Submitted to the Visual End User Workshop at the

ACM's 12th Annual User Interface Software and Technology Symposium

November 11, 1999, Asheville, North Carolina

ROBOLAB(: Designing a Visual Learning Environment with LabVIEW and LEGO

Ben Erwin

Chris Rogers

Martha Cyr

Merredith Portsmore

Tufts University

Center for Engineering Educational Outreach

http://www.ceeo.tufts.edu/
Curtis Hall, Lower Level

Medford, MA 02155

Abstract

A visual programming language called ROBOLAB has been designed for students to create the feedback and control logic for creations that use the RCX, the programmable LEGO brick. ROBOLAB was programmed within the LabVIEW environment, a visual programming application by National Instruments. The visual nature of ROBOLAB facilitates the programming process, and LEGO elements that snap together facilitates the construction process for students of all ages. These two systems combined with a hands-on task such as creating a robotic animal or designing a scientific apparatus create a learning environment where students have been highly motivated and engaged in their projects. This engagement has led to all students, even those usually marginalized within the field of engineering such as young women, to learn from direct experience, to build confidence in their abilities, and gain a sense of personal power.

Introduction

Philosophy

Knowledge and understanding come about when a student is actively engaged in the learning process. This idea is commonly referred to as constructivism, Piaget's idea that knowledge cannot be "poured into" the head of a student, but rather that the student must actively construct knowledge inside of her head. The primary reason that knowledge must be constructed and not absorbed is that learning depends on direct experience. When concepts and ideas are connected with a student's direct experience they lead to deeper understanding. The theory of constructionism, which comes to us from Seymour Papert and other pioneers at the MIT Media Lab, adds to constructivism the notion that the best way for a student to construct knowledge inside of his head is to experience something - design, build or program, test and debug something - outside of his head.
Parallel to both of these ideas is the importance of a learning experience that is personally meaningful to the student. In other words, re-creating somebody else's experience (the experience of a famous scientist, for example) in the classroom is not sufficient to facilitate the best learning environment. A personally meaningful project is more directly related to a student's own direct life experience, and hence is more motivating and more likely to lead to a sense of accomplishment and true understanding.

ROBOLAB supports these learning processes and philosophies in several ways. First, ROBOLAB provides a programming environment that can be open-ended and complex enough for a multitude of solutions to a programming problem, yet confined and simple enough to not overwhelm a student of any age or experience level. Secondly, ROBOLAB facilitates intuitive programming. For example, there are few, if any, steps involved between generating the flow-chart or block-diagram style logic of a program on paper and creating its direct interpretation in ROBOLAB. Students using ROBOLAB can concentrate less time on debugging syntactical errors and more time on debugging logic errors, where the real learning through experience takes place. Thirdly, by using iconic representations of actual physical elements such as LEGO sensors and motors, the program created on the screen can be quickly and directly interpreted in terms of the physical LEGO model created. Lastly, as with any fully graphical language, ROBOLAB's iconic representation also allows students too young to read or type, as well as those whose native language is not English, to experience success with programming. In this case, to execute control over their mechanical creations and bring them to life.

Background

The early research that developed into the ROBOLAB concept began almost seven years ago at Tufts University. Working with graduate students to develop a visual language for undergraduates to learn basic data acquisition and control principles, a visual programming language called LEGO Engineer was developed *. LEGO Engineer is a LabVIEW interface to the LEGO Dacta serial interface box [Figure 1], for which, at the time, only commercial software called Control Lab (or as it is commonly referred to, LEGO/LOGO) was available.

[image: image1.png][ROEGL'AE]

[image: image2.emf]
Figure 1. The LEGO Dacta serial interface box (left). There are eight output ports for motors, lamps, and sound devices, and eight input ports for temperature, light, angle, and touch sensors. The LEGO Engineer introductory screen (right).

[image: image3.emf][image: image4.emf]
Figure 2. A fifth-grader's LEGO car and LEGO Engineer program to control it.

*LEGO Engineer was developed solely by Tufts University and is not associated with the LEGO group nor is it a commercial product.

A LEGO Engineer program (called a Virtual Instrument, or VI, in LabVIEW), such as the one above in Figure 2, is composed of a mix of LabVIEW elements, such as the rectangular gray while loop, and LEGO icons - LabVIEW sub-vi's - that perform certain functions such as turning on motors or waiting for sensors to reach a certain value.

The success of LEGO Engineer led to a partnership between Tufts University, LEGO Dacta, and National Instruments to create ROBOLAB. In the fall of 1998 LEGO started creating products related to the RCX, the programmable LEGO brick. ROBOLAB was launched as the educational software available to teachers for classroom activities from robotics to science.

Hardware

The RCX [Figure 3] is a microprocessor inside of a plastic LEGO casing. The RCX gives students the capability of building inventions that have up to three inputs and three outputs. The RCX can store five different programs in memory, and can also store variables, multitask up to seven tasks at a time, and collect 1000 data points from LEGO sensors. The RCX can be powered with an AC adapter or six AA batteries for remote operation such as the tour bus [Figure 4]. ROBOLAB programs are downloaded into the RCX via an infrared transmitter that connects to the serial port of a desktop computer running ROBOLAB.

[image: image5.emf]
Figure 3. The RCX, the programmable LEGO brick.

[image: image6.emf][image: image7.emf][image: image8.emf]
Figure 4. The RCX as a tour-bus and its ROBOLAB program.

ROBOLAB

The design of ROBOLAB was a cooperative project between LEGO Dacta, the Tufts University College of Engineering, National Instruments, and The Interactive Factory. LEGO Dacta provided many of the design specifications for the project and with the help of teachers and educational researchers, provided regular feedback during the process of creating the software. The group at Tufts University was responsible for writing the software code, including help menus, importing graphics designed by the Interactive Factory, designing some of the graphics, the software installers, and writing the Teacher's Guide. National Instruments provided the use of the professional edition of LabVIEW 5.0 (and now 5.1) to be used for ROBOLAB. They provided technical support and also created a modified version of LabVIEW to suit the special needs of ROBOLAB.

1. Sample Design Requirements

2. Create an icon-based programming environment with robotic (version 1.0 and beyond) and scientific (version 2.0) applications for students of all ages for the Mac and PC. The target market is middle school (5th through 8th grade). The software will be used in conjunction with a variety of LEGO sets that contain the RCX, the programmable LEGO brick.
3. Provide for different programming environments for different experience levels and classroom time investment capabilities. The highest level of programming should take advantage of all of the capabilities of the RCX.

4. Use the English language as little as possible on graphic images. The Help Menu text should be easily translatable and the English version should not specific to the U.S. (for sales in the U.K.)

5. Use the least amount of different windows as possible for ease of use.

6. Provide a Teacher's Guide with extensive examples and explanations.

Implementation

The ROBOLAB environment is divided into three sections, which are accessible from the introductory screen. The Administrator menu (which can be hidden from students) gives the educator the ability to change software and hardware settings such as creating a new folder for a new set of example programs or checking the battery level of an RCX. The Programmer and Investigator sections, discussed in detail below, are areas for programming robotic and mechanical creations, and "Inventing and Investigating" projects of a more scientific, exploratory nature.

[image: image9.emf][image: image10.emf]
Figure 5. The ROBOLAB introductory screen has three options.

ROBOLAB: Programmer

The Programmer environment is designed for programming LEGO robotic creations that use the RCX. Programmer is divided into two distinct areas, Pilot and Inventor. Pilot and Inventor are in turn divided into four levels, with increasing complexity and capability. All eight levels can be reached from the Programmer main menu [Figure 6], where students start with a Pilot template or a new Inventor window. In addition, students can choose to view a sample program from the Pilot or Inventor Vault, and store their programs in a folder called "My Programs".

[image: image11.emf]
Figure 6. The Programmer main menu is divided into Pilot and Inventor areas.

The design requirement for so many levels came from several sources. First, ROBOLAB was designed to be used from kindergarten through graduate school. There needed to be a programming environment simple enough to be executed by a five-year-old and complex enough to offer the power-user a high-end alternative to the commercial RCX software, Mindstorms RCX Code. Secondly, different programming levels are a means of learning the software itself. Once a student has tried a Pilot 1 program and has had success, they can proceed to Pilot 2, 3, and 4 and on to Inventor as their comfort level and need for further capability increases. Therefore, less direct programming instruction is needed.

Two very distinct environments for programming were developed out of a bottom-up design issue from working in the LabVIEW environment, as well as our early work with LEGO Engineer. The LabVIEW environment itself determines the number and type of windows in the software. The standard LabVIEW environment consists of two windows, the front panel and the block diagram. The block diagram is where the 'code', called G-code is created. The front panel is the user interface where the knobs and switches, inputs and variables, graphs and charts and images, are located [Figure 7]. The design of LEGO Engineer used these two windows to create two distinct environments: Builder and Engineer. Builder consisted of a front panel window where the young student can click and choose
[image: image12.emf][image: image13.emf]
Figure 7. The LabVIEW front panel (left) and block diagram (right) of a temperature graphing program (virtual instrument).

[image: image14.emf][image: image15.emf][image: image16.emf][image: image17.emf][image: image18.emf][image: image19.emf][image: image20.emf][image: image21.emf][image: image22.png][ROEGL'AE]

[image: image23.emf][image: image24.emf][image: image25.emf][image: image26.emf][image: image27.emf][image: image28.emf][image: image29.emf][image: image30.emf][image: image31.emf][image: image32.emf][image: image33.emf][image: image34.emf][image: image35.emf][image: image36.emf][image: image37.emf][image: image38.emf][image: image39.emf][image: image40.emf][image: image41.emf][image: image42.emf][image: image43.emf][image: image44.emf][image: image45.emf][image: image46.emf][image: image47.emf][image: image48.emf][image: image49.emf][image: image50.emf][image: image51.emf][image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf][image: image58.emf][image: image59.emf][image: image60.emf]

Figure 8. Builder (left) and an Engineer program (right) to determine the color of a LEGO brick on a conveyor belt using the LEGO light sensor.
ROBOLAB: Programmer: Pilot

Both of these design considerations led to the development of Pilot and Inventor. The four levels of Pilot include [Figure 9]:

Figure 9. The four Pilot levels in ROBOLAB Programmer.

1. Pilot 1: A one-step program to turn on one output with a chosen polarity on the RCX for a chosen amount of time. Primarily used to get accustomed to the concept of downloading a program to a remote computer with remote operation

2. Pilot 2: A one-step program to turn on two outputs with chosen polarity and power on the RCX for a chosen amount of time or until the touch sensor is pressed or released.

3. Pilot 3: A two-step program to turn on up to three outputs for a certain amount of time, until the touch sensor is pressed or released, or until the light sensor reading gets brighter or darker [Figure 10]. The program may be executed once or looped indefinitely. Similar to Builder from LEGO Engineer. Simple bang-bang control loops may be written with Pilot 3.

4. Pilot 4: An infinite amount of sequential steps are possible with Pilot 4.

Figure 10. Clicking on the "Wait For" options brings up a palette of options including various times (watches) to wait for and touch and light sensors. National Instruments made a modification to LabVIEW 5.0 to allow for pop-up options to be very large on the screen (the Pilot icons are 64x64 pixels).

As with Builder, no syntactical errors can exist within the Pilot environment. The program will always download into the RCX, although it may not execute as expected if it contains logic errors.

Pilot is intended as the primary programming environment for elementary school students in the early grades, as well as the introductory learning-to-program environment for students of all ages. It also serves as the primary programming environment for middle school students when there is limited classroom time available to for learning the Inventor environment. For example, a science class may be focusing on the mechanics of the LEGO elements or the scientific process and have too little time for the students to learn the syntax of Inventor. (More will be said about science activities in the Investigator section). A middle school technology education class may also only use Pilot if the LEGO RCX project is one short unit in the semester devoted to many projects.

ROBOLAB: Programmer: Inventor

Inventor is the full programming environment of ROBOLAB. Inventor contains all of the elements of a full programming language. When running Inventor, both LabVIEW windows appear on the screen. A third pop-up window, a customized LabVIEW Functions Palette, is where icons are picked and then placed into the block diagram window to become a part of the program [Figure 11]. The number of icons on this palette increases as the student progresses through Inventor 1 to Inventor 4. Inventor 1 has a sample program in the diagram upon startup, whereas Inventor 4 only has the Begin and End icons. Once in Inventor, students can change levels from a pull-down menu option without the need to return to the main menu.

Figure 11. A new Inventor Level 4 program. The blue-green icons on the palette are sub-menus of other palettes. The front panel says "ROBOLAB Inventor".

Unlike Engineer, there is no use for the front panel to display real-time graphs, since program execution occurs remotely on the RCX. (It is possible to see real-time graphs of data using Investigator, but graphing capability is solely the domain of Investigator for marketing reasons). The front panel could therefore only be utilized for setting values of variables that could represent things such as where motors were connected or the temperature to wait for the LEGO sensor to reach.

Copying a design implementation from LEGO Engineer, initial ideas for ROBOLAB included using the front panel to choose such settings [Figure 12]. This idea was abandoned for several reasons. Firstly, elements placed on the front panel are represented on the block diagram as rectangles colored by variable type, which are not as easy to identify as a pictorial representation. Also, with many objects on the front panel, block diagram "terminals," as they are called in LabVIEW, need to be identified by their text label such as "Speed" in Figure 12. These labels would all need to be identified and somehow translated into the different languages for worldwide distribution, which would be a daunting task. The final decision was to use objects coined "modifiers". Individual icons on the palette that represented every possible variable that a student would want to select in an Inventor program [Figure 13].

Figure 12. An early idea to use the LabVIEW front panel in ROBOLAB Inventor. This is a program to turn on Motor A with a "right" polarity for one second. The speed of the motor is selected on the front panel. The front panel item is represented as a blue rectangle on the diagram. The default blue background color was changed to white for clarity.

Figure 13. The same program as in Figure 12 using a modifier. The front panel is now no longer necessary in Inventor programs. The front panel remains on the screen due to LabVIEW code that requires it be open.

The other difference between Engineer and Inventor is the use of LabVIEW elements. Working in the Engineer environment is much like working with LabVIEW with an extra library of LEGO-specific icons. LabVIEW loops, case structures, arithmetic functions, buttons, and knobs are available to the Engineer user in combination with LEGO-specific icons such as "wait for the temperature sensor to read 80 Fahrenheit". With ROBOLAB the situation is different. All written code needs to be interpreted into a format that the Hitachi processor on the RCX, with its firmware, can understand, and downloaded to the RCX. ROBOLAB cannot run in real time, as LabVIEW requires. As of yet there is no interpreter or compiler that will convert LabVIEW to other more textual programming languages, making the direct use of LabVIEW structures impossible. Instead, with ROBOLAB, every programming element is an icon. Even structures such as loops, case statements, and operations on variables have their own icons.

Writing an Inventor program is much like drawing a flowchart or block diagram. The Inventor icons are therefore listed below by the five standard flowchart categories:

1.
2. Terminal

Marks the beginning of a ROBOLAB program and the end of each task. Seven total tasks are possible.

3.
4. Input/Output

Inputs include things such as waiting for the angle sensor to reach a certain number of rotations. Possible outputs include turning motors and lamps on and off, playing musical notes with the RCX's speaker, and sending an infrared mail message to another RCX.

5.
6. Flow Control

Flow control elements include go-to elements called Jump and Land, Multitasking splits, and For Loops.

7.
8. Decisions

Decisions include case statements such as choosing a path depending on whether the touch sensor is pressed or not, and whether or not one of three timers has reached a certain value.

9.
10. Processing

Processing icons include all modifiers and variables (containers), such as Add one to the container, put the current light sensor value into the container, and reset the container.

Once a student becomes familiar with flowcharts, writing an Inventor program directly follows from what they have learned. This program below [Figure 14], which controls the movements of a robotic dog, is a perfect example of such an intuitive program.

Figure 14. Robotic Dog with touch sensor leash (not shown) and Inventor program. The dog will only walk when the touch sensor at the end of the leash is pressed.

Classroom Experience

One classroom experience during the first year of the launch of ROBOLAB 1.0 was in the author's seventh grade Technology Education class in Weston, Massachusetts, a suburb of Boston. Thirteen students - seven boys and six girls - met for four times a week for approximately nine weeks for Technology Education class during the third quarter of the 1998-1999 academic year. This class marked a transition in the middle school from Industrial Arts to Technology Education in the seventh grade. This group of students was chosen as the test group for such a class, and was the only such class to have Technology Education instead of Industrial Arts this particular school year.

The beginning of the quarter was spent learning the basics of robotics and the RCX, leading up to a final project. The first week was spent making the LEGO Dacta amusement park from instructions, programming the models with Pilot, and making modifications to the model and program. The amusement park was a good beginning for some of the students, especially some of the girls with less experience with construction toys. Pilot, however, was too simple of a programming environment for almost all of the students.

For a few days following the amusement park, the main project of the course: making a robotic animal and its environment was introduced. Hands-on lessons were given on how to use Inventor, including the concept of a flowchart. The limited success of these lessons was cause for their abandonment. They did not succeed for several reasons. First of all, there were many technical difficulties such as obtaining an overhead projector during class time and problems with the student laptops crashing. The students were already working in five groups of two or three each, with one laptop per group. The small size of the laptop also made it difficult for multiple students to follow the lesson. Secondly, there were problems of a more contextual nature. Many people that work with LEGO find it natural to build first, and program later. In retrospect it would have been more beneficial to introduce the programming lessons after the students had started working on the mechanics of the animal, not only to provide a physical tie to the programming but also to provide a context, a reason and motivation, for learning the programming.

The next two lessons were spent researching and brainstorming different ideas for a robotic animal [Figure 15]. Students looked at different yahoo animal sites for ideas on good animals to try to make, and looked at example LEGO models on the LEGO Mindstorms web site. Each group was given a design notebook at this point, where they had to document their progress each day of class. Class ended 10 minutes early every day for cleanup time and for writing in the design notebook. The students decided on their own that they would rather create one big zoo environment [Figure 16] with different animals in it than create individual environments separate from each other. This environment, two 4'x8' melamine particleboards that were set-up and taken down each day in the hallway, turned out to provide for a very cooperative environment in which to work. Each group of students, when testing their robot, would see the progress of the other students, make design suggestions, and learn from each other's mistakes.

Figure 15. The giraffe that walks and bends its neck, the turtle that lays eggs on the beach, the monorail that traverses the perimeter of the zoo, and two geckos that sense when they have bumped into each other.

Figure 16. The compressed version (4'x8') of the zoo, on display at the Rhode Island Robotic Park Zoo, a yearly event for kids robotics.

The five groups of students varied in terms of the complexity of the mechanics and programming they attempted. The two groups of girls - the giraffe and the turtle groups - both had complicated mechanics and relatively simple programs. The two groups of boys working on making a pair of geckos had an even amount of complexity in both the mechanics and the program. The last group of boys that made a monorail had a simple yet surprisingly ornately decorated mechanical design and a very complex program.

The challenges that the students faced were a combination of those to do with logical thinking and those of learning syntax. Most of the difficulty to using Inventor was in wiring the icons together. Wiring the icons together requires careful coordination of the mouse and mouse button, as well as an observant eye. There are also many nuances to working in the Inventor environment, such as shortcuts for getting rid of broken wires, deleting icons, replacing one icon with another, etc. that take time to learn.

Figure 17. The Inventor program for the giraffe. Much of the class time was spent on the mechanics of the giraffe and its environment. This program, which could have been replicated with Pilot 4, was programmed, tested, and modified within two class periods.

Figure 18. The Inventor program for the turtle. The turtle detects the beach with a light sensor, lays its eggs, and retreats back into the water.

Figure 19. The Inventor program for the geckos. This program uses two simultaneous tasks to follow a black line of electrical tape and check if the touch sensor bumper has been hit.

Figure 20. The Inventor program for the monorail. Having had trouble coming up with an algorithm to follow a line of electrical tape with one light sensor, these boys decided to use two light sensors, coming up with a more intuitive solution to the problem.

ROBOLAB: Investigator

Investigator is the latest addition to the ROBOLAB concept. Initially, the concept for Investigator was that of an "upgrade" from ROBOLAB 1.0. Students would enter the Programmer environment, select a programming level, and then click on a button or use a hot key that would add data-logging capabilities to her program. This idea was rejected in favor of an entirely new environment for Investigator, to distinguish it visually and conceptually from strictly robotic activities.

Investigator is set up in terms of Projects instead of programs [Figure 21]. Students work in groups on a science Project, working within the different areas of Investigator called program, for writing a data logging program for the RCX, upload, for uploading data to the computer from the RCX, view and compare, for looking at data in various forms, compute, for performing data analysis, and journal, for importing pictures and writing about the Project.

Figure 21. The main menu of Investigator has fields to choose a Theme and a Project. Themes are connected to the LEGO set purchased by the school or ideas created by the teacher.

The best way to describe an Investigator Project would be to walk through one. The following Project, called Doorway, is a project to find out how often people walk in and out of a room:

Figure 22. In the program area of Investigator, a program is written to collect light sensor data every 0.05 seconds for 1000 points. Areas are selected from the navigation dial on the upper left. A list of pages for each area appears below the navigation dial. Every area can contain multiple pages. The tab in the middle of the right hand side of the screen selects the level of each area. The right hand side of the screen is called the template.

Figure 23. Raw data is uploaded from the RCX into the computer in the upload area. Data sets are collected in bins. There are ten different colored bins that correspond to the color of the graph. Multiple data sets can be uploaded to the same bin or different bins.

Figure 24. Light sensor values are subtracted from a baseline light sensor reading to show the times when people entered or exited the room as peaks. Arithmetical operations are chosen in a click and choose interface on the bottom of this compute template. An operation is performed on the red bin and output to the blue bin.

As with the Programmer environment, Investigator makes extensive use of levels. A student can write a data-logging program in the style of Pilot or Inventor in the program area. A student can also write an Inventor style program for data analysis in the compute section, as illustrated in the next example of an optical shaft encoder.

Figure 25. The journal area is used to import a JPEG image of the experimental setup of the shaft encoder.

Figure 26. Using the view and compare area to compare light sensor data to angle sensor data for the shaft encoder. Both sensors register twenty rotations.

In addition to data logging capability, Investigator brings many new features to ROBOLAB. A function called Interrogate RCX allows a student to view the values of sensors of any RCX in the world using the Internet IP address. There is a "publish" button that exports a student's project into a set of PowerPoint-style presentation pages, or a set of html pages that can be sent to the school server. The Internet will open up many more avenues of exploration for the future. For example, Investigator was also designed with room for expansion. New Themes, Example Projects, and Templates will be able to be downloaded from the Internet, allowing ROBOLAB to grow without the distribution of a new version.
Conclusion

ROBOLAB is a cutting edge software package for students of all ages. ROBOLAB is being used from kindergarten through graduate school in a number of different ways, proving that it not only serves multiple age levels but also spans a wide variety of curriculum topics. From physics to robotics to kinetic sculpture to interdisciplinary projects that combine engineering with the social sciences, ROBOLAB can be a part of the curriculum. It is a unique and challenging task to create programming software that is intended to run on a remote, hand-held computer, connected to a variety of physical objects such as motors and gears. Like any software, ROBOLAB has its share of quirks, but it has received the approval of many educators and students who have beta-tested it and used it in their classrooms.

� EMBED Word.Picture.8 ���

_993390306.doc
[image: image1.png][ROEGL'AE]

