmood, and A.P.C. Faaij  (2013). Biomass production in agroforestry and forestry systems on salt affected soils in South Asia:  Exploration of the GHG balance and economic performance of three case studies, Journal of  Environmental Management 127 324 334 pp. (DOI: 10.1016/j.jenvman.2013.05.060), (ISSN: 0301 4797).  Wicke B., E. Smeets, V. Dornburg, B. Vashev, T. Gaiser, W. Turkenburg, and A. Faaij (2011b). The  global technical and economic potential of bioenergy from salt affected soils, Energy &  Environmental Science 4 2669 2681 pp. .  Wicke B., E. Smeets, A. Tabeau, J. Hilbert, and A. Faaij (2009). Macroeconomic impacts of bioenergy  production on surplus agricultural land A case study of Argentina, Renewable and Sustainable  Energy Reviews 13 2463 2473 pp. (DOI: 16/j.rser.2009.05.010), (ISSN: 1364 0321).  Wicke B., E. Smeets, H. Watson, and A. Faaij (2011c). The current bioenergy production potential of  semi arid and arid regions in sub Saharan Africa, Biomass and Bioenergy 35 2773 2786 pp. (DOI:  10.1016/j.biombioe.2011.03.010), (ISSN: 0961 9534).  Wicke B., P. Verweij, H. van Meijl, D.P. van Vuuren, and A.P. Faaij (2012). Indirect land use change:  review of existing models and strategies for mitigation, Biofuels 3 87 100 pp. (DOI:  10.4155/bfs.11.154), (ISSN: 1759 7269, 1759 7277).  Wilkinson J., and S. Herrera (2010). Biofuels in Brazil: debates and impacts, Journal of Peasant  Studies 37 749 768 pp. .  Williams J., and P.J. Crutzen (2010). Nitrous oxide from aquaculture, Nature Geoscience 3 143 143  pp. . Available at: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo804.html.      176 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Williams R.H., G. Liu, T.G. Kreutz, and E.D. Larson (2011). Coal and Biomass to Fuels and Power,  Annual Review of Chemical and Biomolecular Engineering 2 529 553 pp. . Available at:  http://www.annualreviews.org/doi/abs/10.1146/annurev chembioeng 061010 114126.  Wilson T.O., F.M. McNeal, S. Spatari, D. G. Abler, and P.R. Adler (2011). Densified biomass can cost effectively mitigate greenhouse gas emissions and address energy security in thermal applications,  Environmental Science & Technology 46 1270 1277 pp. (DOI: 10.1021/es202752b), (ISSN: 0013 936X).  Wirsenius S. (2003). Efficiencies and biomass appropriation of food commodities on global and  regional levels, Agricultural Systems 77 219 255 pp. (DOI: 10.1016/S0308 521X(02)00188 9), (ISSN:  0308 521X).  Wirsenius S., F. Hedenus, and K. Mohlin (2011). Greenhouse gas taxes on animal food products:  rationale, tax scheme and climate mitigation effects, Climatic Change 108 159 184 pp. (DOI:  10.1007/s10584 010 9971 x), (ISSN: 0165 0009, 1573 1480).  Wise M., K. Calvin, A. Thomson, L. Clarke, B. Bond Lamberty, R. Sands, S.J. Smith, A. Janetos, and J.  Edmonds (2009). Implications of Limiting CO2 Concentrations for Land Use and Energy, Science 324  1183 1186 pp. (DOI: 10.1126/science.1168475), (ISSN: 0036 8075, 1095 9203).  Wiskerke W.T., V. Dornburg, C.D.K. Rubanza, R.E. Malimbwi, and A.P.C. Faaij (2010). Cost/benefit  analysis of biomass energy supply options for rural smallholders in the semi arid eastern part of  Shinyanga Region in Tanzania, Renewable and Sustainable Energy Reviews 14 148 165 pp. (DOI:  10.1016/j.rser.2009.06.001), (ISSN: 1364 0321).  De Wit M., M. Junginger, and A. Faaij (2013). Learning in dedicated wood production systems: Past  trends, future outlook and implications for bioenergy, Renewable and Sustainable Energy Reviews 19  417 432 pp. (DOI: 10.1016/j.rser.2012.10.038), (ISSN: 1364 0321).  De Wit M., M. Londo, and A. Faaij (2011). Productivity developments in European agriculture:  Relations to and opportunities for biomass production, Renewable and Sustainable Energy Reviews  15 2397 2412 pp. (DOI: 16/j.rser.2011.02.022), (ISSN: 1364 0321).  Witt G.B., R.A. Harrington, and M.J. Page (2009). Is  vegetation thickening  occurring in  Queensland s mulga lands   a 50 year aerial photographic analysis, Australian Journal of Botany 57  572 582 pp. . Available at: http://dx.doi.org/10.1071/BT08217.  Wollenberg, E., Nihart, A., Tapio Bistrom, M L., Grieg Gran, and M. (2012). Climate Change  Mitigation and Agriculture. Earthscan, London, UK, 419 pp.  Woods J., A. Williams, J.K. Hughes, M. Black, and R. Murphy (2010). Energy and the food system,  Philosophical Transactions of the Royal Society B: Biological Sciences 365 2991  3006 pp. (DOI:  10.1098/rstb.2010.0172).  Woods, M.C., and et al. (2007). Cost and Performance Baseline for Fossil Energy Plants:  Volume 1:   Bituminous Coal and Natural Gas to Electricity. National Energy Technology Laboratory (NETL),  Department of Energy (DOE), Washington, D. C., USA. 626 pp.  Woolf D., J.E. Amonette, F.A. Street Perrott, J. Lehmann, and S. Joseph (2010). Sustainable biochar  to mitigate global climate change, Nature Communications 1 1 9 pp. (DOI: 10.1038/ncomms1053),  (ISSN: 2041 1723).      177 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Wright A. D.G., and A.V. Klieve (2011). Does the complexity of the rumen microbial ecology  preclude methane   mitigation?, Animal Feed Science and Technology 166 67 248 253 pp. (DOI:  10.1016/j.anifeedsci.2011.04.015), (ISSN: 0377 8401).  Wu C., and L. Lin (2009). Guest editorial, Biotechnology Advances 27 541 pp. (DOI:  10.1016/j.biotechadv.2009.04.018), (ISSN: 0734 9750).  Wünscher T., and S. Engel (2012). International payments for biodiversity services: Review and  evaluation of conservation targeting approaches, Biological Conservation 152 222 230 pp. (DOI:  10.1016/j.biocon.2012.04.003), (ISSN: 0006 3207).  Ximenes F. de A., B.H. George, A. Cowie, J. Williams, and G. Kelly (2012). Greenhouse Gas Balance  of Native Forests in New South Wales, Australia, Forests 3 653 683 pp. (DOI: 10.3390/f3030653).  Ximenes F.A., and T. Grant (2013). Quantifying the greenhouse benefits of the use of wood products  in two popular house designs in Sydney, Australia, The International Journal of Life Cycle Assessment  18 891 908 pp. (DOI: 10.1007/s11367 012 0533 5), (ISSN: 0948 3349, 1614 7502).  Yagi K., H. Tsuruta, and K. Minami (1997). Possible options for mitigating methane emission from  rice cultivation, Nutrient Cycling in Agroecosystems 49 213 220 pp. . Available at:  http://link.springer.com/article/10.1023/A:1009743909716.  Yan X., H. Akiyama, K. Yagi, and H. Akimoto (2009). Global estimations of the inventory and  mitigation potential of methane emissions from rice cultivation conducted using the 2006  Intergovernmental Panel on Climate Change Guidelines, Global Biogeochemical Cycles 23 3 25 pp.  (DOI: 10.1029/2008GB003299).  Yan T., C.S. Mayne, F.G. Gordon, M.G. Porter, R.E. Agnew, D.C. Patterson, C.P. Ferris, and D.J.  Kilpatrick (2010). Mitigation of enteric methane emissions through improving efficiency of   energy  utilization and productivity in lactating dairy cows, Journal of Dairy Science 93 2630 2638 pp. (DOI:  10.3168/jds.2009 2929), (ISSN: 0022 0302).  Yang Y., J. Bae, J. Kim, and S. Suh (2012). Replacing Gasoline with Corn Ethanol Results in Significant  Environmental Problem Shifting, Environmental Science and Technology 46 3671 3678 pp. (DOI:  10.1021/es203641p), (ISSN: 0013 936X).  Yao Z., Z. Zhou, X. Zheng, B. Xie, B. Mei, R. Wang, K. Butterbach Bahl, and J. Zhu (2010). Effects of  organic matter incorporation on nitrous oxide emissions from rice wheat rotation ecosystems in  China, Plant and Soil 327 315 330 pp. (DOI: 10.1007/s11104 009 0056 4), (ISSN: 0032 079X, 1573 5036).  Yoon J.M., L. Zhao, and J.V. Shanks (2013). Metabolic Engineering with Plants for a Sustainable  Biobased Economy, Annual Review of Chemical and Biomolecular Engineering 4 211 237 pp. .  Available at: http://www.annualreviews.org/doi/abs/10.1146/annurev chembioeng 061312 103320.  Yu P., Y. Wang, A. Du, W. Guan, K. H. Feger, K. Schwärzel, M. Bonell, W. Xiong, and S. Pan (2013).  The effect of site conditions on flow after forestation in a dryland region of China, Agricultural and  Forest Meteorology 178 179 66 74 pp. (DOI: 10.1016/j.agrformet.2013.02.007), (ISSN: 01681923).  Zaehle S., P. Ciais, A.D. Friend, and V. Prieur (2011). Carbon benefits of anthropogenic reactive  nitrogen offset by nitrous oxide emissions, Nature Geoscience 4 601 605 pp. (DOI:  10.1038/ngeo1207), (ISSN: 1752 0894).      178 of 179       Final Draft   Chapter 11  IPCC WGIII AR5   Zaks D.P.M., C.C. Barford, N. Ramankutty, and J.A. Foley (2009). Producer and consumer  responsibility for greenhouse gas emissions from agricultural production a perspective from the  Brazilian Amazon, Environmental Research Letters 4 1 13 pp. (DOI: 10.1088/1748 9326/4/4/044010), (ISSN: 1748 9326).  Zanchi G., N. Pena, and N. Bird (2012). Is woody bioenergy carbon neutral? A comparative  assessment of emissions from consumption of woody bioenergy and fossil fuel, GCB Bioenergy 4  761 772 pp. (DOI: 10.1111/j.1757 1707.2011.01149.x), (ISSN: 1757 1707).  Zhang Y., Y. Yu, T. Li, and B. Zou (2011). Analyzing Chinese consumers  perception for biofuels  implementation: The private vehicles owner s investigating in Nanjing, Renewable and Sustainable  Energy Reviews 15 2299 2309 pp. (DOI: 10.1016/j.rser.2011.02.004), (ISSN: 1364 0321).  Zhao M., and S.W. Running (2010). Drought Induced Reduction in Global Terrestrial Net Primary  Production from 2000 Through 2009, Science 329 940 943 pp. (DOI: 10.1126/science.1192666),  (ISSN: 0036 8075, 1095 9203).  Zhao W.Z., H.L. Xiao, Z.M. Liu, and J. Li (2005). Soil degradation and restoration as affected by land  use change in the semiarid Bashang area, northern China, CATENA 59 173 186 pp. (DOI:  10.1016/j.catena.2004.06.004), (ISSN: 03418162).  Van Zijderveld S.M., W.J.J. Gerrits, J.A. Apajalahti, J.R. Newbold, J. Dijkstra, R.A. Leng, and H.B.  Perdok (2010). Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal  methane production in sheep, Journal of Dairy Science 93 5856 5866 pp. (DOI: DOI:  10.3168/jds.2010 3281), (ISSN: 0022 0302).  Zimmerman A.R., B. Gao, and M. Y. Ahn (2011). Positive and negative carbon mineralization  priming effects among a variety of biochar amended soils, Soil Biology and Biochemistry 43 1169 1179 pp. (DOI: 10.1016/j.soilbio.2011.02.005), (ISSN: 0038 0717).  Ziv G., E. Baran, S. Nam, I. Rodríguez Iturbe, and S.A. Levin (2012). Trading off fish biodiversity,  food security, and hydropower in the Mekong River Basin, Proceedings of the National Academy of  Sciences 109 5609 5614 pp. (DOI: 10.1073/pnas.1201423109), (ISSN: 0027 8424, 1091 6490).  Zomer R.J., A. Trabucco, D.A. Bossio, and L.V. Verchot (2008). Climate change mitigation: A spatial  analysis of global land suitability for clean development mechanism afforestation and reforestation,  Agriculture, Ecosystems & Environment 126 67 80 pp. (DOI: 10.1016/j.agee.2008.01.014), (ISSN:  0167 8809).  Van Zwieten L., S.W.L. Kimber, S.G. Morris, B.P. Singh, P.R. Grace, C. Scheer, J. Rust, A.E. Downie,  and A.L. Cowie (2013). Pyrolysing poultry litter reduces N2O and CO2 fluxes, Science of The Total  Environment 465 279 287 pp. (DOI: 10.1016/j.scitotenv.2013.02.054), (ISSN: 00489697).        179 of 179       Working Group III Mitigation of Climate Change Chapter 12 Human Settlements, Infrastructure and Spatial Planning   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    12  Chapter 12  IPCC WGIII AR5   Human Settlements, Infrastructure, and Spatial Planning  CLAs:  LAs:  Karen C. Seto, Shobhakar Dhakal  Anthony Bigio, Hilda Blanco, Gian Carlo Delgado, David Dewar, Luxin  Huang, Atsushi Inaba, Arun Kansal, Shuaib Lwasa,  James McMahon,  Daniel Mueller, Jin Murakami, Harini Nagendra, Anu Ramaswami  Antonio  Bento, Michele Betsill, Harriet Bulkeley, Abel  Chavez, Peter  Christensen, Felix Creutzig, Michail Fragkias, Burak Güneralp, Leiwen  Jiang,  Peter Marcotullio, David McCollum, Adam Millard Ball, Paul  Pichler, Serge Salat, Cecilia Tacoli, Helga Weisz, Timm Zwickel   Robert Cervero, Julio Torres Martinez  Peter Christensen, Cary Simmons    CAs:        REs:  CSAs:     1 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Chapter 12:    Human Settlements, Infrastructure, and Spatial Planning  Contents    Executive Summary ............................................................................................................................ 4  12.1 Introduction ................................................................................................................................ 7  12.2 Human Settlements and GHG Emissions .................................................................................... 8  12.2.1 The role of cities and urban areas in energy use and GHG emissions ................................ 9  12.2.1.1 Urban population dynamics ......................................................................................... 9  12.2.1.2 Urban land use ........................................................................................................... 12  12.2.1.3 Urban economies and GDP ........................................................................................ 14  12.2.2 GHG emission estimates from human settlements .......................................................... 14  12.2.2.1 Estimates of the urban share of global emissions ..................................................... 15  12.2.2.2 Emissions accounting for human settlements ........................................................... 17  12.2.3 Future trends in urbanization and GHG emissions from human settlements .................. 22  12.2.3.1 Dimension 1: Urban population  ................................................................................ 22  . 12.2.3.2 Dimension 2: Urban land cover ................................................................................. 23  12.2.3.3 Dimension 3: GHG emissions ..................................................................................... 24  12.3 Urban Systems: Activities, Resources, and Performance ......................................................... 25  12.3.1 Overview of drivers of urban GHG emissions ................................................................... 25  12.3.1.1 Emission drivers decomposition via IPAT .................................................................. 26  12.3.1.2 Interdependence between drivers ............................................................................ 27  . 12.3.1.3 Human settlements, linkages to sectors, and policies  .............................................. 28  12.3.2 Weighing of Drivers ........................................................................................................... 29  12.3.2.1 Qualitative weighting ................................................................................................. 29  12.3.2.2 Relative weighting of drivers for sectoral mitigation options ................................... 32  12.3.2.3 Quantitative modelling to determine driver weights ................................................ 32  12.3.2.4 Conclusions on drivers of GHG emissions at the urban scale .................................... 33  12.3.3 Motivation for assessment of spatial planning, infrastructure, and urban form drivers . 34  12.4 Urban Form and Infrastructure ................................................................................................ 35  12.4.1 Infrastructure .................................................................................................................... 35  12.4.2 Urban form ........................................................................................................................ 39  12.4.2.1 Density ....................................................................................................................... 39  12.4.2.2 Land use mix .............................................................................................................. 43  12.4.2.3 Connectivity ............................................................................................................... 45    2 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.4.2.4 Accessibility ................................................................................................................ 45  12.4.2.5 Effects of combined options ...................................................................................... 46  12.5 Spatial Planning and Climate Change Mitigation ..................................................................... 46  12.5.1 Spatial Planning Strategies ................................................................................................ 48  12.5.1.1 Macro: Regions and metropolitan areas ................................................................... 49  12.5.1.2 Meso: Sub regions, corridors, and districts ............................................................... 52  12.5.1.3 Micro: communities, neighbourhoods, streetscapes ................................................ 52  12.5.2 Policy Instruments ............................................................................................................. 54  12.5.2.1 Land use regulations .................................................................................................. 55  12.5.2.2 Land management and acquisition ............................................................................ 57  12.5.2.3 Market based instruments ........................................................................................ 58  12.5.3 Integrated spatial planning and implementation ............................................................. 59  12.6 Governance, Institutions, and Finance ..................................................................................... 61  12.6.1 Institutional and governance constraints and opportunities  ........................................... 61  . 12.6.2 Financing urban mitigation ............................................................................................... 64  12.7 Urban Climate Mitigation: Experiences and Opportunities ..................................................... 66  12.7.1 Scale of urban mitigation efforts  ...................................................................................... 67  . 12.7.2 Targets and timetables ...................................................................................................... 68  12.7.3 Planned and implemented mitigation measures .............................................................. 70  12.8 Sustainable Development, Co Benefits, Trade offs, and Spill over Effects .............................. 72  . 12.8.1 Urban air quality co benefits  ............................................................................................ 73  12.8.2 Energy security side effects for urban energy systems .................................................... 74  12.8.3 Health and socioeconomic co benefits ............................................................................. 75  12.8.4 Co benefits of reducing the urban heat island effect ....................................................... 75  12.9 Gaps in Knowledge and Data .................................................................................................... 76  12.10 Frequently Asked Questions ................................................................................................... 77  References ........................................................................................................................................ 78      3 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Executive Summary  The shift from rural to more urban societies is a global megatrend with significant consequences for  greenhouse gas (GHG) emissions and climate change mitigation. Across multiple dimensions, the  scale and speed of urbanization is unprecedented: more than half of the world population live in  urban areas and each week the global urban population increases by 1.3 million. Today there are  nearly 1000 urban agglomerations with populations of 500,000 or greater; by 2050, the global urban  population is expected to increase by between 2.5 to 3 billion, corresponding to 64% to 69% of the  world population [robust evidence, high agreement]. Expansion of urban areas is on average twice as  fast as urban population growth, and the expected increase in urban land cover during in the first  three decades of the 21st century will be greater than the cumulative urban expansion in all of  human history [medium evidence, high agreement]. Urban areas generate around 80% of global  Gross Domestic Product (GDP) [medium evidence, medium agreement]. [Sections 12.1, 12.2].   Current and future urbanization trends are significantly different from the past [robust evidence,  high agreement]. Urbanization is taking place at lower levels of economic development and the  majority of future urban population growth will take place in small  to medium sized urban areas in  developing countries.  Expansion of urban areas is on average twice as fast as urban population  growth, and the expected increase in urban land cover during the first three decades of the 21st  century will be greater than the cumulative urban expansion in all of human history (robust  evidence, high agreement). [12.1, 12.2]  Urban areas account for between 71% and 76% of CO2 emissions from global final energy use and  between 67 76% of global energy use [medium evidence, medium agreement]. There are very few  studies that have examined the contribution of all urban areas to global GHG emissions. The fraction  of global CO2 emissions from urban areas depends on the spatial and functional boundary definitions  of urban and the choice of emissions accounting method. Estimates for urban energy related CO2  emissions range from 71% for 2006 to between 53% and 87% (central estimate, 76%) of CO2  emissions from global final energy use [medium evidence, medium agreement]. There is only one  attempt in the literature that examines the total GHG (CO2, CH4, N2O and SF6) contribution of urban  areas globally, estimated at between 37% and 49% of global GHG emissions for the year 2000. Using  Scope1 accounting, urban share of global CO2 emissions is about 44% (limited evidence, medium  agreement). [12.2]  No single factor explains variations in per capita emissions across cities, and there are significant  differences in per capita GHG emissions between cities within a single country [robust evidence,  high agreement]. Urban GHG emissions are influenced by a variety of physical, economic and social  factors, development levels, and urbanization histories specific to each city. Key influences on urban  GHG emissions include income, population dynamics, urban form, locational factors, economic  structure, and market failures [robust evidence, high agreement]. There is a prevalence for cities in  Annex I countries to have lower per capita final energy use and GHG emissions than national  averages, and for per capita final energy use and GHG emissions of cities in non Annex I countries  tend to be higher than national averages (high agreement, robust evidence) [12.3].  The anticipated growth in urban population will require a massive build up of urban  infrastructure, which is a key driver of emissions across multiple sectors [limited evidence, high  agreement]. If the global population increases to 9.3 billion by 2050 and developing countries  expand their built environment and infrastructure to current global average levels using available  technology of today, the production of infrastructure materials alone would generate approximately  470 Gt of CO2 emissions. Currently, average per capita CO2 emissions embodied in the infrastructure  of industrialized countries is five times larger than those in developing countries. The continued  expansion of fossil fuel based infrastructure would produce cumulative emissions of 2986 7402  GtCO2 during the remainder of the 21st century (high agreement, limited evidence).[12.2, 12.3]     4 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   The existing infrastructure stock of the average Annex I resident is three times that of the world  average and about five times higher than that of the average non Annex I resident [medium  evidence, medium agreement]. The long life of infrastructure and the built environment, make them  particularly prone to lock in of energy and emissions pathways, lifestyles and consumption patterns  that are difficult to change. The committed emissions from energy and transportation  infrastructures are especially high, with respective ranges of 127 336 and 63 132 Gt, respectively  (medium evidence, medium agreement). [12.3, 12.4]  Infrastructure and urban form are strongly linked, especially among transportation infrastructure  provision, travel demand and vehicle kilometres travelled [robust evidence, high agreement]. In  developing countries in particular, the growth of transport infrastructure and ensuing urban forms  will play important roles in affecting long run emissions trajectories [robust evidence, high  agreement]. Urban form and structure significantly affect direct (operational) and indirect  (embodied) GHG emissions, and are strongly linked to the throughput of materials and energy in a  city, the wastes that it generates, and system efficiencies of a city (robust evidence, high agreement).  [12.4, 12.5]  Key urban form drivers of energy and GHG emissions are density, land use mix, connectivity, and  accessibility [medium evidence, high agreement].  These factors are interrelated and  interdependent. Pursuing one of them in isolation is insufficient for lower emissions. Connectivity  and accessibility are tightly related: highly connected places are accessible. While individual  measures of urban form have relatively small effects on vehicle miles travelled, they become more  effective when combined. There is consistent evidence that co locating higher residential densities  with higher employment densities, coupled with significant public transit improvements, higher land  use mixes, and other supportive demand management measures can lead to greater emissions  savings in the long run. Highly accessible communities are typically characterized by low daily  commuting distances and travel times, enabled by multiple modes of transportation (robust  evidence, high agreement). [12.5]  Urban mitigation options vary across urbanization trajectories and are expected to be most  effective when policy instruments are bundled [high evidence, high agreement]. For rapidly  developing cities, options include shaping their urbanization and infrastructure development  towards more sustainable and low carbon pathways. In mature or established cities, options are  constrained by existing urban forms and infrastructure and the potential for refurbishing existing  systems and infrastructures. Key mitigation strategies include co locating high residential with high  employment densities, achieving high land use mixes, increasing accessibility and investing in public  transit and other supportive demand management measures. Bundling these strategies can reduce  emissions in the short term and generate even higher emissions savings in the long term (high  agreement, high evidence). [12.5]  Successful implementation of mitigation strategies at local scales requires that there be in place  the institutional capacity and political will to align the right policy instruments to specific spatial  planning strategies [robust evidence, high agreement]. Integrated land use and transportation  planning provides the opportunity to envision and articulate future settlement patterns, backed by  zoning ordinances, subdivision regulations, and capital improvements programmes to implement the  vision. While smaller scale spatial planning may not have the energy conservation or emissions  reduction benefits of larger scale ones, development tends to occur parcel by parcel and urbanized  areas are ultimately the products of thousands of individual site level development and design  decisions (robust evidence, high agreement). [12.5, 12.6]  The largest opportunities for future urban GHG emissions reduction might be in rapidly urbanizing  countries where infrastructure inertia has not set in; however, the required governance, technical,  financial, and institutional capacities can be limited [high evidence, high agreement]. The bulk of  future infrastructure and urban growth is expected in small  to medium size cities in developing    5 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   countries, where these capacities can be limited or weak [high agreement, high evidence]. [12.4,  12.5, 12.6, 12.7]  Thousands of cities are undertaking climate action plans, but the extent of urban mitigation is  highly uncertain [robust evidence, high agreement]. Local governments and institutions possess  unique opportunities to engage in urban mitigation activities and local mitigation efforts have  expanded rapidly. However, little systematic reporting or evidence exists regarding the overall  extent to which cities are implementing mitigation policies, and even less regarding their GHG  impacts. Climate action plans include a range of measures across sectors, largely focused on energy  efficiency rather than broader land use planning strategies and cross sectoral measures to reduce  sprawl and promote transit oriented development [high evidence, high agreement].  The majority of  these targets have been developed for Annex I countries and reflect neither their mitigation  potential nor implementation. Few targets have been established for non Annex I country cities, and  it is in these places where reliable city level GHG emissions inventory may not exist [high agreement,  robust evidence].  [12.6, 12.7]  The feasibility of spatial planning instruments for climate change mitigation is highly dependent  on a city s financial and governance capability [robust evidence, high agreement]. Drivers of urban  GHG emissions are interrelated and can be addressed by a number of regulatory, management, and  market based instruments. Many of these instruments are applicable to cities in both developed and  developing countries, but the degree to which they can be implemented varies. In addition, each  instrument varies in its potential to generate public revenues or require government expenditures,  and the administrative scale at which it can be applied. A bundling of instruments and a high level of  coordination across institutions can increase the likelihood of achieving emissions reductions and  avoiding unintended outcomes [high agreement, robust evidence]. [12.6, 12.7]  For designing and implementing climate policies effectively, institutional arrangements,  governance mechanisms, and financial resources should be aligned with the goals of reducing  urban GHG emissions [robust evidence, high agreement]. These goals will reflect the specific  challenges facing individual cities and local governments. The following have been identified as key  factors: (1) institutional arrangements that facilitate the integration of mitigation with other high priority urban agendas; (2) a multilevel governance context that empowers cities to promote urban  transformations; (3) spatial planning competencies and political will to support integrated land use  and transportation planning; and (4) sufficient financial flows and incentives to adequately support  mitigation strategies  [high agreement, robust evidence]. [12.6, 12.7]  Successful implementation of urban climate change mitigation strategies can provide co benefits  [high evidence, high agreement]. Co benefits of local climate change mitigation can include public  savings, air quality and associated health benefits, and productivity increases in urban centres,  providing additional motivation for undertaking mitigation activities [high agreement, high  evidence]. [12.5, 12.6, 12.7, 12.8]  This assessment highlights a number of key knowledge gaps. First, there is lack of consistent and  comparable emissions data at local scales, making it particularly challenging to assess the urban  share of global GHG emissions as well as develop urbanization typologies and their emissions  pathways. Second, there is little scientific understanding of the magnitude of the emissions  reduction from altering urban form, and the emissions savings from integrated infrastructure and  land use planning. Third, there is a lack of consistency and thus comparability on local emissions  accounting methods, making cross city comparisons of emissions or climate action plans difficult.  Fourth, there are few evaluations of urban climate action plans and their effectiveness. Fifth, there is  lack of scientific understanding of how cities can prioritize mitigation strategies, local actions,  investments, and policy responses that are locally relevant. Sixth, there are large uncertainties about  future urbanization trajectories, although urban form and infrastructure will play large roles in  determining emissions pathways. [12.9]    6 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.1   Introduction  Urbanization is a global phenomenon that is transforming human settlements.  The shift from  primarily rural to more urban societies is evident through the transformation of places, populations,  economies, and the built environment.  In each of these dimensions, urbanization is unprecedented  for its speed and scale: massive urbanization is a megatrend of the 21st century. With disorienting  speed, villages and towns are being absorbed by, or coalescing into, larger urban conurbations and  agglomerations.  This rapid transformation is occurring throughout the world, and in many places it  is accelerating.   Today, more than half of the global population is urban, compared to only 13% in 1900 (UN DESA,  2012). There are nearly 1,000 urban agglomerations with populations of 500,000 or more, three quarters of which are in developing countries (UN DESA, 2012). By 2050, the global urban population  is expected to increase by between 2.5 to 3 billion, corresponding to 64% to 69% of the world  population (Grubler et al., 2007; IIASA, 2009; UN DESA, 2012).  Put differently, each week the urban  population is increasing by approximately 1.3 million.   Future trends in the levels, patterns, and regional variation of urbanization will be significantly  different from those of the past. Most of the urban population growth will take place in small  to  medium sized urban areas. Nearly all of the future population growth will be absorbed by urban  areas in developing countries (IIASA, 2009; UN DESA, 2012). In many developing countries,  infrastructure and urban growth will be greatest, but technical capacities are limited, and  governance, financial, and economic institutional capacities are weak (Bräutigam and Knack, 2004;  Rodrik et al., 2004). The kinds of towns, cities, and urban agglomerations that ultimately emerge  over the coming decades will have a critical impact on energy use and carbon emissions.    The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) did  not have a chapter on human settlements or urban areas.  Urban areas were addressed through the  lens of individual sector chapters. Since the publication of AR4, there has been a growing recognition  of the significant contribution of urban areas to GHG emissions, their potential role in mitigating  them, and a multi fold increase in the corresponding scientific literature. This chapter provides an  assessment of this literature and the key mitigation options that are available at the local level. The  majority of this literature has focused on urban areas and cities in developed countries. With the  exception of China, there are few studies on the mitigation potential or GHG emissions of urban  areas in developing countries.  This assessment reflects these geographic limitations in the published  literature.   Urbanization is a process that involves simultaneous transitions and transformations across multiple  dimensions, including demographic, economic, and physical changes in the landscape. Each of these  dimensions presents different indicators and definitions of urbanization. The chapter begins with a  brief discussion of the multiple dimensions and definitions of urbanization, including implications for  GHG emissions accounting, and then continues with an assessment of historical, current, and future  trends across different dimensions of urbanization in the context of GHG emissions (12.2). It then  discusses GHG accounting approaches and challenges specific to urban areas and human  settlements.   In Section 12.3, the chapter assesses the drivers of urban GHG emissions in a systemic fashion, and  examines the impacts of drivers on individuals sectors as well as the interaction and  interdependence of drivers. In this section, the relative magnitude of each driver s impact on urban  GHG emissions is discussed both qualitatively and quantitatively, and provides the context for a  more detailed assessment of how urban form and infrastructure affect urban GHG emissions (12.4).  Here, the section discusses the individual urban form drivers such as density, connectivity, and land  use mix, as well as their interactions with each other. Section 12.4 also examines the links between  infrastructure and urban form, as well as their combined and interacting effects on GHG emissions.      7 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Section 12.5 identifies spatial planning strategies and policy instruments that can affect multiple  drivers, and Section 12.6 examines the institutional, governance, and financial requirements to  implement such policies. Of particular importance with regard to mitigation potential at the urban or  local scale is a discussion of the geographic and administrative scales for which policies are  implemented, overlapping, and/or in conflict. The chapter then identifies the scale and range of  mitigation actions currently planned and/or implemented by local governments, and assesses the  evidence of successful implementation of the plans, as well as barriers to further implementation  (12.7).  Next, the chapter discusses major co benefits and adverse side effects of mitigation at the  local scale, including opportunities for sustainable development (12.8). The chapter concludes with a  discussion of the major gaps in knowledge with respect to mitigation of climate change in urban  areas (12.9).     12.2   Human Settlements and GHG Emissions  This section assesses past, current, and future trends in human settlements in the context of GHG  emissions. It aims to provide a multi dimensional perspective on the scale of the urbanization  process. This section includes a discussion of the development trends of urban areas, including  population size, land use, and density.  Section 12.2.1 outlines historic urbanization dynamics in  multiple dimensions as drivers of GHG emissions. Section 12.2.2 focuses on current GHG emissions.  Finally, Section 12.2.3 assesses future scenarios of urbanization in order to frame the GHG emissions  challenges to come.     Box 12.1. What is urban? The system boundary problem   Any empirical analysis of urban and rural areas, as well as human settlements, requires clear  delineation of physical boundaries. However, it is not a trivial or unambiguous task to determine  where a city, an urban area, or human settlement physically begins and ends. In the literature, there  are a number of methods to establish the boundaries of a city or urban area (Elliot, 1987; Buisseret,  1998; Churchill, 2004). Three common types of boundaries include:  1. Administrative boundaries, which refer to the territorial or political boundaries of a city  (Hartshorne, 1933; Aguilar and Ward, 2003).  2. Functional boundaries, which are delineated according to connections or interactions  between areas, such as economic activity, per capita income, or commuting zone (Brown  and Holmes, 1971; Douglass, 2000; Hidle et al., 2009).  3. Morphological boundaries, which are based on the form or structure of land use, land  cover, or the built environment. This is the dominant approach when satellite images are  used to delineate urban areas (Benediktsson et al., 2003; Rashed et al., 2003).   What approach is chosen will often depend on the particular research question under consideration.  The choice of the physical boundaries can have a substantial influence on the results of the analysis.  For example, the Global Energy Assessment (GEA) (GEA, 2012) estimates global urban energy  consumption between 180 250 EJ/yr depending on the particular choice of the physical delineation  between rural and urban areas. Similarly, depending on the choice of different administrative,  morphological, and functional boundaries, between 37% and 86% in buildings and industry, and 37%  to 77% of mobile diesel and gasoline consumption can be attributed in urban areas (Parshall et al.,  2010). Thus any empirical evidence presented in this chapter is dependent on the particular  boundary choice made in the respective analysis.     8 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.2.1    The role of cities and urban areas in energy use and GHG emissions  Worldwide, 3.3 billion people live in rural areas, the majority of whom, about 92%, live in rural areas  in developing countries (UN DESA, 2012). In general, rural populations have lower per capita energy  consumption compared with urban populations in developing countries (International Energy  Agency, 2008). Globally, 32% of the global rural population lack access to electricity and other  modern energy sources, compared to only 5.3% of the urban population (International Energy  Agency, 2010). Hence, energy use and GHG emissions from human settlements is mainly from urban  areas rather than rural areas, and the role of cities and urban areas in global climate change has  become increasingly important over time.   Urbanization involves change across multiple dimensions and accordingly is defined differently by  different disciplines. Demographers define urbanization as a demographic transition that involves a  population becoming urbanized through the increase in the urban proportion of the total population  (Montgomery, 2008; Dorélien et al., 2013). Geographers and planners describe urbanization as a  land change process that includes the expansion of the urban land cover and growth in built up  areas and infrastructure (Berry et al., 1970; Blanco et al., 2011; Seto et al., 2011). Economists  characterize urbanization as a structural shift from primary economic activities such as agriculture  and forestry to manufacturing and services (Davis and Henderson, 2003; Henderson, 2003).  Sociologists, political scientists, and other social scientists describe urbanization as cultural change,  including change in social interactions and the growing complexity of political, social, and economic  institutions (Weber, 1966; Berry, 1974). The next sections describe urbanization trends across the  first three of these four dimensions and point to the increasing and unprecedented speed and scale  of urbanization.    12.2.1.1    Urban population dynamics  In the absence of any other independent data source with global coverage, assessments of historic  urban and rural population are commonly based on statistics provided by the United Nations  Department for Economic and Social Affairs (UN DESA). The World Urbanization Prospects is  published every two years by UN DESA and provides projections of key demographic and  urbanization indicators for all countries in the world. Even within this dataset, there is no single  definition of urban or rural areas that is uniformly applied across the data. Rather, each country  develops its own definition of urban, often based a combination of population size or density, and  other criteria such as the percentage of population not employed in agriculture; the availability of  electricity, piped water, or other infrastructure; and characteristics of the built environment such as  dwellings and built structures (UN DESA, 2012). The large variation in criteria gives rise to significant  differences in national definitions. However, the underlying variations in the data do not seriously  affect an assessment of urbanization dynamics as long as the national definitions are sufficiently  consistent over time (GEA, 2012; UN DESA, 2012). Irrespective of definition, the underlying  assumption in all the definitions is that urban areas provide a higher standard of living than rural  areas (UN DESA, 2013). A comprehensive assessment of urban and rural population dynamics is  provided in the Global Energy Assessment (2012). Here, only key developments are briefly  summarized.   For most of human history, the world population mostly lived in rural areas and in small urban  settlements, and growth in global urban population occurred slowly.  In 1800, when the world  population was around one billion, only 3% of the total population lived in urban areas and only one  city Beijing had had a population greater than one million (Davis, 1955; Chandler, 1987;  Satterthwaite, 2007).  Over the next one hundred years, the global share of urban population  increased to 13% in 1900. The second half of the 20th century experienced rapid urbanization. The  proportion of world urban population increased from 13% in 1900, to 29% in 1950, to 52% in 2011  (UN DESA, 2012). In 1960, the world reached a milestone when global urban population surpassed  one billion (UN DESA, 2012). Although it took all previous human history to 1960 to reach one billion  urban dwellers, it took only additional 26 years to reach two billion (Seto et al., 2010). Since then,    9 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   the time interval to add an additional one billion urban dwellers is decreasing, and by approximately  2030, the world urban population will increase by one billion every 13 years (Seto et al., 2010).   Today, approximately 52% of the global population, or 3.6 billion, are estimated to live in urban  areas (UN DESA, 2012).  While urbanization has been occurring in all major regions of the world (Table 12.1) since 1950,  there is great variability in urban transitions across regions and settlement types. This variability is  shaped by multiple factors, including history (Melosi, 2000), migration patterns (Harris and Todaro,  1970; Keyfitz, 1980; Chen et al., 1998), technological development (Tarr, 1984), culture (Wirth, 1938;  Ingle hart, 1997), governance institutions (National Research Council, 2003), as well as  environmental factors such as the availability of energy (Jones, 2004; Dredge, 2008). Together, these  factors partially account for the large variations in urbanization levels across regions.   Table 12.1. Arithmetic growth of human settlement classes for five periods between 1950 2050. Number of human settlements by size class at four points in time.   Average annual growth [%] Number of cities    10,000,000 and  more  5,000,000    10,000,000  1,000,000    5,000,000  100,000 1,000,000  Less than  100,000  Rural  1950 1970  2.60  7.55  3.27  2.86  2.54  1.38  1970 1990  6.72  1.34  3.17  2.48  2.37  1.23  1990 2010  4.11  2.53  2.70  1.87  1.71  0.61  1950 2010  4.46  3.77  3.05  2.40  2.21  1.07  2010 2050  2.13  1.22  1.36  0.70  1.95  0.50  Not Available  1950  2  4  69  1970  2  15  128  1990  10  19  237  2010  23  38  388  Source: (UN DESA, 2012). Urbanization rates in developed regions are high, between 73% in Europe to 89% in North America,  compared to 45% in Asia and 40% in Africa (UN DESA, 2012).The majority of urbanization in the  future is expected to take place primarily in Africa and Asia, and will occur at lower levels of  economic development than the urban transitions that occurred in Europe and North America.   While its urbanization rate is still lower than that of Europe and the Americas, the urban population  in Asia increased by 2.3 billion between 1950 and 2010 (Figure 12.1).    10 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Figure 12.1.Urban population as percentage of regional and world populations and in absolute numbers for RC5 regions (see Annex II.2), 1950-2010 Source: UN DESA, (2012).      Overall, urbanization has led to the growth of cities of all sizes (Figure 12.2). Although mega cities  (those with populations of 10 million or greater) receive a lot of attention in the literature, urban  population growth has been dominated by cities of smaller sizes. About one third of the growth in  urban population between 1950 and 2010 (1.16 billion) occurred in settlements with populations    11 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   fewer than 100 thousand. Currently, approximately 10% of the 3.6 billion urban dwellers live in  mega cities of 10 million or greater (UN DESA, 2012). Within regions and countries, there are large  variations in development levels, urbanization processes, and urban transitions. While the dominant  global urbanization trend is growth, some regions are experiencing significant urban population  declines. Urban shrinkage is not a new phenomenon, and most cities undergo cycles of growth and  decline, which is argued to correspond to waves of economic growth and recession (Kondratieff and  Stolper, 1935). There are few systematic analyses on the scale and prevalence of shrinking cities  (UN Habitat, 2008). A recent assessment by the United Nations (UN) (UN DESA, 2012) indicates that  about 11% of 3,552 cities with populations of 100,000 or more in 2005 experienced total population  declines of 10.4 million between 1990 and 2005. These  shrinking cities  are distributed globally but  concentrated mainly in Eastern Europe (Bontje, 2005; Bernt, 2009) and the rust belt in the United  States (Martinez Fernandez et al., 2012), where de urbanization is strongly tied with de industrialization.     Figure 12.2. Population by settlement size using historical (1950 2010) and projected data to 2050. Source: UN DESA, (2010). Note: rounded population percentages displayed across size classes sum do not sum to 100% for year 2010 due to rounding. Urbanization results in not only in growth in urban population, but also changes in household  structures and dynamics. As societies industrialize and urbanize, there is often a decline in  household size, as traditional complex households become more simple and less extended  (Bongaarts, 2001; Jiang and O Neill, 2007; O Neill et al., 2010). This trend has been observed in  Europe and North America, where household size has declined from between four to six in the mid  1800s to between two and three today (Bongaarts, 2001).    12.2.1.2    Urban land use  Another key dimension of urbanization is the increase in built up area and urban land cover.   Worldwide, urban land cover occupies a small fraction of global land surface, with estimates ranging  between 0.28 to 3.5 million km2, or between 0.2% to 2.7% of ice free terrestrial land (Schneider et  al., 2009). Although the urban share of global land cover is negligible, urban land use at the local  scale shows trends of declining densities and outward expansion.   Analyses of 120 global cities show significant variation in densities across world regions, but the  dominant trend is one of declining built up and population densities across all income levels and city  sizes (Figure 12.3) (Angel et al., 2010). For this sample of cities, built up area densities have declined  significantly between 1990 and 2000, at an average annual rate of 2.0+/-0.4 % (Angel et al., 2010). On  average, urban population densities are four times higher in low income countries (11,850    12 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   persons/km2 in 2000) than in high income countries (2,855 persons/km2 in 2000). Urban areas in  Asia experienced the largest decline in population densities during the 1990s. Urban population  densities in East Asia and Southeast Asia declined 4.9% and 4.2%, respectively, between 1990 and  2000 (World Bank, 2005). These urban population densities are still higher than those in Europe,  North America, and Australia, where densities are on average 2,835 persons/km2. As the urban  transition continues in Asia and Africa, it is expected that their urban population densities will  continue to decline. Although urban population densities are decreasing, the amount of built up  area per person is increasing (Seto et al., 2010; Angel et al., 2011). A meta analysis of 326 studies  using satellite data shows a minimum global increase in urban land area of 58,000km2 between 1970  and 2000, or roughly 9% of the 2000 urban extent (Seto et al., 2011). At current rates of declining  densities among developing country cities, a doubling of the urban population over the next 30 years  will require a tripling of built up areas (Angel et al., 2010). For a discussion on drivers of declining  densities, see Box 12.4.      13 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Figure 12.3. Average built-up area per person (m2) in 1990 (yellow) and 2000 (blue) for 120 cities. Average annual percent change in density (light blue). Source: Angel et al., (2005). 12.2.1.3    Urban economies and GDP  Urban areas are engines of economic activities and growth. Further, the transition from a largely  agrarian and rural society to an industrial and consumption based society is largely coincident with a  country s level of industrialization and economic development (Tisdale 1942; Jones 2004), and  reflects changes in the relative share of GDP by  both sector and the proportion of the labour force  employed in these sectors (Satterthwaite, 2007; World Bank, 2009). The concentration and scale of  people, activities, and resources in urban areas fosters economic growth (Henderson et al., 1995;  Fujita and Thisse, 1996; Duranton and Puga, 2004; Puga, 2010), innovation (Feldman and Audretsch,  1999; Bettencourt et al., 2007; Arbesman et al., 2009), and an increase of economic and resource  use efficiencies (Kahn, 2009; Glaeser and Kahn, 2010). The agglomeration economies made possible  by the concentration of individuals and firms make cities ideal settings for innovation, job, and  wealth creation (Rosenthal and Strange, 2004; Carlino et al., 2007; Knudsen et al., 2008; Puga, 2010).   A precise estimate of the contribution of all urban areas to global GDP is not available. However, a  downscaling of global GDP during the Global Energy Assessment (Grubler et al., 2007; GEA, 2012)  showed that urban areas contribute about 80% of global GDP.  Other studies show that urban  economies generate more than 90% of global gross value (Gutman, 2007; United Nations, 2011). In  OECD countries, more than 80% of the patents filed are in cities (OECD, 2006a). Not many cities  report city level GDP but recent attempts have been made by the Metropolitan Policy Program of  the Brookings Institute, PriceWaterhouseCoopers (PWC), and the McKinsey Global Institute to  provide such estimates. The PWC report shows that key 27 key global cities1 accounted for 8% of  world GDP for 2012 but only 2.5% of the global population (PwC and Partnership for New York City,  2012).   In a compilation by UN Habitat, big cities are shown to have disproportionately high share of  national GDP compared to their population (UN Habitat, 2012). The importance of big cities is  further underscored in a recent report that shows that 600 cities generated 60% of global GDP in  2007 (McKinsey Global Institute, 2011). This same report shows that the largest 380 cities in  developed countries account for half of the global GDP. More than 20% of global GDP comes from  190 North American cities alone (McKinsey Global Institute, 2011). In contrast, the 220 largest cities  in developing countries contribute to only 10% global of GDP, while 23 global megacities generated  14% of global GDP in 2007. The prevalence of economic concentration in big cities highlights their  importance but does not undermine the role of small and medium size cities. Although top down  and bottom up estimates suggest a large urban contribution to global GDP, challenges remain in  estimating the size of this, given large uncertainties in the downscaled GDP, incomplete urban  coverage, sample bias, methodological ambiguities, and limitations of the city based estimations in  the existing studies.     12.2.2    GHG emission estimates from human settlements  Most of the literature on human settlements and climate change is rather recent.2  Since AR4, there  has been a considerable growth in scientific evidence on energy consumption and GHG emissions  from human settlements. However, there are very few studies that have examined the contribution  of all urban areas to global GHG emissions. The few studies that do exist will be discussed in Section                                                                Paris, Hong Kong, Sydney, San Francisco, Singapore, Toronto, Berlin, Stockholm, London, Chicago, Los  Angeles, New York, Tokyo, Abu Dhabi, Madrid, Kuala Lumpur, Milan, Moscow, Sao Paulo, Beijing, Buenos Aires,  Johannesburg, Mexico City, Shanghai, Seoul, Istanbul, and Mumbai.   A search on the ISI Web of Science database for keywords  urban AND climate change  for the years 1900 2007 yielded over 700 English language publications. The same search for the period from 2007 to present  yielded nearly 2800 English language publications.    2 1   14 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.2.2.1. In contrast, a larger number of studies have quantified GHG emissions for individual cities  and other human settlements. These will be assessed in Section 12.2.2.2.   12.2.2.1    Estimates of the urban share of global emissions   There are very few studies that estimate the relative urban and rural shares of global GHG  emissions. One challenge is that of boundary definitions and delineation: it is difficult to consistently  define and delineate rural and urban areas globally (see Box 12.1). Another challenge is that of  severe data constraints about GHG emissions. There is no comprehensive statistical database on  urban or rural GHG emissions. Available global estimates of urban and rural emission shares are  either derived bottom up or top down. Bottom up, or up scaling studies, use a representative  sample of estimates from regions or countries and scale these up to develop world totals (see  International Energy Agency, 2008). Top down studies use global or national datasets and downscale  these to local grid cells. Urban and rural emissions contributions are then estimated based on  additional spatial information such as the extent of urban areas or the location of emission point  sources (GEA, 2012). In the absence of a more substantive body of evidence, large uncertainties  remain surrounding the estimates and their sensitivities (Grubler et al., 2012).    The World Energy Outlook 2008 estimates urban energy related CO2 emissions at 19.8 Gt, or 71% of  the global total for the year 2006 (International Energy Agency, 2008). This corresponds to 330 EJ of  primary energy, of which urban final energy use is estimated to be at 222 EJ. The Global Energy  Assessment provides a range of final urban energy use between 180 and 250 EJ with a central  estimate of 240 EJ for the year 2005. This is equivalent to an urban share between 56% and 78%  (central estimate, 76%) of global final energy use. Converting the GEA estimates on urban final  energy (Grubler et al., 2012) into CO2 emissions (see Methodology and Metrics Annex)  results in  global urban energy related CO2 emissions of 8.8   14.3 Gt (central estimate, 12.5Gt) which is  between 53% and 87% (central estimate, 76%) of CO2 emissions from global final energy use and  between 30% and 56% (central estimate, 43%) of global primary energy related CO2 emissions (CO2  includes flaring and cement emissions which are small). Urban CO2 emission estimates refer to  commercial final energy fuel use only and exclude upstream emissions from energy conversion.  Aside from these global assessments, there is only one attempt in the literature to estimate the total  GHG (CO2, CH4, N2O and SF6) contribution of urban areas globally (Marcotullio et al., 2013). Estimates  are provided in ranges where the lower end provides an estimate of the direct emissions from urban  areas only and the higher end provides an estimate that assigns all emissions from electricity  consumption to the consuming (urban) areas. Using this methodology, the estimated total GHG  emission contribution of all urban areas is lower than other approaches, and ranges from 12.8  GtCO2eq to 16.9 GtCO2eq, or between 37% and 49% of global GHG emissions in the year 2000. The  estimated urban share of energy related CO2 emissions in 2000 is slightly lower than the GEA and IEA  estimate, at 72% using Scope 2 accounting and 44% using Scope 1 accounting (see Figure 12.4). The  urban GHG emissions (CO2, N2O, CH4, and SF6) from the energy share of total energy GHGs is  between 42% and 66%.  Hence, while the sparse evidence available suggests that urban areas  dominate final energy consumption and associated CO2 emissions, the contribution to total global  GHG emissions may be more modest as the large majority of CO2 emissions from land use change,  N2O emissions, and CH4 emissions take place outside urban areas.     15 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Figure 12.4. Estimates of urban CO2 emissions shares as a percent of total emissions across world regions. Grübler et al. (2012) estimates are based on estimates of final urban and total final energy use in 2005. Marcotullio et al. (2013) estimates are based on emissions attributed to urban areas as a percent of regional totals reported by EDGAR. Scope 2 emissions allocate all emissions from thermal power plants to urban areas. Figure 12.4 shows CO2 estimates derived from Grübler et al. (2012) and Marcotullio et al. (2013). It  highlights that there are large variations in the share of urban CO2 emissions across world regions.  For example, urban emission shares of final energy related CO2 emissions range from 58% in China  and Central Pacific Asia to 86% in North America. Ranges are from 31%to 57% in South Asia, if urban  final energy related CO2 emissions are taken relative to primary energy related CO2 emissions in the  respective region.  Although differences in definitions make it challenging to compare across regional studies, there is  consistent evidence that large variations exist (Parshall et al., 2010; Marcotullio et al., 2011, 2012).  For example, the International Energy Agency (IEA) (2008) estimates of the urban primary energy  related CO2 emission shares are 69% for the EU (69% for primary energy), 80% for the United States  (85% for primary energy, see also (Parshall et al., 2010), and 86% for China (75% for primary energy,    16 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   see also (Dhakal, 2009)).  Marcotullio et al. (2013) highlight that non energy related sectors can lead  to substantially different urban emissions shares under consideration of a broader selection of  greenhouse gases (CO2, CH4, N2O, SF6). For example, while Africa tends to have a high urban CO2  emissions share (64% 74%) in terms of energy related CO2 emissions, the overall contribution of  urban areas across all sectors and gases is estimated to range between 21% and 30% of all emissions  (Marcotullio et al., 2013).   12.2.2.2    Emissions accounting for human settlements  Whereas the previous section discussed the urban proportion of total global emissions, this section  assesses emissions accounting methods for human settlements. A variety of emission estimates have  been published by different research groups in the scientific literature (e.g.,Ramaswami et al., 2008;  Kennedy et al., 2009, 2011; Dhakal, 2009; World Bank, 2010; Hillman and Ramaswami, 2010; Glaeser  and Kahn, 2010; Sovacool and Brown, 2010; Heinonen and Junnila, 2011a; c; Hoornweg et al., 2011;  Chavez and Ramaswami, 2011; Chavez et al., 2012; Grubler et al., 2012; Yu et al., 2012; Chong et al.,  2012). The estimates of GHG emissions and energy consumption for human settlements are very  diverse. Comparable estimates are usually only available across small samples of human  settlements, which currently limit the insights that can be gained from an assessment of these  estimates. The limited number of comparable estimates is rooted in the absence of commonly  accepted GHG accounting standards and a lack of transparency over data availabilities, as well as  choices that have been made in the compilation of particular estimates:  Choice of physical urban boundaries. Human settlements are open systems with porous  boundaries. Depending on how physical boundaries are defined, estimates of energy  consumption and GHG emissions can vary significantly (see Box 12.1).   Choice of accounting approach/reporting scopes. There is widespread acknowledgement in the  literature for the need to report beyond the direct GHG emissions released from within a  settlement s territory. Complementary accounting approaches have therefore been proposed  to characterize different aspects of the GHG performance of human settlements (see Box 12.2).  Cities and other human settlements are increasingly adopting dual approaches (Baynes et al.,  2011; Ramaswami et al., 2011; ICLEI and WRI, 2012; Carbon Disclosure Project, 2013; Chavez  and Ramaswami, 2013).  Choice of calculation methods. There are differences in the methods used for calculating  emissions, including differences in emission factors used, methods for imputing missing data,  and methods for calculating indirect emissions (Heijungs and Suh, 2010; Ibrahim et al., 2012).   A number of organizations have started working towards standardization protocols for emissions  accounting (Carney et al., 2009; ICLEI, 2009; Covenant of Mayors, 2010; UNEP et al., 2010; Arikan,  2011). Further progress has been achieved recently when several key efforts joined forces to create  a more broadly supported reporting framework (ICLEI et al., 2012). Ibrahim et al. (2012) show that  the differences across reporting standards explains significant cross sectional variability in reported  emission estimates. However, while high degrees of cross sectional comparability are crucial in order  to gain further insight into the emission patterns of human settlements across the world, many  applications at the settlement level do not require this. Cities and other localities often compile  these data to track their own performance in reducing energy consumption and/or greenhouse gas  emissions (see Section 12.7). This makes a substantial body of evidence difficult to use for scientific  inquiries.    17 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Box 12.2. Emission accounting at the local scale  Three broad approaches have emerged for GHG emissions accounting for human settlements, each  of which uses different boundaries and units of analysis.   1) Territorial or production based emissions accounting includes all GHG emissions from activities  within a city or settlement s territory (see Box 12.1). This is also referred to as Scope 1 accounting  (Kennedy et al., 2010; ICLEI et al., 2012). Territorial emissions accounting is, for example, commonly  applied by national statistical offices and used by countries under the United Nations Framework  Convention on Climate Change (UNFCCC) for emission reporting (Ganson, 2008; DeShazo and  Matute, 2012; ICLEI et al., 2012).   However, human settlements are typically smaller than the infrastructure in which they are  embedded, and important emission sources may therefore be located outside the city territorial  boundary. Moreover, human settlements trade goods and services that are often produced in one  settlement but are consumed elsewhere, thus creating GHG emissions at different geographic  locations associated with the production process of these consumable items. Two further  approaches have thus been developed in the literature, as noted below.  2) Territorial plus supply chain accounting approaches start with territorial emissions and then add  a well defined set of indirect emissions which take place outside the settlement s territory. These  include indirect emissions from (1) the consumption of purchased electricity, heat and steam (Scope  2 emissions), and (2) any other activity (Scope 3 emissions). The simplest and most frequently used  territorial plus supply chain accounting approach includes Scope 2 emissions (Hillman and  Ramaswami, 2010; Kennedy et al., 2010; Baynes et al., 2011; ICLEI et al., 2012).   3) Consumption based accounting approaches include all direct and indirect emissions from final  consumption activities associated with the settlement, which usually include consumption by  residents and government (Larsen and Hertwich, 2009, 2010a; b; Heinonen and Junnila, 2011a; b;  Jones and Kammen, 2011; Minx et al., 2013). This approach excludes all emissions from the  production of exports in the settlement territory and includes all indirect emissions occurring  outside the settlement territory in the production of the final consumption items.  Beyond the restricted comparability of the available GHG estimates, six other limitations of the  available literature remain. First, the growth in publications is restricted to the analysis of energy  consumption and GHG emissions from a limited set of comparable emission estimates. New  estimates do not emerge at the same pace. Second, available evidence is particularly scarce for  medium and small cities as well as rural settlements (Grubler et al., 2012). Third, there is a regional  bias in the evidence. Most studies focus on emissions from cities in developed countries with limited  evidence from a few large cities in the developing world (Kennedy et al., 2009, 2011; Hoornweg et  al., 2011; Sugar et al., 2012). Much of the most recent literature provides Chinese evidence (Dhakal,  2009; Ru et al., 2010; Chun et al., 2011; Wang et al., 2012a; b; Chong et al., 2012; Yu et al., 2012;  Guo et al., 2013; Lin et al., 2013; Vause et al., 2013; Lu et al., 2013), but only limited new emission  estimates are emerging from that. Evidence on human settlements in least developed countries is  almost non existent with some notable exceptions in the non peer reviewed literature (Lwasa,  2013). Fourth, most of the available emission estimates are focusing on energy related CO2 rather  than all GHG emissions. Fifth, while there is a considerable amount of evidence for territorial  emissions, studies that include Scope 2 and 3 emission components are growing but remain limited  (Ramaswami et al., 2008, 2012b; Kennedy et al., 2009; Larsen and Hertwich, 2009, 2010a; b; Hillman  and Ramaswami, 2010; White et al., 2010; Petsch et al., 2011; Heinonen and Junnila, 2011a; b;  Heinonen et al., 2011; Chavez et al., 2012; Paloheimo and Salmi, 2013; Minx et al., 2013). Finally, the  comparability of available evidence of GHG emissions at the city scale is usually restricted across  studies. There prevails marked differences in terms of the accounting methods, scope of covered  sectors, sector definition, greenhouse gas covered, and data sources used (Bader and Bleischwitz,  2009; Kennedy et al., 2010; Chavez and Ramaswami, 2011; Grubler et al., 2012; Ibrahim et al., 2012).      18 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Across cities, existing studies point to a large variation in the magnitude of total and per capita  emissions. For this assessment, emission estimates for several hundred individual cities were  reviewed. Reported emission estimates for cities and other human settlements in the literature  range from 0.5 tCO2/cap to more than 190 tCO2/cap (Carney et al., 2009; Kennedy et al., 2009;  Dhakal, 2009; Heinonen and Junnila, 2011a; c; Wright et al., 2011; Sugar et al., 2012; Ibrahim et al.,  2012; Ramaswami et al., 2012b; Carbon Disclosure Project, 2013; Chavez and Ramaswami, 2013;  Department of Energy & Climate Change, 2013). Local emission inventories in the UK for 2005 2011  show that end use activities and industrial processes of both rural and urban localities vary from  below 3 to 190 tCO2/cap and more (Department of Energy & Climate Change, 2013). The total CO2  emissions from end use activities for ten global cities range (reference year ranges 2003 2006)  between 4.2 and 21.5 tCO2eq/cap (Kennedy et al., 2009; Sugar et al., 2012), while there is variation  reported in GHG estimates from 18 European city regions from 3.5 to 30 tCO2eq/cap in 2005 (Carney  et al., 2009).  In many cases, a large part of the observed variability will be related to the underlying drivers of  emissions such as urban economic structures (balance of manufacturing versus service sector), local  climate and geography, stage of economic development, energy mix, state of public transport, urban  form and density, and many others (Carney et al., 2009; Kennedy et al., 2009, 2011; Dhakal, 2009,  2010; Glaeser and Kahn, 2010; Shrestha and Rajbhandari, 2010; Gomi et al., 2010; Parshall et al.,  2010; Rosenzweig et al., 2011; Sugar et al., 2012; Grubler et al., 2012; Wiedenhofer et al., 2013).  Normalizing aggregate city level emissions by population therefore does not necessarily result in  robust cross city comparisons, since each city s economic function, trade typology, and imports exports balance can differ widely. Hence, using different emissions accounting methods can lead to  substantial differences in reported emissions (see Figure 12.4). Therefore, understanding differences  in accounting approaches is essential in order to draw meaningful conclusions from cross city  comparisons of emissions.   Evidence from developed countries such as the United States, Finland, or the United Kingdom  suggests that consumption based emission estimates for cities and other human settlements tend to  be higher than their territorial emissions. However, in some cases, territorial or extended territorial  emission estimates (Scope 1 and Scope 2 emissions) can be substantially higher. This is mainly due to  the large fluctuations in territorial emission estimates that are highly dependent on a city s  economic structure and trade typology. Consumption based estimates tend to be more  homogenous (see Figure 12.5).    19 of 125     Final Draft  Chapter 12  IPCC WGIII AR5     Figure 12.5. Extended territorial and consumption-based per capita CO2 emissions for 354 urban (yellow/orange/red) and rural (blue) municipalities in England. At the 45° line, per capita extended territorial and consumption-based CO2 emissions are of equal size. Below the 45° line, consumptionbased CO2 emission estimates are larger than extended territorial emissions. Above the 45° line, estimates of extended territorial CO2 emissions are larger than consumption-based CO2 emissions. Robust regression lines are shown for the rural (blue) and urban (yellow/orange/red) sub-samples. In the inset, the x-axis shows 10 15 tonnes of CO2 emissions per capita and the y-axis shows 4 16 tonnes of CO2 emissions per capita. Source: Minx et al., (2013). Based on a global sample of 198 cities by the Global Energy Assessment, Grubler et al. (2012) find  that two out of three cities in Annex I countries have a lower per capita final energy use than  national levels. In contrast, per capita final energy use for more than two out of three cities in non Annex I countries have higher than national averages (see Figure 12.6). There is not sufficient  comparable evidence available for this assessment to confirm this finding for energy related CO2  emissions, but this pattern is suggested by the close relationship between final energy use and  energy related CO2 emissions. Individual studies for 35 cities in China, Bangkok, and 10 global cities  provide additional evidence of these trends (Dhakal, 2009; Aumnad, 2010; Kennedy et al., 2010;  Sovacool and Brown, 2010). Moreover, the literature suggests that differences in per capita energy  consumption and CO2 emission patterns of cities in Annex I and non Annex I countries have  converged more than their national emissions (Sovacool and Brown, 2010; Sugar et al., 2012). For  consumption based CO2 emissions, initial evidence suggests that urban areas tend to have much  higher emissions than rural areas in non Annex I countries, but the evidence is limited to a few  studies on India and China (Parikh and Shukla, 1995; Guan et al., 2008, 2009; Pachauri and Jiang,  2008; Minx et al., 2011). For Annex I countries, studies suggest that using consumption based CO2  emission accounting, urban areas can, but do not always, have higher emissions than rural  settlements (Lenzen et al., 2006; Heinonen and Junnila, 2011c; Minx et al., 2013).     20 of 125     Final Draft  Chapter 12  IPCC WGIII AR5     Figure 12.6. Per capita (direct) total final consumption (TFC) of energy (GJ) versus cumulative population (millions) in urban areas. Source: GEA, (2012). There are only a few downscaled estimates of CO2 emissions from human settlements and urban as  well as rural areas, mostly at regional and national scales for the EU, United States, China, and India  (Parshall et al., 2010; Raupach et al., 2010; Marcotullio et al., 2011, 2012; Gurney et al., 2012).  However, these studies provide little to no representation of intra urban features and therefore  cannot be substitutes for place based emission studies from cities. Recent studies have begun to  combine downscaled estimates of CO2 emissions with local urban energy consumption information  to generate fine scale maps of urban emissions (see Figure 12.7 and Gurney et al., 2012). Similarly,  geographic demographic approaches have been used for downscaling consumption based estimates  (Druckman and Jackson, 2008; Minx et al., 2013). Such studies may allow more detailed analyses of  the drivers of urban energy consumption and emissions in the future.   Figure 12.7. Total fossil fuel emissions of Marion County, Indiana, USA, for the year 2002. a) topdown view with numbered zones and b) blow ups of numbered zones. Box height units: linear. Source: Gurney et al., (2012).   21 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.2.3    Future trends in urbanization and GHG emissions from human settlements  This section addresses two issues concerning future scenarios of urbanization.  It summarizes  projected future urbanization dynamics in multiple dimensions. It assesses and contextualizes  scenarios of urban population growth, urban expansion, and urban emissions.  12.2.3.1    Dimension 1: Urban population  Worldwide, populations will increasingly live in urban settlements. By the middle of the century, the  global urban population is expected to reach between 5.6 to 7.1 billion, with trends growth varying  substantially across regions (Table 12.2). While highly urbanized North America, Europe, Oceania,  and Latin America will continue to urbanize, the increase in urbanization levels in these regions is  relatively small. Urbanization will be much more significant in Asia and Africa where the majority of  the population is still rural. Urban population growth will also largely occur in the less developed  Africa, Asia, and Latin America. The proportion of rural population in the developed regions have  declined from about 60% in 1950 to less than 30% in 2010, and will continue to decline to less than  20% by 2050.  Table 12.2. Mid-year global urban population, 2050 2050 Mid Year Global Urban Population  Total Pop.  %  Source  in billions  Urban  IIASA Greenhouse Gas Index, A2R Scenario  10.245 69 World Bank  9.417 67 United Nations  9.306 67 IIASA Greenhouse Gas Index, B2 Scenario  9.367 66 IIASA Greenhouse Gas Index, B1 Scenario  8.721 64 Sources: (IIASA, 2009; UN DESA, 2012; World Bank, 2013). Urban Pop.  in billions  7.069 6.308 6.252 6.182 5.581                         Uncertainties in future global urbanization trends are large, due in part to different trajectories in  economic development and population growth. While the United Nations Development Programme  (UNPD) produces a single urbanization scenario for each country through 2050, studies suggests that  urbanization processes in different countries and different periods of time vary remarkably.  Moreover, past UN urbanization projections have contained large errors and have tended to  overestimate urban growth, especially for countries at low and middle urbanization levels (Bocquier,  2005; Montgomery, 2008; Alkema et al., 2011).  Given these limitations, recent studies have begun to explore a range of urban population growth  scenarios.  A study undertaken at International Institute for Applied Systems Analysis (IIASA)  extrapolates UN scenarios to 2100 and develops three alternative scenarios by making assumptions  about long term maximum urbanization levels (Grubler et al., 2007). However, missing from these  scenarios is the full range of uncertainty over the next twenty to thirty years, the period when the  majority of developing countries will undergo significant urban transitions. For instance, variation  across different urbanization scenarios before 2030 is negligible (0.3%) for India and also very small  (<4%) for China (see Figure 12.8, dashed lines). By 2050, urbanization levels could realistically reach  between 38 69% in India, and 55 78% in China (O Neill et al., 2012). In other words, there are large  uncertainties in urbanization trajectories for both countries. The speed (fast or slow) as well as the  nature (an increase in industrialization) of urbanization could lead to significant effects on future  urban energy use and emissions.     22 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Figure 12.8. Projected urban population growth for India and China under fast, central, and slow growth scenarios (left) and associated growth in CO2 emissions (right). Sources: (O Neill et al., 2012), (Grubler et al., 2007). 12.2.3.2    Dimension 2: Urban land cover  Recently, global forecasts of urban expansion that take into account population and economic  factors have become available (Nelson et al., 2010; Angel et al., 2011; Seto et al., 2011, 2012). These  studies vary in their baseline urban extent in 2000, model inputs, assumptions about future trends in  densities, economic and population growth, and modelling methods.  They forecast that between  2000 and 2030, urban areas will expand between 0.3 million to 2.3 million km2, corresponding to an  increase between 56% to 310% (see Table 12.3 and Angel et al., 2011; Seto et al., 2011, 2012). It is  important to note that these studies forecast changes in urban land cover (features of Earth s  surface) and not changes in the built environment and infrastructure (e.g., buildings, roads).  However, these forecasts of urban land cover can be useful to project infrastructure development  and associated emissions. Given worldwide trends of declining densities, the zero population density  decline scenario and associated urban growth forecast (0.3 million) is unlikely, as is the Special  Report on Emissions Scenarios (SRES) A1 scenario of very rapid economic growth and a peak in global  population mid century. According to the studies, the most likely scenarios are SRES B2 (Seto et al.,  2011), >75% probability (Seto et al., 2012), and 2% decline (Angel et al., 2011), which reduces the  range of forecast estimates to between 1.1 to 1.5 million km2 of new urban land. This corresponds to  an increase in urban land cover between 110% to 210% over the 2000 global urban extent. Hurtt et  al. (2011) report projected land use transitions including urbanization, out to 2100, for the intended  use in Earth System Models (ESMs). However, they do not give a detailed account of the projected  urban expansion in different parts of the world.  Depending on the scenario and forecast, 55% of the total urban land in 2030 is expected to be built  in the first three decades of the 21st century. Nearly half of the global growth in urban land cover is  forecasted to occur in Asia, and 55% of the regional growth will take place in China and India (Seto et  al., 2012). China s urban land area is expected to expand by almost 220,000 square km2 by 2030, and  account for 18% of the global increase in urban land cover (Seto et al., 2012). These forecasts  provide first order estimates of the likelihood that expansion of urban areas will occur in areas of  increasing vulnerability to extreme climate events including floods, storm surges, sea level rise,  droughts, and heat waves (See AR5 WGII, Chapter 8). Urban expansion and associated land clearing  and loss of aboveground biomass carbon in the pan tropics is expected to be 1.38 PgC between 2000  and 2030, or 0.05 PgC/yr (Seto et al., 2012).     23 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Table 12.3. Forecasts of global urban land expansion to 2030 Sources: Angel et al., (2011); Seto et al., (2011), (2012).   12.2.3.3    Dimension 3: GHG emissions  Recent developments in integrated models are beginning to capture the interdependence among  urban population, urban land cover, and GHG emissions. Some integrated models have found that  changes in urbanization in China and India have a less than proportional effect on aggregate  emissions and energy use (O Neill et al., 2012). These studies find that income effects due to  economic growth and urbanization result in household consumption shifts toward cleaner cooking  fuels (O Neill et al., 2012). In India, the urbanization level in 2050 will be 16 percentage points lower  under the slow urbanization scenario than under the central scenario, or 15 percentage points  higher under the fast scenario than under the central scenario. However, these large differences in  potential urbanization levels in India lead to relatively small differences in emissions:  7% between  the slow and central urbanization scenarios, and 6% between the fast and central urbanization  scenarios (O Neill et al., 2012). The relatively small effect of urbanization on emissions is likely due to  relatively small differences in per capita income between rural and urban areas (O Neill et al., 2012).  In contrast, large differences in per capita income between urban and rural areas in China result in  significant differences in household consumption, including for energy (O Neill et al., 2012).  Differences in urbanization pathways also reflect different speeds of transition away from the use of  traditional fuels toward modern fuels such as electricity and natural gas (Krey et al., 2012). Slower  rates of urbanization result in slower transitions away from traditional to modern fuels (Jiang and  O Neill, 2004; Pachauri and Jiang, 2008). A large share of solid fuels or traditional biomass in the final  energy mix can have adverse health impacts due to indoor air pollution (Bailis et al., 2005;  Venkataraman et al., 2010).  Accounting for uncertainties in urban population growth, the scenarios show that urbanization as a  demographic process does not lead to a corresponding growth in emissions and energy use (Figure  12.8b). In China, for example, under the central scenario (similar to UN projections) the country will  reach 70% urban population by 2050 and the total carbon emissions will reach 11 GtC/yr. Under the  slow urbanization scenario, the urbanization level is 13% lower than the central urbanization  scenario, but results in emissions that are 9% lower than under the central urbanization scenario.  Similarly, the fast urbanization scenario results in emissions that are 7% higher than under the  central scenario, but with urbanization levels that are 11% higher.    Studies of the effects of demographic change on GHG emissions come to contradicting conclusions  (Dalton et al., 2008; Kronenberg, 2009).  Many of the forecasts on urbanization also do not explicitly  account for the infrastructure for which there is a separate set of forecasts (Davis et al., 2010;    24 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Kennedy and Corfee Morlot, 2013; Müller et al., 2013) including those developed by the IEA  (International Energy Agency, 2013) and the Organisation for Economic Co operation and  Development (OECD) (OECD, 2006b, 2007). However these infrastructure forecasts, typically by  region or country, do not specify the portion of the forecasted infrastructure in urban areas and  other settlements. One study finds that both ageing and urbanization can have substantial impacts  on emissions in certain world regions such as the United States, the EU, China, and India. Globally, a  16 29% reduction in the emissions by 2050 (1.4 2.5 GtC/yr) could be achieved through slowing  population growth (O Neill et al., 2010).    12.3   Urban Systems: Activities, Resources, and Performance  How does urbanization influence global or regional CO2 emissions? This section discusses drivers of  urban GHG emissions, how they affect different sectors, and their interaction and interdependence.  The magnitude of their impact on urban GHG emissions is also discussed qualitatively and  quantitatively to provide context for a more detailed assessment of urban form and infrastructure  (12.4) and spatial planning (12.5).   12.3.1    Overview of drivers of urban GHG emissions  Urban areas and nations share some common drivers of GHG emissions. Other drivers of urban GHG  emissions are distinct from national drivers and are locally specific. The previous section discussed  important accounting issues that affect the estimation of urban scale GHG emissions. (For a more  comprehensive review, see Kennedy et al., 2009; ICLEI and WRI, 2012; Ramaswami et al., 2012b;  Steinberger and Weisz, 2013). Another characteristic of urban areas is that their physical form and  structure in terms of land use mix and patterns, density, and spatial configuration of infrastructure  can strongly influence GHG emissions (see discussion below and in 12.4). The basic constituent  elements of cities such as streets, public spaces, buildings, and their design, placement, and function  reflect their socio political, economic, and technological histories (Kostof, 1991; Morris, 1994; Kostof  and Tobias, 1999). Hence, cities often portray features of  path dependency  (Arthur, 1989), a  historical contingency that is compounded by the extent of pre existing policies and market failures  that have lasting impacts on emissions (see Section 12.6 below).   The following sections group and discuss urban GHG emission drivers into four clusters that reflect  both the specificity of urban scale emissions as well as their commonality with national scale drivers  of GHG emissions addressed in the other chapters of this assessment:  Economic geography and income   Socio demographic factors  Technology  Infrastructure and urban form  Economic geography refers to the function of a human settlement within the global hierarchy of  places and the international division of labour, as well as the resulting trade flows of raw materials,  energy, manufactured goods, and services. Income refers to the scale of economic activity, often  expressed through measures of Gross Regional Product (GRP) (i.e., the GDP equivalent at the scale  of human settlements), calculated either as an urban (or settlement) total, or normalized on a per  capita basis.   Socio demographic drivers of urban GHG emissions include population structure and dynamics (e.g.,  population size, age distribution, and household characteristics) (O Neill et al., 2010) as well as  cultural norms (e.g., consumption and lifestyle choices) and distributional and equity factors (e.g.,  access or lack thereof to basic urban infrastructure). Unequal access to housing and electricity is a  significant social problem in many rapidly growing cities of the Global South (Grubler and Schulz,    25 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   2013) and shapes patterns of urban development. Here,  technology  refers to macro level drivers  such as the technology of manufacturing and commercial activities.  Infrastructure  and  urban form   refer to the patterns and spatial arrangements of land use, transportation systems, and urban design  elements (Lynch, 1981; Handy, 1996) and are discussed in greater detail in Section 12.4.  12.3.1.1    Emission drivers decomposition via IPAT  Explaining GHG emission growth trends via decomposition analysis is a widely used technique in the  scientific literature and within IPCC assessments ever since Kaya (1990). The so called IPAT identity  (for a review, see Chertow, 2000) is a multiplicative identity in which Impacts (e.g., emissions) are  described as being the product of Population x Affluence x Technology. First derivatives (growth  rates) of the components of this identity become additive, thus allowing a first analysis on the  relative weight of different drivers. The IPAT identity is a growth accounting framework and does not  lend itself to explaining differences between urban settlements in terms of absolute GHG emission  levels and their driving forces (see discussion below).   There is great interest in understanding the drivers of China s urban GHG emissions, which has  resulted in a large literature on the decomposition of GHG emissions for Chinese megacities.  With  approximately 10 tonnes of CO2 per urban capita three times the national average China  approaches and in some cases, surpasses levels for Annex I countries and cities (Dhakal 2009).  Studies have used national emission inventory methods following the IPCC/OECD guidelines (Dhakal,  2009; Chong et al., 2012) or input output techniques (Wang et al., 2013) and thus have used both  production and consumption accounting perspectives. Studies have also gone beyond the simple  IPAT accounting framework, such as using index decomposition (Donglan et al., 2010). Together,  these studies show considerable variation in per capita GHG emissions across Chinese cities (see, for  example, Figure 12.9). Although the relative contribution of different drivers of emissions varies  across cities and time periods, one study of several Chinese cities found that income is the most  important driver of increases in urban carbon emissions, far surpassing population growth, with  improvements in energy efficiency serving as a critical counterbalancing factor to income growth  (Dhakal 2009). The importance of economic growth as a driver of urban CO2 emissions in China has  been consistently corroborated in other studies, including those that examine relatively smaller  cities and with the use of alternative types of data and methods (Li et al., 2010; Liu et al., 2012; e.g.  Chong et al., 2012; Jiang and Lin, 2012).   However, the evidence on whether the gains in efficiency can counterbalance the scale of  infrastructure construction and income growth in China is less conclusive. Several studies  implemented at different spatial scales have found that the scale of urbanization and associated  consumption growth in China have outpaced gains from improvements in efficiency (Peters et al.,  2007; Feng et al., 2012; Güneralp and Seto, 2012). Other studies have found that improvements in  efficiency offset the increase in consumption (Liu et al., 2007; Zhang et al., 2009; Minx et al., 2011).  The literature on drivers of urban GHG emissions in other non Annex I countries is more sparse,  often focusing on emission drivers at the sectoral level such as transport (Mraihi et al., 2013) or  household energy use (Ekholm et al., 2010). In these sectoral studies, income and other factors (that  are highly correlated with income) such as vehicle ownership and household discount rates, are also  shown as important determining variables.    26 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Figure 12.9. Decomposition of urban-scale CO2 emissions (absolute difference over time period specified (dark blue) and renormalized to index 1 (other colours)) for four Chinese cities 1985 to 2006 (Dhakal, 2009). Note the economic effect in the graph corresponds to an income effect as discussed in the text. For comparison, per capita CO2 emissions for these four cities range between 11.7 (Shanghai), 11.1 (Tianjin), 10.1 (Beijing), and 3.7 (Chongqing) tCO2/cap (Hoornweg et al., 2011).   Decomposition analyses are available for cities in the United States (Glaeser and Kahn, 2010), the UK  (Minx et al., 2013), Japan (Makido et al., 2012), and Australia (Wiedenhofer et al., 2013).  These  studies show that income is an important driver of urban GHG emissions. Studies using more  disaggregated emission accounts complement these findings by also identifying other significant  influencing factors including automobile dependence, household size, and education (Minx et al.,  2013) or additional variables such as climate represented by heating  or cooling degree days  (Wiedenhofer et al., 2013).  The latter two studies are of particular interest as they provide an in depth analysis of the determining variables of urban GHG emissions using both production and  consumption based accounting approaches. In both accounting approaches, income emerges as an  important determinant of urban GHG emissions.   12.3.1.2    Interdependence between drivers   The drivers outlined above vary in their ability to be influenced by local decision making. It is difficult  to isolate the individual impact of any of these factors on urban energy use and GHG emissions since  they are linked and often interact across different spatial and temporal scales. The interaction  among the factors and the relative importance of each will vary from place to place. Moreover,  many of these factors change over time and exhibit path dependence.   A legitimate concern with the IPAT decomposition approach is that the analysis assumes variable  independence, thus ignoring variable interdependence and co variance. For instance, a study of 225  cities suggests a robust negative correlation between per capita income levels and energy intensity  (Grubler et al., 2012) that holds for both high income as well as low income cities. Income growth  has the potential to drive investment in technology, changing investment in newer and more  efficient technologies, as higher income segments have lower discount rates or higher tolerance to  longer payback times (Hausman, 1979).    27 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.3.1.3    Human settlements, linkages to sectors, and policies  The major drivers discussed above affect urban GHG emissions through their influence on energy  demand in buildings, transport, industry, and services. These can be mitigated through demand side  management options. As such, human settlements cut across the assessment of mitigation options  in sector specific chapters of this Assessment (see Table 12.4). The drivers also affect the demand  for urban energy, water, and waste infrastructure systems, whose GHG emissions can be mitigated  via technological improvements within each individual infrastructure system (e.g., methane recovery  from municipal wastewater treatment plants and landfills) as well as through improved system  integration (e.g., using urban waste as an energy source). Given the interdependence between  drivers and across driver groups discussed above, independent sectoral assessments have limitations  and risk omitting important mitigation potentials that arise from systems integration.  Table 12.4. Examples of policies across sectors and mitigation options at the scale of human settlements.   On one hand, governance and institutions for addressing mitigation options at the urban scale are  more dispersed (see 12.6) and face a legacy of inadequately addressing a range of market failures  (see Box 12.3). On the other hand, the urban scale also provides unique opportunities for policy  integration between urban form and density, infrastructure planning, and demand management  options. These are key, especially in the domain of urban transport systems. Lastly, governance and    28 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   institutional capacity are scale and income dependent, i.e., tend to be weaker in smaller scale cities  and in low income/revenue settings. In so far as the bulk of urban growth momentum is expected to  unfold in small  to medium size cities in non Annex I countries (see Section 12.2), mitigation of GHG  emissions at the scale of human settlements faces a new type of  governance paradox  (Grubler et  al., 2012): the largest opportunities for GHG emission reduction (or avoidance of unfettered  emission growth) might be precisely in urban areas where governance and institutional capacities to  address them are weakest (Bräutigam and Knack, 2004; Rodrik et al., 2004).  12.3.2    Weighing of Drivers  This section assesses the relative importance of the GHG drivers in different urban contexts such as  size, scale, and age, and examines the differences between cities in developed and developing  countries.  12.3.2.1    Qualitative weighting  In the previous discussion of the respective role of different emission drivers, the emphasis was  placed on the role of drivers in terms of emission growth. That perspective is complemented in this  section by a consideration of the absolute level of emissions, and the issue of urban size/scale. This  section also differentiates the role of emission drivers between mature versus growing human  settlements.  Importance of size and scaling  Given the significance of human settlements for global resource use, an improved understanding of  their size distribution and likely growth dynamics is crucial. For many physical, biological, social, and  technological systems, robust quantitative regularities like stable patterns of rank distributions have  been observed. Examples of such power law scaling patterns include phenomena like the frequency  of vocabulary in languages, the hierarchy of urban population sizes across the world (Zipf, 1949;  Berry and Garrison, 1958; Krugman, 1996) or the allometric scaling patterns in biology, such as  Kleiber s Law, which observes the astonishing constancy in the relation between body mass and  metabolic rates: for living organisms across many orders of magnitude in size that metabolic rate  scales to the 3/4 power of the body mass (Kleiber, 1961). There is a vigorous debate in many fields,  including Geography (Batty, 2005, 2008), Ecology (Levin, 1992; West et al., 1999; Brown et al., 2004),  Architecture (Weinstock, 2011), and Physics (Carvalho and Penn, 2004) about the extent to which  underlying hierarchical networks of metabolic systems or transportation networks are the ultimate  causes of the size, shape and rank distribution of entities, be they organisms or urban systems  (Decker et al., 2000, 2007).  With the scale of urbanization trends currently underway, whether the relationship between city  size and GHG emissions is linear (i.e., one to one, or proportional increase), super linear (i.e.,  increasing returns to scale) or sub linear (i.e., economies of scale such as efficiency gains through  shared infrastructure) will be critical for understanding future urban GHG emissions.  Super linear  scaling has been observed for many urban phenomena: as a city s population increases, there is a  greater than one to one increase in productivity, wages, and innovation as well as crime  (Bettencourt et al., 2007, 2010). If cities exhibit sub linear scaling with respective to energy and GHG  emissions, it suggests that larger cities are more efficient than smaller ones. While there are many  studies of urban scaling, few studies explicitly examine city size and GHG emissions or energy use,  and the limited empirical evidence on the scaling relationship is inconclusive.  A study of 930 urban  areas in the United States nearly all the urban settlements shows a barely sub linear relationship  (coefficient=0.93) between urban population size and GHG emissions (Fragkias et al., 2013).   In a study of 225 cities across both Annex I and non Annex I countries, Grubler and Schulz (2013) find  non uniform scaling for urban final energy use, with a distribution characterized by threshold effects  across an overall convex distribution (Figure 12.10). In terms of final energy use, which is an  important determinant of urban GHG emissions, increasing the urban scale in terms of energy use    29 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   has different implications as a function of three different urban energy scale classes. Small cities with  low levels of final energy use below 30 PJ present the steepest growth in energy use with respect  to increasing city size: a doubling of rank position tends to increase the urban energy use by a factor  of 6.1. For medium sized cities with moderate energy use (between 30 and 500 PJ final energy use  per city), a doubling of city rank corresponds to an increase in energy consumption only by a factor  of 1.6. For the largest urban energy users in the dataset, cities with greater than 500 PJ of final  energy use per year, a doubling of urban rank is associated with an increase in urban energy use by a  factor of only 0.5.  This indicates considerable positive agglomeration economies of bigger cities with  respect to energy use. Only four urban agglomerations of the entire sample of 225 have an annual  final energy use significantly greater than one EJ: Shanghai (2 EJ), Moscow (1.6 EJ), Los Angeles (1.5  EJ), and Beijing (1.2 EJ). With urban growth anticipated to be the most rapid in the smaller cities of  fewer than 500,000 inhabitants (UN DESA, 2010), the patterns observed by (Grubler and Schulz,  2013) suggest very high elasticities of energy demand growth with respect to future increases in  urban population.       Figure 12.10. Rank size distribution of 225 cities in terms of their final energy use (in EJ) regrouped into 3 subsamples (>0.5EJ, 0.03-0.5EJ, <0.03EJ) and corresponding sample statistics. The rank of a city is its position in the list of all cities sorted by size, measured in terms of final energy use. Note the different elasticities of energy use with respect to changes in urban size rank. The factors (slopes) shown in the figure detail the increase of energy use when doubling the rank for the respective groups. Source: (Grubler and Schulz, 2013). Mature versus growing cities  The relative impacts of the four drivers on emissions differ depending upon whether urban areas are  established and mature versus growing and developing.   Economic geography and income have high impact for both mature and growing cities.  Mature  cities in developed countries often have high income, high consumption, and are net consumers of  goods and services, with a large share of imports. These cities have high emissions, depending upon    30 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   the energy supply mix.  Many imported goods are produced in growing cities in developing  countries. The resulting differentiation within the international division of labour and corresponding  trade flows can be categorized into three types of cities: Net Producers, Trade Balanced, and Net  Consumers (Chavez and Ramaswami, 2013).  As a result, differences in reported urban GHG  emissions are pronounced for Net Producer and Net Consumer cities, illustrating the critical  importance of taking economic geography and international trade into account when considering  urban GHG emission inventory frameworks. The degree to which economic growth drives GHG  emissions includes the type of economic specialization of urban activities and the energy supply mix  (Brownsword et al., 2005; Kennedy et al., 2012). Cities with energy intensive industries are likely to  contribute higher total and per capita GHG emissions than those whose economic base is in the  service sector (Dhakal, 2009, 2010). Specialization in energy intensive sectors creates a strong  correlation between economic growth and GHG emissions growth. This relationship is further  strengthened if the energy supply mix is carbon intensive (Parikh and Shukla, 1995; Sugar et al.,  2012).     Higher urban incomes are correlated with higher consumption of energy and GHG emissions (Kahn,  2009; Satterthwaite, 2009; Kennedy et al., 2009; Weisz and Steinberger, 2010; Zheng et al., 2010;  Hoornweg et al., 2011; Marcotullio et al., 2012).  At the household level, studies in a variety of  different countries (Netherland, India, Brazil, Denmark, Japan, and Australia) have also noted  positive correlations between income and energy use (Vringer and Blok, 1995; Cohen et al., 2005;  Lenzen et al., 2006; Pachauri and Jiang, 2008; Sahakian and Steinberger, 2011). As such, income  exerts a high influence on GHG emissions. The Global Energy Assessment concluded that cities in  non Annex I countries generally have much higher levels of energy use compared to the national  average, in contrast to cities in Annex I countries, which generally have lower energy use per capita  than national averages (see Figure 12.6 and Grubler et al., 2012). One reason for this inverse pattern  is due to the significantly higher urban to rural income gradient in cities in non Annex I countries  compared to Annex I countries. That is, per capita incomes in non Annex I cities tend to be several  fold higher than rural per capita incomes, thus leading to much higher energy use and resulting  emissions.   Socio demographic drivers are of medium importance in rapidly growing cities, further mediated as  growth rates decline, incomes increase and lifestyle choices change. Social demographic drivers are  of relatively small importance in mature cities, where growth is slow and populations are ageing.   Household size, defined as the number of persons in a household, has been steadily declining over  the last fifty years. Worldwide, average household size declined from 3.6 to 2.7 between 1950 to  1990, and this trend is occurring in both developed and developing countries although at different  rates (MacKellar et al., 1995; Bongaarts, 2001). Smaller household size is correlated with higher per  capita emissions, whereas larger household size can take advantage of economies of scale. Evidence  on the relationship between urban population size and per capita emissions is inconclusive. Scale  effects have been shown for cities in Asia (Marcotullio et al., 2012) but little to no scaling effect for  GHG emissions in the United States (Fragkias et al., 2013).  Infrastructure and urban form are of medium to high importance as drivers of emissions. In rapidly  growing cities, infrastructure is of high importance where the largest share of infrastructure  construction is occurring.  In mature cities, urban form drivers are of high importance as they set in  place patterns of transport and other energy use behaviour.  In mature cities, infrastructure is of  medium importance, as they are largely established, and thus refurbishing or repurposing of old  infrastructures offers primary mitigation opportunities.  The global expansion of infrastructure used  to support urbanization is a key driver of emissions across multiple sectors. Due to the high capital  costs, increasing returns, and network externalities related to infrastructures that provide  fundamental services to cities, emissions associated with infrastructure systems are particularly  prone to lock in (Unruh and Carrillo Hermosilla, 2006; Unruh, 2002, 2000).  The committed  emissions from energy and transportation infrastructures are especially high, with respective ranges    31 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   of committed CO2 of 127 336 and 63 132 Gt (Davis et al., 2010). For example, the GHG emissions  from primary production alone for new infrastructure development for non Annex I countries are  projected to be 350 Gt CO2 (Müller et al., 2013). For a detailed discussion see Sections 12.4 and 12.5.  Technology is a driver of high importance. Income and scale exert important influences on the  mitigation potential for technologies. While lock in may limit the rate of mitigation in mature cities,  the opportunity exists in rapidly growing cities to leapfrog to new technologies. For mature cities,  technology is important due to agglomeration externalities, Research and Development (R&D) and  knowledge concentration, and access to capital that facilitate the development and early  deployment of low carbon technologies (Grubler et al., 2012). For rapidly growing cities, the  importance of technology as a driver may be low for systems with high capital requirements but high  for less capital intensive (e.g., some demand side efficiency or distributed supply) systems.  The  influence of all drivers depends upon governance, institutions, and finance (Section 12.6).  12.3.2.2    Relative weighting of drivers for sectoral mitigation options  Drivers affect GHG emissions via influence on energy demand (including demand management) in  buildings (households and services), transport, and industry, as well as on energy supply, water, and  waste systems. Over time, structural transitions change both the shares of emissions by sectors with industrial, then services and transport shares of final energy increasing with development  (Schäfer, 2005; Hofman, 2007) as well as the relative importance of drivers. Economic geography  has a large influence on emissions from the industry and service sectors (Ramaswami, 2013) plus  international transport (bunkers fuels). These influences are particularly pronounced in urban  agglomerations with very porous economies. For example Schulz (2010) analyzed Singapore and  found that GHG emission embodied in the imports and exports of the city are five to six times larger  than the emissions from the direct primary energy use of the city s population.  Similarly, Grubler et  al. (2012) examined New York and London, which are global transportation hubs for international air  travel and maritime commerce. As a result, international aviation and maritime fuels (bunker fuels)  make up about one third of the total direct energy use of these cities, even if associated emissions  are often excluded in inventories, following a practice also used in national GHG emission  inventories (Macknick, 2011).    Income has a large influence on direct emissions due to energy use in buildings by influencing the  floor area of residential dwellings, the amount of commercial floor space and services purchased,  and buildings  energy intensities (see Table 9.2), and also on transport, including increasing vehicle  ownership, activity, energy intensity and infrastructure (see Chapter 8.2). Income also has large  indirect effects on emissions, for example influencing the number of products purchased (e.g.,  increasing sales of electronics) (see Chapter 10.2) and their energy intensity (e.g., consumables like  food) (see Chapter 11.4), perhaps produced by the industrial and services sectors somewhere else,  and transported to the consumers (increasing freight transport activity).  Social demographic drivers have a large effect on emissions, particularly in buildings (e.g., number of  households, persons per household (see Chapter 9.2.2)) and transport sectors (see Chapter 8.2.1).  Infrastructure and urban form have a large impact on transport (Chapter 8.4) and medium impact on  energy systems (grid layout and economics) (see Chapter 7.6). Technology has a large impact in all  sectors. Income interacts with technology, increasing both innovative (e.g., R&D) and adoptive  capacity (purchases and replacement rate of products, which in turn can increase energy efficiency).  In demand sectors, mitigation from efficiency may be mediated by behaviours impacting  consumption (e.g., more efficient yet larger televisions or refrigerators, or more efficient but larger  or more powerful vehicles). See the sectoral Chapters 7 11 for further discussion of these issues.  12.3.2.3    Quantitative modelling to determine driver weights  An inherent difficulty in any assessment of emission drivers at the urban scale is that both mitigation  options as well as policy levers are constrained by the legacy of past decisions as reflected in existing    32 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   urban spatial structures and infrastructures, the built environment, and economic structures.  Modelling studies that simulate alternative development strategies, even the entire evolution of a  human settlement, or that explore the effects of policy integration across sectors can shed  additional light on the relative weight of drivers as less constrained or entirely unconstrained by the  existing status quo or by more limited sectoral assessment perspectives.   For instance, large scale urban simulation models have been used to study the joint effects of policy  integration such as pursuing smart growth planning that restricts urban sprawl with market based  pricing mechanisms.  One study of metropolitan regions in OECD countries concludes that policies  such as those that encourage higher urban densities and road tolls such as congestion charges have  lower stabilization costs than economy wide approaches such as a carbon tax (Crassous et al., 2006;  OECD, 2010a) . Models suggest that adding substantially upgraded urban services to the mix of  bundled strategies yields even greater benefits. A meta analysis of 14 urban simulations of scenarios  with varying degrees of urban containment, road pricing, and transit services upgrades forecasted  median transportation demand volumes (VKT, vehicle kilometer travelled) reductions of 3.9% within  10 years, rising to 15.8% declines over 40 years (Rodier, 2009). Estimates from a review of published  studies of U.S. cities forecasted a 5% to 12% VKT reduction from doubling residential densities and  as high as 25% reductions when combined with other strategies, including road pricing (National  Research Council, 2009a). GHG emissions were estimated to decline 11% from the most aggressive  combination of densification and market based pricing. The combination of introducing VKT charges,  upgrading transit, and more compact development from simulation studies in Helsinki, Dortmund,  Edinburgh, and Sacramento yielded simulation model estimates of 14.5% reductions in VKT within  10 years and 24.1% declines over 40 years (Rodier, 2009).   A more holistic modelling strategy with a much larger system boundary was followed with the  Sincity model, a combined engineering type systems optimization model that integrates agent based and spatially explicit modelling of urban form and density with transport and energy  infrastructure planning to simulate the entire evolution of a  synthetic  city (Keirstead and Shah,  2013; Steinberger and Weisz, 2013) or of large scale new urban developments (Hao et al., 2011).  Using an illustrative European city of 20,000 inhabitants and with a service dominated economy (i.e.,  holding the economic geography and income variables constant), alternative urban designs were  explored to separate out the various effects of different policy measures in determining urban  energy use. The results suggest that compared to a baseline (sprawl city with current practice  technologies), improvements by a factor of two each were possible by either a combination of  energy efficiency measures for the urban building stock and the vehicle fleet, versus modifying  urban form and density. Conversely energy systems optimization through cogeneration and  distributed energy systems were found to yield improvements of between 15 30% (Keirstead and  Shah, 2013; Steinberger and Weisz, 2013). The largest improvements of a factor of three were found  through an integration of policy measures across all domains.   12.3.2.4    Conclusions on drivers of GHG emissions at the urban scale   Perhaps the most significant conclusion emerging from Section 12.2 and above discussion of urban  GHG emission drivers is the realization that the traditional distinction between Annex I and non Annex I becomes increasingly blurred at the urban scale. There is an increasing number of cities,  particularly in the rapidly growing economies of Asia, where per capita resource use, energy  consumption, and associated GHG emissions are not different from the ones in developed  economies. A second important conclusion is that economic geography and income by themselves  are often such important drivers of urban GHG emissions that they dwarf the effects of technology  choices or of place based policy variables of urban form and infrastructures. However, the latter  policy options are those for which urban scale decision making can make the largest impact on GHG  emissions.    33 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   A more detailed discussion on the different leverage effects of urban scale policy options using the  example of urban energy use is provided in the Global Energy Assessment, Chapter 18 (Grubler et  al., 2012), which can be combined with above assessment on the relative weight of emission drivers  to derive a categorization of urban policy intervention levels as a function of potential impacts on  emissions as well as the degree to which policy interventions can be implemented by urban scale  decision making processes by local governments, firms, and individuals (Figure 12.11).     Figure 12.11. Stylized hierarchy of drivers of urban GHG emissions and policy leverages by urban scale decision making. Cities have little control over some of the most important drivers of GHG emissions and have large control over comparatively smaller drivers of emissions. Source: synthesized from (Jaccard et al., 1997; Grubler et al., 2012) and this assessment. The categorization in Figure 12.11 is necessarily stylized. It will vary across local contexts, but it helps  to disentangle the impacts of macro  from micro drivers. For instance, urban GHG emission levels  will be strongly influenced by differences in urban function, such as the role of a city as a  manufacturing centre for international markets, versus a city providing service functions to its  regional or national hinterlands. Conversely, the emissions impact from smaller scale decisions such  as increasing local and urban scale renewable energy flows which has been assessed to be very  limited, particularly for larger and more dense cities (Grubler et al., 2012) is much smaller. The  largest leverage on urban GHG emissions from urban scale decision making thus is at the  meso   scale level of the energy/emissions and urban policy hierarchy: improving the efficiency of  equipment used in a city, improving and integrating urban infrastructure, and shaping urban form  towards low carbon pathways. Pursuing multiple strategies simultaneously at this scale may be most  effective at reducing the urban related emissions. This conclusion echoes concepts such as  integrated community energy management strategies (Jaccard et al., 1997).   12.3.3    Motivation for assessment of spatial planning, infrastructure, and urban form  drivers   Urban form and infrastructure significantly affect direct (operational) and indirect (embodied) GHG  emissions, and are strongly linked to the throughput of materials and energy in a city, the waste that  it generates, and system efficiencies of a city. Mitigation options vary by city type and development  levels. The options available for rapidly developing cities include shaping their urbanization and  infrastructure development trajectories. For mature, built up cities, mitigation options lie in urban  regeneration (compact, mixed use development that shortens journeys, promotes  transit/walking/cycling, adaptive reuse of buildings) and rehabilitation/conversion to energy efficient building designs.  Urban form and infrastructure are discussed in detail in Section 12.4. A  combination of integrated sustainable infrastructure (Section 12.4), spatial planning (Section 12.5),    34 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   and market based and regulatory instruments (Section 12.6) can increase efficiencies and reduce  GHG emissions in already built up cities and direct urban and infrastructure development to reduce  the growth of GHG emissions in rapidly expanding cities in developing countries.  12.4   Urban Form and Infrastructure  Urban form and structure are the patterns and spatial arrangements of land use, transportation  systems, and urban design elements, including the physical urban extent, layout of streets and  buildings, as well as the internal configuration of settlements (Lynch, 1981; Handy, 1996).  Infrastructure comprises services and built up structures that support the functions and operations  of cities, including transport infrastructure, water supply systems, sanitation and wastewater  management, solid waste management, drainage and flood protection, telecommunications, and  power generation and distribution. There is a strong connection between infrastructure and urban  form (Kelly, 1993; Guy and Marvin, 1996), but the causal order is not fully resolved (Handy, 2005).  Transport, energy, and water infrastructure are powerful instruments in shaping where urban  development occurs and in what forms (Hall, 1993; Moss, 2003; Muller, 2004).  The absence of basic  infrastructure often but not always inhibits urban development.   This section assesses the literature on urban form and infrastructure drivers of GHG emissions,  details what data exist, the ranges, effects on emissions, and their interplay with the drivers  discussed in Section 12.3. Based on this assessment, conclusions are drawn on the diversity of  favourable urban forms and infrastructure highlighting caveats and conflicting goals. This literature is  dominated by case studies of cities in developed countries. The literature on conditions in  developing country cities, especially for large parts of Africa, is particularly limited. This assessment  reflects this limitation in the literature.   12.4.1    Infrastructure   Infrastructure affects GHG emissions primarily during three phases in its lifecycle: 1) construction, 2)  use/operation, and 3) end of life.  The production of infrastructure materials such as concrete and  metals is energy and carbon intensive (Cole, 1998; Horvath, 2004). For example, the manufacturing  of steel and cement, two of the most common infrastructure materials, contributed to nearly 9%  and 7%, respectively, of global carbon emissions in 2006 (Allwood et al., 2010). Globally, the carbon  emissions embodied in built up infrastructure as of 2008 was estimated to be 122 ( 20/+15) Gt CO2  (Müller et al., 2013). Much of the research on the mitigation potential of infrastructure focuses on  the use/operation phase and increasing the efficiency of the technology. Estimating emissions from  urban infrastructure such as electricity grids and transportation networks is challenging because  they often extend beyond a city s administrative boundaries (Ramaswami et al., 2012b) (see Section  12.2 for detailed discussion).  Several studies show that the transboundary emissions of  infrastructure can be as large as or even larger than the direct GHG emissions within city boundaries  (Ramaswami et al., 2008; Kennedy et al., 2009; Hillman and Ramaswami, 2010; Chavez and  Ramaswami, 2013). Thus, a full accounting of GHG emissions from urban infrastructure would need  to include both primary and embodied energy of infrastructure materials, as well as energy from the  use/operation phase and end of life, including reuse and recycling.   Rates of infrastructure construction in mature versus rapidly developing cities lead to fundamentally  different impacts on GHG emissions.  Infrastructure growth is hypothesized to follow an S shaped  curve starting with an early development phase, continuing with a rapid growth and expansion  phase, and ending with a saturation phase (Ausubel and Herman, 1988). The build up of  infrastructure that occurs during early phases of urbanization is particularly emissions intensive.   Currently, the average per capita emissions embodied in the infrastructure of industrialized  countries is 53 (+/-6) t CO2 (see Figure 12.12) which is more than five times larger than that in  developing countries (10 (+/-1) t CO2) (Müller et al., 2013).  While there have been energy efficiency  improvements in the industrial sector, especially steel and cement production, the scale and pace of    35 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   urbanization can outstrip efficiency gains and lead to continued growth in emissions (Levine and  Aden, 2008; Güneralp and Seto, 2012). China accounts for roughly 37% of the global emissions  commitments in part due to its large scale urbanization  the United States adds 15%; Europe 15%,  and Japan 4%, together representing 71% of total global emissions commitments by 2060 (Davis et  al., 2010).   Emissions related to infrastructure growth are therefore tied to existing urban energy systems,  investment decisions, and regulatory policies that shape the process of urban growth.  The effects of  these decisions are difficult to reverse: high fixed costs, increasing returns, and network externalities  make emissions intensive infrastructure systems particularly prone to lock in (Unruh and Carrillo Hermosilla, 2006; Unruh, 2002, 2000).  Furthermore, the long lifespan of infrastructure affects the  turnover rate of the capital stock, which can limit the speed at which emissions in the use/operation  phase can be reduced (Jaccard and Rivers, 2007).      36 of 125     Final Draft  Chapter 12  IPCC WGIII AR5     Figure 12.12. (a) Total fuel-related per-capita CO2 emissions in 2008 by country (red/orange/yellow and blue bars) compared to the global per-capita emission level in 2050 to reach the 2 °C target with a 50 75% probability; (b) Carbon Replacement Value (CRV2008) per capita of existing stocks by country (red/yellow and blue) and as yet unbuilt stocks if developing countries converge on the current average Annex I level (light orange area); (c) comparison with emission budget for the period 2000 2050 to reach the 2 °C target with a 75% probability. Of this emission budget (1000 Gt CO2), approximately 420 GtCO2 was already emitted during the period from 2000 to 2011.Source: (Müller et al., 2013). The build up of infrastructure in developing countries as part of the massive urbanization currently  underway will result in significant future emissions. Under one scenario, if the global population  increases to 9.3 billion by 2050 and developing countries expand their built environment and    37 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   infrastructure to the current global average levels using available technology today, the production  of infrastructure materials alone would generate approximately 470 Gt of CO2 emissions (see Figure  12.12). This is in addition to the  committed emissions  from existing energy and transportation  infrastructure, estimated to be in the range of 282 to 701 Gt of CO2 between 2010 and 2060 (Davis et  al., 2010). Under scenarios of continued expansion of infrastructure, cumulative emissions would be  between 3000 to 7400 Gt of CO2 from 2010 through the end of this century, which would lead to  atmospheric concentrations greater than 600 ppm (Davis et al., 2010).   The links between infrastructure and urban form are well established, especially among  transportation infrastructure provision, travel demand, and VKT. In developing countries in  particular, the growth of transport infrastructure and resulting urban forms are playing important  roles in affecting long run emissions trajectories (see Chapter 8).  The committed emissions from  existing energy and transportation infrastructure are high, with ranges of CO2 of 127 336 and 63 132 Gt, respectively (see Figure 12.13 and Davis et al., 2010). Transport infrastructure affects travel  demand and emissions in the short run by reducing the time cost of travel, and in the long run by  shaping land use patterns (Vickrey, 1969; Downs, 2004). Development of transport infrastructure  tends to promote  sprawl , characterized by low density, auto dependent, and separated land uses  (Brueckner, 2000; Ewing et al., 2003). Consistent evidence of short run effects show that the  demand elasticities range between 0.1 0.2. That is, a doubling of transport infrastructure capacity  increases VKT by 10 20% in the short run (Goodwin, 1996; Hymel et al., 2010). Other studies suggest  larger short run elasticities of 0.59 (Cervero and Hansen, 2002) and a range of 0.3 0.9 (Noland and  Lem, 2002). Differences in short run elasticities reflect fundamental differences in the  methodologies underlying the studies (see Chapter 15.4 on policy evaluation). In the long run, the  elasticities of VKT with respect to road capacity are likely to be in the range 0.8 1.0 as land use  patterns adjust (Hansen and Huang, 1997; Noland, 2001; Duranton and Turner, 2011). While the  links between transport infrastructure, urban form, and VKT are well studied, there are few studies  that extend the analysis to estimate emissions due to transport induced increases in VKT. One  exception is a study that concludes that freezing United States highway capacity at 1996 levels  would reduce emissions by 43 Mt C/yr by 2012, compared to continuing construction at historical  rates (Noland, 2001).       Figure 12.13. Scenario of CO2 emissions from existing energy and transportation infrastructure by industry sector (left) and country/region (right). Source: (Davis et al., 2010).   38 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   12.4.2    Urban form  Urban form can be characterized using four key metrics: density, land use mix, connectivity, and  accessibility.  These dimensions are not independent from one another. Rather, they measure  different aspects of urban form and structure, and each dimension impacts greenhouse gas  emissions differently (Figure 12.14). The urban form drivers of GHG emissions do not work in  isolation.   Impacts of changes in urban form on travel behaviour are commonly estimated using elasticities,  which measure the effect of a 1% change in an urban form metric on the percent change in vehicle  kilometres travelled (see Chapter 15.4 on policy evaluation). This allows for a comparison of  magnitudes across different factors and metrics.  A large share of the existing evidence is limited to  studies of North American cities. Moreover, much of this work is focused on larger cities (for an  extensive discussion of methodological considerations see National Research Council, 2009b).  12.4.2.1    Density  Urban density is the measure of an urban unit of interest (e.g., population, employment, and  housing) per area unit (e.g., block, neighbourhood, city, metro area, and nation) (Figure 12.14).  There are many measures of density, and three common measures are population density (i.e.,  population per unit area), built up area density (i.e., buildings or urban land cover per unit area), and  employment density (i.e., jobs per unit area) (for a comprehensive review on density measures see  Boyko and Cooper, 2011). Urban density affects GHG emissions in two primary ways. First, separated  and low densities of employment, commerce, and housing increase the average travel distances for  both work and shopping trips (Frank and Pivo, 1994a; Cervero and Kockelman, 1997; Ewing and  Cervero, 2001; Brownstone and Golob, 2009). These longer travel distances translate into higher VKT  and emissions. Conversely, higher population densities, especially when co located with high  employment densities are strongly correlated with lower GHG emissions (Frank and Pivo, 1994b;  Kenworthy and Laube, 1999; Glaeser and Kahn, 2010; Clark, 2013).  In the United States, households  located in relatively low density areas (0 19 households/km2) produce twice as much GHG emissions  as households located in relatively high density areas (1,900  3,900 households/km2) (U.S.  Department of Transportation, 2009).     39 of 125     Final Draft  Chapter 12  IPCC WGIII AR5     Figure 12.14. Four key aspects of urban form and structure (density, land use mix, connectivity, and accessibility), their Vehicle Kilometer Travelled (VKT) elasticities, commonly used metrics, and stylized graphics. Sources: Numbers from Ewing and Cervero (2010), National Research Council (2009a), and Salon et al (2012) are based on the following original sources: Density (Schimek, 1996; Kockelman, 1997; Sun et al., 1998; Pickrell and Schimek, 1999; Ewing and Cervero, 2001; Holtzclaw et al., 2002; Bhatia, 2004; Boarnet et al., 2004; Bento et al., 2005; Zhou and Kockelman, 2008; Fang, 2008; Kuzmyak, 2009a; a; Brownstone and Golob, 2009; Ewing et al., 2009; Greenwald, 2009; Heres-DelValle and Niemeier, 2011); Land Use (Kockelman, 1997; Sun et al., 1998; Pushkar et al., 2000; Ewing and Cervero, 2001, 2010; Chapman and Frank, 2004; Frank and Engelke, 2005; Kuzmyak et al., 2006; Vance and Hedel, 2007; Brownstone and Golob, 2009; Kuzmyak, 2009b; Frank et al., 2009); Connectivity (Ewing and Cervero, 2001; Boarnet et al., 2004; Chapman and Frank, 2004; Frank and Engelke, 2005; Ewing et al., 2009; Greenwald, 2009; Frank et al., 2009); Accessibility (Goodwin, 1996; Ewing et al., 1996, 2009; Kockelman, 1997; Cervero and Kockelman, 1997; Sun et al., 1998; Pushkar et al., 2000; Ewing and Cervero, 2001, 2010; Boarnet et al., 2004; Naess, 2005; Cervero and Duncan, 2006; Christopher Zegras, 2007; Greenwald, 2009; Kuzmyak, 2009a; b; Frank et al., 2009; Zegras, 2010; Hymel et al., 2010)   40 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Second, low densities make it difficult to switch over to less energy intensive and alternative modes  of transportation such as public transportation, walking, and cycling because the transit demand is  both too dispersed and too low (Bunting et al., 2002; Saelens et al., 2003; Forsyth et al., 2007). In  contrast, higher population densities at places of origin (e.g., home) and destination (e.g., work,  shopping) concentrate demand that is necessary for mass transit alternatives. The density thresholds  required for successful transit are not absolute, and vary by type of transit (e.g., bus, light rail,  metro), their frequency, and characteristics specific to each city.  One of the most comprehensive  studies of density and emission estimates that a doubling of residential densities in the United States  can reduce VKT by 5 12% in the short run, and if coupled with mixed land use, higher employment  densities, and improvements in transit, can reduce VKT as much as 25% over the long run (National  Research Council, 2009a). Urban density is thus a necessary but not a sufficient condition for low carbon cities.  Comparable and consistent estimates of urban densities and changes in urban densities are difficult  to obtain in part because of different methodologies to calculate density. However, multiple studies  using multiple lines of evidence including satellite data (Deng et al., 2008; Angel et al., 2010, 2011;  Seto et al., 2011) and economic and census data (Burchfield et al., 2006) show that both population  and built up densities are declining across all regions around the world (see Section 12.2 for details).  Although there is substantial variation in magnitudes and rates of density decline across income  groups, city sizes, and regions, the overarching trend is a persistent decline in densities (Angel et al.,  2010). The dominant trend is declining density, however there are some exceptions. Analyses of 100  large cities worldwide using a microwave scatterometer show significant vertical expansion of built up areas in East Asian cities, notably those in China (see Figure 12.15 and Frolking et al., 2013). A common misconception about density is that it can only be achieved through high rise buildings  configured in close proximity. However, the same level of density can be achieved through multiple  land use configurations (Figure 12.16).  Population density is strongly correlated with built density,  but high population density does not necessarily imply high rise buildings (Cheng, 2009; Salat, 2011).   41 of 125     Final Draft  Chapter 12  IPCC WGIII AR5     Figure 12.15. Changes in Urban Structure, 1999 2009 using backscatter and nighttime lights. The top 12 panels show changes in vertical structure of major urban areas as characterized by backscatter power ratio (PR) and horizontal growth as measured by night time lights brightness (NL) for 12 large cities. Coloured arrows represent non-water, 0.05° cells in an 11x11 grid around each city s centre; tail and head are at 1999 and 2009 coordinates of cell PR and NL, respectively (see inset in top right panel). Arrow colour corresponds to percent urban cover circa 2001 (see legend in bottom right panel). Bottom right panel shows mean change of a total of 100 cities mapping into the respective urban cover categories. Bottom left panel shows change for 100 cities colour coded by world regions. Source: (Frolking et al., 2013). Medium rise (less than seven floors) urban areas with a high building footprint ratio can have a  higher built density than high rise urban areas with a low building footprint.  These different    42 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   configurations of high density development involve important energy tradeoffs. Often, high rise,  high density urban areas involve a tradeoff between building height and spacing between buildings    higher buildings have to be more spaced out to allow light penetration. High rise buildings imply  higher energy costs in terms of vertical transport and also in heating, cooling, and lighting due to low  passive volume ratios (Ratti et al., 2005; Salat, 2009). Medium rise, high density urban areas can  achieve similar levels of density as high rise, high density developments but require less materials  and embodied energy (Picken and Ilozor, 2003; Blackman and Picken, 2010). Their building operating  energy levels are lower due to high passive volume ratio (Ratti et al., 2005; Salat, 2009). Single  storey, free standing housing units are more GHG emissions intensive than multi family, semi detached buildings (Myors et al., 2005; Perkins et al., 2009). Thus, while the effect of building type  on energy use may be relatively small, the combination of dwelling type, design, location, and  orientation together can generate significant energy savings (Rickwood et al., 2008).    Figure 12.16. Same densities in three different layouts: low-rise single-story homes (left); multi-story medium-rise (middle); high-rise towers (right). Adapted from (Cheng, 2009). 12.4.2.2    Land use mix  Land use mix refers to the diversity and integration of land uses (e.g., residential, park, commercial)  at a given scale (Figure 12.17). As with density, there are multiple measures of land use mix,  including: (1) the ratio of jobs to residents; (2) the variety and mixture of amenities and activities;  and (3) the relative proportion of retail and housing. Historically, the separation of land uses,  especially of residential from other uses, was motivated by the noxious uses and pollution of the  industrial city. However, as cities transition from industrial to service economies, resulting in a  simultaneous reduction in air pollution and other nuisances, the rationale for such separation of land  uses diminishes.       43 of 125     Final Draft  Chapter 12  IPCC WGIII AR5     Figure 12.17. Three different land use mixes (Manaugh and Kreider, 2013).   In general, when land uses are separated, the distance between origin (e.g., homes) and destination  (e.g., work or shopping) will be longer (Kockelman, 1997). Hence, diverse and mixed land uses can  reduce travel distances and enable both walking and the use of non motorized modes of travel  (Kockelman, 1997; Permana et al., 2008), thereby reducing aggregate amounts of vehicular  movement and associated greenhouse gas emissions (Lipper et al., 2010). Several meta analyses  estimate the elasticity of land use mix related VKT from  0.02 to  0.10 (Ewing and Cervero, 2010;  Salon et al., 2012) while simultaneously increasing walking. The average elasticity between walking  and diversity of land uses is reported to be between 0.15 0.25 (Ewing and Cervero, 2010).  The  effects of mixed land use on VKT and GHG emissions can applied at three spatial scales; city regional,  neighbourhood, and block.   At the city scale, a high degree of land use mix can result in significant reductions in VKT by  increasing the proximity of housing to office developments, business districts, shops, and malls  (Cervero and Duncan, 2006).  In service economy cities with effective air pollution controls, mixed  land use can also have a beneficial impact on citizen health and well being by enabling walking and  cycling (Saelens et al., 2003; Heath et al., 2006; Sallis et al., 2009). For cities with lower mixed land  use, such as often found in North American cities and in many new urban developments in Asia,  large residential developments are separated from jobs or retail centres by long distances.  A  number of studies of such single use zoning show strong tendencies for residents to travel longer  overall distances and to carry out a higher proportion of their travel in private vehicles than  residents who live in mixed land use areas in cities (Mogridge, 1985; Fouchier, 1998; Naess, 2005;  Zhou and Kockelman, 2008).  Mixed use at the neighbourhood scale refers to a  smart  mix of residential buildings, offices, shops,  and urban amenities (Bourdic et al., 2012). Similar to the city scale case, such mixed uses can  decrease average travel distances (McCormack et al., 2001). However, on the neighbourhood scale,  the reduced travel is primarily related to non work trips, e.g., for shopping, services, and leisure.  Research on US cities indicates that the presence of shops and workplaces near residential areas is  associated with relatively low vehicle ownership rates (Cervero and Duncan, 2006), and can have a  positive impact on transportation patterns (Ewing and Cervero, 2010). The impacts of mixed use on  non motorized commuting such as cycling and walking and the presence or absence of  neighbourhood shops can be even more important than urban density (Cervero, 1996).   At the block and building scale, mixed use allows space for small scale businesses, offices,  workshops, and studios that are intermixed with housing and live work spaces. Areas with a high mix    44 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   of land uses encourages a mix of residential and retail activity and thus increases the area s vitality,  aesthetic interest, and neighbourhood (Hoppenbrouwer and Louw, 2005).   12.4.2.3    Connectivity  Connectivity refers to street density and design. Common measures of connectivity include  intersection density or proportion, block size, or intersections per road kilometer (Cervero and  Kockelman, 1997; Pushkar et al., 2000; Chapman and Frank, 2004; Lee and Moudon, 2006; Fan,  2007). Where street connectivity is high characterized by finer grain systems with smaller blocks  that allow frequent changes in direction there is typically a positive correlation with walking and  thereby lower GHG emissions.  Two main reasons for this are that distances tend to be shorter and  the system of small blocks promotes convenience and walking (Gehl, 2010).   Improving connectivity in areas where it is low (and thus associated with higher GHG emissions)  requires varying amounts of street reconstruction. Many street features, such as street size, four way intersections or intersection design, sidewalk width, the number of traffic lanes (or street width)  and street medians are designed at the time of the construction of the city. As the infrastructure  already exists, increasing connectivity requires investment either to redevelop the site or to retrofit  it to facilitate walking and biking. In larger redevelopment projects, street patterns may be  redesigned for smaller blocks with high connectivity. Alternatively, retrofitting often involves  widening sidewalks, constructing medians, and adding bike lanes, as well as reducing traffic speeds,  improving traffic signals, and providing parking for bikes (McCann and Rynne, 2010). Other features,  such as street furniture (e.g., benches, transit stops, and shelters), street trees, and traffic signals,  can be added after the initial design without much disruption or large costs.  Systematic reviews show that transport network connectivity has a larger impact on VKT than  density or land use mix, between  0.06 and  0.26 (Ewing and Cervero, 2010; Salon et al., 2012). For  North American cities, the elasticity of walking with respect to sidewalk coverage or length is  between 0.09 to 0.27 (Salon et al., 2012). There are typically higher elasticities in other OECD  countries than in the United States.   12.4.2.4    Accessibility  Accessibility can be defined as access to jobs, housing, services, shopping, and in general, to people  and places in cities (Hansen, 1959; Ingram, 1971; Wachs and Kumagai, 1973). It can be viewed as a  combination of proximity and travel time, and is closely related to land use mix. Common measures  of accessibility include population centrality, job accessibility by auto or transit, distance to the city  centre or central business district (CBD), and retail accessibility. Meta analyses show that VKT  reduction is most strongly related to high accessibility to job destinations (Ewing and Cervero, 2001,  2010). Highly accessible communities (e.g., compact cities in Europe such as Copenhagen) are  typically characterized by low daily commuting distances and travel times, enabled by multiple  modes of transportation (Naess, 2006). Measures to increase accessibility that are accompanied by  innovative technologies and alternative energies can reduce VKT and associated GHG emissions in  the cities of both developed and developing countries (Salomon and Mokhtarian, 1998; Axhausen,  2008; Hankey and Marshall, 2010; Banister, 2011). However, it should be noted that at least one  study has shown that in cities where motorization is already mature, changing accessibility no longer  influences automobile dependent lifestyles and travel behaviours (Kitamura et al., 2001).    Countries and regions undergoing early stages of urbanization may therefore have a unique  potential to influence accessibility, particularly in cases where income levels, infrastructure, and  motorization trends are rapidly changing (Kumar, 2004; Chen et al., 2008; Perkins et al., 2009; Reilly  et al., 2009; Zegras, 2010; Hou and Li, 2011; Adeyinka, 2013). In Shanghai, China, new transportation  projects have influenced job accessibility and have thereby reduced commute times (Cervero and  Day, 2008). In Chennai, India, differences in accessibility to the city centre between low income  communities have been shown to strongly affect transport mode choice and trip frequency    45 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   (Srinivasan and Rogers, 2005). In the rapidly motorizing city of Santiago de Chile, proximity to the  central business district as well as metro stations has a relatively strong association with VKT (Zegras,  2010). The typical elasticity between job accessibility and VKT across North American cities ranges  from  0.10 to  0.30 (Ewing and Cervero, 2010; Salon et al., 2012).   12.4.2.5    Effects of combined options  While individual measures of urban form have relatively small effects on vehicle miles travelled, they  become more effective when combined. For example, there is consistent evidence that the  combination of co location of increased population and job densities, substantial investments in  public transit, higher mix of land uses, and transportation or mobility demand management  strategies can reduce VKT and travel related carbon emissions (National Research Council, 2009a;  Ewing and Cervero, 2010; Salon et al., 2012). The spatial concentration of population, coupled with  jobs housing balance, have a significant impact VKT by households. At the same time, urban form  and the density of transportation networks also affect VKT (Bento et al., 2005). The elasticity of VKT  with respect to each of these factors is relatively small, between 0.10 and 0.20 in absolute value.  However, changing several measures of form simultaneously can reduce annual VKT significantly.  Moving the sample households from a city with the characteristics of a low density, automobile centric city to a city with high public transit, connectivity, and mixed land use reduced annual VKT by  25%.  While in practice such change is highly unlikely in a mature city, it may be more relevant when  considering cities at earlier stages of development.  A growing body of literature shows that traditional neighbourhood designs are associated with  reduced travel and resource conservation (Krizek, 2003; Ewing and Cervero, 2010).  A US study found  those living in neo traditional neighbourhoods made as many daily trips as those in low density,  single family suburban neighbourhoods, however the switch from driving to walking and the  shortening of trip distances resulted in a 20% less VKT per household (Khattak and Rodriguez, 2005).   Empirical research shows that the design of streets have even stronger influences than urban  densities on incidences of walking and reduced motorized travel in traditional neighbourhoods of  Bogota, Tehran, Taipei, and Hong Kong SAR (China) (Zhang, 2004; Cervero et al., 2009; Lin and Yang,  2009; Lotfi and Koohsari, 2011).  A study in Jinan, China, found the energy use of residents living in  mixed use and grid street enclaves to be one third that of similar households in superblock, single use developments (Calthorpe, 2013).  12.5   Spatial Planning and Climate Change Mitigation  Spatial planning is a broad term that describes systematic and coordinated efforts to manage urban  and regional growth in ways that promote well defined societal objectives such as land  conservation, economic development, carbon sequestration, and social justice.  Growth  management is a similar idea, aimed at guiding  the location, quality, and timing of development   (Porter, 1997) to minimize  sprawl  (Nelson and Duncan, 1995), which is characterized by low  density, non contiguous, automobile dependent development that prematurely or excessively  consumes farmland, natural preserves, and other valued resources (Ewing, 1997).  This section reviews the range of spatial planning strategies that may reduce emissions through  impacts on most if not all of the elements of urban form and infrastructure reviewed in Section 12.4.   It begins with an assessment of key spatial planning strategies that can be implemented at the  macro, meso, and micro geographic scales.  It then assesses the range of regulatory, land use, and  market based policy instruments that can be employed to achieve these strategic objectives.  Given  evidence of the increased emissions reduction potential associated with affecting the collective set  of spatial factors driving emissions (see Section 12.4), emphasis is placed on assessing the efficacy of  strategies or bundles that simultaneously impact multiple spatial outcomes (See Chapter 15.4 and  15.5 on policy evaluation and assessment).     46 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   The strategies discussed below aim to reduce sprawl and automobile dependence and thus energy  consumption, VKT, and GHG emissions to varying degrees.  Evidence on the energy and emission  reduction benefits of these strategies comes mainly from case studies in the developed world even  though their greatest potential for reducing future emissions lies in developing countries undergoing  early stages of urbanization. The existing evidence highlights the importance of an integrated  infrastructure development framework that combines analysis of mitigation reduction potentials  alongside the long term public provision of services.          47 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Box 12.3. Urban expansion: drivers, markets, and policies While the literature that examines the impacts of changes in urban spatial structure and  infrastructure on urban GHG emissions is sparse, there is a well established body of literature that  discusses the drivers of urban development, and policies that aim to alter its pace and shape.  Drivers of Urban Expansion   The drivers of urban development can be broadly defined into the  following categories: Economic Geography, Income, Technology (see Section 12.3.1), as well as  Market Failures (see Chapter 15), and Pre Existing Conditions, which are structured by Policies  and Regulations (see Section 12.5.2) that in turn shape Urban Form and Infrastructure (see  Section 12.4 and Box 12.4).  Primary drivers of urban spatial expansion unfold under the influence of economic conditions  and the functioning of markets. These are however strongly affected by Market Failures and  Pre Existing Policies and Regulations that can exacerbate or alleviate the effect of the primary  drivers on urban growth.  Market Failures are the result of individuals and firms ignoring the external costs and benefits  they impose on others when making economic decisions (see Chapter 15). These include:  o Failure to account for the social costs of GHG (and local) emissions that result from  production and consumption activities in cities.  Failure to account for the social costs of traffic congestion (see Chapter 8).  Failure to assign property rights and titles for land.  Failure to account for the social benefits of spatial amenities and mix land uses (see  Section 12.5.2.3).  Failure to account for the social benefits of agglomeration that result from the  interactions of individuals and firms in cities.  o o o o Although not precisely quantified in the literature, by altering the location of individuals and  firms in space (and resulting travelling patterns and consumption of space), these market  failures can lead to excessive growth (see Box 12.4).  For each failure, there is a policy solution, either in the form of regulations or market based  instruments (see Section 12.5.2)  Pre Existing Policies and Regulations can also lead to excessive growth. These include:  o Hidden Pre Existing Subsidies   including the failure to charge new development for the  infrastructure costs it generates (see Section 12.5.3 and Box 12.4).  Outdated or Poorly Designed Pre Existing Policies and Regulations   including zoning,  building codes, ordinances, and property taxes that can distort real estate markets (see  Section 12.5.2 and Box 12.4).  o   12.5.1    Spatial Planning Strategies  Spatial planning occurs at multiple geographic scales: (1) Macro   regions and metropolitan areas;  (2) Meso   sub regions, districts, and corridors; and (3) Micro   neighbourhoods, streets, blocks.  At  each scale, some form of comprehensive land use and transportation planning provides a different    48 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   opportunity to envision and articulate future settlement patterns, backed by zoning ordinances,  subdivision regulations, and capital improvements programmes to implement the vision (Hack et al.,  2009).  Plans at each scale must also be harmonized and integrated to maximize effectiveness and  efficiency (Hoch et al., 2000).  Different strategy bundles invite different policy tools, adapted to the  unique political, institutional, and cultural landscapes of cities in which they are applied (see Table  12.5).  Successful implementation requires that there be in place the institutional capacity and  political wherewithal to align the right policy instruments to specific spatial planning strategies.  12.5.1.1    Macro: Regions and metropolitan areas  Macro scale strategies are regional in nature, corresponding to the territories of many economic  transactions (e.g., laboursheds and tradesheds) and from where natural resources are drawn (e.g.,  water tributaries) or externalities are experienced (e.g., air basins).  Regional Plan.  A regional plan shows where and when different types of development are allowed,  and where and when they are not. In polycentric plans, sub centres often serve as building blocks for  designing regional rail transit networks (Calthorpe and Fulton, 2001). Scale is a particularly  important determinant of success.  Regional strategies can minimize environmental spillovers and  economize on large scale infrastructure investments (Calthorpe and Fulton, 2001; Seltzer and  Carbonell, 2011). Polycentric metropolises like Singapore, Tokyo, and Paris have successfully linked  sub centres with high quality, synchronized metro rail and feeder bus services (Cervero, 1998;  Gakenheimer, 2011).  Spatial plans might be defined less in terms of a specific urban form vision and  more with regard to core development principles.  In its  Accessible Ahmedabad  plan, the city of  Ahmedabad, India, embraced the principle of creating a city designed for accessibility rather than  mobility, without specific details on the siting of new growth (Suzuki et al., 2013).  Urban containment.  Urban containment encourages cities and their peripheries to grow inwards  and upwards, not outwards (Pendall et al., 2002). Urban containment can also contribute to climate  change mitigation by creating more compact, less car oriented built form as well as by preserving  the carbon sequestration capacity of natural and agricultural areas in the surrounding areas (Daniels,  1998).  The impact of development restrictions is uncertain and varies with the geographic and  regulatory context (Pendall, 1999; Dawkins and Nelson, 2002; Han et al., 2009; Woo and Guldmann,  2011). In the United States, regional measures such as the Portland urban growth boundary have  been more effective at containing development than local initiatives (DeGrove and Miness, 1992;  Nelson and Moore, 1993; Boyle and Mohamed, 2007).  In the UK, urban containment policies may  have pushed growth to leapfrog the greenbelt to more distant locations and increased car  commuting (Amati, 2008). In Seoul and in Swiss municipalities, greenbelts have densified the core  city but made the metropolitan area as a whole less compact; in Seoul, commuting distances also  increased by 5% (Jun and Bae, 2000; Bae and Jun, 2003; Bengston and Youn, 2006; Gennaio et al.,  2009).  Regional jobs housing balance.  Separation of workers from job sites creates long haul commutes  and thus worsens traffic and environmental conditions (Cervero, 1996).  Jobs housing imbalances  are often a product of insufficient housing in jobs rich cities and districts (Boarnet and Crane, 2001;  Wilson, 2009; Pendall et al., 2012).  One view holds that the market will eventually work around such  problems developers will build more housing near jobs because more profit can be made from such  housing (Gordon et al., 1991; Downs, 2004).  There is evidence of co location in US cities like Boston  and Atlanta (Weitz, 2003).  Even in the developing world, co location occurs as a means to  economize on travel, such as the peri urban zones of Dar es Salaam and Lagos where infill and  densification, often in the form of informal settlements and shantytowns, occurs in lieu of extended  growth along peripheral radial roads (Pirie, 2011).    Research on balanced growth strategies provides mixed signals on mobility and environmental  impacts.  Studies of Atlanta estimate that jobs housing balance can reduce traffic congestion,  emissions, and related externalities (Weitz, 2003; Horner and Murray, 2003). In the San Francisco    49 of 125     Final Draft  Chapter 12  IPCC WGIII AR5   Bay Area, jobs housing balance has reduced travel more than intermixing housing and retail  development (Cervero and Duncan, 2006)  Other studies, however, suggest that jobs housing  balance has little impact on travel and traffic congestion since many factors besides commuting  condition residential location choices (Levine, 1998).  Self contained,  complete  communities wherein the jobs, retail commodities and services needed  by workers and households exist within a community is another form of balanced growth. Many  master planned new towns in the United States, France, South Korea, and the UK were designed as  self contained communities, however their physical isolation and economic dependence on major  urban centres resulted in high levels of external motorized travel (Cervero, 1995a; Hall, 1996). How  new towns are designed and the kinds of transport infrastructure built, experiences show, have  strongly influenced travel and environmental outcomes (Potter, 1984).  In the UK, new towns  designed for good transit access (e.g., Runcorn and Redditch) averaged far higher transit ridership  and less VKT per capita than low density, auto oriented communities like Milton Keynes and  Washington, UK (Dupree, 1987).  Telecommunities are a more contemporary version of self contained communities, combining  information and communication technologies (ICTs) with traditional neighbourhood designs in  remote communities on the edges of cities like Washington, DC and Seattle (Slabbert, 2005;  Aguilera, 2008). Until such initiatives scale up, their contributions to VKT and GHG reductions will  likely remain miniscule (Choo et al., 2005; Andreev et al., 2010; Mans et al., 2012                           nnnnb ).     50 of 125     Final Draft  Chapter 12  IPCC WGIII AR5    Table 12.5. Matching spatial planning strategies and policy instruments. Summary of the types of policy instruments that can be applied to different spatial planning strategies carried out at different geographic scales. Unless otherwise noted, references can be found in the relevant chapter sections. Additional sources referenced in table: 1 (Nelson, 1992; Alterman, 1997), 2 (Sagalyn, 2007; Yescombe, 2007),3 (Hagman and Misczynski, 1978; Bauman and Ethier, 1987), 4 (Rolon, 2008), 5 (Dye  and Sundberg, 1998; Dye and Merriman, 2000; Brueckner, 2001b),6 (Saelensminde, 2004; McAndrews et al., 2010), 7 (Rolon, 2008), 8 (Brambilla and Longo, 1977).         SPATIAL STRATEGY  Metropolitan/Regional  Urban containment  Balanced growth   Self contained  communities/  new towns  Corridor/District  Corridor growth  management  Transit oriented corridors  POLICY INSTRUMENTS/IMPLEMENTATION TOOLS  Government Incentives  Land Management  Targeted  (see 12.5.2.2)  Infrastructure/Services  (see 12.5.1)  Urban Service Boundaries  Extraterritorial zoning  Greenbelts   Park improvements; trail  improvements     Utilities; urban services  Government Regulations  Land  Taxation/Finance  Regulation/Zoning (see  Strategies  12.5.2.1)  (see 12.5.2.3)  Development  restrictions; UGBs  Affordable housing  mandates  Mixed use zoning  Sprawl taxes  Tax bases sharing       Market Based Strategies   Pricing  Public Private  (see 12.5.2.3)  Partnerships  (see 12.5.2.3)    Farm Tax  Credits1          Joint ventures2   Zoning  Transfer development  rights  Impact fees;  Exactions3           Service Districts4    Urban rail; Bus rapid transit  investments  Highway conversions;  Context sensitive  design standards  Sidewalks; cycle tracks; bike  stations6  Station siting; station access  District Heating/Cooling; co generation (see Ch. 9.4)  Road entry restrictions;  sidewalks8     Bike infrastructure;  Pedestrian facilities           Joint Powers  Authorities     Neighbourhood/Community  Urban Regeneration/Infill  Mix use zoning/small  lot designations  Traditional  Neighbourhood Designs;  New urbanism  Transit oriented  Development  Eco Communities  Site/Streetscape  Pedestrian Zones/Car Free  Districts  Traffic Calming/Context Sensitive Design  Complete Streets  Zoning overlays; form based codes  Design codes; flexible  parking  Mixed use zoning  Split Rate Property  Taxes; Tax increment  5 finance      Redevelopment districts  Congestion charges  (see Ch. 8)           Impact Fees;  Betterment Taxes7              Peak load pricing  Joint  2 development   Joint venture   2 Street code revisions8  Street code revisions8  Design standards  Special Improvement  7 Districts   Benefit Assessment7              Parking surcharges           Property owner  self assessments  Design  competitions    51 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    12.5.1.2      Meso: Sub regions, corridors, and districts  The corridor or district scale captures the spatial context of many day to day activities, such as going  to work or shopping for common household items. Significant challenges are often faced in  coordinating transportation and land development across multiple jurisdictions along a corridor.  Corridor growth management.  Corridor level growth management plans aim to link land  development to new or expanded infrastructure investments (Moore et al., 2007). Both land  development and transport infrastructure need years to implement, so coordinated and strategic  long range planning is essential (Gakenheimer, 2011).  Once a transport investment is committed  and land use policies are adopted, the two can co evolve over time. A good example of coordinated  multi jurisdictional management of growth is the 20 km Paris Pike corridor outside of Lexington,  Kentucky in the United States (Schneider, 2003).  There, two county governments reached an  agreement and created a new extra territorial authority to zone land parcels for agricultural  activities within a 0.5 km radius of a newly expanded road to preserve the corridor s rural character,  prevent sprawl, and maintain the road s mobility function.   Transit oriented corridors.  Corridors also present a spatial context for designing a network of  Transit Oriented Developments (TODs), traditional (e.g., compact, mixed use, and pedestrian friendly) development that is physically oriented to a transit station.  TODs are expected to reduce  the need to drive, and thus reduce VKT. Some global cities have directed land uses typically  scattered throughout suburban developments  (e.g., housing, offices, shops, restaurants, and strip  malls) to transit served corridors (Moore et al., 2007; Ferrell et al., 2011).  Scandinavian cities like  Stockholm, Helsinki, and Copenhagen have created  necklace of pearls  built form not only to induce  transit riding but also to produce balanced, bi directional flows and thus more efficient use of  infrastructure (Cervero, 1998; Suzuki et al., 2013).   Curitiba, Brazil, is often heralded as one of the world s most sustainable cities and is a successful  example of the use of Transit Oriented Corridors (TOCs) to shape and direct growth (Cervero, 1998;  Duarte and Ultramari, 2012). The city has evolved along well defined radial axes (e.g., lineal  corridors) that are served by dedicated busways. Along some transportation corridors, double articulated buses transport about 16,000 passengers per hour, which is comparable to the capacity  of more expensive metro rail systems (Suzuki et al., 2013). To ensure a transit oriented built form,  Curitiba s government mandates that all medium  and large scale urban development be sited along  a Bus Rapid Transit (BRT) corridor (Cervero, 1998; Hidalgo and Gutiérrez, 2013).  High transit use has  appreciably shrunk the city s environmental footprint. In 2005, Curitiba s VKT per capita of 7,900 was  half as much as in Brazil s national capital Brasilia, a city with a similar population size and income  level but a sprawling, auto centric built form (Santos, 2011).  12.5.1.3      Micro: communities, neighbourhoods, streetscapes  The neighbourhood scale is where activities like convenience shopping, socializing with neighbours,  and walking to school usually take place, and where urban design approaches such as gridded street  patterns and transit oriented development are often targeted.  While smaller scale spatial planning  might not have the energy conservation or emission reduction benefits of larger scale planning  strategies, development tends to occur parcel by parcel and urbanized areas are ultimately the  products of thousands of individual site level development and design decisions.   Urban Regeneration and Infill Development.  The move to curb urban sprawl has spawned  movements to revitalize and regenerate long standing traditional urban centres (Oatley, 1995).  Former industrial sites or economically stagnant urban districts are often fairly close to central  business districts, offering spatial proximity advantages.  However, brownfield redevelopment (e.g.,  tearing down and replacing older buildings, remediating contaminated sites, or upgrading worn out  or obsolete underground utilities) can often be more expensive than building anew on vacant  greenfield sites (Burchell et al., 2005).    52 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    In recent decades, British planners have turned away from building expensive, master planned new  towns in remote locations to creating  new towns/in town , such as the light rail served Canary  Wharf brownfield redevelopment in east London (Gordon, 2001).  Recycling former industrial  estates into mixed use urban centres with mixed income housing and high quality transit services  have been successful models (Foletta and Field, 2011).  Vancouver and several other Canadian cities  have managed to redirect successfully regional growth to their urban cores by investing heavily in  pedestrian infrastructure and emphasizing an urban milieu that is attractive to families. In particular,  Vancouver has invested in developing attractive and inviting urban spaces, high quality and  dedicated cycling and walking facilities, multiple and reliable public transit options, and creating  high density residential areas that are integrated with public and cooperative housing (Marshall,  2008).  Seoul, South Korea, has sought to regenerate its urban core through a mix of transportation  infrastructure investments and de investments, along with urban renewal (Jun and Bae, 2000; Jun  and Hur, 2001).  Reclaiming valuable inner city land in the form of tearing down an elevated freeway  and expropriating roadway lanes, replaced by expanded BRT services and pedestrian infrastructure  has been the centrepiece of Seoul s urban regeneration efforts (Kang and Cervero, 2009).  Traditional neighbourhood design and new urbanism.  Another movement, spearheaded by  reform minded architects and environmental and sustainability planners, has been to return  communities to their designs and qualities of yesteryear, before the ascendency of the private  automobile (Nasar, 2003). Referred to as  compact cities  in much of Europe and  New Urbanism  in  the United States, the movement takes on features of traditional, pre automobile neighbourhoods  that feature grid iron streets and small rectilinear city blocks well suited to walking, narrow lots and  building setbacks, prominent civic spaces that draw people together (and thus help build social  capital), tree lined narrow streets with curbside parking and back lot alleys that slow car traffic, and  a mix of housing types and prices (Kunstler, 1998; Duany et al., 2000; Talen, 2005).  In the United States, more than 600 New Urbanism neighbourhoods have been built, are planned, or  are under construction (Trudeau, 2013). In Europe, a number of former brownfield sites have been  redeveloped since the 1980s based on traditional versus modernist design principles (Fraker, 2013).  In developing countries, recent examples of neighbourhood designs and redevelopment projects  that follow New Urbanism principles to varying degrees are found in Belize, Jamaica, Bhutan, and  South Africa (Cervero, 2013).    Transit Oriented Development (TOD).  TODs can occur at a corridor scale, as discussed earlier for  cities like Curitiba and Stockholm, or as is more common, take on a nodal, neighbourhood form.   Besides being the  jumping off  point for catching a train or bus, TODs also serve other community  purposes. Scandinavian TODs often feature a large civic square that functions as a community s hub  and human scale entryway to rail stations (Bernick and Cervero, 1996; Curtis et al., 2009).   In Stockholm and Copenhagen, TOD has been credited with reducing VKT per capita to among the  lowest levels anywhere among high income cities (Newman and Kenworthy, 1999). In the United  States, studies show that TODs can decrease per capita use of cars by 50%.  In turn, this could save  households about 20% of their income (Arrington and Cervero, 2008). TOD residents in the United  States typically commute by transit four to five times more than the average commuter in a region  (Lund et al., 2006).  Similar ridership bonuses have been recorded for TOD projects in Toronto,  Vancouver, Singapore, and Tokyo (Chorus, 2009; Yang and Lew, 2009).  In China, a recent study  found smaller differentials of around 25% in rail commuting between those living near, versus away  from suburban rail stations (Day and Cervero, 2010).  Many cities in the developing world have had long histories of being transit oriented, and feature  fine grain mixes of land uses, abundant pathways that encourage and enable walking and biking, and  ample transit options along major roads (Cervero, 2006; Cervero et al., 2009; Curtis et al., 2009). In  Latin America, TOD is being planned or has taken form to varying degrees around BRT stations in  Curitiba, Santiago, Mexico City, and Guatemala City. TOD is also being implemented in Asian cities,    53 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    such as in Kaohsiung, Qingdao and Jiaxing, China, and Kuala Lumpur, Malaysia (Cervero, 2013).   Green TODs that feature low energy/low emission buildings and the replacement of surface parking  with community gardens are being built (Teriman et al., 2010; Cervero and Sullivan, 2011). A number  of Chinese cities have embraced TOD for managing growth and capitalizing upon massive rail and  BRT investments. For example, Beijing and Guangzhou adopted TOD as a guiding design principle in  their most recent long range master plans (Li and Huang, 2010).  However, not all have succeeded.  TOD efforts in many Chinese cities have been undermined by a failure to articulate densities (e.g.,  tapering building heights with distances from stations), the siting of stations in isolated superblocks,  poor pedestrian access, and a lack of co benefiting mixed land uses (Zhang, 2007; Zhang and Wang,  2013).  Pedestrian zones/car restricted districts. Many European cities have elevated liveability and  pedestrian safety to the top of transportation planning agendas, and have invested in programmes  that reduce dependence on and use of private automobiles (Banister, 2005, 2008; Dupuy, 2011).  One strategy for this is traffic calming, which uses speed humps, realigned roads, necked down  intersections along with planted trees and other vegetation in the middle of streets to slow down  traffic (Ewing and Brown, 2009). With these traffic calming approaches, automobile passage  becomes secondary.  A related concept is  complete streets,  which through dedicated lanes and  traffic slowing designs provide safe passage for all users of a street, including drivers as well as  pedestrians, cyclists, and transit patrons (McCann and Rynne, 2010).  An even bolder urban design/traffic management strategy has been the outright banning of cars  from the cores of traditional neighbourhoods and districts, complemented by an upgrading and  beautification of pedestrian spaces. This practice has become commonplace in many older European  cities whose narrow and winding inner city street were never designed for motorized traffic (Hass Klau, 1993). Multi block car free streets and enhanced pedestrian zones are also found in cities of  the developing world, including Curitiba, Buenos Aires, Guadalajara, and Beirut (Cervero, 2013).  Empirical evidence reveals a host of benefits from street redesigns and auto restraint measures like  these.  The traffic calming measures implemented in Heidelberg, Germany during the early 1990s  lead to a 31% decline in car related accidents, 44% fewer casualties, and less central city traffic  (Button, 2010). A study of pedestrianization in German cities recorded increases in pedestrian flows,  transit ridership, land values, and retail transactions, as well as property conversions to more  intensive land uses, matched by fewer traffic accidents and fatalities (Hass Klau, 1993).  Research on  over 100 case studies in Europe, North America, Japan, and Australia, found that road capacity  reductions including car free zones, creation of pedestrian streets, and street closures, results in an  overall decline in motorized traffic of 25% (Goodwin et al., 1998).  12.5.2    Policy Instruments  Spatial planning strategies rely on a host of policy instruments and levers (see Chapter 15.3 for a  classification of policy instruments).  Some instruments intervene in markets, aimed at correcting  market failures (e.g., negative externalities).  Others work with markets, aimed at shaping  behaviours through price signals or public private partnerships.  Interventionist strategies can  discourage or restrict growth through government fiat but they can also incentivize development,  such as through zoning bonuses or property tax abatements (Bengston et al., 2004). Policy  instruments can be applied to different spatial planning strategies and carried out at different  geographic scales (see Table 12.5).  Different strategy bundles can be achieved through a mix of  different policy tools, adapted to the unique political, institutional, and cultural landscapes of cities  in which they are applied.  Successful implementation requires institutional capacity and political  wherewithal to align the right policy instruments to specific spatial planning strategies.   The effectiveness of particular instruments introduced depends on legal and political environments.  For example, cities in the Global South can lack the institutional capacity to regulate land or to  enforce development regulations and tax incentives may have little impact on development in the    54 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    informal sector (Farvacque and McAuslan, 1992; Sivam, 2002; Bird and Slack, 2007; UN Habitat,  2013). Infrastructure provision and market based instruments such as fuel taxes will more likely  affect development decisions in the informal sectors, although there is little direct empirical  evidence. The impact of instruments on urban form and spatial outcomes can be difficult to assess  since regulations like land use zoning are often endogenous. That is, they codify land use patterns  that would have occurred under the free market rather than causing changes in urban form  (Pogodzinski and Sass, 1994).  12.5.2.1    Land use regulations  Land use regulations specify the use, size, mass and other aspects of development on a particular  parcel of land. They are also known as development controls or zoning regulations. In countries like  the United States and India, land use regulations usually promote low density, single use  developments with large amounts of parking that increase car dependence and emissions (Talen  2012; Levine 2005; Glaeser, 2011). For example, densities in the United States are often lower than  developers would choose under an unregulated system (Fischel, 1999; Levine and Inam, 2004). Thus,  regulatory reforms that relax or eliminate overly restrictive land use controls could contribute to  climate change mitigation.  In Europe, by contrast, land use regulations have been used to promote  more compact, mixed use, transit friendly cities (Beatley, 2000). The following are the primary land use regulations to reduce urban form related GHG emissions.  Use restrictions specify which land uses, such as residential, retail or office, or a mix of uses, may be  built on a particular parcel. Single use zoning regulations which rigidly separate residential and other  uses are prevalent in the United States, although some cities such as Miami have recently adopted  form based codes which regulate physical form and design rather than use (Parolek et al., 2008;  Talen, 2012). Use restrictions are rare in European countries such as Germany and France, where  mixed use development is permitted or encouraged (Hirt, 2007, 2012).   Density regulations specify minimum and/or maximum permissible densities in terms of the number  of residential units, floor area on a parcel, or restrictions on building height or mass.  Density  regulations can provide incentives for open space or other public benefits by allowing higher density  development in certain parts of a city. In India, densities or heights are capped in many cities,  creating a pattern of mid rise buildings horizontally spread throughout the city and failing to allow  TOD to take form around BRT and urban rail stations (Glaeser, 2011; Brueckner and Sridhar, 2012;  Suzuki et al., 2013). In Europe, by contrast, land use regulations have been used to promote more  compact, mixed use, transit friendly cities (Beatley, 2000; Parolek et al., 2008; Talen, 2012). In  Curitiba, Brazil, density bonuses provide incentives for mixed use development (Cervero, 1998;  Duarte and Ultramari, 2012). A density bonus (Rubin and Seneca, 1991) is an option where an  incentive is created for the developer to set aside land for open spaces or other benefits by being  allowed to develop more densely, typically in CBDs. One challenge with density bonus is that  individuals may have preferences for density levels (high, low) and adjust their location accordingly.   Urban containment instruments include greenbelts or urban growth boundaries and have been  employed in London, Berlin, Portland, Beijing, and Singapore. In the UK and in South Korea,  greenbelts delineate the edges of many built up and rural areas (Hall, 1996; Bengston and Youn,  2006). In many European cities, after the break up of the city walls in the 18th and 19th centuries,  greenbelts were used to delineate cities (Elson, 1986; Kühn, 2003). Some US states have passed  growth management laws that hem in urban sprawl through such initiatives as creating urban  growth boundaries, geographically restricting utility service districts, enacting concurrency rules to  pace the rate of land development and infrastructure improvements, and tying state aid to the  success of local governments in controlling sprawl (DeGrove and Miness, 1992; Nelson et al., 2004).   The mixed evidence on the impacts of urban containment instruments on density and compactness  (decreases in some cases and increases in others) indicates the importance of instrument choice and  particularities of setting.    55 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Building codes provide a mechanism to regulate the energy efficiency of development. Building  codes affect the energy efficiency of new development, and cities provide enforcement of those  regulations in some countries (Chapter 9). City policies influence emissions through energy use in  buildings in several other ways, which can influence purchases and leasing of commercial and  residential real estate properties. Some cities participate in energy labelling programmes for  buildings (see Chapter 9.10.2.6) or have financing schemes linked to property taxes (see Property  Assess Clean Energy (PACE) in Chapter 9.10.3.1).  Energy efficient equipment in buildings can further  reduce energy consumption and associated emissions, including electronics, appliances, and  equipment (see Table 9.3). Cities that operate utilities can influence energy usage directly by using  smart meters and information infrastructures (see 9.4.1.3).  Parking regulations specify minimum and/or maximum numbers of parking spaces for a particular  development. Minimum parking standards are ubiquitous in much of the world, including cities in  the United States, Mexico, Saudi Arabia, Malaysia, China, and India (Barter, 2011; Al Fouzan, 2012;  Wang and Yuan, 2013). Where regulations require developers to provide more parking than they  would have otherwise, as in place like New York and Los Angeles (McDonnell et al., 2011; Bowman  and Franco, 2012), they induce car travel by reducing the cost of driving. Minimum parking  requirements also have an indirect impact on emissions through land use, as they reduce the  densities that are physically or economically feasible on a site, by 30% 40% or more in typical cases  in the United States (Willson, 1995; Talen, 2012). Maximum parking standards, in contrast, have  been used in cities such as San Francisco, London, and Zurich (Kodransky and Hermann, 2011) to  reduce the costs of development, use urban land efficiently, and encourage alternate transportation  modes. In London, moving from minimum to maximum residential parking standards reduced  parking supply by 40%, with most of the impact coming through the elimination of parking  minimums (Guo and Ren, 2013).   Design regulations can be used to promote pedestrian and bicycle travel. For example, site design  requirements may require buildings to face the street or prohibit the placement of parking between  building entrances and street rights of way (Talen, 2012). Design regulations can also be used to  increase albedo or reduce urban heat island effects, through requiring light coloured or green roofs  or regulating impervious surfaces (Stone et al., 2012), as in Montreal and Toronto (Richardson and  Otero, 2012).   Affordable housing mandates can reduce the spatial mismatch between jobs and housing (Aurand,  2010). Incentives, such as floor area ratios and credits against exactions and impact fee obligations,  can be arranged for developers to provide social housing units within their development packages  (Cervero, 1989; Weitz, 2003).        56 of 125   Final Draft  Box 12.4. What drives declining densities? Chapter 12  IPCC WGIII AR5    The global phenomenon of declining densities (Angel et al., 2010) is the combined result of (1)  fundamental processes such as population growth, rising incomes, and technological improvements  in urban transportation systems (LeRoy and Sonstelie, 1983; Mieszkowski and Mills, 1993; Bertaud  and Malpezzi, 2003; Glaeser and Kahn, 2004); (2) market failures that distort urban form during the  process of growth (Brueckner, 2001a; Bento et al., 2006, 2011); and (3) regulatory policies that can  have unintended impacts on density (Sridhar, 2007, 2010).  A range of externalities can result in  lower densities, such as the failure to adequately account for the cost of traffic congestion and  infrastructure development and the failure to account for the social value of open space (Brueckner,  2000).   Regulatory policies, such as zoning and Floor Area Ratio (FAR) restrictions, as well as subsidies to  particular types of transportation infrastructures can have large impacts on land development,  which lead to leapfrog development (Mieszkowski and Mills, 1993; Baum Snow, 2007; Brueckner  and Sridhar, 2012). The emissions impacts of these interventions are often not fully understood.   Finally, the spatial distribution of amenities and services can shape urban densities through housing  demand (Brueckner et al., 1999).  In the United States, deteriorating conditions in city centres have  been an important factor in increased suburbanization (Bento et al., 2011; Brueckner and Helsley,  2011). Conversely, the continued consolidation of amenities, services, and employment  opportunities in the cores of European and Chinese cities has kept households in city centres  (Brueckner et al., 1999; Zheng et al., 2006, 2009).  12.5.2.2    Land management and acquisition  The previous section discussed regulatory instruments that are primarily used to shape the decisions  of private landowners. Land management and acquisition include parks, lease air rights, utility  corridors, transfer development rights, and urban service districts. Urban governments can also  directly shape urban form through land that is publicly owned   particularly around public transport  nodes, where municipalities and public transport agencies have acquired land, assembled parcels,  and taken the lead on development proposals (Cervero et al., 2004; Curtis et al., 2009; Curtis, 2012).  In Hong Kong SAR, China, the  Rail + Property  development programme, which emphasizes not only  density but also mixed uses and pedestrian linkages to the station, increases patronage by about  35,000 weekday passengers at the average station. In addition to supporting ridership, an important  aim of many agencies is to generate revenue to fund infrastructure, as in Istanbul, Sao Paulo, and  numerous Asian cities (Peterson, 2009; Sandroni, 2010).   Transfer of Development Rights (TDR) allows the voluntary transfer or sale of development from  one region or parcel where less development is desired to another region or parcel where more  development is desired. They can be used to protect heritage sites from redevelopment or to  redistribute urban growth to transit station areas.  The parcels that  send  development are  protected through restrictive covenants or permanent conservation easements.  TDR effectively  redirects new growth from areas where current development is to be protected (historical sites or  protected areas) to areas where more development is desired (e.g., transit station areas).     Increasing green space and urban carbon sinks can sequester carbon and reduce energy  consumption for cooling. Increasing green space offers co benefits such as increased property  values, regulating stormwater, reduced air pollution, increased recreational space, provision of  shade and cooling, rainwater interception and infiltration, increased biodiversity support, and  enhancement of well being (Heynen et al., 2006; Gill et al., 2007; McDonald, 2008). However, many  studies show that significantly increasing urban green space would have negligible effects on  offsetting total urban carbon emissions, especially when emissions generated by fuel combustion,  fertilizer use, and irrigation are also considered (Pataki et al., 2009; Jim and Chen, 2009; Townsend Small and Czimczik, 2010).  Globally, urban soils could sequester 290 Mt carbon per year if designed    57 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    with calcium rich minerals (Renforth et al., 2009). Annual carbon uptake varies significantly by  location and plant species. Carbon uptake per hectare for temperate urban green spaces is  estimated to be 0.15 0.94 t/yr for seven cities in the United States: Atlanta, Baltimore, Boston,  Jersey City, New York, Philadelphia, and Syracuse (Nowak and Crane, 2002); 0.38 t/yr in Beijing,  China (Yang and Gakenheimer, 2007); and 0.53 0.8 t/yr in the South Korean cities of Chuncheon,  Kangleung (Gangneung) and Seoul (Jo, 2002). United States cities in semi tropical areas have higher  levels of per hectare annual C sequestration, of 3.2 t/yr in Gainesville and 4.5 t/yr in Miami Dade  (Escobedo et al., 2010). Urban forests are estimated to sequester 1.66 (t C/ha)/yr in Hangzhou, China  (Zhao et al., 2010). The variation in estimates across cities can be partly ascribed to differences in  tree species, sizes, and densities of planting (Zhao et al., 2010), as well as land use (Whitford et al.,  2001) and tree life span (Strohbach et al., 2012; Raciti et al., 2012).   12.5.2.3    Market based instruments  Market based instruments use taxation and pricing policies to shape urban form (see Chapter 15.5.2  for more in depth discussion of market based instruments). Because much low density, single use  urban development stems from market failures or pre existing distorted policies or regulations, a  variety of market based instruments can be introduced that correct these failures (Brueckner and  Fansler, 1983; Brueckner and Kim, 2003; Brueckner, 2000; Bento et al., 2006, 2011).  Property taxes.  The property tax, a local tax widely used to fund local urban services and  infrastructure, typically taxes both land and structures.  A variant of the property tax, a land tax or  split rate tax, levies a higher rate of tax on the value of the land, and a lower or zero rate on the  value of the buildings and other improvements. This variant of the property tax can promote  compact urban form through increasing the capital to land ratio, i.e., the intensity of development.  There are numerous examples of the land or split rate tax worldwide, including Jamaica, Kenya,  Denmark, parts of Australia, the United States, and South Africa (Bird and Slack, 2002, 2007;  Franzsen and Youngman, 2009; Banzhaf and Lavery, 2010)   although in these places, tax reform was  not necessarily implemented with the aim of reducing sprawl.   In principle, moving from a standard property tax to a land or split rate tax has ambiguous effects on  urban form. The capital to land ratio could rise through an increase in dwelling size   promoting  sprawl   and/or through an increase in density or units per acre   promoting compact urban form  (Brueckner and Kim, 2003). In practice, however, the density effect seems to dominate. Most of the  empirical evidence supporting the role of property tax reform in promoting compact urban form  comes from the U.S. state of Pennsylvania, where the most thorough study found that the split rate  tax led to a 4 5% point increase per decade in the number of housing units per hectare, with a  minimal increase in unit size (for other evidence from Pennsylvania, see Oates and Schwab, 1997;  Plassmann and Tideman, 2000; Banzhaf and Lavery, 2010).   Prospective or simulation studies also tend to find that land or split rate taxes have the potential to  promote compact urban form at least to some extent (many earlier studies are summarized in  Roakes, 1996; Needham, 2000; for more recent work see Junge and Levinson, 2012). However,  studies of land taxes in Australia have tended to find no effect on urban form (Skaburskis, 2003),  although with some exceptions (e.g. Edwards, 1984; Lusht, 1992). There are several suggestions to  tailor land or property taxes to explicitly support urban planning objectives. For example, the  property tax could vary by use or by impervious area (Nuissl and Schroeter Schlaack, 2009), or the  tax could be on greenfield development only (Altes, 2009). However, there are few examples of  these approaches in practice, and little or no empirical evidence of their impacts.  Moving from a standard property tax to a land or split rate tax can yield efficiency and equity  benefits (see Chapter 3 for definitions). The efficiency effect stems from the fact that the land tax is  less distortionary than a tax on improvements, as the supply of land is fixed (Brueckner and Kim,  2003). The equity argument stems from the view that land value accrues because of the actions of  the wider community, for example through infrastructure investments, rather than the actions of    58 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    the landowner (Roakes, 1996). Indeed, some variants of the land tax in countries such as Colombia  (Bird and Slack, 2007) take an explicit  value capture  approach, and attempt to tax the incremental  increase in land value resulting from transport projects.  Development impact fees are imposed per unit of new development to finance the marginal costs of  new infrastructure required by the development, and are levied on a one time basis. The effects of  impact fees on urban form will be similar to a property tax. The main difference is that impact fees  are more likely to be used by urban governments as a financing mechanism for transport  infrastructure. For example, San Francisco and many British cities have impact fees dedicated to  public transport (Enoch et al., 2005), and other cities such as Santiago have fees that are primarily  dedicated to road infrastructure (Zegras, 2003).  Development taxes.  To the extent that excessive urban development reflects the failure to charge  developers for the full costs of infrastructure and the failure to account for the social benefits of  spatially explicit amenities or open space, some economists argue that development taxes, a tax per  unit of land converted to residential uses, are the most direct market based instruments to correct  for such failures (Brueckner, 2000; Bento et al., 2006). According to these studies, in contrast to  urban growth boundaries, development taxes can control urban growth at lower economic costs.  Urban sprawl occurs in part because the costs associated with development are not fully accounted  for. Development taxes could make up for the difference between the private costs and the social  costs of development, and coupled with urban growth boundaries could be effective at reducing  sprawl.    Fuel prices and transportation costs. Increases in fuel taxes or transportation costs more generally  have a direct effect on reducing VKT (see Chapter 8 and Chapter 15). They are also likely to have a  long run mitigation effect as households adjust their location choices to reduce travel distances, and  urban form responds accordingly. An urban area that becomes more compact as households bid up  the price of centrally located land is a core result from standard theoretical economic models of  urban form (Romanos, 1978; Brueckner, 2001a, 2005; Bento et al., 2006).  Empirically, evidence for this relationship comes from cities in the United States, where a 10%  increase in fuel prices leads to a 10% decrease in construction on the urban periphery (Molloy and  Shan, 2013); Canada, where a 1% increase in gas prices is associated with a 0.32% increase in the  population living in the inner city (Tanguay and Gingras, 2012); and cross national datasets of 35  world cities (Glaeser et al., 2001; Glaeser and Kahn, 2004). However, another cross national study  using a larger dataset found no statistically significant link, which the authors attribute to noisiness  in their (national level) fuel price data (Angel et al., 2005).   Similar impacts on urban form would be expected from other pricing instruments that increase the  cost of driving. While there is clear evidence that road and parking pricing schemes reduce emissions  through direct impacts on mode and travel choices (see Chapter 8.10.1), there is more limited data  on the indirect impacts through land use patterns. One of the few simulation studies found that  optimum congestion pricing would reduce the radius of the Paris metropolitan area by 34%, and the  average travel distance by 15% (De Lara et al., 2013).  12.5.3    Integrated spatial planning and implementation  A characteristic of effective spatial planning is interlinked and coordinated efforts that are  synergistic, and the sum of which are greater than each individual part incrementally or individually  (Porter, 1997).  Relying on a single instrument or one size fits all approach can be ineffective or  worse, have perverse, unintended consequences. Singapore is a textbook example of successfully  bundling spatial planning and supportive pricing strategies that reinforce and strengthen the  influences of each other (see Box 12.5). Bundling spatial strategies in ways that produce positive  synergies often requires successful institutional coordination and political leadership from higher  levels of government (Gakenheimer, 2011). The U.S. state of Oregon has managed to protect    59 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    farmland and restrict urban sprawl through a combination of measures, including urban growth  boundaries (required for all metropolitan areas above 50,000 inhabitants), farm tax credit  programmes, tax abatements for infill development, and state grants that have helped fund  investments in high quality transit, such as light rail and tramways in Portland and BRT in Eugene  (Moore et al., 2007). Enabling legislation introduced by the state prompted cities like Portland to  aggressively curb sprawl through a combination of urban containment, targeted infrastructure  investments, aggressive expansion of pedestrian and bikeway facilities, and commercial rate pricing  of parking (Nelson et al., 2004).      Box 12.5. Singapore: TOD and Road Pricing The island state of Singapore has over the years introduced a series of cross cutting, reinforcing  spatial planning and supportive strategies that promote sustainable urbanism and mobility (Suzuki et  al., 2013). Guided by its visionary Constellation Plan, Singapore built a series of new master planned  towns that interact with each other because they each have different functional niches. Rather than  being self contained entities, these new towns function together (Cervero, 1998).  All are interlinked  by high capacity, high quality urban rail and bus services, and correspondingly the majority of trips  between urban centres are by public transport. Congestion charges and quota controls on vehicle  registrations through an auctioning system also explain why Singapore s transit services are so  heavily patronized and not un related, why new land development is occurring around rail stations  (Lam and Toan, 2006).                                                                   Figure 12.18. Singapore s Constellation Plan. Source: (Suzuki et al., 2013).   Empirical evidence on the environmental benefits of policies that bundle spatial planning and  market strategies continues to accumulate.  A 2006 experiment in Portland, Oregon, replaced  gasoline taxes with VKT charges, levied on 183 households that volunteered for the experiment.   Some motorists paid a flat VKT charge while others paid considerably higher rates during the peak  than non peak.  The largest VKT reductions were recorded among households in compact, mixed use  neighbourhoods that paid congestion charges matched by little change in travel among those living  in lower density areas and paying flat rates (Guo et al., 2011). Another study estimated that compact    60 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    development combined with technological improvements (e.g., more efficient vehicle fleets and  low carbon fuels) could reduce GHG emissions by 15% to 20% (Hankey and Marshall, 2010). A  general equilibrium model of urban regions in the OECD concluded that  urban density policies and  congestion charges reduce the overall cost of meeting GHG emissions reduction targets more than  economy wide policies, such as a carbon tax, introduced by themselves  (OECD, 2010d).  12.6   Governance, Institutions, and Finance  The feasibility of spatial planning instruments for climate change mitigation depends greatly upon  each city s governance and financial capacities. Even if financial capacities are present, a number of  other obstacles need to be surmounted. For example, many local governments are disinclined to  support compact, mixed use, and dense development. Even in cases where there is political support  for low carbon development, institutions may be ineffective in developing, implementing, or  regulating land use plans. This section assesses the governance, institutional, and financial  challenges and opportunities for implementing the mitigation strategies outlined in Section 12.5.   It needs to be emphasized that both the demand for energy and for urban infrastructure services, as  well as the efficiency of service delivery, is also influenced by behaviour and individual choices.  Cultural and lifestyle norms surrounding comfort, cleanliness, and convenience structure  expectations and use of energy, water, waste, and other urban infrastructure services (Miller, 1998;  Shove, 2003, 2004; Bulkeley, 2013). Individual and household choices and behaviour can also  strongly affect the demand for, and the delivery efficiency of, public infrastructure services, for  instance by lowering or increasing load factors (utilization rates) of public transport systems  (Sammer, 2013). Governance and institutions are necessary for the design and implementation of  effective policy frameworks that can translate theoretical emission reduction potentials of a range of  mitigation options into actual improved emission outcomes.   12.6.1    Institutional and governance constraints and opportunities  The governance and institutional requirements most relevant to changing urban form and integrated  infrastructure in urban areas relate to spatial planning. The nature of spatial planning varies  significantly across countries, but in most national contexts, a framework for planning is provided by  state and local governments. Within these frameworks, municipal authorities have varying degrees  of autonomy and authority. Furthermore, there are often divisions between land use planning,  where municipalities have the authority for land regulation within their jurisdiction, and  transportation planning (which is either centrally organized or done in a cross cutting manner), in  which municipal responsibilities are often more limited. Thus, spatial planning is one area where  municipalities have both the authority and the institutions to address GHG emissions.  However, the best plans for advancing sustainable urbanization and low carbon development,  especially in fast growing parts of the world, will not become a reality unless there is both the  political will and institutional capacity to implement them.  The ability to manage and respond to  escalating demands for urban services and infrastructure is often limited in developing country  cities.  Multiple institutional shortcomings exist, such as an insufficiently trained and undereducated  civil service talent pool or the absence of a transparent and corruption free procurement process for  providing urban infrastructure (UN Habitat, 2013). For example, limited experience with urban  management, budgeting and accounting, urban planning, finance, and project supervision have  thwarted Indonesia s decentralization of infrastructure programmes from the central to local  governments over the past decade (Cervero, 2013).  Although lack of coordination among local land management and infrastructure agencies is also a  common problem in cities of industrialized countries (Kennedy et al., 2005), in developing cities  institutional fragmentation undermines the ability to coordinate urban services within and across  sectors (Dimitriou, 2011).  Separating urban sector functions into different organizations   each with    61 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    its own boards, staff, budgets, and by laws   often translates into uni sectoral actions and missed  opportunities, such as the failure to site new housing projects near public transport stations.  In  addition, ineffective bureaucracies are notorious for introducing waste and delays in the deployment  of urban transport projects.  In rapidly urbanizing cities, limited capacities and the need to respond to everyday crises often  occupy most of the available time in transportation and public utility departments, with little  attention left to strategically plan for prevention of such crises in the first place. As a result, strategic  planning and coordination of land use and transportation across different transport modes is  practically non existent.  Institutions rarely have sufficient time or funds to expand transport  infrastructure fast enough to accommodate the exponential growth in travel. Public utilities for  water and sanitation face similar challenges, and most local agencies operate constantly in the  catch up mode.  Water utilities in southeast Asian cities, for example, are so preoccupied with fixing  leaks, removing illegal connections, and meeting water purity standards that there is little time to  strategically plan ahead for expanding trunk line capacities in line with urban population growth  projections.  The ability to advance sustainable transport programmes, provide clean water  connections, or introduce efficient pricing schemes implies the presence of conditions that rarely  exist, namely a well managed infrastructure authority that sets clear, measurable objectives and  rigorously appraises the expenditure of funds in a transparent and accountable way (Cervero, 2013).  Lack of local institutional capacity among developing cities is a major barrier to achieving the full  potential that such cities have to reduce GHG emissions (UN Habitat, 2013). This highlights the  urban institutional climate conundrum that rapidly urbanizing cities cities with the greatest  potential to reduce future GHG emissions are the cities where the current lack of institutional  capacity will most obstruct mitigation efforts.   Curitiba, Brazil, regarded as one of the world s most sustainable cities, is a product of not only  visionary spatial planning but also strong institutions and political leadership (see Box 12.6.). Other  global cities are striving to follow Curitiba s lead.  Bangkok recently announced a paradigm shift in  planning that emphasizes redesigning the city to eliminate or shorten trips, create complete streets,  and makes the city more liveable (Bangkok Metropolitan Administration, 2013).  The Amman,  Jordan, Master Plan of 2008 promotes high density, mixed use development through the  identification of growth centres, intensification along select corridors across the city, and the  provision of safe and efficient public transportation (Beauregard and Marpillero Colomina, 2011).   Similar transit oriented master plans have been prepared for Islamabad, Delhi, Kuala Lumpur, and  Johannesburg in recent years. Mexico City has aggressively invested in BRT and bicycle infrastructure  to promote both a culture and built form conducive to sustainable mobility (Mejía Dugand et al.,  2013).    62 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Box 12.6. Sustainable Curitiba: Visionary planning and strong institutions Developing cities such as Curitiba, Brazil, well known for advancing sustainable transport and  urbanism, owe part of their success to strong governance and institutions (Cervero, 2013). Early in  Curitiba s planning process, the Instituto de Pesquisa e Planejamento Urbano de Curitiba (IPPUC)  was formed and given the responsibility of ensuring the integration of all elements of urban growth.   Creative design elements, such as the trinary corridors (shown in Figure 12.19) that concentrate  vertically mixed development along high capacity dedicated busways and systematically taper  densities away from transit corridors, were inventions of IPPUC s professional staff.  As an  independent planning and research agency with dedicated funding support, IPPUC is insulated from  the whims of day to day politics and able to cost effectively coordinate urban expansion and  infrastructure development.  Sustained political commitment has been another important element  of Curitiba s success. The harmonization of transport and urban development took place over 40  years, marked by a succession of progressive, forward looking, like minded mayors who built on the  work of their predecessors.  A cogent long term vision and the presence of a politically insulated  regional planning organization, IPPUC, to implement the vision have been crucial in allowing the city  to chart a sustainable urban pathway.  However, urban governance of land use and transport planning is not the sole province of municipal  authorities or other levels of government. Increasingly, private sector developers are creating their  own strategies to govern the nature of urban development that exceed codes and established  standards. These strategies can relate both to the physical infrastructure being developed (e.g., the  energy rating of housing on a particular development) or take the form of requirements and guides  for those who will occupy new or refurbished developments (e.g., age limits, types of home  appliance that can be used, energy contracts, and education about how to reduce GHG emissions).  Non governmental organizations (NGOs) aimed at industry groups, such as the U.S. Green Building  Council, the Korea Green Building Certification Criteria, and UK s Building Research Establishment  Environmental Assessment Method (BREEAM) have also become important in shaping urban  development, particularly in terms of regeneration and the refurbishment or retrofitting of existing  buildings. For example, this is the case in terms of community based organizations in informal  settlements, as well as in the redevelopment of brownfield sites in Europe and North America.    Figure 12.19. Curitiba's stylized trinary road system. The inclusion of mixed land uses and affordable housing allows developers to increase building heights, adding density to the corridor. Source: (Suzuki et al., 2013). In addition to the internal institutional challenges outlined above, cities face the problem of  coordinating policies across jurisdictional boundaries as their populations grow beyond the    63 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    boundaries of their jurisdictions.  Effective spatial planning and infrastructure provision requires an  integrated metropolitan approach that transcends traditional municipal boundaries, especially to  achieve regional accessibility. The fragmented local government structure of metropolitan areas  facilitates the conversion of agricultural, forested, or otherwise undeveloped land to urban uses.  These expanding urban areas also exhibit fiscal weaknesses, face heightened challenges of  metropolitan transportation, and deficiencies in critical physical and social infrastructures (Rusk,  1995; Norris, 2001; Orfield, 2002; McCarney and Stren, 2008; Blanco et al., 2011; McCarney et al.,  2011). Several efforts to address urban climate change mitigation at a metropolitan scale are  emerging. The U.S. state of California, for example, is requiring metropolitan transportation agencies  to develop climate change mitigation plans in concert with municipalities in their region. California's  2008 Sustainable Communities and Climate Protection Act, or SB 375, was the first legislation in the  United States to link transportation and land use planning with climate change (State of California,  2008; Barbour and Deakin, 2012).  In order for integrated planning development to be successful, it must be supported at national  levels (Gakenheimer, 2011).  A recent example is India s National Urban Transport Policy of 2006,  which embraces integrated transport and land use planning as its top priority.  In this policy, the  central government covers half the costs of preparing integrated transport and land use plans in  Indian cities.  Another example is that for the past 25 years, Brazil has had a national urban transport  policy that supports planning for sustainable transport and urban growth in BRT served cities like  Curitiba and Belo Horizonte.      12.6.2    Financing urban mitigation  Urban infrastructure financing comes from a variety of sources, some of which may already be  devoted to urban development. Some of these include direct central government budgetary  investments, intergovernmental transfers to city and provincial governments, revenues raised by city  and provincial governments, the private sector or public private partnerships, resources drawn from  the capital markets via municipal bonds or financial intermediaries, risk management instruments,  and carbon financing. Such sources provide opportunities for urban mitigation initiatives (OECD,  2010b), but access to these financial resources varies from one place to another.   In many industrialized countries, national and supra national policies and programmes have  provided cities with the additional financing and facilitations for urban climate change mitigation.  Where the national commitment is lacking, state and municipal governments can influence  mitigation initiatives at the city scale. Cities in emerging economies are also increasingly engaging in  mitigation, but they often rely on international sources of funding. GHG abatement is generally  pursued as part of the urban development efforts required to improve access to infrastructure and  services in the fast growing cities of developing countries, and to increase the liveability of largely  built out cities in industrialized countries. Incorporating mitigation into urban development has  important financial implications, as many of the existing or planned urban investments can be  accompanied through requirements to meet certain mitigation standards (OECD, 2010b). As  decentralization has progressed worldwide (the average share of sub national expenditure in OECD  countries reached 33 % in 2005), regional and local governments increasingly manage significant  resources.   Local fiscal policy itself can restrict mitigation efforts. When local budgets rely on property taxes or  other taxes imposed on new development, there is a fiscal incentive to expand into rural areas or  sprawl instead of pursuing more compact city strategies (Ladd, 1998; Song and Zenou, 2006).  Metropolitan transportation policies and taxes also affect urban carbon emissions. Congestion  charges reduce GHG emissions from transport by up to 19.5 % in London where proceeds are used  to finance public transport, thus combining global and local benefits very effectively (Beevers and  Carslaw, 2005). Parking charges have led to a 12% decrease of vehicle miles of commuters in U.S.    64 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    cities, a 20% reduction in single car trips in Ottawa, and a 38% increase of carpooling in Portland  (OECD, 2010c).   Another way to think about the policy instruments available to governments for incentivizing GHG  abatement is to consider each instrument s potential to generate public revenues or demand for  government expenditures, and the administrative scale at which it can be applied (Figure 12.20).  Here, the policy instruments discussed earlier (Table 12.5) are categorized into four groups: (1)  regulation; (2) taxation/charge; (3) land based policy; and (4) capital investment. Many of these are  applicable to cities in both the developed and developing countries, but they vary in degree of  implementation due to limited institutional or governance capacities.  Overcoming the lack of  political will, restricted technical capacities, and ineffective institutions for regulating or planning  land use will be central to attaining low carbon development at a city scale.    Figure 12.20. Key spatial planning tools and effects on government revenues and expenditures across administrative scales. Figure shows four key spatial planning tools (coded in colours) and the scale of governance at which they are administered (x-axis) as well as how much public revenue or expenditure the government generates by implementing each instrument (y-axis). Sources: Bahl and Linn (1998); Bhatt (2011); Cervero (2004); Deng (2005); Fekade (2000); Rogers (1999); Hong and Needham (2007); Peterson (2009); Peyroux (2012); Sandroni (2010); Suzuki et al. (2013); Urban LandMark (2012); U.S. EPA (2013); Weitz (2003). Fiscal crises along with public investment, urban development, and environmental policy challenges  in both developed and developing counties have sparked interest in innovative financial instruments    65 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    to affect spatial development, including a variety of land based techniques (Peterson, 2009). One of  these key financial/economic mechanisms is land value capture. Land value capture consists of  financing the construction of new transit infrastructures using the profits generated by the land  value price increase associated with the presence of new infrastructure (Dewees, 1976; Benjamin  and Sirmans, 1996; Batt, 2001; Fensham and Gleeson, 2003; Smith and Gihring, 2006). Also called  windfall recapture, it is a local financing option based on recouping a portion or all of public  infrastructure costs from private land betterments under the  beneficiary  principle. In contrast,  value compensation, or wipeout mitigation, is commonly viewed as a policy tool to alleviate private  land worsements the deterioration in the value or usefulness of a piece of real property resulting  from public regulatory activities (Hagman and Misczynski, 1978; Callies, 1979).   The majority of the value capture for transit literature use U.S. cities as case studies in part because  of the prevalence of low density, automobile centred development. However, there is an emerging  literature on value capture financing that focus on developing country cities, which tend to be  denser than those in OECD countries, and where there is more even shares of distinct travel modes  (Cervero et al., 2004). Value capture typically is used for public transit projects. There are various  ways to implement value capture, including: land and property taxes, special assessment or business  improvement districts, tax incremental financing, development impact fees, public land leasing and  development right sales, land readjustment programmes, joint developments and cost/benefit  sharing, connection fees (Johnson and Hoel, 1985; Landis et al., 1991; Bahl and Linn, 1998; Enoch et  al., 2005; Smith and Gihring, 2006). There is much evidence that public transit investments often  increase land values around new and existing stations (Du and Mulley, 2006; Debrezion et al., 2007).    In summary, the following are key factors for successful urban climate governance: (1) institutional  arrangements that facilitate the integration of mitigation with other high priority urban agendas; (2)  an enabling multilevel governance context that empowers cities to promote urban transformations;  (3) spatial planning competencies and political will to support integrated land use and transportation  planning; and (4) sufficient financial flows and incentives to adequately support mitigation  strategies.   12.7   Urban Climate Mitigation: Experiences and Opportunities  This section identifies the scale and range of mitigation actions being planned by municipal  governments and assesses the evidence of successful implementation of the plans as well as barriers  to further implementation. The majority of studies reviewed pertain to large cities in North America,  Japan, and Europe, although there are some cross city comparisons and case studies that include  smaller cities in industrialized economies (Yalç n and Lefevre, 2012; Dierwechter and Wessells, 2013)  and cities in developing countries and emerging economies (Romero Lankao, 2007; Pitt, 2010).   Addressing climate change has become part of the policy landscape in many cities, and municipal  authorities have begun to implement policies to reduce GHG emissions generated from within their  administrative boundaries (Acuto, 2013; OECD, 2010a). The most visible way in which cities  undertake mitigation is under the auspices of a climate action plan   a policy document created by a  local government agency that sets out a programme of action to mitigate greenhouse gas emissions.  Usually such plans include a GHG emissions inventory and an emissions reduction target, as well as a  series of mitigation policies.   This section focuses on such climate action plans, as they provide the most comprehensive and  consistent, albeit limited, evidence available regarding urban mitigation efforts. However, there is  not a one to one correspondence between climate action plans and urban mitigation efforts. Even  when included in climate action plans, mitigation measures may well have been implemented in the  plan s absence, whether for climate related or other reasons (Millard Ball, 2012b). Conversely,  climate action plans are only one framework under which cities plan for mitigation policies, and  similar recommendations may also occur as part of a municipal sustainability, land use, or transport    66 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    plan (Bulkeley and Kern, 2006; GTZ, 2009; Bassett and Shandas, 2010). In these other types of plans,  climate change may be one motivation, but mitigation measures are often pursued because of co benefits such as local air quality (Betsill, 2001; Kousky and Schneider, 2003).   12.7.1    Scale of urban mitigation efforts  The number of cities that have signed up to voluntary frameworks for GHG emission reductions has  increased from fewer than 50 at the start of the 1990s to several hundred by the early 2000s  (Bulkeley and Betsill, 2003), and several thousand by 2012 (Kern and Bulkeley, 2009; Pitt, 2010;  Krause, 2011a). These voluntary frameworks provide technical assistance and political visibility. They  include the C40 Cities Climate Leadership Group (C40), which by October 2013 counted most of the  world s largest cities among its 58 affiliates (C40 Cities, 2013), the Cities for Climate Protection (CCP)  Campaign, and the 2013 European Covenant of Mayors, which had over 5,200 members  representing over 170 million people, or roughly one third of the European population (The  Covenant of Mayors, 2013). In the United States, nearly 1,100 municipalities, representing  approximately 30% of the country's population, have joined the U.S. Conference of Mayors Climate  Protection Agreement, thus committing to reduce their local GHG emissions to below 1990 levels  (Krause, 2011a).   Such estimates represent a lower bound, as cities may complete a climate action plan or undertake  mitigation outside one of these voluntary frameworks. In California in 2009, 72% of cities responding  to a survey stated they had adopted policies and/or programmes to address climate change, but  only 14% had adopted a GHG reduction target (Wang, 2013). In some countries, climate action plans  are mandatory for local governments, further adding to the total. For example, in Japan, the Global  Warming Law and the Kyoto Protocol Target Achievement Plan mandate that 1,800 municipal  governments and 47 Prefectures prepare climate change mitigation action plans (Sugiyama and  Takeuchi, 2008). In France, climate action plans are mandatory for cities with populations larger than  50,000 (Yalç n and Lefevre, 2012). Climate action planning has been most extensive in cities in Annex  I countries, particularly those in Europe and Japan. This presents a mismatch between the places  with mitigation planning efforts, and the places where most urban growth will occur and where the  greatest mitigation potential exists largely in developing countries that are rapidly urbanizing.         67 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Box 12.7. Urban climate change mitigation in less developed countries The majority of future population growth and demand for new infrastructure will take place in urban  areas in developing countries. Africa and Asia will absorb the bulk of the urban population growth,  and urbanization will occur at lower levels of economic development than the urban transitions that  occurred in Annex I countries. There are currently multiple urban transitions taking place in  developing countries, with differences in part due to their development histories, and with different  impacts on energy use and greenhouse gas emissions.   Urban areas in developing and least developed countries can have dual energy systems (Martinot et  al., 2002; Berndes et al., 2003). That is, one segment of the population may have access to modern  energy and associated technology for heating and cooking. Another segment of the population mainly those living in informal settlements may rely mainly on wood based biomass. Such non commercial biomass is a prominent source in the urban fuel mix in Sub Saharan Africa (50%) and in  South Asia (23%). In other regions, Latin America and the Caribbean (12%), Pacific Asia (8%) and  China (7%) traditional, non commercial energy is not negligible but a relatively smaller proportion of  overall energy portfolio (Grubler et al., 2012). The traditional energy system operates informally and  inefficiently, using out dated technology. It can be associated with significant health impacts (see  Chapters 2 and 9 in IPCC, 2011). The unsustainable harvesting of woodfuels to supply large urban  and industrial markets is significantly contributing to forest degradation and coupled with other  land use changes to deforestation (see Chapter 11). However, recent technological advances suggest  that energy production from biomass can be an opportunity for low carbon development (Zeng et  al., 2007; Fargione et al., 2008; Hoekman, 2009; Azar et al., 2010). Projections of significant growth  in woodfuel demand (Mwampamba, 2007; Zulu, 2010; Agyeman et al., 2012) make it vital that this  sector is overhauled and modernized using new technologies, approaches, and governance  mechanisms.  Additionally, informal urbanization may not result in an increase in the provision of infrastructure  services. Rather, unequal access to infrastructure, especially housing and electricity, is a significant  problem in many rapidly growing urban centres in developing countries and shapes patterns of  urban development. Mitigation options vary by development levels and urbanization trajectories.  The rapid urbanization and motorization occurring in many developing and least developed  countries is constrained by limited infrastructure and deteriorating transport systems. Integrated  infrastructure development in these areas can have greater effects on travel demands and low emission modal choices than in high income countries, where infrastructure is largely set in place  (see Chapter 8.9). The scale of new building construction in developing countries follows a similar  path. An estimated 3 billion people worldwide rely on highly polluting and unhealthy traditional solid  fuels for household cooking and heating (Pachauri et al., 2012; International Energy Agency,  2012)and shifting their energy sources to electricity and clean fuels could strongly influence building related emissions reductions (see Box 9.1 and Section 14.3.2.1). Thus, it is in developing and least  developed country cities where opportunities for integrated infrastructure and land use planning  may be most effective at shaping development and emissions trajectories, but where a  governance  paradox  exists (see Section 12.3.1).  12.7.2    Targets and timetables  One way to assess the scale of planned mitigation is through the emission reduction targets set by  cities, typically as part of their climate action plans. A central feature of municipal climate change  responses is that targets and timetables have frequently exceeded national and international  ambitions for emissions reduction. In Germany, nearly 75% of cities with a GHG target established  their emissions goals based on national or international metrics rather than local analysis of  mitigation options and the average city reduction target of 1.44% per year exceeds the national  target (Sippel, 2011). In the United States, signatories to the Mayors Climate Protection Agreement  have pledged to reduce GHG emissions by 7% below 1990 levels by 2012, in line with the target    68 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    agreed upon in the Kyoto Protocol for the United States (Krause, 2011b). Lutsey and Sperling (2008)  find that these and other targets in 684 U.S. cities would reduce total emissions in the United States  by 7% below the 2020 business as usual (BAU) baseline.   In Europe and Australia, several municipalities have adopted targets of reducing GHG emissions by  20% by 2020 and long term targets for radically reducing GHG emissions, including  zero carbon   targets in the City of Melbourne and Moreland (Victoria), and a target of 80% reduction over 1990  levels by 2050 in London (Bulkeley, H, 2009). This approach has not been limited to cities in  developed economies. For example, the city of Cape Town has set a target of increasing energy  efficiency within the municipality by 12% by 2010 (Holgate, 2007), and Mexico City has implemented  a target of reducing GHG by 12% below 1990 levels by 2012 (Romero Lankao, 2007). Data compiled  for this assessment, although illustrative rather than systematic, indicate an average reduction of  2.74 t CO2eq/cap if cities were to achieve their targets, with percentage targets ranging from 10% to  100%. In general, percentage reduction targets are larger for more distant years and in more  affluent cities. However, the absolute level of the targeted reductions depends primarily on the  city s population and other determinants of baseline emissions (Figure 12.21.).   In some cases, targets may reflect patterns of potential mitigation. Targets are often arbitrary or  aspirational, and reflect neither mitigation potential nor implementation. How targets translate into  mitigation effort also depends on how they are quantified, e.g., whether fuel economy and similar  improvements mandated at the national level are claimed by cities as part of their own reductions  (Boswell et al., 2010; DeShazo and Matute, 2012). Mitigation targets are often set in absolute terms,  which may be less meaningful than per capita reductions in assessing mitigation potential at the  metropolitan scale. This is a particularly important issue for central cities and inner suburbs, where  population and emissions may increase within the city boundary if policies to increase density and  compactness are successful (see Section 12.4; Ganson, 2008; Salon et al., 2010).  Many cities, particularly those in developing countries, do not set targets at all. For example, the  Delhi Climate Change Agenda only reports Delhi s CO2 emissions from power, transport, and  domestic sectors as 22.49 MtCO2 for 2007 2008 (Government of NCT of Delhi, 2010), while the  contributions from commercial sectors and industries comprise a larger share of the city s total  emissions. Furthermore, Delhi s climate action plan lacks clear GHG reduction targets, analysis of the  total carbon reductions projected under the plan, and a strategy for how to achieve their emissions  goals. Similar limitations are apparent in mitigation plans for other global cities such as Bangkok and  Jakarta (Dhakal and Poruschi, 2010). For many cities in developing countries, a reliable city GHG  inventory may not exist, making the climate change actions largely symbolic. However, these city  action plans provide a foundation for municipal engagement in mitigation initiatives while building  momentum for collective action on a global scale.    69 of 125   Final Draft  Chapter 12  IPCC WGIII AR5      Figure 12.21. Mitigation targets for 42 cities. Sources: Baseline emissions, reduction targets, and population from self-reported data submitted to Carbon Disclosure Project (2013). GDP data from Istrate & Nadeau (2012). Note that the figure is illustrative only; data are not representative, and physical boundaries, emissions accounting methods and baseline years vary between cities. Many cities have targets for intermediate years (not shown). 12.7.3    Planned and implemented mitigation measures  Limited information is available on the extent to which targets are being achieved or emissions  reduced. Some cities have already achieved their initial GHG reduction targets, e.g., Seattle (Boswell  et al., 2011), or are on track to do so, e.g., Stockholm (City of Stockholm, 2013). In other places such  as western Germany, few if any cities are likely to meet their targets (Sippel, 2011). Further data  come from comparison of  before  and  after  GHG inventories. One study of six major cities found  that emissions are falling by an average 0.27 t CO2eq/cap per year (Kennedy et al., 2012). Overall,  however, the available data are usually incomplete, self reported, and subject to various biases.  More fundamentally, changes in aggregate emissions do not necessarily reflect the success or failure  to implement mitigation measures, because so many drivers of emissions   including the electricity  generation mix and fuel taxation   are normally beyond the control of cities (DeShazo and Matute,  2012). Whether a city achieves its target has less to do with its own actions and more to do with  external drivers of emissions.    70 of 125   Final Draft  Chapter 12  IPCC WGIII AR5      Figure 12.22. Mitigation measures in climate action plans. Sources: Compiled for this assessment from self-reported data submitted to Carbon Disclosure Project (2013).   An alternative way to gauge the extent of planned and implemented mitigation measures is through  a bottom up analysis of individual policies (Ramaswami et al., 2012a) or sector specific data on  green buildings, transport, or waste production (Millard Ball, 2012a). However, there are no data  from a large number of cities using these methods.  Instead, available data are usually in the form of  self reported planned or implemented policies (Krause, 2011c; Castán Broto and Bulkeley, 2012;  Stone et al., 2012; Bedsworth and Hanak, 2013). While these data do not reveal aggregate emission  reductions, they indicate the sectoral breadth of city climate action plans and the types of measures  that cities are planning. No single sector dominates mitigation plans, although transportation and  building efficiency are the most common self reported measures (Figure 12.22). Here it is worth  noting that the relative contribution of sectors to total urban emissions varies greatly by city (see  Section 12.3).   The types of land use strategies discussed in Section 12.5, such as compact development, are  sometimes included in municipal efforts or plans, but the popularity of such land use measures  varies considerably by context. In California, 80% of municipal survey respondents reported that  they had policies for high density or mixed use development in place or under consideration, and  the adoption of such land use policies rose substantially between 2008 and 2010 (Bedsworth and  Hanak, 2013). In the United States, 70% of climate action plans reviewed in one study include  compact development strategies (Bassett and Shandas, 2010). In contrast, municipal climate plans in  Norway and Germany focus on energy, transport and building efficiency, with little attention given  to land use (Aall et al., 2007; Sippel, 2011).  At a global level, self reported data from a small sample  of cities (Figure 12.22) suggests that land use measures are relatively uncommon in climate action    71 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    plans   particularly outside Annex I countries. Moreover, where land use strategies exist, they focus  on urban greenspace and/or biodiversity, rather than on the cross sectoral measures to reduce  sprawl and promote TOD that were discussed in Section 12.5.  Even if land use measures are listed in climate action plans, implementation has focused on win win  energy efficiency measures that lead to cost savings, rather than larger changes to land use,  buildings or transport. This is a consistent message from qualitative studies (Kousky and Schneider,  2003; Rutland and Aylett, 2008; Kern and Bulkeley, 2009), and some larger surveys of city efforts  (Wang, 2013). There has been less engagement by municipalities with sectors such as energy and  water supply that often lie outside of their jurisdiction (Bulkeley and Kern, 2006; ARUP, 2011) or with  the GHG emissions embodied in present patterns of urban resource use and consumption. More  broadly, there is considerable variation in the nature and quality of climate change plans, particularly  when it comes to specifying the detail of actions and approaches to implementation (Wheeler, 2008;  Tang et al., 2011; Bulkeley and Schroeder, 2012).   Despite the implementation of comprehensive climate action plans and policies, progress for cities in  developed countries is slow and the achievability of emissions targets remains uncertain. Although  municipalities often highlight progress on mitigation projects, the impacts of these initiatives are not  often evaluated (see Chapter 15 on policy evaluation). Cities  mitigation reduction performance is  largely correlated to the national performance in mitigation reduction.   12.8   Sustainable Development, Co Benefits, Trade offs, and Spill over  Effects  Sustainable development (SD) is, and has always been, closely associated with human settlements.  In fact, the very document that coined the phrase, the World Commission on Environment and  Development (WCED) Report (WCED 1987), devoted a chapter to  the urban challenge . While  averting the adverse social and environmental effects of climate change remains at the core of the  urban challenge today, cities throughout the world also continue to struggle with a host of other  critical challenges, including, for instance, ensuring access to clean, reliable and affordable energy  services for their citizens (particularly for the urban poor); limiting congestion, noise, air and water  pollution, and health and ecosystem damages; and maintaining sufficient employment opportunities  and competitiveness in an increasingly globalized world.  Efforts to mitigate climate change will have important side effects for these various policy  objectives, as discussed in Sections 5.7, 6.6, 7.9, 8.7, 9.7, 10.8, 11.7 and 11.A.6. To the extent these  side effects are positive, they can be deemed  co benefits ; if adverse, they imply  risks .3 As such  side effects are likely to materialize first in urban settings since these are the hubs of activity,  commerce, and culture in the modern world: this section will focus on the literature specifically  linked to urban settings and refer to other sections of the report where appropriate.  Action on climate change mitigation often depends on the ability to  reframe  or  localize  climate  change with respect to the co benefits that could be realized (Betsill, 2001). For example, in Canada  actions to reduce GHG emissions are also deeply connected to other goals and co benefits such as  human health improvements through improved air quality, cost savings, adaptability to real or  potential vulnerabilities due to climate change, and overall improvements in short, medium and  long term urban sustainability  (Gore et al., 2009). Sometimes called   localizing  or  issue bundling   (Koehn, 2008), these reframing strategies have proven to be successful in marshalling local support                                                                Co benefits and adverse side effects describe co effects without yet evaluating the net effect on overall  social welfare. Please refer to the respective sections in the framing chapters as well as to the glossary in  Annex I for concepts and definitions   particularly Sections 2.4, 3.6.3, and 4.8.2.  3   72 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    and action in developing country cities, and will continue to be an important component of  developing local capacity for mitigation (Puppim de Oliveira, 2009).  Table 12.6. Potential co-benefits (green arrows) and adverse side-effects (orange arrows) of urban mitigation measures. Arrows pointing up/down denote a positive/negative effect on the respective objective or concern. The effects depend on local circumstances and specific implementation strategy. For an assessment of macroeconomic, cross-sectoral effects associated with mitigation policies (e.g., on energy prices, consumption, growth, and trade), see Sections 3.9, 6.3.6, 13.2.2.3 and 14.4.2. Mitigation  measures  Compact  development  and  infrastructure  Increased  accessibility  Effect on additional objectives/concerns  Economic  Social (including health)  Health from physical activity3  Innovation and productivity1 Higher rents & residential property    values2  Efficient resource use and delivery5  Commute savings6  Health from increased    physical activity3  Social interaction & mental    health7  6 Health from increased    Commute savings     Higher rents & residential property    physical activity3  2   Social interaction and mental    values   health7                Environmental    Preservation of open    space4        Air quality and    reduced  ecosystem/health  impacts8    Air quality and    reduced  ecosystem/health  8 impacts   Mixed land  use  Sources: 1 (Ciccone and Hall, 1996; Carlino et al., 2007) ;2 (Mayer and Somerville, 2000; Quigley and Raphael, 2005; Glaeser et al., 2006; Koster and Rouwendal, 2012) ; 3 (Handy et al., 2002; Frank et al., 2004, 2009; Heath et al., 2006; Forsyth et al., 2007; Owen et al., 2007); 4 (Brueckner, 2000; Bengston et al., 2004); 5 (Speir and Stephenson, 2002; Guhathakurta and Gober, 2007) 6 (Krizek, 2003; Cervero and Duncan, 2006; Ma and Banister, 2006; Day and Cervero, 2010); 7 (Galea et al., 2005; Berke et al., 2007; Duncan et al., 2013); 8 (Campbell-Lendrum and Corvalán, 2007; Creutzig and He, 2009; Milner et al., 2012; Puppim de Oliveira et al., 2013). 12.8.1    Urban air quality co benefits  Worldwide, only 160 million people live in cities with truly clean air   that is, in compliance with  World Health Organization (WHO) guidelines (Grubler et al., 2012) (Figure 12.23). Oxides of sulfur  and nitrogen (SOx and NOx) and ozone (O3) i.e., outdoor air pollutants are particularly problematic  in cities because of high concentrations and exposures (Smith et al., 2012) (see Section 9.7 for a  discussion of mitigation measures in the buildings sector on indoor air pollution and Section 7.9.2).  Transport remains one of the biggest emitting sectors in the industrialized world. In developing  countries, a wider range of sources is to blame, with vehicle emissions playing an ever increasing  role also due to continuing urbanization trends (Kinney et al., 2011; Smith et al., 2012) (see also  Sections 5.3.5.1 and 8.2). In a study of four Indian megacities, for instance, gasoline and diesel  vehicle emissions already comprise 20 50% of fine particulate matter (PM2.5) emissions (Chowdhury  et al., 2007). The associated health burdens are particularly high in low income communities due to  high exposures and vulnerabilities (Campbell Lendrum and Corvalán, 2007; Morello Frosch et al.,  2011).  Major air quality co benefits can be achieved through mitigation actions in the urban context,  especially in megacities in developing countries where outdoor air pollution tends to be higher than  in urban centres in industrialized countries (Molina and Molina, 2004 and section 5.7). Urban  planning strategies and other policies that promote cleaner fuels, transport mode shifting, energy  cogeneration and waste heat recycling, buildings, transport and industry efficiency standards can all  contribute to lower rates of respiratory and cardiovascular disease (improved human health) as well  as decreased impacts on urban vegetation (enhanced ecosystems) via simultaneous reductions in co emitted air pollutant species (Campbell Lendrum and Corvalán, 2007; Creutzig and He, 2009; Milner  et al., 2012; Puppim de Oliveira et al., 2013 and sections 7.9, 8.7, 9.7, 10.88 as well as WGII chapter    73 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    11.9).4 Even an action like shading parking lots, which is generally thought of in the context of  limiting the urban heat island effect, can bring air pollution co benefits through reductions in volatile  organic compounds (VOC) and, thus, low level ozone formation from parked vehicles (Scott et al.,  1999).   In the near term (2030), air quality co benefits of stringent mitigation actions (i.e., in line with  achieving 450 ppm CO2eq by 2100) can be quite substantial in a highly urbanized region like Europe;  decarbonization and energy efficiency (largely in transport) could reduce aggregate NOx emissions by  a further 38% relative to a baseline scenario that includes current and planned air quality legislation  by 2030 but does not consider climate policies (Colette et al., 2012). Similar co benefits have been  reported for other pollutants in other regions (Rao et al., 2013), particularly in developing Asia (Doll  and Balaban 2013; Geng, Ma et al. 2013; Puppim de Oliveira, Doll et al. 2013) (see Section 6.6). The  potential for realizing these co benefits depends on institutional frameworks and policy agendas at  both the local and national level, as well as the interplay between the two (see Doll, Dreyfus et al.  (2013) and Jiang et al. (2013) for reviews of India and China). At the same time, the increasing role of  decentralized power generation could lead to adverse air quality side effects if this trend is not  coupled with a more intensive use of low carbon energy supply (Milner et al., 2012).  Figure 12.23. Human risk exposure to PM10 pollution in 3200 cities worldwide. Sources: (Doll, 2009; Doll and Pachauri, 2010; Grubler et al., 2012).     12.8.2    Energy security side effects for urban energy systems  Mitigating climate change could have important side effects for urban energy security (sufficient  resources and resilient supply)   concerns that have re emerged in many cities throughout the world  in recent years (see Sections 6.6.2.1 and 7.9.1 for a broader discussion of energy security concerns).  Perhaps the greatest energy related vulnerability in this context is the fact that urban transport  systems are at present almost entirely dependent on oil (Cherp et al., 2012). This is especially true in  low density areas where reliance on private vehicles is high (Levinson and Kumar 1997). Therefore,  any mitigation activities leading to a diversification of the transport sector away from oil could  potentially also contribute to a security co benefit (see (Jewell et al., 2013) and other references in                                                                Monetized health co benefits are found to be larger in developing countries than industrialized countries, a  finding that results from the currently higher pollution levels of the former and, thus, the greater potential for  improving health, particularly in the transport and household energy demand sectors (Markandya et al., 2009;  Nemet et al., 2010; West et al., 2013 and Section 5.7).   4   74 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Chapter 8.7.1). Such measures might range from technology standards (e.g., for vehicles and their  fuels) to integrated infrastructure, spatial planning, and mass transit policies (Sections 12.5 and  8.10). Energy efficiency regulations for buildings and industrial facilities (both existing and new) can  also help to enhance the resilience of fuel and electricity distribution networks (see Chapters 9.7 and  10.8).   12.8.3    Health and socioeconomic co benefits   Spatial planning and TOD can yield other positive side effects that may enhance a city s liveability.  For example, mass transit requires considerably less physical space than private automobiles  (transit: 0.75 2.5 m2/cap; auto: 21 28 m2/cap) and generally emits less noise (Grubler, Bai et al.  2012), with health co benefits in terms of cardiovascular disease and sleep disturbance (Kawada,  2011; Ndrepepa and Twardella, 2011 see also 8.7; Milner et al., 2012).   Neighbourhoods with walkable characterististics such as connectivity and proximity of destinations  are correlated with higher frequency of physical activity among residents (Frank et al., 2004; Owen  et al., 2007), which is correlated with lower symptoms and incidences of depression (Galea et al.,  2005; Berke et al., 2007; Duncan et al., 2013). Compact neighbourhoods with more diversified land  uses are correlated with higher housing prices and rents (Mayer and Somerville, 2000; Quigley and  Raphael, 2005; Glaeser et al., 2006; Koster and Rouwendal, 2012). In a study of the Netherlands,  neighbourhoods with more diverse land uses had a 2.5% higher housing prices (Koster and  Rouwendal, 2012).   12.8.4    Co benefits of reducing the urban heat island effect  The urban heat island (UHI) effect presents a major challenge to urban sustainability (see WGII  Chapter 8). Not only does UHI increase the use of energy for cooling buildings (and thus increasing  the mitigation challenge) and thermal discomfort in urban areas, but UHI also increases smoggy days  in urban areas, with smog health effects present above 32°C (Akbari et al., 2001; O Neill and Ebi,  2009; Mavrogianni et al., 2011; Rydin et al., 2012). Proven methods for cooling the urban  environment include urban greening, increasing openness to allow cooling winds (Smith and  Levermore, 2008), and using more  cool  or reflective materials that absorb less solar radiation, i.e.,  increasing the albedo of the surfaces (Akbari et al., 2008, 2010). Reducing UHI is most effective when  considered in conjunction with other environmental aspects of urban design, including solar/daylight  control, ventilation and indoor environment, and streetscape (Yang et al., 2010). On a global scale,  increasing albedos of urban roofs and paved surfaces is estimated to induce a negative radiative  forcing equivalent to offsetting about 44 Gt of CO2 emissions annually (Akbari et al., 2008).  Reducing summer heat in urban areas has several co benefits. Electricity use in cities increases 2 4%  for each 1°C increase in temperature, due to air conditioning use (Akbari et al., 2001). Lower  temperatures reduce energy requirements for air conditioning (which may result in decreasing GHG  emissions from electricity generation, depending upon the sources of electricity), reduce smog levels  (Rosenfeld et al., 1998), and reduce the risk of morbidity and mortality due to heat and poor air  quality (Harlan and Ruddell, 2011). Cool materials decrease the temperature of surfaces and  increase the lifespan of building materials and pavements (Santero and Horvath, 2009; Synnefa et  al., 2011).   The projected global mean surface temperature increases under climate change will  disproportionally impact cities already affected by UHI, thereby increasing the energy requirements  for cooling buildings and increasing urban carbon emissions, as well as air pollution (Mickley et al.,  2004; Jacob and Winner, 2009). In addition, it is likely that cities will experience an increase in UHI as  a result of projected increases in global mean surface temperature under climate change, which will  result in additional global urban energy use, GHG emissions, and local air pollution.  As reviewed  here, studies indicate that several strategies are effective for decreasing the UHI.  An effective  strategy to mitigate UHI through increasing green spaces, however, can potentially conflict with a    75 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    major urban climate change mitigation strategy, which is increasing densities to create more  compact cities (Milner et al., 2012). This conflict illustrates the complexity of developing integrated  and effective climate change policies for urban areas.   More generally, reducing UHI effects either through mitigation measures (e.g., improved waste  heat recycling, co generation, use of reflective building materials, increased vegetation) or through  mitigation can have co benefits for urban water supplies (e.g., cooling water for thermal or  industrial plants, drinking water), given that evaporation losses rise as water bodies warm (Grubler  et al., 2012).  12.9   Gaps in Knowledge and Data  This assessment highlights a number of key knowledge gaps:  Lack of consistent and comparable emissions data at local scales. Although some emissions  data collection efforts are underway, they have been undertaken primarily in large cities in  developed countries.  The lack of baseline data makes it particularly challenging to assess the  urban share of global GHG emissions as well as develop urbanization and typologies and their  emission pathways. Given the small number of city based estimates, more city data and research  are needed, especially an urban emissions data system.  Little scientific understanding of the magnitude of the emissions reduction from altering urban  form, and the emissions savings from integrated infrastructure and land use planning.  Furthermore, there is little understanding of how different aspects of urban form interact and  affect emissions. The existing research on the impact of policies designed to achieve emissions  reductions through urban form do not conform to the standards of policy evaluation and  assessment defined in Chapter 15.  Lack of consistency and thus comparability on local emissions accounting methods. Different  accounting protocols yield significantly different results, making cross city comparisons of  emissions or climate action plans difficult. There is a need for standardized methodologies for  local  or urban level carbon accounting.   Few evaluations of urban climate action plans and their effectiveness. There is no systematic  accounting to evaluate the efficacy of city climate action plans (Zimmerman and Faris, 2011).  Studies that have examined city climate action plans conclude that they are unlikely to have  significant impact on reducing overall emissions (Stone et al., 2012; Millard Ball, 2012a).   Another major limitation to local or city climate action plans is their limited coordination across  city sectors and administrative/hierarchical levels of governance and lack of explicitly  incorporating land based mitigation strategies. Successful local climate action plans will require  coordination, integration, and partnerships among community organizations, local government,  state and federal agencies, and international organizations (Yalç n and Lefevre, 2012; Zeemering,  2012).   Lack of scientific understanding of how cities can prioritize climate change mitigation  strategies, local actions, investments, and policy responses that are locally relevant. Some  cities will be facing critical vulnerability challenges, while other will be in the  red zone  for their  high levels of emissions. Local decision makers need clarity on where to focus their actions, and  to avoid spending resources and efforts on policies and investments that are not essential. There  is little scientific basis for identifying the right mix of policy responses to address local and urban  level mitigation and adaptation. Policy packages will be determined based on the characteristics  of individual cities and their urbanization and development pathways, as well as on forecasts of  future climate and urbanization. They will be aimed at flexing the urban  and settlement related  drivers  of emissions and vulnerability in order to ensure a less carbon intensive and more  resilient future for cities.     76 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Large uncertainties as to how cities will develop in the future. There is robust scientific  evidence that emissions vary across cities and that urban form and infrastructure play large roles  in determining the relationship between urbanization and emissions.    12.10   Frequently Asked Questions  FAQ 12.1: Why is the IPCC including a new chapter on human settlements and spatial  planning? Isn't this covered in the individual sectoral chapters?  Urbanization is a global megatrend that is transforming societies. Today, more than 50% of the  world population lives in urban areas. By 2050, the global urban population is expected to increase  by between 2.5 to 3 billion, corresponding to 64% to 69% of the world population. By mid century,  more urban areas and infrastructure will be built than currently exist. The kinds of towns, cities, and  urban agglomerations that ultimately emerge over the coming decades will have a critical impact on  energy use and carbon emissions. The Fourth Assessment Report (AR4) of the IPCC did not have a  chapter on human settlements or urban areas.  Urban areas were addressed through the lens of  individual sector chapters. Since the publication of AR4, there has been a growing recognition of the  significant contribution of urban areas to GHG emissions, their potential role in mitigating them, and  a multi fold increase in the corresponding scientific literature.  FAQ 12.2 What is the urban share of global energy and GHG emissions?  The exact share of urban energy and GHG emissions varies with emission accounting frameworks  and definitions. Urban areas account for 67 76% of global energy use and 71 76% of global energy related CO2 emissions. Using Scope1 accounting, urban share of global CO2 emissions is about 44%.  Urban areas account for between 53% and 87% (central estimate, 76%) of CO2 emissions from global  final energy use and between 30% and 56% (central estimate, 43%) of global primary energy related  CO2 emissions.   FAQ 12.3: What is the potential of human settlements to mitigate climate change?  Drivers of urban GHG emissions can be categorized into four major groups: economic geography and  income, socio demographic factors, technology, and infrastructure and urban form. Of these, the  first three groups have been examined in greatest detail, and income is consistently shown to exert a  high influence on urban GHG emissions.  Socio demographic drivers are of medium importance in  rapidly growing cities, technology is a driver of high importance, and infrastructure and urban form  are of medium to high importance as drivers of emissions. Key urban form drivers of GHG emissions  are density, land use mix, connectivity, and accessibility.  These factors are interrelated and  interdependent. As such, none of them in isolation are sufficient for lower emissions.    77 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    References  Aall C., K. Groven, and G. Lindseth (2007). The Scope of Action for Local Climate Policy: The Case of  Norway, Global Environmental Politics 7 83 101 pp. (DOI: 10.1162/glep.2007.7.2.83).  Acuto M. (2013). The new climate leaders?, Review of International Studies 39 835 857 pp. (DOI:  10.1017/S0260210512000502).  Adeyinka A.M. (2013). Spatial Distribution, Pattern and Accessibility of Urban Population to Health  Facilities in Southwestern Nigeria: The Case Study of Ilesa, Mediterranean Journal of Social Sciences 4  425 436 pp. (ISSN: 2039 2117).  Aguilar A.G., and P.M. Ward (2003). Globalization, regional development, and mega city expansion  in Latin America: Analyzing Mexico City s peri urban hinterland, Cities 20 3 21 pp. (DOI:  10.1016/S0264 2751(02)00092 6), (ISSN: 0264 2751).  Aguilera A. (2008). Business travel and mobile workers, Transportation Research Part A: Policy and  Practice 42 1109 1116 pp. (DOI: 10.1016/j.tra.2008.03.005), (ISSN: 0965 8564).  Agyeman K.O., O. Amponsah, I. Braimah, and S. Lurumuah (2012). Commercial Charcoal Production  and Sustainable Community Development of the Upper West Region, Ghana, Journal of Sustainable  Development 5 149 164 pp. (DOI: 10.5539/jsd.v5n4p149), (ISSN: 1913 9071).  Akbari H., S. Menon, and A. Rosenfeld (2008). Global cooling: increasing world wide urban albedos  to offset CO2, Climatic Change 94 275 286 pp. (DOI: 10.1007/s10584 008 9515 9).  Akbari H., M. Pomerantz, and H. Taha (2001). Cool surfaces and shade trees to reduce energy use  and improve air quality in urban areas, Solar Energy 70 295 310 pp. (DOI: 10.1016/S0038 092X(00)00089 X), (ISSN: 0038 092X).  Akbari H., A. Rosenfeld, and M. Elliot (2010). Global Cooling: Policies to Cool the World and Offset  Global Warming from CO2 Using Reflective Roofs and Pavements.  Alkema L., A.E. Raftery, P. Gerland, S.J. Clark, F. Pelletier, T. Buettner, and G.K. Heilig (2011).  Probabilistic Projections of the Total Fertility Rate for All Countries, Demography 48 815 839 pp.  (DOI: 10.1007/s13524 011 0040 5), (ISSN: 0070 3370, 1533 7790).  Allwood J.M., J.M. Cullen, and R.L. Milford (2010). Options for Achieving a 50% Cut in Industrial  Carbon Emissions by 2050, Environmental Science & Technology 44 1888 1894 pp. (DOI:  10.1021/es902909k), (ISSN: 0013 936X).  Alterman R. (1997). The Challenge of Farmland Preservation: Lessons from a Six Nation Comparison,  Journal of the American Planning Association 63 220 243 pp. (DOI: 10.1080/01944369708975916),  (ISSN: 0194 4363, 1939 0130).  Altes W.K.K. (2009). Taxing land for urban containment: Reflections on a Dutch debate, Land Use  Policy 26 233 241 pp. (DOI: 10.1016/j.landusepol.2008.01.006), (ISSN: 02648377).  Amati M. (2008). Green belts: a twentieth century planning experiment. In: Urban green belts in the  twenty first century. M. Amati, (ed.), Ashgate, pp.1 17(ISBN: 978 0 7546 4959 5).    78 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Andreev P., I. Salomon, and N. Pliskin (2010). Review: State of teleactivities, Transportation  Research Part C: Emerging Technologies 18 3 20 pp. (DOI: 10.1016/j.trc.2009.04.017), (ISSN: 0968 090X).  Angel S., J. Parent, D.L. Civco, and A.M. Blei (2010). The persistent decline in urban densities: Global  and historical evidence of sprawl, Lincoln Institute of Land Policy Working Paper . Available at:  http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http% 3A%2F%2Fwww.alnap.org%2Fpool%2Ffiles%2F1834 1085 angel final 1.pdf&ei=TWggU WwIMKitAau8IG4Ag&usg=AFQjCNEbzSCx7UPDrxUMZFE9azLiLar58w&bvm=bv.62788935,d.Yms.  Angel S., J. Parent, D.L. Civco, A. Blei, and D. Potere (2011). The dimensions of global urban  expansion: Estimates and projections for all countries, 2000 2050, Progress in Planning 75 53 107  pp. (DOI: 10.1016/j.progress.2011.04.001), (ISSN: 0305 9006).  Angel S., S.C. Sheppard, D.L. Civco, R. Buckley, A. Chabaeva, L. Gitlin, A. Kraley, J. Parent, and M.  Perlin (2005). The Dynamics of Global Urban Expansion. Transport and Urban Development  Department, World Bank, Washington, D.C. 207 pp. Available at:  http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/dynamics_urban_expansi on.pdf.  Arbesman S., J.M. Kleinberg, and S.H. Strogatz (2009). Superlinear scaling for innovation in cities,  Physical Review E 79 016115 pp. (DOI: 10.1103/PhysRevE.79.016115).  Arikan Y. (2011). Carbonn Cities Climate Registry 2011 Annual Report. Bonn Center for Local Climate  Action and Reporting, Bonn.  Arrington G.B., and R. Cervero (2008). Effects of TOD on Housing, Parking, and Travel.  Transportation Research Board, Washington, D.C., (ISBN: 9780309117487  0309117488). .  Arthur W.B. (1989). Competing Technologies, Increasing Returns, and Lock In by Historical Events,  The Economic Journal 99 116 131 pp. (DOI: 10.2307/2234208), (ISSN: 0013 0133).  ARUP (2011). Climate Action in Megacities: C40 Cities Baseline and Opportunities. C40 Cities. .  Available at: http://www.arup.com/Publications/Climate_Action_in_Megacities.aspx.  Aumnad P. (2010). Integrated energy and carbon modeling with a decision support system: Policy  scenarios for low carbon city development in Bangkok, Energy Policy 38 4808 4817 pp. (DOI:  10.1016/j.enpol.2009.10.026), (ISSN: 0301 4215).  Aurand A. (2010). Density, Housing Types and Mixed Land Use: Smart Tools for Affordable Housing?,  Urban Studies 47 1015 1036 pp. (DOI: 10.1177/0042098009353076), (ISSN: 0042 0980).  Ausubel J.H., and R. Herman (1988). Cities and Their Vital Systems:Infrastructure Past, Present, and  Future. The National Academies Press, Washington, D.C., 368 pp., (ISBN: 0309037867). .  Axhausen K. (2008). Accessibility Long Term Perspectives, Journal of Transport and Land Use 1 5 22  pp. (DOI: 10.5198/jtlu.v1i2.66), (ISSN: 1938 7849).  Azar C., K. Lindgren, M. Obersteiner, K. Riahi, D.P. van Vuuren, K.M.G.J. den Elzen, K. Möllersten,  and E.D. Larson (2010). The feasibility of low CO2 concentration targets and the role of bio energy  with carbon capture and storage (BECCS), Climatic Change 100 195 202 pp. (DOI: 10.1007/s10584 010 9832 7), (ISSN: 0165 0009, 1573 1480).    79 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Bader N., and R. Bleischwitz (2009). Measuring Urban Greenhouse Gas Emissions: The Challenge of  Comparability, S.A.P.I.EN.S 2 1 15 pp. (ISSN: 1993 3800).  Bae C. H.C., and M. J. Jun (2003). Counterfactual Planning What if there had been No Greenbelt in  Seoul?, Journal of Planning Education and Research 22 374 383 pp. (DOI:  10.1177/0739456X03022004004), (ISSN: 0739 456X, 1552 6577).  Bahl R.W., and J.F. Linn (1998). Urban Public Finance in Developing Countries. Oxford University  Press, New York, (ISBN: 9780195211221). .  Bailis R., M. Ezzati, and D.M. Kammen (2005). Mortality and Greenhouse Gas Impacts of Biomass  and Petroleum Energy Futures in Africa, Science 308 98 103 pp. (DOI: 10.1126/science.1106881),  (ISSN: 0036 8075, 1095 9203).  Bangkok Metropolitan Administration (2013). Bangkok, The Green City.  Banister D. (2005). Unsustainable Transport: City Transport in the New Century. Routledge,  Oxfordshire, England, 292 pp., (ISBN: 978415357829). .  Banister D. (2008). The sustainable mobility paradigm, Transport Policy 15 73 80 pp. (DOI:  10.1016/j.tranpol.2007.10.005), (ISSN: 0967 070X).  Banister D. (2011). Cities, mobility and climate change, Journal of Transport Geography 19 1538 1546 pp. (DOI: 10.1016/j.jtrangeo.2011.03.009), (ISSN: 0966 6923).  Banzhaf H.S., and N. Lavery (2010). Can the land tax help curb urban sprawl? Evidence from growth  patterns in Pennsylvania, Journal of Urban Economics 67 169 179 pp. (DOI:  10.1016/j.jue.2009.08.005), (ISSN: 00941190).  Barbour E., and E. Deakin (2012). Smart Growth Planning for Climate Protection, Journal of the  American Planning Association 78 70 86 pp. (DOI: 10.1080/01944363.2011.645272), (ISSN: 0194 4363).  Barter P.A. (2011). Parking Requirements in Some Major Asian Cities, Journal of the Transportation  Research Board 2245 79 86 pp. (DOI: 10.3141/2245 10), (ISSN: 0361 1981).  Bassett E., and V. Shandas (2010). Innovation and Climate Action Planning: Perspectives from  Muncipal Plans, Journal of the American Planning Association 76 435 450 pp. (DOI:  10.1080/01944363.2010.509703), (ISSN: 0194 4363).  Batt H.W. (2001). Value Capture as a Policy Tool in Transportation Economics: An Exploration in  Public Finance in the Tradition of Henry George, American Journal of Economics and Sociology 60  195 228 pp. .  Batty M. (2005). Cities and Complexity: Understanding Cities Through Cellular Automata, Agent Based Models and Fractals. The MIT Press, Cambridge, MA, 565 pp., (ISBN: 0262025833). .  Batty M. (2008). The Size, Scale, and Shape of Cities, Science 319 769 771 pp. (DOI:  10.1126/science.1151419), (ISSN: 0036 8075, 1095 9203).  Bauman G., and W.H. Ethier (1987). Development Exactions and Impact Fees: A Survey of American  Practices, Land Use Law & Zoning Digest 39 3 11 pp. (DOI: 10.1080/00947598.1987.10395091),  (ISSN: 0094 7598).    80 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Baum Snow N. (2007). Did Highways Cause Suburbanization?, The Quarterly Journal of Economics  122 775 805 pp. (DOI: 10.1162/qjec.122.2.775), (ISSN: 0033 5533, 1531 4650).  Baynes T., M. Lenzen, J.K. Steinberger, and X. Bai (2011). Comparison of household consumption  and regional production approaches to assess urban energy use and implications for policy, Energy  Policy 39 7298 7309 pp. (ISSN: 0301 4215).  Beatley T. (2000). Green Urbanism: Learning From European Cities. Island Press, Washington DC,  USA, 514 pp., (ISBN: 9781610910132). .  Beauregard R.A., and A. Marpillero Colomina (2011). More than a master plan: Amman 2025, Cities  28 62 69 pp. (DOI: 10.1016/j.cities.2010.09.002), (ISSN: 0264 2751).  Bedsworth L.W., and E. Hanak (2013). Climate policy at the local level: Insights from California,  Global Environmental Change 23 664 677 pp. (DOI: 10.1016/j.gloenvcha.2013.02.004), (ISSN:  09593780).  Beevers S., and D. Carslaw (2005). The impact of congestion charging on vehicle emissions in  London, Atmospheric Environment 39 1 5 pp. (DOI: 10.1016/j.atmosenv.2004.10.001), (ISSN:  13522310).  Benediktsson J.A., M. Pesaresi, and K. Amason (2003). Classification and feature extraction for  remote sensing images from urban areas based on morphological transformations, IEEE Transactions  on Geoscience and Remote Sensing 41 1940 1949 pp. (DOI: 10.1109/TGRS.2003.814625), (ISSN:  0196 2892).  Bengston D.N., J.O. Fletcher, and K.C. Nelson (2004). Public policies for managing urban growth and  protecting open space: policy instruments and lessons learned in the United States, Landscape and  Urban Planning 69 271 286 pp. (DOI: 10.1016/j.landurbplan.2003.08.007), (ISSN: 0169 2046).  Bengston D.N., and Y. C. Youn (2006). Urban containment policies and the protection of natural  areas: the case of Seoul s greenbelt, Ecology and Society 11 1 15 pp. . Available at:  http://www.ecologyandsociety.org/vol11/iss1/art3/.  Benjamin J.D., and G.S. Sirmans (1996). Mass Transportation, Apartment Rent and Property Values,  Journal of Real Estate Research 12 1 8 pp. .  Bento A.M., M.L. Cropper, A.M. Mobarak, and K. Vinha (2005). The Effects of Urban Spatial  Structure on Travel Demand in the United States, Review of Economics and Statistics 87 466 478 pp.  (DOI: 10.1162/0034653054638292), (ISSN: 0034 6535).  Bento A.M., S.F. Franco, and D. Kaffine (2006). The Efficiency and Distributional Impacts of  Alternative Anti sprawl Policies, Journal of Urban Economics 59 121 141 pp. (DOI:  10.1016/j.jue.2005.09.004), (ISSN: 00941190).  Bento A.M., S.F. Franco, and D. Kaffine (2011). Is there a double dividend from anti sprawl  policies?, Journal of Environmental Economics and Management 61 135 152 pp. (DOI:  10.1016/j.jeem.2010.09.002), (ISSN: 00950696).  Berke E.M., L.M. Gottlieb, A.V. Moudon, and E.B. Larson (2007). Protective Association Between  Neighborhood Walkability and Depression in Older Men, Journal of the American Geriatrics Society  55 526 533 pp. (DOI: 10.1111/j.1532 5415.2007.01108.x), (ISSN: 1532 5415).    81 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Berndes G., M. Hoogwijk, and R. van den Broek (2003). The contribution of biomass in the future  global energy supply: a review of 17 studies, Biomass and Bioenergy 25 1 28 pp. (DOI:  10.1016/S0961 9534(02)00185 X), (ISSN: 0961 9534).  Bernick M., and R. Cervero (1996). Transit Villages in the 21st Century. McGraw Hill, New York, 387  pp., (ISBN: 978 0070054752). .  Bernt M. (2009). Partnerships for Demolition: The Governance of Urban Renewal in East Germany s  Shrinking Cities, International Journal of Urban and Regional Research 33 754 769 pp. (DOI:  10.1111/j.1468 2427.2009.00856.x), (ISSN: 1468 2427).  Berry B.J.L. (1974). The Human Consequences of Urbanisation: Divergent Paths in the Urban  Experience of the Twentieth Century. Macmillan, London, 205 pp., (ISBN: 9780312398651). .  Berry B.J.L., and W.L. Garrison (1958). Alternate Explanations of Urban Rank Size Relationships,  Annals of the Association of American Geographers 48 83 91 pp. (DOI: 10.2307/2561542), (ISSN:  0004 5608).  Berry B.J.L., F.E. Horton, and J.O. Abiodun (1970). Geographic Perspectives on Urban Systems with  Integrated Readings. Prentice Hall, Englewood Cliffs, N.J., 564 pp., (ISBN: 9780133513127). .  Bertaud A., and S. Malpezzi (2003). The Spatial Distribution of Population in 48 World Cities:  Implications for Economies in Transition. University of Wisconsin, Madison. 102 pp. Available at:  http://alain bertaud.com/AB_Files/Spatia_%20Distribution_of_Pop_%2050_%20Cities.pdf.  Betsill M.M. (2001). Mitigating Climate Change in US Cities: Opportunities and obstacles, Local  Environment 6 393 406 pp. (DOI: 10.1080/13549830120091699), (ISSN: 1354 9839).  Bettencourt L.M.A., J. Lobo, D. Helbing, C. Kühnert, and G.B. West (2007). Growth, innovation,  scaling, and the pace of life in cities, Proceedings of the National Academy of Sciences 104 7301 7306 pp. (DOI: 10.1073/pnas.0610172104), (ISSN: 0027 8424, 1091 6490).  Bettencourt L.M.A., J. Lobo, D. Strumsky, and G.B. West (2010). Urban Scaling and Its Deviations:  Revealing the Structure of Wealth, Innovation and Crime across Cities, PLoS ONE 5 e13541 pp. (DOI:  10.1371/journal.pone.0013541).  Bhatia R. (2004). Land use: A key to livable transportation, The Square in North America  International Making Cities Livable Council, London . Available at:  http://www.livablecities.org/conferences/40th conference london/program.  Bhatt K. (2011). Congestion Pricing: An Overview of Experience and Impacts. In: Climate Change and  Land Policies. G.K. Ingram, Y. H. Hong, (eds.), Lincoln Institute of Land Policy, Cambridge, MA  pp.247 271.  Bird R.M., and E. Slack (2002). Land and property taxation around the world: a review, Journal of  property tax assessment and administration 7 31 80 pp. .  Bird R.M., and E. Slack (2007). Taxing Land and Property in Emerging Economies: Raising  Revenue . . . and More? In: Land Policies and Their Outcomes. G.K. Ingram, Y. H. Hong, (eds.), Lincoln  Institute of Land Policy, Cambridge, MA pp.204 233.    82 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Blackman I.Q., and D.H. Picken (2010). Height and Construction Costs of Residential High Rise  Buildings in Shanghai, Journal of construction engineering and management 136 1169 1180 pp.  (ISSN: 0733 9364).  Blanco H., P.L. McCarney, S. Parnell, M. Schmidt, and K.C. Seto (2011). The Role of Urban Land in  Climate Change. In: Climate Change and Cities: First Urban Climate Change Research Network  (UCCRN) Assessment Report. C. Rosenzweig, W.D. Solecki, S.A. Hammer, S. Mehrotra, (eds.),  Cambridge University Press, Cambridge, UK pp.217 248.  Boarnet M.G., and R. Crane (2001). Travel by Design: The Influence of Urban Form on Travel. Oxford  University Press, New York, NY, 238 pp., (ISBN: 9780195352467). .  Boarnet M.G., K.S. Nesamani, and C.S. Smith (2004). Comparing the influence of land use on  nonwork trip generation and vehicle distance traveled: An analysis using travel diary data, Paper  presented at the 83rd annual meeting of the Transportation Research Board, Washington, DC.  Bocquier P. (2005). World Urbanization Prospects: an alternative to the UN model of projection  compatible with the mobility transition theory, Demographic Research 12 197 236 pp. (DOI:  10.4054/DemRes.2005.12.9), (ISSN: 1435 9871).  Bongaarts J. (2001). Household Size and Composition in the Developing World in the 1990s,  Population Studies 55 263 279 pp. (DOI: 10.1080/00324720127697), (ISSN: 0032 4728).  Bontje M. (2005). Facing the challenge of shrinking cities in East Germany: The case of Leipzig,  GeoJournal 61 13 21 pp. (DOI: 10.1007/s10708 005 0843 2), (ISSN: 0343 2521, 1572 9893).  Boswell M.R., A.I. Greve, and T.L. Seale (2010). An Assessment of the Link Between Greenhouse Gas  Emissions Inventories and Climate Action Plans, Journal of the American Planning Association 76  451 462 pp. (DOI: 10.1080/01944363.2010.503313), (ISSN: 0194 4363).  Boswell M.R., A.I. Greve, and T.L. Seale (2011). Local Climate Action Planning. Island Press,  Washington, DC.  Bourdic L., S. Salat, and C. Nowacki (2012). Assessing cities: a new system of cross scale spatial  indicators, Building Research & Information 40 592 605 pp. (DOI: 10.1080/09613218.2012.703488),  (ISSN: 0961 3218).  Bowman C. W., and S.F. Franco (2012). Do parking requirements significantly increase the area  dedicated to parking? A test of the effect of parking requirements values in Los Angeles County,  Transportation Research Part A: Policy and Practice 46 901 925 pp. (DOI:  10.1016/j.tra.2012.02.012).  Boyko C.T., and R. Cooper (2011). Clarifying and re conceptualising density, Progress in Planning 76  1 61 pp. (DOI: 10.1016/j.progress.2011.07.001), (ISSN: 0305 9006).  Boyle R., and R. Mohamed (2007). State growth management, smart growth and urban  containment: A review of the US and a study of the heartland, Journal of Environmental Planning  and Management 50 677 697 pp. (DOI: 10.1080/09640560701475337), (ISSN: 0964 0568, 1360 0559).  Brambilla R., and G. Longo (1977). For Pedestrians Only: Planning, Design and Management of  Traffic Free Zones. Whitney Library of Design, New York, 208 pp.    83 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Bräutigam D.A., and S. Knack (2004). Foreign Aid, Institutions, and Governance in Sub Saharan  Africa, Economic Development and Cultural Change 52 255 285 pp. (DOI:  10.1086/edcc.2004.52.issue 2), (ISSN: 0013 0079).  Brown J.H., J.F. Gillooly, A.P. Allen, V.M. Savage, and G.B. West (2004). Toward a Metabolic Theory  of Ecology, Ecology 85 1771 1789 pp. (DOI: 10.1890/03 9000), (ISSN: 0012 9658).  Brown L.A., and J. Holmes (1971). The Delimitation of Functional Regions, Nodal Regions, and  Hierarchies by Functional Distance Approaches, Journal of Regional Science 11 57 72 pp. (DOI:  10.1111/j.1467 9787.1971.tb00240.x), (ISSN: 1467 9787).  Brownstone D., and T.F. Golob (2009). The impact of residential density on vehicle usage and  energy consumption, Journal of Urban Economics 65 91 98 pp. (DOI: 10.1016/j.jue.2008.09.002).  Brownsword R.A., P.D. Fleming, J.C. Powell, and N. Pearsall (2005). Sustainable cities   modelling  urban energy supply and demand, Applied Energy 82 167 180 pp. (DOI:  10.1016/j.apenergy.2004.10.005), (ISSN: 03062619).  Brueckner J.K. (2000). Urban Sprawl: Diagnosis and Remedies, International Regional Science Review  23 160 171 pp. (DOI: 10.1177/016001700761012710), (ISSN: 0160 0176, 1552 6925).  Brueckner J.K. (2001a). Urban Sprawl: Lessons from Urban Economics, Brookings Wharton Papers  on Urban Affairs 2001 65 97 pp. (DOI: 10.1353/urb.2001.0003), (ISSN: 1533 4449).  Brueckner J.K. (2001b). Tax increment financing: a theoretical inquiry, Journal of Public Economics  81 321 343 pp. (DOI: 10.1016/S0047 2727(00)00123 7), (ISSN: 0047 2727).  Brueckner J.K. (2005). Transport subsidies, system choice, and urban sprawl, Regional Science and  Urban Economics 35 715 733 pp. (DOI: 10.1016/j.regsciurbeco.2005.01.001), (ISSN: 0166 0462).  Brueckner J.K., and D.A. Fansler (1983). The Economics of Urban Sprawl: Theory and Evidence on  the Spatial Sizes of Cities, The Review of Economics and Statistics 65 479 482 pp. (DOI:  10.2307/1924193), (ISSN: 0034 6535).  Brueckner J.K., and R.W. Helsley (2011). Sprawl and blight, Journal of Urban Economics 69 205 213  pp. (DOI: 10.1016/j.jue.2010.09.003), (ISSN: 0094 1190).  Brueckner J.K., and H. A. Kim (2003). Urban Sprawl and the Property Tax, International Tax and  Public Finance 10 5 23 pp. Kluwer Academic Publishers, (DOI: 10.1023/A:1022260512147), (ISSN:  1573 6970).  Brueckner J.K., and K.S. Sridhar (2012). Measuring welfare gains from relaxation of land use  restrictions: The case of India s building height limits, Regional Science and Urban Economics 42  1061 1067 pp. (DOI: 10.1016/j.regsciurbeco.2012.08.003), (ISSN: 0166 0462).  Brueckner J.K., J. F. Thisse, and Y. Zenou (1999). Why is central Paris rich and downtown Detroit  poor?: An amenity based theory, European Economic Review 43 91 107 pp. (DOI: 10.1016/S0014 2921(98)00019 1), (ISSN: 0014 2921).  Buisseret D. (Ed.) (1998). Envisioning the City: Six Studies in Urban Cartography. University of  Chicago Press, Chicago, IL, 196 pp., (ISBN: 978 0226079936). .    84 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Bulkeley H. (2013). Cities and Climate Change. Routledge, New York, NY, 344 pp., (ISBN:  9781135130114). .  Bulkeley H., and M.M. Betsill (2003). Cities and Climate Change: Urban Sustainability and Global  Environmental Governance. Psychology Press, 250 pp., (ISBN: 9780415273794). .  Bulkeley H., and K. Kern (2006). Local government and the governing of climate change in Germany  and the UK, Urban Studies 43 2237 2259 pp. (DOI: 10.1080/00420980600936491), (ISSN:  00420980).  Bulkeley H., and H. Schroeder (2012). Beyond state/non state divides: Global cities and the  governing of climate change, European Journal of International Relations 18 743 766 pp. (DOI:  10.1177/1354066111413308), (ISSN: 13540661).  Bunting T., P. Filion, and H. Priston (2002). Density Gradients in Canadian Metropolitan Regions,  1971 96: Differential Patterns of Central Area and Suburban Growth and Change, Urban Studies 39  2531  2552 pp. (DOI: 10.1080/0042098022000027095).  Burchell R., A. Downs, B. McCann, and S. Mukherji (2005). Sprawl Costs: Economic Impacts of  Unchecked Development. Island Press, Washinton, D.C., 209 pp., (ISBN: 9781597262507). .  Burchfield M., H.G. Overman, D. Puga, and M.A. Turner (2006). Causes of Sprawl: A Portrait from  Space, The Quarterly Journal of Economics 121 587 633 pp. (DOI: 10.1162/qjec.2006.121.2.587),  (ISSN: 0033 5533, 1531 4650).  Button K. (2010). Transport Economics. Edward Elgar, Cheltenham, 528 pp., (ISBN: 978 1840641912). .  C40 Cities (2013). C40 Cities Climate Leadership Group. . Available at:  http://www.c40cities.org/c40cities.  Callies D.L. (1979). A Hypothetical Case: Value Capture/Joint Development Techniques to Reduce  the Public Costs of Public Improvements, Urban Law Annual 16 155 192 pp. . Available at:  http://heinonline.org/HOL/Page?handle=hein.journals/waucl16&id=163&div=&collection=journals.  Calthorpe P. (2013). Urbanism in the Age of Climate Change. Island Press, Washington, D.C., 176 pp.,  (ISBN: 9781597267212). .  Calthorpe P., and W. Fulton (2001). The Regional City: Planning for the End of Sprawl. Island Press,  Washington, D.C., 298 pp., (ISBN: 9781597266215). .  Campbell Lendrum D., and C. Corvalán (2007). Climate Change and Developing Country Cities:  Implications For Environmental Health and Equity, Journal of Urban Health: Bulletin of the New York  Academy of Medicine 84 109 117 pp. (DOI: 10.1007/s11524 007 9170 x), (ISSN: 1099 3460).  Carbon Disclosure Project (2013). CDP Cities 2013: Summary Report on 110 Global Cities. Carbon  Disclosure Project, London. 35 pp. Available at: http://www.cdpcities2013.net/doc/CDP Summary Report.pdf.  Carlino G.A., S. Chatterjee, and R.M. Hunt (2007). Urban density and the rate of invention, Journal  of Urban Economics 61 389 419 pp. (DOI: 10.1016/j.jue.2006.08.003), (ISSN: 00941190).    85 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Carney S., N. Green, R. Wood, and R. Read (2009). Greenhouse Gas Emissions Inventories for 18  European Regions: EU CO2 80/50 Project Stage 1: Inventory Formation. The Greenhouse Gas Regional  Inventory Protocol (GRIP). Centre for Urban and Regional Ecology, School of Environment and  Development, The University of Manchester, Manchester.  Carvalho R., and A. Penn (2004). Scaling and universality in the micro structure of urban space,  Physica A: Statistical Mechanics and its Applications 332 539 547 pp. (DOI:  10.1016/j.physa.2003.10.024), (ISSN: 0378 4371).  Castán Broto V., and H. Bulkeley (2012). A survey of urban climate change experiments in 100 cities,  Global Environmental Change 23 92 102 pp. (DOI: 10.1016/j.gloenvcha.2012.07.005), (ISSN: 0959 3780).  Cervero R. (1989). Jobs Housing Balancing and Regional Mobility, Journal of the American Planning  Association 55 136 150 pp. (DOI: 10.1080/01944368908976014), (ISSN: 0194 4363).  Cervero R. (1995a). Planned Communities, Self containment and Commuting: A Cross national  Perspective, Urban Studies 32 1135 1161 pp. (DOI: 10.1080/00420989550012618), (ISSN: 0042 0980, 1360 063X).  Cervero R. (1995b). Sustainable new towns: Stockholm s rail served satellites, Cities 12 41 51 pp.  (DOI: 10.1016/0264 2751(95)91864 C), (ISSN: 0264 2751).  Cervero R. (1996). Mixed land uses and commuting: Evidence from the American Housing Survey,  Transportation Research Part A: Policy and Practice 30 361 377 pp. (DOI: 10.1016/0965 8564(95)00033 X), (ISSN: 09658564).  Cervero R. (1998). The Transit Metropolis: A Global Inquiry. Island Press, Washington, D.C., 480 pp.,  (ISBN: 1559635916  9781559635912). .  Cervero R. (2006). Public Transport and Sustainable Urbanism: Global Lessons, University of  California Transportation Center 1 10 pp. .  Cervero R. (2013). Linking urban transport and land use in developing countries, Journal of Transport  and Land Use 6 7 24 pp. (DOI: 10.5198/jtlu.v6i1.425), (ISSN: 1938 7849).  Cervero R., and J. Day (2008). Suburbanization and transit oriented development in China, Transport  Policy 15 315 323 pp. (DOI: 10.1016/j.tranpol.2008.12.011), (ISSN: 0967 070X).  Cervero R., and M. Duncan (2006). Which Reduces Vehicle Travel More: Jobs Housing Balance or  Retail Housing Mixing?, Journal of the American Planning Association 72 475 490 pp. (DOI:  10.1080/01944360608976767), (ISSN: 0194 4363).  Cervero R., and M. Hansen (2002). Induced travel demand and induced road investment: a  simultaneous equation analysis, Journal of Transport Economics and Policy 36 469 490 pp. .  Available at: http://www.jstor.org/stable/10.2307/20053915.  Cervero R., and K. Kockelman (1997). Travel demand and the 3Ds: Density, diversity, and design,  Transportation Research Part D: Transport and Environment 2 199 219 pp. (DOI: 10.1016/S1361 9209(97)00009 6), (ISSN: 1361 9209).  Cervero R., S. Murphy, C. Ferrell, N. Goguts, Y. H. Tsai, G.B. Arrington, J. Boroski, J. Smith Heimer,  R. Golem, P. Peninger, E. Nakajima, E. Chui, R. Dunphy, M. Myers, S. McKay, and N. Witenstein    86 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    (2004). Transit Oriented Development in the United States: Experiences, Challenges, and Prospects.  Transportation Research Board, Washington, D.C. 481 pp.  Cervero R., O.L. Sarmiento, E. Jacoby, L.F. Gomez, and A. Neiman (2009). Influences of Built  Environments on Walking and Cycling: Lessons from Bogotá, International Journal of Sustainable  Transportation 3 203 226 pp. (DOI: 10.1080/15568310802178314), (ISSN: 1556 8318).  Cervero R., and C. Sullivan (2011). Green TODs: marrying transit oriented development and green  urbanism, International Journal of Sustainable Development & World Ecology 18 210 218 pp. (DOI:  10.1080/13504509.2011.570801), (ISSN: 1350 4509, 1745 2627).  Chandler T. (1987). Four Thousand Years of Urban Growth: An Historical Census. St. David s  University Press, Lewiston, NY, 676 pp., (ISBN: 9780889462076). .  Chapman J., and L. Frank (2004). Integrating Travel Behavior and Urban Form Data to Address  Transportation and Air Quality Problems in Atlanta. Georgia Tech Research Institute, Atlanta. 302 pp.  Available at: http://atl.sites.olt.ubc.ca/files/2011/06/GDOT_final_report.pdf.  Chavez A., and A. Ramaswami (2011). Progress toward low carbon cities: approaches for  transboundary GHG emissions  footprinting, Carbon Management 2 471 482 pp. (DOI:  10.4155/cmt.11.38), (ISSN: 1758 3004).  Chavez A., and A. Ramaswami (2013). Articulating a trans boundary infrastructure supply chain  greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance,  Energy Policy 54 376 384 pp. (DOI: 10.1016/j.enpol.2012.10.037), (ISSN: 0301 4215).  Chavez A., A. Ramaswami, D. Nath, R. Guru, and E. Kumar (2012). Implementing Trans Boundary  Infrastructure Based Greenhouse Gas Accounting for Delhi, India, Journal of Industrial Ecology 16  814 828 pp. (DOI: 10.1111/j.1530 9290.2012.00546.x), (ISSN: 1530 9290).  Chen H., B. Jia, and S.S.Y. Lau (2008). Sustainable urban form for Chinese compact cities: Challenges  of a rapid urbanized economy, Habitat International 32 28 40 pp. (DOI:  10.1016/j.habitatint.2007.06.005), (ISSN: 0197 3975).  Chen N., P. Valente, and H. Zlotnik (1998). What do we know about recent trends in urbanization?  In: Migration, Urbanization, and Development: New Directions and Issues. R.E. Bilsborrow, (ed.),  UNFPA Kluwer Academic Publishers, Norwell, MA pp.59 88.  Cheng V. (2009). Understanding density and high density. In: Designing High Density Cities.  Earthscan, London; Sterling, VA pp.3 17(ISBN: 9781844074600).  Cherp A., A. Adenikinju, A. Goldthau, F. Hernandez, L. Hughes, J. Jansen, J. Jewell, M. Olshanskaya,  R. Soares de Oliveira, B. Sovacool, and S. Vakulenko (2012). Energy and Security. In: Global Energy  Assessment: Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New  York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria  pp.325 383. Available at: http://www.iiasa.ac.at/web/home/research/Flagship Projects/Global Energy Assessment/GEA_Chapter5_security_lowres.pdf.  Chertow M.R. (2000). The IPAT Equation and Its Variants, Journal of Industrial Ecology 4 13 29 pp.  (DOI: 10.1162/10881980052541927), (ISSN: 1530 9290).    87 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Chong W.H.B., D. Guan, and P. Guthrie (2012). Comparative Analysis of Carbonization Drivers in  China s Megacities, Journal of Industrial Ecology 16 564 575 pp. (DOI: 10.1111/j.1530 9290.2012.00519.x), (ISSN: 10881980).  Choo S., P.L. Mokhtarian, and I. Salomon (2005). Does telecommuting reduce vehicle miles  traveled? An aggregate time series analysis for the U.S., Transportation 32 37 64 pp. (DOI:  10.1007/s11116 004 3046 7), (ISSN: 0049 4488, 1572 9435).  Chorus P. (2009). Transit Oriented Development in Tokyo: The Public Sector Shapes Favourable  Conditions, the Private Sector Makes it Happen. In: Transit Oriented Development: Making it  Happen. C. Curtis, J.L. Renne, L. Bertolini, (eds.), Ashgate, Surrey, England pp.225 238(ISBN:  9780754673156).  Chowdhury Z., M. Zheng, J.J. Schauer, R.J. Sheesley, L.G. Salmon, G.R. Cass, and A.G. Russell  (2007). Speciation of ambient fine organic carbon particles and source apportionment of PM 2.5 in  Indian cities, Journal of Geophysical Research 112 1 14 pp. (DOI: 10.1029/2007JD008386), (ISSN:  0148 0227).  Christopher Zegras P. (2007). As if Kyoto mattered: The clean development mechanism and  transportation, Energy Policy 35 5136 5150 pp. (DOI: 10.1016/j.enpol.2007.04.032), (ISSN: 0301 4215).  Chun M., J. Mei ting, Z. Xiao chun, and L. Hong yuan (2011). Energy consumption and carbon  emissions in a coastal city in China, Procedia Environmental Sciences 4 1 9 pp. (DOI:  10.1016/j.proenv.2011.03.001), (ISSN: 1878 0296).  Churchill R.R. (2004). Urban Cartography and the Mapping of Chicago, Geographical Review 94 1 22  pp. (DOI: 10.1111/j.1931 0846.2004.tb00155.x), (ISSN: 1931 0846).  Ciccone A., and R.E. Hall (1996). Productivity and the Density of Economic Activity, American  Economic Review 86 54 70 pp. . Available at: http://ideas.repec.org/a/aea/aecrev/v86y1996i1p54 70.html.  City of Stockholm (2013). A sustainable city. . Available at:  http://international.stockholm.se/Politics and organisation/A sustainable city/.  Clark T.A. (2013). Metropolitan density, energy efficiency and carbon emissions: Multi attribute  tradeoffs and their policy implications, Energy Policy 53 413 428 pp. (DOI:  10.1016/j.enpol.2012.11.006), (ISSN: 0301 4215).  Cohen C., M. Lenzen, and R. Schaeffer (2005). Energy requirements of households in Brazil, Energy  Policy 33 555 562 pp. (DOI: 10.1016/j.enpol.2003.08.021), (ISSN: 0301 4215).  Cole R.J. (1998). Energy and greenhouse gas emissions associated with the construction of  alternative structural systems, Building and Environment 34 335 348 pp. (DOI: 10.1016/S0360 1323(98)00020 1), (ISSN: 0360 1323).  Colette A., C. Granier, O. Hodnebrog, H. Jakobs, A. Maurizi, A. Nyiri, S. Rao, M. Amann, B.  Bessagnet, A. D Angiola, M. Gauss, C. Heyes, Z. Klimont, F. Meleux, M. Memmesheimer, A.  Mieville, L. Rouil, F. Russo, S. Schucht, D. Simpson, F. Stordal, F. Tampieri, and M. Vrac (2012).  Future air quality in Europe: a multi model assessment of projected exposure to ozone, Atmos.  Chem. Phys. 12 10613 10630 pp. (DOI: 10.5194/acp 12 10613 2012), (ISSN: 1680 7324).    88 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Covenant of Mayors (2010). How to Develop a Sustainable Energy Action Plan (SEAP)   Guidebook.  Publications Office of the European Union, Luxembourg. . Available at:  http://www.eumayors.eu/IMG/pdf/seap_guidelines_en.pdf.  Crassous R., J. C. Hourcade, and O. Sassi (2006). Endogenous Structural Change and Climate Targets  Modeling Experiments with Imaclim R, The Energy Journal 27 259 276 pp. (DOI: 10.2307/23297067),  (ISSN: 01956574).  Creutzig F., and D. He (2009). Climate change mitigation and co benefits of feasible transport  demand policies in Beijing, Transportation Research Part D: Transport and Environment 14 120 131  pp. (DOI: 10.1016/j.trd.2008.11.007), (ISSN: 1361 9209).  Curtis C. (2012). Delivering the  D  in transit oriented development: Examining the town planning  challenge, Journal of Transport and Land Use 5 83 99 pp. (DOI: 10.5198/jtlu.v5i3.292).  Curtis C., J.L. Renne, and L. Bertolini (Eds.) (2009). Transit Oriented Development: Making It Happen.  Ashgate, Surrey, England, 291 pp., (ISBN: 9780754673156). .  Dalton M., B. O Neill, A. Prskawetz, L. Jiang, and J. Pitkin (2008). Population aging and future  carbon emissions in the United States, Energy Economics 30 642 675 pp. (DOI:  10.1016/j.eneco.2006.07.002).  Daniels T. (1998). When City and Country Collide: Managing Growth In The Metropolitan Fringe.  Island Press, 388 pp., (ISBN: 9781610913478). .  Davis K. (1955). The Origin and Growth of Urbanization in the World, American Journal of Sociology  60 429 437 pp. (DOI: 10.2307/2772530), (ISSN: 0002 9602).  Davis S.J., K. Caldeira, and H.D. Matthews (2010). Future CO2 Emissions and Climate Change from  Existing Energy Infrastructure, Science 329 1330 1333 pp. (DOI: 10.1126/science.1188566), (ISSN:  0036 8075, 1095 9203).  Davis J.C., and J.V. Henderson (2003). Evidence on the political economy of the urbanization  process, Journal of Urban Economics 53 98 125 pp. (DOI: 10.1016/S0094 1190(02)00504 1), (ISSN:  0094 1190).  Dawkins C.J., and A.C. Nelson (2002). Urban containment policies and housing prices: an  international comparison with implications for future research, Land Use Policy 19 1 12 pp. (DOI:  10.1016/S0264 8377(01)00038 2).  Day J., and R. Cervero (2010). Effects of Residential Relocation on Household and Commuting  Expenditures in Shanghai, China, International Journal of Urban and Regional Research 34 762 788  pp. (DOI: 10.1111/j.1468 2427.2010.00916.x), (ISSN: 1468 2427).  Debrezion G., E. Pels, and P. Rietveld (2007). The Impact of Railway Stations on Residential and  Commercial Property Value: A Meta analysis, The Journal of Real Estate Finance and Economics 35  161 180 pp. (DOI: 10.1007/s11146 007 9032 z), (ISSN: 0895 5638, 1573 045X).  Decker E.H., S. Elliott, F.A. Smith, D.R. Blake, and F.S. Rowland (2000). Energy and Material Flow  Through the Urban Ecosystem, Annual Review of Energy and the Environment 25 685 740 pp. (DOI:  10.1146/annurev.energy.25.1.685).    89 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Decker E.H., A.J. Kerkhoff, and M.E. Moses (2007). Global Patterns of City Size Distributions and  Their Fundamental Drivers, PLoS ONE 2 e934 pp. (DOI: 10.1371/journal.pone.0000934).  DeGrove J.M., and D.A. Miness (1992). The New Frontier for Land Policy: Planning and Growth  Management in the States. Lincoln Institute of Land Policy, 192 pp., (ISBN: 9781558441217). .  Deng F.F. (2005). Public land leasing and the changing roles of local government in urban China, The  Annals of Regional Science 39 353 373 pp. (DOI: 10.1007/s00168 005 0241 1), (ISSN: 0570 1864,  1432 0592).  Deng X., J. Huang, S. Rozelle, and E. Uchida (2008). Growth, population and industrialization, and  urban land expansion of China, Journal of Urban Economics 63 96 115 pp. (DOI:  10.1016/j.jue.2006.12.006), (ISSN: 0094 1190).  Department of Energy & Climate Change (2013). Local Authority CO2 Emission Estimates 2011.  Department of Energy & Climate Change, London, 38 pp. Available at:  https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/211878/110713_L ocal_CO2_NS_Annex_B.pdf.  DeShazo J.R., and J. Matute (2012). The Local Regulation of Climate Change. In: The Oxford  Handbook of Urban Planning. R. Crane, R. Weber, (eds.), Oxford University Press, New York pp.455 476(ISBN: 9780195374995).  Dewees D.N. (1976). The effect of a subway on residential property values in Toronto, Journal of  Urban Economics 3 357 369 pp. (DOI: 10.1016/0094 1190(76)90035 8), (ISSN: 00941190).  Dhakal S. (2009). Urban energy use and carbon emissions from cities in China and policy  implications, Energy Policy 37 4208 4219 pp. (DOI: 10.1016/j.enpol.2009.05.020), (ISSN: 0301 4215).  Dhakal S. (2010). GHG emissions from urbanization and opportunities for urban carbon mitigation,  Current Opinion in Environmental Sustainability 2 277 283 pp. (DOI: 10.1016/j.cosust.2010.05.007),  (ISSN: 1877 3435).  Dhakal S., and L. Poruschi (2010). Low Carbon City Initiatives: Experiences and lessons from Asia.  Prepared for Consensus Panel on Low Carbon Cities, Academy of Sciences of South Africa.  Dierwechter Y., and A.T. Wessells (2013). The Uneven Localisation of Climate Action in Metropolitan  Seattle, Urban Studies 50 1368 1385 pp. .  Dimitriou H.T. (2011). Transport and city development: Understanding the fundamentals. In: Urban  Transport in the Developing World: A Handbook of Policy and Practice. H.T. Dimitriou, R.  Gakenheimer, (eds.), Edward Elgar Publishing, Cheltenham(ISBN: 9781849808392).  Doll C.N.H. (2009). Spatial Analysis of the World Bank s Global Urban Air Pollution Dataset.  International Institute for Applied Systems Analysis, Laxenburg, Austria.  Doll C.N.H., and S. Pachauri (2010). The socio economic transition towards a hydrogen economy    findings from European research, with regular papers . Estimating rural populations without access  to electricity in developing countries through night time light satellite imagery, Energy Policy 38  5661 5670 pp. (DOI: 10.1016/j.enpol.2010.05.014), (ISSN: 0301 4215).    90 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Donglan Z., Z. Dequn, and Z. Peng (2010). Driving forces of residential CO2 emissions in urban and  rural China: An index decomposition analysis, Energy Policy 38 3377 3383 pp. (DOI:  10.1016/j.enpol.2010.02.011), (ISSN: 03014215).  Dorélien A., D. Balk, and M. Todd (2013). What is Urban? Comparing a satellite view with the  demographic and health surveys, Population and Development Review 39 413 439 pp. (DOI:  10.1111/j.1728 4457.2013.00610.x), (ISSN: 00987921).  Douglass M. (2000). Mega urban Regions and World City Formation: Globalisation, the Economic  Crisis and Urban Policy Issues in Pacific Asia, Urban Studies 37 2315 2335 pp. (DOI:  10.1080/00420980020002823), (ISSN: 0042 0980, 1360 063X).  Downs A. (2004). Still Stuck in Traffic: Coping with Peak Hour Traffic Congestion. Brookings  Institution Press, Washington, D.C., 455 pp., (ISBN: 9780815796558). .  Droege P. (Ed.) (2008). Urban Energy Transition from Fossil Fuels to Renewable Power. Elsevier,  Amsterdam; Boston; London, 664 pp., (ISBN: 9780080453415). .  Druckman A., and T. Jackson (2008). Household energy consumption in the UK: A highly  geographically and socio economically disaggregated model, Energy Policy 36 3177 3192 pp. (DOI:  10.1016/j.enpol.2008.03.021), (ISSN: 0301 4215).  Du H., and C. Mulley (2006). Relationship Between Transport Accessibility and Land Value: Local  Model Approach with Geographically Weighted Regression, Transportation Research Record: Journal  of the Transportation Research Board 1977 197 205 pp. (DOI: 10.3141/1977 25).  Duany A., E. Plater Zyberk, and J. Speck (2000). Suburban Nation: The Rise of Sprawl and the Decline  of the American Dream. North Point Press, New York, NY, 324 pp., (ISBN: 9780865476066). .  Duarte F., and C. Ultramari (2012). Making Public Transport and Housing Match: Accomplishments  and Failures of Curitba s BRT, Journal of Urban Planning and Development 138 183 194 pp. (DOI:  10.1061/(ASCE)UP.1943 5444.0000107), (ISSN: 0733 9488, 1943 5444).  Duncan D.T., G. Piras, E.C. Dunn, R.M. Johnson, S.J. Melly, and B.E. Molnar (2013). The built  environment and depressive symptoms among urban youth: A spatial regression study, Spatial and  Spatio temporal Epidemiology 5 11 25 pp. (DOI: 10.1016/j.sste.2013.03.001), (ISSN: 1877 5845).  Dupree H. (1987). Urban Transportation: The New Town Solution. Gower, Aldershot, U.K., 292 pp.,  (ISBN: 9780566008399). .  Dupuy G. (2011). Towards Sustainable Transport: The Challenge of Car Dependence. John Libbey  Eurotext Limited, Montrouge, France, 66 pp., (ISBN: 9782742007936). .  Duranton G., and D. Puga (2004). Micro foundations of urban agglomeration economies. In:  Handbook of Regional and Urban Economics. J.V. Henderson, J. F. Thisse, (eds.), Elsevier, pp.2063 2117(ISBN: 9780444509673).  Duranton G., and M.A. Turner (2011). The Fundamental Law of Road Congestion: Evidence from US  Cities, American Economic Review 101 2616 2652 pp. (DOI: 10.1257/aer.101.6.2616), (ISSN: 0002 8282).    91 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Dye R.F., and D.F. Merriman (2000). The Effects of Tax Increment Financing on Economic  Development, Journal of Urban Economics 47 306 328 pp. (DOI: 10.1006/juec.1999.2149), (ISSN:  0094 1190).  Dye R.F., and J.O. Sundberg (1998). A Model of Tax Increment Financing Adoption Incentives,  Growth and Change 29 90 110 pp. (DOI: 10.1111/1468 2257.00077), (ISSN: 1468 2257).  Edwards M.E. (1984). Site Value Taxation on Australia., American Journal of Economics and  Sociology 43 481 495 pp. (DOI: 10.1111/j.1536 7150.1984.tb01876.x), (ISSN: 0002 9246).  Ekholm T., V. Krey, S. Pachauri, and K. Riahi (2010). Determinants of household energy  consumption in India, Energy Policy 38 5696 5707 pp. (DOI: 10.1016/j.enpol.2010.05.017), (ISSN:  03014215).  Elliot J. (1987). The City in Maps: Urban Mapping to 1900. British Library, London, 92 pp., (ISBN:  9780712301343). .  Elson M.J. (1986). Green Belts: Conflict Mediation in the Urban Fringe. Heinemann, Portsmouth, NH,  344 pp., (ISBN: 9780434905324). .  Enoch M., S. Potter, and S. Ison (2005). A Strategic Approach to Financing Public Transport Through  Property Values, Public Money & Management 25 147 154 pp. (DOI: 10.1111/j.1467 9302.2005.00467.x).  Escobedo F., S. Varela, M. Zhao, J.E. Wagner, and W. Zipperer (2010). Analyzing the efficacy of  subtropical urban forests in offsetting carbon emissions from cities, Environmental Science & Policy  13 362 372 pp. (DOI: 10.1016/j.envsci.2010.03.009), (ISSN: 1462 9011).  Ewing R.H. (1997). Transportation & Land Use Innovations: When You Can t Pave Your Way out of  Congestion. American Planning Association, Chicago, Ill., 106 pp., (ISBN: 9781884829123). .  Ewing R., and S.J. Brown (2009). U.S. Traffic Calming Manual. American Planning Association,  Chicago, IL, 236 pp., (ISBN: 9781932364613). .  Ewing R., and R. Cervero (2001). Travel and the Built Environment: A Synthesis, Transportation  Research Record 1780 87 114 pp. (DOI: 10.3141/1780 10), (ISSN: 0361 1981).  Ewing R., and R. Cervero (2010). Travel and the Built Environment: A Meta analysis, Journal of the  American Planning Association 76 265 294 pp. .  Ewing R., M. Deanna, and S. C. Li (1996). Land Use Impacts on Trip Generation Rates,  Transportation Research Record: Journal of the Transportation Research Board 1518 1 6 pp. (DOI:  10.3141/1518 01).  Ewing R., M. Greenwald, M. Zhang, J. Walters, M. Feldman, R. Cervero, and J. Thomas (2009).  Measuring the impact of urban form and transit access on mixed use site trip generation rates Portland pilot study. Washington, DC: U.S. Environmental Protection Agency.  Ewing R., R. Pendall, and D. Chen (2003). Measuring Sprawl and Its Transportation Impacts,  Transportation Research Record: Journal of the Transportation Research Board 1831 175 183 pp.  (DOI: 10.3141/1831 20).    92 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Fan Y. (2007). The built environment, activity space, and time allocation: An activity based  framework for modeling the land use and travel connection. University of North Carolina, Chapel  Hill, NC, 189 pp.  Fang H.A. (2008). A discrete continuous model of households  vehicle choice and usage, with an  application to the effects of residential density, Transportation Research Part B: Methodological 42  736 758 pp. (ISSN: 0191 2615).  Fargione J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne (2008). Land Clearing and the Biofuel  Carbon Debt, Science 319 1235 1238 pp. (DOI: 10.1126/science.1152747), (ISSN: 0036 8075, 1095 9203).  Farvacque C., and P. McAuslan (1992). Reforming Urban Land Policies and Institutions in Developing  Countries. World Bank, Washington D.C., 105 pp., (ISBN: 9786610015894). .  Fekade W. (2000). Deficits of formal urban land management and informal responses under rapid  urban growth, an international perspective, Habitat International 24 127 150 pp. (DOI:  10.1016/S0197 3975(99)00034 X), (ISSN: 01973975).  Feldman M.P., and D.B. Audretsch (1999). Innovation in cities: Science based diversity,  specialization and localized competition, European Economic Review 43 409 429 pp. (DOI:  10.1016/S0014 2921(98)00047 6), (ISSN: 00142921).  Feng K., Y.L. Siu, D. Guan, and K. Hubacek (2012). Analyzing Drivers of Regional Carbon Dioxide  Emissions for China, Journal of Industrial Ecology 16 600 611 pp. (DOI: 10.1111/j.1530 9290.2012.00494.x), (ISSN: 1530 9290).  Fensham P., and B. Gleeson (2003). Capturing Value for Urban Management: A New Agenda for  Betterment, Urban Policy and Research 21 93 112 pp. (DOI: 10.1080/0811114032000062164), (ISSN:  0811 1146).  Ferrell C., M. Carroll, B. Appleyard, D. Reinke, R. Dowling, H.S. Levinson, E. Deakin, and R. Cervero  (2011). Reinventing the Urban Interstate: A New Paradigm for Multimodal Corridors. Transportation  Research Board, Washington, D.C. 148 pp. Available at:  http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_rpt_145.pdf.  Fischel W. (1999). Does the American Way of Zoning Cause the Suburbs of Metropolitan Areas to Be  Too Spread Out? In: Governance and Opportunity in Metropolitan America. A.A. Altshuler, W.  Morrill, H. Wolman, F. Mitchell, (eds.), National Academies Press, Washington, D.C. pp.151 191(ISBN: 0 309 51967 5).  Foletta N., and S. Field (2011). Europe s Vibrant New Low Car(bon) Communities. Institute of  Transportation and Development Policy, New York. 116 pp. Available at: http://www.gwl terrein.nl/files/artikelen/low%20carbon%20communities%20GWL%20only.pdf.  Forsyth A., J.M. Oakes, K.H. Schmitz, and M. Hearst (2007). Does Residential Density Increase  Walking and Other Physical Activity?, Urban Studies 44 679 697 pp. (DOI:  10.1080/00420980601184729), (ISSN: 0042 0980, 1360 063X).  Fouchier V. (1998). Urban Density and Mobility in the Isle de France, Ministerio de Fomento,  Proceedings of the Eight Conference on Urban and Regional Research 285 300 pp. Madrid, Espana.    93 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Al Fouzan S.A. (2012). Using car parking requirements to promote sustainable transport  development in the Kingdom of Saudi Arabia, Cities 29 201 211 pp. (DOI:  10.1016/j.cities.2011.08.009), (ISSN: 02642751).  Fragkias M., J. Lobo, D. Strumsky, and K.C. Seto (2013). In: Convertino M, ed. Does Size Matter?  Scaling of CO2 Emissions and U.S. Urban Areas, PLOS ONE 8 e64727 pp. (DOI:  10.1371/journal.pone.0064727), (ISSN: 1932 6203).  Fraker H. (2013). The Hidden Potential of Sustainable Neighborhoods: Lessons from Low Carbon  Communities. Island Press, Washington, D.C., 248 pp., (ISBN: 9781610914093). .  Frank L.D., M.A. Andresen, and T.L. Schmid (2004). Obesity relationships with community design,  physical activity, and time spent in cars, American Journal of Preventive Medicine 27 87 96 pp. (DOI:  10.1016/j.amepre.2004.04.011), (ISSN: 0749 3797).  Frank L.D., and P. Engelke (2005). Multiple Impacts of the Built Environment on Public Health:  Walkable Places and the Exposure to Air Pollution, International Regional Science Review 28 193 216 pp. (DOI: 10.1177/0160017604273853), (ISSN: 0160 0176, 1552 6925).  Frank L.D., and G. Pivo (1994a). Impact of mixed use and density on utilization of three modes of  travel: singel occupant vehicle, transit, walking, Transportation Research Record (ISSN: 0361 1981).  Frank L.D., and G. Pivo (1994b). Impacts of mixed use and density on utilization of three modes of  travel: single occupant vehicle, transit, and walking, Transportation research record 1466 44 52 pp. .  Available at: http://www.reconnectingamerica.org/assets/Uploads/Frank and Pivo.pdf.  Frank L.D., J.F. Sallis, B.E. Saelens, L. Leary, K. Cain, T.L. Conway, and P.M. Hess (2009). The  Development of a Walkability Index: Application To the Neighborhood Quality of Life Study, British  Journal of Sports Medicine (DOI: 10.1136/bjsm.2009.058701), (ISSN: , 14730480).  Franzsen R.C.D., and J.M. Youngman (2009). Mapping Property Taxes in Africa, Land Lines 8 13 pp.   Frolking S., T. Milliman, K.C. Seto, and M.A. Friedl (2013). A global fingerprint of macro scale  changes in urban structure from 1999 to 2009, Environmental Research Letters 8 024004 pp. (DOI:  10.1088/1748 9326/8/2/024004), (ISSN: 1748 9326).  Fujita M., and J. F. Thisse (1996). Economics of agglomeration, Journal of the Japanese and  International Economies 10 339 378 pp. (DOI: 10.1006/jjie.1996.0021), (ISSN: 08891583).  Gakenheimer R. (2011). Land use and transport in rapidly motorizing cities: contexts of controversy.  In: Urban Transport in the Developing World: A Handbook of Policy and Practice. H.T. Dimitriou, R.  Gakenheimer, (eds.), Edward Elgar Publishing, Cheltenham pp.40 68(ISBN: 9781849808392).  Galea S., J. Ahern, S. Rudenstine, Z. Wallace, and D. Vlahov (2005). Urban built environment and  depression: a multilevel analysis, Journal of Epidemiology and Community Health 59 822 827 pp.  (DOI: 10.1136/jech.2005.033084), (ISSN: , 1470 2738).  Ganson C. (2008). The Transportation Greenhouse Gas Inventory: A First Step Toward City  Driven  Emissions Rationalization. University of California Transportation Center, Berkeley, CA. 15 pp.  Available at: http://www.uctc.net/research/papers/879.pdf.    94 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    GEA (2012). Global Energy Assessment   Toward a Sustainable Future. Cambridge University Press,  Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis,  Laxenburg, Austria, 1802 pp., (ISBN: 9781 10700 5198). .  Gehl J. (2010). Cities for People. Island Press, Washington DC, USA, 288 pp., (ISBN:  9781597269841). .  Gennaio M. P., A.M. Hersperger, and M. Bürgi (2009). Containing urban sprawl Evaluating  effectiveness of urban growth boundaries set by the Swiss Land Use Plan, Land Use Policy 26 224 232 pp. (DOI: 10.1016/j.landusepol.2008.02.010), (ISSN: 02648377).  Gill S.E., J.F. Handley, A.R. Ennos, and S. Pauleit (2007). Adapting Cities for Climate Change: The  Role of the Green Infrastructure, Built Environment 33 115 133 pp. (DOI: 10.2148/benv.33.1.115).  Glaeser E. (2011). Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter,  Greener, Healthier and Happier. Penguin, New York, 352 pp., (ISBN: 0143120549). .  Glaeser E.L., J. Gyourko, and R.E. Saks (2006). Urban growth and housing supply, Journal of  Economic Geography 6 71 89 pp. (DOI: 10.1093/jeg/lbi003), (ISSN: 1468 2702, 1468 2710).  Glaeser E.L., and M.E. Kahn (2004). Sprawl and Urban Growth. In: Handbook of Regional and Urban  Economics. J.V. Henderson, J.F. Thisse, (eds.), Elsevier, pp.2481 2527(ISBN: 9780444509673).  Glaeser E.L., and M.E. Kahn (2010). The greenness of cities: Carbon dioxide emissions and urban  development, Journal of Urban Economics 67 404 418 pp. (DOI: 10.1016/j.jue.2009.11.006), (ISSN:  0094 1190).  Glaeser E.L., J. Kolko, and A. Saiz (2001). Consumer city, Journal of Economic Geography 1 27 50 pp.  (DOI: 10.1093/jeg/1.1.27), (ISSN: 1468 2702).  Gomi K., K. Shimada, and Y. Matsuoka (2010). A low carbon scenario creation method for a local scale economy and its application in Kyoto city, Energy Policy 38 4783 4796 pp. (DOI:  10.1016/j.enpol.2009.07.026), (ISSN: 0301 4215).  Goodwin P.B. (1996). Empirical evidence on induced traffic, Transportation 23 35 54 pp. (DOI:  10.1007/BF00166218).  Goodwin P., C. Hass Klau, and S. Cairns (1998). Evidence on the Effects of Road Capacity Reductions  on Traffic Levels, Traffic Engineering and Control 39 348 354 pp. (ISSN: 0041 0683).  Gordon D.L.A. (2001). The Resurrection of Canary Wharf, Planning Theory & Practice 2 149 168 pp.  (DOI: 10.1080/14649350120068777), (ISSN: 1464 9357).  Gordon P., H.W. Richardson, and M. J. Jun (1991). The Commuting Paradox Evidence from the Top  Twenty, Journal of the American Planning Association 57 416 420 pp. (DOI:  10.1080/01944369108975516), (ISSN: 0194 4363).  Gore C., P. Robinson, and R. Stren (2009). In: Hoornweg D, ed. Governance and Climate Change:  Assessing and Learning from Canadian Cities, Cities and Climate Change: Responding to an Urgent  Agenda 498 523 pp. World Bank, Marseille.  Government of NCT of Delhi (2010). State of Environment Report for Delhi, 2010. Department of  Environment and Forests, Government of NCT of Delhi, New Delhi. 126 pp.    95 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Greenwald M.J. (2009). SACSIM modeling elasticity results: Draft.  Grubler A., X. Bai, T. Buettner, S. Dhakal, D. Fisk, T. Ichinose, J. Keirstead, G. Sammer, D.  Satterthwaite, N. Schulz, N. Shah, J. Steinberger, and H. Weisz (2012). Urban Energy Systems. In:  Global Energy Assessment: Toward a Sustainable Future. Cambridge University Press, Cambridge, UK  and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg,  Austria pp.1307 1400.  Grubler A., B. O Neill, K. Riahi, V. Chirkov, A. Goujon, P. Kolp, I. Prommer, S. Scherbov, and E.  Slentoe (2007). Regional, national, and spatially explicit scenarios of demographic and economic  change based on SRES, Technological Forecasting and Social Change 74 980 1029 pp. (DOI:  10.1016/j.techfore.2006.05.023), (ISSN: 0040 1625).  Grubler A., and N. Schulz (2013). Urban energy use. In: Energizing Sustainable Cities: Assessing  Urban Energy. A. Grubler, D. Fisk, (eds.), Routledge, Oxford, UK; New York, USA pp.57 70(ISBN:  9781849714396).  GTZ (2009). Urban Transport and Climate Change Action Plans. An Overview. Federal Ministry for  Economic Cooperation and Development, Germany. 20 pp.  Guan D., K. Hubacek, C.L. Weber, G.P. Peters, and D.M. Reiner (2008). The drivers of Chinese CO2  emissions from 1980 to 2030, Global Environmental Change 18 626 634 pp. (DOI:  10.1016/j.gloenvcha.2008.08.001), (ISSN: 0959 3780).  Guan D., G.P. Peters, C.L. Weber, and K. Hubacek (2009). Journey to world top emitter: An analysis  of the driving forces of China s recent CO2 emissions surge, Geophysical Research Letters 36 1 5 pp.  (DOI: 10.1029/2008GL036540), (ISSN: 1944 8007).  Guhathakurta S., and P. Gober (2007). The Impact of the Phoenix Urban Heat Island on Residential  Water Use, Journal of the American Planning Association 73 317 329 pp. (DOI:  10.1080/01944360708977980), (ISSN: 0194 4363).  Güneralp B., and K.C. Seto (2012). Can gains in efficiency offset the resource demands and CO2  emissions from constructing and operating the built environment?, Applied Geography 32 40 50 pp.  (DOI: 10.1016/j.apgeog.2010.11.011), (ISSN: 01436228).  Guo Z., A.W. Agrawal, and J. Dill (2011). Are Land Use Planning and Congestion Pricing Mutually  Supportive?, Journal of the American Planning Association 77 232 250 pp. (DOI:  10.1080/01944363.2011.592129), (ISSN: 0194 4363).  Guo J., H. Liu, Y. Jiang, D. He, Q. Wang, F. Meng, and K. He (2013). Neighborhood form and CO2  emission: evidence from 23 neighborhoods in Jinan, China, Frontiers of Environmental Science &  Engineering (DOI: 10.1007/s11783 013 0516 1), (ISSN: 2095 2201, 2095 221X).  Guo Z., and S. Ren (2013). From Minimum to Maximum: Impact of the London Parking Reform on  Residential Parking Supply from 2004 to 2010?, Urban Studies 50 1183 1200 pp. (DOI:  10.1177/0042098012460735).  Gurney K.R., I. Razlivanov, Y. Song, Y. Zhou, B. Benes, and M. Abdul Massih (2012). Quantification  of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City, Environmental Science  & Technology 46 12194 12202 pp. (DOI: 10.1021/es3011282), (ISSN: 0013 936X).    96 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Gutman P. (2007). Ecosystem services: Foundations for a new rural urban compact, Ecological  Economics 62 383 387 pp. (DOI: 10.1016/j.ecolecon.2007.02.027), (ISSN: 0921 8009).  Guy S., and S. Marvin (1996). Transforming urban infrastructure provision The emerging logic of  demand side management, Policy Studies 17 137 147 pp. (DOI: 10.1080/01442879608423701),  (ISSN: 0144 2872).  Hack G., E. Birch, P.H. Sedway, and M. Silver (Eds.) (2009). Local Planning: Contemporary Principles  and Practice. International City/County Management Association, Washington, D.C., 496 pp., (ISBN:  9780873261487). .  Hagman D.G., and D.J. Misczynski (1978). Windfalls for Wipeouts: Land Value Capture and  Compensation. American Society Planning Association, Chicago, 660 pp., (ISBN: 9780918286116). .  Hall P. (1993). Forces Shaping Urban Europe, Urban Studies 30 883 898 pp. (DOI:  10.1080/00420989320080831), (ISSN: 0042 0980, 1360 063X).  Hall P.G. (1996). Cities of Tomorrow: An Intellectual History of Urban Planning and Design in the  Twentieth Century. Blackwell Publishers, Oxford, UK ; Cambridge, MA, 502 pp., (ISBN: 063119942X). .  Han H., S. K. Lai, A. Dang, Z. Tan, and C. Wu (2009). Effectiveness of urban construction boundaries  in Beijing: an assessment, Journal of Zhejiang University SCIENCE A 10 1285 1295 pp. (DOI:  10.1631/jzus.A0920317), (ISSN: 1673 565X, 1862 1775).  Handy S. (1996). Methodologies for exploring the link between urban form and travel behavior,  Transportation Research Part D: Transport and Environment 1 151 165 pp. (DOI: 10.1016/S1361 9209(96)00010 7), (ISSN: 1361 9209).  Handy S. (2005). Smart Growth and the Transportation Land Use Connection: What Does the  Research Tell Us?, International Regional Science Review 28 146 167 pp. (DOI:  10.1177/0160017604273626), (ISSN: 0160 0176, 1552 6925).  Handy S., M.G. Boarnet, R. Ewing, and R.E. Killingsworth (2002). How the built environment affects  physical activity: Views from urban planning, American Journal of Preventive Medicine 23 64 73 pp.  (DOI: 10.1016/S0749 3797(02)00475 0), (ISSN: 0749 3797).  Hankey S., and J.D. Marshall (2010). Impacts of urban form on future US passenger vehicle  greenhouse gas emissions, Energy Policy 38 4880 4887 pp. (DOI: 10.1016/j.enpol.2009.07.005),  (ISSN: 0301 4215).  Hansen W.G. (1959). How Accessibility Shapes Land Use, Journal of the American Institute of  Planners 25 73 76 pp. (DOI: 10.1080/01944365908978307), (ISSN: 0002 8991).  Hansen M., and Y. Huang (1997). Road supply and traffic in California urban areas, Transportation  Research Part A: Policy and Practice 31 205 218 pp. (DOI: 10.1016/S0965 8564(96)00019 5).  Hao L., J. Keirstead, N. Samsatli, W. Shah, and W. Long (2011). Application of a novel, optimisation based toolkit ( syncity ) for urban energy system design in Shanghai Lingang New City, Energy  Education Science and Technology A: Energy Science and Research 28 311 318 pp. .  Harlan S.L., and D.M. Ruddell (2011). Climate change and health in cities: impacts of heat and air  pollution and potential co benefits from mitigation and adaptation, Current Opinion in  Environmental Sustainability 3 126 134 pp. (DOI: 10.1016/j.cosust.2011.01.001), (ISSN: 1877 3435).    97 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Harris J.R., and M.P. Todaro (1970). Migration, Unemployment & Development: A Two Sector  Analysis, American Economic Review 60 126 42 pp. .  Hartshorne R. (1933). Geographic and Political Boundaries in Upper Silesia, Annals of the Association  of American Geographers 23 195 228 pp. (DOI: 10.1080/00045603309357073), (ISSN: 0004 5608).  Hass Klau C. (1993). Impact of pedestrianization and traffic calming on retailing: A review of the  evidence from Germany and the UK, Transport Policy 1 21 31 pp. (DOI: 10.1016/0967 070X(93)90004 7).  Hausman J.A. (1979). Individual Discount Rates and the Purchase and Utilization of Energy Using  Durables, The Bell Journal of Economics 10 33 54 pp. (DOI: 10.2307/3003318), (ISSN: 0361 915X).  Heath G.W., R.C. Brownson, J. Kruger, R. Miles, K.E. Powell, and L.T. Ramsey (2006). The  effectiveness of urban design and land use and transport policies and practices to increase physical  activity: a systematic review, Journal of Physical Activity & Health 3 S55 S76 pp. . Available at:  http://sanita.formez.it/sites/all/files/effect%20urban%20design%20land%20use%20and%20transpo rt%20to%20increase%20PA%20CDC%20community%20guide%20Heath%20JPAH%202002.pdf.  Heijungs R., and S. Suh (2010). The Computational Structure of Life Cycle Assessment. Springer,  Dordrecht, NL; Boston, US, 256 pp., (ISBN: 9789048160419). .  Heinonen J., and S. Junnila (2011a). Implications of urban structure on carbon consumption in  metropolitan areas, Environmental Research Letters 6 014018 pp. (DOI: 10.1088/1748 9326/6/1/014018), (ISSN: 1748 9326).  Heinonen J., and S. Junnila (2011b). Case study on the carbon consumption of two metropolitan  cities, The International Journal of Life Cycle Assessment 16 569 579 pp. (DOI: 10.1007/s11367 011 0289 3), (ISSN: 0948 3349).  Heinonen J., and S. Junnila (2011c). A Carbon Consumption Comparison of Rural and Urban  Lifestyles, Sustainability 3 1234 1249 pp. (DOI: 10.3390/su3081234), (ISSN: 2071 1050).  Heinonen J., R. Kyrö, and S. Junnila (2011). Dense downtown living more carbon intense due to  higher consumption: a case study of Helsinki, Environmental Research Letters 6 034034 pp. (DOI:  10.1088/1748 9326/6/3/034034), (ISSN: 1748 9326).  Henderson V. (2003). The Urbanization Process and Economic Growth: The So What Question,  Journal of Economic Growth 8 47 71 pp. (DOI: 10.1023/A:1022860800744), (ISSN: 1381 4338, 1573 7020).  Henderson V., A. Kuncoro, and M. Turner (1995). Industrial Development in Cities, Journal of  Political Economy 103 1067 1090 pp. (DOI: 10.1086/262013), (ISSN: 0022 3808).  Heres Del Valle D., and D. Niemeier (2011). CO2 emissions: Are land use changes enough for  California to reduce VMT? Specification of a two part model with instrumental variables,  Transportation Research Part B: Methodological 45 150 161 pp. (DOI: 10.1016/j.trb.2010.04.001),  (ISSN: 0191 2615).  Heynen N., H.A. Perkins, and P. Roy (2006). The Political Ecology of Uneven Urban Green Space,  Urban Affairs Review 42 3 25 pp. (DOI: 10.1177/1078087406290729).    98 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Hidalgo D., and L. Gutiérrez (2013). BRT and BHLS around the world: Explosive growth, large positive  impacts and many issues outstanding, Research in Transportation Economics 39 8 13 pp. (DOI:  10.1016/j.retrec.2012.05.018), (ISSN: 0739 8859).  Hidle K., A.A. Farsund, and H.K. Lysgard (2009). Urban Rural Flows and the Meaning of Borders  Functional and Symbolic Integration in Norwegian City Regions, European Urban and Regional  Studies 16 409 421 pp. (DOI: 10.1177/0969776409340863), (ISSN: 0969 7764, 1461 7145).  Hillman T., and A. Ramaswami (2010). Greenhouse Gas Emission Footprints and Energy Use  Benchmarks for Eight U.S. Cities, Environmental Science & Technology 44 1902 1910 pp. (DOI:  10.1021/es9024194), (ISSN: 0013 936X).  Hirt S. (2007). The Devil Is in the Definitions: Contrasting American and German Approaches to  Zoning, Journal of the American Planning Association 73 436 450 pp. (DOI:  10.1080/01944360708978524), (ISSN: 0194 4363, 1939 0130).  Hirt S. (2012). Mixed Use by Default: How the Europeans (Don t) Zone, Journal of Planning Literature  27 375 393 pp. (DOI: 10.1177/0885412212451029), (ISSN: 0885 4122, 1552 6593).  Hoch C., L.C. Dalton, and F.S. So (Eds.) (2000). The Practice of Local Government Planning.  International City/County Management Association, Washington DC, USA, 496 pp., (ISBN:  9780873261715). .  Hoekman S.K. (2009). Biofuels in the U.S.   Challenges and Opportunities, Renewable Energy 34 14 22 pp. (DOI: 10.1016/j.renene.2008.04.030), (ISSN: 0960 1481).  Hofman P.S. (2007). Transition paths for the electricity system. Three alternative electricity futures  based upon the sociotechnical scenario methodology, Visions on the Development of the Electricity  System Eindhoven.  Holgate C. (2007). Factors and Actors in Climate Change Mitigation: A Tale of Two South African  Cities, Local Environment 12 471 484 pp. (DOI: 10.1080/13549830701656994), (ISSN: 1354 9839).  Holtzclaw J., R. Clear, H. Dittmar, D. Goldstein, and P. Haas (2002). Location Efficiency:  Neighborhood and Socio Economic Characteristics Determine Auto Ownership and Use   Studies in  Chicago, Los Angeles and San Francisco, Transportation Planning and Technology 25 1 27 pp. (DOI:  10.1080/03081060290032033), (ISSN: 0308 1060, 1029 0354).  Hong Y., and B. Needham (2007). Analyzing Land Readjustment: Economics, Law, and Collective  Action. Lincoln Institute of Land Policy, Cambridge, MA, 203 pp., (ISBN: 9781558441644). .  Hoornweg D., L. Sugar, and C.L.T. Gómez (2011). Cities and greenhouse gas emissions: moving  forward, Environment and Urbanization 23 207 227 pp. (DOI: 10.1177/0956247810392270), (ISSN:  0956 2478, 1746 0301).  Hoppenbrouwer E., and E. Louw (2005). Mixed use development: Theory and practice in  Amsterdam s Eastern Docklands, European Planning Studies 13 967 983 pp. (DOI:  10.1080/09654310500242048), (ISSN: 0965 4313).  Horner M., and A. Murray (2003). A Multi objective Approach to Improving Regional Jobs Housing  Balance, Regional Studies 37 135 146 pp. (DOI: 10.1080/0034340022000057514), (ISSN: 0034 3404,  1360 0591).    99 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Horvath A. (2004). Construction Materials and the Environment, Annual Review of Environment and  Resources 29 181 204 pp. (DOI: 10.1146/annurev.energy.29.062403.102215).  Hou Q., and S. M. Li (2011). Transport infrastructure development and changing spatial accessibility  in the Greater Pearl River Delta, China, 1990 2020, Journal of Transport Geography 19 1350 1360  pp. (DOI: 10.1016/j.jtrangeo.2011.07.003), (ISSN: 09666923).  Hurtt G., L. Chini, S. Frolking, R. Betts, J. Feddema, G. Fischer, J. Fisk, K. Hibbard, R. Houghton, A.  Janetos, C. Jones, G. Kindermann, T. Kinoshita, K. Klein Goldewijk, K. Riahi, E. Shevliakova, S.  Smith, E. Stehfest, A. Thomson, P. Thornton, D. van Vuuren, and Y. Wang (2011). Harmonization of  land use scenarios for the period 1500 2100: 600 years of global gridded annual land use  transitions, wood harvest, and resulting secondary lands, Climatic Change 109 117 161 pp. (DOI:  10.1007/s10584 011 0153 2), (ISSN: 0165 0009).  Hymel K.M., K.A. Small, and K.V. Dender (2010). Induced demand and rebound effects in road  transport, Transportation Research Part B: Methodological 44 1220 1241 pp. (DOI:  10.1016/j.trb.2010.02.007), (ISSN: 01912615).  Ibrahim N., L. Sugar, D. Hoornweg, and C. Kennedy (2012). Greenhouse gas emissions from cities:  comparison of international inventory frameworks, Local Environment 17 223 241 pp. (DOI:  10.1080/13549839.2012.660909), (ISSN: 1354 9839).  ICLEI (2009). International Local Government GHG Emission Analysis Protocol (IEAP): Version 1.0.  ICLEI   Local Governments for Sustainability, Bonn, Germany, 56 pp. Available at:  http://carbonn.org/fileadmin/user_upload/carbonn/Standards/IEAP_October2010_color.pdf.  ICLEI, C40, and WRI (2012). Global Protocol for Community Scale GHG Emissions. World Resources  Institute and World Business Council for Sustainable Development, Washington DC, USA; Conches Geneva, Switzerland. . Available at:  http://www.ghgprotocol.org/files/ghgp/GPC_PilotVersion_1.0_May2012_20120514.pdf.  ICLEI, and WRI (2012). Global Protocol for Community Based GHG Emissions. . Available at:  www.ghgprotocol.org.  IEA (2008). World Energy Outlook 2008 Edition. International Energy Agency, Paris, France, 578 pp.,  (ISBN: 9789264045606). .  IIASA (2009). GGI Scenario Database Version 2.0.1. . Available at:  http://www.iiasa.ac.at/Research/GGI/DB.  Inglehart R. (1997). Modernization and Postmodernization: Cultural, Economic, and Political Change  in 43 Societies. Princeton University Press, Princeton, N.J., (ISBN: 9780691011806). .  Ingram D.R. (1971). The concept of accessibility: A search for an operational form, Regional Studies 5  101 107 pp. (DOI: 10.1080/09595237100185131), (ISSN: 0034 3404, 1360 0591).  International Energy Agency (2008). World Energy Outlook 2008. International Energy Agency, Paris,  (ISBN: 9789264045606). .  International Energy Agency (2010). Energy Poverty: How to Make Modern Energy Access Universal?  OECD/ IEA, Paris, France, 52 pp.    100 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    International Energy Agency (2012). World Energy Outlook 2012. OECD Publishing, Paris. . Available  at: http://www.iea.org/publications/freepublications/publication/English.pdf.  International Energy Agency (2013). Redrawing the Energy Climate Map. International Energy  Agency (IEA), Paris, France. 132 pp.  IPCC (2011). Special Report on Renewable Energy Sources and Climate Change Mitigation [O.  Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.  Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, United  Kingdom and New York, NY, USA, 1076 pp.  Istrate E., and C.A. Nadeau (2012). Global MetroMonitor 2012: Slowdown, Recovery, and  Interdependence. Brookings Institution, Washington, D.C. 52 pp. Available at:  http://www.brookings.edu/~/media/research/files/reports/2012/11/30%20global%20metro%20mo nitor/30%20global%20monitor.  Jaccard M., L. Failing, and T. Berry (1997). From equipment to infrastructure: community energy  management and greenhouse gas emission reduction, Energy Policy 25 1065 1074 pp. (DOI:  10.1016/S0301 4215(97)00091 8), (ISSN: 0301 4215).  Jaccard M., and N. Rivers (2007). Heterogeneous capital stocks and the optimal timing for CO2  abatement, Resource and Energy Economics 29 1 16 pp. (DOI: 10.1016/j.reseneeco.2006.03.002),  (ISSN: 0928 7655).  Jacob D.J., and D.A. Winner (2009). Effect of climate change on air quality, Atmospheric  Environment 43 51 63 pp. (DOI: 10.1016/j.atmosenv.2008.09.051), (ISSN: 1352 2310).  Jewell J., A. Cherp, V. Vinichenko, N. Bauer, and T. Kober (2013). Energy security of China, India, the  EU, and the US under long term low carbon scenarios: Results from six IAMs, Climate Change  Economics Paris, France.  Jiang Z., and B. Lin (2012). China s energy demand and its characteristics in the industrialization and  urbanization process, Energy Policy 49 608 615 pp. (DOI: 10.1016/j.enpol.2012.07.002), (ISSN:  03014215).  Jiang L., and B.C. O Neill (2004). The energy transition in rural China, International Journal of Global  Energy Issues 21 2 26 pp. . Available at:  http://inderscience.metapress.com/content/16KPY22M4U3K56VW.  Jiang L., and B.C. O Neill (2007). Impacts of Demographic Trends on US Household Size and  Structure, Population and Development Review 33 567 591 pp. (ISSN: 0098 7921).  Jim C.Y., and W.Y. Chen (2009). Ecosystem services and valuation of urban forests in China, Cities 26  187 194 pp. (DOI: 10.1016/j.cities.2009.03.003), (ISSN: 0264 2751).  Jo H. (2002). Impacts of urban greenspace on offsetting carbon emissions for middle Korea, Journal  of Environmental Management 64 115 126 pp. (DOI: 10.1006/jema.2001.0491), (ISSN: 03014797).  Johnson G.T., and L.A. Hoel (1985). An Inventory of Value Capture Techniques for Transportation.  University of Virginia, Charlottesville, VA, 39 pp.  Jones D.W. (2004). Urbanization and Energy. In: Encyclopedia of Energy. C.J. Cleveland, (ed.),  Elsevier Science, Amsterdam pp.329 335(ISBN: 9780121764807).    101 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Jones C.M., and D.M. Kammen (2011). Quantifying Carbon Footprint Reduction Opportunities for  U.S. Households and Communities, Environmental Science & Technology 45 4088 4095 pp. (DOI:  10.1021/es102221h), (ISSN: 0013 936X, 1520 5851).  Jun M. J., and C. H.C. Bae (2000). Estimating the Commuting Costs of Seoul s Greenbelt,  International Regional Science Review 23 300 315 pp. .  Jun M. J., and J. W. Hur (2001). Commuting costs of  leap frog  newtown development in Seoul,  Cities 18 151 158 pp. (DOI: 10.1016/S0264 2751(01)00007 5), (ISSN: 0264 2751).  Junge J.R., and D. Levinson (2012). Financing transportation with land value taxes: Effects on  development intensity, Journal of Transport and Land Use 5 49 63 pp. (DOI: 10.5198/jtlu.v5i1.148),  (ISSN: 1938 7849).  Kahn M.E. (2009). Urban Growth and Climate Change, Annual Review of Resource Economics 1 333 350 pp. (DOI: 10.1146/annurev.resource.050708.144249).  Kang C.D., and R. Cervero (2009). From Elevated Freeway to Urban Greenway: Land Value Impacts  of the CGC Project in Seoul, Korea, Urban Studies 46 2771 2794 pp. .  Kawada T. (2011). Noise and Health Sleep Disturbance in Adults, Journal of Occupational Health 53  413 416 pp. (DOI: 10.1539/joh.11 0071 RA).  Kaya Y. (1990). Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of  Proposed Scenarios, Response Strategies Working Group Paris.  Keirstead J., and N. Shah (2013). Urban energy systems planning, design and implementation. In:  Energizing Sustainable Cities: Assessing Urban Energy. A. Grubler, D. Fisk, (eds.), Routledge, pp.155 162(ISBN: 9781849714396).  Kelly E.D. (1993). Planning, Growth, and Public Facilities: A Primer for Local Officials. American  Planning Association, Planning Advisory Service, Chicago, IL, 30 pp.  Kennedy C., and J. Corfee Morlot (2013). Past performance and future needs for low carbon climate  resilient infrastructure   An investment perspective, Energy Policy 59 773 783 pp. (DOI:  j.enpol.2013.04.031).  Kennedy C., S. Demoullin, and E. Mohareb (2012). Cities reducing their greenhouse gas emissions,  Energy Policy 49 774 777 pp. (DOI: 10.1016/j.enpol.2012.07.030), (ISSN: 0301 4215).  Kennedy C., E. Miller, A. Shalaby, H. Maclean, and J. Coleman (2005). The Four Pillars of Sustainable  Urban Transportation, Transport Reviews 25 393 414 pp. (DOI: 10.1080/01441640500115835),  (ISSN: 0144 1647, 1464 5327).  Kennedy C., A. Ramaswami, S. Carney, and S. Dhakal (2011). Greenhouse gas emission baselines for  global cities and metropolitan regions. Urban Development Series. In: Cities and Climate Change:  Responding to an Urgent Agenda. D. Hoornweg, M. Freire, M.J. Lee, P. Bhada Tata, B. Yuen, (eds.),  The World Bank, Washington, D.C., US(ISBN: 978 0 8213 8493 0).  Kennedy C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A.  Phdungsilp, A. Ramaswami, and G.V. Mendez (2009). Greenhouse Gas Emissions from Global Cities,  Environmental Science & Technology 43 7297 7302 pp. (DOI: 10.1021/es900213p), (ISSN: 0013 936X).    102 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Kennedy C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A.  Phdungsilp, A. Ramaswami, and G.V. Mendez (2010). Methodology for inventorying greenhouse  gas emissions from global cities, Energy Policy 38 4828 4837 pp. (DOI:  10.1016/j.enpol.2009.08.050), (ISSN: 0301 4215).  Kenworthy J.R., and F.B. Laube (1999). Patterns of automobile dependence in cities: an  international overview of key physical and economic dimensions with some implications for urban  policy, Transportation Research Part A 33 691 723 pp. .  Kern K., and H. Bulkeley (2009). Cities, Europeanization and multi level governance: Governing  climate change through transnational municipal networks, Journal of Common Market Studies 47  309 332 pp. (DOI: 10.1111/j.1468 5965.2009.00806.x), (ISSN: 00219886).  Keyfitz N. (1980). Do Cities Grow by Natural Increase or by Migration?, Geographical Analysis 12  142 156 pp. (DOI: 10.1111/j.1538 4632.1980.tb00024.x), (ISSN: 1538 4632).  Khattak A.J., and D. Rodriguez (2005). Travel behavior in neo traditional neighborhood  developments: A case study in USA, Transportation Research Part A: Policy and Practice 39 481 500  pp. (DOI: 10.1016/j.tra.2005.02.009), (ISSN: 0965 8564).  Kinney P.L., M.G. Gichuru, N. Volavka Close, N. Ngo, P.K. Ndiba, A. Law, A. Gachanja, S.M. Gaita,  S.N. Chillrud, and E. Sclar (2011). Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya,  Environmental science & policy 14 369 378 pp. (DOI: 10.1016/j.envsci.2011.02.005), (ISSN: 1462 9011).  Kitamura R., T. Akiyama, T. Yamamoto, and T. Golob (2001). Accessibility in a Metropolis: Toward a  Better Understanding of Land Use and Travel, Transportation Research Record 1780 64 75 pp. (DOI:  10.3141/1780 08), (ISSN: 0361 1981).  Kleiber M. (1961). The Fire of Life: An Introduction to Animal Energetics. Wiley, New York, NY, 454  pp.  Knudsen B., R. Florida, K. Stolarick, and G. Gates (2008). Density and Creativity in U.S. Regions,  Annals of the Association of American Geographers 98 461 478 pp. (DOI:  10.1080/00045600701851150), (ISSN: 0004 5608, 1467 8306).  Kockelman K. (1997). Travel Behavior as Function of Accessibility, Land Use Mixing, and Land Use  Balance: Evidence from San Francisco Bay Area, Transportation Research Record: Journal of the  Transportation Research Board 1607 116 125 pp. (DOI: 10.3141/1607 16).  Kodransky M., and G. Hermann (2011). Europe s Parking U Turn: From Accommodation to  Regulation. Institute for Transport and Development Policy, New York, USA. 84 pp. Available at:  http://www.itdp.org/library/publications/european parking u turn from accommodation to regulation.  Koehn P.H. (2008). Underneath Kyoto: emerging subnational government initiatives and incipient  issue bundling opportunities in China and the United States, Global Environmental Politics 8 53 77  pp. (DOI: 10.1162/glep.2008.8.1.53).  Kondratieff N.D., and W.F. Stolper (1935). The Long Waves in Economic Life, The Review of  Economics and Statistics 17 105 115 pp. (DOI: 10.2307/1928486), (ISSN: 0034 6535).    103 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Koster H.R.A., and J. Rouwendal (2012). The Impact Of Mixed Land Use On Residential Property  Values, Journal of Regional Science 52 733 761 pp. . Available at:  http://ideas.repec.org/a/bla/jregsc/v52y2012i5p733 761.html.  Kostof S. (1991). The City Assembled: The Elements of Urban Form Through History. Little, Brown,  Boston, 320 pp., (ISBN: 0821219308 9780821219300). .  Kostof S., and R. Tobias (1999). The City Shaped: Urban Patterns and Meanings Through History.  Little, Brown and Co., Boston, 352 pp., (ISBN: 0821220160 9780821220160). .  Kousky C., and S.H. Schneider (2003). Global climate policy: will cities lead the way?, Climate Policy  3 359 372 pp. . Available at:  http://search.ebscohost.com/login.aspx?direct=true&db=egh&AN=17053210&site=ehost live.  Krause R.M. (2011a). Symbolic or substantive policy? Measuring the extent of local commitment to  climate protection, Environment and Planning C: Government and Policy 29 46 62 pp. (DOI:  10.1068/c09185), (ISSN: 0263774X).  Krause R.M. (2011b). Policy Innovation, Intergovernmental Relations, and the Adoption of Climate  Protection Initiatives by U.S. Cities, Journal of Urban Affairs 33 45 60 pp. (DOI: 10.1111/j.1467 9906.2010.00510.x), (ISSN: 1467 9906).  Krause R.M. (2011c). An assessment of the greenhouse gas reducing activities being implemented in  US cities, Local Environment 16 193 211 pp. (DOI: 10.1080/13549839.2011.562491), (ISSN: 1354 9839).  Krey V., B.C. O Neill, B. van Ruijven, V. Chaturvedi, V. Daioglou, J. Eom, L. Jiang, Y. Nagai, S.  Pachauri, and X. Ren (2012). Urban and rural energy use and carbon dioxide emissions in Asia,  Energy Economics 34 S272 S283 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84870553992&partnerID=40&md5=000fc5bd314e96ec58bf9aceb09d78ec.  Krizek K.J. (2003). Residential Relocation and Changes in Urban Travel: Does Neighborhood Scale  Urban Form Matter?, Journal of the American Planning Association 69 265 281 pp. (DOI:  10.1080/01944360308978019), (ISSN: 0194 4363, 1939 0130).  Kronenberg T. (2009). The impact of demographic change on energy use and greenhouse gas  emissions in Germany, Ecological Economics 68 2637 2645 pp. (DOI:  10.1016/j.ecolecon.2009.04.016), (ISSN: 0921 8009).  Krugman P. (1996). Confronting the Mystery of Urban Hierarchy, Journal of the Japanese and  International Economies 10 399 418 pp. (DOI: 10.1006/jjie.1996.0023), (ISSN: 0889 1583).  Kühn M. (2003). Greenbelt and Green Heart: separating and integrating landscapes in European city  regions, Landscape and Urban Planning 64 19 27 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0169204602001986.  Kumar N. (2004). Changing geographic access to and locational efficiency of health services in two  Indian districts between 1981 and 1996, Social science & medicine (1982) 58 2045 2067 pp. (DOI:  10.1016/j.socscimed.2003.08.019), (ISSN: 0277 9536).  Kunstler J.H. (1998). Home from Nowhere: Remaking Our Everyday World For the 21st Century.  Simon and Schuster, New York, US, 326 pp., (ISBN: 0684837374). .    104 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Kuzmyak R. (2009a). Estimating the travel benefits of blueprint land use concepts. Unpublished  Manuscript, Southern California Association of Governments, Los Angeles, CA.  Kuzmyak R. (2009b). Estimates of point elasticities, Phoenix, AZ: Maricopa Association of  Governments.  Kuzmyak J., C. Baber, and D. Savory (2006). Use of Walk Opportunities Index to Quantify Local  Accessibility, Transportation Research Record: Journal of the Transportation Research Board 1977  145 153 pp. (DOI: 10.3141/1977 19).  Ladd H. (1998). Effects of taxes on economic activity. In: Local government tax and land use policies  in the U.S.: Understanding the links. Edward Elgar, Northampton, MA pp.82 101(ISBN: 1 85898 657 5).  Lam S.H., and T.D. Toan (2006). Land Transport Policy and Public Transport in Singapore,  Transportation 33 171 188 pp. (DOI: 10.1007/s11116 005 3049 z), (ISSN: 0049 4488, 1572 9435).  Landis J., R. Cervero, and P. Hall (1991). Transit joint development in the USA: an inventory and  policy assessment, Environment and Planning C: Government and Policy 9 431 452 pp. (DOI:  10.1068/c090431).  De Lara M., A. de Palma, M. Kilani, and S. Piperno (2013). Congestion pricing and long term urban  form: Application to Paris region, Regional Science and Urban Economics 43 282 295 pp. (DOI:  10.1016/j.regsciurbeco.2012.07.007), (ISSN: 01660462).  Larsen H.N., and E.G. Hertwich (2009). The case for consumption based accounting of greenhouse  gas emissions to promote local climate action, Environmental Science & Policy 12 791 798 pp. (DOI:  10.1016/j.envsci.2009.07.010), (ISSN: 1462 9011).  Larsen H.N., and E.G. Hertwich (2010a). Identifying important characteristics of municipal carbon  footprints, Ecological Economics 70 60 66 pp. (DOI: 10.1016/j.ecolecon.2010.05.001), (ISSN: 0921 8009).  Larsen H.N., and E.G. Hertwich (2010b). Implementing Carbon Footprint Based Calculation Tools in  Municipal Greenhouse Gas Inventories, Journal of Industrial Ecology 14 965 977 pp. (DOI:  10.1111/j.1530 9290.2010.00295.x), (ISSN: 1530 9290).  Lee C., and A.V. Moudon (2006). The 3Ds + R: Quantifying land use and urban form correlates of  walking, Transportation Research Part D: Transport and Environment 11 204 215 pp. (DOI:  10.1016/j.trd.2006.02.003), (ISSN: 1361 9209).  Lenzen M., M. Wier, C. Cohen, H. Hayami, S. Pachauri, and R. Schaeffer (2006). A comparative  multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and  Japan, Energy 31 181 207 pp. (DOI: 10.1016/j.energy.2005.01.009), (ISSN: 0360 5442).  LeRoy S.F., and J. Sonstelie (1983). Paradise lost and regained: Transportation innovation, income,  and residential location, Journal of Urban Economics 13 67 89 pp. (DOI: 10.1016/0094 1190(83)90046 3), (ISSN: 0094 1190).  Levin S.A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award  Lecture, Ecology 73 1943 1967 pp. (DOI: 10.2307/1941447), (ISSN: 0012 9658).    105 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Levine J. (1998). Rethinking Accessibility and Jobs Housing Balance, Journal of the American Planning  Association 64 133 149 pp. (DOI: 10.1080/01944369808975972), (ISSN: 0194 4363, 1939 0130).  Levine J. (2005). Zoned Out: Regulation, Markets, and Choices in Transportation and Metropolitan  Land Use. Resources for the Future, Washington D.C., 223 pp., (ISBN: 9781933115153). .  Levine M.D., and N.T. Aden (2008). Global Carbon Emissions in the Coming Decades: The Case of  China, Annual Review of Environment and Resources 33 19 38 pp. (DOI:  10.1146/annurev.environ.33.012507.172124).  Levine J., and A. Inam (2004). The Market for Transportation Land Use Integration: Do Developers  Want Smarter Growth than Regulations Allow?, Transportation 31 409 427 pp. (DOI:  10.1023/B:PORT.0000037086.33893.9f), (ISSN: 0049 4488, 1572 9435).  Li L., C. Chen, S. Xie, C. Huang, Z. Cheng, H. Wang, Y. Wang, H. Huang, J. Lu, and S. Dhakal (2010).  Energy demand and carbon emissions under different development scenarios for Shanghai, China,  Energy Policy 38 4797 4807 pp. (DOI: 10.1016/j.enpol.2009.08.048), (ISSN: 0301 4215).  Li W., and J. Huang (2010). The Conception of Transit Metropolis in Guangzhou, 2010 International  Conference on Mechanic Automation and Control Engineering. Institute of Electrical and Electronics  Engineers (IEEE), Singapore. June  2010, 817 820 pp. Available at:  http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5535305.  Lin J., Y. Liu, F. Meng, S. Cui, and L. Xu (2013). Using hybrid method to evaluate carbon footprint of  Xiamen City, China, Energy Policy 58 220 227 pp. (DOI: 10.1016/j.enpol.2013.03.007), (ISSN: 0301 4215).  Lin J. J., and A. T. Yang (2009). Structural Analysis of How Urban Form Impacts Travel Demand:  Evidence from Taipei, Urban Studies 46 1951 1967 pp. (DOI: 10.1177/0042098009106017), (ISSN:  0042 0980, 1360 063X).  Liu L. C., Y. Fan, G. Wu, and Y. M. Wei (2007). Using LMDI method to analyze the change of China s  industrial CO2 emissions from final fuel use: An empirical analysis, Energy Policy 35 5892 5900 pp.  (DOI: 10.1016/j.enpol.2007.07.010), (ISSN: 0301 4215).  Liu Z., S. Liang, Y. Geng, B. Xue, F. Xi, Y. Pan, T. Zhang, and T. Fujita (2012). Features, trajectories  and driving forces for energy related GHG emissions from Chinese mega cites: The case of Beijing,  Tianjin, Shanghai and Chongqing, Energy 37 245 254 pp. (DOI: 10.1016/j.energy.2011.11.040), (ISSN:  03605442).  Lotfi S., and M. Koohsari (2011). Neighborhood Walkability in a City within a Developing Country,  Journal of Urban Planning and Development 137 402 408 pp. (DOI: 10.1061/(ASCE)UP.1943 5444.0000085), (ISSN: 0733 9488).  Lu W., C. Chen, M. Su, B. Chen, Y. Cai, and T. Xing (2013). Urban energy consumption and related  carbon emission estimation: a study at the sector scale, Frontiers of Earth Science 7 480 486 pp.  (DOI: 10.1007/s11707 013 0363 1), (ISSN: 2095 0195, 2095 0209).  Lund H., R.W. Willson, and R. Cervero (2006). A Re Evaluation of Travel Behavior in California Tods,  Journal of Architectural & Planning Research 23 247 263 pp. (ISSN: 07380895).  Lusht K.M. (1992). The Site Value Tax and Residential Development. Lincoln Insitute for Land Policy,  Washington D.C. 22 pp.    106 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Lutsey N., and D. Sperling (2008). America s bottom up climate change mitigation policy, Energy  Policy 36 673 685 pp. (DOI: 10.1016/j.enpol.2007.10.018), (ISSN: 0301 4215).  Lwasa S. (2013). Planning innovation for better urban communities in sub Saharan Africa: The  education challenge and potential responses, Town and Regional Planning 60 38 48 pp. (ISSN: 1012 280X).  Lynch K. (1981). A Theory of Good City Form. MIT Press, (ISBN: 9780262120852). .  Ma K. R., and D. Banister (2006). Extended Excess Commuting: A Measure of the Jobs Housing  Imbalance in Seoul, Urban Studies 43 2099 2113 pp. (DOI: 10.1080/00420980600945245), (ISSN:  0042 0980, 1360 063X).  MacKellar F.L., W. Lutz, C. Prinz, and A. Goujon (1995). Population, Households, and CO2 Emissions,  Population and Development Review 21 849 865 pp. (DOI: 10.2307/2137777), (ISSN: 0098 7921).  Macknick J. (2011). Energy and CO2 emission data uncertainties, Carbon Management 2 189 205  pp. (DOI: 10.4155/cmt.11.10), (ISSN: 1758 3004).  Makido Y., S. Dhakal, and Y. Yamagata (2012). Relationship between urban form and CO2  emissions: Evidence from fifty Japanese cities, Urban Climate 2 55 67 pp. (DOI:  10.1016/j.uclim.2012.10.006), (ISSN: 22120955).  Manaugh K., and T. Kreider (2013). What is mixed use? Presenting an interaction method for  measuring land use mix, Journal of Transport and Land Use 6 63 72 pp. (ISSN: 1938 7849).  Mans J., E. Interrante, L. Lem, J. Mueller, and M. Lawrence (2012). Next Generation of Travel  Behavior, Journal of the Transportation Research Board 2323 90 98 pp. (DOI: 10.3141/2323 11),  (ISSN: 0361 1981).  Marcotullio P.J., J. Albrecht, and A. Sarzynski (2011). The geography of greenhouse gas emissions  from within urban areas of India: a preliminary assessment, Journal of Resources, Energy and  Development 8 11 35 pp. (DOI: 10.3233/RED 120079).  Marcotullio P.J., A. Sarzynski, J. Albrecht, and N. Schulz (2012). The geography of urban greenhouse  gas emissions in Asia: A regional analysis, Global Environmental Change 22 944 958 pp. (DOI:  10.1016/j.gloenvcha.2012.07.002), (ISSN: 0959 3780).  Marcotullio P.J., A. Sarzynski, J. Albrecht, N. Schulz, and J. Garcia (2013). The geography of global  urban greenhouse gas emissions: an exploratory analysis, Climatic Change 1 14 pp. (DOI:  10.1007/s10584 013 0977 z), (ISSN: 0165 0009, 1573 1480).  Markandya A., B.G. Armstrong, S. Hales, A. Chiabai, P. Criqui, S. Mima, C. Tonne, and P. Wilkinson  (2009). Public health benefits of strategies to reduce greenhouse gas emissions: low carbon  electricity generation, The Lancet 374 2006 2015 pp. (DOI: 10.1016/S0140 6736(09)61715 3), (ISSN:  01406736).  Marshall J.D. (2008). Energy efficient urban form, Environmental Science & Technology 42 3133 3137 pp. .  Martinez Fernandez C., I. Audirac, S. Fol, and E. Cunningham Sabot (2012). Shrinking Cities: Urban  Challenges of Globalization, International Journal of Urban and Regional Research 36 213 225 pp.  (DOI: 10.1111/j.1468 2427.2011.01092.x), (ISSN: 1468 2427).    107 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Martinot E., A. Chaurey, D. Lew, J.R. Moreira, and N. Wamukonya (2002). Renewable Energy  Markets in Developing Countries, Annual Review of Energy and the Environment 27 309 348 pp.  (DOI: 10.1146/annurev.energy.27.122001.083444).  Mavrogianni A., M. Davies, M. Batty, S.E. Belcher, S.I. Bohnenstengel, D. Carruthers, Z. Chalabi, B.  Croxford, C. Demanuele, S. Evans, R. Giridharan, J.N. Hacker, I. Hamilton, C. Hogg, J. Hunt, M.  Kolokotroni, C. Martin, J. Milner, I. Rajapaksha, I. Ridley, J.P. Steadman, J. Stocker, P. Wilkinson,  and Z. Ye (2011). The comfort, energy and health implications of London s urban heat island,  Building Services Engineering Research and Technology 32 35 52 pp. (DOI:  10.1177/0143624410394530), (ISSN: 0143 6244, 1477 0849).  Mayer C.J., and C.T. Somerville (2000). Land use regulation and new construction, Regional Science  and Urban Economics 30 639 662 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0166046200000557.  McAndrews C., E. Deakin, and L. Schipper (2010). Climate Change and Urban Transportation in Latin  America, Transportation Research Record: Journal of the Transportation Research Board 2191 128 135 pp. (DOI: 10.3141/2191 16).  McCann B., and B. Rynne (Eds.) (2010). Complete Streets: Best Policy Implementation Practices.  American Planning Association, Chicago, 141 pp. Available at:  http://www.planning.org/pas/brochure/pdf/report.pdf.  McCarney P.L., H. Blanco, J. Carmin, and M. Colley (2011). Cities and Climate Change: The  Challenges for Governance. In: Climate Change and Cities: First Urban Climate Change Research  Network (UCCRN) Assessment Report. C. Rosenzweig, W.D. Solecki, S.A. Hammer, S. Mehrotra, (eds.),  Cambridge University Press, Cambridge, UK pp.217 248(ISBN: 978 110 700 420 7).  McCarney P.L., and R.E. Stren (2008). Metropolitan Governance: Governing in a city of cities. In:  State of the World s Cities Report. UN HABITAT, Nairobi, Kenya pp.226 237(ISBN: 978 92 1 132010 7).  McCormack E., G. Scott Rutherford, and M. Wilkinson (2001). Travel Impacts of Mixed Land Use  Neighborhoods in Seattle, Washington, Transportation Research Record 1780 25 32 pp. (DOI:  10.3141/1780 04), (ISSN: 0361 1981).  McDonald R.I. (2008). Global urbanization: can ecologists identify a sustainable way forward?,  Frontiers in Ecology and the Environment 6 99 104 pp. (DOI: 10.1890/070038), (ISSN: 1540 9295).  McDonnell S., J. Madar, and V. Been (2011). Minimum parking requirements and housing  affordability in New York City, Housing Policy Debate 21.  McKinsey Global Institute (2011). Urban World: Mapping the Economic Power of Cities. McKinsey  Global Institute. 62 pp.  Mejía Dugand S., O. Hjelm, L. Baas, and R.A. Ríos (2013). Lessons from the spread of Bus Rapid  Transit in Latin America, Journal of Cleaner Production 50 82 90 pp. (DOI:  10.1016/j.jclepro.2012.11.028), (ISSN: 0959 6526).  Melosi M.V. (2000). The Sanitary City: Urban Infrastructure in America from Colonial Times to the  Present. Johns Hopkins University Press, Baltimore, 578 pp., (ISBN: 0801861527  9780801861529). .    108 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Mickley L.J., D.J. Jacob, B.D. Field, and D. Rind (2004). Effects of future climate change on regional  air pollution episodes in the United States, Geophysical Research Letters 31 1 4 pp. (DOI:  10.1029/2004GL021216), (ISSN: 1944 8007).  Mieszkowski P., and E.S. Mills (1993). The causes of metropolitan suburbanization, The Journal of  Economic Perspectives 7 135 147 pp. . Available at: http://www.jstor.org/stable/10.2307/2138447.  Millard Ball A. (2012a). Do city climate plans reduce emissions?, Journal of Urban Economics 71  289 311 pp. (DOI: 10.1016/j.jue.2011.12.004), (ISSN: 00941190).  Millard Ball A. (2012b). The Limits to Planning: Causal Impacts of City Climate Action Plans, Journal  of Planning Education and Research 33 5 19 pp. (DOI: 10.1177/0739456X12449742), (ISSN: 0739 456X, 1552 6577).  Miller D. (1998). Material Cultures: Why Some Things Matter. University of Chicago Press, Chicago,  US, 243 pp. Available at:  http://www.press.uchicago.edu/ucp/books/book/chicago/M/bo3631823.html.  Milner J., M. Davies, and P. Wilkinson (2012). Urban energy, carbon management (low carbon  cities) and co benefits for human health, Current Opinion in Environmental Sustainability 4 398 404  pp. (DOI: 10.1016/j.cosust.2012.09.011), (ISSN: 18773435).  Minx J.C., G. Baiocchi, G.P. Peters, C.L. Weber, D. Guan, and K. Hubacek (2011). A  Carbonizing  Dragon : China s Fast Growing CO2 Emissions Revisited, Environmental Science and Technology 45  9144 9153 pp. (DOI: 10.1021/es201497m), (ISSN: 0013 936X).  Minx J., G. Baiocchi, T. Wiedmann, J. Barrett, F. Creutzig, K. Feng, M. Förster, P. P. Pichler, H.  Weisz, and K. Hubacek (2013). Carbon footprints of cities and other human settlements in the UK,  Environmental Research Letters 8 035039 pp. (DOI: 10.1088/1748 9326/8/3/035039), (ISSN: 1748 9326).  Mogridge M.J.H. (1985). Transport, Land Use and Energy Interaction, Urban Studies 22 481 492 pp. .  Molina M.J., and L.T. Molina (2004). Megacities and Atmospheric Pollution, Journal of the Air &  Waste Management Association 54 644 680 pp. (DOI: 10.1080/10473289.2004.10470936), (ISSN:  1096 2247).  Molloy R., and H. Shan (2013). The Effect of Gasoline Prices on Household Location, Review of  Economics and Statistics 95 1212 1221 pp. (DOI: 10.1162/REST_a_00331), (ISSN: 0034 6535).  Montgomery M.R. (2008). The Urban Transformation of the Developing World, Science 319 761  764 pp. (DOI: 10.1126/science.1153012).  Moore T., P. Thorsnes, B. Appleyard, and American Planning Association (2007). The  Transportation/land Use Connection. American Planning Association, Planning Advisory Service,  Chicago, 409 pp., (ISBN: 9781932364422 1932364420). .  Morello Frosch R., M. Zuk, M. Jerrett, B. Shamasunder, and A.D. Kyle (2011). Understanding the  cumulative impacts of inequalities in environmental health: implications for policy, Health affairs  (Project Hope) 30 879 887 pp. (DOI: 10.1377/hlthaff.2011.0153), (ISSN: 1544 5208).  Morris A.E.J. (1994). A History of Urban Form: Before the Industrial Revolution. Longman Scientific &  Technical, Harlow, Essex, UK, 444 pp., (ISBN: 9780582301542). .    109 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Moss T. (2003). Utilities, land use change, and urban development: brownfield sites as  cold spots   of infrastructure networks in Berlin, Environment and Planning A 35 511   529 pp. (DOI:  10.1068/a3548).  Mraihi R., K. ben Abdallah, and M. Abid (2013). Road transport related energy consumption:  Analysis of driving factors in Tunisia, Energy Policy 62 247 253 pp. (DOI:  10.1016/j.enpol.2013.07.007), (ISSN: 03014215).  Muller P.O. (2004). Transportation and Urban Form   Stages in the Spatial Evolution of the  American Metropolis. In: The Geography of Urban Transportation. S. Hanson, G. Guiliano, (eds.),  Guilford Publications, New York pp.444. Available at: http://trid.trb.org/view.aspx?id=756060.  Müller D.B., G. Liu, A.N. Lvik, R. Modaresi, S. Pauliuk, F.S. Steinhoff, and H. Bratteb (2013).  Carbon Emissions of Infrastructure Development, Environmental Science & Technology (DOI:  10.1021/es402618m), (ISSN: 0013 936X).  Mwampamba T.H. (2007). Has the woodfuel crisis returned? Urban charcoal consumption in  Tanzania and its implications to present and future forest availability, Energy Policy 35 4221 4234  pp. (DOI: 10.1016/j.enpol.2007.02.010), (ISSN: 0301 4215).  Myors P., R. O Leary, and R. Helstroom (2005). Multi Unit Residential Buildings Energy and Peak  Demand Study, Energy News 23 113 116 pp. . Available at:  http://www.aie.org.au/Content/NavigationMenu/Publications/Energy_News_Archive.htm.  Naess P. (2005). Residential location affects travel behavior but how and why? The case of  Copenhagen metropolitan area, Progress in Planning 63 167 257 pp. (DOI:  10.1016/j.progress.2004.07.004), (ISSN: 03059006).  Naess P. (2006). Accessibility, Activity Participation and Location of Activities: Exploring the Links  between Residential Location and Travel Behaviour, Urban Studies 43 627 652 pp. (DOI:  10.1080/00420980500534677), (ISSN: 0042 0980, 1360 063X).  Nasar J.L. (2003). Does Neotraditional Development Build Community?, Journal of Planning  Education and Research 23 58 68 pp. (DOI: 10.1177/0739456X03256224), (ISSN: 0739456X,  00000000).  National Research Council (2003). Cities Transformed: Demographic Change and Its Implications in  the Developing World (Panel on Urban Population Dynamics, M.R. Montgomery, R. Stren, B. Cohen,  and H.E. Reed, Eds.). National Academies Press, Washington DC, USA, 529 pp., (ISBN:  9780309088626). .  National Research Council (2009a). Driving and the Built Environment: The Effects of Compact  Development on Motorized Travel, Energy Use and CO2 Emissions. The National Academies Press,  Washington D.C. 257 pp. Available at: http://www.nap.edu/catalog.php?record_id=12747.  National Research Council (2009b). Impacts of Land Use Patterns on Vehicle Miles Traveled. In:  Driving and the Built Environment: The Effects of Compact Development on Motorized Travel, Energy  Use and CO2 Emissions. The National Academies Press, Washington D.C. pp.50 105(ISBN:  9780309142557).  Ndrepepa A., and D. Twardella (2011). Relationship between noise annoyance from road traffic  noise and cardiovascular diseases: A meta analysis, Noise and Health 13 251 259 pp. (DOI:  10.4103/1463 1741.80163), (ISSN: 1463 1741).    110 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Needham B. (2000). Land taxation, development charges, and the effects on land use, Journal of  Property Research 17 241 257 pp. Routledge, (DOI: 10.1080/09599910050120000), (ISSN: 0959 9916).  Nelson A.C. (1992). Preserving Prime Farmland in the Face of Urbanization: Lessons from Oregon,  Journal of the American Planning Association 58 467 488 pp. (DOI: 10.1080/01944369208975830),  (ISSN: 0194 4363).  Nelson A.C., R.J. Burby, E. Feser, C.J. Dawkins, E.E. Malizia, and R. Quercia (2004). Urban  containment and central city revitalization, Journal of the American Planning Association 70 411 425  pp. . Available at: http://www.tandfonline.com/doi/abs/10.1080/01944360408976391.  Nelson A.C., and J.B. Duncan (1995). Growth Management Principles and Practices. Planners Press,  Chicago, 172 pp., (ISBN: 9780918286925). .  Nelson A.C., and T. Moore (1993). Assessing urban growth management: The case of Portland,  Oregon, the USA s largest urban growth boundary, Land Use Policy 10 293 302 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/026483779390039D.  Nelson E., H. Sander, P. Hawthorne, M. Conte, D. Ennaanay, S. Wolny, S. Manson, and S. Polasky  (2010). Projecting global land use change and its effect on ecosystem service provision and  biodiversity with simple models, PLOS ONE 5 e14327 pp. .  Nemet G.F., T. Holloway, and P. Meier (2010). Implications of incorporating air quality co benefits  into climate change policymaking, Environmental Research Letters 5 014007 pp. (DOI: 10.1088/1748 9326/5/1/014007), (ISSN: 1748 9326).  Newman P., and J. Kenworthy (1999). Sustainability and Cities: Overcoming Automobile  Dependence. Island Press, Washington DC, USA, 468 pp., (ISBN: 9781559636605). .  Noland R.B. (2001). Relationships between highway capacity and induced vehicle travel,  Transportation Research Part A: Policy and Practice 35 47 72 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S0965856499000476.  Noland R.B., and L.L. Lem (2002). A review of the evidence for induced travel and changes in  transportation and environmental policy in the US and the UK, Transportation Research Part D:  Transport and Environment 7 1 26 pp. . Available at:  http://www.sciencedirect.com/science/article/pii/S1361920901000098.  Norris D.F. (2001). Whither Metropolitan Governance?, Urban Affairs Review 36 532 550 pp. (DOI:  10.1177/10780870122184984), (ISSN: 1078 0874, 1552 8332).  Nowak D.J., and D.E. Crane (2002). Carbon storage and sequestration by urban trees in the USA,  Environmental Pollution 116 381 389 pp. (DOI: 10.1016/S0269 7491(01)00214 7), (ISSN: 0269 7491).  Nuissl H., and C. Schroeter Schlaack (2009). On the economic approach to the containment of land  consumption, Environmental Science & Policy 12 270 280 pp. (DOI: 10.1016/j.envsci.2009.01.008),  (ISSN: 14629011).  O Neill B.C., M. Dalton, R. Fuchs, L. Jiang, S. Pachauri, and K. Zigova (2010). Global demographic  trends and future carbon emissions, Proceedings of the National Academy of Sciences (DOI:  10.1073/pnas.1004581107), (ISSN: 0027 8424, 1091 6490).    111 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    O Neill M.S., and K.L. Ebi (2009). CME temperature extremes and health: impacts of climate  variability and change in the United States, Journal of Occupational and Environmental Medicine 51  13 25 pp. (DOI: 10.1097/JOM.0b013e318173e122).  O Neill B.C., X. Ren, L. Jiang, and M. Dalton (2012). The effect of urbanization on energy use in India  and China in the iPETS model, Energy Economics 34 S339 S345 pp. . Available at:  http://www.scopus.com/inward/record.url?eid=2 s2.0 84870500779&partnerID=40&md5=2246a009568f1dca91083df6a71fdfd9.  Oates W.E., and R.M. Schwab (1997). The impact of urban land taxation: the Pittsburgh experience,  National Tax Journal 50 1 21 pp. .  Oatley N. (1995). Urban Regeneration, Planning Practice and Research 10 261 270 pp. (DOI:  10.1080/02697459509696277), (ISSN: 0269 7459, 1360 0583).  OECD (2006a). OECD Territorial Reviews: Competitive Cities in the Global Economy. Organisation for  Economic Co Operation and Development, Paris, France. 446 pp. Available at:  http://www.oecd.org/gov/regional policy/oecdterritorialreviewscompetitivecitiesintheglobaleconomy.htm.  OECD (2006b). Infrastructure to 2030: Telecom, Land Transport, Water and Electricity (Volume 1).  Organisation for Economic Co Operation and Development (OECD), France. 355 pp.  OECD (2007). Infrastructure to 2030: Mapping Policy for Electricity, Water and Transport (Volume 2).  Organisation for Economic Co Operation and Development (OECD), France. 505 pp.  OECD (2010a). Eco Innovation in Industry: Enabling Green Growth. Organisation for Economic Co Operation and Development, Paris, 276 pp. Available at: http://www.oecd.org/sti/ind/eco innovationinindustryenablinggreengrowth.htm.  OECD (2010b). Cities and Climate Change. Organisation for Economic Co Operation and  Development Publishing, Paris, France, 276 pp., (ISBN: 9789264091375). .  OECD (2010c). OECD Territorial Reviews OECD Territorial Reviews: Guangdong, China 2010.  Organisation for Economic Co Operation and Development Publishing, 311 pp., (ISBN:  9789264090088). .  OECD (2010d). Financial Instruments and Funding New Expenditure Needs. In: Cities and Climate  Change. Organisation for Economic Co operation and Development, pp.227 249. Available at:  http://www.oecd ilibrary.org/content/chapter/9789264091375 14 en.  Orfield M. (2002). American Metropolitics: The New Suburban Reality. Brookings Institution Press,  Washington, DC, 333 pp., (ISBN: 0815705441). .  Owen N., E. Cerin, E. Leslie, L. duToit, N. Coffee, L.D. Frank, A.E. Bauman, G. Hugo, B.E. Saelens,  and J.F. Sallis (2007). Neighborhood Walkability and the Walking Behavior of Australian Adults,  American Journal of Preventive Medicine 33 387 395 pp. (DOI: 10.1016/j.amepre.2007.07.025),  (ISSN: 0749 3797).  Pachauri S., A. Brew Hammond, D.F. Barnes, D.H. Bouille, S. Gitonga, V. Modi, G. Prasad, A. Rath,  and H. Zerriffi (2012). Chapter 19   Energy Access for Development. In: Global Energy Assessment    Toward a Sustainable Future.Cambridge University Press, Cambridge, UK and New York, NY, USA and    112 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    the International Institute for Applied Systems Analysis, Laxenburg, Austria pp.1401 1458(ISBN:  9781 10700 5198 hardback 9780 52118 2935 paperback).  Pachauri S., and L. Jiang (2008). The household energy transition in India and China, Energy Policy 36  4022 4035 pp. (DOI: 10.1016/j.enpol.2008.06.016), (ISSN: 0301 4215).  Paloheimo E., and O. Salmi (2013). Evaluating the carbon emissions of the low carbon city: A novel  approach for consumer based allocation, Cities 30 233 239 pp. (DOI: 10.1016/j.cities.2012.04.003),  (ISSN: 0264 2751).  Parikh J., and V. Shukla (1995). Urbanization, energy use and greenhouse effects in economic  development: Results from a cross national study of developing countries, Global Environmental  Change 5 87 103 pp. (DOI: 10.1016/0959 3780(95)00015 G), (ISSN: 0959 3780).  Parolek D.G., K. Parolek, and P.C. Crawford (2008). Form Based Codes. A Guide for Planners, Urban  Designers, Municipalities, and Developers. John Wiley & Sons, Hoboken, NJ, 332 pp.  Parshall L., K. Gurney, S.A. Hammer, D. Mendoza, Y. Zhou, and S. Geethakumar (2010). Modeling  energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights  from the United States, Energy Policy 38 4765 4782 pp. (DOI: 10.1016/j.enpol.2009.07.006), (ISSN:  0301 4215).  Pataki D.E., P.C. Emmi, C.B. Forster, J.I. Mills, E.R. Pardyjak, T.R. Peterson, J.D. Thompson, and E.  Dudley Murphy (2009). An integrated approach to improving fossil fuel emissions scenarios with  urban ecosystem studies, Ecological Complexity 6 1 14 pp. (DOI: 10.1016/j.ecocom.2008.09.003),  (ISSN: 1476 945X).  Pendall R. (1999). Do land use controls cause sprawl?, Environment & Planning B: Planning & Design  26 555 571 pp. . Available at: http://www.envplan.com/abstract.cgi?id=b260555.  Pendall R., J. Martin, and W. Fulton (2002). Holding the Line: Urban Containment in the United  States. Brookings Institution Center on Urban and Metropolitan Policy. . Available at:  http://www.brookings.edu/~/media/research/files/reports/2002/8/metropolitanpolicy%20pendall/ pendallfultoncontainment.  Pendall R., B. Theodos, and K. Franks (2012). The Built Environment and Household Vulnerability in a  Regional Context. Urban Institute, Washington DC, USA. 10 pp. Available at:  http://www.urban.org/UploadedPDF/412609 The Built Environment and Household Vulnerability in a Regional Context.pdf?RSSFeed=UI_CitiesandNeighborhoods.xml.  Perkins A., S. Hamnett, S. Pullen, R. Zito, and D. Trebilcock (2009). Transport, Housing and Urban  Form: The Life Cycle Energy Consumption and Emissions of City Centre Apartments Compared with  Suburban Dwellings, Urban Policy and Research 27 377 396 pp. (DOI:  10.1080/08111140903308859), (ISSN: 0811 1146).  Permana A.S., R. Perera, and S. Kumar (2008). Understanding energy consumption pattern of  households in different urban development forms: A comparative study in Bandung City, Indonesia.,  Energy Policy 36 4287 4297 pp. .  Peters G.P., C.L. Weber, D. Guan, and K. Hubacek (2007). China s Growing CO2 Emissions   A Race  between Increasing Consumption and Efficiency Gains, Environmental Science & Technology 41  5939 5944 pp. (DOI: 10.1021/es070108f), (ISSN: 0013 936X).    113 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Peterson G.E. (2009). Unlocking Land Values to Finance Urban Infrastructure. World Bank,  Washington, D.C., 128 pp., (ISBN: 9780821377093). .  Petsch S., S. Guhathakurta, L. Heischbourg, K. Müller, and H. Hagen (2011). Modeling, Monitoring,  and Visualizing Carbon Footprints at the Urban Neighborhood Scale, Journal of Urban Technology 18  81 96 pp. (DOI: 10.1080/10630732.2011.648436), (ISSN: 1063 0732).  Peyroux E. (2012). Legitimating Business Improvement Districts in Johannesburg: a discursive  perspective on urban regeneration and policy transfer, European Urban and Regional Studies 19  181 194 pp. (DOI: 10.1177/0969776411420034), (ISSN: 0969 7764, 1461 7145).  Picken D.H., and B.D. Ilozor (2003). Height and construction costs of buildings in Hong Kong,  Construction Management and Economics 21 107 111 pp. .  Pickrell D., and P. Schimek (1999). Growth in motor vehicle ownership and use: evidence from the  nationwide personal transportation survey, Journal of Transportation and Statistics 2 (ISSN: 1094 8848).  Pirie G. (2011). Sustainable Urban Mobility in  Anglophone  Sub Saharan Africa. UN Habitat, Nairobi.  53 pp. Available at:  http://www.unhabitat.org/downloads/docs/GRHS.2013.Regional.Anglophone.Africa.pdf.  Pitt D. (2010). The impact of internal and external characteristics on the adoption of climate  mitigation policies by US municipalities, Environment and Planning C Government and Policy 28 851 871 pp. (DOI: 10.1068/c09175), (ISSN: 0263 774X).  Plassmann F., and T.N. Tideman (2000). A Markov Chain Monte Carlo Analysis of the Effect of Two Rate Property Taxes on Construction, Journal of Urban Economics 47 216 247 pp. (DOI:  10.1006/juec.1999.2140), (ISSN: 00941190).  Pogodzinski J.M., and T.R. Sass (1994). The Theory and Estimation of Endogenous Zoning, Regional  Science and Urban Economics 24 601 630 pp. . Available at:  http://www.elsevier.com/wps/find/journaldescription.cws_home/505570/description#description  http://search.ebscohost.com/login.aspx?direct=true&db=ecn&AN=0346226&site=ehost live.  Porter D.R. (1997). Managing Growth in America s Communities. Island Press, Washington, D.C., 311  pp., (ISBN: 9781559634427). .  Potter S. (1984). Transport and New Towns: The Transport Assumptions Underlying the Design of  Britain s New Towns, 1946 1976. Open University, New Towns Study Unit, 9 pp.  Puga D. (2010). The magnitude and causes of agglomeration economies, Journal of Regional Science  50 203 219 pp. (DOI: 10.1111/j.1467 9787.2009.00657.x), (ISSN: 00224146, 14679787).  Puppim de Oliveira J.A. (2009). The implementation of climate change related policies at the  subnational level: An analysis of three countries, Habitat International 33 253 259 pp. (DOI:  10.1016/j.habitatint.2008.10.006), (ISSN: 0197 3975).  Puppim de Oliveira J.A., C.N.H. Doll, T.A. Kurniawan, Y. Geng, M. Kapshe, and D. Huisingh (2013).  Promoting win win situations in climate change mitigation, local environmental quality and  development in Asian cities through co benefits, Journal of Cleaner Production 58 1 6 pp. (DOI:  10.1016/j.jclepro.2013.08.011), (ISSN: 0959 6526).    114 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Pushkar A.O., B.J. Hollingworth, and E.J. Miller (2000). A multivariate regression model for  estimating greenhouse gas emissions from alternative neighborhood designs, 79th annual meeting  of the Transportation Research Board, Washington, DC 16 pp. . Available at:  http://www.civ.utoronto.ca/sect/traeng/ilute/downloads/conference_papers/pushkar etal_trb 00.pdf.  PwC, and Partnership for New York City (2012). Cities of Opportunity 2012.  PricewaterhouseCoopers LLP, Delaware, USA. 96 pp. Available at:  http://www.pwc.es/es_ES/es/publicaciones/sector publico/assets/cities of opportunity 2012.pdf.  Quigley J.M., and S. Raphael (2005). Regulation and the High Cost of Housing in California, The  American Economic Review 95 323 328 pp. (ISSN: 0002 8282).  Raciti S.M., L.R. Hutyra, P. Rao, and A.C. Finzi (2012). Inconsistent definitions of  urban  result in  different conclusions about the size of urban carbon and nitrogen stocks, Ecological Applications 22  1015 1035 pp. (DOI: 10.1890/11 1250.1), (ISSN: 1051 0761).  Ramaswami A. (2013). Understanding Infrastructure Impacts on Urban Greenhouse Gas Emissions  and Key Mitigation Strategies. In: Infrastructure and Land Polices. Lincoln Institute of Land Policy,  Cambridge, MA pp.296 317(ISBN: 9781558442511).  Ramaswami A., M. Bernard, A. Chavez, T. Hillman, M. Whitaker, G. Thomas, and M. Marshall  (2012a). Quantifying Carbon Mitigation Wedges in U.S. Cities: Near Term Strategy Analysis and  Critical Review, Environmental Science & Technology 46 3629 3642 pp. (DOI: 10.1021/es203503a),  (ISSN: 0013 936X).  Ramaswami A., A. Chavez, and M. Chertow (2012b). Carbon Footprinting of Cities and Implications  for Analysis of Urban Material and Energy Flows, Journal of Industrial Ecology 16 783 785 pp. (DOI:  10.1111/j.1530 9290.2012.00569.x), (ISSN: 1530 9290).  Ramaswami A., A. Chavez, J. Ewing Thiel, and K.E. Reeve (2011). Two approaches to greenhouse  gas emissions foot printing at the city scale, Environmental Science & Technology 45 4205 4206 pp.  (DOI: 10.1021/es201166n), (ISSN: 1520 5851).  Ramaswami A., T. Hillman, B. Janson, M. Reiner, and G. Thomas (2008). A Demand Centered,  Hybrid Life Cycle Methodology for City Scale Greenhouse Gas Inventories, Environmental Science &  Technology 42 6455 6461 pp. (DOI: 10.1021/es702992q), (ISSN: 0013 936X).  Rao S., S. Pachauri, F. Dentener, P. Kinney, Z. Klimont, K. Riahi, and W. Schoepp (2013). Better air  for better health: Forging synergies in policies for energy access, climate change and air pollution,  Global Environmental Change 23 1122 1130 pp. (DOI: 10.1016/j.gloenvcha.2013.05.003), (ISSN:  0959 3780).  Rashed T., J.R. Weeks, D. Roberts, J. Rogan, and R. Powell (2003). Measuring the physical  composition of urban morphology using multiple endmember spectral mixture models,  Photogrammetric engineering and remote sensing 69 1011 1020 pp. (ISSN: 0099 1112).  Ratti C., N. Baker, and K. Steemers (2005). Energy consumption and urban texture, Energy and  Buildings 37 762 776 pp. .  Raupach M.R., P.J. Rayner, and M. Paget (2010). Regional variations in spatial structure of  nightlights, population density and fossil fuel CO2 emissions, Energy Policy 38 4756 4764 pp. (DOI:  10.1016/j.enpol.2009.08.021), (ISSN: 0301 4215).    115 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Reilly M.K., M.P. O Mara, and K.C. Seto (2009). From Bangalore to the Bay Area: Comparing  transportation and activity accessibility as drivers of urban growth, Landscape and Urban Planning  92 24 33 pp. (DOI: 10.1016/j.landurbplan.2009.02.001), (ISSN: 01692046).  Renforth P., D.A.C. Manning, and E. Lopez Capel (2009). Carbonate precipitation in artificial soils as  a sink for atmospheric carbon dioxide, Applied Geochemistry 24 1757 1764 pp. (DOI:  10.1016/j.apgeochem.2009.05.005), (ISSN: 0883 2927).  Richardson G.R.A., and J. Otero (2012). Land Use Planning Tools for Local Adaptation to Climate  Change. Government of Canada, Ottawa. 23 pp. Available at:  http://publications.gc.ca/collections/collection_2013/rncan nrcan/M4 106 2012 eng.pdf.  Rickwood P., G. Glazebrook, and G. Searle (2008). Urban Structure and Energy A Review, Urban  Policy and Research 26 57 81 pp. (DOI: 10.1080/08111140701629886).  Roakes S.L. (1996). Reconsidering land value taxation, Land Use Policy 13 261 272 pp. (DOI:  10.1016/0264 8377(96)84556 X), (ISSN: 02648377).  Rodier C.J. (2009). A Review of the International Modeling Literature: Transit, Land Use, and Auto  Pricing Strategies to Reduce Vehicle Miles Traveled and Greenhouse Gas Emissions. Institute of  Transportation Studies, University of California, Davis, Davis, California. 32 pp. Available at:  http://www.its.ucdavis.edu/wp content/themes/ucdavis/pubs/download_pdf.php?id=1350.  Rodrik D., A. Subramanian, and F. Trebbi (2004). Institutions Rule: The Primacy of Institutions Over  Geography and Integration in Economic Development, Journal of Economic Growth 9 131 165 pp.  (DOI: 10.1023/B:JOEG.0000031425.72248.85), (ISSN: 1381 4338, 1573 7020).  Rogers R.G. (1999). Towards an Urban Renaissance. Spon Press, London, 328 pp., (ISBN:  185112165X). .  Rolon A. (2008). Evaluation of Value Capture Mechanisms from Linkage Capture to Special  Assessment Districts, Transportation Research Record: Journal of the Transportation Research Board  2079 127 135 pp. (DOI: 10.3141/2079 16).  Romanos M.C. (1978). Energy price effects on metropolitan spatial structure and form, Environment  & Planning A 10 93 104 pp. . Available at: http://envplan.com/abstract.cgi?id=a100093.  Romero Lankao P. (2007). How do Local Governments in Mexico City Manage Global Warming?,  Local Environment 12 519 535 pp. (DOI: 10.1080/13549830701656887), (ISSN: 1354 9839).  Rosenfeld A.H., H. Akbari, J.J. Romm, and M. Pomerantz (1998). Cool communities: strategies for  heat island mitigation and smog reduction, Energy and Buildings 28 51 62 pp. (DOI: 10.1016/S0378 7788(97)00063 7), (ISSN: 0378 7788).  Rosenthal S.S., and W.C. Strange (2004). Evidence on the nature and sources of agglomeration  economies. In: Handbook of Regional and Urban Economics. J.V. Henderson, J. F. Thisse, (eds.),  Elsevier, Amsterdam ; New York: North Holland ; New York, N.Y., U.S.A. pp.2119 2171(ISBN:  9780444509673).  Rosenzweig C., W.D. Solecki, S.A. Hammer, and S. Mehrotra (2011). Climate Change and Cities: First  Assessment Report of the Urban Climate Change Research Network. Cambridge University Press,  Cambridge, UK, 312 pp.    116 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Ru G., C. Xiaojing, Y. Xinyu, L. Yankuan, J. Dahe, and L. Fengting (2010). The strategy of energy related carbon emission reduction in Shanghai, Energy Policy 38 633 638 pp. (DOI:  10.1016/j.enpol.2009.06.074), (ISSN: 0301 4215).  Rubin J.I., and J.J. Seneca (1991). Density bonuses, exactions, and the supply of affordable housing,  Journal of Urban Economics 30 208 223 pp. (ISSN: 00941190).  Rusk D. (1995). Cities without Suburbs. Woodrow Wilson Center Press, Princeton, NJ, 180 pp., (ISBN:  9780943875743). .  Rutland T., and A. Aylett (2008). The work of policy: Actor networks, governmentality, and local  action on climate change in Portland, Oregon, Environment and Planning D: Society and Space 26  627 646 pp. (DOI: 10.1068/d6907), (ISSN: 02637758).  Rydin Y., A. Bleahu, M. Davies, J.D. Dávila, S. Friel, G. De Grandis, N. Groce, P.C. Hallal, I. Hamilton,  P. Howden Chapman, K. M. Lai, C. Lim, J. Martins, D. Osrin, I. Ridley, I. Scott, M. Taylor, P.  Wilkinson, and J. Wilson (2012). Shaping cities for health: complexity and the planning of urban  environments in the 21st century, The Lancet 379 2079 2108 pp. (DOI: 10.1016/S0140 6736(12)60435 8), (ISSN: 01406736).  Saelens B.E., J.F. Sallis, and L.D. Frank (2003). Environmental correlates of walking and cycling:  Findings from the transportation, urban design, and planning literatures, Annals of Behavioral  Medicine 25 80 91 pp. (DOI: 10.1207/S15324796ABM2502_03), (ISSN: 0883 6612, 1532 4796).  Saelensminde K. (2004). Cost benefit analyses of walking and cycling track networks taking into  account insecurity, health effects and external costs of motorized traffic, Transportation Research  Part A: Policy and Practice 38 593 606 pp. (DOI: 10.1016/j.tra.2004.04.003), (ISSN: 0965 8564).  Sagalyn L.B. (2007). Public/Private Development, Journal of the American Planning Association 73 7 22 pp. (DOI: 10.1080/01944360708976133), (ISSN: 0194 4363).  Sahakian M.D., and J.K. Steinberger (2011). Energy Reduction Through a Deeper Understanding of  Household Consumption, Journal of Industrial Ecology 15 31 48 pp. (DOI: 10.1111/j.1530 9290.2010.00305.x), (ISSN: 1530 9290).  Salat S. (2009). Energy loads, CO2 emissions and building stocks: morphologies, typologies, energy  systems and behaviour, Building Research & Information 37 598 609 pp. (DOI:  10.1080/09613210903162126), (ISSN: 0961 3218, 1466 4321).  Salat S. (2011). Cities and Forms. Hermann, 544 pp., (ISBN: 2705681116). .  Sallis J.F., B.E. Saelens, L.D. Frank, T.L. Conway, D.J. Slymen, K.L. Cain, J.E. Chapman, and J. Kerr  (2009). Neighborhood built environment and income: Examining multiple health outcomes, Social  Science & Medicine 68 1285 1293 pp. (DOI: 10.1016/j.socscimed.2009.01.017), (ISSN: 0277 9536).  Salomon I., and P.L. Mokhtarian (1998). What happens when mobility inclined market segments  face accessibility enhancing policies?, Transportation Research Part D: Transport and Environment 3  129 140 pp. (DOI: 10.1016/S1361 9209(97)00038 2), (ISSN: 1361 9209).  Salon D., M.G. Boarnet, S. Handy, S. Spears, and G. Tal (2012). How do local actions affect VMT? A  critical review of the empirical evidence, Transportation Research Part D: Transport and Environment  17 495 508 pp. (DOI: 10.1016/j.trd.2012.05.006), (ISSN: 1361 9209).    117 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Salon D., D. Sperling, A. Meier, S. Murphy, R. Gorham, and J. Barrett (2010). City carbon budgets: A  proposal to align incentives for climate friendly communities, Energy Policy 38 2032 2041 pp. .  Sammer G. (2013). Transport Systems. In: Energizing Sustainable Cities: Assessing Urban Energy. A.  Grubler, D. Fisk, (eds.), Routledge, Abingdon, Oxon, UK pp.135 154(ISBN: 9781849714396).  Sandroni P. (2010). A New Financial Instrument of Value Capture in Sao Paulo. In: Municipal  Revenues and Land Policies. G.K. Ingram, Y. H. Hong, (eds.), Lincoln Institute of Land Policy.,  Cambridge, MA pp.218 236.  Santero N.J., and A. Horvath (2009). Global warming potential of pavements, Environmental  Research Letters 4 034011 pp. (DOI: 10.1088/1748 9326/4/3/034011), (ISSN: 1748 9326).  Santos E. (2011). Curitiba, Brazil: Pioneering in Developing Bus Rapid Transit and Urban Planning  Solutions. Lap Lambert Academic Publishing, Saarbrücken, Deutschland, 221 pp., (ISBN: 3844332995  9783844332995). .  Satterthwaite D. (2007). The Transition to a Predominantly Urban World and Its Underpinnings.  International Institute for Environment and Development (IIED), London. 99 pp. Available at:  http://pubs.iied.org/10550IIED.html?k=Urban change&s=HSWP&b=d.  Satterthwaite D. (2009). The implications of population growth and urbanization for climate change,  Environment and Urbanization 21 545 567 pp. (DOI: 10.1177/0956247809344361), (ISSN: 0956 2478).  Schäfer A. (2005). Structural change in energy use, Energy Policy 33 429 437 pp. (DOI:  10.1016/j.enpol.2003.09.002), (ISSN: 0301 4215).  Schimek P. (1996). Household Motor Vehicle Ownership and Use: How Much Does Residential  Density Matter?, Transportation Research Record: Journal of the Transportation Research Board  1552 120 125 pp. (DOI: 10.3141/1552 17).  Schneider K. (2003). The Paris Lexington Road: Community Based Planning And Context Sensitive  Highway Design. Island Press, Washington DC, USA, 106 pp., (ISBN: 9781597263009). .  Schneider A., M.A. Friedl, and D. Potere (2009). A new map of global urban extent from MODIS  satellite data, Environmental Research Letters 4 044003 pp. (DOI: 10.1088/1748 9326/4/4/044003),  (ISSN: 1748 9326).  Schulz N.B. (2010). Delving into the carbon footprints of Singapore comparing direct and indirect  greenhouse gas emissions of a small and open economic system, Energy Policy 38 4848 4855 pp.  (DOI: 10.1016/j.enpol.2009.08.066), (ISSN: 0301 4215).  Scott K.I., J.R. Simpson, and E.G. McPherson (1999). Effects of tree cover on parking lot  microclimate and vehicle emissions, Journal of Arboriculture 25 129 142 pp. . Available at:  http://www.fs.fed.us/psw/programs/uesd/uep/products/11/psw_cufr68_EffectsTreeCoverOnEmissi ons.pdf.  Seltzer E., and A. Carbonell (2011). Regional Planning in America: Practice and Prospect. Lincoln  Institute of Land Policy, Cambridge, MA, 288 pp., (ISBN: 9781558442153). .  Seto K.C., M. Fragkias, B. Güneralp, and M.K. Reilly (2011). A Meta Analysis of Global Urban Land  Expansion, PLOS ONE 6 e23777 pp. (DOI: 10.1371/journal.pone.0023777).    118 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Seto K.C., B. Güneralp, and L.R. Hutyra (2012). Global forecasts of urban expansion to 2030 and  direct impacts on biodiversity and carbon pools, Proceedings of the National Academy of Sciences  (DOI: 10.1073/pnas.1211658109), (ISSN: 0027 8424, 1091 6490).  Seto K.C., R. Sánchez Rodríguez, and M. Fragkias (2010). The New Geography of Contemporary  Urbanization and the Environment, Annual Review of Environment and Resources 35 167 194 pp.  (DOI: 10.1146/annurev environ 100809 125336).  Shove E. (2003). Users, technologies and expectations of comfort, cleanliness and convenience,  Innovation 16 193 206 pp. (DOI: 10.1080/13511610304521), (ISSN: 13511610).  Shove E. (2004). Comfort, Cleanliness and Convenience: The Social Organization of Normality. Berg  Publishers, New York, USA, 221 pp., (ISBN: 1859736300). .  Shrestha R.M., and S. Rajbhandari (2010). Energy and environmental implications of carbon  emission reduction targets: Case of Kathmandu Valley, Nepal, Energy Policy 38 4818 4827 pp. (DOI:  10.1016/j.enpol.2009.11.088), (ISSN: 0301 4215).  Sippel M. (2011). Urban GHG inventories, target setting and mitigation achievements: how German  cities fail to outperform their country, Greenhouse Gas Measurement and Management 1 55 63 pp.  (DOI: 10.3763/ghgmm.2010.0001), (ISSN: 2043 0779).  Sivam A. (2002). Constraints affecting the efficiency of the urban residential land market in  developing countries: a case study of India, Habitat International 26 523 537 pp. .  Skaburskis A. (2003). Pricing city form: development cost charges and simulated markets, Planning  Practice and Research 18 197 211 pp. Routledge, (DOI: 10.1080/0269745032000168250), (ISSN:  0269 7459).  Slabbert N. (2005). Telecommunities, Urban Land 64 85 89 pp. . Available at:  http://www.virtualadjacency.com/wp content/uploads/2008/01/9 uli telecommunities may2005.pdf.  Smith K.R., K. Balakrishnan, C. Butler, Z. Chafe, I. Fairlie, P. Kinney, T. Kjellstrom, D.L. Mauzerall, T.  McKone, A. McMichael, M. Schneider, and P. Wilkinson (2012). Energy and Health. In: Global  Energy Assessment: Toward a Sustainable Future. Cambridge University Press; International Institute  for Applied Systems Analysis, Cambridge, UK and New York, NY, USA; Laxenburg, Austria pp.255 324. Available at: http://www.iiasa.ac.at/web/home/research/Flagship Projects/Global Energy Assessment/GEA_Chapter4_health_lowres.pdf.  Smith J.J., and T.A. Gihring (2006). Financing Transit Systems Through Value Capture: An Annotated  Bibliography, The American Journal of Economics and Sociology 65 751 786 pp. .  Smith C., and G. Levermore (2008). Designing urban spaces and buildings to improve sustainability  and quality of life in a warmer world, Energy Policy 36 4558 4562 pp. (DOI:  10.1016/j.enpol.2008.09.011), (ISSN: 0301 4215).  Song Y., and Y. Zenou (2006). Property tax and urban sprawl: Theory and implications for US cities,  Journal of Urban Economics 60 519 534 pp. (DOI: 10.1016/j.jue.2006.05.001), (ISSN: 00941190).  Sovacool B.K., and M.A. Brown (2010). Twelve metropolitan carbon footprints: A preliminary  comparative global assessment, Energy Policy 38 4856 4869 pp. (DOI: 10.1016/j.enpol.2009.10.001),  (ISSN: 0301 4215).    119 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Speir C., and K. Stephenson (2002). Does Sprawl Cost Us All? Isolating the Effects of Housing  Patterns on Public Water and Sewer Costs, Journal of the American Planning Association 68 56 70  pp. (DOI: 10.1080/01944360208977191), (ISSN: 0194 4363).  Sridhar K. (2007). Density gradients and their determinants: Evidence from India, Regional Science  and Urban Economics 37 314 344 pp. (DOI: 10.1016/j.regsciurbeco.2006.11.001), (ISSN: 01660462).  Sridhar K.S. (2010). Impact of Land Use Regulations: Evidence from India s Cities, Urban Studies 47  1541 1569 pp. (DOI: 10.1177/0042098009353813), (ISSN: 0042 0980, 1360 063X).  Srinivasan S., and P. Rogers (2005). Travel behavior of low income residents: studying two  contrasting locations in the city of Chennai, India, Journal of Transport Geography 13 265 274 pp.  (DOI: 10.1016/j.jtrangeo.2004.07.008), (ISSN: 0966 6923).  State of California (2008). Sustainable Communities and Climate Protection Act of 2008, Senate Bill  No. 375, Chapter 728 . Available at: http://www.leginfo.ca.gov/pub/07 08/bill/sen/sb_0351 0400/sb_375_bill_20080930_chaptered.pdf.  Steinberger J., and H. Weisz (2013). City walls and urban hinterlands: the importance of system  boundaries. In: Energizing Sustainable Cities: Assessing Urban Energy. A. Grubler, D. Fisk, (eds.),  Routledge, pp.41 56(ISBN: 9781849714396).  Stone B., J. Vargo, and D. Habeeb (2012). Managing climate change in cities: Will climate action  plans work?, Landscape and Urban Planning 107 263 271 pp. .  Strohbach M.W., E. Arnold, and D. Haase (2012). The carbon footprint of urban green space A life  cycle approach, Landscape and Urban Planning 104 220 229 pp. (DOI:  10.1016/j.landurbplan.2011.10.013), (ISSN: 01692046).  Sugar L., C. Kennedy, and E. Leman (2012). Greenhouse Gas Emissions from Chinese Cities, Journal  of Industrial Ecology 16 552 563 pp. (DOI: 10.1111/j.1530 9290.2012.00481.x), (ISSN: 1530 9290).  Sugiyama N., and T. Takeuchi (2008). Local Policies for Climate Change in Japan, The Journal of  Environment & Development 17 424  441 pp. (DOI: 10.1177/1070496508326128).  Sun X., C. Wilmot, and T. Kasturi (1998). Household Travel, Household Characteristics, and Land  Use: An Empirical Study from the 1994 Portland Activity Based Travel Survey, Transportation  Research Record 1617 10 17 pp. (DOI: 10.3141/1617 02), (ISSN: 0361 1981).  Suzuki H., R. Cervero, and K. Iuchi (2013). Transforming Cities with Transit: Transit and Land Use  Integration for Sustainable Urban Development. World Bank, Washington, D.C., 205 pp., (ISBN:  9780821397459  0821397451  9780821397503  0821397508). .  Synnefa A., T. Karlessi, N. Gaitani, M. Santamouris, D.N. Assimakopoulos, and C. Papakatsikas  (2011). Experimental testing of cool colored thin layer asphalt and estimation of its potential to  improve the urban microclimate, Building and Environment 46 38 44 pp. (DOI:  10.1016/j.buildenv.2010.06.014), (ISSN: 0360 1323).  Talen E. (2005). New Urbanism and American Planning: The Conflict of Cultures. Routledge, New  York, US, 329 pp., (ISBN: 9780203799482). .  Talen E. (2012). City Rules: How Regulations Affect Urban Form. Island Press, Washington D.C., 236  pp.    120 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Tang Z., Z. Wang, and T. Koperski (2011). Measuring local climate change response capacity and  bridging gaps between local action plans and land use plans, International Journal of Climate Change  Strategies and Management 3 74 100 pp. (DOI: 10.1108/17568691111107952), (ISSN: 17568692).  Tanguay G.A., and I. Gingras (2012). Gas price variations and urban sprawl: An empirical analysis of  the twelve largest Canadian metropolitan areas, Environment and Planning A 44 1728 1743 pp.  (DOI: 10.1068/a44259), (ISSN: 0308518X).  Tarr J.A. (1984). The Search for the Ultimate Sink: Urban Air, Land, and Water Pollution in Historical  Perspective, Records of the Columbia Historical Society, Washington, D.C. 51 1 29 pp. (DOI:  10.2307/40067842), (ISSN: 0897 9049).  Teriman S., T. Yigitcanlar, and S. Mayere (2010). Sustainable Urban Infrastructure Development in  South East Asia: Evidence from Hong Kong, Kuala Lumpur and Singapore. In: Sustainable Urban and  Regional Infrastructure Development: Technologies, Applications and Management. T. Yigitcanlar,  (ed.), IGI Global, Hershey, PA pp.152 164(ISBN: 978 1 61520 775 6).  The Covenant of Mayors (2013). The Covenant of Mayors. . Available at:  http://www.covenantofmayors.eu/index_en.html.  Townsend Small A., and C.I. Czimczik (2010). Carbon sequestration and greenhouse gas emissions in  urban turf, Geophysical Research Letters 37 5 PP. pp. (DOI: 201010.1029/2009GL041675).  Trudeau D. (2013). A typology of New Urbanism neighborhoods, Journal of Urbanism: International  Research on Placemaking and Urban Sustainability 6 113 138 pp. (DOI:  10.1080/17549175.2013.771695), (ISSN: 1754 9175).  U.S. Department of Transportation (2009). 2009 National Household Travel Survey. U.S. Department  of Transportation, Washinton, D.C.  U.S. EPA (2013). Infrastructure Financing Options for Transit Oriented Development. Office of  Sustainable Communities Smart Growth Program, Washington DC, USA. 251 pp.  UN DESA (2010). World Urbanization Prospects: The 2009 Revision. United Nations, Department of  Economic and Social Affairs, Population Division, New York.  UN DESA (2012). World Urbanization Prospects: The 2011 Revision. United Nations, Department of  Economic and Social Affairs, Population Division, New York.  UN DESA (2013). Population Density and Urbanization. . Available at:  http://unstats.un.org/unsd/demographic/sconcerns/densurb/densurbmethods.htm.  UNEP, UN Habitat, and The World Bank (2010). International Standard for Determining Greenhouse  Gas Emissions for Cities, version 2.1. United Nations Environment Programme. . Available at:  http://www.unep.org/urban_environment/PDFs/InternationalStd GHG.pdf.  UN Habitat (2008). State of the World s Cities 2008/2009: Harmonious Cities. UN Habitat; Earthscan,  London, 224 pp., (ISBN: 9789211320107  9211320100  9789211320114  9211320119   9781844076963  1844076962  9781844076956  1844076954). .  UN Habitat (2012). State of the World s Cities 2012/2013. Routledge, New York, 184 pp., (ISBN: 978 0 415 83888 7). .    121 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    UN Habitat (2013). Planning and Design for Sustainable Urban Mobility: Global Report on Human  Settlements 2013. Earthscan / UN HABITAT, Abingdon, Oxon.  United Nations (2011). National Accounts Main Aggregates Database, National Accounts Main  Aggregates Database (United Nations Statistics Division) . Available at:  https://unstats.un.org/unsd/snaama/Introduction.asp.  Unruh G.C. (2000). Understanding carbon lock in, Energy Policy 28 817 830 pp. (DOI:  10.1016/S0301 4215(00)00070 7), (ISSN: 0301 4215).  Unruh G.C. (2002). Escaping carbon lock in, Energy Policy 30 317 325 pp. (DOI: 10.1016/S0301 4215(01)00098 2), (ISSN: 0301 4215).  Unruh G.C., and J. Carrillo Hermosilla (2006). Globalizing carbon lock in, Energy Policy 34 1185 1197 pp. (DOI: 10.1016/j.enpol.2004.10.013), (ISSN: 0301 4215).  Urban LandMark (2012). Improving Access to the City through Value Capture: An Overview of  Capturing and Allocating Value Created through the Development of Transport Infrastructure in  South Africa. UK Department for International Development, London. 60 pp.  Vance C., and R. Hedel (2007). The impact of urban form on automobile travel: disentangling  causation from correlation, Transportation 34 575 588 pp. (DOI: 10.1007/s11116 007 9128 6),  (ISSN: 0049 4488, 1572 9435).  Vause J., L. Gao, L. Shi, and J. Zhao (2013). Production and consumption accounting of CO2  emissions for Xiamen, China, Energy Policy 60 697 704 pp. (DOI: 10.1016/j.enpol.2013.04.069),  (ISSN: 0301 4215).  Venkataraman C., A.D. Sagar, G. Habib, N. Lam, and K.R. Smith (2010). The Indian National Initiative  for Advanced Biomass Cookstoves: The benefits of clean combustion, Energy for Sustainable  Development 14 63 72 pp. (DOI: 10.1016/j.esd.2010.04.005), (ISSN: 0973 0826).  Vickrey W.S. (1969). Congestion theory and transport investment, The American Economic Review  59 251 260 pp. . Available at: http://www.jstor.org/stable/10.2307/1823678.  Vringer K., and K. Blok (1995). The direct and indirect energy requirements of households in the  Netherlands, Energy Policy 23 893 910 pp. (DOI: 10.1016/0301 4215(95)00072 Q), (ISSN: 0301 4215).  Wachs M., and T.G. Kumagai (1973). Physical accessibility as a social indicator, Socio Economic  Planning Sciences 7 437 456 pp. (DOI: 10.1016/0038 0121(73)90041 4), (ISSN: 00380121).  Wang R. (2013). Adopting Local Climate Policies: What Have California Cities Done and Why?, Urban  Affairs Review 49 593  613 pp. (DOI: 10.1177/1078087412469348), (ISSN: 1078 0874).  Wang W., L. Ren, Q. Guo, and T. Chen (2012a). Predicating Energy Demand and Carbon Emissions of  the Yellow River Delta High efficiency Eco economic Zone, Energy Procedia 14 229 234 pp. (DOI:  10.1016/j.egypro.2011.12.922), (ISSN: 1876 6102).  Wang R., and Q. Yuan (2013). Parking practices and policies under rapid motorization: The case of  China, Transport Policy 30 109 116 pp. (DOI: j.tranpol.2013.08.006).    122 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Wang H., R. Zhang, M. Liu, and J. Bi (2012b). The carbon emissions of Chinese cities, Atmospheric  Chemistry and Physics 12 6197 6206 pp. (DOI: 10.5194/acp 12 6197 2012), (ISSN: 1680 7324).  Wang Y., H. Zhao, L. Li, Z. Liu, and S. Liang (2013). Carbon dioxide emission drivers for a typical  metropolis using input output structural decomposition analysis, Energy Policy 58 312 318 pp. (DOI:  10.1016/j.enpol.2013.03.022), (ISSN: 03014215).  Weber M. (1966). The City. The Free Press, New York, 242 pp., (ISBN: 0029342104  9780029342107). .  Weinstock M. (2011). The Metabolism of the City: The Mathematics of Networks and Urban  Surfaces, Architectural Design 81 102 107 pp. (DOI: 10.1002/ad.1275), (ISSN: 1554 2769).  Weisz H., and J.K. Steinberger (2010). Reducing energy and material flows in cities, Current Opinion  in Environmental Sustainability 2 185 192 pp. (DOI: 10.1016/j.cosust.2010.05.010), (ISSN:  18773435).  Weitz J. (2003). Jobs Housing Balance. American Planning Association, Washington, D.C. 41 pp.  West G.B., J.H. Brown, and B.J. Enquist (1999). The Fourth Dimension of Life: Fractal Geometry and  Allometric Scaling of Organisms, Science 284 1677 1679 pp. (DOI: 10.1126/science.284.5420.1677),  (ISSN: 0036 8075, 1095 9203).  West J.J., S.J. Smith, R.A. Silva, V. Naik, Y. Zhang, Z. Adelman, M.M. Fry, S. Anenberg, L.W.  Horowitz, and J. F. Lamarque (2013). Co benefits of mitigating global greenhouse gas emissions for  future air quality and human health, Nature Climate Change 3 885 889 pp. (DOI:  10.1038/nclimate2009), (ISSN: 1758 678X).  Wheeler S.M. (2008). State and Municipal Climate Change Plans: The First Generation, Journal of the  American Planning Association 74 481 496 pp. (DOI: 10.1080/01944360802377973), (ISSN: 0194 4363).  White P., J.S. Golden, K.P. Biligiri, and K. Kaloush (2010). Modeling climate change impacts of  pavement production and construction, Resources, Conservation and Recycling 54 776 782 pp. (DOI:  10.1016/j.resconrec.2009.12.007), (ISSN: 09213449).  Whitford V., A.R. Ennos, and J.F. Handley (2001). "City form and natural process indicators for  the ecological performance of urban areas and their application to Merseyside, UK, Landscape and  Urban Planning 57 91 103 pp. (DOI: 10.1016/S0169 2046(01)00192 X), (ISSN: 0169 2046).  Wiedenhofer D., M. Lenzen, and J.K. Steinberger (2013). Energy requirements of consumption:  Urban form, climatic and socio economic factors, rebounds and their policy implications, Energy  Policy (DOI: 10.1016/j.enpol.2013.07.035), (ISSN: 03014215).  Willson R.W. (1995). Suburban Parking Requirements: A Tacit Policy for Automobile Use and Sprawl,  Journal of the American Planning Association 61 29 42 pp. (DOI: 10.1080/01944369508975617),  (ISSN: 0194 4363, 1939 0130).  Wilson E. (2009). Multiple Scales for Environmental Intervention: Spatial Planning and the  Environment under New Labour, Planning Practice and Research 24 119 138 pp. (DOI:  10.1080/02697450902742205), (ISSN: 0269 7459).    123 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Wirth L. (1938). Urbanism as a Way of Life, American Journal of Sociology 44 1 24 pp. (DOI:  10.2307/2768119), (ISSN: 0002 9602).  Woo M., and J. M. Guldmann (2011). Impacts of Urban Containment Policies on the Spatial  Structure of US Metropolitan Areas, Urban Studies 48 3511 3536 pp. (DOI:  10.1177/0042098011399594), (ISSN: 0042 0980, 1360 063X).  World Bank (2005). Dynamics of Urban Expansion. . Available at:  http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/dynamics_urban_expansi on.pdf.  World Bank (2009). World Development Report 2009: Reshaping Economic Geography. World Bank,  Washington, D.C. 383 pp.  World Bank (2010). Cities and Climate Change: An Urgent Agenda. The World Bank, Washington,  D.C. 306 pp.  World Bank (2013). Health Nutrition and Population Statistics. . Available at:  http://data.worldbank.org/data catalog/health nutrition and population statistics.  Wright L.A., J. Coello, S. Kemp, and I. Williams (2011). Carbon footprinting for climate change  management in cities, Carbon Management 2 49 60 pp. (DOI: 10.4155/cmt.10.41), (ISSN: 1758 3004).  Yalç n M., and B. Lefevre (2012). Local Climate Action Plans in France: Emergence, Limitations and  Conditions for Success, Environmental Policy and Governance 22 104 115 pp. .  Yang J., and R. Gakenheimer (2007). Assessing the transportation consequences of land use  transformation in urban China, Habitat International 31 345 353 pp. (DOI:  10.1016/j.habitatint.2007.05.001), (ISSN: 0197 3975).  Yang F., S.S.Y. Lau, and F. Qian (2010). Summertime heat island intensities in three high rise housing  quarters in inner city Shanghai China: Building layout, density and greenery, Building and  Environment 45 115 134 pp. (DOI: 10.1016/j.buildenv.2009.05.010), (ISSN: 0360 1323).  Yang P.P. J., and S.H. Lew (2009). An Asian Model of TOD: The Planning Integration in Singapore. In:  Transit Oriented Development: Making It Happen. C. Curtis, J.L. Renne, L. Bertolini, (eds.), Ashgate,  Surrey, England pp.91 106(ISBN: 9780754673156).  Yescombe E.R. (2007). Public Private Partnerships: Principles of Policy and Finance. Elsevier;  Butterworth Heinemann, Amsterdam; Boston: Burlington, Mass, 350 pp., (ISBN: 9780750680547). .  Yu W., R. Pagani, and L. Huang (2012). CO2 emission inventories for Chinese cities in highly  urbanized areas compared with European cities, Energy Policy 47 298 308 pp. (DOI:  10.1016/j.enpol.2012.04.071), (ISSN: 0301 4215).  Zeemering E. (2012). Recognising interdependence and defining multi level governance in city  sustainability plans, Local Environment 17 409 424 pp. (DOI: 10.1080/13549839.2012.678315),  (ISSN: 1354 9839).  Zegras C. (2003). Financing transport infrastructure in developing country cities: Evaluation of and  lessons from nascent use of impact fees in Santiago de Chile, Transportation Research Record:    124 of 125   Final Draft  Chapter 12  IPCC WGIII AR5    Journal of the Transportation Research Board 1839 81 88 pp. . Available at:  http://trb.metapress.com/index/9366673J23868L03.pdf.  Zegras C. (2010). The Built Environment and Motor Vehicle Ownership and Use: Evidence from  Santiago de Chile, Urban Studies 47 1793 1817 pp. (DOI: 10.1177/0042098009356125), (ISSN: 0042 0980, 1360 063X).  Zeng X., Y. Ma, and L. Ma (2007). Utilization of straw in biomass energy in China, Renewable and  Sustainable Energy Reviews 11 976 987 pp. (DOI: 10.1016/j.rser.2005.10.003), (ISSN: 1364 0321).  Zhang M. (2004). The role of land use in travel mode choice: Evidence from Boston and Hong Kong,  Journal of the American Planning Association 70 344 360 pp. .  Zhang M. (2007). Chinese edition of transit oriented development, Journal of the Transportation  Research Board 2038 120 127 pp. (DOI: 10.3141/2038 16).  Zhang M., H. Mu, and Y. Ning (2009). Accounting for energy related CO2 emission in China, 1991 2006, Energy Policy 37 767 773 pp. (DOI: 10.1016/j.enpol.2008.11.025), (ISSN: 0301 4215).  Zhang M., and L. Wang (2013). The impacts of mass transit on land development in China: The case  of Beijing, Research in Transportation Economics 40 124 133 pp. (DOI:  10.1016/j.retrec.2012.06.039), (ISSN: 0739 8859).  Zhao M., Z. Kong, F.J. Escobedo, and J. Gao (2010). Impacts of urban forests on offsetting carbon  emissions from industrial energy use in Hangzhou, China, Journal of Environmental Management 91  807 813 pp. (DOI: 10.1016/j.jenvman.2009.10.010), (ISSN: 0301 4797).  Zheng S., Y. Fu, and H. Liu (2006). Housing choice hindrances and urban spatial structure: Evidence  from matched location and location preference data in Chinese cities, Journal of Urban Economics  60 535 557 pp. (DOI: 10.1016/j.jue.2006.05.003), (ISSN: 0094 1190).  Zheng S., Y. Fu, and H. Liu (2009). Demand for Urban Quality of Living in China: Evolution in  Compensating Land Rent and Wage Rate Differentials, The Journal of Real Estate Finance and  Economics 38 194 213 pp. (DOI: 10.1007/s11146 008 9152 0), (ISSN: 0895 5638, 1573 045X).  Zheng S., R. Wang, E.L. Glaeser, and M.E. Kahn (2010). The greenness of China: household carbon  dioxide emissions and urban development, Journal of Economic Geography 11 761 792 pp. (DOI:  10.1093/jeg/lbq031), (ISSN: 1468 2702, 1468 2710).  Zhou B.B., and K.M. Kockelman (2008). Self selection in home choice: Use of treatment effects in  evaluating relationship between built environment and travel behavior, Transportation Research  Record: Journal of the Transportation Research Board 2077 54 61 pp. (DOI: 10.3141/2077 08).  Zimmerman R., and C. Faris (2011). Climate change mitigation and adaptation in North American  cities, Current Opinion in Environmental Sustainability 3 181 187 pp. (DOI:  10.1016/j.cosust.2010.12.004), (ISSN: 1877 3435).  Zipf G.K. (1949). Human Behavior and the Principle of Least Effort. Addison Wesley Press, Oxford,   England, 573 pp.  Zulu L.C. (2010). The forbidden fuel: Charcoal, urban woodfuel demand and supply dynamics,  community forest management and woodfuel policy in Malawi, Energy Policy 38 3717 3730 pp.  (DOI: 10.1016/j.enpol.2010.02.050), (ISSN: 0301 4215).    125 of 125   Working Group III Mitigation of Climate Change Chapter 13 International Cooperation: Agreements and Instruments   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft Chapter 13 IPCC WGIII AR5 Chapter: Title: Author(s): 13 International Cooperation: Agreements & Instruments CLAs: LAs: Robert Stavins, Zou Ji Thomas Brewer, Mariana Conte Grand, Michel den Elzen, Michael Finus, Joyeeta Gupta, Niklas Höhne, Myung-Kyoon Lee, Axel Michaelowa, Matthew Paterson, Kilaparti Ramakrishna, Gang Wen, Jonathan Wiener, Harald Winkler Daniel Bodansky, Gabriel Chan, Anita Engels, Adam Jaffe, Michael Jakob, T. Jayaraman, Jorge Leiva, Kai Lessmann, Richard Newell, Sheila Olmstead, William Pizer, Robert Stowe, Marlene Vinluan Antonina Ivanova Boncheva, Jennifer Morgan Gabriel Chan CAs: REs: CSA: 1 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Chapter 13: International Cooperation: Agreements & Instruments Contents Executive Summary ............................................................................................................................ 5 13.1 Introduction ................................................................................................................................ 8 13.2 Framing concepts for an assessment of means for international cooperation ......................... 8 13.2.1 Framing concepts and principles ........................................................................................... 8 13.2.1.1 The global commons and international climate cooperation ..................................... 8 13.2.1.2 Principles ...................................................................................................................... 9 13.2.2 Potential criteria for assessing means of international cooperation .................................. 10 13.2.2.1 Environmental effectiveness ..................................................................................... 11 13.2.2.2 Aggregate economic performance ............................................................................ 11 13.2.2.3 Distributional and social impacts ............................................................................... 11 13.2.2.4 Institutional feasibility ............................................................................................... 12 13.2.2.5 Conflicts and complementarities ............................................................................... 13 13.3 International agreements: Lessons for climate policy.............................................................. 15 13.3.1 The landscape of climate agreements and institutions ....................................................... 15 13.3.2 Insights from game theory for climate agreements ............................................................ 17 13.3.3 Participation in climate agreements.................................................................................... 17 13.3.4 Compliance .......................................................................................................................... 19 13.4 Climate policy architectures ..................................................................................................... 21 13.4.1 Degrees of centralized authority ......................................................................................... 21 13.4.1.1 Centralized architectures and strong multilateralism ............................................... 22 13.4.1.2 Harmonized national policies .................................................................................... 23 13.4.1.3 Decentralized approaches and coordinated policies................................................. 23 13.4.1.4 Advantages and disadvantages of different degrees of centralization ..................... 24 13.4.2 Current features, issues, and elements of international cooperation ................................ 24 13.4.2.1 Legal bindingness ....................................................................................................... 24 13.4.2.2 Goals and targets ....................................................................................................... 27 13.4.2.3 Flexible mechanisms .................................................................................................. 27 13.4.2.4 Equitable methods for effort sharing ........................................................................ 28 13.4.3 Recent proposals for future climate change policy architecture ........................................ 29 13.4.4 The special case of international cooperation regarding carbon dioxide removal and solar radiation management.................................................................................................................. 31 2 of 137 Final Draft Chapter 13 IPCC WGIII AR5 13.5 Multilateral and bilateral agreements and institutions across different scales ....................... 32 13.5.1 International cooperation among governments ................................................................. 32 13.5.1.1 Climate agreements under the UNFCCC .................................................................... 32 13.5.1.2 Other UN climate-related forums .............................................................................. 35 13.5.1.3 Non-UN forums .......................................................................................................... 36 13.5.2 Non-state international cooperation................................................................................... 37 13.5.2.1 Transnational cooperation among sub-national public actors .................................. 37 13.5.2.2 Cooperation around human rights and rights of nature ........................................... 38 13.5.3 Advantages and disadvantages of different forums ............................................................ 38 13.6 Linkages between international and regional cooperation...................................................... 39 13.6.1 Linkages with the European Union Emissions Trading Scheme .......................................... 39 13.6.2 Linkages with other regional policies .................................................................................. 40 13.7 Linkages between international and national policies ............................................................. 40 13.7.1 Influence of international climate policies on domestic action .......................................... 40 13.7.2 Linkages between the Kyoto mechanisms and national policies ........................................ 40 13.7.3 International linkage among regional, national, and sub-national policies ........................ 41 13.8 Interactions between climate change mitigation policy and trade.......................................... 43 13.8.1 WTO-related issues .............................................................................................................. 44 13.8.2 Other international venues.................................................................................................. 46 13.8.3 Implications for policy options ............................................................................................ 47 13.9 Mechanisms for technology and knowledge development, transfer, and diffusion ............... 48 13.9.1 Modes of international incentive schemes to encourage technology-investment flows ... 49 13.9.2 Intellectual property rights and technology development and transfer ............................. 49 13.9.3 International collaboration to encourage knowledge development .................................. 50 13.9.3.1 Knowledge sharing, R&D coordination, and joint collaboration ............................... 51 13.9.3.2 International cooperation on domestic climate technology R&D funding................ 51 13.10 Capacity building .................................................................................................................... 51 13.11 Investment and finance .......................................................................................................... 52 13.11.1 Public finance flows ........................................................................................................... 53 13.11.1.1 Public funding vehicles under the UNFCCC ............................................................. 53 13.11.1.2 Multilateral development banks ............................................................................. 54 13.11.2 Mobilizing private investment and financial flows ............................................................ 54 13.12 The role of public and private sectors and public-private partnerships ................................ 55 13.12.1 Public-private partnerships................................................................................................ 55 13.12.2 Private sector-led governance initiatives .......................................................................... 56 13.12.3 Motivations for public-private sector collaboration and private sector governance ....... 56 3 of 137 Final Draft Chapter 13 IPCC WGIII AR5 13.13 Performance assessment on policies and institutions including market mechanisms .......... 56 13.13.1 Performance assessment of existing cooperation ............................................................ 59 13.13.1.1 Assessment of the UNFCCC, the Kyoto Protocol, and its flexible mechanisms ....... 59 13.13.1.2 Assessment of the Kyoto Protocol s Clean Development Mechanism .................... 62 13.13.1.3 Assessment of further agreements under the UNFCCC .......................................... 64 13.13.1.4 Assessment of envisioned international cooperation outside of the UNFCCC ....... 67 13.13.2 Performance assessment of proposed international climate policy architectures ........... 70 13.13.2.1 Strong multilateralism ............................................................................................. 70 13.13.2.2 Harmonized national policies .................................................................................. 71 13.13.2.3 Decentralized architectures and coordinated national policies .............................. 72 13.14 Gaps in knowledge and data .................................................................................................. 73 13.15 Frequently Asked Questions ................................................................................................... 74 References ........................................................................................................................................ 76 4 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Executive Summary This chapter critically examines and evaluates the ways in which agreements and instruments for international cooperation to address global climate change have been and can be organized and implemented, drawing upon evidence and insights found in the scholarly literature. The retrospective analysis of international cooperation in the chapter discusses and quantifies what has been achieved to date and surveys the literature on explanations of successes and failures. International cooperation is necessary to significantly mitigate climate change impacts (robust evidence, high agreement). This is principally due to the fact that greenhouse gases (GHGs) mix globally in the atmosphere, making anthropogenic climate change a global commons problem. International cooperation has the potential to address several challenges: multiple actors that are diverse in their perceptions of the costs and benefits of collective action, emissions sources that are unevenly distributed, heterogeneous climate impacts that are uncertain and distant in space and time, and mitigation costs that vary. [Section 13.2.1.1, 13.15] International cooperation on climate change has become more institutionally diverse over the past decade (robust evidence, high agreement). The United Nations Framework Convention on Climate Change (UNFCCC) remains a primary international forum for climate negotiations, but other institutions have emerged at multiple scales: global, regional, national, and local, as well as publicprivate initiatives and transnational networks. [13.3.1, 13.12] This institutional diversity arises in part from the growing inclusion of climate change issues in other policy arenas (e.g., sustainable development, international trade, and human rights). These and other linkages create opportunities, potential co-benefits, or harms that have not yet been thoroughly examined. Issue linkage also creates the possibility of forum shopping and increased negotiation costs, which could distract from or dilute the performance of international cooperation toward climate goals. [13.3, 13.4, 13.5] Existing and proposed international climate agreements vary in the degree to which their authority is centralized (robust evidence, high agreement). The range of centralized formalization spans: strong multilateral agreements (such as the Kyoto Protocol targets), harmonized national policies (such as the Copenhagen/Cancún pledges), and decentralized but coordinated national policies (such as planned linkages of national and sub-national emissions trading schemes). [13.4.1, 13.4.3] Additionally, potential agreements vary in their degree of legal bindingness [13.4.2.1]. Three other design elements of international agreements have particular relevance: goals and targets, flexible mechanisms, and equitable methods for effort sharing. [13.4.2] The UNFCCC is currently the only international climate policy venue with broad legitimacy, due in part to its virtually universal membership (robust evidence, medium agreement). The UNFCCC continues to develop institutions and systems for governance of climate change. [13.2.2.4, 13.3.1, 13.4.1.4, 13.5] Non-UN forums and coalitions of non-state actors, such as private businesses and city-level governments, are also contributing to international cooperation on climate change (medium evidence, medium agreement). These forums and coalitions address issues including deforestation, technology transfer, adaptation, and fossil fuel subsidies. However, their actual mitigation performance is unclear. [13.5.1.3, 13.13.1.4] International cooperation may have a role in stimulating public investment, financial incentives, and regulations to promote technological innovation, thereby more actively engaging the private sector with the climate regime (medium evidence, medium agreement). Technology policy can help lower mitigation costs, thereby increasing incentives for participation and compliance with international cooperative efforts, particularly in the long run. Equity issues can be affected by domestic intellectual property rights regimes, which can alter the rate of both technology transfer and the development of new technologies. [13.3, 13.9, 13.12] 5 of 137 Final Draft Chapter 13 IPCC WGIII AR5 In the absence of or as a complement to a binding, international agreement on climate change, policy linkages among existing and nascent regional, national, and sub-national climate policies offer potential climate benefits (medium evidence, medium agreement) [13.3.1, 13.5.1.3]. Direct and indirect linkages between and among sub-national, national, and regional carbon markets are being pursued to improve market efficiency. Yet integrating climate policies raises a number of concerns about the performance of a system of linked legal rules and economic activities. [13.6, 13.7] Linkage between carbon markets can be stimulated by competition between and among public and private governance regimes, accountability measures, and the desire to learn from policy experiments. [13.5.3] While a number of new institutions are focused on adaptation funding and coordination, adaptation has historically received less attention than mitigation in international climate policy, but inclusion of adaptation is increasingly important to reduce damages and may engage a greater number of countries (robust evidence, medium agreement). Other possible complementarities and tradeoffs between mitigation and adaptation, particularly the temporal distribution of actions, are not well-understood. [13.2, 13.3.3, 13.5.1.1, 13.14] Participation in international cooperation on climate change can be enhanced by monetary transfers, market-based mechanisms, technology transfer, and trade-related measures (robust evidence, medium agreement). These mechanisms to enhance participation, along with compliance, legitimacy, and flexibility, affect the institutional feasibility of international climate policy. [13.2.2.4, 13.3.3, 13.8.1, 13.9.2] International trade can offer a range of positive and negative incentives to promote international cooperation on climate change (robust evidence, medium agreement). Three issues are key to developing constructive relationships between international trade and climate agreements: how existing trade policies and rules can be modified to be more climate friendly; whether border adjustment measures (BAMs) or other trade measures can be effective in meeting the goals of international climate agreements; whether the UNFCCC, World Trade Organization (WTO), hybrid of the two, or a new institution is the best forum for a trade-and-climate architecture. [13.8] Climate change policies can be evaluated using four criteria: environmental effectiveness, aggregate economic performance, distributional impacts, and institutional feasibility. These criteria are grounded in several principles: maximizing global net benefits; equity and the related principles of distributive justice and common but differentiated responsibilities and respective capabilities (CBDRRC); precaution and the related principles of anticipation, and prevention of future risks; and sustainable development. These criteria may at times conflict, forcing tradeoffs among them. [13.2.1, 13.2.2] International cooperation has produced political agreement regarding a long-term goal of limiting global temperature increase to no more than 2°C above pre-industrial levels, but the overall level of mitigation achieved to date by cooperation appears inadequate to achieve this goal (robust evidence, medium agreement). Mitigation pledges by individual countries in the Copenhagen-Cancún regime, if fully implemented, will help reduce emissions in 2020 to below the projected business-asusual level, but are unlikely to attain an emission level in 2020 consistent with cost-effective pathways, based on the immediate onset of mitigation, that achieve the long-term 2°C goal. The contribution of international cooperation outside of the UNFCCC is largely not quantified. [13.2.2.1, 13.13.1] The Kyoto Protocol was the first binding step toward implementing the principles and goals provided by the UNFCCC, but it has not been as successful as intended (medium evidence, low agreement). While the Kyoto Protocol surpassed its collective emission reduction target, the Protocol s environmental effectiveness has been less than it could have been. The Protocol s limited environmental effectiveness can be explained by the incomplete participation and compliance of Annex I countries and crediting for emissions reductions that would have occurred without the 6 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Protocol in economies in transition. Additionally, the design of the Kyoto Protocol does not directly regulate the emissions of non-Annex I countries, which have grown rapidly over the past decade. [13.13.1.1] The flexibility mechanisms under the Kyoto Protocol have generally helped to improve its economic performance, but their environmental effectiveness is less clear (medium evidence, medium agreement). The Clean Development Mechanism (CDM) created a market for emissions offsets from developing countries and has been used to generate credits equivalent to over 1.3 billion tCO2eq, many of which have been generated by low-cost mitigation technologies. The CDM showed institutional feasibility of a project-based market mechanism under widely varying circumstances. The CDM s environmental effectiveness has been mixed due to concerns about the additionality of projects, the validity of baselines, the possibility of emissions leakage, and recent price decreases. Its distributional impacts were limited due to the concentration of projects in a limited number of countries. Joint Implementation and International Emissions Trading have been undertaken both by governments and private market participants, but have raised concerns related to government sales of emission units. [13.7.2, 13.13.1] More recent negotiations under the UNFCCC have sought to include more ambitious mitigation commitments from countries listed in Annex B of the Kyoto Protocol, mitigation commitments from a broader set of countries than those under Annex B, and substantial new funding mechanisms (medium evidence, low agreement). Voluntary pledges of quantified, economy-wide emission reduction targets by developed countries and voluntary pledges to mitigation actions by many developing countries were formalized in the 2010 Cancún Agreement. The distributional impacts of the Agreement will depend, in part, on sources of financing for developing-country emission plans, including the successful fulfilment by developed countries of their expressed joint commitment to mobilize 100 billion USD/yr by 2020 for climate action in developing countries. [13.5.1.1, 13.11, 13.13.1.3] The Montreal Protocol, aimed at protecting the stratospheric ozone layer, has also achieved significant reductions in global GHG emissions (robust evidence, high agreement). The Montreal Protocol set limits on emissions of ozone-depleting gases that are also potent GHGs, such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Substitutes for those ozonedepleting gases (such as hydrofluorocarbons (HFCs), which are not ozone-depleting) may also be potent GHGs. Lessons learned from the Montreal Protocol, for example, the effect of financial and technological transfers on broadening participation in an international environmental agreement, could be of value to the design of future international climate change agreements. [13.3.3, 13.3.4, 13.13.1.4] Assessment of proposed cooperation structures reinforces the finding that there will likely be tradeoffs between the four criteria, as they will inevitably conflict in some elements of any agreement (medium evidence, high agreement). Assessment of proposed climate policy architectures reveals important tradeoffs that depend on the specific design elements and regulatory mechanisms of a proposal. For example, there is a potential tradeoff between broad participation and the institutional feasibility of an ambitious environmental performance goal. The extent of this tradeoff may depend on financial transfers, national enforcement mechanisms, and the distribution and sharing of mitigation efforts. [13.2.2.5, 13.3.3, 13.13.1.4, 13.13.2]. Increasing interest in solar radiation management (SRM) and carbon dioxide removal (CDR) as strategies to mitigate the harms of climate change, pose new challenges for international cooperation (medium evidence, high agreement). Whereas emissions abatement poses challenges of engaging multilateral action to cooperate, SRM may pose challenges of coordinating research and restraining unilateral deployment of measures with potentially adverse side-effects. [13.4.4] Gaps in knowledge and data: (1) comparisons among proposals in terms of aggregate and countrylevel costs and benefits per year, with incorporation of uncertainty; (2) assessment of the overall 7 of 137 Final Draft Chapter 13 IPCC WGIII AR5 effect of emerging intergovernmental and transnational arrangements, including hybrid approaches; (3) understanding of complementarities and tradeoffs between policies affecting mitigation and adaptation; (4) understanding how international cooperation on climate change can help achieve co-benefits and development goals, including capacity building approaches; (5) understanding the factors that affect national decisions to join and form agreements. 13.1 Introduction Due to global mixing of greenhouse gases (GHGs) in the atmosphere, anthropogenic climate change is a global commons problem. For this reason, international cooperation is necessary to achieve significant progress in mitigating climate change. Drawing on published research, this chapter critically examines and evaluates the ways in which agreements and instruments for international cooperation have been and can be organized and implemented. The retrospective analysis of international cooperation in the chapter quantifies and discusses what has been achieved to date, and surveys the literature on explanations of successes and failures. The scope of the chapter is defined by the range of feasible international agreements and other policy instruments for cooperation on climate-change mitigation and adaptation. The disciplinary scope spans the social sciences of economics, political science, international relations, law, public policy, psychology, and sociology; relevant humanities, including history and philosophy; and where relevant to the discussion the natural sciences. Where appropriate, the chapter synthesizes literature that utilizes econometric modelling, integrated modelling, game theory, comparative case studies, legal analysis, and political analysis. This chapter focuses on research and policy developments since the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007). 13.2 Framing concepts for an assessment of means for international cooperation This section introduces the concept of a global commons problem to frame the challenge of international cooperation on climate change, principles for designing effective international climate policy, and criteria for evaluating these policies. 13.2.1 Framing concepts and principles 13.2.1.1 The global commons and international climate cooperation Climate change is a global commons problem, meaning reduction in emissions by any jurisdiction carries an economic cost, but the benefits (in the form of reduced damages from climate change) are spread around the world although unevenly due to GHG emissions mixing globally in the atmosphere. Mitigation of climate change is non-excludable, meaning it is difficult to exclude any individual or institution from the shared global benefits of emissions reduction undertaken by any localized actor. Also, these benefits are non-rival, meaning they may be enjoyed by any number of individuals or institutions at the same time, without reducing the extent of the benefit any one of them receives. These public good characteristics of climate protection (non-excludability and nonrivalry) create incentives for actors to free ride on other actors investments in mitigation. Therefore, lack of ambition in mitigation and overuse of the atmosphere as a receptor of GHGs are likely. Incentives to free ride on climate protection have been analyzed extensively and are wellunderstood (Gordon, 1954; Hardin, 1968; Stavins, 2011). The literature suggests that in some cases, effective common property management of local open-access resources can limit or even eliminate overuse (Ostrom, 2001; Wiener, 2009). Effective common property management of the atmosphere would require applying such management at a global level, by allocating rights to emit and providing 8 of 137 Final Draft Chapter 13 IPCC WGIII AR5 disincentives for overuse through sanctions or pricing emissions (Byrne and Glover, 2002; Wiener, 2009). Enhancing production of public goods may be achieved by internalizing external costs (i.e., those costs not incorporated into market prices) or through legal remedies. Economic instruments can incorporate external costs and benefits into prices, providing incentives for private actors to more optimally reduce external costs and increase external benefits (Baumol and Oates, 1988; Nordhaus, 2006; Buchholz et al., 2012). Legal remedies may include seeking injunctive relief or compensatory payments (IPCC, 2007, chap. 13; Faure and Peeters, 2011; Haritz, 2011) International cooperation is necessary to significantly mitigate climate change because of the global nature of the problem (WCED, 1987; Kaul et al., 1999, 2003; Byrne and Glover, 2002; Barrett, 2003; Stewart and Wiener, 2003; Sandler, 2004) Cooperation has the potential to address several challenges: multiple actors that are diverse in their perceptions of the costs and benefits of collective action; emissions sources that are unevenly distributed; heterogeneous climate impacts that are uncertain and distant in space and time; and mitigation costs that vary (IPCC, 2001, pp. 607 608). In the absence of universal collective action, smaller groups of individual actors may be able to organize schemes to supply public goods, particularly if actors know each other well, expect repeated interactions, can exclude non-members, and can monitor and sanction non-compliance in the form of either overconsumption or underproduction (Eckersley, 2012; McGee, 2011; Nairn, 2009; Ostrom, 1990, 2010a; b, 2011; Weischer et al., 2012). Some authors are optimistic regarding such minilateralism (e.g., Keohane and Victor, 2011; on the term, see Eckersley, 2012) and others are more sceptical (e.g., Depledge and Yamin, 2009; Winkler and Beaumont, 2010) . Section 13.3 discusses the literature on coalitions in more detail. Because there is no world government, each country must voluntarily consent to be bound by any international agreement. If these are to be effective, the agreements must be attractive enough to gain broad participation (Barrett, 2003, 2007; Stewart and Wiener, 2003; Schmalensee, 2010; Brousseau et al., 2012). Considering the relationship between mitigation costs and climate benefits discussed above, there is insufficient incentive for actors at any level to reduce emissions significantly in the absence of international cooperation. Behavioural research, however, indicates that individuals are sometimes motivated to cooperate (and to punish those who do not) to a degree greater than strict rational choice models predict (Camerer, 2003; Andreoni and Samuelson, 2006). This may explain some of the observed policies being adopted to reduce GHG emissions at the national, subnational, firm, and individual level. Moreover, even under the assumption of rational action, some emission reductions can occur without cooperation due to positive externalities of otherwise self-beneficial actions, or co-benefits, such as actions to reduce energy expenditures, enhance the security of energy supply, reduce local air pollution, improve land use, and protect biodiversity (Seto et al., 2012). Co-benefits of climate protection are receiving increasing attention in the literature (Rayner, 2010; Dubash, 2009; UNEP, 2013b). However, policies designed to address climate change mitigation may also have adverse side-effects. See Section 4.8 for an overview of the discussion of co-benefits and adverse side-effects throughout this report. 13.2.1.2 Principles Several principles have been advanced to shape international climate change policies. The IPCC Third Assessment Report (AR3) (IPCC, 2001) discusses principles and mentions some criteria for evaluation of policies, whereas the Fourth Assessment Report (AR4) (IPCC, 2007), clearly differentiates principles from criteria. Principles serve as guides to design climate policies, while criteria are specific standards by which to evaluate them. The roles and applications of principles and criteria are further elaborated in Chapter 3 of this report. Sets of principles are enumerated and explained in multiple international climate change fora, including the Rio Declaration on Environment and Development (UNEP, 1992) and the United 9 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Nations Framework Convention on Climate Change (UNFCCC) (UNFCCC, 1992). In the latter, the principles listed explicitly include: equity and common but differentiated responsibilities and respective capabilities (CBDRRC) (Article 3(1)), relative needs, vulnerability, burdens in countries of differing wealth (Article 3(2)), precaution and cost-effective[ness] so as to ensure global benefits at the lowest possible cost (Article 3(3)), sustainable development (Article 3(4)), and cooperation (Article 3(5)). Principles of climate change policy relevant for international cooperation can be grouped into several broad categories. First, the principle of maximizing global net benefits makes the tradeoff between aggregate compliance costs and aggregate performance benefits explicit. The principle also incorporates the notion of maximizing co-benefits of climate action (Stern, 2007; Nordhaus, 2008; Bosetti et al., 2010; Rayner, 2010; Dubash, 2009) (see also Chapter 3.6.3). A related concept is that of cost-effectiveness, which allows for policies with the same level of performance in terms of aggregate benefits to be compared on the dimension of aggregate cost (IPCC, 2001, 2007, chap. 13). See Section 6.6.2.7 for applied scenario studies. Second, equity is a principle that emphasizes distributive justice across and within countries and across and within generations (Vanderheiden, 2008; Baer et al., 2009; Okereke, 2010; Posner and Sunstein, 2010; Posner and Weisbach, 2010; Somanathan, 2010; Cao, 2010c). It includes evaluating the procedures used to reach an agreement as well as the achieved outcomes. This principle may also apply in a broader assessment of well-being (Sen, 2009; Cao, 2010a). The principle of CBDRRC has been central in international climate negotiations (Rajamani, 2006, 2011a; Gupta and Sanchez, 2013). The literature refers to the varied historic responsibility and current capability and capacity of countries with regard to impacts of and action to address climate change (Jacoby et al., 2010; Rajamani, 2006, 2012b; Höhne et al., 2008; Dellink et al., 2009; den Elzen et al., 2013b). Some literature assesses how the principle might be applied to actors diverse needs (Jonas, 1984; Dellink et al., 2009), including the specific needs and vulnerabilities of developing countries (Rong, 2010; Smith et al., 2011; Bukovansky et al., 2012). Recent literature suggests that this principle s application may be more nuanced as patterns of development, emissions, and impacts evolve (Bukovansky et al., 2012; Deleuil, 2012; Müller and Mahadev, 2013; Winkler and Rajamani, 2013). The literature describes competing views regarding the meaning of this principle in terms of its legal status, operational significance, and the obligations it may entail (Höhne et al., 2006; Halvorssen, 2007; O Brien, 2009; Winkler et al., 2009; Winkler, 2010; Hertel, 2011). The principle of CBDRRC is further analyzed in sections 3.3 and 4.6. Third, the principle of precaution emphasizes anticipation and prevention of future risks, even in the absence of full scientific certainty about the impacts of climate change (Bodansky, 2004; Wiener, 2007; Uruena, 2008). Some see precaution as a strategy for effective action across diverse uncertain scenarios (Barrieu and Sinclair-Desgagné, 2006; World Bank, 2010), although the application of precaution varies across risks and countries (Hammitt, 2010). A key ongoing debate concerns whether or not this principle implies the need for stringent climate change policies as an insurance against potentially catastrophic outcomes, even if they may have very low probability (Weitzman, 2007, 2009, 2011; Pindyck, 2011; Nordhaus, 2011). The application of the precautionary principle to climate risk is further discussed in Section 2.5.5. Fourth, the principle of sustainable development, broadly defined, emphasizes consideration of the socioeconomic needs of future generations in making decisions about current resource use (IPCC, 2007, chap. 12; World Bank, 2010). For a detailed discussion of the literature on sustainable development, see Section 4.2.1. 13.2.2 Potential criteria for assessing means of international cooperation The principles elaborated above can be translated into criteria to evaluate forms of international cooperation, thereby assisting in the design of a distribution of efforts intended to solve the collective action problem of climate protection. The IPCC s AR4 put forth one set of criteria: 10 of 137 Final Draft Chapter 13 IPCC WGIII AR5 environmental effectiveness, cost-effectiveness, distributional considerations, and institutional feasibility (IPCC, 2007, pp. 751 752). As metrics of success , these evaluation criteria can be applied in the context of both ex-post evaluations of actual performance and ex-ante assessments of proposed cooperation (Hammitt, 1999; Fischer and Morgenstern, 2010). Below, this section describes four evaluation criteria that are applied in Section 13.13 to assess existing and proposed forms of international cooperation to address climate change mitigation. These criteria are subject to caveats, which are detailed in Section 13.13. 13.2.2.1 Environmental effectiveness The environmental effectiveness of a climate change mitigation policy is the extent to which it achieves its objective to reduce the causes and impacts of climate change. Environmental effectiveness can be achieved by reducing anthropogenic sources of GHG emissions, removing GHGs from the atmosphere, or reducing the impacts of climate change directly through increased resilience. A primary objective of international cooperation has been to stabilize GHG concentrations at levels sufficient to prevent dangerous anthropogenic interference with the climate system, in the words of the UNFCCC Article 2 (1992). This would require action within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner (UNFCCC, 1992), Article 2). The Kyoto Protocol established specific emission-reduction targets for developed countries, while the Copenhagen Accord and Cancún Agreements expressed the environmental objective in terms of global average temperature increase. In addition to endorsing mitigation targets by developed countries and mitigation actions by developing countries, the Copenhagen and Cancún agreements recognized a goal of limiting increases in average global temperature to 2°C above pre-industrial levels (UNFCCC, 2009a, 2010, 2011a). 13.2.2.2 Aggregate economic performance Measuring the aggregate economic performance of a climate policy requires considering both its economic efficiency and its cost-effectiveness. Economic efficiency refers to the maximization of net benefits, the difference between total social benefits and total social costs (Stern, 2007; Nordhaus, 2008; Bosetti et al., 2010). Cost-effectiveness refers to the ability of a policy to attain a prescribed level of environmental performance at least cost, taking into account impacts on dynamic efficiency, notably technological innovation (Jaffe and Stavins, 1995). Unlike net benefit assessment, cost-effectiveness analysis takes the environmental performance of a policy as given and seeks the least-cost strategy to attain it (Hammitt, 1999). While analysis of a policy in terms of its cost-effectiveness still requires environmental performance of the policy to be quantified, it does not require environmental performance benefits to be monetized. Thus, analysis of a policy s cost-effectiveness may be more feasible than analysis of a policy s economic efficiency in the case of climate change, as some social benefits of climate-change mitigation are difficult to monetize. 13.2.2.3 Distributional and social impacts Distributional equity and fairness may be considered important attributes of climate policy because of their impact on measures of well-being (Posner and Weisbach, 2010) and political feasibility (Jacoby et al., 2010; Gupta, 2012). Distributional equity relates to burden- and benefit-sharing across countries and across time. Section 4.2 puts forward three justifications for considering distributional equity legal, environmental effectiveness, and moral (see Section 4.2.2). The framing in Section 4.2 also identifies a relatively small set of core equity principles: responsibility, capacity, the right to sustainable development, and equality. These may be modelled with quantitative indicators, as discussed in Section 6.3.6.6. The moral justification draws on ethical principles, which are reflected in the principles of the Convention (see Section 13.2.1.2; and detailed treatment of the literature on ethics in Section 3.2). 11 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Another dimension of distributional equity is the possibility for mitigation actions in one jurisdiction to have positive or negative consequences in another jurisdiction. This phenomenon, sometimes referred to as response measures or as spillover effects (as in AR4 see glossary), can lead to an unequal distribution of the impacts of climate change mitigation actions themselves. A plausible example of a spillover effect is the impact of emissions reductions in developed countries lowering the demand for fossil fuels and thus decreasing their prices, leading to more use of such fuels and greater emissions in developing nations, partially off-setting the original cuts (Bauer et al., 2013) This dynamic can also be important for countries with large endowments of conventional oil and gas that depend on export revenues. These countries may lose energy export revenue as a result of climate policies enacted in other countries (Kalkuhl and Brecha, 2013; Bauer et al., 2013). Additionally, climate policies could also reduce international coal trading (Jewell et al., 2013) (see also Sections 6.3.6.6., 14.2, 14.4.2, 15.5.2). 13.2.2.4 Institutional feasibility The institutional feasibility of international climate policy may depend upon agreement among national governments and between governments and intergovernmental bodies (Wiener, 2009; Schmalensee, 2010). Institutional feasibility is closely linked to domestic political feasibility, because domestic political conditions affect participation in, and compliance with, international climate policies. This has been addressed in the literature on two-level games (Kroll and Shogren, 2009; Hafner-Burton et al., 2012). Four sub-criteria of institutional feasibility can also be considered: participation, compliance, legitimacy, and flexibility. First, participation in an international climate agreement might refer to the number of parties, geographical coverage, or the share of global GHG emissions covered. Participating parties might vary with regard to the nature and specificity of their commitments (e.g., actions versus quantitative emissions-reduction targets). Sovereign states are not bound by an international treaty or other arrangement unless they consent to participate. The literature has examined a broad array of incentives to promote breadth of participation in international agreements (Barrett, 2003; Barrett and Stavins, 2003; Stewart and Wiener, 2003; Hall et al., 2010; Victor, 2010; World Bank, 2010; Olmstead and Stavins, 2012). These incentives can be positive (e.g., financial support or technology transfers) or negative (e.g., trade sanctions). Some authors have suggested that participation limited to countries with the highest emissions enhances institutional feasibility (Leal-Arcas, 2011) and that incentive-based emissions-permit allocations, or rules requiring participation of key players, may enable larger coalitions (Dellink et al., 2008; Dellink, 2011). Second, institutional feasibility is also partly determined by the compliance of participating countries with an agreement s provisions. Mechanisms to ensure compliance, in turn, affect decisions to participate, as well as long-term performance (Barrett, 2003). Incentives for encouraging compliance can be built into flexible mechanisms, such as tradable permit systems (Wiener, 2009; Ismer and Neuhoff, 2009; Keohane and Raustiala, 2010). Compliance is fundamentally problematic in international agreements, as it is difficult to establish an authority that can legitimately and effectively impose sanctions upon sovereign national governments. Despite that, indirect negative consequences of non-compliance can arise within the regime established by the agreement, or in other regimes, for example, adverse voting behaviour in international forums or reduction in foreign aid (Heitzig et al., 2011). Third, legitimacy is a key component of institutional feasibility. Parties to a cooperative agreement must have reason to accept and implement decisions made under the agreement, meaning they must believe that the relevant regime represents them fairly. Legitimacy depends on the shared understanding both that the substantive rules (outputs) and decision-making procedures (inputs) are fair, equitable, and beneficial (Scharpf, 1999), and thus that other regime members will continue to cooperate (Ostrom, 1990, 2011). In practice, the legitimacy of substantive rules is typically based on whether parties evaluate positively the results of an authority s policies, while procedural legitimacy 12 of 137 Final Draft Chapter 13 IPCC WGIII AR5 is typically based on the existence of proper input mechanisms of participation and consultation for the parties participating in an agreement (Stevenson and Dryzek, 2012). Finally, the institutional feasibility of international climate policy depends in part on whether the institutions relevant for a policy can develop flexibility mechanisms which typically require that the institutions themselves are flexible or adjustable. It may be important to be able to adapt to new information or to changes in economic and political circumstances. The institutionalization of learning among actors, which is referred to as social learning in the literature of environmental governance (Pahl-Wostl et al., 2007), is an important aspect of success, enabling adaptation to changing circumstances. While institutional arrangements that incorporate a purposive process of experimentation, evaluation, learning, and revision may be costly, policies that do not incorporate these steps may be overly rigid in the face of change and therefore potentially even more costly (Greenstone, 2009; Libecap, 2011). Another area of current debate and research is the question of whether increased flexibility in designing obligations for states helps them align their international obligations more readily with domestic political constraints (von Stein, 2008; Hafner-Burton et al., 2012). This suggests that designing international climate policies involves a balance between the benefits of flexibility and the costs of regulatory uncertainty (Goldstein and Martin, 2000; Brunner et al., 2012). Chapter 2, for example in Section 2.6.5.1, goes into more depth on problems related to regulatory uncertainty. 13.2.2.5 Conflicts and complementarities Criteria may be mutually reinforcing (Cao, 2010a; c), but there may also be conflicts, forcing tradeoffs between and among them. For example, maximizing global net benefits or attaining costeffectiveness may lead to actions that decrease distributional equity (van Asselt and Gupta, 2009), which could lead to low participation. Posner and Weisbach (2010) and Baer (2009) argue that efficiency and distribution can be reconciled by either normatively adjusting the net benefit or cost calculations to account for changes in relative utility, or by adopting redistributive policy in addition to cost-effective climate policy. Different approaches to meet the same criteria (for example, equity) may also conflict with each other when operationalized (Fischer and Morgenstern, 2010) or lead to different results (Dellink et al., 2009). Simultaneously, there are relations among sub-criteria: excessive flexibility may undermine incentives to invest in long-term solutions, and may also increase the likelihood of participation. Compromises to enable institutional feasibility of an agreement may weaken performance along other dimensions. The environmental performance of an international agreement depends largely on tradeoffs among the ambition of an agreement with regards to mitigation goals and participation, and compliance (Barrett, 2003; Bodansky, 2011a; Rajamani, 2012a). For further discussion of potential tradeoffs between participation and environmental effectiveness, see Section 13.3.3. Box 13.1. International agreements and developing countries The United Nations Framework Convention on Climate Change (UNFCCC) is a statement of aspirations, principles, goals, and the means to meet commitments. The Kyoto Protocol of the UNFCCC included, for the first time, binding mitigation commitments for nations listed in its Annex B. Other countries may assist Annex B Parties in meeting their mitigation commitments via the Clean Development Mechanism (CDM), under the Protocol s Article 12. Annex I countries under the UNFCCC, which include all Annex B countries under the Kyoto Protocol, are largely the wealthiest countries and largest historical emitters of GHGs. However, Annex I countries share of historical cumulative GHG emissions in 2010 is close to the share of the nonAnnex I countries (Section 13.13.1.1). Thus, the Kyoto Protocol s mitigation commitments were initially consistent with the UNFCCC principle of common but differentiated responsibilities and 13 of 137 Final Draft Chapter 13 IPCC WGIII AR5 respective capabilities (CBDRRC). However, since the UNFCCC divided countries into two categories in 1992, both income patterns and the distribution of GHG emissions have changed significantly, even as variations in income and per capita responsibility for emissions remain substantial both within and between countries. Between Conference of Parties (COP)-13 (Bali) in 2007 and COP-16 (Cancún) in 2010, many developing countries put forward quantifiable mitigation actions (as contrasted with quantified, economy-wide emissions reductions targets assumed by Annex B parties under the Kyoto Protocol) and agreed to more frequent reporting and enhanced transparency of those actions. Further pledges of actions have been made since Cancún. (Section 13.13) For many developing countries, adaptation can have comparable priority to mitigation. This may be because countries are especially vulnerable to climate change damages or they lack confidence in progress with mitigation efforts. These countries are often the least able to finance adaptation, leaving cooperative agreements to attempt to identify sources of support. (See Chapter 16 for detail.) International collaboration regarding public climate finance under the UNFCCC dates back to 1991, when the Climate Change Program of the Global Environment Facility (GEF) was established. The literature reflects mixed evidence on the scale and environmental effectiveness of such funding. Funding for reporting and mitigation flows through four primary vehicles: the GEF, which focuses on mitigation; the Least Developed Country Fund (LDCF) and Special Climate Change Fund (SCCF), created in 2001 for adaptation purposes and operated by the GEF; the Adaptation Fund set up in 2008; and the Green Climate Fund (GCF), established in 2010 for mitigation and adaptation. (Section 13.11, see also Section 16.2) The Copenhagen Accord set a goal to jointly mobilize 100 billion USD/yr by 2020 to address the needs of developing countries. (Section 13.11) Article 4.5 of the UNFCCC also calls for technology transfer from developed to developing countries. The Technology Mechanism, with an Executive Committee and Climate Technology Centre and Network, is seeking to fulfil this goal. Research indicates that adaptation assistance, such as that provided by the Kyoto Protocol s Adaptation Fund, can be crucial for inclusion of developing countries in international climate agreements. Further research into the distribution of adaptation finance across countries from both UNFCCC and non-UNFCCC sources is required to assess the equity, efficiency, effectiveness, and environmental impacts of the Adaptation Fund and other funding mechanisms. Many developing countries have created institutions to coordinate adaptation finance from domestic and international funding sources. (Sections 13.3, 13.5) The literature identifies several models for equitable burden sharing among both developed and developing countries in international cooperation for climate change mitigation. The principles on which burden sharing arrangements may be based are described in Section 4.6.2, and the implications of these arrangements are discussed in Section 6.3.6.6. Distributional impacts from agreements will depend on the approach taken, criteria applied to operationalize equity, and the manner in which developing countries emissions plans are financed; studies suggest potential approaches (Section 13.4, UNFCCC Secretariat 2007b, 2008). A major distributional issue is how to account for emissions from goods produced in a developing country, but consumed in an industrialized country. Such emissions have increased rapidly since 1990, as developed countries have typically been importers of embodied emissions, while many developing countries have large shares of emissions embodied in exports. (Sections 13.8, 14.3.4) New and existing coalitions of countries have engaged in the UNFCCC negotiations, each presenting coordinated positions. Several distinct coalitions of developing countries have formed to negotiate their divergent priorities. Examples include the Group of 77 (G-77) and China, which contains subgroups such as the African Group, the Least Developed Countries, and the Arab Group; the Alliance of Independent Latin American and Caribbean states; and a like-minded developing country group that included China, India, and Saudi Arabia. Other coalitions organized to influence UNFCCC 14 of 137 Final Draft Chapter 13 IPCC WGIII AR5 negotiations include the Alliance of Small Island States (AOSIS); various groupings of industrialized countries, including the Umbrella Group; the Environmental Integrity Group; the BASIC countries (Brazil, South Africa, India, and China); the Coalition of Rainforest Nations; and other active coalitions not limited to the climate context, for example, the Comision Centroamericana de Ambiente y Desarollo and the Bolivarian Alliance for the Americas. 13.3 International agreements: Lessons for climate policy Several lessons from research on existing international agreements, as well as game-theoretic models of such agreements, can be applied to climate change institutions. This section briefly summarizes some of the key lessons, which are addressed in more detail in subsequent sections of this chapter. 13.3.1 The landscape of climate agreements and institutions Since the publication of IPCC AR4 in 2007, the landscape of international institutions related to climate policy has become significantly more complex. Climate change is addressed in a growing number of fora and institutions and across a wider range of scales (Keohane and Victor, 2011; Bulkeley et al., 2012; Biermann et al., 2009, 2010; Barrett, 2010; Abbott, 2011; Hoffmann, 2011; Zelli, 2011; Rayfuse and Scott, 2012). Figure 13.1 illustrates the variety of international, transnational, regional, national, sub-national, and non-state agreements and other forms of cooperation, many of which have emerged since the mid2000s. Some regimes that previously focused on other issues, e.g., trade (see Section 13.8), energy (see Chapter 7), biodiversity, and human rights have begun to address climate change. For a more detailed discussion of these initiatives, see also Section 13.5. 15 of 137 Final Draft Chapter 13 IPCC WGIII AR5 UNFCCC Other UN Intergovernmental organizations Non-UN IOs Other environmental treaties Other multilateral clubs Bilateral arrangements Partnerships Offset certification systems Investor governance initiatives Regional governance Subnational regional initiatives City networks Transnational city networks NAMAs, NAPAs Kyoto Protocol, Clean Development Mechanism, International Emissions Trading Intergovernmental Panel on Climate Change, UN Development Programme, UN Environment Programme, UN Global Compact, International Civil Aviation Organization, International Maritime Organization, UN Fund for International Partnerships World Bank, World Trade Organization Montreal Protocol, UN Conference on the Law of the Sea, Environmental Modification Treaty, Convention on Biological Diversity Major Economies Forum on Energy and Climate, G20, REDD+ Partnerships e.g., US-India, Norway-Indonesia Global Methane Initiative, Renewable Energy and Energy Efficiency Partnership, Climate Group e.g., Gold Standard, Voluntary Carbon Standard Carbon Disclosure Project, Investor Network on Climate Risk e.g., EU climate change policy Regional Greenhouse Gas Initiative, California emissions-trading system US Mayors Agreement, Transition Towns C40, Cities for Climate Protection, Climate Alliance, Asian Cities Climate Change Resilience Network Nationally Appropriate Mitigation Actions (NAMAs) of developing countries; National Adaptation Programmes of Action (NAPAs) Figure 13.1. The landscape of agreements and institutions on climate change. Lines connecting different types of agreements and institutions indicate different types of links. In some cases, lines represent a formal agreement of a division of labour (e.g. between the UNFCCC and ICAO concerning aviation emissions). In other cases, lines represent a more simple mutual recognition (e.g. the accreditation of C40 cities by the UNFCCC). In others still, lines represent a functional linkage without any formal relationship (e.g. the relationship between the CDM and the NGO certification of carbon offsets). This is a rapidly-changing landscape and not all links may be captured. 16 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Future efforts for international cooperation on climate policy will need to account for this wide variety of agreements and institutions. Careful design of linkages and cooperative arrangements will be needed to manage the increasingly fragmented regime complex to prevent conflicts among institutions (Biermann et al., 2010; Keohane and Victor, 2011; Zelli, 2011), avoid gaps or loopholes (Downs, 2007), and maximize potential institutional synergies (Hoffmann, 2011; Rayfuse and Scott, 2012). 13.3.2 Insights from game theory for climate agreements Game theory provides insights into international cooperation on climate policy, from research communities in environmental economics (Ward, 1993; Finus, 2001, 2003; Wagner, 2001; Barrett, 2003, 2007) and in the rationalist school of political science (Sjostedt, 1992; Downs et al., 1996; Underdal, 1998; Koremenos et al., 2001; Avenhaus and Zartman, 2007; Hafner-Burton et al., 2012). These researchers analyze the incentives and motivations of actors to join and comply with international environmental agreements (IEAs). The game-theoretic literature on climate change agreements has grown substantially in the last two decades (Barrett, 2007; Rubio and Ulph, 2007; Chambers, 2008; Froyn and Hovi, 2008; Bosetti et al., 2009a; Asheim and Holtsmark, 2009; Dutta and Radner, 2009; Munoz et al., 2009; Carbone et al., 2009; Weikard et al., 2010; Bréchet et al., 2011; Wood, 2011; Heitzig et al., 2011; Dietz and Zhao, 2011; Bréchet and Eyckmans, 2012; Pittel and Rübbelke, 2012). It is important, however, to treat with caution any general conclusions from recent game theory literature on climate change agreements, as many have been criticized for their simplicity. In this section, we refrain from listing assumptions in detail, and restrict attention to the most general and policy-relevant discussions. See Finus (2001, 2003) for a more detailed review of the relevant game theory literature. By and large, the game-theoretic literature assumes actors to be states that are maximizing the welfare of their citizens (Ward, 1993; Carraro and Siniscalco, 1998; Grundig, 2006). A central premise is that there is currently no supranational institution that can impose an IEA on governments and subsequently enforce it (see Section 13.2.1.1). Thus, IEAs must be self-enforcing to engage and maintain participation and compliance (Finus, 2001; Barrett, 2007; Dutta and Radner, 2009; Rubio and Casino, 2005; Heitzig et al., 2011). Nevertheless, in theory and practice, international institutions can help to promote, negotiate, and administer an IEA. They can do so by serving to coordinate and moderate negotiations and implementation, reducing transaction costs of negotiations, and generating trust (Keohane, 1984, 1989; Finus and Rundshagen, 2006); changing the interests of actors by providing new information or building capacity (Haas et al., 1993); enlisting actors in domestic politics within and across states (Abbott and Snidal, 2010; Hafner-Burton et al., 2012); and inculcating norms (Bodansky, 2010a). Alternative perspectives on game theory weaken the assumption of rationality and emphasize the roles of legitimacy, norms, and acculturation in shaping behaviour under international law and institutions (Goodman and Jinks, 2004; March and Olsen, 2008; Brunnée and Toope, 2010; Bernauer et al., 2010; Hafner-Burton et al., 2012). See Chapter 2 for a discussion of behavioural approaches in the literature. 13.3.3 Participation in climate agreements Greater participation in climate change agreements, all else equal, improves environmental effectiveness by covering a larger share of global emissions and reducing potential leakage to nonparticipating areas. Greater participation may also improve aggregate economic performance by enabling lower-cost emissions abatement and reducing leakage. An international climate agreement regime might achieve depth (ambition of emissions reduction) and breadth (of participation) in different sequence. Schmalensee (1998) argues for breadth of participation first, with less emphasis on ambition. He argues that this approach allows time to develop correspondingly broad-based institutions that can potentially facilitate substantial aggregate emissions reductions over time 17 of 137 Final Draft Chapter 13 IPCC WGIII AR5 (Schelling, 1992; Barrett, 2003). Conversely, pursuing an arrangement with depth before breadth can be motivated by the urgency of the climate-change problem. However, such an approach may make broadening participation more difficult later on (Schmalensee, 1998), and this type of agreement could induce emissions leakage, undermining effectiveness (Babiker, 2005). In the theoretical literature, the tradeoff between the level of abatement by a sub-set of actors and participation in an IEA has been analyzed as a comparison between an ambitious versus a modest treaty (Finus and Maus, 2008; Courtois and Haeringer, 2011) or between a focal (deep and narrow) versus a consensus (broad but shallow) treaty (Barrett, 2002; Hafner-Burton et al., 2012). Scholars conclude that, overall, a consensus treaty may achieve more in terms of emission reductions and global welfare than a focal treaty. Further analysis has investigated the tradeoff between breadth and depth, and how broad participation can increase environmental effectiveness (by covering more emissions and reducing leakage), and reduce costs (by encompassing more low-cost abatement options in a larger market). Through these plausible mechanisms, greater breadth enables greater ambition (subject to the costs of attracting participants) (Battaglini and Harstad, 2012). While most existing IEAs feature open membership, some theoretical literature finds that exclusive membership can help to stabilize IEAs, prevent defection, and lead to better environmental outcomes, even in the context of a global public good such as climate protection (Carraro and Marchiori, 2003; Eyckmans and Finus, 2006; Finus, 2008a; Finus and Rundshagen, 2009). In practice, exclusive membership may reduce supply of a public good such as global emissions abatement, may increase emissions leakage (unless non-members are covered by their own coalition in a system of multiple agreements), and may conflict with norms of institutional legitimacy. Multiple agreements (i.e., multiple coalitions) may be a pragmatic, short- to mid-term strategy for achieving more effective cooperation if a universal treaty of all countries to limit emissions is not stable or attainable in the short-run (Finus and Rundshagen, 2003; Stewart and Wiener, 2003; Asheim et al., 2006; Eyckmans and Finus, 2006; Bosetti et al., 2009b; Bréchet and Eyckmans, 2012). Multiple coalition agreements involving all major emitters could potentially achieve better environmental effectiveness than a partial coalition acting while other countries do not act at all. However, for protecting a global public good, separate coalitions could forego some of the cost-effectiveness gains of a broader regime, and they could face questions of legitimacy (Karlsson-Vinkhuyzen and McGee, 2013). It remains unclear whether partial coalitions for climate policy will accelerate momentum for a more universal global agreement in the future, or undermine such momentum (Brewster, 2010). International transfers can also attract participation in climate agreements, balancing the asymmetric gains from cooperation. These transfers can either be direct monetary transfers (e.g., contributions to a fund from which developing countries can draw), in-kind transfers (e.g., technology transfer), or indirect transfers via market-based mechanisms (e.g., through the initial allocation of tradable emission permits) (Carraro et al., 2006; Barrett, 2007; Bosetti et al., 2009a; Fuentes-Albero and Rubio, 2010; Bréchet and Eyckmans, 2012; Stewart and Wiener, 2003). Historically, transfers have been important for building participation in past international agreements (Hafner-Burton et al., 2012; Bernauer et al., 2013). The experience of the Montreal Protocol illustrates how transfers can engage participation by major developing countries through financial and technological assistance (Sandler, 2010; Kaniaru, 2007; Zhao, 2005, 2002; Andersen et al., 2007). The role of technology transfer in international cooperation is discussed in greater detail in Section 13.9, and the role of finance is discussed in Section 13.11. Linkages across issues may also help encourage participation. Many linkages exist between climate change and other issues, such as energy, water, agriculture, sustainable development, poverty alleviation, public health, international trade, human rights, foreign direct investment, biodiversity, and national security (see Sections 3.5.3, 5.10, 6.6, and Section 13.2.1.1). Such linkages may create opportunities, co-benefits, or adverse side-effects, not all of which have been thoroughly examined. 18 of 137 Final Draft Chapter 13 IPCC WGIII AR5 However, the advantages of issue linkage may diminish as the number of parties and issues increase, raising the transaction costs of negotiations (Weischer et al., 2012). A different instrument to encourage participation is trade sanctions against non-parties to an IEA. The threat of trade sanctions can motivate participation (Barrett, 2003; Victor, 2011), as exemplified by the Montreal Protocol. However, since participation in an international treaty is voluntary, sanctions for non-participation may be difficult to justify (see Section 13.3.4). Similar to trade sanctions are offsetting border adjustment measures (BAMs) (see Section 13.8 for further discussion). Particularly vulnerable countries may be more likely to participate in agreements that address and fund adaptation activities (Huq et al., 2004; Mace, 2005; Ayers and Huq, 2009; Denton, 2010; Smith et al., 2011). Benefits of adaptation are often local, and these local benefits may be more effective incentives for countries vulnerable to climate damages to participate in an IEA relative to the benefits of mitigation and support for technological development or deployment. Both of these alternative possible incentive mechanisms are less-excludable and are of potentially less value to lower-emitting countries, compared with adaptation benefits. Recent game theoretic analyses suggest that private co-benefits from mitigation actions may not substantially increase participation in international climate agreements (Pittel and Rübbelke, 2008; Finus and Rübbelke, 2012). A final key issue related to participation is the role played by uncertainty. Earlier research suggested that reducing uncertainty about the benefits and costs of mitigation can render IEAs less effective, showing that as parties learn of the actual costs and benefits of mitigation, their incentive to participate may shrink (Na and Shin, 1998; Kolstad, 2005; Kolstad and Ulph, 2008). However, more recent work (Finus and Pintassilgo, 2012, 2013; Dellink and Finus, 2012) has qualified this conclusion by showing that removing uncertainty only has a negative impact on cooperation in certain cases. Recent experimental evidence suggests that if there is uncertainty in the likelihood of tipping points of disastrous climate change impacts, this may reduce the success of cooperation (Dannenberg et al., 2011); conversely, reducing uncertainty about the likelihood of tipping points can increase prospects for collective action (Barrett and Dannenberg, 2012). 13.3.4 Compliance As noted in Section 13.2.1.1, in the absence of a supranational authority, compliance with international agreements must be verified by parties to the agreement or through a related collaborative body they perceive as legitimate. Barrett (2003) sees compliance as a dimension of participation, in the sense that incentives to comply are incentives to continue participating in the agreement. The reputational costs of being a non-compliant party may differ from those of withdrawing altogether, but the magnitude of the difference is not clear. For example, there is only one case of withdrawal from the Kyoto Protocol, that of Canada in December 2011, but more than one case in which countries have not met their agreed emission targets (see Section 13.13.1.1). Compliance does not necessarily equate with success because countries choose whether to become party to an agreement, compliance may only reflect what countries would have done without the agreement (Downs et al., 1996). One measure of effectiveness is the extent to which the agreement changed countries behaviour, compared to what they would have done in the absence of the agreement (the counterfactual baseline scenario) (Hafner-Burton et al., 2012). Evaluating an agreement s effectiveness is difficult because the counterfactual is not observed (Simmons and Hopkins, 2005; Mitchell, 2008; Hafner-Burton et al., 2012). A necessary condition for successful compliance strategies is an independent and effective regime of measurement (or monitoring), reporting, and verification (MRV) with a high frequency of reporting (as documented in the IPCC AR3; see also Section 2.4.3.3). Provisions for greater transparency in MRV are being developed with regard to (1) countries GHG emissions, and (2) international financial flows from developed countries to developing countries for mitigation and adaptation measures 19 of 137 Final Draft Chapter 13 IPCC WGIII AR5 (Winkler, 2008; Breidenich and Bodansky, 2009; Ellis and Larsen, 2008; Ellis and Moarif, 2009; Clapp et al., 2012). Lessons on MRV from other multilateral regimes such as International Monetary Fund (IMF) consultations, Organisation for Economic Co-operation and Development (OECD) economic policy reviews, World Trade Organization (WTO) trade policy reviews, and arms control agreements include attention to accuracy, evolution over time, combining self-reporting with third-party verification, including independent technical assessment as well as some form of political or peer review, the potential use of remote sensing or other technical means, and public domain outputs (Cecys, 2010; Pew Center, 2010; Bell et al., 2012). Technical capabilities for monitoring emissions now include remote sensing from satellites which themselves pose new issues about the availability, diffusion, and governance of MRV capabilities for greater transparency. Greater transparency about financial flows requires detailed analysis of donor government budgeting in their legislative and administrative processes (Clapp et al., 2012; Falconer et al., 2012; Brewer and Mehling, 2014). Measurement, reporting, and verification may be beneficially complemented by enforcement strategies, which are comprised of positive inducements such as international transfers, financing, capacity-building, and technology transfer and credible threats of sanctions for violating emissions commitments or reporting requirements. From a rationalist perspective, compliance will occur if the discounted net benefits from cooperation (including direct climate benefits, co-benefits, reputation, transfers, and other elements) exceed the discounted net benefits of defection (including avoided mitigation costs, avoided adverse side-effects, and expected sanctions). The institutional and behavioural reality of ensuring compliance can be more complicated. Moreover, the theoretical literature has stressed the difficulty of designing credible sanctions that are renegotiation-proof (Finus, 2001, 2003; Barrett, 2002; Asheim et al., 2006; Froyn and Hovi, 2008). Some research suggests that the Kyoto Protocol is unusual among IEAs in that it established an elaborate and multifaceted compliance system, which has been successful in assuring compliance with MRV requirements (Finus, 2008b; Oberthür and Lefeber, 2010; Brunnée et al., 2012), while many other IEAs rely on self-reporting of domestic actions. Compliance with MRV requirements can in turn improve detection of other forms of noncompliance. Even if the Kyoto Protocol compliance regime has been imperfect, it can offer lessons for future regimes, in particular with regard to MRV. The design of sanction mechanisms currently in place under the Kyoto Protocol, however, has also been criticized for not being fully credible (Halvorssen and Hovi, 2006; Barrett, 2009; Vezirgiannidou, 2009), though possibilities for improvement through modification have been identified (Finus, 2008b). For example, a sanction could take the form of a temporary suspension of monetary and technological transfers if recipient countries are found in non-compliance (Finus, 2008b). It has also been shown that a deposit system can be effective to enforce compliance: treaty members lodge a deposit into a fund from which they receive interest as long as they comply. In case of noncompliance, parts of the deposit are forfeited to compliant countries (Gerber and Wichardt, 2009, 2013). Trade sanctions, such as those employed under the Montreal Protocol, are frequently put forward as a possible compliance mechanism (Barrett, 2003; Victor, 2011) (see Section 13.8 for institutional details and further discussion). A general reservation about trade sanctions is that they often not only affect the agreement-violator but also compliant countries, and hence this threat is not credible. Barrett (2009), Victor (2010), and others argue that trade sanctions are neither a feasible nor a desirable option for enforcing compliance with a climate agreement because trade sanctions may not be compatible with WTO rules. A WTO-compatible design may be feasible in the case of border adjustments with obligations to buy allowances (Ismer and Neuhoff, 2007; Monjon and Quirion, 2011a). Meanwhile, imposition of trade sanctions would pose some risks of reducing cooperation by undermining capacity for compliance in targeted countries and could be burdensome to low-income populations in targeted countries (Murase, 2011). Especially if applied to embedded carbon (carbon from energy used to produce traded goods), the number of goods affected by the 20 of 137 Final Draft Chapter 13 IPCC WGIII AR5 sanctions could be large, potentially fuelling a trade war that may negatively affect even those countries that intend to be the punishers (McKibbin and Wilcoxen, 2009) (see Sections 13.8 and 5.4.1 for further discussion). Finally, there is a considerable literature on the potential use of legal remedies (such as civil liability) to address climate damages (Penalver, 1998; Grossman, 2003; Allen, 2003; Gillespie, 2004; Hancock, 2004; Burns, 2004; Verheyen, 2005; Jacobs, 2005; Smith and Shearman, 2006; Lord et al., 2011; Farber, 2011; Faure and Peeters, 2011). There has been little suggestion that such liability remedies be formally incorporated into climate agreements as compliance mechanisms, and there would be significant obstacles to doing so (including the lack of a robust international civil liability system). Nonetheless, this is a potential avenue for encouraging compliance, perhaps indirectly. The IPCC AR4 (IPCC, 2007) reported on evidence from various legal actions and potential actions that have been considered in the theoretical literature. Haritz (2011) has argued, based on an analysis of the literature and court cases, that it is theoretically possible to link the IPCC scale of likelihood with a scale based on legal standards of proof required for various kinds of legal action. Liability for climate change damage at the supranational level (de Larragán, 2011; Gouritin, 2011; Peeters, 2011), and at the national level in the United Kingdom (Kaminskaite-Slaters, 2011), the United States (Kosolapova, 2011), and the Netherlands (van Dijk, 2011), has been explored. Climate litigation and legal liability may put additional pressure on corporations and governments to be more accountable (Smith and Shearman, 2006; Faure and Peeters, 2011). However, there are key analytical hurdles to establishing important legal facts, such as causation and who is to be held liable (Gupta, 2014). While not framed in terms of liability or compensation, the UNFCCC negotiations in Doha decided to establish institutional arrangements associated with Loss and Damage (UNFCCC, 2013a). 13.4 Climate policy architectures Policy architecture for global climate change refers to the basic nature and structure of an international agreement or other multilateral (or bilateral) climate regime (Aldy and Stavins, 2010a). The term includes the sense of durability, with regard to both policy structure and the institutions to implement and support that structure (Schmalensee, 1998, 2010), which is appropriate to the long-term nature of the climate-change problem. 13.4.1 Degrees of centralized authority Absent the emergence of a global authority that has the capacity to impose an allocation of emissions rights on countries, as advocated by Tickell (2008), approaches to international cooperation all arise out of negotiated agreements among independent participants. However, they vary in the degree to which they confer authority on multilateral institutions to manage the rules and processes agreed to. On one end of the spectrum of possible approaches, referred to by some as top-down (Dubash and Rajamani, 2010), actors agree to a high degree of mutual coordination of their actions with, for example, fixed targets and a common set of rules for specific mechanisms, such as emissions trading. On the other end of the spectrum, sometimes known as bottom-up (Victor et al., 2005; Dubash and Rajamani, 2010), national policies are established that may or may not be linked with one another. Figure 13.2 illustrates how existing and proposed international agreements can be placed on this spectrum (see IPCC, 2007, pp. 770 773 for a detailed list of many proposals that could be placed in this grid). The level of centralization refers to the authority an agreement confers on an international institution, not the process of negotiating the agreement. It shows that many proposals can be more or less centralized depending on the specific design. It also shows that the three idealized types discussed in the following sections have more blurred boundaries than their titles suggest. The figure also divides them into agreements focused on specific ends (emissions targets, for example) and those that focus on means (specific policies, or technologies, for example). Finally, it should be understood that these are idealized types, and in practice there will be considerable additional 21 of 137 Final Draft Chapter 13 IPCC WGIII AR5 complexity in how the basic design of agreements connect the actions of the various actors that make them up. There are distinct limits to what can be gleaned from the top-down vs bottom-up metaphor or the degrees-of-centralization notion employed here (Dai, 2010) as, for example, emphasized in Ostrom s (2012) accounts of polycentric governance . As one prominent example, the Cancún Agreements are a hybrid of top-down and bottom-up. They include voluntary mitigation pledges from many (but not all) UNFCCC parties, together with additional or elaborated common goals and centralized UNFCCC functions (e.g., with regard to adaptation, see Part II of the Cancún Agreements (UNFCCC, 2010)). It is quite possible that the agreement mandated by the Durban Platform on Enhanced Action, to be completed by 2015, will also be such a hybrid. Legend: Loose coordination of policies: examples include transnational city networks or NAMAs; R&D technology cooperation: examples include the Major Economies Forum on Energy and Climate (MEF), Global Methane Initiative (GMI), or Renewable Energy and Energy Efficiency Partnership (REEEP); Other international organization (IO) GHG regulation: examples include the Montreal Protocol, International Civil Aviation Organization (ICAO), International Maritime Organization (IMO); See Figure 13.1 for the details of these examples. Figure 13.2. International cooperation over ends/means and degrees of centralized authority. Examples in blue are existing agreements. Examples in pale pink are proposed structures for agreements. The width of individual boxes indicates the range of possible degrees of centralization for a particular agreement. The degree of centralization indicates the authority an agreement confers on an international institution, not the process of negotiating the agreement. 13.4.1.1 Centralized architectures and strong multilateralism A centralized architecture, such as that generated by strong commitments to multilateral processes and institutions, is an agreement that establishes goals, targets, or both which are generally binding, for participating countries, within a specific time-frame, and establishes collective processes for monitoring progress towards meeting those goals. The Kyoto Protocol adopted targets and timetables for participating Annex B countries, one realisation of strong multilateralism (Bodansky, 2007). Other centralized approaches to international cooperation could expand on targets-and22 of 137 Final Draft Chapter 13 IPCC WGIII AR5 timetables by also specifying the mechanism for implementation of the goals and/or targets of the agreement. Such an approach could establish, for example, a global cap-and-trade system or global carbon tax. In the literature, targets-and-timetables have been coupled with specific notions of fairness, prospective conditions for political acceptance, or both to establish quantitative targets and timetables for all countries and all years in a potential international agreement (Agarwala, 2010; Frankel, 2010; Höhne et al., 2008; Bosetti and Frankel, 2011; Cao, 2010c; IPCC, 2007, chap. 13). 13.4.1.2 Harmonized national policies A less-centralized approach would be to structure international cooperation around policies that would be harmonized, such as via collective monitoring, but where relatively little centralized authority is established or employed. In this class of approaches, aspects of national policies are made similar or even equivalent to one another. Examples include the G20 and Asia-Pacific Economic Cooperation (APEC) agreement in 2009 to phase out fossil fuel subsidies that encourage wasteful consumption (Barbier, 2010); the EU s use of private certification schemes for biofuels to link to its import policies for such fuels; efforts to harmonize private carbon-accounting systems, such as in the Carbon Disclosure Standards Board (Lovell and MacKenzie, 2011); hypothetical national carbon taxes that would be harmonized internationally (Cooper, 2010); adjusting design details of cap-and-trade schemes that are to be linked; and implementation of similar technology or performance standards. Many of these involve or would involve relatively limited numbers of actors, compared to UNFCCC agreements, reflecting the minilateralism discussed in Section 13.2.1.1. The so-called pledge and review approach, exemplified to some degree by the Copenhagen Accord and the Cancún Agreements, is an architecture in which a participating nation or region voluntarily registers to abide by its stated domestic reduction targets or actions (pledges). The degree of centralization generated by this approach could vary considerably (see Figure 13.2), depending on the particular arrangement. If a pledge and review system, such as that represented by the Cancún Agreements, involved cooperation in forging an agreement that provided some centralized administration or monitoring (in addition to the voluntary announcement of pledges by individual countries), it could be considered an example of strong multilateralism, although perhaps with less centralized authority than the Kyoto Protocol or of coordinated national policies. 13.4.1.3 Decentralized approaches and coordinated policies Finally, even more decentralized architectures may arise out of different regional, national, and subnational policies, and subsequently vary in the extent to which they are connected internationally (Victor et al., 2005; Hoffmann, 2011). One form of decentralized architecture is linked regional, national, or sub-national tradable permit systems (Jaffe et al., 2009; Ranson and Stavins, 2012; Mehling and Haites, 2009). In such a system, smaller-scale tradable permit systems can be linked directly (e.g., through mutual recognition of the permits from other systems) or indirectly (e.g., through mutual recognition of an emission-reduction credit system such as the Kyoto Protocol s CDM). In practice, such a system of linkage is already emerging. However, there remains the challenge of harmonizing the design details of the various trading systems, as discussed above (e.g., emissions reductions requirements, proportions of target emissions that may be covered by offset credits, use of ceiling or floor prices, and accounting units (Jaffe et al., 2009; Bernstein et al., 2010). Similarly, heterogeneous regional, national, or sub-national policies could be linked either directly or indirectly (e.g., cap and trade in one jurisdiction linked with a tax in another) (Metcalf and Weisbach, 2012). Linkage of heterogeneous policies can occur through trade mechanisms (e.g., import allowance requirements or border adjustments) or via access to a common emission reduction credit system (e.g., the CDM, as with indirectly linked tradable permit systems). 23 of 137 Final Draft Chapter 13 IPCC WGIII AR5 13.4.1.4 Advantages and disadvantages of different degrees of centralization Some authors conclude, particularly post-Copenhagen, that attempts to develop a comprehensive, integrated climate regime have failed, due to resistance to costly policies in both developed and developing countries and lack of political will (Michonski and Levi, 2010; Keohane and Victor, 2011), or alternatively because of the complexity that characterizes the problem (Hoffmann, 2011). Other analyses emphasize the legitimacy of the UN, particularly citing its universal membership (Hare et al., 2010; Winkler and Beaumont, 2010; Müller, 2010; La Vina, 2010) and noting that fragmentation of the climate regime could create opportunities for forum shopping, a loss of transparency, and reduced ambition (Biermann et al., 2009; Hare et al., 2010; Biermann, 2010). Other studies have examined (1) the evolution of multilateralism (Bodansky and Diringer, 2010) and possible transitional arrangements from fragmentation to a comprehensive agreement (Winkler and Vorster, 2007), and (2) how to manage fragmentation so that it may become synergistic rather than prone to conflict (Biermann et al., 2009; Oberthür, 2009). 13.4.2 Current features, issues, and elements of international cooperation The policy architecture for climate change raises a number of specific questions about the structure of international cooperation. Four specific elements are of particular contemporary relevance: legal bindingness; goals, actions, and metrics; flexibility mechanisms; and participation, equity, and effortsharing methods. These four elements deal with the key questions of how much an agreement insists on compliance with its obligations, what obligations it establishes, how flexible the implementation of the obligations may be, and how the obligations may vary across actors and situations. The discussion below focuses on mitigation of GHG emissions, but the four key elements apply as well to adaptation, financing, and other potential topics of international agreements on climate change. For example, UNFCCC Article 4(1)(b) (UNFCCC, 1992) calls on all parties to formulate and implement both measures to mitigate climate change by reducing net GHG emissions, and measures to facilitate adequate adaptation to climate change. Understanding what is meant by such obligations requires examining these four key elements. 13.4.2.1 Legal bindingness States choose whether to join an agreement, and can withdraw from an agreement, so international agreements exist by consent of the parties (Waltz, 1979; Thompson, 2006). Having said this, international agreements among states (national governments) may be more or less legally binding on their parties. The degree of bindingness depends on both the legal form of the agreement and the costs to the state of noncompliance. Among the indicators of legal bindingness in the agreement itself are (1) legal type (e.g., treaty, protocol to a treaty, decision of the UNFCCC Conference of the Parties, and political declaration); (2) mandatory commitments, i.e., whether a commitment is expressed in obligatory language (e.g., shall or must, vs. should or aim )(Werksman, 2010)(Werksman, 2010); (3) specificity, i.e., whether [commitments] are expressed in sufficient detail to accurately assess compliance ; and (4) the type of enforcement procedures, mechanisms, and sanctions designed to implement an agreement by monitoring, reviewing, and encouraging compliance with commitments (Werksman, 2010). International agreements may be labelled hard law (such as treaties, their protocols, and contracts) that are legally binding on the parties, or soft law (such as declarations, resolutions, and guidelines) that are not legally binding. But the reality is more complex (Baxter, 1980; Abbott et al., 2000; Bodansky, 2010a; Guzman and Meyer, 2010). Across types of agreements, commitments may be more or less legally binding; for example, although treaties often contain mandatory commitments, a treaty may also contain hortatory provisions, such as aims and pledges, which are understood to be aspirational; while a political declaration may nonetheless contain provisions that raise strong expectations and consequences for failure (Raustiala, 2005). Some commitments may be specific and subject to monitoring and accountability, while others are vague and difficult to verify (Abbott 24 of 137 Final Draft Chapter 13 IPCC WGIII AR5 and Snidal, 2000). Further, across types of agreements, the enforcement mechanism may be weak or rigorous, ranging from inaction to admonishments to trade sanctions to military force. The bindingness of an agreement depends on the costs to a state of nonparticipation, noncompliance, or withdrawal as well as to legal form. These costs include, as discussed above (see Section 13.3.4), not only the costs of sanctions imposed by the agreement s enforcement mechanism, but also the costs incurred from the state s loss of reputation and from the loss of mutual cooperation by other states. Reputational costs and lost-cooperation costs can influence states to adhere to (initially informal) norms; hence strong norms with high costs of violation are sometimes called binding (Hoffmann, 2005, 2011; MacLeod, 2010). Table 13.1 provides a taxonomy the bindingness of international agreements (Bodansky, 2003, 2009). The usage of mandatory in the table refers to the specific wording of the commitment not to a state s choice of whether to participate or not. 25 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Table 13.1. Taxonomy of legal bindingness: examples of commitments in international agreements for climate change Legal character (noting relevance of indicators Description Example 1 4 discussed in the text) Mandatory provision in A legally binding commitment can be The targets and timetables in the Kyoto a legally binding subject to a compliance regime, with Protocol (UNFCCC, 1998) and the agreement with authority to sanction non-compliant Marrakech Accords (UNFCCC, 2001), enforcement parties. Enforcement can also come in with specific quantitative emissions mechanisms. (1) (4) the form of reciprocity for non-compliant limits, a compliance system that actions. sanctions non-compliance, and flexibility mechanisms. (Outside the climate arena, the World Trade Organization is the most prominent example of this type.) Mandatory provision in Legally binding, but subject only to self- Article 4.1 of the UNFCCC (1992), a legally binding enforcement. mandating, inter alia, national emissions agreement without inventories, measures to mitigate, and enforcement measures to facilitate adaptation. mechanism. (1) and (2); possibly (3); but not (4) Non-mandatory Such a provision does not demand Article 4.2 (a) and (b) of the UNFCCC provision in a legally compliance, but carries somewhat more (1992) commit developed countries to binding agreement. weight than a political agreement. adopt policies and measures to limit (1), but not (2) (4) their net GHG emissions (a mandatory provision); 4.2(a) then recognizes that returning these emissions to earlier levels by the year 2000 would be desirable, and 4.2(b) provides the aim of returning to 1990 levels (both nonmandatory provisions). Mandatory provision in Such a provision may induce the party to The pledges on targets and actions a non-legally binding act, through norms, reputation, and submitted by states pursuant to the ( political ) agreement. reciprocity. Copenhagen Accord (UNFCCC, 2009a) (2), possibly (3); but and Cancún Agreements (UNFCCC, not (1) or (4) 2010). (Outside the climate arena, the moratorium on high seas driftnet fishing is treated as binding by many states, even though United Nations General Assembly (UNGA) resolutions are not binding.) Non-mandatory An aim or aspiration, expressed in Targets set in the Noordwijk Declaration provision in a nonhortatory, non-binding language. This (1989), at a ministerial conference on legally binding type of provision typically includes one climate change held prior to the 1992 ( political ) agreement. or more statements of principles or Rio summit. None of (1) (4) norms. Research has not resolved whether or under what circumstances a more binding agreement elicits more effective national policy. In general, a more legally binding commitment is more subject to monitoring and enforcement (both internationally and domestically), is more likely to require ratification by domestic institutions, and signals a greater seriousness by states (Bodansky, 2003; Rajamani, 2009). These factors increase the costs of violation (through enforcement and sanctions at 26 of 137 Final Draft Chapter 13 IPCC WGIII AR5 international and domestic scales, the loss of mutual cooperation by others, and the loss of reputation and credibility in future negotiations). On the other hand, there may be situations where there is a tradeoff between legal bindingness and ambition (stringency of commitments). Because greater legal bindingness implies greater costs of violation, states may prefer more legally binding agreements to embody less ambitious commitments, and may be willing to accept more ambitious commitments when they are less legally binding. (Rajamani, 2009; Raustiala, 2005; Guzman and Meyer, 2010; Albin, 2001; Grasso and Sacchi, 2011; Bodansky, 1999; Bernstein, 2005; See also Sections 13.2.2.5 and 13.3.3) 13.4.2.2 Goals and targets Most agreements that advance international cooperation to address climate change incorporate goals. Goals are long-term and systemic (as contrasted with absolute emissions-reduction targets, which may flow logically from the goals but which are near-term and specific ) (IPCC, 2007, chap. 13). The goals of an international agreement might include, for example, stabilization levels (or a reduction in a previously agreed stabilization level) of atmospheric concentrations of GHGs or reductions in impacts of climate change. Targets can be classified according to whether they require absolute GHG cuts relative to a historical baseline, or reductions relative to economic output, population growth, or business-as-usual projections (intensity targets). In recent literature on targets´ metrics, there has been a focus on whether or not intensity targets are superior to fixed ones when there is uncertainty about the future (Jotzo and Pezzey, 2007; Marschinski and Edenhofer, 2010; Sue Wing et al., 2009; Conte Grand, 2013). There are tradeoffs between reduced uncertainty about the cost of abatement, associated with intensity targets, and reduced uncertainty about environmental effectiveness, associated with absolute targets (Ellerman and Wing, 2003; Herzog, Timothy et al., 2006). In the UNFCCC climate negotiations, examples of fixed targets are Kyoto Annex B country-emission reductions by 2008 2012 with respect to 1990 levels, and Copenhagen pledges (Some of the developed countries propose emissions reductions by 2020 with respect to some base year 1990, 2000, or 2005 while some of the developing economies suggest reductions by 2020 with respect to their business-as-usual trends). On the other hand, intensity targets have been proposed by China and India: their pledge is a reduction of carbon intensity (i.e., emissions/gross domestic product (GDP)) between 40 and 45% and 20 and 25% respectively by 2020 with respect to 2005 (Steckel et al., 2011; Zhang, 2011; Yuan et al., 2012; Cao, 2010b; Government of India, 2012). Another carbon target linked to GDP was the one planned by Argentina in 1999 (Barros and Conte Grand, 2002). 13.4.2.3 Flexible mechanisms One focus of international negotiations has been enabling states to have flexibility in meeting obligations. In principle, there are numerous ways this could be achieved. For example, there could be provisions for renegotiating targets. The most often-cited benefit of flexibility is reduction in the costs associated with GHG-emissions reductions. However, Hafner-Burton et al. (2012) explore whether increased flexibility in designing obligations for states helps them align their international obligations more readily with domestic political constraints. In existing interstate agreements, flexibility has been pursued principally through mechanisms that create markets. The rationale for these is to lower the cost of reducing emissions, relative to traditional regulatory regimes, as they direct investments in emissions reductions toward lower-cost abatement opportunities available in various jurisdictions. Such flexible mechanisms can involve trading emissions allowances under a fixed overall cap, generating offset credits, or combinations of the two. Generally, offset credits can be generated through project-based mechanisms or crediting of policies and sectoral actions. The former have been developed since the mid-1990s, with the CDM as by far the largest programme (Michaelowa and Buen, 2012); the literature assessing the CDM is reviewed in Section 13.13.1.1.) The latter are still being discussed with regards to post-2012 climate 27 of 137 Final Draft Chapter 13 IPCC WGIII AR5 policies in the context of new market mechanisms related to mitigation policies in developing countries (Nationally Appropriate Mitigation Actions (NAMAs)). Additionally, inter-temporal flexibility may be added to an allowance-trading regime through banking and borrowing of allowances, by which regulated entities may transfer current obligations to the future or vice versa. However, the environmental effectiveness and distributional impact of carbon markets have also raised concerns (Lohmann, 2008; Böhm and Dabhi, 2009). The Kyoto Protocol provides three flexible mechanisms: Joint Implementation (JI), the CDM, and international emissions trading (IET) (in Articles 6, 12, and 17, respectively). Joint Implementation and CDM both generate offset credits from projects that reduce GHG emissions, and IET allows for government-to-government trading of Kyoto emissions allowances. Most attention in the research on these mechanisms has focused on the CDM, in part because of the volume of trading compared to the others (on the relatively small volume in Kyoto emissions trading, see Aldrich and Koerner, 2012). The credits from JI and CDM may be used by Annex B countries to meet their emissions-reduction obligations. In practice, the key driver of investment in CDM projects has been the European Union (EU) Emission Trading Scheme (ETS), which allows regulated entities (companies or installations) to use credits from the CDM (referred to as Certified Emission Reductions (CERs) and from JI (referred to as Emissions Reduction Units or ERUs) to meet a portion of their ETS obligations (see Sections 13.6.1 and 14.4.2.1 for details). The EU ETS has accounted for about 84% of demand for CERs and ERUs from 2008 2012. The next largest source of demand for CERs and ERUs comes from Japan, at 15% of demand (Kossoy and Guigon, 2012). Market-based flexibility mechanisms are evolving. Japan is pursuing bilateral crediting approaches under its Joint Crediting Mechanism/Bilateral Offset Crediting Mechanism (Ministry of the Environment, Government of Japan, 2012). COP-17 in Durban in 2011 mandated two approaches be pursued in the UNFCCC negotiations leading to a new international agreement in late 2015: (1) topdown, operating under authority of the COP ( new market-based mechanism ), which, as noted, focuses in large part on sectoral crediting; and (2) bottom-up, developed by countries in accordance with their national circumstances ( framework for various approaches ), which attempts to coordinate heterogeneous policies across countries. COP-18 in Doha, Qatar, in 2012 reiterated and developed further details regarding these two approaches (UNFCCC, 2013b). 13.4.2.4 Equitable methods for effort sharing While universal participation might be desirable in principle, actors participate in a context of heterogeneity in both economic capacity and emissions levels. Variations in both wealth and emissions have evolved over time; for example, many countries classified in the 1992 UNFCCC as developing (non-Annex I) have since experienced increasing incomes and increasing emissions (in some cases exceeding the incomes and/or emissions of some countries classified in 1992 as developed (Annex I)). These variations and continued differences are discussed further in Section 4.1.2.2. As to participation in international agreements, in general, a country is less likely to participate in an international agreement the more the country perceives the agreement to be unfair to its own economic and environmental interests. Addressing climate change equitably can thus be central to pursuing broad participation in climate agreements. There is disagreement, however, about how to put equity principles into practice in international agreements. The UNFCCC adopted the principle of CBDRRC of parties (Article 3.1) (UNFCCC, 1992). Several different approaches have been advanced for putting this principle into practice. Deleiul (2012) argues that CBDRRC initially facilitated agreement and participation in the UNFCCC, but has become more contentious as national variations in income and emissions have evolved over time (hence Deleiul sees promise in the Durban Platform, which calls for mitigation contributions from all parties in a new treaty concluded by 2015, to take effect by 2020). 28 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Section 4.6.2 elaborates these different approaches in detail, and suggests they can be broadly divided into those that start with the status quo of emissions, that thus focus on the question of effort-sharing or burden sharing, and those that start with a specific account of rights to GHG emissions (such as equal per capita or equal per GDP emissions) and derive targets for countries from that formula (known as resource-sharing ). Rao (2011) refers to these as burden sharing vs. resource-sharing equity principles. Burden sharing methods are reviewed in (Jotzo and Pezzey, 2007; den Elzen and Höhne, 2008, 2010; Winkler et al., 2009; Chakravarty et al., 2009; Mearns and Norton, 2010; Frankel, 2010; Ekholm et al., 2010; Marschinski and Edenhofer, 2010; Cao, 2010c; Tavoni et al., 2013; den Elzen et al., 2013b; Höhne et al., 2013). Resource-sharing approaches are examined in (Höhne et al., 2006; Chakravarty et al., 2009; Baer et al., 2009; Kanitkar et al., 2010; Jayaraman et al., 2011; Rao, 2011; Kartha et al., 2012). Section 6.3.6.6 elaborates a wide range of possible approaches and quantifies them in terms of levels of emissions reductions for various world regions. One recent example is Winkler et al. (2013), which evaluates several approaches for mitigation of and adaptation to climate change, and suggests that these call for more mitigation in wealthier countries. Recent research is also comparing various measures of equity for climate policy within developing countries (Casillas and Kammen, 2012). Section 13.13 assesses existing and proposed agreements in light of these criteria. 13.4.3 Recent proposals for future climate change policy architecture An extensive literature has examined what options could be pursued post-2012 , after the end of the first commitment period (CP1) of the Kyoto Protocol. The literature now contains several surveys of diverse proposals (see summaries of pre-2007 literature in Höhne et al., 2008; Moncel et al., 2011; Aldy and Stavins, 2010b; Rajamani, 2011b, 2012a; IPCC, 2007, chap. 13). Table 13.2 describes recent proposals for climate policy architectures. Qualitative and quantitative performance assessments of these proposals, where available, are surveyed in Section 13.13. 29 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Table 13.2. Description of recent proposals for climate change policy architectures Proposed Architecture Description (recent references) Strong multilateralism Indicator-linked national All countries adopt emissions targets and timetables, with time of participation and commitments participation and/or target levels based on one or more indicators (Baer et al., 2009; Chakravarty et al., (per capita income, economic cost as percentage of national income, 2009; Frankel, 2010; Bosetti and historical emissions). Targets can both be reductions in emissions Frankel, 2011; WBGU, 2009; Cao, growth rates as well as absolute reductions. 2010c; BASIC Project, 2007; Winkler et al., 2011) Per capita commitments Countries implement equal per capita emissions targets, resulting in (Agarwala, 2010) significant emissions increases for many developing countries, and significant decreases for industrialized countries. Top-down burden sharing Emissions targets based on equal per capita emissions, mitigation (Baer et al., 2009; Kartha et al., 2012; burden proportional to cumulative emissions and ability to pay, Cao, 2010c; Kanitkar et al., 2010; countries with similar economic circumstances have similar burdens, Jayaraman et al., 2011) and poorest countries and individuals exempt from obligations. Sectoral approaches Countries develop national emissions targets by sector, and (Sawa, 2010; Schmidt et al., 2008; governments make international commitments to implement policies Barrett, 2010; den Elzen et al., 2008) to achieve targets (Sawa, 2010) or based on staged sectoral approach (den Elzen et al., 2008); can be developed in a portfolio of treaties (Barrett, 2010). Alternatively, developing countries pledge to meet voluntary sectoral targets; reductions beyond targets can be sold to industrialized countries (Schmidt et al., 2008). Portfolio system of treaties Separate international treaties concluded for different sectors, (Barrett, 2010; Stewart et al., 2012) different GHGs. Treaty obligations apply globally, and developing countries offered financial assistance to aid compliance and induce participation. Trade restrictions used to enforce agreements in tradesensitive sectors. Harmonized national policies Global emissions permit trading The EU ETS serves as prototype for a global emissions trading system. system (Ellerman, 2010) Design informed by EU ETS experience, which has a central coordinating institution (the European Commission), mechanisms to expand participation to new Member States, and effective financial flows resulting from trading. Distributional impacts addressed by specific design features. International carbon tax A common charge levied on all global GHG emissions, most practically (Cooper, 2010; Nordhaus, 2008; upstream (at oil refineries, gas pipelines, mine mouths, etc.). Each Metcalf and Weisbach, 2009) country collects and keeps its own revenues. Charges rise over time according to schedule to induce cost-effective technological change. Distributional impacts addressed by allocation of revenues. Hybrid market-based approaches A tradable emissions permit system includes a price ceiling, a price (Fell et al., 2012) floor, or a combination of the two (a price collar). System functions like a hybrid of a tax and a tradable permit system. The price ceiling (often called a safety valve ) can take the form of unlimited allowances sold at a fixed price or a limited allowance reserve. Decentralized architectures and coordinated national policies Linked domestic cap-and-trade Domestic and international emissions trading and emissions systems reduction credit systems linked, directly or indirectly, to achieve cost (Jaffe and Stavins, 2010; Jaffe et al., savings. Direct linkages require more coordination, while indirect 2009; Bernstein et al., 2010; Metcalf linkages (of cap-and-trade systems through a common credit system, and Weisbach, 2012; Ranson and for example) require less. Linkage achieved independently (as a Stavins, 2013) bottom-up architecture), as a transition to a new top-down architecture, or as an element of a broader climate agreement. 30 of 137 Final Draft Proposed Architecture (recent references) Linked heterogeneous policy instruments (Metcalf and Weisbach, 2012) Chapter 13 IPCC WGIII AR5 Description Domestic and international emissions trading systems linked with carbon tax systems, allowing emissions permits from one country to be remitted as tax payments, and/or allowing payments in excess of the tax in one country to satisfy the requirement to own a permit in another. Alternatively, fixed emissions standards (or even technology standards) linked with taxes or tradable permit systems across countries or regions. International climate change agreements to cover issues such as knowledge sharing and coordination, joint research and development, technology transfer, and/or technology deployment mandates or incentives. Distributional impacts affected by intellectual property sharing rules. Technology-oriented agreements (Newell, 2009, 2010a; de Coninck et al., 2008) 13.4.4 The special case of international cooperation regarding carbon dioxide removal and solar radiation management Since the publication of AR4, carbon dioxide removal (CDR) and solar radiation management (SRM) have received increasing attention as a means to address climate change, distinct from mitigation and adaptation. These two approaches are often collectively referred to as geoengineering or climate engineering (for more detail, see WGI 6.5 and 7.7). Carbon dioxide removal refers to techniques to extract GHGs directly from the atmosphere and store them in sinks, or to directly enhance such sinks. Solar radiation management aims to reduce the amount of solar radiation absorbed by the Earth s surface. Proposed SRM projects can be atmospheric (e.g., cloud brightening or adding reflective sulphate particles to the lower stratosphere), terrestrial (e.g., enhancing the albedo of the ground, or painting pavements and roof materials white to reflect solar radiation) and space-based (e.g., placing mirrors in space). See Working Group I report, Section 7.7, for details of these. Some SRM options (e.g., injecting sulphate particles into the lower stratosphere) may be inexpensive enough for individual states (Barrett, 2008a) and even non-state actors, such as wealthy individuals, to undertake (Barrett, 2008a; Victor, 2008; Lin, 2009; Victor et al., 2009; Bodansky, 2011b). CDR and other SRM approaches might need to be implemented by numerous countries in order to be effective (Humphreys, 2011). Some SRM options may also have specific regional impacts (e.g., regional temperature and precipitation effects, leaf albedo enhancement, or ocean circulation modification), providing direct and perhaps excludable benefits to actors undertaking them (MillardBall, 2012) and external costs to others (Ricke et al., 2010, 2013). See also WGII 19.5.4 for detailed discussion of the risks of SRM. Smaller-scale actors that are particularly vulnerable to climate change impacts may perceive advantages to be first-movers with SRM, in order to ensure both global climate protection and a favourable distribution of regional impacts from their selected SRM projects (Ricke et al., 2010; Millard-Ball, 2012). Hardly any cooperation might be needed for SRM s development and deployment indeed, countries facing severe impacts might rush to launch a preferred SRM project (Millard-Ball, 2012). If the benefits of such an SRM project outweigh the adverse side-effects, and its costs are indeed low, then such an SRM project might be desirable. But such unilateral action could also produce significant adverse side-effects and costs for other actors, if the SRM option chosen is one that secures climate benefits for one part of the world while creating climate or other damages in other parts (Lin, 2009). Solar radiation management may also be ineffective in mitigating some climate impacts, for example the acidification of oceans from absorption of excessive CO2 (Humphreys, 2011). Further, SRM does not reduce concentrations of atmospheric GHGs, and interrupting SRM after concentrations have risen significantly could allow temperatures to rise rapidly (see also Smith and Rasch, 2012). 31 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Solar radiation management poses the converse of the collective action and governance challenges arising from emissions-reduction efforts: rather than mobilizing hesitant action to limit emissions, SRM governance involves restraining hasty unilateral action (Victor, 2008; Victor et al., 2009; Virgoe, 2009; House of Commons Science and Technology Committee, 2010; Lloyd and Oppenheimer, 2014; Millard-Ball, 2012; Bodansky, 2011b). One of the main issues for international cooperation will be to develop institutions and norms to address potential negative consequences of SRM in other social or environmental fields, or for parts of the world either not protected or negatively affected by the SRM option chosen. Thus, some analysts have recommended that international governance be organized for SRM research and testing, to learn about the benefits and side-effects of SRM options, to develop institutions to decide if and when to deploy SRM, to learn how to maintain SRM capabilities, and to monitor and evaluate this research and its use (Victor et al., 2009; Blackstock and Long, 2010; Lin, 2009; Solar Radiation Management Governance initiative, 2011). Some existing international agreements may be relevant to geoengineering. The UNFCCC already includes a provision, Article 4.1(f), requiring assessment of the adverse impacts of mitigation measures. The UN Convention on Law of the Sea contains important provisions on environmental protection (Redgwell, 2006), and may have increased significance with regards to the governance of marine-based carbon dioxide storage or geo-engineering options (Virgoe, 2009). Under the London Convention and Protocol, the International Maritime Organization (IMO) held that, given the uncertainty surrounding negative impacts, ocean fertilization other than legitimate scientific research ought not be permitted (Reynolds, 2011; IMO resolution LC-LP.1, 2008 and LC-LP.2, 2010). Several multilateral fora have recently taken up the issue of SRM. The 1992 Convention on Biological Diversity (CBD) adopted a decision calling for a moratorium on geo-engineering activities that may affect biodiversity (Convention on Biological Diversity, 2010; Tollefson, 2010). Other existing multilateral treaties and agreements that may relate to geo-engineering include: the 1977 UN Convention on the Prohibition of Military or any Other Hostile Use of Environmental Modification Techniques (the ENMOD Convention) (though it restricts only hostile actions); the convention on Environmental Impact Assessment in a Transboundary Context (UNECE, 1991); the 1959 Antarctic Treaty System (US Department of State, 2002); and ongoing developments in human rights law and in environmental law (Reynolds, 2011; Convention on Biological Diversity, 2012). Further, the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (United Nations, 2002) may apply to the use of sundeflecting mirrors in space. 13.5 Multilateral and bilateral agreements and institutions across different scales This section builds on the description of the climate policy landscape in Section 13.3.1 and plausible climate policy architectures in Section 13.4. It considers the experience and evolution of international and transnational cooperation on climate change between states and non-state actors since 2007 when the Fourth Assessment Report of the IPCC was published. 13.5.1 International cooperation among governments 13.5.1.1 Climate agreements under the UNFCCC The UNFCCC s universal membership provides it with a high degree of legitimacy among parties around the world (Karlsson-Vinkhuyzen and McGee, 2013). Steps taken under the Convention and its Kyoto Protocol have led to more extensive action than under other forms of international cooperation on climate change. 32 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Evolution of the multilateral climate regime since AR4 At COP-13 in Bali in 2007, discussions on long-term cooperative action under the Convention turned into negotiations under the Bali Action Plan (UNFCCC, 2007a). Also in Bali, countries agreed to MRV of mitigation commitments or actions by developed countries and mitigation actions by developing countries and support for those. Under the Copenhagen Accord (UNFCCC, 2009a) and Cancún Agreements (UNFCCC, 2010), Forty-two developed countries (including the 27 EU member states) submitted absolute reduction commitments against various base years in the form of quantified economy-wide emissions targets for 2020. Fifty-five developing countries and the African Union submitted information on NAMAs to the UNFCCC (as of May 2013), which are subject to domestic and international MRV. These 55 developing countries expressed their proposed goals in a variety of ways (e.g., relative emission reductions, deviation below business-as-usual, absolute reductions, and goals related to carbon neutrality); 16 proposed economy-wide goals for mitigation of GHGs. Since 2010, no major economy has significantly changed its emission reduction proposal under the UNFCCC, though some countries have clarified their assumptions and business-as-usual emission levels (UNEP, 2010, 2011, 2012, 2013b; den Elzen et al., 2013a; Sharma and Desgain, 2013; UNFCCC, 2013c). Figure 13.3 displays the different categories of actions and pledges taken by countries under the Cancún Agreements and the Kyoto Protocol as of September 2013. COP-17 in Durban in 2011 produced the Durban Platform for Enhanced Action (UNFCCC, 2011a), in which the delegates agreed to launch a process to develop a protocol, another legal instrument or an agreed outcome with legal force under the Convention applicable to all Parties (UNFCCC, 2011a) and complete its work as early as possible but no later than 2015 in order to adopt this protocol, another legal instrument or an agreed outcome with legal force at the twenty-first session of the Conference of the Parties and for it to come into effect and be implemented from 2020 (UNFCCC, 2011a). 33 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Figure 13.3. Global map showing the different categories of reduction proposals or commitments for 2020 under the Cancún Agreements and Kyoto Protocol, based on UNEP (2012, 2013b) with underlying data supported by UNFCCC (2011b, 2012d, 2013c). Evolution of coalitions among UNFCCC parties New and existing coalitions of countries have engaged in the UNFCCC negotiations, each presenting coordinated positions. Several distinct coalitions of developing countries have formed to negotiate their divergent priorities. Examples include the G77 & China, which represents 131 developing countries operating in the UNFCCC and the UN system more broadly and which contains sub-groups such as the African Group, the Least Developed Countries, and the Arab Group; the Alliance of Independent Latin American and Caribbean states; and a like-minded developing country group that included China, India, and Saudi Arabia (Grubb, 2013). Other coalitions organized to influence UNFCCC negotiations include the Alliance of Small Island States (AOSIS), which has played a significant role in UNFCCC negotiations since the early 1990s; various groupings of industrialized countries, including the Umbrella Group; the Environmental Integrity Group, which was the first coalition to include both industrialized and developing countries; the BASIC countries (Brazil, South Africa, India and China) (Olsson et al., 2010; Rong, 2010; Nhamo, 2010); the Coalition of Rainforest Nations, which has increased the salience of forests in climate negotiations; and other active coalitions not limited to the climate context, for example the Comision Centroamericana de Ambiente y Desarollo and the Bolivarian Alliance for the Americas. Negotiations under the Kyoto Protocol Negotiations on a second commitment period (CP2) of the Kyoto Protocol were launched in Montréal in 2005. These negotiations concluded in late 2012 at COP-18 in Doha, Qatar with a decision and amendment establishing the second commitment period of the Protocol for 2013 2020. However, a number of Annex I countries (Belarus, Canada, Japan, New Zealand, Russia, the United States, and Ukraine) decided not to participate in the second commitment period. The 34 of 137 Final Draft Chapter 13 IPCC WGIII AR5 other Annex I countries (Australia, the EU and its member states, Iceland, Liechtenstein, Monaco, New Zealand, Norway, Switzerland, and Ukraine) adopted quantified emission reduction commitments (Figure 13.3), covering 13% of global GHG emissions at 2010 emission levels (UNFCCC, 2012d; JRC/PBL, 2012). At COP-18 in Doha in 2012, parties also agreed upon rules for transferring surplus Kyoto emissions allowances from the first to the second period. These rules are assessed in Section 13.13.1.1, and the evolution of market-based flexibility mechanisms in the UNFCCC negotiations is discussed in Section 13.4.2.3. New institutions under the UNFCCC and the Kyoto Protocol The UNFCCC and its Kyoto Protocol have brought about a number of new institutions focused on adaptation (funding and coordination), finance, and technology. The Adaptation Fund was established to provide direct access to financing for developing countries and is governed by a majority of developing countries. The Adaptation Committee was established to coordinate previously fragmented aspects of adaptation policy under the Convention, with modalities and linkages to other institutions to be defined (UNFCCC, 2011c) (see Section 13.11.1.1). The GCF is accountable to the Conference of the Parties, and, when it is fully operational, may be a major channel for the provision of climate finance (Brown et al., 2011). The Standing Committee on Finance supports the parties in coordinating and providing accountability for the financial mechanism of the Convention. The Climate Technology Centre and Network (CTCN), together with the Technology Executive Committee (TEC), was established to exchange information regarding technology development and transfer for adaptation and mitigation (UNFCCC, 2011c). 13.5.1.2 Other UN climate-related forums Acting on climate change may require functions other than negotiation under the UNFCCC or other forms of high-level cooperation, such as analytical support and implementation assistance for mitigation and adaptation efforts. A diverse set of forums both within and outside the UN system has taken up the issue of climate change since AR4, possibly contributing to broader institutional learning and effectiveness (Depledge, 2006; Stewart et al., 2012). The United Nations Environment Programme (UNEP) has had a natural concern with climate change for many years, given its mission, and it collaborates closely with the UNFCCC. Since AR4, UNEP has provided increasingly significant analytical support to the international process, in part through its emissions-gap reports (UNEP, 2010, 2012, 2013b; Höhne et al., 2012b; Hof et al., 2013), but also through a wide range of other analytical efforts and support for institution building. United Nations forums beyond the UNFCCC are increasingly addressing funding for adaptation and mitigation. Fragmentation in the various objectives, conditions, and eligibility requirements of the different funds may make it difficult for developing countries to identify and access appropriate funding (Czarnecki and Guilanpour, 2009). The literature examines the relationship between adaptation and development finance, including concerns about measuring official development assistance (ODA) and how much adaptation funding is new and additional (Stadelmann et al., 2010; Smith et al., 2011). A number of developing countries have established national funding entities to coordinate domestic and international funding for adaptation with development funding (Smith et al., 2011). Other UN agencies have also addressed the connections of climate change with human development (UNDP, 2007; UNDESA, 2009), the CO2 emissions gap (Convention on Biological Diversity, 2012; Höhne et al., 2012b), finance (AGF, 2010), and human rights (see Section 13.5.2.2). The Montreal Protocol on Substances that Deplete the Stratospheric Ozone Layer (concluded in 1987 under UN auspices) and the Protocol s subsequent amendments, adjustments, and decisions have also contributed to reductions in GHGs. One notable proposed amendment would accelerate the phaseout of substitutes of ozone depleting substances that are also strong GHGs (Mauritius & Micronesia, 2009; Velders et al., 2012). 35 of 137 Final Draft Chapter 13 IPCC WGIII AR5 13.5.1.3 Non-UN forums Climate change is increasingly addressed in forums for international cooperation outside of the UN. The IPCC (2007, chap. 13) assessed several partnerships focused on particular themes, technologies, or regions. Some international partnerships have defined themselves as complements to the UNFCCC rather than as alternatives. For example, the REDD+ Partnership helps coordinate measures for reducing emissions from deforestation and degradation (REDD) in the UNFCCC process. The Partnership focuses on conservation, sustainable forest management, and forest carbon stock enhancement. In 2010, more than 50 countries signed a non-binding agreement to pledge more than 4 billion USD to REDD+ (Bodansky and Diringer, 2010). Michaelowa (2012a) and Stewart el al. (2009) describe multiple avenues for climate change financing to assist transitions to low-carbon technologies, such as through the International Renewable Energy Agency (IRENA). Established in 2009, IRENA seeks to advance the development and transfer of renewable energy technologies, with a focus on financing renewable energy in its 163 member and signatory states (plus the European Union) (Florini, 2011; International Renewable Energy Agency, 2013). The MEF, organized by the United States, provides a forum for informal consultation. Its members Australia, Brazil, Canada, China, the European Union, France, Germany, India, Indonesia, Italy, Japan, the Republic of Korea, Mexico, Russia, South Africa, the United Kingdom, and the United States together account for about 70% of global GHG emissions (JRC/PBL, 2012). Its meetings are intended to advance discussion of international climate change agreements (MEF, 2009), and it has generated a related Clean Energy Ministerial. MEF participants recognize the group as a venue for discussion rather than a forum for negotiating binding agreements. The MEF produces a chairs summary instead of formally agreed text (Leal-Arcas, 2011). The existence of the MEF may be evidence of an overall increase in the fragmentation of global environmental governance (Biermann and Pattberg, 2008; Biermann, 2010). Some may also be concerned about a small set of large countries reaching even informal decisions that affect a much larger set, and some may not be comfortable with a process chaired by a single nation (Stavins, 2010). The Group of Twenty (G20) finance ministers from industrialized and developing economies could have the capacity to address climate finance, building on its core mission to discuss economic and finance policy. The make-up of the G20 is similar to that of the MEF, with the addition of Argentina, Saudi Arabia, and Turkey. Houser (2010) finds that the G20 might help to accelerate the deployment of clean energy technology, help vulnerable countries adapt to climate change impacts, and help phase out inefficient fossil-fuel subsidies. At its meeting in Pittsburgh in 2009 (G20, 2009), the G20 gave considerable attention to climate change policy issues, in particular to fossil-fuel subsidies. Likewise, since 2005, the smaller Group of Eight (G8) heads of state and government have held a series of meetings relating to climate change and recognized the broad scientific view that the increase in global average temperature above pre-industrial levels ought not exceed 2°C (G8, 2009). Van de Graaf and Wsetphal (2011) explore both opportunities for and constraints on the G20 and G8 with regard to climate. Two forums of growing importance, providing analytical support for international cooperation on climate change, are the International Energy Agency (IEA) and the OECD. While the IEA has limited its membership to industrialized oil-importing countries (Scott, 1994; Goldthau and Witte, 2011), the OECD has granted membership to advanced developing countries. Both institutions have received increasingly strong mandates by their members to provide analytical support for climate change mitigation decisions. The OECD has a unit for economic analysis of climate policy and impacts, and already plays a role in building knowledge (OECD, 2009). The IEA could play a key role to reduce uncertainty about countries performance by collecting, analyzing, and comparing energy and industry-related emissions data (Harvard Project on Climate Agreements, 2010). The IEA and OECD have formed and jointly manage the Climate Change Expert Group, whose explicit mission is to provide analytical support on technical issues to the international negotiations. 36 of 137 Final Draft Chapter 13 IPCC WGIII AR5 The Cartagena Dialogue for Progressive Action includes around 30 industrialized and developing countries, which have met both during and between formal sessions since 2009. The Dialogue is open to countries working toward an ambitious, comprehensive, and legally binding regime in the UNFCCC, and who are committed to domestic policy to reduce emissions. The aim of the Dialogue is to openly discuss positions, to increase understanding, and to explore areas where convergence and enhanced joint action could emerge (Oberthür, 2011). In February 2012, a group of seven partners (Bangladesh, Canada, Ghana, Mexico, Sweden, and the United States, together with the UNEP) launched a new Climate and Clean Air Coalition as a forum for dialogue among state and non-state actors outside the UNFCCC process. The goal of the Coalition is to reduce levels of black carbon, methane, and hydrofluorocarbons (HFCs) among its 34 state members (including the European Commission) in collaboration with nine international organizations and 29 non-state partners (as of September 2013). The Coalition has received funding from a number of countries, including Canada, Japan, and the United States to implement projects (Blok et al., 2012; UNEP, 2013a). New initiatives on international cooperation for adaptation and its funding have also been created, such as the World Bank s Pilot Program on Climate Resilience, and the European Commissionestablished Global Climate Change Alliance (GCCA), which pledges regional and country-specific finance. 13.5.2 Non-state international cooperation 13.5.2.1 Transnational cooperation among sub-national public actors A prominent development since AR4 is the emergence of a large number of international agreements between non-state entities (den Elzen et al., 2011a; Höhne et al., 2012b; Hare et al., 2012). These are most commonly referred to as transnational climate governance initiatives (Biermann and Pattberg, 2008; Pattberg and Stripple, 2008; Andonova et al., 2009; Bulkeley et al., 2012). In the most comprehensive survey, (Bulkeley et al., 2012) document 60 of these initiatives, which can be grouped into four principal types: public-private partnerships, private sector governance initiatives, non-governmental organization (NGO) transnational initiatives, and subnational transnational initiatives. The first two, involving private actors, are discussed in Section 13.12. NGO transnational initiatives attempt to influence the activities of corporations directly through transnational partnerships, some of which involve collaboration with the private sector. They have set up certification schemes for carbon offset credits, such as the Gold Standard, which is limited to renewable energy and demand-side energy efficiency projects, and the Community Carbon and Biodiversity Association standard, which aims to increase the quality of forestry credits (Bayon et al., 2007; Bumpus and Liverman, 2008). Certified offset credits have commanded a price premium above other ( standard ) credits (Sterk and Wittneben, 2006; Ellis et al., 2007; Nussbaumer, 2009; Newell and Paterson, 2010). These certification schemes have been used for the Voluntary Carbon Market as well as for the CDM (Conte and Kotchen, 2010). Sub-national transnational initiatives involve sub-national actors, such as city-level governments, collaborating at an international scale. One example of this form of cooperation is the International Council for Local Environmental Initiatives (ICLEI) Local Governments for Sustainability network. This organization has taken action through its Cities for Climate Protection programme from 1993 and more recently through a partnership the C40 Cities Climate Leadership Group (Kern and Bulkeley, 2009; Román, 2010; Bulkeley et al., 2012). A World Mayors Summit in November 2010 had participation from 138 cities and agreed on a Global Cities Covenant on Climate, otherwise known as the Mexico City Pact. A related initiative, the carbonn Cities Climate Registry, is an effort of local governments to regularly measure, report, and verify cities actions on climate change mitigation and adaptation (Chavez and Ramaswami, 2011; Ibrahim et al., 2012; Otto-Zimmermann and Balbo, 37 of 137 Final Draft Chapter 13 IPCC WGIII AR5 2012; Richardson, 2012). Recognition of local governments as governmental stakeholders in paragraph I.7 of the Cancún Agreements is a reflection of the growing role of sub-national transnational cooperation in the UNFCCC processes. Larger sub-national units have developed transnational collaborative schemes. Most notable are the North American sub-federal cap-and-trade schemes, including the Western Climate Initiative (WCI). The WCI was originally envisaged to link state and provincial cap-and-trade systems in seven western U.S. states and four Canadian provinces beginning in 2012. The original aim of the initiative was reducing GHG emissions by the member states and provinces to 15% below 2005 levels by 2020 (Rabe, 2007; WCI, 2007; Selin and VanDeveer, 2009; Bernstein et al., 2010). While the U.S. state of California s ETS began operating in January 2013, the launch of the WCI system has been delayed. The WCI currently includes only California and Québec, although Ontario, British Columbia, and Manitoba are considering accession. 13.5.2.2 Cooperation around human rights and rights of nature Human rights law could conceivably frame an approach to climate change (Bodansky, 2010b; Bell, 2013; Gupta, 2014). Some recent literature argues that a human rights framing helps to counteract gross imbalances of power between states and individuals (Sinden, 2007; Bratspies, 2011; Akin, 2012). The human rights approach to climate change has been acknowledged by the UN Human Rights Council in its Resolution 7/23 and the Office of the United Nations High Commissioner for Human Rights (UNHRC, 2008; Limon, 2009; OHCHR, 2009). The literature discusses a variety of specific issues, including the implications for climate adaptation; the impacts of climate change on human rights to water, food, health, and development; obligations to undertake mitigation actions; and whether human rights law implies an obligation to receive climate refugees. Refugees displaced from their homes due to climate change may strain the capacity of existing institutions (Biermann and Boas, 2008). However, policies to address climate refugees face legal hurdles, including the issue of causality: who is to be held responsible, who is the rights-bearer, and the issue of standing (Limon, 2009). Proposals have been made in the literature for a new protocol to the UNFCCC, a new convention, and funding mechanisms to address the issues associated with climate refugees (Biermann and Boas, 2008; Docherty and Giannini, 2009). Such efforts could build on the 1951 Geneva Convention Relating to the Status of Refugees. In the absence of coordinated efforts, the Special Procedures and the Universal Periodic Review of the Human Rights Council are advancing the human rights and climate change agenda (Cameron and Limon, 2012). In 2010, the government of Bolivia convened government and non-government representatives in the World People s Conference on Climate Change and the Rights of Mother Earth, which culminated in a People s Agreement (WPCCC and RME, 2010). The participation of social movements in international cooperation on climate change may enhance recognition of radical climate justice (Roberts, 2011) and an approach to law that seeks to establish rights of nature (Cullinan, 2002; Sandberg and Sandberg, 2010; Aguirre and Cooper, 2010). 13.5.3 Advantages and disadvantages of different forums The literature has considered the strengths and weaknesses of negotiating climate policy across multiple forums and institutions. Some studies suggest that, in addition to its own action, the UNFCCC effect of catalyzing efforts by others and providing coherence to multiple initiatives may result in greater aggregate impact (Moncel and van Asselt, 2012). Other literature suggests that regime complexes may emerge from smaller clubs and then expand (Keohane and Victor, 2011; Victor, 2011). Regimes need (external) incentives for participation and (internal) incentives for compliance (Aldy and Stavins, 2010c). A key advantage of smaller forums or clubs may be greater efficiency in the negotiation process, as emphasized in the general political science literature on negotiations (for example, Oye, 1985). But the literature also reflects key disadvantages, including that such clubs lack universality and hence legitimacy (Moncel et al., 2011), and that the 38 of 137 Final Draft Chapter 13 IPCC WGIII AR5 environmental effectiveness of clubs may be undercut by leakage of emissions sources to other countries outside the club (Babiker, 2005). Some have suggested clubs as a way forward outside the UNFCCC, while others suggest they could contribute to the UNFCCC, for example by assisting in catalyzing greater ambition (Weischer et al., 2012). Several smaller clubs that cut across categories (e.g., public / private) and scales (from international to local) are assessed in Section 13.5.1.2. Flexibility is another advantage cited for smaller clubs. Climate change mitigation through clubs is not necessarily superior (Keohane and Victor, 2011) and action through this form of cooperation has to date not brought about high levels of participation and action. Smaller clubs must address conflicts where the climate change regime intersects with other major policy regimes (Michonski and Levi, 2010). Analysis of existing clubs suggests they enable incremental change and suggests that a set of incentives (related to trade, investment, labour mobility, or access to finance) could turn these into transformational clubs (Weischer et al., 2012). In a fragmented world, linking multiple agreements into a coherent whole is a major challenge. The aggregate effectiveness (in terms of the criteria discussed in Section 13.2) of the landscape of climate agreements and related institutions (Figure 13.1) can be enhanced by coordinated linkages among multiple elements. The actual forms and effects of policy linkages, existing or future, must be evaluated in each context. Policy linkages across the landscape of agreements on climate change might take several forms, such as mandated action and reporting by subsidiary bodies, agreed links between institutions (e.g., memoranda of understanding), loose coordination, information sharing, and delegation. The literature on transnational governance acknowledges a gap in that interactions are understudied in all areas of transnational governance (Weischer et al., 2012). Some characteristics of potential linkages may stimulate their formation, for example, competition among public and private governance regimes (Helfer and Austin, 2011), accountability (Bäckstrand, 2008; Ballesteros et al., 2010), learning (Kolstad and Ulph, 2008), and experimentation. Related literatures suggest that other important characteristics of linkages across regime components may be reciprocity (Saran, 2010), relationships of conflict or interpretation (ILC, 2006), collaboration (Young, 2011), the catalytic role of the UNFCCC (UNFCCC, 2007a), NGOs as norm entrepreneurs (Finnemore and Sikkink, 1998), evaluation of policy approaches (Stewart and Wiener, 2003; Greenstone, 2009), and delegation to other institutions (Green, 2008). 13.6 Linkages between international and regional cooperation 13.6.1 Linkages with the European Union Emissions Trading Scheme Due to the scale effects that occur when carbon markets are enlarged, market-based mechanisms may be an important means of regional policy integration. The largest carbon market is the EU ETS, which began operating in 2005, and now includes all 28 European Union member states and is linked with the Norwegian system. The EU ETS is described and evaluated in detail in Section 14.4.2.1. The EU ETS interacts with international carbon markets through the project-based Kyoto mechanisms. Import of units through international emissions trading is not allowed, but companies covered by the EU ETS can import CDMs and JI credits. A relatively liberal import regime for the pilot phase was established in a Linking Directive approved in 2004 (Flam, 2009). Forestry credits were banned and additional criteria for large hydropower projects were set. For the EU ETS s second phrase, which corresponded to the Kyoto Protocol s first commitment period, 2008 2012, countries proposed import thresholds; several proposals were adjusted downwards by the Commission. For the third phase, 2013 2020, imports were limited to credits from CDM projects registered before 2013 in the absence of an international climate change agreement. New (2013 inception or later) CDM projects can only be used in the EU ETS if located in least developed countries (LDCs) (Skjaerseth, 2010; Skjaerseth and Wettestad, 2010). However, CDM credits from new projects in nonLDCs can be accepted after 2013 if the EU has concluded a bilateral agreement with the country in question regulating their level of use. 39 of 137 Final Draft Chapter 13 IPCC WGIII AR5 The European Union could potentially link the EU ETS to other schemes, and legislation for the period until 2020 allows negotiation of such bilateral treaties. The EU and Australia have already agreed to a one-way indirect link to commence on 1 July 2015, meaning that EU credits will be allowed for compliance under the Australia system (European Commission, 2012). This agreement will transition to a two-way direct link by no later than 1 July 2018, provided that the Australian system goes forward. 13.6.2 Linkages with other regional policies The Asia-Pacific Partnership for Clean Development and Climate, which was time-limited and has now concluded, involved about 50% of the world population, GHG emissions, and world economic output (Kelly, 2007). The partnership included countries that had not ratified the Kyoto Protocol, and while it was soft in terms of legal bindingness, it may have had a modest impact on governance (Karlsson-Vinkhuyzen and van Asselt, 2009; McGee and Taplin, 2009) and encouraged voluntary action (Heggelund and Buan, 2009). After the end of the Partnership, the Global Superior Energy Performance Partnership (GSEP) Clean Energy Ministerial took over some of the Partnership s activities. In addition to coordination by international organizations, such as ICLEI - Local Governments for Sustainability, voluntary mitigation action of cities is taking a regional/global character (Kern and Bulkeley, 2009). In Europe, the Climate Alliance has about 1700 member cities from a number of countries. The Climate Alliance has supported rainforest conservation projects in the Amazon region (Climate Alliance, 2013). 13.7 Linkages between international and national policies As the landscape of multilateral and other international agreements on climate has become more complex, the interactions between international and national levels have become more varied. 13.7.1 Influence of international climate policies on domestic action International policy may trigger more ambitious national policies. Treaties provide greater certainty that others will act, thus addressing key concerns that countries will free ride. International climate policy can shape domestic climate discourse, even if it may not be the main inspiration for proactive action (Tompkins and Amundsen, 2008). National policies also affect the effectiveness of international policies. The implementation of international policy is affected by national political structure. Examples of studies on how varying domestic political structures affect the implementation of international policies include studies in: Italy (Massetti et al., 2007), France (Mathy, 2007), Canada (Harrison, 2008), China (Teng and Gu, 2007), the UK (Barry and Paterson, 2004; Compston and Bailey, 2008) and the Netherlands (Gupta et al., 2007). National and sub-national settings, where actions may be less risky or more politically feasible, may also provide useful laboratories to test policy instruments before implementation at the international level (Michaelowa et al., 2005; Moncel et al., 2011; Zelli, 2011). 13.7.2 Linkages between the Kyoto mechanisms and national policies Linking national policies with international policies may provide flexibility by allowing a group of parties to meet obligations in the aggregate. The Kyoto Protocol (Article 4) provides for such interregional flexibility, and the European Union has taken advantage of the Protocol s provision through its internal burden sharing decision. This decision allowed the EU s Kyoto commitment of an 8% emissions reduction below 1990 for the 2008 2012 period to be redistributed among EU-15 member states; commitments of these states range from -28% (Luxembourg) to +27% (Portugal) (Michaelowa and Betz, 2001; Hunter et al., 2011). Use of the CDM and JI Kyoto mechanisms has been driven by national mitigation policies to achieve developed countries emissions commitments. While governments of some developed countries buy 40 of 137 Final Draft Chapter 13 IPCC WGIII AR5 emissions credits directly, others introduce instruments with emissions commitments for private companies, like the EU ETS; some countries, such as Denmark, have done both. These companies can then use emissions credits generated under the Kyoto Protocol to satisfy part of their commitments (Michaelowa and Buen, 2012). Another example is Japan s Industry Voluntary Action Plan that includes diverse sectors, each of which has its own target set either in absolute terms, in emissions´ intensity, or in terms of energy consumption (Mitsutsune, 2012). Many industrialized countries limit imports of credits generated by the Kyoto mechanisms for various reasons; two have been posited in the literature: (1) to keep the domestic carbon price high to induce technological diffusion and possibly innovation; and (2) to avoid diminishing environmental effectiveness by allowing required emissions-reduction to occur in other jurisdictions because of concerns about the quality of credits ( additionality ). For example, the European Union has prohibited the import of Assigned Amount Units (AAU) into the EU-ETS to prevent the use of surplus units from countries in transition, colloquially called hot air (Michaelowa and Buen, 2012). Japanese companies have used AAUs from Green Investment Schemes for meeting their targets (Tuerk et al., 2010). In 2011, credits from certain CDM project types were banned for use in the EUETS from 2013 onwards (Schneider, 2011). The ban includes CERs generated from projects involving destruction of trifluoromethane (HFC-23) and nitrous oxide (N2O) from adipic acid production. The Kyoto mechanisms also interact with the national policies of countries in which projects are implemented. However, the CDM Executive Board decided that the effects of new policies implemented in host countries that reduce emissions should not be considered when assessing the additionality of new projects to avoid perverse incentives not to adopt mitigation policies (Winkler, 2004; Michaelowa, 2010). Instead, countries may subsidize renewable energy while generating CDM credits. There are indications that the availability of CDM credits has accelerated the introduction of feed-in tariffs in China (Schroeder, 2009). Freeing emission units for sale under international emissions trading requires national mitigation policies unless there is a surplus of units in a businessas-usual situation, as in countries in transition (Böhringer et al., 2007). Investment law, defined through private international law and more than 3000 multilateral and bilateral investment treaties (UNCTAD, 2013), applies to the CDM and emissions trading contracts. Proposed standardized contracts link the CDM to investment law by covering the choice of language and the process and forum for dispute resolution. These contracts could expose contractors to the costs associated with international arbitration (Gupta, 2008; Klijn et al., 2009). 13.7.3 International linkage among regional, national, and sub-national policies International linkages can be established among regional, national, or sub-national policies. These can be direct or indirect. Under direct linkage, the same units are valid throughout the linked systems. Under indirect linkage, a unit in a certified emission reduction credit system is accepted by multiple systems. Figure 13.4 shows sub-national, national, and regional GHG cap and trade schemes and existing and planned linkages between them. The only formal direct linkage between two trading schemes is that arranged between the Australian ETS and the EU ETS, which was officially announced in August 2012. A strong indirect linkage between carbon markets exists through the CDM, whose credits are accepted under the EU-ETS, the Australian Carbon Pricing Mechanism, and the New Zealand ETS. Nazifi (2010) finds that EU demand has driven the price for CDM credits. 41 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Figure 13.4. Cap and trade schemes with existing and planned linkages Review of unilateral and bilateral direct linkages demonstrates that bilateral direct linkage reduces mitigation costs, increases credibility of the price signal, and expands market size and liquidity (Anger, 2008; Flachsland et al., 2009; Jaffe et al., 2009; Dellink et al., 2010; Cason and Gangadharan, 2011; Lanzi et al., 2012). However, direct linkage also raises a variety of concerns (Jaffe et al., 2009), including that linking can lead to a dilution of mitigation achieved through trading schemes, as linked systems are only as environmentally effective as the weakest among them (e.g., the one that allows imports of offsets with the lowest standards). Grubb (2009) also warns that countries may be unwilling to accept an increase of carbon prices that would result from linking with a more ambitious system.Tuerk et al. (2009) see the biggest challenges to linking in differential stringencies of targets in each system, varying degrees of enforcement, differences in eligible project-based credits, and the existence of cost-containment measures, such as price ceilings. Haites and Mehling (2009) highlight that only bilateral links (or reciprocal unilateral links) yield the full benefits of linkage. Bilateral links often face lengthy adoption procedures as well as legal and procedural constraints, whereas reciprocal unilateral links, possibly framed by an informal agreement, are often easier to implement and provide more flexibility for almost the same benefits. Also attractive are indirect linkages among regional, national, or sub-national cap-and-trade systems, an approach that maintains the benefits of linkage without much of the downside. Such indirect linkages achieve cost savings and avoid risk diversification without the need for deliberative harmonization of emerging and existing cap-and-trade systems. Indirect linkage is attractive because de facto linkages limit potential distributional concerns and preserve a high degree of national control over allowance markets (Jaffe et al., 2009). 42 of 137 Final Draft Chapter 13 IPCC WGIII AR5 In addition, both direct and indirect linkages can occur among heterogeneous regional, national, and sub-national policy instruments (Metcalf and Weisbach, 2012). Some such linking would be relatively straightforward, such as forming a link between a cap-and-trade system and a carbon tax. Other links would be more challenging, such as between a cap-and-trade system and a quantity standard. Others would be even more difficult, such as between a cap-and-trade system and a technology mandate, and some linkages between heterogeneous policy instruments would simply not be possible (Metcalf and Weisbach, 2012). 13.8 Interactions between climate change mitigation policy and trade Research on interactions between climate change mitigation policy and trade indicates a diversity of compatibilities, synergies, conflicts, and cooperative arrangements (Brewer, 2003, 2004, 2010; Cosbey, 2007; ICTSD, 2008; Cottier et al., 2009; Epps and Green, 2010; Rao, 2012; Leal-Arcas, 2013). Consideration of these and other issues and options needs to take into account the context of the provisions of the principal existing multilateral climate change framework (Yamin and Depledge, 2004) and multilateral trade framework (Hoekman and Kostecki, 2009). Negotiators acknowledged the opportunities for international cooperation on interactions between climate change and trade in both the UNFCCC (1992) and in a Ministerial Decision at the time of the negotiations of the Marrakech Agreement establishing the WTO (1994). But there is also a potential for conflict between climate and trade issues. According to Article 3.5 of the UNFCCC, "Measures taken to combat climate change, including unilateral ones, should not constitute a means of arbitrary or unjustifiable discrimination or a disguised restriction on international trade". The Kyoto Protocol notes in Article 2.3 that Annex I Parties shall strive to implement policies and measures under this Article in such a way as to minimize adverse effects, including effects on international trade. Trade and climate policy interact at many levels (Copeland and Taylor, 2005; Tamiotti et al., 2009; UNEP, 2009; UNCTAD, 2010; World Bank, 2010). For instance, on the one hand, according to Peters and Hertwich (2008), almost one-quarter of carbon dioxide released to the atmosphere is emitted in the production of internationally traded goods and services (see also (Peters et al., 2011). Transportation associated with trade is another related issue (Conca, 2000). On the other hand, various climate change policies currently in place affect the relative prices of goods and services, which thereby affect trade flows and the total volume of traded goods (Whalley, 2011). Moreover, trade barriers and obligations regarding intellectual property (IP) rights of green technology as well as many other WTO obligations impinge on climate policy (Thomas, 2004; Khor, 2010a; Johnson and Brewster, 2013). Victor (1995) suggested that lessons from the trade regime could be used in the development of the climate regime, but comparative governance studies of the trade and climate regimes have not been thoroughly utilized to gain insights into how the two regimes might address trade-climate interactions (Bell et al., 2012 an exception). The production of internationally traded goods gives rise to a labelling issue, a problem for accounting purposes and also for possible policy intervention. The issue arises because a proportion of a country s GHG emissions resulting from the production of goods and services in one country may be embedded in traded products that are consumed in other countries. At issue is whether to attribute the emissions to the producing (exporting) country or consuming (importing) country (Kainuma et al., 2000; Peters and Hertwich, 2008) (see also Sections 5.4.1 and 14.3.4.1). There is an ethical and equity issue about how to define climate responsibility and allocate climate mitigation costs (discussed in detail in Sections 3.3, 4.1, and 4.2). There is also a political and economic issue whether climate policy instruments ought to address production- or consumption-induced GHGs (Droege, 2011a, b; see also Chapter 14.3.4). Finally, there is a technical issue as territorial measurement is the current GHG accounting practice under the UNFCCC, and switching to consumption-induced measurement may be technically more difficult (Droege, 2011a; b; Peters et al., 2011; Caldeira and Davis, 2011). 43 of 137 Final Draft Chapter 13 IPCC WGIII AR5 There are significant differences among researchers and policymakers in their perspectives on the relationship between climate change and trade. These differences include fundamental empirical assumptions and policy preferences concerning the roles of markets and governments (Bhagwati, 2009), specifically concerning whether government measures are required to address market failures that produce climate change (Stern, 2007), or government regulations tend to create inefficiencies and distort trade (Krugman, 1979; Rodrik, 2011). Trade measures (e.g., trade sanctions, trade enticements, and trade-relevant domestic product standards; see Section 13.8.1 below) could be used to address free-rider problems of international agreements, specifically participation and/or compliance problems (Victor, 2010), and some (e.g., Victor, 2011) suggest these may be useful in achieving an effective climate agreement. However, there are also some who conclude that trade measures are an inappropriate tool to pursue climate change policy objectives, pointing to the possibility of green protectionism (Khor, 2010a; Johnson and Brewster, 2013). The potential use of trade measures to enhance participation and/or compliance poses major institutional design questions (see Section 13.4). 13.8.1 WTO-related issues A central issue for WTO members is whether policies are consistent with principles of nondiscrimination. Most Favoured Nation Treatment prohibits favourable treatment of the goods, services, or corporations of any one member as compared with other members, while National Treatment prohibits less favourable treatment of foreign relative to domestic goods, services or corporations. Of the more than 60 WTO agreements that apply these principles, many are pertinent to climate change, including the General Agreement on Tariffs and Trade (GATT), the General Agreement on Trade in Services (GATS), the Agreement on Trade Related Intellectual Property Rights (TRIPs), the Agreement on Technical Barriers to Trade (TBT), the Agreement on Trade Related Investment Measures (TRIMs) and the Dispute Settlement Understanding (DSU), as well as agreements on subsidies, government procurement, and agriculture (Brewer, 2003, 2004, 2010; Cottier et al., 2009; Hufbauer et al., 2009; Epps and Green, 2010). Studies have suggested that ETSs can be designed to be compatible with WTO obligations (Werksman, 1999; Petsonk, 1999). Trade issues concerning CDM projects have received special attention (Werksman et al., 2001; Rechsteiner et al., 2009; Werksman, 2009). Although no trade or investment disputes have arisen yet in connection with CDM projects, there is the possibility that they will in the future as the number and economic significance of CDM projects continues to increase. Significant attention has also been given to product labelling and standards issues that can arise in relation to the WTO Agreement on TBT (Appleton, 2009), which could be pertinent to the use of labels concerning food miles (ICTSD, 2007; World Bank, 2010). Although long-distance air transport of agricultural products itself is GHG-intensive, the agricultural practices of many exporting countries are less GHG-intensive than those of the importing countries, and determining the relative GHG emissions levels of imported versus domestic products thus requires complete lifecycle analyses of individual products and specific pairs of exporting-importing countries. Government procurement policies that entail buy-local practices concerning climate-friendly goods and services have emerged as an issue under the principle of non-discrimination in the context of national economic stimulus programmes. The applicability of the WTO Agreement on Government Procurement to such trade issues is limited because many countries have not agreed to it; among those that have, there are many government agencies whose programmes are not covered (van Asselt et al., 2006; Hoekman and Kostecki, 2009; Malumfashi, 2009; van Calster, 2009). Government subsidies for renewable energy and energy-efficiency goods and services have also become issues in relation to the WTO Agreement on Subsidies and Countervailing Measures, as well as the TRIMs agreement. Such issues have prompted WTO dispute cases, including one involving subsidies for producers of wind turbines (WTO, 2010) and another involving feed-in tariffs (WTO, 2011). The application of WTO subsidy rules could slow the development and diffusion of climate44 of 137 Final Draft Chapter 13 IPCC WGIII AR5 friendly technologies, but it is not yet clear whether this has or will have an effect (see Bigdeli, 2009; Howse and Eliason, 2009; Howse, 2010 on subsidy issues). There are WTO-related issues related to tariffs and non-tariff barriers resulting from climate change policy. In general, non-tariff barriers tend to be more important barriers than tariffs at the climatetrade interface, but tariffs are still high in some industries and countries (Steenblik, 2006; World Bank, 2008a). Countries may seek to limit competitive disadvantage introduced by domestic climate policy by raising tariffs and introducing non-tariff barriers that restrict imports, or by other BAMs. One example of a BAM would be a country that has imposed a domestic carbon tax also (1) imposing the carbon tax on imported goods and services at a rate proportional to the emissions associated with their production and (2) offering reimbursement to domestic exporters who sell a good or service outside of the jurisdiction of the carbon tax (Wooders et al., 2009; Elliott et al., 2010; Monjon and Quirion, 2011b). Barriers to transfers of technologies identified by (IPCC, 2011) as potential contributors to climate change mitigation have been issues in the on-going WTO Doha Round negotiations (Tamiotti et al., 2009). Domestic subsidies such as those for biofuels have also been at issue in the Doha Round. Border adjustment measures to offset international differences in costs and thus possible international leakage (see Section 5.4.1) arising from international differences in mitigation policy have become one of the most contentious and researched points of interaction (Babiker, 2005; de Cendra, 2006; Cosbey and Tarasofsky, 2007; Ismer and Neuhoff, 2007; Genasci, 2008; Frankel, 2008; Tamiotti and Kulacoglu, 2009; O Brien, 2009; van Asselt and Brewer, 2010; Tamiotti, 2011; Zhang, 2012). This issue draws particular attention to differences between production-based and consumption-based emissions in both developed and developing countries (Figure 1.5 in Chapter 1). BAMs include policy options ranging from: (1) tariffs on imports or subsidies on exports based on the amount of GHGs released in their production to (2) compensatory measures, as for instance the free-allocation emission permits in the EU ETS or export rebates to energy-intensive sectors. Theoretical arguments in favour of BAMs can be grouped into three classes, each discussed below: the reduction of economic inefficiencies in the context of an externality, the reduction of carbon leakage, and increasing participation and compliance in a climate agreement. The economic research on BAMs stresses that the inclusion of more countries in climate policy, e.g., by linking permit trading schemes and including more sectors and countries, reduces economic inefficiencies relative to unilateral BAMs. While, BAMs can enhance the competitiveness of GHGand trade-intensive industries within a given climate regime (Kuik and Hofkes, 2010; Böhringer et al., 2012a; Balistreri and Rutherford, 2012; Lanzi et al., 2012), welfare effects may be negative for consumers and countries facing BAMs on their exports. Overall welfare effects accounting for externalities are mainly perceived to be positive at an abstract theoretical level (Gros and Egenhofer, 2011); the evidence is more blurred at an empirical level and is sensitive to assumptions (The Carbon Trust, 2010; Fischer and Fox, 2012; Lanzi et al., 2012). Export rebates, the exclusion of energy and CO2-intensive industries from regulation, or the free-allocation of permits to these industries are recognized as causing efficiency losses (Lanzi et al., 2012). Most empirical studies also do not confirm a need at the macro-economic level for BAMs in the first place: they tend to find that climate policy is not a significant trade issue at the macro-economic level of national economies, though there are competitiveness and leakage issues for a few industries which are both GHG-intensive and tradeintensive. They hold that the main channel of impact of climate policies is through world energy prices and not through manufactured goods (Grubb and Neuhoff, 2006; Houser et al., 2008; Aldy and Pizer, 2009; The Carbon Trust, 2010). The economic modelling literature on the effectiveness of BAMs to reduce carbon leakage finds that carbon leakage rates tend to decline by 2 12% following the introduction of a border adjustment tax (Böhringer et al., 2012a). The political literature on the appropriateness of using BAMs to address carbon leakage, on the other hand, tends to be divided into two perspectives. Developed countries and/or countries with some form of mitigation policy either already in place or considering this for 45 of 137 Final Draft Chapter 13 IPCC WGIII AR5 the future argue that BAMs are necessary to avoid carbon controls driving production abroad. Arguments along this line have emerged in the European Union and the United States for instance (see Veel, 2009; The Carbon Trust, 2010; Fischer and Fox, 2012). Developing countries tend to oppose BAMs, as many are concerned about negative welfare effects for their countries and what they see as a violation of the principle of CBDRRC as agreed under the UNFCCC (Khor, 2010a; Droege, 2011a; Scott and Rajamani, 2012). Nevertheless, the technical difficulties of measuring production-induced or consumption-induced GHG emissions are significant (Droege, 2011a), and addressing them may be associated with high administrative costs, possibly outweighing the potential benefits (McKibbin and Wilcoxen, 2009). Participation and compliance in climate agreements might be enhanced by BAMs. However, conceptual thinking on the question does not reveal a consensus, and direct evidence on the point is insufficient to reach definitive conclusions (see Barrett, 2003, 2009, 2010; Victor, 2010, 2011). Because BAMs affect the distribution of abatment costs across countires, enacting a BAM could result in welfare loss, particularly for exporting developing countries, and even retaliatory countermeasures (de Cendra, 2006; Mattoo et al., 2009; Böhringer et al., 2012b; Balistreri and Rutherford, 2012). For more discussion on the topic, see Section 13.3.3 on participation and Section 13.3.4 on compliance. From the research on legal issues related to BAMs, four major conclusions emerge. First, BAMs may clash with WTO obligations, a point which is emphasized by many observers (Wooders et al., 2009; Condon, 2009; ICTSD, 2009; Holzer, 2010, 2011; Tamiotti, 2011; Du, 2011). Second, it is possible to design BAMs to be compatible with these obligations, according to other observers (Condon, 2009; Droege, 2011a; b), particularly when BAMs are targeted to countries based on their production technology efficiency (Ismer and Neuhoff, 2007). Third, WTO obligations and their legal interpretation have evolved over time, allowing for the possibility to bring trade and climate policy goals more in line in the future (Kelemen, 2001; Neumayer, 2004). Finally, the use of BAMs for climate change purposes may be politically controversial (Khor, 2010a). A final WTO-related issue concerns the distinction between products and production or process methods (PPMs). The legal notion of PPMs, as applied in the WTO, can be based on several aspects of production processes and can have a variety of effects on climate change-related policies. ((For extensive discussions of the technical legal issues and their relevance to climate change issues see Cottier et al., 2009). 13.8.2 Other international venues Two GHG-emitting industries that are centrally involved in international trade as modes of transportation are covered by separate international agreements outside the WTO system (see also Chapter 8). International aviation issues are covered by the Chicago Convention and the International Civil Aviation Organization (ICAO), while international maritime shipping issues have been addressed by the IMO (see Section 13.13.1.4 for performance assessments of the ICAO and IMO). There has been increasing interest in recent years in both ICAO and IMO in industry practices concerning GHG emissions, with some efforts at international cooperation to address them. However, there has been international conflict about the European Union s inclusion of international aviation within the EU ETS. The Kyoto Protocol in Article 2.2 recognized ICAO as the venue for negotiations on matters concerning international aviation emissions, but in the absence of what was seen in the EU as adequate progress in the ICAO, the EU decided to include aviation in the EU ETS. This unilateral decision prompted strong reactions (Mueller, 2012; Scott and Rajamani, 2012), and flights in and out of the EU were temporarily exempted in April 2013 through the ICAO General Assembly scheduled for September-October 2013. Among the concerns expressed about the inclusion of aviation in the EU ETS has been the assertion that it represents a violation of the principle of CBDRRC of the UNFCCC (Scott and Rajamani, 2012; Ireland, 2012), though this concern 46 of 137 Final Draft Chapter 13 IPCC WGIII AR5 only applies to developing countries. There are also legal issues about the relationship of the EU ETS to the Chicago Convention, which has traditionally been the international legal basis for aviation policies. Though studies indicate that the economic impacts of the EU ETS provisions are small relative to other airline expenses and ticket prices and that much of the cost can be passed on to consumers (Scheelhaase and Grimme, 2007; Anger and Köhler, 2010), political and legal issues have nevertheless made international cooperation difficult. The IMO (2009) Second IMO GHG study 2009, 2009) concluded that a significant potential for CO2 reduction exists through technical and operational measures, many of which appear to be cost-effective; the IMO adopted an energy efficiency design index (International Maritime Organization (IMO), 2011). A link of carbon controls of aviation and shipping to the EU ETS and/or a possible U.S. ETS is suggested by Haites (2009) with the view that carbon offsets under the CDM could also be used. There are other international institutional contexts within which climate change-trade interaction issues have been addressed, namely, the World Bank, G8, G20, IEA, MEF, and OECD (Section 13.5). 13.8.3 Implications for policy options In terms of WTO and/or UNFCCC involvement, there are logically four possible sets of options for institutional architectures at the multilateral level for addressing climate change-trade interactions: WTO-based, UNFCCC-based, joint UNFCCC-WTO, and stand-alone. In addition, there could be hybrid arrangements involving combinations of these four types. For instance, proposals for Sustainable Energy Trade Agreements (SETAs) could be addressed in a variety of venues (ICTSD, 2011). Of the four options, WTO-based architectures have received the most attention in the literature. Alternatives include making revisions in existing WTO arrangements or undertaking new arrangements (Epps and Green, 2010). Possible changes in existing WTO arrangements include a peace clause (Hufbauer et al., 2009) or waiver agreement (Howse and Eliason, 2009; Howse, 2010), whereby WTO members would agree within some limits not to challenge on WTO grounds, respectively, climate policies in general or climate-related subsidies in particular. An extensive list of other possible changes to existing WTO arrangements has been discussed by Epps and Green (2010), whose suggestions include: change GATT Article XX (which allows exceptions to members obligations, including measures for the conservation of exhaustible natural resources ) so that climate measures are explicitly identified as qualifying for exceptional treatment; add a similar provision to the Subsidies Agreement; change the burden of proof or standard of review for the scientific evidence presented in climate change cases to Dispute Settlement panels; change Dispute Appellate Body rules to take into account the scientific uncertainties in climate change cases; establish a notification process for members to inform other members of the adoption of climate policies with trade implications; and establish a Climate Change Committee, which could facilitate conflict resolution without resorting to the Dispute Resolution process. Many possibilities for a new Climate Change Agreement at the WTO have also been discussed by (Epps and Green, 2010). The elements of such an agreement could include: establishment of a Climate Change Committee (as above); establishment of a notification procedure for climate change measures (as above); establishment of climate change mitigation as a legitimate objective; development of a non-aggression clause that would prohibit unilateral actions, such as BAMs; adoption of transparency requirements for national climate change policymaking processes to determine their legitimacy in relation to climate change concerns and protect against disguised trade protectionism; adoption of environmental rationales for subsidies; reviews of members traderelated climate measures to insure that they are substantive responses to climate issues; and clarification of the potential application of PPMs questions to climate change disputes. Although these ideas have been mentioned in the literature, they have not been formulated as specific proposals to the WTO. 47 of 137 Final Draft Chapter 13 IPCC WGIII AR5 UNFCCC-based options have been discussed in the literature (Werksman et al., 2009) relating to the possible creation of a level playing field, such as through border charges on imports, or border rebates for exports, though views differ greatly, as indicated above in the discussion of BAMs. A potential joint UNFCCC-WTO agreement has not yet received much attention in the published literature (Epps and Green, 2010). However, there are already in effect arrangements whereby the UNFCCC secretariat is an observer in meetings of the WTO Committee on Trade and Environment (CTE) and is invited on an ad hoc basis to meetings of the Committee overseeing the specific trade and environment negotiations (CTESS) (Cossey and Marceau, 2009). In addition, WTO Secretariat staff members attend the annual UNFCCC COP meetings. Finally, a stand-alone arrangement could be developed (Epps and Green, 2010), a possibility that has not yet been analyzed in the published literature. There are numerous and diverse unexplored opportunities for greater international cooperation in trade-climate policy interactions. While mutually destructive conflicts between the two systems have thus far been largely avoided, pre-emptive cooperation could protect against such developments in the future. Whether such cooperative arrangements can be most effectively devised within the existing institutional architectures for trade and for climate change or through new architectures is an unsettled issue (Section 13.4). 13.9 Mechanisms for technology and knowledge development, transfer, and diffusion Technology-related policies could conceivably play a significant role in an international climate regime (de Coninck et al., 2008). These policies have the potential to lower the cost of climate change mitigation and increase the likelihood that countries will commit to reducing their GHG emissions. By lowering the relative cost of more environmentally sound technologies, technology policy can increase incentives for countries to comply with international climate obligations and could therefore play an important role in increasing the robustness of long-run international frameworks (Barrett, 2003). Such policies might generate incentives for participation in international climate agreements by facilitating access to climate-change-mitigating technologies or funding to cover the additional costs of such technologies. The role of international cooperation in facilitating technological change, including access to, facilitation of, and transfer of technology, is explicitly recognized in Article 4(1)(c) and (h), 4(5), 4(7), 4(8), and 4(9) of the UNFCCC. Article 4.5 states that The developed country Parties and other developed Parties included in Annex II shall take all practicable steps to promote, facilitate and finance, as appropriate, the transfer of, or access to, environmentally sound technologies and knowhow to other Parties, particularly developing country Parties . The performance of international institutional arrangements and the adequacy of financing are subject to a variety of interpretations. (See Section 14.3.6.2 for a discussion of the UNFCCC CTCN, and see Section 15.12 for a discussion of financial issues.) Although international technology transfer issues for climate change mitigation or adaptation have become concerns in numerous countries, these concerns have been especially acute in developing countries. Concerns over technology transfer in developing countries are frequently embedded in broader capacity building, sustainable development, and other equity issues (for discussions of the broader issues of CBDRRC and equity, see respectively Sections 13.2.1.2 and 13.4.2.4, and also Chapter 3 and Sections 4.1 and 4.2) (Brewer, 2008; GEA, 2012; Ockwell and Mallett, 2012). Technology-oriented agreements could include activities across the technology life cycle for knowledge sharing, coordinated or joint research and development of climate-change-mitigating technologies, technology transfer, and technology deployment policies (such as technology or performance standards and incentives for technology development or adoption). International 48 of 137 Final Draft Chapter 13 IPCC WGIII AR5 technology policy may play an important role in improving the efficiency of existing research and development (R&D) activities by increasing the international exchange of scientific and technical knowledge and by reducing duplicated R&D effort that could be shared across nations. (Newell, 2010a). 13.9.1 Modes of international incentive schemes to encourage technology-investment flows Absent additional market failures, underinvestment in innovative activity relative to socially optimal levels can occur due to several well-understood general properties of innovation (see Section 15.6). At a global level, international carbon markets and the flexibility mechanisms they may employ, such as international linkage of domestic emission programmes, offsets, and the CDM, may be used to finance emission reductions in developing countries and transferring technology between nations and regions (see Section 13.13 and Ha¹èiè and Johnstone, 2011). Clear rules for these markets and their associated flexibility mechanisms may be established under international agreements and domestic policies to aid the removal of unnecessary barriers to technology transfer and to facilitate investment flows. Because private-sector investments constitute more than 85% of global financial flows (UNFCCC, 2007b), international trade and foreign direct investment are the primary means by which new knowledge and technology are transferred between countries (World Bank, 2008b). While domestic actions can improve the conditions to enable technology transfer investments (e.g., through regulatory flexibility, transparency, and stability), international actions can also contribute. In particular, the literature has identified tariffs and non-tariff trade barriers as impediments to energy technology transfer (World Bank, 2008b). An existing example is OECD regulation of export credits, with specific conditions to foster technology transfer for climate change mitigation (OECD, 2013). In summary, national and supra-national policies that provide incentives for climate change mitigation will likely play an essential role in stimulating public investment, financial incentives, and regulations to promote innovation in the necessary new technologies for mitigation goals. Reducing fossil-fuel subsidies may have a similar effect (UNEP, 2008). 13.9.2 Intellectual property rights and technology development and transfer The strength of IP right protection, together with other conditions related to the rule of law, regulatory transparency, and market openness affect technology transfer rates (Newell, 2010a) (see also Sections 3.11 and 16.8). The goal of IP protection is to foster both the development of new technologies (innovation), and the diffusion of new technologies across countries (technology transfer) and within countries (technology adoption). In theory, such protection achieves these ends by increasing and/or maintaining the private economic incentive to create and transfer technology. At the same time, protection of IP also works to slow the diffusion of new technologies, because it raises their cost and potentially limits their availability. To the extent that IP protection raises the cost and limits the availability around the world of mitigation technologies, the potential for new technologies to reduce the cost of mitigation will be hampered. Concern by developing countries that IP protection for low-carbon technology will make climate action excessively costly has been a contentious issue in the climate negotiations (Government of India, 2013). On the other hand, IP protection may encourage firms to innovate more than they otherwise would, thus potentially increasing the supply and reducing the cost of new technology. In order to balance the possible incentive effects of IP protection against the adverse impact of such protection on costs and availability, it is important to assess the empirical significance of the incentive effects, both with respect to innovation and technology diffusion. The empirical evidence regarding the effect of IP policy on innovation is discussed in Section 15.6.2.1. 49 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Even if stronger IP protection does not foster creation and development of new technologies, it may be beneficial for mitigation if it fosters transfer of technologies from developed to less developed countries. Theoretically, strong IP protection in developing countries may be necessary to limit the risk for foreign firms that transfer of their technology will lead to imitation and resulting profit erosion. Looking at technology transfer in general, empirical literature finds a role for strong IP protection in receiving countries in facilitating technology transfer from advanced countries through exports, foreign direct investment (FDI), and licensing for transfers from the OECD (Maskus and Penubarti, 1995); FDI to 16 countries originating in the United States, Germany and Japan (Lee and Mansfield, 1996; Mansfield, 2000); and transfers from the United State (Smith, 1999). Regarding recipients, Awokuse and Yin (2010) find evidence for transfers to China, and Javorcik (2004) for FDI to 24 Eastern European transition economies. Branstetter et al. (2006) assessed FDI to 16 middleincome countries after those countries strengthened their IP protection and found indicators for United States technology transfer increasing subsequently. The empirical evidence suggests that the effects of IP strength on technology licensing parallel those for FDI. The Branstetter et al. (2006) results discussed above included royalty payments among the measures of technology transfer that increased after IP strengthening. Smith (2001) finds that the association between strong IP and licenses is stronger than the relationship between IP and exports. In general, the evidence indicates a systematic impact of IP protection on technology transfer through exports, FDI, and technology licensing for middle-income countries for which the risk of imitation in the absence of such protection is relatively high. It is unclear whether or not these effects extend to the least developed countries whose absorptive capacity and ability to appropriate foreign technology in the absence of strong IP protections is less (Hall and Helmers, 2010). It is also important to note that IP rules are but one of many factors affecting FDI decisions. Others, particularly more general aspects of the legal and institutional environment that affect the riskiness of investments, may be more significant (Fosfuri, 2004). Literature on the role of IP rights in the development of low-carbon technologies remains limited (Reichman et al., 2008). For example, Barton (2007) analyzes existing solar, wind, and biofuel technologies, and Lewis (2007, 2011) and Pueuo et al. (2011) find that IP protection has induced innovation in wind technologies without compromising technology transfer. However, problems could arise if new, very broad patents were granted that impede the development of future, more efficient technologies (though even then, IP rights may provide flexibility). Compulsory licensing has been proposed as a mechanism to encourage technology transfer. Such an action would compensate a patent holder while overcoming market power inhibitions on voluntary licensing (Reichman and Hasenzahl, 2003). Despite short-run technology transfer benefits, compulsory licensing of mitigation technologies may not be desirable in the long-run, and current international law may limit the circumstances under which compulsory licensing can be used to achieve climate change mitigation objectives (Fair, 2009; Maitra, 2010). In summary, there is inadequate evidence in the literature regarding the impact of IP policy on transfer of GHG-mitigating technologies to draw robust conclusions. If the experience from other technology sectors is indicative, maintenance of effective protection of IP may be a factor in determining the transfer of mitigation technology to middle-income countries, although other aspects of the legal and institutional environments are likely to be at least as important. There is little empirical evidence that protection of IP rights is a major factor affecting technology transfer to the least developed countries. 13.9.3 International collaboration to encourage knowledge development International cooperation on climate change mitigation has been linked to technology transfer policy, as transferring knowledge and equipment internationally, and ensuring that technologies are deployed in appropriate national contexts, may require additional international action (Newell, 2010a). International cooperation on climate-relevant technology policy can include efforts to share 50 of 137 Final Draft Chapter 13 IPCC WGIII AR5 technological knowledge, collaborate or coordinate R&D, and directly facilitate and finance technology transfer. 13.9.3.1 Knowledge sharing, R&D coordination, and joint collaboration International cooperation on knowledge-sharing and R&D coordination can include information exchange, coordinated or harmonized research agendas, measurement and technology standards, and coordinated or cooperative R&D (IEA, 2008; de Coninck et al., 2008; GEA, 2012). Examples of such existing forms of cooperation include the Carbon Sequestration Leadership Forum, the former Asia Pacific Partnership on Clean Development and Climate, the U.S.-China Clean Energy Research Center, and the International Partnership for a Hydrogen Economy. Empirically, a higher degree of collaboration has been more frequently observed in research areas of more fundamental science without larger commercial interests (for example, the ITER fusion reactor and the CERN supercollider) (de Coninck et al., 2008). In addition to enhancing the cross-border flow of scientific and technical information, joint R&D can increase the cost-effectiveness of R&D through complementary expertise and reduced duplication of effort (Newell, 2010a). The IEA has coordinated the development of more than 40 Implementing Agreements. Under these agreements, IEA member countries may engage either in task-sharing programmes pursued within participating countries and funded by individual country contributions, or in cost-sharing programmes funded by countries but performed by a single contractor. All existing Implementing Agreements incorporate some degree of task sharing while about half incorporate cost sharing (Newell, 2010a). 13.9.3.2 International cooperation on domestic climate technology R&D funding Public sector investment in energy- and climate-related R&D has decreased since the early 1980s, although there has been a relative increase in recent years (Newell, 2010a, 2011). Newell (2010a), using the precedent of European Union cooperation on setting R&D spending goals, has proposed an international agreement that would increase domestic R&D funding for climate technologies (either in absolute terms, percentage increases from historic levels, or relative to GDP) in an analogous fashion to internationally agreed emission targets. Also, at a G8 meeting, in the context of a consideration of how to address climate change, there was agreement to seek to double public investment in R&D between 2009 and 2015 (G8, 2009).See Torvanger and Meadowcroft (2011) and Fischer et al. (2012) on issues in the design and support of climate friendly technologies. International coordination of R&D portfolios may reduce the duplication of R&D effort, cover a broader technological base, and enhance the exchange of information gained through national-level R&D processes. This coordination could cover the allocation of effort by government scientists and engineers, the targeting of extramural research funding to specific projects, and public-private partnerships. Engaging developing economies in developing and deploying new technologies may require further technology development to meet the needs of domestic institutions and norms. Bringing newly developed technologies to full commercialization often presents challenges, and for some technologies, such as carbon dioxide capture and storage (CCS) (de Coninck et al., 2009), the private sector may not have sufficient incentives to commercialize new technologies in the absence of international cooperation. Since some of the economic risk the private sector faces reflects uncertainty about the incentives that future climate policies would create, governments may have a role in financing technology demonstration projects (Newell, 2007). The case for such demonstration projects may be stronger in developing and emerging economies, where incomplete capital markets may undermine investment in commercializing these technologies. 13.10 Capacity building Several articles in the UNFCCC (4.1(i), 4.5, 6 and 9.2(d)) and the Kyoto Protocol (Article 10(e)) acknowledge the role of capacity building in promoting collective action on climate change. While 51 of 137 Final Draft Chapter 13 IPCC WGIII AR5 the texts give special attention to building capacity in developing countries, they also recognize a general need for all countries to improve policy, planning, and education on climate issues. A variety of public, private, and NGO initiatives have undertaken capacity building efforts both within and outside of the UNFCCC, focusing primarily on three issues: (1) adaptation policy and planning; (2) mitigation policy and planning; and (3) measurement, reporting, and verification of mitigation actions. Capacity building efforts with respect to technology transfer are addressed in Section 13.9. Section 4.6.1 considers adaptive capacity and mitigative capacity jointly as dimensions of response capacity and Section 15.10 considers capacity building in a national context. Capacity building for adaptation includes (i) risk management approaches to address adverse effects of climate change, (ii) maintenance and revision of a database on local coping strategies, and (iii) maintenance and revision of the adaptation practices interface (Yohe, 2001; UNFCCC, 2009b). The process of preparing the National Adaptation Programmes of Action (NAPAs) for and by LDCs identifies their most urgent adaptation needs. However, capacity building for adaptation is likely insufficient because the costs in such regards are rarely estimated (Smith et al., 2011; see also WGII, 3.6.4). At the community level, adaptation projects require time and patience and can be successful if they raise awareness, develop and use partnerships, combine reactive and anticipatory approaches, and are in line with local culture and context (Engels, 2008; Dumaru, 2010). Capacity building for mitigation includes technical assistance and policy planning support. In CDM, capacity building has focused on the establishment of Designated National Authorities (DNAs), the training of private and public personnel, and project support (Michaelowa, 2005; Winkler et al., 2007; Okubo and Michaelowa, 2010). Efforts aimed at capacity building for NAMAs and REDD-plus are expected (Bosetti and Rose, 2011). NAMAs are a potentially important means of action by developing countries that emerged in the negotiations under the Bali Roadmap (UNFCCC, 2007); and have been assessed in the literature (Wang-Helmreich, et al., 2011; Upadhyaya,, 2012; Tyler et al., 2013). NAMAs are discussed in detail in Section 15.2.1. Monitoring and evaluation activities are important to ensure effective implementation of a capacitybuilding framework, helping to understand gaps and needs in capacity building, share best practices, and promote resource efficiency (UNFCCC, 2009c). There are few empirical assessments of current capacity building approaches in relation to climate change (Virji et al., 2012). 13.11 Investment and finance Since AR4, international cooperation on climate policy has increasingly focused on mobilizing public and private investment and finance for mitigation and adaptation activities. Such cooperation has included the setup of market mechanisms to generate private investment as well as public transfers through dedicated institutions (Michaelowa, 2012b). The Copenhagen Accord of 2009 included a provision to jointly mobilize 100 billion USD/yr by 2020 to address the needs of developing countries, in the context of meaningful mitigation actions and transparency of implementation (UNFCCC, 2009a). In order to reach this goal, the AGF (2010) identified four potential sources of finance: public sources (funds mobilized under the UNFCCC), development bank instruments, carbon market finance, and private capital. In the follow-up to the Copenhagen conference, the term climate finance has been coined for financial flows to developing countries, but there exists no internationally agreed definition (Buchner et al., 2011). Stadelmann et al. (2011b) provide a discussion of what could be counted and how the baseline for international climate finance could be set to provide new and additional funds (see also Section 16.1). See Section 16.2.2 for a description of the potential financing need and Section 16.5 for a description of possible public funding sources. 52 of 137 Final Draft Chapter 13 IPCC WGIII AR5 13.11.1 Public finance flows 13.11.1.1 Public funding vehicles under the UNFCCC The largest share of UNFCCC-organized climate finance goes to mitigation: Abadie et al. (2013) provide reasons for this, such as the differences between mitigation and adaptation regarding public good characteristics and the lack of information regarding context-specific climate impacts. The UNFCCC mobilizes financial flows to developing countries and countries in transition through four primary vehicles: (1) the GEF, which focuses on mitigation (GEF, 2011); (2) the LDCF and SCCF, which focus on adaptation; (3) the Adaptation Fund, which also focuses on adaptation; and (4) the GCF, which will focus on both mitigation and adaptation when it becomes operational. The GEF is the secretariat for all funds other than the GCF. This section reviews the literature on these four mechanisms (see also Chapter 16.5; (see also Chapter 16.5; UNFCCC, 2012a). The Adaptation Fund is financed through a 2% in-kind levy on emissions credits generated by CDM projects, though parties to the Kyoto Protocol have contributed additional funding (Liverman and Billett, 2010; Horstmann, 2011; Ratajczak-Juszko, 2012). All other UNFCCC funding vehicles are based on voluntary government contributions that can be counted as official development assistance. Ayers and Huq (2009) maintain that the Adaptation Fund s governance structure avoids many of the issues of ownership and accountability faced by other funds. Harmeling and Kaloga (2011) examine the influence of competing interests on funding decisions by the Adaptation Fund Board. Under the Fund, Multilateral Implementing Entities (MIEs) have had the most success in securing funding, followed by National Implementing Entities (NIEs), but none by Regional Implementing Entities (RIEs). This disparity has led to calls for transparency in project assessment (Harmeling and Kaloga, 2011). Grasso and Sacchi (2011) discuss issues of justice in Adaptation Fund financing decisions to date. Further research into the distribution of adaptation finance across countries, sectors, and communities is required to assess the equity, efficiency, effectiveness, and environmental impacts of the operation of the Adaptation Fund (Persson, 2011). The Conference of the Parties to the UNFCCC has decision-making power regarding the representation of country groups on the governing boards of the UNFCCC s funding vehicles, voting rules, the choice of secretariat and the choice of trustee (e.g., who oversees the finances and ensures funds go where they are supposed to go). Due to its complex structure, the GEF faces challenges coordinating with UNFCCC decisions (COWI and IIED, 2009; Ayers and Huq, 2009). Recipient countries have a majority on the board of the Adaptation Fund, while the decision-making bodies for the other UNFCCC financing institutions have equal representation for developing and industrialized countries. The Adaptation Fund has allowed the possibility of direct access by host country institutions, which has been used sparingly to date (Ratajczak-Juszko, 2012). The GEF is also starting to experiment with this approach (GEF, 2011). Funding per country eligible under the Adaptation Fund is limited to 10 million USD, essentially leading to a situation where each country gets financing for a single project. Stadelmann et al. (2013) show that this does not lead to projects ranking high on equity and efficiency criteria. The GEF operates funding floors and caps for each country (currently 2 million USD and 11% of the total volume available, respectively) (GEF, 2010). Between these thresholds, a complex allocation formula is used whose variables consist of GDP, project portfolio performance, country environmental policy and institutional performance, GHG-emissions level, development of carbon intensity, forestry emissions, and changes in deforestation. A step change with regards to the international coordination of public finance flows was the collective commitment by industrialized countries in the Copenhagen Accord of 2009 to provide resources approaching 30 billion USD as Fast Start Finance (FSF) during the period 2010 2012 for mitigation and adaptation in developing countries (UNFCCC, 2009a). Fast Start Finance was to provide new and additional resources, flowing through existing multilateral, regional, and bilateral channels. Although few countries disclose details of their FSF, studies show that FSF ranges from 53 of 137 Final Draft Chapter 13 IPCC WGIII AR5 small grants to large loans for infrastructure development (Fransen et al., 2012; Nakhooda and Fransen, 2012; Kuramochi et al., 2012). While the FSF commitment for 2010 2012 has been exceeded, transparency regarding allocation criteria and actual disbursement is low (Ciplet et al., 2013). Official development assistance (ODA) made up a large share of total funding (Ballesteros et al., 2010) and several studies argue that the use of ODA as a substitute for new climate finance mechanisms could divert funding away from other important imperatives (Michaelowa and Michaelowa, 2007; Ayers and Huq, 2009; Gupta and van der Grijp, 2010). (See also Section 16.2.1.1.) 13.11.1.2 Multilateral development banks Multilateral development banks (MDBs) have played a significant role in mobilizing, coordinating, and overseeing the growth of climate-related financial flows. The World Bank provides services as trustee or interim trustee for all the UNFCCC-related funds noted above. A group of MDBs manages and governs the Climate Investment Funds (CIFs), which were set up in 2008, are not supervised by the UNFCCC, and are financed through voluntary government contributions. The Clean Technology Fund supports investments in low-carbon technologies, and the Strategic Climate Fund is an umbrella for improving resilience against climate change, reducing deforestation and renewable energy support for low-income countries. Tirpak and Adams (2008) see increases in MDBs funding and shifts to low-GHG technologies being fragile owing to variability and low levels of funding. Bowen (2011) proposes expansion of the capital base of multilateral financial institutions in order to increase concessional financing (finance made available at lower than market costs) of mitigation and adaptation activities. Over the last two decades, recipients have gained more decision-making power in the institutions under the UNFCCC, while multilateral financial institutions have not followed this trend. Financing is typically not given directly to the project recipients but provided through implementing agencies, mostly multilateral financial institutions or UN agencies that fulfil predefined fiduciary standards. Direct access, as implemented by the Adaptation Fund, is seen by some as the most appropriate model for climate finance (UNDP, 2011). However, peer-reviewed literature comparing the effectiveness of the two approaches is lacking. At the same time, national development banks (e.g., China Development Bank, Brazilian Development Bank (BNDES)), Bilateral Finance Institutions, and a planned multilateral fund of the Brazil, Russia, India, China, and South Africa (BRICS) countries have also provided or may provide substantial funding (Höhne et al., 2012a; Robles, 2012) 13.11.2 Mobilizing private investment and financial flows Another emerging focus of international climate cooperation is on mobilizing private investment to finance mitigation and adaptation. As discussed in sections 13.4.1.4 and 13.13.1.1, carbon credits from market mechanisms generate revenues for private sector players, thus leveraging potentially large investments in mitigation. Such leverage is seen as important by Urpelainen (2012), who presents a game-theoretical model where capacity building leverages private mitigation investment. A number of international initiatives have supported capacity building for market mechanisms (Okubo and Michaelowa, 2010). Also, the multilateral financing institutions discussed in Section 13.11.1 will leverage private finance to complement their public funding. The potential for leveraging to lead to double- and multiple-counting has led to suggestions that internationally agreed methodologies to account for leveraging are needed (Clapp et al., 2012), which would be of help in consistent reporting of finance against the goal agreed under the UNFCCC. Stadelmann et al. (2011a) find that the leverage factors, that is the ratio between mobilized private funding and mobilized public finance, for the Climate Technology Fund under the CIFs and the GEF reach self-reported levels of 8.4 and 6.2, respectively. However, an analysis of over 200 CDM and close to 400 GEF projects, Stadelmann et al. (2011a) find a leverage ratio of just 3.0 4.5. Moreover, high-leverage factors may mean that the underlying project is not additional, i.e., not contributing to mitigation. Finally, instead of leveraging in the private sector through capacity building, the World 54 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Bank engagement in the Kyoto mechanisms has at least partially crowded out private sector activities, as shown empirically by Michaelowa and Michaelowa (2011). Besides market mechanisms, other instruments such as grants, loans at concessional rates, provision of equity through financial institutions, or guarantees can mobilize private funds. This can happen directly on the company level or be channelled through national governments (Neuhoff et al., 2010). While they can be implemented on any level of aggregation, the level of incentive provided could be coordinated internationally, e.g., by basing it on a previously agreed social cost of carbon (Hourcade et al., 2012). The success of the Multilateral Investment Guarantee Agency shows that costs of guarantees are likely to be low if multilateral and bilateral financial institutions with strong financial ratings provide them (Brown et al., 2011; Buchner et al., 2011). 13.12 The role of public and private sectors and public-private partnerships International responses to climate change ultimately depend on private sector action. Large multinational corporations produce about half of the global world product and global GHG emissions (Morgera, 2004). Hence, private companies will need to generate investment and innovation necessary to pursue a low-carbon economy (Forsyth, 2005). Given that damages from climate change are a (negative) externality, a gap remains between the need for GHG reduction and the commitments of the largest international companies (Knox-Hayes and Levy, 2011). While some business sectors may have an interest advancing policy to mitigate climate change (Pulver, 2007; Falkner, 2008; Pinkse and Kolk, 2009; Meckling, 2011), in practice the public sector typically guides, supports, and motivates private sectors to contribute to a low-carbon economy. These types of public sector interactions with the private sector can operate through government regulations (whether market-based or conventional), but may also be facilitated through public-private partnerships, the focus of this section. 13.12.1 Public-private partnerships One channel for such guidance is through public-private partnerships focused on climate change, which have multiplied and grown in recent years (Bäckstrand, 2008; Pattberg, 2010; Andonova, 2010; Kolk et al., 2010). Public-private partnerships involve governments, businesses, and sometimes NGOs. Examples include the Renewable Energy and Energy Efficiency Partnership (REEEP) (Parthan et al., 2010); the Methane to Markets initiative (now renamed the Global Methane Initiative) (de Coninck et al., 2008); the former Asia Pacific Partnership on Climate and Energy (which was largely organized through sector-specific partnerships (Karlsson-Vinkhuyzen and van Asselt, 2009; McGee and Taplin, 2009; Okazaki and Yamaguchi, 2011); the Global Superior Energy Performance Partnership (taking sector-specific activities from the regional scale to the global scale (Fujiwara, 2012; Okazaki et al., 2012) (see also Section 14.4.3); the CDM (where some projects can take the character of public-private partnerships (Streck, 2004; Green, 2008; Newell, 2009); the World Bank Prototype Carbon Fund (Lecocq, 2003; Andonova, 2010); the UN Fund for International Partnerships (39% of whose environmental partnerships are in energy- or climate change-related projects (Andonova, 2010); the UN Global Compact s Caring for Climate initiative (Abbott, 2011) ; the Green Power Market Development Group (Andonova, 2009); and the Munich Climate Insurance Initiative (Pinkse and Kolk, 2011). These partnerships can facilitate development and commercial deployment of low-carbon technologies as governments remove barriers to the entry and provide stakeholders with new business frameworks. Industries also demonstrate leadership through active involvement with regards to their technologies, investments, and know-how (IEA, 2010). Some international public-private partnerships concentrate on the development of specific technologies. Others focus on rural renewable energy or low-carbon energy development in general. Others center their attention on carbon market development. Few focus on adaptation, although the insurance sector is involved in such initiatives (Pinkse and Kolk, 2011). Effective partnerships are institutionalized with representatives of major stakeholders, a permanent secretariat, resources and 55 of 137 Final Draft Chapter 13 IPCC WGIII AR5 a dedicated mission (Pattberg et al., 2012). Company willingness to engage in adaptation depends on their capacity, their past exposure to disasters, and the link between their business planning horizons and climate impact uncertainty (Agrawala et al., 2011). Some also need to ensure that they are able to adapt to changing climatic circumstances (Linnenluecke and Griffiths, 2010; Vine, 2012). 13.12.2 Private sector-led governance initiatives Private sector actors have also engaged in direct attempts to govern aspects of climate change transnationally. First, some institutional investors now ask companies to report on their GHG emissions, strategies to reduce them, and more broadly on climate risk exposures (Kolk et al., 2008; Newell and Paterson, 2010; Harmes, 2011; MacLeod and Park, 2011). The most important example of this is the Carbon Disclosure Project, whose signatories controlled 70 trillion USD in assets in 2011 (Carbon Disclosure Project, 2011). The private sector is playing a role in developing systems for carbon accounting (Lovell and MacKenzie, 2011). Second, like NGOs (see Section 13.5.2), private-sector actors have developed initiatives to govern voluntary carbon markets, either through certification standards for offset markets or by developing trading exchanges, registries, and protocols for reporting GHGs (Green, 2010, 2013; Hoffmann, 2011). Many of the certification schemes are either developed by private-sector actors (such as the Voluntary Carbon Standard, developed by the International Emissions Trading Association, the Climate Group, and the World Business Council for Sustainable Development) or by such actors in collaboration with environmental NGOs (such as the Social Carbon standard). 13.12.3 Motivations for public-private sector collaboration and private sector governance For private sector actors, partnerships with governments or NGOs on climate may create direct economic benefits through financial support, learning opportunities, risk sharing, or market access (Pinkse, 2007; Perusse et al., 2009). Since direct regulation of firms at the international level is unavailable, states have incentives to pursue partnerships to affect transnational private sector activities. International organizations pursue partnerships for similar reasons (Andonova, 2010). Partnerships or private governance may create club goods for participants (Andonova, 2009). Sometimes, firms are motivated more by concerns for public relations (Pinkse and Kolk, 2009). Private sector finance can be stimulated by a five-step approach: strategic goal setting and policy alignment, an enabling process and incentives for low-carbon and climate-resilient (LCR) investment, financial policies and instruments, harnessing resources and building capacity for a LCR economy, and promoting green business and consumer behaviour (Corfee-Morlot et al., 2012). 13.13 Performance assessment on policies and institutions including market mechanisms This section surveys and synthesizes quantitative and qualitative assessments of existing and proposed forms of international cooperation to address climate change mitigation that have appeared in the literature since AR4. Adaptation is not treated here, as there have been few international cooperative initiatives focused on adaptation, although these are now starting to emerge (Section 13.5.1.1). Existing cooperation is considered in Section 13.13.1 with reference to the UNFCCC, its Kyoto Protocol, the CDM, agreements under the UNFCCC pertaining to the post-2012 period, and agreements and other forms of international cooperation outside of the UNFCCC. Section 13.13.2 considers the literature that assesses various proposed forms of future international cooperation described in Section 13.4.3. Throughout, we synthesize assessments in terms of the four criteria discussed in Section 13.2: environmental effectiveness, aggregate economic performance, 56 of 137 Final Draft Chapter 13 IPCC WGIII AR5 distributional impacts, and institutional feasibility. Table 13.3 summarizes the key findings of this section's performance assessment. In applying the evaluation criteria to evaluate existing and proposed forms of international cooperation, five general caveats apply. First, an ex-ante evaluation of a policy may overestimate the costs and/or the benefits of that policy for several reasons, such as overestimating the extent of its implementation (Harrington et al., 2000; Harrington, 2006), failing to account for over-reporting by regulated parties (Bailey et al., 2002), and underestimating learning related to technological development (Norman et al, 2008). Second, ex-ante evaluation may over- or under-estimate the effectiveness of proposed cooperation, because interactions between proposed policies and other existing policies may be difficult to predict. These interactions can be counterproductive, inconsequential, or beneficial (Fankhauser et al., 2010; Goulder and Stavins, 2011; Levinson, 2012). Third, while evaluation of proposed policies can be informed by lessons learned from regime complexes in other contexts (see Section 13.5), such lessons may come with extrapolation bias, since it may not be appropriate to generalize to climate change findings from other contexts. Fourth, in comparing existing policies using these criteria, it can be helpful to keep in mind that as institutions evolve, the performance of particular policies may also change. Fifth and finally, the overall performance of the international regime depends also on national and regional policies (see Chapters 14 and 15, in particular Sections 14.4.2 and 15.5). 57 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Table 13.3. Summary of performance assessments of existing cooperation of proposed cooperation Assessment Criteria Mode of International Cooperation Environmental Effectiveness Aggregate GHG emissions in Annex I countries declined by 6.0 to 9.2% below 1990 levels by 2000, a larger reduction than the apparent aim of returning to 1990 levels by 2000. Aggregate emissions in Annex I countries were reduced by 8.5 to 13.6% below 1990 levels by 2011, more than the CP1 collective reduction target of 5.2%. Reductions occurred mainly in EITs; emissions; increased in some others. Incomplete participation in CP1 (even lower in CP2). About 1.4 billion tCO2eq credits under the CDM, 0.8 billion under JI, and 0.2 billion under IET (through July 2013). Additionality of CDM projects remains an issue but regulatory reform underway. Pledges to limit emissions made by all major emitters under Cancun Agreements. Unlikely sufficient to limit temperature change to 2°C. Depends on treatment of measures beyond current pledges for mitigation and finance. Durban Platform calls for new agreement by 2015, to take effect in 2020, engaging all parties. Aggregate Economic Performance Authorized joint fulfilment of commitments, multigas approach, sources and sinks, and domestic policy choice. Cost and benefit estimates depend on baseline, discount rate, participation, leakage, co-benefits, adverse effects, and other factors. Cost-effectiveness improved by flexible mechanisms (JI, CDM, IET) and domestic policy choice. Cost and benefit estimates depend on baseline, discount rate, participation, leakage, cobenefits, adverse effects, and other factors. Distributional Impacts Commitments distinguish between Annex I (industrialized) and nonAnnex I countries. Principle of common but differentiated responsibility. Commitment to equitable and appropriate contributions by each [party]. Commitments distinguish between developed and developing countries, but dichotomous distinction correlates only partly (and decreasingly) with historical emissions trends and with changing economic circumstances. Intertemporal equity affected by short-term actions. Limited direct investment from Annex I countries. Domestic investment dominates, leading to concentration of CDM projects in few countries. Limited contributions to local sustainable development. Institutional Feasibility UNFCCC Ratified (or equivalent) by 195 countries and regional organizations. Compliance depends on national communications. The Kyoto Protocol Ratified (or equivalent) by 192 countries and regional organizations, but took 7 years to enter into force. Compliance depends on national communications, plus KP compliance system. Later added approaches to enhance measurement, reporting, and verification (MRV). Helped enable political feasibility of Kyoto Protocol. Has multilayered governance. Largest carbon markets to date. Has built institutional capacity in developing countries. The Kyoto Mechanisms CDM mobilized low cost options, particularly industrial gases, reducing costs. Underperformance of some project types. Some evidence that technology is transferred to non-Annex I countries. Existing Cooperation (13.13.1) Further Agreements under the UNFCCC Efficiency not assessed. Cost-effectiveness might be improved by marketbased policy instruments, inclusion of forestry sector, commitments by more nations than Annex I countries (as envisioned in Durban Platform). Depends on sources of financing, particularly for actions of developing countries. Cancún COP decision; 97 countries made pledges of emission reduction targets or actions for 2020. G8, G20, MEF G8 and MEF have recommended emission reduction by all major emitters. G20 may spur GHG reductions by phasing out of fossil fuel subsidies. Agreements outside the UNFCCC Action by all major emitters may reduce leakage and improve cost-effectiveness, if implemented using flexible mechanisms. Potential efficiency gains through subsidy removal. Too early to assess economic performance empirically. Has not mobilized climate finance. Removing fuel subsidies would be progressive but have negative effects on oilexporting countries and on those with very low incomes unless other help for the poorest is provided. Lower participation of countries than UNFCCC, yet covers 70% of global emissions. Opens possibility for forumshopping, based on issue preferences. Montreal Protocol on OzoneDepleting Substances (ODS) Voluntary Carbon Market Spurred emission reductions through ODS phaseouts approximately 5 times the magnitude of Kyoto CP1 targets. Contribution may be negated by high-GWP substitutes, though efforts to phase out HFCs are growing. Covers 0.13 billion tCO2eq, but certification remains an issue Cost-effectiveness supported by multi-gas approach. Some countries used marketbased mechanisms to implement domestically. Later compliance period for phaseouts by developing countries. Montreal Protocol Fund provided finance to developing countries. Universal participation. but the timing of required actions vary for developed and developing countries Credit prices are heterogeneous, indicating market inefficiencies [No literature cited.] Fragmented and nontransparent market. 58 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Strong multilateralism Tradeoff between ambition (deep) and participation (broad). More cost-effectivewith greater reliance on market mechanisms. Multilateralism facilitates integrating distributional impacts into negotiations and may apply equitybased criteria as outlined in Ch. 4 Depends on number of parties; degree of ambition Depends on similarity of national policies; more similar may support harmonization but domestic circumstances may vary. National enforcement. Depends on similarity of national policies. National enforcement. Proposed Cooperation (13.13.2) Proposed architectures Harmonized national policies Depends on net aggregate change in ambition across countries resulting from harmonization. More cost-effectivewith greater reliance on market mechanisms. Depends on specific national policies Decentralized architectures, coordinated national policies Effort (burden) sharing arrangements Effectiveness depends on quality of standards and credits across countries Often (though not necessarily) refers to linkage of national capand-trade systems, in which case cost effective. Depends on specific national policies Refer to Sections 4.6.2 for discussion of the principles on which effort (burden) sharing arrangements may be based, and Section 6.3.6.6 for quantitative evaluation. 13.13.1 Performance assessment of existing cooperation 13.13.1.1 Assessment of the UNFCCC, the Kyoto Protocol, and its flexible mechanisms The UNFCCC established a framework and a set of principles and goals for the international response to climate change. Under Article 2, the parties agreed to the objective of prevent[ing] dangerous anthropogenic interference with the climate system, an objective which was not quantified and was subject to several caveats. Under Article 4(2)(a), the Annex I parties committed to adopt measures (which could be implemented jointly) to limit net emissions (covering both sources and sinks of all GHGs not controlled by the Montreal Protocol), recognizing that the return by the end of the present decade [the year 2000] to earlier levels would contribute to modifying long-term trends consistent with the treaty s objective. Under Article 4(2)(b), Annex I parties committed to periodically communicate information on their emissions, with the aim of returning individually or jointly to their 1990 levels. According to UN data, aggregate GHG emissions in Annex I countries declined by 9.2% from 1990 2000 (if land use and forestry are included; or by 6.0% if they are not; the base year for some countries is in the mid- or late 1980s) (UNFCCC, 2013c, Profile for Annex I Parties). This is a larger reduction than the apparent two-step aim implied in Article 4(2)(a) and (b) of the UNFCCC to return emissions to 1990 levels by the year 2000. Much of this reduction, however, was due to factors other than measures adopted under the UNFCCC, such as the economic downturn in Annex I economies in transition (EITs) Russia, former Soviet Republics, and Eastern Europe during the 1990s. The 1997 Kyoto Protocol adopted the first binding, quantitative mitigation commitments for developed countries. The 38 countries listed in its Annex B (industrialized countries, EITs, and the European Union separately from its member states) made aggregate commitments to collectively reduce their GHG emissions by 4.2% relative to 1990 levels (5.2% relative to the country-specific base years used for establishing national committments) by the Protocol s first commitment period, 2008 2012 (UNFCCC, 1998, 2012b). Other parties to the Kyoto Protocol are not constrained (but can participate in other ways; in particular, see discussion of CDM in Section 13.13.1.2). The Protocol also contained a number of new mechanisms, including IET, JI, and the CDM, that aimed to help reduce GHG emissions cost-effectively. The aggregate emissions by Annex I countries have been reduced below the Kyoto Protocol s collective 5.2% reduction target, but, as with the UNFCCC, much of the reduction was due to factors other than Kyoto Protocol. (The list of countries in the Protocol s Annex B is nearly identical to the list of countries in the Convention s Annex I during the historical periods referenced in this section, and the difference in aggregate emissions between the two does not affect the analysis here.) According to UNFCCC GHG inventories, aggregate GHG emissions from all Annex I countries were 59 of 137 Final Draft Chapter 13 IPCC WGIII AR5 reduced by 13.6% from 1990-2011 (if land use and forestry-sector changes are taken into account, and 8.5% if they are not). Not counting the United States because it was not a party to the Kyoto Protocol the reduction from 1990 2011 in the remaining Annex I aggregate GHG emissions was 22.9% if land use and forestry sectors changes are taken into account and 16.6% if they are not. Not counting the EITs, the remaining Annex I countries aggregate GHG emissions increased by 2.1% and 3.2% from 1990 to 2011 (with and without land use and forestry, respectively) (UNFCCC, 2012b). Although emissions have decreased among Annex B parties, the environmental effectiveness of the Protocol s first commitment period has been less than it could have been, for several reasons. First, not all Annex B parties have participated. The United States, until recently the country with the largest share of global emissions (Gregg et al., 2008), did not ratify the Protocol (see also Section 13.3.1). Therefore, its target emissions reduction of 7%, which would have amounted to over 40% of the difference in total Annex B committed emissions commitments and base year emissions levels (UNFCCC, 2012b), was not binding. In addition, Canada withdrew from the Protocol in December 2011 (effective December 2012). Russia, Japan, and New Zealand opted not to participate in the second commitment period (2013 2020). Second, the Annex B EITs were credited for emissions reductions that would have occurred without the Protocol due to their significant economic contraction during the 1990s. These loose targets may have been necessary to engage them as parties (Stewart and Wiener, 2003). In principle, these countries were allowed to sell resultant surplus emissions-reduction credits to other Annex B parties, which might have further reduced environmental effectiveness. However, in practice, other parties bought few AAUs relative to the stock available from EITs during the first commitment period (perhaps because the United States decision not to ratify reduced demand for such allowances), and thus environmental effectiveness was not affected as much as it could have been (Brandt and Svendsen, 2002; Böhringer, 2003; IPCC, 2007, p. 778; Crowley, 2007; Aldrich and Koerner, 2012). Current model projections imply that emission reductions achieved by Annex B parties during the first and second commitment periods of the Kyoto Protocol are not likely to be sufficient to achieve environmental performance that limits global average temperature increases to 2°C above preindustrial levels (Rogelj et al., 2011; Höhne et al., 2012b) (see also Section 6.4 for a discussion of scenarios that relate short-term environmental performance to long-term GHG stabilization and tempterature change goals). A key reason is that, since 1990, the Annex B countries share of global GHG emissions has declined significantly, from approximately 56% of global emissions in 1990 to approximately 39% in 2010. Simultaneously, overall global GHG emissions have risen significantly; global emissions in 2010 were approximately 31% higher than in 1990 (JRC/PBL, 2012) (see Section 5.2). The criterion of economic performance encompasses both efficiency and cost-effectiveness (see Sections 2.6 and 13.2.) Assessments of the efficiency of the Kyoto Protocol depend on respective estimates of the costs and benefits of mitigation and assumptions regarding the appropriate discount rate (see Sections 2.4.3.2 and 3.6.2 on discounting). Contrasting assumptions regarding these values are the key determinants in explaining the differences between assessments that have found the Protocol inefficient (e.g., Nordhaus, 2007), and those that find it cost-effective, but insufficient (e.g., Stern, 2007; Weitzman, 2007). These latter researchers also tend to emphasize the non-zero probability of catastrophic climate outcomes. The Kyoto Protocol also fostered monitoring and reporting of emissions, and capacity building in developing countries, which may facilitate further cost-effective action in the future (Hare et al., 2010). With respect to cost-effectiveness, the Kyoto Protocol s three market-based instruments (the CDM, JI, and IET) intended to lower the cost of the global regime (see Section 13.4.2.3 for a description of these mechanisms). Most research on the Kyoto mechanisms has focused on the CDM, primarily because transaction volumes of CDM credits have been so much greater than JI credits or AAUs. Performance assessment of the CDM is discussed separately in Section 13.13.1.2. 60 of 137 Final Draft Chapter 13 IPCC WGIII AR5 International Emissions Trading could, in theory, reduce abatement costs by as much as 50% if trades took place among Annex B countries (Blanford et al., 2010; Bosetti et al., 2010; Jacoby et al., 2010). However, in practice, trading under this mechanism has been limited, partly due to the surplus problem discussed above (Aldrich and Koerner, 2012) and the absence of the United States. As of July 2013, 0.2 billion tCO2eq have been traded through IET (Point Carbon, 2013). The few trades that were made generally required reinvestment of the revenues into projects that reduce GHG emissions, under so-called Green Investment Schemes. The economic performance of IET also depends on what type of actor is doing the trading. Early expectations were that the main traders would be states (national governments), and that states would not operate as efficient traders, because they are not cost-minimizers (e.g., Hahn and Stavins, 1999). In practice, increasing shares of trades have been made by private sector firms, which may increase cost-effectiveness (Aldrich and Koerner, 2012). Joint Implementation also has the potential to improve the cost-effectiveness of Annex B countries activities under the Protocol (Böhringer, 2003; Vlachou and Konstantinidis, 2010). A large majority of JI projects have been in the transition economies, especially Russia and Ukraine, given the low cost of emissions reductions there relative to other Annex B countries (Korppoo and Moe, 2008). From 2008 through July 2013, JI had led to the issuance of over 0.8 billion emission reduction unit (ERU) credits (UNFCCC, 2013d), each equivalent to one tCO2eq of reported emission abatement. Over half of this volume was issued by Ukraine and Russia, especially in 2012 in response to the limitation on carrying over surplus AAUs to the second commitment period. The actual distribution of JI projects is not consistent with the theoretical potential, as some countries, such as Ukraine, proactively supported JI, while in others, including Russia, JI lacked political support, and efficient frameworks took several years to establish. In Western Europe, a number of companies in the chemical industry generated emission credits for their own use in the EU ETS, demonstrating the cost-reduction potential (Shishlov et al., 2012). Countries without a surplus of emission units usually applied strict rules to capture part of the emission reductions achieved by JI projects (Michaelowa and O brien, 2006; Shishlov et al., 2012). In addition to the three Kyoto flexibility mechanisms, the Protocol provides flexibility with regard to how Annex B parties may achieve their targets; they may employ domestic or regional policies of their own choice. One result has been the development of domestic emissions trading programmes in several countries and regions (Paterson et al., 2014). Regional and national emissions trading programmes include those in the EU (the EU ETS), Australia, and New Zealand, as well as subnational trading programmes in the United States Regional Greenhouse Gas Initiative (RGGI) and California/WCI) and in China (seven regional pilot programmes launched in 2013). See Figure 13.4 above and Sections 14.4 and 15.5; (Convery and Redmond, 2007; Ellerman and Buchner, 2007; Ellerman and Joskow, 2008; Ellerman, 2010; Ellerman et al., 2010; Olmstead and Stavins, 2012; Newell et al., 2013). Distributional impacts of the Kyoto Protocol have been examined both cross-sectionally (mainly geographically) and temporally. Income patterns and trends as well as distribution of GHG emissions have changed significantly since the 1990s, when the UNFCCC and Kyoto Protocol listed Annex I/Annex B countries; some countries outside these lists have become wealthier and larger emitters than some countries on these lists (U.S. Department of Energy, 2012; WRI, 2012; Aldy and Stavins, 2012). For example, in 1990, China s total CO2 emissions were about half of United States emissions, but by 2010, China emitted more than 50% more CO2 than the United States. Over this same time period, China s per capita CO2 emissions experienced an almost three-fold increase, rising to nearly equal the level in the EU, but still about 36% of the United States level (IEA, 2012; JRC/PBL, 2012; PBL, 2012, see Annex II.9; Olivier et al., 2012). Non-Annex I countries as a group have a share in the cumulative global greenhouse emissions for the period 1850 to 2010 close to 50%, a share that is increasing (den Elzen et al., 2013b) (see Section 5.2.1 for more detail on historical emissions). 61 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Meanwhile, income inequality and variations in capacity remain substantial both within and across countries. While GDP per capita in some non-Annex I countries has increased and some have joined the OECD, incomes of G8 countries remain higher than those of major emerging economies such as the BASIC countries (World Bank, 2013). Poverty is much more extensive and income at lower absolute levels in the latter, compared to the former (Milanovic, 2012). Inequality in income remains related to inequalities in emissions (Padilla and Serrano, 2006; Chakravarty et al., 2009). More broadly, although the Kyoto Protocol s quantitative mitigation requirements are limited to Annex B countries, the economic impacts of these requirements may spill over to non-Annex B countries (Böhringer and Rutherford, 2004). In terms of intertemporal distributional equity, some have noted that climate change mitigation that requires emissions reductions in the short term for uncertain long-term benefits, also involves inter-generational distributional impacts (Schelling, 1997; Leach, 2009). Among Annex B countries, the Kyoto Protocol s emissions-target allocation is generally progressive, one common measure of distributional equity, exhibiting positive correlation between gross domestic product per capita and the degree of targeted emissions reduction below business-asusual levels. For a 10% increase in per capita GDP, Annex B countries emissions reduction targets are, on average, about 1.4% more stringent (Frankel, 1999, 2005). In terms of institutional feasibility, it is notable that the Kyoto Protocol has been ratified (or the equivalent) by 191 countries (plus the EU separately) (Falkner et al., 2010). As noted above, participation among Annex I countries in emissions-reduction commitments dropped significantly from the first (2008-2012) to the second (2013-2020) commitment periods, though the stringency of the emission-reduction commitments of those countries still participating increased for the second period. More broadly, the high rate of ratification is likely due in part to the lack of emissionsreduction commitments asked of non-Annex B countries (Lutter, 2000). Allowing Annex B countries the flexibility to choose policies to meet their national emissions commitments may have contributed to institutional feasibility. However, compromises made during the negotiation of the Protocol that enabled its institutional and political viability may have reduced its environmental effectiveness (Victor, 2004; Helm, 2010; Falkner et al., 2010). This serves as an example of the tradeoff across ambition, participation, and compliance discussed in Section 13.2.2.5. Additionally, obstacles for enforcement have hurt the Protocol s institutional feasibility. Despite the Kyoto Protocol s compliance system (Oberthür and Ott, 1999; Hare et al., 2010; Brunnée et al., 2012), it is difficult in practice to enforce the Kyoto Protocol s targets because of the lack of a legal authority with enforcement powers, and the weakness of possible sanctions relative to the costs of compliance. This is, of course, true of most international agreements (van Kooten, 2003; Böhringer, 2003; Barrett, 2008b) (see also sections 13.3.2 and 13.4.2.1.). 13.13.1.2 Assessment of the Kyoto Protocol s Clean Development Mechanism The CDM aims to reduce mitigation costs for Annex B countries and contribute to sustainable development in non-Annex B countries (UNFCCC, 1998) (Article 12). This mechanism led to the issuance of nearly 1.4 billion emission credits from over 7300 registered projects by October 2013 (see Section 13.7.2 and http://cdm.unfccc.int/). This performance was surprising, given that the CDM suffered from many disadvantages relative to the other flexibility mechanisms (Woerdman, 2000). The environmental effectiveness of the CDM depends on three key factors: whether a credited project actually reduces more emissions than would have been reduced in its absence (which may depend on whether the project developers are indeed motivated primarily by expected revenue from the sale of the emission credits) ( additionality ); the validity of the baseline from which emission reductions are calculated; and indirect emissions impacts ( leakage ) caused by the projects. 62 of 137 Final Draft Chapter 13 IPCC WGIII AR5 The issue of additionality (IPCC, 2007, pp. 779 780) continues to generate controversy, despite an increasing elaboration of additionality tests by CDM regulators (Michaelowa et al., 2009). On the one hand, (Schneider, 2009) found that key assumptions regarding additionality were often not substantiated with credible, documented evidence, in a sample of 93 projects. On the other hand, (Lewis, 2010) finds a clear contribution of the CDM to the rapid upswing of the renewable energy sector in China. Clean Development Mechanism projects in energy efficiency, transport and buildings have faced challenges in baseline determination, monitoring, and transaction costs (Sirohi and Michaelowa, 2008; Michaelowa et al., 2009; Millard-Ball and Ortolano, 2010). Kollmuss et al. (2010) suggest that it may be possible to prevent baseline gaming through a clear regulatory framework. Heeding this advice, CDM regulators have increased the conservativeness of approved methodologies, after rejecting a significant share of baseline methodology proposals (Michaelowa et al., 2009; Millard-Ball and Ortolano, 2010). Recent attempts by CDM regulators to standardize baselines have triggered a debate regarding their impacts on environmental effectiveness and transaction costs. Making the choice between standardized and project-specific baselines voluntary (Spalding-Fecher and Michaelowa, 2013), as well as simple, highly aggregated performance standards (Hayashi and Michaelowa, 2013) could reduce environmental effectiveness. With regard to leakage, (Vöhringer et al., 2006) argue that emission leakage due to market price effects is unavoidable (as it is for mitigation within Annex B countries), while Kallbekken et al. (2007) stress that regardless of the baseline used, the CDM will reduce carbon leakage through the reduction in the difference in marginal mitigation costs between countries. Schneider (2011) shows that for HFC-23 reduction projects, baseline gaming enabled production of the underlying commodity to shift from industrialized to developing countries (Wara, 2008). With regard to cost-effectiveness, the CDM offers the potential for cost savings where abatement costs are lower in developing countries. The large volume of credits and projects in the CDM indicates its cost-saving potential. Still, Castro (2012) found that many low-cost opportunities had not been taken up by CDM projects. The long-term contribution of the CDM to cost-effectiveness depends in part on its ability to promote technological change in developing countries either through technology transfer from industrialized to developing countries (see Chapter 16.8 for an overview of the technology transfer component of CDM), or by stimulating innovation within developing countries (Reichman et al. 2008). Roughly a third of CDM projects involve technology transfer (Haites et al., 2006). Dechezlepretre et al. (2008) find that the likelihood of technology transfer is higher for CDM projects operated by subsidiaries of companies from industrialized countries. Seres et al. (2009) find that 36% of 3296 registered and proposed projects accounting for 59% of the annual emission reductions claim to involve technology transfer, confirming Dechezlepretre et al. s (2008) results. But all of these technology transfer studies limit themselves to assessment of project documents, which are not subject to rigorous and independent verification. Project developers have an incentive to overstate technology transfer. Wang (2010) is an exception, and underpins his analyses of many project documents with background interviews and assesses government policies. He finds that in all but one of the industrial gas projects in China, technology transfer occurred, but only in about a quarter of wind and coal mine methane projects. Okazaki and Yamaguchi (2011) fear that transactions costs, imposed by additionality criteria and Executive Board delays, can discourage technology transfer through the CDM. Distributional impacts of the CDM relate to contributions to sustainable development, as well as the distribution of rents generated by the sale of emission credits. Olsen (2007) provides a summary of the early literature that did not find significant support for sustainable development induced by CDM projects. Several researchers (Sutter and Parreno, 2007; Gupta et al., 2008; Headon, 2009; Boyd et al., 2009; Alexeew et al., 2010) see the process of host country responsibility for sustainable 63 of 137 Final Draft Chapter 13 IPCC WGIII AR5 development and competition between host countries for CDM investment as a reason for the lack of sustainability benefits of CDM projects in some countries, as Designated National Authorities (national CDM-management bodies) may not adequately scrutinize the environmental or social benefits of projects. Parnphhumeesup and Kerr (2011) find that experts and the local population weight sustainability criteria differently in the context of biopower projects in Thailand. Ellis et al. (2007) found wide variation in the contribution to local sustainable development by project type, with greater contributions in small-scale renewable energy and energy efficiency than in large-scale industrial CDM projects. Using a sample of 39 projects, Nussbaumer (2009) finds that CDM projects certified by The Gold Standard referring both to the organization and the certification scheme by that name slightly outperform other CDM projects with respect to sustainable-development benefits. A similar result is found by Drupp (2011) for a sample of 18 Gold Standard projects compared with 30 projects certified through other means. Torvanger et al. (2013) propose dividing the CDM into two tracks, one for GHG offsets and one for sustainable development (though investors in the second track would need some new incentive). The distribution of CDM projects has been concentrated in a relatively small number of developing countries (Yamada and Fujimori, 2012; see also Section 14.3.7.1). Given that companies in developing countries finance CDM projects out of their own resources and eventually sell the credits as a new export product, with the CDM consultant receiving a share (Michaelowa, 2007), a substantial amount of the rents remain in the host country. At the same time, the demand for CERs is evidence that it reduces costs compared to domestic reductions by developed countries. The fear, even if unfounded, of losing this export revenue may be a deterrent against taking up national emissions commitments (Castro, 2012), although in practice many such countries are developing policies aimed at emissions limitations. Therefore, it has been proposed to discount CDM credits to provide an incentive for taking up stricter national targets (Schneider, 2009). In terms of institutional feasibility, baselines, additionality, and emissions-reductions are subject to third-party audit. However, due to the inadequate quality of many audits, regulators have been forced to introduce multi-layered procedures that have led to high transaction costs. Flues et al. (2010) show econometrically that regulatory decisions about project registration and baseline methodology approval have been influenced by political economy considerations. There is ongoing debate in the literature about the efficacy of CDM governance (Green, 2008; Lund, 2010; Michaelowa, 2011; Okazaki and Yamaguchi, 2011; Böhm and Dhabi, 2011; Newell, 2012). The UNFCCC commissioned an evaluation of the CDM in the CDM Policy Dialogue, which issued a report in September 2012 recommending several reforms of CDM governance (CDM Policy Dialogue, 2012). Michaelowa (2009) and Schneider (2009) propose a shift from the current 1:1 offsetting system to a system that only credits part of the reductions. This would improve additionality on the aggregate level and provide an incentive for advanced developing countries to accept their own emission reduction commitments. Giving preferential treatment in procedures and methodology to certain project categories, certain sectors, notably forestry (Thomas et al., 2010; CDM Policy Dialogue, 2012), or certain regions (Nguyen et al., 2010; Bakker et al., 2011) might expand the reach of CDM. The price of CDM credits has declined, due largely to decreased demand from the EU ETS and others, following the 2008 recession, as well as changes in EU ETS rules regarding the use of CDM credits (see Section 13.6.1). In response, the CDM Policy Dialogue (2012) proposed creation of a central bank for carbon markets to bolster credit prices, as well as further standardization of baseline and additionality determination to reduce transaction costs. The benefits of these two recommendations are disputed in the literature (Hayashi and Michaelowa, 2013; Spalding-Fecher and Michaelowa, 2013). 13.13.1.3 Assessment of further agreements under the UNFCCC As discussed in 13.5.1.1, since AR4, negotiations under the UNFCCC have produced the system of pledges in the Copenhagen Accord and the Cancún Agreements, as well as the development of the 64 of 137 Final Draft Chapter 13 IPCC WGIII AR5 GCF and an agreement to negotiate a new agreement by 2015. In terms of environmental performance, these agreements acknowledged that deep reductions in GHG emissions would be required to limit global average temperature increases to 2°C above pre-industrial levels, and recognized the possibility strengthening this target to 1.5°C (UNFCCC, 2010). Different goals will imply different reductions in climate change impacts (see AR5 WGII report on Impacts, Adaptation, and Vulnerability) and different mitigation costs (see Section 6.3). There is broad agreement in the literature that global emissions reductions through 2020 implied by the Cancún pledges are inconsistent with cost-effective mitigation scenarios, which are based on the immediate onset of mitigation that maintain temperature change below 2°C with a greater than 50% probability (see Section 6.4 for detail on these scenarios). The difference between the emissions in 2020 in immediate mitigation scenarios and the Cancún pledges has been referred to as the 2oC emissions gap (Rogelj et al., 2010; Dellink et al., 2011; den Elzen et al., 2011b; Höhne et al., 2012b). However, there are a number of delayed mitigation scenarios that delay mitigation and still meet this temperature goal and have emissions in the range of the Cancún pledges in 2020 (see Section 6.4). Analyses that have quantified the Cancún pledges exhibit substantial differences in results, owing in part to uncertainties in current and projected emissions estimates and interpretations of reduction proposals, and in part to different methodologies (UNEP, 2010, 2011, 2012, 2013b; Höhne et al., 2012b) (Figure 13.5). For example, one source of differences in analyses is due to changing rules: At COP-17 in Durban in 2011, parties agreed to new rules for using land use credits for the Kyoto Protocol s Second Commitment Period (UNFCCC, 2012c; Grassi et al., 2012), and at COP-18 in Doha in 2012, for surplus Kyoto allowances (Chen et al., 2013; UNFCCC, 2012d). Studies suggest that the emissions gap between current Cancún pledges and a an immediate mitigation trajectory consistent with maintaining temperature change below 2oC with a 50% or greater chance could be narrowed by implementing more stringent pledges, applying stricter accounting rules for credits from forests (Grassi et al., 2012) and surplus emission units (den Elzen et al., 2012), avoiding double-counting of offsets for both developed-country commitments and developing countries Cancún pledges (UNEP, 2013b), increasing support for action in developing countries (Winkler et al., 2009), and implementing measures beyond current pledges (den Elzen et al., 2011b; Blok et al., 2012; Weischer et al., 2012; UNEP, 2013b). Figure 13.5. Blue box plots show historic global GHG emissions and emissions in 2020 from business-as-usual projections and projections including Cancún pledges. Four cases are considered which combine assumptions about pledges (unconditional or conditional) and rules for complying with 65 of 137 Final Draft 1 Chapter 13 IPCC WGIII AR5 pledges (lenient or strict) . The ranges of 2020 emissions (20th percentile, median, and 80th percentile) are taken directly from the UNEP Emissions Gap Report (UNEP, 2012) and represent findings from various modelling groups considering scenarios that begin mitigation immediately. The arrows indicate the difference between the median emissions projection in each case and the median emission level projected to maintain temperature change below 2°C with a greater than 66% probability. The ranges (20th to 80th percentiles) of 2020 emissions that maintain temperature change below 2 °C can be compared to those from cost-effective immediate mitigation scenarios from the WGIII AR5 Scenario Database: greater than 66% probability: 36-47 GtCO2eq/yr; 50-66% probability: 43-47 GtCO2eq/yr (see Chapter 6 and Annex II.10 for details, including MAGICC calculations). Differences in these ranges depend, for example, on assumptions about the availability of negative emissions technologies (see, e.g, Figure 6.31). In terms of aggregate economic performance, some analyses have estimated the direct costs of the Cancún pledges (den Elzen et al., 2011a), as well as broader economic effects (Mckibbin et al., 2011; Dellink et al., 2011; Peterson et al., 2011). For example, Dellink et al. (2011) estimate costs of action at around 0.3% of GDP for both Annex I and non-Annex I countries and 0.5 0.6% of global real income. However, there have been no published comparisons of the benefits and costs of the Cancún pledges, and thus no quantitative assessments of economic efficiency. In terms of cost-effectiveness, the Cancún Agreements endorsed an on-going role for domestic and international market-based mechanisms, among various approaches, to improve cost-effectiveness. They also made a potential step forward on the cost-effectiveness criterion by emphasizing the role of mitigation actions in the forestry sector (UNFCCC, 2010; Grassi et al., 2012), which could be integrated with other actions through market mechanisms. Including forestry in market mechanisms could reduce global mitigation costs by taking advantage of low-cost mitigation opportunities in that sector (Eliasch, 2008; Busch et al., 2009; Bosetti et al., 2011; UNEP, 2013b) (see also Section 13.5.1.1). Assessing distributional impacts accurately depends both on the mitigation costs for developingcountry emission reductions and the sources of financing for such reductions. The distributional equity of recent emission-reduction pledges could be increased through financing of reductions in non-Annex I countries. By one study s estimate, between 2.1 3.3 GtCO2eq could be reduced in nonAnnex I countries with 50 billion USD in financing, half of the financing agreed to under the Copenhagen Accord (Carraro and Massetti, 2012). Studies of the climate change mitigation financing gap have suggested potential approaches to providing financial resources (Ballesteros et al., 2010; AGF, 2010; Haites, 2011) (see also Sections 16.2 and 13.11). Assessments of climate agreements following the Copenhagen, Cancún, and Durban UN climate conferences reflect differing interpretations of recent negotiations with regard to institutional feasibility (Dubash, 2009; Rajamani, 2010, 2012a; Werksman and Herbertson, 2010; Müller, 2010). Copenhagen (2009) was assessed as a failure by those who expected a new climate treaty and a second commitment period of the Kyoto Protocol. Others saw the political agreement reached among a small group of world leaders (eventually espoused by more than fifty) as a major step forward, even though not legally binding, especially because it moved toward a future agreement on emissions reductions by all major emitting countries, rather than continuing to divide developed from developing countries (Ladislaw, 2010). Others noted more specific effects, such as the change in the organization of carbon markets (Bernstein et al., 2010). The literature suggests that views diverge on the Cancún Agreements: some see them as a step forward in the multilateral process (Grubb, 2011) potentially towards a subsequent legal agreement (Bodansky and Diringer, 2010), 1 Figure 13.5 illustrates results from modelling of pledges by various research groups. Note that the analysis reconciles pledges for all countries against a business-as-usual counterfactual based on what has been described in the literature, even though developed country pledges for 2020 are absolute (against a historical base year) and developing country pledges relative (with rare exceptions; see Section 13.5.1). 66 of 137 Final Draft Chapter 13 IPCC WGIII AR5 while others suggest that the move to a voluntary pledge system has weakened the multilateral climate regime (Khor, 2010b). The participation of 97 countries in the form of emission reduction pledges (42 countries) or mitigation actions (55 countries) speaks to the institutional feasibility of the Cancún Agreements (see Section 13.5.1.1). The Durban Platform in 2011 further de-emphasized the distinction between developing and developed countries, with regard to mitigation commitments, and mandated a new treaty by 2015, to take effect by 2020, mobilizing emissions reductions by all countries (UNFCCC, 2011a). 13.13.1.4 Assessment of envisioned international cooperation outside of the UNFCCC A wide variety of international institutions outside of the UNFCCC have some role in international climate change policy. These are described in Section 13.5 and depicted graphically in Figure 13.1, above. They include activities at the international, regional, national, subnational, and local scales, and they include public, private and civil society actors. Here, we discuss those institutions for which there exist published assessments of performance for at least one of the criteria from Section 13.2.2. The breadth of group membership poses a potential tradeoff between global participation and other aspects of institutional feasibility (see Sections 13.2.2.4, 13.3.3, and 13.5.1). To the extent that a group s membership includes only a subset of countries, this may facilitate negotiations and implementation, thereby improvinginstitutional feasibility (Houser, 2010), but this may reduce environmental and economic performance due to incomplete global coverage omitting others emissions, yielding leakage, and forgoing low-cost opportunities for abatement (Wiener, 1999; see also Sections 13.13.1 and 13.5.1.2). Moreover, bringing climate discussions into smaller international forums has been criticized by some as attempts to circumvent the UNFCCC and reduce its legitimacy (Hurrell and Sengupta, 2012). Because the UNFCCC s Kyoto Protocol provides for emissions commitments only by Annex B countries (which account for a declining share of global emissions, with increased risk of leakage), some of the smaller groups discussed in this subsection have tried to engage major developing countries as well, to reduce leakage and increase environmental effectiveness. The G8 The G8 includes eight major industrialized countries (United States, United Kingdom, Canada, France, Germany, Italy, Japan, and Russia), plus the European Union. At the 2007 G8 summit, member countries agreed (though without a binding commitment) to set a goal of a 50% reduction in GHG emissions below 1990 levels by 2050, conditional on major developing countries making significant reductions. A comparison of four models of global emission pathways (including the G8 plus China, India, and other major developing countries, a group which resembles the MEF or G20 more than the G8), to achieve concentration levels of 550, 450, or 400 ppm by 2100, found that aggregate global costs through 2100 would be below 0.8% of global GDP to achieve 550 ppm and about 2.5% for 400 ppm (but highly sensitive to the availability of CCS and biofuels) (Edenhofer et al., 2010); see also Section 6.3.6. Analysts have examined the economic impacts of achieving reductions approximating the G8 pledge on individual countries, such as the United Kingdom (Dagoumas and Barker, 2010) and the United States (Paltsev et al., 2008).The former finds no simple tradeoff between emission reductions and economic growth in the United Kingdom. Of the more aggressive reductions modelled for the United States, Paltsev et al. (2008) finds carbon prices rising to between 120 and 210 USD by 2050, a level of cost that would not seriously affect US GDP growth but would imply large-scale changes in its energy system. Paltsev et al. (2009) found somewhat higher costs, noting moreover that the details of policy design and incomplete sectoral coverage could raise these costs further. Meanwhile, actions by the G8 countries alone (excluding major developing countries) would address a declining share of global emissions and would be subject to leakage to non-G8 members. 67 of 137 Final Draft Chapter 13 IPCC WGIII AR5 The major economies forum on energy and climate change The MEF, described in Section 13.5.1.3, is a forum for the discussion of policy options and international collaboration with regard to climate and energy, not a forum for negotiation. There are no published assessments of the MEF s effectiveness. Massetti (2011) considers a scheme that achieves the MEF s informal, aspirational objective of reducing global emissions by 50% in 2050 (similar to the G8 goal, described above) through hypothetical 80% reductions by high-income MEF countries and 25 30% reductions by low-income countries, and finds costs would exceed 1.5% of GDP. The G20 The G20, described in Section 13.5.1.3, came to a political agreement at its 2009 Pittsburgh meeting to phase out and rationalize over the medium term inefficient fossil fuel subsidies while providing targeted support for the poorest (G20, 2009). This was not followed by a legally binding agreement. In terms of environmental effectiveness, this effort could significantly affect GHG emissions, if countries in fact implemented it; by one modelled estimate, complete phaseout of such subsidies by 2020, could reduce CO2 emissions by 4.7% (IEA, 2011). Analysis suggests that, of the economies identified by the IEA as having fossil-fuel consumption subsidies, almost half had either implemented fossil-fuel subsidy reforms or announced related plans by 2011 (IEA et al., 2011). However, other analysts suggest that progress towards this goal can be attributed to changes in reporting and subsidy estimation, and that no fossil fuel subsidies have been eliminated under this pledge (Koplow, 2012). Studies have confirmed that countries reforming fossil fuel consumer subsidies would realize positive economic benefits (IEA et al., 2011). However, these economic benefits would be offset by trade impacts if other countries also removed their subsidies and thus reduced their demand for fossil-fuel imports (IEA et al., 2011). The G20 initiative on fossil fuel subsidies could have positive distributional impacts within some countries, however. Since fossil fuel subsidies tend to benefit high-income households more than the poor in developing countries, their removal would be progressive in such nations (World Bank, 2008c). Some note that the creation of the G20 and its elevation to a premier global international economic forum during the financial crisis in 2008 (Houser, 2010) has led to more open and dynamic negotiations between industrialized and developing countries (Hurrell and Sengupta, 2012), suggesting a potentially positive route forward. The Montreal Protocol The Montreal Protocol is one agreement outside of the UNFCCC that has achieved nearly universal participation and has made a significant contribution to reducing GHG emissions (Molina et al., 2009; Velders et al., 2007). (The UNFCCC does not address GHGs already controlled by the Montreal Protocol.) In its effort to reduce emissions of ozone-depleting substances (ODS), the Montreal Protocol initially phased down chlorofluorocarbons (CFCs), which harm the ozone layer and also have very high global warming potential (GWP), and in 2007 decided to accelerate the phase-down schedule for HCFCs an interim replacement for CFCs with a somewhat lower, but still very significant, GWP. The latter decision was affected by climate considerations (Bodansky, 2011a). Even before the HCFC decision, one estimate suggested that the Montreal Protocol s overall net contribution to climate change mitigation had been approximately 5 times what the Kyoto Protocol would achieve under its first commitment period (Velders et al., 2007, 2012). However, this comparison may be unfair because the progress in reducing ozone depleting gases relative to GHGs may be due to the major ozone depleting gases being less central to economic activities than the major GHGs. In addition, the time-periods in which the two agreements have been operating makes comparison difficult. 68 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Hydrofluorocarbons are being widely adopted as a longer-term substitute for CFCs. Many of these have extremely high GWP, and their use will partially negate climate gains otherwise achieved by the Montreal Protocol (Moncel and van Asselt, 2012). Zaelke et al. (2012) suggest that a combination of reductions of HFCs and significant cuts in CO2, the largest contributor to climate change, can significantly increase the chances of remaining below the 2°C limit. Proposals have been made in the Montreal Protocol process to phase down HFCs (even though these gases are not ozone-depleting substances), but as of mid-2013, parties to the Montreal Protocol had not agreed to an HFC phasedown. However, in June 2013 the presidents of the United States and China announced a joint initiative to phase down HFCs. In terms of distributional equity, unlike the Kyoto Protocol, which placed no restrictions on developing country emissions, the Montreal Protocol applied equally-stringent emission requirements on all countries. However, the Montreal Protocol allowed for a 10-year grace period for countries with low per capita CFC consumption to meet their implementation requirements, consistent with the principle of CBDRRC. The Montreal Protocol also established mechanisms for financing and provided technical support to assist developing countries in reducing their ODS emissions; the most notable mechanism is the Multilateral Fund, which has transferred more than 3 billion USD to assist developing country ODS mitigation (Molina et al., 2009). The International Maritime Organisation and the International Civil Aviation Organisation Under the Kyoto Protocol s Article 2.2, Annex I parties agreed to pursue GHG limitations from maritime and air transport through the IMO and ICAO. Approximately 3.3% of global CO2 emissions in 2007 were attributable to shipping (IMO, 2009). In 2011, the IMO adopted the first mandatory standards for a sector relating to GHG emissions, instituting a performance-based energy-efficiency regulation for large ships for which the building contract is placed on or after January 1, 2013 (Bodansky, 2011c). This regulation applies uniformly to all countries, extending participation in GHG emissions regulation. These standards were adopted by majority vote (over some objections), and include a provision to promote technical cooperation and assistance, especially for developing countries (Bodansky, 2011c), to address equity concerns, enhancing institutional feasibility. The ICAO adopted a resolution on climate change in 2010. In contrast to the IMO, the ICAO s climate change goals are voluntary and aspirational. Perceived inadequate progress by the ICAO toward aviation emissions reduction goals may have prompted the inclusion of aviation emissions in the EUETS in January 2012 (Bodansky, 2011c) (see Section 13.8.2). Agreements among non-state actors and agreements among sub-national actors It is unclear whether agreements among non-state (NGOs, private sector) or sub-national actors (transnational city networks) have been effective in reducing emissions. Partly this is because of their novelty and partly because the units of measurement for such effectiveness are considerably more complex than for interstate agreements (Pinkse and Kolk, 2009). For subnational efforts, the question of attribution requires better disaggregation, to understand whether reductions are additional to national effort, or only contribute to delivering national pledges. While these subnational efforts may make a small contribution to climate action, they may be valuable in influencing nation states or helping them meet commitments (Osofsky, 2012). Other measures of impacts do exist. In private sector initiatives, the Carbon Disclosure Project has high rates of reporting, with about 91% of Global 500 companies surveyed in 2011 disclosing GHG emissions (Carbon Disclosure Project, 2011). There is little evidence of substantial changes in investor behaviour, with disagreement as to the potential for such changes in the future (Kolk et al., 2008; Harmes, 2011; MacLeod and Park, 2011). Some assessments have focused on how transnational city initiatives promote technology uptake within cities (Hoffmann, 2011) or on how they create a combination of competition and learning among member cities. 69 of 137 Final Draft Chapter 13 IPCC WGIII AR5 The voluntary carbon market (VCM) (see Section 13.5.2) had grown to 131 million tCO2eq (about one-tenth of the size of the CDM), with a value of 424 million USD, by 2010 (Peters-Stanley et al., 2011). In 2004, virtually no VCM projects underwent third-party verified certification, but by 2010, this figure had reached 90% and the VCM has created a varied landscape of emission-offset providers, registries, and standards (Peters-Stanley et al., 2011). For some, the VCM is complementary to the CDM, and provides for learning about new ways of developing emissions reduction projects (Benessaiah, 2012). However, Dhanda and Hartman (2011) find that the voluntary market is not transparent and suffers from large swings of demand for specific project types. Offset prices for the same project type differs by up to two orders of magnitude. As noted, competing registries and standard providers proliferate, and additionality of a significant share of projects is doubtful. Some regard voluntary certification systems as primarily public relations exercises (Bumpus and Liverman, 2008). An earlier assessment by Corbera et al. (2009) concluded that the voluntary market does not perform better than the CDM. However, performance in the VCM seems to improve with the increased use of third-party certification systems (Hamilton et al., 2008; Capoor and Ambrosi, 2009; Newell and Paterson, 2010). There is evidence that the importance of partnerships between the private sector and government depends on their relationship to more traditional state-led governance. Partnerships may work once government regulations send strong signals to investors (Pfeifer and Sullivan, 2008). Rules developed in private sector agreements may then become incorporated in government regulations (Knox-Hayes and Levy, 2011), and private carbon market offset standards may be introduced into regulated carbon markets (Hoffmann, 2011). 13.13.2 Performance assessment of proposed international climate policy architectures This section describes proposed global climate policy architectures (surveyed in Section 13.4), focusing on those that have been described for the first time since AR4, and older proposals for which new research on anticipated performance is available. Earlier proposals are listed in Table 13.1 of (Gupta et al., 2007). The performance assessment of proposed architectures is difficult because it depends on both the architecture and the specific design elements of its regulatory targets and mechanisms. For analytical purposes, this chapter classifies proposals using the taxonomy developed in Section 13.4.3 and Table 13.2: (a) strong multilateralism, (b) harmonized national policies, and (c) decentralized architectures and coordinated national policies. Combinations of these categories have also been proposed and assessed. For example, strong multilateralism can be advanced by clubs of selected ambitious countries (Weischer et al., 2012)or by non-state actors (Blok et al., 2012). 13.13.2.1 Strong multilateralism The anticipated performance of various proposals for strong multilateralism has been assessed in the literature. In addition, another body of research has examined the ends (but not the policy architecture) associated with various aggregate goals in terms of country- or region-level emission targets based on specific notions of distributional equity, so-called burden sharing approaches (see Section 13.2, as well as Sections 4.6.1 and 6.3.6.6 for quantitative assessments). Comprehensive proposals for strong multilateralism have in some cases been closely related to the targets-and-timetables approach of the Kyoto Protocol. This approach aims to be based on the UNFCCC principle of CBDRRC while introducing a more nuanced differentiation and broader base of participation, along with some details of the means of implementation. This is well reflected in the literature on reduction proposals with national emission targets and emissions trading (see Table 13.1 in Gupta et al., 2007), in particular gradually-increasing emission-reduction commitments linked to indicators such as per capita income (literature since AR4 including (Cao, 2010a; Frankel, 2010; Bosetti and Frankel, 2011), differentiating groups of countries (den Elzen et al., 2007; Rajamani, 70 of 137 Final Draft Chapter 13 IPCC WGIII AR5 2013), common but differentiated convergence (Höhne et al., 2006; Luderer et al., 2012), and per capita targets (Agarwala, 2010). Distributional impacts vary significantly with underlying criteria for effort sharing. For example, proposals that use responsibility and capability as a criterion for allocating effort would result in relatively more stringent implied actions for early emitters, assigning them lower allocations. Proposals based on the criterion of mitigation potential would be less stringent for early emitters, capturing the mitigation potential in developing countries, assumed to be relatively low-cost (Höhne et al., 2013). Especially for low-stabilization levels, the approaches differ in the extent to which they rely on contributions from all countries, from emissions reductions within their borders, and on international assistance between countries. Section 4.6.2.2 details many more possible criteria for effort sharing, and Section 6.3.6.6 quantifies the implications of these various effort sharing criteria in terms of regional emission allocations and costs. Sectoral approaches are generally not anticipated to perform optimally in terms of environmental effectiveness or economic performance when compared with economy-wide approaches; therefore, sectoral approaches can be thought of as second-best policies (Bradley et al., 2007; Schmidt et al., 2008; den Elzen et al., 2008; Meckling and Chung, 2009). Sectors that are homogenous and already globally integrated, such as aviation, may lend themselves better to international cooperation than those that are heterogeneous. Omitting some sectors makes it more difficult to achieve emissions or stabilization goals and also reduces cost-effectiveness, relative to economy-wide approaches, as required emissions reductions must be made within-sector, failing to take advantage of the lower of heterogeneous marginal abatement costs across sectors. Transaction costs may also be higher with sectoral approaches, including, for example, greater challenges to negotiation (Bradley et al., 2007). However, these approaches could potentially help mitigate leakage within particular industries (Bradley et al., 2007; Sawa, 2010). In terms of institutional feasibility, sectoral approaches may encourage the participation of a wider range of countries than economy-wide approaches, because sectoral agreements can be more politically manageable in domestic policy processes (Bradley et al., 2007; Sawa, 2010). Developing countries may also be more likely to participate meaningfully in sectoral processes than economy-wide agreements limiting emissions (Meckling and Chung, 2009). Several researchers have suggested that a regime complex is emerging (see Sections 13.3 and 13.5), with the strong implication that component regimes may display a range of architectures from strong multilateralism through more decentralized systems (Carraro et al., 2007; Biermann et al., 2009; Barrett, 2010; Keohane and Victor, 2011). The portfolio of treaties approach is similar in some ways to the sectoral approaches described above. However, the approach described in (Barrett, 2010) includes much more significant enforcement possibilities, potentially increasing environmental effectiveness, while potentially reducing institutional feasibility. 13.13.2.2 Harmonized national policies In principle, a wide variety of national climate policies can be harmonized across countries. This holds for cap-and-trade systems (e.g., a global emissions permit trading system (Ellerman, 2010)), as we discuss in the context of linkage below, as well as for national carbon or other GHG taxes. The most-studied approach in terms of performance assessments has been harmonized carbon taxes. Their environmental performance would depend upon the level of the tax, but relative to nonmarket-based approaches, this approach would be cost-effective. The impact of a carbon tax on economic efficiency will depend, in part, on how tax revenues are used (Bovenberg and de Mooij, 1994; Parry, 1995; Bovenberg and Goulder, 1996; Cooper, 2010). Estimates in the recent literature of the environmental effectiveness and economic performance of proposed carbon taxes vary dramatically depending upon assumptions (Edmonds et al., 2008; Clarke et al., 2009; van Vuuren et al., 2009; Bosetti et al., 2010; Luderer et al., 2012). The distributional impacts of a carbon tax include negative impacts on the fossil fuel industry as a whole, with stronger 71 of 137 Final Draft Chapter 13 IPCC WGIII AR5 impacts for fuels with higher carbon emissions per unit of energy. For example, impacts on coal would be much greater than on natural gas (Cooper, 2010). Impacts of national carbon taxes on consumers would likely be somewhat regressive in high-income countries but progressive in lowincome countries (see Section 15.5 for detail). Tax revenues could be used by individual countries to address these domestic distributional concerns (See e.g.,Winkler and Marquard, 2011; Alton et al., 2012). Under a harmonized national carbon tax regime, fossil-fuel-exporting countries might experience negative impacts, and net importers could experience decreasing prices due to reduced demand, while some regions could experience increased bio-energy exports (Persson et al., 2006; OECD, 2008; Cooper, 2010; Leimbach et al., 2010). International transfers drawing on revenues of such a tax could, in theory, be used to address these concerns or to encourage participation by developing countries (Nordhaus, 2006). As with emissions trading (Frankel, 2010), the extent of developing country participation in an international carbon tax scheme could be based upon income thresholds (Nordhaus, 2006). The institutional feasibility of a global carbon tax has not been thoroughly considered in the literature. The relatively large number of studies on a global carbon tax is at least partly due to the fact that economic modellers often model a global carbon tax as a proxy for other mitigation policy instruments that would impose shadow prices on the carbon content of fossil fuels and/or CO2 emissions. Many hybrid market-based approaches to mitigation, combining tradable emissions permits with some characteristics of a carbon tax, have been proposed and examined in the recent literature (Pizer, 2002; Murray et al., 2009; FELL et al., 2010; Webster et al., 2010; Grüll and Taschini, 2011). In principle, these hybrid approaches can provide better aggregate economic performance, lowering compliance costs and reducing price volatility, at the potential expense of environmental effectiveness in the form of uncertain changes in aggregate emissions (Grüll and Taschini, 2011). However, recent research suggests that soft price collars, which provide a modest reserve of additional emission allowances at the price ceiling, may achieve most of the expected compliance cost savings provided by hard collars (unlimited supplies of additional allowances), while maintaining a more predictable cap on emissions (Fell et al., 2012). In terms of distributional equity, hybrid systems may reduce expected compliance costs for regulated firms, though they may increase regulatory costs (Grüll and Taschini, 2011). This characteristic may also increase political feasibility. 13.13.2.3 Decentralized architectures and coordinated national policies In principle, many types of national climate policies could be linked to each other. In the literature to date, most discussion is of linked carbon markets. The recent literature on these suggests that economic performance of existing GHG allowance trading systems could be enhanced through linkage, which would reduce abatement costs and improve market liquidity (Haites and Mehling, 2009; Mehling and Haites, 2009; Sterk and Kruger, 2009; Anger et al., 2009; Jaffe et al., 2009; Jaffe and Stavins, 2010; Grüll and Taschini, 2011; Metcalf and Weisbach, 2012; Ranson and Stavins, 2013). In terms of environmental performance, linkage can increase or reduce emissions leakage, depending on the stringency of caps, and the quality of offset credits within linked systems. Linkages among cap-and-trade systems as well as linkages with and among emission-reductioncredit systems would create winners and losers, generating distributional impacts relative to unlinked systems, depending upon impacts on allowance prices and whether participating entities are net buyers or net sellers of emissions (Jaffe and Stavins, 2010). While it does preserve the ability of countries to meet their commitments through means of their own choice, consistent with the Kyoto Protocol, linkage also poses some challenges for institutional feasibility, since it reduces domestic control over prices, emissions, and other aspects of policy design and impact (Buchner and Carraro, 2007; Jaffe et al., 2009; Jaffe and Stavins, 2010; Ranson and Stavins, 2013). Linking may not benefit 72 of 137 Final Draft Chapter 13 IPCC WGIII AR5 all participating countries due to potential market distortions and the rebalancing of production and consumption patterns in multiple markets (i.e., general equilibrium effects) (Marschinski et al., 2012). In one analysis that modelled the heterogeneous costs and benefits of participation in a climate coalition using a game-theoretic framework, incentives to deviate from cooperation could not be compensated by transfers (Bosetti et al., 2013). Institutional-feasibility challenges may be more significant for linked heterogeneous policy instruments (such as taxes and emissions permit systems, or taxes and technology standards) relative to linked regimes that use similar instruments (Metcalf and Weisbach, 2012). For example, unrestricted linkage would effectively turn a permit trading system into a tax, pegging the permit price to the other country s tax rate, and allowing aggregate emissions above the permit system s established cap (Metcalf and Weisbach, 2012). Climate policy architectures that can be characterized as technology-oriented agreements may seek to share and coordinate knowledge and enhance technology research, development, demonstration, and transfer. Some literature suggests that such agreements may increase the efficiency and environmental effectiveness of international climate cooperation, but will have limited environmental effectiveness operating alone (de Coninck et al., 2008). Though technology-oriented policies can promote the development of new technologies, environmental effectiveness hinges on the need for other policies to provide incentives for adoption (Fischer, 2008; Newell, 2010b). For example, (Bosetti et al., 2009b) show that R&D alone is insufficient to stabilize CO2 levels without an accompanying carbon tax or functionally equivalent policy instrument. See Section 13.9.3 for details of international cooperation on technology. 13.14 Gaps in knowledge and data Current understanding of agreements and instruments for international cooperation continues to evolve. At the time of this publication, there are a number gaps in the scholarly literature of international cooperation for climate change mitigation, as identified below: There exist few comparisons of proposals in terms of any or all of the four criteria used in this report. Research that would be particularly useful would be comparisons of aggregate cost, or disaggregated regional- or country-level costs per year, with incorporation of uncertainty. There exist few assessments of the emerging range of new intergovernmental and transnational arrangements, including hybrid approaches and approaches that interact across the landscape of climate agreements, which might enable better assessment of the sum of efforts. Current understanding of the complementarities and tradeoffs between policies affecting mitigation and adaptation is incomplete. Current understanding of how international cooperation on climate change can help achieve co-benefits and development goals of countries andwhat policies and practices work and do not work in capacity building projects is incomplete. Current understanding of the factors that affect national decisions to join and form international agreements and how international cooperation can directly influence achievement of various performance criteria is incomplete. 73 of 137 Final Draft Chapter 13 IPCC WGIII AR5 13.15 Frequently Asked Questions FAQ 13.1 Given that GHG emissions abatement must ultimately be carried out by individuals and firms within countries, why is international cooperation necessary? International cooperation is important to achieve significant emissions reductions for a number of reasons. First, climate protection is a public good that requires collective action, because firms and individuals will not otherwise bear the private costs needed to achieve the global benefits of abatement (see Section 13.2.1.1). Second, because GHGs mix globally in the atmosphere, anthropogenic climate change is a global commons problem. Third, international cooperation helps to give every country an opportunity to ascertain how responsibilities are to be divided among them, based on principles adopted in international agreements (see Section 13.3). This is important because individual countries are the entities with jurisdiction over individuals and firms, whose actions ultimately determine if emissions are abated. Fourth, international cooperation allows for linkages across policies at different scale, notably through harmonizing national and regional policies, as well as linkages across issues, and through enhanced cooperation may reduce mitigation costs, create opportunities for sharing the benefits of adaptation, increase credibility of price signals, and expand market size and liquidity. Fifth, international cooperation may help bring together international science and knowledge, which may improve the performance of cooperativelydeveloped policy instruments. FAQ 13.2 What are the advantages and disadvantages of including all countries in international cooperation on climate change (an inclusive approach) and limiting participation (an exclusive approach)? The literature suggests that there are tradeoffs between inclusive approaches to negotiation and agreement (i.e., approaches with broad participation, as in the UNFCCC) and exclusive approaches (i.e., limiting participation according to chosen criteria for example, including only the largest emitters, or groups focused on specific issues). Regarding an inclusive approach, the universal membership of the UNFCCC is an indicator of its high degree of legitimacy among states as a central institution to develop international climate policy. However, the scholarly literature offers differing views over whether or not the outcomes of recent negotiations strengthen or weaken the multilateral climate regime (Section 13.13.1.3). A number of other multilateral forums have emerged as potentially valuable in advancing the international process through an exclusive approach. These smaller groups can advance the overall process through informal consultations, technical analysis and information sharing, and implementation of UNFCCC decisions or guidance (e.g., with regard to climate finance). They might also be more effective in advancing agreement among the largest emitters, but so far have not been able to do so. Examples include the MEF, the G20 and G8, and the city-level C-40 Climate Leadership Group. Section 13.5 goes into more detail, and Figure 13.1 illustrates the overall landscape of climate change-relevant agreements and institutions. FAQ 13.3 What are the options for designing policies to make progress on international cooperation on climate change mitigation? There are a number of potential structures for formalized international cooperation on climate change mitigation, referred to in the text as policy architectures (see Section 13.4). Architectures vary by the degree to which their authority is centralized and can be roughly categorized into three groups: strong multilateralism, harmonized national policies, and decentralized architectures (see Section 13.4.1). An example of strong multilateralism is a targets-and-timetables approach, which sets aggregate quantitative emissions-reduction targets over a fixed period of time and allocates responsibility for this reduction among countries, based on principles jointly accepted. The UNFCCC s Kyoto Protocol is an example of a strong multilateral approach. The second architecture is harmonized national policies. An example in principle (though not put into practice) might be multilaterally harmonized domestic carbon taxes. An example of the third architecture, 74 of 137 Final Draft Chapter 13 IPCC WGIII AR5 decentralized approaches and coordinated national policies, would be linkage among domestic capand-trade systems, driven not through a multilateral agreement but largely by bilateral arrangements. The literature suggests that each of the various proposed policy architectures for global climate change has advantages and disadvantages with regard to four evaluation criteria: environmental effectiveness, aggregate economic performance, distributional equity, and institutional feasibility. Section 13.4.1.4 goes into more detail. 75 of 137 Final Draft Chapter 13 IPCC WGIII AR5 References Abadie L.M., I. Galarraga, and D. Rübbelke (2013). An analysis of the causes of the mitigation bias in international climate finance, Mitigation and Adaptation Strategies for Global Change 18 943 955 pp. (DOI: 10.1007/s11027-012-9401-7), (ISSN: 1381-2386, 1573-1596). Abbott K.W. (2011). The Transnational Regime Complex for Climate Change. Arizona State University. 23 pp. Available at: http://media.cigionline.org/geoeng/2010%20-%20Abbott%20%20The%20Transnational%20Regime%20Complex%20for%20Climate%20Change.pdf. Abbott K.W., R.O. Keohane, A. Moravcsik, A.-M. Slaughter, and D. Snidal (2000). The concept of legalization, International Organization 54 401 419 pp. (DOI: 10.1162/002081800551271). Abbott K.W., and D. Snidal (2000). Hard and soft law in international governance, International Organization 54 421 456 pp. (DOI: 10.1162/002081800551280). Abbott K.W., and D. Snidal (2010). International regulation without international government: Improving IO performance through orchestration, The Review of International Organizations 5 315 344 pp. (DOI: 10.1007/s11558-010-9092-3), (ISSN: 1559-7431, 1559-744X). Agarwala R. (2010). Towards a global compact for managing climate change. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.179 200(ISBN: 978-0521137850). AGF (2010). Report of the Secretary-General s High-Level Advisory Group on Climate Change Financing. Advisory Group on Finance, United Nations, New York, NY. 65 pp. Available at: http://www.un.org/wcm/webdav/site/climatechange/shared/Documents/AGF_reports/AGF%20Rep ort.pdf. Agrawala S., M. Carraro, N. Kingsmill, E. Lanzi, M. Mullan, and G. Prudent-Richard (2011). Private Sector Engagement in Adaptation to Climate Change: Approaches to Managing Climate Risks. OECD, Paris. 56 pp. Available at: http://dx.doi.org/10.1787/5kg221jkf1g7-en. Aguirre J.C., and E.S. Cooper (2010). Evo Morales, climate change, and the paradoxes of a socialmovement presidency, Latin American Perspectives 37 238 244 pp. (DOI: 10.1177/0094582X10376362). Akin J. (2012). Civil justice in the mountains: The Bolivian Andes as grounds for climate reform, Colorado Journal of International Environmental Law and Policy 23 433 471 pp. . Available at: http://www.cjielp.org/documents/cjielp_art185.pdf. Albin C. (2001). Justice and Fairness in International Negotiation. Cambridge University Press, Cambridge, UK, 263 pp., (ISBN: 0521793289 (hardback)). . Aldrich E.L., and C.L. Koerner (2012). Unveiling Assigned Amount Unit (AAU) trades: Current market impacts and prospects for the future, Atmosphere 3 229 245 pp. (DOI: 10.3390/atmos3010229), (ISSN: 2073-4433). Aldy J.E., and W.A. Pizer (2009). The Competitiveness Impacts of Climate Change Mitigation Policies. Pew Center on Global Climate Change, Arlington, VA. 56 pp. Available at: http://www.c2es.org/docUploads/competitiveness-impacts-report.pdf. 76 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Aldy J.E., and R.N. Stavins (2010a). Introduction. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.1 28(ISBN: 978-0521129527). Aldy J.E., and R.N. Stavins (Eds.) (2010b). Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. Cambridge University Press, Cambridge, UK, (ISBN: 978-0521129527). . Aldy J.E., and R.N. Stavins (2010c). Lessons for the international policy community. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.899 929(ISBN: 9780521137850 (hbk.)). Aldy J.E., and R.N. Stavins (2012). Climate negotiators create an opportunity for scholars, Science 337 1043 1044 pp. (DOI: 10.1126/science.1223836), (ISSN: 0036-8075, 1095-9203). Alexeew J., L. Bergset, K. Meyer, J. Petersen, L. Schneider, and C. Unger (2010). An analysis of the relationship between the additionality of CDM projects and their contribution to sustainable development, International Environmental Agreements: Politics, Law and Economics 10 233 248 pp. (DOI: 10.1007/s10784-010-9121-y). Allen M. (2003). Liability for climate change: Will it ever be possible to sue anyone for damaging the climate?, Nature 421 891 892 pp. (DOI: 10.1038/421891a). Alton T., C. Arndt, R. Davies, F. Hartley, K. Makrelov, J. Thurlow, and D. Ubogu (2012). The Economic Implications of Introducing Carbon Taxes in South Africa. UNU-WIDER, Helsinki, Finland. . Available at: http://www.wider.unu.edu/publications/working-papers/2012/en_GB/wp2012-046/. Andersen S.O., K.M. Sarma, and K.N. Taddonio (2007). Technology Transfer for the Ozone Layer: Lessons for Climate Change. Routledge, 448 pp., (ISBN: 978-1844074730). . Andonova L.B. (2009). Networks, club goods, and partnerships for sustainability: The green power market development group. In: Enhancing the Effectiveness of Sustainability Partnerships: Summary of a Workshop. D. Vollmer, (ed.), National Academies Press, Washington, D.C. pp.65 95(ISBN: 9780309129930). Andonova L.B. (2010). Public-private partnerships for the Earth: Politics and patterns of hybrid authority in the multilateral system, Global Environmental Politics 10 25 53 pp. (DOI: 10.1162/glep.2010.10.2.25). Andonova L.B., M.M. Betsill, and H. Bulkeley (2009). Transnational climate governance, Global Environmental Politics 9 52 73 pp. (DOI: 10.1162/glep.2009.9.2.52). Andreoni J., and L. Samuelson (2006). Building rational cooperation, Journal of Economic Theory 127 117 154 pp. (DOI: 10.1016/j.jet.2004.09.002), (ISSN: 0022-0531). Anger N. (2008). Emissions trading beyond Europe: Linking schemes in a post-Kyoto world, Energy Economics 30 2028 2049 pp. (DOI: 10.1016/j.eneco.2007.08.002), (ISSN: 01409883). Anger N., B. Brouns, and J. Onigkeit (2009). Linking the EU emissions trading scheme: economic implications of allowance allocation and global carbon constraints, Mitigation and Adaptation Strategies for Global Change 14 379 398 pp. (DOI: 10.1007/s11027-009-9180-y), (ISSN: 1381-2386, 1573-1596). 77 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Anger A., and J. Köhler (2010). Including aviation emissions in the EU ETS: Much ado about nothing? A review, Transport Policy 17 38 46 pp. (DOI: 10.1016/j.tranpol.2009.10.010), (ISSN: 0967070X). Appleton A. (2009). Private climate change standards and labelling schemes under the WTO Agreement on Technical Barriers to Trade. In: International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, Cambridge pp.131 152(ISBN: 978-0521766197). Asheim G.B., C.B. Froyn, J. Hovi, and F.C. Menz (2006). Regional versus global cooperation for climate control, Journal of Environmental Economics and Management 51 93 109 pp. (DOI: 10.1016/j.jeem.2005.04.004), (ISSN: 0095-0696). Asheim G.B., and B. Holtsmark (2009). Renegotiation-proof climate agreements with full participation: Conditions for pareto-efficiency, Environmental and Resource Economics 43 519 533 pp. (DOI: 10.1007/s10640-008-9247-3), (ISSN: 0924-6460, 1573-1502). Van Asselt H., and T.L. Brewer (2010). Addressing competitiveness and leakage concerns in climate policy: An analysis of border adjustment measures in the US and the EU, Energy Policy 38 42 51 pp. (DOI: 10.1016/j.enpol.2009.08.061). Van Asselt H., N. van der Grijp, and F. Oosterhuis (2006). Greener public purchasing: Opportunities for climate-friendly government procurement under WTO and EU rules, Climate Policy 6 217 229 pp. . Van Asselt H., and J. Gupta (2009). Stretching too far: developing countries and the role of flexibility mechanisms beyond kyoto, Stanford Environmental Law Journal 28 311 380 pp. . Avenhaus R., and I.W. Zartman (Eds.) (2007). Diplomacy Games: Formal Models and International Negotiations. Springer, 370 pp., (ISBN: 9783642087929). . Awokuse T.O., and H. Yin (2010). Does stronger intellectual property rights protection induce more bilateral trade? Evidence from China s imports, World Development 38 1094 1104 pp. (DOI: 10.1016/j.worlddev.2009.12.016), (ISSN: 0305-750X). Ayers J.M., and S. Huq (2009). Supporting adaptation to climate change: What role for official development assistance?, Development Policy Review 27 675 692 pp. (DOI: 10.1111/j.14677679.2009.00465.x). Babiker M.H. (2005). Journal of International Economics . Climate change policy, market structure, and carbon leakage, Journal of International Economics 65 421 445 pp. (DOI: 10.1016/j.jinteco.2004.01.003). Bäckstrand K. (2008). Accountability of networked climate governance: The rise of transnational climate partnerships, Global Environmental Politics 8 74 102 pp. (DOI: 10.1162/glep.2008.8.3.74). Baer P. (2009). Equity in climate economy scenarios: The importance of subnational income distribution, Environmental Research Letters 4 015007 pp. (DOI: 10.1088/1748-9326/4/1/015007), (ISSN: 1748-9326). Baer P., T. Athanasiou, S. Kartha, and E. Kemp-Benedict (2009). Greenhouse development rights: A proposal for a fair global climate treaty, Ethics, Place & Environment 12 267 281 pp. (DOI: 10.1080/13668790903195495). 78 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Bailey P.D., G. Haq, and A. Gouldson (2002). Mind the gap! Comparing ex ante and ex post assessments of the costs of complying with environmental regulation, European Environment 12 245 256 pp. (DOI: 10.1002/eet.303), (ISSN: 1099-0976). Bakker S., C. Haug, H. Van Asselt, J. Gupta, and R. Saidi (2011). The future of the CDM: Same same, but differentiated?, Climate Policy 11 752 767 pp. (DOI: 10.3763/cpol.2009.0035), (ISSN: 14693062). Balistreri E.J., and T.F. Rutherford (2012). Subglobal carbon policy and the competitive selection of heterogeneous firms, Energy Economics 34 S190 S197 pp. (DOI: 10.1016/j.eneco.2012.08.002), (ISSN: 01409883). Ballesteros A., S. Nakhooda, J. Werksman, and K. Hurlburt (2010). Power, Responsibility, and Accountability: Re-Thinking the Legitimacy of Institutions for Climate Finance. World Resources Institute, Washington, D.C. Available at: http://pdf.wri.org/power_responsibility_accountability.pdf. Barbier E. (2010). How is the global Green New Deal going?, Nature 464 832 833 pp. (DOI: 10.1038/464832a), (ISSN: 0028-0836). Barrett S. (2002). Consensus treaties, Journal of Institutional and Theoretical Economics 158 529 547 pp. (DOI: 10.1628/0932456022975169). Barrett S. (2003). Environment and Statecraft: The Strategy of Environmental Treaty-Making. Oxford University Press, Oxford, UK, New York, 427 pp., (ISBN: 0199257337 (hbk : alk. paper)). . Barrett S. (2007). Why Cooperate?: The Incentive to Supply Global Public Goods. Oxford University Press, New York, (ISBN: 978-0199211890). . Barrett S. (2008a). The incredible economics of geoengineering, Environmental and Resource Economics 39 45 54 pp. (DOI: 10.1007/s10640-007-9174-8). Barrett S. (2008b). Climate treaties and the imperative of enforcement, Oxford Review of Economic Policy 24 239 258 pp. (DOI: 10.1093/oxrep/grn015). Barrett S. (2009). Rethinking global climate change governance, Economics: The Open-Access, OpenAssessment E-Journal 3 (DOI: 10.5018/economics-ejournal.ja.2009-5). Barrett S. (2010). A portfolio system of climate treaties. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.240 270(ISBN: 978-0521137850). Barrett S., and A. Dannenberg (2012). Climate negotiations under scientific uncertainty, Proceedings of the National Academy of Sciences 109 17372 17376 pp. (DOI: 10.1073/pnas.1208417109), (ISSN: 0027-8424, 1091-6490). Barrett S., and R.N. Stavins (2003). Increasing participation and compliance in international climate change agreements, International Environmental Agreements: Politics, Law and Economics 3 349 376 pp. (DOI: 10.1023/B:INEA.0000005767.67689.28). Barrieu P., and B. Sinclair-Desgagné (2006). On precautionary policies, Management Science 52 1145 1154 pp. (DOI: 10.1287/mnsc.1060.0527). 79 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Barros V., and M. Conte Grand (2002). Implications of a dynamic target of greenhouse gases emission reduction: the case of Argentina, Environment and Development Economics 7 547 569 pp. (DOI: 10.1017/S1355770X02000323). Barry J., and M. Paterson (2004). Globalisation, ecological modernization, and New Labour, Political Studies 52 767 784 pp. (DOI: 10.1111/j.1467-9248.2004.00507.x). Barton J. (2007). Intellectual Property and Access to Clean Energy Technologies in Developing Countries: An Analysis of Solar Photovoltaic, Biofuel and Wind Technologies. International Centre for Trade and Sustainable Development. . Available at: http://ictsd.org/downloads/2008/11/intellectual-property-and-access-to-clean-energy-technologiesin-developing-countries_barton_ictsd-2007.pdf. BASIC Project (2007). The Sao Paulo Proposal for an Agreement on Future Climate Policy (Revised Version). European Commission, BASIC Project, Brussels. . Available at: http://www.basicproject.net/data/final/Paper17Sao%20Paulo%20Agreement%20on%20Future%20International%20C limate%85.pdf. Battaglini M., and B. Harstad (2012). Participation and Duration of Environmental Agreements. National Bureau of Economic Research, Cambridge, MA. . Available at: http://www.nber.org/papers/w18585. Bauer N., I. Mouratiadou, G. Luderer, L. Baumstark, R. Brecha, O. Ednhofer, and E. Kriegler (2013). Global fossil energy markets and climate change mitigation: An analysis with ReMIND, Climatic Change (DOI: 10.1007/s10584-013-0901-6). Baumol W., and W. Oates (1988). The Theory of Environmental Policy. Cambridge University Press, Cambridge, UK, (ISBN: 978-0521311120). . Baxter R.R. (1980). International law in Her Infinitye Variety , International & Comparative Law Quarterly 29 549 566 pp. (DOI: 10.1093/iclqaj/29.4.549). Bayon R., A. Hawn, and K. Hamilton (2007). Voluntary Carbon Markets: An International Business Guide to What They Are and How They Work. Earthscan, London, 164 pp., (ISBN: 184407417X (hardback)). . Bell D. (2013). Climate change and human rights, Wiley Interdisciplinary Reviews: Climate Change 4 159 170 pp. (DOI: 10.1002/wcc.218), (ISSN: 17577780). Bell R.G., M.S. Ziegler, B. Blechman, B. Finlay, and M.S. Ziegler (2012). Building International Climate Cooperation: Lessons from the Weapons and Trade Regimes for Achieving International Climate Goals (R. Greenspan Bell and M.S. Ziegler, Eds.). World Resources Institute, Washington, D.C., (ISBN: 978-1-56973-788-0). . Benessaiah K. (2012). Carbon and livelihoods in Post-Kyoto: Assessing voluntary carbon markets, Ecological Economics 77 1 6 pp. (DOI: 10.1016/j.ecolecon.2012.02.022), (ISSN: 0921-8009). Bernauer T., A. Kalbhenn, V. Koubi, and G. Spilker (2010). A comparison of international and domestic sources of global governance dynamics, British Journal of Political Science 40 509 538 pp. (DOI: 10.1017/S0007123410000098). 80 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Bernauer T., A. Kalbhenn, V. Koubi, and G. Spilker (2013). Is there a Depth versus Participation dilemma in international cooperation?, The Review of International Organizations 1 21 pp. (DOI: 10.1007/s11558-013-9165-1), (ISSN: 1559-7431, 1559-744X). Bernstein S. (2005). Legitimacy in global environmental governance, Journal of International Law and International Relations 1 139 166 pp. . Bernstein S., M.M. Betsill, M.J. Hoffmann, and M. Paterson (2010). A tale of two Copenhagens: Carbon markets and climate governance, Millennium: Journal of International Studies 39 161 173 pp. (DOI: 10.1177/0305829810372480). Bhagwati J. (2009). Reflections on climate change and trade. In: Climate Change, Trade, and Competitiveness: Is a Collision Inevitable? L. Brainard, I. Sorkin, (eds.), Brookings Institution Press, Washington, D.C. pp.171 176(ISBN: 9780815702986). Biermann F. (2010). Beyond the intergovernmental regime: Recent trends in global carbon governance, Current Opinion in Environmental Sustainability 2 284 288 pp. (DOI: 10.1016/j.cosust.2010.05.002). Biermann F., and I. Boas (2008). Protecting climate refugees: The case for a global protocol, Environment: Science and Policy for Sustainable Development 50 8 17 pp. (DOI: 10.3200/ENVT.50.6.8-17), (ISSN: 0013-9157). Biermann F., and P. Pattberg (2008). Gobal environmental governance: Taking stock, moving forward, Annual Review of Environment and Resources 33 277 294 pp. (DOI: 10.1146/annurev.environ.33.050707.085733). Biermann F., P. Pattberg, H. Van Asselt, and F. Zelli (2009). The fragmentation of global governance architectures: A framework for analysis, Global Environmental Politics 9 14 40 pp. (DOI: 10.1162/glep.2009.9.4.14). Biermann F., P. Pattberg, and F. Zelli (Eds.) (2010). Global Climate Governance Beyond 2012. Cambridge University Press, 350 pp., (ISBN: 9780521190114). . Bigdeli S. (2009). Incentive schemes to promote renewables and the WTO law of subsidies. In: International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, Cambridge pp.155 192(ISBN: 9780521766197). Blackstock J.J., and J.C.S. Long (2010). The politics of geoengineering, Science 327 527 pp. (DOI: 10.1126/science.1183877). Blanford G.J., R.G. Richels, and T.F. Rutherford (2010). Revised emissions growth projections for China: Why post-Kyoto climate policy must look east. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, New York pp.822 856(ISBN: 822-856). Blok K., N. Höhne, K. van der Leun, and N. Harrison (2012). Bridging the greenhouse-gas emissions gap, Nature Climate Change 2 471 474 pp. (DOI: 10.1038/nclimate1602), (ISSN: 1758-678X). Bodansky D. (1999). The legitimacy of international governance: A coming challenge for international environmental law?, The American Journal of International Law 93 596 624 pp. (DOI: 10.2307/2555262). 81 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Bodansky D. (2003). Climate commitments: Assessing the options. In: Beyond Kyoto: Advancing the international effort against climate change. E. Diringer, (ed.), Pew Center on Global Climate Change, Arlington, VA pp.37 60. Available at: http://belfercenter.ksg.harvard.edu/files/Aldy%20Baron%20Tubiana%202003.pdf. Bodansky D. (2004). Deconstructing the precautionary principle. In: Bringing New Law to Ocean Waters. D.D. Caron, H.N. Scheiber, (eds.), Brill, Leiden, Netherlands(ISBN: 9004140883; 9789004140882). Bodansky D. (2007). Targets and timetables: Good policy but bad politics. In: Architectures for Agreement: Addressing Global Climate Change in the Post-Kyoto World. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.57 66(ISBN: 9780521871631 (hbk.)). Bodansky D. (2009). Legal Form of a New Climate Agreement: Avenues and Options. Pew Center on Global Climate Change, Arlington, VA. 8 pp. Available at: http://www.pewclimate.org/docUploads/legal-form-of-new-climate-agreement-paper.pdf. Bodansky D. (2010a). The Art and Craft of International Environmental Law. Harvard University Press, Cambridge, MA, 359 pp., (ISBN: 9780674035430 (alk. paper)). . Bodansky D. (2010b). Introduction: Climate change and human rights: Unpacking the issues, Georgia Journal of International and Comparative Law 38 511 534 pp. . Available at: http://ssrn.com/abstract=1581555. Bodansky D. (2011a). Tale of two architectures: The once and future U.N. climate change regime, Arizona State Law Journal 43 697 712 pp. . Available at: http://dx.doi.org/10.2139/ssrn.1773865. Bodansky D. (2011b). Governing Climate Engineering: Scenarios for Analysis. Harvard Project on International Climate Agreements. . Available at: http://belfercenter.ksg.harvard.edu/files/bodansky-dp-47-nov-final.pdf. Bodansky D. (2011c). Multilateral Climate Efforts beyond the UNFCCC. Center for Climate and Energy Solutions, Arlington, VA. 20 pp. Available at: http://www.c2es.org/publications/multilateral-climateefforts-beyond-unfccc. Bodansky D., and E. Diringer (2010). The Evolution of Multilateral Regimes: Implications for Climate Change. Pew Center on Global Climate Change, Arlington, VA. 28 pp. Available at: http://www.pewclimate.org/docUploads/evolution-multilateral-regimes-implications-climatechange.pdf. Böhm S., and Dabhi (Eds.) (2009). Upsetting the Offset: The Political Economy of Carbon Markets. MayFly Books, London, (ISBN: 978-1-906948-07-8). . Böhm S., and S. Dhabi (2011). Commentary: Fault lines in climate policy: What role for carbon markets?, Climate Policy 11 1389 1392 pp. (DOI: 10.1080/14693062.2011.618770), (ISSN: 14693062, 1752-7457). Böhringer C. (2003). The Kyoto Protocol: A review and perspectives, Oxford Review of Economic Policy 19 451 466 pp. (DOI: 10.1093/oxrep/19.3.451), (ISSN: 0266-903X, 1460-2121). Böhringer C., E.J. Balistreri, and T.F. Rutherford (2012a). The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29), Energy Economics 34 S97 S110 pp. (DOI: 10.1016/j.eneco.2012.10.003), (ISSN: 01409883). 82 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Böhringer C., J. Carbone, and T. Rutherford (2012b). Unilateral climate policy design: Efficiency and equity implications of alternative instruments to reduce carbon leakage, Energy Economics 34 S208 S217 pp. . Available at: http://www.sciencedirect.com/science/article/pii/S0140988312002253. Böhringer C., U. Moslener, and B. Sturm (2007). Hot air for sale: A quantitative assessment of Russia s near-term climate policy options, Environmental and Resource Economics 38 545 572 pp. (DOI: 10.1007/s10640-007-9089-4). Böhringer C., and T.F. Rutherford (2004). Who should pay how much? Compensation for international spillovers from carbon abatement policies to developing countries a global CGE assessment, Computational Economics 23 71 103 pp. (DOI: 10.1023/B:CSEM.0000007187.30194.2e), (ISSN: 0927-7099, 1572-9974). Bosetti V., C. Carraro, E. De Cian, R. Duval, E. Massetti, and M. Tavoni (2009a). The incentives to participate in and the stability of international climate coalitions: A game-theoretic approach using the WITCH model, OECD Economics Department Working Papers (DOI: 10.1787/223552487415). Bosetti V., C. Carraro, E. De Cian, E. Massetti, and M. Tavoni (2013). Incentives and stability of international climate coalitions: An integrated assessment, Energy Policy 55 44 56 pp. (DOI: 10.1016/j.enpol.2012.12.035), (ISSN: 0301-4215). Bosetti V., C. Carraro, R. Duval, A. Sgobbi, and M. Tavoni (2009b). The Role of R&D and Technology Diffusion in Climate Change Mitigation: New Perspectives Using the WITCH Model. OECD, Paris. 53 pp. Available at: http://search.oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=eco/wkp%2 82009%295. Bosetti V., C. Carraro, A. Sgobbi, and M. Tavoni (2010). Modeling economic impacts of alternative international climate policy architectures: A quantitative and comparative assessment of architectures for agreement. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.715 752(ISBN: 978-0521137850). Bosetti V., and J. Frankel (2011). Politically Feasible Emission Target Formulas to Attain 460 Ppm CO2 Concentrations. Harvard Kennedy School, Cambridge, MA. 43 pp. Bosetti V., R. Lubowski, A. Golub, and A. Markandya (2011). Linking reduced deforestation and a global carbon market: implications for clean energy technology and policy flexibility, Environment and Development Economics 16 479 505 pp. (DOI: 10.1017/S1355770X10000549). Bosetti V., and S.K. Rose (2011). Reducing carbon emissions from deforestation and forest degradation: issues for policy design and implementation, Environment and Development Economics 16 357 360 pp. (DOI: 10.1017/S1355770X11000143). Bovenberg A.L., and L.H. Goulder (1996). Optimal environmental taxation in the presence of other taxes: General- equilibrium analyses, American Economic Review 86 985 1000 pp. . Available at: http://arno.uvt.nl/show.cgi?fid=26996. Bovenberg A.L., and R.A. de Mooij (1994). Environmental levies and distortionary taxation, American Economic Review 84 1085 1089 pp. . Available at: http://arno.uvt.nl/show.cgi?fid=26860. Bowen A. (2011). Raising climate finance to support developing country action: Some economic considerations, Climate Policy 11 1020 1036 pp. (DOI: 10.1080/14693062.2011.582388). 83 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Boyd E., N. Hultman, J. Timmons Roberts, E. Corbera, J. Cole, A. Bozmoski, J. Ebeling, R. Tippman, P. Mann, K. Brown, and D.M. Liverman (2009). Reforming the CDM for sustainable development: Lessons learned and policy futures, Environmental Science & Policy 12 820 831 pp. (DOI: 10.1016/j.envsci.2009.06.007). Bradley R., K.A. Baumert, B. Childs, T. Herzog, and J. Pershing (2007). Slicing the Pie: Sector-Based Approaches to International Climate Arrangements, Issues and Options. World Resources Institute, Washington, DC. 63 pp. Available at: http://pdf.wri.org/slicing-the-pie.pdf. Brandt U.S., and G.T. Svendsen (2002). Hot air in Kyoto, cold air in The Hague the failure of global climate negotiations, Energy Policy 30 1191 1199 pp. (DOI: 10.1016/S0301-4215(02)00015-0), (ISSN: 0301-4215). Branstetter L.G., R. Fisman, and C.F. Foley (2006). Do stronger intellectual property rights increase international technology transfer? Empirical evidence from U.S. firm-level panel data, The Quarterly Journal of Economics 121 321 349 pp. (ISSN: 0033-5533). Bratspies R.M. (2011). Human rights and environmental regulation, NYU Environmental Law Journal 19 225 302 pp. . Available at: http://envlaw.nyulaw.me/wp-content/uploads/2013/03/BratspiesHuman-Rights.pdf. Bréchet T., and J. Eyckmans (2012). Coalition theory and integrated assessment modeling: Lessons for climate governance. In: Global Environmental Commons: Analytical and Political Challenges in Building Governance Mechanisms. E. Brousseau, T. Dedeurwaerdere, P.-A. Jouvet, M. Willinger, (eds.), Oxford University Press, Oxford pp.384(ISBN: 9780199656202). Bréchet T., F. Gerard, and H. Tulkens (2011). Efficiency vs. stability in climate coalitions: A conceptual and computational appraisal, The Energy Journal 32 (DOI: 10.5547/ISSN0195-6574-EJVol32-No1-3), (ISSN: 01956574). Breidenich C., and D. Bodansky (2009). Measurement, Reporting and Verification in a Post-2012 Climate Agreement. Pew Center on Global Climate Change, Arlington, VA. . Available at: http://www.pewclimate.org/docUploads/mrv-report.pdf. Brewer T.L. (2003). The trade regime and the climate regime: Institutional evolution and adaptation, Climate Policy 3 329 341 pp. (DOI: 10.1016/j.clipol.2003.08.003). Brewer T.L. (2004). The WTO and the Kyoto Protocol: Interaction issues, Climate Policy 4 3 12 pp. (DOI: 10.1080/14693062.2004.9685506). Brewer T.L. (2008). Climate change technology transfer: a new paradigm and policy agenda, Climate Policy 8 516 526 pp. (DOI: 10.3763/cpol.2007.0451), (ISSN: 1469-3062). Brewer T.L. (2010). Trade policies and climate change policies: A rapidly expanding joint agenda, The World Economy 33 799 809 pp. (DOI: 10.1111/j.1467-9701.2010.01284.x). Brewer T., and M. Mehling (2014). Transparency issues in carbon markets, corporate disclosure practices and government climate change policies. In: Oxford Handbook of Transparency. Oxford University Press, Oxford pp.Chapter 8. Brewster R. (2010). Stepping stone or stumbling block: Incrementalism in national climate change legislation, Yale Law & Policy Review 28 245 312 pp. . Available at: http://yalelawandpolicy.org/sites/default/files/Brewster_28.pdf. 84 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Brousseau E., T. Dedeurwaerdere, P.-A. Jouvet, M. Willinger, and Marc Willinger (Eds.) (2012). Global Environmental Commons: Analytical and Political Challenges in Building Governance Mechanisms. Oxford University Press, Oxford, (ISBN: 978-0199656202). . Brown J., N. Bird, and L. Schalatek (2011). Design Challenges for the Green Climate Fund. Heinrich Boll Stiftung North America, Overseas Development Institute, Washington, D.C. and London. 8 pp. Available at: http://www.odi.org.uk/resources/docs/6457.pdf. Brunnée J., M. Doelle, and L. Rajamani (Eds.) (2012). Conclusion: Promoting compliance in an evolving climate regime. In: Promoting Compliance in an Evolving Climate Regime. Cambridge University Press, Cambridge, U.K.(ISBN: 9780521199483). Brunnée J., and S.J. Toope (2010). Legitimacy and Legality in International Law: An Interactional Account. Cambridge University Press, Cambridge, 434 pp., (ISBN: 978-0521706834). . Brunner S., C. Flachsland, and R. Marschinski (2012). Credible commitment in carbon policy, Climate Policy 12 255 271 pp. (DOI: 10.1080/14693062.2011.582327), (ISSN: 1469-3062). Buchholz W., R. Cornes, and D. Rübbelke (2012). Matching as a cure for underprovision of voluntary public good supply, Economics Letters 117 727 729 pp. (DOI: 10.1016/j.econlet.2011.12.095), (ISSN: 0165-1765). Buchner B., and C. Carraro (2007). Regional and sub-global climate blocs: A cost benefit analysis of bottom-up climate regimes. ESRI Studies Series on the Environment. In: Climate and Trade Policy: Bottom-up Approaches Towards Global Agreement. C. Carraro, C. Egenhofer, (eds.), Edward Elgar, Cheltenham, UK and Northampton, MA, USA pp.16 41(ISBN: 9781847202277). Buchner B., A. Falconer, M. Herve-Mignucci, C. Trabacchi, and M. Brinkman (2011). The Landscape of Climate Finance. Climate Policy Initiative, Venice. 101 pp. Available at: http://climatepolicyinitiative.org/wp-content/uploads/2011/10/The-Landscape-of-Climate-Finance120120.pdf. Bukovansky M., I. Clark, R. Eckersley, R.M. (Richard M. Price, C. Reus-Smit, and N.J. Wheeler (2012). Special Responsibilities: Global Problems and American Power. Cambridge University Press, Cambridge, (ISBN: 9781107021358 (hardback)). . Bulkeley H., L.B. Andonova, K. Bäckstrand, M.M. Betsill, D. Compagnon, R. Duffy, A. Kolk, M.J. Hoffmann, D. Levy, P. Newell, T. Milledge, M. Paterson, and P. Pattberg (2012). Governing climate change transnationally: Assessing the evidence from a survey of sixty initiatives, Environment and Planning C: Government and Policy 30 591 612 pp. (DOI: 10.1068/c11126). Bumpus A.G., and D.M. Liverman (2008). Accumulation by decarbonization and the governance of carbon offsets, Economic Geography 84 127 155 pp. (DOI: 10.1111/j.1944-8287.2008.tb00401.x). Burns W.C.G. (2004). The exigencies that drive potential causes of action for climate change damages at the international level, Proceedings of the Annual Meeting (American Society of International Law) 98 223 227 pp. . Available at: http://www.jstor.org/stable/25659921. Busch J., B. Strassburg, A. Cattaneo, R. Lubowski, A. Bruner, R. Rice, A. Creed, R. Ashton, and F. Boltz (2009). Comparing climate and cost impacts of reference levels for reducing emissions from deforestation, Environmental Research Letters 4 044006 pp. (DOI: 10.1088/1748-9326/4/4/044006), (ISSN: 1748-9326). 85 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Byrne J., and L. Glover (2002). A common future or towards a future commons: Globalization and sustainable development since UNCED, International Review of Environmental Strategies 3 5 25 pp. (ISSN: 13457594). Caldeira K., and S.J. Davis (2011). Accounting for carbon dioxide emissions: A matter of time, Proceedings of the National Academy of Sciences 108 8533 8534 pp. (DOI: 10.1073/pnas.1106517108), (ISSN: 0027-8424, 1091-6490). Van Calster G. (2009). Procurement and the World Trade Organization: Purchase power or pester power? In: International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, Cambridge pp.351 368(ISBN: 978-0521766197). Camerer C. (2003). Behavioral Game Theory: Experiments in Strategic Interaction. Russell Sage Foundation; Princeton University Press, New York, NY & Princeton, N.J., xv, 550 p. pp., (ISBN: 0691090394 (alk. paper)). . Cameron E., and M. Limon (2012). Restoring the climate by realizing rights: The role of the international human rights system, Review of European Community & International Environmental Law 21 204 219 pp. (DOI: 10.1111/reel.12004), (ISSN: 1467-9388). Cao J. (2010a). Reconciling human development and climate protection: A multistage hybrid climate policy architecture. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.563 598(ISBN: 978-0521137850). Cao J. (2010b). Reconciling economic growth and carbon mitigation: Challenges and policy options in China, Asian Economic Policy Review 5 110 129 pp. (DOI: 10.1111/j.1748-3131.2010.01153.x), (ISSN: 1748-3131). Cao J. (2010c). Beyond Copenhagen: Reconciling International Fairness, Economic Development, and Climate Protection. The Harvard Project on International Climate Agreements. . Available at: http://belfercenter.ksg.harvard.edu/files/CaoHPICADP44.pdf. Capoor K., and P. Ambrosi (2009). State and Trends of the Carbon Market 2009. The World Bank, Washington, DC. 71 pp. Available at: http://iklim.cob.gov.tr/iklim/Files/eKutuphane/State___Trends_of_the_Carbon_Market_2009FINAL_26_May09.pdf. Carbon Disclosure Project (2011). CDP S&P 500 Report 2011: Strategic Advantage Through Climate Change Action. Carbon Disclosure Project, London. . Available at: https://www.cdproject.net/enUS/Pages/sp500.aspx. Carbone J., C. Helm, and T. Rutherford (2009). The case for international emission trade in the absence of cooperative climate policy, Journal of Environmental Economics and Management 58 266 280 pp. (DOI: 10.1016/j.jeem.2009.01.001). Carraro C., C. Egenhofer, and N. Fujiwara (2007). Bottom-up approaches towards a global climate agreement: An overview. ESRI studies series on the environment. In: Climate and Trade Policy: Bottom-up Approaches Towards Global Agreement. C. Carraro, C. Egenhofer, (eds.), Edward Elgar, Cheltenham, UK(ISBN: 9781847202277 (hardcover)). 86 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Carraro C., J. Eyckmans, and M. Finus (2006). Optimal transfers and participation decisions in international environmental agreements, The Review of International Organizations 1 379 396 pp. (DOI: 10.1007/s11558-006-0162-5). Carraro C., and C. Marchiori (2003). Stable coalitions. Globalization of the World Economy. In: Governing the Global Environment. C. Carraro, (ed.), E. Elgar Pub., Cheltenham, UK(ISBN: 1843760142). Carraro C., and E. Massetti (2012). Beyond Copenhagen: A realistic climate policy in a fragmented world, Climatic Change 110 523 542 pp. (DOI: 10.1007/s10584-011-0125-6), (ISSN: 0165-0009, 1573-1480). Carraro C., and D. Siniscalco (1998). International institutions and environmental policy: International environmental agreements: Incentives and political economy, European Economic Review 42 561 572 pp. (DOI: 10.1016/S0014-2921(97)00118-9), (ISSN: 0014-2921). Casillas C.E., and D.M. Kammen (2012). Quantifying the social equity of carbon mitigation strategies, Climate Policy 12 690 703 pp. (DOI: 10.1080/14693062.2012.669097), (ISSN: 1469-3062). Cason T., and L. Gangadharan (2011). Price discovery and intermediation in linked emissions trading markets: A laboratory study, Ecological Economics 70 1424 1433 pp. (DOI: 10.1016/j.ecolecon.2011.03.005). Castro P. (2012). Does the CDM discourage emission reduction targets in advanced developing countries?, Climate Policy 12 198 218 pp. (DOI: 10.1080/14693062.2011.592658), (ISSN: 1469-3062, 1752-7457). CDM Policy Dialogue (2012). Climate Change, Carbon Markets and the CDM: A Call to Action Report of the High-Level Panel on the CDM Policy Dialogue. CDM Policy Dialogue, Luxembourg. 90 pp. Available at: http://www.cdmpolicydialogue.org/report/rpt110912.pdf. Cecys K. (2010). MRV: A Survey of Reporting and Review in Multilateral Regimes. Center for Climate and Energy Solutions, Arlington, VA. . Available at: http://www.c2es.org/docUploads/surveyreporting-review-multilateral-regimes.pdf. De Cendra J. (2006). Can emissions trading schemes be coupled with border tax adjustments? An analysis vis-a-vis WTO law, Review of European Community & International Environmental Law 15 131 145 pp. (DOI: 10.1111/j.1467-9388.2006.00518.x). Chakravarty S., A. Chikkatur, H. de Coninck, S. Pacala, R. Socolow, and M. Tavoni (2009). Sharing global CO2 emission reductions among one billion high emitters, Proceedings of the National Academy of Sciences (DOI: 10.1073/pnas.0905232106). Chambers W.B. (2008). Interlinkages and the Effectiveness of Multilateral Environmental Agreements. United Nations University, Tokyo, (ISBN: 9280811495). . Chavez A., and A. Ramaswami (2011). Progress toward low carbon cities: Approaches for transboundary GHG emissions footprinting, Carbon Management 2 471 482 pp. (DOI: 10.4155/cmt.11.38), (ISSN: 1758-3004). Chen C.M., J. Gütschow, M. Vieweg, K. Macey, and M. Schaeffer (2013). Impact of the Doha outcome on surplus emission allowances and their effect on developed country emissions, Climatic Change 120 845 857 pp. (DOI: 10.1007/s10584-013-0841-1), (ISSN: 0165-0009, 1573-1480). 87 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Ciplet D., T. Roberts, M. Khan, S. Fields, and K. Madden (2013). Least Developed, Most Vulnerable: Have Climate Finance Promises Been Fulfilled for the LDCs? European Capacity Building Initiative, Oxford, UK. . Available at: http://www.eldis.org/go/display&type=Document&id=65049#.UoZnMOLJKNO. Clapp C., J. Ellis, J. Benn, and J. Corfee-Morlot (2012). Tracking Climate Finance: What and How? OECD/IEA, Paris, France. 44 pp. Available at: http://www.oecd-ilibrary.org/environment/trackingclimate-finance_5k44xwtk9tvk-en. Clarke L., J. Edmonds, V. Krey, R. Richels, S. Rose, and M. Tavoni (2009). International climate policy architectures: Overview of the EMF 22 International Scenarios, Energy Economics 31, Supplement 2 S64 S81 pp. (DOI: 10.1016/j.eneco.2009.10.013), (ISSN: 0140-9883). Climate Alliance (2013). Members of Climate Alliance. Climate Alliance of European Cities with Indigenous Rainforest Peoples, Frankfurt, Germany. . Available at: http://www.climatealliance.org/fileadmin/inhalte/dokumente/2013/Mitgliederliste_international_S eptember_2013.pdf. Compston H., and I. Bailey (Eds.) (2008). Turning Down the Heat: The Politics of Climate Policy in Affluent Democracies. Palgrave Macmillan, London, (ISBN: 0230202055). . Conca K. (2000). The WTO and the undermining of global environmental governance, Review of International Political Economy 7 484 494 pp. (DOI: 10.1080/09692290050174051), (ISSN: 09692290). Condon B.J. (2009). Climate change and unresolved issues in WTO law, Journal of International Economic Law 12 895 926 pp. (DOI: 10.1093/jiel/jgp033), (ISSN: 1369-3034, 1464-3758). De Coninck H., C. Fischer, R.G. Newell, and T. Ueno (2008). International technology-oriented agreements to address climate change, Energy Policy 36 335 356 pp. (DOI: 10.1016/j.enpol.2007.09.030). De Coninck H., J.C. Stephens, and B. Metz (2009). Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration, Energy Policy 37 2161 2165 pp. (DOI: 10.1016/j.enpol.2009.01.020), (ISSN: 0301-4215). Conte Grand M. (2013). Is There a Future for Intensity Targets in the Durban Platform Climate Negotiations? Harvard Project on Climate Agreements, Cambridge, Massachusetts, USA. . Available at: http://belfercenter.hks.harvard.edu/publication/23366. Conte M.N., and M.J. Kotchen (2010). Explaining the price of voluntary carbon offsets, Climate Change Economics 01 93 111 pp. (DOI: 10.1142/S2010007810000091), (ISSN: 2010-0078, 20100086). Convention on Biological Diversity (2010). COP 10 Decision X/33. Convention on Biodiversity, Nagoya, Japan. . Available at: http://www.cbd.int/decision/cop/?id=12299. Convention on Biological Diversity (2012). Impacts of Climate-Related Geoengineering on Biological Diversity. United Nations Environment Programme. . Available at: http://www.cbd.int/doc/meetings/sbstta/sbstta-16/information/sbstta-16-inf-28-en.pdf. 88 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Convery F.J., and L. Redmond (2007). Market and price developments in the European Union Emissions Trading Scheme, Review of Environmental Economics and Policy 1 88 111 pp. (DOI: 10.1093/reep/rem010), (ISSN: 1750-6816, 1750-6824). Cooper R.N. (2010). The case for charges on greenhouse gas emissions. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.151 178(ISBN: 9780521137850 (hbk.)). Copeland B.R., and M.S. Taylor (2005). Free trade and global warming: a trade theory view of the Kyoto protocol, Journal of Environmental Economics and Management 49 205 234 pp. (DOI: 10.1016/j.jeem.2004.04.006), (ISSN: 0095-0696). Corbera E., M. Estrada, and K. Brown (2009). How do regulated and voluntary carbon-offset schemes compare?, Journal of Integrative Environmental Sciences 6 25 50 pp. (DOI: 10.1080/15693430802703958). Corfee-Morlot J., V. Marchal, C. Kauffmann, C. Kennedy, F. Stewart, C. Kaminker, and G. Ang (2012). Towards a Green Investment Policy Framework: The Case of Low-Carbon, Climate-Resilient Infrastructure. OECD, Paris. 70 pp. Available at: http://dx.doi.org/10.1787/5k8zth7s6s6d-en. Cosbey A. (2007). Trade and Climate Change Linkages. International Institute for Sustainable Development, Bali. . Available at: http://www.iisd.org/pdf/2007/trade_climate_linkages.pdf. Cosbey A., and R. Tarasofsky (2007). Climate Change, Competitiveness and Trade. Chatham House. 40 pp. Available at: http://www.iisd.org/publications/pub.aspx?id=859. Cossey M., and G. Marceau (2009). Institutional challenges to enhance policy coordination: How WTO rules could be utilised to meet climate objectives. In: International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, Cambridge, UK(ISBN: 9780521766197). Cottier T., O. Nartova, and S.Z. Bigdeli (Eds.) (2009). International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. Cambridge University Press, Cambridge, UK, (ISBN: 9780521766197). . Courtois P., and G. Haeringer (2011). Environmental cooperation: Ratifying second-best agreements, Public Choice 15 20 pp. (DOI: 10.1007/s11127-010-9759-6). COWI, and IIED (2009). Evaluation of the Operation of the Least Developed Countries Fund for Adaptation to Climate Change. Ministry of Foreign Affairs, Government of Denmark, Copenhagen. . Available at: http://pubs.iied.org/pdfs/G02586.pdf. Crowley K. (2007). Is Australia faking it? The Kyoto Protocol and the greenhouse policy challenge, Global Environmental Politics 7 118 139 pp. (DOI: 10.1162/glep.2007.7.4.118), (ISSN: 1526-3800). Cullinan C. (2002). Wild Law: A Manifesto for Earth Justice. Siber Ink, Cape Town, 210 pp., (ISBN: 09584417-8-2 and 1-9039998-35-2). . Czarnecki R., and K. Guilanpour (2009). The Adaptation Fund after Poznan, Carbon and Climate Law Review 3 79 88 pp. (ISSN: 18649904). 89 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Dagoumas .S., and T.S. Barker (2010). Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model, Energy Policy 38 3067 3077 pp. (DOI: 10.1016/j.enpol.2010.01.047), (ISSN: 0301-4215). Dai X. (2010). Global regime and national change, Climate Policy 10 622 637 pp. (DOI: 10.3763/cpol.2010.0146). Dannenberg A., A. Löschel, G. Paolacci, C. Reif, and A. Tavoni (2011). Coordination under Threshold Uncertainty in a Public Goods Game. Center for European Economic Research. . Available at: http://ftp.zew.de/pub/zew-docs/dp/dp11065.pdf. Dechezlepretre A., M. Glachant, and Y. Méniere (2008). The clean development mechanism and the international diffusion of technologies: An empirical study, Energy Policy 36 1273 1283 pp. (DOI: 10.1016/j.enpol.2007.12.009). Deleuil T. (2012). The common but differentiated responsibilities principle: Changes in continuity after the Durban Conference of the Parties, Review of European Community & International Environmental Law 21 271 281 pp. (DOI: 10.1111/j.1467-9388.2012.00758.x), (ISSN: 1467-9388). Dellink R. (2011). Drivers of stability of climate coalitions in the STACO model, Climate Change Economics 02 105 128 pp. (DOI: 10.1142/S2010007811000231), (ISSN: 2010-0078, 2010-0086). Dellink R., G. Briner, and C. Clapp (2011). The Copenhagen Accord/Cancún Agreements emission pledges for 2020: Exploring economic and environmental impacts, Climate Change Economics 2 53 78 pp. . Available at: http://www.worldscientific.com/doi/abs/10.1142/S2010007811000206. Dellink R., M.G.J. den Elzen, H. Aiking, E. Bergsma, F. Berkhout, T. Dekker, and J. Gupta (2009). Sharing the burden of financing adaptation to climate change, Global Environmental Change 19 411 421 pp. (DOI: 10.1016/j.gloenvcha.2009.07.009). Dellink R., and M. Finus (2012). Uncertainty and climate treaties: Does ignorance pay?, Resource and Energy Economics 34 565 584 pp. (DOI: 10.1016/j.reseneeco.2012.05.007), (ISSN: 0928-7655). Dellink R., M. Finus, and N. Olieman (2008). The stability likelihood of an international climate agreement, Environmental and Resource Economics 39 357 377 pp. (DOI: 10.1007/s10640-0079130-7), (ISSN: 0924-6460, 1573-1502). Dellink R., S. Jamet, J. Chateau, and R. Duval (2010). Towards Global Carbon Pricing: Direct and Indirect Linking of Carbon Markets. OECD, Paris. 39 pp. Available at: http://www.oecdilibrary.org/environment/towards-global-carbon-pricing_5km975t0cfr8-en. Denton F. (2010). Financing adaptation in Least Developed Countries in West Africa: Is finance the real deal ?, Climate Policy 10 655 671 pp. (DOI: 10.3763/cpol.2010.0149), (ISSN: 14693062, 17527457). Depledge J. (2006). The opposite of learning: Ossification in the climate change regime, Global Environmental Politics 6 1 22 pp. (DOI: 10.1162/glep.2006.6.1.1), (ISSN: 1526-3800, 1536-0091). Depledge J., and F. Yamin (2009). The global climate change regime: A defence. In: The Economics and Politics of Climate Change. D. Helm, C. Hepburn, (eds.), Oxford University Press, Oxford pp.433 453(ISBN: 978-0-19-957328-8). 90 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Dhanda K.K., and L. Hartman (2011). The ethics of carbon neutrality: A critical examination of voluntary carbon offset providers, Journal of Business Ethics 100 119 149 pp. (DOI: 10.1007/s10551011-0766-4). Dietz T., and J. Zhao (2011). Paths to climate cooperation, Proceedings of the National Academy of Sciences 108 15671 15672 pp. (DOI: 10.1073/pnas.1112844108), (ISSN: 0027-8424, 1091-6490). Van Dijk C. (2011). Civil liability for global warming in the Netherlands. In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing, Cheltenman, UK; Northampton, MA pp.206 226(ISBN: 9781849802864). Docherty B., and T. Giannini (2009). Confronting a rising tide: A proposal for a convention on climate change refugees, Harvard Environmental Law Review 33 349 403 pp. . Available at: http://www.law.harvard.edu/students/orgs/elr/vol33_2/Docherty%20Giannini.pdf. Downs E.B.& G.W. (2007). The empire s new clothes: Political economy and the fragmentation of international law, Stanford Law Review 60 595 pp. . Available at: http://www.stanfordlawreview.org/print/article/empires-new-clothes-political-economy-andfragmentation-international-law. Downs G.W., D.M. Rocke, and P.N. Barsoom (1996). Is the good news about compliance good news about cooperation?, International Organization 50 379 406 pp. (DOI: 10.1017/S0020818300033427). Droege S. (2011a). Using border measures to address carbon flows, Climate Policy 11 1191 1201 pp. (DOI: 10.1080/14693062.2011.592671). Droege S. (2011b). Do border measures have a role in climate policy?, Climate Policy 11 1185 1190 pp. (DOI: 10.1080/14693062.2011.600844), (ISSN: 1469-3062). Drupp M.A. (2011). Does the Gold Standard label hold its promise in delivering higher Sustainable Development benefits? A multi-criteria comparison of CDM projects, Energy Policy 39 1213 1227 pp. (DOI: 10.1016/j.enpol.2010.11.049), (ISSN: 0301-4215). Du M.M. (2011). The rise of national regulatory autonomy in the GATT/WTO regime, Journal of International Economic Law 14 639 675 pp. (DOI: 10.1093/jiel/jgr029), (ISSN: 1369-3034, 14643758). Dubash N.K. (2009). Copenhagen: Climate of mistrust, Economic & Political Weekly 64 8 11 pp. . Available at: http://re.indiaenvironmentportal.org.in/files/COP.pdf. Dubash N.K., and L. Rajamani (2010). Beyond Copenhagen: Next steps, Climate Policy 10 593 599 pp. (DOI: 10.3763/cpol.2010.0693). Dumaru P. (2010). Community-based adaptation: Enhancing community adaptive capacity in Druadrua Island, Fiji, Climate Change 1 751 763 pp. (DOI: 10.1002/wcc.65), (ISSN: 17577780). Dutta P.K., and R. Radner (2009). A strategic analysis of global warming: Theory and some numbers, Journal of Economic Behavior & Organization 71 187 209 pp. (DOI: 10.1016/j.jebo.2009.01.013), (ISSN: 0167-2681). Eckersley R. (2012). Moving forward in the climate negotiations: Multilateralism or minilateralism?, Global Environmental Politics 12 24 42 pp. (DOI: 10.1162/GLEP_a_00107), (ISSN: 1526-3800). 91 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Edenhofer O., B. Knopf, T. Barker, L. Baumstark, E. Bellevrat, B. Chateau, P. Criqui, M. Isaac, A. Kitous, S. Kypreos, M. Leimbach, K. Lessmann, B. Magné, ª. Scrieciu, H. Turton, and D.P. van Vuuren (2010). The economics of low stabilization: Model comparison of mitigation strategies and costs., Energy Journal 31 11 48 pp. (ISSN: 01956574). Edmonds J., L. Clarke, J. Lurz, and M. Wise (2008). Stabilizing CO2 concentrations with incomplete international cooperation, Climate Policy 8 355 376 pp. (DOI: 10.3763/cpol.2007.0469), (ISSN: 14693062). Ekholm T., S. Soimakallio, S. Moltmann, N. Höhne, S. Syri, and I. Savolainen (2010). Effort sharing in ambitious, global climate change mitigation scenarios, Energy Policy 38 1797 1810 pp. (DOI: 10.1016/j.enpol.2009.11.055). Eliasch J. (2008). Climate Change: Financing Global Forests: The Eliasch Review. Office of Climate Change, London, UK. 273 pp. Available at: http://www.officialdocuments.gov.uk/document/other/9780108507632/9780108507632.pdf. Ellerman A.D. (2010). The EU emission trading scheme: A prototype global system? In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement: Research from the Harvard Project on International Climate Agreements. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.88 118(ISBN: 978-0521129527). Ellerman A.D., and B.K. Buchner (2007). The European Union Emissions Trading Scheme: Origins, allocation, and early results, Review of Environmental Economics and Policy 1 66 87 pp. (DOI: 10.1093/reep/rem003), (ISSN: 1750-6816, 1750-6824). Ellerman A.D., F. Convery, and C. de Perthuis (2010). Pricing Carbon: The European Union Emissions Trading Scheme. Cambridge University Press, (ISBN: 9780521196475). . Ellerman A.D., and P.L. Joskow (2008). The European Union s Emissions Trading System in Perspective. Pew Center on Global Climate Change, Arlington, VA. 64 pp. Available at: http://www.c2es.org/publications/european-union-emissions-trading-system. Ellerman A.D., and I.S. Wing (2003). Absolute versus intensity-based emission caps, Climate Policy 3, Supplement 2 S7 S20 pp. (DOI: 10.1016/j.clipol.2003.09.013), (ISSN: 1469-3062). Elliott J., I. Foster, S. Kortum, T. Munson, F.P. Cervantes, and D. Weisbach (2010). Trade and carbon taxes, American Economic Review 100 465 469 pp. (DOI: 10.1257/aer.100.2.465), (ISSN: 0002-8282). Ellis J., and K. Larsen (2008). Measurement, Reporting and Verification of Mitigation Actions and Commitments. OECD/IEA, Paris. 27 pp. Available at: http://www.oecd.org/env/climatechange/41762333.pdf. Ellis J., and S. Moarif (2009). GHG Mitigation Actions: MRV Issues and Options. Organisation for Economic Co-Operation and Development, Paris. . Available at: http://www.oecd.org/dataoecd/26/44/42474623.pdf. Ellis J., H. Winkler, J. Corfee-Morlot, and F. Gagnon-Lebrun (2007). CDM: Taking stock and looking forward, Energy Policy 35 15 28 pp. (DOI: 10.1016/j.enpol.2005.09.018). Den Elzen M.G.J., A.F. Hof, A. Mendoza Beltran, G. Grassi, M. Roelfsema, B. van Ruijven, J. van Vliet, and D.P. van Vuuren (2011a). The Copenhagen Accord: Abatement costs and carbon prices 92 of 137 Final Draft Chapter 13 IPCC WGIII AR5 resulting from the submissions, Environmental Science and Policy 14 28 39 pp. (DOI: 10.1016/j.envsci.2010.10.010), (ISSN: 1462-9011). Den Elzen M.G.J., A.F. Hof, and M. Roelfsema (2011b). The emissions gap between the Copenhagen pledges and the 2°C climate goal: Options for closing and risks that could widen the gap, Global Environmental Change 21 733 743 pp. (DOI: 10.1016/j.gloenvcha.2011.01.006). Den Elzen M.G.J., A.F. Hof, and M. Roelfsema (2013a). Analysing the greenhouse gas emission reductions of the mitigation action plans by non-Annex I countries by 2020, Energy Policy 56 633 643 pp. (DOI: 10.1016/j.enpol.2013.01.035), (ISSN: 0301-4215). Den Elzen M.G.J., and N. Höhne (2008). Reductions of greenhouse gas emissions in Annex I and nonAnnex I countries for meeting concentration stabilisation targets: An editorial comment, Climatic Change 91 249 274 pp. (DOI: 10.1007/s10584-008-9484-z). Den Elzen M.G.J., and N. Höhne (2010). Sharing the reduction effort to limit global warming to 2°C, Climate Policy 10 247 260 pp. (DOI: 10.3763/cpol.2009.0678). Den Elzen M.G.J., N. Höhne, B. Brouns, H. Winkler, and H.E. Ott (2007). Differentiation of countries future commitments in a post-2012 climate regime: An assessment of the South North Dialogue Proposal, Environmental Science & Policy 10 185 203 pp. (DOI: 10.1016/j.envsci.2006.10.009). Den Elzen M.G.J., N. Höhne, and S. Moltmann (2008). The Triptych approach revisited: A staged sectoral approach for climate mitigation, Energy Policy 36 1107 1124 pp. (DOI: 10.1016/j.enpol.2007.11.026). Den Elzen M.G.J., M. Meinshausen, and A.F. Hof (2012). The impact of surplus units from the first Kyoto period on achieving the reduction pledges of the Cancún Agreements, Climatic Change 114 401 408 pp. (DOI: 10.1007/s10584-012-0530-5), (ISSN: 0165-0009, 1573-1480). Den Elzen M.G.J., J.G.J. Olivier, N. Höhne, and G. Janssens-Maenhout (2013b). Countries contributions to climate change: effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress, Climatic Change 121 1 16 pp. (DOI: 10.1007/s10584-013-0865-6), (ISSN: 0165-0009, 1573-1480). Engels A. (2008). Local environmental crises and global sea level rise: the case of coastal zones in Senegal. In: Culture and the changing environment: uncertainty, cognition and risk management in cross-cultural perspective. Berghahn Books, New York pp.175 195(ISBN: 9781571814784). Epps T., and A. Green (2010). Reconciling Trade and Climate: How the WTO Can Help Address Alimate Change. Edward Elgar, Cheltenham, UK, 280 pp., (ISBN: 9781849800068). . Eyckmans J., and M. Finus (2006). Coalition formation in a global warming game: How the design of protocols affects the success of environmental treaty-making, Natural Resource Modeling 19 323 358 pp. (DOI: 10.1111/j.1939-7445.2006.tb00184.x). Fair R. (2009). Does Climate Change Justify Compulsory Licensing of Green Technology, International Law and Management Review 6 21 pp. . Available at: http://heinonline.org.ezpprod1.hul.harvard.edu/HOL/Page?handle=hein.journals/intlawmanr6&id=25&div=&collection=journ als. Falconer A., P. Hogan, V. Micale, A. Vasa, Y. Yu, X. Zhang, X. Zhao, and J. Zuckerman (2012). Tracking Emissions and Mitigation Actions: Evaluation of MRV Systems in China, Germany, Italy, and 93 of 137 Final Draft Chapter 13 IPCC WGIII AR5 the United States. Climate Policy Initiative, San Francisco. . Available at: http://climatepolicyinitiative.org/wp-content/uploads/2012/05/Tracking-Emissions-and-MitigationActions-Evaluation.pdf. Falkner R. (2008). Business Power and Conflict in International Environmental Politics. Palgrave Macmillan, Basingstoke [England]; New York, (ISBN: 0230572529; 9780230572522). . Falkner R., H. Stephan, and J. Vogler (2010). International climate policy after Copenhagen: Towards a building blocks approach, Global Policy 1 252 262 pp. (DOI: 10.1111/j.1758-5899.2010.00045.x). Fankhauser S., C. Hepburn, and J. Park (2010). Combining multiple climate policy instruments: How not to do it, Climate Change Economics 1 209 225 pp. (DOI: 10.1142/S2010007810000169), (ISSN: 2010-0078, 2010-0086). Farber D. (2011). The UNCC as a model for climate change compensation. In: Gulf War Reparations and the UN Compensation Commission: Environmental Liability. C. Payne, P. Sand, (eds.), Oxford University Press, New York pp.392(ISBN: 9780199732203). Faure M., and M. Peeters (Eds.) (2011). Climate Change Liability. Edward Elgar, Cheltenham, UK and Northampton, MA, USA, (ISBN: 978-1849802864). . Fell H., D. Burtraw, R.D. Morgenstern, and K.L. Palmer (2012). Soft and hard price collars in a capand-trade system: A comparative analysis, Journal of Environmental Economics and Management 64 183 198 pp. (DOI: 10.1016/j.jeem.2011.11.004), (ISSN: 0095-0696). FELL H., D. Burtraw, R. Morgenstern, K. Palmer, and L. Preonas (2010). Soft and Hard Price Collars in a Cap-and-Trade System: A Comparative Analysis. Resources For the Future, Washington, DC. 26 pp. Available at: http://www.rff.org/documents/RFF-DP-10-27.pdf. Finnemore M., and K. Sikkink (1998). International norm dynamics and political change, International Organization 52 887 917 pp. (DOI: 10.1162/002081898550789), (ISSN: 15315088, 00208183). Finus M. (2001). Game Theory and International Environmental Cooperation. Edward Elgar, Cheltenman, UK; Northampton, MA, 416 pp., (ISBN: 1840644087). . Finus M. (2003). Stability and design of international and environmental agreements: The case of global and transboundary pollution. New horizons in environmental economics. In: The International Yearbook of Environmental and Resource Economics: A Survey of Current Issues. H. Folmer, T.H. Tietenberg, (eds.), E. Elgar, Cheltenham, UK pp.82 158(ISBN: 1843767864; 978-1843767862). Finus M. (2008a). Game theoretic research on the design of international environmental agreements: Insights, critical remarks, and future challenges, International Review of Environmental and Resource Economics 2 29 67 pp. (DOI: 10.1561/101.00000011). Finus M. (2008b). The enforcement mechanisms of the Kyoto protocol: Flawed or promising concepts?, Letters in Spatial and Resource Sciences 1 13 25 pp. (DOI: 10.1007/s12076-008-0002-8), (ISSN: 1864-4031, 1864-404X). Finus M., and S. Maus (2008). Modesty may pay!, Journal of Public Economic Theory 10 801 826 pp. (DOI: 10.1111/j.1467-9779.2008.00387.x). 94 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Finus M., and P. Pintassilgo (2012). International environmental agreements under uncertainty: does the veil of uncertainty help?, Oxford Economic Papers 64 736 764 pp. (DOI: 10.1093/oep/gpr054), (ISSN: 0030-7653, 1464-3812). Finus M., and P. Pintassilgo (2013). The role of uncertainty and learning for the success of international climate agreements, Journal of Public Economics 103 29 43 pp. (DOI: 10.1016/j.jpubeco.2013.04.003), (ISSN: 0047-2727). Finus M., and D.T.G. Rübbelke (2012). Public good provision and ancillary benefits: The case of climate agreements, Environmental and Resource Economics 1 16 pp. (DOI: 10.1007/s10640-0129570-6), (ISSN: 0924-6460, 1573-1502). Finus M., and B. Rundshagen (2003). Endogenous coalition formation in global pollution control: a partition function approach. Fondazione Eni Enrico Mattei (FEEM) series on economics and the environment. In: The Endogenous Formation of Economic Coalitions. C. Carraro, (ed.), Edward Elgar, Cheltenham, UK pp.199 243(ISBN: 9781843762652). Finus M., and B. Rundshagen (2006). Participation in International environmental agreements: The role of timing and regulation, Natural Resource Modeling 19 165 200 pp. (DOI: 10.1111/j.19397445.2006.tb00179.x). Finus M., and B. Rundshagen (2009). Membership rules and stability of coalition structures in positive externality games, Social Choice and Welfare 32 389 406 pp. (DOI: 10.1007/s00355-0080330-z). Fischer C. (2008). Emissions pricing, spillovers, and public investment in environmentally friendly technologies, Energy Economics 30 487 502 pp. (DOI: 10.1016/j.eneco.2007.06.001), (ISSN: 01409883). Fischer C., and A.K. Fox (2012). Comparing policies to combat emissions leakage: Border carbon adjustments versus rebates, Journal of Environmental Economics and Management 64 199 216 pp. (DOI: 10.1016/j.jeem.2012.01.005), (ISSN: 0095-0696). Fischer C., and R. Morgenstern (2010). Metrics for evaluating policy commitments in a fragmented world: The challenges of equity and integrity. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.300 342(ISBN: 978-0521137850). Fischer C., A. Torvanger, M.K. Shrivastava, T. Sterner, and P. Stigson (2012). How should support for climate-friendly technologies be designed?, AMBIO 41 33 45 pp. (DOI: 10.1007/s13280-0110239-0), (ISSN: 0044-7447, 1654-7209). Flachsland C., R. Marschinski, and O. Edenhofer (2009). To link or not to link: Benefits and disadvantages of linking cap-and-trade systems, Climate Policy 9 358 372 pp. (DOI: 10.3763/cpol.2009.0626). Flam K.H. (2009). Restricting the import of emission credits in the EU: A power struggle between states and institutions, International Environmental Agreements: Politics, Law and Economics 9 23 38 pp. (DOI: 10.1007/s10784-008-9081-7). Florini A. (2011). The International Energy Agency in global energy governance, Global Policy 2 40 50 pp. (DOI: 10.1111/j.1758-5899.2011.00120.x), (ISSN: 17585880). 95 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Flues F., A. Michaelowa, and K. Michaelowa (2010). What determines UN approval of greenhouse gas emission reduction projects in developing countries?, Public Choice 145 1 24 pp. (DOI: 10.1007/s11127-009-9525-9). Forsyth T. (2005). Enhancing climate technology transfer through greater public private cooperation: Lessons from Thailand and the Philippines, Natural Resources Forum 29 165 176 pp. (DOI: 10.1111/j.1477-8947.2005.00125.x). Fosfuri A. (2004). Determinants of international activity: Evidence from the chemical processing industry, Research Policy 33 1599 1614 pp. (DOI: 10.1016/j.respol.2004.09.003), (ISSN: 0048-7333). Frankel J.A. (1999). Greenhouse Gas Emissions. Brookings Institution, Washington, D.C. Available at: http://www.brookings.edu/research/papers/1999/06/energy-frankel. Frankel J.A. (2005). You re getting warmer: The most feasible path for addressing global climate change does run through Kyoto. In: Trade and the Environment in the Perspective of the EU Enlargement. M. Tamborra, J. Maxwell, (eds.), Edward Elgar, Cheltenham, United Kingdom pp.37 58. Frankel J. (2008). Global Environmental Policy and Global Trade Policy. Harvard John F. Kennedy School of Government, Cambridge, MA. 25 pp. Available at: http://belfercenter.ksg.harvard.edu/files/Frankel2Web.pdf. Frankel J. (2010). An elaborated proposal for a global climate policy architecture: Specific formulas and emission targets for all countries in all decades. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement: Research from the Harvard Project on International Climate Agreements. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.31 87(ISBN: 0521129524; 978-0521129527). Fransen T., K. Stasio, and S. Nakhooda (2012). The U.S. Fast-Start Finance Contribution. World Resources Institute & Overseas Development Institute, Washington, D.C. Available at: http://pdf.wri.org/working_papers/ocn_us_fast-start_finance_contribution.pdf. Froyn C.B., and J. Hovi (2008). A climate agreement with full participation, Economics Letters 99 317 319 pp. (DOI: 10.1016/j.econlet.2007.07.013), (ISSN: 0165-1765). Fuentes-Albero C., and S.J. Rubio (2010). Can international environmental cooperation be bought?, European Journal of Operational Research 202 255 264 pp. (DOI: 10.1016/j.ejor.2009.05.006). Fujiwara N. (2012). Sector-Specific Activities as the Driving Force towards Low-Carbon Economy: From the Asia-Pacific Partnership to Global Partnership. Centre for European Policy Studies, Brussels. . Available at: http://aei.pitt.edu/33371/1/PB262_NF_on_Asia_Pacific_partnership_to_global_partnership.pdf. G20 (2009). Leaders Statement: The Pittsburgh Summit. G-20 (Group of Twenty), Pittsburgh, PA. 23 pp. Available at: http://ec.europa.eu/commission_20102014/president/pdf/statement_20090826_en_2.pdf. G8 (2009). Chair s Summary of the 2009 G8 Summit. G8 (Group of Eight), L Aquila, Italy. . Available at: http://www.g8italia2009.it/static/G8_Allegato/Chair_Summary,1.pdf. 96 of 137 Final Draft Chapter 13 IPCC WGIII AR5 GEA (2012). Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, (ISBN: 9781 10700 5198 hardback 9780 52118 2935 paperback). . GEF (2010). System for Transparent Allocation of Resources (STAR). Global Environment Facility, Washington, D.C. Available at: http://www.thegef.org/gef/sites/thegef.org/files/documents/document/GEF.P.3.2010-1.pdf. GEF (2011). Report of the Global Environment Facility to the Conference of the Parties. UNFCCC, Bonn, Germany. 101 pp. Available at: http://www.thegef.org/gef/sites/thegef.org/files/documents/document/GEF%20Report%20to%20C OP17%20FCC.CP_.2011.11.30_English%20version.pdf. Genasci M. (2008). Border tax adjustments and emissions trading: The implications of international trade law for policy design, Carbon & Climate Law Review 2 33 42 pp. . Gerber A., and P.C. Wichardt (2009). Providing public goods in the absence of strong institutions, Journal of Public Economics 93 429 439 pp. (DOI: 10.1016/j.jpubeco.2008.10.006), (ISSN: 00472727). Gerber A., and P.C. Wichardt (2013). On the private provision of intertemporal public goods with stock effects, Environmental and Resource Economics 55 245 255 pp. (DOI: 10.1007/s10640-0129624-9), (ISSN: 0924-6460, 1573-1502). Gillespie A. (2004). Small island states in the face of climate change: The end of the line in international environmental responsibility, UCLA Journal of Environmental Law and Policy 22 107 129 pp. . Goldstein J., and L.L. Martin (2000). Legalization, trade liberalization, and domestic politics: A cautionary note, International Organization 54 603 632 pp. (DOI: 10.1162/002081800551226). Goldthau A., and J.M. Witte (2011). Assessing OPEC s performance in global energy, Global Policy 2 31 39 pp. (DOI: 10.1111/j.1758-5899.2011.00122.x), (ISSN: 17585880). Goodman R., and D. Jinks (2004). How to influence states: Socialization and international human rights law, Duke Law Journal 54 621 703 pp. (ISSN: 0012-7086). Gordon H.S. (1954). The economic theory of a common-property resource: The fishery, The Journal of Political Economy 62 124 142 pp. . Available at: http://www.jstor.org/stable/1825571. Goulder L.H., and R.N. Stavins (2011). Challenges from State-Federal Interactions in US Climate Change Policy, The American Economic Review 101 253 257 pp. (DOI: 10.1257/aer.101.3.253). Gouritin A. (2011). Potential liability of European States under the ECHR for failure to take appropriate measures with a view to adaptation to climate change. In: Climate Change Liability. M. Faure, P. Marjan, (eds.), Edward Elgar Publishing, Cheltenman, UK; Northampton, MA pp.134 164(ISBN: 1849802866; 978-1849802864). Government of India (2012). India: Second National Communication to the United Nations Framework Convention on Climate Change. Ministry of Environment and Forests, Government of India, New Delhi, India. . Available at: http://unfccc.int/resource/docs/natc/indnc2.pdf. 97 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Government of India (2013). Submission to the UNFCCC on the Work of the Ad-Hoc Working Group on the Durban Platform for Enhanced Action Workstream 1. Government of India, New Dehli, India. . Available at: http://unfccc.int/files/documentation/submissions_from_parties/adp/application/pdf/adp_india_w orkstream_1_20130913.pdf. Van de Graaf T., and K. Westphal (2011). The G8 and G20 as global steering committees for energy: Opportunities and constraints, Global Policy 2 19 30 pp. (DOI: 10.1111/j.1758-5899.2011.00121.x). Grassi G., M.G.J. den Elzen, A.F. Hof, R. Pilli, and S. Federici (2012). The role of the land use, land use change and forestry sector in achieving Annex I reduction pledges, Climatic Change 115 873 881 pp. (DOI: 10.1007/s10584-012-0584-4), (ISSN: 0165-0009, 1573-1480). Grasso M., and S. Sacchi (2011). Procedural Justice in International Negotiations on Climate Change. CISEPS, University of Milan Bicocca, Milan, Italy. . Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1863855. Green J.F. (2008). Delegation and accountability in the clean development mechanism: The new authority of non-state actors, Journal of International Law and International Relations 4 21 55 pp. . Available at: http://politicalscience.case.edu/green/Green.JILIR.pdf. Green J.F. (2010). Private standards in the climate regime: The Greenhouse Gas Protocol, Business and Politics 12 (DOI: 10.2202/1469-3569.1318). Green J.F. (2013). Order out of chaos: Public and private rules for managing carbon, Global Environmental Politics 13 1 25 pp. (DOI: 10.1162/GLEP_a_00164), (ISSN: 1526-3800). Greenstone M. (2009). Toward a culture of persistent regulatory experimentation and evaluation. In: New Perspectives on Regulation. D. Moss, J. Cisternino, (eds.), The Tobin Project, Cambridge, MA pp.111 126(ISBN: 978-0982478806). Gregg J.S., R.J. Andres, and G. Marland (2008). China: Emissions pattern of the world leader in CO2emissions from fossil fuel consumption and cement production, Geophysical Research Letters 35 n/a n/a pp. (DOI: 10.1029/2007GL032887), (ISSN: 1944-8007). Gros D., and C. Egenhofer (2011). The case for taxing carbon at the border, Climate Policy 11 1262 1268 pp. (DOI: 10.1080/14693062.2011.592669), (ISSN: 1469-3062). Grossman D.A. (2003). Warming up to a not-so-radical idea: Tort-based climate change litigation, Columbia Journal of Environmental Law 28 1 61 pp. . Grubb M. (2009). Linking emissions trading schemes, Climate Policy 9 339 340 pp. (DOI: 10.3763/cpol.2009.0665). Grubb M. (2011). Cancun: The art of the possible, Climate Policy 11 847 850 pp. (DOI: 10.3763/cpol.2011.0698). Grubb M. (2013). Doha s dawn?, Climate Policy 13 281 284 pp. (DOI: 10.1080/14693062.2013.770976), (ISSN: 1469-3062). Grubb M., and K. Neuhoff (Eds.) (2006). Emissions Trading and Competitiveness: Allocations, Incentives and Industrial Competitiveness under the EU Emissions Trading Scheme. Earthscan Publications, 160 pp., (ISBN: 9781844074037). . 98 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Grüll G., and L. Taschini (2011). Cap-and-trade properties under different hybrid scheme designs, Journal of Environmental Economics and Management 61 107 118 pp. (DOI: 10.1016/j.jeem.2010.09.001), (ISSN: 0095-0696). Grundig F. (2006). Patterns of international cooperation and the explanatory power of relative gains: An analysis of cooperation on global climate change, ozone depletion, and international trade, International Studies Quarterly 50 781 801 pp. (DOI: 10.1111/j.1468-2478.2006.00425.x). Gupta J. (2008). Global change: Analysing scale and scaling in environmental governance. In: Institutions and Environmental Change: Principal Findings, Applications, and Research Frontiers. O.R. Young, L.A. King, H. Schroeder, (eds.), MIT Press, Cambridge, MA pp.225 258(ISBN: 0-262-74033-8; 978-0-262-74033-3). Gupta J. (2012). Negotiating challenges and climate change, Climate Policy 12 630 644 pp. (DOI: 10.1080/14693062.2012.693392), (ISSN: 1469-3062). Gupta J. (2014). The History of Global Climate Governance. Cambridge University Press, Cambridge, UK, (ISBN: 9781107040519). . Gupta J., P. Van Beukering, H. Van Asselt, L. Brander, S. Hess, and K. Van Der Leeuw (2008). Flexibility mechanisms and sustainable development: Lessons from five AIJ projects, Climate Policy 8 261 276 pp. (DOI: 10.3763/cpol.2007.0463). Gupta J., and N. van der Grijp (Eds.) (2010). Mainstreaming Climate Change in Development Cooperation: Theory, Practice and Implications for the European Union. Cambridge University Press, Cambridge, (ISBN: 0521197619; 978-0521197618). . Gupta J., R. Lasage, and T. Stam (2007). National efforts to enhance local climate policy in the Netherlands, Environmental Sciences 4 171 182 pp. (DOI: 10.1080/15693430701742719). Gupta J., and N. Sanchez (2013). The Common But Different Responsibility (CBDR) Principle Elaborated in Relation to Other Principles of Law. In: The Global Community Yearbook of International Law and Jurisprudence: Global Trends: Law, Policy & Justice Essays in Honour of Professor Giuliana Ziccardi Capaldo. M.C. Bassiouni, G. Joanna, P. Mengozzi, J.G. Merrills, R.N. Navia, A. Oriolo, W. Schabas, A. Vigorito, (eds.), Oxford University Press, Oxford, UK pp.23 39(ISBN: 9780199332304). Guzman A.T., and T.L. Meyer (2010). International soft law, Journal of Legal Analysis 2 171 225 pp. (DOI: 10.1093/jla/2.1.171), (ISSN: 2161-7201, 1946-5319). Haas P.M., R.O. Keohane, and M.A. Levy (1993). Institutions for the Earth: Sources of Effective International Environmental Protection. MIT Press, Cambridge, Mass., (ISBN: 0262082187). . Hafner-Burton E., D.G. Victor, and Y. Lupu (2012). Political science research on international law: The state of the field, The American Journal of International Law 106 47 97 pp. (DOI: 10.5305/amerjintelaw.106.1.0047), (ISSN: 00029300, 21617953). Hahn R.W., and R.N. Stavins (1999). What Has the Kyoto Protocol Wrought? The Real Architecture of International Tradable Permit Markets. Resources for the Future, Washington, DC. 23 pp. Available at: http://www.rff.org/documents/RFF-DP-99-30.pdf. Haites E. (2009). Linking emissions trading schemes for international aviation and shipping emissions, Climate Policy 9 415 430 pp. (DOI: 10.3763/cpol.2009.0620), (ISSN: 1469-3062). 99 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Haites E. (2011). Climate change finance, Climate Policy 11 963 969 pp. (DOI: 10.1080/14693062.2011.582292). Haites E., M. Duan, and S. Seres (2006). Technology transfer by CDM projects, Climate Policy 6 327 344 pp. (DOI: 10.1080/14693062.2006.9685605). Haites E., and M. Mehling (2009). Linking existing and proposed GHG emissions trading schemes in North America, Climate Policy 9 373 388 pp. (DOI: 10.3763/cpol.2009.0622), (ISSN: 1469-3062). Hall B.H., and C. Helmers (2010). The role of patent protection in (clean/green) technology transfer, Santa Clara Computer & High Technology Law Journal 26 487 532 pp. (ISSN: 08823383). Hall D., M.A. Levi, W. Pizer, and T. Ueno (2010). Policies for developing country engagement. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge UK pp.649 681(ISBN: 978-0521137850). Halvorssen A. (2007). Common, but differentiated commitments in the future climate change regime - Amending the Kyoto Protocol to include Annex C and the Annex C Mitigation Fund, Colorado Journal of International Environmental Law and Policy 18 247 266 pp. . Halvorssen A., and J. Hovi (2006). The nature, origin and impact of legally binding consequences: The case of the climate regime, International Environ Agreements: Politics, Law and Economics 6 157 171 pp. (DOI: 10.1007/s10784-006-9003-5). Hamilton K., M. Sjardin, T. Marcello, and G. Xu (2008). Forging a Frontier: State of the Voluntary Carbon Markets 2008. The Katoomba Group s Ecosystem Marketplace, New Carbon Finance, New York and Washington, DC. 79 pp. Available at: http://www.ecosystemmarketplace.com/documents/cms_documents/2008_StateofVoluntaryCarbo nMarket2.pdf. Hammitt J. (1999). Evaluation endpoints and climate policy: Atmospheric stabilization, benefit-cost analysis, and near-term greenhouse-gas emissions, Climatic Change 41 447 468 pp. (DOI: 10.1023/A:1005499206442). Hammitt J. (2010). Stratospheric ozone depletion and global climate change. In: The Reality of Precaution: Comparing Risk Regulation in the United States and Europe. J. Wiener, M. Rogers, J. Hammitt, P. Sand, (eds.), RFF Press, Washington, DC(ISBN: 978-1933115863). Hancock E.E. (2004). Red dawn, blue thunder, purple rain: Corporate risk of liability for global climate change and the SEC disclosure dilemma, Georgetown International Environmental Law Review 17 233 pp. . Available at: http://heinonline.org.ezpprod1.hul.harvard.edu/HOL/Page?handle=hein.journals/gintenlr17&id=243&div=&collection=journa ls. Hardin G. (1968). The tragedy of the commons, Science 162 1243 1248 pp. . Hare B., N. Höhne, C. Chen, M. Schaeffer, and M. Vieweg-Mersmann (2012). Climate Action Tracker, Climate Action Tracker . Available at: http://www.climateactiontracker.org/. Hare W., C. Stockwell, C. Flachsland, and S. Oberthür (2010). The architecture of the global climate regime: A top-down perspective, Climate Policy 10 600 614 pp. (DOI: 10.3763/cpol.2010.0161). 100 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Haritz M. (2011). An Inconvenient Deliberation: The Precautionary Principle s Contribution to the Uncertainties Surrounding Climate Change Liabllity. Kluwer Law International, Alphen aan den Rijn, Netherlands, (ISBN: 978-9041135216). . Harmeling S., and A.O. Kaloga (2011). Understanding the political economy of the Adaptation Fund, IDS Bulletin 42 23 32 pp. (DOI: 10.1111/j.1759-5436.2011.00219.x), (ISSN: 02655012). Harmes A. (2011). The limits of carbon disclosure: Theorizing the business case for investor environmentalism, Global Environmental Politics 11 98 119 pp. (DOI: 10.1162/GLEP_a_00057). Harrington W. (2006). Grading Estimates of the Benefits and Costs of Federal Regulation. Resources for the Future, Washington D.C. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=937357. Harrington W., R.D. Morgenstern, and P. Nelson (2000). On the accuracy of regulatory cost estimates, Journal of Policy Analysis and Management 19 297 322 pp. (DOI: 10.1002/(SICI)15206688(200021)19:2<297::AID-PAM7>3.0.CO;2-X), (ISSN: 0276-8739, 1520-6688). Harrison K. (2008). Challenges and opportunities in Canadian climate policy. In: A Globally Integrated Climate Policy for Canada. S. Bernstein, J. Brunnée, D. Duff, A. Green, (eds.), University of Toronto Press, Toronto pp.336 342(ISBN: 978-0802095961). Harvard Project on Climate Agreements (2010). Institutions for International Climate Governance. Harvard Project on Climate Agreements, Cambridge, MA. . Available at: http://belfercenter.ksg.harvard.edu/publication/20551. Ha¹èiè I., and N. Johnstone (2011). CDM and international technology transfer: empirical evidence on wind power, Climate Policy 11 1303 1314 pp. (DOI: 10.1080/14693062.2011.579311), (ISSN: 1469-3062). Hayashi D., and A. Michaelowa (2013). Standardization of baseline and additionality determination under the CDM, Climate Policy 2 191 209 pp. (DOI: 10.1080/14693062.2013.745114), (ISSN: 14693062). Headon S. (2009). Whose sustainable development? Sustainable development under the Kyoto Protocol, the Coldplay Effect, and the CDM Gold Standard, Colorado Journal of International Environmental Law and Policy 20 127 156 pp. . Heggelund G., and I.F. Buan (2009). China in the Asia Pacific Partnership: Consequences for UN climate change mitigation efforts?, International Environmental Agreements: Politics, Law and Economics 9 301 317 pp. (DOI: 10.1007/s10784-009-9099-5). Heitzig J., K. Lessmann, and Y. Zou (2011). Self-enforcing strategies to deter free-riding in the climate change mitigation game and other repeated public good games, Proceedings of the National Academy of Sciences 108 15739 15744 pp. (DOI: 10.1073/pnas.1106265108), (ISSN: 0027-8424, 1091-6490). Helfer L.R., and G. Austin (2011). Human Rights and Intellectual Property: Mapping the Global Interface. Cambridge University Press, Cambridge UK, (ISBN: 9780521884372 0521884373 9780521711258 0521711258). . 101 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Helm D. (2010). Climate-change policy: Why has so little been achieved? In: The Economics and Politics of Climate Change. D. Helm, C. Hepburn, (eds.), Oxford University Press, Oxford pp.9 35(ISBN: 978-0-19-957328-8). Hertel M. (2011). Climate-change-related trade measures and Article XX: Defining discrimination in light of the principle of common but differentiated responsibilities, Journal of World Trade 45 653 678 pp. (ISSN: 1011-6702). Herzog, Timothy, Baumert, Kevin, and Pershing, Jonathan (2006). Target: Intensity - an Analysis of Greenhouse Gas Intensity Targets. World Resources Institute, Washington, D.C. Available at: http://pdf.wri.org/target_intensity.pdf. Hoekman B.M., and M.M. Kostecki (2009). The Political Economy of the World Trading System: The WTO and Beyond. Oxford University Press, Oxford, UK, (ISBN: 0198294344). . Hof A.F., M.G.J. den Elzen, and M. Roelfsema (2013). The effect of updated pledges and businessas-usual projections, and new agreed rules on expected global greenhouse gas emissions in 2020, Environmental Science & Policy 33 308 319 pp. (DOI: 10.1016/j.envsci.2013.06.007), (ISSN: 14629011). Hoffmann M.J. (2005). Ozone Depletion and Climate Change: Constructing a Global Response. State University of New York Press, Albany, NY, 276 pp., (ISBN: 978-0-7914-8290-2). . Hoffmann M.J. (2011). Climate Governance at the Crossroads: Experimenting with a Global Response after Kyoto. Oxford University Press, Oxford, UK, 224 pp., (ISBN: 9780195390087). . Höhne N., M. den Elzen, and D. Escalante (2013). Regional GHG reduction targets based on effort sharing: a comparison of studies, Climate Policy 14 122 147 pp. (DOI: 10.1080/14693062.2014.849452). Höhne N., M.G.J. den Elzen, and M. Weiss (2006). Common but differentiated convergence (CDC): A new conceptual approach to long-term climate policy, Climate Policy 6 181 199 pp. . Available at: www.ingentaconnect.com/content/earthscan/cpol/2006/00000006/00000002/art00002. Höhne N., S. Khosla, H. Fekete, and A. Gilbert (2012a). Mapping of Green Finance Delivered by IDFC Members in 2011. Ecofys, Cologne, Germany. . Available at: https://www.kfwentwicklungsbank.de/migration/Entwicklungsbank-Startseite/Entwicklungsfinanzierung/Umweltund-Klima/Zahlen-Daten-Studien/Studien-und-Publikationen/2012_Mapping-Report.pdf. Höhne N., S. Moltmann, M. Hagemann, T. Angelini, A. Gardiner, and R. Heuke (2008). Factors Underpinning Future Action Country Fact Sheets. 2008 Update. Ecofys (Ecofys International BV), DECC (Department of Energy and Climate Change, United Kingdom), Utecht, Netherlands. 147 pp. Available at: http://www.ecofys.com/files/files/ecofys_2008_factorsunderpinningfutureaction_countryfactsheets .pdf. Höhne N., C. Taylor, R. Elias, M.G.J. Den Elzen, K. Riahi, C. Chen, J. Rogelj, G. Grassi, F. Wagner, K. Levin, E. Massetti, and Z. Xiusheng (2012b). National GHG emissions reduction pledges and 2°C: comparison of studies, Climate Policy 12 356 377 pp. (DOI: 10.1080/14693062.2011.637818), (ISSN: 1469-3062). 102 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Holzer K. (2010). Proposals on carbon-related border adjustments: Prospects for WTO compliance, Carbon & Climate Law Review 51 64 pp. . Available at: http://www.lexxion.de/shop.html?page=shop.product_details&category_id=2&product_id=1671. Holzer K. (2011). Perspectives for the Use of Carbon-Related Border Adjustments in Preferential Trade Agreements. NCCR Climate, Bern. 24 pp. Available at: http://www.iadb.org/intal/intalcdi/PE/2012/09640.pdf. Horstmann B. (2011). Operationalizing the Adaptation Fund: Challenges in allocating funds to the vulnerable, Climate Policy 11 1086 1096 pp. (DOI: 10.1080/14693062.2011.579392). Hourcade J.C., B.P. Fabert, and J. Rozenberg (2012). Venturing into uncharted financial waters: an essay on climate-friendly finance, International Environmental Agreements: Politics, Law and Economics 12 165 186 pp. (DOI: 10.1007/s10784-012-9169-y), (ISSN: 1567-9764, 1573-1553). House of Commons Science and Technology Committee (2010). The Regulation of Geoengineering. House of Commons Science and Technology Committee, London. 54 pp. Available at: http://www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/221/221.pdf. Houser T. (2010). A Role for the G-20 in Addressing Climate Change? Peterson Institute for International Economics, Washington, D.C. 20 pp. Available at: http://www.iie.com/publications/wp/wp10-15.pdf. Houser T., R. Bradley, B. Childs, J. Werksman, and R. Heilmayr (2008). Leveling the Carbon Playing Field: International Competition and Us Climate Policy Design. World Resources Institute, Washington, DC, 95 pp., (ISBN: 9780881324204 (alk. paper)). . Howse R. (2010). Climate Mitigation Subsidies and the WTO Legal Framework: A Policy Analysis. International Institute for Sustainable Development, Winnipeg. . Available at: http://www.iisd.org/pdf/2009/bali_2_copenhagen_subsidies_legal.pdf. Howse R., and A. Eliason (2009). Domestic and international strategies to address climate change: An overview of the WTO legal issues. In: International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, Cambridge pp.48 94(ISBN: 978-0521766197). Hufbauer G.C., S. Charnovitz, and J. Kim (2009). Global Warming and the World Trading System. Peterson Institute for International Economics, Washington, DC, 166 pp., (ISBN: 0881324280; 9780881324280). . Humphreys D. (2011). Smoke and mirrors: Some reflections on the science and politics of geoengineering, The Journal of Environment & Development 20 99 120 pp. (DOI: 10.1177/1070496511405302), (ISSN: 1070-4965, 1552-5465). Hunter D., J. Salzman, and D. Zaelke (2011). International Environmental Law and Policy. Thomson Reuters/Foundation Press, New York, 1508 pp., (ISBN: 9781599415383). . Huq S., H. Reid, M. Konate, A. Rahman, Y. Sokona, and F. Crick (2004). Mainstreaming adaptation to climate change in Least Developed Countries (LDCs), Climate Policy 4 25 43 pp. (DOI: 10.1080/14693062.2004.9685508), (ISSN: 1469-3062, 1752-7457). 103 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Hurrell A., and S. Sengupta (2012). Emerging powers, North South relations and global climate politics, International Affairs 88 463 484 pp. (DOI: 10.1111/j.1468-2346.2012.01084.x), (ISSN: 14682346). Ibrahim N., L. Sugar, D. Hoornweg, and C. Kennedy (2012). Greenhouse gas emissions from cities: Comparison of international inventory frameworks, Local Environment 17 223 241 pp. (DOI: 10.1080/13549839.2012.660909), (ISSN: 1354-9839). ICTSD (2007). Food miles debate carries on, BioRes: Trade and Environment Review 7 pp. . Available at: http://ictsd.org/downloads/bioresreview/biores1-2.pdf. ICTSD (2008). Climate Change and Trade on the Road to Copenhagen. International Centre for Trade and Sustainable Development, Geneva, Switzerland. . Available at: http://ictsd.org/i/publications/12524/. ICTSD (2009). Competitiveness and Climate Policies: Is There a Case for Restrictive Unilateral Trade Measures. International Centre for Trade and Sustainable Development, Geneva, Switzerland. . Available at: http://ictsd.org/downloads/2012/03/competitiveness-and-climate-policies-is-there-acase-for-restrictive-unilateral-trade-measures.pdf. ICTSD (2011). Fostering Low Carbon Growth: The Case for a Sustainable Energy Trade Agreement. International Centre for Trade and Sustainable Development, Geneva, Switzerland. . Available at: http://ictsd.org/i/publications/117557. IEA (2008). Energy Technology Perspectives 2008: Scenarios and Strategies to 2050. International Energy Agency, Paris. 650 pp. Available at: http://www.iea.org/w/bookshop/add.aspx?id=330. IEA (2010). Energy Technology Perspectives 2010: Scenarios and Strategies to 2050. International Energy Agency, Paris. 650 pp. Available at: http://www.iea.org/techno/etp/etp10/English.pdf. IEA (2011). World Energy Outlook. OECD Publishing, Paris, 696 pp., (ISBN: 978-92-64-12413-4). . IEA (2012). CO2 Emissions from Fuel Combustion: Beyond 2020 Online Database. International Energy Agency. . Available at: http://data.iea.org. IEA, OPEC, OECD, and World Bank (2011). Joint Report by IEA, OPEC, OECD and World Bank on Fossil-Fuel and Other Energy Subsidies: An Update of the G20 Pittsburgh and Toronto Commitments. OECD, Paris. 14 pp. Available at: http://www.oecd.org/env/49090716.pdf. ILC (2006). Fragmentation of International Law: Difficulties Arising from the Diversification and Expansion of International Law. International Law Commission, New York. . Available at: http://untreaty.un.org/ilc/documentation/english/a_cn4_l682.pdf. IMO (2008). Resolution LC-LP.1 on the Regulation of Ocean Fertilization. International Maritime Organization, London. IMO (2009). Second IMO GHG Study 2009. International Maritime Organization, London. . Available at: http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pdf. IMO (2010). Resolution LC-LP.2 on the Assessment Framework for Scientific Research Involving Ocean Fertilization. International Maritime Organization, London. . Available at: http://www.imo.org/OurWork/Environment/LCLP/EmergingIssues/geoengineering/Documents/OFa ssessmentResolution.pdf. 104 of 137 Final Draft Chapter 13 IPCC WGIII AR5 International Maritime Organization (IMO) (2011). Note by the International Maritime Organization to the Thirty-Fifth Session of the Subsidiary Body for Scientific and Technical Advice (SBSTA 35) : Agenda Item 9(a) - Emissions from Fuel Used for International Aviation and Maritime Transport: Technical and Operational Measures to Improve the Energy Efficiency of International Shipping and Assessment of Their Effect on Future Emissions. International Maritime Organization, London. . Available at: http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Documents/COP%20 17/Submissions/Final%20SBSTA%20EEDI%20SEEMP%20COP17.pdf. International Renewable Energy Agency (2013). IRENA membership, International Renewable Energy Agency . Available at: http://www.irena.org/menu/index.aspx?mnu=cat&PriMenuID=46&CatID=67. IPCC (2001). Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, (ISBN: 978-0521807692). . IPCC (2007). Climate Change 2007: Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, (ISBN: 9291691216). . IPCC (2011). Special Report on Renewable Energy Sources and Climate Change Mitigation. Intergovernmental Panel on Climate Change. . Available at: http://srren.ipccwg3.de/report/IPCC_SRREN_Full_Report. Ireland R. (2012). The EU Aviation Emissions Policy and Border Tax Adjustments. World Customs Organization, Brussels. 9 pp. Available at: http://www.wcoomd.org/en/topics/research/activitiesand-programmes/~/media/5DE1056A53F4428EBD0908CBF80B6A9C.ashx. Ismer R., and K. Neuhoff (2007). Border tax adjustment: A feasible way to support stringent emission trading, European Journal of Law and Economics 24 137 164 pp. (DOI: 10.1007/s10657007-9032-8). Ismer R., and K. Neuhoff (2009). Commitments through financial options: an alternative for delivering climate change obligations, Climate Policy 9 9 21 pp. (DOI: 10.3763/cpol.2008.0358), (ISSN: 1469-3062). Jacobs R.E. (2005). Treading deep waters: Substantive law issues in Tuvalu s threat to sue the United States in the International Court of Justice, Pacific Rim Law & Policy Journal 14 103 pp. . Jacoby H.D., M.H. Babiker, S. Paltsev, and J.M. Reilly (2010). Sharing the burden of GHG reductions. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.753 785(ISBN: 978-0521137850). Jaffe J., M. Ranson, and R.N. Stavins (2009). Linking tradable permit systems: A key element of emerging international climate policy architecture., Ecology Law Quarterly 36 789 808 pp. . Jaffe A., and R.N. Stavins (1995). Dynamic incentives of environmental regulations: The effects of alternative policy instruments on technology diffusion, Journal of Environmental Economics and Management 29 S43 S63 pp. (DOI: 10.1006/jeem.1995.1060). Jaffe J., and R.N. Stavins (2010). Linkage of tradable permit systems in international climate policy architecture. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement: 105 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Research from the Harvard Project on International Climate Agreements. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.119 150(ISBN: 978-0521129527). Javorcik B.S. (2004). The composition of foreign direct investment and protection of intellectual property rights: Evidence from transition economies, European Economic Review 48 39 62 pp. (DOI: 10.1016/S0014-2921(02)00257-X), (ISSN: 0014-2921). Jayaraman T., T. Kanitkar, and M. D Souza (2011). Equity and burden sharing in emission scenarios: a carbon budget approach. In: Handbook of Climate Change and India: Development, Politics and Governance. N.K. Dubash, (ed.), Oxford University Press, New Delhi pp.131 146(ISBN: 9780198071884). Jewell J., A. Cherp, V. Vinichenko, N. Bauer, T. Kober, D. McCollum, D. van Vuuren, and B. van der Zwaan (2013). Energy security of China, India, the E.U. and the U.S. under long-term scenarios: Results from six IAMs, Climate Change Economics 4. Johnson T., and R. Brewster (2013). Information revelation and structural supremacy: Explaining the international trade regime s perceived hostility to environmental policy, 6th Annual Conference on the Political Economy of International Organizations. Mannheim, Germany. January- 2013, Available at: http://147.142.190.246/joomla/peio/files2013/papers/Johnson,%20Brewster%2028.09.2012.PDF. Jonas H. (1984). The Imperative of Responsibility: In Search of an Ethics for the Technological Age. University of Chicago Press, Chicago and London, (ISBN: 978-0226405971). . Jotzo F., and J.C.V. Pezzey (2007). Optimal intensity targets for greenhouse gas emissions trading under uncertainty, Environmental and Resource Economics 38 259 284 pp. (DOI: 10.1007/s10640006-9078-z), (ISSN: 0924-6460, 1573-1502). JRC/PBL (2012). Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2 FT2010. European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency. . Available at: http://edgar.jrc.ec.europa.eu. Kainuma M., Y. Matsuoka, and T. Morita (2000). Estimation of embodied CO2 emissions by general equilibirum model, European Journal of Operational Research 122 392 404 pp. (DOI: 10.1016/S0377-2217(99)00241-6). Kalkuhl M., and R.J. Brecha (2013). The carbon rent economics of climate policy, Energy Economics 39 89 99 pp. (DOI: 10.1016/j.eneco.2013.04.008). Kallbekken S., L.S. Flottorp, and N. Rive (2007). CDM baseline approaches and carbon leakage, Energy Policy 35 4154 4163 pp. (DOI: 10.1016/j.enpol.2007.02.013). Kaminskaite-Slaters G. (2011). Climate change litigation in the UK: Its feasibility and prospects. In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing, Cheltenham, UK pp.165 188(ISBN: 9781849802864). Kaniaru D. (Ed.) (2007). The Montreal Protocol: Celebrating 20 Years of Environmental Progress Ozone Layer and Climate Protection. Cameron May, Notthingham, UK, 359 pp., (ISBN: 9781905017515). . 106 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Kanitkar T., M. D Souza, M. Sanwal, P. Purkayastha, and D. Raghunandan (2010). Global Carbon Budgets and Burden Sharing in Mitigation Actions. Tata Institute of Social Sciences, Mumbai. 36 71 pp. Available at: http://moef.nic.in/downloads/public-information/tiss-conference-cc-2010.pdf. Karlsson-Vinkhuyzen S.I., and H. van Asselt (2009). Introduction: Exploring and explaining the AsiaPacific Partnership on clean development and climate, International Environmental Agreements: Politics, Law and Economics 9 195 211 pp. (DOI: 10.1007/s10784-009-9103-0). Karlsson-Vinkhuyzen S.I., and J. McGee (2013). Legitimacy in an Era of Fragmentation: The Case of Global Climate Governance, Global Environmental Politics 13 56 78 pp. (DOI: 10.1162/GLEP_a_00183), (ISSN: 1526-3800). Kartha S., T. Athanasiou, and P. Baer (2012). The North-South Divide, Equity and Development The Need for Trust Building for Emergency Mobilisation. Dag Hammarskjold Foundation, Uppsala, Sweden. 47 71 pp. Available at: http://www.dhf.uu.se/wordpress/wpcontent/uploads/2012/10/dd61_art4.pdf. Kaul I., P. Conceicao, K. Le Goulven, and R. Mendoza (Eds.) (2003). Providing Global Public Goods: Managing Globalization. Oxford University Press, New York, (ISBN: 978-0195157406). . Kaul I., I. Grunberg, and M. Stern (Eds.) (1999). Global Public Goods: International Cooperation in the 21st Century. Oxford University Press, New York, (ISBN: 978-0195130515). . Kelemen R.D. (2001). The limits of judicial power: trade-environment disputes in the GATT/WTO and the EU, Comparative Political Studies 34 622 650 pp. (DOI: 10.1177/0010414001034006002), (ISSN: 0010-4140, 1552-3829). Kelly R.A. (2007). Energy Supply and Renewable Resources. Infobase Publishing, New York, NY, (ISBN: 9780816067688). . Keohane R.O. (1984). After Hegemony: Cooperation and Discord in the World Political Economy. Princeton University Press, Princeton, 304 pp., (ISBN: 9780691022284). . Keohane R. (1989). International Institutions and State Power: Essays in International Relations Theory. Westview Press, Boulder, (ISBN: 0813308372). . Keohane R.O., and K. Raustiala (2010). Toward a post-Kyoto climate change architecture: A political analysis. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.372 400(ISBN: 9780521137850). Keohane R.O., and D.G. Victor (2011). The regime complex for climate change, Perspectives on Politics 9 7 23 pp. (DOI: 10.1017/S1537592710004068). Kern K., and H. Bulkeley (2009). Cities, Europeanization and multi-level governance: Governing climate change through transnational municipal networks, Journal of Common Market Studies 47 309 332 pp. (DOI: 10.1111/j.1468-5965.2009.00806.x). Khor M. (2010a). The Climate and Trade Relation: Some Issues. South Centre, Geneva, Switzerland. 58 pp. Available at: http://www.southcentre.int/research-paper-29-may-2010/. 107 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Khor M. (2010b). Complex implications of the Cancun climate conference, Economic & Political Weekly 45 10 15 pp. . Available at: http://www.ifg.org/pdf/CN122510_Complex_Implications_Martin_Khor.pdf. Klijn A.-M., J. Gupta, and A. Nijboer (2009). Privatizing environmental resources: The need for supervision of Cean Development Mechanism contracts?, Review of European Community & International Environmental Law 18 172 184 pp. (DOI: 10.1111/j.1467-9388.2009.00639.x). Knox-Hayes J., and D.L. Levy (2011). The politics of carbon disclosure as climate governance, Strategic Organization 9 91 99 pp. (DOI: 10.1177/1476127010395066). Kolk A., D.L. Levy, and J. Pinkse (2008). Corporate responses in an emerging climate regime: The institutionalization and commensuration of carbon disclosure, European Accounting Review 17 719 745 pp. (DOI: 10.1080/09638180802489121). Kolk A., J. Pinkse, and L. Hull Van Houten (2010). Corporate responses to climate change: The role of partnerships. In: The Social and Behavioural Aspects of Climate Change: Linking Vulnerability, Adaptation and Mitigation. P. Martens, C.T. Chang, (eds.), Greenleaf Publishing, Sheffield, UK pp.48 67(ISBN: 978-1906093426). Kollmuss A., C. Lee, and M. Lazarus (2010). How offset programs assess and approve projects and credits, Carbon Management 1 119 134 pp. (DOI: 10.4155/cmt.10.6). Kolstad C. (2005). Piercing the veil of uncertainty in transboundary pollution agreements, Environmental and Resource Economics 31 21 34 pp. (DOI: 10.1007/s10640-004-6980-0). Kolstad C., and A. Ulph (2008). Learning and international environmental agreements, Climatic Change 89 125 141 pp. (DOI: 10.1007/s10584-008-9399-8). Van Kooten G.C. (2003). Smoke and mirrors: The Kyoto Protocol and beyond, Canadian Public Policy 29 397 415 pp. . Available at: http://economics.ca/cgi/jab?journal=cpp&view=v29n4/CPPv29n4p397.pdf. Koplow D. (2012). Phasing out Fossil-Fuel Subsidies in the G20: A Progress Update. Earth Track, Inc. and Oil Change International. 34 pp. Available at: http://priceofoil.org/2012/06/17/report-phasingout-fossil-fuel-subsidies-in-the-g20-a-progress-update/. Koremenos B., C. Lipson, and D. Snidal (2001). The rational design of international institutions, International Organization 55 761 799 pp. (DOI: 10.1162/002081801317193592). Korppoo A., and A. Moe (2008). Joint Implementation in Ukraine: National benefits and implications for further climate pacts, Climate Policy 8 305 316 pp. (DOI: 10.3763/cpol.2008.0515), (ISSN: 14693062). Kosolapova E. (2011). Liability for climate change-related damage in domestic courts: claims for compensation in the USA. In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing, Cheltenman, UK; Northampton, MA pp.189 205(ISBN: 978 1 84980 286 4). Kossoy A., and P. Guigon (2012). The State and Trends of the Carbon Market 2012. World Bank, Washington, D.C. Available at: http://siteresources.worldbank.org/INTCARBONFINANCE/Resources/State_and_Trends_2012_Web_ Optimized_19035_Cvr&Txt_LR.pdf. 108 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Kroll S., and J.F. Shogren (2009). Domestic politics and climate change: international public goods in two-level games, Cambridge Review of International Affairs 21 563 583 pp. (DOI: 10.1080/09557570802452904), (ISSN: 0955-7571). Krugman P.R. (1979). Increasing returns, monopolistic competition, and international trade, Journal of International Economics 9 469 479 pp. (DOI: 10.1016/0022-1996(79)90017-5), (ISSN: 0022-1996). Kuik O., and M. Hofkes (2010). Border adjustment for European emissions trading: Competitiveness and carbon leakage, Energy Policy 38 1741 1748 pp. (DOI: 10.1016/j.enpol.2009.11.048), (ISSN: 03014215). Kuramochi T., N. Shimizu, S. Nakhooda, and T. Fransen (2012). The Japanese Fast-Start Finance Contribution. World Resources Institute, Overseas Development Institute, and Institute for Global Environmental Strategies, Washington, D.C. Available at: http://www.wri.org/sites/default/files/pdf/ocn_jp_fast_start_finance.pdf. Ladislaw S.O. (2010). A Post-Copenhagen Pathway. Center for Strategic and International Studies, Washington D.C. 10 pp. Available at: http://csis.org/files/publication/100111_Ladislaw_Post_copenhagen.pdf. Lanzi E., J. Chateau, and R. Dellink (2012). Alternative approaches for levelling carbon prices in a world with fragmented carbon markets, Energy Economics 34, Supplement 2 S240 S250 pp. (DOI: 10.1016/j.eneco.2012.08.016), (ISSN: 0140-9883). De Larragán J. de C. (2011). Liability of member states and the EU in view of the international climate change framework: Between solidarity and responsibility. New Horizons in Environmental and Energy Law. In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing, Cheltenman, UK; Northampton, MA pp.55 89(ISBN: 9781849802864). Leach A.J. (2009). The welfare implications of climate change policy, Journal of Environmental Economics and Management 57 151 165 pp. (DOI: 10.1016/j.jeem.2007.11.006), (ISSN: 0095-0696). Leal-Arcas R. (2011). Alternative architecture for climate change - Major economies, European Journal of Legal Studies 4 25 56 pp. . Available at: http://www.ejls.eu/8/99UK.htm. Leal-Arcas R. (2013). Climate Change and International Trade. Edward Elgar, Cheltenham, UK ; Northampton, MA, 512 pp., (ISBN: 9781781956083). . Lecocq F. (2003). Pioneering transactions, catalyzing markets, and building capacity: The prototype carbon fund contributions to climate policies, American Journal of Agricultural Economics 85 703 707 pp. (DOI: 10.1111/1467-8276.00471). Lee J.-Y., and E. Mansfield (1996). Intellectual property protection and U.S. foreign direct investment, The Review of Economics and Statistics 78 181 186 pp. (DOI: 10.2307/2109919), (ISSN: 0034-6535). Leimbach M., N. Bauer, L. Baumstark, and O. Edenhofer (2010). Mitigation costs in a globalized World: Climate policy analysis with REMIND-R, Environmental Modeling and Assessment 15 155 173 pp. (DOI: 10.1007/s10666-009-9204-8). Levinson A. (2012). Belts and suspenders: Interactions among climate policy regulations. In: The Design and Implementation of U.S. Climate Policy. D. Fullerton, Wolfram, (eds.), University of Chicago Press, Chicago. Available at: http://www.nber.org/books/full10-1. 109 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Lewis J.I. (2007). Technology acquisition and innovation in the developing world: Wind turbine development in China and India, Studies in Comparative International Development 42 208 232 pp. (DOI: 10.1007/s12116-007-9012-6), (ISSN: 0039-3606, 1936-6167). Lewis J.I. (2010). The evolving role of carbon finance in promoting renewable energy development in China, Energy Policy 38 2875 2886 pp. (DOI: 10.1016/j.enpol.2010.01.020). Lewis J.I. (2011). Building a national wind turbine industry: experiences from China, India and South Korea, International Journal of Technology and Globalisation 5 281 305 pp. (DOI: 10.1504/IJTG.2011.039768). Libecap G. (2011). Institutional path dependence in climate adaptation: Coman"s Some unsettled problems of irrigation" , American Economic Review 101 64 80 pp. (DOI: 10.1257/aer.101.1.64). Limon M. (2009). Human rights and climate change: Constructing a case for political action, Harvard Environmental Law Review 33 439 pp. . Available at: http://www.law.harvard.edu/students/orgs/elr/vol33_2/Limon.pdf. Lin A.C. (2009). Geoengineering governance, Issues in Legal Scholarship 8 (DOI: 10.2202/15398323.1112), (ISSN: 1539-8323). Linnenluecke M., and A. Griffiths (2010). Beyond adaptation: Resilience for business in light of climate change and weather extremes, Business & Society 49 477 511 pp. (DOI: 10.1177/0007650310368814), (ISSN: 0007-6503, 1552-4205). Liverman D.M., and S. Billett (2010). Copenhagen and the governance of adaptation, Environment: Science and Policy for Sustainable Development 52 28 36 pp. (DOI: 10.1080/00139151003761579). Lloyd I.D., and M. Oppenheimer (2014). On the design of an international governance framework for geoengineering, Global Environmental Politics Forthcoming . Available at: http://www.princeton.edu/step/people/faculty/michaeloppenheimer/research/Lloyd_Oppenheimer_GEP_May2011.pdf. Lohmann L. (2008). Carbon trading, climate justice and the production of ignorance: Ten examples, Development 51 359 365 pp. (DOI: 10.1057/dev.2008.27), (ISSN: 1011-6370). Lord R., S. Goldberg, L. Rajamani, and J. Brunnée (Eds.) (2011). Climate Change Liability. Cambridge University Press, Cambridge, UK, 690 pp., (ISBN: 9781107017603). . Lovell H., and D. MacKenzie (2011). Accounting for carbon: The role of accounting professional organisations in governing climate change, Antipode 43 704 730 pp. (DOI: 10.1111/j.14678330.2011.00883.x), (ISSN: 1467-8330). Luderer G., E. De Cian, J.-C. Hourcade, M. Leimbach, H. Waisman, and O. Edenhofer (2012). On the regional distribution of mitigation costs in a global cap-and-trade regime, Climatic Change 114 59 78 pp. (DOI: 10.1007/s10584-012-0408-6), (ISSN: 0165-0009, 1573-1480). Lund E. (2010). Dysfunctional delegation: Why the design of the CDM s supervisory system is fundamentally flawed, Climate Policy 10 277 288 pp. (DOI: 10.3763/cpol.2009.0031), (ISSN: 14693062, 17527457). 110 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Lutter R. (2000). Developing Countries Greenhouse Emmissions: Uncertainty and Implications for Participation in the Kyoto Protocol, The Energy Journal 21 (DOI: 10.5547/ISSN0195-6574-EJ-Vol21No4-4), (ISSN: 01956574). Mace M.J. (2005). Funding for adaptation to climate change: UNFCCC and GEF developments since COP-7, Review of European Community and International Environmental Law 14 225 246 pp. (DOI: 10.1111/j.1467-9388.2005.00445.x), (ISSN: 0962-8797, 1467-9388). MacLeod M. (2010). Private governance and climate change: Institutional investors and emerging investor-driven governance mechanisms, St Antony s International Review 5 46 65 pp. . Available at: http://www.ingentaconnect.com/content/stair/stair/2010/00000005/00000002/art00006. MacLeod M., and J. Park (2011). Financial activism and global climate change: The rise of investordriven governance networks, Global Environmental Politics 11 54 74 pp. (DOI: 10.1162/GLEP_a_00055). Maitra N. (2010). Access to Environmentally Sound Technology in the Developing World: A Proposed Alternative to Compulsory Licensing, Columbia Journal of Environmental Law 35 407 pp. . Available at: http://heinonline.org.ezpprod1.hul.harvard.edu/HOL/Page?handle=hein.journals/cjel35&id=411&div=&collection=journals. Malumfashi S. (2009). Procurement policies, Kyoto compliance and the WTO Agreement on Government Procurement: The case of the EU green electricity procurement and the PPMs debate. In: International Trade Regulation and the Mitigation of Climate Change: World Trade Forum. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, Cambridge pp.328 350(ISBN: 978-0521766197). Mansfield E. (2000). Intellectual property protection, direct investment and technology transfer: Germany, Japan and the USA, International Journal of Technology Management 19 3 21 pp. (DOI: 10.1504/IJTM.2000.002805). March J.G., and J.P. Olsen (2008). The Logic of Appropriateness. In: The Oxford Handbook of Public Policy. R.E. Goodin, M. Moran, M. Rein, (eds.), Oxford University Press, (ISBN: 9780199548453). Marschinski R., and O. Edenhofer (2010). Revisiting the case for intensity targets: Better incentives and less uncertainty for developing countries, Energy Policy 38 5048 5058 pp. (DOI: 10.1016/j.enpol.2010.04.033), (ISSN: 0301-4215). Marschinski R., C. Flachsland, and M. Jakob (2012). Sectoral linking of carbon markets: A tradetheory analysis, Resource and Energy Economics 34 585 606 pp. (DOI: 10.1016/j.reseneeco.2012.05.005), (ISSN: 0928-7655). Maskus K.E., and M. Penubarti (1995). How trade-related are intellectual property rights?, Journal of International Economics 39 227 248 pp. (DOI: 10.1016/0022-1996(95)01377-8), (ISSN: 00221996). Massetti E. (2011). Carbon tax scenarios for China and India: Exploring politically feasible mitigation goals, International Environmental Agreements: Politics, Law and Economics 11 209 227 pp. (DOI: 10.1007/s10784-011-9157-7), (ISSN: 1567-9764, 1573-1553). Massetti E., S. Pinton, and D. Zanoni (2007). National through to local climate policy in Italy, Environmental Sciences 4 149 158 pp. (DOI: 10.1080/15693430701742685). 111 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Mathy S. (2007). Urban and rural policies and the climate change issue: The French experience of governance, Environemntal Sciences 4 159 169 pp. (DOI: 10.1080/15693430701742701). Mattoo A., A. Subramanian, D. van der Mensbrugghe, and J. He (2009). Reconciling Climate Change and Trade Policy. Center for Global Development, Washington D.C. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1516053. Mauritius & Micronesia (2009). Proposed amendment to the Montreal Protocol. . Available at: ozone.unep.org/Meeting_Documents/oewg/29oewg/OEWG-29-8E.pdf. McGee J.S. (2011). Exclusive Minilateralism: An Emerging Discourse within International Climate Change Governance?, PORTAL Journal of Multidisciplinary International Studies 8 (ISSN: 1449-2490). McGee J., and R. Taplin (2009). International Environmental Agreements: Politics, Law and Economics . The role of the Asia Pacific Partnership in discursive contestation of the international climate regime, International Environmental Agreements: Politics, Law and Economics 9 213 238 pp. (DOI: 10.1007/s10784-009-9101-2). Mckibbin W.J., A.C. Morris, and P.J. Wilcoxen (2011). Comparing climate commitments: A modelbased analysis of the Copenhagen Accord, Climate Change Economics 2 79 103 pp. . Available at: http://ideas.repec.org/a/wsi/ccexxx/v02y2011i02p79-103.html. McKibbin W.J., and P.J. Wilcoxen (2009). The economic and environmental effects of border tax adjustments for climate policy. In: Climate Change, Trade, and Competitiveness: Is a Collision Inevitable? I. Sorkin, L. Brainard, (eds.), Brookings Institution Press, Washington, D.C. pp.1 34(ISBN: 978-0-8157-0298-6). Mearns R., and A. Norton (2010). Social Dimensions of Climate Change: Equity and Vulnerability in a Warming World. The World Bank, Washington, DC, 319 pp., (ISBN: 0821378872 9780821378878). . Meckling J. (2011). Carbon Coalitions: Business, Climate Politics, and the Rise of Emissions Trading. MIT Press, Cambridge, Massachusetts, USA, (ISBN: 9780262516334). . Meckling J.O., and G.Y. Chung (2009). Sectoral approaches for a post-2012 climate regime: A taxonomy, Climate Policy 9 652 668 pp. (DOI: 10.3763/cpol.2009.0629), (ISSN: 1469-3062). MEF (2009). Technology Action Plan - Executive Summary. Major Economies Forum on Energy and Climate, Washington, D.C. 20 pp. Available at: http://www.majoreconomiesforum.org/images/stories/documents/MEF%20Exec%20Summary%201 4Dec2009.pdf. Mehling M., and E. Haites (2009). Mechanisms for linking emissions trading schemes, Climate Policy 9 169 184 pp. (DOI: 10.3763/cpol.2008.0524). Metcalf G.E., and D. Weisbach (2009). The design of a carbon tax, Harvard Environmental Law Review 33 499 556 pp. . Available at: http://www.law.harvard.edu/students/orgs/elr/vol33_2/Metcalf%20Weisbach.pdf. Metcalf G.E., and D. Weisbach (2012). Linking policies when tastes differ: Global climate policy in a heterogeneous world, Review of Environmental Economics and Policy 6 110 129 pp. (DOI: 10.1093/reep/rer021). 112 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Michaelowa A. (2005). Creating the foundations for host country participation in the CDM: Experiences and challenges in CDM capacity building. In: Climate Change and Carbon Markets: A Handbook of Emission Reduction Mechanisms. F. Yamin, (ed.), Earthscan, London pp.305 320(ISBN: 978-1844071630). Michaelowa A. (2007). Unilateral CDM Can developing countries finance generation of greenhouse gas emission credits on their own?, International Environmental Agreements: Politics, Law and Economics 7 17 34 pp. (DOI: 10.1007/s10784-006-9026-y). Michaelowa A. (2009). Will the CDM become a victim of its own success? Reform options for Copenhagen. In: Beyond Copenhagen: A climate policymaker s handbook. J. Delgado, S. Gardner, (eds.),Brussels, Belgium pp.31 40(ISBN: 978-9-078910-15-2). Michaelowa A. (2010). The future of the Clean Development Mechanism. In: Climate Change Policies: Global Challenges and Future Prospects. E. Cerdá, X. Labandeira, (eds.), Edward Elgar, Cheltenham, UK pp.209 232(ISBN: 9781849808286 (hbk.)). Michaelowa A. (2011). Failures of global carbon markets and CDM?, Climate Policy 11 839 841 pp. (DOI: 10.3763/cpol.2010.0688). Michaelowa A. (2012a). Manouvering Climate Finance Around the Pitfalls - Finding the Right Policy. Routledge Explorations in Environmental Economics. In: Carbon Markets or Climate Finance?: Low Carbon and Adaptation Investment Choices for the Developing World. A. Michaelowa, (ed.), Routledge, Abingdon pp.255 265(ISBN: 978-1849714747). Michaelowa A. (Ed.) (2012b). Carbon Markets or Climate Finance? Low Carbon and Adaptation Investment Choices for the Developing World. Routledge, Abingdon, UK, (ISBN: 113647126X 9781136471261). . Michaelowa A., and R. Betz (2001). Implications of EU enlargement on the EU greenhouse gas bubble and internal burden sharing, International Environmental Agreements: Politics, Law and Economics 1 267 279 pp. (DOI: 10.1007/s10584-007-9270-3). Michaelowa A., and J. Buen (2012). The Clean Development Mechanism gold rush. In: Carbon Markets or Climate Finance? Low Carbon and Adaptation Investment Choices for the Developing World. A. Michaelowa, (ed.), Routledge, Abingdon, UK(ISBN: 978-1849714747). Michaelowa A., D. Hayashi, and M. Marr (2009). Challenges for energy efficiency improvement under the CDM - The case of energy-efficient lighting, Energy Efficiency 2 353 367 pp. (DOI: 10.1007/s12053-009-9052-z). Michaelowa A., and K. Michaelowa (2007). Climate or development: Is ODA diverted from its original purpose?, Climatic Change 84 5 21 pp. (DOI: 10.1007/s10584-007-9270-3). Michaelowa A., and K. Michaelowa (2011). Climate business for poverty reduction? The role of the World Bank, The Review of International Organizations 6 259 286 pp. (DOI: 10.1007/s11558-0119103-z), (ISSN: 1559-7431, 1559-744X). Michaelowa A., and J. O brien (2006). Domestic UNFCCC Kyoto Protocol mechanisms project supply coordination through tendering Lessons from the New Zealand experience, Mitigation and Adaptation Strategies for Global Change 11 711 722 pp. (DOI: 10.1007/s11027-006-2844-y), (ISSN: 1381-2386, 1573-1596). 113 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Michaelowa A., K. Tangen, and H. Hasselknippe (2005). Issues and options for the post-2012 climate architecture An overview, International Environmental Agreements: Politics, Law and Economics 5 5 24 pp. (DOI: 10.1007/s10784-004-3665-7), (ISSN: 1567-9764, 1573-1553). Michonski K., and M.A. Levi (2010). Harnessing International Institutions to Address Climate Change. Council on Foreign Relations, New York. 24 pp. Available at: http://www.cfr.org/climatechange/harnessing-international-institutions-address-climate-change/p21609 accessed 2 October 2011. Milanovic B. (2012). The Haves and the Have-Nots: A Brief and Idiosyncratic History of Global Inequality. Basic Books, New York, 280 pp., (ISBN: 978-0465031412). . Millard-Ball A. (2012). The Tuvalu Syndrome, Climatic Change 110 1047 1066 pp. (DOI: 10.1007/s10584-011-0102-0), (ISSN: 0165-0009, 1573-1480). Millard-Ball A., and L. Ortolano (2010). Constructing carbon offsets: The obstacles to quantifying emission reductions, Energy Policy 38 533 546 pp. (DOI: 10.1016/j.enpol.2009.10.005). Ministerial Conference on Atmospheric Pollution & Climatic Change, Netherlands Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, World Meteorological Organization, and United Nations Environment Programme (1989). Noordwijk Declaration of the Ministerial Conference on Atmospheric Pollution and Climate Change. Noordwijk, Netherlands. Ministry of the Environment, Government of Japan (2012). MOEJ Initiatives on Bilateral Offset Credit Mechanism for Mitigating Climate Change. Tokyo. . Available at: http://www.mmechanisms.org/document/120309-MOEJ_Initiatives_on_BOCM_en.pdf. Mitchell R.B. (2008). Evaluating the performance of environmental institutions: What to evaluate and how to evaluate it? In: Institutions And Environmental Change Principal Findings, Applications, and Research Frontiers. O.R. Young, L.A. King, H. Schroeder, (eds.), MIT Press, Cambridge, MA pp.400(ISBN: 9780262240574). Mitsutsune Y. (2012). Policies and measures. Lecture Notes in Energy. In: Climate Change Mitigation, A Balanced Approach to Climate Change. Y. Mitsutsune, (ed.), Springer, London pp.262(ISBN: 978-1-4471-4227-0). Molina M., D. Zaelke, K.M. Sarma, S.O. Andersen, V. Ramanathan, and D. Kaniaru (2009). Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions, Proceedings of the National Academy of Sciences 106 20616 20621 pp. (DOI: 10.1073/pnas.0902568106), (ISSN: 0027-8424, 1091-6490). Moncel R., and H. van Asselt (2012). All hands on deck! Mobilizing climate change action beyond the UNFCCC, Review of European Community & International Environmental Law 21 163 176 pp. (DOI: 10.1111/reel.12011), (ISSN: 1467-9388). Moncel R., P. Joffe, K. McCall, and K. Levin (2011). Building the Climate Change Regime: Survey and Analysis of Approaches. World Resources Institute, United Nations Environment Programme, Washington D.C. Available at: http://pdf.wri.org/working_papers/building_the_climate_change_regime.pdf. Monjon S., and P. Quirion (2011a). Addressing leakage in the EU ETS: Border adjustment or outputbased allocation?, Ecological Economics 70 1957 1971 pp. (DOI: 10.1016/j.ecolecon.2011.04.020), (ISSN: 09218009). 114 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Monjon S., and P. Quirion (2011b). Addressing leakage in the EU ETS: Border adjustment or outputbased allocation?, Ecological Economics 70 1957 1971 pp. (DOI: 10.1016/j.ecolecon.2011.04.020), (ISSN: 09218009). Morgera E. (2004). From Stockholm to Johannesburg: From corporate responsibility to corporate accountability for the global protection of the environment?, Review of European Community & International Environmental Law 13 214 222 pp. (DOI: 10.1111/j.1467-9388.2004.00398.x). Mueller B. (2012). From Confrontation to Collaboration? CBDR and the EU ETS Aviation Dispute with Developing Countries Oxford Institute for Energy Studies. Oxford Institute for Energy Studies, Oxford, UK. 25 pp. Available at: http://www.oxfordenergy.org/wpcms/wp-content/uploads/2012/03/FromCollaboration-to-Confrontation.pdf. Müller B. (2010). Copenhagen 2009: Failure or Final Wake-up Call for Our Leaders? Oxford Institute for Energy Studies, Oxford. 28 pp. Available at: http://www.oxfordclimatepolicy.org/publications/documents/EV49.pdf. Müller B., and L. Mahadev (2013). The Oxford Approach: Operationalizing the UNFCCC Principle of Respective Capabilities . Oxford Institute for Energy Studies, Oxford, UK. . Available at: http://www.oxfordenergy.org/wpcms/wp-content/uploads/2013/02/EV-58.pdf. Munoz M., R. Thrasher, and A. Najam (2009). Measuring the negotiation burden of multilateral environmental agreements, Global 9 1 13 pp. (DOI: 10.1162/glep.2009.9.4.1). Murase S. (2011). Conflict of international regimes: Trade and the environment. In: International Law : An Integrative Perspective on Transboundary Issues. Sophia University Press, Tokyo pp.130 166(ISBN: 978-4324090510). Murray B.C., R.G. Newell, and W.A. Pizer (2009). Balancing cost and emissions certainty: An allowance reserve for cap-and-trade, Review of Environmental Economics and Policy 3 84 103 pp. (DOI: 10.1093/reep/ren016), (ISSN: 1750-6816, 1750-6824). Na S., and H.S. Shin (1998). International environmental agreements under uncertainty, Oxford Economic Papers 50 173 185 pp. (ISSN: 0030-7653, 1464-3812). Nairn M. (2009). Minilateralism, Foreign Policy 135 136 pp. . Available at: http://www.foreignpolicy.com/articles/2009/06/18/minilateralism. Nakhooda S., and T. Fransen (2012). The UK Fast-Start Finance Contribution. World Resources Institute & Overseas Development Institute, Washington, D.C. Available at: http://www.odi.org.uk/sites/odi.org.uk/files/odi-assets/publications-opinion-files/7662.pdf. Nazifi F. (2010). The price impacts of linking the European Union Emissions Trading Scheme to the Clean Development Mechanism, Environmental Economics and Policy Studies 12 164 186 pp. (DOI: 10.1007/s10018-010-0168-3), (ISSN: 1432-847X, 1867-383X). Neuhoff K., S. Fankhauser, E. Guerin, J.-C. Hourcade, H. Jackson, R. Rajan, and J. Ward (2010). Structuring International Financial Support for Climate Change Mitigation in Developing Countries. DIW Berlin, Berlin. 41 pp. Available at: http://dx.doi.org/10.2139/ssrn.1596079. Neumayer E. (2004). The WTO and the environment: Its past record is better than critics believe, but the future outlook is bleak, Global Environmental Politics 4 1 8 pp. (DOI: 10.1162/1526380041748083), (ISSN: 1526-3800). 115 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Newell R.G. (2007). Climate Technology Deployment Policy. Resources for the Future, Washington D.C. Available at: http://fds.duke.edu/db/attachment/725. Newell P. (2009). Varieties of CDM governance: Some reflections, The Journal of Environment & Development 18 425 435 pp. (DOI: 10.1177/1070496509347089). Newell R.G. (2010a). International climate technology strategies. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement: Research from the Harvard Project on International Climate Agreements. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.403 438(ISBN: 978-0521129527). Newell R.G. (2010b). The role of markets and policies in delivering innovation for climate change mitigation, Oxford Review of Economic Policy 26 253 269 pp. (DOI: 10.1093/oxrep/grq009), (ISSN: 0266-903X, 1460-2121). Newell P. (2011). The governance of energy finance: The public, the private and the hybrid, Global Policy 2 94 105 pp. (DOI: 10.1111/j.1758-5899.2011.00104.x). Newell P. (2012). The political economy of carbon markets: The CDM and other stories, Climate Policy 12 135 139 pp. (DOI: 10.1080/14693062.2012.640785), (ISSN: 1469-3062, 1752-7457). Newell P., and M. Paterson (2010). Climate Capitalism: Global Warming and the Transformation of the Global Economy. Cambridge University Press, Cambridge, UK, 222 pp., (ISBN: 9780521127288 0521127289). . Newell R.G., W.A. Pizer, and D. Raimi (2013). Carbon markets 15 years after Kyoto: Lessons learned, new challenges, Journal of Economic Perspectives 27 123 146 pp. (DOI: 10.1257/jep.27.1.123), (ISSN: 0895-3309). Nguyen N.T., M. Ha-Duong, S. Greiner, and M. Mehling (2010). Improving the Clean Development Mechanism post-2012: A developing country perspective, Carbon and Climate Law Review 76 85 pp. . Available at: http://www.lexxion.de/cclr-12010#. Nhamo G. (2010). Dawn of a new climate order: Analysis of USA + BASIC collaborative frameworks, Politikon: South African Journal of Political Studies 37 353 376 pp. (DOI: 10.1080/02589346.2010.522344). Nordhaus W.D. (2006). After Kyoto: Alternative mechanisms to control global warming, American Economic Review 96 31 34 pp. (DOI: 10.1257/000282806777211964). Nordhaus W.D. (2007). A review of the Stern Review on the Economics of Climate Change, Journal of Economic Literature 45 686 702 pp. (DOI: 10.1257/jel.45.3.686). Nordhaus W.D. (2008). A Question of Balance: Weighing the Options on Global Warming Policies. Yale University Press, New Haven, (ISBN: 978-0300137484). . Nordhaus W.D. (2011). The economics of tail events with an application to climate change, Review of Environmental Economics and Policy 5 240 257 pp. (DOI: 10.1093/reep/rer004), (ISSN: 1750-6816, 1750-6824). Nussbaumer P. (2009). On the contribution of labelled Certified Emission Reductions to sustainable development: A multi-criteria evaluation of CDM projects, Energy Policy 37 91 101 pp. (DOI: 10.1016/j.enpol.2008.07.033). 116 of 137 Final Draft Chapter 13 IPCC WGIII AR5 O Brien J. (2009). The equity of levelling the playing field in the climate change context, Journal of World Trade 43 1093 1114 pp. . Oberthür S. (2009). Interplay management: Enhancing environmental policy integration among international institutions, International Environmental Agreements: Politics, Law and Economics 9 371 391 pp. (DOI: 10.1007/s10784-009-9109-7). Oberthür S. (2011). Global climate governance after Cancun: Options for EU leadership, The International Spectator 46 5 13 pp. (DOI: 10.1080/03932729.2011.567900), (ISSN: 0393-2729). Oberthür S., and R. Lefeber (2010). Holding countries to account: The Kyoto Protocol s compliance system revisited after four years of experience, Climate Law 1 133 158 pp. (DOI: 10.3233/CL-2010006), (ISSN: 1878-6553). Oberthür S., and H.E. Ott (1999). The Kyoto Protocol: International Climate Policy for the 21st Century. Springer, Berlin, 379 pp., (ISBN: 978-3540664703). . Ockwell D.G., and A. Mallett (Eds.) (2012). Low-Carbon Technology Transfer: From Rhetoric to Reality. Routledge, London ; New York, NY, 374 pp., (ISBN: 9781849712699). . OECD (2008). OECD Environmental Outlook to 2030. OECD Publishing, Paris, (ISBN: 9789264040489). . OECD (2009). The Economics of Climate Change Mitigation: Policies and Options for Global Action beyond 2012. Organisation for Economic Co-Operation and Development, Paris, France, (ISBN: 9789264056060). . OECD (2013). Arrangement on Officially Supported Export Credits. Organisation for Economic CoOperation and Development, Paris. . Available at: http://search.oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=tad/pg(201 3)11. OHCHR (2009). Report of the Office of the United Nations High Commissioner for Human Rights on the Relationship between Climate Change and Human Rights. Office of the United Nations High Commissioner for Human Rights, Geneva, Switzerland. . Available at: http://www.ohchr.org/EN/Issues/HRAndClimateChange/Pages/Study.aspx. Okazaki T., and M. Yamaguchi (2011). Accelerating the transfer and diffusion of energy saving technologies steel sector experience Lessons learned, Energy Policy 39 1296 1304 pp. (DOI: 10.1016/j.enpol.2010.12.001), (ISSN: 0301-4215). Okazaki T., M. Yamaguchi, H. Watanabe, A. Ohata, H. Inoue, and H. Amano (2012). Technology diffusion and development. Lecture Notes in Energy. In: Climate Change Mitigation: A Balanced Approach to Climate Change. M. Yamaguchi, (ed.), Springer, London(ISBN: 9781447142287). Okereke C. (2010). Climate justice and the international regime, Wiley Interdisciplinary Reviews: Climate Change 1 462 474 pp. (DOI: 10.1002/wcc.52). Okubo Y., and A. Michaelowa (2010). Effectiveness of subsidies for the Clean Development Mechanism: Past experiences with capacity building in Africa and LDCs, Climate and Development 2 30 49 pp. (DOI: 10.3763/cdev.2010.0032). 117 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Olivier J.G.J., G. Janssens-Maenhout, and J.A.H.W. Peters (2012). Trends in Global CO2 Emissions: 2012 Report. PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands. . Available at: http://edgar.jrc.ec.europa.eu/CO2REPORT2012.pdf. Olmstead S.M., and R.N. Stavins (2012). Three key elements of a post-2012 international climate policy architecture, Review of Environmental Economics and Policy 6 65 85 pp. (DOI: 10.1093/reep/rer018). Olsen K.H. (2007). The clean development mechanism s contribution to sustainable development: A review of the literature, Climatic Change 84 59 73 pp. (DOI: 10.1007/s10584-007-9267-y). Olsson M., A. Atteridge, K. Hallding, and J. Hellberg (2010). Together Alone? Brazil, South Africa, India, China (BASIC) and the Climate Change Conundrum. Stockholm Environment Institute, Stockholm. . Available at: http://www.seiinternational.org/mediamanager/documents/Publications/SEI-PolicyBrief-Olsson-BASICClimateChangeConundrum.pdf. Osofsky H.M. (2012). Climate change and crises of international law: Possibilities for geographic reenvisioning, Case Western Reserve s Journal of International Law 44 423 433 pp. . Available at: http://law.case.edu/journals/JIL/Documents/%2819%29%20Osofsky_Darby.pdf. Ostrom E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press, Cambridge, UK, (ISBN: 978-0521405997). . Ostrom E. (2001). Reformulating the commons. In: Protecting the Commons: A Framework for Resource Management in the Americas. J. Burger, E. Ostrom, R. Norgaard, D. Policansky, B. Goldstein, (eds.), Island Press, Washington, DC pp.17 43(ISBN: 978-1559637381). Ostrom E. (2010a). Beyond markets and states: Polycentric governance of complex economic systems, American Economic Review 100 641 672 pp. (DOI: 10.1257/aer.100.3.641). Ostrom E. (2010b). Polycentric systems for coping with collective action and global environmental change, Global Environmental Change 20 550 557 pp. (DOI: 10.1016/j.gloenvcha.2010.07.004). Ostrom E. (2011). Reflections on Some unsettled problems of irrigation", American Economic Review 101 49 63 pp. (DOI: 10.1257/aer.101.1.49). Ostrom E. (2012). Nested externalities and polycentric institutions: must we wait for global solutions to climate change before taking actions at other scales?, Economic Theory 49 353 369 pp. (DOI: 10.1007/s00199-010-0558-6), (ISSN: 0938-2259, 1432-0479). Otto-Zimmermann K., and A. Balbo (2012). The global adaptation community expands its scope. Local Sustainability. In: Resilient Cities 2. K. Otto-Zimmermann, (ed.), Springer Netherlands, pp.3 8(ISBN: 978-94-007-4222-2). Oye K.A. (1985). Explaining cooperation under anarchy: Hypotheses and strategies, World Politics 38 1 24 pp. . Padilla E., and A. Serrano (2006). Inequality in CO2 emissions across countries and its relationship with income inequality: A distributive approach, Energy Policy 34 1762 1772 pp. (DOI: 10.1016/j.enpol.2004.12.014), (ISSN: 0301-4215). 118 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Pahl-Wostl C., M. Craps, A. Dewulf, E. Mostert, D. Tabara, and T. Taillieu (2007). Social learning and water resources management, Ecology and Society 12 . Available at: http://www.ecologyandsociety.org/vol12/iss2/art5/. Paltsev S., J.M. Reilly, H.D. Jacoby, A.C. GURGEL, G.E. METCALF, A.P. SOKOLOV, and J.F. HOLAK (2008). Assessment of US GHG cap-and-trade proposals, Climate Policy 8 395 420 pp. (DOI: 10.3763/cpol.2007.0437), (ISSN: 1469-3062). Paltsev S., J.M. Reilly, H.D. Jacoby, and J.F. Morris (2009). The Cost of Climate Policy in the United States. Massachusetts Institute of Technology, Cambridge, MA. 61 pp. Available at: http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt173.pdf. Parnphumeesup P., and S.A. Kerr (2011). Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand, Energy Policy 39 3591 3601 pp. (DOI: 10.1016/j.enpol.2011.03.060), (ISSN: 03014215). Parry I.W.H. (1995). Pollution taxes and revenue recycling, Journal of Environmental Economics and Management 29 S64 S77 pp. (DOI: 10.1006/jeem.1995.1061), (ISSN: 0095-0696). Parthan B., M. Osterkorn, M. Kennedy, S.J. Hoskyns, M. Bazilian, and P. Monga (2010). Lessons for low-carbon energy transition: Experience from the Renewable Energy and Energy Efficiency Partnership (REEEP), Energy for Sustainable Development 14 83 93 pp. (DOI: 10.1016/j.esd.2010.04.003). Paterson M., M. Hoffmann, M. Betsill, and S. Bernstein (2014). The Micro Foundations of Policy Diffusion towards Complex Global Governance: An Analysis of the Transnational Carbon Emission Trading Network., Comparative Political Studies 37. Pattberg P. (2010). Public private partnerships in global climate governance, Wiley Interdisciplinary Reviews: Climate Change 1 279 287 pp. (DOI: 10.1002/wcc.38), (ISSN: 1757-7799). Pattberg P., F. Biermann, S. Chan, and A. Mert (2012). Conclusions: Partnership for Sustainable Development. In: Public Private Partnerships For Sustainable Development: Emergence, Influence and Legitimacy. P. Pattberg, F. Biermann, S. Chan, A. Mert, (eds.), Edward Elgar, Cheltenham, UK pp.239 248(ISBN: 978 1 84980 930 6). Pattberg P., and J. Stripple (2008). Beyond the public and private divide: Remapping transnational climate governance in the 21st century, International Environmental Agreements: Politics, Law and Economics 8 367 388 pp. (DOI: 10.1007/s10784-008-9085-3). PBL (2012). Analysing the Emission Gap between Pledged Emission Reductions under the Cancún Agreements and the 2°C Climate Target. Netherlands Environmental Assessment Agency, Bilthoven. . Available at: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2012-analysing-the-emissiongap-between-pledged-emission-reductions-500114021.pdf. Peeters M. (2011). The regulatory approach of the EU in view of liability for climate change damage. New Horizons in Environmental and Energy Law. In: Climate Change Liability. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing, Cheltenman, UK; Northampton, MA pp.90 133(ISBN: 9781849802864). Penalver E.M. (1998). Acts of God or toxic torts - Applying tort principles to the problem of climate change, Natural Resources Journal 38 563 601 pp. . 119 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Persson A. (2011). Institutionalising Climate Adaptation Finance under the UNFCCC and beyond: Could an Adaptation market Emerge? Stockholm Environment Institute, Stockholm. . Available at: http://environmentportal.in/files/file/adaptation-commodification.pdf. Persson T.A., C. Azar, and K. Lindgren (2006). Allocation of CO2 emission permits: Economic incentives for emission reductions in developing countries, Energy Policy 34 1889 1899 pp. (DOI: 10.1016/j.enpol.2005.02.001). Perusse B., M. Riggins, J. Rodgers, and M. Zimring (2009). Melting down and scaling up: Stabilizing climate change by promoting private sector technology development, Review of Policy Research 26 511 531 pp. (DOI: 10.1111/j.1541-1338.2009.00403.x). Peters G.P., and E.G. Hertwich (2008). CO2 embodied in international trade with implications for global climate policy, Environmental Science & Technology 42 1401 1407 pp. (DOI: doi: 10.1021/es072023k). Peters G.P., J.C. Minx, C.L. Weber, and O. Edenhofer (2011). Growth in emission transfers via international trade from 1990 to 2008, Proceedings of the National Academy of Sciences (DOI: 10.1073/pnas.1006388108), (ISSN: 0027-8424, 1091-6490). Peterson E.B., J. Schleich, and V. Duscha (2011). Environmental and economic effects of the Copenhagen pledges and more ambitious emission reduction targets, Energy Policy 39 3697 3708 pp. (DOI: 10.1016/j.enpol.2011.03.079). Peters-Stanley M., K. Hamilton, T. Marcello, and M. Sjardin (2011). Back to the Future: State of the Voluntary Carbon Markets 2011. Ecosystem Marketplace, Bloomberg New Energy Finance, New York and Washington, DC. 78 pp. Available at: http://www.foresttrends.org/documents/files/doc_2828.pdf. Petsonk A. (1999). The Kyoto Protocol and the WTO: Integrating greenhouse gas emissions allowance trading into the global marketplace, Duke Environmental Law & Policy Forum 10 185 220 pp. (ISSN: 1064-3958). Pew Center (2010). Strengthening International Climate Finance. Pew Center on Global Climate Change, Arlington, VA. 8 pp. Available at: http://www.pewclimate.org/docUploads/strengtheninginternational-climate-finance.pdf. Pfeifer S., and R. Sullivan (2008). Public policy, institutional investors and climate change: A UK casestudy, Climatic Change 89 245 262 pp. (DOI: 10.1007/s10584-007-9380-y). Pindyck R.S. (2011). Fat tails, thin tails, and climate change policy, Review of Environmental Economics and Policy 5 258 274 pp. (DOI: 10.1093/reep/rer005), (ISSN: 1750-6816, 1750-6824). Pinkse J. (2007). Corporate intentions to participate in emission trading., Business Strategy & the Environment (John Wiley & Sons, Inc) 16 12 25 pp. (DOI: 10.1002/bse.463). Pinkse J., and A. Kolk (2009). International Business and Global Climate Change. Routledge, Abingdon, UK, 202 pp., (ISBN: 978-0-41541-553-8). . Pinkse J., and A. Kolk (2011). Addressing the climate change--sustainable development nexus: The role of multistakeholder partnerships, Business & Society 51 176 210 pp. (DOI: 10.1177/0007650311427426), (ISSN: 0007-6503, 1552-4205). 120 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Pittel K., and D.T.G. Rübbelke (2008). Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change, Ecological Economics 68 210 220 pp. (DOI: 10.1016/j.ecolecon.2008.02.020). Pittel K., and D.T.G. Rübbelke (2012). Transitions in the negotiations on climate change: from prisoner s dilemma to chicken and beyond, International Environmental Agreements: Politics, Law and Economics 12 23 39 pp. (DOI: 10.1007/s10784-010-9126-6), (ISSN: 1567-9764, 1573-1553). Pizer W.A. (2002). Combining price and quantity controls to mitigate global climate change, Journal of Public Economics 85 409 434 pp. (DOI: 10.1016/S0047-2727(01)00118-9), (ISSN: 0047-2727). Point Carbon (2013). Project Manager, Issuance to Date. Point Carbon, Oslo, Norway. Posner E., and C. Sunstein (2010). Justice and climate change: The unpersuasive case for per capita allocations of emissions rights. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.343 371(ISBN: 978-0521137850). Posner E., and D. Weisbach (2010). Climate Change Justice. Princeton University Press, Princeton, (ISBN: 978-0691137759). . Pueyo A., R. García, M. Mendiluce, and D. Morales (2011). The role of technology transfer for the development of a local wind component industry in Chile, Energy Policy 39 4274 4283 pp. (DOI: 10.1016/j.enpol.2011.04.045), (ISSN: 0301-4215). Pulver S. (2007). Making sense of corporate environmentalism, Organization & Environment 20 44 83 pp. (DOI: 10.1177/1086026607300246). Rabe B.G. (2007). Beyond Kyoto: Climate change policy in multilevel governance systems, Governance 20 423 444 pp. (DOI: 10.1111/j.1468-0491.2007.00365.x), (ISSN: 0952-1895, 14680491). Rajamani L. (2006). Differential Treatment in International Environmental Law. Oxford University Press, Oxford, UK, 281 pp., (ISBN: 9780199280704 (alk. paper)). . Rajamani L. (2009). Addressing the Post-Kyoto stress disorder: Reflections on the emerging legal architecture of the climate regime, International & Comparative Law Quarterly 58 803 834 pp. (DOI: 10.1017/S0020589309001584). Rajamani L. (2010). The making and unmaking of the Copenhagen Accord, International & Comparative Law Quarterly 59 824 843 pp. . Rajamani L. (2011a). The reach and limits of the principle of common but differentiated responsibilities in the climate change regime. In: Handbook on climate change in India: Development, governance and politics. N.K. Dubash, (ed.), Routledge, (ISBN: ISBN-10: 1849713588 ISBN-13: 9781849713580). Rajamani L. (2011b). The Cancun climate change agreements: Reading the text, subtext and tealeaves, International & Comparative Law Quarterly 60 499 519 pp. (DOI: 10.1017/S0020589311000078). Rajamani L. (2012a). The Durban Platform for Enhanced Action and the future of the climate regime, International & Comparative Law Quarterly 61 501 518 pp. (DOI: 10.1017/S0020589312000085). 121 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Rajamani L. (2012b). The changing fortunes of differential treatment in the evolution of international environmental law, International Affairs 88 605 623 pp. (DOI: 10.1111/j.14682346.2012.01091.x), (ISSN: 1468-2346). Rajamani L. (2013). Differentiation in the emerging climate regime, Theoretical Inquiries in Law 14 151 172 pp. . Available at: http://www.degruyter.com/view/j/til.2013.14.issue-1/til-2013-009/til2013-009.xml. Ranson M., and R.N. Stavins (2012). Post-Durban Climate Policy Architecture Based on Linkage of Cap-and-Trade Systems. National Bureau of Economic Research, Cambridge, MA. 30 pp. Available at: http://www.nber.org/papers/w18140.pdf?new_window=1. Ranson M., and R. Stavins (2013). A post-Durban climate policy architecture based on linkage of cap-and-trade systems, Chicago Journal of International Law 13 403 438 pp. . Rao N. (2011). Equity in climate change: The range of metrics and views. In: Handbook of Climate Change and India: Development, Politics and Governance. N.K. Dubash, (ed.), Oxford University Press, New Delhi pp.147 156(ISBN: 9780198071884). Rao P.K. (2012). International Trade Policies and Climate Change Governance. Springer, Berlin; New York, (ISBN: 9783642252525 3642252524). . Ratajczak-Juszko I. (2012). The Adaptation Fund: Towards resilient economies in the developing world. Routledge Explorations in Environmental Economics. In: Carbon Markets or Climate Finance?: Low Carbon and Adaptation Investment Choices for the Developing World. A. Michaelowa, (ed.), Routledge, Abingdon pp.92 116(ISBN: 978-1849714747). Raustiala K. (2005). Form and substance in international agreements, American Journal of International Law 99 581 614 pp. (ISSN: 00029300). Rayfuse R., and S.V. Scott (Eds.) (2012). International Law in the Era Of Climate Change. Edward Elgar, Cheltenham, UK, 400 pp., (ISBN: 9781781006085). . Rayner S. (2010). How to eat an elephant: A bottom-up approach to climate policy, Climate Policy 10 615 621 pp. (DOI: 10.3763/cpol.2010.0138), (ISSN: 1469-3062). Rechsteiner S., C. Pfister, and F. Martens (2009). TRIMS and the Clean Development Mechanism? potential conflicts. In: International Trade Regulation and the Mitigation of Climate Change. T. Cottier, O. Nartova, S.Z. Bigdeli, (eds.), Cambridge University Press, (ISBN: 9780511757396). Redgwell C. (2006). From permission to prohibition: The LOSC and protection of the marine environment in the 21st Century. In: The Law of the Sea: Progress and Prospects. D. Freestone, R. Barnes, D.M. Ong, (eds.), Oxford University Press, Oxford pp.180 191(ISBN: 0199299617). Reichman J.H., and C. Hasenzahl (2003). Non-Voluntary Licensing of Patented Inventions : Historical Perspective, Legal Framework under TRIPS, and an Overview of the Practice in Canada and the United States of America. ICTSD and UNCTAD, Geneva, Switzerland. 49 pp. Available at: http://ictsd.org/i/publications/11764/. Reichman J., A. Rai, R.G. Newell, and J. Wiener (2008). Intellectual Property and Alternatives: Strategies for Green Innovation. Chatham House, London. . Available at: http://www.chathamhouse.org/sites/default/files/public/Research/Energy,%20Environment%20and %20Development/1208eedp_duke.pdf. 122 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Reynolds J. (2011). The regulation of climate engineering, Law, Innovation and Technology 3 113 136 pp. (DOI: 10.5235/175799611796399821), (ISSN: 17579961, 1757997X). Richardson B.J. (2012). Local Climate Change Law: Environmental Regulation in Cities and Other Localities. Edward Elgar, Cheltenham, UK, 424 pp., (ISBN: 978 0 85793 747 6). . Ricke K., Moreno-Cruz, Juan, and Caldeira, Ken (2013). Strategic incentives for climate geoengineering coalitions to exclude broad participation, Environmental Research Letters 8 (DOI: 10.1088/1748-9326/8/1/014021). Ricke K.L., M.G. Morgan, and M.R. Allen (2010). Regional climate response to solar-radiation management, Nature Geoscience 3 537 541 pp. (DOI: 10.1038/ngeo915), (ISSN: 1752-0894, 17520908). Roberts J.T. (2011). Multipolarity and the new world dis(order): US hegemonic decline and the fragmentation of the global climate regime, Global Environmental Change 21 776 784 pp. (DOI: 10.1016/j.gloenvcha.2011.03.017). Robles T. (2012). A BRICS Development Bank: An Idea Whose Time Has Come? S. Rajaratnam School of International Studies, Nanyang Technological University, Singapore. . Available at: http://dr.ntu.edu.sg/bitstream/handle/10220/11692/RSIS2102012.pdf?sequence=1. Rodrik D. (2011). The Globalization Paradox: Democracy and the Future of the World Economy. W. W. Norton & Company, 369 pp., (ISBN: 9780393080803). . Rogelj J., C. Chen, J. Nabel, K. Macey, W. Hare, M. Schaeffer, K. Markmann, N. Höhne, K. Krogh Andersen, and M. Meinshausen (2010). Analysis of the Copenhagen Accord pledges and its global climatic impacts A snapshot of dissonant ambitions, Environmental Research Letters 5 9 pp. (DOI: 10.1088/1748-9326/5/3/034013). Rogelj J., W. Hare, J. Lowe, D.P. van Vuuren, K. Riahi, B. Matthews, T. Hanaoka, K. Jiang, and M. Meinshausen (2011). Emission pathways consistent with a 2 °C global temperature limit, Nature Climate Change 1 413 418 pp. (DOI: 10.1038/nclimate1258), (ISSN: 1758-678X, 1758-6798). Román M. (2010). Governing from the middle: The C40 Cities Leadership Group, Corporate Governance 10 73 84 pp. (DOI: 10.1108/14720701011021120). Rong F. (2010). Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa, Energy Policy 38 4582 4591 pp. (DOI: 10.1016/j.enpol.2010.04.014). Rubio S.J., and B. Casino (2005). Self-enforcing international environmental agreements with a stock pollutant, Spanish Economic Review 7 89 109 pp. (DOI: 10.1007/s10108-005-0098-6), (ISSN: 14355469, 1435-5477). Rubio S.J., and A. Ulph (2007). An infinite-horizon model of dynamic membership of international environmental agreements, Journal of Environmental Economics and Management 54 296 310 pp. (DOI: 10.1016/j.jeem.2007.02.004), (ISSN: 0095-0696). Sandberg L.A., and T. Sandberg (Eds.) (2010). Climate Change - Who s Carrying the Burden?: The Chilly Climates of the Global Environmental Dilemma. Canadian Centre for Policy Alternatives, Ottowa, (ISBN: 978-1-926888-06-4). . 123 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Sandler T. (2004). Global Collective Action. Cambridge University Press, Cambridge, UK, (ISBN: 9780521542548). . Sandler T. (2010). Overcoming global and regional collective action impediments, Global Policy 1 40 50 pp. (DOI: 10.1111/j.1758-5899.2009.00002.x), (ISSN: 1758-5899). Saran S. (2010). Irresistible forces and immovable objects: A debate on contemporary climate politics, Climate Policy 10 678 683 pp. (DOI: 10.3763/cpol.2010.0136), (ISSN: 14693062, 17527457). Sawa A. (2010). Sectoral approaches to a post-Kyoto international climate policy framework. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.201 239(ISBN: 978-0521129527). Scharpf F. (1999). Governing in Europe: Effective and Democratic? Oxford University Press, New York, (ISBN: 978-0198295464). . Scheelhaase J.D., and W.G. Grimme (2007). Emissions trading for international aviation: An estimation of the economic impact on selected European airlines, Journal of Air Transport Management 13 253 263 pp. (DOI: 10.1016/j.jairtraman.2007.04.010), (ISSN: 09696997). Schelling T.C. (1992). Some economics of global warming, The American Economic Review 82 1 14 pp. (ISSN: 0002-8282). Schelling T.C. (1997). The cost of combating global warming: Facing the tradeoffs, Foreign Affairs 76 8 14 pp. (DOI: 10.2307/20048272), (ISSN: 00157120). Schmalensee R. (1998). Greenhouse policy architectures and institutions. In: Economics and Policy Issues in Climate Change. W.D. Nordhaus, (ed.), Resources for the Future Press, Washington, D.C. pp.137 158(ISBN: 978-0915707959). Schmalensee R. (2010). Epilogue. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.889 898(ISBN: 978-0521137850). Schmidt J., N. Helme, J. Lee, and M. Houdashelt (2008). Sector-based approach to the post-2012 climate change policy architecture, Climate Policy 8 494 515 pp. (DOI: 10.3763/cpol.2007.0321), (ISSN: 1469-3062). Schneider L. (2009). Assessing the additionality of CDM projects: Practical experiences and lessons learned, Climate Policy 9 242 254 pp. (DOI: 10.3763/cpol.2008.0533). Schneider L. (2011). Perverse incentives under the CDM: An evaluation of HFC-23 destruction projects, Climate Policy 11 851 864 pp. (DOI: 10.3763/cpol.2010.0096). Schroeder M. (2009). Utilizing the Clean Development Mechanism for the deployment of renewable energies in China, Applied Energy 86 237 242 pp. (DOI: 10.1016/j.apenergy.2008.04.019). Scott R. (1994). The History of the International Energy Agency - The First 20 Years. International Energy Agency, Paris, 413 pp., (ISBN: 92-64-14059-X). . Scott J., and L. Rajamani (2012). EU climate change unilateralism, European Journal of International Law 23 469 494 pp. (DOI: 10.1093/ejil/chs020), (ISSN: 0938-5428, 1464-3596). 124 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Second IMO GHG Study 2009 (2009). International Maritime Organization, London. 240 pp. Available at: http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pdf. Selin H., and S.D. VanDeveer (2009). Changing Climates in North American Politics: Institutions, Policymaking, and Multilevel Governance. MIT Press, Cambridge, MA, 338 pp., (ISBN: 9780262012997 (hardcover : alk. paper)). . Sen A. (2009). The Idea of Justice. Belknap Press of Harvard University Press, Cambridge, MA, (ISBN: 978-0674036130). . Seres S., E. Haites, and K. Murphy (2009). Analysis of technology transfer in CDM projects: An update, Energy Policy 37 4919 4926 pp. (DOI: 10.1016/j.enpol.2009.06.052). Seto K.C., B. Guneralp, and L.R. Hutyra (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools, Proceedings of the National Academy of Sciences 109 16083 16088 pp. (DOI: 10.1073/pnas.1211658109), (ISSN: 0027-8424, 1091-6490). Sharma S., and D. Desgain (2013). Understanding the Concept of Nationally Appropriate Mitigation Action. UNEP Ris Centre, Roskilde, Denmark, (ISBN: 978-87-550-3949-0). . Shishlov I., V. Bellassen, and B. Leguet (2012). Joint Implementation: A Frontier Mechanism within the Borders of an Emissions Cap. CDC Climat Research, Paris. 37 pp. Simmons B.A., and D.J. Hopkins (2005). The constraining power of international treaties: Theory and methods, American Political Science Review 99 623 631 pp. (DOI: 10.1017/S0003055405051920). Sinden A. (2007). Climate change and human rights, Journal of Land, Resources, & Environmental Law 27 255 272 pp. . Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=984266. Sirohi S., and A. Michaelowa (2008). Implementing CDM for the Indian dairy sector: Prospects and issues, Climate Policy 8 62 74 pp. (DOI: 10.3763/cpol.2007.0309). Sjostedt G. (Ed.) (1992). International Environmental Negotiation. Sage Publications, 360 pp., (ISBN: 9780803947603). . Skjaerseth J.B. (2010). EU emissions trading: Legitimacy and stringency, Environmental Policy and Governance 20 295 308 pp. (DOI: 10.1002/eet.541). Skjaerseth J.B., and J. Wettestad (2010). Fixing the EU Emissions Trading System? Understanding the post-2012 changes, Global Environmental Politics 10 101 123 pp. (DOI: 10.1162/GLEP_a_00033). Smith P.J. (1999). Are weak patent rights a barrier to U.S. exports?, Journal of International Economics 48 151 177 pp. (DOI: 10.1016/S0022-1996(98)00013-0), (ISSN: 0022-1996). Smith P.J. (2001). How do foreign patent rights affect U.S. exports, affiliate sales, and licenses?, Journal of International Economics 55 411 439 pp. (DOI: 10.1016/S0022-1996(01)00086-1), (ISSN: 0022-1996). Smith J.B., T. Dickinson, J.D.B. Donahue, I. Burton, E. Haites, R.J.T. Klein, and A. Patwardhan (2011). Development and climate change adaptation funding: Coordination and integration, Climate Policy 11 987 1000 pp. (DOI: 10.1080/14693062.2011.582385). 125 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Smith S.J., and P.J. Rasch (2012). The long-term policy context for solar radiation management, Climatic Change 1 11 pp. (DOI: 10.1007/s10584-012-0577-3), (ISSN: 0165-0009, 1573-1480). Smith J., and D. Shearman (2006). Climate Change Litigation: Analysing the Law, Scientific Evidence & Impacts on the Environment, Health & Property. Presidian Legal Publications, Adelaide, AU, 187 pp., (ISBN: 9780975725443). . Solar Radiation Management Governance initiative (2011). Solar Radiation Management: The Governance of Research. Royal Society, London. 70 pp. Available at: http://www.srmgi.org/files/2012/01/DES2391_SRMGI-report_web_11112.pdf. Somanathan E. (2010). What do we expect from an international climate agreement? A perspective from a low-income country. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.599 617(ISBN: 978-0521137850). Spalding-Fecher R., and A. Michaelowa (2013). Should the use of standardized baselines in the CDM be mandatory?, Climate Policy 13 80 88 pp. (DOI: 10.1080/14693062.2012.726129), (ISSN: 14693062). Stadelmann M., P. Castro, and A. Michaelowa (2011a). Mobilising Private Finance for Low-Carbon Development. Climate Strategies, London. 29 pp. Available at: http://www.climatestrategies.org/research/our-reports/category/71/334.html. Stadelmann M., A. Persson, I. Ratajczak-Juszko, and A. Michaelowa (2013). Equity and costeffectiveness of multilateral adaptation finance: are they friends or foes?, International Environmental Agreements: Politics, Law and Economics 1 20 pp. (DOI: 10.1007/s10784-013-92065), (ISSN: 1567-9764, 1573-1553). Stadelmann M., J.T. Roberts, and S. Huq (2010). Baseline for Trust: Defining new and Additional Climate Funding. International Institute for Environment and Development, London. . Available at: http://pubs.iied.org/17080IIED.html. Stadelmann M., J.T. Roberts, and A. Michaelowa (2011b). New and additional to what? Assessing options for baselines to assess climate finance pledges, Climate and Development 3 175 192 pp. (DOI: 10.1080/17565529.2011.599550), (ISSN: 1756-5529). Stavins R.N. (2010). Options for the Institutional Venue for International Climate Negotiations. Harvard Project on International Climate Agreements, Cambridge, MA. 10 pp. Available at: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFAQFjAA&url=http %3A%2F%2Fbelfercenter.ksg.harvard.edu%2Ffiles%2FStavins-Issue-Brief3.pdf&ei=4mMEUMn1JdCx0QHOi43pBw&usg=AFQjCNEHSvEJ-1IG9r_VxxQXRIwAlWQZNg. Stavins R.N. (2011). The problem of the commons: Still unsettled after 100 Years, American Economic Review 101 81 108 pp. (DOI: 10.1257/aer.101.1.81). Steckel J.C., M. Jakob, R. Marschinski, and G. Luderer (2011). From carbonization to decarbonization? Past trends and future scenarios for China s CO2 emissions, Energy Policy 39 3443 3455 pp. (DOI: 10.1016/j.enpol.2011.03.042), (ISSN: 0301-4215). Steenblik R. (2006). Liberalisation of Trade in Renewable Energy and Associated Technologies: Biodiesel, Solar Thermal and Geothermal Energy. Organisation for Economic Co-Operation and Development. 26 pp. Available at: http://www.oecdistanbul.org/dataoecd/45/32/36420527.pdf. 126 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Von Stein J. (2008). The international law and politics of climate change ratification of the United Nations Framework Convention and the Kyoto Protocol, Journal of Conflict Resolution 52 243 268 pp. (DOI: 10.1177/0022002707313692), (ISSN: 0022-0027, 1552-8766). Sterk W., and J. Kruger (2009). Establishing a transatlantic carbon market, Climate Policy 9 389 401 pp. (DOI: 10.3763/cpol.2009.0623), (ISSN: 1469-3062). Sterk W., and B. Wittneben (2006). Enhancing the Clean Development Mechanism through sectoral approaches: Definitions, applications and ways forward, International Environmental Agreements: Politics, Law and Economics 6 271 287 pp. (DOI: 10.1007/s10784-006-9009-z). Stern N. (2007). The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge, UK, (ISBN: 978-0521700801). . Stevenson H., and J.S. Dryzek (2012). The discursive democratisation of global climate governance, Environmental Politics 21 189 210 pp. (DOI: 10.1080/09644016.2012.651898), (ISSN: 0964-4016, 1743-8934). Stewart R.B., B. Kingsbury, and B. Rudyk (Eds.) (2009). Climate Finance: Regulatory and Funding Strategies for Climate Change and Global Development. New York University Press, New York, (ISBN: 9780814741382 9780814741436 081474138X 0814741436). . Stewart R., M. Oppenheimer, and B. Rudyk (2012). Building Blocks for Global Climate Protection. Social Science Research Network, Rochester, NY. . Available at: http://papers.ssrn.com/abstract=2186541. Stewart R., and J. Wiener (2003). Reconstructing Climate Policy: Beyond Kyoto. AEI Press, Washington, D.C., (ISBN: 978-0844741864). . Streck C. (2004). New partnerships in global environmental policy: The clean development mechanism, The Journal of Environment & Development 13 295 322 pp. (DOI: 10.1177/1070496504268696). Sue Wing I., A.D. Ellerman, and J.M. Song (2009). Absolute vs. intensity limits for CO2 emission control: Performance under uncertainty. In: The Design of Climate Policy. R. Guesnerie, H. Tulkens, (eds.), MIT Press, Cambridge pp.221 252(ISBN: 9780262073028). Sutter C., and J.C. Parreno (2007). Does the current Clean Development Mechanism (CDM) deliver its sustainable development claim? An analysis of officially registered CDM projects, Climatic Change 84 75 90 pp. (DOI: 10.1007/s10584-007-9269-9). Tamiotti L. (2011). The legal interface between carbon border measures and trade rules, Climate Policy 11 1202 1211 pp. (DOI: 10.1080/14693062.2011.592672). Tamiotti L., and V. Kulacoglu (2009). National climate change mitigation measures and their implications for the multilateral trading system: Key findings of the WTO/UNEP report on trade and climate change, Journal of World Trade 43 1115 1144 pp. . Available at: http://www.kluwerlawonline.com/document.php?id=TRAD2009044&type=toc&num=9&. Tamiotti L., R. Teh, V. Kulaço lu, A. Olhoff, B. Simmons, and H. Abaza (2009). Trade and Climate Change: A Report by the United Nations Environment Programme and the World Trade Organization. WTO (World Trade Organization), UNEO (United Nations Environment Programme). 166 pp. Available at: http://www.wto.org/english/res_e/booksp_e/trade_climate_change_e.pdf. 127 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Tavoni M., E. Kriegler, T. Aboumahboub, K. Calvin, G. De Maere, J. Jewell, T. Kober, P. Lucas, G. Luderer, D. McCollum, G. Marangoni, K. Riahi, and D. van Vuuren (2013). The distribution of the major economies effort in the Durban platform scenarios, Climate Change Economics. Teng F., and A. Gu (2007). Climate change: national and local policy opportunities in China, Environmental Sciences 4 183 194 pp. (DOI: 10.1080/15693430701742735), (ISSN: 1569-3430). The Carbon Trust (2010). Tackling Carbon Leakage - Sector-Specific Solutions for a World of Unequal Prices. The Carbon Trust, London. 70 pp. Available at: http://www.carbontrust.com/media/84908/ctc767-tackling-carbon-leakage.pdf. Thomas U.P. (2004). Trade and the environment: Stuck in a political impasse at the WTO after the Doha and Cancun Ministerial Conferences, Global Environmental Politics 4 9 21 pp. (DOI: 10.1162/1526380041748092), (ISSN: 1526-3800). Thomas S., P. Dargusch, S. Harrison, and J. Herbohn (2010). Why are there so few afforestation and reforestation Clean Development Mechanism projects?, Land Use Policy 27 880 887 pp. (DOI: 10.1016/j.landusepol.2009.12.002), (ISSN: 0264-8377). Thompson A. (2006). Management under anarchy: The international politics of climate change, Climatic Change 78 7 29 pp. (DOI: 10.1007/s10584-006-9090-x). Tickell O. (2008). Kyoto2: How to Manage the Global Greenhouse. Zed Books, London, 301 pp., (ISBN: 978-1848130258). . Tirpak D., and H. Adams (2008). Bilateral and multilateral financial assistance for the energy sector of developing countries, Climate Policy 8 135 151 pp. (DOI: 10.3763/cpol.2007.0443). Tollefson J. (2010). Geoengineering faces ban, Nature 468 13 14 pp. (DOI: 10.1038/468013a), (ISSN: 0028-0836, 1476-4687). Tompkins E.L., and H. Amundsen (2008). Perceptions of the effectiveness of the United Nations Framework Convention on Climate Change in advancing national action on climate change, Environmental Science and Policy 11 1 13 pp. (DOI: 10.1016/j.envsci.2007.06.004). Torvanger A., and J. Meadowcroft (2011). The political economy of technology support: Making decisions about carbon capture and storage and low carbon energy technologies, Global Environmental Change 21 303 312 pp. (DOI: 10.1016/j.gloenvcha.2011.01.017), (ISSN: 0959-3780). Torvanger A., M.K. Shrivastava, N. Pandey, and S.H. Trnblad (2013). A two-track CDM: Improved incentives for sustainable development and offset production, Climate Policy 13 471 489 pp. (DOI: 10.1080/14693062.2013.781446), (ISSN: 1469-3062). Tuerk A., D. Frieden, M. Sharmina, H. Schreiber, and D. Urge-Vorsatz (2010). Green Investment Schemes: First Experiences and Lessons Learned. Joanneum Research, Graz, Austria. 50 pp. Available at: http://www.joanneum.at/climate/Publications/Solutions/JoanneumResearch_GISWorkingPaper_Ap ril2010.pdf. Tuerk A., M. Mehling, C. Flachsland, and W. Sterk (2009). Linking carbon markets: Concepts, case studies and pathways, Climate Policy 9 341 357 pp. (DOI: 10.3763/cpol.2009.0621). 128 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Tyler E., A.S. Boyd, K. Coetzee, and H. Winkler (2013). A case study of South African mitigation actions (For the special issue on mitigation actions in five developing countries), Climate and Development 0 1 10 pp. (DOI: 10.1080/17565529.2013.768175), (ISSN: 1756-5529). U.S. Department of Energy (2012). International energy statistics. . Available at: http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm. UNCTAD (2010). World Investment Report: Investing in a Low-Carbon Economy. United Nations Conference on Trade and Development), New York, NY and Geneva, Switzerland. 184 pp. Available at: http://www.unctad.org/en/docs/wir2010_en.pdf. UNCTAD (2013). World Investment Report 2013: Global Value Chains: Investment and Trade for Development. United Nations Conference on Trade and Developement, Switzerland, (ISBN: 9789211128680). . Underdal A. (1998). Explaining Compliance and defection: Three models, European Journal of International Relations 4 5 30 pp. (DOI: 10.1177/1354066198004001001). UNDESA (2009). World Economic and Social Survey 2009: Promoting Development, Saving the Planet. UNDESA (United Nations Department of Economic and Social Affairs), New York. 207 pp. Available at: http://www.un.org/en/development/desa/policy/wess/wess_archive/2009wess.pdf. UNDP (2007). Human Development Report 2007/2008: Fighting Climate Change: Human Solidarity in a Divided World. United Nations Development Programme, New York. 384 pp. Available at: http://hdr.undp.org/en/media/HDR_20072008_EN_Complete.pdf. UNDP (2011). Direct Access to Climate Finance: Experiences and Lessons Learned. United Nations Development Programme and Overseas Development Institute, New York. . Available at: http://www.odi.org.uk/sites/odi.org.uk/files/odi-assets/publications-opinion-files/7479.pdf. UNECE (1991). Convention on Environmental Impact Assessment in a Transboundary Context. United Nations Economic Commission for Europe, Geneva, Switzerland. . Available at: http://www.unece.org/fileadmin/DAM/env/eia/documents/legaltexts/conventiontextenglish.pdf. UNEP (1992). Rio Declaration on Environment and Development. United Nations Environment Programme, Nairobi, Kenya. . Available at: http://www.unep.org/Documents.Multilingual/Default.asp?documentid=78&articleid=1163. UNEP (2008). Reforming Energy Subsidies: Opportunities to Contribute to the Climate Change Agenda. United Nations Environment Programme, Nairobi, Kenya. 34 pp. Available at: http://www.unep.org/pdf/pressreleases/reforming_energy_subsidies.pdf. UNEP (2009). Climate and Trade Policies in a Post-2012 World. United Nations Environment Programme, Nairobi, Kenya. . Available at: http://www.unep.org/climatechange/Portals/5/documents/ClimateAndTradePoliciesPost2012_en.p df. UNEP (2010). The Emissions Gap Report: Are the Copenhagen Accord Pledges Sufficient to Limit Global Warming to 2°C or 1.5 °C? A Preliminary Assessment. United Nations Environment Programme, Nairobi, Kenya. 52 pp. Available at: http://www.unep.org/publications/ebooks/emissionsgapreport/pdfs/GAP_REPORT_SUNDAY_SINGL ES_LOWRES.pdf. 129 of 137 Final Draft Chapter 13 IPCC WGIII AR5 UNEP (2011). Bridging the Emissions Gap. United Nations Environment Programme, Nairobi, Kenya. . Available at: http://www.unep.org/publications/ebooks/bridgingemissionsgap/. UNEP (2012). The Emissions Gap Report 2012: A UNEP Synthesis Report. United Nations Environment Programme, Nairobi, Kenya. 62 pp. Available at: http://www.unep.org/pdf/2012gapreport.pdf. UNEP (2013a). Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants, About . Available at: http://www.unep.org/ccac. UNEP (2013b). The Emissions Gap Report 2013: A UNEP Synthesis Report. United Nations Environment Programme, Nairobi, Kenya. 64 pp. Available at: http://www.unep.org/publications/ebooks/emissionsgapreport2013/portals/50188/EmissionsGapR eport%202013_high-res.pdf. UNFCCC (1992). United Nations Framework Convention on Climate Change. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/con veng.pdf. UNFCCC (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/convkp/kpeng.pdf. UNFCCC (2001). Report of the Conference of the Parties on Its Seventh Session, Held at Marrakesh from 29 October to 10 November 2001. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/cop7/13a01.pdf. UNFCCC (2007a). Decision 1/CP.13: Bali Action Plan. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2007/cop13/eng/06a01.pdf#page=3. UNFCCC (2007b). Investment and Financial Flows to Address Climate Change. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/files/cooperation_and_support/financial_mechanism/application/pdf/background _paper.pdf. UNFCCC (2009a). Decision 2/CP.15: Copenhagen Accord. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf#page=4. UNFCCC (2009b). Synthesis Report on the Implementation of the Framework for Capacity-Building in Developing Countries. UNFCCC Subsidiary Body for Implementation, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2009/sbi/eng/10.pdf. UNFCCC (2009c). Synthesis of Experiences and Lessons Learned in the Use of Performance Indicators for Monitoring and Evaluating Capacity-Building at the National and Global Levels. UNFCCC Subsidiary Body for Implementation, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2009/sbi/eng/05.pdf. UNFCCC (2010). Decision 1/CP.16: The Cancun Agreements: Outcome of the Work of the Ad Hoc Working Group on Long-Term Cooperative Action under the Convention. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf#page=2. 130 of 137 Final Draft Chapter 13 IPCC WGIII AR5 UNFCCC (2011a). Decision 1/CP.17: Establishment of an Ad Hoc Working Group on the Durban Platform for Enhanced Action. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2011/cop17/eng/09a01.pdf#page=2. UNFCCC (2011b). Quantified Economy-Wide Emission Reduction Targets by Developed Country Parties to the Convention: Assumptions, Conditions and Comparison of the Level of Emission Reduction Efforts. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2011/tp/01.pdf. UNFCCC (2011c). Synthesis Report on the Composition Of, and Modalities and Procedures For, the Adaptation Committee, Including Linkages with Other Relevant Institutional Arrangements. United Nations Framework Convention on Climate Change, Bonn, Germany. 20 pp. Available at: http://unfccc.int/resource/docs/2011/awglca14/eng/03.pdf. UNFCCC (2012a). Finance Portal for Climate Change. . Available at: http://unfccc.int/pls/apex/f?p=116:1:1835562615266858. UNFCCC (2012b). Time series - Annex I. . Available at: http://unfccc.int/ghg_data/ghg_data_unfccc/time_series_annex_i/items/3814.php. UNFCCC (2012c). Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol on Its Seventh Session, Held in Durban from 28 November to 11 December 2011: Addendum: Part Two: Action Taken by the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol at Its Seventh Session. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2011/cmp7/eng/10a01.pdf#page=11. UNFCCC (2012d). Outcome of the Work of the Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2012/cmp8/eng/l09.pdf. UNFCCC (2013a). Decision 3/CP.18: Approaches to Address Loss and Damage Associated with Climate Change Impacts in Developing Countries That Are Particularly Vulnerable to the Adverse Effects of Climate Change to Enhance Adaptive Capacity. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2012/cop18/eng/08a01.pdf. UNFCCC (2013b). Report of the Conference of the Parties on Its Eighteenth Session, Held in Doha from 26 November to 8 December 2012; Addendum: Part Two: Action Taken by the Conference of the Parties at Its Eighteenth Session. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2012/cop18/eng/08a01.pdf. UNFCCC (2013c). Compilation of Information on Nationally Appropriate Mitigation Actions to Be Implemented by Developing Country Parties. United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at: http://unfccc.int/resource/docs/2013/sbi/eng/inf12r02.pdf. UNFCCC (2013d). Emission Reduction Units (ERUs) issued (by Host Party, Track, and Year), UNFCCC . Available at: http://ji.unfccc.int/statistics/2013/ERU_Issuance.pdf. UNHRC (2008). Human Rights and Climate Change. United Nations Human Rights Council, Geneva, Switzerland. . Available at: http://ap.ohchr.org/documents/E/HRC/resolutions/A_HRC_RES_7_23.pdf. 131 of 137 Final Draft Chapter 13 IPCC WGIII AR5 United Nations (2002). United Nations Treaties and Principles on Outer Space: Text of Treaties and Priciples Governing the Activities of States in the Exploration and Use of Outer Space, Adopted by the United Nations General Assembly. United Nations, New York, (ISBN: 9211009006 9789211009002). . Upadhyaya, P. (2012). Scaling up Carbon Markets in Developing Countries Post-2012: Are NAMAs the Way Forward? Ecologic Institute, Berlin, Germany. . Available at: http://www.ecologic.eu/4504. Urpelainen J. (2012). Strategic problems in North South climate finance: Creating joint gains for donors and recipients, Environmental Science & Policy 21 14 23 pp. (DOI: 10.1016/j.envsci.2012.03.001), (ISSN: 1462-9011). Uruena R. (2008). Risk and randomness in international legal argumentation, Leiden Journal of International Law 21 787 822 pp. (DOI: 10.1017/S0922156508005396). US Department of State (2002). Handbook of the Antarctic Treaty System (H. Cohen, Ed.). US Department of State, Washington D.C. Available at: http://www.state.gov/e/oes/rls/rpts/ant/. Vanderheiden S. (2008). Atmospheric Justice: A Political Theory of Climate Change. Oxford University Press, Oxford and New York, (ISBN: 978-0199733125). . Veel P.-E. (2009). Carbon tariffs and the WTO: An evaluation of feasible policies, Journal of International Economic Law 12 749 800 pp. (DOI: 10.1093/jiel/jgp031), (ISSN: 1369-3034, 14643758). Velders G.J.M., S.O. Andersen, J.S. Daniel, D.W. Fahey, and M. McFarland (2007). The importance of the Montreal Protocol in protecting climate, Proceedings of the National Academy of Sciences 104 4814 4819 pp. (DOI: 10.1073/pnas.0610328104). Velders G.J.M., A.R. Ravishankara, M.K. Miller, M.J. Molina, J. Alcamo, J.S. Daniel, D.W. Fahey, S.A. Montzka, and S. Reimann (2012). Preserving Montreal Protocol climate benefits by limiting HFCs, Science 335 922 923 pp. (DOI: 10.1126/science.1216414), (ISSN: 0036-8075, 1095-9203). Verheyen R. (2005). Climate Change Damage and International Law: Prevention Duties and State Responsibility. Brill Academic Pub, Leiden, (ISBN: 9004146504). . Vezirgiannidou S.-E. (2009). The climate change regime post-Kyoto: Why compliance is important and how to achieve it, Global Environmental Politics 9 41 63 pp. (DOI: 10.1162/glep.2009.9.4.41). Victor D.G. (1995). Design Options for Article 13 of the Framework Convention on Climate Change: Lessons from the GATT Dispute Panel System. International Institute for Applied Systems Analysis. . Available at: http://econpapers.repec.org/paper/wopiasawp/er95001.htm. Victor D.G. (2004). The Collapse of the Kyoto Protocol and the Struggle to Slow Global Warming. Prince, Princeton, NJ, 224 pp., (ISBN: 9780691120263). . Victor D.G. (2008). On the regulation of geoengineering, Oxford Review of Economic Policy 24 322 336 pp. (DOI: 10.1093/oxrep/grn018). Victor D.G. (2010). Climate accession deals: New strategies for taming growth of greenhouse gases in developing countries. In: Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. J.E. Aldy, R.N. Stavins, (eds.), Cambridge University Press, Cambridge, UK pp.618 648(ISBN: 978-0521137850). 132 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Victor D.G. (2011). Global Warming Gridlock: Creating More Effective Strategies for Protecting the Planet. Cambridge University Press, Cambridge, (ISBN: 9780521865012 0521865018). . Victor D.G., J.C. House, and S. Joy (2005). A Madisonian approach to climate policy, Science 309 1820 1821 pp. (DOI: 10.1126/science.1113180), (ISSN: 0036-8075, 1095-9203). Victor D.G., M.G. Morgan, J. Apt, J. Steinbruner, and K. Rich (2009). The geoengineering option, Foreign Affairs 88 64 76 pp. . La Vina A.G.M. (2010). Ways Forward after Copenhagen: Reflections on the Climate Change Negotiating Processes by the REDD-plus Facilitator. Paper for FIELD. FIELD (Foundation for International Environmental Law and Development), London. 6 pp. Available at: http://www.field.org.uk/files/AT_La_Vina_Copenhagen_reflections_FIELD_Feb_10.pdf. Vine E. (2012). Adaptation of California s electricity sector to climate change, Climatic Change 111 75 99 pp. (DOI: 10.1007/s10584-011-0242-2), (ISSN: 0165-0009, 1573-1480). Virgoe J. (2009). International governance of a possible geoengineering intervention to combat climate change, Climatic Change 95 103 119 pp. (DOI: 10.1007/s10584-008-9523-9). Virji H., J. Padgham, and C. Seipt (2012). Capacity building to support knowledge systems for resilient development Approaches, actions, and needs, Current Opinion in Environmental Sustainability 4 115 121 pp. (DOI: 10.1016/j.cosust.2012.01.005), (ISSN: 18773435). Vlachou A., and C. Konstantinidis (2010). Climate change: The political economy of Kyoto flexible mechanisms, Review of Radical Political Economics 42 32 49 pp. (DOI: 10.1177/0486613409357179), (ISSN: 0486-6134, 1552-8502). Vöhringer F., T. Kuosmanen, and R. Dellink (2006). How to attribute market leakage to CDM projects, Climate Policy 5 503 516 pp. (DOI: 10.1080/14693062.2006.9685574). Van Vuuren D.P., M.G.J. den Elzen, J. van Vliet, T. Kram, P. Lucas, and M. Isaac (2009). Comparison of different climate regimes: the impact of broadening participation, Energy Policy 37 5351 5362 pp. (DOI: 10.1016/j.enpol.2009.07.058), (ISSN: 0301-4215). Wagner U.J. (2001). The design of stable international environmental agreements: Economic theory and political economy, Journal of Economic Surveys 15 377 411 pp. (DOI: 10.1111/14676419.00143). Waltz K.N. (1979). Theory of International Politics. Random House, New York, 251 pp., (ISBN: 0394349423). . Wang B. (2010). Can CDM bring technology transfer to China?--An empirical study of technology transfer in China s CDM projects, Energy Policy 38 2572 2585 pp. (DOI: 10.1016/j.enpol.2009.12.052). Wang-Helmreich, H., W. Sterk, T. Wehnert, and C. Arens (2011). Current Developments in Pilot Nationally Appropriate Mitigation Action Plans (NAMAs). Wuppertal Institute for Climate, Environment and Energy, Wuppertal, Germany. . Available at: http://www.jikobmu.de/english/background_information/publications/doc/1044.php. 133 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Wara M. (2008). Measuring the Clean Development Mechanism s performance and potential, UCLA Law Review 55 1759 1803 pp. . Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1086242. Ward H. (1993). Game theory and the politics of the global commons, Journal of Conflict Resolution 37 203 235 pp. (DOI: 10.1177/0022002793037002001). WBGU (2009). Solving the Climate Dilemma: The Budget Approach. WGBU (German Advisory Council on Global Change), Berlin. 54 pp. Available at: http://www.wbgu.de/fileadmin/templates/dateien/veroeffentlichungen/sondergutachten/sn2009/ wbgu_sn2009_en.pdf. WCED (1987). Report of the World Commission on Environment and Development: Our Common Future. Oxford University Press, Oxford, (ISBN: 978-0192820808). . WCI (2007). Western Climate Initiative: Statement of Regional Goal. Western Climate Initiative, Sacramento, CA. . Available at: http://www.swenergy.org/news/news/documents/file/2007-08Western_Climate_Initiative.pdf. Webster M., I. Sue Wing, and L. Jakobovits (2010). Second-best instruments for near-term climate policy: Intensity targets vs. the safety valve, Journal of Environmental Economics and Management 59 250 259 pp. (DOI: 10.1016/j.jeem.2010.01.002), (ISSN: 0095-0696). Weikard H.-P., R. Dellink, and E. van Ierland (2010). Renegotiations in the Greenhouse, Environmental and Resource Economics 45 573 596 pp. (DOI: 10.1007/s10640-009-9329-x), (ISSN: 0924-6460, 1573-1502). Weischer L., J. Morgan, and M. Patel (2012). Climate clubs: Can small groups of countries make a big difference in addressing climate change?, Review of European Community & International Environmental Law 21 177 192 pp. (DOI: 10.1111/reel.12007), (ISSN: 1467-9388). Weitzman M.L. (2007). A review of the Stern Review on the Economics of Climate Change, Journal of Economic Literature 45 703 724 pp. (DOI: 10.1257/002205107783217861). Weitzman M.L. (2009). On modeling and interpreting the economics of catastrophic climate change, The Review of Economics and Statistics 91 1 19 pp. (DOI: 10.1162/rest.91.1.1). Weitzman M.L. (2011). Fat-tailed uncertainty in the economics of catastrophic climate change, Review of Environmental Economics and Policy 5 275 292 pp. (DOI: 10.1093/reep/rer006), (ISSN: 1750-6816, 1750-6824). Werksman J. (1999). Greenhouse gas emissions trading and the WTO, Review of European Community & International Environmental Law 8 251 264 pp. (DOI: 10.1111/1467-9388.00209), (ISSN: 1467-9388). Werksman J. (2009). Taking note of the Copenhagen Accord: What it means, World Resources Institute: Home / News / Climate, Energy & Transport . Available at: http://www.wri.org/stories/2009/12/taking-note-copenhagen-accord-what-it-means. Werksman J. (2010). Legal symmetry and legal differentiation under a future deal on climate change, Climate Policy 10 672 677 pp. (DOI: 10.3763/cpol.2010.0150). 134 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Werksman J., K.A. Baumert, and N.K. Dubash (2001). Will International Investment Rules Obstruct Climate Protection Policies? World Resources Institute, Washington D.C. 20 pp. Werksman J., J.A. Bradbury, and L. Weischer (2009). Trade Measures and Climate Change: Searching for Common Ground on an Uneven Playing Field. World Resources Institute, Washington D.C. 13 pp. Werksman J., and K. Herbertson (2010). Aftermath of Copenhagen: Does international law have a role to play in a global response to climate change, Maryland Journal of International Law 25 109 pp. . Available at: http://heinonline.org/HOL/Page?handle=hein.journals/mljilt25&id=113&div=&collection=journals. Whalley J. (2011). What role for trade in a post-2012 global climate policy regime, The World Economy 34 1844 1862 pp. (DOI: 10.1111/j.1467-9701.2011.01422.x), (ISSN: 1467-9701). Wiener J.B. (1999). Global environmental regulation: Instrument choice in legal context, Yale Law Journal 108 677 800 pp. . Available at: http://www.jstor.org/stable/797394. Wiener J. (2007). Precaution. In: The Oxford Handbook of International Environmental Law. D. Bodansky, J. Brunnée, E. Hey, (eds.), Oxford University Press, New York pp.597 612(ISBN: 9780199269709). Wiener J. (2009). Property and prices to protect the planet, Duke Journal of Comparative & International Law 19 515 534 pp. . Available at: http://scholarship.law.duke.edu/faculty_scholarship/2227/. Winkler H. (2004). National policies and the CDM: Avoiding perverse incentives, Journal of Energy in Southern Africa 15 118 122 pp. . Available at: http://www.erc.uct.ac.za/Research/publications/04Winkler_National_Policies_CSM.pdf. Winkler H. (2008). Measurable, reportable and verifiable: The keys to mitigation in the Copenhagen deal, Climate Policy 8 534 547 pp. (DOI: 10.3763/cpol.2008.0583), (ISSN: 14693062, 17527457). Winkler H. (2010). An architecture for long-term climate change: North-South cooperation based on equity and common but differentiated responsibilities. In: Global Climate Governance Beyond 2012: Architecture, Agency and Adaptation. F. Biermann, P. Pattberg, F. Zelli, (eds.), Cambridge University Press, Cambridge, UK pp.97 115(ISBN: 9780521190114). Winkler H., K. Baumert, O. Blanchard, S. Burch, and J. Robinson (2007). What factors influence mitigative capacity?, Energy Policy 35 692 703 pp. (DOI: 10.1016/j.enpol.2006.01.009), (ISSN: 03014215). Winkler H., and J. Beaumont (2010). Fair and effective multilateralism in the post-Copenhagen climate negotiations, Climate Policy 10 638 654 pp. (DOI: 10.3763/cpol.2010.0130). Winkler H., T. Jayaraman, J. Pan, A. Santhiago de Oliveira, Y. Zhang, G. Sant, J.D. Gonzalez Miguez, T. Letete, A. Marquard, and S. Raubenheimer (2011). Equitable Access to Sustainable Development: Contribution to the Body of Scientific Knowledge. BASIC Expert Group, Beijing, Brasilia, Cape Town and Mumbai. Winkler H., T. Letete, and A. Marquard (2013). Equitable access to sustainable development: Operationalizing key criteria, Climate Policy 13 411 432 pp. (DOI: 10.1080/14693062.2013.777610), (ISSN: 1469-3062). 135 of 137 Final Draft Chapter 13 IPCC WGIII AR5 Winkler H., and A. Marquard (2011). Analysis of the economic implications of a carbon tax, Journal of Energy in Southern Africa 22 55 68 pp. . Available at: http://www.erc.uct.ac.za/jesa/volume22/22-1jesa-Winklermarquard.pdf. Winkler H., and L. Rajamani (2013). CBDR&RC in a regime applicable to all, Climate Policy 0 1 20 pp. (DOI: 10.1080/14693062.2013.791184), (ISSN: 1469-3062). Winkler H., and S. Vorster (2007). Building bridges to 2020 and beyond: The road from Bali, Climate Policy 7 240 254 pp. (DOI: 10.1080/14693062.2007.9685652). Winkler H., S. Vorster, and A. Marquard (2009). Who picks up the remainder? Mitigation in developed and developing countries, Climate Policy 9 634 651 pp. (DOI: 10.3763/cpol.2009.0664). Woerdman E. (2000). Implementing the Kyoto protocol: Why JI and CDM show more promise than international emissions trading, Energy Policy 28 29 38 pp. (DOI: 10.1016/S0301-4215(99)00094-4), (ISSN: 0301-4215). Wood P.J. (2011). Climate change and game theory, Annals of the New York Academy of Sciences 1219 153 170 pp. (DOI: 10.1111/j.1749-6632.2010.05891.x), (ISSN: 1749-6632). Wooders P., J. Reinaud, and A. Cosbey (2009). Options for Policy-Makers: Addressing Competitiveness, Leakage and Climate Change. Internatoinal Institute for Sustainable Development, Winnipeg, Canada. . Available at: http://www.iisd.org/pdf/2009/bali_2_copenhagen_bcas.pdf. World Bank (2008a). International Trade and Climate Change: Economic, Legal, and Institutional Perspectives. World Bank Publications, Washington, DC, (ISBN: 978-0821372258). . World Bank (2008b). Global Economic Prospects: Technology Diffusion in the Developing World. Washington, DC. . Available at: http://siteresources.worldbank.org/INTGEP2008/Resources/complete-report.pdf. World Bank (2008c). Climate Change and the World Bank Group - Phase I : An Evaluation of World Bank Win-Win Energy Policy Reforms. World Bank, Washington, DC. . Available at: https://openknowledge.worldbank.org/handle/10986/10594. World Bank (2010). World Development Report 2010: Development and Climate Change. The International Bank for Reconstruction and Development, Washington, DC, (ISBN: 978-0821379875). . World Bank (2013). World DataBank, World Bank . Available at: http://databank.worldbank.org/data/home.aspx. WPCCC, and RME (2010). Peoples Agreement. WPCCC (World People s Conference on Climate Change), RME (Rights of Mother Earth), Cochabamba, Bolivia. . Available at: http://pwccc.wordpress.com/support/. WRI (2012). Climate analysis indicators tool (CAIT), Version 9.0, World Resources Institute . Available at: http://cait.wri.org. WTO (1994). Decision on Trade and the Environment. World Trade Organization, Geneva, Switzerland. 2 pp. Available at: http://www.wto.org/english/docs_e/legal_e/56-dtenv.pdf. WTO (2010). China Measures Concerning Wind Power Equipment. . Available at: http://www.wto.org/english/tratop_e/dispu_e/cases_e/ds419_e.htm. 136 of 137 Final Draft Chapter 13 IPCC WGIII AR5 WTO (2011). Canada Certain Measures Affecting the Renewable Energy Generation Sector. . Available at: http://www.wto.org/english/tratop_e/dispu_e/cases_e/ds412_e.htm. Yamada K., and M. Fujimori (2012). Current status and critical issues of the CDM. In: Climate Change Mitigation and Development Cooperation. T. Toyota, R. Fujikura, (eds.), Routledge, Oxford pp.37 48(ISBN: 978-0415508643). Yamin F., and J. Depledge (2004). The International Climate Change Regime: A Guide to Rules, Institutions and Procedures. Cambridge University Press, Cambridge, UK, 730 pp., (ISBN: 0521840899, 9780521840897). . Yohe G.W. (2001). Mitigative capacity the mirror image of adaptive capacity on the emissions side, Climatic Change 49 247 262 pp. (DOI: 10.1023/A:1010677916703), (ISSN: 0165-0009, 1573-1480). Young M.A. (2011). Trading Fish, Saving Fish: The Interaction Between Regimes in International Law. Cambridge University Press, Cambridge, UK, (ISBN: 9780521765725 0521765722). . Yuan J., Y. Hou, and M. Xu (2012). China s 2020 carbon intensity target: Consistency, implementations, and policy implications, Renewable and Sustainable Energy Reviews 16 4970 4981 pp. (DOI: 10.1016/j.rser.2012.03.065), (ISSN: 1364-0321). Zaelke D., S.O. Andersen, and N. Borgford-Parnell (2012). Strengthening Ambition for Climate Mitigation: The Role of the Montreal Protocol in Reducing Short-lived Climate Pollutants, Review of European Community & International Environmental Law 21 231 242 pp. (DOI: 10.1111/reel.12010), (ISSN: 1467-9388). Zelli F. (2011). The fragmentation of the global climate governance architecture, Wiley Interdisciplinary Reviews: Climate Change 2 255 270 pp. (DOI: 10.1002/wcc.104), (ISSN: 17577780). Zhang Z. (2011). Assessing China s carbon intensity pledge for 2020: Stringency and credibility issues and their implications, Environmental Economics and Policy Studies 13 219 235 pp. (DOI: 10.1007/s10018-011-0012-4), (ISSN: 1432-847X, 1867-383X). Zhang Z. (2012). Climate change meets trade in promoting green growth: Potential conflicts and synergies. KDI/EWC series on Economic Policy. In: Responding to Climate Change Global: Experiences and the Korean Perspective. ElgarOnline, Cheltenham, UK(ISBN: 9780857939951). Zhao J. (2002). The Multilateral Fund and China s compliance with the Montreal Protocol, The Journal of Environment & Development 11 331 354 pp. (DOI: 10.1177/1070496502238661), (ISSN: 1070-4965, 1552-5465). Zhao J. (2005). Implementing international environmental treaties in developing countries: China s compliance with the Montreal Protocol, Global Environmental Politics 5 58 81 pp. (DOI: 10.1162/1526380053243512), (ISSN: 1526-3800). 137 of 137 Working Group III Mitigation of Climate Change Chapter 14 Regional Development and Cooperation   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    14  Chapter 14  IPCC WGIII AR5  Regional Development and Cooperation  CLAs:  LAs:  Shardul Agrawala, Stephan Klasen  Roberto Acosta Moreno, Leonardo Barreto Gomez, Thomas Cottier,  Alba Eritrea Gámez Vázquez, Dabo Guan, Edgar E. Gutierrez Espeleta,  Leiwen Jiang, Yong Gun Kim, Joanna Lewis, Mohammed Messouli,  Michael Rauscher, Noim Uddin, and Anthony Venables  Christian Flachsland, Kateryna Holzer, Joanna I. House, Jessica Jewell,  Brigitte Knopf, Peter Lawrence, Axel Michaelowa, Victoria Schreitter,   Volodymyr Demkine, Kirsten Halsnaes  Iris Butzlaff, Nicole Grunewald            CAs:  REs:  CSAs:      1 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Chapter 14: Regional Development and Cooperation  Contents    Executive Summary ............................................................................................................................ 4  14.1 Introduction ................................................................................................................................ 8  14.1.1  Overview of issues ........................................................................................................... 8  14.1.2  Why regions matter ......................................................................................................... 9  14.1.3  Sustainable development and mitigation capacity at the regional level ...................... 10  14.1.3.1 The ability to adopt new technologies ...................................................................... 11  14.2 Low carbon development at the regional Level: opportunities and barriers .......................... 14  14.3 Development trends and their emission implications at the regional level ............................ 14  14.3.1  Overview of trends in GHG emissions and their drivers by region ............................... 14  14.3.2  Energy and development  .............................................................................................. 16  . 14.3.2.1 Energy as a driver of regional emissions  ................................................................... 16  . 14.3.2.2 Opportunities and barriers at the regional level for low carbon development in the  energy sector ................................................................................................................. 20  14.3.3  Urbanization and development ..................................................................................... 22  14.3.3.1 Urbanization as a driver of regional emissions .......................................................... 22  14.3.3.2 Opportunities and barriers at the regional level for low carbon development in  urbanization ................................................................................................................... 23  14.3.4  Consumption and production patterns in the context of development ....................... 25  14.3.4.1 Consumption as a driver of regional emissions growth ............................................ 25  14.3.4.2 Embodied emission transfers between world regions .............................................. 25  14.3.4.3 Opportunities and barriers at the regional level for low carbon development in  consumption patterns ................................................................................................... 28  14.3.5  Agriculture, forestry, and other land use options for mitigation .................................. 29  14.3.6  Technology transfer, low carbon development, and opportunities for leapfrogging .. 32  14.3.6.1 Examining low carbon leapfrogging across and within regions ................................ 33  14.3.6.2 Regional approaches to promote technologies for low carbon development ......... 33  14.3.7  Investment and finance, including the role of public and private sectors and public  private partnerships ..................................................................................................................... 35  14.3.7.1 Participation in climate specific policy instruments related to financing ................. 36  14.4 Regional cooperation and mitigation: opportunities and barriers  .......................................... 37  . 14.4.1  Regional mechanisms: conceptual ................................................................................ 37  14.4.2  Existing regional cooperation processes and their mitigation impacts  ........................ 38  . 14.4.2.1 Climate specific regional initiatives ........................................................................... 39      2 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.4.2.2 Regional cooperation on energy ................................................................................ 43  14.4.2.3 Climate change cooperation under regional trade agreements ............................... 47  14.4.2.4 Regional examples of cooperation schemes where synergies between adaptation  and mitigation are important ........................................................................................ 49  14.4.3  Technology focused agreements and cooperation within and across regions ............. 50  14.4.3.1 Regional technology focused agreements ................................................................ 50  14.4.3.2 Inter regional technology focused agreements ........................................................ 52  14.4.3.3 South south technology cooperation agreements .................................................... 52  14.4.3.4 Lessons learned from regional technology agreements  ........................................... 53  . 14.4.4  Regional mechanisms for Investments and Finance ..................................................... 53  14.4.4.1 Regional and sub regional development banks and related mechanisms ................ 53  14.4.4.2 South South climate finance ...................................................................................... 54  14.5 Taking stock and options for the future ................................................................................... 54  14.6 Gaps in Knowledge and Data .................................................................................................... 55  14.7 Frequently Asked Questions ..................................................................................................... 55  References ........................................................................................................................................ 58        3 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Executive Summary  Regional cooperation already is a powerful force in the global economy (medium evidence, high  agreement). This is reflected in numerous agreements related to trade and technology cooperation,  as well as trans boundary agreements related to water, energy, transport, etc. As a result, there is  growing interest in regional cooperation as a means to achieving mitigation objectives. A regional  perspective (where regions are defined primarily geographically, with further differentiation related  to economic proximity) recognizes differences in the opportunities and barriers for mitigation,  opportunities for joint action on mitigation and common vulnerabilities, and assesses what regional  cooperation can and has already achieved in terms of mitigation. Regional cooperation can provide a  linkage between global and national/subnational action on climate change and can also complement  national and global action. [Section 14.1.2, 14.4.1]  Regions can be defined in many different ways depending upon the context. Mitigation challenges  are often differentiated by region, based on their levels of development. For the analysis of  greenhouse gas (GHG) projections, as well as of climate change impacts, regions are typically defined  in geographical terms. Regions can also be defined at a supra national or sub national level. This  chapter defines regions as supra national regions (sub national regions are examined in Chapter 15).  Ten regions are defined based on a combination of proximity in terms of geography and levels of  economic and human development: East Asia (China, Korea, Mongolia) (EAS); Economies in  Transition (Eastern Europe and former Soviet Union) (EIT); Latin America and Caribbean (LAM);  Middle East and North Africa (MNA); North America (USA, Canada) (NAM); Pacific Organisation for  Economic Co operation and Development 1990 (Japan, Australia, New Zealand) (POECD); South East  Asia and Pacific (PAS); South Asia (SAS); sub Saharan Africa (SSA); Western Europe (WEU). Where  appropriate, we also examine the category of least developed countries (LDC), which combines  33 countries in SSA, 5 in SAS, 9 in PAS, and one each in LAM and the MNA, and which are classified  as such by the United Nations based on their low incomes, low human assets, and high economic  vulnerabilities. We also examine regional cooperation initiatives through actual examples that bear  upon mitigation objectives, which do not typically conform to the above listed world regions.  [14.1.2]  There is considerable heterogeneity across and within regions in terms of opportunities, capacity,  and financing of climate action, which has implications for the potential of different regions to  pursue low carbon development (high confidence). Several multi model exercises have explored  regional approaches to mitigation. In general, these regional studies find that the costs of climate  stabilization for an individual region will depend on the baseline development of regional emission  and energy use and energy pricing policies, the mitigation requirement, the emissions reduction  potential of the region, and terms of trade effects of climate policy, particularly in energy markets.  [14.1.3, 14.2]  At the same time, there is a mismatch between opportunities and capacities to undertake  mitigation (medium confidence). The regions with the greatest potential to leapfrog to low carbon  development trajectories are the poorest developing regions where there are few lock in effects in  terms of modern energy systems and urbanization patterns. However, these regions also have the  lowest financial, technological, and human capacities to embark on such low carbon development  paths and their cost of waiting is high due to unmet energy and development needs. Emerging  economies already have more lock in effects but their rapid build up of modern energy systems and  urban settlements still offers substantial opportunities for low carbon development. Their capacity  to reorient themselves to low carbon development strategies is higher, but also faces constraints in  terms of finance, technology, and the high cost of delaying the installation of new energy capacity.  Lastly, industrialized economies have the largest lock in effects, but the highest capacities to  reorient their energy, transport, and urbanizations systems towards low carbon development.  [14.1.3, 14.3.2]       4 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Heterogeneity across and within regions is also visible at a more disaggregated level in the energy  sector (high confidence). Access to energy varies widely across regions, with LDC and SSA being the  most energy deprived regions. These regions emit less CO2, but offer mitigation opportunities from  future sustainable energy use. Regional cooperation on energy takes different forms and depends on  the degree of political cohesion in a region, the energy resources available, the strength of economic  ties between participating countries, their institutional and technical capacity, political will and the  available financial resources. Regional cooperation on energy offers a variety of mitigation and  adaptation options, through instruments such as harmonized legalization and regulation, energy  resources and infrastructure sharing (e.g., through power pools), joint development of energy  resources (e.g., hydropower in a common river basin), and know how transfer. As regional energy  cooperation instruments interact with other policies, notably those specifically addressing climate  change, they may affect their ability to stimulate investment in low carbon technologies and energy  efficiency. Therefore, there is a need for coordination between these energy cooperation and  regional/national climate policy instruments. In this context, it is also important to consider  spillovers on energy that may appear due to trade. While mitigation policy would likely lead to lower  import dependence for energy importers, it can also devalue endowments of fossil fuel exporting  countries (with differences between regions and fuels). While the effect on coal exporters is  expected to be negative in the short  and long term, as policies could reduce the benefits of using  coal, gas exporters could benefit in the medium term as coal is replaced by gas. The overall impact  on oil is more uncertain. [14.3.2, 14.4.2]  The impact of urbanization on carbon emissions also differs remarkably across regions (high  confidence). This is due to the regional variations in the relationship between urbanization,  economic growth, and industrialization. Developing regions and their cities have significantly higher  energy intensity than developed regions, partly due to different patterns and forms of urban  settlements. Therefore, regional cooperation to promote environmentally friendly technology, and  to follow sustainably socioeconomic development pathways, can induce great opportunities and  contribute to the emergence of low carbon societies. [14.3.3]  In terms of consumption and production of GHG emissions, there is great heterogeneity in  regional GHG emissions in relation to the population, sources of emissions and gross domestic  product (GDP) (high confidence). In 2010, NAM, POECD, EIT, and WEU, taken together, had 20.5% of  the world s population, but accounted for 58.3% of global GHG emissions, while other regions with  79.5% of population accounted for 41.7% of global emissions. If we consider consumption based  emissions, the disparity is even larger with NAM, POECD, EIT, and WEU generating around 65% of  global consumption based emissions. In view of emissions per GDP (intensity), NAM, POECD and  WEU have the lowest GHG emission intensities, while SSA and PAS have high emission intensities  and also the highest share of forestry related emissions. This shows that a significant part of GHG reduction potential might exist in the forest sector in these developing regions. [14.3.4]  Regional prospects of mitigation action and low carbon development from agriculture and land use change are mediated by their development level and current pattern of emissions (medium  evidence, high agreement,). Emissions from agriculture, forestry, and other land use (AFOLU) are  larger in ASIA (SAS, EAS, and PAS combined) and LAM than in other regions, and in many LDC  regions, emissions from AFOLU are greater than from fossil fuels. Emissions were predominantly due  to deforestation for expansion of agriculture, and agricultural production (crops and livestock), with  net sinks in some regions due to afforestation. Region specific strategies are needed to allow for  flexibility in the face of changing demographics, climate change and other factors. There is potential  for the creation of synergies with development policies that enhance adaptive capacity. [14.3.5]  In addition, regions use different strategies to facilitate technology transfer, low carbon  development, and to make use of opportunities for leapfrogging (robust evidence, medium  agreement). Leapfrogging suggests that developing countries might be able to follow more  sustainable, low carbon development pathways and avoid the more emissions intensive stages of      5 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  development that were previously experienced by industrialized nations. Time and absorptive  capacity, i.e., the ability to adopt, manage, and develop new technologies, have been shown to be a  core condition for successful leapfrogging. The appropriateness of different low carbon pathways  depends on the nature of different technologies and the region, the institutional architecture and  related barriers and incentives, as well as the needs of different parts of society. [14.3.6, 14.4.3]  In terms of investment and finance, regional participation in different climate policy instruments  varies strongly (high confidence). For example, the Clean Development Mechanism (CDM) has  developed a distinct pattern of regional clustering of projects and buyers of emission credits, with  projects mainly concentrated in Asia and Latin America, while Africa and the Middle East are lagging  behind. The regional distribution of the climate change projects of the Global Environment Facility  (GEF) is much more balanced than that of the CDM. [14.3.7]  Regional cooperation for mitigation can take place via climate specific cooperation mechanisms or  existing cooperation mechanisms that are (or can be) climate relevant. Climate specific regional  initiatives are forms of cooperation at the regional level that are designed to address mitigation  challenges. Climate relevant initiatives were launched with other objectives, but have potential  implications for mitigation at the regional level. [14.4.1]  Our assessment is that regional cooperation has, to date, only had a limited (positive) impact on  mitigation (medium evidence, high agreement). Nonetheless, regional cooperation could play an  enhanced role in promoting mitigation in the future, particularly if it explicitly incorporates  mitigation objectives in trade, infrastructure, and energy policies, and promotes direct mitigation  action at the regional level. [14.4.2, 14.5]  Most literature suggests that climate specific regional cooperation agreements in areas of policy  have not played an important role in addressing mitigation challenges to date (medium  confidence). This is largely related to the low level of regional integration and associated willingness  to transfer sovereignty to supra national regional bodies to enforce binding agreements on  mitigation. [14.4.2, 14.4.3]   Even in areas with deep regional integration, economic mechanisms to promote mitigation  (including the European Union (EU) Emission Trading Scheme (ETS)) have not been as successful as  anticipated in achieving intended mitigation objectives (high confidence). While the EU ETS has  demonstrated that a cross border cap and trade system can work, the persistently low carbon price  in recent years has not provided sufficient incentives to motivate additional mitigation action. The  low price is related to a number of factors, including the unexpected depth and duration of the  economic recession, uncertainty about the long term emission reduction targets, import of credits  from the CDM, and the interaction with other policy instruments, particularly related to the  expansion of renewable energy as well as regulation on energy efficiency. As of the time of this  assessment in late 2013, it has proven to be politically difficult to address this problem by removing  emission permits temporarily, tightening the cap, or providing a long term mitigation goal. [14.4.2]  Climate specific regional cooperation using binding regulation based approaches in areas of deep  integration, such as EU directives on energy efficiency, renewable energy, and biofuels, have had  some impact on mitigation objectives (medium confidence). Nonetheless, theoretical models and  past experience suggest that there is substantial potential to increase the role of climate specific  regional cooperation agreements and associated instruments, including economic instruments and  regulatory instruments. In this context, it is important to consider carbon leakage of such regional  initiatives and ways to address it. [14.4.2, 14.4.1]  In addition, non climate related modes of regional cooperation could have significant implications  for mitigation, even if mitigation objectives are not a component (medium confidence). Regional  cooperation with non climate related objectives but possible mitigation implications, such as trade  agreements, cooperation on technology, and cooperation on infrastructure and energy, has to date      6 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  also had negligible impacts on mitigation. Modest impacts have been found on the level of emissions  of members of regional preferential trade areas if these agreements are accompanied with  environmental agreements. Creating synergies between adaptation and mitigation can increase the  cost effectiveness of climate change actions. Linking electricity and gas grids at the regional level has  also had a modest impact on mitigation as it facilitated greater use of low carbon and renewable  technologies; there is substantial further mitigation potential in such arrangements. [14.4.2]  Despite a plethora of agreements on technology, the impact on mitigation has been negligible to  date (medium confidence). A primary focus of regional agreements surrounds the research,  development, and demonstration of low carbon technologies, as well as the development of policy  frameworks to promote the deployment of such technologies within different national contexts. In  some cases, geographical regions exhibit similar challenges in mitigating climate change, which can  serve as a unifying force for regional technology agreements or cooperation on a particular  technology. Other regional agreements may be motivated by a desire to transfer technological  experience across regions. [14.4.3]  Regional development banks play a key role in mitigation financing (medium confidence). The  regional development banks, the World Bank, the United Nations system, other multilateral  institutions, and the reducing emissions from deforestation and degradation (REDD)+ partnership  will be crucial in scaling up national appropriate climate actions, e.g., via regional and thematic  windows in the context of the Copenhagen Green Climate Fund, such as a possible Africa Green  Fund. [14.4.4]  Going forward, regional mechanisms have considerably greater potential to contribute to  mitigation goals than have been realized so far (medium confidence). In particular, these  mechanisms have provided different models of cooperation between countries on mitigation, they  can help realize joint opportunities in the field of trade, infrastructure, technology, and energy, and  they can serve as a platform for developing, implementing, and financing climate specific regional  initiatives for mitigation, possibly also as part of global arrangements on mitigation. [14.5]      7 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.1   Introduction  14.1.1    Overview of issues   This chapter provides an assessment of knowledge and practice on regional development and  cooperation to achieve climate change mitigation. It will examine the regional trends and  dimensions of the mitigation challenge. It will also analyze what role regional initiatives, both with a  focus on climate change and in other domains such as trade, can play in addressing these mitigation  challenges.  The regional dimension of mitigation was not explicitly addressed in the Fourth Assessment Report  (AR4). Its discussion of policies, instruments, and cooperative agreements (AR4 Working Group III,  Chapter 13) was focused primarily on the global and national level. However, mitigation challenges  and opportunities differ significantly by region. This is particularly the case for the interaction  between development/growth opportunities and mitigation policies, which are closely linked to  resource endowments, the level of economic development, patterns of urbanization and  industrialization, access to finance and technology, and more broadly the capacity to develop and  implement various mitigation options. There are also modes of regional cooperation, ranging from  regional initiatives focused specifically on climate change (such as the emissions trading scheme  (ETS) of the European Union (EU)) to other forms of cooperation in the areas of trade, energy, or  infrastructure, that could potentially provide a platform for delivering and implementing mitigation  policies. These dimensions will be examined in this chapter.  Specifically, this chapter will address the following questions:  Why is the regional level important for analyzing and achieving mitigation objectives?  What are the trends, challenges, and policy options for mitigation in different regions?  To what extent are there promising opportunities, existing examples, and barriers for  leapfrogging in technologies and development strategies to low carbon development paths for  different regions?  What are the interlinkages between mitigation and adaptation at the regional level?  To what extent can regional initiatives and regional integration and cooperation promote an  agenda of low carbon climate resilient development? What has been the record of such  initiatives, and what are the barriers? Can they serve as a platform for further mitigation  activities?  The chapter is organized as follows: after discussing the definition and importance of supra national  regions, sustainable development at the regional level, and the regional differences in mitigation  capacities, Section 14.2 will provide an overview of opportunities and barriers for low carbon  development. Section 14.3 will examine current development patterns and goals and their emission  implications at the regional level. In this context, this section will discuss issues surrounding energy  and development, urbanization and development, and consumption and production patterns.  Section 14.3 will also examine opportunities and barriers for low carbon development by examining  policies and mechanisms for such development indifferent regions and sectors. Moreover, it will  analyze issues surrounding technology transfer, investment, and finance. Section 14.4 will evaluate  existing regional arrangements and their impact on mitigation, including climate specific as well as  climate relevant regional initiatives. In this context, links between mitigation, adaptation and  development will be discussed. Also, the experiences of technology transfer and leapfrogging will be  evaluated. Section 14.5 will formulate policy options. Lastly, Section 14.6 will outline gaps in  knowledge and data related to the issues discussed in this chapter.  The chapter will draw on Chapter 5 on emission trends and drivers, Chapter 6 on transformation  pathways, the sectoral Chapters 7 12, and Chapter 16 on investment and finance, by analyzing the      8 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  region specific information in these chapters. In terms of policy options, it differs from Chapters 13  and 15 by explicitly focusing on regions as the main entities and actors in the policy arena.    We should note from the outset that there are serious gaps in the peer reviewed literature on  several of the topics covered in this chapter, as the regional dimension of mitigation has not  received enough attention or the issues covered are too recent to have been properly analyzed in  peer reviewed literature. We will therefore sometimes draw on grey literature or state the research  gaps.    14.1.2    Why regions matter  This chapter only examines supra national regions (i.e., regions in between the national and global  level). Sub national regions are addressed in Chapter 15. Thinking about mitigation at the regional  level matters mainly for three reasons:  First, regions manifest vastly different patterns in their level, growth, and composition of GHG  emissions, underscoring significant differences in socio economic contexts, energy endowments,  consumption patterns, development pathways, and other underlying drivers that influence GHG  emissions and therefore mitigation options and pathways (Section 14.3). For example, low income  countries in sub Saharan Africa, whose contribution to consumption based GHG emissions is  currently very low, face the challenge to promote economic development (including broader access  to modern energy and transport) while encouraging industrialization. Their mitigation challenge  relates to choosing among development paths with different mitigation potentials. Due to their tight  resource situation and severe capacity constraints, their ability to choose low carbon development  paths and their opportunities to wait for more mitigation friendly technologies is severely  constrained (Collier and Venables, 2012a). Moreover, these development paths may be costly.  Nonetheless, with sufficient access to finance, technologies, and the appropriate institutional  environment, these countries might be able to leapfrog to low carbon development paths that  would promote their economic development and contribute to mitigating climate change in the  medium to long run. Emerging economies, on the other hand, which are further along the way of  carbon intensive development, are better able to adopt various mitigation options, but their gains  from leapfrogging may be relatively smaller. For more rapidly growing economies, the opportunities  to follow different mitigation paths are greater, as they are able to quickly install new energy  production capacities and build up transport and urban infrastructure. However, once decisions have  been made, lock in effects will make it costly for them to readjust paths. In industrialized countries,  the opportunities to leapfrog are small and the main challenge will be to drastically re orient existing  development paths and technologies towards lower carbon intensity of production and  consumption. We call this the 'regional heterogeneity' issue.   Second, regional cooperation is a powerful force in global economics and politics   as manifest in  numerous agreements related to trade, technology cooperation, trans boundary agreements  relating to water, energy, transport, and so on. From loose free trade areas in many developing  countries to deep integration involving monetary union in the EU, regional integration has built up  platforms of cooperation among countries that could become the central institutional forces to  undertake regionally coordinated mitigation activities. Some regions, most notably the EU, already  cooperate on mitigation, using a carbon trading scheme and binding regulations on emissions.  Others have focused on trade integration, which might have repercussions on the mitigation  challenge. It is critical to examine to what extent these forms of cooperation have already had an  impact on mitigation and to what extent they could play a role in achieving mitigation objectives  (Section 14.3). We call this the 'regional cooperation and integration issue'.  Third, efforts at the regional level complement local, domestic efforts on the one hand and global  efforts on the other hand. They offer the potential of achieving critical mass in the size of markets  required to make policies, for example, on border tax adjustment, in exploiting opportunities in the      9 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  energy sector or infrastructure, or in creating regional smart grids required to distribute and balance  renewable energy.   Given the policy focus of this chapter and the need to distinguish regions by their levels of economic  development, this chapter adopts regional definitions that are based on a combination of economic  and geographic considerations. In particular, the chapter considers the following 10 regions: East  Asia (China, Korea, Mongolia) (EAS); Economies in Transition (Eastern Europe and former Soviet  Union) (EIT); Latin America and Caribbean (LAM); Middle East and North Africa (MNA); North  America (USA, Canada) (NAM); Pacific Organisation for Economic Co operation and Development  (OECD) 1990 members (Japan, Australia, New Zealand) (POECD); South East Asia and Pacific (PAS);  South Asia (SAS); sub Saharan Africa (SSA); Western Europe (WEU). These regions can, with very  minor deviations, readily be aggregated to regions used in scenarios and integrated models. They  are also consistent with commonly used World Bank regional classifications, and can be aggregated  into the geographic regions used by WGII. However, if dictated by the reviewed literature, in some  cases other regional classifications are used. Regional cooperation initiatives define regions by  membership of these ventures. The least developed countries (LDC) region is orthogonal to the  above regional definitions and includes countries from SSA, SAS, PAS, and LAM.  14.1.3    Sustainable development and mitigation capacity at the regional level  Sustainable development refers to the aspirations of regions to attain a high level of well being  without compromising the opportunities of future generations. Climate change relates to  sustainable development, because there might be tradeoffs between development aspirations and  mitigation. Moreover, limited economic resources, low levels of technology, poor information and  skills, poor infrastructure, unstable or weak institutions, and inequitable empowerment and access  to resources compromise the capacity to mitigate climate change. They will also pose greater  challenges to adapt to climate change and lead to higher vulnerability (IPCC, 2001).  Figure 14.1 shows that regions differ greatly in development outcomes such as education, human  development, unemployment, and poverty. In particular, those regions with the lowest level of per  capita emissions also tend to have the worst human development outcomes. Generally, levels of  adult education (Figure 14.1b), life expectancy (Figure 14.1c), poverty, and the Human Development  Index (Figure 14.1d) are particularly low in SSA, and also in LDCs in general. Unemployment (Figure  14.1a) is high in SSA, MNA, and EIT, also in LDCs, making employment intensive economic growth a  high priority there (Fankhauser et al., 2008).  The regions with the poorest average development indicators also tend to have the largest  disparities in human development dimensions (Grimm et al., 2008; Harttgen and Klasen, 2011). In  terms of income, LAM faces particularly high levels of inequality (Figure 14.1f). Gender gaps in  education, health, and employment are particularly large in SAS and MNA, with large educational  gender gaps also persisting in SSA. Such inequalities will raise distributional questions regarding  costs and benefits of mitigation policies.     When thinking about inter generational inequality (Figure 14.2b), adjusted net savings (i.e., gross  domestic savings minus depreciation of physical and natural assets plus investments in education  and minus damage associated with CO2 emissions) is one way to measure whether societies transfer  enough resources to next generations. As shown in Figure 14.2b, there is great variation in these  savings rates. In several regions, including SSA, MNA, LAM, as well as LDCs, there are a number of  countries where adjusted net savings are negative. Matters would look even worse if one considered  that due to substantial population growth future generations are larger in some regions,  considered a broader range of assets in the calculation of depreciation, or considered that only  imperfect substitution is possible between financial savings and the loss of some natural assets. For  these countries, maintenance of their (often low) living standards is already under threat. Damage  from climate change might pose further challenges and thereby limit the ability to engage in costly  mitigation activities.        10 of 91      Final Draft  Chapter 14  IPCC WGIII AR5    Figure 14.1. Social provisions enabling regional capacities to embrace mitigation policies. Statistics refer to the year 2010 or the most recent year available. Source: (UNDP, 2010; World Bank, 2011). 14.1.3.1    The ability to adopt new technologies  Developing and adopting low carbon technologies might be one way to address the mitigation  challenge. However, the capacity to adopt new technologies, often referred to as absorptive  capacity, as well as to develop new technologies, is mainly located in four regions: NAM, EAS, WEU,  and POECD. This is also shown in Figure 14.2a, which plots high technology exports as share of total  manufactured exports. High technology exports refer to products with high research and      11 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  development intensity, such as in aerospace, computers, pharmaceuticals, scientific instruments,  and electrical machinery. As visible in the figure, these exports are very low in most other regions,  suggesting low capacity to develop and competitively market new technologies. Since most  technological innovation happens in developed regions, technological spillovers could significantly  increase the mitigation potential in developing regions.   While Section 13.9 discusses inter regional technology transfer mechanisms, which could help foster  this process, there is an emerging literature that looks at the determinants and precursors of  successful technology absorption. Some studies have found that for energy technologies, the more  technologically developed a country is, the more likely it is to be able to receive innovations  (Verdolini and Galeotti, 2011; Dechezlepretre et al., 2013). However, more recent work looking at a  wider range of mitigation technologies finds that domestic technological development tends to  crowd out foreign innovations (Dechezlepretre et al., 2013). But the determinants of the receptivity  of a host country or region go beyond the technological development of the receiving countries.  Some of these aspects are relatively harder (or impossible) to influence with policy interventions  such as the geographical distance from innovating countries (Verdolini and Galeotti, 2011) and  linkages with countries with CO2 efficient economies (Perkins and Neumayer, 2009). However, other  aspects can be influenced such as institutional capacity (Perkins and Neumayer, 2012), and in  particular the strength of intellectual property laws to protect incoming technologies  (Dechezlepretre et al., 2013).  Two further challenges for promoting mitigation in different regions are the costs of capital, which  circumscribe the ability to invest in new low carbon technologies, and differences in governance.  Figure 14.2 presents the lending interest rate (Figure 14.2c) to firms by region as well as the World  Bank Governance index (Figure 14.2d). It shows that poorer regions face higher interest rates and  struggle more with governance issues, both reducing the ability to effectively invest in a low carbon  development strategy.           12 of 91      Final Draft  Chapter 14  IPCC WGIII AR5    Figure 14.2. Economic and governance indicators affecting regional capacities to embrace mitigation policies. Statistics refer to the year 2010 or the most recent year available. Source: (UNDP, 2010; World Bank, 2011). Note: The lending interest rate refers to the average interest rate charged by banks to private sector clients for short- to medium-term financing needs. The governance index is a composite measure of governance indicators compiled from various sources, rescaled to a scale of 0 to 1, with 0 representing weakest governance and 1 representing strongest governance. Conversely, there are different regional opportunities to promote mitigation activities. As discussed  by Collier and Venables (2012a), Africa has substantial advantages in the development of solar  energy and hydropower. However, as these investments are costly in human and financial capital  and depend on effective states and policies, these advantages may not be realized unless the  financing and governance challenges discussed above are addressed.  In sum, differences in the level of economic development among countries and regions affect their  level of vulnerability to climate change as well as their ability to adapt or mitigate (Beg et al., 2002).  Given these regional differences, the structure of multi national or multi regional environmental  agreements affects their chance of success (Karp and Zhao, 2010). By taking these differences into  account, regional cooperation on climate change can help to foster mitigation that considers  distributional aspects, and can help addressing climate change impacts (Asheim et al., 2006). At the  same time, disparities between and within regions diminish the opportunities that countries have to  undertake effective mitigation policies (Victor, 2006).      13 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.2   Low carbon development at the regional Level: opportunities and  barriers  There are great differences in the mitigation potential of regions. One way to assess these  heterogeneities is through integrated models on the regional distribution of costs of mitigation  pathways as well as regional modelling exercises that compare integrated model results for  particular regions. The region specific results are discussed in detail in Chapter 6 using a higher level  of regional aggregation than adopted here (Section 6.3.6.4). They show that in an idealized scenario  with a universal carbon price, where mitigation costs are distributed in the most cost effective  manner across regions, the macroeconomic costs of mitigation differ considerably by region. In  particular, in OECD countries (including the regions WEU, NAM, and POECD), these costs would be  substantially lower, in LAM they would be average, and in other regions they would be higher  (Clarke et al., 2009; Tavoni et al., 2014). These differences are largely due to the following: First,  energy and carbon intensities are higher in non OECD regions, leading to more opportunities for  mitigation, but also to higher macroeconomic costs. Second, some developing regions face  particularly attractive mitigation options (e.g., hydropower or afforestation) that would shift  mitigation there. Third, some developing regions, and in particular countries exporting fossil energy  (which are concentrated in MNA, but include countries in other regions as well), would suffer  negative terms of trade effects as a result of aggressive global mitigation policies, thus increasing the  macroeconomic impact of mitigation (see also Section 14.4.2). The distribution of these costs could  be adjusted through transfer payments and other burden sharing regimes. The distribution of costs  would shift towards OECD countries, if there was limited participation among developing and  emerging economies (de Cian et al., 2013).  One should point out, however, that these integrated model results gloss over many of the issues  highlighted in this chapter, including the regional differences in financial, technological, institutional,  and human resource capacities that will make the implementation of such scenarios very difficult.   As many of the region specific opportunities and barriers for low carbon development are sector specific, we will discuss them in the relevant sectoral sub sections in Section 14.2.  14.3   Development trends and their emission implications at the regional  level  14.3.1    Overview of trends in GHG emissions and their drivers by region  Global GHG emissions have increased rapidly over the last two decades (Le Quéré et al., 2009, 2012).  Despite the international financial and economic crisis, global GHG emissions grew faster between  2000 and 2010 than in the previous three decades (Peters et al., 2012b). Emissions tracked at the  upper end of baseline projections (see Sections 1.3 and 6.3) and reached around 49 50 GtCO2eq in  2010 (JRC/PBL, 2012; IEA, 2012a; Peters et al., 2013). In 1990, EIT was the world s highest emitter of  GHG emissions at 19% of global total of 37 GtCO2eq, followed by NAM at 18%, WEU at 12%, and EAS  at 12%, with the rest of the world emitting less than 40%. By 2010, the distribution had changed  remarkably. The EAS became the major emitter with 24% of the global total of 48 GtCO2eq  (excluding international transport) (JRC/PBL, 2012; IEA, 2012a). The rapid increase in emissions in  developing Asia was due to the region s dramatic economic growth and its high population level.  Figure 14.3 shows the change in GHG emissions in the 10 regions (and additionally reporting for LDC  including countries from several regions) over the period from 1990 to 2010, broken down along  three drivers: Emissions intensity (emissions per unit of gross domestic product (GDP)), GDP per  capita, and population. As shown in the figure, the most influential driving force for the emission  growth has been the increase of per capita income. Population growth also affected the emission  growth but decreases of GHG emission intensities per GDP contributed to lowering the growth rate      14 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  of GHG emissions. These tendencies are similar across regions, but with notable differences. First,  the magnitude of economic growth differed greatly by region with EAS showing by far the highest  growth in GDP per capita, leading to the highest growth in emissions in the past 20 years; stagnating  incomes in POECD contributed to low growth in emissions. Second, falling population levels in EIT  contributed to lower emissions there. Third, improvements in the emission intensity were  quantitatively larger than the increases in emissions due to income growth in all richer regions  (WEU, POECD, NAM, and EIT), while the picture is more mixed in developing and emerging regions.  Note also that in LDCs emissions were basically flat with improvements in emission intensity making  up for increases in GDP and population.    Figure 14.3. Decomposition of drivers for changes in GHG emissions (excluding international transport) in different world regions from 1990 2010 (Logarithmic Mean Divisia Index (LMDI) method according to Ang 2004). The white dots indicate net changes of GHG emissions from 1990 to 2010) and the bars, which are divided by three colours, show the impacts on GHG emission changes resulting from changes in population, GDP per capita, and GHG emission per GDP. For example, the white dot for EAS shows its emission increased by 7.4 Gt CO2eq, and the influence of the three driving factors are 1.2, 11, and -5.1 GtCO2eq, which are indicated by red, yellow, and blue bars, respectively. Data sources: GHG emission data (in CO2eq using 100-year GWP values) from JRC/PBL (2012) and IEA (2012a), see Annex II.9; GDP (PPP) [Int$2005] from World Bank (2013a); and population data from United Nations (2013). Other ways to look at heterogeneity of regional GHG emissions are relative to the size of the total  population, the size of the overall economy and in terms of sources of these emissions. These  perspectives are shown in the two panels of Figure 14.4. In 2010, NAM, EIT, POECD, and WEU, taken  together, had 20% of the world's population, but accounted for 39% of global GHG emissions, while  other regions with 80% of population accounted for 61% of global emissions (Figure 14.4). The  contrast between the region with the highest per capita GHG emissions (NAM) and the lowest (SAS)  is more pronounced: 5.0% of the world's population (NAM) emits 15%, while 23% (SAS) emits 6.8%.  One of the important observations from Figure 14.4 (top panel) is that some regions such as SSA and  PAS have the lowest levels of per capita emissions of CO2 from non forestry sources, but they have  GHG emissions per capita that are comparable to other regions due to large emissions from land use  change and other non CO2 GHG emissions.  The cumulative distribution of emissions per GDP (emission intensity) shows a strikingly different  picture (Figure 14.4 bottom panel). The four regions with highest per capita emissions, NAM, EIT,  POECD, and WEU, have the lowest GHG emission intensities (emission per GDP), except EIT. Some      15 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  regions with low per capita emissions, such as SSA and PAS, have high emission intensities and also  highest share of forestry related emissions. This shows that a significant part of GHG reduction  potential might exist in the forest sector in these developing regions (see Chapter 11).  Figure 14.4. Distribution of regional GHG emissions (excluding international transport) in relation to population and GDP: cumulative distribution of GHG emissions per capita (top panel) and GDP (bottom panel). The percentages in the bars indicate a region's share in global GHG emissions. Data sources: GHG emission data (in CO2eq using 100-year GWP values) from JRC/PBL (2012) and IEA (2012a), see Annex II.9; GDP (PPP) [Int$2005] from World Bank (2013a); and population data from United Nations (2013). 14.3.2    Energy and development   14.3.2.1    Energy as a driver of regional emissions  Final energy consumption is growing rapidly in many developing countries. Consequently, energy related CO2 emissions in developing country regions such as EAS, MNA, and PAS in 2010 were more  than double the level of 1990, while the CO2 emission in EIT decreased by around 30% (Figure 14.5).  The composition of energy consumption also varies by region. Oil dominates the final energy  consumption in many regions such as NAM, POECD, WEU, LAM, and MNA, while coal has the highest  share in EAS. The share of electricity in final energy consumption has tended to grow in all regions.  When looking at trends in CO2 emissions by source (see Figure 14.5), the largest growth in total CO2  emissions between 1990 and 2010 has come from coal, followed by gas and oil. In this period, CO2  emissions from coal grew by 4.4 GtCO2 in EAS, which is equivalent to roughly half of the global net  increase of CO2 emissions from fossil fuel combustion.       16 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Figure 14.5. CO2 emissions by sources and regions. Data source: IEA (2012a). These observations are in line with findings in the literature emphasizing the transformation of  energy use patterns over the course of economic development from traditional biomass to coal and  liquid fuel and finally natural gas and nuclear energy (Smil, 2000; Marcotullio and Schulz, 2007;  Krausmann et al., 2008). Similar transitions in energy use are also observed for the primary energy  carriers employed for electricity production (Burke, 2010) and in household energy use (Leach, 1992;  Barnes and Floor, 1996).  Due to its role in global emissions growth since 1990, it is worthwhile to look a little deeper into the  underlying drivers for emissions in EAS, which have been increased by nearly 8 GtCO2eq between  1990 and 2010. The major part of the increase has been witnessed in the years after 2002 (Minx et  al., 2011). Efficiency gains and technological progress particularly in energy intensive sectors that  had a decreasing effect on emissions (Ma and Stern, 2008; Guan et al., 2009; Zhao et al., 2010) were  overcompensated by increasing effects of structural changes of the Chinese economy after 2002  (Liao et al., 2007; Ma and Stern, 2008; Guan et al., 2009; Zhao et al., 2010; Minx et al., 2011; Liu et  al., 2012a). Looking at changes from 2002 to 2005, Guan et al. (2009) find manufacturing,  particularly for exports (50%) as well as capital formation (35%) to be the most important drivers  from the demand side. Along with an increasing energy intensity of GDP, Steckel et al. (2011)  identify a rising carbon intensity of energy, particularly driven by an increased use of coal to have  contributed to rapid increase in emissions in the 2000s.   Figure 14.6 shows the relationship between GHG emissions and per capita income levels. Individual  regions have different starting levels, directions, and magnitudes of changes. Developed regions  (NAM, WEU, POECD) appear to have grown with stable per capita emissions in the last two decades,  with NAM having much higher levels of per capita emissions throughout (Figure 14.6 top panel).  Carbon intensities of GDP tended to decrease constantly for most regions as well as for the globe  (Figure 14.6 bottom panel).      17 of 91      Final Draft  Chapter 14  IPCC WGIII AR5      Figure 14.6. Relationship between GHG emissions per capita and GDP per capita (top panel), and GHG emissions per GDP and GDP and per capita (bottom panel) (1990 2010). Data sources: GHG emission data (in CO2eq using 100-year GWP values) from JRC/PBL (2012) and IEA (2012a), see Annex II.9; GDP (PPP) from World Bank (2013a); and population data from United Nations (2013). Despite rising incomes and rising energy use, lack of access to modern energy services remains a  major constraint to economic development in many regions (Uddin et al., 2006; Johnson and Lambe,  2009; IEA, 2013). The energy access situation is acute in LDCs (Chaurey et al., 2012) but likely to      18 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  improve there and in other parts of the world in coming decades (Bazilian et al., 2012a). Of the  world s  energy poor 1, 95% live in Asia and SSA (Rehman et al., 2012).   About 1.2 1.5 billion people about 20% of the global population lacked access to electricity in  2010 (IEA, 2010a, 2012b; World Development Indicators 2012, 2012; Pachauri et al., 2012, 2013;  Sovacool et al., 2012; Sustainable Energy for All, 2013) (IEA, 2010, 2013; World Bank, 2012; Pachauri  et al., 2012, 2013; Sovacool et al., 2012) and nearly 2.5 3.0 billion   about 40% of the global  population   lack access to modern cooking energy options (Zerriffi, 2011; IEA, 2012b; Pachauri et  al., 2012; Sovacool et al., 2012; Rehman et al., 2012; Sustainable Energy for All, 2013). There is  considerable regional variation as shown in Table 14.1, with electricity access being particularly low  in SSA, followed by SAS.  Table 14.1: Access to electricity in 2009   Latin America and Caribbean  North America  East Asia  Western Europe  POECD  Sub Saharan Africa  Middle East and North Africa  South Asia  Economies in Transition  South East Asia and Pacific  Total  Population with Access   (%)  93.4  100.0  97.8  100.0  100.0  32.4  93.7  62.2  100.0  74.3  79.5  Population Lacking Access   (millions)  30  0  29  0  0  487  23  607  0  149  1330  Note: (Information missing for several small islands, Mexico, Puerto Rico, Suriname, Hong Kong SAR (China), North Korea, Macao SAR (China), Burundi, Cape Verde, Central African Republic, Chad, Equatorial Guinea, Gambia, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Rwanda, Sierra Leone, Somalia, South Sudan, Swaziland, Djibouti, Malta, Turkey, West Bank and Gaza, Bhutan). For OECD and EIT, no data are listed but presumed to be 100% access; these are recorded in italics. Source: World Bank (2012). The lack of access to electricity is much more severe in rural areas of LDCs (85%) and SSA (79%) (IEA,  2010b; Kaygusuz, 2012). In developing countries, 41% of the rural population does not have  electricity access, compared to 10% of the urban population (UNDP, 2009). This low access to  electricity is compounded by the fact that people rely on highly polluting and unhealthy traditional  solid fuels for household cooking and heating, which results in indoor air pollution and up to  3.5 million premature deaths in 2010   mostly women and children; another half million premature  deaths are attributed to household cooking fuel s contribution to outdoor air pollution (Sathaye et  al., 2011; Agbemabiese et al., 2012) ((Lim et al., 2012); see Section 9.7.3.1 and WGII  Section 11.9.1.3). Issues that hinder access to energy include effective institutions (Sovacool, 2012b),  good business models (e.g., ownership of energy service delivery organizations and finance (Zerriffi,  2011)), transparent governance (e.g., institutional diversity (Sovacool, 2012a)) and appropriate legal  and regulatory frameworks (Bazilian et al., 2012b; Sovacool, 2013). Despite these factors, universal  access to energy services by 2030 is taking shape (Hailu, 2012).                                                                 Energy poor  population is defined as population without electricity access and/or without access to modern  cooking technologies (Rehman et al., 2012).  1     19 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.3.2.2    Opportunities and barriers at the regional level for low carbon development in  the energy sector  The regional differences in opportunities and challenges for low carbon development in the energy  sector described above arise due to patters of energy production and use, the local costs and capital  investment needs of particular energy technologies, as well as their implications for regulatory  capacity (Collier and Venables, 2012b).  The choice of present and future energy technologies depends on the local costs of technologies.  Local prices indicate the opportunity cost of different inputs. While in some regions diverting  resources from other productive uses to climate change mitigation has a high opportunity cost, in  others the cost is lower.   Local costs mainly depend on two factors. First, they depend on the natural advantage of the region.  An abundant endowment will tend to reduce the local price of resources to the extent that they are  not freely traded internationally. Trade restrictions may be due to high transport costs or variability  of the resource price, which reduces the return to exports and thereby the opportunity cost of using  the resource domestically.  Second, local costs depend on the capital endowment of the region. Capital includes the  accumulated stocks of physical capital and the financial capital needed to fund investment, the  levels of human capital and skills, and the institutional and governance capacity required to  implement and regulate economic activity. As shown in Section 14.1.3, developing regions are, to  varying degrees, scarce in all of these types of capital. Borrowing costs for developing countries are  high, education and skill levels are a serious constraint, and lack of government regulatory capacity  creates barriers (a high shadow price) on running large scale or network investments.   A number of features of energy production interact with local costs and thereby determine the  extent of uptake of particular technologies in different regions. In general, the high capital intensity  of many renewable technologies (IEA, 2010c) makes them relatively more expensive in many capital  and skill scarce developing economies (Strietska Ilina, 2011). Different energy generation  technologies also use different feedstock, the price of which depends upon their local availability  and tradability; for example, coal based electricity generation is relatively cheap in countries with  large coal resources (Heptonstall, 2007).   Many power generation technologies, in particular nuclear and coal, but also large hydropower,  create heavy demands on regulatory capacity because they have significant scale economies and are  long lived projects. This has several implications. The first is that projects of this scale may be natural  monopolies, and so need to be undertaken directly by the state or by private utilities that are  regulated. Large scale electricity systems have been ineffective in regions that are scarce in  regulatory capacity, resulting in under investment, lack of maintenance, and severe and persistent  power shortages (Eberhard et al., 2011). The second implication of scale is that a grid has to be  installed and maintained. As well as creating a heavy demand for capital, this also creates complex  regulatory and management issues. This problem can be less severe in the cases where off grid  electrification or small scale energy local energy systems (such as mini hydro) are feasible and  economically advantageous; but even in such cases, local institutional, financial, and regulatory  capacity to build and maintain such facilities are a challenge in places where such capacity is low (see  Chapter 7).   Third, if scale economies are very large, there are cross border issues. For example, smaller  economies may have difficulty agreeing on and/or funding cross border power arrangements with  their neighbors (see Section 14.4). Several studies have examined the use of roadmaps to identify  options for low carbon development (Amer and Daim, 2010), with some taking a regional focus. For  example, a study by Doig and Adow (2011) examines options for low carbon energy development  across six SSA countries. More common are studies examining low development roadmaps with a      20 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  national focus, such as a recent study that explores four possible low carbon development pathways  for China (Wang and Watson, 2008).  Regional modelling exercises have also examined different mitigation pathways in the energy sector  in different regions. For example, the Stanford Energy Modeling Forum (EMF)28, which focuses on  mitigation pathways for Europe suggests that transformation pathways will involve a greater focus  on a switch to bioenergy for the whole energy system and a considerable increase of wind energy in  the power system until 2050 that catches up with nuclear, while solar PV is only of limited  importance (Knopf et al., 2013). By contrast, in the Asian Modeling Exercise (AME) for Asia it will  involve a greater switch to natural gas with carbon dioxide capture and storage (CCS) and solar (van  Ruijven et al., 2012).  Studies that examine potentials for low carbon development within different locations frequently  focus on specific technologies and their opportunities in a specific context. For example, there are  several studies on low carbon technology potential in SSA that focus on biomass (Marrison and  Larson, 1996; Hiemstra van der Horst and Hovorka, 2009; Dasappa, 2011) and solar energy  technologies (Wamukonya, 2007; Munzhedzi and Sebitosi, 2009; Zawilska and Brooks, 2011).  However, other technologies have perhaps less clear regional advantages, including biofuels, which  have been widely studied not just for use in Brazil or in Latin America (Goldemberg, 1998; Dantas,  2011; Lopes de Souza and Hasenclever, 2011) but also in South East Asia (focusing on Malaysia) (Lim  and Teong, 2010) and in OECD countries (Mathews, 2007). Wind energy also has a wider geographic  focus, with studies ranging from East and South Asia (Lema and Ruby, 2007; Lewis, 2007, 2011) to  South America (Pueyo et al., 2011), and the Middle East (Gökçek and Genç, 2009; Keyhani et al.,  2010; Ilk l ç et al., 2011). Examinations of geothermal energy and hydropower potential are likewise  geographically diverse (Hepbasli and Ozgener, 2004; Alam Zaigham et al., 2009; Kusre et al., 2010;  Guzoviæ et al., 2010; Kosnik, 2010; Fang and Deng, 2011).  Many developing regions are latecomers to large scale energy production. While developed regions  have sunk capital in irreversible investments in power supply, transport networks, and urban  structures, many developing countries still need to do so. This creates a latecomer advantage, as  developing countries will be able to use the new and more efficient technologies that will be  available when they make these investments. However, being a latecomer also implies that there  are current energy shortages, a high shadow price on power, and an urgent need to expand capacity.  Further delay in anticipation of future technical progress is particularly expensive (Collier and  Venables, 2012b).  While the opportunities for switching to low carbon development in different regions are  circumscribed by capacity in poorer countries or lock in effects in richer countries, there are low cost  options for reducing the carbon intensity of the economies through the removal of energy subsidies  and the introduction of energy taxes. Energy subsidy levels vary substantially by region (IEA, 2012c,  p. 20; OECD, 2012, p. 201; IMF, 2013). Pre tax consumption subsidies compare the consumer price  to a world price for the energy carrier, which may be due to direct price subsidies, subsidies to  producers leading to lower prices, or low production costs for energy producers, relative to world  market prices. Note that pre tax figures therefore do not correspond to the actual fiscal outlays of  countries to subsidize energy. In particular, for energy exporters, the domestic costs of production  might be lower than the world market price and therefore a lower domestic price represents a lower  fiscal outlay compared to an energy importer who pays world market prices (IEA, OECD, OPEC, and  World Bank, 2010). Nevertheless, pre tax figures represent the opportunity costs to these energy  exporters (IEA, OPEC, OECD; and World Bank, 2011). An IMF policy paper (2013), reports that in  MNA as well as EIT, pre tax energy subsidies are very high as a share of GDP. Also in SAS, energy  subsidies are substantial, and there are also some subsidies in LAM and SSA where they are  concentrated among fuel exporters (IMF, 2013). Similar data on pre tax subsidies is available from  the International Energy Agency (IEA) for a reduced set of countries. These data confirm the regional  distribution of pre tax energy subsidies, particularly their high level in MNA and EIT (IEA, 2012c).      21 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  The OECD (2012) provides an inventory of various direct budgetary transfers and reported tax  expenditures that support fossil fuel production or use in OECD countries. The OECD report finds  that between 2005 and 2011, these incentives tended to benefit crude oil and other petroleum  products (70% in 2011) more than coal (12%) and natural gas (18%) in absolute terms (OECD, 2012).   Reducing energy subsidies would reduce the carbon intensity of growth and save fiscal resources. A  report prepared for the Group of Twenty Finance Ministers (G20) (IEA, OECD, OPEC, and World Bank,  2011) not only reports data on fossil fuel and other energy support measures, but also draws some  lessons on subsidy reform. It concludes that three of the specific challenges facing developing  countries are strengthening social safety nets and improving targeting mechanisms for subsidies;  informing the public and implementing social policy or compensatory measures; and implementing  the reform in the context of broader energy sector reform (IEA, OECD, OPEC, and World Bank,  2011).This issue, as well as the political economy of fuel subsidies and fuel taxation, is discussed in  more detail in Section 15.5.  14.3.3    Urbanization and development  14.3.3.1    Urbanization as a driver of regional emissions  Urbanization has been one of the most profound socioeconomic and demographic trends during the  past decades, particularly in less urbanized developed regions (UNDESA, 2010), see Section 12.2.  Accompanying the changes in industrial structure and economic development, urbanization tends to  increase fossil fuel consumption and CO2 emissions at the global level (Jones, 1991; York et al., 2003;  Cole and Neumayer, 2004; York, 2007; Liddle and Lung, 2010). Studies of the net impact of  urbanization on energy consumption based on historical data suggest that after controlling for  industrialization, income growth and population density a 1% of increase in urbanization increases  energy consumption per unit of GDP by 0.25% (Parikh and Shukla, 1995) to 0.47% (Jones, 1991), and  increases carbon emissions per unit of energy use by 0.6% to 0.75% (Cole and Neumayer, 2004).   However, the impact of urbanization on energy use and carbon emissions differs remarkably across  regions and development level (Poumanyvong and Kaneko, 2010; Martínez Zarzoso and Maruotti,  2011; Poumanyvong et al., 2012). For instance, LAM has a similar urbanization level as NAM and  WEU, but substantially lower per capita CO2 emissions, because of its lower income level (World  Bank, 2013b). In SSA, the per capita carbon emissions remained unchanged in the past four decades  (JRC/PBL, 2012; IEA, 2012a), while the urbanization level of the region almost doubled (UNDESA,  2011). This is because in SSA the rapid urbanization was not accompanied by significant  industrialization and economic growth, the so called  urbanization without growth  (Easterly, 1999;  Haddad et al., 1999; Fay and Opal, 2000; Ravallion, 2002).    On the one hand, per capita energy use of developing countries is significantly lower than in  developed countries (Figure 14.7 left  panel). On the other hand, per capita energy use of cities in  developing regions is usually higher than the national average, while the relationship is reversed in  developed regions (Kennedy et al., 2009; Grübler et al., 2012). This is because in developing  countries industrialization often happens through manufacturing in cities, while developed regions  have mostly completed the industrialization process. Moreover, urban residents of developing  regions usually have higher income and energy consumption levels than their rural counterparts  (see Section 12.3.2 for a more detailed discussion). This is particularly true in developing Asia. In  contrast, many cities in SSA and LAM have lower than national average per capita energy use  because of the so called  urbanization of poverty  (Easterly, 1999; Haddad et al., 1999; Fay and Opal,  2000; Ravallion, 2002). Other studies reveal an inverted U shape between urbanization and CO2  emissions among countries of different economic development levels. One study suggests that the  carbon emissions elasticity of urbanization is larger than 1 for the low income group, 0.72 for the  middle income group, and negative (or zero) for the upper income group of countries (Martínez Zarzoso and Maruotti, 2011).      22 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Figure 14.7. Per capita energy use (left panel), and energy intensity in cities compared with the national average by regions (right panel), 2000. The per capita energy use of cities, represented by a dot above the green line, is higher than the national average; otherwise, is lower than the national average. Data sources: (1) city energy data is from Grübler et al. (2012); (2) national energy data is from IEA energy balances (IEA, 2010d). Per capita energy consumption in cities of developing countries is shown to be generally lower  (Figure 14.7 left panel). At the same time, studies reveal that cities in developing regions have  significantly higher energy intensity than cities in developed regions (Figure 14.7 right panel). Still,  the majority of cities in both developed and developing countries (two thirds in developed region  and more than 60% in developing regions) have lower than national average energy intensity.  Important factors that contribute to the varying energy intensities across cities are the different  patterns and forms of urban settlements (Glaeser and Kahn, 2010; Grübler and Fisk, 2012) see  Section 12.3.2 for a detailed discussion). Comparative analyses indicate that United States cities  consume 3.5 times more per capita energy in transportation than their European counterparts  (Steemers, 2003), because the latter are five times as dense as the former and have significantly  higher car ownership and average distance driven (Kahn, 2000). Suburbanization in the United States  may also contribute to increasing residential fuel consumption and land use change (Bento et al.,  2005). See Section 12.4 for a more detailed discussion on urban form as a driver for emissions.   14.3.3.2    Opportunities and barriers at the regional level for low carbon development in  urbanization  Urbanization has important implications for global and regional mitigation challenges and  opportunities. Many developing regions are projected to become more urbanized, and future global  population growth will almost entirely occur in cities of developing regions (IIASA, 2009; UNDESA,  2011) (see Section 12.1). Due to their early stage of urbanization and industrialization, many SSA and  Asian countries will inevitably increase energy consumption and carbon emissions, which may  become a barrier for these regions to achieve mitigation goals. Assuming that the historical effect of  urbanization on energy use and carbon emissions remains unchanged, the doubling of current  urbanization levels by 2050 in many low urbanized developing countries (such as India) implies 10 20% more energy consumption and 20 25% more CO2 emissions (Jones, 1991). On the other hand,  because they are still at an early stage of urbanization and face large uncertainty in future urban  development trends (O Neill et al., 2012), these regions have great opportunities to develop energy saving and resource efficient urban settlements. For instance, if the African and Asian population      23 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  increasingly grow into compact cities, rather than sprawl suburban areas, these regions have great  potential to reduce energy intensity while proceeding urbanization.  An integrated and dynamic analysis reveals that if the world follows different socioeconomic,  demographic, and technological pathways, urbanization may result in very different emission levels  (O Neill et al., 2010). The study compares the net contributions of urbanization to total emissions  under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios  SRES A2 and B2 scenarios (Nakicenovic and Swart, 2000). Under the A2 scenario, the world is  assumed to be heterogeneous, with fast population growth, slow technological changes and  economic growth. If all regions follow the urbanization trends projected by the United Nations (UN)  Urbanization Prospects (UNDESA, 2006), extrapolated up to 2100 by Grübler et al. (2007), the global  total carbon emissions in 2100 increase by 3.7 GtC per year due to the impacts of urbanization  growth (Figure 14.8). In a B2 world, which assumes local solutions to economic, social, and  environmental sustainability issues, with continuous population growth and intermediate economic  development, and faster improvement in environmentally friendly technology, the same  urbanization trend generates a much smaller impact (1.1 GtC per year in 2100) on global total  carbon emissions. Considering the differences in total emissions under different scenarios, the  relative change in emissions due to urbanization under B2 scenarios (12%) is also significantly lower  than under A2 scenarios (15%). Comparing the impacts in different regions, the 1.1 GtC per year  more global total emissions due to urbanization under the B2 scenario is mostly due to East Asia,  SAS and other less urbanized developing regions. Moreover, the relative changes in regional  emissions due to urbanization are also very significant in EAS (27%), SAS (24%), and SSA, MNA, and  PAS (15%), considerably higher than in other regions (<10%). Therefore, a growing urban population  in developing regions will inevitably pose significant challenges to global mitigation. Moreover, it  also has important implications for adaption. However, urban climate change mitigation policies and  strategies can have important co benefits by reducing the urban heat island effect (see  Section 12.8).     Figure 14.8. Impact of urbanization on carbon emissions in 2100 for the world under SRES A2 and B2 scenarios and by regions only under SRES B2 scenario. This figure is based on O Neill et al. (2010), data for NAM from the United States, POECD from Japan, EIT from Russia, LAM from Mexico and Brazil, EAS from China, SAS from India, and other from Indonesia. The urbanization scenario follows UN Urbanization Prospects (UNDESA, 2006), extrapolated up to 2100 by Grübler et al. (2007). The effect of urbanization on emissions for the world and by region is shown in absolute and relative terms.     24 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.3.4    Consumption and production patterns in the context of development  As discussed in Section 5.4, the difference between production and consumption accounting  methods are that the former identifies the place where emissions occur and the latter investigates  emissions discharged for the goods and services consumed within a certain geographic area.   14.3.4.1    Consumption as a driver of regional emissions growth  Researchers have argued that the consumption based accounting method (Peters, 2008) provides a  better understanding of the common but differentiated responsibility between regions in different  economic development stages (Peters and Hertwich, 2008; Davis and Caldeira, 2010; Peters et al.,  2011; Steinberger et al., 2012; Lenzen et al., 2012). Consequently, much research effort has been  focused on estimating (1) country level CO2 emissions from both production and consumption  perspectives (Kondo et al., 1998; Lenzen, 1998; Peters and Hertwich, 2006; Weber and Matthews,  2007; Peters et al., 2007; Nansai et al., 2008; Weber et al., 2008; Guan et al., 2009; Baiocchi and  Minx, 2010); and (2) the magnitude and importance of international trade in transferring emissions  between regions (Davis and Caldeira, 2010; Peters et al., 2012b; Wiebe et al., 2012). Reviews of  modelling international emission transfers are provided by Wiedmann et al. (2007), Wiedmann  (2009), Peters et al. (2012a), and Tukker and Dietzenbacher (2013).   During the period 1990 2008, the consumption emissions of EAS and SAS grew by almost 5 6%  annually from 2.5 to 6.5 GtCO2 and from 0.8 to 2.0 GtCO2, respectively. The other developing regions  observed a steadier growth rate in consumption emissions of 1 2.5% per year. This growth is largely  driven by flourishing global trade, especially trade between developing countries. The transfer of  emissions via traded products between developing countries grew at 21.5% annually during 1990 2008. (Peters et al., 2011)   While per capita consumption emissions in developed regions are far larger than the average level of  developing countries, many high income households in large developing countries (e.g., China and  India) are similar to those in developed regions (Feng et al., 2009; Hubacek et al., 2009). Along with  the rapid economic developments and lifestyle changes in Asia, average consumption emissions  have increased 72%, 74%, and 120% in PAS, SAS, and EAS, respectively, and the growth is projected  to be further accelerating (Hubacek et al., 2007; Guan et al., 2008). Per capita consumption  emissions in LDCs have changed relatively little, due to minimal improvements in lifestyle. In fact,  per capita consumption emission in SSA has slightly decreased from 0.63 tCO2 to 0.57 tCO2. (Peters  et al., 2011)  Methodologies, datasets, and modelling techniques vary between studies, producing uncertainties  of estimates of consumption based emissions and measures of emissions embodied in trade. These  issues and associated uncertainties in the estimates are addressed in detail in Section 5.2.3.6.  14.3.4.2    Embodied emission transfers between world regions  Figure 14.9 illustrates the net CO2 emission transfer between 10 world regions in 2007 using the  Multi Regional Input Output Analysis (MRIO) method and economic and emissions (from fossil fuel  combustion) data derived from GTAP Version 8. Focusing on production related emissions, the left hand side of Figure 14.9 explains the magnitudes and regional final consumption destinations of  production emissions embodied in exports. Percentage values represent total exported production  emissions as a share of total production emissions for each regional economy. Now, focusing on  consumption related emissions, the right hand side of Figure 14.9 illustrates the magnitudes and  origins of production emissions embodied in regional final consumption imports. The associated  percentages represent total imported consumption emissions as a share of total consumption  emissions. The difference between exported production emissions and imported consumption  emissions are highlighted to represent the net emission transfer between regions.  For example, EAS was the largest net emission exporter (1102 MtCO2) in 2007, with total exported  production emissions (1520 MtCO2) accounting for 27% of total production emissions (5692 MtCO2),      25 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  while imported consumption emissions (418 MtCO2) accounted for less than 10% of total  consumption emissions (4590 MtCO2). OECD countries are the major destinations of export products  in EAS. For example, NAM and WEU account for 34% and 29% of EAS s total exported production  emissions, respectively. In China, the largest economy in EAS, the share of embodied emissions in  exports to total annual emissions have increased from 12% in 1987 to 21% in 2002, further to 33% in  2005 (Weber et al., 2008), and settled around 30% in 2007 (Minx et al., 2011). Producing exports  have driven half of emissions growth in China during 2002 2005 (Guan et al., 2009). Over 60% of  embodied emissions in Chinese exports in 2005, mainly formed by electronics, metal products,  textiles, and chemical products, are transferred to developed countries (Weber et al., 2008). Based  on the 2002 dataset, Dietzenbacher et al. (2012) argue that the embodied emissions in China may be  over estimated by more than 60% if the distinction between processing exports and normal exports  is not made. In contrast, WEU was the largest net emissions importer (870 MtCO2) in 2007, with  total exported production emissions (457 MtCO2) accounting for 16% of total production emissions,  while imported consumption emissions (1327 MtCO2) accounted for 36% of total consumption  emissions.    Figure 14.9. Net transfer of CO2 emissions (from fossil fuel combustion only) between world regions in 2007 using the multi-regional input-output (MRIO) method. Flow widths represent the magnitude of emissions (in MtCO2) released by left-hand side regions that have become embodied (along global supply chains) in the goods and services consumed by the regions listed on the right-hand side. Figures for total exported production emissions and total imported consumption emissions are given, and the difference between these two measures is shown as either a net export or net import emissions transfer. Percentages on the left-hand side indicate the total exported emissions as percentage of total industry production emissions, while the percentage figures on the right-hand side indicate total imported emissions as percentage of the total industry consumption emissions. Data reports global CO2 emissions of 26.5 GtCO2 in 2007 (22.8 Gt from industry and a further 3.7 Gt from     26 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  residential sources).The analysis is performed using the MRIO model and emissions data derived from GTAP Version 8 database, as explained and presented by Andrew and Peters (2013) . Figure 14.10 demonstrates (using the emissions embodied in the bilateral trade (EEBT) method) that  the embodied CO2 emissions in international bilateral trade between the 10 world regions have  grown by 2.5 Gt during 1990 2008. Considering exports, half of global growth is accounted for by  exports from EAS (1226 MtCO2), followed by exports from MNA and SAS with 20% (510 MtCO2) and  12% (290 MtCO2) of global growth, respectively. The NAM region has increased imports by  621 MtCO2, with the three Asian regions providing 75% of the increase. Although WEU observed  positive import flows increase by 610 MtCO2, it also saw a decrease of 268 MtCO2 in some bilateral  trade connections, primarily from EIT (257 MtCO2).   Many developing country regions have also observed considerable increases in imported emissions  during 1990 2008. The total growth in developing countries accounts for 48% of the global total. For  example, EAS, PAS, and LAM have increased their imported emissions by 260 MtCO2, 242 MtCO2,  and 212 MtCO2, respectively. Over half of the growth in EAS and LAM has been facilitated via trade  with other developing country regions. While trade with other developing country regions has  contributed over 90% of increase in imported emissions to PAS and SAS. These results are indicative  of further growth of emissions transfers within the Global South.  Recent research efforts have investigated the embodied emissions at the sectoral level (Liu et al.,  2012a; b; Lindner et al., 2013; Vetõné Mózner, 2013) and emission transfers between industrial  sectors within or across country borders (Sinden et al., 2011; Homma et al., 2012). Skelton et al.  (2011) calculate total industrial sector production and consumption attributions to map the  embodied emissions delivered from production to consumption end through the global production  systems. They find that Western Europe tends to be a net importer of emissions in all sectors, but  particularly so in the primary and secondary sectors.          27 of 91      Final Draft  Chapter 14  IPCC WGIII AR5    Figure 14.10. Growth in bilateral traded CO2 emissions between world regions from 1990 to 2008: Flow widths represent the growth in bilateral traded emissions (in MtCO2) between 1990 and 2008, exported from left-hand side region and imported by right-hand side region. Flows representing a growth greater than 30 MtCO2 are shown individually. Less significant flows have been combined and dropped to the background. Figures for the sum of all export/import connections of each region exhibiting positive growth are provided. Bracketed figures show the net growth in exported/imported emissions for each region after trade connections exhibiting negative growth (not shown in diagram) have been accounted for. Trade connections exhibiting significant negative growth include EIT to WEU (-267 MtCO2), to EAS (-121 MtCO2), to POECD (-80 MtCO2), and to other regions (-15 MtCO2). Total growth in inter-region traded emissions between 1990 and 2008 is found to be 2.5 GtCO2 (this does not include intra-region traded emissions, e.g., between the United States and Canada). The analysis uses the emissions embodied in the bilateral trade (EEBT) approach.The input-output dataset, trade statistics, and emissions data derived from Peters et al.(2011). 14.3.4.3    Opportunities and barriers at the regional level for low carbon development in  consumption patterns  The growing discrepancy between production  and consumption based emissions discussed above,  is most likely related to changing structures of international trade, although carbon leakage  associated with efforts to curb emissions in industrialized countries can play a role here as well. It is  also related to the fact that demand for emission intensive goods has not been reduced by as much  as the production of emission intensive goods in industrialized countries. However, as identical  goods can be produced with different carbon content in different countries, substitution processes  need to be taken into account to assess how global emissions would change in reaction to a change  of imported emissions (Jakob and Marschinski, 2013).  Climate change analysis and policies pay increasing attention to consumption (Nakicenovic and  Swart, 2000; Michaelis, 2003). Analysis of household survey data from different regions shows that  with improving income levels, households spend an increasing proportion of their income on energy intensive goods (Figure 14.11) (O Neill et al., 2010). Households in SSA and PAS have much lower      28 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  income levels than more developed regions, and spend a much larger share of their smaller income  on food and other basic needs. Households in the more developed PAS and NAM, on the other  hand, spend a larger share of their income on transportation, recreation, etc. With economic  growth, households in less developed regions are expected to  westernize  their lifestyles, which will  substantially increase per capita and global total carbon emissions (Stern, 2006).Thus changing  lifestyles and consumption patterns (using taxes, subsidies, regulation, information, and other tools)  can be an important policy option for reducing the emission intensity of consumption patterns  (Barrett et al., 2013). To the extent that carbon leakage (see Section 5.4.1) contributes to this  increasing discrepancy between production and consumption based emissions, border tax  adjustments or other trade measures (Ismer and Neuhoff, 2007) can be an option in the absence of a  global agreement on mitigation. This is discussed in more detail below.        Figure 14.11. Expenditure share of households and per capita income, 2001. Household expenditure share is based on Zigova et al. (2009) and O Neill et al. (2010). Per capita GDP is from World Bank Development Indicators (World Bank, 2011).   14.3.5    Agriculture, forestry, and other land use options for mitigation  Emission of GHGs in the Agriculture, Forestry, and Other Land Use (AFOLU) options sector increased  by 20% from 9.3 GtCO2eq/yr in 1970 to 11.2 GtCO2eq/yr (Figure 5.18) in 2010, and contributed about  22% to the global total in 2010 (JRC/PBL, 2012; IEA, 2012a). Over this period, the increase in the  Agriculture sub sector was 35%, from 4.2 GtCO2eq/yr to 5.7 GtCO2eq/yr, and in the Forest and Other  Land Use (FOLU) sub sector it rose from 5.1 GtCO2eq/yr to 5.5 GtCO2eq/yr (Section 5.3.5.4; see also  Sections 11.2 and 11.3 for more detailed sector specific values). The AFOLU emissions have been  relatively more significant in non OECD 1990 regions, dominating, for example, total GHG emissions      29 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  from Middle East and Africa (MAF) and LAM regions2 (see Section 5.3.1.2 and Figure 5.6, Sections  11.2 and 11.3, Figures 11.5 and 11.7). In the LDCs, more than 90% of the GHG emissions from 1970 2010 were generated by AFOLU (Figure 5.20), and emissions grew by 0.6% per year over the past  four decades (Box 5.2).   As outlined in Section 11.2.3, global FOLU CO2 flux estimates are based on a wide range of data  sources, and include different processes, definitions, and different approaches to calculating  emissions; this leads to a large range across global FOLU flux estimates (Figures 11.6 and 11.7). For  the period 1750 2011, cumulative CO2 fluxes have been estimated at 660 (  293) GtCO2 based on  the model approach of Houghton (2003, updated in (Houghton, 2012)), while annual emissions  averaged 3.8   2.9 GtCO2/yr in 2000 to 2009 (see Table 11.1). In Chapter 11 of this assessment,  Figure 11.7 shows the regional distribution of FOLU CO2 over the last four decades from a range of  estimates. For 2000 to 2009, FOLU emissions were greatest in ASIA (1.1 GtCO2/yr) and LAM  (1.2 GtCO2/yr) compared to MAF (0.56 GtCO2/yr), OECD (0.21 GtCO2/yr), and REF  (0.12 GtCO2/yr(Houghton, 2003; Pongratz et al., 2009; Hurtt et al., 2011; Pan et al., 2011; Lawrence  et al., 2012); these are means across seven estimates, noting that in OECD and REF some estimates  indicate net emissions, while others indicate a net sink of CO2 due to FOLU. Emissions were  predominantly due to deforestation for expansion of agriculture, and agricultural production (crops  and livestock), with net sinks in some regions due to afforestation. There have been decreases in  FOLU related emissions in most regions since the 1980s, particular ASIA and LAM where rates of  deforestation have decreased (FAOSTAT, 2013; Klein Goldewijk et al., 2011; Hurtt et al., 2011).    In the agriculture sub sector, 60% of GHG emissions in 2010 were methane, dominated by enteric  fermentation and rice cultivation (see Sections 5.3.5.4, 11.2.2, Figure 11.2). Nitrous oxide  contributed 38% to agricultural GHG emissions, mainly from application of fertilizer and manure.  Between 1970 and 2010, emissions of methane increased by 18% whereas emission of nitrous oxide  increased by 73%. The ASIA region contributed most to global GHG emissions from agriculture,  particularly for rice cultivation, while the REF region contributed least (see Figure 11.5). Due to the  projected increases in food production by 2030, which drive short term land conversion, the  contribution of developing countries to future GHG emissions is expected to be very significant  (Box 11.6).  Trajectories from 2006 to 2100 of the four Representative Concentration Pathways (RCPs) (see  Table 6.2 in Section 6.3.2.1; Meinshausen et al., 2011) show different combinations of land cover  change (cropland and grazing land) and wood harvest as developed by four integrated assessment  models and harmonized in the Hurtt et al. (2011) dataset. These results in regional emissions as  illustrated by Figure 14.12 show the results from one Earth System Model (Lawrence et al., 2012).  However, even using a common land cover change dataset, resulting forest cover, net CO2 flux, and  climate change vary substantially across different Earth System Models (Brovkin et al., 2013).  Furthermore, as shown by Popp et al. (Popp et al., 2013) projections regarding regional land cover  changes and related emissions can vary substantially across different integrated models for the same  concentration scenario (see Figure 11.20).                                                                These belong to the so called five RC5 regions, which include ASIA, OECD 1990, LAM, MAF, and Reforming  Economics (REF) (see Annex II.2). The ten RC10 regions (see also Annex II.2) used in this chapter further  disaggregate OECD 1990 (POECD, NAM, POECD), MAF (MNA and SSA), and ASIA (EAS, SAS, PAS).  2     30 of 91      Final Draft  Chapter 14  IPCC WGIII AR5    Figure 14.12. Cumulative regional emissions of CO2 from AFOLU. The four RCPs developed for this Assessment Report explore the implications of a broad range of future GHG concentration trajectories, resulting in a range of radiative forcing values in the year 2100: 2.6, 4.5, 6.0, and 8.5 Watts per square meter (see Table 6.2 in Section 6.3.2.1; Meinshausen et al., 2011). Past and future land cover change and wood harvest data was from Hurtt et al. (2011). The historical period is from 1850 to 2005, the RCPs cover the period from 2005 to 2100. This figure shows results running the scenarios in the Community Climate System Model (CCSM4) (Lawrence et al., 2012) as illustrative of one of several Earth System Model results presented in the IPCC Working Group I Report. Mitigation options in the AFOLU sector mainly focus on reducing GHG emissions, increasing carbon  sequestration, or using biomass to generate energy to displace fossil fuels (Table 11.2). As such,  potential activities involve reducing deforestation, increasing forest cover, agroforestry, agriculture,  and livestock management, and the production of sustainable renewable biomass energy (Sathaye  et al., 2005; Smith et al., 2013) (see Box 11.6). Since development conditions affect the possibilities  for mitigation and leapfrogging, in business as usual conditions, the current level of emission  patterns is to persist and intensify (Reilly et al., 2001; Parry et al., 2004; Lobell et al., 2008; Iglesias et  al., 2011a). This poses challenges in terms of these regions  vulnerability to climate change, their  prospects of mitigation actions and low carbon development from agriculture and land use changes.  The WGII Report shows that without adaptation, increases in local temperature of more than 1°C  above pre industrial are projected to have negative effects on yields for the major crops (wheat,  rice, and maize) in both tropical and temperate regions, although individual locations may benefit  (see WGII 7.4). However, the quantification of adaptation co benefits and risks associated with  specific mitigation options is still in an emerging state (see Section 6.3.3 and 6.6) and, as referred to  in Section 11.5.5, subject to technological but also societal constraints.  Moreover, linking land productivity to an increase in water irrigation demand in the 2080s to  maintain similar current food production, offers a scenario of a high risk from climate change,  especially for regions such as South East Asia and Africa. These regions could benefit from more      31 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  technology and investment, especially at the farm level, in the means of access to irrigation for food  production to decrease the impacts of climate change (Iglesias et al., 2011b).  Bottom up  regional  strategies to merge market forces, domestic policies, and finance have been recommended for LAM  (Nepstad et al., 2013). Region specific strategies are needed to allow for flexibility in the face of  impacts and to create synergies with development policies that enhance adaptive lower levels of  risk. This is the case for NAM, Western and Eastern Europe, and POECD, but also South East Asia,  Central America, and Central Africa (Iglesias et al., 2011a).   Studies reveal large differences in the regional mitigation potential as well as clear differences in the  ranking of the most effective options (see Section 11.6.3). For a range of different mitigation  scenarios across the RC5 regions and all AFOLU measures, ASIA shows the largest economic  mitigation potential, both in forestry and agriculture, followed by LAM, OECD 1990, MAF, and REF.  Reduced deforestation dominates the forestry mitigation potential in LAM and MAF, but shows very  little potential in OECD 1990 and REF. Forest management, followed by afforestation, dominate in  OECD 1990, REF, and ASIA (see Figure 11.19). Among agricultural measures, almost all of the global  potential in rice management practices is in ASIA, and the large potential for restoration of organic  soils also in ASIA (due to cultivated South East Asian peats), and OECD 1990 (due to cultivated  Northern peatlands).   Although climate and non climate policies have been key to foster opportunities for adaptation and  mitigation regarding forestry and agriculture, the above mentioned scenarios imply very different  abilities to reduce emissions from land use change and forestry in different regions, with the RCP 4.5  implying the most ambitious reductions. Reducing the gap between technical potential and realized  mitigation requires, in addition to market based trading schemes, the elimination of barriers to  implementation, including climate and non climate policy, and institutional, social, educational, and  economic constraints (Smith et al., 2008). Opportunities for cooperation schemes arise at the  regional level as, for instance, combining reducing emissions from deforestation and degradation  (REDD)+ and market transformation, which could potentially mitigate climate change impacts by  linking biodiversity, regional development and cooperation favouring conservation (Nepstad et al.,  2013), or river basin management planning (Cooper et al., 2008; González Zeas et al., 2012).  14.3.6    Technology transfer, low carbon development, and opportunities for leapfrogging  The notion of  leapfrogging  has particular resonance in climate change mitigation. It suggests that  developing countries might be able to follow more sustainable, low carbon development pathways  and avoid the more emissions intensive stages of development that were previously experienced by  industrialized nations (Goldemberg, 1998; Davison et al., 2000; Lee and Kim, 2001; Perkins, 2003;  Gallagher, 2006; Ockwell et al., 2008; Walz, 2010; Watson and Sauter, 2011; Doig and Adow, 2011).  Other forms of technological change that are more gradual than leapfrogging include the adoption  of incrementally cleaner or more energy efficient technologies that are commercially available  (Gallagher, 2006).The evidence for whether such low carbon technology transitions can or have  already occurred, as well as specific models for low carbon development, have been increasingly  addressed in the literature reviewed in this section.   Most of the energy leapfrogging literature deals with how latecomer countries can catch up with the  energy producing or consuming technologies of industrialized countries (Goldemberg, 1998; Perkins,  2003; Unruh and Carrillo Hermosilla, 2006; Watson and Sauter, 2011; Lewis, 2012). Case studies of  successful leapfrogging have shown that both the build up of internal knowledge within a country or  industry and the access to external knowledge are crucial (Lee and Kim, 2001; Lewis, 2007, 2011;  Watson and Sauter, 2011). The increasing specialization in global markets can make it increasingly  difficult for developing countries to gain access to external knowledge (Watson and Sauter, 2011).  Other studies have identified clear limits to leapfrogging, for example, due to barriers in introducing  advanced energy technologies in developing countries where technological capabilities to produce  or integrate the technologies may be deficient (Gallagher, 2006).       32 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.3.6.1    Examining low carbon leapfrogging across and within regions  The strategies used by countries to leapfrog exhibit clear regional differences. Many cases of  technological leapfrogging have been documented in emerging Asia, including the Korean steel  (D Costa, 1994) and automobile industries (Lee, 2005; Yoon, 2009), and the wind power industries in  China and India (Lema and Ruby, 2007; Lewis, 2007, 2011, 2012; Ru et al., 2012). Within Latin  America, much attention has been focused on leapfrogging in transportation fuels, and specifically  the Brazilian ethanol program (Goldemberg, 1998; Dantas, 2011; Souza and Hasenclever, 2011).   Absorptive capacity, i.e., the ability to adopt, manage, and develop new technologies, has been  identified in the literature as a core condition for successful leapfrogging (Katz, 1987; Lall, 1987,  1998; Kim, 1998; Lee and Kim, 2001; Watson and Sauter, 2011). While difficult to measure,  absorptive capacity includes technological capabilities, knowledge, and skills. It is therefore useful to  examine regional differences across such technological capabilities, using metrics such as the  number of researchers within a country, and total research and development (R&D) invested. These  metrics are investigated on a national and regional basis in Figure 14.13 along with total CO2  emissions from energy use.      Figure 14.13. Emissions contribution and innovative capacity: regional comparison. Source: Data on researchers and R&D expenditures as percentage of GDP from the OECD Main Science and Technology Indicators Database (OECD, 2011b); CO2 from fossil fuels are for 2009 (IEA, 2011). 14.3.6.2    Regional approaches to promote technologies for low carbon development  The appropriateness of different low carbon development pathways relies on factors that may vary  substantially by region, including the nature of technologies and their appropriateness within  different regions, the institutional architectures and related barriers and incentives, and the needs of  different parts of society within and across regions. As a result, an appropriate low carbon  development pathway for a rapidly emerging economy in EAS may not be appropriate for countries      33 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  in PAS or SSA (Ockwell et al., 2008). Low carbon development pathways could also be influenced by  climatic or ecological considerations, as well as renewable resource endowments (Gan and Smith,  2011).    Regional institutions for low carbon development  Many studies propose that regions could be a basis for establishing low carbon technology  innovation and diffusion centres (Carbon Trust, 2008). Such centres could  enhance local and  regional engagement with global technological developments  and  catalyze domestic capacity to  develop, adapt and diffuse beneficial innovations  (Carbon Trust, 2008). In a report prepared for the  United Nations Environment Program (UNEP) by the National Renewable Energy Laboratory (NREL)  and the Energy Research Center of the Netherlands ECN, several options for structuring climate  technology centres and networks were presented that focus on establishing regionally based, linked  networks, as illustrated in Figure 14.14 (Cochran et al., 2010). A Climate Technology Center and  Network (CTCN) was formally established by the United Nations Framework Convention on Climate  Change (UNFCCC) at the Conference of Parties (COP) 17 as part of the Cancun Agreements. The  CTCN, confirmed during COP 18 in Doha, is jointly managed by UNEP and the United Nations  Industrial Development Organization (UNIDO), an advisory board, and 11 regionally based  technology institutes serving as the CTCN consortium (UNEP Risoe Centre, 2013). The structure of  the CTCN is therefore similar to the one illustrated in the left map in Figure 14.14.      34 of 91      Final Draft  Chapter 14  IPCC WGIII AR5    Figure 14.14. Options for regionally coordinated climate technology networks. Map on the left illustrates a network of climate technology research, development, and demonstration (RD&D) centers (blue circles) with a small secretariat (green circle); map on the right illustrates a network of climate technology RD&D centers with national hubs (red dots) and regional centers (yellow shapes). Source: Cochran et al. (2010, pp. 35 36). 14.3.7    Investment and finance, including the role of public and private sectors and public  private partnerships  Since the signature of the UNFCCC in 1992, public finance streams have been allocated for climate  change mitigation and adaptation in developing countries, e.g., through the Global Environment  Facility (GEF) and the Climate Investment Funds of the World Bank, but also through bilateral flows  (for a discussion of existing and proposed public climate finance instruments, see Chapter 16).  Moreover, since the setup of the pilot phase for Activities Implemented Jointly in 1995 and the  operationalization of the Clean Development Mechanism (CDM) and Joint Implementation (JI) from  2001 onwards, private finance has flown into mitigation projects abroad (for an assessment of these  mechanisms, see Section 13.13.1). In this section, regional differences are assessed in use of public  finance instruments and private finance triggered by market mechanisms.      35 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.3.7.1    Participation in climate specific policy instruments related to financing  The CDM has developed a distinct pattern of regional clustering of projects and buyers of emission  credits. Projects are concentrated in EAS, SAS, and LAM. PAS has a lower level of participation, while  EIT, MNA, and SSA are lagging behind. Credit buyers are concentrated in WEU (see Figure 14.15 for  project volumes). This pattern has been relatively stable since 2006, although in 2011 and 2012 the  distribution has become more balanced in terms of volumes.  The reasons for the skewed regional concentration of CDM projects have been thoroughly  researched. Jung (2006) assesses host country attractiveness through a cluster analysis, by looking at  mitigation potential, institutional CDM capacity, and general investment climate. Jung s prediction  that China, India, Brazil, Mexico, Indonesia, and Thailand would dominate was fully vindicated, and  only Argentina and South Africa did not perform as well as expected. Oleschak and Springer (2007)  evaluate host country risk according to the Kyoto related institutional environment, the general  regulatory environment, and the economic environment, and derive similar conclusions. Castro and  Michaelowa (2010) assess grey literature on host country attractiveness and find that even  discounting of CDM credits from advanced developing countries would not be sufficient to bring  more projects to low income countries. Okubo and Michaelowa (2010) find that capacity building is  a necessary but not sufficient condition for successful implementation of CDM projects. Van der  Gaast el al. (2009) discusses how technology transfer could contribute to a more equitable  distribution of projects.  For CDM programmes of activities that allow bundling an unlimited number of projects, the  distribution differs markedly. According to the UNEP Riso Centre (2013), the SSA s share is 10 times  higher than for ordinary CDM projects, while EAS and SAS s share are one third lower.LAM region s  share remains the same. The reason for this more balanced distribution is the higher attractiveness  of small scale projects in a low income context (Hayashi et al., 2010). However, high fixed transaction costs of the CDM project cycle are a significant barrier for small scale projects  (Michaelowa and Jotzo, 2005).  The distribution of JI projects, of which 90% are implemented in the EIT region, was not predicted by  Oleschak and Springer (2007) s list of most attractive JI countries. The shares have not shifted  substantially over time.    Figure 14.15. Regional distribution of pre-2013 credit volumes for annual CDM project cohorts. Raw data source: UNEP Risoe Centre (2013).     36 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Figure 14.15 shows the regional distribution of pre 2013 credit volumes for annual CDM project  cohorts. It confirms the regionally skewed distribution of CDM projects. In contrast, the 880 climate  change projects of the GEF (a total of 3.1 billion current USD spent since the early 1990s) do not  show a significant regional imbalance when assessed in terms of numbers. Once volumes are  assessed, they are somewhat skewed towards EAS and SAS. Academic literature has evaluated the  regional distribution of GEF projects only to a very limited extent. Mee et al. (2008) note that there is  a correlation between national emissions level and the number of GEF mitigation projects, which  would lead to a concentration of projects in the same countries that have a high share in CDM  projects. Dixon et al. (2010) describe the regional distribution of the energy efficiency, renewable  energy, and transport project portfolio, but do not discuss what drives this distribution.  While the general direction of bilateral climate finance flows from the North to the South is clear,  regional specificities have only partially been addressed by the literature. Atteridge et al. (2009)  assess the 2008 climate finance flows from France, Germany, and Japan as well as the European  Investment Bank and find that 64% of mitigation finance went to Asia and Oceania, 9% to SSA, 8% to  MNA, and 5% to LAM. With 11%, EIT had a surprisingly high share. Climate Funds Update (2013)  provides data on pledges, deposits, and recipients of the fast start finance committed in the  Copenhagen Accord. Of the 31.4 billion USD funds pledged by September 2011, 53% came from Asia,  37% from Europe, 9% from North America, and 1% from Australasia. Of 3.1 billion USD allocated to  approved projects, 44% was to be spent in Asia, 37% in Africa, 13% in Latin America, 13% in North  America and 6% in Europe. There is no recent peer reviewed literature discussing flows from  Multilateral Development Banks.  As of 2009, a total of 79 REDD readiness activities and 100 REDD demonstration activities were  reported (Cerbu et al., 2011). REDD readiness activities were evenly distributed among regions (21 in  Amazon Region of South America, 19 in East Asia and the Pacific, 13 in Central America and the  Caribbean, and 22 in Africa). In contrast, East Asia and the Pacific hold major REDD demonstration  projects (40), followed by 31 in Amazon, 18 in Africa, and 2 in South Asia (Cerbu et al., 2011).Thirty six countries, mainly in Latin America (15), Africa (15), and Asia Pacific (8) participate in the global  initiative Forest Carbon Partnership Facilities (Nguon and Kulakowski, 2013).  Other global and regional REDD+ initiatives include the UN REDD Program, which aims to support  REDD+ readiness in 46 partner countries in Africa, Asia Pacific, and Latin America; the REDD+  Partnership, which serves as an interim platform for its partner countries to scale up actions and  finance for REDD+ initiatives in developing countries; and the Forest Investment Program, which  supports developing countries  efforts to REDD and promotes sustainable forest management (den  Besten et al., 2013) (see also Chapter 11.10).   14.4   Regional cooperation and mitigation: opportunities and barriers  14.4.1    Regional mechanisms: conceptual  As a global environmental challenge, mitigation of climate change would ideally require a global  solution (see Chapter 13). However, when global agreement is difficult to achieve, regional  cooperation may be useful to accomplish global mitigation objectives, at least partially. The  literature on international environmental governance emphasizes the advantages of common  objectives, common historical and cultural backgrounds, geographical proximity, and a smaller  number of negotiating parties, which make it easier to come to agreement and to coordinate  mitigation efforts. As a caveat, regional fragmentation might hamper the achievement of global  objectives (Biermann et al., 2009; Zelli, 2011; Balsiger and VanDeveer, 2012). However, game theoretic models using the endogenous coalition formation framework suggest that several regional  agreements are better than one global agreement with limited participation (Asheim et al., 2006;  Osmani and Tol, 2010). The underlying reason is that endogenous participation in a global      37 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  environmental agreement is very small since free riders profit more from the agreement than its  signatories unless the number of signatories is very small.    The discussion in this section distinguishes between climate specific and climate relevant initiatives.  Climate specific regional initiatives address mitigation challenges directly. Climate relevant  initiatives were launched with other objectives, but have potential implications for mitigation at the  regional level, e.g., regional trade agreements and regional cooperation on energy. This section will  also address tradeoffs and synergies between adaptation, mitigation, and development at the  regional level. Questions addressed in this chapter are in regard to what extent the existing schemes  have had an impact on mitigation and to what extent they can be adjusted to have a greater  mitigation potential in future. Since this section focuses on the mitigation potential of regional  cooperation, well being, equity, intra  and inter generational justice will not be considered (see  Sections 3.3 and 3.4 for a discussion on these issues).  An important aspect of regional mechanisms is related to efficiency and consistency. As GHGs are  global pollutants and their effect on global warming is largely independent of the geographical  location of the emission source, all emitters of GHGs should be charged the same implicit or explicit  price. If this  law of one price  is violated, mitigation efforts will be inefficient. This would imply that  regions should strive for internal and external consistency of prices for GHGs. The law of one price  should apply within and across regions. As regards internal consistency, regional markets for GHG  emission permits, such as the EU ETS, have the potential to achieve this goal at least in theory  (Montgomery, 1972). However, since existing trading schemes cover only a part of GHG emissions,  the law of one price is violated and mitigation efforts tend to be inefficiently allocated.   External consistency is linked to the problem of GHG leakage. Specifically, regional climate regimes  can lead to both carbon leakage (discussed in Chapter 5.4.1) and a decrease in competitiveness for  participating countries (discussed in Section 13.8.1). Thus the specific policies addressing these  concerns, particularly the latter, have a large impact on an agreement's regional and national  acceptability. One of the most widely discussed policies to correct for climate related cost  differences between countries is border tax adjustments (BTAs), which are similar to the (non climate) value added tax in the EU (Lockwood and Whalley, 2010). There is agreement that BTAs can  enhance competitiveness of GHG  and trade intensive industries within a given climate regime  (Alexeeva Talebi et al., 2008; Kuik and Hofkes, 2010; Böhringer et al., 2012; Balistreri and  Rutherford, 2012; Lanzi et al., 2012). However, while BTAs ensure the competitiveness of acting  countries, they lead to severe welfare losses for non acting ones (Winchester et al., 2011; Böhringer  et al., 2012; Ghosh et al., 2012; Lanzi et al., 2012), particularly developing countries and the global  South (Curran, 2009; Brandi, 2013). Other solutions to the problem of carbon leakage include  incorporating more countries into regional agreements (Peters and Hertwich, 2008, p. 1406), and  linking regional emission trading systems. Tuerk et al. (2009) and Flachsland et al. (2009) show that  linking regional emission trading systems does not necessarily benefit all parties, even though it is  welfare enhancing at a global level (see also Section 13.7).  14.4.2    Existing regional cooperation processes and their mitigation impacts  While there is ongoing discussion in the literature on the continued feasibility of negotiating and  implementing global environmental agreements (see Chapter 13), a distinct set of studies has  emerged that examines international coordination through governance arrangements that aim at  regional rather than universal participation(Balsiger and VanDeveer, 2010, 2012; Balsiger and  Debarbieux, 2011; Elliott and Breslin, 2011). Much of the literature adopts a regional focus (Kato,  2004; Selin and Vandeveer, 2005; Komori, 2010; van Deveer, 2011) or focuses on a particular  environmental issue (Schreurs, 2011; Pahl Wostl et al., 2012). Since 60% of the international  environmental agreements are regional (UNEP, 2001; Balsiger et al., 2012), this broader set of  regional environmental agreements can provide insights on designing regional climate initiatives,  although further research is needed. In addition, several regional environmental agreements have      38 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  climate change components, such as the Alpine Convention s Action Plan on Climate Change in the  Alps in March 2009 (Alpine Convention, 2009).  This section examines a variety of regional initiatives with climate implications. Figure 14.16  illustrates three major areas in which regional climate change coordination can be classified:  climate specific agreements, technology focused agreements, and trade related agreements. Most,  but not all, regionally coordinated initiatives fit into one of these three categories, though some span  multiple categories. In addition, some of the programs within each category have been implemented  within a single geographic region, while others are intra regional. The following sections examine  regional initiatives with climate specific objectives, trade agreements with climate implications,  regional cooperation on energy, and regional cooperation schemes where mitigation and adaptation  are important.  Figure 14.16. Typology of regional agreements with mitigation implications. Figure includes selected regional agreements only, and is not comprehensive. While not all agreements fit into the typology presented in this diagram, many do. 14.4.2.1    Climate specific regional initiatives  To date, specific regional climate policy initiatives have been rare, and they need to be distinguished  from transnational initiatives that abound (Andonova et al., 2009). Grunewald et al. (2013) survey  existing regional cooperation agreements on mitigation (except the agreements in the European  Union for which a large literature exists). Of the 15 agreements surveyed, they find that most are  built on existing trade or regional integration agreements or are related to efforts by donors and  international agencies. Most relate to technology (see discussion below), some to finance, and some  to trade. Few of them have been rigorously evaluated and the likely impact of most of these  activities appears to be limited, given their informal and mostly voluntary nature. The technology focused agreements are discussed in more detail below. The EU has been an exception to this      39 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  pattern of rather loose and voluntary agreements, where deep integration has generated binding  and compulsory market based as well as regulation based initiatives. Therefore the discussion of  impacts of the EU experience offers lessons of the promise and challenges to use regional  cooperation mechanisms to further a mitigation agenda also for other regions.  Of the wide array of mitigation policy instruments (see Chapter 15 for a discussion of such  instruments), only emission trading systems have been applied on a regional scale: the EU ETS  covering the EU s 27 member states, Iceland, Norway, and Liechtenstein; and the Western Climate  Initiative (WCI), which initially included several states in the United States and provinces in Canada,  and now includes just California and Quebec (see Section 13.7.1.2 for a detailed review).   While the EU has tried over many years to introduce a common CO2 tax, these efforts have failed  and only a minimum level of energy taxes to apply across the EU could be defined. Most other  supra national climate policy initiatives specialize on certain technologies. These include the  Methane to Markets Initiative, the Climate Technology Initiative, the Carbon Sequestration  Leadership Forum, and the International Partnership for the Hydrogen Economy, which are open for  global membership (see Bäckstrand, (2008) for a summary of these initiatives). In selected cases  regional initiatives have emerged, such as the Asia Pacific Partnership for Climate Change, and the  addition of regional collaboration in the framework of the UNFCCC (e.g., the Central Group 11 (CG  11) of Eastern European countries in transition or the African Group). An evaluation of these  initiatives follows.  The EU ETS   The EU ETS is a mandatory policy, which has evolved over a decade in strong interaction between  the EU Commission, the European Parliament, member state governments, and industry lobbies (for  an overview of the role of the different interests, see Skjaerseth (2010). It has gone through three  phases, and shifted from a highly decentralized to a centralized system.   The EU ETS is by far the largest emission trading system in the world, covering over 12,000  installations belonging to over 4,000 companies and initially over 2 Gt of annual CO2 emissions. It has  thus been thoroughly researched (see Convery, (2009a), for a review of the literature, and Lohmann,  (2011), for a general critique).   How was institutional, political, and administrative feasibility achieved in the case of the EU ETS?  According to Skjaerseth and Wettestad (2009), from being an opponent of market mechanisms in  climate policy as late as 1997, the EU became a supporter of a large scale emissions trading system  since 2000 due to a rare window of opportunity. The Kyoto Protocol had increased the salience of  climate policy, and according to EU rules, trading could be agreed through a qualified majority,  whereas a carbon tax required unanimity. Industry was brought on board through grandfathering  (Convery, 2009b) and the lure of windfall profits generated by passing through the opportunity cost  of allowances into prices of electricity and other products not exposed to international competition.   Environmental effectiveness of the EU ETS has essentially been determined by the stringency of  allowance allocation. Initially, a decentralized allocation system was put in place, which has been  criticized by researchers as leading to a  race to the bottom  by member states (Betz and Sato, 2006).  Nevertheless, allowance prices reached levels of almost 40.5 USD2010 (30 EUR2008), which was  unexpected by analysts, and in the 2005 2007 pilot phase triggered emission reductions estimated  from 85 MtCO2 (Ellerman and Buchner, 2008) up to over 170 MtCO2 (Anderson and Di Maria, 2011).  The wide range is due to the difficulty to assess baseline emissions. Hintermann (2010) sees the  initial price spike not as sign of a shortfall of allowances but as market inefficiency due to a bubble,  exercise of market power or companies hedging against uncertain future emissions levels. This is  corroborated by the fact that the release of the 2005 emissions data in April May 2006 showed an  allowance surplus and led to a price crash, as allowances could not be banked into the second period  starting 2008 (see Alberola and Chevallier, (2009) for an econometric analysis of the crash). A      40 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  clampdown of the EU Commission on member states  allocation plan proposals for 2008 2012  reduced allocation by 10% (230 million tCO2 per year for the period 2008 2012) and bolstered price  levels, the crash of industrial production due to the financial and economic crisis of 2008 led to an  emissions decrease by 450 MtCO2 and an allowance surplus for the entire 2008 2012 period. As a  result, prices fell by two thirds but did not reach zero because allowances could be banked beyond  2012, and the Commission acted swiftly to set a stringent centralized emissions cap for the period  2013 2020 (see Skjaerseth, 2010, and Skjaerseth and Wettestad, 2010, for the details of the new  rules and how interest groups and member states negotiated them). This stabilized prices until late  2011. But again, the unexpected persistence of industrial production decreases led to a situation of  general over allocation and pressure on allowance prices. The European Parliament and member  states decided in late 2013 to stop auctioning allowances between 2013 and 2015 to temporarily  take up to 900 million allowances out of the market ( backloading ).   While there is a literature investigating short term spot carbon price fluctuations, which attributes  price volatility to shifts in relative coal, gas, and oil prices, weather, or business cycles (Alberola et  al., 2008; Hintermann, 2010), the unexpected low prices in the EU ETS are more likely to be driven by  structural factors. Four structural factors discussed in the literature are (1) the financial and  economic crises (Neuhoff et al., 2012; Aldy and Stavins, 2012); (2) the change of offset regulations  (Neuhoff et al., 2012); (3) the interaction with other policies (Fankhauser et al., 2010; Van den Bergh  et al., 2013); and (4) regulatory uncertainty and lack of long term credibility (Blyth and Bunn, 2011;  Brunner et al., 2012; Clo et al., 2013; Lecuyer and Quirion, 2013). There is no analysis available that  quantitatively attributes a relative share of these explanatory factors in the overall European Union  Allowances (EUA) price development, but all four factors seemed to have played a role in the sense  that the absence of any of them would have led to a higher carbon price. The following paragraphs  briefly review each of the four price drivers.   Financial and economic crises   the crash of industrial production due to the financial and economic  crisis of 2008 led to an emissions decrease by 450 MtCO2 and an allowance surplus for the entire  2008 2012 period. This has led to a decrease in EUA prices (Aldy et al., 2003; Neuhoff et al., 2012)  prices fell by two thirds but did not reach zero because allowances could be banked beyond 2012,  and the Commission acted swiftly to set a stringent centralized emissions cap for the period 2013 2020 (see Skjaerseth, (2010) and Skjaerseth and Wettestad, (2010) for the details of the new rules  and how interest groups and member states negotiated them). This action stabilized prices until late  2011. Nonetheless, since then the price has again dropped and the surplus has reached  approximately 2 billion tCO2 (European Commission, 2013a). Schopp and Neuhoff (2013) argue that  when the surplus of permits in the market exceeds the hedging needs of market participants which  they find to be the case in the period from 2008 to at least 2020 the remaining purchase of  allowance is driven by speculators applying high discount rates. As a consequence, the EUA price  remains below its long term trend in the short term until sufficient scarcity is back in the market.  Import of offsets   The use of offsets should not have influenced the price, as market participants  should consider the future scarcity of offset credits and there is a limit to the maximum cumulated  use of offsets between 2008 and 2020. Most large companies covered by the EU ETS engaged in  futures contracts for CER acquisition as early as 2006. However, changes in offset regulations in 2009  and 2011 led to a pressure to rapidly import Certified Emission Reductions and Emission Reduction  Units (CERs, ERUs(). As due to rapidly rising issuance of CERs, imports approached the maximum  level allowed for the period 2008 2020, price pressure on CERs/ERUs increased, which in turn  generated pressure on the price of EUAs (Neuhoff et al., 2012).   Interaction with other policies   Interaction of the EU ETS with other mitigation policies and the  resulting effects on economic efficiency has been discussed by (del Río, 2010) for renewable energy  and energy efficiency policies, by Sorrell et al. (2009) for renewable energy certificates, by Frondel et  al. (2010) for renewable feed in tariffs, and by Kautto et al. (2012) for biomass energy. These studies  find that other mitigation policies can drive the allowance price down due to a decrease in the      41 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  demand of allowances (Fankhauser et al. 2010; Van den Bergh et al., 2013). However, there is no  robust scientific assessment that identifies which share of the price decline is due to expansion of  renewable energy and improvement of energy efficiency. Chapter 15.7.3 deals with this issue of  policy interactions such as those of the EU ETS and EU policies on energy efficiency, renewable, and  biofuels in more detail, including also a welfare analysis of such interactions.    Regulatory uncertainty and lack of long term credibility   Regulatory uncertainty (Clo et al., 2013;  Lecuyer and Quirion, 2013) and the lack of long term credibility (Brunner et al., 2012) might also  have influenced the decline of the carbon price. The uncertainties surrounding 2030 and 2040  targets, potential short term interventions to address the low allowance price, the outcome of  international climate negotiations, as well as the inherent lack of credibility of long term  commitment due to potential time inconsistency problems (Brunner et al., 2012) probably increases  the discount rate applied by market participants on future carbon prices. Indeed, it has been pointed  out that the current linear reduction factor of 1.74% per year is not in line with ambitious 2050  emission targets (achieving only around 50% emissions reduction compared to the EU s 80 95%  target) (Neuhoff, 2011). However, while lack of credibility as a factor driving EU ETS prices has been  discussed in some theoretical articles, no empirical evidence on the magnitude of this factor on EUA  prices is available.  Economic effectiveness of the EU ETS has been discussed with respect to the mobilization of the  cheapest mitigation options. While cheap options such as biomass co firing for coal power plants  have been exploited, it is contested whether price levels of allowances have been sufficiently high  after the 2005 and 2009 crashes to drive emissions reduction. Literature suggests that they have not  been high enough to drive renewable energy investment in the absence of feed in tariffs (Blanco and  Rodrigues, 2008). Engels et al. (2008) surveyed companies covered by the EU ETS and found  widespread evidence of irrational behavior, i.e., companies not mitigating even if costs were  substantially below allowance prices. Engels (2009) even finds that many companies did not know  their abatement costs. A barrier to participation in trading could have been the highly scale specific  transaction costs, which were estimated to reach over 2 EUR/EUA for small companies in Ireland  (Jarait  et al., 2010). Given that 75% of installations were responsible for just 5% of emissions in  2005 2006 (Kettner et al., 2008), this is a relevant barrier to market participation. Another way of  mobilizing cheap options is increasing the reach of the EU ETS, either through linking to other trading  schemes or by allowing import of offset credits. Anger et al. (2009) find that linking can substantially  reduce compliance cost, especially if the allocation is done in an efficient way that does not  advantage energy intensive industries. Linking to the states of the European Economic Area and  Switzerland has not been researched to a large extent, with the exception of Schäfer (2009), who  shows how opposition of domestic interest groups in Switzerland and lacking flexibility of the EU  prevented linking. Access to credits from the project based mechanisms was principally allowed by  the  Linking Directive  agreed in 2004. In 2005 2007, companies covered by the EU ETS could import  credits from the mechanisms without limit, but access to the mechanisms has been reduced over  time, e.g., by national level limitations in the 2008 2012 period and a central limitation for 2013 2020. The import option was crucial for the development of the CDM market (Wettestad, 2009) and  drove CER prices. Skjaerseth and Wettestad (2008), Chevallier (2010) and Nazifi(2010) discuss the  exchange between the member states and the EU Commission about import thresholds for the  2008 2012 period.   Distributional and broader social impacts of the EU ETS have not been assessed by the literature to  date except for impacts on specific industrial sectors. While the majority of allowances for the  electricity sector are now sold through auctions, other industries receive free allocations according  to a system of 52 benchmarks. Competitiveness impacts of the EU ETS have been analyzed  intensively. Demailly and Quirion (2008) find that auctioning of 50% of allocations would only lead to  a 3% loss in profitability of the steel sector, while in their analysis for the cement sector Demailly and  Quirion (2006) see a stronger exposure with significant production losses at 50% auctioning. Grubb      42 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  and Neuhoff (2006) and Hepburn et al. (2006) extended this analysis to other sectors and concluded  that higher shares of auctioning are not jeopardizing competitiveness.   Summing up the experiences from the EU ETS, institutional feasibility was achieved by a structurally  lenient allocation, which puts into doubt its environmental effectiveness. There was a centralization  of allocation over time, taking competences away from national governments. Several factors have  pushed the carbon prices down in the second phase of the EU ETS. This has created a situation in  which the target set by European policy makers is achieved, but carbon prices are low; while there  are efforts to stabilize the carbon price through backloading or an ambitious emission target for  2030, at the time of this writing it has proven politically difficult to reach agreement on these  matters. Future reform of the EU ETS will need to clarify the objectives of the scheme, i.e., a  quantitative emissions target or a strong carbon price (e.g., to stimulate development of mitigation  technologies). The link to the project based mechanisms was important to achieve cost effectiveness, but this has been eroded over time due to increasingly stringent import limits.  14.4.2.2    Regional cooperation on energy  Given the centrality of the energy sector for mitigation, regional cooperation in the energy sector  could be of particular relevance. Regional cooperation on renewable energy sources (RES) and  energy efficiency (EE) typically emerges from more general regional and/or interregional agreements  for cooperation at economic, policy, and legislative levels. It also arises through initiatives to share  available energy resources and to develop cross border infrastructure. Regional cooperation  mechanisms on energy take different forms depending, among others, on the degree of political  cohesion in the region, the energy resources available, the strength of economic ties between  participating countries, their institutional and technical capacity, and the financial resources that can  be devoted to cooperation efforts.   In this context, it is also important to consider spillovers on energy that may appear due to trade. As  discussed in Chapter 6 (Section 6.6.2.2), mitigating climate change would likely lead to lower import  dependence for energy importers (Shukla and Dhar, 2011; Criqui and Mima, 2012). The flip side of  this trend is that energy exporting countries could lose out on significant energy export revenues as  the demand for and prices of fossil fuels drops. Some studies indeed find that pricing carbon would  decrease oil wealth (Haurie and Vielle, 2011).3 These findings are consistent with the literature,  which was reviewed in AR4. The effect on coal exporters is very likely to be negative in the short   and long term as mitigation action would reduce the attractiveness of coal and reduce the coal  wealth of exporters (Bauer et al., 2013a; b; Cherp et al., 2013; Jewell et al., 2013). Gas exporters  could win out in the medium term as coal is replaced by gas. The impact on oil is more uncertain.  Several studies suggest that the effect of climate policies on oil wealth and export revenues is found  to be negative in most studies (IEA, 2009; Haurie and Vielle, 2011; Bauer et al., 2013a; b; McCollum  et al., 2013; Tavoni et al., 2014). However, some studies find that climate policies would increase oil  export revenues of mainstream exporters by pricing carbon intensive unconventionals out of the  market (Persson et al., 2007; Johansson et al., 2009; Brandt, 2012). See also Section 6.3.6.6.   In the following section, some examples of regional cooperation will be briefly examined, namely the  implementation of directives on renewable energy resources in the EU (European Commission,  2001, 2003, 2009b) and in South East Europe under the Energy Community Treaty (Energy  Community, 2005, 2008 and 2010), and energy resource sharing through regional power pools and  regional cooperation on hydropower.                                                                 See also Section 13.4 on burden sharing regimes that could be used to offset the possible decrease in export  revenue for fossil exporters.  3     43 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Regional cooperation on renewable energy in the European Union  The legislative and regulatory framework for renewable energy in the EU has been set up through  several directives of the European Commission adopted by EU member states and the European  parliament (European Commission, 2001, 2003, 2009b). These directives are an example of a  regulatory instrument, in contrast to the cap and trade mechanism of the EU ETS described above.  In the past, the European Community adopted two directives on the promotion of electricity from  renewable sources and on the promotion of biofuels (European Commission, 2001, 2003).These two  EU directives established indicative targets for electricity from renewable sources and biofuels and  other renewables in transport, respectively, for the year 2010. Furthermore, they started a process  of legal and regulatory harmonization and required actions by EU member states to improve the  development of renewable energy (Haas et al., 2006, 2011; Harmelink et al., 2006). There was  progress toward the targets, but it did not occur at the required pace (Rowlands, 2005; Patlitzianas  et al., 2005; European Commission, 2009a; Ragwitz et al., 2012). Therefore, the European  Commission proposed a comprehensive legislative and regulatory framework for renewable energy  with binding targets.  This led to the introduction of the Directive 2009/28/EC on the promotion of RES (European  Commission, 2009b). In this directive, EU Member States agreed to meet binding targets for the  share of RES in their gross final energy consumption by the year 2020. The overall target for the  European Union is 20% of EU gross final energy consumption to come from RES by the year 2020.  The share of renewables in gross final energy consumption has indeed increased substantially after  passage of the directive and stands at around 13% in 2011.   The RES Directive is part of the EU climate and energy package (European Commission, 2008). As  such, it has interactions with the other two pillars, namely the EU ETS and the EE related directives.  On the basis of model analysis, the European Commission (European Commission, 2011b) estimates  that the implementation of the EU RES directive could represent an emissions reduction of between  600 and 900 MtCO2eq by the year 2020 in the EU 27 compared to a baseline scenario (Capros et al.,  2010). The introduction of regulatory instruments targeted at RES and/or EE on top of the EU ETS  appears justified on the grounds of the failure of the market to provide incentives for the uptake of  these technologies (European Commission, 2013a). Still, the combined emission reductions resulting  from RES deployment and EE measures leave the EU ETS with a reduced portion of the effort  necessary to achieve the 20% EU emission reduction target by 2020 (e.g., (European Commission,  2013a)). This, as discussed above, has contributed to a reduced carbon price in the EU ETS (Abrell  and Weigt, 2008; OECD, 2011a), affecting its strength as a signal for innovation and investments in  efficiency and low carbon technologies (e.g., (European Commission, 2013b)). Therefore,  coordination between RES and EE policies and the EU ETS is needed and could include introducing  adjustment mechanisms into the EU ETS.  The implementation of the EU directives for renewable energy and the achievement of the national  targets have required considerable efforts to surmount a number of barriers (Held et al., 2006; Haas  et al., 2011; Patlitzianas and Karagounis, 2011; Arasto et al., 2012). One obstacle is the heterogeneity  between EU member states regarding their institutional capacity, know how, types of national policy  instruments and degrees of policy implementation (e.g., (European Commission, 2013c)). Still, the  EU directives for renewable energy have contributed to advancing the introduction of RES in the  member states (Cardoso Marques and Fuinhas, 2012). This regional cooperation has taken place in  the framework of a well developed EU integration at the political, legal, policy, economic, and  industrial level. Only with these close integration ties has it been possible to implement EU directives  on RES.          44 of 91      Final Draft    Chapter 14  IPCC WGIII AR5  Box 14.1. Regional cooperation on renewable energy in the Energy Community The Energy Community extends the EU internal energy market to South East Europe and beyond,  based on a legally binding framework. The Energy Community Treaty (EnCT) establishing the Energy  Community entered into force on 1 July 2006 (Energy Community, 2005). The Parties to the Treaty  are the European Union, and the Contracting Parties Albania, Bosnia and Herzegovina, Croatia,  Former Yugoslav Republic of Macedonia, Montenegro, Serbia, the United Nations Interim  Administration Mission in Kosovo (UNMIK), Moldova and Ukraine. The Energy Community treaty  extended the so called  acquis communautaire , the body of legislation, legal acts, and court  decisions, which constitute European law, to the contracting parties. As a result, contracting parties  are obliged to adopt and implement several EU directives in the areas of electricity, gas,  environment, competition, renewable energies, and energy efficiency. In the field of renewable  energy, the EU acquis established the adoption of the EU directives on electricity produced from  renewable energy sources and on biofuels. As a further step, in 2012, the Energy Community  adopted the EU RES Directive 2009/28/EC (Energy Community, 2012). This allows contracting parties  to use the cooperation mechanisms (statistical transfers, joint projects, and joint support schemes)  foreseen by the RES directive under the same conditions as the EU member states.  Analyses of the implementation of the acquis on renewables in the energy community (EIHP, 2007,  p. 2007; Energy Community, 2008; IEA, 2008; IPA and EPU NTUA, 2010)  found that progress in  implementing the EU directives has been dissimilar across Contracting Parties, among others due to  the heterogeneity between these countries in institutional capacity, know how, and pace of  implementation of policies and regulatory frameworks (Energy Community, 2010; Mihajlov, 2010;  Karakosta et al., 2011; Te¹iæ et al., 2011; Lalic et al., 2011). Still, economic and political ties between  South East Europe and the European Union and the prospect of contracting parties to become EU  member states have contributed to the harmonization of legal, policy, and regulatory elements for  RES (Renner, 2009, p. 20). Through the legally binding Energy Community Treaty, the European  Union has exported its legislative frameworks on RES and EE to a neighboring region. Their further  implementation, however, requires strengthening national and regional institutional capacity,  developing regional energy markets and infrastructure, and securing financing of projects.  Power pools for energy resources sharing  Power pools have evolved as a form of regional cooperation in the electricity sector and are an  example of an opportunity for mitigation that only arises for geographically close countries.  Electricity interconnections and common markets in a region primarily serve the purpose of sharing  least cost generation resources and enhancing the reliability of supply. Getting regional electricity  markets to operate effectively supports mitigation programs in the electricity sector. Cross border  transmission systems (interconnectors), regional markets and trade, and system operating capability  play a major role in both the economics and feasibility of intermittent renewables. In some cases,  power pools provide opportunities for sharing renewable energy sources, notably hydropower and  wind energy, facilitating fuel switching away from fossil fuels (ICA, 2011; Khennas, 2012). In this  context, there is a correlation between the development of the power pool and the ability of a  region to develop renewable electricity sources (Cochran et al., 2012). A combination of electricity  sector reform, allowing power utilities to be properly run and sustainable, and regional wholesale  market development, with the corresponding regional grid development, is necessary to tap their  potential.  An example of a well established power pool is the Nord Pool, the common market for electricity in  Scandinavia, covering Denmark, Sweden, Norway, and Finland. The Nordic power system is a  mixture of hydro, nuclear, wind, and thermal fossil power. With this mix, the pool possesses sizeable  amounts of flexible regulating generation sources, specifically hydropower in Norway. These flexible  hydropower plants and pump storage plants allow compensating the inflexibility of wind power      45 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  generation (e.g., in Denmark), which cannot easily follow load changes. Through the wholesale  market, the Nord Pool can absorb and make use of excess wind electricity generation originating in  Denmark, through complementary generation sources. This allows the Nord Pool to integrate a  larger share of wind energy (e.g., (Kopsakangas Savolainen and Svento, 2013)).  In Africa there are five main power pools, namely the Southern Africa Power Pool (SAPP), the West  African Power Pool (WAPP), the East African Power Pool (EAPP), the Central African Power Pool  (CAPP), and the Comité Maghrébin de l Electricité (COMELEC). The SAPP, for example, includes  12 countries: Botswana, Lesotho, Malawi, South Africa, Swaziland, Zambia, Zimbabwe, Namibia,  Tanzania, Angola, Mozambique, and Democratic Republic of the Congo. Its generation mix is  dominated by coal based power plants from South Africa, which has vast coal resources and the  largest generation capacity within SAPP. Other resources available in the SAPP are hydropower from  the northern countries and, to a lower extent, nuclear power, and gas and oil plants (Economic  Consulting Associates (ECA), 2009; ICA, 2011). Overall the scale of trade within these power pools is  small, leading to continued inefficiencies in the distribution of electricity generation across the  continent (Eberhard et al., 2011). One of the driving forces in SAPP is supplying rapid demand  growth in South Africa with hydropower generated in the northern part of the SAPP region. This  way, the power pool can contribute to switching from coal to hydropower (ICA, 2011; IRENA, 2013).  African power pools and related generation and transmission projects are financed through different  sources, including member contributions, levies raised on transactions in the pool and donations and  grants (Economic Consulting Associates (ECA), 2009). To the extent that financial sources are grants  or loans from donor countries or multi lateral development banks, there exists the possibility to tie  financing to carbon performance standards imposed on electricity generation and transmission  infrastructure projects.   Regional Gas Grids  Regional gas grids offer similar opportunities for mitigation (see Chapter 7). In particular, they allow  the replacement of high carbon coal fired and diesel generation of electricity by gas fired plants.  Such gas grids are developing in East Asia linking China with gas exporting countries as well as in  Eastern Europe, again linking gas exporters in Eastern Europe and Central Asia with consumers in  Western Europe with the EU taking a coordinating role (Victor, 2006).  Regional cooperation on hydropower  Regional cooperation on hydropower may enable opportunities for GHG emissions reduction for  geographically close countries by exploiting hydropower power potential in one country and  exporting electricity to another, by joint development of a transboundary river system (van Edig et  al., 2001; Klaphake and Scheumann, 2006; Wyatt and Baird, 2007; Grumbine et al., 2012), or by  technology cooperation and transfer to promote small hydropower (UNIDO, 2010; Kumar et al.,  2011; Kaunda et al., 2012). The development of hydropower potential, however, needs to comply  with stringent environmental, social and economic sustainability criteria as it has important  ramifications for development and climate change in the affected regions (Kumar et al., 2011). In  addition, there are difficult economic, political, and social issues regarding water sharing, upstream  and downstream impacts, and other development objectives. Given its vulnerability to droughts and  other impacts of climate change, hydropower development requires careful planning, including  provisions for complementary electricity generation sources (Zarsky, 2010; Nyatichi Omambi et al.,  2012)  Regional cooperation on energy efficiency standards and labelling  Standards and labels (S&L) for energy efficient products are useful in accelerating market  transformation towards more energy efficient technologies. Energy efficiency S&L programs help,  for instance, reducing consumption of fossil fuels (e.g., diesel) for electricity generation. Also, when  applied to biomass based cook stoves, S&L help decreasing the use of traditional biomass for  cooking (Jetter et al., 2012). Standards and labelling programs at a regional scale provide critical      46 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  mass for the creation of regional markets for energy efficiency and, therefore, incentives to  equipment manufacturers. They are also useful in reducing non tariff barriers to trade (NAEWG,  2002). Examples of existing S&L regional programs are the European Energy Labelling directive, first  published as Directive 92/75/EEC by the European Commission in 1992 (European Commission,  1992) and subsequently revised (Directive 2010/30/EU; (European Commission, 2010), to harmonize  energy efficiency S&L throughout EU member states and harmonization efforts on energy efficiency  S&L between the U.S, Canada, and Mexico as a means to reduce barriers to trade within the North  American Free Trade Agreement (NAFTA), (NAEWG, 2002; Wiel and McMahon, 2005; Geller, 2006).  Currently, several regional S&L initiatives are being developed, such as the Economic Community of  West African States (ECOWAS) regional initiative on energy efficiency standards and labelling  (ECREEE, 2012a), and the Pacific Appliance Labelling and Standards (PALS) program in Pacific Island  Countries (IIEC Asia, 2012).  14.4.2.3    Climate change cooperation under regional trade agreements  International trade regulation is particularly relevant as mitigation and adaptation policies often  depend on trade policy (Cottier et al., 2009; Hufbauer et al., 2010; Aerni et al., 2010). On the one  hand, trade liberalization induces structural change, which can have a direct impact on emissions of  pollutants such as GHGs. On the other hand, regional trade agreements (RTAs), while primarily  pursuing economic goals, are suitable to create mechanisms for reducing emissions and establish  platforms for regional cooperation on mitigation and adaptation to climate change. In parallel to  provisions on elimination of tariff and non tariff trade barriers, the new generation of RTAs contains  so called WTO X provisions, which promote policy objectives that are not discussed at the  multilateral trade negotiations (Horn et al., 2010). In particular, they offer the potential to refine  criteria for distinctions made on the basis of process and production methods (PPMs), which are of  increasing importance in addressing the linkage of trade and environment and of climate change  mitigation in particular.  Regional trade agreements have flourished over the last two decades. As of December 2013, the  World Trade Organization (WTO) acknowledged 379 notifications of RTAs to be in force(WTO, 2013),  half of which went into force only after 2000. This includes bilateral as well as multilateral  agreements such as, e.g., the EU, the NAFTA, the Southern Common Market (MERCOSUR), the  Association of Southeast Asian Nations (ASEAN) and the Common Market of Eastern and Southern  Africa (COMESA). Regional trade agreements increasingly transgress regional relations and  encompass transcontinental preferential trade agreements (PTAs).   According to the economic theory of international trade, PTAs foster trade within regions and  amongst member countries (trade creation) and they are detrimental to trade with third parties  since trade with non member countries is replaced by intraregional trade (trade diversion). Although  the impacts of trade creation and trade diversion have not been analyzed theoretically with respect  to their environmental impacts, conclusion by analogy implies that the effects on pollution intensive  and green industries can be positive or negative depending on the patterns of specialization. Most  empirical studies look at NAFTA and find mixed evidence on the environmental consequences of  regional trade integration in North America (Kaufmann et al., 1993; Stern, 2007). The effects of  NAFTA on Mexico turn out to be small. Akbostanc  et al.(2008) look at the EU Turkey free trade  agreement and find weak evidence that the demand for dirty imports declined slightly. A study  including 162 countries that were involved in RTAs supports the view that regional trade integration  is good for the environment (Ghosh and Yamarik, 2006). Among empirical studies looking at the  effects of trade liberalization in general, Antweiler et al. (2001), Frankel and Rose (2005), Kellenberg  (2008) and Managi et al. (2009) indicate that freer trade is slightly beneficial to the environment. As  shown in Section 14.3.4, carbon embodied in trade is substantial and it has been increasing from  1990 to 2008 (Peters et al., 2011).       47 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Trade liberalization in major trade regions has fostered processes that are relevant to climate  change mitigation via the development of cooperation on climate issues. (Dong and Whalley, 2010,  2011) look at environmentally motivated trade agreements and find that their impacts, albeit  positive, are very small. Many PTAs contain environmental chapters or environmental side agreements, covering the issues of environmental cooperation and capacity building, commitments  on enforcement of national environmental laws, dispute settlement mechanisms regarding  environmental commitments, etc. (OECD, 2007). In the case of NAFTA, the participating countries  (Canada, Mexico, and the United States) created the North American Agreement on Environmental  Cooperation (NAAEC). The NAAEC established an international organization, the Commission for  Environmental Cooperation (CEC), to facilitate collaboration and public participation to foster  conservation, protection, and enhancement of the North American environment in the context of  increasing economic, trade, and social links among the member countries. Several factors, such as  the CEC s small number of actors, the opportunities for issue linkage, and the linkage between  national and global governance systems have led to beneficial initiatives; yet assessments stress its  limitations and argue for greater interaction with other forms of climate governance in North  America (Betsill, 2007). The Asia Pacific Economic Forum (APEC) provides an example of how trade policy measures can be used to promote trade and investment in environmental goods and services.  In 2011, APEC leaders reaffirmed to reduce the applied tariff rate to 5% or less on goods on the APEC  list of environmental goods by the end of 2015 (APEC, 2011). Although the legal status of these  political declarations is non binding, this  soft law  can help to define the standards of good behavior  of a  well governed state  (Dupuy, 1990; Abbott and Snidal, 2000).   Recent evidence suggests that environmental provisions in RTAs do affect CO2 emissions of member  countries (Baghdadi et al., 2013).Member countries of RTAs that include environmental  harmonization policies converge in CO2 emissions per capita, with the gap being 18% lower than in  countries without an RTA. On the other hand, member countries of RTAs not containing such an  environmental agreement tend to diverge in terms of CO2 emissions per capita. Moreover, the  authors find that membership in an RTA per se does not affect average CO2 emissions significantly  whereas environmental policy harmonization within an RTA has a very small (0.3%), but significant  effect on reducing emissions. Thus, regional agreements with environmental provisions lead to  slightly lower average emissions in the region and a strong tendency for convergence in those  emissions.   There is a potential to expand PTA environmental provisions to specifically cover climate policy  concerns. One of the few existing examples of enhanced bilateral cooperation on climate change  under PTAs relates to the promotion of capacity building to implement the CDM under the Kyoto  Protocol provided for in Article 147 of the Japan Mexico Agreement for the Strengthening of the  Economic Partnership. Holmes et al. (2011) argue that PTAs can include provisions on establishment  of ETSs with mutual recognition of emissions allowances (i.e., linking national ETSs in a region) and  carbon related standards. In promoting mitigation and adaptation goals, PTAs can go beyond climate  policy cooperation provisions in environmental chapters and make climate protection a crosscutting  issue. Obligations to provide know how and transfer of technology, as well as concessions in other  areas covered by a PTA can provide appropriate incentives for PTA parties to accept tariff  distinctions based on PPMs (Cosbey, 2004). Although PTAs constitute their own regulatory system of  trade relations, the conclusion of PTAs, the required level of trade liberalization, and trade measures  used under PTAs are subject to WTO rules (Cottier and Foltea, 2006). While trade measures linked to  emissions is a contentious issue in the WTO (Bernasconi Osterwalder et al., 2006; Holzer, 2010;  Hufbauer et al., 2010; Conrad, 2011), the use of carbon related trade measures under PTAs provides  greater flexibility compared to their application in normal trade based on the most favored nation  (MFN) principle. Particularly, it reduces the risk of trade retaliations and the likelihood of challenge  of a measure in the WTO dispute settlement (Holzer and Shariff, 2012).      48 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  While concerns are expressed in the literature about the coherence between regional and  multilateral cooperation (Leal Arcas, 2011), it is also recognized that PTAs could play a useful role in  providing a supplementary forum for bringing together a number of key players (Lawrence, 2009)  and fostering bilateral, regional, and trans regional environmental cooperation (Carrapatoso, 2008;  Leal Arcas, 2013). With the current complexities of the UNFCCC negotiations, PTAs with their  negotiation leverages and commercial and financial incentives can facilitate achievement of climate  policy objectives. They can also form a platform for realization of mitigation and adaptation policies  elaborated at a multilateral level (Fujiwara and Egenhofer, 2007).    14.4.2.4    Regional examples of cooperation schemes where synergies between  adaptation and mitigation are important  Referring to potential regional actions to integrate adaptation and mitigation, Burton et al. (2007)  point out the need to incorporate adaptation in mitigation and development policies. An integrated  approach to climate change policies was considered and large scale mitigation opportunities at the  national and regional level were identified, indicating that scaling up could be realized through  international initiatives (Kok and De Coninck, 2007).The UNFCCC Cancun agreements include  mandates for multiple actions at the regional level, in particular related to adaptation and  technology (UNFCCC, 2011).Some authors also underlined the importance of the linkage between  adaptation and mitigation at the project level, in particular where the mitigative capacity is low and  the need for adaptation is high. This linkage facilitates the integration of sustainable development  priorities with climate policy, as well as the engagement of local policymakers in the mitigation  agenda (Ayers and Huq, 2009). Section 4.6 underlines the large similarities and the  complementarities between mitigative and adaptive capacities.   Opportunities of synergies vary by sector (Klein et al., 2007). Promising options can be primarily  identified in sectors that can play a major role in both mitigation and adaptation, notably land use  and urban planning, agriculture and forestry, and water management (Swart and Raes, 2007). It has  been stated that forest related mitigation activities can significantly reduce emissions from sources  and increase CO2 removals from sinks at a low cost. It was also suggested that those activities can be  designed promoting synergies with adaptation and sustainable development (IPCC, 2007).  Adaptation measures in the forestry sector are essential to climate change mitigation, for  maintaining the forest functioning status addressing the negative impacts of climate change  ( adaptation for forests ). They are also needed due to the role that forests play in providing local  ecosystem services that reduce vulnerability to climate change ( adaptation for people ) (Vignola et  al., 2009; Locatelli et al., 2011). Information and multiple examples on interactions between  mitigation and adaptation that are mutually reinforcing in forests ecosystems and agriculture  systems are provided in Chapter 11.5.  Examples where integration of mitigation and adaptation processes are necessary include REDD+  activities in the Congo Basin, a region where there are well established cooperation institutions to  deal with common forest matters, such as the Central Africa Forest Commission (COMIFAC) and the  Congo Basin Forest Partnership (CBFP). Some authors consider that the focus is currently on  mitigation, and adaption is insufficiently integrated (Nkem et al., 2010). Other authors have  suggested designing an overarching environmental road map or policy strategy. The policy  approaches for implementing REDD+, adaptation, biodiversity conservation and poverty reductions  may arise from them (Somorin et al., 2011).  The Great Green Wall of the Sahara, launched by the African Union, is another example to combine  mitigation and adaptation approaches to address climate change. It is a priority action of the Africa EU Partnership on Climate (European Union, 2011). The focus of the initiative is adaptation and  mitigation to climate change through sustainable land management (SLM) practices. These practices  are increasingly recognized as crucial to improving the resilience of land resources to the potentially  devastating effects of climate change in Africa (and elsewhere). Thus, it will contribute to      49 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  maintaining and enhancing productivity. SLM practices, which are referred in Section 14.3.5 of this  report, also contribute to mitigate climate change through the reduction of GHG emissions and  carbon sequestration (Liniger et al., 2011).   There may, however, also be significant differences across regions in terms of the scope of such  opportunities and related regional cooperative activities. At present there is not enough literature to  assess these possible synergies and tradeoffs between mitigation and adaptation in sufficient depth  for different regions.  14.4.3    Technology focused agreements and cooperation within and across regions  A primary focus of regional climate agreements surrounds the research, development, and  demonstration (RD&D) of low carbon energy technologies, as well as the development of policy  frameworks to promote the deployment of such technologies within different national contexts  (Grunewald et al., 2013). While knowledge sharing and joint RD&D agreements related to climate  change mitigation are possible in bilateral, regional, and larger multilateral frameworks (de Coninck  et al., 2008), regional cooperation mechanisms may evolve as geographical regions often exhibit  similar challenges in mitigating climate change. In some cases these similarities serve as a unifying  force for regional technology agreements or for cooperation on a particular regionally appropriate  technology.   Other regional agreements do not conform to traditional geographically defined regions, but rather  may be motivated by a desire to transfer technological experience across regions. In the particular  case of technology cooperation surrounding climate change mitigation, regional agreements are  frequently comprised of countries that have experience in developing or deploying a particular  technology, and countries that want to obtain such experience and deploy a similar technology.  While many such agreements include countries from the North sharing such experience with  countries from the South, it is increasingly common for agreements to also transfer technology  experiences from North to North, or from South to South. Other forms of regional agreements on  technology cooperation, including bilateral technology cooperation agreements, may serve political  purposes such as to improve bilateral relations, or contribute to broader development assistance  goals. Multilateral technology agreements, such as those facilitated under the UNFCCC, the  Montreal Protocol, the IEA, and the GEF, are not included in the scope of this chapter as they are  discussed in Chapter 13.   While there has been limited assessment of the efficacy of regional agreements, when available such  assessments are reviewed below.   14.4.3.1    Regional technology focused agreements  Few regional technology focused agreements conform to traditional geographically defined regions.  One exception is the Energy and Climate Partnership of the Americas (ECPA), which was initiated by  the United States, and is a regional partnership among Western hemisphere countries to jointly  promote clean energy, low carbon development, and climate resilient growth (ECPA, 2012).  Argentina, Brazil, Canada, Chile, Colombia, Costa Rica, Dominica, Mexico, Peru, Trinidad, and  Tobago, and the United States as well as the Inter American Development Bank (IDB) and the  Organization of American States (OAS) have announced initiatives and/or are involved in ECPA supported projects. They focus on a range of topics, including advanced power sector integration  and cross border trade in electricity, advancing renewable energy, and the establishment of an  Energy Innovation Center to serve as a regional incubator for implementation and financing of  sustainable energy innovation (ECPA, 2012). The ECPA could provide a model for other neighboring  countries to form regionally coordinated climate change partnerships focused on technologies and  issues that are of common interest within the region.  While not explicitly focused on climate, the Regional Innovation and Technology Transfer Strategies  and Infrastructures (RITTS) program provides an interesting example of a regionally coordinated      50 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  technology innovation and transfer agreement that could provide a model for regional technology  cooperation. RITTS reportedly helped to develop the EU s regional innovation systems, improve the  efficiency of the support infrastructure for innovation and technology transfer, enhance institutional  capacity at the regional level, and promote the exchange of experiences with innovation policy  (Charles et al., 2000).   The ASEAN is a particularly active region in organizing initiatives focused on energy technology  cooperation that may contribute to climate change mitigation. ASEAN has organized the Energy  Security Forum in cooperation with China, Japan, and Korea (the ASEAN+3) that aims to promote  greater emergency preparedness, wider use of energy efficiency and conservation measures,  diversification of types and sources of energy, and development of indigenous petroleum (Philippine  Department of Energy Portal, 2014). The Forum of the Heads of ASEAN Power Utilities/Authorities  (HAPUA) includes working groups focused on electricity generation, transmission, and distribution;  renewable energy and environment; electricity supply industry services; resource development;  power reliability and quality; and human resources (Philippine Department of Energy Portal, 2014).  ASEAN s Center on Energy (ACE) (previously called the ASEAN EC Energy Management Training and  Research Center) was founded in 1990 as an intergovernmental organization to initiate, coordinate,  and facilitate energy cooperation for the ASEAN region, though it lacks a mandate to implement  actual projects (Kneeland et al., 2005; UNESCAP, 2008; Poocharoen and Sovacool, 2012). In addition,  the European Commission partnered with the ASEAN countries in the COGEN 3 initiative, focused on  promoting cogeneration demonstration projects using biomass, coal, and gas technologies (COGEN3,  2005). Regional energy cooperation in the ASEAN region has been mainly motivated by concerns  about security of energy supply (Kuik et al., 2011) and energy access (Bazilian et al., 2012a), an  increasing energy demand, fast rising fossil fuel imports, and rapidly growing emissions of GHGs and  air pollutants (USAID, 2007; UNESCAP, 2008; Cabalu et al., 2010; IEA, 2010b; c). As a result, some  policies have translated into action on the ground. For example, during the APAEC 2004 2009, the  regional 10% target to increase the installed renewable energy based capacities for electricity  generation was met (Kneeland et al., 2005; Sovacool, 2009; ASEAN, 2010; IEA, 2010c).   The APEC also has an Energy Working Group (EWG) that was launched in 1990 to maximize the  energy sector's contribution to the region's economic and social well being, while mitigating the  environmental effects of energy supply and use (APEC Secretariat, 2012).   The ECOWAS regional energy program aims to strengthen regional integration and to boost growth  through market development to fight poverty (ECOWAS, 2003, 2006). The ECOWAS Energy Protocol  includes provisions for member states to establish energy efficiency policies, legal and regulatory  frameworks, and to develop renewable energy sources and cleaner fuels. It also encourages  ECOWAS member states to assist each other in this process. The ECOWAS has recently expanded  further energy access initiatives, which were launched by The Regional Centre for Renewable Energy  and Energy Efficiency  (ECREEE, 2012a; b).  There are also examples of institutions that have been established to serve as regional hubs for  international clean energy technology cooperation. For example, the Asia Energy Efficiency and  Conservation Collaboration Center (AEEC), which is part of the Energy Conservation Center of Japan,  promotes energy efficiency and conservation in Asian countries through international cooperation  (ECCJ/AEEC, 2011). One of the longest established institutions for promoting technology transfer  and capacity building in the South is the Asian and Pacific Center for Transfer of Technology (APCTT),  based in New Delhi, India. Founded in 1977, APCTT operates under the auspices of the United  Nations Economic and Social Commission for Asia and the Pacific to facilitate technology  development and transfer in developing countries of the region, with special emphasis on  technological growth in areas such as agriculture, bioengineering, mechanical engineering,  construction, microelectronics, and alternative energy generation (Asia Pacific Partnership on Clean  Development and Climate, 2013).      51 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  14.4.3.2    Inter regional technology focused agreements  Some technology agreements have brought together non traditional regions, or spanned multiple  regions. For example, the Asia Pacific Partnership on Clean Development and Climate (APP) brought  together Australia, Canada, China, India, Japan, Korea, and the United States. These countries did  not share a specific geography, but had common interests surrounding mitigation technologies, as  well as a technology oriented approach to climate change policy. The purpose of the APP was to  build upon existing bilateral and multilateral initiatives, although it was perceived by some to be  offered forth by the participating nations as an alternative to the Kyoto Protocol (Bäckstrand, 2008;  Karlsson Vinkhuyzen and Asselt, 2009; Lawrence, 2009; Taplin and McGee, 2010). The APP was a  public private partnership that included many active private sector partners in addition to  governmental participants that undertook a range of projects across eight task forces organized by  sector. Initiated in 2006, the work of the APP was formally concluded in 2011, although some  projects have since been transferred to the Global Superior Energy Performance Partnership (GSEP)  under the Clean Energy Ministerial. This includes projects from the sectoral task forces on power  generation and transmission, cement, and steel (US Department of State, 2011; Clean Energy  Ministerial, 2012). One study reviewing the implementation of the APP found that a majority of  participants found the information and experiences exchanged within the program to be helpful,  particularly on access to existing technologies and know how (Okazaki and Yamaguchi, 2011;  Fujiwara, 2012). The APP s record on innovation and access to newer technologies was more mixed,  with factors such as limited funding and a lack of capacity for data collection and management  perceived as barriers (Fujiwara, 2012). As discussed in Section 13.6.3, it may also have had a modest  impact on governance (Karlsson Vinkhuyzen and Asselt, 2009; McGee and Taplin, 2009) and  encouraged voluntary action (Heggelund and Buan, 2009).   Another technology agreement that brings together clean energy technology experience from  different regions is the Clean Energy Ministerial (CEM). The CEM convenes ministers with  responsibility for clean energy technologies from the world s major economies and ministers from a  select number of smaller countries that are leading in various areas of clean energy (Clean Energy  Ministerial, 2012). The first CEM meeting was held in Washington in 2010. The 23 governments  participating in CEM initiatives are Australia, Brazil, Canada, China, Denmark, the European  Commission, Finland, France, Germany, India, Indonesia, Italy, Japan, Korea, Mexico, Norway, Russia,  South Africa, Spain, Sweden, the United Arab Emirates, the United Kingdom, and the United States.  These participant governments account for 80% of global GHG emissions and 90% of global clean  energy investment (Clean Energy Ministerial, 2012).    A smaller agreement that focused on a broad range of mitigation technologies, the Sustainable  Energy Technology at Work (SETatWork) Program, was comprised of two years of activities that ran  from 2008 to 2010. SETatWork developed partnerships between organizations in the EU, Asia, and  South America focused on implementing the EU ETS through identifying CDM project opportunities  and transferring European technology and know how to CDM host countries (European Commission,  2011a).   Other inter regional technology cooperation initiatives and agreements focus on specific technology  areas. For example, multiple initiatives focus on the development or deployment of carbon dioxide  capture and storage (CCS) technologies, including the Carbon Sequestration Leadership Forum  (CSLF), the European CCS Demonstration Project Network, The Gulf Cooperation Council CCS  Strategic Workshop, and the Global Carbon Capture and Storage Institute.   14.4.3.3    South south technology cooperation agreements  There are increasingly more examples of technology cooperation agreements among and between  developing countries, often in the context of broader capacity building programs or agreements to  provide financial assistance. One example is the Caribbean Community Climate Change Centre;  which coordinates the Caribbean region s response to climate change and provides climate change     52 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  related policy advice and guidelines to the Caribbean Community (Caribbean Community Climate  Change Center, 2012). Larger countries such as China and Brazil have taken an active role in  promoting South South cooperation. For example, China has served as a key donor to the UNDP  Voluntary Trust Fund for the Promotion of South South Cooperation, and United Nations  Educational, Scientific and Cultural Organization (UNESCO) is working with the China Science and  Technology Exchange Centre, which is part of China s Ministry of Science and Technology, to develop  a network for South South cooperation on science and technology to Address Climate Change  (United Nations Development Programme: China, 2005; UNESCO Bejing, 2012). The Brazilian  Agricultural Research Corporation has established several programs to promote agricultural and  biofuel cooperation with Africa, including the Africa Brazil Agricultural Innovation Marketplace,  supported by Brazilian and international donors (Africa Brazil Agricultural Innovation Marketplace,  2012).   Other South South programs of cooperation that do not focus on climate change explicitly still may  encourage climate related technology cooperation. For example, the India, Brazil, South Africa (IBSA)  Trust Fund implements South South cooperation for the benefit of LDCs, focusing on identifying  replicable and scalable projects that can be jointly adapted and implemented in interested  developing countries as examples of best practices in the fight against poverty and hunger. Projects  have included solar energy programs for rural electrification and other projects with potential  climate change mitigation benefits (UNDP IBSA Fund, 2014).    14.4.3.4    Lessons learned from regional technology agreements  A review of regional climate technology agreements reveals a complex landscape of cooperation  that includes diversity in structure, focus, and effectiveness. While all of the regional agreements  discussed above vary in their achievements, the strength of the regional organization or of the  relationships of the members of the partnership also vary substantially. This has a direct implication  for the effectiveness of the cooperation, and for any emissions reductions that can be attributed to  the program of cooperation.   Well coordinated, regionally based organizations, such as ASEAN, have served as an effective  platform for cooperation on clean energy, because such programs build upon a strong, pre existing  regional platform for cooperation. Since most regional organizations coordinate regional activity  rather than govern it, most of these regional energy and climate technology agreements focus on  sharing information and knowledge surrounding technologies, rather than implementing actual  projects, though there are exceptions. Since many countries are involved in multiple regional  agreements, often with a similar technical focus, it can be difficult to attribute technology  achievements to any specific agreement or cooperation initiative.  Because of the large number of intra regional climate technology agreements with different types of  membership structures and motivations, it is very difficult to draw general lessons from these types  of initiatives. Since intra regional technology agreements rarely build upon existing regional  governance structures, their efficacy depends both on the commitment of the members, as well as  the resources committed. The prominence of regionally coordinated agreements in other arenas,  including environmental protection and trade, suggests that regions will play an increasingly  important role in climate related cooperation in the future. Experience with regional climate  cooperation thus far suggests that building upon pre existing regional groupings and networks,  particularly those with strong economic or trade relationships, may provide the best platform for  enhanced regional climate change cooperation.  14.4.4    Regional mechanisms for Investments and Finance  14.4.4.1    Regional and sub regional development banks and related mechanisms  Regional institutions, including the regional multilateral development banks and the regional  economic commissions of the United Nations, play an important role in stimulating action and      53 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  funding for mitigation activities (see Section 16.5.1.2 for a discussion of specific regional  institutions). Development finance institutions channeled an estimated 76.8 billion USD2010 in  2010/2011 (Buchner et al., 2011).  Appropriate governance arrangements at the national, regional, and international level are an  essential pre requisite for efficient, effective, and sustainable financing of mitigation measures (see  Chapter 16). The Report of the Secretary General s High Level Advisory Group on Climate Change  Financing recommended that the delivery of finance for adaptation and mitigation be scaled up  through regional institutions, given their strong regional ownership. It also found that regional  cooperation provides the greatest opportunity for analyzing and understanding the problems of, and  designing strategies for coping with, the impact of climate change and variability (United Nations,  2010). There are few aggregated estimates of the split of finance by type of disbursement organization  available (see Chapter 16). A regional breakdown of the recipients of Multilateral Development Bank  (MDB) climate finance based on the OECD Creditor Reporting System (CRS) database shows that  recipients are primarily located in Asia (26%), Latin America and the Caribbean (23%) and  Europe/Commonwealth of Independent States region (19%) (Buchner et al., 2011).  14.4.4.2    South South climate finance  There are limited data available to accurately quantify South South climate finance flows, and many  studies have pointed to a need for more accessible and consistent data (Buchner et al., 2011). One  study that tracked overall development assistance from countries that are not members of the OECD  Development Assistance Committee (DAC) estimated flows of 9.66 billion to 12.88 billion USD2010,  (9 to 12 billion USD2006) and projected that these flows would surpass 15 billion USD by 2010  (ECOSOC, 2008; Buchner et al., 2011). Brazil, India and China, the  emerging non OECD donors , are  playing an increasingly important role in the overall aid landscape, and these countries also have  programs to provide climate related assistance to developing countries (Buchner et al., 2011). The  share of GEF contributions that come from developing countries was estimated to total 56.6 million  USD2010 (52.8 million USD2006) (Ballesteros et al., 2010).   14.5   Taking stock and options for the future  A key finding from this chapter is that currently there is a wide gap between the potential of regional  cooperation to contribute to a mitigation agenda and the reality of modest to negligible impacts to  date. As shown in the discussion on climate specific as well as climate relevant regional cooperation,  the ability to use existing regional cooperation for furthering a mitigation agenda, by pursuing a  common and coordinated energy policy, embodying mitigation objectives in trade agreements in  urbanization and infrastructure strategies, and developing and sharing technologies at the regional  level, is substantial. In principle, in many regions the willingness to cooperate on such an agenda is  substantial. In the absence of an increasingly elusive global agreement, such regional cooperation  may provide the best alternative to furthering an ambitious mitigation agenda. Also, if a global  agreement emerges, such regional cooperation could prove vital for its implementation.  At the same time, the reality is one of very low mitigation impacts to date. Even in areas of deep  integration where multiple instruments for mitigation have been put into place, progress on  mitigation has been slower than anticipated. This is largely related to a political reluctance to pursue  the multiple policy instruments with sufficient rigor. The challenge will be to drastically increase the  ambition of existing instruments while carefully considering the positive and negative interactions  between these different policies. For regions where deep regional integration is not present yet, the  experience from the EU suggests that only after a substantial transfer of sovereignty to regional  bodies can an ambitious mitigation be pursued. Such a transfer of sovereignty is unlikely in most  regions where the regional cooperation processes are still in early stages of development.      54 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Alternatively, regional cooperation on mitigation can build on the substantial good will within  regions to develop voluntary cooperation schemes in the fields outlined in the chapter that also  further other development goals, such as energy security, trade, infrastructure, or sustainable  development. Whether such voluntary cooperation will be sufficient to implement ambitious  mitigation measures to avoid the most serious impacts of climate change remains an open question.    14.6   Gaps in Knowledge and Data  While there is clear evidence from the theoretical and empirical literature that regional mechanisms  have great potential to contribute to mitigation goals, there are large gaps in knowledge and data  related to the issues covered in this chapter. In particular, there are gaps in the literature on:  The quantitative impact of regional cooperation schemes on mitigation, especially in terms  of quantifying their impact and significance. While some of the mechanisms, such as the EU ETS are well studied, many other cooperation mechanisms in the field of technology,  labelling, and information sharing have hardly been analyzed at all.   The factors that lead to the success or failure of regional cooperation mechanisms, including  regional disparities and the mismatch between capacities and opportunities within and  between regions. This research would be useful to determine which cooperation  mechanisms are suitable for a particular region at a given stage of development, resource  endowment, a given level of economic and political cooperation ties, institutional and  technical national capacities and heterogeneity among the participating countries.  Synergies and tradeoffs between mitigation and adaptation. In addition, it would be  important to understand more about capacity barriers for low carbon development at the  regional level, including on the costs of capital and credit constraints. There is also very little  peer reviewed literature assessing the mitigation potential and actual achievements of  climate relevant regional cooperation agreements (such as trade, energy, or infrastructure  agreements).   The empirical interaction of different policy instruments. It is clear that regional policies  interact with national and global initiatives, and often there are many regional policies that  interact within the same regions. Not enough is known to what extent these many initiatives  support or counteract each other.  14.7   Frequently Asked Questions  FAQ 14.1 How are regions defined in the AR5?  This chapter examines supra national regions (i.e., regions in between the national and global level).  Sub national regions are addressed in Chapter 15. There are several possible ways to classify regions  and different approaches are used throughout the AR5. In most chapters, a five region classification  is used that is consistent with the integrated models: OECD 1990, Middle East and Africa, Economies  in Transition, Asia, Latin America and the Caribbean. Given the policy focus of this chapter and the  need to distinguish regions by their levels of economic development, this chapter adopts regional  definitions that are based on a combination of economic and geographic considerations. In  particular, this chapter considers the following 10 regions: East Asia (China, Korea, Mongolia) (EAS);  Economies in Transition (Eastern Europe and former Soviet Union) (EIT); Latin America and  Caribbean (LAM); Middle East and North Africa (MNA); North America (USA, Canada) (NAM); South East Asia and Pacific (PAS); Pacific OECD 1990 members (Japan, Australia, New Zealand) (POECD);  South Asia (SAS); sub Saharan Africa (SSA); Western Europe (WEU). These regions can readily be  aggregated to other regional classifications such as the regions used in scenarios and integrated  assessment models (e.g., the so called Representative Concentration Pathways (RCP) regions),      55 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  commonly used World Bank socio geographic regional classifications, and geographic regions used  by WGII. In some cases, special consideration will be given to the cross regional group of Least  Developed Countries (LDCs), as defined by the United Nations, which includes 33 countries in SSA, 5  in SAS, 8 in PAS, and one each in LAM and MNA, and which are characterized by low incomes, low  human assets, and high economic vulnerability.  FAQ 14.2 Why is the regional level important for analyzing and achieving mitigation  objectives?  Thinking about mitigation at the regional level matters for two reasons. First, regions manifest vastly  different patterns in their level, growth, and composition of GHG emissions, underscoring significant  differences in socio economic contexts, energy endowments, consumption patterns, development  pathways, and other underlying drivers that influence GHG emissions and therefore mitigation  options and pathways [14.3]. We call this the  regional heterogeneity  issue.  Second, regional cooperation, including the creation of regional institutions, is a powerful force in  global economics and politics   as manifest in numerous agreements related to trade, technology  cooperation, transboundary agreements relating to water, energy, transport, and so on. It is critical  to examine to what extent these forms of cooperation have already had an impact on mitigation and  to what extent they could play a role in achieving mitigation objectives [14.4]. We call this the  regional cooperation and integration issue .   Third, efforts at the regional level complement local, domestic efforts on the one hand, and global  efforts on the other hand. They offer the potential of achieving critical mass in the size of the  markets required to make policies, for example, on border tax adjustment, work, in creating regional  smart grids required to distribute and balance renewable energy.   FAQ 14.3 How do opportunities and barriers for mitigation differ by region?   Opportunities and barriers for mitigation differ greatly by region. On average, regions with the  greatest opportunities to bypass more carbon intensive development paths and leapfrog to low carbon development are regions with low lock in, in terms of energy systems, urbanization, and  transport patterns. Poorer developing regions such as sub Saharan Africa, as well as most Least  Developed Countries, fall into this category. Also, many countries in these regions have particularly  favorable endowments for renewable energy (such as hydropower or solar potential). At the same  time, however, they are facing particularly strong institutional, technological, and financial  constraints to undertake the necessary investments. Often these countries also lack access to the  required technologies or the ability to implement them effectively. Given their urgent need to  develop and improve energy access, their opportunities to engage in mitigation will also depend on  support from the international community to overcome these barriers to invest in mitigation.  Conversely, regions with the greatest technological, financial, and capacity advantages face much reduced opportunities for low cost strategies to move towards low carbon development, as they  suffer from lock in in terms of energy systems, urbanization, and transportation patterns.  Particularly strong opportunities for low carbon development exist in developing and emerging  regions where financial and institutional capacities are better developed, yet lock in effects are low,  also due to their rapid planned installation of new capacity in energy and transport systems. For  these regions, which include particularly Latin America, much of Asia, and parts of the Middle East, a  reorientation towards low carbon development paths is particularly feasible. [14.1, 14.2, 14.3]  FAQ 14.4 What role can and does regional cooperation play to mitigate climate change?   Apart from the European Union (with its Emissions Trading Scheme and binding regulations on  energy and energy efficiency), regional cooperation has, to date, not played an important role in  furthering a mitigation agenda. While many regional groupings have developed initiatives to directly  promote mitigation at the regional level primarily through sharing of information, benchmarking,  and cooperation on technology development and diffusion the impact of these initiatives is very      56 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  small to date. In addition, regional cooperation agreements in other areas (such as trade, energy,  and infrastructure) can influence mitigation indirectly. The effect of these initiatives and policies on  mitigation is currently also small, but there is some evidence that trade pacts that are accompanied  by environmental agreements have had some impact on reducing emissions within the trading bloc.  Nonetheless, regional cooperation could play an enhanced role in promoting mitigation in the  future, particularly if it explicitly incorporates mitigation objectives in trade, infrastructure, and  energy policies and promotes direct mitigation action at the regional level. With this approach  regional cooperation could potentially play an important role within the framework of implementing  a global agreement on mitigation, or could possibly promote regionally coordinated mitigation in the  absence of such an agreement. [14.4]      57 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  References  Abbott K.W., and D. Snidal (2000). Hard and Soft Law in International Governance, International  Organization 54 421 456 pp. (DOI: 10.1162/002081800551280).  Abrell J., and H. Weigt (2008). The Interaction of Emissions Trading and Renewable Energy  Promotion. Social Science Research Network, Rochester, NY. . Available at:  http://papers.ssrn.com/abstract=1317310.  Aerni P., B. Boie, T. Cottier, K. Holzer, D. Jost, B. Karapinar, S. Matteotti, O. Nartova, T. Payosova,  L. Rubini, A. Shingal, F. Temmerman, E. Xoplaki, and S.Z. Bigdeli (2010). Climate Change and  International Law: Exploring the Linkages between Human Rights, Environment, Trade and  Investment, German Yearbook of International Law 53 139 188 pp. . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1994464.  Africa Brazil Agricultural Innovation Marketplace (2012). Africa Brazil Agricultural Innovation  Marketplace: A Partnership between Africa and Brazilian organizations to enhance agricultural  innovation and development. . Available at: http://www.africa brazil.org/about us/general information.  Agbemabiese L., J. Nkomo, and Y. Sokona (2012). Enabling innovations in energy access: An African  perspective, Energy Policy 47, Supplement 1 38 47 pp. (DOI: 10.1016/j.enpol.2012.03.051), (ISSN:  0301 4215).  Akbostanc  E., G.  pek Tunç, and S. Türüt Aº k (2008). Environmental impact of customs union  agreement with EU on Turkey s trade in manufacturing industry, Applied Economics 40 2295 2304  pp. (DOI: 10.1080/00036840600949405), (ISSN: 0003 6846, 1466 4283).  Alam Zaigham N., Z. Alam Nayyar, and N. Hisamuddin (2009). Review of geothermal energy  resources in Pakistan, Renewable and Sustainable Energy Reviews 13 223 232 pp. (DOI:  10.1016/j.rser.2007.07.010), (ISSN: 1364 0321).  Alberola E., and J. Chevallier (2009). Banking and borrowing in the EU ETS: An econometric appraisal  of the 2005 2007 intertemporal market, International Journal of Energy, Environment and Economics  17 1 pp. .  Alberola E., J. Chevallier, and B. Cheze (2008). Price drivers and structural breaks in European  carbon prices 2005 2007, Energy Policy 36 787 797 pp. (DOI: 10.1016/j.enpol.2007.10.029), (ISSN:  0301 4215).  Aldy J.E., S. Barrett, and R.N. Stavins (2003). Thirteen plus one: a comparison of global climate  policy architectures, Climate Policy 3 373 397 pp. (DOI: 10.1016/j.clipol.2003.09.004), (ISSN: 1469 3062).  Aldy J.E., and R.N. Stavins (2012). The Promise and Problems of Pricing Carbon Theory and  Experience, The Journal of Environment & Development 21 152 180 pp. (DOI:  10.1177/1070496512442508), (ISSN: 1070 4965, 1552 5465).  Alexeeva Talebi V., A. Löschel, and T. Mennel (2008). Climate Policy and the Problem of  Competitiveness: Border Tax Adjustments or Integrated Emission Trading? ZEW Discussion Papers. .  Available at: http://www.econstor.eu/handle/10419/24757.      58 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Alpine Convention (2009). Alpine Convention Action Plan on Climate Change in the Alps. . Available  at: http://www.alpconv.org/en/ClimatePortal/actionplan/Documents/AC_X_B6_en_new_fin.pdf.  Amer M., and T.U. Daim (2010). Application of technology roadmaps for renewable energy sector,  Technological Forecasting and Social Change 77 1355 1370 pp. (DOI:  10.1016/j.techfore.2010.05.002).  Anderson B., and C. Di Maria (2011). Abatement and Allocation in the Pilot Phase of the EU ETS,  Environmental and Resource Economics 83 103 pp. .  Andonova L.B., M.M. Betsill, and H. Bulkeley (2009). Transnational Climate Governance, Global  Environmental Politics 9 52 73 pp. (DOI: 10.1162/glep.2009.9.2.52), (ISSN: 1526 3800).  Andrew R.M., and G.P. Peters (2013). A Multi Region Input Output Table Based on the Global Trade  Analysis Project Database (gtap Mrio), Economic Systems Research 25 99 121 pp. (DOI:  10.1080/09535314.2012.761953), (ISSN: 0953 5314).  Ang B.W. (2004). Decomposition analysis for policymaking in energy   which is the preferred  method?, Energy Policy 32 1131 1139 pp. (DOI: 10.1016/S0301 4215(03)00076 4).  Anger N., B. Brouns, and J. Onigkeit (2009). Linking the EU emissions trading scheme: economic  implications of allowance allocation and global carbon constraints, Mitigation and Adaptation  Strategies for Global Change 14 379 398 pp. .  Antweiler W., B.R. Copeland, and M.S. Taylor (2001). Is Free Trade Good for the Environment?,  American Economic Review 91 877 908 pp. (DOI: 10.1257/aer.91.4.877), (ISSN: 0002 8282).  APEC H., United States (Ed.) (2011). Leaders  Declaration Annex C   Trade and Investment in  Environmental Goods and Services. . Available at: http://www.apec.org/Meeting Papers/Leaders Declarations/2011/2011_aelm/2011_aelm_annexC.aspx.  APEC Secretariat (2012). APEC Energy Overview 2011. . Available at:  http://www.apec.org/Groups/SOM Steering Committee on Economic and Technical Cooperation/Working Groups/Energy.aspx.  Arasto A., L. Kujanpää, T. Mäkinen, R.W.R. Zwart, J.H.A. Kiel, and J. Vehlow (2012). Analysis and  implications of challenges in achieving the targets of EU RES E directive, Biomass and Bioenergy 38  109 116 pp. (DOI: 10.1016/j.biombioe.2011.02.026), (ISSN: 0961 9534).  ASEAN (2010). ASEAN plan of action for energy cooperation (APAEC) 2010   2015. Bringing Policies  to Actions: Towards a cleaner, more efficient and sustainable ASEAN energy community., ASEAN  Center for Energy . Available at: http://aseanenergy.org/index.php/about/apaec.  Asheim G.B., C.B. Froyn, J. Hovi, and F.C. Menz (2006). Regional versus global cooperation for  climate control, Journal of Environmental Economics and Management 51 93 109 pp. (DOI:  10.1016/j.jeem.2005.04.004), (ISSN: 00950696).  Asia Pacific Partnership on Clean Development and Climate (2013). Asia Pacific Partnership on  Clean Development and Climate. . Available at:  http://asiapacificpartnership.org/english/about.aspx#Vision.      59 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Atteridge A., C. Siebert, R. Klein, C. Butler, and P. Tella (2009). Bilateral Finance Institutions and  Climate Change: A Mapping of Climate Portfolios. Stockholm Environment Institute, Stockholm,  Sweden.  Ayers J.M., and S. Huq (2009). The value of linking mitigation and adaptation: A case study of  Bangladesh, Environmental management 43 753 764 pp. .  Bäckstrand K. (2008). Accountability of Networked Climate Governance: The Rise of Transnational  Climate Partnerships, Global Environmental Politics 8 74 102 pp. (DOI: 10.1162/glep.2008.8.3.74),  (ISSN: 1526 3800).  Baghdadi L., I. Martinez Zarzoso, and H. Zitouna (2013). Are RTA agreements with environmental  provisions reducing emissions?, Journal of International Economics 90 378 390 pp. (DOI:  10.1016/j.jinteco.2013.04.001), (ISSN: 0022 1996).  Baiocchi G., and J.C. Minx (2010). Understanding Changes in the UK s CO2 Emissions: A Global  Perspective, Environmental Science & Technology 44 1177 1184 pp. (DOI: 10.1021/es902662h),  (ISSN: 0013 936X).  Balistreri E.J., and T.F. Rutherford (2012). Subglobal carbon policy and the competitive selection of  heterogeneous firms, Energy Economics 34, Supplement 2 S190 S197 pp. (DOI:  10.1016/j.eneco.2012.08.002), (ISSN: 0140 9883).  Ballesteros A., S. Nakhooda, J. Werksman, and K. Hurlburt (2010). Power, Responsibility, and  Accountability: Re Thinking the Legitimacy of Institutions for Climate Finance. World Resouces  Institute, Washington, D.C. 84 pp. Available at: http://www.wri.org/publication/power responsibility and accountability.  Balsiger J., and B. Debarbieux (2011). Major challenges in regional environmental governance  research and practice, Procedia   Social and Behavioral Sciences 14 1 8 pp. (DOI:  10.1016/j.sbspro.2011.03.010), (ISSN: 1877 0428).  Balsiger J., M. Prys, and N. Steinhoff (2012). The Nature and Role of Regional Agreements in  International Environmental Politics: Mapping Agreements, Outlining Future Research, SSRN eLibrary  GIGA Working Paper No 208 4 32 pp. . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2170324.  Balsiger J., and S.D. VanDeveer (2010). Regional Governance and Environmental Problems. In: The  International Studies Compendium Project. R. Denemark, (ed.), Wiley Blackwell, Oxford pp.6179 6200(ISBN: 978 1 4051 5238 9).  Balsiger J., and S.D. VanDeveer (2012). Navigating Regional Environmental Governance, Global  Environmental Politics 12 1 17 pp. (DOI: 10.1162/GLEP_e_00120), (ISSN: 1526 3800).  Barnes D., and W. Floor (1996). Rural Energy in Developing Countries: A Challenge for Economic  Development., Annual Review Energy Environment 21 497 530 pp. .  Barrett J., G. Peters, T. Wiedmann, K. Scott, M. Lenzen, K. Roelich, and C. Le Quéré (2013).  Consumption based GHG emission accounting: a UK case study, Climate Policy 13 451 470 pp. (DOI:  10.1080/14693062.2013.788858), (ISSN: 1469 3062).      60 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Bauer N., V. Bosetti, K. Calvin, M. Hamdi Cherif, A. Kitous, D. McCollum, A. Méjean, S. Rao, T. Hal,  L. Paroussos, S. Ashina, and D. van Vuuren (2013a). CO2 emission mitigation and fossil fuel markets:  Dynamic and international aspects of climate Policies, Technological Forecasting and Social Change.  Bauer N., I. Mouratiadou, G. Luderer, L. Baumstark, R.J. Brecha, O. Edenhofer, and E. Kriegler  (2013b). Global fossil energy markets and climate change mitigation   an analysis with REMIND,  Climatic Change 1 14 pp. (DOI: 10.1007/s10584 013 0901 6), (ISSN: 0165 0009, 1573 1480).  Bazilian M., P. Nussbaumer, C. Eibs Singer, A. Brew Hammond, V. Modi, B. Sovacool, V. Ramana,  and P. K. Aqrawi (2012a). Improving Access to Modern Energy Services: Insights from Case Studies,  The Electricity Journal 25 93 114 pp. (DOI: 10.1016/j.tej.2012.01.007), (ISSN: 1040 6190).  Bazilian M., P. Nussbaumer, H. H. Rogner, A. Brew Hammond, V. Foster, S. Pachauri, E. Williams,  M. Howells, P. Niyongabo, L. Musaba, B.Ó. Gallachóir, M. Radka, and D.M. Kammen (2012b).  Energy access scenarios to 2030 for the power sector in sub Saharan Africa, Utilities Policy 20 1 16  pp. (DOI: 10.1016/j.jup.2011.11.002), (ISSN: 0957 1787).  Beg N., J.C. Morlot, O. Davidson, Y. Afrane Okesse, L. Tyani, F. Denton, Y. Sokona, J.P. Thomas, E.L.  La Rovere, J.K. Parikh, K. Parikh, and A. Atiq Rahman (2002). Linkages between climate change and  sustainable development, Climate Policy 2 129 144 pp. (DOI: 10.3763/cpol.2002.0216).  Bento A.M., M.L. Cropper, A.M. Mobarak, and K. Vinha (2005). The Effects of Urban Spatial  Structure on Travel Demand in the United States, Review of Economics and Statistics 87 466 478 pp.  (DOI: 10.1162/0034653054638292), (ISSN: 0034 6535).  Van den Bergh K., E. Delarue, and W. D haeseleer (2013). Impact of renewables deployment on the  CO2 price and the CO2 emissions in the European electricity sector, Energy Policy 63 1021 1031 pp.  (DOI: 10.1016/j.enpol.2013.09.003), (ISSN: 0301 4215).  Bernasconi Osterwalder N., D. Magraw, M.J. Oliva, E. Tuerk, and M. Orellana (2006). Environment  and Trade: A Guide to WTO Jurisprudence. Earthscan Publications, UK and US, 370 pp., (ISBN:  1844072983). .  Den Besten J.W., B. Arts, and P. Verkooijen (2013). The evolution of REDD+: An analysis of  discursive institutional dynamics, Environmental Science & Policy (DOI:  10.1016/j.envsci.2013.03.009), (ISSN: 1462 9011).  Betsill M.M. (2007). Regional Governance of Global Climate Change: The North American  Commission for Environmental Cooperation, Global Environmental Politics 7 11 27 pp. (DOI:  10.1162/glep.2007.7.2.11), (ISSN: 1526 3800).  Betz R., and M. Sato (2006). Emissions trading: lessons learnt from the 1st phase of the EU ETS and  prospects for the 2nd phase, Climate Policy 6 351 359 pp. .  Biermann F., P. Pattberg, H. van Asselt, and F. Zelli (2009). The Fragmentation of Global  Governance Architectures: A Framework for Analysis, Global Environmental Politics 9 14 40 pp.  (DOI: 10.1162/glep.2009.9.4.14), (ISSN: 1526 3800).  Blanco M.I., and G. Rodrigues (2008). Can the future EU ETS support wind energy investments?,  Energy Policy 36 1509 1520 pp. .  Blyth W., and D. Bunn (2011). Coevolution of policy, market and technical price risks in the EU ETS,  Energy Policy 39 4578 4593 pp. .      61 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Böhringer C., E.J. Balistreri, and T.F. Rutherford (2012). The role of border carbon adjustment in  unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29), Energy Economics  34, Supplement 2 S97 S110 pp. (DOI: 10.1016/j.eneco.2012.10.003), (ISSN: 0140 9883).  Brandi C. (2013). Trade and Climate Change: Environmental, Economic and Ethical Perspectives on  Border Carbon Adjustments, Ethics, Policy & Environment 16 79 93 pp. (DOI:  10.1080/21550085.2013.768395), (ISSN: 2155 0085).  Brandt G.F.N. and A.R. (2012). Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and  Direct CO2 Air Capture, The Energy Journal 33 53 82 pp. . Available at:  http://ideas.repec.org/a/aen/journl/33 1 a03.html.  Brovkin V., L. Boysen, V.K. Arora, J.P. Boisier, P. Cadule, L. Chini, M. Claussen, P. Friedlingstein, V.  Gayler, B.J.J.M. van den Hurk, G.C. Hurtt, C.D. Jones, E. Kato, N. de Noblet Ducoudré, F. Pacifico, J.  Pongratz, and M. Weiss (2013). Effect of Anthropogenic Land Use and Land Cover Changes on  Climate and Land Carbon Storage in CMIP5 Projections for the Twenty First Century, Journal of  Climate 26 6859 6881 pp. (DOI: 10.1175/JCLI D 12 00623.1), (ISSN: 0894 8755, 1520 0442).  Brunner S., C. Flachsland, and R. Marschinski (2012). Credible commitment in carbon policy, Climate  Policy 12 255 271 pp. (DOI: 10.1080/14693062.2011.582327), (ISSN: 1469 3062).  Buchner B., A. Falconer, M. Hervé Mignucci, C. Trabacchi, and M. Brinkman (2011). The Landscape  of Climate Finance, Climate Policy Initiative: Venice 27 60 pp. . Available at:  http://climatepolicyinitiative.org/wp content/uploads/2011/10/The Landscape of Climate Finance 120120.pdf.  Burke P.J. (2010). Income, resources, and electricity mix, Energy Economics 32 616 626 pp. (DOI:  10.1016/j.eneco.2010.01.012), (ISSN: 0140 9883).  Burton I., L. Bizikova, T. Dickinson, and Y. Howard (2007). Integrating adaptation into policy:  upscaling evidence from local to global, Climate policy 7 371 376 pp. .  Cabalu H., C. Alfonso, and C. Manuhutu (2010). The role of regional cooperation in energy security:  the case of the ASEAN+3, International Journal of Global Energy Issues 33 56 72 pp. (ISSN: 0954 7118).  Capros P., L. Mantzos, N. Tasios, A. De Vita, and N. Kouvaritakis (2010). EU Energy Trends to 2030    Update 2009. Institute of Communication and Computer Systems of the National Technical University  of Athens (ICCS NTUA), E3M Lab. 180 pp. Available at:  http://ec.europa.eu/energy/observatory/trends_2030/index_en.htm.  Carbon Trust (2008). Low Carbon Technology Innovation and Diffusion Centres. Carbon Trust, UK.  Cardoso Marques A.C., and J.A. Fuinhas (2012). Are public policies towards renewables successful?  Evidence from European countries, Renewable Energy 44 109 118 pp. (DOI:  10.1016/j.renene.2012.01.007), (ISSN: 0960 1481).  Caribbean Community Climate Change Center (2012). Caribbean Community Climate Change  Centre. . Available at: http://www.caribbeanclimate.bz/.  Carrapatoso A.F. (2008). Environmental aspects in free trade agreements in the Asia Pacific region,  Asia Europe Journal 6 229 243 pp. .      62 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Castro P., and A. Michaelowa (2010). The impact of discounting emission credits on the  competitiveness of different CDM host countries, Ecological Economics 70 34 42 pp. (DOI:  10.1016/j.ecolecon.2010.03.022), (ISSN: 0921 8009).  Cerbu G.A., B.M. Swallow, and D.Y. Thompson (2011). Locating REDD: A global survey and analysis  of REDD readiness and demonstration activities, Environmental Science & Policy 14 168 180 pp.  (DOI: 16/j.envsci.2010.09.007), (ISSN: 1462 9011).  Charles D.R., C. Nauwelaers, B. Mouton, and D. Bradley (2000). Assessment of the Regional  Innovation and Technology Transfer Strategies and Infrastructures (RITTS) Scheme. Centre for Urban  and Regional Development Studies University of Newcastle. . Available at:  ftp://ftp.cordis.europa.eu/pub/innovation policy/studies/studies_regional_technology_transfer_strategies.pdf.  Chaurey A., P.R. Krithika, D. Palit, S. Rakesh, and B.K. Sovacool (2012). New partnerships and  business models for facilitating energy access, Energy Policy 47, Supplement 1 48 55 pp. (DOI:  10.1016/j.enpol.2012.03.031), (ISSN: 0301 4215).  Cherp A., J. Jewell, V. Vadim, N. Bauer, and E. De Cian (2013). Global Energy Security Under  Different Climate Policies, GDP Growth Rates and Fossil Resource Availabilities, Climatic Change 121  1 12 pp. (DOI: 10.1007/s10584 013 0950 x).  Chevallier J. (2010). EUAs and CERs: Vector autoregression, impulse response function and  cointegration analysis, Economics Bulletin 30 558 pp. .  De Cian E., I. Keppo, J. Bollen, S. Carrara, H. Förster, M. Hübler, A. Kanudia, S. Paltsev, R. Sands,  and K. Schumacher (2013). European led climate policy versus global mitigation action   Implications  on trade, technology, and energy, Climate Change Economics 4 1 28 pp. .  Clarke L., J. Edmonds, V. Krey, R. Richels, S. Rose, and M. Tavoni (2009). International climate policy  architectures: Overview of the EMF 22 International Scenarios, Energy Economics 31, Supplement 2  S64 S81 pp. (DOI: 10.1016/j.eneco.2009.10.013), (ISSN: 0140 9883).  Clean Energy Ministerial (2012). Clean Energy Ministerial Website. . Available at:  http://www.cleanenergyministerial.org/about/index.html.  Climate Funds Update (2013). Graphs and statistics. . Available at:  http://www.climatefundsupdate.org/listing/global climate change allianc#TOC Graphs and statistics.  Clo S., S. Battles, and P. Zoppoli (2013). Policy options to improve the effectiveness of the EU  emissions trading systems: A mulit criteria analysis, Energy Policy 57 477 490 pp. .  Cochran J., L. Bird, J. Heeter, and D.J. Arent (2012). Integrating Variable Renewable Energy in  Electric Power Markets: Best Practices from International Experience, Summary for Policymakers. US  National Renewable Energy Laboratory (NREL), Washington D.C. 16 pp. Available at:  http://www.nrel.gov/docs/fy12osti/53730.pdf.  Cochran J., S. Cox, R. Benioff, H. de Coninck, and L. Würtenberger (2010). An exploration of options  and functions of climate technology centers and networks. United Nations Environment Programme.  COGEN3 (2005). COGEN Experience Overview. . Available at: http://cogen3.net/final/.      63 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Cole M.A., and E. Neumayer (2004). Examining the Impact of Demographic Factors on Air Pollution,  Population and Environment 26 5 21 pp. (DOI: 10.1023/B:POEN.0000039950.85422.eb), (ISSN: 0199 0039).  Collier P., and A.J. Venables (2012a). Greening Africa? Technologies, endowments and the  latecomer effect. Available at: http://www.csae.ox.ac.uk/workingpapers/pdfs/csae wps 2012 06.pdf.  Collier P., and A.J. Venables (2012b). Greening Africa? Technologies, endowments and the  latecomer effect, Energy Economics 34, Supplement 1 S75 S84 pp. (DOI:  10.1016/j.eneco.2012.08.035), (ISSN: 0140 9883).  De Coninck H., C. Fischer, R.G. Newell, and T. Ueno (2008). International technology oriented  agreements to address climate change, Energy Policy 36 335 356 pp. (DOI:  10.1016/j.enpol.2007.09.030), (ISSN: 0301 4215).  Conrad C.R. (2011). Processes and Production Methods (PPMs) in WTO Law: Interfacing Trade and  Social Costs. Cambridge University Press, 564 pp., (ISBN: 9781107008120). .  Convery F.J. (2009a). Reflections   The emerging literature on emissions trading in Europe, Review of  Environmental Economics and Policy 3 121 pp. .  Convery F.J. (2009b). Origins and Development of the EU ETS, Environmental and Resource  Economics 43 391 412 pp. .  Cooper P.J.M., J. Dimes, K.P.C. Rao, B. Shapiro, B. Shiferaw, and S. Twomlow (2008). Coping better  with current climatic variability in the rain fed farming systems of sub Saharan Africa: An essential  first step in adapting to future climate change?, Agriculture, Ecosystems & Environment 126 24 35  pp. (DOI: 10.1016/j.agee.2008.01.007), (ISSN: 0167 8809).  Cosbey A. (2004). The Rush to Regionalism: Sustainable Development and Regional/Bilateral  Approaches to Trade and Investment Liberalization. International Institute for Sustainable  Development, Manitoba, Canada. 49 pp. Available at:  http://www.iisd.org/pdf/2005/trade_rush_region.pdf.  Cottier T., and M. Foltea (2006). Constitutional Functions of the WTO and Regional Trade  Agreements. In: Regional Trade Agreements and the WTO Legal System. L. Bartels, F. Ortino, (eds.),  Oxford University Press, pp.43 76(ISBN: 9780199206995).  Cottier T., O. Nartova, and S.Z. Bigdeli (2009). International Trade Regulation and the Mitigation of  Climate Change: World Trade Forum. Cambridge University Press, 456 pp., (ISBN: 9780521766197). .  Criqui P., and S. Mima (2012). European climate energy security nexus: A model based scenario  analysis, Energy Policy 41 827 842 pp. (DOI: 10.1016/j.enpol.2011.11.061), (ISSN: 0301 4215).  Curran L. (2009). Carbon Taxing Imports   Can the North Reduce Global Warming While Avoiding  Negative Economic Implications for the South? Social Science Research Network, Rochester, NY. 18  pp. Available at: http://papers.ssrn.com/abstract=1425421.  D Costa A.P. (1994). State, steel and strength: Structural competitiveness and development in South  Korea, Journal of Development Studies 31 44 81 pp. (DOI: 10.1080/00220389408422348), (ISSN:  0022 0388).      64 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Dantas E. (2011). The evolution of the knowledge accumulation function in the formation of the  Brazilian biofuels innovation system, International Journal of Technology and Globalisation 5 327 340 pp. . Available at: http://inderscience.metapress.com/index/U741552T0333P561.pdf.  Dasappa S. (2011). Potential of biomass energy for electricity generation in sub Saharan Africa,  Energy for Sustainable Development 15 203 213 pp. (DOI: 10.1016/j.esd.2011.07.006), (ISSN: 0973 0826).  Davis S.J., and K. Caldeira (2010). Consumption based accounting of CO2 emissions, Proceedings of  the National Academy of Sciences 107 5687 5692 pp. (DOI: 10.1073/pnas.0906974107).  Davison R., D. Vogel, R. Harris, and N. Jones (2000). Technology leapfrogging in developing  countries   An inevitable luxury?, The Electronic Journal on Information Systems in Developing  Countries 1 1 10 pp. .  Dechezlepretre A., M. Glachant, and Y. Méniere (2013). What Drives the International Transfer of  Climate Change Mitigation Technologies? Empirical Evidence from Patent Data, Environmental and  Resource Economics 54 161 178 pp. (DOI: 10.1007/s10640 012 9592 0), (ISSN: 0924 6460, 1573 1502).  Demailly D., and P. Quirion (2006). CO2 abatement, competitiveness and leakage in the European  cement industry under the EU ETS: grandfathering versus output based allocation, Climate Policy 6  93 113 pp. .  Demailly D., and P. Quirion (2008). European Emission Trading Scheme and competitiveness: A case  study on the iron and steel industry, Energy Economics 30 2009 2027 pp. .  Van Deveer S.D. (2011). Networked Baltic Environmental Cooperation, Journal of Baltic Studies 42  37 55 pp. (DOI: 10.1080/01629778.2011.538516), (ISSN: 0162 9778).  Dietzenbacher E., J. Pei, and C. Yang (2012). Trade, production fragmentation, and China s carbon  dioxide emissions, Journal of Environmental Economics and Management 64 88 101 pp. . Available  at: http://ideas.repec.org/a/eee/jeeman/v64y2012i1p88 101.html.  Dixon R.K., R.M. Scheer, and G.T. Williams (2010). Sustainable energy investments: contributions of  the Global Environment Facility, Mitigation and Adaptation Strategies for Global Change 16 83 102  pp. (DOI: 10.1007/s11027 010 9253 y), (ISSN: 1381 2386, 1573 1596).  Doig A., and M. Adow (2011). Low Carbon Africa: Leapfrogging to a Green Future. Christian Aid. .  Available at: http://www.christianaid.org.uk/resources/policy/climate/low carbon africa.aspx.  Dong Y., and J. Whalley (2010). Carbon, Trade Policy and Carbon Free Trade Areas, The World  Economy 33 1073 1094 pp. (DOI: 10.1111/j.1467 9701.2010.01272.x), (ISSN: 1467 9701).  Dong Y., and J. Whalley (2011). Carbon motivated regional trade arrangements: Analytics and  simulations, Economic Modelling 28 2783 2792 pp. (DOI: 10.1016/j.econmod.2011.08.016), (ISSN:  0264 9993).  Dupuy P. M. (1990). Soft law and the international law of the environment, Michigan Journal of  International Law 12 420 435 pp. .  Easterly W. (1999). Life During Growth, Journal of Economic Growth 4 239 276 pp. (DOI:  10.1023/A:1009882702130), (ISSN: 1381 4338).      65 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Eberhard A., O. Rosnes, M. Shkaratan, and H. Vennemo (2011). Africa s Power Infrastructure:  Investment, Integration, Efficiency. World Bank Publications, Washington, D.C., 352 pp., (ISBN:  9780821384558). .  ECCJ/AEEC (2011). Asia Energy Efficiency and Conservation Collaboration Center. . Available at:  http://www.asiaeec col.eccj.or.jp/.  Economic Consulting Associates (ECA) (2009). The Potential of Regional Power Sector Integration    South African Power Pool (SAPP)   Transmission & Trading Case Study. London, UK. 49 pp. Available  at: http://www.esmap.org/sites/esmap.org/files/BN004 10_REISP CD_South%20African%20Power%20Pool Transmission%20&%20Trading.pdf.  ECOSOC (2008). Trends in South South and Triangular Cooperation: Background Study for the  Development Cooperation Forum. United Nations Economic and Social Council. 58 pp.  ECOWAS (2003). ECOWAS Energy Protocol A/P4/1/03. Economic Commission of West African States  (ECOWAS). 79 pp. Available at:  http://www.comm.ecowas.int/sec/en/protocoles/WA_EC_Protocol_English _DEFINITIF.pdf.  ECOWAS (2006). Regional Initiatives to Scale up Energy Access for Economic and Human  Development Sharing Lessons Learned: The Case of the ECOWAS. Economic Commission of West  African States (ECOWAS). 13 pp. Available at:  http://www.gfse.at/fileadmin/files/Archive/GFSE_6/CEDEAO_Briefing_paper_for_GFSE_final.pdf.  ECPA (2012). Energy and Climate Partnership of the Americas Website. . Available at:  http://ecpamericas.org/.  ECREEE (2012a). The ECOWAS Energy Efficiency Policy (EEEP). ECOWAS Regional Centre for  Renewable Energy and Energy Efficiency, Praia, Cape Verde. 56 pp.  ECREEE (2012b). The ECOWAS Renewable Energy Policy (EREP). ECOWAS Regional Centre for  Renewable Energy and Energy Efficiency, Praia, Cape Verde. 92 pp.  Van Edig A., N. van de Giesen, M. Andreini, and W. Laube (2001). Transboundary, institutional, and  legal aspects of the Water Resources Commission in Ghana in: IHP/OHP Nationalkommittee,  Hydrological Challenges in Transboundary Water Resources Management Sonderheft 12 391 400  pp. . Available at: http://www.glowa.org/de/literaturliste/dateien/aspects_of_wrc_in_ghana.pdf.  EIHP (2007). Report on the Implementation of the Acquis on Renewables in the Energy Community  Contracting Parties. Energy Institute Hrvoje Pozar, Zagreb, Croatia. 1 143 pp.  Ellerman A.D., and B.K. Buchner (2008). Over allocation or abatement? A preliminary analysis of the  EU ETS based on the 2005 06 emissions data, Environmental and Resource Economics 41 267 287  pp. .  Elliott L., and Breslin (Eds.) (2011). Comparative Environmental Regionalism. Routledge, London. .  Available at: http://www.routledge.com/books/details/9780415611435/.  Energy Community (2005). Treaty establishing the Energy Community. . Available at:  http://www.energy community.org/portal/page/portal/ENC_HOME/ENERGY_COMMUNITY/Legal/Treaty.      66 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Energy Community (2008). Report on Renewable Energy Sources   Implementation of the Acquis  under the Energy Community Treaty   State of Play. . Available at: http://www.energy community.org/pls/portal/docs/103814.PDF.  Energy Community (2010). Annual Report on the Implementation of the Acquis under the Treaty  Establishing the Energy Community. Energy Community Secretariat, Vienna, Austria. 7 pp. Available  at: http://www.energy community.org/pls/portal/docs/722178.PDF.  Energy Community (2012). Decision on the Implementation of Directive 2009/28/EC and Amending  Article 20 of the Energy Community Treaty. Available at: http://www.energy community.org/pls/portal/docs/1766219.PDF.  Engels A. (2009). The European Emissions Trading Scheme: An exploratory study of how companies  learn to account for carbon, Accounting, Organizations and Society 34 488 498 pp. (DOI:  10.1016/j.aos.2008.08.005), (ISSN: 0361 3682).  Engels A., L. Knoll, and M. Huth (2008). Preparing for the  real market: national patterns of  institutional learning and company behaviour in the European Emissions Trading Scheme (EU ETS),  European Environment 18 276 297 pp. .  European Commission (1992). Council Directive 92/75/EEC Od 22 September 1992 on the Indication  by Labelling and Standard Product Information of the Consumption of Energy and Other Resources by  Household Appliances. . Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0075:en:HTML.  European Commission (2001). Directive 2001/77/EC of the European Parliament and of the Council  of 27 September 2001 on the Promotion of Electricity from Renewable Energy Sources in the Internal  Electricity Market. . Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:283:0033:0040:EN:PDF.  European Commission (2003). Directive 2003/30/EC of the European Parliament and of the Council  of 8 May 2003 on the Promotion of the Use of Biofuels or Other Renewable Fuels for Transport. .  Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:123:0042:0042:EN:PDF.  European Commission (2008). 20 20 by 2020. Europe s Climate Change Opportunity. European  Commission, Brussels. . Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0030:FIN:EN:PDF.  European Commission (2009a). Directive 2009/31/EC of the European Parliament and of the Council  of 23 April 2009 on the geological storage of carbon dioxide. . Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0031:EN:NOT.  European Commission (2009b). Directive 2009/28/EC of the European Parliament and of the Council  of 23 April 2009 on the promotion of the use of energy from renewable sources. . Available at:  http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT.  European Commission (2010). Directive 2010/30/EU of the European Parliament and of the Council  of 19 May 2010 on the Indication by Labelling and Standard Product Information of the Consumption  of Energy and Other Resources by Energy Related Products. . Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0001:0012:EN:PDF.  European Commission (2011a). SETatWork. . Available at: http://setatwork.eu/index.htm.      67 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  European Commission (2011b). Accompanying the Document REPORT FROM THE COMMISSION TO  THE EUROPEAN PARLIAMENT AND THE COUNCIL PROGRESS TOWARDS ACHIEVING THE KYOTO  OBJECTIVES (required under Article 5 of Decision 280/2004/EC of the European Parliament and of the  Council Concerning a Mechanism for Monitoring Community Greenhouse Gas Emissions and for  Implementing the Kyoto Protocol. Brussels. 26 pp. Available at: http://ec.europa.eu/clima/policies/g gas/docs/sec_2011_1151_en.pdf.  European Commission (2013a). Energy Efficiency and the ETS Study. Directorate General for Internal  Policies, Policy Department A: Economic and Scientific Policy, Brussels, Belgium. . Available at:  http://www.europarl.europa.eu/committees/fr/studiesdownload.html?languageDocument=EN&file =83590.  European Commission (2013b). A 2030 Framework for Climate and Energy Policies (Green Paper).  European Commission, Brussels, Belgium. 16 pp. Available at: http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2013:0169:FIN:EN:PDF.  European Commission (2013c). Report from the Commission to the European Parliament, the  Council, the European Economic and Social Committee and the Committee of the Regions    Renewable Energy Progress Report. Brussels, Belgium. 15 pp. Available at:  http://ec.europa.eu/energy/renewables/reports/doc/com_2013_0175_res_en.pdf.  European Union (2011). The Africa European Union Strategic Partnership, Meeting Current and  Future Challenges together. Luxembourg Publications. Office of the European Union. . Available at:  ISBN 978 92 824 2924doi:10.2860/76071.  Fang Y., and W. Deng (2011). The critical scale and section management of cascade hydropower  exploitation in Southwestern China, Energy 36 5944 5953 pp. (DOI: 10.1016/j.energy.2011.08.022),  (ISSN: 0360 5442).  Fankhauser S., C. Hepburn, and J. Park (2010). Combining multiple climate policy instruments: How  not to do it, Climate Change Economics 01 209 225 pp. (DOI: 10.1142/S2010007810000169), (ISSN:  2010 0078, 2010 0086).  Fankhauser S., F. Sehlleier, and N. Stern (2008). Climate change, innovation and jobs, Climate Policy  8 421 429 pp. .  FAOSTAT (2013). FAOSTAT database. Food and Agriculture Organization of the United Nations. .  Available at: http://faostat.fao.org/.  Fay M., and C. Opal (2000). Urbanization Without Growth: A Not So Uncommon Phenomenon. World  Bank Publications. 30 pp.  Feng K., K. Hubacek, and D. Guan (2009). Lifestyles, technology and CO2 emissions in China: A  regional comparative analysis, Ecological Economics 69 145 154 pp. . Available at:  http://ideas.repec.org/a/eee/ecolec/v69y2009i1p145 154.html.  Flachsland C., R. Marschinski, and O. Edenhofer (2009). Global trading versus linking: Architectures  for international emissions trading, Energy Policy 37 1637 1647 pp. (DOI:  10.1016/j.enpol.2008.12.008), (ISSN: 0301 4215).  Frankel J.A., and A.K. Rose (2005). Is Trade Good or Bad for the Environment? Sorting Out the  Causality, Review of Economics and Statistics 87 85 91 pp. (DOI: 10.1162/0034653053327577),  (ISSN: 0034 6535).      68 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Frondel M., N. Ritter, C.M. Schmidt, and C. Vance (2010). Economic impacts from the promotion of  renewable energy technologies: The German experience, Energy Policy 38 4048 4056 pp. (DOI:  10.1016/j.enpol.2010.03.029), (ISSN: 0301 4215).  Fujiwara N. (2012). Sector Specific Activities as the Driving Force towards a Low Carbon Economy:  From the Asia Pacific Partnership to a Global Partnership. CEPS, Brussles. 12 pp.  Fujiwara N., and C. Egenhofer (2007). Do regional integration approaches hold lessons for climate  change regime formation? The case of differentiated integration in Europe. In: Climate and Trade  Policy: Bottom up Approaches Towards Global Agreement. Edward Elgar, pp.42 69(ISBN:  1847202276).  Van der Gaast W., K. Begg, and A. Flamos (2009). Promoting sustainable energy technology  transfers to developing countries through the CDM, Applied Energy 86 230 236 pp. (DOI:  10.1016/j.apenergy.2008.03.009), (ISSN: 0306 2619).  Gallagher K.S. (2006). Limits to Leapfrogging in Energy Technologies: Evidence from the Chinese  Automobile Industry, Energy Policy 34 383 394 pp. .  Gan J., and C.T. Smith (2011). Drivers for renewable energy: A comparison among OECD countries,  Biomass and Bioenergy 35 4497 4503 pp. (DOI: 10.1016/j.biombioe.2011.03.022), (ISSN: 0961 9534).  Geller H. (2006). Minimum Efficiency Performance Standards, Labels, and Test Procedures for  Refrigerators, Freezers, and Room Air Conditioners in Canada, México, the United States, China, and  Other Developing and Transition Nations. Collaborative Labeling and Appliance Standards Program  (CLASP). 19 pp. Available at:  http://www.clasponline.org/en/Resources/Resources/StandardsLabelingResourceLibrary/2006/~/m edia/Files/SLDocuments/2006 2011/2006 07_MEPSLabelTestProcedureForRefrigeratorsAndFreezers.pdf.  Ghosh M., D. Luo, M.S. Siddiqui, and Y. Zhu (2012). Border tax adjustments in the climate policy  context: CO2 versus broad based GHG emission targeting, Energy Economics 34, Supplement 2  S154 S167 pp. (DOI: 10.1016/j.eneco.2012.09.005), (ISSN: 0140 9883).  Ghosh S., and S. Yamarik (2006). Do Regional Trading Arrangements Harm the Environment? An  Analysis of 162 Countries in 1990, Applied Econometrics and International Development 6 15 36 pp. .  Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1241702.  Glaeser E.L., and M.E. Kahn (2010). The greenness of cities: Carbon dioxide emissions and urban  development, Journal of Urban Economics 67 404 418 pp. (DOI: 10.1016/j.jue.2009.11.006), (ISSN:  0094 1190).  Gökçek M., and M.S. Genç (2009). Evaluation of electricity generation and energy cost of wind  energy conversion systems (WECSs) in Central Turkey, Applied Energy 86 2731 2739 pp. (DOI:  10.1016/j.apenergy.2009.03.025), (ISSN: 0306 2619).  Goldemberg J. (1998). Leapfrog Energy Technologies, Energy Policy 26 729 741 pp. .  González Zeas D., S. Quiroga, A. Iglesias, and L. Garrote (2012). Looking beyond the average  agricultural impacts in defining adaptation needs in Europe, Regional Environmental Change 1 11  pp. (DOI: 10.1007/s10113 012 0388 0), (ISSN: 1436 3798, 1436 378X).      69 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Grimm M., K. Harttgen, S. Klasen, and M. Misselhorn (2008). A Human Development Index by  Income Groups, World Development 36 2527 2546 pp. (DOI: 10.1016/j.worlddev.2007.12.001),  (ISSN: 0305 750X).  Grubb M., and K. Neuhoff (2006). Allocation and competitiveness in the EU emissions trading  scheme: policy overview, Climate Policy 6 7 30 pp. .  Grübler A., X. Bai, T. Buettner, S. Dhakal, D.J. Fisk, T. Ichinose, J.E. Keirstead, G. Sammer, D.  Satterthwaite, N.B. Schulz, N. Shah, J. Steinberger, and H. Weisz (2012). Urban energy systems    Chapter 18. In: The Global Energy Assessment   Toward a Sustainable Future. GEA Writing Team,  (ed.), Cambridge University Press, Cambridge, UK and New York, NY, USA and the International  Institute for Applied Systems Analysis, Vienna, Austria pp.1307 1400(ISBN: ISBN 9781107005198   Hardback, ISBN 9780521182935 Paperback).  Grübler A., and D. Fisk (2012). Energizing Sustainable Cities: Assessing Urban Energy. Routledge,  London, UK, 232 pp., (ISBN: 9781136273629). .  Grübler A., B. O Neill, K. Riahi, V. Chirkov, A. Goujon, P. Kolp, I. Prommer, S. Scherbov, and E.  Slentoe (2007). Regional, national, and spatially explicit scenarios of demographic and economic  change based on SRES, Technological Forecasting and Social Change 74 980 1029 pp. (DOI:  10.1016/j.techfore.2006.05.023), (ISSN: 0040 1625).  Grumbine R.E., J. Dore, and J. Xu (2012). Mekong hydropower: drivers of change and governance  challenges, Frontiers in Ecology and the Environment 10 91 98 pp. (DOI: 10.1890/110146), (ISSN:  1540 9295).  Grunewald N., I. Butzlaff, and S. Klasen (2013). Regional Agreements to Address Climate Change:  Scope, Promise, Funding, and Impacts, Courant Research Centre, Discussion Papers 152 26 pp. .  Guan D., K. Hubacek, C.L. Weber, G.P. Peters, and D.M. Reiner (2008). The drivers of Chinese CO2  emissions from 1980 to 2030, Global Environmental Change 18 626 634 pp. (DOI:  16/j.gloenvcha.2008.08.001), (ISSN: 0959 3780).  Guan D., G.P. Peters, C.L. Weber, and K. Hubacek (2009). Journey to world top emitter: An analysis  of the driving forces of China s recent CO2 emissions surge, Geophysical Research Letters 36 L04709  pp. (DOI: 10.1029/2008GL036540), (ISSN: 0094 8276).  Guzoviæ Z., D. Lonèar, and N. Ferdelji (2010). Possibilities of electricity generation in the Republic of  Croatia by means of geothermal energy, Energy 35 3429 3440 pp. (DOI:  10.1016/j.energy.2010.04.036), (ISSN: 0360 5442).  Haas R., J.M. Glachant, N. Keseric, and Y. Perez (2006). Competition in the continental European  electricity market: despair or work in progress? Elsevier Global Energy Policy and Economics Series.  In: Electricity Market Reform An International Perspective. Elsevier Ltd, pp.265 311(ISBN: 978 0080450308).  Haas R., C. Panzer, G. Resch, M. Ragwitz, G. Reece, and A. Held (2011). A historical review of  promotion strategies for electricity from renewable energy sources in EU countries, Renewable and  Sustainable Energy Reviews 15 1003 1034 pp. (DOI: 10.1016/j.rser.2010.11.015), (ISSN: 1364 0321).  Haddad L., M.T. Ruel, and J.L. Garrett (1999). Are Urban Poverty and Undernutrition Growing?  Some Newly Assembled Evidence, World Development 27 1891 1904 pp. (DOI: 10.1016/S0305 750X(99)00093 5), (ISSN: 0305 750X).      70 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Hailu Y.G. (2012). Measuring and monitoring energy access: Decision support tools for policymakers  in Africa, Energy Policy 47, Supplement 1 56 63 pp. (DOI: 10.1016/j.enpol.2012.03.065), (ISSN: 0301 4215).  Harmelink M., M. Voogt, and C. Cremer (2006). Analysing the effectiveness of renewable energy  supporting policies in the European Union, Energy Policy 34 343 351 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v34y2006i3p343 351.html.  Harttgen K., and S. Klasen (2011). A Human Development Index by Internal Migrational Status,  Journal of Human Development and Capabilities 12 393 424 pp. . Available at:  http://ideas.repec.org/a/taf/jhudca/v12y2011i3p393 424.html.  Haurie A., and M. Vielle (2011). A Metamodel of the Oil Game under Climate Treaties, INFOR:  Information Systems and Operational Research 48 215 228 pp. (DOI: 10.3138/infor.48.4.215).  Hayashi D., N. Müller, S. Feige, and A. Michaelowa (2010). Towards a More Standardised Approach  to Baselines and Additionality under the CDM. UK Department for International Development,  Zurich, Switzerland. 174 pp. Available at: http://r4d.dfid.gov.uk/Output/188945/.  Heggelund G., and I. Buan (2009). China in the Asia Pacific Partnership: consequences for UN  climate change mitigation efforts?, International Environmental Agreements: Politics, Law and  Economics 9 301 317 pp. (DOI: 10.1007/s10784 009 9099 5), (ISSN: 1567 9764).  Held A., R. Haas, and M. Ragwitz (2006). On the success of policy strategies for the promotion of  electricity from renewable energy sources in the EU, Energy and Environment 17 849 868 pp. (ISSN:  0958 305X).  Hepbasli A., and L. Ozgener (2004). Development of geothermal energy utilization in Turkey: a  review, Renewable and Sustainable Energy Reviews 8 433 460 pp. (DOI:  10.1016/j.rser.2003.12.004), (ISSN: 1364 0321).  Hepburn C., M. Grubb, K. Neuhoff, F. Matthes, and M. Tse (2006). Auctioning of EU ETS phase II  allowances: how and why, Climate Policy 6 137 160 pp. .  Heptonstall P. (2007). A review of electricity unit cost estimates, UK Energy Research Centre  Working Paper.  Hiemstra van der Horst G., and A.J. Hovorka (2009). Fuelwood: The  other  renewable energy  source for Africa?, Biomass and Bioenergy 33 1605 1616 pp. (DOI:  10.1016/j.biombioe.2009.08.007), (ISSN: 0961 9534).  Hintermann B. (2010). Allowance price drivers in the first phase of the EU ETS, Journal of  Environmental Economics and Management 59 43 56 pp. .  Holmes P., T. Reilly, and J. Rollo (2011). Border carbon adjustments and the potential for  protectionism, Climate Policy 11 883 900 pp. (DOI: 10.3763/cpol.2009.0071), (ISSN: 1469 3062).  Holzer K. (2010). Proposals on carbon related border adjustments: Prospects for WTO Compliance,  Carbon and Climate Law Review 1 51 64 pp. .  Holzer K., and N. Shariff (2012). The Inclusion of Border Carbon Adjustments in Preferential Trade  Agreements: Policy Implications, Carbon and Climate Law Review 246 260 pp. .      71 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Homma T., K. Akimoto, and T. Tomoda (2012). Quantitative evaluation of time series GHG  emissions by sector and region using consumption based accounting, Energy Policy 51 816 827 pp.  (DOI: 10.1016/j.enpol.2012.09.031), (ISSN: 0301 4215).  Horn H., P.C. Mavroidis, and A. Sapir (2010). Beyond the WTO? An Anatomy of EU and US  Preferential Trade Agreements, The World Economy 33 1565 1588 pp. (DOI: 10.1111/j.1467 9701.2010.01273.x), (ISSN: 1467 9701).  Houghton R.A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from  changes in land use and land management 1850 2000, Tellus B 55 378 390 pp. (DOI:  10.1034/j.1600 0889.2003.01450.x), (ISSN: 1600 0889).  Houghton R. (2012). Carbon emissions and the drivers of deforestation and forest degradation in the  tropics, Current Opinion in Environmental Sustainability 4 597 603 pp. (DOI:  10.1016/j.cosust.2012.06.006), (ISSN: 1877 3435).  Hubacek K., D. Guan, J. Barrett, and T. Wiedmann (2009). Environmental implications of  urbanization and lifestyle change in China: Ecological and Water Footprints, Journal of Cleaner  Production 17 1241 1248 pp. (DOI: 10.1016/j.jclepro.2009.03.011), (ISSN: 0959 6526).  Hubacek K., D. Guan, and A. Barua (2007). Changing lifestyles and consumption patterns in  developing countries: A scenario analysis for China and India, Futures 39 1084 1096 pp. (DOI:  10.1016/j.futures.2007.03.010), (ISSN: 00163287).  Hufbauer G.C., S. Chamowitz, and J. Kim (2010). Global Warming and the World Trading System.,  World Trade Review 9 282 285 pp. (DOI: 10.1017/S1474745609990218).  Hurtt G., L. Chini, S. Frolking, R. Betts, J. Feddema, G. Fischer, J. Fisk, K. Hibbard, R. Houghton, A.  Janetos, C. Jones, G. Kindermann, T. Kinoshita, K.K. Goldewijk, K. Riahi, E. Shevliakova, S. Smith, E.  Stehfest, A. Thomson, P. Thornton, D. Vuuren, and Y. Wang (2011). Harmonization of land use  scenarios for the period 1500 2100: 600 years of global gridded annual land use transitions, wood  harvest, and resulting secondary lands, Climatic Change 109 117 161 pp. . Available at:  http://ideas.repec.org/a/spr/climat/v109y2011i1p117 161.html.  ICA I.C. for A. (2011). Regional Power Status in African Power Pools. African Development Bank,  Tunis Belvédere, Tunisia. 120 pp. Available at:  http://www.icafrica.org/fileadmin/documents/Knowledge/Energy/ICA_RegionalPowerPools_Report. pdf.  IEA (2008). Energy in the Western Balkans. The Path to Reform and Reconstruction. IEA Publications,  Paris, France, 416 pp., (ISBN: 978 92 64 04218 6). .  IEA (2009). World Energy Outlook 2009. International Energy Agency, Paris. . Available at:  http://www.iea.org/publications/freepublications/publication/name,3853,en.html.  IEA (2010a). Energy Technology Perspectives 2010. Scenarios & Strategies to 2050. International  Energy Agency, Paris, France. 706 pp.  IEA (2010b). Energy Poverty: How to Make Modern Energy Access Universal. World Energy Outlook  2010. IEA Publications, Paris, France, 52 pp. Available at:  http://www.iea.org/publications/freepublications/publication/weo2010_poverty.pdf.      72 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  IEA (2010c). Deploying Renewables in Southeast Asia. Trends and Potentials. Paris, France. 159 pp.  Available at: http://www.iea.org/publications/freepublications/publication/name,3907,en.html.  IEA (2010d). CO2 Emissions from Fuel Combustion 2010. Paris, France. 125 pp.  IEA (2011). World Energy Outlook 2011. Organization for Economic Co Operation, 740 pp., (ISBN:  9264124144). .  IEA (2012a). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. 2012 Edition. .  Available at: http://data.iea.org.  IEA (2012b). World Energy Outlook 2012. OECD/IEA, Paris, France. 690 pp. Available at:  http://www.worldenergyoutlook.org/publications/weo 2012/#d.en.26099.  IEA (2012c). World Energy Outlook 2012. International Energy Agency, Paris, France, 690 pp.  Available at: http://www.worldenergyoutlook.org/publications/weo 2012/.  IEA (2013). World Energy Outlook 2013. International Energy Agency, Paris, France, 708 pp. Available  at: http://www.worldenergyoutlook.org/publications/weo 2013/.  IEA, OECD, OPEC, and World Bank (2010). Analysis of the Scope of Energy Subsidies and Suggestions  for the G 20 Initiative. Joint Report Prepared for Submission to the G 20 Summit Toronto (Canada),  26 27 June 2010. Paris, Cannes, France. 81 pp. Available at:  http://www.oecd.org/env/45575666.pdf.  IEA, OECD, OPEC, and World Bank (2011). An Update of the G20 Pittsburgh and Toronto  Commitments.(Prepared for the G20 Meeting of Finance Ministers and Central Bank Governors  (Paris, 14 15 October 2011) and the G20 Summit (Cannes, 3 4 November 2011). Joint Report by IEA,  OPEC, OECD, and World Bank on Fossil Fuel and Other Energy Subsidies. Paris, Cannes, France.  Iglesias A., R. Mougou, M. Moneo, and S. Quiroga (2011a). Towards adaptation of agriculture to  climate change in the Mediterranean, Regional Environmental Change 11 159 166 pp. (DOI:  10.1007/s10113 010 0187 4), (ISSN: 1436 3798).  Iglesias A., S. Quiroga, and A. Diz (2011b). Looking into the future of agriculture in a changing  climate, European Review of Agricultural Economics 38 427 447 pp. (DOI: 10.1093/erae/jbr037),  (ISSN: 0165 1587, 1464 3618).  IIASA (2009). GGI Scenario Database Version 2.0.1. . Available at:  http://www.iiasa.ac.at/Research/GGI/DB.  IIEC Asia (2012). Technical Analysis of Appliance Markets to Support the Pacific Appliance Labeling  and Standards (PALS) Programme. International Institute for Energy Conservation   Asia (IIEC Asia),  Bangkok, Thailand. 8 pp. Available at:  http://www.reeep.org/sites/default/files/Technical%20Analysis%20of%20Appliance%20Markets%20 to%20Support%20PALS%20Programme.pdf.  Ilk l ç C., H. Ayd n, and R. Behçet (2011). The current status of wind energy in Turkey and in the  world, Energy Policy 39 961 967 pp. (DOI: 10.1016/j.enpol.2010.11.021), (ISSN: 0301 4215).  IMF (2013). Energy Subsidy Reform   Lessons and Implications. Washington, D.C. 184 pp.      73 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  IPA, and EPU NTUA (2010). Study on the Implementation of the New EU Renewables Directive in the  Energy Community. Final Report to Energy Community Secretariat. IPA Energy + Water Economics  and EPU NTUA, Edinburgh. 346 pp. Available at: http://www.energy community.org/pls/portal/docs/644177.PDF.  IPCC (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working  Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change  [McCarthy J.J., O.F. Canziani, N.A. Leary, D.J. Dokken, K.S. White (eds)]. Cambridge University Press,  Cambridge, UK, 1042 pp., (ISBN: 0521807689). .  IPCC (2007). Climate Change 2007: Climate Change Impacts, Adaptation, and Vulnerability [M.L.  Parry, O.F. Canziani, J.P. Palutikof, P.J. van Der Linden and C.E. Hanson (eds)]. Cambridge University  Press, Geneva. 976 pp.  IRENA (2013). Southern African Power Pool: Planning and Prospects from Renewable Energy.  International Renewable Energy Agency, Bonn, Germany. 91 pp. Available at:  http://www.irena.org/DocumentDownloads/Publications/SAPP.pdf.  Ismer R., and K. Neuhoff (2007). Border tax adjustment: a feasible way to support stringent  emission trading, European Journal of Law and Economics 24 137 164 pp. (DOI: 10.1007/s10657 007 9032 8), (ISSN: 0929 1261, 1572 9990).  Jakob M., and R. Marschinski (2013). Interpreting trade related CO2 emission transfers, Nature  Climate Change 3 19 23 pp. (DOI: 10.1038/nclimate1630), (ISSN: 1758 678X).  Jarait  J., F. Convery, and C. Di Maria (2010). Transaction costs for firms in the EU ETS: lessons from  Ireland, Climate Policy 10 190 215 pp. (DOI: 10.3763/cpol.2009.0659).  Jetter J., Y. Zhao, K.R. Smith, B. Khan, T. Yelverton, P. DeCarlo, and M.D. Hays (2012). Pollutant  Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and  Implications for Metrics Useful in Setting International Test Standards, Environmental Science &  Technology 46 10827 10834 pp. (DOI: 10.1021/es301693f), (ISSN: 0013 936X).  Jewell J., A. Cherp, V. Vadim, N. Bauer, T. Kober, D. McCollum, D.P. van Vuuren, and B. Van der  Zwaan (2013). Energy Security of China, India, the E.U. and the U.S. Under Long Term Scenarios,  Climate Change Economics.  Johansson D., C. Azar, K. Lindgren, and T.A. Persson (2009). OPEC Strategies and Oil Rent in a  Climate Conscious World, The Energy Journal 30 23 50 pp. .  Johnson F., and F. Lambe (2009). Energy Access, Climate and Development. Stockholm Environment  Institute, Stockholm. 9 pp.  Jones D.W. (1991). How urbanization affects energy use in developing countries, Energy Policy 19  621 630 pp. .  JRC/PBL (2012). European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental  Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR), release  version4.2 FT2010. Available at: http://edgar.jrc.ec.europa.eu.  Jung M. (2006). Host country attractiveness for CDM non sink projects, Energy Policy 34 2173 2184  pp. (DOI: 10.1016/j.enpol.2005.03.014), (ISSN: 0301 4215).      74 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Kahn M.E. (2000). The environmental impact of suburbanization, Journal of Policy Analysis and  Management 19 569 586 pp. (DOI: 10.1002/1520 6688(200023)19:4<569::AID PAM3>3.0.CO;2 P),  (ISSN: 1520 6688).  Karakosta C., S. Dimopoulou, H. Doukas, and J. Psarras (2011). The potential role of renewable  energy in Moldova, Renewable Energy 36 3550 3557 pp. (DOI: 10.1016/j.renene.2011.05.004),  (ISSN: 0960 1481).  Karlsson Vinkhuyzen S.I., and H. van Asselt (2009). Introduction: exploring and explaining the Asia Pacific Partnership on Clean Development and Climate, International Environmental Agreements:  Politics, Law and Economics 9 195 211 pp. (DOI: 10.1007/s10784 009 9103 0), (ISSN: 1567 9764,  1573 1553).  Karp L., and J. Zhao (2010). International Environmental Agreements: Emissions Trade, Safety Valves  and Escape Clauses, Revue économique 61 153 pp. (DOI: 10.3917/reco.611.0153), (ISSN: 0035 2764,  1950 6694).  Kato H. (2004). An Introduction to Regional Environmental Regimes in Asia and the Pacific: The  Present State and Future Prospects, Nagoya University Journal of Law and Politics 202 325 352 pp. .  Katz J.M. (1987). Technology Generation in Latin American Manufacturing Industries. St. Martin s  Press, New York, (ISBN: 0312790023 : 9780312790028). .  Kaufmann R.K., P. Pauly, and J. Sweitzer (1993). The Effects of NAFTA on the Environment, Energy  Journal 14 217 224 pp. .  Kaunda C.S., C.Z. Kimambo, and T.K. Nielsen (2012). Potential of Small Scale Hydropower for  Electricity Generation in Sub Saharan Africa, ISRN Renewable Energy 2012 1 15 pp. (DOI:  10.5402/2012/132606), (ISSN: 2090 746X).  Kautto N., A. Arasto, J. Sijm, and P. Peck (2012). Interaction of the EU ETS and national climate  policy instruments   Impact on biomass use, Biomass and Bioenergy 38 117 127 pp. (DOI:  10.1016/j.biombioe.2011.02.002), (ISSN: 0961 9534).  Kaygusuz K. (2012). Energy for sustainable development: A case of developing countries, Renewable  and Sustainable Energy Reviews 16 1116 1126 pp. (DOI: 10.1016/j.rser.2011.11.013), (ISSN: 1364 0321).  Kellenberg D.K. (2008). A reexamination of the role of income for the trade and environment  debate, Ecological Economics 68 106 115 pp. (DOI: 10.1016/j.ecolecon.2008.02.007), (ISSN: 0921 8009).  Kennedy C., J. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A.  Phdungsilp, A. Ramaswami, and G.V. Mendez (2009). Greenhouse Gas Emissions from Global Cities,  Environ. Sci. Technol. 43 7297 7302 pp. (DOI: 10.1021/es900213p), (ISSN: 0013 936X).  Kettner C., A. Koppl, S.P. Schleicher, and G. Thenius (2008). Stringency and distribution in the EU  Emissions Trading Scheme: first evidence, Climate Policy 8 41 61 pp. .  Keyhani A., M. Ghasemi Varnamkhasti, M. Khanali, and R. Abbaszadeh (2010). An assessment of  wind energy potential as a power generation source in the capital of Iran, Tehran, Energy 35 188 201 pp. (DOI: 10.1016/j.energy.2009.09.009), (ISSN: 0360 5442).      75 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Khennas S. (2012). Understanding the political economy and key drivers of energy access in  addressing national energy access priorities and policies: African Perspective, Energy Policy 47,  Supplement 1 21 26 pp. (DOI: 10.1016/j.enpol.2012.04.003), (ISSN: 0301 4215).  Kim L. (1998). Crisis Construction and Organizational Learning: Capability Building in Catching up at  Hyundai Motor, Organization Science 9 506 521 pp. (DOI: 10.1287/orsc.9.4.506), (ISSN: 1047 7039,  1526 5455).  Klaphake A., and W. Scheumann (2006). Understanding transboundary water cooperation: Evidence  from Africa, Berlin: TU Berlin (Working Paper on Management in Environmental Planning 013) .  Available at: http://www.bahnsysteme.tu berlin.de/fileadmin/a0731/uploads/publikationen/workingpapers/WP_14_2006_Klaphake_Scheuma n_Transboundary_Wat_.pdf.  Klein Goldewijk K., A. Beusen, G. van Drecht, and M. de Vos (2011). The HYDE 3.1 spatially explicit  database of human induced global land use change over the past 12,000 years, Global Ecology and  Biogeography 20 73 86 pp. (DOI: 10.1111/j.1466 8238.2010.00587.x), (ISSN: 1466 8238).  Klein R.J.., S. Huq, F. Denton, T.E. Downing, R.G. Richels, J.B. Robinson, and F.L. Toth (2007). Inter relationships between adaptation and mitigation, Climate Change 200 745 777 pp. .  Kneeland J., C. Barnett, T. Juliani, and W. Knowland (2005). Case Studies of Regional Energy  Cooperation Programs: APEC and ASEAN. USA. 101 pp. Available at:  http://pdf.usaid.gov/pdf_docs/PNADD963.pdf.  Knopf B., Y. H.H. Chen, E. De Cian, H. Förster, A. Kanudia, I. Karkatsouli, I. Keppo, T. Koljonen, K.  Schumacher, and D.P. van Vuuren (2013). Beyond 2020   Strategies and costs for transforming the  European energy system, Climate Change Economics 4 38 pp. .  Kok M., and H. De Coninck (2007). Widening the scope of policies to address climate change:  directions for mainstreaming, Environmental Science & Policy 10 587 599 pp. .  Komori Y. (2010). Evaluating Regional Environmental Governance in Northeast Asia, Asian Affairs:  An American Review 37 1 25 pp. (DOI: 10.1080/00927671003591367), (ISSN: 0092 7678).  Kondo Y., Y. Moriguchi, and H. Shimizu (1998). CO2 emissions in Japan: Influences of imports and  exports, Applied Energy 59 163 174 pp. (DOI: 10.1016/S0306 2619(98)00011 7), (ISSN: 0306 2619).  Kopsakangas Savolainen M., and R. Svento (2013). Promotion of Market Access for Renewable  Energy in the Nordic Power Markets, Environmental and Resource Economics 54 549 569 pp. (DOI:  10.1007/s10640 012 9605 z), (ISSN: 0924 6460, 1573 1502).  Kosnik L. (2010). The potential for small scale hydropower development in the US, Energy Policy 38  5512 5519 pp. (DOI: 10.1016/j.enpol.2010.04.049), (ISSN: 0301 4215).  Krausmann F., H. Schandl, and R.P. Sieferle (2008). Socio ecological regime transitions in Austria  and the United Kingdom, Ecological Economics 65 187 201 pp. (DOI:  10.1016/j.ecolecon.2007.06.009), (ISSN: 0921 8009).  Kuik O., and M. Hofkes (2010). Border adjustment for European emissions trading: Competitiveness  and carbon leakage, Energy Policy 38 1741 1748 pp. (DOI: 10.1016/j.enpol.2009.11.048), (ISSN:  0301 4215).      76 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Kuik O.J., M.B. Lima, and J. Gupta (2011). Energy security in a developing world, Wiley  Interdisciplinary Reviews: Climate Change 2 627 634 pp. (DOI: 10.1002/wcc.118), (ISSN: 1757 7799).  Kumar A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J. M. Devernay, M. Freitas, D. Hall, A.  Killingtveit, and Z. Liu (2011). Hydropower (Chapter 5). In: Renewable Energy Sources and Climate  Change Mitigation   Special Report of the Intergovernmental Panel on Climate Change [O. Edenhofer,  R. Pichs Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G.  Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom  and New York, NY, USA pp.437 496(ISBN: 9781107607101).  Kusre B.C., D.C. Baruah, P.K. Bordoloi, and S.C. Patra (2010). Assessment of hydropower potential  using GIS and hydrological modeling technique in Kopili River basin in Assam (India), Applied Energy  87 298 309 pp. (DOI: 10.1016/j.apenergy.2009.07.019), (ISSN: 0306 2619).  Lalic D., K. Popovski, V. Gecevska, S.P. Vasilevska, and Z. Tesic (2011). Analysis of the opportunities  and challenges for renewable energy market in the Western Balkan countries, Renewable and  Sustainable Energy Reviews 15 3187 3195 pp. (DOI: 10.1016/j.rser.2011.04.011), (ISSN: 1364 0321).  Lall S. (1987). Learning to Industrialize : The Acquisition of Technological Capability by India.  Macmillan, Basingstoke, (ISBN: 0333433750  9780333433751  0333433769  9780333433768). .  Lall S. (1998). Technological Capabilities in Emerging Asia, Oxford Development Studies 26 213 243  pp. .  Lanzi E., J. Chateau, and R. Dellink (2012). Alternative approaches for levelling carbon prices in a  world with fragmented carbon markets, Energy Economics 34, Supplement 2 S240 S250 pp. (DOI:  10.1016/j.eneco.2012.08.016), (ISSN: 0140 9883).  Lawrence P. (2009). Australian climate policy and the Asia Pacific partnership on clean development  and climate (APP). From Howard to Rudd: continuity or change?, International Environmental  Agreements: Politics, Law and Economics 9 281 299 pp. (DOI: 10.1007/s10784 009 9102 1), (ISSN:  1567 9764, 1573 1553).  Lawrence P.J., J.J. Feddema, G.B. Bonan, G.A. Meehl, B.C. O Neill, K.W. Oleson, S. Levis, D.M.  Lawrence, E. Kluzek, K. Lindsay, and P.E. Thornton (2012). Simulating the Biogeochemical and  Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community  Climate System Model (CCSM4) from 1850 to 2100, Journal of Climate 25 3071 3095 pp. (DOI:  10.1175/JCLI D 11 00256.1), (ISSN: 0894 8755, 1520 0442).  Leach G. (1992). The energy transition, Energy Policy 20 116 123 pp. (DOI: 10.1016/0301 4215(92)90105 B), (ISSN: 0301 4215).  Leal Arcas R. (2011). Proliferation of Regional Trade Agreements: Complementing or Supplanting  Multilateralism?, Chicago Journal of International Law 11 597 629 pp. .  Leal Arcas R. (2013). Climate Change Mitigation from the Bottom Up: Using Preferential Trade  Agreements to Promote Climate Change Mitigation, Carbon and Climate Law Review 34 42 pp. .  Lecuyer O., and P. Quirion (2013). Can uncertainty justify overlapping policy instruments to mitigate  emissions?, Ecological Economics 93 177 191 pp. (DOI: 10.1016/j.ecolecon.2013.05.009), (ISSN:  0921 8009).      77 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Lee K. (2005). Making a Technological Catch Up: Barriers and Opportunities, Asian Journal of  Technology Innovation 13 97 131 pp. .  Lee K., and C. Kim (2001). Technological Regimes, Catching Up, and Leapfrogging: Findings from the  Korean Industries, Research Policy 30 459 483 pp. .  Lema A., and K. Ruby (2007). Between fragmented authoritarianism and policy coordination:  Creating a Chinese market for wind energy, Energy Policy 35 3879 3890 pp. (DOI:  10.1016/j.enpol.2007.01.025), (ISSN: 0301 4215).  Lenzen M. (1998). Primary energy and greenhouse gases embodied in Australian final consumption:  an input output analysis, Energy Policy 26 495 506 pp. (DOI: 10.1016/S0301 4215(98)00012 3),  (ISSN: 0301 4215).  Lenzen M., D. Moran, K. Kanemoto, B. Foran, L. Lobefaro, and A. Geschke (2012). International  trade drives biodiversity threats in developing nations, Nature 486 109 112 pp. (DOI:  10.1038/nature11145), (ISSN: 0028 0836).  Lewis J.I. (2007). Technology Acquisition and Innovation in the Developing World: Wind Turbine  Development in China and India, Studies in Comparative International Development 42 208 232 pp. .  Lewis J.I. (2011). Building a National Wind Turbine Industry: Experiences from China, India and South  Korea, International Journal of Technology and Globalisation 5 281 305 pp. .  Lewis J.I. (2012). Green Innovation in China: China s Wind Power Industry and the Global Transition  to a Low Carbon Economy. Columbia University Press, New York.  Liao H., Y. Fan, and Y. M. Wei (2007). What induced China s energy intensity to fluctuate: 1997 2006?, Energy Policy 35 4640 4649 pp. (DOI: 10.1016/j.enpol.2007.03.028), (ISSN: 0301 4215).  Liddle B., and S. Lung (2010). Age structure, urbanization, and climate change in developed  countries: revisiting STIRPAT for disaggregated population and consumption related environmental  impacts, Population and Environment 31 317 343 pp. (DOI: 10.1007/s11111 010 0101 5), (ISSN:  0199 0039, 1573 7810).  Lim S., and L.K. Teong (2010). Recent trends, opportunities and challenges of biodiesel in Malaysia:  An overview, Renewable and Sustainable Energy Reviews 14 938 954 pp. (DOI:  10.1016/j.rser.2009.10.027), (ISSN: 1364 0321).  Lim S.S., T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair Rohani, M.A. AlMazroa, M. Amann,  H.R. Anderson, K.G. Andrews, M. Aryee, C. Atkinson, L.J. Bacchus, A.N. Bahalim, K. Balakrishnan, J.  Balmes, S. Barker Collo, A. Baxter, M.L. Bell, J.D. Blore, F. Blyth, C. Bonner, G. Borges, R. Bourne,  M. Boussinesq, M. Brauer, P. Brooks, N.G. Bruce, B. Brunekreef, C. Bryan Hancock, C. Bucello, R.  Buchbinder, F. Bull, R.T. Burnett, T.E. Byers, B. Calabria, J. Carapetis, E. Carnahan, Z. Chafe, F.  Charlson, H. Chen, J.S. Chen, A.T. A. Cheng, J.C. Child, A. Cohen, K.E. Colson, B.C. Cowie, S. Darby,  S. Darling, A. Davis, L. Degenhardt, F. Dentener, D.C. Des Jarlais, K. Devries, M. Dherani, E.L. Ding,  E.R. Dorsey, T. Driscoll, K. Edmond, S.E. Ali, R.E. Engell, P.J. Erwin, S. Fahimi, G. Falder, F. Farzadfar,  A. Ferrari, M.M. Finucane, S. Flaxman, F.G.R. Fowkes, G. Freedman, M.K. Freeman, E. Gakidou, S.  Ghosh, E. Giovannucci, G. Gmel, K. Graham, R. Grainger, B. Grant, D. Gunnell, H.R. Gutierrez, W.  Hall, H.W. Hoek, A. Hogan, H.D. Hosgood III, D. Hoy, H. Hu, B.J. Hubbell, S.J. Hutchings, S.E.  Ibeanusi, G.L. Jacklyn, R. Jasrasaria, J.B. Jonas, H. Kan, J.A. Kanis, N. Kassebaum, N. Kawakami, Y. H. Khang, S. Khatibzadeh, J. P. Khoo, C. Kok, F. Laden, R. Lalloo, Q. Lan, T. Lathlean, J.L. Leasher, J.  Leigh, Y. Li, J.K. Lin, S.E. Lipshultz, S. London, R. Lozano, Y. Lu, J. Mak, R. Malekzadeh, L. Mallinger,      78 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  W. Marcenes, L. March, R. Marks, R. Martin, P. McGale, J. McGrath, S. Mehta, Z.A. Memish, G.A.  Mensah, T.R. Merriman, R. Micha, C. Michaud, V. Mishra, K.M. Hanafiah, A.A. Mokdad, L.  Morawska, D. Mozaffarian, T. Murphy, M. Naghavi, B. Neal, P.K. Nelson, J.M. Nolla, R. Norman, C.  Olives, S.B. Omer, J. Orchard, R. Osborne, B. Ostro, A. Page, K.D. Pandey, C.D. Parry, E. Passmore,  J. Patra, N. Pearce, P.M. Pelizzari, M. Petzold, M.R. Phillips, D. Pope, C.A. Pope III, J. Powles, M.  Rao, H. Razavi, E.A. Rehfuess, J.T. Rehm, B. Ritz, F.P. Rivara, T. Roberts, C. Robinson, J.A.  Rodriguez Portales, I. Romieu, R. Room, L.C. Rosenfeld, A. Roy, L. Rushton, J.A. Salomon, U.  Sampson, L. Sanchez Riera, E. Sanman, A. Sapkota, S. Seedat, P. Shi, K. Shield, R. Shivakoti, G.M.  Singh, D.A. Sleet, E. Smith, K.R. Smith, N.J. Stapelberg, K. Steenland, H. Stöckl, L.J. Stovner, K.  Straif, L. Straney, G.D. Thurston, J.H. Tran, R. Van Dingenen, A. van Donkelaar, J.L. Veerman, L.  Vijayakumar, R. Weintraub, M.M. Weissman, R.A. White, H. Whiteford, S.T. Wiersma, J.D.  Wilkinson, H.C. Williams, W. Williams, N. Wilson, A.D. Woolf, P. Yip, J.M. Zielinski, A.D. Lopez, C.J.  Murray, and M. Ezzati (2012). A comparative risk assessment of burden of disease and injury  attributable to 67 risk factors and risk factor clusters in 21 regions, 1990 2010: a systematic analysis  for the Global Burden of Disease Study 2010, The Lancet 380 2224 2260 pp. (DOI: 10.1016/S0140 6736(12)61766 8), (ISSN: 0140 6736).  Lindner S., Z. Liu, D. Guan, Y. Geng, and X. Li (2013). CO2 emissions from China s power sector at the  provincial level: Consumption versus production perspectives, Renewable and Sustainable Energy  Reviews 19 164 172 pp. (DOI: 10.1016/j.rser.2012.10.050), (ISSN: 1364 0321).  Liniger H.P., R. Mekdaschi Studer, C. Hauert, and M. Gurtner (2011). Sustainable Land Management  in Practice   Guidelines and Best Practices for Sub Saharan Africa. TerrAfrica, World Overview of  Conservation Approaches and Technologies (WOCAT) and Food and Agriculture Organization of the  United Nations (FAO), Rome, Italy. 240 pp.  Liu Z., Y. Geng, S. Lindner, and D. Guan (2012a). Uncovering China s greenhouse gas emission from  regional and sectoral perspectives, Energy 45 1059 1068 pp. (DOI: 10.1016/j.energy.2012.06.007),  (ISSN: 0360 5442).  Liu Z., Y. Geng, S. Lindner, H. Zhao, T. Fujita, and D. Guan (2012b). Embodied energy use in China s  industrial sectors, Energy Policy 49 751 758 pp. (DOI: 10.1016/j.enpol.2012.07.016), (ISSN: 0301 4215).  Lobell D.B., M.B. Burke, C. Tebaldi, M.D. Mastrandrea, W.P. Falcon, and R.L. Naylor (2008).  Prioritizing Climate Change Adaptation Needs for Food Security in 2030, Science 319 607 610 pp.  (DOI: 10.1126/science.1152339), (ISSN: 0036 8075, 1095 9203).  Locatelli B., V. Evans, A. Wardell, A. Andrade, and R. Vignola (2011). Forests and Climate Change in  Latin America: Linking Adaptation and Mitigation, Forests 2 431 450 pp. .  Lockwood B., and J. Whalley (2010). Carbon motivated Border Tax Adjustments: Old Wine in Green  Bottles?, World Economy 33 810 819 pp. (DOI: 10.1111/j.1467 9701.2010.01285.x), (ISSN: 1467 9701).  Lohmann L. (2011). The Endless Algebra of Climate Markets, Capitalism Nature Socialism 22 93 116  pp. (DOI: 10.1080/10455752.2011.617507), (ISSN: 1045 5752).  Lopes de Souza T., and L. Hasenclever (2011). The Brazilian system of innovation for bioethanol: a  case study on the strategic role of the standardisation process, International Journal of Technology  and Globalisation 5 341 356 pp. . Available at:  http://inderscience.metapress.com/index/CQV184045T5380J4.pdf.      79 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Ma C., and D.I. Stern (2008). China s changing energy intensity trend: A decomposition analysis,  Energy Economics 30 1037 1053 pp. (DOI: 10.1016/j.eneco.2007.05.005), (ISSN: 0140 9883).  Managi S., A. Hibiki, and T. Tsurumi (2009). Does trade openness improve environmental quality?,  Journal of Environmental Economics and Management 58 346 363 pp. (DOI:  10.1016/j.jeem.2009.04.008), (ISSN: 0095 0696).  Marcotullio P.J., and N.B. Schulz (2007). Comparison of Energy Transitions in the United States and  Developing and Industrializing Economies, World Development 35 1650 1683 pp. (DOI:  10.1016/j.worlddev.2006.11.006), (ISSN: 0305 750X).  Marrison C.I., and E.D. Larson (1996). A preliminary analysis of the biomass energy production  potential in Africa in 2025 considering projected land needs for food production, Biomass and  Bioenergy 10 337 351 pp. (DOI: 10.1016/0961 9534(95)00122 0), (ISSN: 0961 9534).  Martínez Zarzoso I., and A. Maruotti (2011). The impact of urbanization on CO2 emissions: Evidence  from developing countries, Ecological Economics 70 1344 1353 pp. (DOI:  10.1016/j.ecolecon.2011.02.009), (ISSN: 0921 8009).  Mathews J.A. (2007). Biofuels: What a Biopact between North and South could achieve, Energy  Policy 35 3550 3570 pp. (DOI: 10.1016/j.enpol.2007.02.011), (ISSN: 0301 4215).  McCollum D., N. Bauer, K. Calvin, A. Kitous, and K. Riahi (2013). Fossil resource and energy security  dynamics in conventional and carbon constrained worlds, Climatic Change 1 14 pp. (DOI:  10.1007/s10584 013 0939 5), (ISSN: 0165 0009, 1573 1480).  McGee J., and R. Taplin (2009). The role of the Asia Pacific Partnership in discursive contestation of  the international climate regime, International Environmental Agreements: Politics, Law and  Economics 9 213 238 pp. (DOI: 10.1007/s10784 009 9101 2), (ISSN: 1567 9764, 1573 1553).  Mee L.D., H.T. Dublin, and A.A. Eberhard (2008). Evaluating the Global Environment Facility: A  goodwill gesture or a serious attempt to deliver global benefits?, Global Environmental Change 18  800 810 pp. (DOI: 10.1016/j.gloenvcha.2008.07.005), (ISSN: 0959 3780).  Meinshausen M., S. Smith, K. Calvin, J. Daniel, M. Kainuma, J. F. Lamarque, K. Matsumoto, S.  Montzka, S. Raper, K. Riahi, A. Thomson, G. Velders, and D.P. van Vuuren (2011). The RCP  greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change 109 213 241 pp. (DOI: 10.1007/s10584 011 0156 z), (ISSN: 0165 0009).  Michaelis L. (2003). Sustainable consumption and greenhouse gas mitigation, Climate Policy 3,  Supplement 1 S135 S146 pp. (DOI: 10.1016/j.clipol.2003.10.012), (ISSN: 1469 3062).  Michaelowa A., and F. Jotzo (2005). Transaction costs, institutional rigidities and the size of the  clean development mechanism, Energy Policy 33 511 523 pp. (DOI: 10.1016/j.enpol.2003.08.016),  (ISSN: 0301 4215).  Mihajlov A. (2010). Opportunities and challenges for a sustainable energy policy in SE Europe: SE  European Energy Community Treaty, Renewable and Sustainable Energy Reviews 14 872 875 pp.  (DOI: 10.1016/j.rser.2009.10.026), (ISSN: 1364 0321).  Minx J.C., G. Baiocchi, G.P. Peters, C.L. Weber, D. Guan, and K. Hubacek (2011). A  Carbonizing  Dragon : China s Fast Growing CO2 Emissions Revisited, Environmental Science & Technology 45  9144 9153 pp. (DOI: 10.1021/es201497m), (ISSN: 0013 936X).      80 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Montgomery W.D. (1972). Markets in licenses and efficient pollution control programs, Journal of  Economic Theory 5 395 418 pp. (DOI: 10.1016/0022 0531(72)90049 X), (ISSN: 0022 0531).  Munzhedzi R., and A.B. Sebitosi (2009). Redrawing the solar map of South Africa for photovoltaic  applications, Renewable Energy 34 165 169 pp. (DOI: 10.1016/j.renene.2008.03.023), (ISSN: 0960 1481).  NAEWG (2002). North American Energy Efficiency Standards and Labeling. . Available at:  www.eere.energy.gov/buildings/appliance_standards.  Nakicenovic N., and R. Swart (2000). Special Report on Emissions Scenarios: A Special Report of  Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press,  Cambridge, UK, 612 pp., (ISBN: 0521804930). .  Nansai K., R. Inaba, S. Kagawa, and Y. Moriguchi (2008). Identifying common features among  household consumption patterns optimized to minimize specific environmental burdens, Journal of  Cleaner Production 538 548 pp. (DOI: 10.1016/j.jclepro.2007.01.008).  Nazifi F. (2010). The price impacts of linking the European Union Emissions Trading Scheme to the  Clean Development Mechanism, Environmental Economics and Policy Studies 12 164 186 pp. .  Nepstad D.C., W. Boyd, C.M. Stickler, T. Bezerra, and A.A. Azevedo (2013). Responding to climate  change and the global land crisis: REDD+, market transformation and low emissions rural  development, Philosophical Transactions of the Royal Society B: Biological Sciences 368 (DOI:  10.1098/rstb.2012.0167), (ISSN: 0962 8436, 1471 2970).  Neuhoff K. (2011). Climate Policy after Copenhagen. Cambridge University Press. . Available at:  http://ideas.repec.org/b/cup/cbooks/9781107008939.html.  Neuhoff K., A. Schopp, R. Boyd, K. Stelmakh, and A. Vasa (2012). Banking of Surplus Emissions  Allowances: Does the Volume Matter? Social Science Research Network, Rochester, NY. 23 pp.  Available at: http://papers.ssrn.com/abstract=2021733.  Nguon P., and D. Kulakowski (2013). Natural forest disturbances and the design of REDD+ initiatives,  Environmental Science & Policy 33 332 345 pp. (DOI: 10.1016/j.envsci.2013.04.011), (ISSN: 1462 9011).  Nkem J., F.B. Kalame, M. Idinoba, O.A. Somorin, O. Ndoye, and A. Awono (2010). Shaping forest  safety nets with markets: Adaptation to climate change under changing roles of tropical forests in  Congo Basin, Environmental Science & Policy 13 498 508 pp. .  Nyatichi Omambi A., C. Shemsanga, and I. Sanchez (2012). Climate Change Impacts, Vulnerability,  and Adaptation in East Africa (EA) and South America (SA). In: Handbook of Climate Change  Mitigation. W. Y. Chen, J. Seiner, T. Suzuki, M. Lackner, (eds.), Springer US, pp.571 620(ISBN: 978 1 4419 7990 2, 978 1 4419 7991 9).  O Neill B.C., M. Dalton, R. Fuchs, L. Jiang, S. Pachauri, and K. Zigova (2010). Global demographic  trends and future carbon emissions, Proceedings of the National Academy of Sciences 107 17521 17526 pp. (DOI: 10.1073/pnas.1004581107), (ISSN: 0027 8424, 1091 6490).  O Neill B.C., X. Ren, L. Jiang, and M. Dalton (2012). The effect of urbanization on energy use in India  and China in the iPETS model, Energy Economics 34, Supplement 3 S339 S345 pp. (DOI:  10.1016/j.eneco.2012.04.004), (ISSN: 0140 9883).      81 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Ockwell D.G., J. Watson, G. MacKerron, P. Pal, and F. Yamin (2008). Key policy considerations for  facilitating low carbon technology transfer to developing countries, Energy Policy 36 4104 4115 pp.  (DOI: 10.1016/j.enpol.2008.06.019), (ISSN: 0301 4215).  OECD (2007). Environment and Regional Trade Agreements. 230 pp., (ISBN: 9789264006652). .  OECD (2011a). Interactions between Emission Trading Systems and Other Overlapping Policy  Instruments. Paris, France. 15 pp. Available at: http://www.oecd.org/env/tools evaluation/Interactions%20between%20Emission%20Trading%20Systems%20and%20Other%20Ove rlapping%20Policy%20Instruments.pdf.  OECD (2011b). OECD Science, Technology and Industry Scoreboard 2011: Innovation and Growth in  Knowledge Economies. . Available at:  http://www.oecd.org/document/10/0,3746,en_2649_33703_39493962_1_1_1_1,00.html.  OECD (2012). Inventory of Estimated Budgetary Support and Tax Expenditures for Fossil Fuels 2013.  Okazaki T., and M. Yamaguchi (2011). Accelerating the transfer and diffusion of energy saving  technologies steel sector experience Lessons learned, Energy Policy 39 1296 1304 pp. (DOI:  10.1016/j.enpol.2010.12.001), (ISSN: 0301 4215).  Okubo Y., and A. Michaelowa (2010). Effectiveness of subsidies for the Clean Development  Mechanism: Past experiences with capacity building in Africa and LDCs, Climate and Development 2  30 49 pp. (DOI: 10.3763/cdev.2010.0032), (ISSN: 17565529, 17565537).  Oleschak R., and U. Springer (2007). Measuring host country risk in CDM and JI projects: a  composite indicator, Climate Policy 7 470 487 pp. .  Osmani D., and R.S.J. Tol (2010). The Case of two Self Enforcing International Agreements for  Environmental Protection with Asymmetric Countries, Computational Economics 36 93 119 pp.  (DOI: DOI: 10.1007/s10614 010 9232 0).  Pachauri S., A. Brew Hammond, D.F. Barnes, D.H. Bouille, S. Gitonga, V. Modi, G. Prasad, A. Rath,  and H. Zerriffi (2012). Chapter 19: Energy Access for Development. In: Global Energy Assessment    Toward a Sustainable Future. Cambridge University Press and the International Institute for Applied  Systems Analysis, Cambridge, UK; New York, NY, USA; Laxenburg, Austria pp.1401 1458. Available  at: http://www.iiasa.ac.at/web/home/research/Flagship Projects/Global Energy Assessment/Chapte19.en.html.  Pachauri S., B.J. van Ruijven, Y. Nagai, K. Riahi, D.P. van Vuuren, A. Brew Hammond, and N.  Nakicenovic (2013). Pathways to achieve universal household access to modern energy by 2030,  Environmental Research Letters 8 024015 pp. (DOI: 10.1088/1748 9326/8/2/024015), (ISSN: 1748 9326).  Pahl Wostl C., L. Lebel, C. Knieper, and E. Nikitina (2012). From applying panaceas to mastering  complexity: Toward adaptive water governance in river basins, Environmental Science & Policy 23  24 34 pp. (DOI: 10.1016/j.envsci.2012.07.014), (ISSN: 1462 9011).  Pan Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, S.L.  Lewis, J.G. Canadell, P. Ciais, R.B. Jackson, S.W. Pacala, A.D. McGuire, S. Piao, A. Rautiainen, S.  Sitch, and D. Hayes (2011). A Large and Persistent Carbon Sink in the World s Forests, Science 333  988 993 pp. (DOI: 10.1126/science.1201609), (ISSN: 0036 8075, 1095 9203).      82 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Parikh J., and V. Shukla (1995). Urbanization, energy use and greenhouse effects in economic  development: Results from a cross national study of developing countries, Global Environmental  Change 5 87 103 pp. (DOI: 10.1016/0959 3780(95)00015 G), (ISSN: 0959 3780).  Parry M.., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer (2004). Effects of climate change  on global food production under SRES emissions and socio economic scenarios, Global  Environmental Change 14 53 67 pp. (DOI: 10.1016/j.gloenvcha.2003.10.008), (ISSN: 0959 3780).  Patlitzianas K.D., A.G. Kagiannas, D.T. Askounis, and J. Psarras (2005). The policy perspective for  RES development in the new member states of the EU, Renewable Energy 30 477 492 pp. (DOI:  10.1016/j.renene.2004.07.012), (ISSN: 0960 1481).  Patlitzianas K., and K. Karagounis (2011). The progress of RES environment in the most recent  member states of the EU, Renewable Energy 36 429 436 pp. (DOI: 10.1016/j.renene.2010.08.032),  (ISSN: 0960 1481).  Perkins R. (2003). Environmental leapfrogging in developing countries: A critical assessment and  reconstruction, Natural Resources Forum 27 177 188 pp. (DOI: 10.1111/1477 8947.00053), (ISSN:  1477 8947).  Perkins R., and E. Neumayer (2009). Transnational linkages and the spillover of environment efficiency into developing countries, Global Environmental Change 19 375 383 pp. (DOI:  10.1016/j.gloenvcha.2009.05.003), (ISSN: 0959 3780).  Perkins R., and E. Neumayer (2012). Do recipient country characteristics affect international  spillovers of CO2 efficiency via trade and foreign direct investment?, Climatic Change 112 469 491  pp. (DOI: 10.1007/s10584 011 0204 8), (ISSN: 0165 0009, 1573 1480).  Persson T.A., C. Azar, D. Johansson, and K. Lindgren (2007). Major oil exporters may profit rather  than lose, in a carbon constrained world, Energy Policy 35 6346 6353 pp. (DOI:  10.1016/j.enpol.2007.06.027), (ISSN: 0301 4215).  Peters G.P. (2008). From production based to consumption based national emission inventories,  Ecological Economics 65 13 23 pp. (DOI: 16/j.ecolecon.2007.10.014), (ISSN: 0921 8009).  Peters G.P., R.M. Andrew, T. Boden, J.G. Canadell, P. Ciais, C. Le Quéré, G. Marland, M.R. Raupach,  and C. Wilson (2013). The challenge to keep global warming below 2 °C, Nature Climate Change 3 4 6 pp. (DOI: 10.1038/nclimate1783), (ISSN: 1758 678X).  Peters G.P., S. Davis, and R.M. Andrew (2012a). A synthesis of carbon in international trade,  Biogeosciences 9 (DOI: 10.5194/bgd 9 3949 2012).  Peters G.P., and E.G. Hertwich (2006). Pollution embodied in trade: The Norwegian case, Global  Environmental Change 16 379 387 pp. (DOI: 10.1016/j.gloenvcha.2006.03.001), (ISSN: 0959 3780).  Peters G.P., and E.G. Hertwich (2008). CO2 Embodied in International Trade with Implications for  Global Climate Policy, Environmental Science & Technology 42 1401 1407 pp. (DOI:  10.1021/es072023k), (ISSN: 0013 936X).  Peters G.P., G. Marland, C.L. Quéré, T. Boden, J.G. Canadell, and M.R. Raupach (2012b). Rapid  growth in CO2 emissions after the 2008 2009 global financial crisis, Nature Climate Change 2 2 4 pp.  (DOI: 10.1038/nclimate1332), (ISSN: 1758 678X).      83 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Peters G.P., J.C. Minx, C.L. Weber, and O. Edenhofer (2011). Growth in emission transfers via  international trade from 1990 to 2008, Proceedings of the National Academy of Sciences 108 8903 8908 pp. (DOI: 10.1073/pnas.1006388108).  Peters G.P., C.L. Weber, D. Guan, and K. Hubacek (2007). China s growing CO2 emissions a race  between increasing consumption and efficiency gains, Environmental science & technology 41 5939 5944 pp. (ISSN: 0013 936X).  Philippine Department of Energy Portal (2014). Official Website of the Phillipine Department of  Energy. . Available at: http://www.doe.gov.ph/.  Pongratz J., C.H. Reick, T. Raddatz, and M. Claussen (2009). Effects of anthropogenic land cover  change on the carbon cycle of the last millennium, Global Biogeochemical Cycles 23 13 PP. pp. (DOI:  200910.1029/2009GB003488).  Poocharoen O., and B.K. Sovacool (2012). Exploring the challenges of energy and resources network  governance, Energy Policy 42 409 418 pp. (DOI: 10.1016/j.enpol.2011.12.005), (ISSN: 0301 4215).  Popp A., S.K. Rose, K. Calvin, D.P.V. Vuuren, J.P. Dietrich, M. Wise, E. Stehfest, F. Humpenöder, P.  Kyle, J.V. Vliet, N. Bauer, H. Lotze Campen, D. Klein, and E. Kriegler (2013). Land use transition for  bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with  other land use based mitigation options, Climatic Change 1 15 pp. (DOI: 10.1007/s10584 013 0926 x), (ISSN: 0165 0009, 1573 1480).  Poumanyvong P., and S. Kaneko (2010). Does urbanization lead to less energy use and lower CO2  emissions? A cross country analysis, Ecological Economics 70 434 444 pp. (DOI:  10.1016/j.ecolecon.2010.09.029), (ISSN: 0921 8009).  Poumanyvong P., S. Kaneko, and S. Dhakal (2012). Impacts of Urbanization on National Residential  Energy Use and CO2 Emissions: Evidence from Low , Middle  and High Income Countries. Hiroshima  University, Graduate School for International Development and Cooperation (IDEC). . Available at:  http://ideas.repec.org/p/hir/idecdp/2 5.html.  Pueyo A., R. García, M. Mendiluce, and D. Morales (2011). The role of technology transfer for the  development of a local wind component industry in Chile, Energy Policy 39 4274 4283 pp. (DOI:  10.1016/j.enpol.2011.04.045), (ISSN: 0301 4215).  Le Quéré C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters,  G. van der Werf, A. Ahlström, R.M. Andrew, L. Bopp, J.G. Canadell, P. Ciais, S.C. Doney, C. Enright,  P. Friedlingstein, C. Huntingford, A.K. Jain, C. Jourdain, E. Kato, R.F. Keeling, K. Klein Goldewijk, S.  Levis, P. Levy, M. Lomas, B. Poulter, M.R. Raupach, J. Schwinger, S. Sitch, B.D. Stocker, N. Viovy, S.  Zaehle, and N. Zeng (2012). The global carbon budget 1959 2011, Earth System Science Data  Discussions 5 1107 1157 pp. (DOI: 10.5194/essdd 5 1107 2012), (ISSN: 1866 3591).  Le Quéré C., M.R. Raupach, J.G. Canadell, G.M. et Al, C.L.Q. et Al, G. Marland, L. Bopp, P. Ciais, T.J.  Conway, S.C. Doney, R.A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R.A. Houghton, J.I. House, C.  Huntingford, P.E. Levy, M.R. Lomas, J. Majkut, N. Metzl, J.P. Ometto, G.P. Peters, I.C. Prentice, J.T.  Randerson, S.W. Running, J.L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G.R. van der  Werf, and F.I. Woodward (2009). Trends in the sources and sinks of carbon dioxide, Nature  Geoscience 2 831 836 pp. (DOI: 10.1038/ngeo689), (ISSN: 1752 0894).  Ragwitz M., S. Steinhilber, G. Resch, C. Panzer, A. Ortner, S. Busch, M. Rathmann, C. Klessmann, C.  Nabe, I. Lovinfosse de, K. Neuhoff, R. Boyd, M. Junginger, R. Hoefnagels, N. Cusumano, A.      84 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Lorenzoni, J. Burgers, M. Boots, I. Konstantinaviciute, and B. Weöres (2012). RE Shaping: Shaping  an Effective and Efficient European Renewable Energy Market. Karlsruhe, Germany. . Available at:  http://www.reshaping res policy.eu/downloads/Final report RE Shaping_Druck_D23.pdf.  Ravallion M. (2002). On the urbanization of poverty, Journal of Development Economics 68 435 442  pp. (DOI: 10.1016/S0304 3878(02)00021 4), (ISSN: 0304 3878).  Rehman I.H., A. Kar, M. Banerjee, P. Kumar, M. Shardul, J. Mohanty, and I. Hossain (2012).  Understanding the political economy and key drivers of energy access in addressing national energy  access priorities and policies, Energy Policy 47, Supplement 1 27 37 pp. (DOI:  10.1016/j.enpol.2012.03.043), (ISSN: 0301 4215).  Reilly J., P.H. Stone, C.E. Forest, M.D. Webster, H.D. Jacoby, and R.G. Prinn (2001). Uncertainty and  Climate Change Assessments, Science 293 430 433 pp. (DOI: 10.1126/science.1062001), (ISSN: 0036 8075, 1095 9203).  Renner S. (2009). The Energy Community of Southeast Europe: A neo functionalist project of  regional integration, European Integration online Papers (EIoP) 13 (ISSN: 1027 5193).  Del Río P. (2010). Analysing the interactions between renewable energy promotion and energy  efficiency support schemes: The impact of different instruments and design elements, Energy Policy  38 4978 4989 pp. (DOI: 10.1016/j.enpol.2010.04.003), (ISSN: 0301 4215).  Rowlands I.H. (2005). The European directive on renewable electricity: conflicts and compromises,  Energy Policy 33 965 974 pp. (DOI: 10.1016/j.enpol.2003.10.019), (ISSN: 0301 4215).  Ru P., Q. Zhi, F. Zhang, X. Zhong, J. Li, and J. Su (2012). Behind the development of technology: The  transition of innovation modes in China s wind turbine manufacturing industry, Energy Policy 43 58 69 pp. (DOI: 10.1016/j.enpol.2011.12.025), (ISSN: 0301 4215).  Van Ruijven B.J., D.P. van Vuuren, J. van Vliet, A. Mendoza Beltran, S. Deetman, and M.G.J. den  Elzen (2012). Implications of greenhouse gas emission mitigation scenarios for the main Asian  regions, Energy Economics 34, Supplement 3 S459 S469 pp. (DOI: 10.1016/j.eneco.2012.03.013),  (ISSN: 0140 9883).  Sathaye J., Lucon, A. Rahman, J. Christensen, F. Denton, J. Fujino, G. Heath, S. Kadner, M. Mirza, H.  Rudnick, A. Schlaepfer, and A. Shmakin (2011). Renewable Energy in the Context of Sustainable  Development. In: Renewable Energy Sources and Climate Change Mitigation   Special Report of the  Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth,  P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)].  Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA(ISBN:  9781107607101).  Sathaye J., W. Makundi, L. Dale, P. Chan, and K. Andrasko (2005). Generalized Comprehensive  Mitigation Assessment Process (GCOMAP): A Dynamic Partial Equilibrium Model for. U.S.  Environmental Protection Agency, Washington, D.C. 93 pp. Available at:  http://eetd.lbl.gov/sites/all/files/lbnl 58291.pdf.  Schäfer W. (2009). Some Talk, No Action (Yet): Interdependence, Domestic Interests and  Hierarchical EU Governance in Climate Policy, Swiss Political Science Review 15 683 713 pp. .  Schopp A., and K. Neuhoff (2013). The Role of Hedging in Carbon Markets. Social Science Research  Network, Rochester, NY. . Available at: http://papers.ssrn.com/abstract=2239646.      85 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Schreurs M.A. (2011). Transboundary cooperation to address acid rain: Europe, North America, and  East Asia compared. In: Beyond Resource Wars Scarcity, Environmental Degradation, and  International Cooperation. S. Dinar, (ed.), MIT Press, Cambridge pp.89 116.  Selin H., and S.D. Vandeveer (2005). Canadian U.S. Environmental Cooperation: Climate Change  Networks and Regional Action, American Review of Canadian Studies 35 353 378 pp. (DOI:  10.1080/02722010509481376), (ISSN: 0272 2011).  Shukla P.R., and S. Dhar (2011). Climate agreements and India: aligning options and opportunities  on a new track, International Environmental Agreements: Politics, Law and Economics 11 229 243  pp. (DOI: 10.1007/s10784 011 9158 6), (ISSN: 1567 9764, 1573 1553).  Sinden G.E., G.P. Peters, J. Minx, and C.L. Weber (2011). International flows of embodied CO2 with  an application to aluminium and the EU ETS, Climate Policy 11 1226 1245 pp. (DOI:  10.1080/14693062.2011.602549), (ISSN: 1469 3062).  Skelton A., D. Guan, G.P. Peters, and D. Crawford Brown (2011). Mapping Flows of Embodied  Emissions in the Global Production System, Environmental Science & Technology 45 10516 10523  pp. (DOI: 10.1021/es202313e), (ISSN: 0013 936X).  Skjaerseth J.B. (2010). EU emissions trading: Legitimacy and stringency, Environmental Policy and  Governance 20 295 308 pp. .  Skjaerseth J.B., and J. Wettestad (2008). Implementing EU emissions trading: success or failure?,  International Environmental Agreements: Politics, Law and Economics 8 275 290 pp. (DOI:  10.1007/s10784 008 9068 4), (ISSN: 1567 9764, 1573 1553).  Skjaerseth J.B., and J. Wettestad (2009). The origin, evolution and consequences of the EU emissions  trading system, Global Environmental Politics 9 101 122 pp. .  Skjaerseth J.B., and J. Wettestad (2010). Fixing the EU Emissions Trading System? Understanding the  Post 2012 Changes, Global Environmental Politics 10 101 123 pp. .  Smil V. (2000). Energy in the Twentieth Century: Resources, Conversions, Costs, Uses, and  Consequences, Annual Review of Energy and the Environment 25 21 51 pp. (DOI:  10.1146/annurev.energy.25.1.21).  Smith P., M. Bustamante, H. Ahammad, H. Clark, H.M. Dong, E.A. Elsiddig, H. Haberl, R.J. Harper,  M. Jafari, O. Masera, C. Mbow, N.H. Ravindranath, C.W. Rice, C. Robledo, C. Abad, A.  Romanovskaya, F. Sperling, R. Zougmore, G. Berndes, M. Herrero, A. Popp, A. de Siqueira Pinto, S.  Sohi, and F.N. Tubiello (2013). How much land based greenhouse gas mitigation can be achieved  without compromising food security and environmental goals?, Global Change Biology to be  submitted September 2012.  Smith P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O Mara, C. Rice,  B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, S.  Towprayoon, M. Wattenbach, and J. Smith (2008). Greenhouse gas mitigation in agriculture,  Philosophical Transactions of the Royal Society B: Biological Sciences 363 789 813 pp. (DOI:  10.1098/rstb.2007.2184), (ISSN: 0962 8436).  Somorin O.A., H. Brown, I.J. Visseren Hamakers, D.J. Sonwa, B. Arts, and J. Nkem (2011). The  Congo Basin forests in a changing climate: Policy discourses on adaptation and mitigation (REDD+),  Global Environmental Change.      86 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Sorrell S., D. Harrison, D. Radov, P. Klevnas, and A. Foss (2009). White certificate schemes:  Economic analysis and interactions with the EU ETS, Energy Policy 37 29 42 pp. (DOI:  10.1016/j.enpol.2008.08.009), (ISSN: 0301 4215).  Souza T.L. de, and L. Hasenclever (2011). The Brazilian system of innovation for bioethanol: a case  study on the strategic role of the standardisation process, International Journal of Technology and  Globalisation 5 341   356 pp. (DOI: 10.1504/IJTG.2011.039771).  Sovacool B.K. (2009). Energy policy and cooperation in Southeast Asia: The history, challenges, and  implications of the trans ASEAN gas pipeline (TAGP) network, Energy Policy 37 2356 2367 pp. (DOI:  10.1016/j.enpol.2009.02.014), (ISSN: 0301 4215).  Sovacool B.K. (2012a). Design principles for renewable energy programs in developing countries,  Energy & Environmental Science 5 9157 pp. (DOI: 10.1039/c2ee22468b), (ISSN: 1754 5692, 1754 5706).  Sovacool B.K. (2012b). Deploying Off Grid Technology to Eradicate Energy Poverty, Science 338 47 48 pp. (DOI: 10.1126/science.1222307), (ISSN: 0036 8075, 1095 9203).  Sovacool B.K. (2013). A qualitative factor analysis of renewable energy and Sustainable Energy for  All (SE4ALL) in the Asia Pacific, Energy Policy 59 393 403 pp. (DOI: 10.1016/j.enpol.2013.03.051),  (ISSN: 0301 4215).  Sovacool B.K., C. Cooper, M. Bazilian, K. Johnson, D. Zoppo, S. Clarke, J. Eidsness, M. Crafton, T.  Velumail, and H.A. Raza (2012). What moves and works: Broadening the consideration of energy  poverty, Energy Policy 42 715 719 pp. (DOI: 10.1016/j.enpol.2011.12.007), (ISSN: 0301 4215).  Steckel J.C., M. Jakob, R. Marschinski, and G. Luderer (2011). From carbonization to  decarbonization? Past trends and future scenarios for China s CO2 emissions, Energy Policy 39  3443 3455 pp. (DOI: 10.1016/j.enpol.2011.03.042), (ISSN: 0301 4215).  Steemers K. (2003). Energy and the city: density, buildings and transport, Energy and Buildings 35 3 14 pp. (DOI: 10.1016/S0378 7788(02)00075 0), (ISSN: 0378 7788).  Steinberger J.K., J.T. Roberts, G.P. Peters, and G. Baiocchi (2012). Pathways of human development  and carbon emissions embodied in trade, Nature Climate Change 2 81 85 pp. (DOI:  10.1038/nclimate1371), (ISSN: 1758 678X).  Stern N. (2006). What is the Economics of Climate Change?, World Economics 7 . Available at:  http://www.minnlake.eans.net/Presse/PMitt/2006/061030c76.pdf.  Stern D.I. (2007). The Effect of NAFTA on Energy and Environmental Efficiency in Mexico, Policy  Studies Journal 35 291 322 pp. (DOI: 10.1111/j.1541 0072.2007.00221.x), (ISSN: 1541 0072).  Strietska Ilina O. (2011). Skills for green jobs: a global view: synthesis report based on 21 country  studies. International Labor Office Geneva.  Sustainable Energy for All (2013). Chapter 2: Universal Access to Modern Energy Services. In: Global  Tracking Framework. United Nations, New York, NY. Available at:  http://www.sustainableenergyforall.org/images/Global_Tracking/7 gtf_ch2.pdf.  Swart R., and F. Raes (2007). Making integration of adaptation and mitigation work: mainstreaming  into sustainable development policies, Climate Policy 7 288 303 pp. .      87 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Taplin R., and J. McGee (2010). The Asia Pacific Partnership: implementation challenges and  interplay with Kyoto, Wiley Interdisciplinary Reviews: Climate Change 1 16 22 pp. (DOI:  10.1002/wcc.10), (ISSN: 17577780).  Tavoni M., E. Kriegler, T. Aboumaboub, K.V. Calvin, G. De Maeure, J. Jewell, T. Kober, P. Lucas, G.  Luderer, D. McCollum, G. Marangoni, K. Riahi, and D. Van Vuuren (2014). The Distribution of the  Major Economies  Effort in the Durban Platform Scenarios, Climate Change Economics.  Te¹iæ M., F. Kiss, and Z. Zavargo (2011). Renewable energy policy in the Republic of Serbia,  Renewable and Sustainable Energy Reviews 15 752 758 pp. (DOI: 10.1016/j.rser.2010.08.016), (ISSN:  1364 0321).  Tuerk A., M. Mehling, C. Flachsland, and W. Sterk (2009). Linking carbon markets: concepts, case  studies and pathways, Climate Policy 9 341 357 pp. (DOI: 10.3763/cpol.2009.0621), (ISSN: 1469 3062).  Tukker A., and E. Dietzenbacher (2013). Global Multiregional Input Output Frameworks: An  Introduction and Outlook, Economic Systems Research 25 1 19 pp. (DOI:  10.1080/09535314.2012.761179), (ISSN: 0953 5314).  Uddin S.N., R. Taplin, and X. Yu (2006). Advancement of renewables in Bangladesh and Thailand:  Policy intervention and institutional settings, Natural Resources Forum 30 177 187 pp. (DOI:  10.1111/j.1477 8947.2006.00113.x), (ISSN: 1477 8947).  UNDESA (United Nations, Department of Economic and Social Affairs) (2006). World Urbanization  Prospects. The 2005 Revision. New York, USA. 210 pp. Available at:  http://www.un.org/esa/population/publications/WUP2005/2005WUPHighlights_Final_Report.pdf.  UNDESA (United Nations, Department of Economic and Social Affairs) (2010). World Urbanization  Prospects. The 2009 Revision. New York, USA. 56 pp. Available at:  http://esa.un.org/unpd/wup/doc_highlights.htm.  UNDESA (United Nations, Department of Economic and Social Affairs) (2011). World Urbanization  Prospects. The 2011 Revision. The Population Division of the Department of Economic and Social  Affairs of the United Nations, New York, USA. 318 pp. Available at:  http://esa.un.org/unpd/wup/Documentation/final report.htm.  UNDP W. (2009). The Energy Access Situation in Developing Countries. New York.  UNDP (2010). Human Development Report 2010. . Available at:  http://hdr.undp.org/en/reports/global/hdr2010/chapters/de/.  UNDP IBSA Fund (2014). India, Brazil and South Africa (IBSA) Fund. . Available at:  http://tcdc2.undp.org/IBSA/.  UNEP (2001). International Environmental Governance: Multilateral Environment Agreements.  United Nations, New York. . Available at: http://www.unep.org/ieg/Meetings_docs/index.asp.  UNEP Risoe Centre (2013). UNEP Risoe CDM/JI Pipeline Analysis and Database. . Available at:  http://cdmpipeline.org/.      88 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  UNESCAP (2008). Energy Security and Sustainable Development in Asia and the Pacific. Bangkok. .  Available at: http://www.unescap.org/esd/publications/energy/theme_study/energy security ap.pdf.  UNESCO Bejing (2012). UNESCO Chair in South South Cooperation on Science and Technology to  Address Climate Change. . Available at: http://www.unescobej.org/natural sciences/resources/news and upcoming events/2012/unesco chair in south south cooperation on science and technology to address climate change/.  UNFCCC (2011). Decision 1/CP.16. Report of the Conference of the Parties on Its Sixteenth Session.  Cancun. 29 November to 10 December 2010. Part Two.  UNIDO (2010). Independent Thematic Review: UNIDO Projects for the Promotion of Small Hydro  Power for Productive Use. UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION, Vienna,  Austria. . Available at:  http://www.unido.org/fileadmin/user_media/About_UNIDO/Evaluation/Project_reports/e book_small hydro.PDF.  United Nations (2010). Report of the Secretary General s High level Advisory Group on Climate  Change Financing. United Nations. . Available at:  http://www.un.org/wcm/webdav/site/climatechange/shared/Documents/AGF_reports/AGF%20Rep ort.pdf.  United Nations (2013). World Population Prospect: The 2012 Revision.  United Nations Development Programme: China (2005). South South Cooperation. . Available at:  http://www.undp.org.cn/modules.php?op=modload&name=News&file=article&catid=17&sid=14.  Unruh G.C., and J. Carrillo Hermosilla (2006). Globalizing carbon lock in, Energy Policy 34 1185 1197 pp. (DOI: 10.1016/j.enpol.2004.10.013), (ISSN: 0301 4215).  US Department of State (2011). Asia Pacific Partnership on Clean Development and Climate. .  Available at: http://www.asiapacificpartnership.org/english/default.aspx.  USAID (2007). From Ideas to Action. Clean Energy Solutions for Asia to Address Climate Change.  USAID Asia. 146 pp. Available at: http://usaid.eco asia.org/programs/cdcp/reports/Ideas to Action/From%20Ideas%20to%20Action_Complete%20Report.pdf.  Verdolini E., and M. Galeotti (2011). At home and abroad: An empirical analysis of innovation and  diffusion in energy technologies, Journal of Environmental Economics and Management 61 119 134  pp. (DOI: 10.1016/j.jeem.2010.08.004), (ISSN: 0095 0696).  Vetõné Mózner Z. (2013). A consumption based approach to carbon emission accounting   sectoral  differences and environmental benefits, Journal of Cleaner Production 42 83 95 pp. (DOI:  10.1016/j.jclepro.2012.10.014), (ISSN: 0959 6526).  Victor D.G. (2006). Toward Effective International Cooperation on Climate Change: Numbers,  Interests and Institutions., Global Environmental Politics 6 90 103 pp. (DOI: Article), (ISSN:  15263800).  Vignola R., B. Locatelli, C. Martinez, and P. Imbach (2009). Ecosystem based adaptation to climate  change: what role for policy makers, society and scientists?, Mitigation and Adaptation Strategies  for Global Change 14 691 696 pp. .      89 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  Walz R. (2010). Competences for green development and leapfrogging in newly industrializing  countries, International Economics and Economic Policy 7 245 265 pp. (DOI: 10.1007/s10368 010 0164 x), (ISSN: 1612 4804).  Wamukonya N. (2007). Solar home system electrification as a viable technology option for Africa s  development, Energy Policy 35 6 14 pp. (DOI: 10.1016/j.enpol.2005.08.019), (ISSN: 0301 4215).  Wang T., and J. Watson (2008). China s Energy Transition: Pathways for Low Carbon Development.  Sussex Energy Group SPRU, University of Sussex, UK and Tyndall Centre for Climate Change  Research, UK.  Watson J., and R. Sauter (2011). Sustainable innovation through leapfrogging: a review of the  evidence, International Journal of Technology and Globalisation 5 170   189 pp. (DOI:  10.1504/IJTG.2011.039763).  Weber C.L., and H.S. Matthews (2007). Embodied environmental emissions in U.S. international  trade, 1997 2004, Environmental science & technology 41 4875 4881 pp. (ISSN: 0013 936X).  Weber C.L., G.P. Peters, D. Guan, and K. Hubacek (2008). The contribution of Chinese exports to  climate change, Energy Policy 36 3572 3577 pp. (DOI: 16/j.enpol.2008.06.009), (ISSN: 0301 4215).  Wettestad J. (2009). Interaction between EU carbon trading and the international climate regime:  synergies and learning, International Environmental Agreements: Politics, Law and Economics 9 393 408 pp. (DOI: 10.1007/s10784 009 9107 9), (ISSN: 1567 9764, 1573 1553).  Wiebe K.S., M. Bruckner, S. Giljum, and C. Lutz (2012). Calculating Energy Related CO2 Emissions  Embodied in International Trade Using a Global Input Output Model, Economic Systems Research 24  113 139 pp. (DOI: 10.1080/09535314.2011.643293), (ISSN: 0953 5314).  Wiedmann T. (2009). A review of recent multi region input output models used for consumption based emission and resource accounting, Ecological Economics 69 211 222 pp. (DOI:  10.1016/j.ecolecon.2009.08.026), (ISSN: 0921 8009).  Wiedmann T., M. Lenzen, K. Turner, and J. Barrett (2007). Examining the global environmental  impact of regional consumption activities   Part 2: Review of input output models for the  assessment of environmental impacts embodied in trade, Ecological Economics 61 15 26 pp. (DOI:  10.1016/j.ecolecon.2006.12.003), (ISSN: 09218009).  Wiel S., and J.E. McMahon (2005). Energy Efficiency Labels and Standards: A Guidebook for  Appliances, Equipment, and Lighting. Collaborative Labeling and Appliance Standards Program  (CLASP), Washington, D.C., USA, 321 pp. Available at:  http://www.clasponline.org/Resources/Resources/StandardsLabelingResourceLibrary/2005/~/media /Files/SLDocuments/2005_SLGuidebook/English/SLGuidebook_eng_1_FullGuidebook.pdf.  Winchester N., S. Paltsev, and J.M. Reilly (2011). Will Border Carbon Adjustments Work?, The B.E.  Journal of Economic Analysis & Policy 11 (DOI: 10.2202/1935 1682.2696), (ISSN: 1935 1682).  World Bank (2011). World Development Indicators 2011. World Bank Publications, Washington DC,  USA, 488 pp., (ISBN: 978 0 8213 8709 2). .  World Bank (2013a). International Comparison Program Database 2013. . Available at:  http://data.worldbank.org/data catalog/international comparison program.      90 of 91      Final Draft  Chapter 14  IPCC WGIII AR5  World Bank (2013b). World Development Indicators 2013. World Bank Publications, Washington DC,  USA, 152 pp., (ISBN: 978 0 8213 9824 1). .  World Development Indicators 2012 (2012). Washington DC, USA, 463 pp., (ISBN: 978 0 8213 8985 0). .  WTO (2013). WTO | Regional Trade Agreements gateway. . Available at:  http://www.wto.org/english/tratop_e/region_e/region_e.htm.  Wyatt A.B., and I.G. Baird (2007). Transboundary Impact Assessment in the Sesan River Basin: The  Case of the Yali Falls Dam, International Journal of Water Resources Development 23 427 442 pp.  (DOI: 10.1080/07900620701400443), (ISSN: 0790 0627).  Yoon S. C. (2009). Systemic problems in technology transfer in emerging markets, International  Journal of Technology and Globalisation 4 341   349 pp. (DOI: 10.1504/IJTG.2009.032735).  York R. (2007). Demographic trends and energy consumption in European Union Nations, 1960 2025, Social Science Research 36 855 872 pp. (DOI: 10.1016/j.ssresearch.2006.06.007), (ISSN: 0049 089X).  York R., E.A. Rosa, and T. Dietz (2003). STIRPAT, IPAT and ImPACT: analytic tools for unpacking the  driving forces of environmental impacts, Ecological Economics 46 351 365 pp. (DOI: 10.1016/S0921 8009(03)00188 5), (ISSN: 0921 8009).  Zarsky L. (2010). Climate Resilient Industrial Development Paths: Design Principles and Alternative  Models. In: Towards New Developmentalism: Market as Means rather than Master. S.R. Khan, J.  Christiansen, (eds.), Taylor & Francis, pp.227 251(ISBN: 9780203844311).  Zawilska E., and M.J. Brooks (2011). An assessment of the solar resource for Durban, South Africa,  Renewable Energy 36 3433 3438 pp. (DOI: 10.1016/j.renene.2011.05.023), (ISSN: 0960 1481).  Zelli F. (2011). The fragmentation of the global climate governance architecture, Wiley  Interdisciplinary Reviews: Climate Change 2 255 270 pp. (DOI: 10.1002/wcc.104), (ISSN: 1757 7799).  Zerriffi H. (2011). Innovative business models for the scale up of energy access efforts for the  poorest, Current Opinion in Environmental Sustainability 3 272 278 pp. (DOI:  10.1016/j.cosust.2011.05.002), (ISSN: 1877 3435).  Zhao X., C. Ma, and D. Hong (2010). Why did China s energy intensity increase during 1998 2006:  Decomposition and policy analysis, Energy Policy 38 1379 1388 pp. (DOI:  10.1016/j.enpol.2009.11.019), (ISSN: 0301 4215).  Zigova K., R. Fuchs, L. Jiang, B.C. O Neill, and S. Pachauri (2009). Household Survey Data Used in  Calibrating the Population Environment Technology Model. International Institute for Applied  Systems Analysis, Laxenburg, Austria. 31 pp. Available at:  http://www.iiasa.ac.at/Admin/PUB/Documents/IR 09 046.pdf.        91 of 91      Working Group III Mitigation of Climate Change Chapter 15 National and Sub-national Policies and Institutions   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    15  Chapter 15 IPCC WGIII AR5    National and Sub national Policies and Institutions   CLAs:  LAs:  Eswaran Somanathan, Thomas Sterner, Taishi Sugiyama  Donald Chimanikire, Navroz K. Dubash, Joseph Kow Essandoh Yeddu,  Solomone Fifita, Lawrence Goulder, Adam Jaffe, Xavier Labandeira,  Shunsuke Managi, Catherine Mitchell, Juan Pablo Montero, Fei Teng,  Tomasz Zylicz  Arild Angelsen, Kazumasu Aoki, Kenji Asano, Michele Betsill, Rishikesh  Ram Bhandary, Nils Axel Braathen, Harriet Bulkeley, Dallas Burtraw,  Ann Carlson, Luis Gomez Echeverri, Erik Haites, Frank Jotzo, Milind  Kandlikar, Osamu Kimura, Gunnar Köhlin, Hidenori Komatsu, Andrew  Marquard, Michael Mehling, Duane Muller, Luis Mundaca, Michael  Pahle, Matthew Paterson, Charles Roger, Kristin Seyboth, Elisheba  Spiller, Christoph von Stechow, Paul Watkiss, Harald Winkler, Bridget  Woodman  Martin Jänicke, Ronaldo Seroa da Motta, Nadir Mohamed Awad  Suliman  Rishikesh Ram Bhandary   CAs:      REs:  CSA:    1 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Chapter 15:    National and Sub National Policies and Institutions  Contents    Executive Summary ................................................................................................................................. 5 15.1 Introduction ................................................................................................................................ 8 15.2 Institutions and Governance ...................................................................................................... 9 15.2.1 Why institutions and governance matter ........................................................................... 9 15.2.2 Increase in government institutionalization of climate mitigation actions ........................ 9 15.2.3 Climate Change Mitigation through Sectoral Action ........................................................ 11 15.2.4 Co Benefits as a driver of mitigation action ...................................................................... 12 15.2.5 Sub national Climate Action and Interaction across Levels of Governance ..................... 14 15.2.6 Drivers of National and Sub national Climate Action ....................................................... 15 15.2.7 Summary of institutions and governance ......................................................................... 16 15.3 Characteristics and classification of policy instruments and packages .................................... 16 15.3.1 Economic Instruments....................................................................................................... 16 15.3.2 Regulatory Approaches ..................................................................................................... 17 15.3.3 Information Policies .......................................................................................................... 17 15.3.4 Government Provision of Public Goods and Services and Procurement .......................... 18 15.3.5 Voluntary Actions .............................................................................................................. 18 15.4 Approaches and tools used to evaluate policies and institutions ............................................ 18 15.4.1 Evaluation Criteria ............................................................................................................. 18 15.4.2 Approaches to Evaluation ................................................................................................. 18 15.5 Assessment of the Performance of Policies and Measures, including their policy design, in  developed and developing countries taking into account development level and capacity ........ 19 15.5.1 Overview of policy implementation .................................................................................. 19 15.5.2 Taxes, Charges, and Subsidy Removal  .............................................................................. 24 . 15.5.2.1 Overview .................................................................................................................... 24 15.5.2.2 Environmental effectiveness and efficiency .............................................................. 25 15.5.2.3 Distributional incidence and feasibility ..................................................................... 27 . 15.5.2.4 Design issues: exemptions, revenue recycling, border adjustments  ........................ 28 . 15.5.3 Emissions Trading .............................................................................................................. 30 15.5.3.1 Overview of emissions trading schemes  ................................................................... 30 . 15.5.3.2 Has emissions trading worked? ................................................................................. 30 15.5.3.3 Sector coverage and scope of the cap ....................................................................... 32 15.5.3.4 Setting the level of the cap ........................................................................................ 33   2 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.5.3.5 Allocations ................................................................................................................. 34 . 15.5.3.6 Linking of schemes ..................................................................................................... 34 15.5.3.7 Other design issues: banking, offsets, leakage, price volatility and market power .. 35 15.5.3.8 Choice between taxes and emissions trading  ........................................................... 35 . 15.5.4 Regulatory Approaches ..................................................................................................... 37 15.5.4.1 Overview of the implementation of regulatory approaches ..................................... 37 15.5.4.2 Environmental effectiveness of energy efficiency regulations .................................. 38 15.5.4.3 Cost effectiveness of energy efficiency regulations .................................................. 38 15.5.5 Information Measures ....................................................................................................... 40 15.5.6 Government Provision of Public Goods or Services, and Procurement ............................ 40 15.5.7 Voluntary Actions .............................................................................................................. 42 15.5.7.1 Government sponsored voluntary programmes for firms ........................................ 42 15.5.7.2 Voluntary agreements as a major complement to mandatory regulations .............. 42 15.5.7.3 Voluntary agreements as a policy instrument in governmental mitigation plan ...... 43 15.5.7.4 Synthesis .................................................................................................................... 44 15.5.8 Summary ........................................................................................................................... 45 15.6 Technology Policy and R&D Policy  ........................................................................................... 46 . 15.6.1 Overview of the role of technology policy and R&D policy .............................................. 46 15.6.2 Experience with Technology Policy ................................................................................... 47 15.6.2.1 Intellectual property .................................................................................................. 47 15.6.2.2 Public funding of research and development ............................................................ 48 15.6.2.3 Policies to foster or accelerate deployment and diffusion of new technologies ...... 49 15.6.3 The impact of environmental policy instruments on technological change ..................... 50 15.6.4 The social context of technological transitions and its interaction with policy ................ 51 15.6.5 Building programme evaluation into government technology programmes ................... 52 15.6.6 Summary of technology policy and R&D policy ................................................................ 52 15.7 Synergies and Tradeoffs among Policies .................................................................................. 52 15.7.1 Relationship between policies with different objectives .................................................. 53 15.7.2 Interactions between climate policies conducted at different jurisdictional levels ......... 54 15.7.2.1 Beneficial interactions ............................................................................................... 54 15.7.2.2 Problematic interactions  ........................................................................................... 55 . 15.7.3 Interactions between policies conducted at the same jurisdictional level ....................... 55 15.7.3.1 Beneficial interactions ............................................................................................... 55 15.7.3.2 Problematic interactions  ........................................................................................... 56 . 15.8 National, State and Local Linkages ........................................................................................... 57 . 15.8.1 Overview of linkages across jurisdictions  ......................................................................... 57   3 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.8.2 Collective Action Problem of Sub National Actions .......................................................... 58 15.8.3 Benefits of Sub National Actions ...................................................................................... 58 15.8.4 Summary ........................................................................................................................... 59 15.9 The role of stakeholders including NGOs ................................................................................. 59 15.9.1 Advocacy and Accountability ............................................................................................ 59 15.9.2 Policy Design and Implementation ................................................................................... 60 15.9.3 Summary of the role of stakeholders ................................................................................ 60 15.10 Capacity Building .................................................................................................................... 60 15.10.1 Capacity to analyze the implications of climate change ................................................. 61 15.10.2 Capacity to design, implement and evaluate policies ..................................................... 61 15.10.3 Capacity to take advantage of external funding and flexible mechanisms .................... 62 15.10.4 Capacity building modalities ........................................................................................... 62 15.11 Links to Adaptation ................................................................................................................. 62 15.12 Investment and Finance ......................................................................................................... 64 15.12.1 National and sub national institutions and policies  ....................................................... 64 . 15.12.2 Policy change direction for finance and investments in developing countries .............. 66 15.13 Gaps in Knowledge and Data .................................................................................................. 66 15.14 Frequently Asked Questions ................................................................................................... 67 References ........................................................................................................................................ 69     4 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Executive Summary  Since the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), there  has been a marked increase in national policies and legislation on climate change, however, these  policies, taken together, have not yet achieved a substantial deviation in emissions from the past  trend. Many baseline scenarios (those without additional policies to reduce emissions) show GHG  concentrations that exceed 1000 ppm CO2eq by 2100, which is far from a concentration with a likely  probability of maintaining temperature increases below 2°C this century.  Mitigation scenarios  suggest that a wide range of environmentally effective policies could be enacted that would be  consistent with such goals. This chapter assesses national and sub national policies and institutions  to mitigate climate change in this context. It assesses the strengths and weaknesses of various  mitigation policy instruments and policy packages and how they may interact either positively or  negatively. Sector specific policies are assessed in greater detail in the individual sector chapters (7 12).  Major findings are summarized as follows. [Section 15.1]  The design of institutions affects the choice and feasibility of policy options as well as the  sustainable financing of climate change mitigation measures (limited evidence, medium  agreement). By shaping appropriate incentives, creating space for new stakeholders in decision  making, and by transforming the understanding of policy choices, institutions designed to encourage  participation by representatives of new industries and technologies can facilitate transitions to low emission pathways, while institutions inherited unchanged from the past can perpetuate lock in to  high carbon development paths. [15.2, 15.6]  There has been a considerable increase in national and sub national policies and institutions to  address climate change since AR4 (medium evidence, high agreement). Policies and strategies are in  their early stages in many countries, and there is inadequate evidence to assess whether and how  they will result in appropriate institutional and policy change, and thus, their impact on future  emissions. However, to date these policies, taken together, have not yet achieved a substantial  deviation in emissions from the past trend. Theories of institutional change suggest they might play  a role in shaping incentives, political contexts, and policy paradigms in a way that encourages  emissions reductions in the future. [15.1, 15.2]    Sector specific policies have been more widely used than economy wide, market based policies  (medium evidence, high agreement). Although economic theory suggests that economy wide  market based policies are generally more cost effective, political economy considerations often  make those policies harder to achieve than sectoral policies. Sector specific policies may also be  needed to overcome sectoral market failures that price policies do not address. For example,  building codes can require publicly funded energy efficient investments where private investments  would otherwise not exist. Sector approaches also allow for packages of complementary policies, as,  for example, in transport, where pricing policies that raise the cost of carbon intensive forms of  private transport are more effective when backed by public investment in viable alternatives. [15.1,  15.2, 15.5, 15.8, 15.9]  Regulatory approaches and information measures are widely used, and are often environmentally  effective, though debate remains on the extent of their environmental impacts and cost  effectiveness (medium evidence, medium agreement). Examples include energy efficiency standards  and labelling programmes that can help consumers make better informed decisions.  While such  approaches often work at a net social benefit, the scientific literature is divided on whether such  policies are implemented with negative private costs to firms and individuals. Since AR4 there has  been continued investigation into  rebound  effects that arise when higher efficiency leads to lower  energy prices and greater consumption. There is general agreement that such rebound effects exist,  but there is low agreement in the literature on the magnitude. [3.9.5, 8.3, 9.7.2.4, 15.5.4, 15.5.5]    5 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Fuel taxes are an example of a sector specific policy and are often originally put in place for  objectives such as revenue   they are not necessarily designed for the purpose of climate change  mitigation (high confidence). In Europe, where fuel taxes are highest, they have contributed to  reductions in carbon emissions from the transport sector of roughly 50% for this group of countries.  The short run response to higher fuel prices is often small, but long run price elasticities are quite  high, or roughly  0.6 to  0.8. This means that in the long run, 10% higher fuel prices correlate with  7% reduction in fuel use and emissions. In the transport sector, taxes have the advantage of being  progressive or neutral in most countries and strongly progressive in low income countries. [15.5.2]  Reduction of subsidies to fossil energy can result in significant emission reductions at negative  social cost (high confidence). [15.5.2] Although political economy barriers are substantial, many  countries have reformed their tax and budget systems to reduce fuel subsidies that actually accrue  to the relatively wealthy, and utilized lump sum cash transfers or other mechanisms that are more  targeted to the poor. [15.5.3]  Cap and trade systems for greenhouse gases are being established in a growing number of  countries and regions (limited evidence, medium agreement). Their environmental effect has so far  been limited because caps have either been loose or have not yet been binding. There appears to  have been a tradeoff between the political feasibility and environmental effectiveness of these  programmes, as well as between political feasibility and distributional equity in the allocation of  permits. Greater environmental effectiveness through a tighter cap may be combined with a price  ceiling that makes for political feasibility. [15.5.3]  Carbon taxes have been implemented in some countries and alongside technology and other  policies have contributed to decoupling of emissions from gross domestic product (GDP) (high  confidence). Differentiation by sector, which is quite common, reduces cost effectiveness that arises  from the changes in production methods, consumption patterns, lifestyle shifts, and technology  development, but it may increase political feasibility, or be preferred for reasons of competitiveness  or distributional equity.  In some countries, high carbon and fuel taxes have been made politically  feasible by refunding revenues or by lowering other taxes in an environmental fiscal reform. [15.2,  15.5.2, 15.5.3]  Adding a mitigation policy to another may not necessarily enhance mitigation (high confidence).  For instance, if a cap and trade system has a sufficiently stringent cap, then other policies such as  renewable subsidies have no further impact on total emissions (although they may affect costs and  possibly the viability of more stringent future targets). If the cap is loose relative to other policies, it  becomes ineffective. This is an example of a negative interaction between policy instruments.  Since  other policies cannot be  added on  to a cap and trade system, if it is to meet any particular target, a  sufficiently low cap is necessary. A carbon tax, on the other hand, can have an additive  environmental effect to policies such as subsidies to renewables. [15.7]  There is a distinct role for technology policy as a complement to other mitigation policies (high  confidence).  Properly implemented technology policies reduce the cost of achieving a given  environmental target.  Technology policy will be most effective when technology push policies (e.g.,  publicly funded research and development (R&D)) and demand pull policies (e.g., governmental  procurement programmes or performance regulations) are used in a complementary fashion (robust  evidence, high agreement). [15.6] While technology push and demand pull policies are necessary,  they are unlikely to be sufficient without complementary framework conditions.  Managing social  challenges of technology policy change may require innovations in policy and institutional design,  including building integrated policies that make complementary use of market incentives, authority  and norms (medium evidence, medium agreement). [15.6.5].   Since AR4, a large number of countries and sub national jurisdictions have introduced support  policies for renewable energy such as feed in tariffs (FIT) and renewable portfolio standards (RPS).  These have promoted substantial diffusion and innovation of new energy technologies such as wind    6 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    turbines and photovoltaic (PV) panels, but have raised questions about their economic efficiency,  and introduced challenges for grid and market integration (7.12, 15.6).  Worldwide investment in research in support of climate change mitigation is small relative to  overall public research spending (medium evidence, medium agreement). The effectiveness of  research support will be greatest if it is increased slowly and steadily rather than dramatically or  erratically   It is important that data collection for programme evaluation be built into technology  policy programmes, because there is very little empirical evidence on the relative effectiveness of  different mechanisms for supporting the creation and diffusion of new technologies. [15.6.2, 15.6.5]  Public finance mechanisms reduce risks that deter climate investments (high confidence). The  future value of carbon permits created by an economic instrument such as cap and trade may, for  example, not be accepted as sufficiently secure by banks. Government public finance mechanisms to  reduce risks include debt and equity mechanisms, carbon finance, and innovative grants. [15.12]  Government planning and provision can facilitate shifts to less energy and GHG intensive  infrastructure and lifestyles (high confidence). This applies particularly when there are indivisibilities  in the provision of infrastructure as in the energy sector (e.g., for electricity transmission and  distribution or district heating networks); in the transport sector (e.g., for non motorized or public  transport), and in urban planning. The provision of adequate infrastructure is important for  behavioural change (medium evidence, high agreement) [15.5.6].  Successful voluntary agreements on mitigation between governments and industries are  characterized by a strong institutional framework with capable industrial associations (medium  evidence, medium agreement). The strengths of voluntary agreements are speed and flexibility in  phasing measures, and facilitation of barrier removal activities for energy efficiency and low  emission technologies. Regulatory threats, even though the threats are not always explicit, are also  an important factor for firms to be motivated. There are few environmental impacts without a  proper institutional framework (medium evidence, medium agreement). [15.5.5]  Synergies and tradeoffs between mitigation and adaptation policies may exist in the land use  sector (medium evidence, medium agreement). For other sectors such as industry and power, the  connections are not obvious. [15.11]   The ability to undertake policy action requires information, knowledge, tools, and skills, and  therefore capacity building is central both for mitigation and to the sustainable development  agenda. (medium evidence, high agreement). The needs for capacity building include capacity to  analyze the implications of climate change; capacity to formulate, implement, and evaluate policies;  capacity to take advantage of external funding and flexible mechanisms; and capacity to make  informed choices of the various capacity building modalities. [15.10]   Mainstreaming climate change into development planning has helped yield financing for various  climate policy initiatives (medium evidence, medium agreement). Among developing and some least  developed countries, an emerging trend is the establishment of national funding entities dedicated  to climate change. While diverse in design and objectives, they tap and blend international and  national sources of finance, thereby helping to improve policy coherence and address aid  fragmentation. Financing adaptation and mitigation in developing countries is crucial from the  viewpoint of welfare and equity (medium evidence, high agreement). [15.12]  Gaps in knowledge: The fact that various jurisdictions produce various policy instruments influenced  by co benefits and political economy and that they interact in complex manners makes it difficult to  evaluate the economic and environmental effectiveness of individual policy instrument as well as  policy package of a nation. Most importantly, it is not known with certainty how much an emission  reduction target may cost to the economy in the real world in comparison to the  first best  optimal  solution estimated by economic models in other chapters in this report. Costs may be under stated  or over stated.    7 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.1   Introduction  This chapter assesses national and sub national mitigation policies and their institutional settings.  There has been a marked increase in national policies and legislation on climate change since the  AR4 with a diversity of approaches and a multiplicity of objectives (see Section 15.2). However,  Figure 1.9 of Chapter 1 suggests that these policies, taken together, have not yet achieved a  substantial deviation in emissions from the past trend. Limiting concentrations to levels that would  be consistent with a likely probability of maintaining temperature increases below 2°C this century  (scenarios generally in the range of 430 480 ppmv CO2eq) would require that emissions break from  these trends and be decreased substantially. In contrast, concentrations exceed 1000 ppmv CO2eq  by 2100 in many baseline scenarios (that is, scenarios without additional efforts to reduce  emissions).   The literature on mitigation scenarios provides a wide range of CO2 shadow price levels consistent  with these goals, with estimates of less than USD 50/tCO2 in 2020 in many studies and exceeding  USD 100/tCO2 in others, assuming a globally efficient and immediate effort to reduce emissions.  These shadow prices exhibit a strongly increasing trend thereafter. Policies and instruments are  assessed in this light.  Section 15.2 assesses the role of institutions and governance. Section 15.3 lays out the classification  of policy instruments and packages, while 15.4 discusses the methodologies used to evaluate  policies and institutions. The performance of various policy instruments and measures are  individually assessed in Sections 15.5 and 15.6.    The two main types of economic instruments are price instruments, that is, taxes and subsidies  (including removal of subsidies on fossil fuels), and quantity instruments   emission trading systems.  These are assessed in Sections 15.5.2 and 15.5.3 respectively. An important feature of both these  instruments is that they can be applied at a very broad, economy wide scale. This is in contrast to  the regulation and information policies and voluntary agreements which are usually sector specific.  These policies are assessed in Sections 15.5.4, 15.5.5, and 15.5.7. Government provision and  planning is discussed in 15.5.6. The next section, 15.6, provides a focused discussion on technology  policy including research and development and the deployment and diffusion of clean energy  technologies. In addition to technology policy, longer term effects of the policies assessed in Section  15.5 are addressed in Section 15.6.  Both these sections, 15.5 and 15.6, bring together lessons from policies and policy packages used at  the sectoral level from Chapters 7 (Energy), 8 (Transport), 9 (Buildings), 10 (Industry), 11  (Agriculture, Forestry and Land Use) and Chapter 12 (Human Settlements, Infrastructure, and Spatial  Planning).   The following sections further assess the interaction among policy instruments, as they are not  usually used in isolation, and the impacts of particular instruments depend on the entire package of  policies and the institutional context. Section 15.7 reviews interactions, both beneficial and harmful,  that may not have been planned. The presence of such interactions is in part a consequence of the  multi jurisdictional nature of climate governance as well as the use of multiple policy instruments  within a jurisdiction.  Section 15.8 examines the deliberate linkage of policies across national and  sub national jurisdictions.   Other key issues are further discussed in dedicated sections. They are: the role of stakeholders  including non governmental organizations (NGOs) (15.9), capacity building (15.10), links between  adaptation and mitigation policies (15.11), and investment and finance (15.12). Gaps in knowledge  are collected in 15.13.      8 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.2   Institutions and Governance  15.2.1    Why institutions and governance matter  Institutions and processes of governance (see Annex 1: Glossary for definitions) shape and constrain  policy making and policy implementation in multiple ways relevant for a shift to a low carbon  economy. First, institutions understood as formal rules and informal norms set the incentive  structure for economic decision making (North, 1991), influencing, for example, decisions about  transportation investments, and behavioural decisions relevant to efficient energy use. Second,  institutions shape the political context for decision making, empowering some interests and  reducing the influence of others (Steinmo et al., 1992; Hall, 1993). Harrison (2012) illustrates this  with respect to environmental tax reform in Canada.  Third, institutions can also shape patterns of  thinking and understanding of policy choices   through both normative and cognitive effects (Powell  and DiMaggio, 1991).  These effects can result in dominant policy paradigms ideas, policy goals,  and instruments that favour some actions and exclude others from consideration (Radaelli and  Schmidt, 2004). For example, existing energy systems are likely to remain in place without  appropriate institutional change (Hughes, 1987) and changes in discourse, which would perpetuate  existing technologies and policies and lock out new ones (Unruh, 2000; Walker, 2000). More  generally, a mismatch between social ecological context and institutional arrangements can lead to  a lack of fit and exert a drag on policy and technological response (Young, 2002).   15.2.2    Increase in government institutionalization of climate mitigation actions  There has been a definite increase since AR4 in formal governmental efforts to promote climate  change mitigation. These efforts are diverse in their approach, scale, and emphasis, and take the  form of legislation, strategies, policies, and coordination mechanisms. Many of these are relatively  recent, and often in the design or early implementation stage. As a result, it is premature to evaluate  their effectiveness and there is insufficient literature as yet that attempts to do so. Since global  greenhouse gas emissions have continued to increase in recent years (Chapter 5 and Section 15.1), it  will be important to closely monitor this trend to evaluate if policies and institutions created are  sufficiently strong and effective to lead to the reductions required to stabilize global temperature,  for instance, at the 2°C target. This section reviews national centralized governmental actions, while  15.2.3 discusses sectoral actions and 15.2.5 examines the roles of other stakeholders including non state actors.  A review of climate legislation and strategy in almost all United Nation (UN) Member States shows  that there has been a substantial increase in these categories between 2007 and 2012 (Dubash et  al., 2013) (See Figure 15.1). Dubash et. al. (2013) define climate legislation as mitigation focused  legislation that goes beyond sectoral action alone, while climate strategy is defined as a non legislative plan or framework aimed at mitigation that encompasses more than a small number of  sectors, and that includes a coordinating body charged with implementation. International pledges  are not included. By these definitions, 39% of countries, accounting for 73% of population and 67%  of greenhouse gas emissions, were covered by climate law or strategies in 2012, an increase from  23% of countries, 36% of population, and 45% of emissions in 2007. There are also strong regional  differences, with Asia and Latin America recording the fastest rate of increase. Taken as a block, in  2012, 49% of current emissions from the developing world regions of Asia, Africa, and Latin America  were under climate law and 77% of emissions were under either law or strategy, while for the  developed world regions of Organisation for Economic Co operation and Development 1990  Countries OECD 1990 and Economies in Transition (EIT) the equivalent numbers are 38% and 56%.  Finally, while the number of countries with climate legislation increased marginally from 18% to 22%  over this period, the number of countries with climate strategies increased from 5% to 18%,    9 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    suggesting many more countries are adopting a strategy led approach. (For regional aggregations  see Annex II.2) Figure 15.1 National Climate legislation and strategies in 2007 and 2012.1 Reproduced from Dubash et al, (2013). In this figure, climate legislation is defined as mitigation-focused legislation that goes beyond sectoral action alone. Climate strategy is defined as a non-legislative plan or framework aimed at mitigation that encompasses more than a small number of sectors, and that includes a coordinating body charged with implementation. International pledges are not included, nor are subnational plans and strategies. The panel shows proportion of GHG emissions covered. Climate legislation and strategies follow a wide diversity of approaches to operationalization and  implementation. The imposition of carbon prices is one approach widely discussed in the literature  (See Section 15.5) but less frequently implemented in practice. Examples include the European  Union s Emissions Trading Scheme (ETS) (See Section 14.4.2) or setting of carbon taxes (see Section  15.5.2). One study of the 19 highest emitting countries finds that six have put in place some form of  carbon price, while 14 have put in place both regulation and other economic incentives for  greenhouse gas mitigation (Lachapelle and Paterson, 2013). Common explanations for this variation  are in terms of the novelty of emissions trading (although emissions trading has been in practice  implemented much more widely than carbon taxation), the legitimacy problems faced by emissions  trading (Paterson, 2010), or political contestation over increased taxation (see for example Laurent,  (2010), on the French case, Jotzo, (2012) for Australia, or Jagers and Hammar, (2009), for evidence  that popular support for carbon taxes in Sweden depend on how it is framed in popular debate), and  lobbying by fossil fuel or energy intense industry lobbies (Bailey et al., 2012; Sarasini, 2013).  More generally speaking, policy instruments have often been sector specific. Economy wide  instruments, even when implemented, have had exemptions for some sectors, most commonly  those most exposed to international trade. The exemptions have arisen because national policies  have been developed under the strong influence of sectoral policy networks (Compston, 2009) and  many stakeholders therein including firms and NGOs influence the policy to promote their  interests (Helm, 2010). This phenomenon undermines the overall cost effectiveness of climate policy  (Anthoff and Hahn, 2010) although it may help further other objectives such as equity and energy  security (see Section 15.7).   Number of countries and GHG emissions covered (NAI: Non Annex I countries (developing countries), AI:  Annex I countries (developed countries), LAM: Latin America, MAF: Middle East and Africa, ASIA: Asia, EIT:  Economies in transition, OE90: OECD of 1990)  1   10 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Another approach follows a model of national level target backed by explicit creation of institutions  to manage performance to that target. In China, for example, a  National Leading Group on Climate  Change  in June 2007, housed in the apex National Development and Reform Commission and  chaired by the premier (Tsang and Kolk, 2010a) coordinates the achievement of targets set in the  subsequent National Climate Change Programme. The Chinese examples illustrate a broader point  emerging from a cross country study that implementation of climate legislation and plans are, in at  least some cases, drawing powerful finance and planning departments into engagement with  climate change (Held, et al., 2013).  Another approach is to establish dedicated new climate change bodies that are substantially  independent of the executive and that seek to coordinate existing government agencies through a  variety of levers. The leading example of this approach is in the UK, where a dedicated Climate  Change Committee analyzes departmental plans and monitors compliance with five year carbon  budgets (U.K., 2008; Stallworthy, 2009). Instead of direct executive action, as in the Chinese case,  this approach relies on analysis, public reporting, and advice to government. Following the UK  example, Australia has established an independent Climate Change Authority to advise the  government on emission targets and review effectiveness of its Carbon Pricing Mechanism (Keenan  et al., 2012).  15.2.3    Climate Change Mitigation through Sectoral Action  While there is no systematic study of implementation of climate plans, case study evidence suggests  that these plans are frequently operationalized through sectoral actions. There are a variety of ways  through which national plans interface with sectoral approaches to mainstream climate change. In  some cases, there is a formal allocation of emissions across sectors. For example, in Germany,  mitigation efforts were broken down by sectors for the period between 2008 and 2012, with the  national  Allocation Act 2012  specifying emissions budgets for sectors participating in the EU ETS as  well as the remaining sectors (Dienes, 2007; Frenz, 2007).More typically, climate mainstreaming  occurs through a sector by sector process led by relevant government departments, as in France  (Mathy, 2007), India (Dubash, 2011; Atteridge et al., 2012), and Brazil (da Motta, 2011a; La Rovere et  al., 2011).  In some cases, the sectoral process involves a role for stakeholders in engagement with government  departments. In France, sectoral approaches are devised at the central level through negotiation and  consultation between multiple ministries, experts, business, and NGOs. According to at least one  analysis, this approach risks a dilution of measures through the influence of lobbies that may lose  from mitigation actions (Mathy, 2007). In Brazil, sector specific approaches are developed by  sectoral ministries complemented by a multi stakeholder forum to solicit views and forge consensus  (Hochstetler and Viola, 2012; Viola and Franchini, 2012; Held et al., 2013a).  In some cases, climate change considerations bring about changes in long standing patterns of  sector governance. In South Africa, for example, the Copenhagen pledge led to a process of  reconsidering South Africa s integrated resource plan for electricity to include carbon reduction as  one among multiple criteria (Republic of South Africa, 2011). In India, the establishment of national  sectoral  missions  had the effect of creating new institutional mechanisms in the case of the  National Solar Mission, or of raising the profile and importance of particular ministries or  departments as in the example of the Bureau of Energy Efficiency (Dubash, 2011). In other cases,  climate mainstreaming was facilitated by prior political shifts in governance of a sector. Brazil s  climate approach particularly emphasizes the forest sector (da Motta, 2011b; La Rovere, 2011).  Progress on the Brazilian plan was enabled by prior domestic political consensus around a far reaching Forest Code (Hochstetler and Viola, 2012).)    11 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.2.4    Co Benefits as a driver of mitigation action  The importance of co benefits both development gains from climate policy and climate gains from  development policy emerge as a particularly strong rationale and basis for sectoral action. As Table  6.7 shows, an inventory of sectoral action on climate change (drawn from Chapter 7 12) is linked to  a wide range of co benefits and adverse side effects, encompassing economic, social, and  environmental effects. Table 15.1 provides a roadmap for the co benefits and adverse side effects  from sectoral mitigation measures most prominently discussed across Chapters 7 to 12. They are  listed in three columns: economic, social, and environmental. Each column shows the range of  effects on objectives or concerns beyond mitigation discussed in Chapters 7.12 for that category. For  example, energy security is categorized in the column of  economic  and addressed in Section 7.9,  8.7, 9.7, 10.8, 11.13.6, and 12.8.  This perception is reinforced by comparative case studies and specific country studies. A  comparative study finds that co benefits is an important driving force for mitigation policies across  large, rapidly industrializing countries (Bailey and Compston, 2012a), a finding that is supported by  country level studies. India s National Action Plan on Climate Change (NAPCC), for example, is  explicitly oriented to pursuit of co benefits, with mitigation understood to be the secondary benefit  emerging from development policies. The linkage between energy security and mitigation is  particularly important to winning broader political support for action on mitigation (Dubash, 2011;  Fisher, 2012). A similar trend is apparent in China (Oberheitmann, 2008), where provincial  implementation of targets is enabled by linking action to local motivations, notably for energy  efficiency (Teng and Gu, 2007; Richerzhagen and Scholz, 2008a; Qi et al., 2008; Tsang and Kolk,  2010b; Kostka and Hobbs, 2012).Tsang and Kolk (2010a) go so far as to say that Chinese leaders  essentially equate climate policy with energy conservation. Kostka and Hobbs (2012) identify three  ways in which this alignment of global and local objectives happens: interest bundling, through  which objectives of political institutions are tied to local economic interests; policy bundling, to link  climate change with issues of local political concern; and framing in ways that play to local  constituencies.   The concept of  nationally appropriate mitigation actions  (NAMAs) has a conceptual connection to  the idea of co benefits. Nationally appropriate mitigation actions are intended to be mitigation  actions that are  nationally appropriate  in the sense that they contribute to development outcomes.  Therefore, NAMAs provide a possible mechanism for connection of national policies and projects to  the global climate regime, although the mechanisms through which this will be accomplished are yet  to be fully articulated (see Box 15.1). Another, related mechanism is the explicit formulation in many  countries of  low emissions development strategies  that seek to integrate climate and development  strategies (Clapp et al., 2010).  Table 15.1: Roadmap for the assessment of potential co-benefits and adverse side-effects from mitigation measures on additional objectives or concerns in the sector chapters (7 12). For overview purposes, only those objectives and concerns are shown that are assessed in at least two sectors. For a broader synthesis of the literature assessed in this report, see Section 6.6.    12 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Effect of mitigation measures on additional objectives or concerns  Economic  Energy security (7.9, 8.7,  9.7, 10.8, 11.13.6, 12.8)  Employment impact (7.9,  8.7, 9.7, 10.8, 11.7,  11.13.6)  New business  opportunity/economic  activity (7.9, 11.7,  11.13.6)  Productivity/competitiven ess (8.7, 9.7, 10.9,  11.13.6)  Technological  spillover/innovation (7.9,  8.7, 10.8, 11.3, 11.13.6)    Box 15.1. Nationally Appropriate Mitigation Actions (NAMAs) Social  Health impact (e.g., via air quality and  noise) (5.7, 7.9, 8.7, 9.7, 10.8, 11.7,  11.13.6, 12.8)  Energy/mobility access (7.9, 8.7, 9.7,  11.13.6, 12.4)  (Fuel) Poverty alleviation (7.9, 8.7, 9.7,  11.7, 11.13.6)  Food security (7.9, 11.7, 11.13.6/7)  Impact on local conflicts (7.9, 10.8,  11.7, 11.13.6)  Safety/disaster resilience (7.9, 8.7, 9.7,  10.8, 12.8)  Gender impact (7.9, 9.7, 11.7, 11.13.6)  Environmental  Ecosystem impact (e.g., via air  pollution) (7.9, 8.7, 9.7, 10.8,  11.7, 11.13.6/7, 12.8)  Land use competition (7.9, 8.7,  10.8, 11.7, 11.13.6/7)  Water use/quality (7.9, 9.7,  10.8, 11.7, 11.13.6)  Biodiversity conservation (7.9,  9.7, 11.7, 11.13.6)  Urban heat island effect (9.7,  12.8)  Resource/material use impact  (7.9, 8.7, 9.7, 10.8, 12.8)  The Bali Action Plan (BAP), (1/CP.13, (UNFCCC, 2007)) states that developing countries are called on  to take NAMAs supported and enabled by technology and finance. For example, NAMAs could be  articulated in terms of national emissions intensity or trajectories, sectoral emissions, or specific  actions at sectoral or sub sectoral levels. As of June 2013, 57 parties had submitted NAMAs to the  United Nations Framework Convention on Climate Change (UNFCCC) secretariat.  The design of mechanisms to link NAMAs to global support lead to some complex tradeoffs. For  example, large scale sectoral NAMAs provide the least scope for leakage (decreased emissions in one  sector is undermined by increased emissions in another part of the economy) and the lowest  measurement costs (Jung et al., 2010). However, designing NAMAs around transaction costs might  run counter to designing them for targeted focus on national development priorities. Exploring the  extent of this tradeoff and managing it carefully will be an important part of implementing NAMAs. Much of the writing on NAMAs is focused on the challenges of linking national actions to the  international climate framework. Conceptual challenges involved in linking NAMAs to the UNFCCC  process include the legal nature of NAMAs (van Asselt et al., 2010), financing of NAMAs, and  associated concerns of avoiding double counting (Cheng, 2010; Jung et al., 2010; van Asselt et al.,  2010; Sovacool, 2011a) and measurement, reporting, and verification of NAMAs (Jung et al., 2010;  Sterk, 2010; van Asselt et al., 2010). While NAMAs pertain particularly to the developing world, co benefits based arguments are also  used in developed countries. In the United States, Gore and Robinson (2009) argue that expansion of  municipal scale action is articulated in the form of co benefits, and is driven by network based  communication and citizen initiative. In Germany, several benefits in addition to climate change have  been attributed to the policy for energy transition or  Energiewende,  including security of energy  supply and industrial policy (Lehmann and Gawel, 2013).     13 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.2.5    Sub national Climate Action and Interaction across Levels of Governance  In many countries, the formulation and implementation of national mitigation approaches are  further delegated to sub national levels, with differing levels of central coordination, depending on  national contexts and institutions. Comparative analysis of cross country climate action is  insufficiently developed to allow generalization and explanation of different approaches to climate  policy.  In some federal systems, national target setting by the central government is followed by further  allocation of targets to provinces, often through nationally specific formulae or processes. For  example, in the case of Belgium, Kyoto targets were re allocated to the regional level through a  process of negotiation, followed by the preparation of regional climate plans to implement regional  targets (Happaerts et al., 2011). Ultimately, since agreement could not be reached on regional  targets to meet the national Kyoto targets, the approach relied on offsets were explicitly internalized  as part of the national approach to meeting Kyoto targets. In China, national action is defined and  monitored by the central government in consultation with provinces, and implementation is  delegated to provinces. Targets set in the subsequent National Climate Change Programme as part  of the 11th Five Year Plan were implemented through a mechanism of provincial communiqués to  track compliance with the target, and provincial leading groups to implement the target (Teng and  Gu, 2007; Qi et al., 2008; Tsang and Kolk, 2010b; Held et al., 2011a; Kostka and Hobbs, 2012). A  range of policy mechanisms were used to implement this target, such as differential energy prices  based on energy efficiency performance, promotion of energy audits, and financial incentives for  performance (Held et al., 2011b). Subsequent revised targets have been set for the 12th Five Year  Plan.   Other countries represent intermediate cases between central control and decentralization. India  has developed a mix of national policies through its National Action Plan on Climate Change,  responsibility for which rests with central government ministries, and State Action Plans on Climate  Change to be developed and implemented by states (Dubash et al., 2013). While they are  predominantly focused on implementing national level directives, there is also sufficient flexibility to  pursue state level concerns, and some states have created new mechanisms, such as the  establishment of a Climate Change department in the state of Gujarat, and the establishment of a  green fund in Kerala (Atteridge et al., 2012). In France, the EU objectives were adopted as national  goals, and through national legislation, all urban agglomerations over 50,000 are required to prepare  Climate and Energy Territorial Plans  to meet these goals and, additionally, to address adaptation  needs (Assemblée Nationale, 2010). Since all other planning processes related to issues such as  transport, building, urban planning, and energy have to conform to and support these objectives,  this approach provides a powerful mechanism to mainstream climate change into local public  planning. These plans also form a framework around which private voluntary action can be  organized. In Germany, while the federal government initiates and leads climate action, the states or  Länder  have a veto power against central initiatives through representation in the upper house of  parliament (Weidner and Mez, 2008). In addition, however, the Länder may also take additional  action in areas such as energy efficiency measures, renewable energy development on state  property and even through state wide targets (Biedermann, 2011).  In some cases, sub national jurisdictions seem to be attempting to compensate for the lack of  political momentum at the national level (Schreurs, 2008; Dubash, 2011). In the United States, for  example, although progress at the federal level has been slow and halting, there have been multiple  efforts at sub national scales, through unilateral and coordinated action by states, judicial  intervention, and municipal scale action (Carlarne, 2008; Rabe, 2009, 2010; Posner, 2010). There are  examples of states joining together in creating new institutional mechanisms, such as the Regional  Greenhouse Gas Initiative (RGGI) among Northeastern states in the United States to institute an  emissions trading programme, and the Western Climate Initiative (WCI) between California and    14 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    several Canadian provinces, although both these initiatives have also failed to live up to their original  promise (Mehling and Frenkil, 2013). Climate policy in the state of California, with its new cap and  trade programme, is particularly worth noting both because of the size of its economy and because  California has a history as a pioneer of environmental innovation (Mazmanian et al., 2008; Farrell  and Hanemann, 2009).  As detailed further in Section 15.8, cities are particularly vibrant sites of sub national action in some  countries, often operating in networks and involving a range of actors at multiple scales (Betsill and  Bulkeley, 2006; Gore and Robinson, 2009). For example, in the Netherlands, the central government  has established a programme that provides subsidies to municipalities to undertake various  measures such as improvements in municipal buildings and housing, improved traffic flow,  sustainable energy, and so on (Gupta et al., 2007). In Brazil, important cities such as Rio de Janeiro  and Sao Paulo have taken specific measures that go beyond national policies. For example, a 2009  Sao Paulo law (No. 13.798) commits the state to undertake mandatory economy wide GHG emission  reduction targets of 20% by 2020 from 2005 levels (Lucon and Goldemberg, 2010).  In the United  States, over 1000 cities and municipalities have committed to reaching what would have been the  US Kyoto target as part of the Conference of Mayors  Climate Protection Agreement (Mehling and  Frenkil, 2013).  Sub national action on climate change is a mix of bottom up experimentation and the interaction of  top down guidance with local implementation action. In some cases, countries have set in place  explicit mechanisms for coordination of national and sub national action, such as in China and India,  but there is insufficient evidence to assess the effectiveness of these mechanisms. More typical is  relatively uncoordinated action and experimentation at sub national level, particularly focused on  cities. These issues are discussed further in Section 15.8.  15.2.6    Drivers of National and Sub national Climate Action  National and sub national actions are related to domestic political institutions, domestic politics,  international influences, and ideational factors. Based on data from industrialized countries, a  comparative political analysis suggests that proportional representation systems such as those in  many EU nations are more likely than first past the post systems to give importance to minority  interests on environmental outcomes; systems with multiple veto points, such as the US system,  afford more opportunities for opponents to block political action; and in federal systems powerful  provinces with high compliance costs can block action, as seems to have occurred in Canada  (Harrison and Sundstrom, 2010). Lachapelle and Paterson (2013) use quantitative analysis to  substantiate the argument about proportional representation and systems with multiple veto points.  They also show that presidential congressional systems find it systematically more difficult to  develop climate policy than parliamentary systems.   These are, however, only general tendencies: the specific details of country cases, as well as the  possibility of multiple and interacting causal factors, suggests the need for caution in predicting  outcomes based on these factors.   In particular, national domestic political factors are also salient. Electoral politics, operating through  pressure for action from domestic constituents, is a determinant of action as is the cost of  compliance (Harrison and Sundstrom, 2010). The role of climate change in electoral strategies  developed by political parties may also play a role in climate governance, although evidence for this  effect is available only for developed countries (Carter, 2008; Fielding et al., 2012; Bailey and  Compston, 2012a). For example, the compliance costs of carbon pricing were the subject of direct  electoral competition between Australia s major political parties in the 2007 and 2010 general  elections (Rootes, 2011; Bailey et al., 2012). The presence of substantial co benefits opportunities  and re framing policy around these opportunities can also influence domestic politics in favour of  climate action (Held et al., 2013b); (Bailey and Compston, 2012a). Finally, the  type  of state liberal    15 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    market, corporatist or developmental can shape outcomes (Lachapelle and Paterson, 2013). For  example, somewhat counter intuitively corporatist states (e.g., Germany, South Korea) are more  likely to have introduced carbon pricing than states with liberal market policy traditions (e.g., the  United States, Canada). Conversely, liberal market economies are more likely, as are developmental  states (e.g., China), to focus on R&D as a principal policy tool (on the United States, see notably  Macneil, (2012). These patterns reflect powerful institutional path dependencies and incentives  facing actors promoting climate policy in particular countries (Macneil, 2012).    International pressures are also important in explaining state action. Diplomatic pressure, changes in  public and private finance that emphasize mainstreaming climate change, and a general trend  toward higher fossil fuel energy prices all are associated with increasing climate action (Held et al.,  2013b).  Finally, based on comparative case studies, various ideational factors such as national norms around  multilateralism, perceptions of equity in the global climate regime (Harrison and Sundstrom, 2010),  and ideas put forward by scientists, international organizations and other voices of authority can  also shift domestic politics (Held et al., 2013b).  15.2.7    Summary of institutions and governance  The evidence on institutional change and new patterns of climate governance is limited, as many  countries are in the process of establishing new institutions and systems of governance. However, a  several trends are visible. First, there is a considerable increase in government led  institutionalization of climate action through both legislation and policy since AR4. The factors  driving these changes include international pressures, scope for co benefits, and changing norms  and ideas. The specifics of national political systems also affect country actions.  Second, evidence  from national cases illustrates considerable diversity in the forms of action. While there are only a  few cases of nationally led economy wide carbon price setting efforts, more common are sectoral  approaches to climate change mitigation or delegated action to sub national levels, often embedded  within national climate policy frameworks. Third, the promise of  co benefits  is often an important  stated reason for climate policies and their framing. Fourth, there is a profusion of activity at sub national levels, particularly urban areas, much of which is only loosely coordinated with national  actions. Finally, the diversity of approaches appears to be strongly driven by local institutional and  political context, with legislative and policy measures tailored to operate within the constraints of  national political and institutional systems.  15.3   Characteristics and classification of policy instruments and packages   This section presents a brief and non exhaustive description of the main policy instruments and  packages, using the common classification set by Chapter 3.8. Most of these instruments will be  assessed with the common evaluation criteria set by Chapter 3 (see Section 15.5) in most of the  remaining parts of this chapter. As indicated in Section 15.2, these instruments are introduced  within an institutional context that obviously influences their design and implementation.      15.3.1    Economic Instruments  Economic instruments are sometimes termed  market based  approaches because prices are  employed in environmental and climate policies. Economic instruments for climate change  mitigation include taxes (including charges and border adjustments), subsidies and subsidy removal,  and emissions trading schemes. Taxes and subsidies are known as price instruments since they do  not directly target quantities, while emissions trading schemes, especially cap and trade schemes  (see below), are known as quantity instruments. This distinction can be important, as seen in  Sections 15.5.3.8, 15.7.3.2, and 15.7.3.4.    16 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Taxes and charges are ideally defined as a payment for each unit of GHG released into the  atmosphere. In the climate context, they are usually unrelated to the provision of a service and are  thus known as taxes rather than charges. They can be levied on different tax bases, whereas tax  rates, given the global and uniform characteristics of the taxed emissions, usually do not show  spatial variation (OECD, 2001). In the last years, many taxes on GHG or energy have devoted part of  their revenues to the reduction of other distortionary taxes (green tax reforms), although other  revenue uses are now playing an increasing role (Ekins and Speck, 2011).  Border tax adjustments are related instruments that intend to solve the dysfunctions of variable  climate change regulations across the world. Although some authors highlight that they could  alleviate the problem of leakage and a contribute to a wider application of mitigation policies (Ismer  and Neuhoff, 2007), others emphasize that they do not constitute optimal policy instruments and  could even increase leakage (Jakob et al., 2013) or cause potential threats to fairness and to the  functioning of the global trade system (e.g., Bhagwati and Mavroidis (2007)).  Subsidies to low GHG products or technologies have been applied by a number of countries but,  contrary to the previous revenue raising/neutral economic instruments, they demand public funds.  In some countries there are  perverse  subsidies lowering the prices of fossil fuels or road transport,  which bring about a higher use of energy and an increase of GHG emissions. Therefore, subsidy  reduction or removal would have positive effects in climate change and public revenue terms and is  therefore treated as an instrument in its own right (OECD, 2008).  In  cap and trade  emissions trading systems regulators establish an overall target of emissions and  issue an equivalent number of emissions permits. Permits are subsequently allocated among  polluters and trade leads to a market price. The allocation of emission permits can be done through  free distribution (e.g., grandfathering) or through auctioning. In  baseline and credit  emissions  trading systems, polluters may create emission reduction credits (often project based) by emitting  below a baseline level of emissions (Stavins, 2003).  15.3.2    Regulatory Approaches  Regulations and standards were the core of the first environmental policies and are still very  important in environmental and climate policies all around the world. They are conventional  regulatory approaches that establish a rule and/or objective that must be fulfilled by the polluters  who would face a penalty in case of non compliance with the norm. There are several categories of  standards that are applicable to climate policies, mainly:  Emission standards, which are the maximum allowable discharges of pollutants into the  environment, and which can also be termed as performance standards;   Technology standards that mandate specific pollution abatement technologies or production  methods (IPCC, 2007); and  Product standards that define the characteristics of potentially polluting products (Gabel,  2000).    15.3.3    Information Policies  A typical market failure in the environmental domain is the lack, or at least asymmetric nature, of  relevant information among some firms and consumers. Good quality information is essential for  raising public awareness and concern about climate change, identifying environmental challenges,  better designing and monitoring the impacts of environmental policies, and providing relevant  information to inform consumption and production decisions. Examples of information instruments  include eco labelling or certification schemes for products or technologies and collection and  disclosure of data on GHG emissions by significant polluters (Krarup and Russell, 2005).    17 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    15.3.4    Government Provision of Public Goods and Services and Procurement  A changing climate will typically be a  public bad  and actions and programmes by governments to  counteract or prevent climate change can thus be seen as  public goods . There are many examples  where public good provision may be an appropriate form of mitigation or adaptation. Examples  include physical and infrastructure planning, provision of district heating or public transportation  services(Grazi and van den Bergh, 2008), and funding and provision of research activities (Metz,  2010). Moreover, the removal of institutional and legal barriers that promote GHG emissions (or  preclude mitigation) should be included in this policy type. Afforestation programmes and  conservation of state owned forests are an important example.  15.3.5    Voluntary Actions  Voluntary actions refer to actions taken by firms, NGOs, and other actors beyond regulatory  requirement. Voluntary agreements represent an evolution from traditional mandatory approaches  based on conventional or economic regulations and intend to provide further flexibility to polluters.  They are based on the idea that, under certain conditions, polluters can decide collectively to  commit themselves to abatement instead of, or beyond the requirements of regulation. Voluntary  agreements, sometimes known as long term agreements, can be developed in different ways; in  most cases the voluntary commitment is assumed as a consequence of an explicit negotiation  process between the regulator and the pollutant. In other cases a spontaneous commitment may be  viewed as a way to avoid future mandatory alternatives from the regulator (Metz, 2010). Finally,  there are cases where the regulator promotes standard environmental agreements on the basis of  estimation of costs and benefits to firms (Croci, 2005).   15.4   Approaches and tools used to evaluate policies and institutions  15.4.1    Evaluation Criteria  Several criteria have been usually employed to assess the effects of climate change policies and  these have been laid out in Section 3.7. The criteria that have been used are environmental  effectiveness, economic effectiveness (cost effectiveness and economic efficiency), distributional  equity and broader social impacts, and institutional, political, and administrative feasibility and  flexibility. Political and institutional feasibility are not only a separate criterion, but also need to be  taken into account when judging other criteria such as economic effectiveness. It would be  misleading to show that a tax would have been more cost effective than, for example, a regulation if  it would never have been feasible to implement the tax at a sufficiently high level to have the same  effect as that regulation.  15.4.2    Approaches to Evaluation  One can evaluate the effect of policy instrument x on a set of variables y that matter for the  evaluation criteria either through modelling or through ex post empirical measurement.  For any  evaluation based solely on modelling, it will never be possible to know whether all important aspects  of the relationship between x and the y s are captured appropriately by the model.  For this reason,  it is highly desirable to have ex post empirical analysis to evaluate a policy instrument.  In order to  measure the effect of a policy instrument, one must compare the observed y s in the presence of x  with the  but for  or  counterfactual  value of the y s  defined as their estimated likely value but for  the implementation of x.  Statistical methods can be used to attempt to control for the evolution of the world in the absence  of the policy. The most reliable basis for estimating counterfactual developments is to build    18 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    programme evaluation into the design of programmes from their inception (Jaffe, 2002). If the  planning of such evaluation is undertaken at the beginning of a programme, then data can be  developed and maintained that greatly increase the power of statistical methods to quantify the  true impact of a programme by controlling for but for developments.  Statistical analyses capture only those policy effects that can be and have been measured  quantitatively.  Qualitative analyses and case studies complement statistical analyses by capturing  the effects of policies and institutions on other aspects of the system, and the effect of institutional,  social and political factors on policy success (e.g.,, Bailey et al (2012)).  Of course, data for ex post evaluation is not always available, and even where it is, it is very  challenging to capture all aspects of the situation empirically.  Therefore, there will always be a role  for models to elucidate the structure of policy effects, and to estimate or put bounds on the  magnitude of effects.  Such models can be purely analytical/theoretical, or they can combine  empirical estimates of certain parameters with a model structure, as in  bottom up  models where  many small effects are estimated and cumulated, or in simulation models, which combine an  analytical/theoretical structure with numerical estimates of parameters of the model.  Many such  models are  partial equilibrium,  meaning they capture the particular context of interest but ignore  impacts on and feedback from the larger system.  There are also computable  general equilibrium   (CGE) models that allow for interactions between the context of the policy focus and the larger  system, including overall macroeconomic impacts and feedbacks see for example, Bohringer et  al.,(2006).   Experimental economics  uses a laboratory setting as a  model  of a real world process, and uses  experimental subjects  responses in that setting as an indicator of likely real world behaviour (Kotani  et al., 2011).  With any model, results are truly predictive of real world results only to the extent that  the model be it theoretical, simulation or experimental captures adequately the key aspects of  the real world in the experiment.  15.5   Assessment of the Performance of Policies and Measures, including  their policy design, in developed and developing countries taking into  account development level and capacity  15.5.1    Overview of policy implementation     In this section we assess the performance of a series of policy instruments and measures, starting  with economic instruments (taxes in 15.5.2, emissions trading in 15.5.3), regulatory approaches  (15.5.4), information programmes (15.5.5), government provision of public goods (15.5.6) and  voluntary agreements (15.5.7). We assess aspects of these and other policies in Section 15.6 on  technology and R&D policy, and in Section 15.7 that deals with interactions between policies.  Many policy instruments are in principle capable of covering the entire economy.  However, as  mentioned in Section 15.2, in practice the instruments are often targeted to particular sectors or  industries. This partly reflects the fact that certain barrier or market failures are specific to or more  pronounced in certain sectors or industries.  Furthermore, some policies may cover only part of the  economy as a result of the ability of special interests to exempt some sectors or industries  (Compston, 2009),  (Helm, 2010).  Broader coverage tends to promote greater cost effectiveness.  However, on fairness grounds there  is an argument for partly or fully exempting certain industries in order to maintain international  competitiveness, particularly when the threat to competitiveness comes from other nations that  have not introduced climate policy and would gain competitive advantage as a result.    19 of 102   Final Draft  Chapter 15 IPCC WGIII AR5    Table 15.2 brings together policy instruments discussed in sector chapters (Chapters 7 to 12). Two  broad themes emerge from this survey. First, while policies that target broad energy prices taxes  or tradable allowances are clearly applicable across all sectors a wide range of other policy  approaches are also prevalent, which enable policy design that addresses sector specific attributes.  For example, in the buildings sector regulatory instruments are an important tool. In the absence of  a building code enforcing enhanced efficiency, an energy price signal alone might be insufficient to  induce a builder to invest in an energy efficient building that they plan to sell or rent. Building and  product standards also increase investor certainty thereby reducing costs.  Similarly, the transport  sector relies not only on pricing policies but also on government provision of infrastructure and  regulation that guides urban development and modal choices. The industry sector faces information  and other barriers to investment in efficiency, which can be overcome by audits and other  information based programmes. In Agriculture, Forestry, and Other Land Use (AFOLU), government  regulation to protect forests and set the conditions for REDD+ (Reducing Emissions From  Deforestation and Forest Degradation) plays a substantial role, as do certification programmes for  sustainable forestry.  Sector specific policies often exist alongside broader ones.  In energy supply, broad based GHG  emissions pricing has often been supplemented by specific price  and quantity based mechanisms  (such as feed in tariffs (FITs) and portfolio standards) and underpinned by sufficient regulatory  stability (including non discriminatory access to electricity and gas networks). In industry, relatively  broad tax exemptions may be combined with mandatory audits, with the former helping  level the  playing field  and providing the impetus for action, and the latter addressing an information barrier;  thus each instrument addresses a separate market failure or barrier.  The implementation of  multiple policy instruments within a single sector can promote cost effectiveness when the two  instruments address distinct market failures.  On the other hand, multiple instruments can work  against cost effectiveness when the two instruments fail to address different market failures and  thus are simply redundant. This issue is discussed further in Section 15.7 below.    20 of 102   Final Draft  Table 15.2: Sector Policy Instruments Chapter 15  IPCC WGIII AR5   Policy  Instruments  Economic  Instruments    Taxes  (Carbon taxes  may be  economy wide)  Economic  Instruments    Tradable  Allowances  (May be  economy wide)  Energy (See 7.12)  Carbon taxes    Transport (See  8.10)  Fuel taxes Congestion  charges, vehicle  registration fees,  road tolls  Vehicle taxes  Fuel and vehicle  standards  Buildings (See  9.10)  Carbon and/or  energy taxes  (either sectoral  or economy  wide)  Industry (See 10.11)  Carbon tax or  energy tax  Waste disposal  taxes or charges  Emissions trading  (e.g., EU ETS)  Emission credits  under CDM  Tradable Green  Certificates  Tradable  certificates for  energy efficiency  improvements  (white  certificates)   Emissions trading  Emission credit  under CDM  Tradable Green  Certificates   Economic  Instruments    Subsidies  Fossil fuel subsidy  removal  Feed in tariffs for  renewable energy  Capital subsidies  and insurance for  Biofuel subsidies  Vehicle purchase  subsidies  Feebates   Subsidies or Tax  exemptions for  investment in  efficient  buildings,  retrofits and  21 of 102   Subsidies (e.g., for  energy audits)  Fiscal incentives  (e.g., for fuel  switching)  AFOLU (See 11.10)  Human Settlements  and Infrastructure  Sprawl taxes, Impact  Fertilizer or  Nitrogen taxes to  fees, exactions, split reduce nitrous  rate property taxes,  oxide  tax increment  finance, betterment  taxes, congestion  charges  Emission credits  Urban scale Cap and  under the Kyoto  Trade  Protocol s Clean  Development  Mechanism  (CDM)  Compliance  schemes outside  Kyoto protocol  (national  schemes)  Voluntary  carbon markets  Credit lines for  Special Improvement  low carbon  or Redevelopment  agriculture,  Districts  sustainable    forestry.  Final Draft  1st generation  Carbon Dioxide  Capture and  Storage (CCS)  Efficiency or  environmental  performance  standards  Renewable  Portfolio standards  for renewable  energy   Equitable access to  electricity grid  Legal status of long  term CO2 storage  Chapter 15  products Subsidized loans  IPCC WGIII AR5   Regulatory  Approaches  Information  Programmes    Fuel economy  performance  standards  Fuel quality  standards  GHG emission  performance  standards  Regulatory  restrictions to  encourage modal  shifts (road to  rail)   Restriction on use  of vehicles in  certain areas  Environmental  capacity  constraints on  airports  Urban planning  and zoning  restrictions  Fuel labelling  Vehicle efficiency  Building codes  and standards  Equipment and  appliance  standards  Mandates for  energy retailers  to assist  customers invest  in energy  efficiency  Energy efficiency  standards for  equipment   Energy  management  systems (also  voluntary)  Voluntary  agreements (where  bound by  regulation)  Labelling and public  procurement  regulations    National policies  to support  REDD+ including  monitoring,  reporting and  verification  Forest law to  reduce  deforestation  Air and water  pollution control  GHG precursors  Land use  planning and  governance   Mixed use zoning  Development  restrictions  Affordable housing  mandates  Site access controls  Transfer development  rights  Design codes  Building codes  Street codes  Design standards  Energy audits  Labelling  22 of 102   Energy audits  Benchmarking  Certification  schemes for    Final Draft  labelling Chapter 15  programmes Energy advice  programmes  sustainable forest  practices  Information  policies to  support REDD+  including  monitoring,  reporting and  verification  Protection of  Training and  national, state,  education  and local forests.  Brokerage for  industrial  Investment in  cooperation  improvement   Diffusion of  innovative  technologies in  agriculture and  forestry  Voluntary  Promotion of  agreements on  sustainability by  energy targets or  developing  adoption of energy  standards and  management  educational  systems, or resource  campaigns  efficiency  Brokerage for  industrial  cooperation  IPCC WGIII AR5   Government  Provision of  Public Goods  or Services  Research and  development  Infrastructure  expansion (district  heating/cooling or  common carrier)  Voluntary  Actions    Investment in  transit and  human powered  transport  Investment in  alternative fuel  infrastructure  Low emission  vehicle  procurement    Public  procurement of  efficient  buildings and  appliances  Provision of utility  infrastructure such as  electricity distribution,  district heating/cooling  and wastewater  connections, etc.   Park improvements   Trail improvements  Urban rail     Labelling  programmes for  efficient buildings Product eco labelling  23 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.5.2    Taxes, Charges, and Subsidy Removal   15.5.2.1    Overview  Taxes on carbon (together with emissions trading systems) are economic instruments. In the  presence of rational consumers, firms, and complete markets, they achieve any given level of  emissions reduction in the least costly way possible.  Economic instruments like carbon taxes are  attractive because of their simplicity and broad scope  covering all technologies and fuels (Section  3.8) and thus evoking the cost minimizing combination of changes to inputs in production and  technologies to changing behaviour as manifested in consumption choices and lifestyles. This is the  reason they have the potential to be more efficient than directly regulating technology, products, or  behaviour.2. To minimize administrative costs, a carbon tax can be levied  upstream  (at the points of  production or entry into the country). Finally, unlike an emissions trading system that requires new  administrative machinery, a tax can piggyback off existing revenue collection systems.   Despite these attractive properties, carbon taxes are not nearly as prevalent a policy instrument as  one might expect. As yet, the Scandinavian countries, the Netherlands, the UK, and the Canadian  province of British Columbia are the only large jurisdictions with significant and fairly general carbon  taxes of at least USD 10/tCO2.3 The reasons for this are not entirely clear. It may be that a carbon tax,  unlike a narrower sectoral regulation, attracts more hostile lobbying from fossil fuel interests4 for  whom the stakes it creates are high (Hunter and Nelson, 1989; Potters and Sloof, 1996; Goel and  Nelson, 1999; Godal and Holtsmark, 2001; Skjaerseth and Skodvin, 2001; Kolk and Levy, 2002; van  den Hove et al., 2002b; McCright and Dunlap, 2003; Markussen and Svendsen, 2005; Pearce, 2006;  Beuermann and Santarius, 2006; Deroubaix and Léveque, 2006; Pinkse and Kolk, 2007; Bridgman et  al., 2007; Bjertnaes and Faehn, 2008; Blackman et al., 2010; Sterner and Coria, 2012). Secondly, the  payments required by a tax are transparent, unlike the less visible costs of regulations. The general  public, not being aware of the above mentioned efficiency properties of a tax, may be less likely to  accept such an instrument (Brännlund and Persson, 2010). Third, policy may be driven by perceived  risks to competitiveness and employment as well as the distribution of costs rather than on  considerations of pure efficiency (Decker and Wohar, 2007). Finally, a set of institutional path  dependencies may have led to a favouring of emissions trading systems over taxes, including a post Kyoto preference for emissions trading in key bureaucracies, supported by creation of supportive  industry and other associations (Skjaerseth and Wettestad, 2008; Paterson, 2012).  Countries that have sizeable general carbon taxes are fewer still   mainly a few Northern European  countries. The carbon tax in Sweden is 1100 SEK or USD165/tCO2, which is an order of magnitude  higher than the price of permits on the EU emissions trading scheme (ETS) market or than the  carbon taxes discussed in many other countries. Such high taxes typically have some exemptions  motivated by the fact that other (competing) countries have no (or low) taxes. Sweden, for example,  exempted the large energy users who participate in the EU ETS from also paying the carbon tax on  the grounds that there would otherwise be a form of  double  taxation (See 15.5.2.4 for a more  thorough discussion).   Although general carbon taxes are so far uncommon, there are many policies that have similar  effects but (for political reasons) avoid using the words  carbon  and/or  tax , (Rabe and Borick,   If psychological or institutional barriers to adoption or other market failures are the main factor impeding  choice then regulations or other instruments may be an efficient complement or stand alone instrument to  deal with this (see Section 15.4).   3 4 2  Australia has a fixed fee hybrid system sometimes described as a tax that will be converted into an ETS.   These can be either producers (for instance of fossil fuels) or users of energy, ranging from energy intensive  industries to truck drivers.  24 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   2012). Taxes on fuels, especially transport fuels are very common. While narrower in scope, they  nevertheless cover a significant fraction of emissions in many countries. They can be interpreted as  sectoral carbon taxes; in some countries this is clearly stated as an objective of fuel taxes, in others it  is not. Fuel taxes may be politically easier to implement in some countries since (private) transport is  hardly subject to international competition and hence leakage rates are low. A large share of all  revenues from environmentally related taxes in fact come from fuel taxes, which were introduced in  various countries, beginning with Europe and Japan, though they are also common in low income,  oil importing countries. One of their main stated purposes is to finance road building, although  additional arguments include reducing expensive imports, government revenue raising, and reducing  environmental impacts. Irrespective of the motivation, the effect of carbon taxes on fuel is to raise  prices to consumers and restrict demand (see Section 15.5.2.2). Fuel taxes are important for climate  change mitigation since the transport sector represents a large and increasing share of carbon  emissions (27% of global energy related CO2 emissions in 2010   see Section 8.1). Theory,  simulation, and empirical studies all suggest strongly that taxing fuel is a lower cost method of  reducing emissions compared to policies such as fuel efficiency mandates, driving restrictions, or  subsidies to new technologies5 (Austin and Dinan, 2005). However, consumers who buy vehicles may  be unable to correctly internalize the long run savings of more fuel efficient vehicles. This would be  considered a  barrier  and would provide motivation for having fuel efficiency standards in addition  to fuel taxes (see Section 15.5.4).   Variation in fuel prices is generated by subsidies as well as taxes. Fossil fuel subsidies are prevalent  in many countries, being most common in oil and coal producing countries. According to the  International Monetary Fund (IMF) (2013), the Middle East and North Africa region accounts for  around 50% of global energy subsidies. In 2008, fossil fuel subsidies   for transport fuels, electricity,  tax breaks for oil and gas production, and for research and development into coal generation,  exceeded USD2010 489.1 billion globally (IEA/OECD, 2011). A more recent estimate by the IMF (2013)  puts the figure at USD2010 469.5 billion or 0.7% of global GDP in 2011. This is a pre tax estimate and  includes petroleum products, electricity, natural gas, and coal. A large share is in the fossil fuel  exporting countries. After factoring in negative externalities, through corrective taxes, the IMF  reports USD2010 1.85 trillion in implicit subsidies. This figure assumes damages corresponding to a  USD 25/t social cost on carbon, consistent with United States Interagency Working Group on Social  Cost of Carbon (2010).  Advanced economies  make up 40% of the global post tax estimate.  Reviewing six major studies that estimate fossil fuel subsidies, Ellis (2010) notes that removal of such  subsidies would increase the aggregate GDP in OECD and non OECD countries in the  range from 0.1  per cent in total by 2010 to 0.7 per cent per year to 2050  (Ellis, 2010).  The studies reviewed include  both modelling and empirical exercises.  15.5.2.2    Environmental effectiveness and efficiency  Assessing the environmental effectiveness of carbon taxation is not straightforward because  multiple instruments and many other factors co evolve in each country to produce policy mixes with  different outcomes in terms of emissions. For example, energy taxes varying by sector have been  prominent in the Nordic countries since the 1970s with carbon taxes being added on in the early  1990s. Ex post analyses have found varying reductions in CO2 emission from carbon taxes in Norway,  Sweden, Denmark, and Iceland, compared to business as usual (see (2004)  for an extensive review  of these studies and their estimation techniques).  The UK s Climate Change Levy (CCL), introduced in 2001 on manufacturing plants and non residential  energy users (offices, supermarkets, public buildings, etc.), has had a strong impact on energy  intensity (Martin et al., 2011). Electricity use, taxed at a rate of about 10%, declined by over 22% at  5  See also Section 15.12 on climate finance.  25 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   plants subject to the levy as compared to plants that were eligible to opt out by entering into a  voluntary agreement to reduce energy use. There was no evidence that the tax had any detrimental  effect on economic performance or led plants to exit from the industry (Martin et al., 2011).  From 1990 to 2007, the CO2 equivalent emissions in Sweden were reduced by 9% while the country  experienced an economic growth of +51%. In Sweden, with the highest carbon tax (albeit with  exemptions for some industrial sectors), there was a very strong decoupling of carbon emissions and  growth with reductions in carbon intensity of GDP of 40% (Johansson, 2000; Hammar et al., 2013).  Per capita emissions in Denmark were reduced by 15% from 1990 to 2005; the experience in  Scandinavia, the UK, and the Netherlands was similar (Enevoldsen, 2005; Enevoldsen et al., 2007),  (Bruvoll and Larsen, 2004), (Cambridge Econometrics, 2005), (Berkhout et al., 2004; Sumner et al.,  2011; Lin and Li, 2011).  Of course, many factors may be at play, and these differences cannot be  attributed solely to differences in taxation. Overall, the evidence does suggest that carbon taxes, as  part of an environmental tax reform, lead to abatement of GHG emissions, generate revenue for the  government, and allow reductions in income tax threatening employment. Theory strongly suggests  that if a tax is implemented then it would also be cost effective, but it is for natural reasons hard to  demonstrate this empirically at the macro level.    There is much more evidence available on the environmental efficacy of fuel as compared to carbon  taxation. In the short run, consumers may be locked into patterns of use by habit, culture, vehicle  characteristics, urban infrastructure, and architecture. The short run response to higher fuel prices is  indeed often small   price elasticity estimates range between  0.1 to  0.25 for the first year.  However long run price elasticities are quite high:  approximately  0.7 or a range of  0.6 to  0.8. This  range is the average found by surveys of hundreds of studies that use both market based variations  in fuel price as well as policy induced variations and exploit both temporal and cross sectional  variations in the data; the individual study estimates range substantially more depending on  countries or regions covered, time period, method and other factors (Oum, 1989; Goodwin, 1992;  Graham and Glaister, 2002; Goodwin et al., 2004). In the long run, therefore, 10% higher fuel prices  will ultimately lead to roughly a 7% reduction in fuel use and emissions. Income elasticities are about  1, which means that 5% growth in income gives 5% growth in emissions. If instead a 2% reduction is  desired there is a 7% gap between the 5% increase and the  2% desired and a 10% increase in fuel  price every year would be needed to achieve such a reduction in emissions with a 5% growth in  income.   The long run effects of transport fuel taxation have been large. (Sterner, 2007) shows that in Europe,  where fuel taxes have been the highest, they have contributed to reductions in CO2 emissions from  transport by 50% for this group of countries. The whole Organisation for Economic Co operation and  Development (OECD) would have had 30% higher fuel use had not the European Union and some  other members imposed high fuel taxes (i.e., if all the OECD countries had instead chosen as low fuel  taxes as in the United States). Similarly, the OECD could have decreased fuel use by more than 35% if  all member countries would have chosen as high taxes as the United Kingdom. The accumulated  difference in emissions over the years leads to a difference in several ppm in CO2 concentration,  presumably making fuel taxes the policy that has had the largest actual impact on the climate up till  now (Sterner, 2007).     26 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Figure 15.2 The impact of average diesel prices across the world on the emissions intensity of liquid fuels. The environmental effect of a fuel tax is illustrated in Figure 15.2, where the fitted curve is from a  log linear regression of the emission intensity of liquid fuels on the price of diesel. The cross country  variation in diesel prices is mostly due to variation in taxes (and in some cases, subsidies). Figure  15.2 suggests that the effect of a change in the price of a fuel on emissions is greater at low prices.  This is intuitive, since fuel will be consumed wastefully when it is cheap, allowing for greater demand  reductions when the price rises.  Though there are few clean experiments, the market continuously creates  quasi experiments  which  are analogous to the introduction of policies. Increased fuel prices in the USA in 2008, for instance,  led to a shift in the composition of vehicles sold increasing fuel efficiency, while also reducing miles  travelled (Ramey and Vine, 2010; Aldy and Stavins, 2012).  Other price instruments that have been used in the transport sector are congestion charges, area  pricing, parking fees, and tolls on roads or in cities. These have been used to reduce congestion;  emission reduction is a co benefit. The USD2010 15.4 congestion fee in London led to reductions in  incoming private cars by 34% when introduced. Overall congestion was also estimated to have been  reduced by 30%, and emissions fell (Leape, 2006). The smaller (USD2010 2.6) congestion fee in  Stockholm reduced total road usage by 15% (Johansson et al., 2009).  Reducing subsidies to fossil energy will have a significant impact on emissions. Removing them could  reduce world GHG emissions by 10% at negative social cost (Burniaux and Chateau, 2011).The IMF  calculates that the removal of these subsidies induce a 15% reduction in global energy related  carbon emissions or 5 billion tCO2 in absolute terms and concludes that the post tax estimate of  USD2010 1.85 trillion in subsidies is  likely to underestimate  energy subsidies due to the assumptions  made, hence the impact on carbon emissions is likely to be higher. Ellis (2010) reports a range of  effects from just a few percent to 18% depending on the size of the subsidy reduction.   Recognizing the potential impact of a reduction in subsidies to fossil fuels, the G20 and APEC blocks  agreed in 2009 to phase out inefficient fossil fuel subsidies in all countries (G20 Leaders, 2009).  In China, the energy saving policies adopted in 1991, the 1998 Law on Energy Conservation, and the  2004 Medium and Long Term Specific Schema on Energy Saving, led to higher energy prices and  explain half the decline in energy intensity of Chinese industries between 1997 and 1999, while R&D  accounted for only 17% of the decline (Fisher Vanden et al., 2006; Yuan et al., 2009).  15.5.2.3    Distributional incidence and feasibility  Although fuel taxes have often been criticized for being regressive (that is, for imposing a  proportionally higher burden on the poor), this is not always the case. There are large variations in  27 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   distributional impacts both within and between social groups    the effects range from regressive or  progressive (Rausch et al., 2010, 2011); see also 6.3.5.2.  Studies of the distributional incidence of fuel taxes show that they may be neutral or weakly  regressive (before revenue recycling) in rich countries, but they are generally progressive in poor  countries. In many least developed and developing countries such as India, Indonesia, China, and  many African countries, the progressivity of fuel taxes is in fact quite strong. In Europe they are  approximately neutral (Sterner, 2012). Carbon taxation can sometimes have regressive effects prior  to recycling revenue, but recycling can make the poorest households better off. Generally, the  degree of progressivity can be selected depending on the method of recycling revenues. The  environmental taxation gives rise to government income that can be allocated in ways that either  benefit the poor or any other group giving a considerable range of options for how progressive or  regressive the politicians want to make the overall package, (Bureau, 2011).   The distributional effects of other taxes vary significantly. Kerosene taxes in developing countries are  regressive since kerosene is used predominantly by the poor (Younger et al., 1999; Gangopadhyay et  al., 2005; Datta, 2010).  This regressivity may also apply to taxes on electricity or coal. The  distributional effects of a more general carbon tax will depend on the mode of implementation with  respect to different fuels and sectors and typically be more complex than for a single fuel, since the  potential substitution possibilities are many. Results vary, but for instance, Hassett et al. (2009) finds  a carbon tax to be regressive in the USA, showing that the cost is about 3.74% for the poorest decile   four times the effect on the highest decile. In India, on the other hand, a carbon tax would be  progressive (Datta, 2010). The pro  or regressivity of carbon taxes will vary between countries but  can also be affected by design, as shown for instance by Fullerton et al., (2012) or Sterner and Coria  (2012).  The assertion that fuel taxes are regressive is often used as an argument and can make fuel taxes  politically difficult to implement even if not true. Feasibility is however not tied in any simple way to  income distribution effects. If a tax is progressive, this does not necessarily increase feasibility since  this means that the interests of influential groups are affected, which may be a much bigger  impediment to feasibility (Datta, 2010). Fear of social unrest may hold up subsidy removal.  Protests  over reduced petrol subsidies are common; for example, recently riots erupted in Nigeria when  President Jonathan Goodluck tried to eliminate very costly petrol subsidies with only partial success.  Some countries such as Iran and Indonesia have recognized that fuel subsidies actually accrue to the  relatively wealthy and managed to successfully reduce the subsidies without much unrest, by making  sure that revenues saved are spent fairly   for instance through general lump sum cash transfers  (Coady et al., 2010; Atashbar, 2012; Sterner, 2012; Aldy and Stavins, 2012).  15.5.2.4    Design issues: exemptions, revenue recycling, border adjustments  As mentioned above in 15.5.2.1, despite the attractive efficiency properties of a broad carbon tax,  and even its progressivity in many circumstances, it may face political resistance. To have a big effect  on emissions a tax must be high. Carbon and fuel taxes have often been initially resisted, but once  introduced it seems the fee level has often been increased, (Sumner et al., 2011b). Another factor  may be a path dependency since the taxes reduce the use of fossil fuel and lower fuel use means less  opposition to fuel taxes, (Hammar et al., 2004). This path dependency may be the rationale for  raising the fuel or carbon taxes slowly and steadily as done by the Conservative government in the  UK with the Fuel Price Escalator starting in 1993, a policy that was continued under the successor  Labour government for several years.   An emissions tax involves a transfer from economic agents to the state, namely the tax revenue from  the residual emissions that are not abated. Private parties have to make this transfer in addition to  bearing the cost of actually reducing emissions. There are a number of approaches to designing a tax  (or fee) so that the transfer does not take place and resistance from incumbent polluters is reduced.  28 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   One approach is simply to exempt certain carbon intensive industries   such as heavy industry in  Sweden, as mentioned earlier. Such policies with incomplete coverage are less cost efficient than  general policies (Montgomery, 1972) and Chapter 6.3.5.1). This lack of efficiency applies not only to  carbon emissions   it applies even more broadly to agriculture, forestry and to other climate gases  such as methane or nitrous oxide (Bosetti et al., 2011). However, narrow sectoral policies may be  politically more feasible due to concerns about international competitiveness, the structure of  winners and losers, and consequent lobbying (Holland et al., 2011).  A related approach that tries to avoid the loss of coverage is to exempt some firms from taxes  conditional on their undertaking emission reduction commitments. In Denmark, for example,  companies signing an energy savings agreement with the government received a 25% tax reduction  (OECD, 2001; Agnolucci, 2009; Sumner et al., 2011; Ekins and Speck, 2011; Aldy and Stavins, 2012).   Similarly, in the UK some firms may sign Climate Change Agreements (CCA) to reduce emissions that  exempt them from the CCL. This experience offers a cautionary tale: on average the agreements did  not require firms to reduce emissions beyond what they would have done anyway (Martin et al.,  2011). Conditional exemptions amount to unconditional ones if the conditions are lax.  Yet another approach to avoiding a large transfer to the state is to recycle all or part of the tax  revenue. In the Canadian province of British Columbia, revenue from the broad carbon tax of USD2010  29.1/tCO2 is fully rebated to the general population via income tax cuts and transfers to low income  people who do not pay income tax. British Columbia raised the tax gradually in increments of USD2010  4.8/tCO2 annually to its current level (Jaccard, 2012).  Sometimes revenues are recycled to firms in emission intensive industries. Again, this relies on  identifying the recipients, so it is usually confined to a few sectors with the attendant disadvantages  mentioned above. Refunded emission payments and other combinations of taxes and subsidies may  be designed to be neutral so that, for example, the industry pays the cost of abatement but does not  pay a tax for the allowed or reference level of pollution (Fischer, 2011). One expression of this is  fees, which are collected in environmental funds and subsequently used in ways that benefit the  polluters. An example from NOx emissions in Sweden is that a refunded emission payment may be  politically more acceptable and thus environmentally more effective than simply a tax. Since the fee  is refunded (in proportion to output), there is considerably less resistance to the fee and it can be set  much higher than what would have been acceptable for a pure tax. Norway has pioneered another  instrument for NOx emissions   taxes are refunded to cover abatement expenses. This implies a  combination of a tax on emissions with a subsidy on abatement. Experience shows that a lower fee  can achieve the same result with this instrument design as a tax (Fischer, 2011). Norway is  considering promoting similar solutions for carbon emissions (Hagem et al., 2012). The drawback of  such schemes for reducing carbon emissions is that their sectoral nature reduces coverage and  raises costs.    Abatement subsidies have also been financed out of general revenues. Abatement subsidies need to  be financed through tax revenues.  The taxes needed to finance the subsidies in general involve a  marginal excess burden.  This deadweight loss is an extra cost of subsidies relative to emissions  taxes. Furthermore, there is an efficiency penalty due to their sectoral nature. If applied to firms,  subsidies may create perverse incentives to enter or to fail to exit from, a polluting industry, and  raise costs (Polinsky, 1979). Perhaps for such reasons, they are seen in residential and commercial  sectors, for instance, tax breaks are provided for building insulation or refurbishing. There are also  white certificates and innovative financing schemes that allow loans to be repaid as part of  electricity bills (See Section 9.10 for further discussion).  Another reason for tax exemptions is to avoid a loss of competitiveness in industries exposed to  foreign competition that is not subject to taxation or equivalent policies. A pure tax (at a high level)  may incentivize industries to move to neighbouring countries. This is known as  leakage , since  emissions `leak  to jurisdictions not subject to taxation.  It is generally hard to find decisive empirical  29 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   evidence of carbon leakage, though this may be partly because high carbon taxes have not been  tried in any significant way for trade exposed sectors. As discussed in Chapter 5, some simulations  suggest that there could be sizeable effects (Elliott et al., 2010). Though the overall effects of border  tax adjustment on leakage are subject to debate (see Jakob et al.  (2013)), a recent model  comparison suggests that full border tax adjustments would moderately decrease leakage rates from  on average from on average 12 to 8% (Bohringer et al., 2012). Border tax adjustments are taxes  levied on imported goods that impose equivalent taxes on emissions `embedded  in the goods.  Aichele and Felbermayr (2011)  find that sectoral carbon imports for a committed (i.e., taxed)  country from an uncommitted exporter are approximately 8% higher than if the country had no  commitments and that the carbon intensity of those imports is about 3% higher.  When  measurement of embedded emissions is uncertain, border tax adjustments can be criticized for  introducing trade barriers in environmental guise (Holmes et al., 2011).  Leakage can also occur intertemporally. As shown by Sinn (2008, 2012), a carbon tax might not only  encourage demand in other areas. There may also be a perverse supply side reaction (referred to as  the Green Paradox) increasing the current supply of fossil fuels in anticipation of rising carbon taxes.  Subsequent research (Gerlagh, 2011; Hoel, 2012)  has shown that, strictly speaking, this only applies  to very simplified and special models with complete exhaustion of all fossil fuels (which would lead  to very drastic climate change) and also only to models in which the carbon tax actually starts low  and rises faster than the discount rate. A number of conclusions can be drawn from the debate: (1)  generally, the supply side should not be neglected; (2) if a tax is used, there are arguments for  making it high rather than low and fast growing; and most importantly, (3) instruments used need to  cover as many countries and sources as possible. It may be difficult to find a single optimal tax, and it  may be necessary, rather to formulate a tax rule that will decide how the tax rate is to be updated,  (Kalkuhl and Edenhofer, 2013).   15.5.3    Emissions Trading  15.5.3.1    Overview of emissions trading schemes   Over the past three decades, emissions trading, or cap and trade, has evolved from just a textbook  idea (Dales, 1968) to its current role as a major policy instrument for pollution control. Earlier  experiences with emissions trading include schemes such as the California RECLAIM Program and the  US Acid Rain Program (Tietenberg, 2006; Ellerman et al., 2010).   But since the start of the EU carbon trading system (See Section 14.4.2), several countries and sub national jurisdictions (e.g., New Zealand, Australia, California, northeastern United States, Quebec,  South Korea, Tokyo, and five cities and seven provinces in China) have also put in place or proposed  trading schemes to control their carbon emissions. This section provides a brief overview of the  literature (see further (Perdan and Azapagic, 2011; Aldy and Stavins, 2012) and draws lessons for the  design of carbon trading programmes.  15.5.3.2    Has emissions trading worked?  We begin by assessing environmental effectiveness. There were three GHG cap and trade  programmes that were operational6 by 2012 (Newell et al 2013). The EU ETS, reviewed in 14.4.2, is  by far the largest. Emissions are estimated to have fallen by 2 5% relative to business as usual in the  first pilot phase from 2005 2007 (Ellerman, Convery, De Perthuis, et al., 2010).Similarly, Edenhofer  et al (2011) attribute reduction of emission intensity by 3.35% per year in 2008 2009, in contrast to   California and Quebec started recently in 2013, as did Australia with its  fixed price  or tax period; trading  starts 2014 and S Korea starts even later. None of these can be evaluated empirically at present.  6 30 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   only 1% in 2006 2007, to the EU ETS. Permit prices have fallen to around USD 10 15 in 2012 (Newell  et al., 2013). Section 14.4.2 concludes that environmental effectiveness has been compromised to a  large extent by a structurally lenient allocation of permits that was driven by the necessity for  institutional and political feasibility.    The Regional Greenhouse Gas Initiative (RGGI), (see 15.5.3.3) has been ineffective since the cap has  never been binding and is not expected to become so for several years (Aldy and Stavins, 2012). The  third, much smaller, New Zealand ETS, appears to have had a small impact on emissions (Bullock,  2012). The last of the emissions trading schemes in GHGs, the Clean Development Mechanism  (CDM), was an offset programme, not a cap and trade scheme. Section 13.13.1.2 finds that there are  many challenges when it comes to additionality, baseline definition and leakage but possibly some  advantages from the viewpoint of generating income in developing countries.  This experience shows that it is has been very difficult to get a cap and trade programme for GHGs  enacted with a cap tight enough to have a significant environmental effect, at least initially. Other  programmes (notably for the whole USA) that have been suggested have not made it through the  political process. It is unclear to what extent this issue is peculiar to ETSs but there is a similar if not  stronger opposition to the other major economic instrument, carbon taxation. One of the  advantages claimed for an ETS is a greater option of allocating rights to appease opponents of a tax  scheme. Hence there is a tradeoff between feasibility, distributional effects, and environmental  effectiveness at least in the short run. Older non GHG cap and trade programmes such as the SO2  and leaded petrol phase out programmes in the United States have been environmentally effective  (Tietenberg, 2006; Schmalensee and Stavins, 2013).7 It may be that any policy instrument stringent  enough to have a significant environmental effective programme may have faced opposition in the  particular circumstances. One possible lesson for design may be to build a price ceiling into any  proposed cap and trade programme. In that case, the concern that a tight cap would lead to very  high costs, would be alleviated and may make it politically feasible to have a somewhat more  ambitious cap (Aldy and Stavins, 2012).   Cost effectiveness is the main economic rationale for using emissions trading as opposed to simpler  regulation. The experience with regard to GHG programmes is too limited to draw any conclusions  yet. As in many of the earlier markets, cost savings in the US Acid Rain Program an allowance  trading system established in 1995 to control SO2 emissions from coal fired plants in the continental  United States were substantial (Carlson et al., 2000; Ellerman et al., 2000). Cost savings in this  programme came not only from equalizing marginal costs across affected electric utility units on a  period by period basis but also from equalizing (present value) marginal costs intertemporally as  firms have saved current permits for future used in what is known as banking of permits. According  to (Ellerman and Montero, 2007), the use of banking has been substantial and remarkably close to  what would be expected in a well functioning market. Recently, the price has collapsed to zero also  in this market as the Environmental Protection Agency (EPA) has used other instruments to push for  further reductions.  Banking has also been responsible for a large part of the significant cost savings in the US Lead  Phasedown Program  a trading scheme established in 1982 to provide refineries with flexibility to  gradually remove lead from gasoline. In addition to banking, cost savings in this program were driven  by dynamic efficiencies, i.e., the faster adoption and/or development of more efficient refining  technologies (Kerr and Newell, 2003). In contrast, dynamic efficiency has played a minor role in  7 Note that there is literature (e.g., Lohmann (2008)) much less enthusiastic about the concept of emissions  trading for reasons of justice and environmental integrity, among others, and more so after the current  collapse of carbon prices in the EU ETS, (Lohmann, 2008).    31 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   explaining cost savings in the US SO2 allowance program (e.g., Ellerman et al., 2000; Fowlie, 2010;  Kumar and Managi, 2010).  The introduction of a price on carbon through either a carbon tax or cap and trade can have  substantial distributional consequences.  Extensive analyses of these effects have been conducted in  the US context.  Burtraw et al. (2009) illustrate in the context of a trading programme that the  outcome for the average household will depend much more importantly on the use of the value  associated with emissions allowances than with the actual stringency of the regulation. For example,  lump sum dividends or some kinds of tax reform can be progressive.  Similarly Hassett et al. (2009)  find that the degree of regressivity is much reduced when a lifetime measure of income is used.  Parry (2004) shows in an analytical framework that emissions trading can be regressive, especially if  implemented with free allocation to incumbent emitters (grandfathering). Bovenberg et al. (2005)  find that profits can be maintained throughout the economy by freely allocating less (sometimes  considerably less) than  25% of pollution permits, with the rest auctioned. These considerations are  very similar for tax or cap and trade systems. Granting greater than this quantity for free would lead  to windfall profits. In simulation modelling of the US electricity market, Burtraw and Palmer (2008)  find that it would be sufficient to allocate just 6% of the allowances to the electricity industry to  offset costs under a CO2 trading programme because a majority of costs are borne by consumers;  greater allocation would again lead to windfall profits. Hassett et al. (2009) examine regional effects  and find them not to be very significant.  Blonz et al. (2012) show that even if programmes are  regressive, social safety nets, which adjust automatically to inflation, generally protect low income  groups in the United States, and middle income groups may be most vulnerable.    It should be noted that the experience with emissions trading, whether for greenhouse gases or  other, non climate related pollutants, has been wholly in high income countries. Coria and Sterner  (2010) describe some success for air pollution in a middle income country like Chile but it is unclear  to what extent these can be transferred to developing countries.  15.5.3.3    Sector coverage and scope of the cap  A key component in a trading scheme is establishing the pollutants (e.g., greenhouse gases) and  entities that will be regulated. There are several factors that may affect this decision: (1) the quality  and cost of emissions measurement and verification, (2) the ability to target sectors with the  greatest mitigation potential, (3) the ability to broaden the coverage to unlock low cost mitigation  opportunities, (4) the political and institutional feasibility of including certain sectors, and (5) the  interactive effects the cap may have with other policies.     In most trading schemes, the affected sources are relatively large emitting sources whose emissions  have been closely monitored (smaller sources are often regulated with alternative instruments). This  applies to the earlier programmes (e.g., Acid Rain, RECLAIM, Lead Phasedown)8 but also in carbon  markets. In other words, there are few cases in which the point of obligation has been upstream,  i.e., different than the emitting point. The trading scheme in Australia, launched in 2012, covered  373 entities comprising approximately 60% of Australia s GHG emissions. Electricity generation,  industrial processes, fugitive emissions, and non legacy waste are under permit liability (Clean  Energy Regulator, 2012).9 Small scale stationary fossil fuel use (especially gas) is covered by  upstream permit liability on fuel distributors. Liquid fuels used in aviation/shipping and synthetic  8 An exception is the market for particulates established in Santiago Chile in 1992 for industrial sources  (Montero et al., 2002). The trading commodity was not actual emissions, which were difficult to monitor on a  daily basis, but a firm s maximum capacity to emit. 32 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   GHGs are subject to an equivalent carbon price through changes to existing taxes. Agriculture and  forestry can produce offset credits (Macintosh and Waugh, 2012; Caripis et al., 2012).10   Coverage in the carbon trading scheme in New Zealand, is the most comprehensive and covers all  GHGs and all sectors. It has expanded in stages from the forestry sector (in January 2008) to fossil  fuels and industrial emissions (in July 2010), and will cover the waste sector in May 2014. The  agricultural sector must report emissions since January 2012 but a decision on when it will face  surrender obligations has not yet been made. This is the only national emissions trading scheme to  include forestry, and is intended to shift land use change decisions towards greater carbon  sequestration and less deforestation (Karpas and Kerr, 2011; Adams and Turner, 2012). Coverage is  also scheduled to expand in stages in the recently launched carbon market in California (Hanemann,  2009). In the first compliance period, which runs from 2013 2014, electricity generating and  industrial facilities that exceed 25,000 tonnes of CO2e per year will be obligated to abide by the  agreement; the second period (2015 2017) adds distributors of transportation, natural gas, and  other fuels; and the third period (2018 2020) adds transportation fuels (CARB, 2011). All major  sources will be covered over time, which will represent an equivalent of 85% of California s GHG  emissions (CARB, 2011).Offset projects are foreseen in forestry management, urban forestry, dairy  methane digesters, and the destruction of ozone depleting substances.   There are other carbon markets that are less ambitious in scope. The trading scheme in Tokyo,  launched in April 2012, includes 300 industrial facilities which in total consume at least 1,500 kl of  crude oil equivalent per annum and a combined 1,000 commercial and institutional buildings. In  aggregate, this is equivalent to only 20% of Tokyo s total CO2 emissions (Partnership for Market  Readiness, 2012). Though the programme may be limited in scope, it is one of the first programmes  in the world to address emissions from urban buildings, which can be quite significant (Nishida and  Hua, 2011). The Regional Greenhouse Gas Initiative (RGGI), a cap-and-trade programme initiated in  2009 and that covers nine Northeast and Mid-Atlantic states in the United States (Connecticut,  Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and  Vermont), only regulates CO2 emissions from power plants.   15.5.3.4    Setting the level of the cap  The cap defines the stringency of the trading scheme.  Naturally, the permit prices also depend on  many circumstances such as the economic growth. In many of the trading programmes reviewed  above, the caps appear however to have been set below what would lead to efficient levels of  abatement   since the allowance prices (the marginal abatement costs) have ended up below most  estimates of the marginal environmental benefits from abatement. The RECLAIM Program which  covers NOx and SO2 is an example as are the acid rain and lead phase out programmes. It should be  noted, however, that to varying extents, carbon trading programmes include mechanisms to tighten  the cap gradually.  Caps in the carbon markets have slower reductions maybe because of higher short term mitigation  costs. In the Australian scheme, there is no cap on emissions during the initial so called  fixed price  phase  (2012 2014) but a price that rises from AUS 23.00 per tonne in 2012/2013 to AUS 25.40 in  2014/2015. The fixed price scheme, has many of the characteristics of a tax and offered advantages  in the specific political circumstances that failed to agree on an emissions target but not on a price  (Jotzo et al., 2012) hence preferring implicitly uncertainty on emissions rather than on the price  (Jotzo and Betz, 2009; Jotzo and Hatfield Dodds, 2011; Pearce, 2012). The fixed price period   For more see Section 7A of the National Greenhouse and Energy Reporting Act 2007 ((National Greenhouse  and Energy Reporting Act 2007, 2007). The carbon market in South Korea, to start in 2015, will cover around  450 large facilities and about 60% of the country s GHG emissions (Kim, 2011).  10 33 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   naturally established a price signal and provided time for important elements of the flexible price  period to be implemented, such as an auction platform. Starting with the first flexible price phase  (2015 2018), the government will set annual caps for five year periods, extending the cap by one  year every year. A default cap (associated to a GHG emissions reduction of 5% from 2000 levels by  2020) will apply in the event the parliament cannot agree on a cap (CAUS, 2012).  New Zealand, on the other hand, has operated within the Kyoto cap for 2008 2012 by requiring  every unit of emission to be matched by a Kyoto unit at the end of the Protocol s true up period. For  2012 and forward, the government has proposed legislative amendments to introduce a domestic  cap and remove the requirement to back domestic emission with Kyoto units.(NZME, 2013)  The cap in the California scheme is set in 2013 at about 2% deviating under the projected level for  2012, and then drops about 2% in 2014 and about 3% from 2015 to 2020 on an annual basis (4% of  allowances will be held in reserve to contain costs). The Regional Greenhouse Gas Initiative has  introduced a  soft  fixed cap from 2009 to 2014 to decline by 2.5% per year. Economic growth and  natural gas prices have been lower than expected, so it is unlikely that the cap becomes binding by  2020 (Aldy and Stavins, 2012).11  15.5.3.5    Allocations Permits have been allocated either by auction, or have been given away for free. In the latter case,  allocation has been proportional to past emissions or output (i.e., grandfathered) or proportional to  current output. Earlier programmes relied almost exclusively on grandfathering. The SO2 allowance  programme allocated less than 3% of the total cap, through revenue neutral auctions; mainly to  provide an earlier and more reliable price signal to participants (Ellerman, Convery, De Perthuis, et  al., 2010). Some of the recent carbon markets also provide free allocations because of concerns  about emissions intensive trade exposed industries. In fact, the programme in New Zealand  considers a very limited amount of auctioning (although increasing over time) unlike RGGI, which  allocates the vast majority of permits through auctions (the softer cap in RGGI may explain the  difference).  Australia and California are somewhere in the middle in terms of auctioning, roughly  50% and 80% respectively.  The Californian and Australian schemes also make explicit output based (free) allocation rules for  energy intensive, trade exposed sectors, where recent production determines firm level allocation.   The Australian experience on this matter has also shown the influence that industry lobby groups  can have in policy design (Garnaut, 2008; Pezzey et al., 2010) and how politically involved this can  become (Macintosh et al., 2010).   15.5.3.6    Linking of schemes  Linking occurs when a trading scheme allows permits from another trading programme to be used to  meet domestic targets. Such linkages can be mutually beneficial as they can improve market liquidity  and lower costs of compliance. However, these benefits need to be weighed against challenges like  losing unilateral control over domestic design and being subject to international price movements.  Linking, however, involves certain tradeoffs in terms of exposure to international prices and loss of  flexibility to unilaterally change features in the domestic design once links are established.  International linkage of trading schemes might be simpler than harmonizing carbon taxes through  international agreements (Karpas and Kerr, 2011). There is however, not general agreement on this   There is a proposal from the RGGI states, however, to reduce the cap in 45% by 2020 (Regional  Greenhouse Gas Initiative, Inc., 2013).  11 34 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   point; to the contrary, agreements on taxes might avoid the most contentious baseline issues see for  instance (Nordhaus, 2007).   The experience with linking is limited because carbon markets are relatively recent. One example of  a linking process is the ongoing collaboration, since 2007, between California and the Canadian  province of Quebec, which will both place compliance obligations on large emitters under their  trading schemes beginning in January 2013 and continue negotiations for a full linking of the two  schemes later on in 2013 (CARB, 2011). Another example is the announcement in 2013 of an  Australia EUETS link by 2018 preceded by a transition phase in which Australian installations can use  EU Allowances for compliance from 2015 on. Interestingly, Australia is also exploring ways for  establishing links with schemes in South Korea and California, which, de facto, would create links  between all these trading schemes.12 We do not yet know if linking schemes without prior  commitment on overall caps will facilitate or complicate future negotiations on the caps.  15.5.3.7    Other design issues: banking, offsets, leakage, price volatility and market power  There are additional, important, aspects of policy design on which we can only briefly touch  here. Unlike borrowing, banking of permits for future use is a feature used in many trading  schemes with good results in terms of cost savings and environmental benefits (i.e., absence  of emission spikes and acceleration of emission reductions). A well documented example is  the US SO2 allowance programme (Ellerman and Montero, 2007). A dramatic example of  volatility is given by the RECLAIM programme where in the summer of 2000 permit prices that  began under USD 5,000 per ton of NOx increased abruptly in price to almost USD 45,000, leading to a  relaxation of the cap see (Metcalf, 2009). Offsets, the possibility of using emission credits  outside the capped sectors either domestically or internationally (e.g., CDM or REDD), is  another design feature common in most trading schemes but of much concern because of  the well known tension between cost effectiveness and additionality. One way to  somewhat assuage this tension is to move away from a project based crediting approaches  (e.g., CDM) to scaled up approaches   to the level of the sector, jurisdiction or country.  Offset provisions, if well designed, can also help alleviate the  leakage  problem of moving  emissions from capped to uncapped sectors. An alternative design option to address  leakage might be to use output based allocation rules although this will raise concerns  related to output subsidy. Another problem is market power specific to permit trading  which has been the subject of much research since the work of (Hahn, 1984). It seems,  however, that market power is less of a problem than anticipated (Liski and Montero, 2011), ,  also confirmed by findings from laboratory experiments (Sturm, 2008).  15.5.3.8    Choice between taxes and emissions trading  Regarding the choice between taxes and tradable permits, longstanding economic theory  (Weitzman, 1974; Hoel and Karp, 2001, 2002; Newell and Pizer, 2003) suggests that in the presence  of uncertainty about the marginal cost of emission reduction, for a stock pollutant like CO2, a carbon  tax is more economically efficient than a tradable permit system. According to the Weitzman  intuition, a tax is preferred since the benefits curve is fairly flat for a stock pollutant, (this result  could be changed in the presence of a major threshold effect). The reason is essentially that when  there is a negative shock to the cost of emission reduction, as has been the case in the EU following  the economic slowdown that began in 2008, cost efficiency calls for doing more abatement, with   The firm intentions of New Zealand and Australia about linking their systems came to a sudden  end after the latter announced it was linking its system to the EU ETS.  12 35 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   less being done at other times when the abatement cost is higher. This is achieved with a tax, but  not with a cap that is fixed in each period. The slump in the carbon price in the EU ETS is thus  suggestive of a loss of cost effectiveness.  In the very long run there may be more uncertainty about the level of an optimal tax than about a  quantity target and policymakers may then prefer to legislate a long run abatement target in a cap and trade system.  As seen above, this can entail short run efficiency losses and it would be  desirable to allow flexibility with regard to annual caps that would add up to the long run target, but  concerns about credibility mean that such flexibility must be severely limited. As shown in Chapter 2  (Section 2.6.5), there is a literature on regulatory uncertainty that shows extra costs deriving from  the hesitancy by investors in the face of all regulatory uncertainty but in particular perhaps, when it  comes to cap and trade systems  To prevent a large loss of efficiency in a cap and trade system, and to avoid exceptionally high price  volatility that deters investment, price floors and ceilings can be used, although care would be  needed in design to avoid breaching the integrity of the cap. Banking and borrowing of permits (see  Section 15.5.3) are another means of providing intertemporal flexibility in abatement as are the  availability of credit reserves or of offsets.  As explained in Section 15.7, a tax can be used in conjunction with other policy instruments while a  cap and trade system either renders the other policies environmentally irrelevant or is itself  rendered environmentally irrelevant by them. This is a major concern when decision making takes  place at several levels.   As discussed in Section 15.5.2.4, the issues of intertemporal (and spatial) leakage discussed in the  green paradox literature would appear to give preference to cap and trade over taxes but this is  partly a simplification. The green paradox mainly exists in oversimplified models and poorly designed  tax schemes. There are however, lessons from this literature concerning design details. For example,  one might prefer high taxes that grow slowly to low taxes that rise very fast, and one might be  careful with too much flexibility, particularly borrowing in permit systems. Kalkuhl and Edenhofer  (2013) compares four policies, (1) a conventional Pigouvian carbon tax, (2) a carbon tax rule (that  adjusts the tax level dependent on GHG concentrations), a permit trade (3)with or (4)without  banking and borrowing) in the context of a (weak) green paradox setting with respect to three  different criteria: the informational burden for the government, the commitment problem of the  government, and the robustness of the policy with respect to deviations in behaviour (discount rate)  by agents in the economy. They find that a tax and a trading scheme without banking and borrowing  have high informational requirements. The ETS with banking and borrowing shifts the timing  problem of carbon emissions to the private sector, but does not work well if these have different  discount rates from the regulator. The flexible tax rule or an ETS with restricted banking and  borrowing can lead to an optimal allocation even in this case, but then again the informational  requirements for the regulator are daunting.   One of the attractions of emissions trading schemes appears to have been that they may meet with  less opposition from industry, which can be allocated permits for free. Taxation is often resisted by  lobbies and sometimes for constitutional reasons. Taxation is also resisted by those who want a  smaller government   in which case environmental fiscal reform (raising carbon taxes while lower  other taxes) may be more acceptable. Another argument that has been made in favour of an ETS is  that it may be easier to link permit schemes across borders than to agree on common taxes.  Harmonization is advantageous, since it reduces costs (15.7). There is however, no general  agreement on this. Some analysts believe the opposite, that it will be easier to link taxation systems  within an international agreement (Helm, 2003; Nordhaus, 2007; Jaffe et al., 2009; Metcalf and  Weisbach, 2011) and (15.8.1). Finally, linking cap and trade systems would automatically involve  financial transfers between countries. These might be a benefit for low income countries if they can  36 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   be carbon efficient and maybe less controversial than negotiated side payments but this hinges on  agreement concerning the various country targets.  Finally taxes, unlike an emission trading scheme, do not require a new institutional infrastructure to  keep track of ownership of emissions allowances.  This consideration may be especially important in  developing countries.  15.5.4    Regulatory Approaches  15.5.4.1    Overview of the implementation of regulatory approaches   As discussed in Section 15.2, economy wide carbon pricing, though widely discussed in the  literature, has been rarely implemented. Those policies that have been implemented have often  been sector specific, and have often fallen in the category of a regulatory approach. Regulatory  approaches are used across sectors, usually alongside other policies, as can be seen in Table 15.2.  For example, Renewable Portfolio Standards (RPS), and energy efficiency standards may be  combined with fuel subsidy reduction in the energy sector (Chapter 7).  In the transport sector,  vehicle efficiency and fuel quality standards are used alongside government provision of mass  transit, and fuel taxes (Chapter 8). In the building sector, a number of complementary policies, such  as appliance standards, labelling, and building codes are employed, along with tax exemptions for  investment in energy efficient buildings (9.9). In the industrial sector, energy audits for energy intensive manufacturing firms are also regularly combined with voluntary or negotiated agreements  and energy management schemes. Information programmes are the most prevalent approach for  energy efficiency, followed by economic instruments, regulatory approaches and voluntary actions  (10.11).   Several of these regulatory approaches often contain market like features so that the distinction  between regulatory approaches and economic instruments is not always sharp. Renewable Portfolio  Standards programmes often, for example, allow utilities to satisfy their obligations by purchasing  renewable energy credits from other producers, while feed in tariffs involve both regulations and  subsidies for renewable energy.  Low carbon fuel standards also sometimes incorporate market like  features including trading among suppliers.  Regulatory approaches play the following roles in mitigation policy. First, they directly limit  greenhouse gas emissions by specifying technologies or their performance. Second, in sectors such  as AFOLU (see Chapter 11) and urban planning (see Chapters 8 and 12) in which much activity is  strongly influenced by government planning and provision, regulations that take climate policy into  account are clearly important. These are discussed in further in Section 15.5.6.  Third, regulations  such as RPS can promote the diffusion and innovation of emerging technologies, a role that is  examined in Section 15.6. Fourth, regulations may remove barriers for energy efficiency  improvement. These may arise when firms and consumers are hindered by the difficulty of acquiring  and processing information about energy efficient investments, or have split incentives as in  landlord tenant relationships.   Regulatory approaches have been criticized, both for being environmentally ineffective, and more  strongly, for lack of cost effectiveness, as the governments have limited information and may make  governmental failures in intervention ((Helm, 2010) see also 3.8.2)). Some are opposed to the  regulations on libertarian philosophical grounds (Section 3.10.1.1). In what follows, we assess the  environmental and cost effectiveness of regulatory approaches, largely focusing on short run effects  of energy efficiency policies that have been extensively studied. Long run effects acting through  technology development are assessed in Section 15.6. There is insufficient literature on  distributional incidence and feasibility to underpin an assessment of these dimensions.  37 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.5.4.2    Environmental effectiveness of energy efficiency regulations  Several prospective studies reviewed by Gillingham, Newell, and Palmer (2006) and one large ex post study of US energy efficiency standards for appliances (Meyers et al., 2003) found substantial  energy savings. Such savings have also been found in the building sector across countries (Section  9.10) in a study of best practice building codes and other standards. Recently, econometric studies in  the United States have also found energy reductions from building codes (Aroonruengsawat, 2012;  Jacobsen and Kotchen, 2013). These studies also reported significant energy savings and related CO2  reduction. Fuel economy standards for vehicles have also been successful in reducing fuel  consumption in many countries (Anderson et al., 2011). Generally speaking, energy efficiency  policies that address market failure can result in energy savings (7.10, 8.10, 9.10, Table 9.8, 10.10).  Some case studies however, identified weak environmental effectiveness due to lack of  implementation. Such examples were found for building codes and energy management systems.  Rebound effects need to be taken into account in interpreting these findings of environmental  effectiveness of energy efficiency regulations. The rebound effect refers to the increase in energy  consumption induced by a fall in the cost of using energy services as a result of increased energy  efficiency. For detailed general discussion on rebound effects, see Sections 3.9.5 and 5.6.2. For  sector specific studies of rebound effects, see Section 9.6.2.4 for building sector and Chapter 8 for  transport sector. With regard to appliance standards and fuel economy regulations in the United  States, environmental effects remain large even when taking the rebound effect into account  (Gillingham et al., 2006; Anderson et al., 2011). More generally, direct rebound effects (within the  regulated sector as a result of the fall in the cost of energy services) are commonly found to be in the  range of 10% 30% in various sectors in developed countries, and higher in developing countries  (Sorrell et al., 2009; Gillingham et al., 2013). Indirect rebound effects, which result from increased  economic growth resulting from the fall in the cost of energy services, can be much larger. Reviewing  claims of rebound effects in excess of 100%, Dimitropoulos (2007) concluded that although the  evidence base and methodologies were weak, the possibility of significant rebound effects could not  be dismissed.  A recent review suggests that total rebound effects are unlikely to exceed 60%  (Gillingham et al., 2013).    While the scale of the rebound effect varies, its presence suggests that complementary policies that  include carbon pricing are called for so that mitigation is not compromised. Some countries, such as  the UK, have begun to account for a direct rebound effect in energy policies (Maxwell et al., 2011).  Regulations such as emissions standards have also been criticized on the ground that they are less  flexible than incentive based approaches and may even provide perverse incentives and increase  emissions under certain conditions like treating new units more stringently than old ones (Burtraw  et al., 2010). Yet, recent modelling that incorporates institutional features of various policies in the  United States, including the capacity to adjust the stringency of a regulation or a cap/tax, suggests  that emissions standards may be more effective than cap and trade in reducing overall emissions  (Burtraw and Woerman, 2013).  15.5.4.3    Cost effectiveness of energy efficiency regulations  Regulatory approaches are often implemented in contexts in which market failures or barriers to  adoption of energy efficient technologies exist. There is a considerable sectoral literature showing  that energy efficiency regulations have been implemented at negative costs to firms and individuals,  meaning that their value to consumers exceeded programme costs on average. In the transport  sector, fuel economy standards have been shown to produce net cost savings over the life of the  vehicle (Chapter 8.10). In the building sector, a range of energy efficiency policies including appliance  standards and building codes have been found to have negative private costs (Table 9.8), (Gillingham  38 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   et al., 2006, 2009a). In the industrial sector, a number of case studies on energy management  systems and energy audit systems show that they have been cost effective (Chapter 10.10).  The cost effectiveness of such regulations has been the subject of heated debate.  Economic theory  points to the following circumstances in which regulations may be implemented with negative  private costs. Buyers may have less information about the efficiency and cost of a device than  sellers. They may not be able to assess the energy savings from an appliance even after using it. This  can lead to a situation in which low efficiency devices drive more expensive high efficiency models  out of the market. Efficiency standards in this setting can improve consumer welfare by reducing the  informational asymmetry between buyers and sellers (Akerlof, 1970; Leland, 1979; Goulder and  Parry, 2008). When competition is imperfect and sellers compete on both quality (efficiency) and  price, then a minimum quality standard eliminates low quality sellers from the market enhancing  price competition among high quality goods. This can make all consumers better off (Ronnen, 1991).  Split incentives, as in landlord tenant relationships, can lead to economically inefficient devices  persisting in the market, absent intervention. For more details, see Box 3.9.2.  Individuals working in small workplaces often find it difficult to acquire and analyze information on  energy efficiency (see 2.6.5.3 on human behaviour on energy efficiency). As a consequence, those  individuals are prone to rely on intuition to make decisions. In many cases, analyzing the minimum  cost actions given the price signal is too challenging, and thus cognitive costs may result in some  consumers simply not taking operating (energy) costs into account at all while making their purchase  decisions (Section 3.10.1.1). (Allcott, 2011) exhibits this case in a recent survey of US car buyers, 40%  of whom were shown not to consider fuel costs in their purchasing decision. This kind of consumer  decision making can lead sellers to offer  and consumers to buy less energy efficient products  than if consumers could more easily compute the operating costs. Section 9.8 indicates that such  barriers to energy efficiency are significant in the building sector. Regulation and information  measures can help overcome these barriers.   Large firms have more resources than individuals to assess information on energy efficiency, and so  may be more sensitive to carbon pricing. However, firms, especially small and medium enterprises,  also face the barriers such as split incentive and lack of information. Governments may employ  regulations (and information measures) to help correct this by implementing energy efficiency  standards for equipment. See 3.10.1.2 for more on behaviour of firms on energy efficiency.  Although both the theory and empirical evidence detailed above show that policy interventions to  remove barriers can have negative costs to firms and individuals, it has been argued that  unaccounted labour and opportunity costs borne by governments, firms, and individuals involved in  policy design and implementation process, as well as loss of amenity (for example, fuel economy  standards may undermine other functions of cars, such as speed, safety, quality of air conditioning,  and audio sets), result in understatement of regulatory costs. Such unaccounted costs are called  hidden costs (Box 3.9.2)   On the other hand, an ex post evaluation of expected and realized costs of environmental  regulations in the United States found that estimates of the unit cost of regulations by the regulator  were overstated just as often as they were understated, while total costs were more frequently  overstated (Harrington et al., 2000). Furthermore, Gillingham et al. (2006) note that in the United  States,  even if unaccounted for costs of appliance standards were almost equal to those measured,  and actual energy savings only roughly half of those estimated, appliance standards still would yield  positive net benefits on average  (Gillingham et al., 2006b). There may also be hidden benefits of  regulations, (Sorrell, 2009), such as improved amenities and  free drivers  (which would occur if  nonparticipants were induced to invest in energy efficiency because others in the programme made  such investments) induced by regulation (Gillingham et al., 2006). In conclusion, while it is clear that  opportunities do exist to improve energy efficiency at negative private cost by regulations, the  literature is divided as to what extent such negative private cost opportunities exist.  39 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   It is the social rather than the private costs of regulations, however, that are more relevant for public  policy. This means that externalities need to be taken into account and co benefits of policies, such  as local air pollution reduction, would ideally be valued and subtracted from costs. Such externalities  can be large. Muller, Mendelsohn, and Nordhaus (2011) found that the external costs of coal fired  utilities in the United States exceeded value added in that sector. These and other costs and benefits  have to be taken into account when evaluating policies.  15.5.5    Information Measures  Information measures have been widely used in all sectors. To take typical examples, energy  efficiency labelling for home electric appliances and thermal insulation of buildings, as well as carbon  footprint certificates and public awareness initiatives are implemented in the building sector (9.10).  Energy management systems, as well as government assisted energy audits, either mandatory or  voluntary, are used in the building, industry, and energy sectors (7.10, 9.10, 10.10). Mandatory  reporting of GHG emissions is common for firms in the power and industrial sectors (7.10, 10.10),  while labelling of automobile fuel economy is used in the transport sector (8.10). Sustainability  certificate programmes are used in the forestry sector (11.10).    Regarding the environmental and economic effectiveness, a number of case studies in the building  sector are shown for the energy efficiency labelling for home electric appliance, building label and  certificates, energy audit programmes, and awareness raising campaign to stimulate behavioural  change (see 9.10, Table 9.8). For energy efficiency, the role of information measures is the same  with regulatory approaches, that is, to address market failure such as lack of information and split  incentives. For details of the market failure and role of information measures, see Section 15.5.4.   While some studies mentioned above reported high economic and environmental effectiveness, the  results are mixed in general, reflecting the wide diversity of the information measures, and it is not  appropriate to draw a general conclusion. Note that some policy instruments, such as energy  management systems and energy audit in the industrial sector that may fall either in regulatory  approach and information measures, are also covered in the section on regulatory approach above.   Since information programmes typically provide information and leave it to firms or consumers to  take appropriate action, those actions will usually only be taken spontaneously, or if they are  perceived to have negative private costs economically. The discussion of hidden costs/benefits and  rebound effects parallels that of regulatory approach, are covered in Section 15.5.4.  It should be noted that the role of information measure has been mostly supplementary to other  policy instruments such as obligatory standards or much wider policy package as detailed in sector  specific policy chapter (7.10, 8.10, 9.10, 10.10, 11.10). For example, energy efficiency labelling is  often followed by energy efficiency standard as a single policy package. This also makes difficult to  estimate the impacts of the information measure alone.  15.5.6    Government Provision of Public Goods or Services, and Procurement  While formal assessment is difficult, it is clear that public provision and planning can and have  played a prominent role in the mitigation of climate change at the national and sub national levels,  and in a wide range of industries including energy, transport, agriculture, forestry, and others. At the  national level, government provision or funding is crucial for basic research into low and zero emission technologies (see Section 15.7).  In the energy sector, the provision and planning of infrastructure, whether for electricity  transmission and distribution or district heating networks, interconnectors, storage facilities, etc., is  complementary to the development of renewable energy sources such as wind and solar energy  (7.6.1.3). A modal shift from air to rail transport also requires public planning or provision by  40 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   national and local governments as a part of the policy mix and in best case scenarios could reduce  associated emissions by 65 80% (8.4.2).   Urban planning that incorporates climate change mitigation can have a major impact on emissions   (Chapter 12); therefore, municipal governments have a very important role to play.  Since mitigation  policies have many co benefits at the local level, including reduced local pollution and congestion,  and improved quality of urban space, cities have an interest in mitigation policies in addition to the  largely external climate benefits they provide. Land use and transport policies can considerably  influence the share of non motorized transport, public transport, and associated emissions (8.4.2.3).  Buildings and associated energy supply infrastructure are very long lasting (9.4.5) so public planning  to encourage the rapid adoption of new low carbon technologies and avoid lock in to high emission  infrastructure assumes importance. Such planning would need to take into account transport pricing  relative to land prices, building, parking, and other zoning regulation, city wide district heating and  cooling systems, and green areas (see Section 12.5, and (Baeumler et al., 2012). Capacity building at  the municipal level may be needed for incorporating climate change mitigation and its co benefits  into the planning process, especially in developing countries (see Section 15.10.3).  Government planning and infrastructure provision can complement a carbon or fuel tax, addressing  additional market failures that increase the quantity response to the price instrument by making  substitution towards less energy and carbon intensive lifestyles easier to implement. Conversely,  whether or not a public transit system will generate sufficient demand to be economical depends on  whether private transit (and its climate externalities) is suitably priced. By contrast, as noted below  in Section15.8, a tradable permit system for emissions would be a substitute, rather than a  complement for emission reduction through public provision. In conjunction with a tradable permit  system, local actions would affect the cost of reducing emissions, but not overall emissions  themselves. This raises the possibility that local governments may be de motivated to integrate  mitigation in their planning if they are located in a national or international jurisdiction with a  tradable permit system. In that case, their actions would not be `additional  in GHG emission  reduction, rather they would reduce the cost of meeting the overall cap. Furthermore, the cost  reduction would not be captured entirely by the residents of the local jurisdiction in which the  actions took place.  Since most of the world s forests are publicly owned, provision of sequestration services as part of  forest conservation is largely in the public sector. Forest protected areas make up 13.5 % of the  worlds  forests, and 20.8% for tropical lowland evergreen broadleaf forests (rainforests) (Schmitt et  al., 2009). During the period 2000 2005, strictly protected forest areas experienced 70% less  deforestation than all tropical forests (Campbell, A. et al., 2008), but impact studies must also  control for  passive protection  (protected areas being located in remote and inaccessible areas), and  leakage  (more deforestation outside the protected area). The understanding of how protected  areas can contribute to forest conservation, and thereby be a means of climate change mitigation,  has advanced much since AR4, due to better spatial data and methods.  Andam et al.(2008) find substantial passive protection for protected areas in Costa Rica. While a  simple comparison suggests that protected areas reduce deforestation by 65%, the impact drops to  10% after controlling for differences in location and other characteristics. Gaveau et al. (2009)  estimate the difference between deforestation rates in protected areas and wider areas in Sumatra,  Indonesia during the 1990s to be 58.6%; this difference falls to 24% after propensity score matching  which accounts for passive protection. In a global study, also using matching techniques, Joppa and  Pfaff (2011) finds that for about 75% of the countries, protected areas reduce forest conversion, but  that in 80 % of these controlling for land characteristics reduces the impact by 50% or more. Thus, an  emerging consensus is that protected areas reduce deforestation (Chomitz et al., 2007), even though  protection is not perfect, and there is a medium to high degree of passive protection. Estimates of  leakage are more challenging, as the channels of leakage are diverse and harder to quantify.   41 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Local governance of forests can be an effective way of reducing emissions from deforestation and  forest degradation, as at least some of the public goods provided by forest are included in the  decision making process. A meta analysis of 69 cases of community forest management finds that  58% of these were successful in meeting ecological sustainability criteria, e.g.,  improved forest  condition  (Pagdee et al., 2006). Similarly, using data from 80 different forest management units in  10 countries, a study found positive correlation between greater devolved authority at the local level  with higher levels of carbon sequestration (Chhatre and Agrawal, 2009). However, a study analyzing  forest cover of central Himalaya in India that controls for confounders reports no statistically  significant results (in forest cover) between village and state managed forests, even though the costs  per hectare are seven folds greater for the state managed forests (Somanathan et al., 2009).   Where property rights are insecure, strengthening land rights is often put forward as a way to  contain deforestation, though the effects are ambiguous. It is argued that the lack of tenure rights  can discourage investment in land and increase soil exhaustion. This would, in turn, lead to greater  incentives to deforest to compensate for the lost productivity due to degradation. Unclear tenure  can also lead to unproductive and violent land conflicts (Alston et al., 2000). However, by increasing  the value of land clearing, policies that strengthen private property rights over land could increase  deforestation (Angelsen, 1999).  15.5.7    Voluntary Actions  It has become quite common for major firms, either individually or in alliance with others, to commit  to mitigation of climate change as part of their corporate social responsibility through emission cuts  at their offices and facilities, technological research, development, and sales of climate friendly  equipment (See (IPCC, 2007)). Non government organizations also initiate voluntary actions (See  Section 15.9).   This section focuses on voluntary agreements that are convened by industries in association with  government. Voluntary agreements have been developed in very different ways in different nations,  depending on their institutional and corporate culture background. In what follows the literature will  be reviewed according to the three categories provided by (Pinkse and Kolk, 2009).  15.5.7.1    Government sponsored voluntary programmes for firms  Government sponsored programmes for firms, where participation is completely voluntary and  there are no penalties for not participating in the agreement, have been implemented in several  countries, including the United States and Australia. The United States EPA led voluntary  programmes foster partnerships with industry and the private sector at large by providing technical  support among other means (US EPA, 2013).  Ex post case studies on the environmental and economic effectiveness have been scarce compared  to the wide range of activities. Where available, they have been critical of this type of programme.  Several studies say little reduction was achieved (see Brouhle et al. (2009) analyzing a voluntary  programme in the US metal finishing industry) or the impacts were short lived, as was the case for  the US Climate Wise Program (Morgenstern et al., 2007). See also Griffiths et al. (2007) and (Lyon  and Maxwell, 2004) who conclude the US Climate Leaders programme had little effect on firm  behaviour.   15.5.7.2    Voluntary agreements as a major complement to mandatory regulations  Voluntary agreements (VAs) often form a part of a larger climate policy approach that contains  binding policies such as a carbon tax or a cap and trade programme. Voluntary agreements  conducted jointly with mandatory regulations have been widely implemented in Europe (Rezessy  and Bertoldi, 2011).  42 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   This approach allows the regulated industries to use the voluntary agreement as a partial fulfilment  of the mandatory regulation. For example, through participation in the CCA in the UK, energy  intensive industrial sectors established targets to improve energy efficiency and the companies that  met such targets received an 80% discount from the CCL (Price et al., 2008). Likewise, the Dutch  government ensured industries participating in Long Term Agreements (LTA) were not subject to  additional government policies regulating CO2 emission reductions or energy conservation and that  the new energy tax would not be levied on the participating industries. In both cases participants  established a long term plan to save energy and reduce CO2, and implemented energy management  systems (Price et al., 2008; Stenqvist and Nilsson, 2012).  Some studies found that the voluntary agreements were environmentally and economically  effective. Bressers et al. (2009) found positive results in terms of ambition, compliance, goal  attainment and behavioural change. They also acknowledged the efficiency advantages of flexibility  in phasing technical measures. Ekins and Etheridge (2006) analyzed the UK CCA and found that,  while the targets were not very stringent and were generally achieved in advance of the set date,  the CCAs appeared to have catalyzed energy savings by increasing awareness. This allowed the net  environmental benefits to exceed what would have been achieved by levying a flat tax without  rebates and CCAs while also generating economic gains for the companies under the CCAs (Ekins and  Etheridge, 2006).  Rezessy and Bertoldi (2011) assessed the effectiveness of voluntary agreements in nine EU member  countries. In cases where there is cooperative culture between governmental entities and the  private sector, VAs can have some beneficial effects compared to legislation. They include  willingness by the industry, sharing of information, flexibility in phasing measures, and fine tuned  solutions to individual industries. They emphasized that by engaging signatories in energy audits,  consumption monitoring, energy management systems and energy efficiency project  implementation, the voluntary agreements helped overcome the barrier for energy efficiency  improvement in a systematic manner. Nevertheless, they also noted that the VAs had been criticized  for lenient targets, deficiencies in monitoring, and difficulty in establishing the additionality.  There  are other critical studies. Bohringer and Frondel (2007) argued that they found little evidence that  the commitment of the German cement industry was effective, due to weak monitoring. Martin et  al. (2011)concluded that the CCL had strong negative environmental impacts. Voluntary agreement  between the European Commission and the car industry which set a mid term target of 25%  reduction on CO2 emissions from automobiles by 2008 completely failed (Newell and Paterson,  2010).    15.5.7.3    Voluntary agreements as a policy instrument in governmental mitigation plan  Voluntary agreements may be used as a major policy instrument with wide coverage and political  salience in a governmental mitigation plan. This type of voluntary agreement has been implemented  in Japan and Taiwan, province of China.   The Japanese Voluntary Action Plan (VAP) by Keidanren (Japan Business Federation) was initiated in  1997. The plan, led by Keidanren and joined by 114 industrial associations, covered about 80% of  GHG emissions from Japan s industrial and energy transformation sectors. The plan is embedded in  the regulatory culture in which the government constantly consults with industrial associations. It  was reviewed annually in governmental committees, and an independent third party committee was  also established to monitor its implementation; the included industries were required to be  accountable with their environmental performance constantly. Industrial groups and firms  established energy and GHG management systems, exchanged information, being periodically  reviewed and acted to improve energy efficiency and cut GHG emissions. Several industry sectors  raised the ambition levels with stricter targets during the course of VAP, once they achieved original  targets (Tanikawa, 2004; Akimoto, 2012; Uchiyama et al., 2012; Yamaguchi, 2012). An econometric  43 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   analysis found that voluntary actions by the manufacturing sector led to significant energy efficiency  investments (Sugino and Arimura, 2011).   Two successful case studies in VAP have been reported. In cutting stand by power by electric  appliances, three major industrial associations announced 2001 the target to limit stand by power  less than 1 W for all electric appliances to be met by 2003. It was possible for them to commit to the  ambitious targets ambitious in terms of the level of target (1 W), wide coverage of appliances, and  early timing of goal exactly because it was voluntary, not mandatory. In contrast, other countries  that took a regulatory approach have implemented much weaker targets at later dates, and the  coverage of appliances had been small. By 2003, almost all appliances met the target on time in  Japan. Also, semiconductor industrial associations committed to cut Perfluorocarbons (PFC)  emissions in 1998 and succeeded in reduction by 58% by 2009. (Wakabayashi, 2013)   Chen and Hu (2012) analyzed the voluntary GHG reduction agreements of six different industrial  sectors, as well as the fluorinated gases (F gas) reduction agreement of the semiconductor and liquid  crystal display (LCD) industries in Taiwan, province of China. They found that the plan launched in  2005 was largely successful.    15.5.7.4    Synthesis  The voluntary agreements have been successful particularly in countries with traditions of close  cooperation between government and industry (IPCC, 2007; Rezessy and Bertoldi, 2011; Akimoto,  2012; Yamaguchi, 2012).  Successful voluntary agreements are characterized by a proper institutional framework. This  framework consists of, first, capable and influential industrial associations that serve as an arena for  information exchange and development of common expectation among industries. Second,  governmental involvement in implementation review is crucial. Third, accompanying measures such  as technical assistance and subsidies for energy audits and equipment can also be instrumental.  Finally, regulatory threats, even if they are not explicitly articulated, are an important motivating  factor for firms to be active in the voluntary agreements.  The key benefits of voluntary agreements are: 1) quick planning and actions when technological  solutions are largely known but still face uncertainties; 2) flexibility in phasing technical measures; 3)  facilitating coordination and information exchange among key stakeholders that are crucial to  removing barriers to energy efficiency and CO2 reductions; and 4) providing an opportunity for  learning by doing  and sharing experiences.  However, several voluntary agreements have been criticized for not bringing about significant  environmental impacts due to their limited scope or lack of proper institutional framework to ensure  the actions to be taken (see Sections 15.5.7.2 and 15.5.7.3).  As cross national evaluations, Morgenstern and Pizer (2007) reviewed voluntary environmental  programmes in the United States, Europe, and Japan and found average reductions in energy use  and GHG emissions of approximately 5% beyond baselines. Borck and Coglianese (2009) argued that,  as an alternative to regulatory approaches, voluntary agreements may effectively achieve small  environmental goals at comparatively low cost.  The major role of voluntary agreements is to facilitate cooperation among firms, industrial  associations, and governments in order to find and implement low cost emissions reduction  measures. Such a role is important because large mitigation potential exists, yet it is hampered by  formidable barriers such as lack of information and coordination among actors. In such context the  voluntary agreements can play an important role as part of a policy package.   44 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.5.8    Summary   This section has reviewed a range of policy instruments. Among the four policy evaluation criteria,  literature is rich for economic and environmental effectiveness. The distributional incidence of taxes  has been studied quite extensively, much less is known about other policy instruments. Political and  institutional feasibility was also discussed as a design issue of economic instruments. The reasons for  which sector specific policy instruments such as regulations and information measures have higher  political feasibility than economy wide economic instruments were briefly discussed in Section 15.2,  but there is a dearth of literature really analyzing this issue.  Basic economics suggests that one instrument e.g., a price on carbon would be most cost  effective in dealing with the market failure associated with the release of greenhouse gases.  The  presence of other market failures, however, means that one instrument is insufficient for dealing  comprehensively with issues related to the climate problem. We have seen in Section 15.5.4 that  there are cognitive and institutional factors that imply barriers to market response to carbon prices.  Therefore, regulatory approaches, information programmes, voluntary agreements, and government  provision may serve as a complement to pricing policy as a way to remove barriers, thereby saving  the money of firms and individuals and reducing social costs. There are strong separate arguments  for a technology policy to correct for the externality implied by insufficient protection of property  rights, as detailed in Section 15.6. Furthermore, because carbon pricing policy is often lacking or  insufficient for political reasons in nations, various policy instruments are playing substitutive role  (see Section 8.10 for examples of the transport sector).  In several sectors such as transport, urban planning and buildings, energy, and forestry, government  planning and provision of infrastructure is important, even crucial, for achieving emission reductions  in a cost effective manner. Absent the appropriate infrastructure, the costs of achieving significant  emission reduction might be prohibitive.  As discussed in Section 15.2 and this section, real world politics tend to produce various policy  instruments and differentiated carbon price across sectors owing to politics. Those policy  instruments may positively interact as illustrated above, but may also negatively interact. Such  interactions will be further detailed in Sections 15.7 and 15.8. Policymakers face the challenge to  understand how the policy package is constructed in their nation and must harmonize various policy  instruments so that they interact synergistically.    Box 15.2 National and sub-national policies specific to least developed countries (LDCs) A number of developing countries have developed legislative and regulatory frameworks to measure  and manage GHG emission (Box 15.1). These frameworks or strategies can be a part of larger  development plans that aim to shift the economy to a low carbon and climate resilient trajectory.  These plans can serve an important signaling function by aiding coordination of government  agencies and stakeholders in addition to providing the government s commitment to a low carbon  policy framework (Clapp et al., 2010).  There are pre requisites to develop these low carbon development strategies. Achieving this policy  readiness  entails assembling the technical knowledge and analytical capacity, legal and institutional  capacity, and engagement of stakeholders in the process (Aasrud et al., 2010; van Tilburg et al.,  2011).Capacity building is also a continuous process that aims to improve strategies over time to  enhance low carbon outcomes. Readiness for market based instruments increases mitigative  capacity in general and enables implementation and monitoring of mitigation policies (Partnership  for Market Readiness, 2011). Due to tremendous variation in capacity across countries, sufficient  flexibility to allow these strategies to evolve over time is needed (Clark et al., 2010; van Tilburg et al.,  2011).  45 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Evidence from CDM projects indicates that capacity building is necessary but not sufficient to allow  countries to attract CDM projects. Targeted measures like support for Designated National  Authorities have shown to be successful (Okubo and Michaelowa, 2010). In addition, CDM projects  have been an important mechanism for creating awareness about climate change mitigation, and  have served as an indirect link between cap and trade systems around the world (Michaelowa,  2013). Some developing country beneficiaries of CDM are also moving towards implementing  longer term national mitigation policies. For an assessment of the Clean Development Mechanism,  please refer to Chapter 13 (13.13.1.2) and Chapter 16 (16.8) for the technology component.   Climate change mitigation has also been pursued through a co benefits approach (See Section 15.2).  Increasing access to energy services is an important priority for policymakers in developing countries  (Chapter 4). An estimated 1.3 billion of the world s people have no access to electricity and roughly  three billion rely on highly polluting and unhealthy traditional solid fuel for household heating and  cooking (IEA, 2012; Pachauri et al., 2012, p. 19) (see Section 14.3.2.1). In the short term, policies may  address use of climate friendly technologies like solar lighting alternatives to kerosene lamps (Lam et  al., 2012), and gasifier cook stoves (Grieshop et al., 2011), while longer term policies may address  more comprehensive approaches such as universal grid connectivity. Chapter 6 (Section 6.6.2.3) and  Chapter 16 (Box 16.3 in Section 16.8) use global scenario results to conclude that universal basic  energy access can be achieved without significantly increasing GHG emissions.   One option particularly relevant for developing countries is a repeal of regressive subsidies given to  fossil fuel based energy carriers, together with suitable compensating income transfers so as not to  limit energy access or increase poverty (see Section 15.5.2). In some developing countries, subsidies  to fossil fuels are slowing penetration of less expensive renewables. For example subsidies to natural  gas result in an incremental levelized cost of wind power in Egypt of an estimated 88% (Schmidt et  al., 2012).  Care must also be taken to ensure transparency and to clearly demonstrate that the  savings that accrue from the removal of subsidies will be used to benefit the poor.  15.6   Technology Policy and R&D Policy  15.6.1    Overview of the role of technology policy and R&D policy  As discussed in Chapter 3.11, there are market failures associated with research, technology  development, and technology diffusion that are distinct from and interact with the market failures  associated with environmental harm of human activities such as anthropogenic climate change.  There is therefore a distinct role for technology policy in climate change mitigation, which is  complementary to the role of policies aimed directly at reducing current GHG emissions, which are  discussed in Section 15.5 above.  Public policies and institutions affect the rate and direction of technological change at all points in  the chain from the invention, to innovation, to adoption and diffusion of the technology, and  unaddressed market failures or barriers at any stage in the chain can limit policy effectiveness  (Nemet, 2013). The innovation systems literature stresses that technology development and  deployment are driven by both technology push (forces that that drive the development of  technologies and innovation such as R&D funding and tax breaks for R&D, patents), and demand pull  forces that increase the market demand for technologies such as technology subsidies and standards  (Gallagher et al., 2012; Wilson et al., 2012).  Technology systems may create path dependencies in the innovation process. The current  dominance of the carbon based system creates incentives to improve carbon technology rather than  non carbon. This has been observed in private (Aghion et al., 2012) as well as public institutions  (Unruh, 2000) exemplified by fossil fuel subsidies (OECD, 2013). Escaping carbon lock in is essentially  a problem of co ordination (Rodrik, 2007; Kretschmer, 2008), which can be facilitated by public  46 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   policy that addresses technology push, demand pull, and framework conditions in a complementary  fashion (Nemet, 2013).   This section addresses the generic issues that arise in the implementation of policies intended  specifically to foster the development and implementation of low GHG technologies. It begins by  discussing technology policy instruments in three overarching categories: 1) the patent system and  other forms of intellectual property (IP); 2) public funding of research, tax subsidies for firms  engaging in R&D; and 3) various policies designed to foster deployment of new technologies. It then  moves on to discuss the impact of environmental policy on technological change in general,  technological change in a broader social framework often termed an  enabling environment   together with interactions across various elements of innovation systems, and finally the importance  of incorporating programme evaluation into the design of technology policy    15.6.2    Experience with Technology Policy  15.6.2.1    Intellectual property  Public policy towards IP inherently involves a tradeoff between the desire to create incentives for  knowledge creators and developers, and the desire to have new knowledge used as widely as  possible once it is created (Hall, 2007).  It is therefore crucial to analyze the extent to which IP  protection such as patents, will foster climate change mitigation, by encouraging the creation and  development of new GHG reducing technologies, versus the extent to which it will hamper  mitigation by raising the cost and limiting access to such new technologies as are developed.   Intellectual Property policy will affect climate change mitigation both through its effects on the  creation of new technology and on the international transfer of mitigation technology.  The first of  these mechanisms will be considered here; the effect of IP policy on technology transfer is discussed  in Chapter 13.9.  In general, the empirical evidence that IP protection stimulates innovation is limited to the chemical  and pharmaceutical sectors, and to developed economies (Park and Ginarte, 1997). It is unclear to  what extent IP protection is relevant to the development of the kind of technologies that would  mitigate climate change in advanced and middle income countries, and it appears unlikely to be  relevant to indigenous technology development in the poorest countries (Hall and Helmers, 2010).13  The Trade Related Intellectual Property Rights (TRIPS) agreement generally commits all countries to  create and enforce standard IP protections, but it does allow for the possibility of exceptions to  standard patent regulations for public policy reasons (World Trade Organization, 1994). Hence a  major policy issue related to climate change is the extent to which developing countries will be  compelled within the TRIPS framework to enforce strong IP protection relative to GHG reducing  technologies, or whether an exception or exceptions will develop for these technologies on public  policy grounds (Derclaye, 2008; Rimmer, 2009).  Because the evidence that strong IP protection increases domestic innovation is almost entirely  limited to specific sectors in the developed world, it is unclear whether maintenance of strong IP  protection in less developed countries will increase those countries  indigenous creation or  adaptation of GHG reducing technologies.  As discussed in Chapter 13, however, the evidence does  suggest that the presence of an effective IP regime is a factor in fostering technology transfer into a  country.     There are however other relevant examples for instance of indigenous knowledge in developing countries  being valuable when it comes to biodiversity and pharmaceuticals.  13 47 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.6.2.2    Public funding of research and development  Public funding of research and development may address specific market failures related to  innovation (as discussed in Chapter 3.11), but may also help to compensate for barriers to private  investment that may result from long lifetimes of incumbent technologies leading to lengthy  transition times from one system/technology to another (Fouquet and Pearson, 2006; Fouquet,  2010), uncertainty about future levelized costs of capital or discount rates (Nemet, 2013), or the lack  of guarantee on the success of an investment (Mazzucato, 2013; Nemet, 2013).  Public research expenditures that have the potential to foster the long run development of GHG mitigating technology come under a number of different common public research expenditure  categories, including environment, agriculture, materials, and others.  There are no widely accepted  data that attempt to identify and sum up public expenditures across different categories that  potentially relate to mitigation technologies.  Much discussion about the potential for technological  change to mitigate GHG emissions revolves around reducing and eliminating use of fossil fuels, and  the largest single category of public research expenditure related to mitigation is energy research,  discussed in Chapter 7.12.2.    Public energy related research expenditures among the International Energy Agency (IEA) countries  currently comprise about 5% of total public R&D spending in those countries, less than half the share  of such research in total public research spending in 1980. Gallagher et al (2012) report an increase  in public funding for energy technologies among IEA member countries in the 2000s but also find a  continued prominence of funding for nuclear and fossil fuel technologies. A similar trend has been  noted for non IEA members like Brazil, China India, Mexico, Russia, and South Africa (Gallagher et al.,  2012). A gradual but steady increase in this share is a major policy option for fostering the long run  development of GHG reducing technologies (Jaffe, 2012).  The U.S. National Research Council (NRC) evaluated Federal Energy research, development, and  demonstration (RD&D) investments in energy efficiency and fossil energy for the period 1978 2000.   The NRC found that these investments  yielded significant benefits (economic, environmental, and  national security related), important technological options for potential application in a different  (but possible) economic, political, and/or environmental setting, and important additions to the  stock of engineering and scientific knowledge in a number of fields  (U.S. National Research Council,  2001).  In terms of overall benefit cost evaluation, the NRC found that the energy efficiency  programmes produced net realized economic benefits that  substantially exceeded  the investment  in the programmes.  For the fossil energy programmes, the net realized economic benefits were less  than the cost of the programmes for the period 1978 1986, but exceeded the cost of the  programmes for 1986 2000 (U.S. National Research Council, 2001). Japanese technology RD&D  programmes for renewable energy and energy efficiency, known as Sunshine program and  Moonlight program since 1974, were also found to be both economically and environmentally  effective (Kimura, 2010).  In the short run, the availability of appropriately trained scientists and engineers is a constraint on a  country s ability to increase its research output (Goolsbee, 1998) (See also Jensen and Thomson  (2013)). This factor combines with short run adjustment costs in laboratory facilities to make rapid  ramp up in research in a particular area likely to be cost ineffective, as found to occur, for example,  as a result of the doubling of US health research (Cockburn et al., 2011). Therefore, sustained  gradual increases in research are likely to be more effective than short run rapid increases. In the  long run, it is possible to expand the supply of scientific and technical labour available to perform  energy related research.  This can occur through training that occurs when publicly funded research  is carried out at universities and other combined research and teaching institutions, and/or via direct  public funding of training.  Success at increasing the technical workforce has been found to be a  crucial factor in the long run benefits of health related research in the United States (Cockburn et  al., 2011).  48 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.6.2.3    Policies to foster or accelerate deployment and diffusion of new technologies  In addition to fostering technology development through research, many policies seek to foster the  deployment of GHG mitigating technologies in households and firms.  Such deployment policies  could be thought of as a form of abatement policy, to the extent that they reduce emissions relative  to what would occur with the use of previous technologies.  But the more fundamental reason for  public policy to foster technology deployment is that deployment feeds back and enhances  subsequent improvement of the technology over time (Jaffe and Stavins, 1994; Henkel and Hippel,  2005; Jaffe, 2012). For example, publicly funded research certainly played a role in the digital  revolution, but active government involvement as an early purchaser was also crucial (Mowery,  2011).  Purchases were made of products meeting stated technical specifications, and this approach  has helped move products down the learning curve, eventually allowing civilian versions to be sold  competitively.  Market failure in the deployment of new technologies is often illustrated via an image of a  Valley of  Death  between small scale or prototype developments and successful commercialization, in which  the need for substantial increase in the scale of investment combines with uncertainty about  technical reliability, market receptiveness and appropriability to stall or slow deployment (Grubb,  2004; Nemet, 2013, p. 112).  A variety of demand pull public policies can operate to carry technology  deployment through the Valley of Death.   As laid out in Table 15.2, economic instruments such as subsidies, regulatory approaches,  information programmes, government provision of public goods and services, as well as voluntary  actions are common across sectors. The targeted technologies include low emission vehicles such as  hybrid cars in the transport sector (8.10), efficient electric appliances such as light emitting diodes  (LED) in the building sector (9.10), and advanced industrial equipment (11.10). Feed in tariffs are  used for renewable in the power sector (7.10). Quantity requirement are also common, including  RPSs in the power sector (7.10), biofuel mandates in the transport sector (8.10). Information  programmes such as labelling of home electric appliance may be used to promote the sales of new,  low emission technologies (9.10).  Since AR4, a large number of countries and sub national jurisdictions have introduced support  policies for renewable energy. These have promoted substantial diffusion and innovation of new  energy technologies such as wind turbines and photovoltaic panels, though many renewable energy  (RE) technologies still need policy support, if their market shares are to be increased  (see 7.5.3,  7.6.1, 7.8.2, and Chapter 11 Bioenergy Annex).   Chapter 7 (citing the SRREN) argued that "...some feed in tariffs have been effective and efficient at  promoting RE electricity, mainly due to the combination of long term fixed price or premium  payments, network connections, and guaranteed purchase of all RE electricity generated". Feed in tariffs have been effective in promoting renewables in Germany and other nations (Couture and  Gagnon, 2010; Ragwitz and Steinhilber, 2013). It is also argued that the flexibility of FITs can  incorporate economic and technological changes (Klobasa et al., 2013) and encourage dynamic  innovation (Mitchell et al., 2006). Proving dynamic efficiency in the narrow economic sense is more  complicated, although Jaffe et al., (2005) have explored this in a somewhat positive light.   There are different views on FITs, especially in relation to their cost effectiveness. Some criticize FIT  of having 'failed to harness market incentives' because it is not statically cost effective (i.e., it  supports photovoltaics in addition to wind energy, although the former is more expensive than the  latter) (Frondel et al., 2008, 2010) . Schmalensee (2012), using a simple model, argues that while FITs  shift risk away from investors in renewable energies, they may not reduce the risk to society as a  whole. In a paper for the European Union (Canton and Linden, 2010) argue that feed in premiums  are preferable to FITs if internal market distortions are to be avoided.   49 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   With the increasing market shares of intermittent generation, new challenges have to be addressed  in respect to grid and market integration such as capacity constraints, demand spikes, back up  capacity, and transmission. A reform of market design, including flexible demand side pricing, is  proposed to make the system more flexible so it can react to the new challenges. (See 7.10 and  SSREN Chapter 8 for details (Sims et al., 2012).  A theme that runs through many of the sectoral deployment policy discussions is the importance of  information, and the relationship between incomplete information and risk. Uncertainty about the  physical and economic performance of new technologies is a major factor limiting their diffusion, so  policies that address information issues may be complementary with economic incentives or  regulatory approaches.   Many nations, including Germany, Spain, China, India, among others, have implemented ambitious  deployment programmes for renewables consisting of capacity targets, FIT, and so forth (Jänicke,  2012), resulting in rapid capacity expansion and lower costs of technologies. Such progress may  result in economic and environmental efficiency in the long run at the global scale  (Kalkuhl et al.,  2013). Ondraczek (2013) identifies awareness among consumers as a critical element in market  development in Kenya and Tanzania and finds evidence for a  virtuous cycle  between dissemination  and awareness. Friebe et al. (2013) emphasize the need for including pre and post sales services to  sustain the uptake of solar home systems. Glemarec (2012) highlights the role for public private  partnerships to deliver energy access but underlines the need for public investment in capacity and  market development.  Many developing countries face a somewhat different set of choices in encouraging technology  deployment because of the dominance of state owned or other monopoly enterprises in the energy  sector.  Liu and Kokko (2010) evaluate the factors related to the significant growth of wind power in  China, and conclude that administrative rules stipulating levels of wind usage have been more  effective than incentives operating through the pricing system. Pegels (2010) describes the  introduction of a renewable FIT guaranteed for 20 years in South Africa, but notes that it is unclear  what effect this will have on the investment decisions of the monopolist electricity supplier.   15.6.3    The impact of environmental policy instruments on technological change  There is some empirical literature assessing the impact of generic environmental policy instruments  (discussed in the previous section) on technological change.  For surveys, see Newell (2010) and  Popp et al. (2010b). Jaffe and Palmer (1997), looking across industries in the United States., found  that more stringent regulation was associated with higher R&D expenditures (controlling for industry  fixed effects), but did not find any impact on industry patents. Lanjouw and Moody (1996) did find  that across the United States, Germany, and Japan, patenting rates were correlated at the industry  level with pollution control expenditures.   A number of studies have looked at the impact of energy prices on energy saving technological  change.  These effects can be seen as indicative of the possible consequences of GHG policies that  increase the effective price of emitting GHG. Popp (2002) found that rising energy prices increased  the rate of patenting with respect to alternative energy sources and energy efficiency, with more  than one half the effect coming within five years of energy price changes. Newell (1999) found that  rising energy prices increased the efficiency of the menu of household appliances available for  purchase in the United States.  The Norwegian carbon tax appears to have triggered technology  innovation in the form of carbon dioxide storage in the Sleipner gas field (Sumner et al., 2011). Fuel  taxes moved auto industry innovation towards more efficient technologies (Aghion et al., 2012), and  the EU ETS moved the firms most affected by its constraints towards low carbon innovation (Calel  and Dechezlepretre, 2012).  At a theoretical level, there are arguments why incentive based policies such as carbon taxes or  tradable permits are more conducive to innovation than regulatory approaches (Popp, Newell, et al.,  50 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   2010b). After the 1990 Clean Air Act Amendments in the United States implemented a tradable  permit programme for sulphur dioxide, Popp (2003) found that the rate of patenting on techniques  for sulphur removal increased, and Lange and Bellas (2005) found that both capital and operating  expenditures for scrubbers were reduced. In a survey of research on the effects of tradable permit  systems on technology innovation and diffusion, Bellas (2011) concluded  The general result is that  tradable permit programs have improved the pollution control technology compared to the previous  regulation used.  Sterner and Turnheim (2009) find similarly that the very high fee on NOx in Sweden  has led to a rapid process of both innovation and technology diffusion for abatement technologies.  More recently, a few studies have explored the effect of renewable energy policies on energy  innovation.  (Johnstone et al., 2010) found that policy had a significant impact on patent applications  for renewable technologies, with different policy instruments being effective for different  technologies. (Popp et al., 2010a) found that the link between greater patenting and investment in  specific technologies is weak, but there does seem to be an association between policy and  investment.  15.6.4    The social context of technological transitions and its interaction with policy  The central insight from the empirical literature is that both technology push and demand pull  policies are required to be most effective (Nemet, 2009).  A  virtuous cycle  (IEA, 2003; Edenhofer et  al., 2012) can occur, derived from learning from combined technology push and market pull whereby  as  learning  from market demand feeds back in to research and development, the improved product  leads to more market demand and reducing costs. This virtuous technology and market cycle has  been extended to include a third cycle of policy learning (Jänicke, 2012) whereby as learning from a  successful policy occurs across the innovation chain, it can also be fed back into the process.  A technology policy will be more effective if it addresses multiple aspects such as institutions,  regulations and standards, political models, laws, social norms and preferences, individual  behaviours, skills, and other characteristics. This idea was originally developed and encapsulated in  the UNFCCC definition of an  enabling environment  (UNFCCC, 2001).14  This general intention to  match up specific technology requirements with the system situation in which they develop has  been called framework conditions (Grubb, 2004), enabling environment (Edenhofer et al., 2012;  Johansson et al., 2012), enabling factors (Nemet, 2013), and complementary innovations (Grubb et  al., 2014).  There is a literature base that explores technology transitions and the implications of multilevel  interactions across social and technological elements (e.g., (Geels, 2011; Meadowcroft, 2011; Foxon,  2011).  Three social challenges are raised as especially salient to social management when  attempting to alter the technological system: (1) the size and visibility of transfers and assets  created; (2) the predictability of pressure to expand the focus of the policies to broaden the social  benefits; and (3) the potential for market incentives and framings of environmental issues to  undermine normative motivational systems (Parson and Kravitz, 2013).  Managing these social  challenges may require innovations in policy and institutional design, including building integrated  policies that make complementary use of market incentives, authority, and norms (Foxon, 2011;  Gallagher et al., 2012; Parson and Kravitz, 2013). Doing so will reduce the risk of market incentives  failing to achieve behavioural change and recognizes that incentives and norms have to be  integrated to achieve sustainability transitions.    Enabling environment is defined as:  the component of the framework [that] focuses on government actions  such as fair trade policies, removal of technical, legal and administrative barriers to technical transfer, sound  economic policy, regulatory frameworks and transparency, all of which create an environment conducive to  private and public sector technology transfer  (UNFCCC, 2001).   14 51 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.6.5    Building programme evaluation into government technology programmes  Evaluation of government programmes to foster new energy technologies has been hampered by a  lack of complete and consistent evaluation data at the programme level (U.S. National Research  Council, 2001).  This problem is common to many government technology programmes.  Proper  evaluation requires that data on project selection and project performance be collected as  programmes commence and maintained after they are completed (Jaffe, 2002). Wider use of such  evaluation methods would allow experience with relative effectiveness of different programmes to  be used to improve outcomes over time. While the above argument applies to all governmental  policy in general, it is particularly important for technology development programmes that may be  vulnerable to governmental failure related to the picking and choosing of technologies under high  uncertainty (Helm, 2010).   15.6.6    Summary of technology policy and R&D policy  There is a distinct role for technology policy in climate change mitigation.  This role is  complementary to the role of policies aimed directly at reducing current GHG emissions. (15.6.1)  The availability of new technologies is crucial for the ability to realistically implement stringent  carbon policies. Technology policy will be most effective when all aspects of the  innovation/deployment chain are addressed in a complementary fashion (see Section 15.6.1).  Investment depends on the willingness of a variety of actors to manage the balance between the  risks and rewards in each step of the chain, and government decisions are crucial to this balance.  Evidence suggests that the presence of an effective IP regime increases domestic innovation.  However, as evidence is almost entirely limited to specific sectors in the developed world, it is  unclear whether strong IP protection in less developed countries will increase those countries   indigenous creation or adaptation of mitigation technologies (15.6.2.1).  Worldwide investment in research in support of climate change mitigation is small relative to overall  public research spending.  The effectiveness of research support will be greatest if it is increased  steadily rather than dramatically or erratically (15.6.3).   A wide range of policy approaches is prevalent across sectors, which enable policy design that  addresses sector  and technology specific attributes. These policies are often designed as  complementary sets of policies, or policy packages. (15.5.1 and 15.6.2.3)  Complementary framework conditions, or an enabling environment, may complement a package of  technology push and demand pull policies (15.6.4). Managing social challenges of technology policy  change may require innovations in policy and institutional design, including building integrated  policies that make complementary use of market incentives, authority and norms (15.6. 4).   It is important that data collection for programme evaluation be built into technology policy  programmes (15.6.5), because there is very little empirical evidence on the relative effectiveness of  different mechanisms for supporting the creation and diffusion of new technologies.  15.7   Synergies and Tradeoffs among Policies  This section discusses interactions between policies with different main objectives as well as  between differing climate policies with the same objective. Section 15.7.2 discusses relationships  between policies with different principal objectives   for example, between climate policy and  development policy.  The next two sections consider interactions between climate policies. Section  15.7.3 describes interactions between different climate policies at different levels of government,  and 15.7.4 takes up interactions between climate policies enacted at the same level of government.  52 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   The interactions in 15.7.3 and 15.7.4 reflect the absence of policy coordination, and they affect the  environmental and economic outcomes. Deliberate linking of policies is discussed in Section 15.8.   15.7.1    Relationship between policies with different objectives  Governments throughout the world have enacted various policies to support the mitigation of  climate change, which is the central objective of climate policy. However, the implementation of  mitigation policies and measures can have positive or negative effects on additional objectives   and  vice versa. To the extent these side effects are positive, they can be deemed  co benefits ; if adverse  and uncertain, they imply risks.15 The co benefits of climate policy are primary benefits of policies  with other main objectives.  Social development is a primary benefit of development policy, since  such development is the main objective.  Similarly, enhanced energy security, technological  development, and reduced air pollution are primary benefits of energy security, technological  development, and air pollution policies, respectively.  To the extent that these other policies (with  other objectives) lead to mitigation, such mitigation is a co benefit of these other policies.   Although there is growing interest in research on mitigation as a co benefit (see Sections 1.2.1 and,  e.g., Kahn Ribeiro and de Abreu, (2008), the great majority of the literature assessed in other  chapters focuses on the co effects of sectoral mitigation measures (Chapters 7.9, 8.7, 9.7, 10.8, 11.7,  11.13.6, and 12.8) or transformation pathways (Section 6.6) on additional objectives. Table 15.1 in  Section 15.2.4 provides a roadmap for the assessment of those co benefits and adverse side effects  on the many objectives examined in various chapters of this report and highlights that the effects on  energy security and air pollution as well as the associated reductions in health and ecosystem  impacts are discussed in all sector chapters. For example, stringent mitigation results in reduced  combustion of fossil fuels with major cuts in air pollutant emissions significantly below baseline  scenarios (see 6.6.2.1 and, e.g., (ApSimon et al., 2009) for a discussion of policy interaction in  Europe); by increasing the diversity of energy sources and reducing energy imports in most  countries, mitigation often results in energy systems that are less vulnerable to price volatility and  supply disruptions (see 6.6.2.2 and, e.g., (Lecuyer and Bibas, 2011) for a discussion of policy  interaction in Europe).   According to recent scenario studies assessed in Chapter 6.6.2.7, stringent climate policies would  significantly reduce the costs of reaching energy security and/or air pollution objectives globally.  Recent literature assessed in Chapters 6.6.2.3, 7.9.1 and 16.8 finds that increasing access to modern  energy services may not conflict with mitigation objectives   and vice versa.  There are two important advantages to coordinating separate policies and their various benefits.  By  coordinating policies, the various benefits and costs can be considered in an integrated fashion,  which offers information helpful to determining how to achieve the objectives at low cost (see  6.6.2.7).  In addition, coordinating policies can improve political feasibility.  The concept of  mainstreaming  climate policy refers to the linking of climate policy with other policy efforts,  particularly policy efforts that have broad recognition.  The prospects for successful climate policy  can be enhanced through such mainstreaming (Kok and de Coninck, 2007).  Development frameworks at international or national levels, or by sector, may include  mainstreaming as a key element.  For it to be effective, climate change mitigation needs to be  mainstreamed in appropriate national and sector planning processes to widen development goals  within national and sectoral contexts. For developing countries, such integration of mitigation into   Co benefits and adverse side effects describe effects in non monetary units without yet evaluating the net  effect on overall social welfare. Please refer to the glossary in Annex I for definitions and to Chapters 3.6.3 and  4.8 for a discussion of how the concept of co benefits relates to welfare and sustainable development,  respectively.  15 53 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   development planning can reduce problems of cooperation and coordination that may arise across  different levels of government (Tyler, 2010).  Mitigation plans can be embedded in national policy making processes to align economic and social  development with mitigation actions. For example, in China, the National Leading Group on Climate  Change is part of the National Development and Reform Commission, the principal national planning  body (see Section 15.2.2.2).  Limited institutional capacity in developing countries presents the most significant barrier to  mainstreaming of mitigation policies. This includes a lack of knowledge and/or expertise in climate  change issues, a lack of (or weak) oversight and/or enforcement. Developing countries aiming to  mainstream and implement climate change mitigation policies must; 1) encourage awareness on the  topic; 2) establish related training programmes; 3) ensure an adequate level of finance for  enforcement; and 4) enhance coordination between ministries (Ellis et al., 2009).  15.7.2    Interactions between climate policies conducted at different jurisdictional levels  Climate policy has been conducted at various jurisdictional levels: international, national, regional  (state or provincial), and local (municipal).  Important interactions can occur across jurisdictional  levels.  Some interactions are beneficial, reinforcing the intended effects;  others are problematic,  interfering with the planned objectives.  Sound policymaking requires attention to these  interactions.  15.7.2.1    Beneficial interactions  Policies introduced by a local jurisdiction sometimes reinforce the goals of efforts undertaken at a  higher jurisdictional level.  In particular, a sub national policy can enhance cost effectiveness if it  addresses market failures that are not confronted by a national climate policy.  Thus, for example, as  seen in Sections 15.5.4 and 15.5.6, an RPS in the electricity sector and an R&D subsidy could usefully  complement a national emissions pricing policy.   The connections between instruments that deal with climate change and those that deal with  congestion or local pollution also present an opportunity to policymakers, but they are very different  since the latter vary depending on the socioeconomic context, technology, fuel, and vehicle use  (Parry et al., 2007; Oikonomou and Jepma, 2008; Vanderschuren et al., 2010; Parry, 2013). For  example, urban planning implemented jointly with fuel or carbon taxes can help fast growing  developing countries minimize resource waste by avoiding urban sprawl. Policies incentivizing more  dense urban architecture combined with the appropriate infrastructure for modern public transport  can be an important complement to energy taxation. Such policies can be supported (and possibly  financed) by fuel taxes if the policymaker wants to discourage citizens from making private decisions  that are incompatible with this broader vision; policy combinations for this sector are discussed in  greater detail in Chapter 8. Conversely, subsidizing fuels and taking a hands off urban planning  approach can result in urban sprawl and a growth in private automobile use along with growth in  resulting emissions.  Local level action can also be a good source of information by allowing experimentation.  In the  United States, environmental policies by the federal government have a history of evolving out of  successful policy  experiments  undertaken by states (Goulder and Stavins, 2011; Shobe and  Burtraw, 2012).  Thus, an appealing feature of local level actions are their ability to try out policy  options not currently in place at the higher jurisdictional level; the higher jurisdiction may have more  confidence in introducing a policy subsequently if it already has a successful track record at the more  local level.  Finally, local policies can produce beneficial strategic interactions.  If national policy is insufficiently  stringent, a stringent state/province or even municipal policy may create pressure on the national  54 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   government to increase its own policy s stringency. (Goulder and Stavins, 2011) cite the example of  California, which repeatedly increased the stringency of its local air pollution standards and was  repeatedly followed by the federal government increasing Clean Air Act regulations  stringency.  Similarly, (Lucon and Goldemberg, 2010) note the importance of Sao Paulo s GHG reducing policies  in influencing other local and even regional governments in Brazil.  15.7.2.2    Problematic interactions  Policies introduced at different levels sometimes interact in ways that compromise or weaken the  intended environmental or economic impacts.  One particular difficulty that may arise is the problem of emissions leakage.  This can occur, for  example, when a climate policy introduced at a lower jurisdictional level is  nested  within a cap and trade programme implemented at a higher jurisdictional level.  Consider the case where a cap and trade programme exists at the national level, and where a sub national authority introduces a new  policy intended to reduce its own (sub national) emissions beyond what would result from the  national programme alone.  The sub national jurisdiction s efforts might indeed yield reductions  within that jurisdiction, but facilities in other sub national jurisdictions covered by the cap and trade  programme will now use these allowances leading to higher emissions in these jurisdictions  completely compensating the abatement effort in the more stringent jurisdiction.  Since overall  emissions at the higher level are determined by the given national level cap, the effort by the sub national jurisdiction does not succeed in reducing nationwide: it just causes emissions leakage    offsetting increases in emissions elsewhere in the nation.  The national cap effectively prevents sub national jurisdictions from achieving further emissions reductions (Goulder and Stavins, 2011; Shobe  and Burtraw, 2012).   The issue applies to the United Kingdom s efforts to reduce emissions through a carbon tax on the  power sector (electricity generators). The generators are require to pay the tax on every unit of  carbon emissions while also being subject to the EU ETS cap on overall emissions. While the tax may  lead to greater reduction in carbon emissions by the generators in the UK, the impact on overall  emissions in the EU might be negligible, since overall European emissions are largely determined by  the Europe wide cap under the EU ETS. On this, see (Böhringer et al., 2008; Sartor and Berghmans,  2011; Goulder, 2013)  This leakage problem can be avoided when the lower level jurisdiction s programme is nested within  a carbon tax programme, rather than emissions cap, at the higher level.  In this case, the sub national policies generally are not environmentally irrelevant.  The reduced emissions in the sub national jurisdiction do not lead to a fall in the emissions price (the carbon tax) at the national level;  hence there are no offsetting increases in emissions in jurisdictions outside the jurisdiction  introducing the more stringent policy (De Jonghe et al., 2009; Fankhauser et al., 2010; Goulder and  Stavins, 2011). This can be an important advantage of a carbon tax over a cap and trade system.  15.7.3    Interactions between policies conducted at the same jurisdictional level  Interactions also can arise when different policy instruments are introduced at the same  jurisdictional level. These interactions can be beneficial or problematic in terms of the cost effectiveness of reducing greenhouse gas emissions.   15.7.3.1    Beneficial interactions  The potential for cost reducing interactions is greatest when the different instruments address  different market failures.  A fundamental principle of public policy is that the most cost effective  outcome results when there are as many policy instruments as the number of market failures  involved, with each instrument focusing mainly on a different market failure (Tinbergen, 1970) .  55 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Climate policy is meant to address one market failure in particular   the climate change related  externalities associated with GHGs. As seen in Section 15.6, another important market failure applies  in the market for innovation: because new knowledge can spill over to third parties, innovators often  cannot capture all of the social benefits from the new knowledge they create. Introducing two policy  instruments, for example, emissions pricing to address the emissions externality, and a subsidy to  R&D to address the innovation market failure, can lower the costs of achieving given emissions  reductions. In addition to helping reduce emissions by encouraging fuel switching and a reduction in  demand, emissions pricing can help spur innovation.  Likewise, the R&D subsidy can promote  invention of low carbon technologies, thereby helping to curb emissions.  Hence the interactions of  the two policies are beneficial.  Although each of the two policies might to some degree affect both  of the market failures, emissions pricing is particularly well focused on the first, while the R&D policy  sharply addresses the second.  Using two instruments helps achieve emissions reductions at the  lowest cost. In this connection, (Fischer and Newell, 2004) and (Oikonomou et al., 2010) find that a  policy combination including a price on GHG emissions and renewable energy subsidies achieves  emissions reductions at significantly lower cost than either of these policies alone. (Schneider and  Goulder, 1997) obtain a similar result for the combination of carbon tax and R&D subsidy.   As noted already in Section 15.5.4.1, several studies (Greene, 1998; Goulder and Parry, 2008;  Gillingham et al., 2009b) argue that there is a market failure associated with consumer purchases of  durable energy using equipment (automobiles, refrigerators, etc.), according to which consumers  systematically underestimate their own future gains from purchasing more energy efficient  durables.  To the extent that this market failure is significant, the combination of emissions pricing  and a second instrument (for example, an energy efficiency standard for appliances) to address this  additional market failure could lead to beneficial interactions and promote cost effectiveness.    Some studies suggest a market failure associated with reliance on crude oil, claiming that reliance on  oil produces an  economic vulnerability externality , given the possibility of supply disruptions on the  world oil market (Jones et al., 2004). Under these circumstances, the combination of emissions  pricing (to address the climate change externality) and a tax on oil consumption (to address the  vulnerability externality) can be a cost effective way of dealing with both climate change and  economic vulnerability.  Several authors (e.g., (Nordhaus, 2009)) emphasize that the vulnerability to  world oil price changes is largely a function of the share of overall oil consumption in GDP, rather  than the share of consumed oil that comes from imports.  This suggests that the vulnerability  externality is best addressed through a tax on oil consumption rather than a tax on imported oil.  15.7.3.2    Problematic interactions  Multiple policies at the same jurisdictional level also can yield problematic interactions.  This can  happen when multiple policies only address the same market failure.  Consider the situation where a  given jurisdiction attempts to reduce greenhouse gases through both emissions pricing and another  policy such as a performance standard (a limit on the ratio of emissions per unit of production).   Economic theory claims that, absent market failures and other barriers, emissions pricing tends to  promote a highly cost effective outcome by promoting equality in the marginal costs of emissions abatement across all the facilities that face the given price of emissions (the carbon tax or the price  of emissions allowances).  If, in addition, facilities face a performance standard, then this added  policy approach either is redundant or it compromises cost effectiveness.  It is redundant if meeting the performance standard would involve marginal abatement costs lower  than the emissions price.  In this event, cost minimizing firms would be induced to meet or exceed  this standard by the emissions price alone:  there is no need for the standard.  On the other hand, if  the performance standard entails a cost per unit of abatement that is significantly higher than the  emissions price, then this requirement sacrifices cost effectiveness.  Relying on emissions pricing  alone would have promoted emissions reductions by the facilities that can achieve those reductions  56 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   at the least cost.  Thus it would likely have led to a situation where the more expensive technology  approach was not employed.  Hence in this case the combination of emissions pricing and the  performance standard does not promote cost effectiveness.  Emissions price policies interact with other policies differently depending on whether the emissions  price policy involves a quantity limit (as is the case under cap and trade) or a stipulated emissions  price (as is the case under an emissions tax). In the presence of a cap and trade programme,  introducing an additional instrument such as a performance standard might yield no further  reductions in overall emissions (Burtraw and Shobe, 2009; Fankhauser et al., 2010).  The reason is  that overall emissions are determined by the overall cap or number of allowances in circulation.  The  problem is formally very similar to the difficulty described in Section 15.7.3 above, where in the  presence of a national cap and trade programme an effort by a sub national jurisdiction to achieve  further emissions reductions is likely to have difficulty achieving that goal.  In contrast, introducing a  performance standard in the presence of an emissions tax can in fact lead to a reduction in overall  emissions.  The price of emissions the emissions tax does not change when the performance  standard causes a reduction in emissions.  For this reason the reduction caused by the performance  standard does not lead to a compensating increase in emissions elsewhere.  Overall emissions fall.   For similar reasons, the same difficulty arises when a carbon tax is introduced in the presence of a  cap and trade programme at the same jurisdictional level (Fischer and Preonas, 2010).  Nevertheless, as suggested above, the combination of emissions pricing and some other policy could  be justified in terms of cost effectiveness to the extent that the latter policy directly addresses a  second market failure that emissions pricing does not directly confront.   It is important to recognize that the notion of a  market failure  pertains only to the criterion of  economic efficiency.  Another important public policy consideration is distributional equity.   Concerns about distributional equity can justify supplementing a given policy instrument with  another in order to bring about a more equitable outcome.  This may be desirable even if the  multiplicity of instruments reduces cost effectiveness.  15.8   National, State and Local Linkages   15.8.1    Overview of linkages across jurisdictions   In the last few years, an increasing number of sub national administrations across the world have  been active in the design and application of climate policies. Section 15.2 has reported some of  these experiences, whereas Section 15.7 has dealt with some of the interactions that may arise with  the simultaneous use of climate policy instruments by several jurisdictions. This section goes back a  little and is basically interested in the allocation of climate policy responsibilities across the different  levels of government that usually exist in most countries (central, provincial, and local  administrations). Although such allocation involves the use the policy types described in Section  15.4, the emphasis here will not be on instrument use in itself, as this was already covered in  Sections 15.5 to 15.7). The objective of this section is to examine the theoretical backing for such  practical applications and to extract lessons that may be useful for future sub national applications  and even for the design and implementation of national and supra national mitigation policies.  When dealing with the reasons for and guidelines for the  vertical  allocation of responsibilities  among jurisdictions that co exist in a country, the theory of fiscal federalism (economic federalism)  offers valuable insights. In short, that the responsibility for public decision making over a particular  issue (e.g., allocation of public goods, economic stabilization, or distribution) should be given to the  jurisdictional level that could better manage it. In this sense, fiscal federalism contends that the  central government should have the basic responsibility for functions whose national extension  57 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   would render ineffective and inefficient a sub national approximation, including  national  public  goods (Oates, 1999).   15.8.2    Collective Action Problem of Sub National Actions  Given the global and public good nature of climate change, its jurisdictional allocation should  actually be at the highest possible level. A sub global allocation, as observed in Chapter 13, would  lead other jurisdictions that are not active in climate change mitigation to benefit without paying the  costs, i.e., in a free riding fashion (Kousky and Schneider, 2003). Empirically, case studies found that  climate policies tended to be less intrusive at sub national level. While co benefits with local  development were pursued, policies that might incur costs to local economy were avoided in  prefectures in Japan (Aoki, 2010). The costs for a sub national administration may be actually  beyond those of pure mitigation, as climate policies implemented by a jurisdiction might bring about  leakage, (see the glossary in Annex I for a definition) (Kruger, 2007; Engel, 2009). Moreover, the  reshuffling  that may be associated to sub national policies may reduce their environmental  effectiveness (Bushnell et al., 2008). As a consequence, climate change mitigation would be provided  in a sub optimal level with sub national allocation of responsibilities.   15.8.3    Benefits of Sub National Actions  Yet, even if the central government has a major responsibility in this area, this does not preclude the  allocation of mitigation responsibilities within a federation, as observed in citizen s attitudes on this  matter (Lachapelle et al., 2012). But even within the theory of fiscal federalism there are other  reasons that may justify sub national action in this field. First, as noted by (Edenhofer et al., 2013),  the exploitation of heterogeneous sub national preferences for mitigation would lead to efficiency  gains. This is actually one of the reasons for the decentralization theorem, a centrepiece of fiscal  federalism, which in fact justifies sub national allocation of certain public goods.  Moreover, decentralization can contribute to policy innovation by providing an opportunity to  experiment with different approximations. Indeed, there might be potential gains from learning by  doing in policy terms without imposing large costs on an entire country or the world with untried  options (Oates, 2002). Sub national governments could also choose to be leaders in the  development of climate policies to obtain potential economic gains that are associated to  first  movers  (Jänicke and Jacob, 2004) and may provide guidance and incentives to other jurisdictions to  follow them (Bulkeley and Castán Broto, 2012). Besides, as they tend to be smaller, sub national  governments may be able to adapt to new situations in a swifter manner and therefore may have a  greater flexibility to modify existing climate policies or to define new ones (Puppim de Oliveira,  2009; Galarraga et al., 2011).   Other general approaches to federalism, such as cooperative and democratic federalism, may also  provide reasons for sub national involvement in this area (Inman and Rubinfeld, 1997). On the one  hand, cooperative federalism argues for allocating pure public goods to the local level, counting on  the power of inter jurisdictional bargaining to improve allocations. On the other hand, democratic  federalism incorporates sub national representation in central decision making on public goods. In  any case, federal structures may be crucial for the transmission of mitigation policies because most  sub national governments are now responsible for matters that have huge effects on GHG  emissions, namely: land use planning, building codes, waste management, traffic infrastructure and  management, and public transport. (Collier and Löfstedt, 1997; Bulkeley and Betsill, 2005; Doremus  and Hanemann, 2008). But sub national governments also have direct policies aimed at GHG  mitigation, including: energy efficiency programmes, educational efforts, green procurement  standards, partnership agreements with local businesses, or tree planting (Schreurs, 2008).  Yet another reason for a sub national role in climate policies is beyond the standard collective action  approach. By indicating that externality correcting regulations and global agreements are not the  58 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   only pace to tackling climate change problems, (Ostrom, 2010) suggested a polycentric approach in  which mitigation activities are undertaken by multiple (public and private) units at diverse scales.  The prevalence of sub national actions in the field, contentious to other approaches, may be actually  a proof of polycentrism in the area (Byrne et al., 2007; Sovacool, 2011b). The polycentric approach  could be seen as a reinterpretation of the findings of the federalism literature, as actions should  involve many different agents in a reinforcing manner.   Finally, further issues may explain sub national allocation. Local authorities, for instance, may be  more effective in reducing GHG emissions from some sources such as waste and transport, as this  may provide significant co benefits to local citizens (Kousky and Schneider, 2003). Moreover, sub central administrations are usually closer to the places and citizens impacted by climate change.  Even though climate change is a global phenomenon, the nature of its impacts and severity varies  significantly across locations so some sub national governments have reasons to be more protective  than national or supranational administrations (Andreen, 2008). This is also the case of adaptation,  where sub national authorities can better manage challenges such as flood risk, water stress, or  climate proofing  of urban infrastructure (Corfee Morlot et al., 2009). In all the preceding situations,  sub national governments may tailor actions and policies to people s needs, with an easier  identification of priorities and difficulties as they are closer to citizens than more centralized  administrations (Lindseth, 2004; Galarraga et al., 2011).  15.8.4    Summary  As in other environmental areas (Dalmazzone, 2006), there is theoretical backing for the allocation  of climate related policies to sub national levels of government, although there are several limiting  factors to a widespread reliance on these administrations. A federal structure that provides  coordination and enables an easier transmission of climate policies throughout the agents of the  economy is likely to increase the effectiveness of actions against climate change. Moreover, the  lessons learned in the design and application of climate policies at different jurisdictional levels  could be used in a global setting.  15.9   The role of stakeholders including NGOs  This section considers the role of stakeholders and civil society in developing and delivering  concrete mitigation action and focuses on how stakeholders impact policy design and  implementation. The range of stakeholders is immense given the extent and complexity of  climate change. Devising policy in an inclusive manner may be lengthy and politically  challenging (Irvin and Stansbury, 2004), however adopting an inclusive approach to climate  policy can bring advantages, notably through increasing the legitimacy of policy design, its  durability and implementation (Lazo et al., 2000; Beierle, 2002; Dombrowski, 2010).   15.9.1    Advocacy and Accountability  Some of the major functions and roles of NGOs can include raising public awareness, which often  involves translating scientific and technical knowledge into actionable forms, lobbying, influencing  business investment decisions, and monitoring and implementing agreements (Gulbrandsen and  Andresen, 2004; Guay et al., 2004; Betsill and Corell, 2008; Newell, 2008; Dombrowski, 2010). Their  domains of action also include engagement in sub national and national policies and institutions as  well as international processes like UNFCCC (Wapner, 1995; Lisowski, 2005). It is in these diverse  forms that NGOs play a role in  connecting knowledge with responsibility  (Szarka, 2013) and  promoting norms of accountability (Gough and Shackley, 2001; Newell, 2008).  59 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Stakeholders can also affect when and how evidence of climate change translates into policies via  the domestic political system (Social Learning Group, 2001). The differing results of the same  scientific evidence, for instance, the political polarization in the United States versus more proactive  and consensual attempts to find solutions in Europe (Skjaerseth et al., 2013) demonstrate how  stakeholder interests can filter scientific evidence.  Evidence also indicates that that some fossil fuel companies went further and promoted climate  scepticism by providing financial resources to like minded think tanks and politicians (Antilla, 2005;  Boykoff and Boykoff, 2007), although other fossil fuel companies adopted a more supportive  position on climate science (van den Hove et al., 2002a).  Differences in the attitudes of oil  companies towards climate change are explained in part by domestic institutional contexts and  management structures as well as the structure of assets or technologies of different energy  companies (Rowlands, 2000; Kolk and Levy, 2002).  15.9.2    Policy Design and Implementation  Three factors have been considered important for lobbying success in policy design namely: how  institutions shape the space for participation (Kohler Koch and Finke, 2007), organizational  resources (Eising, 2007), and the policy environment (Mahoney, 2008; Coen and Richardson, 2009).  In the case of the EU ETS, Skodvin et al (2010) find that interest groups are able to limit  spectrum of  politically feasible policy options.  Instrument choice is a function of the extent of resources these  interest groups control, the role of veto players in the political process, policy networks and  entrepreneurs (Skjaerseth and Wettestad, 2009; Skodvin et al., 2010; Braun, 2013; Skjaerseth et al.,  2013).   The role of business interests in supporting emissions trading as opposed to taxation, in the UK, has  also been recognized (Bailey and Rupp, 2006; Nye and Owens, 2008). The political opposition to  Australia s Carbon Pollution Reduction Scheme has been explained largely by the opposition of fossil  fuel interests (Crowley, 2010, 2013; Macintosh et al., 2010; Bailey et al., 2012). Similarly, in New  Zealand, the agriculture sector has played a major role in obtaining a transition period for the sector,  use of an intensity based accounting system, and free credits (Bullock, 2012). This has led to  questions regarding the environmental effectiveness of the ETS (Bührs, 2008).  Stakeholders also affect policy durability, flexibility, and implementation. For example, European  Climate Change Programme featured consultation processes that ensured policy credibility by having  the buy in of stakeholders. Similarly, the persistence of climate legislation in California has been  explained by the stability of coalition groups supporting the legislation due to path dependence  despite the economic downturn in contrast to the emerging coalition at the national level which  broke down after economic shocks (Knox Hayes, 2012).  15.9.3    Summary of the role of stakeholders   Early findings indicate the importance of institutions in creating spaces for stakeholder participation,  the organizational resources of the stakeholders themselves, and the general policy environment as  being critical factors that determine the effectiveness of stakeholder engagement. However, the  degree to which policy design and implementation to mitigate climate change is dependent on  stakeholder engagement is as yet under researched and it must be stressed that the evidence base  is thin and that these results primarily derive from case studies.   15.10   Capacity Building  As national and sub national governments around the globe confront the multifaceted challenge of  climate change mitigation and adaptation, capacity is essential. According to the Agenda 21, building  60 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   a country s capacity  encompasses the country s human, scientific, technological, organizational,  institutional, and resource capabilities  (United Nations, 1992).  The priority for capacity building is strongly reflected in the Johannesburg Plan of Implementation  (United Nations, 2002), where capacity building, especially for developing countries and countries  with economies in transition, features prominently. It is also stressed in the UNFCCC s capacity  building framework for developing countries (Decision 2/CP.7, (UNFCCC, 2001)). The goal of capacity  building under this framework is  to strengthen particularly developing country parties, to promote  the widespread dissemination, application and development of environmentally sound technologies  and know how, and to enable them to implement the provisions of the Convention. In addition, the  COP under the UNFCCC requested the Subsidiary Body for Implementation to organize an annual in session Durban Forum for in depth discussion on capacity building following COP 17  (Decision  2/CP.17, (UNFCCC, 2011)). The Durban Forum provides an opportunity for representatives from  governments, UN organizations, intergovernmental and non governmental organizations, academia,  and the private sector to share ideas, experiences, and good practices on implementing capacity building activities.   15.10.1    Capacity to analyze the implications of climate change  Climate change is a severe and major problem that has the potential to seriously derail poverty  alleviation in a number of low income countries (Dell et al., 2009). Climate change will affect  livelihood assets by impacting health, access to natural resources and infrastructure (Skoufias, 2012).   It is also likely to erode agricultural productivity in tropical climates (Skoufias, 2012). Given that the  implications of climate change differ so dramatically between countries, to inform climate  negotiations and allow countries to realize the full extent of their adaptation needs, substantial  capacity would be required to analyze the implications of climate change and to formulate country  positions. So far, the academic capacity is geographically very skewed. For example, the  International Social Science Council (ISSC) commissioned a bibliometric study on social science  research on climate change and global environmental change in the period from 2000 until 2010. It  found that OECD countries completely dominated this research and that the poorest countries,  notably in Africa, hardly were visible at all in the statistics (Hackmann and St Clair, 2012).  15.10.2    Capacity to design, implement and evaluate policies  The design, implementation, and evaluation of national and sub national climate policies necessitate  in country human capital. National governments and civil society require that climate policies be  adapted to local economic, cultural, and social conditions to ensure their effectiveness and public  support. To be politically acceptable, such work generally needs to be done by citizens of the country  in which the policies are to be implemented. Political feasibility is mainly determined by policy  design to improve environmental and economic effectiveness and distributional equity (Bailey and  Compston, 2012b). A high level of scientific knowledge and analytical skills are required for such  work. Capacity building allows the leadership to be sensitive to environmental constraints and  encourages policymaking to meet the needs of the people within these parameters (United Nations,  1992).  Many studies analyze the technological options for achieving deep reductions in GHG emissions,  however they do not necessarily reflect the need for capacity building. For example, while (Pacala  and Socolow, 2004), through their  stabilization wedges , increased the understanding of the  technological options that could be deployed to reach stabilization targets, they did so without  pointing out the capacity necessary to reach such a potential. These do however need local  adaptation. Through the collaborative dialogue under the Durban Forum, key areas for capacity  building on mitigation have emerged, including: low carbon development strategies; NAMAs;  61 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Monitoring, Reporting and Verification (MRV); Technology Needs Assessments (TNAs); and  mitigation assessments.  15.10.3    Capacity to take advantage of external funding and flexible mechanisms  Climate change, and the global policies to mitigate and adapt to it, also imply additional capacity  challenges in order to take advantage of international funding and flexible mechanisms such as the  CDM in the Kyoto Protocol, and REDD+. So far, the distribution of projects under flexible  mechanisms has been very skewed towards countries with greater capacity. As an example, only  2.5% of normal CDM projects have been hosted by African countries (Fenhann and Staun, 2010).  In the preparations for the UNFCCC Durban Forum on Capacity Building (UNFCCC, 2011) it was noted  that capacity building in developing countries should be improved by (1) ensuring consultations with  stakeholders throughout the entire process of activities; (2) enhancing integration of climate change  issues and capacity building needs into national development strategies, plans and budgets; (3)  increasing country driven coordination of capacity building activities; and (4) strengthening  networking and information sharing among developing countries, especially through South South  and triangular cooperation.   15.10.4    Capacity building modalities  Capacity building is about equipping people, communities, and organizations with the tools, skills,  and knowledge to address the challenges of climate change. It can be delivered through education,  outreach, and awareness, but it can also be facilitated through peer learning, knowledge platforms,  information exchanges, and technical assistance (Mytelka et al., 2012). The need for capacity  building is large. Hundreds of thousands of scientists of various disciplines need to be trained  globally in the coming decades as well as policymakers, civil servants, businessmen, and civil society.  These needs are not limited to developing countries, as it is needed at all levels of society and in all  regions of the world.  There are many different modalities. Since the 15th Conference of the Parties (COP 15), partnerships  have formed at the international, national, and sub national level aimed at climate readiness  activities. Capacity building in the private sector is also important. Studies indicate that good  management, trained workers, and clean manufacturing increase energy efficiency while reducing  CO2 emissions. Substantive carbon reductions can be achieved at zero or negative cost through  improved workplace practices, optimized processes, and behavioural changes in production (Bloom  et al., 2010). Even this requires human resources and capacity to be undertaken.   Capacity building requires a long time horizon, and this is particularly evident in education poor  countries. Building in country academic programmes that can graduate well trained masters and  PhD students can take decades. When students graduate from such programmes it takes an  additional 5 10 years of post doctoral and junior faculty positions to build the experience and skills  to contribute at a high international level (Sterner et al., 2012). Capacity building initiatives are  therefore fragile and require continued support and nurturing by both national governments and  international organizations. This may be one additional and important area for climate finance.  15.11   Links to Adaptation  This section discusses links between national and sub national policies and institutions for mitigation  and adaptation. Links between adaptation and mitigation policies at the international level are  discussed in Chapter 13, while adaptation in general is discussed in WGII. Adaptation will be needed  because some climate change is inevitable (Chapter 5).  Indeed, some governments have started to  plan and implement policies aimed at tackling changes that are likely to take place or have taken  62 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   place already (Aaheim et al., 2009). In the longer term, the level of adaptation needed will depend  on the success of mitigation efforts and the resulting GHG concentrations, thus there is an obvious  linkage between mitigation and adaptation.  However, the level of adaptation needed will also  depend on the climate response to any given GHG level, around which there is high uncertainty.  Mitigation will help to reduce the uncertainty on future changes and is therefore helpful for planning  adaptation.  It has been argued that mitigation and adaptation policies are related to each other (Smith and  Olesen, 2010). This, however, is a controversial issue (Hamin and Gurran, 2009). Any given mitigation  policy at the national or sub national level is unlikely to have a significant effect on the global  climate, so that the climatic consequences of that policy for the purpose of planning adaptation can  usually be ignored. The direct side effects of a mitigation policy for adaptation are more relevant.  Examples of such direct effects are mainly in land use (discussed in Section 15.11.3 below) where  synergies and tradeoffs between mitigation and adaptation policies may arise.  It is, of course, true that mitigation policies can have effects on adaptation across sectors. For  example, carbon pricing can make air conditioning more expensive, thus hindering adaptation to a  warmer climate. However, this is simply one of many costs of a mitigation policy that will be taken  into account while making policies. Conversely, adaptation to higher temperatures has led to  increased electricity consumption for cooling (Gupta, 2012)  that has to be taken into account while  planning mitigation, but so do all changes in demand arising for other reasons such as income  growth.  On the national scale, the approach to mitigation and adaptation differs between high or upper middle income countries and low or lower middle income countries due to the balance of  responsibilities and the focus on mitigation versus adaptation.    The early national policy focus in high or upper middle income countries was largely on mitigation.   These policies were largely developed without in depth consideration of adaptation linkages.  Those  high or upper middle income countries that are developing national adaptation strategies and  policies (e.g., see (Bizikova et al., 2008; Stewart et al., 2009; Bedsworth and Hanak, 2010; Biesbroek  et al., 2010)) have shown limited consideration of the effects of adaptation policies on greenhouse  gas emissions to date. Neufeldt et al. (2010) investigated the reasons for this disconnect in Europe  and found it was due to a strong sectoral separation: sectors that were major emitters have been  mitigation focused, and have received little attention on adaptation, whereas climate sensitive  sectors such as agricultural, although a potential contributor to emission reductions, have focused  on adaptation.  They also report that adaptation policy and actions have lagged behind mitigation  more generally, and the difference in timing also contributes to the separation of the two domains.   This is now starting to change: Bruin et al. (2009) in the Netherlands considered the potential GHG  emissions of adaptation measures as part of a national multi criteria ranking of options.  To date, most of the national climate policy initiatives in low income countries, especially in the  LDCs, have focused on adaptation, notably through the National Adaptation Programme of Action  (NAPAs).  However, more recently there has been a shift with a number of national policy initiatives  that aim to develop climate resilient, low carbon economies (also known as low emission  development strategies or green growth).  These include Ethiopia s Climate Resilient Green Economy  Vision (EPA Ethiopia, 2011) and Rwanda s Green Growth and Climate Resilience National Strategy for  Climate Change and Low Carbon Development (Government of Rwanda, 2011). Given the  importance of climate change in these highly vulnerable countries, these initiatives look to build  climate resilience, but also recognize the benefits in advancing low carbon development.  Research  on the linkages between emission reductions and adaptation is still at an early stage and most of the  synergies between adaptation and mitigation are centred on the agricultural and forestry sectors.  Some local activities, such as those regarding land use decisions, have important implications for  both mitigation (e.g., by means of carbon sequestration) and adaptation (e.g., by means of  63 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   increasing resilience to climate change). Ravindranath (2007) explores the synergies between  mitigation and adaptation in the forestry sector. As forests are highly vulnerable to climate change,  but provide opportunities for mitigation (e.g., through afforestation), efforts to enhance carbon  sequestration need to embed adaptation elements so that exposure to climate impacts can be  addressed.  Mitigation efforts through forest management regimes such as conservation areas and  sustainable forestry contribute to adaptation. Conversely, adaptation efforts such as urban forestry  and measures to conserve soil and water also have mitigation effects (Ravindranath, 2007).  Similar issues have emerged for the agricultural sector, with the focus on climate smart agriculture.  This focus recognizes the high vulnerability of agriculture as a climate sensitive sector, but also  addresses the fact that it is a major source of greenhouse gas emissions in developing economies.  A  number of options have been identified as potentially beneficial for mitigation and adaptation,  including (McCarthy et al., 2011) soil and water conservation (including conservation agriculture, low  or minimum tillage, vegetation strips, terraces, structures such as bunds contours, shade trees, tied  ridges, small scale water harvesting, compost production, cover crops, improved fallows, crop  residues), agroforestry, and improved pasture and grazing management including restoration.  These  options generally are based on sustainable agricultural land management (SALM) practices.  These  practices reduce climate related risks in the form of rainfall variability and soil erosion, increase soil  organic matter and soil fertility (thus increasing productivity), and reduce emissions by either  reducing soil emissions or preventing other more emission intensive activities. More traditional  measures to increase productivity, such as fertilizer use or increased irrigation, have the potential to  increase greenhouse gas emissions because of the high energy intensity of fertilizer production and  the energy use in water abstraction and pumping; however, they may still reduce land use emissions  by increasing the productivity and yields per hectare, as well we reduce future land use pressures  that may lead to deforestation (Chapter 11). However, as highlighted by McCarthy et al. (2011),  many of these climate smart options involve important opportunity or policy costs, higher risks, or  may involve benefits that arise over longer time periods (e.g., improved soil function), or involve  wider environmental benefits that are not immediately useful to farmers. They also frequently  involve institutional, financial, and capacity barriers, and so may not happen autonomously.    Both the forest and agricultural sectors also link through to issues of rural land use change and land  planning/management, which can have synergistic effects on mitigation and adaptation (Pimentel et  al., 2010), but which can also involve complex tradeoffs.  Overall, the emerging evidence suggests that while there may be a potential for synergistic  mitigation and adaptation policy linkages in the agricultural and forest sectors, the translation of  these policies through to implementation may well be challenging because of the different  characteristics of mitigation and adaptation (e.g., the global public good nature of mitigation versus  the local benefits from adaptation), because of the additional costs involved (e.g., involving higher  capital costs or opportunity costs associated with synergistic options), because of institutional,  technological or behavioural barriers, and because different actors maybe involved in mitigation and  adaptation decisions, including the need to address cross sectoral aspects.  15.12   Investment and Finance  15.12.1    National and sub national institutions and policies  The justification for investment and finance and the description of the various financial agreements  have been elaborated in Chapter 13. Chapter 16 assesses in more detail the range of institutional  arrangements for mitigation finance at the global, regional, national, and sub national levels. This  section concentrates on institutional mechanisms which parties to the UNFCCC, developed and  developing countries, have been using or introducing to facilitate, tap, channel, and catalyze climate  change investment and finance. It also briefly touches on some of the major policy directions and  64 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   trends affecting mitigation finance and investments. Earlier sections of this chapter presented the  variety of policy instruments available and being used both in developed and developing countries.  Public finance is needed for subsidies and public provision (Sections 15.5.2 and 15.5.6). In this  section we track the consequences with a view to the aggregate funding needed.   Without dedicated financial policy, other policy instruments alone may be insufficient to mobilize  the large scale investments needed to move the world away from its current high emission path.   Recent case studies and some empirical evidence highlight the importance of targeted public finance  to help catalyze and leverage private investment in some mitigation activities (CPI, 2012). For this  purpose, governments have at their disposal a variety of mechanisms that include credit lines,  bonds, guarantees, equity, venture capital, carbon finance, and grants (Maclean et al., 2008). These  mechanisms exist and are effective mostly in developed and emerging economies (Kennedy and  Corfee Morlot, 2012).  In addition, a number of innovative mechanisms are being promoted in some developed countries  with success. These include,  property assessed financing districts  where residential and commercial  property owners are provided with loans for renewable energy and energy efficiency,  direct cash  subsidies  to promote the installation of energy efficiency measures and renewable energy systems,  power purchase agreements , and ESCOs   Energy Service Companies to implement performance based energy efficiency projects (Ellingson et al., 2010).  National development banks are increasingly playing a critical role in leveraging public and private  resources in both developed and developing countries. National development banks, which operate  mainly domestically, have an advantage in accessing local financial markets and dealing with barriers  that they understand better than others (Smallridge et al., 2013).   International financing for mitigation and adaptation has impacted the domestic climate discourse  and has created incentives for sustainable development at national and local levels in developing  countries (Metz and Kok, 2008). National and sub national efforts to finance climate change often  have an explicit link to international processes or support through the various mechanisms of the  Convention and Kyoto Protocol or those encouraged to facilitate funding for developing countries  such as bilateral and multilateral channels. Some of these mechanisms have led to significant  investment in developing countries. An estimated USD 215.4 billion had been invested in 4832 Clean  Development Mechanism projects by June 15, 2012 (UNFCCC, 2012). Similarly, the Global  Environment Facility (GEF) estimates that since the start of its operations (1991 2013), it has  leveraged over USD 27 billion for climate change projects (GEF, 2013).  A new trend is the establishment by several developing countries of funds and national funding  entities dedicated to climate change. Table 16.2 lists some of these institutions, their objectives,  governance, and sources of funding. The missions and objectives are diverse and their level of  institutionalization varies from country to country. All are designed to tap and blend funding  available from international and domestic sources public and private to catalyze climate  investment in their country (Flynn, 2011).  National funding entities have the potential to help countries cope with the proliferation of funds  and entities offering financial resources for mitigation activities (Glemarec, 2011; Smith et al., 2011).  Increased fragmentation of international assistance has increased transaction costs for recipients  while the multiplicity and competitive nature of sources has challenged national and sub national  capacities (Knack and Rahman, 2007; Anderson, 2012). Limited absorptive and human capacity  resources do however present serious challenges. Evidence of the ability of national funding entities  to ensure coherence between national institutions dedicated to climate change and cabinet entities  such as the Ministry of Finance or the Office of the President relies on case studies and, currently,  does not yet offer general conclusions (Thornton, 2010).  65 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   15.12.2    Policy change direction for finance and investments in developing countries  There have been some significant trends in recent years regarding climate finance and the actors  involved. Three are particularly relevant for their impact on the way climate finance is being  managed and who does the management.   First, financing climate objectives by mainstreaming climate change into development planning has  been gaining ground. This is particularly the case of countries wanting to integrate adaptation  strategies into their overall national strategy as a way to build resilience. It is also evident in some of  the climate change action plans and strategies of some countries that are clearly linked to poverty  reduction and national development objectives (Garibaldi et al., 2013). However, the benefits and  costs of integrating climate change considerations into development planning may be difficult to  attain in practice. The OECD (OECD, 2005) warns of  mainstreaming overload  as climate change  competes with other issues like governance and gender to be mainstreamed into development  planning. Barriers to integrating climate and development objectives include: lack of human and  institutional capacity and lack of coordination among line ministries (Knack and Rahman, 2007; Kok  et al., 2008)  Second, is the growing recognition that financing climate actions can have large co benefits.  Investments in clean energy, for example, may result in improvement in health indicators as air  pollution levels decrease. Similarly, investing in forest conservation may result in a reduction of GHG  emissions from deforestation. Thus, the increasing interest in the concept of co benefits or climate  and development as  win win  outcomes. Reducing emissions has been seen as a by product of  reducing energy costs in the case of China (Richerzhagen and Scholz, 2008). Reducing Emissions  From Deforestation and Forest Degradation is seen as another major opportunity to deliver both  emissions reductions and livelihood benefits. However, Campbell (2009) and Adams and Hulme  (2001) argue that the ability to define these win win objectives is a major factor for success.  Third, the number of actors involved in climate finance and investment is growing. Climate change  finance is no longer a monopoly of the public sector. There is now a multiplicity of actors from the  private and business world whose level of financing exceeds that of the public sector several fold,  particularly in the middle income and emerging economies (Gomez Echeverri, 2013). This  development has the potential to address implementation gaps, generate greater participation from  stakeholders, and encourage public private partnerships that promote sustainable development  (Pattberg, 2010).   Two areas of need emerge from the literature (Cameron, 2011; Zingel, 2011). First, attracting climate  finance investments will require strengthening institutional and governance capacities at the  national and sub national levels in recipient countries. Specifically, the ability to formulate strategies  and action plans, including policies and measures, formulate, assess and approve projects,  demonstrate accountability and transparency to their own populations, as well as to the  development partners to raise levels of investment confidence will be needed. Second, robust  mechanisms are needed to ensure accountability. This would involve greater transparency in both  donor and recipient countries. The role of civil society organizations and the media could be  strengthened for good governance and accountability.   15.13   Gaps in Knowledge and Data  Cross country comparisons of institutional design options, particularly mechanisms for  coordinating and mainstreaming climate and other related sector policies, are limited. Wider use of  evaluation methods would allow for the understanding of relative effectiveness of different options  and designs to be used to improve outcomes over time.   66 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Evaluating the economic and environmental effectiveness of individual policy instruments  and packages is difficult as various jurisdictions produce policy instruments influenced by context specific factors such as co benefits and political economy considerations. As a result, the cost of  committing to a target and the actions needed to meet it, are difficult to estimate. For example,  fuel taxes in the transport sector are implemented for multiple purposes including energy security,  congestion and pollution reduction, revenue for road construction, mitigation of climate change,  and so forth. It is difficult to gauge the contribution of fuel taxes to mitigation efforts.  While the distributional incidence of taxes has been studied quite extensively, much less is  known about the distributional incidence other policy instruments and packages. Similarly,  knowledge gaps remain uneven across policy instruments on other criteria such as institutional,  political, and administrative feasibility.  The asymmetry of methodologies regarding  negative cost  policies regarding regulation and  information measures with case studies arguing for negative private and social cost polices while  critiques basing results on economic theory and models has meant that conclusive results are not  yet available.  Understanding of the relative balance between demand pull and supply push policies  needed to accelerate technological innovation remains an important gap. Data on global private  investment in research and development is a major gap along in addition to public R&D figures in  middle income and low income countries.    The valuation of co benefits from emission reduction has been studied comprehensively in  the United States (Muller et al., 2011), but much less is known about other countries. This is  important because taking these co benefits into account could significantly lower the cost of  emission reduction, and perhaps offer negative costs, in several sectors.  15.14     Frequently Asked Questions   FAQ 15.1 What kind of evidence and analysis will help us design effective policies?  Economic theory can help with policy design at a conceptual level, while modelling can provide an  ex ante assessment of the potential impact of alternative mitigation policies. However, as theory  and modelling tend to be based on sets of simple assumptions, it is desirable that they are  complemented by ex post policy evaluations whenever feasible. For example, theory and bottom up  modelling suggest that some energy efficiency policies can deliver CO2 emission reductions at  negative cost, but we need ex post policy evaluation to establish whether they really do and  whether the measures are as effective as predicted by ex ante assessments (Section 15.4).   As climate policies are implemented, they can generate an empirical evidence base that allows  policy evaluation to take place. If evaluation is built into the design of a programme or policy from its  inception, the degree of success and scope for improvement can be identified. Policies implemented  at the sub national levels provide sites for experimentation on climate policies. Lessons from these  efforts can used to accelerate policy learning.   Much of the evidence base consists of case studies. While this method is useful to gain context specific insights into the effectiveness of climate policies, statistical studies based on large sample  sizes allow analysts to control for various factors and yield generalizable results. However,  quantitative methods do not capture institutional, political, and administrative factors and need to  be complemented by qualitative studies.   67 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   FAQ 15.2 What is the best climate change mitigation policy?  A range of policy instruments is available to mitigate climate change including carbon taxes,  emissions trading, regulation, information measures, government provision of goods and services,  and voluntary agreements (Section 15.3). Appropriate criteria for assessing these instruments  include: economic efficiency, cost effectiveness, distributional impact, and institutional, political, and  administrative feasibility (Section 15.5).  Policy design depends on policy practices, institutional capacity and other national circumstances. As  a result, there is no single best policy instrument and no single portfolio of instruments that is best  across many nations. The notion of  best  depends on which assessment criteria we employ when  comparing policy instruments and the relative weights attached to individual criteria. The literature  provides more evidence about some types of policies, and how well they score against the various  criteria, than others. For example, the distributional impacts of a tax are relatively well known  compared to the distributional impacts of regulation. Further research and policy evaluation is  required to improve the evidence base in this respect (Section 15.12).  Different types of policy have been adopted in varying degrees in actual plans, strategies, and  legislation. While economic theory provides a strong basis for assessing economy wide economic  instruments, much mitigation action is being pursued at the sectoral level (Chapters 7 12).  Sectoral  policy packages often reflect co benefits and wider political considerations. For example, fuel taxes  are among a range of sectoral measures that can have a substantial effect on emissions even though  they are often implemented for other objectives.   Interactions between different policies need to be considered. The absence of policy coordination  can affect environmental and economic outcomes. When policies address distinct market failures  such as the externalities associated with greenhouse gas emissions or the undersupply of innovation,  the use of multiple policy instruments has considerable potential to reduce costs.  In contrast, when  multiple instruments such a carbon tax and a performance standard are employed to address the  same objective, policies can become redundant and undermine overall cost effectiveness (Section  15.8.4.2).     68 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   References  Aaheim A., F. Berkhout, D. McEvoy, R. Mechler, H. Neufeldt, A.G. Patt, P. Watkiss, A. Wreford, Z.  Kundzewicz, C. Lavalle, and others (2009). Adaptation to Climate Change: Why is it needed and how  can it be implemented?  Aasrud A., R. Baron, and K. Karousakis (2010). Market Readiness: Building Blocks for Market  Approaches. Organisation for Economic Co Operation and Development / International Energy  Agency. . Available at: http://www.oecd.org/env/cc/46563135.pdf.  Adams W.M., and D. Hulme (2001). If community conservation is the answer in Africa, what is the  question?, Oryx 35 193 200 pp. (DOI: 10.1046/j.1365 3008.2001.00183.x), (ISSN: 0030 6053, 1365 3008).  Adams T., and J.A. Turner (2012). An investigation into the effects of an emissions trading scheme  on forest management and land use in New Zealand, Forest Policy and Economics 15 78 90 pp. (DOI:  10.1016/j.forpol.2011.09.010), (ISSN: 1389 9341).  Aghion P., A. Dechezlepretre, D. Hemous, R. Martin, and J.V. Reenen (2012). Carbon Taxes, Path  Dependency and Directed Technical Change: Evidence from the Auto Industry. National Bureau of  Economic Research, Cambridge, MA. . Available at: http://www.nber.org/papers/w18596.  Agnolucci P. (2009). The Effect of the German and British Environmental Taxation Reforms: A simple  assessment, Energy Policy 37 3043 3051 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v37y2009i8p3043 3051.html.  Aichele R., and G.J. Felbermayr (2011). Kyoto and Carbon Leakage: An Empirical Analysis of the  Carbon Content of Bilateral Trade, CESifo Working Paper Series 3661 32 pp. . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1968868.  Akerlof G.A. (1970). The Market for  Lemons : Quality Uncertainty and the Market Mechanism, The  Quarterly Journal of Economics 84 488 pp. (DOI: 10.2307/1879431), (ISSN: 00335533).  Akimoto K. (2012). Potential for Energy Efficiency Improvement and Barriers. In: Climate change  mitigation a balanced approach to climate change. M. Yamaguchi, (ed.), Springer, London; New York  pp.161 177(ISBN: 9781447142287  1447142284).  Aldy J.E., and R.N. Stavins (2012). The Promise and Problems of Pricing Carbon: Theory and  Experience, The Journal of Environment & Development 21 152 180 pp. (DOI:  10.1177/1070496512442508), (ISSN: 1070 4965, 1552 5465).  Allcott H. (2011). Consumers  Perceptions and Misperceptions of Energy Costs, American Economic  Review 101 98 104 pp. (DOI: 10.1257/aer.101.3.98), (ISSN: 0002 8282).  Alston L.J., G.D. Libecap, and B. Mueller (2000). Land Reform Policies, the Sources of Violent  Conflict, and Implications for Deforestation in the Brazilian Amazon, Journal of Environmental  Economics and Management 39 162 188 pp. (DOI: 10.1006/jeem.1999.1103), (ISSN: 0095 0696).  Andam K.S., P.J. Ferraro, A. Pfaff, G.A. Sanchez Azofeifa, and J.A. Robalino (2008). Measuring the  effectiveness of protected area networks in reducing deforestation, Proceedings of the National  Academy of Sciences 105 16089 16094 pp. (DOI: 10.1073/pnas.0800437105), (ISSN: 0027 8424,  1091 6490).  69 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Andersen M.S. (2004). Vikings and virtues: a decade of CO2 taxation, Climate Policy 4 13 24 pp. .  Anderson E. (2012). Aid fragmentation and donor transaction costs, Economics Letters 117 799 802  pp. (DOI: 10.1016/j.econlet.2012.08.034), (ISSN: 01651765).  Anderson S.T., I.W.H. Parry, J.M. Sallee, and C. Fischer (2011). Automobile Fuel Economy Standards:  Impacts, Efficiency, and Alternatives, Review of Environmental Economics and Policy 5 89 108 pp. .  Available at: http://ideas.repec.org/a/oup/renvpo/v5y2011i1p89 108.html.  Andreen W.L. (2008). Federal Climate Change Legislation and Preemption, Environmental and  Energy Law and Policy 3 261 pp. .  Angelsen A. (1999). Agricultural expansion and deforestation: modelling the impact of population,  market forces and property rights, Journal of Development Economics 58 185 218 pp. . Available at:  http://ideas.repec.org/a/eee/deveco/v58y1999i1p185 218.html.  Anthoff D., and R. Hahn (2010). Government failure and market failure: on the inefficiency of  environmental and energy policy, Oxford Review of Economic Policy 26 197 224 pp. . Available at:  http://ideas.repec.org/a/oup/oxford/v26y2010i2p197 224.html.  Antilla L. (2005). Climate of scepticism: US newspaper coverage of the science of climate change,  Global Environmental Change 15 338 352 pp. (DOI: 10.1016/j.gloenvcha.2005.08.003), (ISSN:  09593780).  Aoki K. (2010). Determinants of the Possibilities and Impossibilities of the Japanese Local  Governments  Progressive Low Carbon Measures: Case Studies of the Policy Processes at the Tokyo  Metropolitan Government, Nagano, and Iwate Prefectures, 2nd Global Conference on Environmental  Governance and Democracy. Yale University. 2010, 20 pp. Available at:  http://conference.unitar.org/yale/local and community level governance.  ApSimon H., M. Amann, S. Aström, and T. Oxley (2009). Synergies in addressing air quality and  climate change, Climate Policy 9 669 680 pp. (DOI: 10.3763/cpol.2009.0678), (ISSN: 14693062,  17527457).  Aroonruengsawat A. (2012). The Impact of State Level Building Codes on Residential Electricity  Consumption, The Energy Journal 33 31 52 pp. (DOI: 10.5547/ISSN0195 6574 EJ Vol33 No1 2),  (ISSN: 01956574).  Van Asselt H., J. Berseus, J. Gupta, and C. Haug (2010). Nationally Appropriate Mitigation Actions  (NAMAs) in Developing Countries: challenges and opportunities. Institute for Environmental Studies,  Vrije Universiteit Amsterdam.  Assemblée Nationale (2010). LOI n°  2010 788 du 12 juillet 2010 portant engagement national pour  l environnement. . Available at:  http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022470434.  Atashbar T. (2012). Illusion therapy: How to impose an economic shock without social pain, Journal  of Policy Modeling 34 99 111 pp. (ISSN: 0161 8938).  Atteridge A., M.K. Shrivastava, N. Pahuja, and H. Upadhyay (2012). Climate policy in India: what  shapes international, national and state policy?, Ambio 41 Suppl 1 68 77 pp. (DOI: 10.1007/s13280 011 0242 5), (ISSN: 0044 7447).  70 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Baeumler A., E. Ijjasz Vasquez, and S. Mehndiratta (2012). Sustainable Low Carbon City  Development in China. World Bank Publications, 618 pp., (ISBN: 9780821389881). .  Bailey I., and H. Compston (2012a). Feeling the Heat: The Politics of Climate Policy in Rapidly  Industrializing Countries. Palgrave Macmillan, 285 pp., (ISBN: 9780230374997). .  Bailey I., and H. Compston (2012b). Political strategy and climate policy. In: Feeling the Heat: The  Politics of Climate Policy in Rapidly Industrializing Countries. Palgrave Macmillan, Chippenham and  Eastbourne pp.264(ISBN: 9780230280403).  Bailey I., I. MacGill, R. Passey, and H. Compston (2012). The fall (and rise) of carbon pricing in  Australia: a political strategy analysis of the carbon pollution reduction scheme, Environmental  Politics 21 691 711 pp. (DOI: 10.1080/09644016.2012.705066), (ISSN: 0964 4016).  Bailey I., and S. Rupp (2006). The evolving role of trade associations in negotiated environmental  agreements: the case of United Kingdom Climate Change Agreements, Business Strategy and the  Environment 15 40 54 pp. (DOI: 10.1002/bse.465), (ISSN: 1099 0836).  Bedsworth L.W., and E. Hanak (2010). Adaptation to climate change: a review of challenges and  tradeoffs in six areas, Journal of the American Planning Association 76 477 495 pp. .  Bellas A.S. (2011). Evidence of Innovation and Diffusion Under Tradable Permit Programs,  International Review of Environmental and Resource Economics 5 1 22 pp. (DOI:  10.1561/101.00000036), (ISSN: 19321473).  Berkhout P.H.G., A. Ferrer i Carbonell, and J.C. Muskens (2004). The ex post impact of an energy  tax on household energy demand, Energy Economics 26 297 317 pp. (DOI:  10.1016/j.eneco.2004.04.002), (ISSN: 01409883).  Betsill M.M., and H. Bulkeley (2006). Cities and the Multilevel Governance of Global Climate  Change, Global Governance 12 141 159 pp. (ISSN: 1075 2846).  Beuermann C., and T. Santarius (2006). Ecological tax reform in Germany: handling two hot  potatoes at the same time, Energy Policy 34 917 929 pp. (DOI: 10.1016/j.enpol.2004.08.045), (ISSN:  0301 4215).  Bhagwati J., and P.C. Mavroidis (2007). Is action against US exports for failure to sign Kyoto Protocol  WTO legal?, World Trade Review 6 299 310 pp. (DOI: 10.1017/S1474745607003291).  Biedermann A. (2011). Klimaschutzziele in den deutschen Bundeslandern. Umwelt Bundesamt. .  Available at: http://www.uba.de/uba info medien/4146.html.  Biesbroek G.R., R.J. Swart, T.R. Carter, C. Cowan, T. Henrichs, H. Mela, M.D. Morecroft, and D. Rey  (2010). Europe adapts to climate change: Comparing National Adaptation Strategies, Global  Environmental Change 20 440 450 pp. (DOI: 10.1016/j.gloenvcha.2010.03.005), (ISSN: 09593780).  Bizikova L., T. Neale, and I. Burton (2008). Canadian Communities  Guidebook for Adaptation to  Climate Change. Including an Approach to Generate Mitigation Co Benefits in the Context of  Sustainable Development [Electronic Resource]. Environmenta Canada / University of British  Columbia, Vancouver, 100 pp., (ISBN: 1100108394). .  Bjertnaes G.H., and T. Faehn (2008). Energy taxation in a small, open economy: Social efficiency gains  versus industrial concerns, Energy Economics 30 2050 2071 pp. (ISSN: 0140 9883).  71 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Blackman A., R. Osakwe, and F. Alpizar (2010). Fuel tax incidence in developing countries: The case  of Costa Rica, Energy Policy 38 2208 2215 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v38y2010i5p2208 2215.html.  Blonz J., D. Burtraw, and M. Walls (2012). Social safety nets and US climate policy costs, Climate  Policy 12 474 490 pp. (DOI: 10.1080/14693062.2011.644073), (ISSN: 1469 3062).  Bloom N., C. Genakos, R. Martin, and R. Sadun (2010). Modern Management: Good for the  Environment or Just Hot Air?*, The Economic Journal 120 551 572 pp. (DOI: 10.1111/j.1468 0297.2010.02351.x), (ISSN: 1468 0297).  Boehringer C., and M. Frondel (2007). Assessing Voluntary Commitments in the German Cement  Industry: The Importance of Baselines. RFF Press, Washington, D.C., 105 117 pp.  Bohringer C., B. Bye, T. Faehn, and K.E. Rosendahl (2012). Alternative designs for tariffs on  embodied carbon: A global cost effectiveness analysis, Energy Economics 34 S143 S153 pp. (ISSN:  01409883).  Böhringer C., H. Koschel, and U. Moslener (2008). Efficiency losses from overlapping regulation of  EU carbon emissions, Journal of Regulatory Economics 33 299 317 pp. (DOI: 10.1007/s11149 007 9054 8), (ISSN: 0922 680X, 1573 0468).  Bohringer C., A. Loschel, and T.F. Rutherford (2006). Efficiency Gains from  What Flexibility in  Climate Policy an Integrated CGE Assessment, The Energy Journal Multi Greenhouse Gas Mitigation  and Climate Policy 405 424 pp. . Available at: http://ideas.repec.org/a/aen/journl/2006se_weyant a21.html.  Borck J.C., and C. Coglianese (2009). Voluntary Environmental Programs: Assessing Their  Effectiveness, Annual Review of Environment and Resources 34 305 324 pp. (DOI:  10.1146/annurev.environ.032908.091450).  Bosetti V., S. Paltsev, J. Reilly, and C. Carraro (2011). Emissions Pricing to Stabilize Global Climate.  Fondazione Eni Enrico Mattei, Milan, Italy. 18 pp. Available at:  http://ideas.repec.org/p/fem/femwpa/2011.80.html.  Bovenberg A.L., L.H. Goulder, and D.J. Gurney (2005). Efficiency Costs of Meeting Industry Distributional Constraints Under Environmental Permits and Taxes, RAND Journal of Economics 36  950 970 pp. . Available at: http://ideas.repec.org/a/rje/randje/v36y20054p950 970.html.  Boykoff M.T., and J.M. Boykoff (2007). Climate change and journalistic norms: A case study of US  mass media coverage, Geoforum 38 1190 1204 pp. (DOI: 10.1016/j.geoforum.2007.01.008), (ISSN:  00167185).  Brännlund R., and L. Persson (2010). Tax or No Tax? Preferences for Climate Policy Attributes. CERE    the Center for Environmental and Resource Economics, Umea, Sweden. 24 pp. Available at:  http://ideas.repec.org/p/hhs/slucer/2010_004.html.  Braun C. (2013). The Driving Forces of Stability Exploring the Nature of Long Term Bureaucracy Interest Group Interactions, Administration & Society 45 809 836 pp. (DOI:  10.1177/0095399712438377), (ISSN: 0095 3997, 1552 3039).  Bressers H., T. Bruijn, and K. Lulofs (2009). Environmental negotiated agreements in the  Netherlands, Environmental Politics 18 58 77 pp. (DOI: 10.1080/09644010802624819).  72 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Bridgman B.R., I.D. Livshits, and J.C. MacGee (2007). Vested interests and technology adoption,  Journal of Monetary Economics 54 649 666 pp. . Available at:  http://ideas.repec.org/a/eee/moneco/v54y2007i3p649 666.html.  Brouhle K., C. Griffiths, and A. Wolverton (2009). Evaluating the role of EPA policy levers: An  examination of a voluntary program and regulatory threat in the metal finishing industry, Journal of  Environmental Economics and Management 57 166 181 pp. (DOI: 10.1016/j.jeem.2008.07.006),  (ISSN: 0095 0696).  Bruin K. de, R. Dellink, and S. Agrawala (2009). Economic Aspects of Adaptation to Climate Change:  Integrated Assessment Modelling of Adaptation Costs and Benefits. OECD Publishing, Paris, France. .  Available at: http://ideas.repec.org/p/oec/envaaa/6 en.html.  Bruvoll A., and B.M. Larsen (2004). Greenhouse gas emissions in Norway: do carbon taxes work?,  Energy Policy 32 493 505 pp. (DOI: 10.1016/S0301 4215(03)00151 4), (ISSN: 03014215).  Bührs T. (2008). Climate Change Policy and New Zealand s  National Interest : the Need for  Embedding Climate Change Policy Into a Sustainable Development Agenda, Political Science 60 61 72 pp. (DOI: 10.1177/003231870806000106), (ISSN: 0032 3187, 2041 0611).  Bulkeley H., and M.M. Betsill (2005). Rethinking Sustainable Cities: Multilevel Governance and the  Urban  Politics of Climate Change, Environmental Politics 14 42 63 pp. (DOI: Article), (ISSN:  09644016).  Bulkeley H., and V. Castán Broto (2012). Government by experiment? Global cities and the  governing of climate change, Transactions of the Institute of British Geographers 38 361 375 pp. .  Bullock D. (2012). Emissions trading in New Zealand: development, challenges and design,  Environmental Politics 21 657 675 pp. (DOI: 10.1080/09644016.2012.688359), (ISSN: 0964 4016).  Bureau B. (2011). Distributional Effects of a Carbon Tax on Car Fuels in France, Energy Economics 33  121 130 pp. (DOI: 10.1016/j.eneco.2010.07.011), (ISSN: 0140 9883).  Burniaux J.M., and J. Chateau (2011). Mitigation Potential of Removing Fossil Fuel Subsidies: A  General Equilibrium Assessment. Organisation for Economic Cooperation and Development, Paris,  France. 28 pp. Available at: http://www.oecd ilibrary.org/economics/mitigation potential of removing fossil fuel subsidies_5kgdx1jr2plp en.  Burtraw D., and K. Palmer (2008). Compensation rules for climate policy in the electricity sector,  Journal of Policy Analysis and Management 27 819 847 pp. (DOI: 10.1002/pam.20378), (ISSN: 1520 6688).  Burtraw D., K. Palmer, and D. Kahn (2010). A symmetric safety valve, Energy Policy 38 4921 4932  pp. . Available at: http://ideas.repec.org/a/eee/enepol/v38y2010i9p4921 4932.html.  Burtraw D., and W. Shobe (2009). State and Local Climate Policy under a National Emissions Floor.  Resources For the Future, Washington, D.C. 19 pp. Available at: www.rff.org/rff/documents/rff dp 09 54.pdf.  Burtraw D., R. Sweeney, and M. Walls (2009). The Incidence of U.S. Climate Policy: Alternative Uses  of Revenues from a Cap and Trade Auction, National Tax Journal 62 497 518 pp. .  73 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Burtraw D., and M. Woerman (2013). Technology Flexibility and Stringency for Greenhouse Gas  Regulations. Resources for the Future. . Available at:  http://www.rff.org/Publications/Pages/PublicationDetails.aspx?PublicationID=22235.  Bushnell J., C. Peterman, and C. Wolfram (2008). Local Solutions to Global Problems: Climate  Change Policies and Regulatory Jurisdiction, Review of Environmental Economics and Policy 2 175 193 pp. (DOI: 10.1093/reep/ren007), (ISSN: 1750 6816, 1750 6824).  Byrne J., K. Hughes, W. Rickerson, and L. Kurdgelashvili (2007). American policy conflict in the  greenhouse: Divergent trends in federal, regional, state, and local green energy and climate change  policy, Energy Policy 35 4555 4573 pp. (DOI: 10.1016/j.enpol.2007.02.028), (ISSN: 0301 4215).  Calel R., and A. Dechezlepretre (2012). Environmental Policy and Directed Technological Change:  Evidence from the European Carbon Market. Social Science Research Network, Rochester, NY. 33 pp.  Available at: http://papers.ssrn.com/abstract=2041147.  Cambridge Econometrics (2005). Modelling the initial effects of the Climate Change Levy, report  submitted to HM Customs and Excise 8.  Cameron C. (2011). Climate Change Financing and Aid Effectiveness: Ghana Case Study. Organisation  for Economic Cooperation and Development. 35 pp. Available at:  www.oecd.org/dac/environmentanddevelopment/48458430.pdf.  Campbell B.M. (2009). Beyond Copenhagen: REDD+, agriculture, adaptation strategies and poverty,  Global Environmental Change 19 397 399 pp. (DOI: 10.1016/j.gloenvcha.2009.07.010), (ISSN:  09593780).  Campbell, A., Kapos, V., Lysenko, I., Scharlemann, J., Dickson, B., Gibbs, H., Hansen, M., and Miles,  L. (2008). Carbon emissions from forest loss in protected areas. . Available at:  http://archive.org/details/carbonemissionsf08camp.  Canton J., and A.J. Linden (2010). Support Schemes for Renewable Electricity in the EU. Directorate  General Economic and Monetary Affairs (DG ECFIN), European Commission, Brussels, Belgium. 59  pp. Available at: http://ideas.repec.org/p/euf/ecopap/0408.html.  CARB (2011). California Greenhouse Gas Emissions Inventory: 2000 2009. California Air Resources  Board.  Caripis L., J. Peel, L.C. Godden, and R. Keenan (2012). Australia s Carbon Pricing Mechanism, Climate  Law 2 25 pp. . Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2055522.  Carlarne C. (2008). Notes from a Climate Change Pressure Cooker: Sub Federal Attempts at  Transformation Meet National Resistance in the USA, Connecticut Law Review 40 . Available at:  https://litigation essentials.lexisnexis.com/webcd/app?action=DocumentDisplay&crawlid=1&doctype=cite&docid=40 +Conn.+L.+Rev.+1351&srctype=smi&srcid=3B15&key=556887f2a2d2220e8196e28bd29a4eed.  Carlson C., D. Burtraw, M. Cropper, and K.L. Palmer (2000). Sulfur Dioxide Control by Electric  Utilities: What Are the Gains from Trade?, Journal of Political Economy 108 . Available at:  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=248522.  Carter N. (2008). Combating Climate Change in the UK: Challenges and Obstacles1, The Political  Quarterly 79 194 205 pp. (DOI: 10.1111/j.1467 923X.2008.00913.x), (ISSN: 1467 923X).  74 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   CAUS (2012). Australia s emissions reduction targets. . Available at:  http://www.climatechange.gov.au/climate change/greenhouse gas measurement and reporting/australias emissions projections/australias.  Chen L. T., and A.H. Hu (2012). Voluntary GHG reduction of industrial sectors in Taiwan,  Chemosphere 88 1074 1082 pp. (DOI: 10.1016/j.chemosphere.2012.04.049), (ISSN: 1879 1298).  Cheng C. C. (2010). A New NAMA Framework for Dispersed Energy End Use Sectors, Energy Policy 38  5614 5624 pp. (ISSN: 0301 4215).  Chhatre A., and A. Agrawal (2009). Trade offs and synergies between carbon storage and livelihood  benefits from forest commons, Proceedings of the National Academy of Sciences 106 17667 17670  pp. (DOI: 10.1073/pnas.0905308106), (ISSN: 0027 8424, 1091 6490).  Chomitz K.M., P. Buys, G. De Luca, T.S. Thomas, and S. Wertz Kanounnikoff (2007). At  Loggerheads : Agricultural Expansion, Poverty Reduciton and Environment in Th Tropical Forests. The  U.S. World Bank, Washington, 224 pp., (ISBN: 0821367358 9780821367353 0821367366  9780821367360). .  Clapp C., G. Briner, and K. Karousakis (2010). Low Emission Development Strategies (LEDS):  Technical, Institutional and Policy Lessons. Organisation for Economic Cooperation and  Development/International Energy Agency, Paris. 56 pp. Available at:  www.oecd.org/dataoecd/32/58/46553489.pdf.  Clark K., A. Gauthier, and N. Pinon (2010). Assessing the Structural Capacity Requirements that  Would Allow Developing Countries to Participate in Evolving Carbon Markets. Marmanie Consulting  Ltd.  Clean Energy Regulator (2012). Liable Entities Public Information Database. Clean Energy Regulator,  Government of Australia. . Available at: http://www.cleanenergyregulator.gov.au/Carbon Pricing Mechanism/Liable Entities Public Information Database/LEPID for 2012 13 Financial year/Pages/default.aspx.  Coady D., R. Gillingham, R. Ossowski, J. Pietrowski, and S. Tareq (2010). Petroleum Product  Subsidies: Costly, Inequitable, and Rising, IMF Staff Position Note 10 20 pp. . Available at:  http://www.imf.org/external/pubs/ft/spn/2010/spn1005.pdf.  Cockburn I., S. Stern, and J. Zausner (2011). Finding the Endless Frontier:  Lessons from the Life  Sciences Innovation System for Energy R&D. In: Accelerating Energy Innovation: Insights from  Multiple Sectors. R. Henderson, R.G. Newell, (eds.), University of Chicago Press, pp.113 157.  Coen D., and J. Richardson (2009). Lobbying the European Union: Institutions, Actors, and Issues.  Oxford University Press, 339 pp., (ISBN: 9780191607219). .  Collier U., and R.E. Löfstedt (1997). Think globally, act locally?: Local climate change and energy  policies in Sweden and the UK, Global Environmental Change 7 25 40 pp. (DOI: 10.1016/S0959 3780(96)00025 8), (ISSN: 0959 3780).  Compston H. (2009). Networks, resources, political strategy and climate policy, Environmental  Politics 18 727 746 pp. (DOI: 10.1080/09644010903157032), (ISSN: 0964 4016).  75 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Corfee Morlot J., L. Kamal Chaoui, M. Donovan, I. Cochran, A. Robert, and P. J. Teasdale (2009).  Cities, Climate Change and Multilevel Governance, OECD Publishing 14 125 pp. (ISSN: 1997 0900  (online))  Coria J., and T. Sterner (2010). Tradable Permits in Developing Countries: Evidence From Air  Pollution in Chile, The Journal of Environment & Development 19 145 170 pp. (DOI:  10.1177/1070496509355775), (ISSN: 1070 4965, 1552 5465).  Couture T., and Y. Gagnon (2010). An analysis of feed in tariff remuneration models: Implications for  renewable energy investment, Energy Policy 38 955 965 pp. (DOI: 10.1016/j.enpol.2009.10.047),  (ISSN: 0301 4215).  CPI (2012). The Landscape of Climate Finance 2012. Climate Policy Initiative. . Available at:  http://climatepolicyinitiative.org/wp content/uploads/2012/12/The Landscape of Climate Finance 2012.pdf.  Croci E. (2005). The Economics of Environmental Voluntary Agreements. Environment & Policy. In:  The Handbook of Environmental Voluntary Agreements. E. Croci, (ed.), Springer Netherlands, pp.3 30(ISBN: 978 1 4020 3355 1, 978 1 4020 3356 8).  Crowley K. (2010). Climate Clever? Kyoto and Australia s Decade of Recalcitrance. In: Global  commons, domestic decisions the comparative politics of climate change. K. Harrison, L.M.  Sundstrom, (eds.), MIT Press, Cambridge, Mass. pp.201 228(ISBN: 9780262289481  0262289482).  Crowley K. (2013). Irresistible Force? Achieving Carbon Pricing in Australia, Australian Journal of  Politics & History 59 368 381 pp. (DOI: 10.1111/ajph.12021), (ISSN: 1467 8497).  Dales J.H. (1968). Pollution, Property & Prices: An Essay in Policy Making and Economics. Edward  Elgar Publishing, 144 pp., (ISBN: 9781840648423). .  Dalmazzone S. (2006). 18 Decentralization and the environment, Handbook of fiscal federalism 459  pp. (ISSN: 184542008X).  Datta A. (2010). The incidence of fuel taxation in India, Energy Economics 32 S26 S33 pp. (ISSN:  0140 9883).  Decker C.S., and M.E. Wohar (2007). Determinants of state diesel fuel excise tax rates: the political  economy of fuel taxation in the United States, The Annals of Regional Science 41 171 188 pp. (ISSN:  1432 0592).  Dell M., B.F. Jones, and B.A. Olken (2009). Temperature and Income: Reconciling New Cross Sectional and Panel Estimates, American Economic Review 99 198 204 pp. (DOI:  10.1257/aer.99.2.198), (ISSN: 0002 8282).  Derclaye E. (2008). Intellectual property rights and global warming, Marquette Intellectual Property  Review 12 265 297 pp. .  Deroubaix J. F., and F. Léveque (2006). The rise and fall of French Ecological Tax Reform: social  acceptability versus political feasibility in the energy tax implementation process, Energy Policy 34  940 949 pp. (DOI: 10.1016/j.enpol.2004.08.047), (ISSN: 0301 4215).  Dienes K. (2007). Struktur und Rechtsfragen zum CO2 Emissionshandel insbesondere nach dem  Zuteilungsgesetz 2012, Energiewirtschaftliche Tagesfragen 57 82 90 pp. .  76 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Dimitropoulos J. (2007). Energy productivity improvements and the rebound effect: An overview of  the state of knowledge, Energy Policy 35 6354 6363 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v35y2007i12p6354 6363.html.  Doremus H., and W.M. Hanemann (2008). Of Babies and Bathwater: Why the Clean Air Act s  Cooperative Federalism Framework is Useful for Addressing Global Warming, Arizona Law Review 50  799 pp. . Available at: http://papers.ssrn.com/abstract=1155476.  Dubash N.K. (2011). From Norm Taker to Norm Maker? Indian energy governance in global context,  Global Policy 2 66 79 pp. (DOI: 10.1111/j.1758 5899.2011.00123.x), (ISSN: 1758 5899).  Dubash N.K., M. Hagemann, N. Höhne, and P. Upadhyaya (2013). Developments in national climate  change mitigation legislation and strategy, Climate Policy 13 649 664 pp. (DOI:  10.1080/14693062.2013.845409), (ISSN: 1469 3062).  Edenhofer O., C. Flachsland, M. Jakob, and K. Lessmann (2013). The Atmosphere as a Global  Commons   Challenges for International Cooperation and Governance. In: The Handbook on the  Macroeconomics of Climate Change. W. Semmler, L. Bernard, (eds.), Oxford University Press, Oxford.  Edenhofer O., R. Pichs Madruga, and Y. Sokona (2012). Renewable Energy Sources and Climate  Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge  University Press, Cambridge, United Kingdom and New York, NY, USA, 1089 pp., (ISBN:  9781139505598). .  Egenhofer C., M. Alessi, A. Georgiev, and N. Fujiwara (2011). The EU Emissions Trading System and  Climate Policy towards 2050: Real incentives to reduce emissions and drive innovation? Center for  European Policy Studies. . Available at: www.ceps.eu/ceps/dld/4097/pdf    . Eising R. (2007). The access of business interests to EU institutions: towards élite pluralism?, Journal  of European Public Policy 14 384 403 pp. (DOI: 10.1080/13501760701243772), (ISSN: 1350 1763).  Ekins P., and B. Etheridge (2006). The environmental and economic impacts of the UK climate  change agreements, Energy Policy 34 2071 2086 pp. (DOI: 10.1016/j.enpol.2005.01.008), (ISSN:  0301 4215).  Ekins P., and S. Speck (2011). Environmental Tax Reform (ETR): A Policy for Green Growth. Oxford  University Press, 407 pp., (ISBN: 9780199584505). .  Ellerman A.D., F.J. Convery, and C. De Perthuis (2010). Pricing Carbon: The European Union  Emissions Trading Scheme. Cambridge University Press, Cambridge, 390 pp., (ISBN: 9780521196475  0521196477). .  Ellerman A.D., P.L. Joskow, R. Schmalensee, J. P. Montero, and E.M. Bailey (2000). Markets for  Clean Air: The U.S. Acid Rain Program. Cambridge University Press, 388 pp., (ISBN: 0521660831). .  Ellerman A.D., and J. P. Montero (2007). The Efficiency and Robustness of Allowance Banking in the  U.S. Acid Rain Program, Energy Journal 28 47 71 pp. (ISSN: 01956574).  Ellingson M., L. Hunter, R.B. Lung, K. Carey, and E. Plunkett (2010). Compendium of Best Practices:  Sharing Local and State Successes in Energy Efficiency and Renewable Energy from the United States.  Renewable Energy and Energy Efficiency Partnership and American Council on Renewable Energy. .  Available at: http://j.mp/Best_Practices_for_EE_and_RE.  77 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Elliott J., I. Foster, S. Kortum, T. Munson, F.P. Cervantes, and D. Weisbach (2010). Trade and  Carbon Taxes, American Economic Review 100 465 469 pp. (DOI: 10.1257/aer.100.2.465), (ISSN:  0002 8282).  Ellis J. (2010). The Effects of Fossil Fuel Subsidy Reform: A Review of Modelling and Empirical Studies.  International Institute for Sustainable Development, Geneva, Switzerland, 47 pp., (ISBN: 978 1 894784 35 1). .  Ellis K., B. Baker, and K. Lemma (2009). Policies for Low Carbon Growth. Overseas Development  Institute. 69 pp. Available at: http://www.odi.org.uk/resources/details.asp?id=4575&title=policies low carbon growth.  Enevoldsen M. (2005). The Theory of Environmental Agreements and Taxes: CO2 Policy Performance  in Comparative Perspective. E. Elgar, Northhampton, MA, 320 pp., (ISBN: 1843768801  9781843768807). .  Enevoldsen M.K., A.V. Ryelund, and M.S. Andersen (2007). Decoupling of industrial energy  consumption and CO2 emissions in energy intensive industries in Scandinavia, Energy Economics 29  665 692 pp. . Available at: http://ideas.repec.org/a/eee/eneeco/v29y2007i4p665 692.html.  Engel K.H. (2009). Whither Subnational Climate Change Initiatives in the Wake of Federal Climate  Legislation?, Publius: The Journal of Federalism 39 432  454 pp. (DOI: 10.1093/publius/pjp008),  (ISSN: 0048 5950).  EPA Ethiopia (2011). Climate Resilient Green Economy Strategy. Federal Democratic Republic of  Ethiopa. . Available at: http://www.undp aap.org/sites/undp aap.org/files/Ethiopia%20CRGE%20Strategy%20Final.pdf.  Fankhauser S., C. Hepburn, and J. Park (2010). Combining multiple climate policy instruments: how  not to do it, Climate Change Economics 01 209 225 pp. (DOI: 10.1142/S2010007810000169), (ISSN:  2010 0078, 2010 0086).  Farrell A., and W.M. Hanemann (2009). FIeld Notes on the Political Economy of California Climate  Policy. In: Changing Climates in North American Politics. MIT Press, Cambridge, MA pp.87 109.  Fenhann J., and F. Staun (2010). An analysis of key issues in the Clean Development Mechanism  based on the UNEP Risoe Clean Development Mechanism pipeline, Carbon Management 1 65 77 pp.  (DOI: 10.4155/cmt.10.13), (ISSN: 1758 3004).  Fielding K.S., B.W. Head, W. Laffan, M. Western, and O. Hoegh Guldberg (2012). Australian  politicians  beliefs about climate change: political partisanship and political ideology, Environmental  Politics 21 712 733 pp. (DOI: 10.1080/09644016.2012.698887), (ISSN: 0964 4016).  Fischer C. (2011). Market power and output based refunding of environmental policy revenues,  Resource and Energy Economics 33 212 230 pp. . Available at:  http://ideas.repec.org/a/eee/resene/v33y2011i1p212 230.html.  Fischer C., and R. Newell (2004). Environmental and Technology Policies for Climate Mitigation.  Resources For the Future, Washington, D.C. 52 pp. Available at:  http://ideas.repec.org/p/rff/dpaper/dp 04 05.html.  Fischer C., and L. Preonas (2010). Combining policies for renewable energy: Is the whole less than  the sum of its parts, International Review of Environmental and Resource Economics 4 51 92 pp. .  78 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Fisher S. (2012). India and Climate Change: Energy, Equity and Development. In: Feeling the Heat:  The Politics of Climate Policy in Rapidly Industrializing Countries. I. Bailey, H. Compston, (eds.),  Palgrave Macmillan, (ISBN: 9780230374997).  Fisher Vanden K., G.H. Jefferson, M. Jingkui, and X. Jianyi (2006). Technology development and  energy productivity in China, Energy Economics 28 690 705 pp. (DOI: 10.1016/j.eneco.2006.05.006),  (ISSN: 0140 9883).  Flynn C. (2011). Blending Climate Finance through National Climate Funds: A guidebook for the  design and establishment of national funds to achieve climate change priorities. United Nations  Development Programme. . Available at:  http://www.undp.org/content/dam/undp/library/Environment%20and%20Energy/Climate%20Chan ge/Capacity%20Development/Blending_Climate_Finance_Through_National_Climate_Funds.pdf.  Fouquet R. (2010). The Slow Search for Solutions: Lessons from Historical Energy Transitions by  Sector and Service. Basque Centre for Climate Change, Bilbao, Spain. 25 pp. Available at:  http://ideas.repec.org/p/bcc/wpaper/2010 05.html.  Fouquet R., and P.J.G. Pearson (2006). Seven Centuries of Energy Services: The Price and Use of  Light in the United Kingdom (1300 2000), Energy Journal 27 139 177 pp. (ISSN: 01956574).  Fowlie M. (2010). Emissions trading, electricity restructuring, and investment in pollution  abatement, The American Economic Review 100 837 869 pp. .  Foxon T.J. (2011). A coevolutionary framework for analysing a transition to a sustainable low carbon  economy, Ecological Economics 70 2258 2267 pp. (DOI: 10.1016/j.ecolecon.2011.07.014), (ISSN:  0921 8009).  Frenz W. (2007). Bestandsschutz im Emissionshandel. RdE.  Friebe C.A., P. von Flotow, and F.A. Täube (2013). Exploring the link between products and services  in low income markets Evidence from solar home systems, Energy Policy 52 760 769 pp. (DOI:  10.1016/j.enpol.2012.10.038).  Frondel M., N. Ritter, and C.M. Schmidt (2008). Germany s solar cell promotion: Dark clouds on the  horizon, Energy Policy 36 4198 4204 pp. (DOI: 10.1016/j.enpol.2008.07.026), (ISSN: 0301 4215).  Frondel M., N. Ritter, C.M. Schmidt, and C. Vance (2010). Economic impacts from the promotion of  renewable energy technologies: The German experience, Energy Policy 38 4048 4056 pp. .  Fullerton D., G. Heutel, and G. Metcalf (2012). Does the Indexing of Government Transfers Make  Carbon Pricing Progressive?, American Journal of Agricultural Economics 94 347 353 pp. . Available  at: http://econpapers.repec.org/article/oupajagec/v_3a94_3ay_3a2012_3ai_3a2_3ap_3a347 353.htm.  G20 Leaders (2009). G20 Leaders  Statement  2009 Pittsburgh Summit. G20 Information Centre. .  Available at: http://www.canadainternational.gc.ca/g20/summit sommet/g20/declaration_092509.aspx?view=d.  Gabel H.L. (2000). Principles of Environmental and Resource Economics: A Guide for Students and  Decision Makers. Edward Elgar Publishing, 820 pp., (ISBN: 9781840643817). .  79 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Galarraga I., M. Gonzalez Eguino, and A. Markandya (2011). The Role of Regional Governments in  Climate Change Policy, Environmental Policy and Governance 21 164 182 pp. (DOI:  10.1002/eet.572), (ISSN: 1756 9338).  Gallagher K.S., A. Grübler, L. Kuhl, G. Nemet, and C. Wilson (2012). The Energy Technology  Innovation System, Annual Review of Environment & Resources 37 137 162 pp. (DOI:  10.1146/annurev environ 060311 133915), (ISSN: 15435938).  Gangopadhyay S., B. Ramaswami, and W. Wadhwa (2005). Reducing subsidies on household fuels  in India: how will it affect the poor?, Energy Policy 33 2326 2336 pp. (DOI:  10.1016/j.enpol.2004.04.024).  Garibaldi J.A., H. Winkler, E.L. la Rovere, A. Cadena, R. Palma, J.E. Sanhueza, E. Tyler, and M.  Torres Gunfaus (2013). Comparative analysis of five case studies: commonalities and differences in  approaches to mitigation actions in five developing countries, Climate and Development 1 12 pp.  (DOI: 10.1080/17565529.2013.812031), (ISSN: 1756 5529).  Garnaut R. (2008). The Garnaut Climate Change Review. Cambridge University Press, Port  Melbourne, Vic., 597 pp., (ISBN: 9780521744447  052174444X). .  Gaveau D.L.A., S. Wich, J. Epting, D. Juhn, M. Kanninen, and N. Leader Williams (2009). The future  of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road  construction, and mechanisms for reducing carbon emissions from deforestation, Environmental  Research Letters 4 034013 pp. (DOI: 10.1088/1748 9326/4/3/034013), (ISSN: 1748 9326).  Geels F. (2011). The multi level perspective on sustainability transitions: responses to seven  criticisms, Journal of Environmental Innovation & Societal Transitions 1 24 40 pp. (ISSN: 2210 4224).  GEF (2013). Behind the Numbers: A Closer Look at GEF Achievements. Global Environment Facility,  Washington, D.C., 19 pp., (ISBN: 978 1 939339 85 0). .  Gerlagh R. (2011). Too Much Oil, CESifo Economic Studies 57 79 102 pp. (DOI:  10.1093/cesifo/ifq004), (ISSN: 1610 241X, 1612 7501).  Gillingham K., M.J. Kotchen, D.S. Rapson, and G. Wagner (2013). Energy policy: The rebound effect  is overplayed, Nature 493 475 476 pp. (DOI: 10.1038/493475a), (ISSN: 0028 0836).  Gillingham K., R. Newell, and K. Palmer (2006). Energy Efficiency Policies: a retrospective  examination, Annual Review of Environment and Resources 31 161 192 pp. (DOI:  10.1146/annurev.energy.31.020105.100157).  Gillingham K., R.G. Newell, and K. Palmer (2009a). Energy efficiency economics and policy, Annual  Review of Resource Economics 1 597 620 pp. (DOI: 10.1146/annurev.resource.102308.124234).  Gillingham K., R.G. Newell, and K. Palmer (2009b). Energy Efficiency Economics and Policy, Annual  Review of Resource Economics 1 597 620 pp. (DOI: 10.1146/annurev.resource.102308.124234).  Glemarec Y. (2011). Catalyzing Climate Finance: A Guidebook on Policy and Financing Options to  Support Green, Low Emission and Climate Resilient Development. United Nations Development  Programme. . Available at: http://www.climatefinanceoptions.org/cfo/node/261.  Glemarec Y. (2012). Financing off grid sustainable energy access for the poor, Energy Policy 47,  Supplement 1 87 93 pp. (DOI: 10.1016/j.enpol.2012.03.032), (ISSN: 0301 4215).  80 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Godal O., and B. Holtsmark (2001). Greenhouse gas taxation and the distribution of costs and  benefits: the case of Norway, Energy Policy 29 653 662 pp. (DOI: 10.1016/S0301 4215(00)00158 0),  (ISSN: 0301 4215).  Goel R.K., and M.A. Nelson (1999). The Political Economy of Motor Fuel Taxation, The Energy  Journal 20 43 59 pp. .  Gomez Echeverri L. (2013). The changing geopolitics of climate change finance, Climate Policy 13  632 648 pp. (DOI: 10.1080/14693062.2013.822690), (ISSN: 1469 3062).  Goodwin P.B. (1992). A Review of New Demand Elasticities with Special Reference to Short and Long  Run Effects of Price Changes, Journal of Transport Economics and Policy 26 155 169 pp. (DOI:  10.2307/20052977), (ISSN: 0022 5258).  Goodwin P., J. Dargay, and M. Hanly (2004). Elasticities of Road Traffic and Fuel Consumption with  Respect to Price and Income: A Review, Transport Reviews 24 275 292 pp. (DOI:  10.1080/0144164042000181725), (ISSN: 0144 1647, 1464 5327).  Goolsbee A. (1998). Does Government R&D Policy Mainly Benefit Scientists and Engineers?,  American Economic Review 88 298 302 pp. . Available at:  http://econpapers.repec.org/article/aeaaecrev/v_3a88_3ay_3a1998_3ai_3a2_3ap_3a298 302.htm.  Gore C., and P. Robinson (2009). Local Government Response to Climate Change: our last, best  hope? In: Changing Climates in North American Politics: Institutions, Policymaking, and Multilevel  Governance. H. Selin, S.D. VanDeveer, (eds.), MIT Press, Cambridge, MA pp.338(ISBN:  9780262012997).  Gough C., and S. Shackley (2001). The Respectable Politics of Climate Change: The Epistemic  Communities and NGOs, International Affairs 77 329 346 pp. (DOI: 10.1111/1468 2346.00195),  (ISSN: 1468 2346).  Goulder L.H. (2013). Markets for Pollution Allowances: What Are the (New) Lessons?, Journal of  Economic Perspectives 27 87 102 pp. . Available at:  http://ideas.repec.org/a/aea/jecper/v27y2013i1p87 102.html.  Goulder L.H., and I.W.. Parry (2008). Instrument choice in environmental policy, Review of  Environmental Economics and Policy 2 152 174 pp. .  Goulder L.H., and R.N. Stavins (2011). Challenges from State Federal Interactions in US Climate  Change Policy, American Economic Review 101 253 57 pp. (ISSN: 0002 8282).  Government of Rwanda (2011). Green Growth and Climate Resilience: National Strategy for Climate  Change and Low Carbon Development. Government of Rwanda. . Available at:  http://www.uncsd2012.org/content/documents/364Rwanda Green Growth Strategy FINAL.pdf.  Graham D.J., and S. Glaister (2002). The demand for automobile fuel: a survey of elasticities, Journal  of Transport Economics and Policy 1 25 pp. .  Grazi F., and J.C.J.M. van den Bergh (2008). Spatial organization, transport, and climate change:  Comparing instruments of spatial planning and policy, Ecological Economics 67 630 639 pp. (DOI:  10.1016/j.ecolecon.2008.01.014), (ISSN: 0921 8009).  Greene D.L. (1998). Why CAFE Worked, Energy Policy 26 595 613 pp. .  81 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Grieshop A.P., J.D. Marshall, and M. Kandlikar (2011). Health and climate benefits of cookstove  replacement options, Energy Policy 39 7530 7542 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v39y2011i12p7530 7542.html.  Griffiths A., N. Haigh, and J. Rassias (2007). A Framework for Understanding Institutional  Governance Systems and Climate Change:: The Case of Australia, European Management Journal 25  415 427 pp. (DOI: 10.1016/j.emj.2007.08.001), (ISSN: 0263 2373).  Grubb M. (2004). Technology Innovation and Climate Change Policy: An Overview of Issues and  Options, Keio Economic Studies 41 103 132 pp. . Available at:  http://koara.lib.keio.ac.jp/xoonips/modules/xoonips/download.php?file_id=28331.  Grubb M., J.C. Hourcade, and K. Neuhoff (2014). Planetary Economics: Energy, Climate Change and  the Three Domains of Sustainable Development. Routledge, 548 pp., (ISBN: 9780415518826   0415518822). .  Gupta E. (2012). Global warming and electricity demand in the rapidly growing city of Delhi: A semi parametric variable coefficient approach, Energy Economics 34 1407 1421 pp. (DOI:  10.1016/j.eneco.2012.04.014), (ISSN: 0140 9883).  Gupta J., R. Lasage, and T. Stam (2007). National efforts to enhance local climate policy in the  Netherlands, Environmental Sciences 4 171 182 pp. (DOI: 10.1080/15693430701742719), (ISSN:  1569 3430).  Hackmann H., and A.L. St Clair (2012). Transformative Cornerstones of Social Science Research for  Global Change: Report of the International Social Science Council. International Social Science  Council, Paris. 28 pp. Available at: http://www.igfagcr.org/index.php/bf annoucements blog/70 issc transformative cornerstones.  Hagem C., B. Holtsmark, and T. Sterner (2012). Mechanism Design for Refunding Emissions  Payment, Statistics Norway Discussion Papers.  Hahn R.W. (1984). Market Power and Transferable Property Rights, The Quarterly Journal of  Economics 99 753 765 pp. (DOI: 10.2307/1883124), (ISSN: 0033 5533, 1531 4650).  Hall P.A. (1993). Policy Paradigms, Social Learning, and the State: The Case of Economic  Policymaking in Britain, Comparative Politics 25 275 296 pp. (DOI: 10.2307/422246), (ISSN: 0010 4159).  Hall B.H. (2007). Patents and patent policy, Oxford Review of Economic Policy 23 568 587 pp. .  Hall B.H., and C. Helmers (2010). The Role of Patent Protection in (clean/green) Technology Transfer.  National Bureau of Economic Research. 36 pp.  Hamin E., and N. Gurran (2009). Urban form and climate change: Balancing adaptation and  mitigation in the U.S. and Australia, Habitat International 33 238 245 pp. (ISSN: 01973975).  Hammar H., T. Sterner, and S. Akerfeldt (2013). Sweden s CO2 tax and taxation reform experiences.  In: Reducing Inequalities: A Sustainable Development Challenge. R. Genevey, R.K. Pachauri, L.  Tubiana, (eds.), Energy and Resources Institute, (ISBN: 9788179935309).  Hanemann M. (2009). The Role of Emission Trading in Domestic Climate Policy, The Energy Journal  30.  82 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Happaerts S., S. Schunz, and H. Bruyninckx (2011). Federalism and Intergovernmental Relations: the  multi level politics of climate change policy in Belgium. Leuven Centre for Global Governance  Studies. . Available at: https://lirias.kuleuven.be/handle/123456789/297529.  Harrington W., R.D. Morgenstern, and P. Nelson (2000). On the accuracy of regulatory cost  estimates, Journal of Policy Analysis and Management 19 297 322 pp. (DOI: 10.1002/(SICI)1520 6688(200021)19:2<297::AID PAM7>3.0.CO;2 X), (ISSN: 1520 6688).  Harrison K. (2012). A Tale of Two Taxes: The Fate of Environmental Tax Reform in Canada, Review of  Policy Research 29 383 407 pp. (DOI: 10.1111/j.1541 1338.2012.00565.x), (ISSN: 1541 1338).  Harrison K., and L.M. Sundstrom (2010). Global Commons, Domestic Decisions the Comparative  Politics of Climate Change. MIT Press, Cambridge, Mass., 328 pp., (ISBN: 9780262289481   0262289482). .  Hassett K.A., A. Mathur, and G. Metcalf (2009). The Incidence of a U.S. Carbon Tax: A Lifetime and  Regional Analysis, The Energy Journal 30 155 178 pp. (ISSN: 0195 6574).  Held D., E. M. Nag, and C. Roger (2011a). LSE Global Governance Working Paper . The Governance  of Climate Change in China, LSE Global Governance Working Papers.  Held D., E. M. Nag, and C. Roger (2011b). The Governance of Climate Change in China.  Held D., C. Roger, and E. M. Nag (2013a). A Green Revolution: China s Governance of Energy and  Climate Change. In: Climate Governance in the Developing World. D. Held, C. Roger, E. M. Nag,  (eds.), John Wiley & Sons, Cambridge pp.29 52(ISBN: 9780745678740).  Held D., C. Roger, and E. M. Nag (2013b). Editors  Introduction: Climate Governance in the  Developing World. In: Climate Governance in the Developing World. D. Held, C. Roger, E. M. Nag,  (eds.), John Wiley & Sons, Cambridge(ISBN: 9780745678740).  Held, D., C. Roger, and E. Nag (2013). A Green Revolution: China s Governance of Energy and  Climate Change. In: Climate Governance in the Developing World. D. Held, C. Roger, E. Nag, (eds.),  John Wiley & Sons, pp.29 52(ISBN: 9780745662763).  Helm D. (2010). Government failure, rent seeking, and capture: the design of climate change policy,  Oxford Review of Economic Policy 26 182 196 pp. (DOI: 10.1093/oxrep/grq006), (ISSN: 0266 903X,  1460 2121).  Henkel J., and E. von Hippel (2005). Welfare Implications of User Innovation, The Journal of  Technology Transfer 30 73 87 pp. . Available at:  http://ideas.repec.org/a/kap/jtecht/v30y2005i2_2p73 87.html.  Hochstetler K., and E. Viola (2012). Brazil and the politics of climate change: beyond the global  commons, Environmental Politics 21 753 771 pp. (DOI: 10.1080/09644016.2012.698884), (ISSN:  0964 4016).  Hoel M. (2012). Carbon Taxes and the Green Paradox. In: Climate Change and Common Sense:  Essays in Honour of Tom Schelling. R.W. Hahn, A. Ulph, (eds.), Oxford University Press, (ISBN:  9780199692873).  83 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Hoel M., and L. Karp (2001). Taxes and quotas for a stock pollutant with multiplicative uncertainty,  Journal of Public Economics 82 91 114 pp. . Available at:  http://ideas.repec.org/a/eee/pubeco/v82y2001i1p91 114.html.  Hoel M., and L. Karp (2002). Taxes versus quotas for a stock pollutant, Resource and Energy  Economics 24 367 384 pp. . Available at: http://ideas.repec.org/a/eee/resene/v24y2002i4p367 384.html.  Holland S.P., J.E. Hughes, C.R. Knittel, and N.C. Parker (2011). Some Inconvenient Truths About  Climate Change Policy: The Distributional Impacts of Transportation Policies. National Bureau of  Economic Research. . Available at: http://www.nber.org/papers/w17386.  Holmes P., T. Reilly, and J. Rollo (2011). Border carbon adjustments and the potential for  protectionism, Climate Policy 11 883 900 pp. (DOI: 10.3763/cpol.2009.0071), (ISSN: 1469 3062).  Van den Hove S., M. Le Menestrel, and H. C. de Bettignies (2002a). The oil industry and climate  change: strategies and ethical dilemmas, Climate Policy 2 3 18 pp. (DOI: 10.3763/cpol.2002.0202),  (ISSN: 1469 3062, 1752 7457).  Van den Hove S., M. Le Menestrel, and H. C. de Bettignies (2002b). The Oil Industry and Climate  Change: strategies and ethical dilemmas, Climate Policy 2 3 18 pp. (DOI: 10.1016/S1469 3062(02)00008 6), (ISSN: 1469 3062).  Hughes T.P. (1987). The evolution of large technological systems. In: The social construction of  technological systems. MIT Press, Cambridge pp.1 82.  Hunter W.J., and M.A. Nelson (1989). Interest Group Demand for Taxation, Public Choice 62 41 61  pp. (ISSN: 0048 5829).  IEA (2003). Renewables for Power Generation. Organisation for Economic Co Operation and  Development, Paris, (ISBN: 9789264019188). .  IEA (2012). World Energy Outlook 2012. OECD/IEA, Paris, France. 690 pp. Available at:  http://www.worldenergyoutlook.org/publications/weo 2012/#d.en.26099.  IEA/OECD (2011). World Energy Outlook 2011. IEA, International Energy Agency : OECD, Paris, 696  pp., (ISBN: 9789264124134 9264124136). .  IMF (2013). Energy Subsidy Reform: Lessons and Implications. International Monetary Fund,  Washington, D.C., 68 pp., (ISBN: 1475558112 9781475558111). .  Inman R.P., and D.L. Rubinfeld (1997). Rethinking Federalism, The Journal of Economic Perspectives  11 43 64 pp. (ISSN: 0895 3309).  IPCC (2007). Climate Change 2007   Mitigation of Climate Change: Working Group III Contribution to  the Fourth Assessment Report of the IPCC [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer  (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 863 pp.,  (ISBN: 9781139468640). .  Irvin R.A., and J. Stansbury (2004). Citizen Participation in Decision Making: Is It Worth the Effort?,  Public Administration Review 64 55 65 pp. (DOI: 10.1111/j.1540 6210.2004.00346.x), (ISSN: 1540 6210).  84 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Ismer R., and K. Neuhoff (2007). Border tax adjustment: a feasible way to support stringent  emission trading, European Journal of Law and Economics 24 137 164 pp. (ISSN: 0929 1261 (print  version)).  Jaccard M. (2012). The Political Acceptability of Carbon Taxes: Lessons from British Columbia. In:  Handbook of research on environmental taxation. J.E. Milne, M.S. Andersen, (eds.), Edward Elgar,  Cheltenham pp.175 191(ISBN: 9781848449978  1848449976  9781781952146  1781952140).  Jacobsen G.D., and M.J. Kotchen (2013). Are Building Codes Effective at Saving Energy? Evidence  from Residential Billing Data in Florida, The Review of Economics and Statistics 95 34 49 pp. .  Available at: http://ideas.repec.org/a/tpr/restat/v95y2013i1p34 49.html.  Jaffe A.B. (2002). Building Programme Evaluation into the Design of Public Research Support  Programmes, Oxford Review of Economic Policy 18 22 34 pp. .  Jaffe A. (2012). Technology Policy and Climate Change, Climate Change Economics (CCE) 03  1250025 1 1250025 15 pp. (ISSN: 2010 0086).  Jaffe A.B., R.G. Newell, and R.N. Stavins (2005). A tale of two market failures: Technology and  environmental policy, Ecological Economics 54 164 174 pp. . Available at:  http://ideas.repec.org/a/eee/ecolec/v54y2005i2 3p164 174.html.  Jaffe A., and K. Palmer (1997). Environmental regulation and innovation: a panel data study, The  review of economics and statistics 10 610 619 pp. .  Jaffe A.B., and R.N. Stavins (1994). The energy efficiency gap: What does it mean?, Energy Policy 22  804 810 pp. .  Jagers S.C., and H. Hammar (2009). Environmental taxation for good and for bad: the efficiency and  legitimacy of Sweden s carbon tax, Environmental Politics 18 218 237 pp. (DOI:  10.1080/09644010802682601), (ISSN: 0964 4016).  Jakob M., R. Marschinski, and M. Hübler (2013). Between a Rock and a Hard Place: A Trade Theory  Analysis of Leakage Under Production  and Consumption Based Policies, Environmental and  Resource Economics 56 47 72 pp. (DOI: 10.1007/s10640 013 9638 y), (ISSN: 0924 6460, 1573 1502).  Jänicke M. (2012). Dynamic governance of clean energy markets: how technical innovation could  accelerate climate policies, Journal of Cleaner Production 22 50 59 pp. (DOI:  10.1016/j.jclepro.2011.09.006), (ISSN: 0959 6526).  Jänicke M., and K. Jacob (2004). Global Environmental Politics . Lead Markets for Environmental  Innovations: A New Role for the Nation State, Global Environmental Politics 4 29 46 pp. (DOI:  Article), (ISSN: 15263800).  Johansson B. (2000). The Carbon Tax in Sweden. In: Innovation and the environment. OECD  Publishing, Paris pp.85 94(ISBN: 9264185747 9789264185746).  Johansson T.B., A. Patwardhan, and L. Gomez Echeverri (2012). Global Energy Assessment (GEA).  Cambridge University Press; International Institute for Applied Systems Analysis, Cambridge;  Laxenburg, Austria, 1802 pp., (ISBN: 9781107005198  1107005191  9780521182935  052118293X). .  85 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Johnstone N., I. Ha¹èiè, and D. Popp (2010). Renewable energy policies and technological  innovation: Evidence based on patent counts, Environmental and Resource Economics 45 133 155  pp. .  Jones D., P. Leiby, and I.K. Paik (2004). Oil Price Shocks and the Macroeconomy: What Has Been  Learned Since 1996, The Energy Journal Volume 25 1 32 pp. (ISSN: 0195 6574).  De Jonghe C., E. Delarue, R. Belmans, and W. D haeseleer (2009). Interactions between measures  for the support of electricity from renewable energy sources and CO2 mitigation, Energy Policy 37  4743 4752 pp. (DOI: 10.1016/j.enpol.2009.06.033), (ISSN: 0301 4215).  Joppa L.N., and A. Pfaff (2011). Global protected area impacts, Proceedings. Biological Sciences / The  Royal Society 278 1633 1638 pp. (DOI: 10.1098/rspb.2010.1713), (ISSN: 1471 2954).  Jotzo F. (2012). Australia s carbon price, Nature Climate Change 2 475 476 pp. (DOI:  10.1038/nclimate1607), (ISSN: 1758 678X).  Jotzo F., and R. Betz (2009). Linking the Australian Emissions Trading Scheme. Australian National  University, Environmental Economics Research Hub, Canberra. 28 pp. Available at:  http://ideas.repec.org/p/ags/eerhrr/94814.html.  Jotzo F., P.J. Burke, P.J. Wood, A. Macintosh, and D.I. Stern (2012). Decomposing the 2010 global  carbon dioxide emissions rebound, Nature Climate Change 2 213 214 pp. (DOI:  10.1038/nclimate1450), (ISSN: 1758 678X).  Jotzo F., and S. Hatfield Dodds (2011). Price Floors in Emissions Trading to Reduce Policy Related  Investment Risks: An Australian View. Centre for Climate Economics & Policy, Crawford School of  Public Policy, The Australian National University, Canberra. 19 pp. Available at:  http://ideas.repec.org/p/een/ccepwp/1105.html.  Jung M., M. Vieweg, K. Eisbrenner, N. Hohne, C. Ellermann, S. Schimschar, and C. Beyer (2010).  Nationally Appropriate Mitigation Actions: insights from example development. Ecofys.  Kahn Ribeiro S., and A. de Abreu (2008). Brazilian transport initiatives with GHG reductions as a co benefit, Climate Policy 8 220 240 pp. (DOI: 10.3763/cpol.2007.0431), (ISSN: 1469 3062).  Kalkuhl M., and O. Edenhofer (2013). Managing the Climate Rent: How Can Regulators Implement  Intertemporally Efficient Mitigation Policies?, Natural Resource Modeling 27 25 60 pp. (DOI:  10.1111/nrm.12018), (ISSN: 1939 7445).  Kalkuhl M., O. Edenhofer, and K. Lessmann (2013). Renewable energy subsidies: Second best policy  or fatal aberration for mitigation?, Resource and Energy Economics 35 217 234 pp. (DOI:  10.1016/j.reseneeco.2013.01.002), (ISSN: 0928 7655).  Karpas E., and S. Kerr (2011). Preliminary Evidence on Responses to the New Zealand Forestry  Emission Trading Scheme. . Available at:  http://www.motu.org.nz/publications/detail/preliminary_evidence_on_responses_to_the_new_zeal and_forestry_emissions_tra.  Keenan R.J., L. Caripis, A. Foerster, L. Godden, and J. Peel (2012). Science and the governance of  Australia s climate regime, Nature Climate Change 2 477 478 pp. (DOI: 10.1038/nclimate1608),  (ISSN: 1758 678X).  86 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Kennedy C., and J. Corfee Morlot (2012). Mobilising Investment in Low Carbon, Climate Resilient  Infrastructure, OECD Environment Working Papers 46 90 pp. (DOI: 10.1787/5k8zm3gxxmnq en),  (ISSN: 1997 0900).  Kerr S., and R.G. Newell (2003). Policy Induced Technology Adoption: Evidence from the U.S. Lead  Phasedown, The Journal of Industrial Economics 51 317 343 pp. (DOI: 10.1111/1467 6451.00203),  (ISSN: 1467 6451).  Kim H. (2011). System Architecture for Effective Green Finance in Korea, Korea s Economy 27 (ISSN:  1054 6944).  Kimura O. (2010). Public R&D and commercialization of energy efficient technology: A case study of  Japanese projects, Energy Policy 38 7358 7369 pp. (DOI: 10.1016/j.enpol.2010.08.012), (ISSN: 0301 4215).  Klobasa M., J. Winkler, F. Sensfuß, and M. Ragwitz (2013). Market Integration of Renewable  Electricity Generation   The German Market Premium Model, Energy & Environment 24 127 146 pp.  (DOI: 10.1260/0958 305X.24.1 2.127).  Knack S., and A. Rahman (2007). Donor fragmentation and bureaucratic quality in aid recipients,  Journal of Development Economics 83 176 197 pp. (DOI: 10.1016/j.jdeveco.2006.02.002), (ISSN:  03043878).  Knox Hayes J. (2012). Negotiating climate legislation: Policy path dependence and coalition  stabilization, Regulation & Governance 6 545 567 pp. (DOI: 10.1111/j.1748 5991.2012.01138.x),  (ISSN: 1748 5991).  Kohler Koch B., and B. Finke (2007). The Institutional Shaping of EU Society Relations: A  Contribution to Democracy via Participation?, Journal of Civil Society 3 205 221 pp. (DOI:  10.1080/17448680701775630), (ISSN: 1744 8689).  Kok M.T.J., and H.C. de Coninck (2007). Widening the scope of policies to address climate change:  directions for mainstreaming, Environmental Science & Policy 10 587 599 pp. (DOI:  10.1016/j.envsci.2007.07.003), (ISSN: 1462 9011).  Kok M., B. Metz, J. Verhagen, and S. Van Rooijen (2008). Integrating development and climate  policies: national and international benefits, Climate Policy 8 103 118 pp. (DOI:  10.3763/cpol.2007.0436), (ISSN: 14693062, 17527457).  Kolk A., and D. Levy (2002). Winds of Change: Corporate Strategy, Climate Change and Oil  Multinationals. Social Science Research Network, Rochester, NY. . Available at:  http://papers.ssrn.com/abstract=291719.  Kostka G., and W. Hobbs (2012). Local Energy Efficiency Policy Implementation in China: Bridging  the gap between national priorities and local interests, The China Quarterly 211 765 785 pp. (DOI:  10.1017/S0305741012000860).  Kotani K., K. Tanaka, and S. Managi (2011). On fundamental performance of a marketable permits  system in a trader setting: Double auction vs uniform price auction. Tohoku, Japan, 30 pp.  Kousky C., and S.H. Schneider (2003). Global climate policy: will cities lead the way?, Climate Policy  3 359 372 pp. (DOI: 10.1016/j.clipol.2003.08.002), (ISSN: 1469 3062).  87 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Krarup S., and C.S. Russell (2005). Environment, Information and Consumer Behaviour. Edward Elgar  Publishing, 328 pp., (ISBN: 9781845420116). .  Kretschmer T. (2008). Splintering and Inertia in Network Industries*, The Journal of Industrial  Economics 56 685 706 pp. (DOI: 10.1111/j.1467 6451.2008.00359.x), (ISSN: 1467 6451).  Kruger J. (2007). From SO2 to greenhouse gases: Trends and events shaping future emissions trading  programs in the United States. In: Acid in the Environment: Lessons Learned and Future Prospects.  Springer, Washington, D.C.(ISBN: 9780387375625).  Kumar S., and S. Managi (2010). Sulfur dioxide allowances: Trading and technological progress,  Ecological Economics 69 623 631 pp. . Available at:  http://ideas.repec.org/a/eee/ecolec/v69y2010i3p623 631.html.  Lachapelle E., C.P. Borick, and B. Rabe (2012). Public Attitudes toward Climate Science and Climate  Policy in Federal Systems: Canada and the United States Compared, Review of Policy Research 29  334 357 pp. (DOI: 10.1111/j.1541 1338.2012.00563.x), (ISSN: 1541 1338).  Lachapelle E., and M. Paterson (2013). Drivers of national climate policy, Climate Policy 13 547 571  pp. (DOI: 10.1080/14693062.2013.811333), (ISSN: 1469 3062).  Lam N.L., Y. Chen, C. Weyant, C. Venkataraman, P. Sadavarte, M.A. Johnson, K.R. Smith, B.T. Brem,  J. Arineitwe, J.E. Ellis, and T.C. Bond (2012). Household Light Makes Global Heat: High Black Carbon  Emissions From Kerosene Wick Lamps, Environmental Science & Technology 46 13531 13538 pp.  (DOI: 10.1021/es302697h), (ISSN: 0013 936X).  Lange I., and A. Bellas (2005). Technological change for sulfur dioxide scrubbers under market based  regulation, Land Economics 81 546 pp. .  Lanjouw J.O., and A. Mody (1996). Innovation and the international diffusion of environmentally  responsive technology, Research Policy 25 549 571 pp. .  Laurent É. (2010). The French Carbon Tax: Autopsy of an Ambition, French Politics, Culture & Society  28 114 122 pp. (DOI: 10.3167/fpcs.2010.280307), (ISSN: 15376370, 15585271).  Leape J. (2006). The London Congestion Charge, Journal of Economic Perspectives 20 157 176 pp.  (DOI: 10.1257/jep.20.4.157), (ISSN: 0895 3309).  Lecuyer O., and R. Bibas (2011). Combining Climate and Energy Policies: Synergies or Antagonism?  Modeling Interactions with Energy Efficiency Instruments. Fondazione Eni Enrico Mattei. . Available  at: http://ageconsearch.umn.edu/bitstream/120049/2/NDL2011 098.pdf.  Lehmann P., and E. Gawel (2013). Why should support schemes for renewable electricity  complement the EU emissions trading scheme?, Energy Policy 52 597 607 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v52y2013icp597 607.html.  Leland H.E. (1979). Quacks, Lemons, and Licensing: A Theory of Minimum Quality Standards, Journal  of Political Economy 87 1328 1346 pp. (DOI: 10.2307/1833335), (ISSN: 0022 3808).  Lin B., and X. Li (2011). The effect of carbon tax on per capita CO2 emissions, Energy Policy 39 5137 5146 pp. (DOI: 10.1016/j.enpol.2011.05.050), (ISSN: 03014215).  88 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Lindseth G. (2004). The Cities for Climate Protection Campaign(CCPC) and the Framing of Local  Climate Policy, Local Environment 9 325 36 pp. (ISSN: 1354 9839).  Liski M., and J. P. Montero (2011). Market Power in an Exhaustible Resource Market: The Case of  Storable Pollution Permits, The Economic Journal 121 116 144 pp. (DOI: 10.1111/j.1468 0297.2010.02366.x), (ISSN: 1468 0297).  Lisowski M. (2005). How NGOs Use Their Facilitative Negotiating Power and Bargaining Assets To  Affect International Environmental Negotiations1, Diplomacy & Statecraft 16 361 383 pp. (DOI:  10.1080/09592290590948405), (ISSN: 0959 2296).  Liu Y., and A. Kokko (2010). Wind power in China: Policy and development challenges, Energy Policy  38 5520 5529 pp. (DOI: 10.1016/j.enpol.2010.04.050), (ISSN: 0301 4215).  Lohmann L. (2008). Carbon Trading, Climate Justice and the Production of Ignorance: Ten examples,  Development 51 359 365 pp. . Available at: http://ideas.repec.org/a/pal/develp/v51y2008i3p359 365.html.  Lucon O., and J. Goldemberg (2010). Sao Paulo The  Other  Brazil: different pathways on climate  change for state and federal governments, The Journal of Environment & Development 19 335 357  pp. (DOI: 10.1177/1070496510378092), (ISSN: 1070 4965, 1552 5465).  Lyon T.P., and J.W. Maxwell (2004). Corporate Environmentalism and Public Policy. Cambridge  University Press, Cambridge, UK; New York, 291 pp., (ISBN: 0521819474 9780521819473  0521603765  9780521603768). .  Macintosh A., and L. Waugh (2012). An Introduction to the Carbon Farming Initiative: key principles  and concepts. . Available at: http://ccep.anu.edu.au/data/2012/pdf/wpaper/CCEP1203.pdf.  Macintosh A., D. Wilkinson, and R. Denniss (2010). Climate Change. In: The Rudd Government:  Australian Commonwealth Administration 2007 2010. C. Aulich, M. Evans, (eds.), ANU E Press,  Canberra(ISBN: 9781921862076).  Maclean J., J. Tan, D. Tirpak, and E. Usher (2008). Public Finance Mechanisms to Mobilise  Investment in Climate Change Mitigation. United Nations Environment Programme. 39 pp.  Macneil R. (2012). Alternative climate policy pathways in the US, Climate Policy 1 16 pp. (DOI:  10.1080/14693062.2012.714964), (ISSN: 1469 3062, 1752 7457).  Mahoney C. (2008). Brussels Versus the Beltway: Advocacy in the United States and the European  Union. Georgetown University Press, Washington, D.C., 272 pp., (ISBN: 1589012828). .  Markussen P., and G.T. Svendsen (2005). Industry lobbying and the political economy of GHG trade  in the European Union, Energy Policy 33 245 255 pp. (DOI: 10.1016/S0301 4215(03)00238 6), (ISSN:  0301 4215).  Mathy S. (2007). Urban and Rural Policies and the Climate Change Issue: the French experience of  governance, Environmental Sciences 4 . Available at: http://halshs.archives ouvertes.fr/halshs 00366296.  Maxwell D., P. Owen, L. McAndrew, K. Muehmel, and A. Neubauer (2011). Addressing the Rebound  Effect: A Report for the European Commission DG Environment. Global View Sustainability Services.  133 pp. Available at: ec.europa.eu/environment/eussd/pdf/rebound_effect_report.pdf.  89 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Mazmanian D.A., J. Jurewitz, and H. Nelson (2008). California s Climate Change Policy, The Journal  of Environment & Development 17 401 423 pp. (DOI: 10.1177/1070496508325438).  Mazzucato M. (2013). The Entrepreneurial State: Debunking Public vs. Private Sector Myths. Anthem  Press, 266 pp., (ISBN: 9780857282521  0857282522). .  McCarthy N., L. Lipper, and G. Branca (2011). Climate Smart Agriculture: Smallholder Adoption and  Implications for Climate Change Adaptation and Mitigation. Food and Agriculture Organization of  the United Nations, Rome. 25 pp. Available at: http://cgspace.cgiar.org/handle/10568/33461.  McCright A.M., and R.E. Dunlap (2003). Defeating Kyoto: The Conservative Movement s Impact on  U.S. Climate Change Policy, Social Problems 50 348 373 pp. (DOI: 10.1525/sp.2003.50.3.348), (ISSN:  00377791, 15338533).  Meadowcroft J. (2011). Engaging with the politics of sustainability transitions, Environmental  Innovation and Societal Transitions 1 70 75 pp. (DOI: 10.1016/j.eist.2011.02.003), (ISSN: 2210 4224).  Mehling M., and D.J. Frenkil (2013). Climate Law in the United States: Facing Structural and  Procedural Limitations. In: Climate Change and the Law. E.J. Hollo, K. Kulovesi, M. Mehling, (eds.),  Springer Netherlands, Dordrecht pp.473 487(ISBN: 978 94 007 5439 3, 978 94 007 5440 9).  Metcalf G.E. (2009). Market based Policy Options to Control U.S. Greenhouse Gas Emissions, Journal  of Economic Perspectives 23 5 27 pp. (DOI: 10.1257/jep.23.2.5), (ISSN: 0895 3309).  Metz B. (2010). Controlling Climate Change. Cambridge University Press, Cambridge, 376 pp., (ISBN:  9780521747844). .  Metz B., and M. Kok (2008). Integrating development and climate policies, Climate Policy 8 99 102  pp. (DOI: 10.3763/cpol.2008.0523), (ISSN: 14693062, 17527457).  Meyers S., J.E. McMahon, M. McNeil, and X. Liu (2003). Impacts of U.S. Federal Energy Efficiency  Standards for Residential Appliances, Energy 28 755 67 pp. .  Michaelowa A. (2013). A call to action: but too late, in vain?, Climate Policy 13 408 410 pp. (DOI:  10.1080/14693062.2013.770964), (ISSN: 1469 3062).  Mitchell C., D. Bauknecht, and P.M. Connor (2006). Effectiveness through risk reduction: a  comparison of the renewable obligation in England and Wales and the feed in system in Germany,  Energy Policy 34 297 305 pp. (ISSN: 0301 4215).  Montero J., Jose Miguel Sanchez, and R. Katz (2002). A Market Based Environmental Policy  Experiment in Chile, Journal of Law and Economics 45 267 287 pp. (DOI: 10.1086/jle.2002.45.issue 1), (ISSN: 0022 2186).  Montgomery W.D. (1972). Markets in licenses and efficient pollution control programs, Journal of  Economic Theory 5 395 418 pp. (ISSN: 0022 0531).  Morgenstern R.D., and W.A. Pizer (2007). Reality Check:  The Nature and Performance of Voluntary  Environmental Programs in the United States, Europe, and Japan . RFF Press, 204 pp., (ISBN:  1933115378). .  Morgenstern R., W. Pizer, and J. S. Shih (2007). Evaluating voluntary U.S. climate programs: the  case of Climate Wise. In: Reality Check:  The Nature and Performance of Voluntary Environmental  90 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Programs in the United States, Europe, and Japan . R.D. Morgenstern, W.A. Pizer, (eds.), Resources  for the Future, Washington, D.C. pp.118 137(ISBN: 9781933115375).  Da Motta R. (2011a). Climate Change in Brazil : Economic, Social and Regulatory Aspects. Instituto  de Pesquisa Economica Aplicada, Brasilia, 1 pp., (ISBN: 9788578111281 8578111281). .  Da Motta R.S. (2011b). The national policy on climate change: Regulatory and governance aspects.  In: Climate change in Brazil: economic, social and regulatory aspects.Brasilia.  Mowery D. (2011). Federal Policy and the Development of Semiconductors, Computer Hardware,  and Computer Software: A Policy Model for Climate Change R&D? In: Accelerating Energy  Innovation: Insights from Multiple Sectors. R. Henderson, R.G. Newell, (eds.), University of Chicago  Press, Chicago pp.159 188.  Muller N.Z., R. Mendelsohn, and W. Nordhaus (2011). Environmental Accounting for Pollution in  the United States Economy, American Economic Review 101 1649 1675 pp. (DOI:  10.1257/aer.101.5.1649), (ISSN: 0002 8282).  Mytelka L., F. Aguayo, G. Boyle, S. Breukers, G. de Scheemaker, I. Abdel Gelil, R. Kemp, J.  Monkelbaan, C. Rossini, J. Watson, and R. Wolson (2012). Chapter 25  Policies for Capacity  Development. In: Global Energy Assessment (GEA). Cambridge University Press ; International  Institute for Applied Systems Analysis, Cambridge; Laxenburg, Austria pp.1745 1802(ISBN:  9781107005198  1107005191  9780521182935  052118293X).  National Greenhouse and Energy Reporting Act 2007 (2007). Available at:  http://www.comlaw.gov.au/Details/C2007A00175.  Nemet G.F. (2009). Demand pull, technology push, and government led incentives for non incremental technical change, Research Policy 38 700 709 pp. . Available at:  http://ideas.repec.org/a/eee/respol/v38y2009i5p700 709.html.  Nemet G.F. (2013). Technological Change and Climate Change Policy. In: Encyclopedia of Energy,  Natural Resource, and Environmental Economics. Jason Shogren, (ed.), Elsevier, Waltham pp.107 116(ISBN: 978 0 08 096452 2).  Neufeldt H., E. Jochem, J. Hinkel, D. Huitma, E. Massey, P. Watkiss, D. McEvoy, T. Rayner, A. Hof,  and K. Lonsdale (2010). Climate policy and inter linkages between adaptation and mitigation. In:  Making Climate Change Work for Us: European Perspectives on Adaptation and Mitigation  Strategies. M. Hulme, H. Neufeldt, (eds.), Cambridge University Press, Cambridge pp.3 30. Available  at: http://researchbank.rmit.edu.au/view/rmit:4876.  Newell P. (2008). Civil Society, Corporate Accountability and the Politics of Climate Change, Global  Environmental Politics 8 122 153 pp. (ISSN: 1536 0091).  Newell R.G. (2010). The role of markets and policies in delivering innovation for climate change  mitigation, Oxford Review of Economic Policy 26 253  269 pp. (DOI: 10.1093/oxrep/grq009).  Newell R.G., A.B. Jaffe, and R.N. Stavins (1999). The Induced Innovation Hypothesis and Energy Saving Technological Change, Quarterly Journal of Economics 114 941 975 pp. (DOI: i:  10.1162/003355399556188

), (ISSN: 0033 5533).  91 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Newell P., and M. Paterson (2010). Climate Capitalism : Global Warming and the Transformation of  the Global Economy. Cambridge University Press, Cambridge; New York, 223 pp., (ISBN:  9780521194853 0521194857 9780521127288  0521127289  9780511789366  051178936X). .  Newell R.G., and W.A. Pizer (2003). Discounting the distant future: how much do uncertain rates  increase valuations?, Journal of Environmental Economics and Management 46 52 71 pp. . Available  at: http://ideas.repec.org/a/eee/jeeman/v46y2003i1p52 71.html.  Newell R.G., W.A. Pizer, and D. Raimi (2013). Carbon Markets 15 Years after Kyoto: Lessons  Learned, New Challenges, Journal of Economic Perspectives 27 123 146 pp. (DOI:  10.1257/jep.27.1.123), (ISSN: 0895 3309).  Nishida Y., and Y. Hua (2011). Motivating stakeholders to deliver change: Tokyo s Cap and Trade  Program, Building Research & Information 39 518 533 pp. (DOI: 10.1080/09613218.2011.596419),  (ISSN: 0961 3218, 1466 4321).  Nordhaus (2007). To Tax or Not to Tax: Alternative Approaches to Slowing Global Warming, Review  of Environmental Economics and Policy 1 26 44 pp. (DOI: 10.1093/reep/rem008).  Nordhaus W.D. (2009). The Economics of an Integrated World Oil Market, International Energy  Workshop 17 19 pp. Venice, Italy . Available at:  http://aida.econ.yale.edu/~nordhaus/homepage/documents/iew_052909.pdf.  North D. (1991). Institutions, Journal of Economic Perspectives 5 97 112 pp. (DOI:  10.1257/jep.5.1.97).  Nye M., and S. Owens (2008). Creating the UK emission trading scheme: motives and symbolic  politics, European Environment 18 1 15 pp. (DOI: 10.1002/eet.468), (ISSN: 1099 0976).  NZME (2013). The global effort   New Zealand Climate change information. Climate Change  Information, New Zealand. . Available at: http://www.climatechange.govt.nz/reducing our emissions/targets.html.  Oates W.E. (1999). An Essay on Fiscal Federalism, Journal of Economic Literature 37 1120 1149 pp.  (ISSN: 0022 0515).  Oates W.E. (2002). A Reconsideration of Environmental Federalism. In: Recent advances in  environmental economics. Edward Elgar, (ISBN: 1858986117 9781858986111).  Oberheitmann A. (2008). China s Energy Security Strategy and the Regional Environment: Assessing  the Environmental Impact of China s Economic Growth and Energy Consumption Applying a Dynamic  Welfare Optimisation Approach. VDM Verlag Dr. Müller, Saarbrücken, 208 pp., (ISBN:  9783639100877  3639100875). .  OECD (2001). Environmentally Related Taxes in OECD Countries. Organisation for Economic Co Operation and Development, Paris, 100 pp., (ISBN: 9789264187313). .  OECD (2005). Bridge over Troubled Waters Linking Climate Change and Development. Organisation  for Economic Co Operation and Development, Paris, 153 pp., (ISBN: 9264012753 9789264012752  9789264012769 9264012761). .  OECD (2008). An OECD Framework for Effective and Efficient Environmental Policies. . Available at:  http://www.oecd.org/dataoecd/8/44/40501159.pdf.  92 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   OECD (2013). Taxing Energy Use a Graphical Analysis. Organisation for Economic Co Operation and  Development, Paris, 256 pp., (ISBN: 9789264183933  9264183930). .  Oikonomou V., A. Flamos, and S. Grafakos (2010). Is blending of energy and climate policy  instruments always desirable?, Energy Policy 38 4186 4195 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v38y2010i8p4186 4195.html.  Oikonomou V., and C. Jepma (2008). A framework on interactions of climate and energy policy  instruments, Mitigation and Adaptation Strategies for Global Change 13 131 156 pp. . Available at:  http://econpapers.repec.org/article/sprmasfgc/v_3a13_3ay_3a2008_3ai_3a2_3ap_3a131 156.htm.  Okubo Y., and A. Michaelowa (2010). Effectiveness of subsidies for the Clean Development  Mechanism: Past experiences with capacity building in Africa and LDCs, Climate and Development 2  30 49 pp. (DOI: 10.3763/cdev.2010.0032), (ISSN: 1756 5529).  Ondraczek J. (2013). The sun rises in the east (of Africa): A comparison of the development and  status of solar energy markets in Kenya and Tanzania, Energy Policy (DOI:  10.1016/j.enpol.2013.01.007).  Ostrom E. (2010). Polycentric systems for coping with collective action and global environmental  change, Global Environmental Change 20 550 557 pp. (DOI: 10.1016/j.gloenvcha.2010.07.004),  (ISSN: 0959 3780).  Oum T.H. (1989). Alternative Demand Models and Their Elasticity Estimates, Journal of Transport  Economics and Policy 23 163 187 pp. (DOI: 10.2307/20052880), (ISSN: 0022 5258).  Pacala S., and R. Socolow (2004). Stabilization Wedges: Solving the Climate Problem for the Next 50  Years with Current Technologies, Science 305 968 972 pp. (DOI: 10.1126/science.1100103), (ISSN:  0036 8075, 1095 9203).  Pachauri S., A. Brew Hammond, D.F. Barnes, D.H. Bouille, S. Gitonga, V. Modi, and H. Zerriffi  (2012). Chapter 19: Energy Access for Development. In: Global Energy Assessment (GEA). Cambridge  University Press ; International Institute for Applied Systems Analysis, Cambridge; Laxenburg, Austria  pp.1401 1458(ISBN: 9781107005198  1107005191  9780521182935  052118293X).  Pagdee A., Y. Kim, and P.J. Daugherty (2006). What Makes Community Forest Management  Successful: A Meta Study From Community Forests Throughout the World, Society & Natural  Resources 19 33 52 pp. (DOI: 10.1080/08941920500323260), (ISSN: 0894 1920).  Park W.G., and J.C. Ginarte (1997). Intellectual property rights and economic growth, Contemporary  Economic Policy 15 51 61 pp. .  Parry I. (2004). Are emissions permits regressive?, Journal of Environmental Economics and  Management 47 364 387 pp. (ISSN: 0095 0696).  Parry I.W.H. (2013). Reforming the Tax System to Promote Environmental Objectives: An Application  to Mauritius. International Monetary Fund. 39 pp. Available at:  http://ideas.repec.org/p/imf/imfwpa/11 124.html.  Parry I.W.H., M. Walls, and W. Harrington (2007). Automobile Externalities and Policies. Resources  For the Future, Washington, D.C. 37 pp. Available at: http://ideas.repec.org/p/rff/dpaper/dp 06 26.html.  93 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Parson E.A., and E.L. Kravitz (2013). Market Instruments for the Sustainability Transition, Annual  Review of Environment and Resources 38 415 440 pp. (DOI: 10.1146/annurev environ 061311 111640).  Partnership for Market Readiness (2011). Design Document. World Bank. . Available at:  https://www.thepmr.org/system/files/documents/PMR%20Design%20Document_May_24_2011.pd f.  Partnership for Market Readiness (2012). PMR Technical Note 2. Domestic Emissions Trading:  Existing and Proposed Schemes. World Bank. . Available at:  https://www.thepmr.org/system/files/documents/PMR_Technical_Note_2_Domestic_ETS.pdf.  Paterson M. (2010). Legitimation and Accumulation in Climate Change Governance, New Political  Economy 15 345 368 pp. (DOI: 10.1080/13563460903288247), (ISSN: 1356 3467, 1469 9923).  Paterson M. (2012). Who and what are carbon markets for? Politics and the development of climate  policy, Climate Policy 12 82 97 pp. (DOI: 10.1080/14693062.2011.579259), (ISSN: 1469 3062).  Pattberg P. (2010). Public private partnerships in global climate governance, Wiley Interdisciplinary  Reviews: Climate Change 1 279 287 pp. (DOI: 10.1002/wcc.38), (ISSN: 17577780, 17577799).  Pearce D. (2006). The political economy of an energy tax: The United Kingdom s Climate Change  Levy, Energy Economics 28 149 158 pp. . Available at:  http://ideas.repec.org/a/eee/eneeco/v28y2006i2p149 158.html.  Pearce D. (2012). Policy Forum: Designing a Carbon Price Policy: Empirical Uncertainties in Climate  Policy Implementation, Australian Economic Review 45 114 124 pp. (DOI: 10.1111/j.1467 8462.2011.00669.x), (ISSN: 1467 8462).  Pegels A. (2010). Renewable energy in South Africa: Potentials, barriers and options for support,  Energy Policy 38 4945 4954 pp. (DOI: 10.1016/j.enpol.2010.03.077), (ISSN: 0301 4215).  Perdan S., and A. Azapagic (2011). Carbon Trading: Current Schemes and Future Developments,  Energy Policy 39 6040 6054 pp. (DOI: 10.1016/j.enpol.2011.07.003), (ISSN: 0301 4215).  Pezzey J.C.V., S. Mazouz, and F. Jotzo (2010). The Logic Of Collective Action And Australia s Climate  Policy. Australian Agricultural and Resource Economics Society, Adelaide, Australia. 19 pp. Available  at: http://ideas.repec.org/p/ags/aare10/59577.html.  Pimentel D., R. Lal, and J. Singmaster (2010). Carbon capture by biomass and soil are sound: CO2  burial wastes energy, Environment, Development and Sustainability 12 447 448 pp. (DOI:  10.1007/s10668 010 9236 x), (ISSN: 1387 585X, 1573 2975).  Pinkse J., and A. Kolk (2007). Multinational Corporations and Emissions Trading: Strategic Responses  to New Institutional Constraints, European Management Journal 25 441 452 pp. .  Pinkse J., and A. Kolk (2009). International Business and Global Climate Change. Taylor & Francis US,  New York; Oxford, 215 pp., (ISBN: 9780415415521). .  Polinsky M. (1979). Controlling Externalities and Protecting Entitlements: Property Right, Liability  Rule, and Tax Subsidy Approaches, The Journal of Legal Studies 8 1 48 pp. (DOI: 10.2307/724046),  (ISSN: 00472530).  94 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Popp D. (2002). Induced Innovation and Energy Prices, The American Economic Review 92 160 180  pp. .  Popp D. (2003). Pollution control innovations and the Clean Air Act of 1990, Journal of Policy  Analysis and Management 22 641 660 pp. .  Popp D., I. Hascic, and N. Medhi (2010a). Technology and the diffusion of renewable energy, Energy  Economics 33 648 662 pp. .  Popp D., R.G. Newell, and A.B. Jaffe (2010b). Energy, the environment, and technological change.  In: Handbook of the economics of innovation. B. Hall, N. Rosenberg, (eds.), North Holland,  Amsterdam; Boston pp.873 937(ISBN: 2210 8807).  Posner R. (2010). The Politics of Vertical Diffusion: The States and Climate Change. In: Introduction:  The Challenges of U.S. Climate Governance. Brookings Institution, Washington DC pp.73 99.  Potters J., and R. Sloof (1996). Interest Groups: A survey of empirical models that try to assess their  influence, European Journal of Political Economy 12 403 442 pp. (DOI: 10.1016/S0176 2680(96)00008 0), (ISSN: 0176 2680).  Powell W.E., and P.J. DiMaggio (Eds.) (1991). The New Institutionalism in Organizational Analysis.  University of Chicago Press, Chicago, IL, 486 pp., (ISBN: 9780226677095). .  Price L., C. Galitsky, K.J. Kramer, and A. McKane (2008). International Experience with Key Program  Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target Setting  Programs. Lawrence Berkeley National Lab, Berkeley, CA, US. 43 pp.  Puppim de Oliveira J.A. (2009). The implementation of climate change related policies at the  subnational level: An analysis of three countries, Habitat International 33 253 259 pp. (DOI:  10.1016/j.habitatint.2008.10.006), (ISSN: 0197 3975).  Qi Y., L. Ma, H. Zhang, and H. Li (2008). Translating a Global Issue Into Local Priority: China s Local  Government Response to Climate Change, The Journal of Environment & Development 17 379 400  pp. (DOI: 10.1177/1070496508326123), (ISSN: 1070 4965, 1552 5465).  Rabe B.G. (2009). Second Generation Climate Policies in the States: Proliferation, Diffusion, and  Regionalization. In: Changing Climates in North American Politics. H. Selin, S.D. Vandeveer, (eds.),  Massachusetts Institute of Technology, pp.67 86.  Rabe B.G. (2010). Greenhouse Governance: Addressing Climate Change in America. In: Introduction:  The Challenges of U.S. Climate Governance. Brookings Institution, Washington DC pp.17.  Rabe B.G., and C.P. Borick (2012). Carbon Taxation and Policy Labeling: Experience from American  States and Canadian Provinces, Review of Policy Research 29 358 382 pp. (DOI: 10.1111/j.1541 1338.2012.00564.x), (ISSN: 1541 1338).  Radaelli C.M., and V.A. Schmidt (2004). Policy change and discourse in Europe: conceptual and  methodological issues, West European Politics 27 183 210 pp. .  Ragwitz M., and S. Steinhilber (2013). Effectiveness and efficiency of support schemes for electricity  from renewable energy sources, Wiley Interdisciplinary Reviews: Energy and Environment (DOI:  10.1002/wene.85), (ISSN: 2041 840X).  95 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Ramey V.A., and D.J. Vine (2010). Oil, Automobiles, and the U.S. Economy: How Much Have Things  Really Changed? National Bureau of Economic Research, Cambridge, Mass, 53 pp. Available at:  http://www.nber.org/pap.  Rausch S., G.E. Metcalf, and J.M. Reilly (2011). Distributional impacts of carbon pricing: A general  equilibrium approach with micro data for households, Energy Economics 33 S20 S33 pp. (DOI:  10.1016/j.eneco.2011.07.023), (ISSN: 01409883).  Rausch S., G.E. Metcalf, J.M. Reilly, and S. Paltsev (2010). Distributional Implications of Alternative  U.S. Greenhouse Gas Control Measures, The B.E. Journal of Economic Analysis & Policy 10 45 pp. .  Available at: http://www.degruyter.com.ezproxy.library.tufts.edu/view/j/bejeap.2010.10.issue 2/bejeap.2010.10.2.2537/bejeap.2010.10.2.2537.xml?rskey=XUopMw&result=1&q=rausch.  Ravindranath N.H. (2007). Mitigation and adaptation synergy in forest sector, Mitigation and  Adaptation Strategies for Global Change 12 843 853 pp. (DOI: 10.1007/s11027 007 9102 9), (ISSN:  1381 2386, 1573 1596).  Regional Greenhouse Gas Initiative, Inc. (2013). RGGI States Propose Lowering Regional CO2  Emissions Cap 45%, Implementing a More Flexible Cost Control Mechanism. . Available at:  http://www.rggi.org/docs/PressReleases/PR130207_ModelRule.pdf.  Republic of South Africa (2011). National Climate Change Response White Paper. Republic of South  Africa. 48 pp. Available at: www.info.gov.za/view/DynamicAction?pageid=632&myID=315325.  Rezessy S., and P. Bertoldi (2011). Voluntary Agreements in the Field of Energy Efficiency and  Emission Reduction: review and analysis of experiences in the European Union, Energy Policy 39  7121 7129 pp. (ISSN: 0301 4215).  Richerzhagen C., and I. Scholz (2008). China s capacities for mitigating climate change, World  Development 36 308 324 pp. (DOI: 10.1016/j.worlddev.2007.06.010), (ISSN: 0305750X).  Rimmer M. (2009). The road to Copenhagen: intellectual property and climate change, Journal of  Intellectual Property Law & Practice 4 784 788 pp. .  Rodrik D. (2007). One Economics, Many Recipes: Globalization, Institutions, and Economic Growth.  Princeton University Press, Princeton, 280 pp., (ISBN: 9780691129518 0691129517 9780691141176  0691141177). .  Ronnen U. (1991). Minimum Quality Standards, Fixed Costs, and Competition, The RAND Journal of  Economics 22 490 504 pp. (DOI: 10.2307/2600984), (ISSN: 0741 6261).  Rootes C. (2011). Denied, deferred, triumphant? Climate change, carbon trading and the Greens in  the Australian federal election of 21 August 2010, Environmental Politics 20 410 417 pp. (DOI:  10.1080/09644016.2011.573363), (ISSN: 0964 4016).  La Rovere E.L. (2011). Mitigation Actions in Developing Countries: Case Study for Brazil.  CENTROCLIMA/PPE/COPPE/UFRJ, RIo de Janeiro.  La Rovere E.L., A.S. Pereira, and A.F. Simoes (2011). Biofuels and Sustainable Energy Development  in Brazil, World Development 39 1026 1036 pp. .  96 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Rowlands I.H. (2000). Beauty and the beast? BP s and Exxon s positions on global climate change,  Environment and Planning C: Government and Policy 18 339 354 pp. (DOI: 10.1068/c9752), (ISSN:  0263 774X, 1472 3425).  Sarasini S. (2013). Institutional work and climate change: Corporate political action in the Swedish  electricity industry, Energy Policy 56 480 489 pp. (DOI: 10.1016/j.enpol.2013.01.010), (ISSN: 0301 4215).  Sartor O., and N. Berghmans (2011). Carbon Price Flaw? The impact of the UK s CO2 price support  on the EU ETS, Climate Brief n. 6 9 pp. . Available at: http://www.cdcclimat.com/Climate Brief no6 Carbon Price.html?lang=en.  Schmalensee R. (2012). Evaluating Policies to Increase Electricity Generation from Renewable  Energy, Review of Environmental Economics and Policy 6 45 64 pp. (DOI: 10.1093/reep/rer020),  (ISSN: 1750 6816, 1750 6824).  Schmalensee R., and R.N. Stavins (2013). The SO2 Allowance Trading System: The Ironic History of a  Grand Policy Experiment, The Journal of Economic Perspectives 27 103 121 pp. (DOI:  10.1257/jep.27.1.103).  Schmidt T.S., R. Born, and M. Schneider (2012). Assessing the costs of photovoltaic and wind power  in six developing countries, Nature Climate Change 2 548 553 pp. (DOI: 10.1038/nclimate1490),  (ISSN: 1758 678X).  Schmitt C.B., N.D. Burgess, L. Coad, A. Belokurov, C. Besançon, L. Boisrobert, A. Campbell, L. Fish,  D. Gliddon, K. Humphries, V. Kapos, C. Loucks, I. Lysenko, L. Miles, C. Mills, S. Minnemeyer, T.  Pistorius, C. Ravilious, M. Steininger, and G. Winkel (2009). Global analysis of the protection status  of the world s forests, Biological Conservation 142 2122 2130 pp. (DOI:  10.1016/j.biocon.2009.04.012), (ISSN: 00063207).  Schneider S.H., and L.H. Goulder (1997). Achieving Low Cost Emissions Targets, Nature 389 13 14  pp.   Schreurs M.A. (2008). From the Bottom Up: Local and Subnational Climate Change Politics, The  Journal of Environment & Development 17 343 355 pp. (DOI: 10.1177/1070496508326432), (ISSN:  1070 4965, 1552 5465).  Shobe W., and D. Burtraw (2012). Rethinking Environmental Federalism in a Warming World. Center  for Economic and Policy Studies. . Available at: http://ideas.repec.org/p/vac/wpaper/wp12 01.html.  Sims R., P. Mercado, W. Krewitt, G. Bhuyan, D. Flynn, H. Holttinen, G. Jannuzzi, S. Khennas, Y. Liu,  L.J. Nilsson, J. Ogden, K. Ogimoto, M. O Malley, H. Outhred, O. Ulleberg, and F. van Hulle (2012).  Integration of Renewable energy into Present and Future Energy Systems. In: IPCC Special Report on  Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y.  Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von  Stechow (eds)]. Cambridge University Press, Cambridge, UK; New York, NY, USA pp.609 706.  Sinn H. W. (2008). Public policies against global warming: a supply side approach, International Tax  and Public Finance 15 360 394 pp. . Available at:  http://ideas.repec.org/a/kap/itaxpf/v15y2008i4p360 394.html.  Sinn H. W. (2012). Green Paradox. MIT Press, Cambridge, MA, 288 pp., (ISBN: 0262016680). .  97 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Skjaerseth J.B., G. Bang, and M.A. Schreurs (2013). Explaining Growing Climate Policy Differences  Between the European Union and the United States, Global Environmental Politics 61 80 pp. (DOI:  10.1162/GLEP_a_00198), (ISSN: 1526 3800).  Skjaerseth J.B., and T. Skodvin (2001). Climate Change and the Oil Industry: Common Problems,  Different Strategies, Global Environmental Politics 1 43 64 pp. (DOI:  10.1162/152638001317146363), (ISSN: 1526 3800).  Skjaerseth J.B., and J. Wettestad (2008). EU Emissions Trading: Initiation, Decision Making and  Implementation. Ashgate Publishing, Ltd., Burlington, VT, USA; London, UK, 240 pp., (ISBN:  9780754686408). .  Skjaerseth J.B., and J. Wettestad (2009). The Origin, Evolution and Consequences of the EU  Emissions Trading System, Global Environmental Politics 9 101 122 pp. (DOI:  10.1162/glep.2009.9.2.101), (ISSN: 1526 3800).  Skodvin T., A.T. Gullberg, and S. Aakre (2010). Target group influence and political feasibility: the  case of climate policy design in Europe, Journal of European Public Policy 17 854 873 pp. (DOI:  10.1080/13501763.2010.486991), (ISSN: 1350 1763).  Skoufias E. (2012). The Poverty and Welfare Impacts of Climate Change: Quantifying the Effects,  Identifying the Adaptation Strategies. World Bank, Washington D.C., 128 pp., (ISBN: 9780821396117   0821396110  9780821396124 0821396129). .  Smallridge D., B. Buchner, C. Trabacchi, M. Netto, J. J. Gomes Lorenzo, and L. Serra (2013). The  Role of National Development Banks in Catalyzing International Climate Finance. Inter American  Development Bank. . Available at: http://www.iadb.org/en/publications/publication detail,7101.html?id=67857.  Smith J.B., T. Dickinson, J.D.B. Donahue, I. Burton, E. Haites, R.J.T. Klein, and A. Patwardhan  (2011). Development and climate change adaptation funding: coordination and integration, Climate  Policy 11 987 1000 pp. (DOI: 10.1080/14693062.2011.582385), (ISSN: 1469 3062).  Smith P., and J.E. Olesen (2010). Synergies Between the Mitigation of, and Adaptation to, Climate  Change in Agriculture, The Journal of Agricultural Science 148 543 552 pp. (DOI:  10.1017/S0021859610000341).  Social Learning Group (2001). Learning to Manage Global Environmental Risks. 2. A Functional  Analysis of Social Responses to Climate Change, Ozone Depletion, and Acid Rain. MIT Press,  Cambridge, MA, 258 pp., (ISBN: 9780262692397). .  Somanathan E., R. Prabhakar, and B.S. Mehta (2009). Decentralization for cost effective  conservation, Proceedings of the National Academy of Sciences of the United States of America 106  4143 4147 pp. (DOI: 10.1073/pnas.0810049106), (ISSN: 0027 8424).  Sorrell S. (2009). Jevons  Paradox revisited: The evidence for backfire from improved energy  efficiency, Energy Policy 37 1456 1469 pp. (DOI: 10.1016/j.enpol.2008.12.003), (ISSN: 0301 4215).  Sorrell S., J. Dimitropoulos, and M. Sommerville (2009). Empirical estimates of the direct rebound  effect: A review, Energy Policy 37 1356 1371 pp. (DOI: 10.1016/j.enpol.2008.11.026), (ISSN:  03014215).  98 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Sovacool B.K. (2011a). An International Comparison of Four Polycentric Approaches to Climate and  Energy Governance, Energy Policy 39 3832 3844 pp. (ISSN: 0301 4215).  Sovacool B.K. (2011b). An international comparison of four polycentric approaches to climate and  energy governance, Energy Policy 39 3832 3844 pp. (ISSN: 0301 4215).  Stallworthy M. (2009). Legislating Against Climate Change: A UK Perspective on a Sisyphean  Challenge, The Modern Law Review 72 412 436 pp. (DOI: 10.1111/j.1468 2230.2009.00752.x), (ISSN:  1468 2230).  Stavins R.N. (2003). Experience with Market Based Environmental Policy Instruments. Elsevier. 355 435 pp. Available at: http://ideas.repec.org/h/eee/envchp/1 09.html.  Steinmo S., K. Thelen, and F. Longstreth (Eds.) (1992). Structuring Politics: Historical Institutionalism  in Comparative Analysis. Cambridge University Press, Cambridge, UK; New York, 272 pp., (ISBN:  9780521428309). .  Stenqvist C., and L.J. Nilsson (2012). Energy efficiency in energy intensive industries an evaluation  of the Swedish voluntary agreement PFE, Energy Efficiency 5 225 241 pp. (DOI: 10.1007/s12053 011 9131 9), (ISSN: 1570 646X, 1570 6478).  Sterk W. (2010). Nationally Appropriate Mitigation Actions: definitions, issues, and options.  Wuppertal Institute for Climate, Environment and Energy.  Sterner T. (2007). Fuel taxes: An important instrument for climate policy, Energy Policy 35 3194 3202 pp. .  Sterner T. (2012). Distributional effects of taxing transport fuel, Energy Policy 41 75 83 pp. (DOI:  10.1016/j.enpol.2010.03.012), (ISSN: 0301 4215).  Sterner T., and J. Coria (2012). Policy Instruments for Environmental and Natural Resource  Management. RFF Press, Washington, D.C., 528 pp., (ISBN: 9781617260971  1617260975   9781617260988  1617260983). .  Sterner T., M. Damon, G. Kohlin, and M. Visser (2012). Capacity Building to Deal With Climate  Challenges Today and in the Future, The Journal of Environment & Development 21 71 75 pp. (DOI:  10.1177/1070496511435672), (ISSN: 1070 4965, 1552 5465).  Sterner T., and B. Turnheim (2009). Innovation and diffusion of environmental technology:  Industrial NOx abatement in Sweden under refunded emission payments, Ecological Economics 68  2996 3006 pp. (DOI: 10.1016/j.ecolecon.2009.06.028), (ISSN: 09218009).  Stewart R., R. Biesbroek, S. Binnerup, T.R. Carter, C. Cowan, T. Henrichs, S. Loquen, H. Mela, M.  Morecroft, M. Reese, and D. Rey (2009). Europe Adapts to Climate Change: Comparing National  Adaptation Strategies. Partnership for European Environmental Research, Helsinki, 280 pp., (ISBN:  978 952 11 3450 0). .  Sturm B. (2008). Market Power in Emissions Trading Markets Ruled by a Multiple Unit Double  Auction: Further Experimental Evidence, Environmental and Resource Economics 40 467 487 pp.  (DOI: 10.1007/s10640 007 9165 9).  99 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Sugino M., and T. Arimura (2011). The effects of voluntary action plans on energy saving  investment: an empirical study of the Japanese manufacturing sector, Environmental Economics and  Policy Studies 13 237 257 pp. (DOI: 10.1007/s10018 011 0015 1), (ISSN: 1432 847X).  Sumner J., L. Bird, and H. Dobos (2011). Carbon Taxes: a review of experience and policy design  considerations, Climate Policy 11 922 943 pp. (DOI: 10.3763/cpol.2010.0093), (ISSN: 14693062,  17527457).  Szarka J. (2013). From Climate Advocacy to Public Engagement: An Exploration of the Roles of  Environmental Non Governmental Organisations, Climate 1 12 27 pp. (DOI: 10.3390/cli1010012),  (ISSN: 2225 1154).  Tanikawa H. (2004). Incentive Schemes for Japanese Companies  Voluntary Environmental Initiatives   Empirical Analysis Based on Case Studies and Questionnaires (Japanese). Research Institute of  Economy, Trade and Industry (RIETI). 55 pp. Available at:  http://ideas.repec.org/p/eti/rdpsjp/04030.html.  Teng F., and A. Gu (2007). Climate Change: national and local policy opportunities in China,  Environmental Sciences 4 183 194 pp. (DOI: 10.1080/15693430701742735), (ISSN: 1569 3430).  Thomson R., and P. Jensen (2013). The Effects of Government Subsidies on Business R&d  Employment: Evidence from Oecd Countries, National Tax Journal 66 281 309 pp. (ISSN: 00280283).  Thornton N. (2010). Realising Development Effectiveness: Making the Most of Climate Change  Finance in Asia and the Pacific. Capacity Development for Development Effectiveness Facility. .  Available at: www.agulhas.co.uk/cms_files/14/942_Report_lowres_091110.pdf.  Tietenberg T.H. (2006). Emissions Trading: Principles And Practice 2nd Edition. Resources for the  Future, Washington, D.C., 247 pp., (ISBN: 9781933115306). .  Van Tilburg X., L. Wurtenberger, H. Coninck, and S. Bakker (2011). Paving the Way for Low Carbon  Development Strategies. Energy Research Centre of the Netherlands.  Tinbergen J. (1970). On the Theory of Economic Policy. Elsevier Science & Technology, 84 pp., (ISBN:  0720431301). .  Tsang S., and A. Kolk (2010a). The Evolution of Chinese Policies and Governance Structures on  Environment, Energy and Climate, Environmental Policy and Governance 20 180 196 pp. .  Tsang S., and A. Kolk (2010b). The Evolution of Chinese Policies and Governance Structures on  Environment, Energy and Climate, Environmental Policy and Governance 20 180 196 pp. (DOI:  10.1002/eet.540), (ISSN: 1756 9338).  Tyler E. (2010). Aligning South African energy and climate change mitigation policy, Climate Policy 10  575 588 pp. (DOI: 10.3763/cpol.2010.0094), (ISSN: 14693062, 17527457).  U.K. (2008). Climate Change Act 2008. . Available at:  http://www.legislation.gov.uk/ukpga/2008/27/contents.  U.S. National Research Council (2001). Energy Research at DOE: Was It Worth It? Energy Efficiency  and Fossil Energy Research 1978 to 2000. National Academy Press, Washington  D.C., 224 pp.  Available at: http://www.nap.edu/openbook.php?isbn=0309074487.  100 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Uchiyama Y., T. Aoyagi, K. Asade, M. Mashita, R. Matsuhashi, and K. Yoshiokoa (2012). Keidanren  Voluntary Action Plan Evaluation Report Fiscal 2011. Evaluation Commitee for the Voluntary Action  Plan on the Environment. . Available at: www.keidanren.or.jp/policy/2012/029.pdf.  UNFCCC (2001). Report of the Conference of the Parties on Its Seventh Session. United Nations  Framework on Climate Change, Marrakesh. 69 pp. Available at:  unfccc.int/resource/docs/cop7/13a01.pdf.  UNFCCC (2007). Bali Action Plan. Decision 1/CP.13. United Nations Framework on Climate Change.  UNFCCC (2011). Outcome of the work of the Ad Hoc Working Group on Long term Cooperative  Action under the Convention (2/CP.17). United Nations Framework on Climate Change.  UNFCCC (2012). Benefits of the Clean Development Mechanism. United Nations Framework on  Climate Change. . Available at: http://cdm.unfccc.int/about/dev_ben/index.html.  United Nations (1992). Report of the United Nations Conference on Environment and Development.  United Nations, Rio de Janeiro. . Available at: www.un.org/documents/ga/conf151/aconf15126 1annex1.htm.  United Nations (2002). Report of the World Summit on Sustainable Development. United Nations. 62  pp. Available at: http://library.arcticportal.org/1679/.  Unruh G.C. (2000). Understanding Carbon Lock In, Energy Policy 28 817 830 pp. . Available at:  http://ideas.repec.org/a/eee/enepol/v28y2000i12p817 830.html.  US EPA (2013). Voluntary Energy and Climate Programs. . Available at:  http://www.epa.gov/climatechange/EPAactivities/voluntaryprograms.html.  Vanderschuren M., T.E. Lane, and W. Korver (2010). Managing energy demand through transport  policy: What can South Africa learn from Europe?, Energy Policy 38 826 831 pp. (DOI:  10.1016/j.enpol.2009.10.029), (ISSN: 0301 4215).  Viola E., and M. Franchini (2012). Public Awareness, Social Transformations and Emissions  Reductions. In: Feeling the Heat: The Politics of Climate Policy in Rapidly Industrializing Countries. I.  Bailey, H. Compston, (eds.), Palgrave Macmillan, pp.175 204(ISBN: 9780230280403).  Wakabayashi M. (2013). Voluntary business activities to mitigate climate change: Case studies in  Japan, Energy Policy (DOI: 10.1016/j.enpol.2013.08.027), (ISSN: 0301 4215).  Walker W. (2000). Entrapment in large technology systems: institutional commitment and power  relations, Research Policy 29 833 846 pp. (DOI: 10.1016/S0048 7333(00)00108 6), (ISSN: 0048 7333).  Wapner P. (1995). Politics beyond the State Environmental Activism and World Civic Politics, World  Politics 47 311 340 pp. (DOI: 10.1017/S0043887100016415).  Weidner H., and L. Mez (2008). German Climate Change Policy, The Journal of Environment &  Development 17 356 378 pp. (DOI: 10.1177/1070496508325910).  Weitzman M.L. (1974). Prices vs. Quantities, The Review of Economic Studies 41 477 pp. (DOI:  10.2307/2296698), (ISSN: 00346527).  101 of 102   Final Draft  Chapter 15  IPCC WGIII AR5   Wilson C., A. Grubler, K.S. Gallagher, and G.F. Nemet (2012). Marginalization of end use  technologies in energy innovation for climate protection, Nature Climate Change 2 780 788 pp.  (DOI: 10.1038/nclimate1576), (ISSN: 1758 678X).  World Trade Organization (1994). Marrakesh Agreement Establishing the World Trade Organization.  World Trade Organization, Geneva.  Yamaguchi M. (2012). Climate Change Mitigation: A Balanced Approach to Climate Change (Lecture  Notes in Energy). Springer, 288 pp., (ISBN: 1447142276). .  Young O.R. (2002). The Institutional Dimensions of Environmental Change: Fit, Interplay, and Scale.  MIT Press, Cambridge, MA, 237 pp., (ISBN: 0262740249). .  Younger S.D., D.E. Sahn, S. Haggblade, and P.A. Dorosh (1999). Tax Incidence in Madagascar: An  Analysis Using Household Data, The World Bank Economic Review 13 303 331 pp. (DOI:  10.1093/wber/13.2.303), (ISSN: 0258 6770, 1564 698X).  Yuan C., S. Liu, Z. Fang, and J. Wu (2009). Research on the energy saving effect of energy policies in  China: 1982 2006, Energy Policy 37 2475 2480 pp. (DOI: 10.1016/j.enpol.2009.03.010), (ISSN: 0301 4215).  Zingel J. (2011). Climate Change Financing and Aid Effectiveness: South African Country Analysis.  Organisation for Economic Co Operation and Development, Development Assistance Committee and  African Development Bank. . Available at: www.oecd.org/dataoecd/23/10/48458419.pdf.    102 of 102   Working Group III Mitigation of Climate Change Chapter 16 Cross-cutting Investment and Finance Issues   A report accepted by Working Group III of the IPCC but not approved in detail.   Note:  This document is the copy edited version of the final draft Report, dated 17 December 2013, of the  Working  Group  III  contribution  to  the  IPCC  5th  Assessment  Report  "Climate  Change  2014:  Mitigation of Climate Change" that was accepted but not approved in detail by the 12th Session of  Working Group III and the 39th Session of the IPCC on 12 April 2014 in Berlin, Germany. It consists  of the full scientific, technical and socio economic assessment undertaken by Working Group III.   The  Report  should  be  read  in  conjunction  with  the  document  entitled  Climate  Change  2014:  Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report    Changes to the underlying Scientific/Technical Assessment  to ensure consistency with the approved  Summary  for  Policymakers  (WGIII:  12th/Doc.  2a,  Rev.2)  and  presented  to  the  Panel  at  its  39th  Session.  This  document  lists  the  changes  necessary  to  ensure  consistency  between  the  full  Report  and  the  Summary  for  Policymakers,  which  was  approved  line by line  by  Working  Group  III  and  accepted by the Panel at the aforementioned Sessions.  Before publication, the Report (including text, figures and tables) will undergo final quality check as  well as any error correction as necessary, consistent with the IPCC Protocol for Addressing Possible  Errors. Publication of the Report is foreseen in September/October 2014.   Disclaimer:  The designations employed and the presentation of material on maps do not imply the expression of  any opinion whatsoever on the part of the Intergovernmental Panel on Climate Change concerning  the  legal  status  of  any  country,  territory,  city  or  area  or  of  its  authorities,  or  concerning  the  delimitation of its frontiers or boundaries.  Final Draft  Chapter:  Title:  Author(s):    16  Chapter 16  IPCC WGIII AR5  Cross cutting Investment and Finance Issues  CLAs:  LAs:  Sujata Gupta, Jochen Harnisch  Dipal Chandra Barua, Lloyd Chingambo, Paul Frankel, Raúl Jorge Garrido  Vázquez, Luis Gómez Echeverri, Erik Haites, Yongfu Huang, Raymond  Kopp, Benoit Lefevre, Haroldo de Oliveira Machado Filho, Emanuele  Massetti  Katrin Enting, Martin Stadelmann, Murray Ward, Silvia Kreibiehl  Carlo Carraro, Mohammed Said Karrouk, Ignacio Perez Arriaga  Katrin Enting        CAs:  REs:  CSA:    1 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Chapter 16: Cross Cutting Investment and Finance issues  Contents  Executive Summary ............................................................................................................................ 3  16.1 Introduction ................................................................................................................................ 6  16.2 Scale of financing at national, regional, and international level in the short , mid , and long term ............................................................................................................................................ 7  16.2.1 Current financial flows and sources .................................................................................... 7  16.2.1.1 Estimates of current climate finance ........................................................................... 9  16.2.1.2 Current sources of climate finance ............................................................................ 12  16.2.1.3 Recent developments ................................................................................................ 13  16.2.2 Future low carbon investment  ......................................................................................... 14  . 16.2.2.1 Investment needs ...................................................................................................... 14  16.2.2.2 Incremental costs ....................................................................................................... 19  16.2.3 Raising public funding by developed countries for climate finance in developing  countries ............................................................................................................................ 19  16.3 Enabling environments ............................................................................................................. 22  16.4 Financing low carbon investments, opportunities, and key drivers ........................................ 23  16.4.1 Capital managers and investment decisions ..................................................................... 23  16.4.2 Challenges for low carbon investment ............................................................................. 24  16.4.3 Financial instruments ........................................................................................................ 26  16.4.3.1 Reducing investment risks ......................................................................................... 27  16.4.3.2 Reducing cost of and facilitating access to capital ............................................................. 28  16.4.3.3 Enhancing cash flow  .................................................................................................. 29  . 16.5 Institutional arrangements for mitigation financing ................................................................ 29  16.5.1 International arrangements .............................................................................................. 29  16.5.2 National and sub national arrangements ......................................................................... 31  16.5.3 Performance in a complex institutional landscape ........................................................... 33  16.6 Synergies and tradeoffs between financing mitigation and adaptation .................................. 34  16.6.1 Optimal balance between mitigation and adaptation and time dimension ..................... 34  16.6.2 Integrated financing approaches ...................................................................................... 35  16.7 Financing developed countries  mitigation activities ............................................................... 36  16.8 Financing mitigation activities in and for developing countries including for technology  development, transfer, and diffusion ...................................................................................... 38  16.9 Gaps in knowledge and data .................................................................................................... 41  16.10 Frequently Asked Questions ................................................................................................... 43    2 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Executive Summary  For the first time, an assessment report by the Intergovernmental Panel for Climate Change (IPCC)  contains a chapter dedicated to investment and finance. These are the chapter s key findings:  Scientific literature on investment and finance to address climate change is still very limited and  knowledge gaps are substantial; there are no agreed definitions for climate investment and  climate finance. Quantitative data are limited, relate to different concepts, and are incomplete.  Accounting systems are highly imperfect. Estimates are available for current total climate finance,  total climate finance provided to developing countries, public climate finance provided to developing  countries, and climate finance under the United Nations Framework Convention on Climate Change  (UNFCCC), as well as future incremental investment and incremental cost for mitigation measures.  Climate finance relates both to adaptation and mitigation, while under the scope of this chapter,  estimates of future investment needs are presented only for mitigation. [Section 16.1]  Total climate finance for mitigation and adaptation is estimated at 343 to 385 billion USD  (2010/11/12 USD) per year using a mix of 2010, 2011, and 2012 data, almost evenly being invested  in developed and developing countries (limited evidence, medium agreement). The figures reflect  the total financial flow for the underlying investments, not the incremental investment, i.e., the  portion attributed to the emission reductions. Around 95% of reported total climate finance is for  mitigation (limited evidence, high agreement). [16.2.1.1]  The total climate finance currently flowing to developing countries is estimated to be between  39 to 120 billion USD per year using a mix of 2009, 2010, 2011, and 2012 data  (2009/2010/2011/2012 USD) (limited evidence, medium agreement). This range covers public and  the more uncertain flows of private funding for mitigation and adaptation. Public climate finance is  estimated at 35 49 billion USD (2011/2012 USD) (medium confidence). Most public climate finance  provided to developing countries flows through bilateral and multilateral institutions, usually as  concessional loans and grants. Robust information on levels of private sector flows from developed  to developing countries is virtually unavailable. Climate finance under the UNFCCC is funding  provided to developing countries by Annex II Parties. The climate finance reported by Annex II  Parties averaged nearly 10 billion USD per year from 2005 to 2010 (2005 2010 USD) (medium  confidence). Between 2010 and 2012, the  fast start finance  (FSF) provided by some developed  countries amounted to over 10 billion USD per year (2010/2011/2012 USD) (medium confidence).  [16.2.1.1]  Emission patterns that limit temperature increase from pre industrial level to no more than 2°C  require considerably different patterns of investment. A limited number of studies have examined  the investment needs to transform the economy to limit warming to 2°C. Information is largely  restricted to energy use with global total annual investment in the energy sector at about USD 1200  billion. In the results for these scenarios, which are consistent to keeping carbon dioxide equivalent  (CO2eq) concentration in the interval 430 530 ppm until 2100, annual investment in fossil fired  power plants without carbon dioxide capture and storage (CCS) would decline by 30 (20%) (2 to 166)  billion USD during the period 2010 2029, compared to the reference scenarios (limited evidence,  medium agreement). Investment in low emissions generation technologies (renewable, nuclear, and  fossil fuels with CCS) would increase by 147 (100%) (31 to 360) billion USD per year during the same  period (limited evidence, medium agreement) in combination with an increase by 336 (1 to 641)  billion USD in energy efficiency investments in the building, transport, and industry sector (limited  evidence, medium agreement). Higher energy efficiency and the shift to low emission energy sources  contribute to a reduction in the demand for fossil fuels, thus causing a decline in investment in fossil  fuel extraction, transformation, and transportation. Scenarios suggest that the average annual  reduction of investment in fossil fuel extraction in 2010 2029 would be 116 ( 8 to 369) billion USD  (limited evidence, medium agreement). Such  spillover  effects could yield adverse effects on    3 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  economies, especially of countries that rely heavily on exports of fossil fuels. Model results suggest  that deforestation could be reduced against current deforestation trends by 50% with an investment  of 21 to 35 billion USD per year (low confidence). Information on investment needs in other sectors  in addition to energy efficiency, e.g., to abate process or non CO2 emissions is virtually unavailable.  [16.2.2]  Resources to address climate change need to be scaled up considerably over the next few decades  both in developed and developing countries (medium evidence, high agreement). Increased  financial support by developed countries for mitigation (and adaptation) measures in developing  countries will be needed to stimulate the increased investment. Developed countries have  committed to a goal of jointly mobilizing 100 billion USD per year by 2020 in the context of  meaningful mitigation action and transparency on implementation. The funding could come from a  variety of sources   public and private, bilateral and multilateral, including alternative sources of  finance. Studies of how 100 billion USD per year could be mobilized by 2020 conclude that it is  challenging but feasible. [16.2]  Public revenues can be raised by collecting carbon taxes and by auctioning carbon allowances  (high confidence). Putting a price on greenhouse gas (GHG) emissions, through a carbon tax or  emissions trading, alters the rate of return on high  and low carbon investments. It makes low emission technologies attract more investment and at the same time it raises a considerable amount  of revenue that can be used for a variety of purposes, including climate finance. These carbon related sources are already sizeable in some countries [16.2.1.2]. The consideration of alternative  sources of public revenue like taxes on international bunker fuels has the potential to generate  significant funds but is still in its infancy. Reducing fossil fuel subsidies would lower emissions and  release public funds for other purposes [16.2.3].  The private sector plays a central role for mitigation within an appropriate enabling environment  (medium evidence, high agreement). Its contribution is estimated at 267 billion USD per year in 2010  and 2011 (2010/2011 USD) and at 224 billion USD (2011/2012 USD) per year in 2011 and 2012 on  average, which represents around 74% and 62% of overall climate finance, respectively (limited  evidence, medium agreement) [16.2.1]. In a range of countries, a large share of private sector  climate investment relies on low interest and long term loans as well as risk guarantees provided by  public sector institutions to cover the incremental costs and risks of many mitigation investments. In  many countries, therefore, the role of the public sector is crucial in helping these private  investments happen. A country s broader context including the efficiency of its institutions,  security of property rights, credibility of policies and other factors have a substantial impact on  whether private firms invest in new technologies and infrastructures. Those same broader factors  will probably have a big impact on whether and where investment occurs in response to mitigation  policies [16.3]. By the end of 2012, the 20 largest emitting developed and developing countries with  lower risk country grades for private sector investments covered 70% of global energy related CO2  emissions (low confidence). This makes them attractive for international private sector investment in  low carbon technologies. In many other countries, including most least developed countries, low carbon investment will often have to rely mainly on domestic sources or international public finance  [16.4.2].  A main barrier to the deployment of low carbon technologies is a low risk adjusted rate of return  on investment vis a vis high carbon alternatives often resulting in higher cost of capital (medium  evidence, high agreement). This is true in both developed and developing countries. Dedicated  financial instruments to address these barriers exist and include inter alia credit insurance to  decrease risk, renewable energy premiums to increase return, and concessional finance to decrease  the cost of capital. Governments can also alter the relative rates of return of low carbon investments  in different ways and help to provide an enabling environment. [16.3, 16.4]    4 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Appropriate governance and institutional arrangements at the national, regional, and  international level need to be in place for efficient, effective, and sustainable financing of  mitigation measures (high confidence). They are essential to ensure that financing to mitigate and  adapt to climate change responds to national needs and priorities and that national and  international activities are linked and do not contradict each other. An enabling environment at the  national level ensures efficient implementation of funds and risk reduction using international  resources, national funds, as well as national development and financial institutions. [16.5]  Important synergies and tradeoffs between financing mitigation and adaptation exist (medium  confidence). Available estimates show that adaptation projects get only a minor fraction of  international climate finance. Current analyses do not provide conclusive results on the most  efficient temporal distribution of funding on adaptation vis a vis mitigation. While the uncertainties  about specific pathways and relationships remain, and although there are different considerations  on its optimal balance, there is a general agreement that funding for both mitigation and adaptation  is needed. Moreover, there is an increasing interest in promoting integrated financing approaches,  addressing both adaptation and mitigation activities in different sectors and at different levels.  [16.6]  Increasing access to modern energy services for meeting basic cooking and lighting needs could  yield substantial improvements in human welfare at relatively low cost (medium confidence).  Shifting the large populations that rely on traditional solid fuels (such as unprocessed biomass,  charcoal, and coal) to modern energy systems and expanding electricity supply for basic human  needs could yield substantial improvements in human welfare for a relatively low cost; 72 95 billion  USD per year until 2030 to achieve nearly universal access.[16.8]    5 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  16.1   Introduction   This is the first time an assessment report by the Intergovernmental Panel on Climate Change (IPCC)  contains a chapter dedicated to investment and finance to address climate change. This reflects the  growing awareness of the relevance of these issues for the design of efficient and effective climate  policies.   The assessment of this topic is complicated by the absence of agreed definitions, sparse data from  disparate sources, and limited peer reviewed literature. Equity, burden sharing, and gender  considerations related to climate change are discussed in other chapters, inter alia Sections 3.3 and  4.6.2. This chapter does not include a separate discussion of these considerations in relation to  climate finance.  There is no agreed definition of climate finance (Haites, 2011; Stadelmann et al., 2011b; Buchner et  al., 2011; Forstater and Rank, 2012). The term  climate finance  is applied both to the financial  resources devoted to addressing climate change globally and to financial flows to developing  countries to assist them in addressing climate change. The literature includes multiple concepts  within each of these broad categories (Box 1.1). The specific mitigation and adaptation measures  whose costs qualify as  climate finance  also are not agreed. The measures included vary across  studies and often are determined by the data available1.    Box 16.1. Different concepts, different numbers Different concepts of climate finance are found in the literature. The corresponding values differ  significantly.   Financial resources devoted to addressing climate change globally:  Total climate finance includes all financial flows whose expected effect is to reduce net greenhouse  emissions and/or to enhance resilience to the impacts of climate variability and the projected  climate change. This covers private and public funds, domestic and international flows, expenditures  for mitigation and adaptation to current climate variability as well as future climate change. It covers  the full value of the financial flow rather than the share associated with the climate change benefit;  e.g., the entire investment in a wind turbine rather than the portion attributed to the emission  reductions. The estimate by Buchner et al. (2012, 2013b) of current climate finance of 343 to 385  billion USD (2010/2011/2012 USD) per year using a mix of 2010, 2011, and 2012 data, corresponds  roughly to this concept.   The incremental investment is the extra capital required for the initial investment for a mitigation or  adaptation project in comparison to a reference project. For example, the investment in wind  turbines less the investment that would have been required for the coal or natural gas generating  unit displaced. Since the value depends on the unknown investment in a hypothetical alternative,  the incremental investment is uncertain. Incremental investment for mitigation and adaptation  measures is not regularly estimated and reported, but estimates are available from models. It can be  positive or negative. Many agriculture and reducing emissions from deforestation and forest  degradation (REDD+) mitigation options that involve ongoing expenditures for labour and other  operating costs rather than investments are excluded.                                                                1  Most of the financial flow data in this chapter originate from 2010, 2011, and 2012 and were published in  USD. The exchange rates used by each source to convert other currencies to USD are not specified in the  published sources. In these cases, the published USD figure has been maintained and the base year is similar to  the year the commitment/investment/flow was announced/reported. If no base year is indicated, as for most  monetary values in Section 16.2.2, the base year is 2010.    6 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  The incremental costs reflect the cost of capital of the incremental investment and the change of  operating and maintenance costs for a mitigation or adaptation project in comparison to a reference  project. It can be calculated as the difference of the net present values of the two projects. Many  mitigation measures such as energy efficiency, renewables, and nuclear have a higher capital cost  and lower operating costs than the measures displaced. Frequently the incremental costs are lower  than the incremental investment. Values depend on the incremental investment as well as projected  operating costs, including fossil fuel prices, and the discount rate. Models can estimate the  incremental costs of energy supply and demand but data are not immediately available and  aggregate estimates cannot be provided. Estimates are available for single mitigation options  (see ,e.g., Chapter 7).  The macroeconomic costs of mitigation policy are the reductions of aggregate consumption or gross  domestic product induced by the reallocation of investments and expenditures induced by climate  policy. These costs do not account for the benefit of reducing anthropogenic climate change and  should thus be assessed against the economic benefit of avoided climate change impacts. Models  have traditionally provided estimates of the macroeconomic costs of climate policy (see Chapter 6).  Financial flows to developing countries to assist them in addressing climate change:  The total climate finance flowing to developing countries is the amount of the total climate finance  invested in developing countries that comes from developed countries. This covers private and  public funds for mitigation and adaptation. Estimates from a few studies suggest the current flow is  between 39 and 120 billion USD per year (2009 2012 USD).  Public climate finance provided to developing countries is the finance provided by governments and  bilateral and multilateral institutions for mitigation and adaptation activities in developing countries.  Most of the funds provided are concessional loans and grants. Estimates suggest that public climate  finance flows to developing countries were at 35 to 49 billion USD per year in 2011 and 2012  (2011/2012 USD).  Under the United Nations Framework Convention on Climate Change (UNFCCC), climate finance is  not well defined. Annex II Parties provide and mobilize funding for climate related activities in  developing countries. Most of the funds provided are concessional loans and grants. The climate  finance provided to developing countries reported by Annex II Parties averaged nearly 10 billion USD  per year from 2005 to 2010 (2005 2010 USD). In addition, some developed countries promised FSF  amounting to over 10 billion USD per year between 2010 and 2012 (2010/2011/2012 USD).  The rest of the chapter is structured as follows: Section 16.2 reviews estimates of current climate  finance corresponding to the different concepts in Box 1, projections of global incremental  investment and incremental costs for energy related mitigation measures to 2030, and options for  raising public funds for climate finance. Enabling factors that influence the ability to efficiently  generate and implement climate finance are discussed in Section 16.3. Section 16.4 considers  opportunities and key drivers for low carbon investments. Institutional arrangements for mitigation  finance are addressed in Section 16.5. Synergies and tradeoffs between financing mitigation and  adaptation are discussed in Section 16.6. The chapter concludes with sections devoted to financing  mitigation activities in developed (Section 16.7) and developing countries (Section 16.8) and a  review of important gaps of knowledge (Section 16.9).  16.2   Scale of financing at national, regional, and international level in the  short , mid , and long term   16.2.1    Current financial flows and sources  Figure 16.1 provides an overview of climate finance and the terms used in this chapter. The term  capital  is used because most climate finance involves an investment, but it should be understood to    7 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  include all relevant financial flows2. One or more capital managers mobilize the required capital and  invest it in an adaptation or mitigation project. Project owners or sponsors governments,  corporations, or households implement a project using their own and other sources of capital.  However, projects often obtain capital from multiple capital managers (Buchner et al., 2011, 2012;  Jürgens et al., 2012). An instrument defines the financial agreement between a project  owner/sponsor and a manager of capital. A project that obtains capital from several managers  would use multiple instruments. The size of the boxes is not related to the magnitude of the  financial flow.  Data on current climate finance, summarized below, indicate that most capital deployed is private    private corporations and households. That is not surprising since they dominate the economy in  most countries.  Domestically, government funds are disbursed directly as financial incentives or tax credits, or  through national financial institutions. Climate finance under the UNFCCC currently is provided  mainly by the national governments of Annex II Parties. Climate finance from the budgets of these  government flows through bilateral institutions being a national public entity, such as Japan  International Cooperation Agency (JICA), Agence Française de Développement (AFD), Kreditanstalt  für Wiederaufbau (KfW), or through multilateral institutions having several countries as  shareholders, such as the World Bank, regional development banks, and multilateral climate funds.  There is no internationally agreed definition of mitigation and adaptation projects; for example,  whether a high efficiency gas fired generating unit is a mitigation project or which capacity building  activities help to address climate change. The relevant projects, and hence the scale of climate  finance, depend upon the definition of mitigation and adaptation projects adopted. In practice, the  definition varies across studies and is often determined by the data available.  Figure 16.1. Overview of climate finance flows. Note: Capital should be understood to include all relevant financial flows. The size of the boxes is not related to the magnitude of the financial flow.                                                                 Terms that cover both capital and operating costs, such as  financial resources  or  funds  are cumbersome  (sources/managers of financial resources) or potentially confusing ( funds  can also be institutions).  2   8 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  16.2.1.1    Estimates of current climate finance  This section reviews estimates of current global total climate finance, total climate finance flowing to  developing countries, public climate finance provided to developing countries and climate finance  under the UNFCCC.  There is no comprehensive system for tracking climate finance (Clapp et al., 2012; Tirpak et al.,  2012), therefore, estimates must be compiled from disparate sources of variable quality and  timeliness, sources that use different assumptions and methodologies and have gaps and may  occasionally duplicate coverage. Available data typically relate to commitments rather than  disbursements, so the amount reported may not equal the amount received by the project owner  during a given year. Changes in exchange rates further complicate the picture. For these and other  reasons, estimates of current climate finance exhibit considerable uncertainties.  Global total climate finance is estimated at 343 to 385 billion USD per year for 2010/11 (2010/11  USD) and 356 to 363 billion USD per year for 2011/12 (2011/12 USD), with mitigation accounting for  approximately 95% of this amount (350 billion USD and 337 billion USD, respectively) (Buchner et al.,  2012, 2013b). This estimate includes a mix of instruments, e.g., grants, concessional loans,  commercial loans and equity, as well as the full investment in mitigation measures such as  renewable energy generation technologies that also produce other goods or services3. The figures  reflect new commitments by capital managers using a mix of 2010/11 and 2011/12 data,  respectively. Private finance dominates the total, but its share declined from 74% (267 billion USD)  on average in 2010 and 2011 to 62% (224 billion USD) on average in 2011 and 2012 (2010/2011 USD  and 2011/2012 USD) (Buchner et al., 2012, 2013b). Investment in renewable generation  technologies dominates the mitigation investment (Frankfurt School UNEP Centre and BNEF, 2012).  Reasonably robust estimates of total climate finance for individual countries are available for only a  few cases, for instance, for Germany (Jürgens et al., 2012). However, some institutions report on  their financing commitments for climate and environment. Data from 19 development banks  indicate that commitments of mitigation finance increased from 51 billion USD in 2011 to 65 billion  USD in 2012 with commitments of adaptation finance rising from 6 to 14 billion USD over the same  period (2011/2012 USD). Concessional funding provided by public development banks plays an  important role in financing domestic climate projects, e.g., in Brazil, China, and Germany.  A growing number of developed and developing countries, including Bangladesh, Colombia,  Indonesia, Nepal, Samoa, Tanzania, Uganda, and the United States as well as the European  Commission, calculates the share of their annual budget devoted to climate change mitigation and  adaptation often using a methodology known as a Climate Public Expenditure and Institutional  Review (UNDP, 2013a). Country estimates range from 3 15% of the national budget.   A few estimates of total climate finance flowing to developing countries are available. Clapp et al.  (2012) estimate the total at 70 120 billion USD per year based on 2009 2010 data (2009/2010 USD).  Data from Buchner et al. (2013a) suggest a net flow to developing countries of the order of 40 to  60 billion USD for 2010 and 2011 (2010/2011 USD).4 For 2011 and 2012, North South flows are                                                                Methodology used by Buchner et al. (2012, 2013b): Finance flows are limited to  climate specific finance ,  capital flows targeting low carbon, and climate resilient development with direct or indirect mitigation or  adaptation objectives/outcomes. The focus is on current financial flows (upfront capital investment costs and  grants expressed as commitments, so risk management instruments are excluded). Data are for total rather  than incremental investment because incremental investment requires assumptions on the baseline on a  project by project basis. The data are for  gross  investment, the full value of the investment, and reflect  commitments because disbursement data is not widely available. The data are a mix of 2010 and 2011 data,  and 2011 and 2012 data, respectively.    Buchner et al. (2013) estimate that developed countries mobilized 213 to 255 billion USD climate finance per  year during 2010 and 2011 while 160 to 208 billion USD climate finance had been committed to climate  change projects in developed countries. Developing countries mobilized 120 to 141 billion USD climate finance  4 3   9 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  estimated at 39 to 62 billion USD (2011/2012 USD) (Buchner et al., 2013b). Robust information on  the magnitude of private flows from developed to developing countries is highly uncertain. Clapp et  al. (2012) estimate the private investment at 37 72 billion USD (2009/2010 USD) per year based on  2009 2010 data and Stadelmann et al. (2013) estimate those flows at 10 to 37 billion USD per year  based on 2008 2011 data (2010 USD and 2008 USD).   The investment in registered Clean Development Mechanism (CDM) projects is estimated at over  400 billion USD over the period 2004 to 2012 (2004 2012 USD) (UNEP Ris, 2013). Of that amount  almost 80 billion USD was for projects registered during 2011 and 195 billion USD for projects  registered during 2012 (2011 USD and 2012 USD). The majority of the investment in CDM projects is  private. Renewable energy projects account for over 70% of the total investment. The share of CDM  renewable energy projects with some foreign investment has grown over time, representing almost  25 billion USD in 2011 (2011 USD) (Kirkman et al., 2013).5   Since 1999 almost 100 carbon funds with a capitalization of 14.2 billion USD have been established  (Alberola and Stephan, 2010).6 Carbon funds are investment vehicles that raise capital to purchase  carbon credits (52%) and/or invest in emission reduction projects (23%). A fund may have only  private investors (48%), only public investors (29%) or a mix of both (23%) (Alberola and Stephan,  2010). Investment may be restricted to a specific region or project type (e.g., REDD+). Financial data,  especially for private funds, is often confidential so the amount of finance provided to developing  countries via carbon funds is not available. Scaling up data from 29 funds on the amount invested in  projects suggests a maximum cumulative investment of 18 billion USD (1999 2009 USD) (Kirkman et  al., 2013).   Public climate finance provided to developing countries was estimated at 35 to 49 billion USD per  year in 2011 and 2012 (2011/2012 USD) (Buchner et al., 2013b)7. These public funds flow mainly  through bilateral and multilateral institutions8. Most of the climate finance is implemented by  development banks, frequently involving the blending of government resources with their own  funds. There are two main reporting systems for public support in place that are not fully  comparable due to differences in respective methodologies.  The Organisation for Economic Cooperation and Development (OECD) Development Assistance  Committee (DAC) reports the amount of official development assistance (ODA) committed bilaterally  for projects that have climate change mitigation or adaptation as a  principal  or  significant   objective by its 23 member countries and the European Commission. The DAC defines ODA as those  flows to countries on the DAC List of ODA Recipients and to multilateral institutions provided by  official agencies or by their executive agencies. Resources must be used to promote the economic                                                                                                                                                                                            per year during 2010 and 2011 and 162 to 202 billion USD had been committed to climate change projects in  developing countries. Those figures suggest a net flow to developing countries of the order of 40 to 60 billion  USD per year (2010/2011 USD).   CDM projects sell emission reduction credits, Certified Emission Reductions (CERs), to developed country  buyers, which provide a return to developed country investors.    United Nations Environment Program (UNDP) estimates that in addition up to 6000 private equity funds have  been established for the purpose of funding climate change related activities (UNDP, 2011).   Buchner et al. (2013b) count climate finance provided by bilateral finance institutions, multilateral finance  institutions, government bodies, and climate funds as public flows. The difference between lower  and upper bound results when taking the ownership structure of multilateral institutions into account and excluding all  bilateral flows marked as having climate as  significant  objective.   Ryan et al. (2012) estimate the annual average finance provided to developing countries for energy efficiency  at 18.9 billion USD in 2010 from bilateral financial institutions and 4.9 billion USD from multilateral financial  institutions over the period 2008 2011.  8 7 6 5   10 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  development and welfare of developing countries as a main objective and they must be concessional  in character, meaning as grants or as concessional loans including a grant element of at least 25%,  calculated at a rate of discount of 10%. The amount is the total funding committed to each project,  not the share of the project costs attributable to climate change (OECD, 2013a). Researchers have  questioned the accuracy of the project classification (Michaelowa and Michaelowa, 2011; Junghans  and Harmeling, 2013). Bilateral commitments averaged 20 billion USD per year in 2010 and 2011  (2010/2011 USD) (OECD, 2013a) and were implemented by bilateral development banks or other  bilateral agencies, provided to national government directly or to dedicated multilateral climate  funds (Buchner et al., 2012, 2013b).  Seven multilateral development banks (MDBs)9 reported climate finance commitments of about 24.1  and 26.8 billion USD in 2011 and 2012, respectively (2011/2012 USD). The reporting is activity based  allowing counting entire projects but also project components. Recipient countries include  developing countries and 13 European Union (EU) member states. It covers grant, loan, guarantee,  equity, and performance based instruments, not requiring a specific grant element. The volume  covers Multilateral Development Banks  (MDBs ) own resources as well as external resources  managed by the MDBs that are also reported to OECD DAC (such as contributions to the Global  Environment Facility (GEF), Climate Investment Funds (CIFs), and Carbon Funds) (AfDB et al., 2012a;  b, 2013).  Under the UNFCCC, climate finance is not well defined. Annex II Parties committed to provide new  and additional financial resources to cover the  agreed full incremental costs  of agreed mitigation  measures implemented by developing countries (Article 4.3), to  assist the developing country  Parties that are particularly vulnerable to the adverse effects of climate change in meeting costs of  adaptation  (Article 4.4) and to cover the agreed full costs incurred by developing countries for the  preparation of their national communications (Article 4.3) (UNFCCC, 1992). None of these terms are  operationally defined (Machado Filho, 2011). These commitments are reaffirmed by the Kyoto  Protocol (UNFCCC, 1998, Art. 11). The Conference of Parties (COP) has agreed that funds provided to  developing country Parties may come from a wide variety of sources, public, and private, bilateral  and multilateral, including alternative sources (UNFCCC, 2010, para. 99).  Annex II Parties report the financial resources they provide to developing countries through bilateral  and multilateral channels for climate change action to increase transparency about public flows of  climate finance vis a vis expectations and needs. The latest summary of the Annex II reports on their  provided climate finance indicates that they provided a total of 58.4 billion USD for the period 2005  through 2010, an average of nearly 10 billion USD per year (2005 2010 USD) (UNFCCC, 2011a).10  Most of the funds provided are concessional loans and grants. In addition, a range of developed  countries promised FSF of about 10 billion USD per year from 2010 to 2012 (2010/2011/2012 USD)  (see Section 16.2.1.3).11   African Development Bank (AfDB), the Asian Development Bank (ADB), the European Bank for Reconstruction  and Development (EBRD), the European Investment Bank (EIB), the Inter American Development Bank (IDB),  the World Bank (WB) and the International Finance Corporation (IFC).   Although there is an agreed reporting format, the UNFCCC Secretariat notes that many data gaps and  inconsistencies persist in the reporting approaches of Annex II Parties. The information is compiled by the  UNFCCC Secretariat from Annex II national communications. The figures represent  as committed  or  as spent   currency over the 6 years. The procedures used by different countries and the Secretariat to convert  currencies into USD are not known.    Although COP took note of the ´fast start finance  (FSF) commitment in paragraph 95 of Decision 1/CP.16  (UNFCCC, 2010) and the funds committed have been reported annually to the UNFCCC, the FSF is not formally  climate finance under the UNFCCC.  11 10 9                                                                11 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Operating entities of the financial mechanism of the UNFCCC deal with less than 10% of the climate  finance reported under the Convention, although that could change once the Green Climate Fund  (GCF) becomes operational. Annex II Party contributions to the Trust Fund of the GEF, the Special  Climate Change Fund (SCCF) and the Least Developed Countries Fund (LDCF) amounted to about  3.3 billion USD for 2005 through 2010, an average of less than 0.6 billion USD per year (2005 2010 USD) (UNFCCC, 2011a). Most of the funds are used for mitigation. The Adaptation Fund derives  most of its funds from the sale of its share of the CERs issued for CDM projects12.  16.2.1.2    Current sources of climate finance   Climate finance comes from the sources of capital shown in Figure 16.1 including capital markets,  carbon markets, and government budgets. Most government funding comes from general revenue  but some governments also raise revenue from sources   carbon taxes and auctioned GHG emission  allowances   that have mitigation benefits. Most corporate funding comes from corporate cash flow  including corporate borrowing, often called balance sheet finance (Frankfurt School UNEP Centre,  2013).13 Household funding comes from household income from wages, investments, and other  sources. Governments, corporations, and households can all access capital markets to mobilize  additional funds.   This section summarizes estimates of the revenue currently generated by carbon taxes and  auctioned GHG emission allowances. Fuel taxes, fossil fuel royalties, and electricity charges can be  converted to CO2eq charges but they are excluded here because they are usually implemented for  different policy goals.  Carbon taxes generate about 7 billion USD in revenue annually mainly in European countries  (2010/2011 USD).14 Denmark, Finland, Germany, Ireland, Italy, Netherlands, Norway, Slovenia,  Sweden, Switzerland, and the United Kingdom   generated about 6.8 billion USD in 2010 (2010 USD)  and 7.3 billion USD (2011 USD) in 2011. India15, Australia, and Japan introduced carbon taxes in July  2010, July 2012, and October 2012, respectively. In some countries, part or all of the revenue is  dedicated to environmental purposes or reducing other taxes; none is earmarked for international  climate finance.  Auctioned allowances, fixed price compliance options, and the international sale of surplus Assigned  Amount Units (AAUs) generate about 2 billion USD per year for national governments (2010/2011  USD). Among the 30 countries participating in the EU emissions trading scheme, Austria, Germany,  Hungary, Ireland, the Netherlands, Norway, and the United Kingdom auctioned some emission  allowances during the second (2008 2012) phase (European Commission, 2012). Buchner et al.  (2011, 2012) estimate auction revenue at 1.4 and 1.6 billion USD for 2010 and 2011 (2010/2011  USD). Germany has so far earmarked a portion of its auction revenue for international climate  finance (Germany Federal Ministry for the Environment Nature Conservation and Nuclear Safety,                                                                Currently the only international levy is the 2% of the CERs issued for most CDM projects provided to the  Adaptation Fund. The Fund sells the CERs and uses the proceeds for adaptation projects in developing  countries. Sale of CERs generated revenue of over 90 million USD for FY 2010 (2010/2011 USD) and over  50 million USD for FY 2011 (World Bank, 2012a). In December 2012 Parties agreed to extend the share of  proceeds levy to the issuance of emission reduction unit (ERUs) and the first international transfers of AAUs  (UNFCCC, 2012a, para. 21).   General revenue includes revenue collected from all taxes and charges imposed by a government. Balance  sheet finance means that a new investment is financed by the firm rather than as a separate project. The firm  may seek external funding (debt and/or equity) but that funding is secured by the operations of the firm rather  than the new investment.   Revenue from taxes explicitly named carbon taxes in the OECD database of environmentally related taxes,  available at http://www2.oecd.org/ecoinst/queries/index.htm.  15 14 13 12  In India, the carbon tax is on coal only.    12 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  2012). New Zealand collected 1.25 and 1.42 million USD for 2010 (6 months) and 2011, respectively,  from its fixed price compliance option of 10.8 USD per tonne of CO2 (15 NZD) (New Zealand Ministry  for the Environment, 2012).  Several eastern European countries (Estonia, Czech Republic, Poland, and Russia) sell surplus AAUs  to generate revenue. Others such as Bulgaria, Latvia, Lithuania, Slovakia, and Ukraine, sell their  surplus AAUs to fund Green Investment Schemes that support domestic emission reduction  measures (Linacre et al., 2011).16 Revenue rose from 276 million USD in 2008 (2008 USD) to 2 billion  USD in 2009 (2009 USD) and then declined to less than 1.1 billion USD in 2010 (2010 USD) (Kossoy  and Ambrosi, 2010; Linacre et al., 2011; Tuerk et al., 2013). Buchner at al. (2011, 2012) estimate the  revenue at 580 and 240 million USD for 2010 and 2011, respectively (2010 and 2011 USD).  16.2.1.3    Recent developments  Climate finance has been affected by the financial crisis of late 2008, the subsequent stimulus  packages and the FSF commitment of 30 billion USD for 2010 2012 made by developed countries in  December 2009 for climate action in developing countries.   The financial crisis in late 2008 reduced investment in renewable energy (Hamilton and Justice,  2009). In late 2008 and early 2009, investment in renewable generation fell disproportionately more  than that in other types of generating capacity (IEA, 2009). Global investment in renewable energy  fell 3% during 2009 but rebounded strongly in 2010 and 2011. In developed countries, where the  financial crisis hit hardest, investment dropped 14% while renewable energy investment continued  to grow in developing countries (Frankfurt School UNEP Centre and BNEF, 2012).  In response to the financial crisis, Group of Twenty Finance Ministers (G20) governments  implemented economic stimulus packages amounting to 2.6 trillion USD. Of that amount, 180 to  242 billion USD was low carbon funding (2008 and 2009 USD) (IEA, 2009; REN21, 2010). The stimulus  spending supported the rapid recovery of renewable energy investment by compensating for  reduced financing from banks. Some countries facing large public sector deficits scaled down green  spending when the economy started recovering (Eyraud et al., 2011).  At the UNFCCC in Copenhagen in 2009, developed countries committed to provide new and  additional resources approaching 30 billion USD of FSF to support mitigation and adaptation action  in developing countries during 2010 2012 (UNFCCC, 2009a). The sum of the announced  commitments exceeds 33 billion USD (UNFCCC, 2011b, 2012b; c, 2013a)17. Japan, United States,  United Kingdom, Norway, and Germany being the five biggest donors have reported commitments  amounting to 27 billion USD (2010/2011/2012 USD). Nakooda et al. (2013) finds that around 45%  have been provided as grants and around 47% in the form of loans, guarantees, and insurance.  Approximately 61% of the funds had been committed for mitigation, 10% for REDD+, ,18% for  adaptation, 9% for multiple objectives and for 2% of the funding the purpose  is unknown. The  funders reported commitments to recipient country governments via bilateral channels (33%),  multilateral climate funds (20%), recipient countries companies (12%), and multilateral institutions  (9%). Data on actual disbursements is not available to date because of the multi year time lag  between commitment and disbursement.  The announced pledges triggered questions as to whether they were  new and additional  as  promised (Fallasch and De Marez, 2010; BNEF, 2011). Some countries explain the basis on which  they consider their pledge to be  new and additional . Criteria have been proposed that indicate,  when applied to the pledges, that proportions ranging from virtually none to almost all are new and                                                               16 17 The Green Investment Schemes are a source of climate finance for these countries.   The information is compiled by the UNFCCC Secretariat from national reports on FSF. The figures represent  as committed  currency over the three years. The procedures used by different countries and the Secretariat  to convert currencies into USD are not known.    13 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  additional (Brown et al., 2010; Stadelmann et al., 2010, 2011b). For Germany, Japan, the United  Kingdom, and the United States annual FSF contributions were significantly higher than the 2009  expenditure related to climate activities in developing countries (Nakooda et al., 2013).  16.2.2    Future low carbon investment   As noted in Chapter 6, the stabilization of GHG concentrations will ultimately require dramatic  changes in the world s energy system, including a dramatic expansion in the deployment of low carbon energy sources. This change will require significant shifts in global investment in the energy,  land use, transportation, and infrastructure sector. The future investment flows summarized in this  section are based on several large scale analyses conducted over the past few years. For the most  part these analyses explore scenarios to achieve specified temperature or concentration goals.  Hence, the estimates of investment flows drawn from these studies should not be interpreted as  forecasts, but rather, as some probable future states of the world.   Figure 16.2 presents estimates of baseline, i.e., current investment in energy supply sub sectors as a  reference for the following considerations. It illustrates the very substantial nature of investments in  today s energy sector with global total annual investment at about USD2010 1200 billion and very  strong roles for investments in fossil fuel extraction, transmission and distribution, and electricity  generation.    Figure 16.2. Present level of investment in energy supply. Note: The bars indicate the minimum and maximum level of investments found in the literature. Ranges result from different sources of market information and differing definitions of the investment components to be included. Source: From McCollum et al. (2013) based on data from IEA World Energy Outlook 2011 (IEA, 2011) and GEA (Riahi et al., 2012).  16.2.2.1    Investment needs  While a large number of studies and many modelling comparison exercises have assessed  technological transformation pathways and the macroeconomic costs of transforming the global  economy, only a handful of studies estimate the associated investment needs. Section 16.2.2.2  summarizes available estimates of investment needs under climate policy between 2010 2029 and  2030 2049, for the world as a whole and for non OECD countries. Models and scenarios differ so the  focus is on incremental investment, i.e., the differences in the estimated investment between the    14 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  reference and mitigation scenarios.18 It must also be noted that the model estimates crucially rely on  assumptions about the future costs of technologies and of subsidies, on the possibility of nuclear  phaseout in some countries, and on the mitigation policies already included in the reference  scenarios.  Without climate policy, investments in the power sector would mainly be directed towards fossil  fuels, especially in non OECD countries that rely on low cost coal power plants to supply their  growing demand for electricity. At the global level, fossil fuel based power generation would require  an average annual investment of 182 (95 to 234) billion USD2010 in 2010 2029 and 287 (158 to 364)  billion USD2010 in 2030 2049;19 the bulk of investments (roughly 80%) goes to non OECD countries.20  There is greater uncertainty in models about the future of renewable and nuclear power without  climate policy. Modeled global investment in renewable power generation is expected to increase  over time from 123 (31 to 180) billion USD2010 per year in 2010 2029 to 233 (131 to 336) billion  USD2010 over 2030 2049. Nuclear power generation would attract 55 (11 to 131) billion USD2010  annually in 2010 2029 and 90 (0 to 155) billion USD2010 per year in 2030 2049.  The introduction of an emission reduction target in the models abruptly changes the investment  pattern. Figures 16.3 and 16.4 report the investment change for major power generation  technologies, fossil fuel extraction, and for end use energy efficiency, for emission scenarios  compatible with a long term target of keeping mean global temperature increase below 2°C in  2100.21 Although the policy targets are not identical, they are close enough to allow a broad  comparison of results. The dispersion across estimated emission reductions over 2010 2029 and  2010 2049 is mainly due to differences in reference scenario emissions and because models choose  different optimal emission trajectories among the many compatible with the long term climate goal.  The results of an analysis of investment estimates in Figures 16.3 and 16.4 show that climate policy  is expected to induce a major reallocation of investments in the power sector. Investments in fossil fired power plants (without CCS) were equal to about 137 billion USD2010 per year in 2010.  Investment would decline by 30 (2 to 166) billion USD2010 per year (about  20% for the median)  during the period 2010 2029, compared to the reference scenarios. Investment in low emissions  generation technologies (renewable, nuclear, and fossil fuels with CCS) would increase by 147 (31 to  360) billion USD2010 per year (about 100% for the median) during the same period.   Based on a limited number of studies (McKinsey, 2009; IEA, 2011; Riahi et al., 2012), annual  incremental investments until 2030 in energy efficiency investments in the building, transport, and  industry sector increase by 336 (1 to 641) billion USD2010. The only three studies with sectoral detail  in end use technologies show an increase of investments of 153 (57 to 228) billion USD2010 for the  building sector, 198 (98 to 344) billion USD2010 for the transport sector, 80 (40 to 131) billion USD2010  for the industry sector. Incremental investments in end use technologies are particularly hard to  estimate and the number of studies is limited (Riahi et al., 2012). Results should therefore be taken  with caution.  While models tend to agree on the relative importance of investments in fossil and non fossil power  generation, they differ with respect to the mix of low emission power generation technologies and  the overall incremental investment. This is mainly due to different reference scenarios (e.g.,                                                                Adaptation costs and economic losses from future climate change are not considered in any of these  estimates.   The mean should not be considered as an expected value. It is not possible to attribute any probability  distribution to models  outcomes. Therefore policymakers face pure uncertainty in face of future investment  needs. The range is presented to provide information on the degree of uncertainty in the literature.  20 21 19 18  See notes to Figures 16.3 and 16.4 for a list of the studies surveyed.   Also in this case, the mean and median are used as synthetic indicators having no predictive power.    15 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  population, economic growth, exogenous technological progress), and assumptions about (1) the  structure of the energy system and the costs of reducing the energy intensity of the economy versus  reducing the carbon intensity of energy, (2) the investment costs of alternative technologies over  time, and (3) technological or political constraints on technologies. Limits to the deployment of some  key technology options or the presence of policy constraints (e.g., delayed action, limited  geographical participation) would increase investment needs (Riahi et al., 2012; McCollum et al.,  2013).  Higher energy efficiency, technological innovation in transport, and the shift to low emission  generation technologies   all contribute to a drastic reduction in the demand for fossil fuels, thus  causing a sharp decline in investment in fossil fuel extraction, transformation, and transportation.  Scenarios from a limited number of models suggest that average annual investment reduction in  2010 2029 would be equal to 56 ( 8 to 369) billion USD2010. The contraction would be sharper in  2030 2049, in the order of 451 (332 to 1385) billion USD2010 per year. All models that provide data  on investments for fossil fuel extraction show that overall investments in energy supply would  decrease against the baseline trends in scenarios consistent with the 2°C limit (IEA, 2011; Carraro et  al., 2012; Riahi et al., 2012; McCollum et al., 2013).  According to a range of models, climate policy would thus substantially change the allocation of  baseline energy investments rather than increase overall demand for energy investment.   Models with a separate consideration of energy efficiency measures foresee the need for significant  incremental investment in energy efficiency in the building, transport, and industry sector in  addition to the reallocation of investment from high carbon to low carbon power supply.   There is wide agreement among model results on the necessity to ramp up investments in research  and development (R&D) to increase end use energy efficiency and to improve low emission  generation energy carriers and energy transformation technologies. Estimates of the additional  funding needed for energy related R&D range from 4.5 to 78 billion USD2010 per year during  2010 2029 (UNFCCC, 2007; Carraro et al., 2012; McCollum et al., 2013) and from 115 to 126 billion  USD2010 per year in 2030 2049 (Carraro et al., 2012; Marangoni and Tavoni, 2013; McCollum et al.,  2013). Because of the need for new low carbon alternatives, investments in R&D are higher in case  of nuclear phaseout and other technological constraints (Bosetti et al., 2011).    16 of 61     Final Draft  Chapter 16  IPCC WGIII AR5    Figure 16.3. Change of average annual investment in mitigation scenarios (2010 2029). Investment changes are calculated by a limited number of model studies and model comparisons for mitigation scenarios that stabilize concentrations within the range of 430 530 ppm CO2eq by 2100 compared to respective average baseline investments. Note: The vertical bars indicate the range between minimum and maximum estimate of investment changes; the horizontal bar indicates the median of model results. Proximity to this median value does not imply higher likelihood because of the different degree of aggregation of model results, low number of studies available, and different assumptions in the different studies considered. The numbers in the bottom row show the total number of studies available in the literature. Sources: UNFCCC (2008). IEA (2011): 450 Scenario (450) relative to the Constant Policies Scenario (CPS). The CPS investment in CCS is also included under Coal and Gas (retrofitting); World investment in biofuels includes international bunkers; investment in solar photovoltaic (PV) in buildings is attributed to power plants in supply-side investment. Riahi et al. (2012): the Global Energy Assessment Mix scenario (GEA-Mix) relative to the GEA reference scenario. Carraro et al. (2012): 460 ppm CO2eq in 2100 (t460) relative to reference scenario. McCollum et al. (2013): the Low Climate Impact Scenarios and Implications of Required Tight Emission Control Strategies (LIMITS), RefPol-450 scenario (2.8 W/m2 in 2100) relative to the reference scenarios, mean of six models. McKinsey (2009): data obtained from Climate Desk, S2015 scenario with full technological potential, 100% success rate, negative lever of costs, beginning of policy in 2015. Regions: World and non-OECD.   17 of 61     Final Draft  Chapter 16  IPCC WGIII AR5    Figure 16.4. Change of average annual investment in mitigation scenarios (2030 2049). Investment changes are calculated by a limited number of model studies and model comparisons for mitigation scenarios that stabilize concentrations within the range of 430 530 ppm CO2eq by 2100 compared to respective average baseline investments. Note: The vertical bars indicate the range between minimum and maximum estimate of investment changes; the horizontal bar indicates the median of model results. Proximity to this median value does not imply higher likelihood because of the different degree of aggregation of model results, low number of studies available, and different assumptions in the different studies considered. The numbers in the bottom row show the total number of studies available in the literature. Sources: Riahi et al. (2012): the Global Energy Assessment Mix scenario (GEA-Mix) relative to the GEA reference scenario. Carraro et al. (2012): 460 ppm CO2eq in 2100 (t460) relative to reference scenario. McCollum et al. (2013): the Low Climate Impact Scenarios and Implications of Required Tight Emission Control Strategies (LIMITS), RefPol-450 scenario (2.8 W/m2 in 2100) relative to the reference scenarios, mean of six models. Regions: World and non-OECD. Land use is the second largest source of GHG emissions and within land use, tropical deforestation is  by far the largest source (see Chapters 5 and 11). Efforts to stabilize atmospheric concentrations of  GHGs will require investments in land use change (LUC) as well as in the energy sector.  Kindermann et al. (2008) use three global forestry and land use models to examine the costs of  reduced emissions through avoided deforestation over the 25 year period from 2005 2030.22 The  models  results suggest substantial emission reductions can be achieved. The models estimate that  1.6 to 4.3 GtCO2 per year could be reduced for 20 USD tCO2 with the greatest reductions coming  from Africa followed by Central and South America and Southeast Asia. They also use the models to  estimate the costs to reduce deforestation by between 10% and 50% of the baseline. Deforestation  could be reduced by 10% (0.3 0.6 GtCO2 per year) over the 25 year period for an investment of 0.5  to 2.1 billion USD per year in forest preservation activities, and a 50% reduction (1.5 2.7 GtCO2 per  year) could be achieved for an investment of 21.2 to 34.9 billion USD per year. This is comparable to  what has been found by UNFCCC (2008) and McCollum et al. (2013).                                                               22  The models used are the Dynamic Integrated Model of Forestry and Alternative Land Use (DIMA)  (Roktiyanskiy et al., 2007), the Generalized Comprehensive Mitigation Assessment Process Model (GCOMAP)  (Sathaye et al., 2006), and the Global Timber Model (GTM) (Sohngen and Mendelsohn, 2003).    18 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Investment needs in other sectors commonly relate to energy efficiency measures included above.  Information on global or regional investment needs to abate process emissions or non CO2  emissions in sectors like the waste, petroleum, gas, cement, or the chemical industry is virtually  unavailable. For instance, McKinsey (2009) does not provide information that could be separated  from energy efficiency measures in the sectors. An indicative estimate for the waste sector can be  derived from Pfaff Simoneit (2012) suggesting investment needs of approximately 10 20 billon USD  per year if access to a modern waste management system were to be provided for an additional  100 million people per year.  16.2.2.2    Incremental costs  Incremental costs can be calculated for an individual project, a programme, a sector, a country, or  the world as a whole. The incremental costs reflect the incremental investment and the change of  operating and maintenance costs for a mitigation or adaptation project in comparison to a reference  project. It can be calculated as the difference of the net present values of the two projects.  Estimates of the incremental costs of mitigation measures for key sectors or the entire economy  have been prepared for over 20 developing countries (Olbrisch et al., 2011). When estimates of both  the incremental costs and the incremental investment are available, the former is generally lower  because of the annualization of incremental investments for the calculation of incremental costs.  From an economic perspective, macroeconomic incremental costs can be defined as the lost gross  domestic product (GDP). This measure provides an aggregate cost of the mitigation actions  (estimates provided in Chapter 6), but it does not provide information on the specific micro economic investments that must be made and costs incurred to meet the mitigation commitments.  This distinction is important if international climate finance commitments will be implemented  through institutions designed to provide financial support for specific investments and costs rather  than macro level compensation.  Other than on the project level, investment needs are thus frequently only a fraction of incremental  costs on the level of the macro economy. This difference is largely due to reduced growth of carbon constrained economies in many models. Adaptation costs and economic losses from future climate  change, which are not considered in these estimates, should be lower for climate policy scenarios  than in the reference scenario.   16.2.3    Raising public funding by developed countries for climate finance in developing  countries  Comparison of the model estimates of future mitigation investment (Section 16.2.2) with the current  level of global total climate finance (Section 16.2.1.1) indicates that global climate finance needs to  be scaled up. Increased financial support by developed countries for mitigation (and adaptation) in  developing countries will be needed to stimulate the increased investment. This section reviews  possible sources of additional funds that could be implemented by developed country governments  to finance mitigation in developing countries.   In December 2009, developed countries committed to a goal of mobilizing jointly 100 billion USD a  year by 2020 to address the needs of developing countries in the context of meaningful mitigation  actions and transparency on implementation. This funding will come from a wide variety of sources,  public and private, bilateral and multilateral, including alternative sources of finance (UNFCCC,  2009a).23 This goal has been recognized by the COP (UNFCCC, 2010, para. 98). This recognition does  not change the commitments of Annex II Parties specified in Article 4 of the Convention to provide  financial resources for climate related costs incurred by developing countries.                                                                There is currently no definition of which  climate  activities count toward the 100 billion USD, what  mobilizing  means, or even which countries are covered by this commitment (Caruso and Ellis, 2013).  23   19 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Studies by the High level Advisory Group on Climate Change Financing (AGF) (AGF, 2010) and the  World Bank Group et al. (2011) at the request of G20 finance ministers have analyzed options for  mobilizing 100 billion USD per year by 2020. The AGF concluded that it is challenging but feasible to  reach the goal of mobilizing 100 billion USD annually for climate actions in developing countries.  Both reports conclude that a mix of sources is likely to be required to reach the goal.  Both reports estimate the revenue that could be mobilized in 2020 by various options to finance  climate action in developing countries in the context of a carbon price of 25 USD per tonne of CO2eq   in Annex II countries. The feasibility of the options was not assessed. For some options, only a  fraction of the revenue was assumed to be available for international climate finance. Their  estimates of the international climate finance that could be generated by each option, together with  other estimates, where available, are summarized in Table 16.1. Only options to mobilize public  funds and that yield mitigation benefits are included in the table; options for increased borrowing by  multilateral institutions and mobilizing more private finance are excluded.  Virtually all of the options put a price on GHG emissions thus providing a mitigation benefit in  addition to generating revenue. The options are grouped into the following categories (Haites and  Mwape, 2013):   1. Options that contribute to developed countries national budgets, dependent on national  decisions;  2. Options that contribute to national budgets, dependent on international agreements; and  3. Funds collected internationally pursuant to an international agreement.   Funds mobilized by options in the first two categories flow into national budgets, so the amount  allocated for international climate finance depends on national decisions. In contrast, funds  mobilized by options in the third category go directly to an international fund.        20 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Table 16.1: Summary of potential sources of public funds for climate finance in 2020 Option   Domestic auctioned allowances  Domestic carbon tax   Phase out of fossil fuel subsidies  Higher fossil fuel royalties  Wires charge on electricity generation  Border carbon cost levelling  Financial transactions tax  Extension of the  share of proceeds   Auctioning a portion of AAUs  Carbon pricing for international  aviation***,a  Carbon pricing for international  shipping***,a  c Projected amount generated in 2020  Share assumed to be dedicated  (billion USD2010/year)  to international climate finance  AGF: 125 250b; G20: 250  AGF: 250  AGF: 8; G20: 40 60  AGF: 10  AGF: 5  Grubb 2011: 5*  AGF: 2 27  AGF: 38 50  AGF: 125 250   UNFCCC: 10 25**; AGF: 6; G20: 13  UNFCCC: 10 15**; AGF: 16 19; G20:  26   b 1) Options that contribute to developed country national budgets, dependent on national decisions  AGF: 2 10%; G20: 10%  AGF: 4%  AGF: 100%; G20: 15 25%  AGF: 100%  AGF: 100%    AGF: 25 50%  AGF: 2 10%  AGF: 2 10%  AGF: 25 50%; G20: 33 50%   AGF: 25 50%; G20: 33 50%  2) Options that contribute to national budgets, dependent on international agreements  3) Funds collected internationally pursuant to an international agreement  Notes: AGF, G20, and UNFCCC refer to estimates from AGF (2010), World Bank Group et al. (2011) and UNFCCC (2007), respectively.* = Date not specified; ** = 2006 USD; *** Could fall into category 2 depending upon the method of implementation; a The AGF and G20 estimates for international aviation and international shipping assume that a substantial fraction (30 to 50%) of the global revenue is allocated to developing countries. b The AGF combines auctioned AAUs and auctioned domestic allowances, here half of the total is included in each category; c The AGF estimates revenue of 10 billion USD per 1 USD tax per tonne of CO2, that is equivalent to potential revenue of 250 billion USD and a 4% share for international climate finance as reported here. Source: Compiled from AGF (2010), World Bank Group et al. (2011), UNFCCC (2007), and Grubb (2011). The AGF and G20 reports assume for many options that only small fraction of the total revenue  mobilized is dedicated to international climate finance. Hence, these options would mobilize  revenue to meet the international climate finance goal and at the same time mobilize substantial  revenue for domestic use by Annex II governments. The domestic share of the revenue could be  used by Annex II treasuries to reduce deficits and debt, or to reduce existing distortionary taxes and  so help stimulate economic growth.   Global modelling estimates  Using integrated models, it is possible to estimate the potential carbon revenues when all emissions  are taxed or all permits are auctioned. These estimates reflect a scenario in which all world regions  commit to reduce GHG emissions using an efficient allocation of abatement effort, i.e., globally  equal marginal abatement costs. Therefore, it should be used to gain insights rather than exact  revenue forecasts.  From the analysis of scenarios already presented in this chapter (Carraro et al., 2012; Calvin et al.,  2012; McCollum et al., 2013) it is possible to derive the following messages:  Carbon revenues are potentially large, in the order of up to 200 billion USD each in China, the  European Union and the United States in 2030. At the global level, they could top 1600 billion  USD in 2030.  Carbon revenues may peak in the mid term and decline in the long term, as decreasing  emissions (the tax base) more than offset the increase in the carbon price (Carraro et al.,    21 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  2012). In regions with lower marginal abatement costs, the tax base shrinks faster so carbon  revenues fall faster. Fast growing regions may see growing carbon revenues for several  decades more.  Scenarios and/or regions in which absorption of emissions e.g., by means of bioenergy with  CCS plays an important role may exhibit net negative emissions. This implies net reduction  of carbon revenues so governments must finance net negative emissions using either the  general budget or international funding (Carraro et al., 2012).  16.3   Enabling environments  This section highlights the importance of a supportive enabling environment in facilitating low carbon investments. The concept of enabling environment is not clearly defined, so it has many  different interpretations. One is government policies that focus on  creating and maintaining an  overall macroeconomic environment  (UNCTAD, 1998).24 Another (Bolger, 2000), interprets an  enabling environment  as the wider context within which development processes take place, i.e.,  the role of societal norms, rules, regulations, and systems. This environment may either be  supportive (enabling) or constraining.  According to Stadelmann and Michaelowa (2011), capacity building and enabling environment are  separate but interrelated concepts. Capacity building targets knowledge and skills gaps, while the  enabling environment for low carbon business activities is  the overall environment including  policies, regulations and institutions that drive the business sector to invest in and apply low carbon  technologies and services.  According to this definition, the enabling environment has three main  components: (1) the core business environment, which is relevant for all types of businesses, e.g.,  tax regime, labour market, and ease of starting and operating a business; (2) the broader investment  climate, including education, financial markets, and infrastructure, which is partially low carbon  related, e.g., via climate change education or investments in electricity grids; and (3) targeted  policies that encourage the business sector to invest in low carbon technologies.   Capacity building can also be seen as a subcomponent of an enabling environment (UNFCCC, 2009b)  as it aims to improve the enabling environment by overcoming market, human, and institutional  capacity barriers. Support for capacity building can increase the probability that the recipient  country will succeed in implementing mitigation policies, and hence may reduce the total funding  needed (Urpelainen, 2010).  Reliability and predictability are important elements of an enabling environment. While stable and  predictable government policies reduce uncertainty about expected return on investment, frequent  and unpredictable changes to policies can undermine market efficiency (Blyth et al., 2007; Brunner  et al., 2012). Predictability and stability require well established legal institutions and rule of law.  Institutional capacity across sectors and at various levels is also important (Brinkerhoff, 2004).  In their econometric examination, Eyraud et al. (2011) found that lowering the cost of capital is  particularly effective in boosting investment in low carbon activities. Hence, macro economic factors  and policy regulatory frameworks that are good for private investment as a whole are also important  determinants of climate investment. Put differently, obstacles that impede private investment also  hamper investment in low carbon technologies. More elements related to the drivers of low carbon  investments, which are part of enabling environments, are found in the next sub section.                                                               24  For enabling environments for technology transfer see McKenzie Hedger et al. (2000).    22 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  16.4   Financing low carbon investments, opportunities, and key drivers   Financing mitigation projects is, in principle, similar to financing any other investment. This section  provides an overview of factors that attract private capital for low carbon investments. First,  different categories of capital managers and their key investment criteria are introduced. Next,  challenges that hamper investors, such as investment risks and access to capital, are assessed.  Finally, selected financial instruments used in low carbon transactions are presented and discussed.  16.4.1    Capital managers and investment decisions  Mitigation measures often are financed through investments by several different capital managers  (see Figure 16.1). It is crucial to understand the basic investment logic and the preferred financial  instruments of each type of capital manager.25 Box 16.2 characterizes some of the major types of  capital managers.    Box 16.2. Types of capital managers relevant for investment and finance in low-carbon activities Governments commit to mitigation measures to comply with international agreements and self imposed targets. Their role as capital managers is limited to mitigation measures where they invest  directly. In 2011 and 2012, the public sector provided on average 135 billion USD per year  (2011/2012 USD) of public funding for climate finance, thereof 12 billion USD provided directly by  government bodies26 (Buchner et al., 2013b).  Public financial institutions include national, bilateral, multilateral, and regional finance institutions,  as well as UN agencies and national cooperation agencies. These institutions invested 121 billion  USD in mitigation and adaptation measures in 2012 (2012 USD), more than 50% was provided as  concessional loans (Buchner et al., 2013b).  Commercial financial institutions, such as banks, pension funds, life insurance companies, and  other funds, manage over 71 trillion USD in assets. They can have long time horizon investments  diversified across asset classes with varying risk return profiles and investment tenors, sectors, and  geographies (Inderst et al., 2012). The ability of institutional investors to invest in mitigation  measures depends on their investment strategy, restrictions agreed upon with their clients, as well  as the regulatory framework. Life insurance and pension funds are especially constrained by the  latter (Glemarec, 2011). Their contribution was estimated at 22 billion USD in 2012 (2012 USD)  (Buchner et al., 2013b).  Energy corporations including power and gas utilities, independent power producers, energy  companies, and independent project developers can design, commission, and operate renewable  energy projects. They provided approximately 102 billion USD (2012 USD) for climate finance in 2012  (Buchner et al., 2013b).  Non energy corporations invest in mitigation measures to reduce their energy bills, meet voluntary  commitments or comply with emission trading schemes. Altogether, they provided around 66 billion  USD in 2012 for low carbon investment (2012 USD) (Buchner et al., 2013b).  Households  investments are funded by income and savings supplemented by loans. In 2012,  households provided around 33 billion USD for climate finance projects; 83% of households                                                                25  For the different types of financing typically used, i.e., required, in the different stages of renewable  technologies, such as R&D, commercialization, manufacturing, and sales, see Mitchell et al.(2011).   This estimate excludes financing by public financial institutions and by dedicated climate fund, the latter  providing approximately 1.6 billion USD (2012 USD) in 2012 (Buchner et al., 2013b).  26   23 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  contributions were in developed countries, especially in Germany, Japan, and Italy (Buchner et al.,  2013b).  Risk and return are crucial decision factors in any investment finance decision, including low carbon  activities. The higher the perceived risk, the higher the cost of capital and required return needing to  be generated to cover the costs (i.e., higher risk results in a higher discount rate for cash flow)  (Romani, 2009).   Equity and debt are basically the two basic types of finance. Both come at a certain cost, which is  very sensitive to risk, i.e., risk premium or risk margin. The type of finance required depends on the  type of activity, its development phase, and its application.   Project finance is usually the preferred financing approach for infrastructure or energy projects  worth more than 21.4 million USD (UNEP, 2005). In this financing structure, debt and equity are paid  back exclusively from the cash flows generated by the project and there is no recourse to the  balance sheet (also call non recourse finance); as opposed to balance sheet financing, where all  on balance sheet  assets can be used as collateral. In 2012, around 70 billion USD of project level  market rate debt went towards emission reduction (70% provided by the public sector). Project level  equity was estimated at approximately 11 billion USD. However, the largest share of mitigation ,  198 billion USD, consisted of balance sheet financing (2012 USD) (Buchner et al., 2013b).  Risk profile, tenor (i.e., loan duration) and size are the primary criteria to characterize the financing  demand. The total financing demand can be split into tranches with varying risk profiles (e.g., debt  vs. equity) and varying tenors that match the characteristics of existing financing instruments. For  renewable energy projects, higher cost of capital will increase start up costs, which are generally  front loaded and higher per unit of capacity than for fossil fuel based projects even if financing  conditions are identical (Brunnschweiler, 2010). Lenders require a higher equity share if a project is  perceived as risky. A typical project finance structure in an industrialized country consists of 10 30%  equity, whereas in developing countries this share tends to be higher (UNEP, 2007). However, equity  tends to be scarce in many developing countries (see Section 16.4.2.2).  16.4.2    Challenges for low carbon investment  Factors that reduce the relative attractiveness of implementing a low carbon technology shall be  considered as a challenge. Many factors pertaining to the general investment environment can have  an enabling character or can act as a challenge (see Section 16.3). However, there are also low carbon specific factors especially in absence of a clear price signal for carbon emissions that, if  they remain, may keep the market penetration of these technologies to low percentages (Gillingham  and Sweeney, 2011). The latter will be assessed in this subsection.  Challenges vary significantly within the different investment categories, dependent upon the  investor and the type of activity. For instance, each group is faced with some additional typical  financial challenges. Energy efficiency measures, for instance, often face misaligned incentives  between the asset owner, user, and lender. It is more complex for energy efficiency projects to  structure and share the underlying risks. In addition, energy savings are intangible as collateral  (Hamilton and Justice, 2009; Ryan et al., 2012; Venugopal and Srivastava, 2012).   Investment risks: Investments in low carbon activities face partly the same risks as other  investments in the same countries analogous to the core and broader investment climate. These  risks can be broadly grouped into political risks (e.g., political instability, expropriation, transfer risk,  breach of contract, etc.) and macro economic risks (e.g., currency risk, financial risks, etc.). In some  developing countries, political and macro economic risks represent a high barrier to investment  (Ward et al., 2009; World Bank, 2011a; Venugopal and Srivastava, 2012).  There are also types of risks characteristic for low carbon investments: Low carbon policy risks are  one type of these risks that concern the predictability, longevity, and reliability of policy, e.g., low   24 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  carbon regulations might change or not be enforced (Ward et al., 2009; Venugopal and Srivastava,  2012; Frisari et al., 2013). Private capital will flow to those countries, or markets, where regulatory  frameworks and policies provide confidence to investors over the time horizon of their investment  (Carmody and Ritchie, 2007).  Mitigation activities also face specific technology and operational risk. For relatively new  technologies, these are related to performance of the technology (i.e., initial production and long term performance), delay in the construction, and the risk of not being able to access affordable  capital (see Section 16.4.2.2). Some low carbon activities also tend to depend on an expected future  development, e.g., steep learning curves for certain technologies. Operational risks include the  credit quality of the counterparties, off take agreements, especially in a scenario where the  mitigation technology has a higher costs of production, supply chain scalability, unreliable support  infrastructure, and maintenance costs (Jamison, 2010; Venugopal and Srivastava, 2012).  Moreover, risks may be overestimated due to limited information in markets that are undergoing a  technological and structural transition (Sonntag O Brien and Usher, 2006) and the longer time frame  used to assess the risk increases uncertainty. A lack of quantitative analytical methodologies for risk  management may add to the perceived risk.  Return on investment: The basic challenge is to find a financing package that provides the debt and  equity investors with a reasonable return on their investment given the perceived risks. Debt  financiers have a strong interest in seeing that their loans are paid back and hence provide funds to  less risky, proven technologies and established companies (Hamilton, 2010). It is estimated that in  2009 they required an average internal rate of return (IRR) of around 3 to 7% above the London  Interbank Offered Rate (LIBOR) reference interest rate, for renewable energy projects in  industrialized countries. Venture capitalists, angel investors, and some foundations (through so called programme related investments) are situated on the other side of the financing continuum.  They typically invest in new companies and technologies, and are willing to take higher risks while  expecting commensurately larger returns. These investors may require an IRR of 50% or higher  because of the high chances that individual projects will fail. Private equity companies that invest in  more established companies and technologies may still require an IRR of about 35% (Hamilton and  Justice, 2009). However, these typical IRRs have to be considered with care since they may vary  according to the prevailing basis interest rates (i.e., the current LIBOR rate), perceived risks of the  investment category and the availability of alternative investment opportunities. Many renewable  energy projects, especially in developing countries where additional risk margins are added, are  struggling to reach returns of this level to satisfy the expectations of financiers of equity and debt.  Cost of capital and access to capital: In many countries, there are imperfections in the capital  market restricting the access to affordable long term capital (Maclean et al., 2008). This is  particularly the case in many developing countries where local banks are not able to lend for  15 25 years due to their own balance sheet constraints (Hamilton, 2010), e.g., to match the  maturity of assets and liabilities.  Attracting sufficient equity is often critical for low carbon activities, especially for renewable energy  projects in developing countries (Glemarec, 2011). The equity base of a company is used to attract  (leverage) mezzanine or debt finance especially in project finance investments. Since equity is last in  the risk order and can be recovered only by means of sale of shares of the asset or its liquidation,  return expectations are significantly higher than for debt or mezzanine finance. Often, equity is also  the key limiting factor in the expansion of a low carbon activity, e.g., through growth of a company,  expansion into new markets, R&D, or multiplication of a project approach (UNEP, 2005).  Market and project size: Since the pre investment costs vary disproportionally with the project size,  smaller low carbon projects incur much higher transaction costs than larger ones of conventional  energy projects (Ward et al., 2009). These costs include feasibility and due diligence work, legal and  engineering fees, consultants, and permitting costs. Hamilton (2010) finds that small low carbon    25 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  projects in developing countries seeking less than 10 million USD of debt are generally not attractive  to an international commercial bank. Due to the higher transaction costs, small projects might also  generate lower gross returns, even if the rate of return lies within the market standards (Sonntag O Brien and Usher, 2006).  There is basically no secondary market to raise debt for low carbon projects. Hence, institutional  investors, whose major asset class is bonds, lack opportunities to invest in low carbon energy  projects because they do not issue bonds or the issuance size is too small (Hamilton and Justice,  2009; Kaminker and Stewart, 2012). The minimum issuance size for investment grade bonds tends to  be about 460 million USD, so few projects can achieve this standard (Veys, 2010). Many renewable  energy projects need investment in the range of 70 700 million USD, with only a few big ones  towards the upper end (Hamilton and Justice, 2009). In 2011, clean energy bonds amounted to only  about 0.2% of the global bond market (Kaminker and Stewart, 2012).  Tenor risk combination: Capital markets tend to prefer a combination of long tenor with low risk  and are willing to finance high risk only in the short term. Due to higher political and macro economic instability in developing countries, investors are particularly reluctant to invest in projects  with such a long investment horizon. Although pension funds and insurance companies are long term investors, concerns about quality and reliability of cash flow projections, credit ratings of off takers for power purchase agreements, short term performance pressures, and financial market  regulations often inhibit them from investing in long term low carbon assets (Kaminker and Stewart,  2012). Industrial firms also face constraints with extended payback periods, since they typically  operate with a short term horizon that requires rapid positive returns on investment (Della Croce et  al., 2011). A significant positive consideration, however, is that low carbon projects like waste heat,  geothermal, wind, and solar have zero or negligible fuel price volatility risk.  Human resources and institutional capacity: The lack of technical and business capabilities at the  firm, financial intermediary and regulatory level are significant barriers to harness low carbon  technologies, especially in many developing economies (Ölz and Beerepoot, 2010). In countries  where private sector actors do not only own the low carbon technology but are also predominately  responsible for the diffusion of technologies in the market, capacity building efforts need to focus on  these actors  ability to develop, fund, and deploy the respective technologies (Lall, 2002; Figueiredo,  2003; Mitchell et al., 2011).   16.4.3    Financial instruments  Policy instruments to incentivize mitigation activities are assessed in depth in Chapters 13, 14, and  15. Evidently a missing price signal for carbon emissions is a major obstacle for low carbon  investments. But not only in absence of such a price signal, other important measures can be applied  to reduce critical barriers for low carbon investment. Basic financial instruments are illustrated in  Figure 16.1 and introduced in Section 16.4.1. This subsection focuses on three types of financial  instruments with the following purposes: reducing risk, reducing the cost of capital, and providing  access to capital, as well as enhancing cash flows. Figure 16.5 illustrates in a simplified manner how  these instruments can enhance market competitiveness of low carbon projects. There is a growing  literature on how the public sector can use these instruments to mobilize additional private finance,  and can help to improve the risk return profile of investments for low carbon activities.    26 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Figure 16.5. Instruments to enhance market competitiveness of low-carbon projects 16.4.3.1    Reducing investment risks  Risk mitigation can play an essential part in helping to ensure that a successful project financing  structure is achieved by transferring risk away from borrowers, lenders, and equity investors.  Various instruments provided by private insurers, and by means of public mechanisms, can help to  partially or fully reduce the exposure of investors to political risk, exchange rate fluctuations,  business interruption, shortfalls in output, delays or damage during fabrication, construction, and  operation of a product, project, and company (Marsh, 2006).  There is a wide portfolio of proven commercial  and government supported risk mitigation products  that can be instrumental in efficiently expanding low carbon investment. Their allocation and  application requires a substantial level of expertise, experience, and resources available in  specialized insurance companies, export credit agencies, and selected commercial and development  banks. Examples of such products are highlighted below. They signal the potential for expanded use  of risk mitigation instruments to support low carbon investment (Frisari et al., 2013).  Credit enhancements/guarantees, such as commercial credit insurance and government  guarantees, usually cover part of the loan and reduce the loss incurred by a lender if the borrower is  unable to repay a loan. The lender must still evaluate the creditworthiness and conditions of the  loan, but these instruments can reduce the interest rate and improve the terms, thereby expanding  the available credit or reducing the costs (Stadelmann et al., 2011a).  Trade credit insurance provides partial protection against certain commercial risks (e.g.,  counterparty default) and political risks (e.g., war and terrorism, expropriation, currency transfer, or  conversion limitations) and other risks like non honouring of sovereign financial obligations or  breach of contract by sovereign actors (MIGA, 2012; OPIC, 2012). Such insurance is provided by  commercial insurance companies and by governments to their manufacturers, exporters, or  financiers.   Production and savings guarantees are typically provided to their clients by energy service  companies (ESCO) and large energy performance contracting (EPC) contractors. Only proven  practices and technologies are eligible to receive these guarantees, covering both technical risk  (from customer payment default due to non performance attributable to the ESCO or EPC  contractor), and comprehensive risk (defaults due to technical and financial creditworthiness of the  customer) (IDB, 2011).  Local currency finance can be used if currency fluctuations are particularly risky for a project or  company because a major investment is made in foreign currency and revenues are in local  currency. Loans in local currency or risk management swaps to hedge foreign currency liability back    27 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  into respective local currency can be provided by development finance institutions (IFC, 2013; TCX,  2013a). Structured funds like the Currency Exchange Fund (TCX) are dedicated to hedge these cross border currency and interest rate mismatches (TCX, 2013b).  By the end of 2012, the 20 largest emitting developed and developing countries with lower risk  country grades for private sector investments were producing 70% of global energy related CO2  emissions (Harnisch and Enting, 2013). In investment grade countries, risk mitigation instruments  and access to long term finance can be provided at reasonably low costs, and have the potential to  mobilize substantial additional private sector mitigation investments. In other countries, low carbon  investment would have to rely mainly on domestic sources or international public finance.   16.4.3.2    Reducing cost of and facilitating access to capital  In many situations, mitigation measures imply additional or incremental investments. Independent  of the specific role of equity or debt finance in these individual investments, and irrespective of  potential future reductions of operating and maintenance costs, the level of these investments can  be a severe barrier to the investment decisions of different investors (as outlined in Section 16.4.2).  Concessional or  soft  loans are repayable funds provided at terms more favourable than those  prevailing on the market including lower interest rates, longer tenor, longer grace period, and  reduced level of collateral. Providers of concessional loans are typically development banks on  behalf of governments. In international cooperation, concessional loans of varying degree and type  have been established as main financing instruments to support public sector entities and local  banks by bilateral and multilateral development banks (Maclean et al., 2008; Birckenbach, 2010;  UNEP, 2010, 2011, 2012). In 2011, bilateral finance institutions, for instance, disbursed 73% of their  mitigation finance as concessional loans (UNEP, 2012). National finance institutions provided around  87% of their climate funding in 2010/2011 via soft loans (Buchner et al., 2012).  Grants are non repayable funds provided to a recipient for a specific purpose by a government,  public financial institution or charity. Grants can play an important role in reducing up front capital  investment costs, and meeting viability gaps for projects that are more expensive than business as usual (Buchner et al., 2012).  Rebates provide immediate price reductions for purchase of an eligible product. Rebates can be  structured to decline over time, encouraging early adopters and reflecting anticipated technology  cost reductions (de Jager and Rathmann, 2008). Rebates are typically administered by retailers of  respective products, in cooperation with a government agency.  Tax deductions or tax credits increase the after tax cash flow for a specific investment. Hence, they  can have a similar effect as soft loans by reducing the net annual payments for the amortization of a  capital investment. They can be useful in enticing profitable enterprises to enter the market for  renewable energies to reduce their tax liabilities. However, they require to be embedded in a  country s tax system and a base in the tax code. Additionally, the specific level cannot be easily  adapted to changed market conditions and will depend on the specific tax burden of the taxed entity  (Wohlgemuth and Madlener, 2000).  Equity plays a critical role in financing a project and it is potentially attractive for governments to  provide equity to companies or projects to support desirable activities. At the same time, limited  expertise of the public sector in allocating capital in risky operations and in management of  companies, and problems arising from the relationships of owners and regulators, are frequently  cited as reasons against a broad public engagement as equity investor. In support of emission  mitigation activities, a number of approaches have been successfully demonstrated. Because of the  challenges discussed above, some public sector investors have decided to limit their equity  investment to minority stakes and apply clear investment criteria to avoid crowding out of private  investors and to use defined exit strategies (IFC, 2009).    28 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  16.4.3.3    Enhancing cash flow  Nationally agreed feed in tariffs (FITs) or third party guaranteed renewable energy premiums for  individual power purchase agreements provide a secure long term cash flow to operators of  renewable energy systems   based on technology, system size, and project location. Debt and equity  for a project can hence be secured due to the long duration, the guaranteed off take of the  electricity generated, and the grid access. Consequently, FITs do not only increase and stabilize the  return, but also reduce the risks for developers, lenders, and investors. As a result, the cost of capital  and required rate of return can be reduced as well (Cory et al., 2009; Kubert and Sinclair, 2011). The  FITs for renewable energy have been implemented in a broad range of industrialized and developing  countries (Fulton et al., 2010). The level of the FIT for a specific technology, region and time  determines the effectiveness and efficiency of the programme, but it is difficult to establish the  appropriate level up front and to adapt it as the market evolves and the technology matures.  CO2 Offset Mechanisms can also provide additional cash flow via the sales of credits to support the  economics of a mitigation investment. Unlike renewable energy premiums, however, there is  uncertainty about the future level of this payment stream. This has made many financiers hesitant to  provide debt finance for these projects. Some MDBs, like the ADB have a provision to buy credits  upfront contributing to investment capital and reducing uncertainty on the future cash flows from  the sale of carbon credits (ADB, 2011; Asian Development Bank, 2012).  16.5   Institutional arrangements for mitigation financing  Institutions are essential to channel climate finance to mitigation and adaptation measures  (Stadelmann, 2013) and to ensure that the actions funded respond to national needs and priorities  in an efficient and effective way.27 Through institutions, knowledge is accumulated, codified, and  passed on in a way that is easily transferable and used to build capacities, share knowledge, transfer  technologies, help develop markets, and build enabling environments for effective climate  investments. Without proper institutions, some actions and investments may remain simply as  stand alone projects with no lasting effects, or a one off capital equipment supply rather than a  transaction with a transfer of skills, know how, full knowledge of the technology, and a contribution  to a broader system of innovation and technological change (Ockwell et al., 2008).  16.5.1    International arrangements  Global arrangements for climate change mitigation finance are essential for several reasons. Most  commonly cited is the fact that because the earth s climate is a public good, investing within borders  is often not seen as beneficial to a particular country unless doing so becomes a collective effort  (Pfeiffer and Nowak, 2006). The UNFCCC, among others, was established to address this dilemma  and turn the global effort on climate change into a collective action that would be seen by all as  beneficial to the whole (Burleson, 2007). Trusted institutions are needed to channel and implement  the funding in an orderly and efficient process.   Funds that are part of the financial mechanism of the UNFCCC are subject to guidance from the COP.  Until recently, these included only the GEF Trust Fund, the SCCF and the LDCF, all of which are  administered by the GEF (see Section 16.2.1.1) (UNFCCC, 2013b). In 2010, the COP decided to  establish the GCF to be designated as a new operating entity of the Financial Mechanism (UNFCCC,  2010). The GCF, that is currently being operationalized, is expected to become the main global fund                                                                The term  institution  in this context is defined narrowly to mean an established organization dedicated to  facilitate, manage, or promote mitigation finance, as opposed to the broader meaning of the term commonly  used in the study of the social sciences and used to mean a structure or mechanism of social order and  cooperation governing the behaviour of individuals in society, e.g., the institutions of marriage or religion.   27   29 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  to support climate action in developing countries, but it has not yet been capitalized. In addition, the  Adaptation Fund has been established under the Kyoto Protocol.   The UNFCCC recognizes that funding for mitigation may come from a variety of sources and through  a variety of channels beyond the financial mechanism, such as multilateral and bilateral institutions  engaged in official development assistance. There has been an expansion in the number of public  and private climate funds in the last decade. The UNDP estimates that over the last decade some  50 international public funds, 45 carbon market funds, in addition to 6000 private equity funds (set  up largely independent of international climate policy) have been established for the purpose of  funding climate change related activities (UNDP, 2011). Some of these, such as CIFs are multi donor  funds administered by the World Bank but with their own governance and organizational structure.  The CIFs were designed as an interim measure to demonstrate how scaled up support can be  provided and include a sunset clause linked to progress on the financial architecture under UNFCCC.  They consist of two trust funds: the Clean Technology Fund (CTF), which promotes scaled up  financing for demonstration, deployment, and transfer of low carbon technologies with significant  potential for long term GHG emissions savings, and the Strategic Climate Fund (SCF), under which  are three separate initiatives for piloting transformational, scaled up action on climate change  (World Bank, 2011b; c). The pledges and contributions to the CIFs are recorded as ODA, and  therefore constitute a multi bilateral arrangement (World Bank, 2010).   The CDM and carbon funds are directly linked to emission. Prior to the decline of certificate prices,  they played a central role in attracting climate investments. The CDM is one of three trading  mechanisms created by the Kyoto Protocol that a developed country can use to help meet its  national commitment. The CDM allows a developed country to use credits issued for emission  reductions in developing countries. The other two mechanisms Joint Implementation (JI) and  International Emissions Trading (IET) involve only developed countries with national commitments.  The CDM is the largest of the mechanisms (UNFCCC, 2013c). Some of the carbon funds have been  established by multilateral financial institutions. The World Bank established the first fund, the  Prototype Carbon Fund, in 1999, and has since created several additional funds (World Bank, 2013).   There are several institutions promoting mitigation finance by private actors, which frequently  combine financial power of up to several trillions. However, their scope of work differs considerably.  Some of the major private sector institutions include inter alia the World Business Council on  Sustainable Development (WBCSD) (WBCSD, 2013), the Climate Markets and Investment Association  (CMIA) (CMIA, 2013), and the Global Investor Coalition on Climate Change (Global Investor Coalition  on Climate Change, 2013).   Regional arrangements play an important role in fostering regional cooperation and stimulating  action and funding. These regional institutions include the regional multilateral development banks  and the regional economic commissions of the United Nations on the multilateral side.28 They are  increasingly engaging in the promotion of mitigation and adaptation activities in their respective  regions and establishing and helping to manage regional financing arrangements (Sharan, 2008). In  the Asia and Pacific region, examples of regional financial arrangements to promote funding for  mitigation activities include ADB´s Clean Energy Financing Partnership Facility, the Asia Pacific  Carbon Fund, and the Future Carbon Fund. Other regional development banks have been equally  active (Asian Development Bank, 2013a; b; c).  Regional groupings such as the Economic Community for West African States (ECOWAS), the  Association of Southeast Asian Nations (ASEAN), the Secretariat for Central American Economic                                                                Economic Commission for Latin America, Inter American Development Bank (IDB), Economic Commission for  Africa (ECA), African Development Bank (AfDB), Economic Commission for Asia and the Pacific (ESCAP), Asian  Development Bank (ADB), Economic Commission for Europe (ECE), European Bank for Reconstruction, and  Development (EBRD).  28   30 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Integration, Mercosur, Corporación Andina de Fomento, and the Andean Pact, to name just a few,  have been actively promoting sub regional integration of energy systems and cooperation in climate  change activities in developing countries for some years. In the developed world, one of the best  examples of these regional political groupings is the European Union, which has been very active in  the area of climate change and in supporting activities in developing countries.  Bilateral cooperation arrangements are widely used by donor countries to provide funding to  partner country governments and their implementing organizations. They frequently involve  development banks and agencies with a proven track record in international cooperation. The three  principal means to channel climate change funding bilaterally are (1) bilateral programmes for  funding international cooperation in the energy, water, transport, or forestry,( 2) dedicated funding  windows established to target climate change funding open to a wider range of implementing  institutions, and (3) new funds implemented by bilateral development institutions with their own  governance structure. The OECD has established a framework for the implementation and reporting  modalities that can be applied to all climate relevant ODA and partially for other official flows (see  OECD, (2013b) for agreed principles on statistics, effectiveness, evaluation, and the like). Officially  supported export credits provided by export credit agencies on behalf of national governments are  also covered by a respective OECD arrangement (OECD, 2013c).  Triangular cooperation arrangements are defined by the OECD as those involving a traditional  donor, most likely a member of DAC, an emerging donor in the south (providers of South South  Cooperation), and the beneficiary countries or recipients of development aid (Fordelone, 2011).  Although they have grown in number in recent years, triangular arrangements, and particularly  those for climate change financing, are a relatively recent mode of development cooperation  (ECOSOC, 2008). These arrangements have attracted a number of countries particularly for  technology cooperation across sectors or specified industries. The rise of triangular arrangements  has been driven by the growing role of middle income countries and their increasing presence in  providing development co operation in addition to receiving it, and by the desire to experiment with  other types of cooperation where the experience of developing countries can be brought to bear.  16.5.2    National and sub national arrangements   The landscape of institutional arrangements for action on climate change is diverse. In many  countries, actions on climate change are not clearly defined as such. Consequently, many of the  national arrangements that exist to promote programmes and activities that contribute to mitigation  do not appear in the literature as institutions dedicated to support climate finance.  In many countries, particularly in developed countries and in a few larger developing countries,  finance for mitigation comes mainly from the private sector, often with public support through  regulatory and policy frameworks and/or specialized finance mechanisms. Institutional  arrangements and mechanisms that are successful in mobilizing and leveraging private capital tend  to be more cost effective in climate change mitigation, but some projects with low private  investments (e.g., projects reducing industrial GHGs or projects owned by state owned enterprises)  are also among the most cost effective (Stadelmann, 2013). The institutions and public finance  mechanisms are diverse, but all aim to help commercial financial institutions to do this job  effectively and efficiently. Many of the institutions support specialized public finance mechanisms  such as dedicated credit lines, guarantees to share the risks of investments and debt financing of  projects, microfinance or incentive funds, and schemes to mobilize R&D and technical assistance  funds to build capacities across the sectors, including the private and commercial sectors (Maclean  et al., 2008). National development banks play an important role in financing domestic climate  projects in many countries especially by providing concessional funding (Smallridge et al., 2012;  Höhne et al., 2012; IDFC, 2013).    31 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Many developing countries, other than the larger ones, are trying to cope with the multiplicity of  sources, agents and channels offering climate finance (Glemarec, 2011). These efforts take two  forms.   One form is coordination of national efforts to address climate change by relevant government  institutions. Very few developing countries have an institution fully dedicated to climate finance  (Gomez Echeverri, 2010). Rather, climate finance decisions involve multiple ministries and agencies  often coordinated by the ministry of the environment. Involvement of ministries of foreign affairs  and ministries of finance is becoming more common due to their engagement in international  negotiations and the promise of increased resources under UNFCCC.   The second form is the establishment of specialized national funding entities designed specifically to  mainstream climate change activities in overall development strategies. These institutions blend  international climate funding with domestic public funds and private sector resources (Flynn, 2011).  Table 16.2 lists examples of national funding entities. A common feature is the desire to allocate  resources for activities that are fully mainstreamed to the national needs and priorities. To do this,  the national funding entities seek to tap the numerous international sources of climate finance and  supplement them with domestic resources. They are also expected to develop the governance and  capacity requirements for  direct access  to funds from the Adaptation Fund and the GCF.29  In many countries, sub national arrangements are increasingly becoming an effective vehicle for  advancing energy and climate change goals. These arrangements and the institutions that support  them are being established to advance regional collaboration in areas of common interest and to  benefit from greater efficiency and effectiveness through actions with greater geographical coverage  (Setzer, 2009). For example, because of their population densities and economic activities, cities are  major contributors to global GHG emissions, and as such they are major potential contributors to  worldwide mitigation efforts (Corfee Morlot et al., 2009). In recent years, there has been an increase  in the number of networks and initiatives specifically dedicated to enhance the role of cities in the  fight against climate change. As a result, these initiatives are potentially big contributors to  mitigation efforts, but because of the lack of clear processes linking these initiatives to national and  international climate change policy, their impact in broader policy frameworks is less certain (UN Habitat, 2011). One possible opportunity for enhancing this linkage is through the new National  Appropriate Mitigation Actions (NAMAs) being submitted by developing countries within the context  of UNFCCC. The NAMA process agreed to at Bali provides an opportunity to incorporate sectoral  policies with relevance to their cities (Li, 2011).                                                                  Direct access means that an accredited institution in the recipient country may receive funds directly to  implement a project. Currently, most international funding institutions insist that projects be implemented by  a multilateral development bank or UN agency.  29   32 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Table 16.2: A sample of national funding entities in developing countries. Sources: Adapted from Gomez-Echeverri (2010), updated based on UNDP and World Bank (2012), Amazon Fund (2012), BCCRF (2012), CDMF (2012), ICCTF (2012), World Bank (2012b), UNDP (2013b).  Name,  country,  establishment  Amazon Fund,  Brazil  (2010)  Description  Established to combat  deforestation and promote  sustainable development in the  Amazon. Focus: adaptation and  mitigation  Source of fund and  operations  Designed to attract  national and private  investment for Amazon  rainforest projects as well  as donations and earnings  from non reimbursable  investments made  Designed to attract funds  from UNFCCC finance  mechanisms, and direct  donor support  Governance  Managed by National Development  Bank of Brazil (BNDES), a Guidance  Committee composed of federal and  state governments and civil society,  and a Technical Committee   Bangladesh  Climate Change  Resilience Fund  (BCCRF)  (2010)  Established to provide support  for the implementation of  Bangladesh s Climate Change  Strategy and Action Plan  2009 2018 and particularly  vulnerable communities. Focus:  adaptation and mitigation  Established jointly by Ministries  of Finance, Foreign Affairs,  Science and Technology, and  National Development and  Reform Commission (NDRC).  Focus: mitigation  Established jointly by the  National Development Planning  Agency and Ministry of Finance  to pool and coordinate funds  from various sources to finance  Indonesia s climate change  policies and programmes   Established to finance activities  under the Low Carbon  Development Strategy of Guyana  and to create an innovative  climate finance mechanism.  Focus: mitigation and adaptation  Managed by a board composed of  Ministers of Environment, Finance,  Agriculture, Foreign Affairs, and  Women and Children Affairs and  disaster management, as well as  donors and civil society  organizations  Governed by the Board of the China  CDM Fund that comprises  representatives of seven line  ministries, and managed and  operated by a management centre  affiliated with the Ministry of  Finance  The UNDP is an interim Trustee  operating under a Steering  Committee headed by the National  Development Planning Agency that  also includes donors and other line  ministries  A Steering Committee with  members of government and  financial contributors chaired by the  Government of Guyana, is the  decision making and oversight body.  The International Development  Association (IDA) of the World Bank  Group acts as Trustee and the  partner entities provide operational  services  Governed by a Ministerial Steering  Committee chaired by Ministry of  Finance and Economic Development  with an advisory body composed of  development partners, multilateral  organizations, national non governmental organizations (NGOs),  civil society, private sector, and  academia    China CDM  Fund (CDMF)  (2007)  Funded by revenues  generated from CDM  projects in China, as well  as grants from domestic  and international  institutions  Currently funded by  grants from development  partners but designed for  direct access to  international climate  funding and to attract  private funding  Designed to attract donor  support. Operates under a  performance based  funding modality, based  on an independent  verification of Guyana s  deforestation and forest  degradation rates and  progress on REDD+  enabling activities  Designed to mobilize,  access, and blend both  local and international  public and private  resources to support  Ethiopia s Climate  Resilience Green Economy  Strategy   Indonesia  Climate Change  Trust Fund  (ICCTF)  (2010)  Guyana REDD  Investment  Fund (GRIF)  (2010)  Ethiopia  Climate  Resilient Green  Economy  Facility  (2012)  Established to support country s  vision of attaining a middle income economy with low carbon growth by 2020. Focus:  mitigation and adaptation  16.5.3    Performance in a complex institutional landscape  The institutional landscape for climate finance is becoming increasingly complex as interest of actors  to enter the field of climate change finance and mitigation activities in developing countries    33 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  increases. As in other international cooperation, there are discussions about effectiveness of climate  finance (see OECD(2008) for politically agreed principles on aid effectiveness). Concerns have been  raised about diverting attention and resources from development aid, i.e., ODA, such as health and  education, the additionality of expanded funding for mitigation and adaptation (Michaelowa and  Michaelowa, 2011), the difficulty of defining and measuring comparable results and achieving  coherence with national priorities and development strategies, the lack of transparency, the  fragmentation and duplication of efforts, and that the number of established funds may undermine  the authority of the operating entities of the financial mechanism of the UNFCCC (Poerter et al.,  2008). The proliferation of climate funds (HBF and ODI, 2013) and funding channels with their own  governance procedures can create a substantial bureaucratic burden for recipients (Greene, 2004).  Compounding these problems is the fragmentation of governance architectures that prevail in most  developing countries (Biermann et al., 2009). Climate finance may be more effective if the operation  of related institutions is streamlined and the capacity in developing countries to cope with the  increasing number of these institutions is developed further. Evidence on the effectiveness of  institutions to mainstream climate change mitigation and adaptation activities is currently lacking.  16.6   Synergies and tradeoffs between financing mitigation and adaptation   This section introduces a conceptual framework linking adaptation and mitigation in terms of  financing and investment. Estimates of investments needed for mitigation are provided in  Section 16.2.2, and for adaptation investments in the sectoral chapters of the Working Group II  report. First, this section addresses the interactions of financing adaptation and mitigation in terms  of their specific effectiveness and tradeoffs, as well as their competition for funding over time.  Second, it discusses examples of integrated financing approaches.  16.6.1    Optimal balance between mitigation and adaptation and time dimension  Both mitigation and adaptation measures are necessary to effectively avoid harmful climate impacts.  However, an assessment on whether, where, and which types of adaptation and mitigation  measures and policies are substitutes or complements requires theoretical analysis and empirical  evidence (Section 13.3.3). Investing in mitigation may reduce the need to invest in adaptation, and  vice versa. Several authors have recognized that optimal mitigation and adaptation strategies should  be jointly determined (Schelling, 1992; Kane and Shogren, 2000; Dellink et al., 2009; Bosello et al.,  2010), including from the perspective of a global decision maker. The optimal balance of mitigation  and adaptation depends on their relative costs, for any given profile of climate change impacts. To  avoid inefficiencies, the socially discounted rate of return on resources invested in mitigation and  adaptation should be equal. Therefore, mitigation and adaptation compete to attract investments.  From the perspective of simple economic models, a reduction in the costs of mitigation should lead  to more mitigation and less adaptation, and, according to this view, they are substitutes (Ingham et  al., 2005).  From the perspective of development and climate studies (Tol, 2007; Ayers and Huq, 2009), climate  change in most cases will impact the economy by reducing its production potential (part of the  residual damage), and the level of impacts will depend on its efficiency, diversity, and vulnerability,  as well as on how institutions are able to adapt. On the other hand, policies to address mitigation  and/or adaptation could promote the transfer of technologies and financial resources, and  strengthen institutions and markets, which could lead to the enhancement of a country s productive  capacity (Halsnaes and Verhagen, 2007).  Combined mitigation and adaptation strategies taking into account cost effectiveness may involve  economic tradeoffs. The optimal balance, including allocation of resources, should be determined  taking into account possible co benefits, which may be difficult to assess. Many actions that  integrate mitigation and adaptation have enough co benefits to make obvious sense of their  immediate implementation (see Working Group II report), in spite of the fact that in many cases,    34 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  assessment of their effective combination, cost effectiveness, and tradeoffs requires improved  information, improved capacities for analysis and action, and further policymaking (Wilbanks and  Sathaye, 2007). Modelling of any direct interaction between adaptation and mitigation in terms of  their specific effectiveness and tradeoffs would also be desirable (Wang and McCarl, 2011).  An analysis on the time composition (timing of mitigation and adaptation) of the optimal climate  change strategy is also important to assess how to best allocate climate change funds. Emerging  frameworks for assessing the tradeoffs between adaptation and mitigation include those from the  point of view of risks and costs. People invest resources to reduce the risk they confront or create  (Ehrlich and Becker, 1972; Lewis and Nickerson, 1989). Recent studies have used integrated  assessment models to numerically calculate the optimal allocation of investments between  mitigation and adaptation. They confirm the analytical insights of Kane and Shogren (2000) and  suggest that investments in mitigation should anticipate investments in adaptation (Lecocq and  Shalizi, 2007; de Bruin et al., 2009; Bosello et al., 2010). The reason for this is because climate and  economic systems have inertia and delaying action increases the costs of achieving a given  temperature target. These studies suggest that the competition between mitigation and adaptation  funds extends over time.  By arguing  uncertainty on the location of damages reduces the benefits of  targeted  proactive  adaptation with regard to mitigation and reactive adaptation , some authors reinforce the idea that  it is optimal to wait to invest in adaptation (Lecocq and Shalizi, 2007). For the above reasons, Carraro  and Massetti (2011) suggest that the greatest share of the GCF should finance emissions reductions  rather than adaptation in developing countries. Other authors propose a framework that could  integrate into an optimization model not only mitigation and adaptation, but also climate change  residual damages. In the light of the uncertain impacts of climate change, prioritizing mitigation  measures is justified, on the basis of a precautionary approach. Adaptation actions  should be  optimally designed, consistently with mitigation, as a residual strategy addressing the damage not  accommodated by mitigation  (Bosello et al., 2010).   Wang and McCarl (2011) recognizes that, in terms of an overall investment shared between  mitigation and adaptation, mitigation tackles the long run cause of climate change while adaptation  tackles the short run reduction of damages and is preferred when damage stocks are small. Contrary  to Bosello et al. (2010), they advocate that, instead of taking adaptation as a  residual  strategy, well planned adaptation is an economically effective complement to mitigation since the beginning and  should occur in parallel. Thus, adaptation investment should be considered as an important current  policy option due to the near term nature of given benefits.   Moreover, the optimal balance of adaptation and mitigation measures and investments should be  determined in function of the magnitude of climate change;  if mitigation can keep climate change  to a moderate level, then adaptation can handle a larger share of the resulting impact  vulnerabilities  (Wilbanks et al., 2007). While the uncertainties about specific pathways remain, and  although there are different considerations on their optimal balance, there is a general agreement  that funding for both mitigation and adaptation is needed.  16.6.2    Integrated financing approaches  Despite the lack of modelling of any direct interaction between adaptation and mitigation in terms  of financing, there is an increasing interest in promoting integrated financing approaches, addressing  both adaptation and mitigation activities in different sectors and at different levels. Although the  GCF will have thematic funding windows for adaptation and mitigation, an integrated approach will  be used to allow for cross cutting projects and programmes (UNFCCC, 2011c, para 37).  The theoretical literature reviewed in Section 16.1.1 provides only general guidance on financing  mitigation and adaptation measures. Analysis of specific adaptation and mitigation options in  different sectors reveals that adaptation and mitigation can positively and negatively influence the    35 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  effectiveness of each other (see also Working Group II report). Particular opportunities for synergies  exist in some sectors (Klein et al., 2007), including agriculture (Niggli et al., 2009), forestry  (Ravindranath, 2007; Isenberg and Potvin, 2010), and buildings and urban infrastructure  (Satterthwaite, 2007).   Mitigation activities have global benefits while most adaptation activities benefit a smaller  geographical area or population. Funding sources with a regional, national or sub national  perspective, therefore, will increasingly favour adaptation over mitigation measures (Dowlatabadi,  2007; Wilbanks and Sathaye, 2007). Thus the sources of climate finance available may yield a mix of  mitigation and adaptation measures quite different from the global optimal mix. Additional studies  to understand the complex way in which local adaptation aggregates to the global level  are  needed (Patt et al., 2009). Although the optimal mix cannot be determined precisely, the availability  of international climate finance for both mitigation and adaptation is necessary to counteract such  tendencies.  Taking into account the strong regional nature of climate change impacts, a regional financing  arrangement will be more responsive and relevant than a global one, and may play an important  role in adaptation (Sharan, 2008). Regional funding tools have made arrangements for financing  adaptation activities in complement to mitigation measures: e.g., the Poverty and Environment Fund  (PEF) of the Asian Development Bank promotes the mainstreaming of environmental and climate  change considerations into development strategies, plans, programmes, and projects of the bank  (ADB, 2003).  The AfDB acts as manager and coordinator of new funding for the Congo Basin forest ecosystem  conservation and sustainable management (UNEP, 2008). According to the operational procedures  by AfDB, to be eligible for financing under the Congo Basin Forest Fund (CBFF), project proposals and  initiatives considered for funding should, among other things, aim at slowing the rate of  deforestation, contribute to poverty alleviation, provide some contribution to climate stabilization  and GHG emissions reduction, and may show environment, economic, and social risk assessment in  addition to appropriate mitigation measures, as well as be supported by national strategies to  combat deforestation while preserving biodiversity and promoting sustainable development (AfDB,  2009). See Section 14.3.2 for additional information on regional examples of cooperation schemes  identifying synergies between mitigation and adaptation financing.   Many ongoing bilateral and multilateral development activities address mitigation and adaptation at  the same time. A recent survey by Illmann et al. (2013) discusses examples from agriculture  (conversion of fallow systems into continuously cultivated area; the reuse of wastewater for  irrigation), forestry (reforestation with drought resistant varieties; mangrove plantations), and from  the energy sector (rural electrification with renewable energy, production of charcoal briquettes  from agricultural waste). The study identifies significant potential to further mobilize these synergies  within existing development cooperation programmes.  Another point of debate regarding synergies and tradeoffs between financing mitigation and  adaptation relates to the conceptual framework that suggests allocating responsibility for  international financing of adaptation based on the historical contribution of countries to climate  change in terms of GHG emissions and their capacity to pay for the costs of adaptation at  international level (Dellink et al., 2009). The provision of international climate finance, of course,  raises other issues of equity and burden sharing, which are beyond the scope of this chapter.  16.7   Financing developed countries  mitigation activities  This and the next section consider the manner in which developed and developing countries may  choose to finance the incremental investments and operating costs associated with GHG mitigation  activities. It is fully recognized that a country s individual circumstances will in large part determine    36 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  how financing is accomplished, and further, that individual national circumstances vary widely  among members of the developed and developing country groups.  The manner in which developed countries finance their mitigation activities depends largely on the  policies chosen to limit GHG emissions and the ownership of the sources of emissions. Policies and  ownership also determine the distribution of the burdens posed by the financing needs, i.e., if it will  be financed by households and firms through higher prices, taxes, or both.  In 2011 and 2012, on average, 177 billion USD of global climate finances were invested in developed  countries (49% of the global total climate finance) of which the vast majority (81%) originated in the  same country as the investment was undertaken (2011/2012 USD) (Buchner et al., 2013b). Due to  the financial crisis investment in renewable energy in developed countries dropped 14% in 2009  (Frankfurt School UNEP Centre and BNEF, 2012), but saw a rapid recovery due to the green stimulus  packages (IEA, 2009; REN21, 2010). The eight development banks of OECD countries that are  members of the International Development Finance Club (IDFC) allocated 28 billion USD (2011 USD)  and 33 billion USD (2012 USD)  green 30 finance to domestic projects in 2011 and 2012, respectively  (Höhne et al., 2012; IDFC, 2013). Public climate finance was also directed to developing countries at  a range of 35 49 billion USD per year for 2011 and 2012 (2011/2012 USD) (Buchner et al., 2013b).  Without climate policy, an estimated 96 (70 126) billion USD per year of investment in fossil power  generation will occur in developed countries from 2010 2029; from 2030 to 2049, this figure  increases to 131 (86 215) billion USD per year. In a climate policy scenario compatible with a 2°C  warming limit in 2100, OECD countries are expected to reduce investments in fossil power  generation by 57% ( 2 to  89%) during 2010 2029, but investments will drop by 90% ( 80 to  98%)  during 2030 2049. Investment in renewable power generation instead will increase by 86% (58 to  116%) during 2010 2029 and by 200% (77 to 270%) during 2030 2049 (based on IEA (2011), Carraro  et al. (2012), Calvin et al. (2012) and McCollum et al. (2013), used in Section 16.2.2).  To date, public sourcing for climate finance originates primarily from general tax revenues. However,  under ambitious stabilization targets, financial sources that yield mitigation benefits have the  potential to generate high revenues that could be used for climate finance. Carbon taxes and the  auctioning of emissions allowances carry the highest potential, a phaseout of fossil fuel subsidies,  and a levy or emission trading scheme for international aviation and shipping emissions are  estimated to generate considerable revenues as well (UNFCCC, 2007; AGF, 2010; World Bank Group  et al., 2011).   Most developed countries offer a reasonably attractive core and broader enabling environment for  climate investments. Developed countries, as do many emerging economies, combine substantial  energy related GHG emission reduction potential with low country risks. At the end of 2012, 29 out  of 36 assessed developed countries fell into the group of lower risk country grade, producing 39% of  global fuel related CO2 emissions (Harnisch and Enting, 2013). Private finance can thus be the main  source of low carbon investment in these countries, however private actors are often dependent on  public support through regulatory and policy frameworks and/or specialized finance mechanisms.  While macroeconomic and policy risk have been reasonably low in the past, low carbon policy risks  have affected investments in developed countries. In principle, risk mitigation instruments and  access to long term finance can be provided at reasonably low cost. Suitable institutions exist to  implement specialized public finance mechanisms to provide dedicated credit lines, guarantees to  share the risks of investments, debt financing of projects, microfinance or incentive funds, and  schemes to mobilize R&D and technical assistance funds for building capacities across the sectors.  The institutions and types of public finance mechanisms in existence across countries are diverse but                                                                 Green  finance as reported by IDFC includes projects with other environmental benefits. Approximately 93%  (80%) of the  green  finance by IDFC in 2011 (2012) was climate finance (Höhne et al., 2012; IDFC, 2013).  30   37 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  share the common aim of helping commercial financial institutions to effectively and efficiently  perform this job (Maclean et al., 2008).  In 2012, the most widespread fiscal incentives were capital subsidies, grants, and rebates. They were  in place in almost 90% of high income countries. In 70% of the countries public funds were used to  support renewable energy, e.g., public investment loans and grants. Feed in tariffs were in place in  27 high income countries at national or state level (75% of all countries analyzed) (REN21, 2012).  16.8   Financing mitigation activities in and for developing countries including  for technology development, transfer, and diffusion  Analogous to the previous section, this section outlines key assessment results for mitigation finance  in and for developing countries, i.e., embracing domestic flows as well as financing provided by  developed countries.  An estimated 51% of the total global climate finance in 2011 and 2012, namely on average  182 billion USD per year, was invested in developing countries (2011/2012 USD). Thereof, 72% was  originating in the same country as it was invested) (Buchner et al., 2013b). The total climate finance  flowing from developed to developing countries is estimated to be between 39 and 120 billion USD  per year in 2011 and 2012 (2011/2012 USD). This range covers public and the more uncertain flows  of private funding for mitigation and adaptation. Clapp et al. (2012) estimate the total at 70 120  billion USD per year based on 2009 2010 data. Data from Buchner et al. (2013a) suggest a net flow  to developing countries for 2010 and 2011 of the order of 40 to 60 billion USD. North South flows  are estimated at 39 to 62 billion USD per year for 2011 and 2012 (2011/2012 USD) (Buchner et al.,  2013b).  Public climate finance provided by developed countries to developing countries was estimated at 35  to 49 billion USD per year in 2011 and 2012 (2011/2012USD) (Buchner et al., 2013b). Multilateral  and bilateral institutions played an important role in delivering climate finance to developing  countries. Seven MDBs31 reported climate finance commitments of about 24.1 and 26.8 billion USD  in 2011 and 2012, respectively32 (2011 and 2012 USD) (AfDB et al., 2012a; b, 2013). These  institutions manage a range of multi donor trust climate funds, such as the Climate Investment  Funds, and the funds of the financial mechanism of the Convention (GEF, SCCF, LDCF). The GCF is  expected to become an additional international mechanism to support climate activities in  developing countries. Bilateral climate related ODA commitments were at an average of 20 billion  USD per year in 2010 and 2011 (2010/2011 USD) (OECD, 2013a) 33 and were implemented by  bilateral development banks or bilateral agencies, provided to national government directly or to  dedicated multilateral climate funds (Buchner et al., 2012). However, bilateral and multilateral  commitments are not fully comparable due to differences between methodologies.                                                                African Development Bank (AfDB), the Asian Development Bank (ADB), the European Bank for  Reconstruction and Development (EBRD), the European Investment Bank (EIB), the Inter American  Development Bank (IDB), the World Bank (WB), and the International Finance Corporation (IFC).   The reporting is activity based allowing counting entire projects but also project components. Recipient  countries include developing countries and 13 EU member states. It covers grant, loan, guarantee, equity, and  performance based instruments, not requiring a specific grant element. The volume covers MDBs  own  resources as well as external resources managed by the MDBs that might also be reported to OECD DAC (such  as contributions to the GEF, CIFs, and Carbon Funds)   It covers total funding committed to projects that have climate change mitigation or adaptation as a  principal  or  significant  objective. The ODA is defined as those flows to countries on the DAC List of ODA  Recipients and to multilateral institutions provided by official agencies or by their executive agencies.  Resources must be used to promote the economic development and welfare of developing countries as a main  objective and they must be concessional in character (OECD, 2013a).  33 32 31   38 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Climate projects in developing countries showed a higher share of balance sheet financing and  concessional funding provided by national and international development finance institutions than  developed countries (Buchner et al., 2012). Domestic public development banks played an important  role in this regard. The 11 non OECD development bank members of IDFC provided 44 billion USD of  domestic  green 34 finance in 2011 and 2012 (2011 and 2012 USD) (Höhne et al., 2012; IDFC, 2013).   According to UNFCCC (2011a), Annex II countries provided an average of almost 10 billion USD per  year of climate finance to developing countries. In 2009, developed countries committed to provide  new and additional resources approaching 30 billion USD of  FSF  to support mitigation and  adaptation action in developing countries during 2010 2012. The sum of the announced  commitments exceeds 33 billion USD (UNFCCC, 2011b, 2012b; c, 2013a). Data on the amount  actually disbursed is not available. Some analyses question whether these funds were  new and  additional  (Brown et al., 2010; Stadelmann et al., 2010, 2011b).  Robust information on the current magnitude of private flows from developed to developing  countries is highly uncertain. Clapp et al. (2012) estimate the private investment at 37 72 billion  USD per year based on 2009 2010 data (2008/2009 USD) and Stadelmann et al. (2013) estimate  those flows at 10 to 37 billion USD (2010 and 2008 USD) per year based on 2008 2011 data.   In reference scenarios as well as in policy scenarios compatible with a 2°C warming target in 2100,  non OECD countries absorb the greatest share of incremental investments in power generation  technologies. Without climate policy, investments in the power sector are mainly directed towards  fossil fuels. About 73% (65% to 80%) of global investment in fossil power plants between  2010 2029, and 78% (76 to 80%) between 2030 2049, would flow into in the non OECD because  many developing countries rely on low cost coal power plants to supply an ever growing demand of  electricity in the scenarios examined (based on IEA (2011), Carraro et al. (2012), Calvin et al. (2012),  and McCollum et al. (2013) used in Section 16.2.2). In a climate policy scenario compatible with a 2°C  warming limit in 2100, non OECD countries are expected to absorb 51% (34% to 66%) of incremental  average annual investment in renewables over 2010 2029, and 67% (61 to 73%) over 2030 2049.   In tackling climate change, developing countries face different types and magnitudes of constraints.  Out of the 149 assessed developing countries, only 37 were assigned lower risk country grades.  These countries, being attractive for international private sector investment in low carbon  technologies, represent 38% of global CO2 emissions. However, the majority of developing countries  currently exhibits higher country risk grades reflecting less attractive international investment  conditions and finds it more difficult to attract foreign private investment (Harnisch and Enting,  2013). Moreover, the lack of technical capacity and training systems is a significant barrier for low carbon investment in many developing economies (Ölz and Beerepoot, 2010). Between 2005 and  2009, developed countries provided 2.5 billion USD of ODA to support creation of general enabling  environments in developing countries (2005 2009 USD) (Stadelmann and Michaelowa, 2011).  Since investment risks for low carbon projects in developing countries are typically perceived to be  higher than in developed countries, the cost of capital and the return requirements of investors are  respectively higher. The IRR for general infrastructure in developing countries, for instance, is a  median of 20% compared to about 12% in developed countries (Ward et al., 2009). Access to  affordable long term capital is limited in many developing countries (Maclean et al., 2008), where  local banks are not able to lend for 15 25 years due to balance sheet constraints (Hamilton, 2010),  such as the mismatch in the maturity of assets and liabilities. In addition, appropriate financing  mechanism for end users  up take are also often missing (Derrick, 1998). Moreover, equity finance is  scarce in many developed countries, increasing the dependence on project finance. Especially in low income countries, project sponsors frequently rely on external assistance to cover project                                                                 Green  finance as reported by IDFC includes projects with other environmental benefits. Approximately 93%  (80%) of the  green  finance by IDFC in 2011 (2012) was climate finance (Höhne et al., 2012; IDFC, 2013).   34   39 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  development costs for many investments because of their high risks and non commercial nature  (World Bank, 2011d).  Many developing countries use a range of incentives for investments in renewable energies (REs),  especially fiscal incentives (OECD, 2013d). Public financing instruments to stimulate RE, such as  public investment, loans, or grants, were in place in 57% of the countries analyzed and FITs were  established in 39 developing countries in 2012 (REN21, 2012). Carbon pricing has not yet widely  been adopted by developing countries, apart from the non perfect carbon price incentive via the  CDM. However, currently new ETS are set up, planned, or under consideration in some developing  countries such as China (provinces and cities), Kazakhstan, Ukraine, Chile, Brazil, and South Korea,  but it will take time until such ETS will be fully operational and provide enough investment certainty  (Kossoy et al., 2013).  Regional groupings such as the ECOWAS, the ASEAN, and the Mercosur, have been actively  promoting sub regional integration of energy systems and cooperation in climate change activities.  On the national level, there is an on going attempt to cope with the multiplicity of sources, agents,  and channels offering financial resources for climate action (Glemarec, 2011). Most developing  countries rely on relevant ministries and agencies chaired by the ministry of the environment or  finance to coordinate climate change finance (Gomez Echeverri, 2010). Some developing countries  are establishing national implementing entities and funds that mainstream climate change activities  into overall development strategies. Often these institutions are designed to blend international  funding with domestic and private sector resources (Flynn, 2011).    Box 16.3. Least Developed Countries investment and finance for low-carbon activities This box highlights key issues related to investment and finance for Least Developed Countries  (LDCs), however some of these issues are certainly also relevant for other developing countries.  Climate change increased the challenges LDCs are facing regarding food, water, and energy that  exacerbate sustainable development. Most LDCs are highly exposed to climate change effects as  they are heavily reliant on climate vulnerable sectors such as agriculture (Harmeling and Eckstein,  2012). Most of the LDCs, already overwhelmed by poverty, natural disasters, conflicts, and  geophysical constraints, are now at risk of further devastating impacts of climate change. In turn,  they contribute very little to carbon emissions (Baumert et al., 2005; Fisher, 2013).   At the same time, LDCs are faced with a lack of access to energy services and with an expected  increase in energy demand due to the population and GDP growth. Of the 1.2 billion people without  electricity in 2010, around 85% live in rural areas and 87% in Sub Saharan Africa and Southern Asia.  For cooking, the access deficit amounts to 2.8 billion people who primarily rely on solid fuels. About  78% of that population lives in rural areas, and 96% are geographically concentrated in Sub Saharan  Africa, Eastern Asia, Southern Asia, and South Eastern Asia (Sustainable Energy for All, 2013) (see  Section 14.3.2.1 for other estimates provided by the literature). By investing in mitigation activities  in the early and interim stages, access to clean and sustainable energy can be provided and  environmentally harmful technologies can potentially be leapfrogged. Consequently, needs for  finance and investment are pressing both for adaptation and mitigation.   Regarding specific mitigation finance needs, there are no robust data for LDCs. It is estimated that  shifting the large populations that rely on traditional solid fuels (such as unprocessed biomass,  charcoal, and coal) to modern energy systems and expanding electricity supply for basic human  needs could yield substantial improvements in human welfare for a relatively low cost (72 95 billion  USD per year until 2030 to achieve nearly universal access) (Pachauri et al., 2013). For instance, in  Bangladesh, the costs to provide a minimum power from solar home system s energy source to off grid areas was around 285 USD per household (World Bank, 2012c). However, the very few country  studies on mitigation needs and costs are not representative of the whole group of LDCs and are not    40 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  comparable. Data on international and domestic private sector activities in LDCs are also lacking, as  are data on domestic public flows. With respect to North South flows, the OECD DAC reported that  developed countries provided 730 million USD in mitigation related ODA to LDCs in the year 2011.  Bangladesh received the highest share with 117 million USD, followed by Uganda and Haiti with  more than 70 million USD (OECD, 2012).  Most LDCs have very few CDM projects that are also an important vehicle for mitigation (UNFCCC,  2012d; UNEP Ris, 2013). To improve the regional distribution of CDM projects, the CDM Executive  Board has promoted the regulatory reform of CDM standards, procedures, and guidelines.  Furthermore, stakeholder interaction has been enhanced and a CDM loan scheme has been  established by UNFCCC to provide interest free loans for CDM project preparation in LDCs (UNFCCC,  2012e).  Some LDCs are starting to allocate public funds to mitigation and adaptation activities, e.g., NAPAs or  national climate funds (Khan et al., 2012). However, pressing financial needs to combat poverty  favour other expenditures over climate related activities.   Most LDCs struggle to provide an enabling environment for private business activities, a very  common general development issue (Stadelmann and Michaelowa, 2011). It is noteworthy that  among the 30 lowest ranking countries in the World Bank s Doing Business Index, 23 countries are  LDCs (World Bank, 2011a). Obstacles to general private business activities in turn hinder long term  private climate investments (Hamilton and Justice, 2009). Due to very high perceived risk in LDCs,  risk premiums are very high. This is particularly problematic as low carbon investments are very  responsive to the cost of capital (Eyraud et al., 2011). In a challenging environment, it is difficult to  implement targeted public policies and financial instruments to mobilize private mitigation finance.  Moreover, the weakness of technological capabilities in LDCs presents a challenge for successful  development and transfer of climate relevant technologies (ICTSD, 2012).  To develop along a low carbon growth path, LDCs rely on international grant and concessional  finance. It is especially important to ensure the predictability and sustainability of climate finance for  LDCs, as these countries are inherently more vulnerable to economic shocks due to their structural  weaknesses (UNCTAD, 2010).  While all donors and development institutions provide mitigation finance to LDCs, there are some  dedicated institutional arrangements, such as the LDCF and the SCCF under the Convention. Some  LDCs have also implemented national funding institutions, e.g., Benin, Senegal, and Rwanda in the  framework of the Adaptation Fund, or the Bangladesh Climate Change Resilience Fund.  While knowledge and data gaps regarding mitigation finance are generally higher in developing than  in developed countries, they are even more severe in LDCs.  16.9   Gaps in knowledge and data   Scientific literature on investment and finance for low carbon activities is still very limited and  knowledge gaps are substantive.   Common definitions and data availability. To date there are no common definitions for  central concepts related to climate finance or financial accounting rules. Neither are there  complete or reasonably accurate data on current climate finance and its components,  namely developed country sources or commitments, developing country sources or  commitments, international flows, and private vs. public sources. The role of domestic and  South South flows and domestic investments in developing countries is also not adequately  understood and documented. Frequently it is not possible to distinguish exactly between  adaptation and development finance, since they are closely interconnected. Another difficult  assessment is on the differences between funding under the ODA and  new and additional     41 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  funds available. Important metrics like the high carbon investment by sub sector and region,  the carbon intensity of new investments, downward deviations from reference emission  pathways, or the cost effectiveness of global mitigation investments are not tracked  systematically.   Model outputs and approaches. Only very limited model results exist for additional  investments and incremental costs to abate CO2 emissions in sectors other than energy  supply, e.g., via energy efficiency in industry, buildings, and transport, as well as in other  sectors like forestry, agriculture, and waste, or to mitigate process and non CO2 emissions in  the petroleum and gas, cement, and chemical industry, or from refrigeration and air  conditioning. Very limited analysis has been published that takes a globally consistent  perspective of incremental investments and costs at the level of nation states and regions.  This perspective could enrich the scientific discussion because global and regional netting  approaches among sectors and sub sectors may fall short of the complexity of real political  decision making processes.  A comprehensive and transparent treatment of investment and technology risks in energy  models is not available. The impact of fuel price volatility on low carbon investments is  generally not considered. Reasonably robust quantitative results of the need for additional  R&D for low carbon technologies and practices and on the timing of these needs  (infrastructure and technology deployment roadmaps) are not available. While there is  literature on mitigation technology diffusion and transfer in general, it is not clear whether  specific financial requirements to this end are different from finance for other mitigation  activities.  For the energy sector, there is no convergence on the order of magnitude of net incremental  investment costs across its sub sectors. Interactions of stringent climate policies with overall  growth and investment of individual economies and the world economy as a whole are also  not yet well understood.  Effectiveness and efficiency of climate finance. Knowledge about enabling environments for  effective deployment of climate finance in any country is insufficient. There is very limited  empirical evidence to relate the concept of low carbon activities to macro determinants  from a cross country perspective. More research is especially needed regarding  determinants for mitigation investment in LDCs.  There is only case specific knowledge by practitioners on the selection and combination of  instruments that are most effective at shifting (leveraging) private investment to mitigation  and adaptation. There is no general understanding of what are the efficient levers to  mobilize private investment and its potential in any country (since they will differ by  investment and country).   The effectiveness of different public climate finance channels in driving low carbon  development is insufficiently analyzed. Estimates of the incremental cost value of public  guarantees, export insurances, and non concessional loans of development banks would  provide valuable insights. Little is known on determinants for an economically efficient and  effective allocation of public climate finance. A comprehensive assessment of the  interrelation between private and public sector actors in sharing incremental costs and risks  of mitigation investments, for example, via concessional loans or guarantee instruments has  not been undertaken yet.   There is no agreement yet which institutional arrangements are more effective at which  level (international   national   local) and for what investment in which sector. However, an  understanding of the key determinants of this efficiency and of the nature of a future  international climate policy agreement is needed first.    42 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Balance between mitigation and adaptation finance and investment. The optimal balance,  including its time dimension, is a difficult exercise given the lack of modelling of any direct  interaction between adaptation and mitigation in terms of their specific effectiveness and  tradeoffs. A better informed assessment of the effective integration of mitigation and  adaptation, including tradeoffs and cost avoidance estimates, is needed. Moreover, there is  limited research and literature to assess synergies and tradeoffs between and across sector specific mitigation and adaptation measures from the specific financing and investment  point of view.  16.10   Frequently Asked Questions  FAQ 16.1. What is climate finance?  There is no agreed definition of climate finance. The term  climate finance  is applied both to the  financial resources devoted to addressing climate change globally and to financial flows to  developing countries to assist them in addressing climate change. The literature includes multiple  concepts within each of these broad categories.   There are basically three types of metrics for financial resources devoted to addressing climate  change globally. Total climate finance includes all financial flows whose expected effect is to reduce  net greenhouse emissions and/or to enhance resilience to the impacts of climate variability and the  projected climate change. This covers private and public funds, domestic and international flows,  expenditures for mitigation and adaptation, and adaptation to current climate variability as well as  future climate change. It covers the full value of the financial flow rather than the share associated  with the climate change benefit; e.g., the entire investment in a wind turbine rather than the portion  attributed to the emission reductions. The incremental investment is the extra capital required for  the initial investment to implement a mitigation or adaptation measure, for example, the investment  in wind turbines less the investment that would have been required for a natural gas generating unit  displaced. Since the value depends on a hypothetical alternative, the incremental investment is  uncertain. The incremental costs reflect the cost of capital of the incremental investment and the  change of operating and maintenance costs for a mitigation or adaptation project in comparison to a  reference project. It can be calculated as the difference of the net present values of the two  projects. Values depend on the incremental investment as well as projected operating costs,  including fossil fuel prices, and the discount rate.   Financial flows to assist developing countries in addressing climate change typically cover the  following three concepts. The total climate finance flowing to developing countries is the amount of  the total climate finance invested in developing countries that comes from developed countries. This  covers private and public funds for mitigation and adaptation. Public climate finance provided to  developing countries is the finance provided by governments and bilateral and multilateral  institutions for mitigation and adaptation activities in developing countries. Under the UNFCCC,  climate finance is not well defined. Annex II Parties provide and mobilize funding for climate related  activities in developing countries. Most of the funds provided are concessional loans and grants.   FAQ 16.2. How much investment and finance is currently directed to projects that  contribute to mitigate climate change and how much extra flows will be required in the  future to stay below the 2°C limit?  Current climate finance was estimated at around 359 billion USD per year of which 337 billion USD  per year was invested in mitigation using a mix of 2011 and 2012 data (2011/2012 USD). This covers  the full investment in mitigation measures, such as renewable energy generation technologies that  also produce other goods or services. Climate finance invested in developed countries amounted to  177 billion USD and in developing countries 182 billion USD (2011/2012 USD).     43 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Climate policy is expected to induce a significant change in investment pattern in all scenarios  compatible with a 2°C limit. Based on data from a limited number of scenarios, there would need to  happen a remarkable reallocation of investments in the power sector from fossil fuels to low emissions generation technologies (renewable power generation, nuclear, and fossil fuels with CCS).  While annual investment in fossil fuel extraction, transformation, and transportation and fossil fired  power plants without CCS is estimated to decline by about 86 billion USD per year in 2010 2029  (i.e., by 20%), annual investment in low emission generation technologies is expected to increase by  about 147 billion USD per year (i.e., by 100%), over the same period.  Investment in energy efficiency in the building, transport, and industry sector would need to  increase by several hundred billion USD per year from 2010 2029. Information on investment needs  in other sectors, e.g., CO2 to abatement processes or non CO2 emissions, is sparse.   Model results suggest that deforestation could be reduced against current deforestation trends by  50% with an investment of 21 to 35 billion USD annually.   44 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  References  ADB (2003). Poverty and Environment Fund. Asian Development Bank. . Available at:  http://www.adb.org/sites/default/files/r123 03.pdf.  ADB (2011). Carbon Market Program: Future Carbon Fund Change in Fund Regulations. Asian  Development Bank. . Available at: http://www.adb.org/sites/default/files/cmp carbon fund regulation change.pdf.  AfDB (2009). Congo Basin Forest Fund. Operational Procedures. African Development Bank. .  Available at: http://www.afdb.org/fileadmin/uploads/afdb/Documents/Policy Documents/Congo%20Basin%20Forest%20Fund%20 %20Operational%20Procedures%20EN.pdf.  AfDB, ADB, EBRD, EIB, IDB, IFC, and World Bank (2012a). Joint MDB Report on Adaptation Finance  2011. AfDB, ADB, EBRD, EIB, IDB, IFC, World Bank. . Available at:  http://climatechange.worldbank.org/sites/default/files/Joint%20MDB%20Report%20on%20Adaptati on%20Finance%202011.pdf.  AfDB, ADB, EBRD, EIB, IDB, IFC, and World Bank (2012b). Joint MDB Report on Mitigation Finance  2011. AfDB, ADB, EBRD, EIB, IDB, IFC, World Bank. . Available at:  http://climatechange.worldbank.org/sites/default/files/MMF_2011_version_21.pdf.  AfDB, ADB, EBRD, EIB, IDB, IFC, and World Bank (2013). Joint Report on MDB Climate Finance 2012.  AfDB, ADB, EBRD, EIB, IDB, IFC, World Bank. . Available at:  http://www.ebrd.com/downloads/sector/sei/climate finance 2012.pdf.  AGF (2010). Report of the Secretary General s High Level Advisory Group on Climate Change  Financing (AGF). United Nations, New York, NY, USA. . Available at:  http://www.un.org/wcm/webdav/site/climatechange/shared/Documents/AGF_reports/AGF%20Rep ort.pdf.  Alberola E., and N. Stephan (2010). Carbon Funds in 2010: Investment in Kyoto Credits and Emissions  Reductions. CDC Climate, Paris, France. . Available at:  http://www.policymeasures.com/content/files/Carbon_Funds_2010.pdf.  Amazon Fund (2012). Purpose and Management, Amazon Fund . Available at:  http://www.amazonfund.gov.br/FundoAmazonia/fam/site_en/Esquerdo/Fundo/.  Asian Development Bank (2012). Services, The Carbon Market Programme . Available at: http://adb fcf.org/services/.  Asian Development Bank (2013a). Asia Pacific Carbon Fund (APCF). . Available at:  http://www.adb.org/site/funds/funds/asia pacific carbon fund apcf.  Asian Development Bank (2013b). Future Carbon Fund (FCF). . Available at:  http://www.adb.org/site/funds/funds/future carbon fund fcf.  Asian Development Bank (2013c). Clean Energy Financing Partnership Facility (CEFPF). . Available at:  http://www.adb.org/site/funds/funds/clean energy financing partnership facility.  Ayers J.M., and S. Huq (2009). Supporting Adaptation to Climate Change: What Role for Official  Development Assistance?, Development Policy Review 27 675 692 pp. (DOI: 10.1111/j.1467 7679.2009.00465.x), (ISSN: 1467 7679).    45 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Baumert K.A., T. Herzog, and J. Pershing (2005). Navigating the Numbers. Greenhouse Gas Data and  International Climate Policy. World Resources Institute (WRI), Washington, D.C., USA, (ISBN: 1 56973 599 9). .  BCCRF (2012). About us, Bangladesh Climate Change Resilience Fund (BCCRF) . Available at:  http://bccrf bd.org/.  Biermann F., O. Davies, and N. van der Grijp (2009). Environmental policy integration and the  architecture of global environmental governance, International Environmental Agreements 9 351 369 pp. (DOI: DOI 10.1007/s10784 009 9111 0).  Birckenbach F. (2010). Instruments to Finance Climate Protection and Adaptation Investments in  Developing and Transition Countries. KfW Entwicklungsbank. . Available at: https://www.kfw entwicklungsbank.de/Download Center/PDF Dokumente Positionspapiere/2010_10_Klima_E.pdf.  Blyth W., M. Yang, and R. Bradley (2007). Climate Policy Uncertainty and Investment Risk.  International Energy Agency, Paris, France, (ISBN: 978 92 64 03014 5   2007). .  BNEF (2011). Have developed nations broken their promise on $30bn? Bloomberg New Energy  Finance. . Available at: http://bnef.com/WhitePapers/download/47.  Bolger J. (2000). Capacity Development: Why, What and How. Canadian International Development  Agency, Gatineau, Quebec. . Available at:  http://portals.wi.wur.nl/files/docs/SPICAD/16.%20Why%20what%20and%20how%20of%20capacity %20development%20 %20CIDA.pdf.  Bosello F., C. Carraro, and E. De Cian (2010). Climate Policy and the Optimal Balance Between  Mitigation, Adaptation and Unavoided Damage, Climate Change Economics 01 71 pp. (DOI:  10.1142/S201000781000008X), (ISSN: 2010 0078).  Bosetti V., C. Carraro, R. Duval, and M. Tavoni (2011). What should we expect from innovation? A  model based assessment of the environmental and mitigation cost implications of climate related  R&D, Energy Economics 33 1313 1320 pp. (DOI: 10.1016/j.eneco.2011.02.010), (ISSN: 0140 9883).  Brinkerhoff D.W. (2004). Paper presented at: George Washington University Conference  The Role  of NGOs in Implementing the Millennium Development Goals . . The Enabling Environment for  Implementing the Millennium Development Goals: Government Actions to Support NGOs, George  Washington University Conference on the Role of NGOs in Implementing the Millennium  Development Goals. Research Triangle Institute, Washington, DC, USA. 12 May  2004, 18 pp.  Available at: http://www.rti.org/pubs/Brinkerhoff_pub.pdf.  Brown J., N. Bird, and L. Schalatek (2010). Climate finance additionality: emerging definitions and  their implications. Heinrich Böll Foundation North America. . Available at:  http://www.odi.org.uk/sites/odi.org.uk/files/odi assets/publications opinion files/6032.pdf.  De Bruin K., R. Dellink, and S. Agrawala (2009). Economic Aspects of Adaptation to Climate Change:  Integrated Assessment Modelling of Adaptation Costs and Benefits, OECD Environment Working  Papers No. 6, OECD ENV/WKP(2009)1 (DOI: 10.1787/225282538105).  Brunner S., C. Flachsland, and R. Marschinski (2012). Credible commitment in carbon policy, Climate  Policy 12 255 271 pp. (DOI: 10.1080/14693062.2011.582327).    46 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Brunnschweiler C.N. (2010). Finance for renewable energy: an empirical analysis of developing and  transition economies, Environment and Development Economics 15 241 274 pp. (DOI:  10.1017/S1355770X1000001X).  Buchner B., A. Falconer, M. Hervé Mignucci, and C. Trabacchi (2012). The Landscape of Climate  Finance 2012. Climate Policy Initiative, Venice, Italy. . Available at:  http://climatepolicyinitiative.org/wp content/uploads/2012/12/The Landscape of Climate Finance 2012.pdf.  Buchner B., A. Falconer, M. Hervé Mignucci, and C. Trabacchi (2013a). The landscape of climate  finance. In: International Climate Finance. E. Haites, (ed.), Earthscan, London, United Kingdom(ISBN:  forthcoming).  Buchner B., A. Falconer, M. Hervé Mignucci, C. Trabacchi, and M. Brinkmann (2011). The  Landscape of Climate Finance. Climate Policy Initiative, Venice, Italy. . Available at:  http://climatepolicyinitiative.org/sgg/files/2011/10/The Landscape of Climate Finance 120120.pdf.  Buchner B., Hervé Mignucci, C. Trabacchi, J. Wilkinson, M. Stadelmann, R. Boyd, F. Mazza, A.  Falconer, and V. Micale (2013b). The Global Landscape of Climate Finance 2013. Climate Policy  Initiative (CPI), Venice, Italy. . Available at: http://climatepolicyinitiative.org/wp content/uploads/2013/10/The Global Landscape of Climate Finance 2013.pdf.  Burleson E. (2007). Multilateral Climate Change Mitigation, Climate Change Symposium, University  of San Francisco Law Review 41 373 pp. University of San Francisco, San Francisco, CA, USA .  Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=982763.  Calvin K., L. Clarke, V. Krey, G. Blanford, K. Jiang, M. Kainuma, E. Kriegler, G. Luderer, and P.R.  Shukla (2012). The role of Asia in mitigating climate change: Results from the Asia modelling  exercise, Energy Economics 34, Supplement 3 S251 S260 pp. (DOI: 10.1016/j.eneco.2012.09.003),  (ISSN: 0140 9883).  Carmody J., and D. Ritchie (2007). Investing in Clean Energy and Low Carbon Alternatives in Asia.  Asian Development Bank, Manila, Philippines. 114 pp. Available at: http://www personal.umich.edu/~thoumi/Research/Carbon/Issues/Best%20Practices/clean energy low carbon alternatives in asia.pdf.  Carraro C., A. Favero, and E. Massetti (2012). Investments and public finance in a green, low carbon,  economy, Energy Economics 34, Supplement 1 S15 S28 pp. (DOI: 10.1016/j.eneco.2012.08.036),  (ISSN: 0140 9883).  Carraro C., and E. Massetti (2011). Beyond Copenhagen: a realistic climate policy in a fragmented  world, Climatic Change 110 523 542 pp. (DOI: 10.1007/s10584 011 0125 6), (ISSN: 0165 0009,  1573 1480).  Caruso R., and J. Ellis (2013). Comparing Definitions and Methods to Estimate Mobilised Climate  Finance. OECD, Paris, France. . Available at: http://www.oecd ilibrary.org/environment/comparing definitions and methods to estimate mobilised climate finance_5k44wj0s6fq2 en.  CDMF (2012). About us, China Clean Development Mechanism Fund . Available at:  http://www.cdmfund.org/eng/about_us.aspx?m=20121025100609733502.    47 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Clapp C., J. Ellis, J. Benn, and J. Corfee Morlot (2012). Tracking Climate Finance: What and How?  Organization for Economic Cooperation and Development/ International Energy Agency, Paris,  France. 44 pp. Available at: http://www.oecd.org/env/climatechange/50293494.pdf.  CMIA (2013). Climate Market and Investment Association (CMIA). . Available at:  http://www.cmia.net/.  Corfee Morlot J., L. Kamal Chaoui, M.G. Donovan, I. Cochran, A. Robert, and J. Teasdale (2009).  Cities, Climate Change and Multilevel Governance. Organization for Economic Cooperation and  Development, Paris, France. . Available at: http://www.oecd.org/dataoecd/30/35/44232263.pdf.  Cory K., T. Couture, and C. Kreycik (2009). Feed in Tariff Policy: Design, Implementation, and RPS  Policy Interactions. National Renewable Energy Laboratory, Golden, Colorado, USA. . Available at:  http://www.nrel.gov/docs/fy09osti/45549.pdf.  Della Croce R., F. Stewart, and J. Yermo (2011). Promoting long term investments by institutional  investors, OECD Journal: Financial Market Trends 1 145 164 pp. (DOI: 10.1787/fmt 2011 5kg55b0z1ktb).  Dellink R., M. den Elzen, H. Aiking, E. Bergsma, F. Berkhout, T. Dekker, and J. Gupta (2009). Sharing  the Burden of Financing Adaptation to Climate Change, Global Environmental Change 19 411 421  pp. (DOI: 10.1016/j.gloenvcha.2009.07.009), (ISSN: 0959 3780).  Derrick A. (1998). Financing mechanisms for renewable energy, Renewable Energy 15 211 214 pp. .  Dowlatabadi H. (2007). On Integration of Policies for Climate and Global Change, Mitigation and  Adaptation Strategies for Global Change 12 651 663 pp. (DOI: 10.1007/s11027 007 9092 7).  ECOSOC (2008). Trends in South South and Triangular Development Cooperation. Background Study  for the Development Cooperation Forum. United Nations Economic and Social Council, New York, NY.  58 pp. Available at: http://www.un.org/en/ecosoc/docs/pdfs/south south_cooperation.pdf.  Ehrlich I., and G.S. Becker (1972). Market Insurance, Self Insurance, and Self Protection, Journal of  Political Economy 80 623 648 pp. (ISSN: 0022 3808).  European Commission (2012). Phase 2 auctions (2008 2012). Information by Member States.,  Climate Change Directorate General Policies Emission Trading Systemt EU ETS 2005 2012 . Available  at: http://ec.europa.eu/clima/policies/ets/pre2013/second/index_en.htm.  Eyraud L., A.A. Wane, C. Zhang, and B. Clements (2011). Who s Going Green and Why? Trends and  Determinants of Green Investment. International Monetary Fund, Washington, D.C., USA. . Available  at: http://www.imf.org/external/pubs/cat/longres.aspx?sk=25440.0.  Fallasch F., and L. De Marez (2010). New and Additional? An assessment of fast start finance  commitments of the Copenhagen Accord. Climate Analytics. . Available at:  http://www.climateanalytics.org/sites/default/files/attachments/publications/101201_additionality _final.pdf.  Figueiredo P.N. (2003). Learning, capability accumulation and firms differences: evidence from  latecomer steel, Industrial and Corporate Change 12 607 643 pp. (DOI: 10.1093/icc/12.3.607).  Fisher S. (2013). Low carbon resilience in the least developed countries: a panacea to address  climate change?, International Institute for Environment and Development. Climate change, Policy    48 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  and planning . Available at: http://www.iied.org/low carbon resilience least developed countries panacea address climate change.  Flynn C. (2011). Blending Climate Finance through National Climate Funds: A Guidebook for the  Design and Establishment of National Funds to Achieve Climate Change Priorities. United Nations  Development Programme, New York, NY, USA. . Available at:  http://www.undp.org/content/dam/undp/library/Environment%20and%20Energy/Climate%20Chan ge/Capacity%20Development/Blending_Climate_Finance_Through_National_Climate_Funds.pdf.  Fordelone T.Y. (2011). Triangular Co Operation and Aid Effectiveness. Can Triangular Cooperation  Make Aid More Effective? Organization for Economic Cooperation and Development, Paris, France. .  Available at: http://www.oecd.org/dataoecd/63/37/46387212.pdf.  Forstater M., and R. Rank (2012). Towards Climate Finance Transparency. Aidinfo / Publish What  You Fund, London, UK. . Available at: http://www.publishwhatyoufund.org/updates/news/towards climate finance transparency/.  Frankfurt School UNEP Centre (2013). Global Trends in Renewable Energy Investment 2013.  Frankfurt School UNEP Centre/ Bloomberg New Energy Finance, Frankfurt, Germany. 88 pp.  Available at: http://fs unep centre.org/sites/default/files/attachments/gtr2013keyfindings.pdf.  Frankfurt School UNEP Centre, and BNEF (2012). Global Trends in Renewable Energy Investment  2012. United Nations Environment Programme, Paris, France. . Available at: http://fs unep centre.org/sites/default/files/publications/globaltrendsreport2012final.pdf.  Frisari G., M. Hervé Mignucci, V. Micale, and F. Mazza (2013). Risk Gaps: A Map of Risk Mitigation  Instruments for Clean Investments. Climate Policy Initiative. . Available at:  http://climatepolicyinitiative.org/wp content/uploads/2013/01/Risk Gaps A Map of Risk Mitigation Instruments for Clean Investments.pdf.  Fulton M., B.M. Kahn, N. Mellquist, E. Soong, J. Baker, L. Cotter, and S. Kreibiehl (2010). GET FiT  Program. Global Energy Transfer Feed in Tariffs for Developing Countries. DB Climate Change  Advisors, Frankfurt, Germany. . Available at:  https://www.dbadvisors.com/content/_media/GET_FIT_ _042610_FINAL.pdf.  Germany Federal Ministry for the Environment Nature Conservation and Nuclear Safety (2012).  About the ICI, International Climate Initiative . Available at: http://www.bmu klimaschutzinitiative.de/en/about_the_ici.  Gillingham K., and J. Sweeney (2011). Barriers to Implementing Low Carbon Technologies. , 27.  Stanford RFF Climate Policy Conference. . Available at:  http://www.yale.edu/gillingham/GillinghamSweeney_CCE12_BarriersLowCarbonTechs.pdf.  Glemarec Y. (2011). Catalyzing Climate Finance: A Guidebook on Policy and Financing Options to  Support Green, Low Emission and Climate Resilient Development. United Nations Development  Programme, New York, NY, USA, 160 pp.  Global Investor Coalition on Climate Change (2013). Global Investor Coalition on Climate Change. .  Available at: http://globalinvestorcoalition.org/.  Gomez Echeverri L. (2010). National Funding Entities. Their Role in the Transition to a New Paradigm  of Global Cooperation on Climate Change. Climate Strategies, European Capacity Building Initiative. .  Available at: http://www.climatestrategies.org/component/reports/category/55/266.html.    49 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Greene W. (2004). Aid fragmentation and proliferation: Can donors improve the delivery of climate  finance?, IDS Bulletin 35 66 75 pp. (DOI: 10.1111/j.1759 5436.2004.tb00137.x).  Grubb M. (2011). International Climate Finance from border cost levelling, Climate Policy 11 1050 1057 pp. .  Haites E. (2011). Climate change finance, Climate Policy 11 963 69 pp. .  Haites E., and C. Mwape (2013). Sources of long term climate change finance. In: International  Climate Finance. E. Haites, (ed.), Routledge, Abingdon, UK(ISBN: 1849714053).  Halsnaes K., and J. Verhagen (2007). Development based climate change adaptation and  mitigation conceptual issues and lessons learned in studies in developing countries, Mitigation and  Adaptation Strategies for Global Change 12 665 684 pp. (DOI: 10.1007/s11027 007 9093 6), (ISSN:  1381 2386, 1573 1596).  Hamilton K. (2010). Scaling up Renewable Energy in Developing Countries: Finance and Investment  Perspectives. Chatham House, London, United Kingdom. . Available at:  http://www.chathamhouse.org/sites/default/files/public/Research/Energy,%20Environment%20and %20Development/0410pp_hamilton.pdf.  Hamilton K., and S. Justice (2009). Private Financing of Renewable Energy: A Guide for Policy  Makers. United Nations Environment Programme Sustainable Energy Finance Initiative, Bloomberg  Renewable Energy Finance, Chatham House, London, UK. 28 pp. Available at:  http://sefi.unep.org/fileadmin/media/sefi/docs/publications/Finance_guide_FINAL .pdf.  Harmeling S., and D. Eckstein (2012). Global Climate Risk Index 2013: Who Suffers Most from  Extreme Weather Events? Weather Related Loss Events in 2011 and 1992 to 2011. Germanwatch,  Bonn, Germany, (ISBN: 978 3 943704 04 4). .  Harnisch J., and K. Enting (2013). Country risk levels and cost of political risk of international  greenhouse gas mitigation projects, Greenhouse Gas Measurement and Management 3 55 63 pp.  (DOI: 10.1080/20430779.2013.815088).  HBF, and ODI (2013). Global Climate Finance Architecture. . Available at:  http://www.climatefundsupdate.org/global trends/global finance architecture.  Höhne N., S. Khosla, H. Fekete, and A. Gilbert (2012). Mapping of Green Finance Delivered by IDFC  Members in 2011. International Development Finance Club, Frankfurt, Germany.  ICCTF (2012). Background, Indonesia Climate Change Trust Fund (ICCTF) . Available at:  http://www.icctf.or.id/about/background/.  ICTSD (2012). Ways to promote enabling environment and to address barriers to technology  development and transfer. International Centre for Trade and Sustainable Development (ICTSD). .  Available at: http://unfccc.int/ttclear/sunsetcms/storage/contents/stored file 20130422151335147/ICTSD_EE.pdf.  IDB (2011). The Energy Efficiency Guarantee Mechanism. Inter American Development Bank. .  Available at: http://idbdocs.iadb.org/wsdocs/getdocument.aspx?docnum=36200782.  IDFC (2013). Mapping of Green Finance Delivered by IDFC Members in 2012. International  Development Finance Club (IDFC), Frankfurt, Germany. 33 pp. Available at:    50 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  http://www.idfc.org/Downloads/Publications/01_green_finance_mappings/IDFC_Green_Finance_M apping_Report_2013_11 01 13.pdf.  IEA (2009). World Energy Outlook 2009. International Energy Agency, Paris, France, 708 pp., (ISBN:  978 92 64 06130 9). .  IEA (2011). World Energy Outlook 2011. OECD/IEA, Paris, France, (ISBN: 978 92 64 18084 0). .  IFC (2009). IFC s role and additionality: A primer. International Finance Corporation. . Available at:  http://www.ifc.org/wps/wcm/connect/e8b825004750cb4db387bfbae11ad97e/AdditionalityPrimer. pdf?MOD=AJPERES.  IFC (2013). Overview of Local Currency Loans and Hedges, International Finance Corporation  Treasury  Illmann J., M. Halonen, P. Rinne, S. Huq, and S. Tveitdal (2013). Scoping Study Financing  Adaptation Mitigation Synergy Activities. Nordic Council of Ministers, Copenhagen, Denmark. .  Available at: http://www.norden.org/en/publications/publikationer/2013 902.  Inderst G., C. Kaminker, and F. Stewart (2012). Defining and Measuring Green Investments:  Implications for Institutional Investors  Asset Allocations. Organization for Economic Cooperation and  Development, Paris, France. 55 pp. Available at:  http://www.oecd.org/finance/privatepensions/WP_24_Defining_and_Measuring_Green_Investmen ts.pdf.  Ingham A., J. Ma, and A.M. Ulph (2005). Can Adaptation and Mitigation Be Complements? Tyndall  Centre for Climate Change Research, Norwich, UK. 15 pp. Available at:  http://www.tyndall.ac.uk/sites/default/files/wp79.pdf.  Isenberg J., and C. Potvin (2010). Financing REDD in developing countries: A supply and demand  analysis., Climate Policy 10 216 231 pp. .  De Jager D., and M. Rathmann (2008). Policy Instrument Design to Reduce Financing Costs in  Renewable Energy Technology Projects. International Energy Agency/ Implementing Agreement on  Renewable Energy Technology Deployment, Paris, France. 72 pp. Available at: http://iea retd.org/wp content/uploads/2011/10/Policy_Main Report.pdf.  Jamison E. (2010). From Innovation to Infrastructure: Financing First Commercial Clean Energy  Projects. CalCEF Innovations, San Francisco, CA, USA. . Available at:  http://calcef.org/files/20100601_Jamison.pdf.  Junghans L., and S. Harmeling (2013). Different Tales from Different Countries. A first assessment of  the OECD  Adaptation Marker . Germanwatch. . Available at:  http://germanwatch.org/en/download/7083.pdf.  Jürgens I., H. Amecke, R. Boyd, B. Buchner, A. Novikova, A. Rosenberg, K. Stelmakh, and A. Vasa  (2012). The Landscape of Climate Finance in Germany. Climate Policy Initiative (CPI), Berlin,  Germany. . Available at: http://climatepolicyinitiative.org/wp content/uploads/2012/11/Landscape of Climate Finance in Germany Full Report.pdf.  Kaminker C., and F. Stewart (2012). Role of Institutional Investors in Financing Clean Energy.  Organization for Economic Cooperation and Development Publishing, Paris, France. . Available at:    51 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  http://www.oecd.org/insurance/privatepensions/WP_23_TheRoleOfInstitutionalInvestorsInFinancin gCleanEnergy.pdf.  Kane S., and J.F. Shogren (2000). Linking Adaptation and Mitigation in Climate Change Policy,  Climatic Change 45 75 102 pp. (DOI: 10.1023/A:1005688900676).  Khan S.M.M., S. Huq, and M. Shamsuddoha (2012). The Bangladesh National Climate Funds.  International Institute for Environment and Development/ European Capacity Building Initiative,  London/ Oxford, Uk. . Available at: http://ldcclimate.wordpress.com/ldc paper series/.  Kindermann G., M. Obersteiner, B. Sohngen, J. Sathaye, K. Andrasko, E. Rametsteiner, B.  Schlamadinger, S. Wunder, and R. Beach (2008). Global cost estimates of reducing carbon emissions  through avoided deforestation., Proceedings of the National Academy of Sciences of the United  States 105 10302 10307 pp. (DOI: 10.1073/pnas.0710616105).  Kirkman G.A., S. Seres, and E. Haites (2013). Renewable energy: Comparison of CDM and Annex I  projects, Energy Policy 63 995 1001 pp. (DOI: 10.10.16/j.enpol.2013.08.071).  Klein A., A. Held, M. Ragwitz, G. Resch, and T. Faber (2007). Evaluation of Different Feed in Tariff  Design Options: Best Practice Paper for the International Feed in Cooperation. Karlsruhe, Germany  and Laxenburg, Austria: Fraunhofer Institut Für Systemtechnik Und Innovationsforschung and Vienna  University of Technology Energy Economics Group.  Kossoy A., R.C. Reddy, M. Bossi, and S. Boukerche (2013). Mapping Carbon Pricing Initiatives.  Developments and Prospects 2013. World Bank, Washington, DC, USA. 98 pp. Available at:  https://www.thepmr.org/system/files/documents/Mapping%20Carbon%20Pricing%20Initiatives %20Developments%20and%20Prospects.pdf.  Kubert C., and M. Sinclair (2011). State Support for Clean Energy Deployment: Lessons Learned for  Potential Future Policy. National Renewable Energy Laboratory (NREL), Golden, Colorado, USA. 97  pp. Available at: http://www.cleanenergystates.org/assets/2011 Files/Renewable Energy Finance/49340.pdf.  Lall S. (2002). Linking FDI and Technology Development for Capacity Building and Strategic  Competitiveness, Transnational Corporations 11 39 88 pp. (ISSN: 1014 9562).  Lecocq F., and Z. Shalizi (2007). Balancing Expenditures on Mitigation of and Adaptation to Climate  Change: An Exploration of Issues Relevant to Developing Countries, World Bank Policy Research  Working Paper WPS4299 48 pp. . Available at: http://www wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2007/08/02/000158349_200708 02095523/Rendered/PDF/wps4299.pdf.  Lewis T., and D. Nickerson (1989). Self insurance Against Natural Disasters, Journal of Environmental  Economics and Management 16 209 223 pp. (DOI: 10.1016/0095 0696(89)90010 7), (ISSN: 0095 0696).  Li J. (2011). Supporting greenhouse gas mitigation in developing cities: a synthesis of financial  instruments, Mitigation and Adaptation Strategies for Global Change 16 667 698 pp. (DOI:  10.1007/s11027 011 9288 8).  Linacre N., A. Kossoy, and P. Ambrosi (2011). State and Trends of the Carbon Market 2011. World  Bank, Washington DC, USA. 84 pp. Available at:  http://siteresources.worldbank.org/INTCARBONFINANCE/Resources/StateAndTrend_LowRes.pdf.    52 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Machado Filho H. (2011). Financial mechanisms under the climate regime. In: Promoting  Compliance in an Evolving Climate Regime,. J. Brunnée, M. Doelle, L. Rajamani, (eds.), Cambridge  University Press, pp.216 239(ISBN: 9780521136136).  Maclean J., J. Tan, D. Tirpak, V. Sonntag O Brien, and E. Usher (2008). Public Finance Mechanisms  to Mobilize Investment in Climate Change Mitigation. United Nations Environment Programme/  Sustainable Energy Finance Initiative. . Available at:  http://www.sefalliance.org/fileadmin/media/sefalliance/docs/Resources/UNEP_Public_Finance_Rep ort.pdf.  Marangoni G., and M. Tavoni (2013). The clean energy R&D gap to 2C, Climate Change Economics in  press . Available at: http://www.feem.it/userfiles/attach/2013125184504NDL2013 093.pdf.  Marsh (2006). Scoping Study on Financial Risk Management Instruments for Renewable Energy  Projects. United Nations Environment Programme/ Sustainable Energy Finance Initiative, London,  UK. 146 pp. Available at:  http://www.newenergyfrontier.com/references/Articles/Financing%20Risk%20Study.pdf.  McCollum D., Y. Nagai, K. Riahi, G. Marangoni, K. Calvin, R. Pietzcker, J. van Vliet, and B. van der  Zwaan (2013). Energy investments under climate policy: a comparison of global models, Climate  Change Economics Forthcoming.  McKenzie Hedger M., E. Martinot, T. Onchan, D. Ahuja, W. Chantanakome, M. Grubb, J. Gupta, T.  Heller, L. Junfeng, M. Mansley, C. Mehl, B. Natarajan, T. Panayotou, J. Turkson, and D. Wallace  (2000). Enabling Environments for Technology Transfer. Special Report. In: Methodological and  Technological Issues in Technology Transfer [D. Wallace, B. Metz, O. Davidson, J. W. Martens, S. van  Rooijen, L. van Wie McGrory (eds)]. Intergovernmental Panel for Climate Change, Geneva,  Switzerland pp.107 141.  McKinsey (2009). Pathways to a Low Carbon Economy. Version 2 of the Global Greenhouse Gas  Abatement Cost Curve. McKinsey, New York, NY, USA. . Available at:  https://solutions.mckinsey.com/ClimateDesk/default.aspx.  Michaelowa A., and K. Michaelowa (2011). Coding Error or Statistical Embellishment? The Political  Economy of Reporting Climate Aid, World Development 39 (DOI: 10.1016/j.worlddev.2011.07.020).  MIGA (2012). Annual Report 2012. Multilateral Investment Guarantee Agency (MIGA), Washington,  D.C., USA, (ISBN: 978 0 8213 9735 0). .  Mitchell C., J.L. Sawin, G.R. Pokharei, D. Kammen, Z. Wang, S. Fifita, M. Jaccard, O. Langniss, H.  Lucas, A. Nadai, R. Trujillo Blanco, E. Usher, A. Verbruggen, R. Wüstenhagen, and K. Yamaguchi  (2011). Policy, Financing and Implementation. In: IPCC Special Report on Renewable Energy Sources  and Climate Change Mitigation [O. Edenhofer, R. Pichs Madruga, Y. Sokona, K. Seyboth, P.  Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)].  Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA pp.865 950(ISBN:  9781107607101).  Nakooda S., T. Fransen, T. Kuramochi, A. Caravani, A. Prizzon, N. Shimizu, H. Tilley, A. Halimanjaya,  and B. Welham (2013). Mobilising International Climate Finance: Lessons from the Fast Start Finance  Period. Overseas Development Institute, World Resources Institute, Institute for Global  Environmental Strategies, London, UK; Washington, D.C., USA; Kanagawa, Japan. . Available at:  http://www.wri.org/sites/default/files/mobilising_international_climate_finance.pdf.    53 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  New Zealand Ministry for the Environment (2012). The New Zealand Emission Trading Scheme. NZ  ETS 2011  Facts and figure. Info 662. New Zealand Ministry for the Environment. . Available at:  http://www.climatechange.govt.nz/emissions trading scheme/building/reports/ets report/nzets 2011 facts and figures 2012.pdf.  Niggli U., A. Fließbach, P. Hepperly, and N. Scialabba (2009). Low Greenhouse Gas Agriculture:  Mitigation and Adaptation Potentials of Sustainable Farming Systems. Food and Agriculture  Organization of the United Nations, Rome, Italy.  Ockwell D.G., J. Watson, G. MacKerron, P. Pal, and F. Yamin (2008). Key Policy Considerations for  Facilitating Low carbon Technology Transfer to Developing Countries, Energy Policy 36 4104 4115  pp. (DOI: 10.1016/j.enpol.2008.06.019).  OECD (2008). The Paris Declaration on Aid Effectiveness and the Accra Agenda for Action.  Organization for Economic Cooperation and Development Publishing. . Available at:  http://www.oecd.org/development/effectiveness/34428351.pdf.  OECD (2012). OECD.StatExtracts. Aid activities targeting global environmental objectives. . Available  at: http://stats.oecd.org/Index.aspx?DataSetCode=RIOMARKERS.  OECD (2013a). A Post 2015 Information System for International Development and Climate Finance.  Organization for Economic Cooperation and Development Publishing, Paris, France. 18 pp. Available  at: http://www.post2015hlp.org/wp content/uploads/2013/05/OECD_A Post 2015 Information System for International Development and Climate Finance.pdf.  OECD (2013b). Development Co operation Directorate (DCD DAC). . Available at:  http://www.oecd.org/dac/.  OECD (2013c). Arrangement on Officially Supported Export Credits. 1 October 2013. TAD/PG (2013)  11. Organization for Economic Cooperation and Development Publishing. . Available at:  http://search.oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=tad/pg%28 2013%2911.  OECD (2013d). Policy Guidance for Investment in Clean Energy Infrastructure. Expanding Access to  Clean Energy for Green Growth and Development. Organization for Economic Cooperation and  Development Publishing, Paris, France. 69 pp. Available at:  http://www.oecd.org/daf/inv/investment policy/CleanEnergyInfrastructure.pdf.  Olbrisch S., E. Haites, M. Savage, P. Dadhich, M.K.U.N.D.P. E. Shrivastava, and 304 East 45th Street  Energy Group (2011). Estimates of incremental investment for and cost of mitigation measures in  developing countries, Climate Policy 11 970 pp. (ISSN: 1469 3062).  Ölz S., and M. Beerepoot (2010). Deploying Renewables in Southeast Asia: Trends and Potentials.  Organization for Economic Cooperation and Development Publishing; International Energy Agency,  Paris, France. 164 pp.  OPIC (2012). OPIC 2011 Annual Report. Investing with Impact for 40 Years. Overseas Private  Investment Corporation (OPIC), Washington, D.C., USA. 59 pp. Available at:  http://www.opic.gov/sites/default/files/docs/051912 annualreport FINAL.pdf.  Pachauri S., B.J. van Ruijven, Y. Nagai, K. Riahi, D.P. Van Vuuren, A. Brew Hammond, and N.  Nakicenovic (2013). Pathways to achieve universal household access to modern energy by 2030,  Environmental Research Letters, 8 (DOI: 10.1088/1748 9326/8/2/024015).    54 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Patt A.G., D.P. van Vuuren, F. Berkhout, A. Aaheim, A.F. Hof, M. Isaac, and R. Mechler (2009).  Adaptation in integrated assessment modeling: where do we stand?, Climatic Change 99 383 402  pp. (DOI: 10.1007/s10584 009 9687 y), (ISSN: 0165 0009, 1573 1480).  Pfaff Simoneit W. (2012). Entwicklung eines sektoralen Ansatzes zum Aufbau von nachhaltigen  Abfallwirtschaftssystemen in Entwicklungsländern vor dem Hintergrund von Klimawandel und  Ressourcenverknappung. Universität Rostock, Rostock, 249 pp. Available at: http://rosdok.uni rostock.de/file/rosdok_derivate_0000005003/Dissertation_Pfaff Simoneit_2013.pdf.  Pfeiffer T., and M.A. Nowak (2006). Climate Change: All in the Game, Nature 441 583 584 pp. (DOI:  10.1038/441583a).  Poerter G., N. Bird, N. Kaur, and L. Peskett (2008). New Finance for Climate Change and the  Environment. World Wide Fund for Nature, Heinrich Böll Stiftung, Washington, D.C. 57 pp. Available  at: http://www.odi.org.uk/sites/odi.org.uk/files/odi assets/publications opinion files/3882.pdf.  Ravindranath N.H. (2007). Mitigation and adaptation synergy in forest sector, Mitigation and  Adaptation Strategies for Global Change 12 843 853 pp. (DOI: 10.1007/s11027 007 9102 9), (ISSN:  1381 2386, 1573 1596).  REN21 (2010). Renewables 2010 Global Status Report. REN21 Secretariat, Paris, France. 80 pp.  Available at:  http://www.ren21.net/Portals/0/documents/activities/gsr/REN21_GSR_2010_full_revised%20Sept2 010.pdf.  REN21 (2012). Renewables 2012. Global Status Report. REN21, Paris, France. 176 pp. Available at:  http://www.ren21.net/Portals/0/documents/Resources/GSR2012_low%20res_FINAL.pdf.  Riahi K., F. Dentener, D. Gielen, A. Grubler, J. Jewell, Z. Klimont, V. Krey, D. McCallum, S. Pachauri,  S. Rao, B. van Ruijven, D.P. Van Vuuren, and C. Wilson (2012). Energy Pathways for Sustainable  Development. In: Global Energy Assessment: Toward a Sustainable Future. Cambridge University  Press and the International Institute for Applied Systems Analysis, Cambridge, UK; Laxenburg,  Austria pp.1203 1306(ISBN: 9781107005198).  Roktiyanskiy D., P.C. Benítez, F. Kraxner, I. McCallum, M. Obersteiner, E. Rametsteiner, and Y.  Yamagata (2007). Geographically explicit global modeling of land use change, carbon sequestration,  and biomass supply, Technol Forecasting Social Change 74 1057 1082 pp. (DOI:  10.1016/j.techfore.2006.05.022).  Romani M. (2009). Gobal architecture. In: Meeting the Climate Challenge: Using Public Funds to  Leverage Private Investment in Developing Countries. LSE Grantham Research Institute on Climate  Change and Environment, London, United Kingdom. Available at:  http://www2.lse.ac.uk/GranthamInstitute/publications/Other/Leveragedfunds/sectionfive.pdf.  Ryan L., N. Semet, and A. Aasrud (2012). Plugging the Energy Efficiency Gap with Climate Finance.  The Role of International Financial Institutions (IFIs) and the Green Climate Fund to Realise the  Potential of Energy Efficiency in Developing Countries. International Energy Agency, Paris, France. 72  pp. Available at:  http://www.iea.org/publications/freepublications/publication/PluggingEnergyEfficiencyGapwithClim ateFinance_WEB.pdf.  Sathaye J., W. Makundi, L. Dale, P. Chan, and K. Andrasko (2006). GHG mitigation potential, costs,  and benefits in global forests, Energy J 27.    55 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Satterthwaite D. (2007). Adaptation Options for Infrastructure in Developing Countries. A Report to  the UNFCCC Financial and Technical Support Division. United Nations Framework Convention on  Climate Change, Bonn, Germany. 24 pp. Available at:  http://unfccc.int/files/cooperation_and_support/financial_mechanism/application/pdf/satterthwait e.pdf.  Schelling T.C. (1992). Some Economics of Global Warming, The American Economic Review 82 1 14  pp. (ISSN: 0002 8282).  Setzer J. (2009). Sub national and Transnational Climate Change Governance: Evidence from the  State and City of Sao Paulo, Brazil, Fifth Urban Research Symposium 15 pp. World Bank, Marseille,  France . Available at:  http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387 1256566800920/6505269 1268260567624/Setzer.pdf.  Sharan D. (2008). Financing Climate Change Mitigation and Adaptation Role of Regional Financing  Arrangements. Asian Development Bank, Manila, Philippines. 20 pp. Available at:  http://www.adb.org/Documents/Papers/ADB Working Paper Series/ADB WP04 Financing Climate Change Mitigation.pdf.  Smallridge D., B. Buchner, C. Trabacchi, M. Netto, J.J. Gomes Lorenzo, and L. Serra (2012). The Role  of National Development Banks in Intermediating International Climate Finance to Scale Up Private  Sector Investments. International Development Association, Washington, DC, USA. . Available at:  http://idbdocs.iadb.org/wsdocs/getdocument.aspx?docnum=37292040.  Sohngen B., and R. Mendelsohn (2003). An optimal control model of forest carbon sequestration,  Am J Agric Econ 85 448 457 pp. .  Sonntag O Brien V., and E. Usher (2006). Mobilizing finance for renewable energies. In: Renewable  Energy: A Global Review of Technologies, Policies and Markets. D. Aßmann, U. Laumanns, D. Uh,  (eds.), Earthscan, Sterling, VA, USA(ISBN: 978 1 84407 261 3).  Stadelmann M. (2013). The effectiveness of international climate finance in enabling low carbon  development: Comparing public finance and carbon markets. University of Zurich, Zurich, 215 pp.  Available at: http://opac.nebis.ch/ediss/20131748.pdf.  Stadelmann M., P. Castro, and A. Michaelowa (2011a). Mobilizing Private Finance for Low Carbon  Development. Climate Strategies, London, United Kingdom. 29 pp. Available at:  http://www.climatestrategies.org/research/our reports/category/71/334.html.  Stadelmann M., and A. Michaelowa (2011). How to Enable the Private Sector to Mitigate? Climate  Strategies Working Paper, London, UK. 50 pp.  Stadelmann M., A. Michaelowa, and J.T. Roberts (2013). Difficulties in accounting for private  finance in international climate policy, Climate Policy 13 718 737 pp. (DOI:  10.1080/14693062.2013.791146).  Stadelmann M., J.T. Roberts, and S. Huq (2010). Baseline for Trust: Defining  new and Additional   Climate Funding. International Institute for Environment and Development (IIED), London, UK. 4 pp.  Available at: http://pubs.iied.org/pdfs/17080IIED.pdf.    56 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Stadelmann M., J.T. Roberts, and A. Michaelowa (2011b). New and additional to what? Assessing  options for baselines to assess climate finance pledges, Climate and Development 3 175 192 pp.  (DOI: 10.1080/17565529.2011.599550).  Sustainable Energy for All (2013). Chapter 2: Universal Access to Modern Energy Services. In: Global  Tracking Framework. United Nations, New York, NY, USA. Available at:  http://www.sustainableenergyforall.org/images/Global_Tracking/7 gtf_ch2.pdf.  TCX (2013a). Local Currency Matters. The Currency Exchange Fund. . Available at:  https://www.tcxfund.com/sites/default/files/attachments/160113_tcx_overview_global_english_m aster.pdf.  TCX (2013b). About TCX. . Available at: https://www.tcxfund.com/about tcx.  Tirpak D., K. Stasio, and L. Tawney (2012). Monitoring the Receipt of International CLimate Finance  by Developing Countries. World Resources Institute. . Available at:  http://pdf.wri.org/monitoring_receipt_of_international_climate_finance_by_developing_countries. pdf.  Tol R.S.J. (2007). The double trade off between adaptation and mitigation for sea level rise: an  application of FUND, Mitigation and Adaptation Strategies for Global Change 12 741 753 pp. (DOI:  10.1007/s11027 007 9097 2), (ISSN: 1381 2386, 1573 1596).  UNCTAD (1998). Report of the Expert Meeting on the Impact of Government Policy and  Government/Private Action in Stimulating Inter Firm Partnerships Regarding Technology, Production  and Marketing, with Particular Emphasis on North South and South South Linkages in Promoting  Technology Transfers (Know How, Management Expertise) and Trade for SME Development. United  Nations Conference on Trade and Development, Geneva, Switzerland. 19 pp. Available at:  http://unctad.org/en/Docs/c3em4d3.en.pdf.  UNCTAD (2010). The Least Developed Country Report 2010. Towards a New International  Architecture for LDCs. United Nations Conference on Trade and Development, Geneva, Switzerland,  298 pp., (ISBN: 978 92 1 112813 0). .  UNDP (2011). Blending Climate Finance Through National Climate Funds. United Nations  Development Programme, New York, NY, USA. 64 pp. Available at:  http://www.undp.org/content/dam/undp/library/Environment%20and%20Energy/Climate%20Chan ge/Capacity%20Development/Blending_Climate_Finance_Through_National_Climate_Funds.pdf.  UNDP (2013a). Country Reports on Climate Public Expenditures and Institutional Reviews (CPEIR). .  Available at: http://www.climatefinance developmenteffectiveness.org/publications.html.  UNDP (2013b). Ethiopia Climate resilient Green Economy Facility. . Available at:  http://mptf.undp.org/factsheet/fund/3ET00.  UNEP (2005). Public Finance Mechanism to Catalyze Sustainable Energy Sector Growth. United  Nations Environment Programme, Geneva, Switzerland, 68 pp., (ISBN: 92 807 2592 0). .  UNEP (2007). Guidebook to Financing CDM Projects. United Nations Environment Programme,  Geneva, Switzerland, 104 pp., (ISBN: 978 87 550 3594 2). .    57 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  UNEP (2008). Study on Establishing the Congo Basin Forest Fund (CBFF). Governance Structure.  United Nations Environment Programme, Geneva, Switzerland. 65 pp. Available at:  http://www.cbfp.org/docs/rapports_act/UNEP%20CBF%20study.pdf.  UNEP (2010). Bilateral Finance Institutions and Climate Change. A Mapping of 2009 Climate Financial  Flows to Developing Countries. United Nations Environment Programme, Paris, France. 32 pp.  Available at: http://www.unep.org/pdf/dtie/BilateralFinanceInstitutionsCC.pdf.  UNEP (2011). Bilateral Finance Institutions and Climate Change. A Mapping off Public Financial Flows  for Mitigation and Adaptation to Developing Countries in 2010. United Nations Environment  Programme, Paris, France. . Available at: http://www.unep.org/pdf/Mapping_report_final.pdf.  UNEP (2012). Bilateral Finance Institutions and Climate Change. A Mapping of 2011 Climate Finance  Flows to Developing Countries. United Nations Environment Programme, Paris, France. . Available at:  http://www.unep fin.org/publications/unep bfi ccwg.html.  UNEP Ris (2013). UNEP Ris CDM/JI Pipeline Analysis and Database, September 2013. . Available at:  http://www.cdmpipeline.org/.  UNFCCC (1992). United Nations Framework Convention on Climate Change. United Nations  Framework Convention on Climate Change, Bonn, Germany. . Available at:  http://unfccc.int/resource/docs/convkp/conveng.pdf.  UNFCCC (1998). Kyoto Protocol to the United Nations Framwork Convention on Climate Change.  United Nations Framework Convention on Climate Change, Bonn, Germany. . Available at:  http://unfccc.int/resource/docs/convkp/kpeng.pdf.  UNFCCC (2007). Investment and Financial Flows to Address Climate Change. UNFCCC, Bonn,  Germany, (ISBN: 92 9219 042 3). .  UNFCCC (2008). Investment and Financial Flows to Address Climate Change: An Update. United  Nations Framework Convention on Climate Change, Bonn, Germany. 111 pp. Available at:  http://unfccc.int/resource/docs/2008/tp/07.pdf.  UNFCCC (2009a). Copenhagen Accord (2/CP.15). United Nations Framework Convention on Climate  Change. . Available at: http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf.  UNFCCC (2009b). Strategy paper for the long term perspective beyond 2012,  including sectoral  approaches, to facilitate the development, deployment, diffusion and transfer of technologies under  the Convention. Report by the Chair of the Expert Group on Technology Transfer. FCCC/SB/2009/3.  United Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2009/sb/eng/03.pdf.  UNFCCC (2010). The Cancun Agreements: Outcome of the work of the Ad Hoc Working Group on  Long term Cooperative Action under the Convention (1/CP.16). United Nations Framework  Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf.  UNFCCC (2011a). Compilation and Synthesis of Fifth National Communications.   FCCC/SBI/2011/INF.1/Add.2. United Nations Framework Convention on Climate Change. . Available  at: http://unfccc.int/resource/docs/2011/sbi/eng/inf01a02.pdf.    58 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  UNFCCC (2011b). Submissions on information from developed country Parties on the resources  provided to fulfil the commitment referred to in decision 1/CP.16, paragraph 95.  FCCC/CP/2011/INF.1. United Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2011/cop17/eng/inf01.pdf.  UNFCCC (2011c). Launching the Green Climate Fund (3/CP.17). FCCC/CP/2011/9/Add.1. United  Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2011/cop17/eng/09a01.pdf#page=55.  UNFCCC (2012a). Outcome of the work of the Ad Hoc Working Group on Further Commitments for  Annex I Parties under the Kyoto Protocol: Draft decision proposed by the President. Draft decision  /CMP.8, Amendment to the Kyoto Protocol pursuant to its Article 3, paragraph 9. United Nations  Framework Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2012/cmp8/eng/l09.pdf.  UNFCCC (2012b). Submissions on information from developed country Parties on the resources  provided to fulfil the commitment referred to in decision 1/CP.16, paragraph 95.   FCCC/CP/2012/INF.1. United Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2012/cop18/eng/inf01.pdf.  UNFCCC (2012c). Submissions on information from developed country Parties on the resources  provided to fulfil the commitment referred to in decision 1/CP.16, paragraph 95.  FCCC/CP/2012/INF.1/Add.1. United Nations Framework Convention on Climate Change. . Available  at: http://unfccc.int/resource/docs/2012/cop18/eng/inf01a01.pdf.  UNFCCC (2012d). Benefits of the Clean Development Mechanism 2012. United Nations Framework  Convention on Climate Change, Bonn, Germany, 102 pp., (ISBN: 92 9219 097 0). .  UNFCCC (2012e). Annual Report of the Executive Board of the Clean Development Mechanism to the  Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol.  FCCC/KP/CMP/2012/3 (Part I). United Nations Framework Convention on Climate Change, Bonn,  Germany. 20 pp. Available at: http://unfccc.int/resource/docs/2012/cmp8/eng/03p01.pdf.  UNFCCC (2013a). Submissions on information from developed country Parties on the resources  provided to fulfil the commitment referred to in decision 1/CP.16, paragraph 95.  FCCC/CP/2013/INF.1. United Nations Framework Convention on Climate Change. . Available at:  http://unfccc.int/resource/docs/2013/cop19/eng/inf01.pdf.  UNFCCC (2013b). Finance   Introduction. . Available at:  http://unfccc.int/cooperation_and_support/financial_mechanism/items/2807.php.  UNFCCC (2013c). The Mechanism under the Kyoto Protocol: Emission Trading, the Clean  Development Mechanism and Joint Implementation. . Available at:  http://unfccc.int/kyoto_protocol/mechanisms/items/1673.php.  UN Habitat (2011). Cities and Climate Change: Global Report on Human Settlements 2011.  Earthscan, Oxford, UK, 300 pp., (ISBN: 978 92 1 131929 3). .  Urpelainen J. (2010). A Theory of North South Climate Finance. New York University, New York, NY,  USA. 32 pp. Available at: http://politics.as.nyu.edu/docs/IO/16188/north.pdf.    59 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  Venugopal S., and A. Srivastava (2012). Moving the Fulcrum: A Primer on Public Climate Financing  Instruments Used to Leverage Private Capital. World Resources Institute (WRI), Washington, D.C.,  USA. . Available at: http://pdf.wri.org/moving_the_fulcrum.pdf.  Veys A. (2010). The Sterling Bond Markets and Low Carbon or Green Bonds. Third Generation  Environmentalism (E3G), London, UK. 38 pp. Available at:  http://www.e3g.org/images/uploads/The_Sterling_Bond_Markets.pdf.  Wang W., and B.A. McCarl (2011). Inter Temporal Investment in Climate Change Adaptation and  Mitigation, Agricultural & Applied Economics Association s 2011 AAEA&NAREA Joint Annual Meeting.  Department of Agricultural Economics, Texas A&M University, Pittsburgh, Pennsylvania. 24 26   2011, 24 pp.  Ward J., S. Frankhauser, C. Hepburn, and H. Jackson (2009). Catalyzing Low Carbon Growth in  Developing Economies. Public Finance Mechanisms to Scale up Private Sector Investment in Climate  Solutions. United Nations Environment Programme, Geneva, Switzerland. 28 pp. Available at:  http://www.unep.org/PDF/PressReleases/Public_financing_mechanisms_report.pdf.  WBCSD (2013). Business Solutions for a Sustainable World. . Available at:  http://www.wbcsd.org/home.aspx.  Wilbanks T.J., P. Leiby, R. Perlack, J.T. Ensminger, and S.B. Wright (2007). Toward an integrated  analysis of mitigation and adaptation: some preliminary findings, Mitigation and Adaptation  Strategies for Global Change 12 713 725 pp. (DOI: 10.1007/s11027 007 9095 4).  Wilbanks T.J., and J. Sathaye (2007). Integrating mitigation and adaptation as responses to climate  change: a synthesis, Mitigation and Adaptation Strategies for Global Change 12 957 962 pp. (DOI:  10.1007/s11027 007 9108 3), (ISSN: 1381 2386, 1573 1596).  Wohlgemuth N., and R. Madlener (2000). Financial support of renewable energy systems:  Investments vs operating cost subsidies, Proceedings of the Norwegian Associations for Energy  Economics (NAEE) 10 pp. Bergen, Norway.  World Bank (2010). Monitoring Climate Finance and ODA. World Bank, Washington, D.C. 8 pp.  Available at: http://climatechange.worldbank.org/sites/default/files/documents/DCFIB%231 web June15.pdf.  World Bank (2011a). Doing Business 2011: Making a Difference for Entrepreneurs. World Bank,  Washington, D.C., USA, 267 pp., (ISBN: 978 0 8213 7960 8). .  World Bank (2011b). Climate Investment Funds. Governance Framework for the Clean Technology  Fund. Adopted November 2008 and amended December 2011. World Bank. . Available at:  http://www.climateinvestmentfunds.org/cif/sites/climateinvestmentfunds.org/files/CTF%20Govern ance%20Framework FINAL.pdf.  World Bank (2011c). Climate Investment Funds. Governance Framework for the Strategic Climate  Fund. Adopted November 2008 and amended December 2011. World Bank. . Available at:  https://www.climateinvestmentfunds.org/cif/sites/climateinvestmentfunds.org/files/SCF%20Govern ance%20Framework FINAL.pdf.  World Bank (2011d). Financing Renewable Energy. Options for Developing Financing Instruments  Using Public Funds. World Bank, Washington, D.C. 50 pp. Available at:    60 of 61     Final Draft  Chapter 16  IPCC WGIII AR5  http://siteresources.worldbank.org/EXTENERGY2/Resources/SREP_financing_instruments_sk_clean 2_FINAL_FOR_PRINTING.pdf.  World Bank (2012a). Trustee Presentation: Update on Status of Resources and CER Monetization.  AFB/B.19/Inf.4. Adaptation Fund. . Available at: https://www.adaptation fund.org/sites/default/files/AFB.B.19.Inf_.4%20CER%20trustee%20presentation.pdf.  World Bank (2012b). Guyana REDD+ Investment Fund (GRIF), Concessional Finance and Global  Partnerships . Available at: www.worldbank.org/grif.  World Bank (2012c). Bangladesh Economic Update. Oktober 2012. World Bank. . Available at:  http://www wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2012/10/19/000386194_201210 19040128/Rendered/PDF/733020WP0Bangl0disclosed0100180120.pdf.  World Bank (2013). Carbon Finance at the World Bank: List of Funds. . Available at:  https://wbcarbonfinance.org/Router.cfm?Page=Funds&ItemID=24670.  World Bank Group, IMF, OECD, AfDB, ADB, EBRD, EIB, and IDB (2011). Mobilizing Climate Finance.  Paper Prepared at the Request of G20 Finance Ministers. World Bank, Washington, D.C., USA. 56 pp.  Available at: http://www.imf.org/external/np/g20/pdf/110411c.pdf.  World Bank, and UNDP (2012). Funding Sources, Climate Finance Options . Available at:  http://climatefinanceoptions.org/cfo/funding sources.      61 of 61