Measuring Sky Brightness with a Digital Camera

Paris 2004

Stuttgart 2003

Prof. Kirschbaum presented methods to measure the brightness of the night sky
Lux meter
Solar cell
CCD camera

Idea

Why not a normal digital photo camera?
These cameras are widespread, cheap and easy to handle
Can these camera's be used for reliable measurements of the night sky brightness?

Sony Camera

Costs about 150 euro
3 megapixel
Manual setting
Maximum exposure time of 8 seconds
Raw exposures
F2.8 aperture

Tests

Test On Stars, Aquila

Minimal magnitude of stars of about 7
 Magnitude 1 stars saturated
 Pixel counts of sky about 20

Outside and Inside	Radii
Region Shape © Circular © S	quare
Get Statistics	Close
Region Statistics	G
Number of Pixels: 113	
Total Pixel Value: 3798	
Mean: 33,61	
Variance: 2936,70	
Standard Deviation: 54,	19
Median: 13	
Mean of Median Half: 1	3,26
Minimum Pixel Value: 3	
Maximum Pixel Value: 2	37
Central Pixel: X: 389, Y	: 396

Results and Limitations

Possible to make images and measurements of sky in different locations

Problem 1: always use the same camera and results are not comparable
 Problem 2: Colour sensitivity of camera and eye are different

Plan

To make the measurements objective and comparable

Use the brightness of the stars to scale the method

 Use a specific filter to make responses of the camera in visual, specific wavelengths

Method

- Falchi and Cinzano, CCD measurements of night sky brightness:
 - Make images of various parts of the sky with known stars with different altitudes
 - Determine the Extinction coefficient k
 - Determine the Photometric scale factor C
 - Determine the sky brightness at the location

Practical

Bought
 Johnson V filter (100 euro)
 A lot of memory (tiff files are 6 Mb)

Images

No moon
8 seconds
Tele (about 10 cm lens)
Aperture F2.8
Focus 5 meter to obtain not saturated stars
Dark and flat frames

Analysing

	· ···································
THE REAL OF	Single-Star Photometry Outside and Inside Radii Out 30 🛨 In 15
C. C	Input Data Integration Time 60 Zero Point 20
	Select Star
Support of the second	- Star Data Centroid: 919,67, 1034,62 Star - Sky: 31646,9 Sky Bkord: 46.6
「二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	Raw Inst Mag: 13,195

■ AIP 4 (IRIS)

Determining star- sky
Determining sky background

Results

				sky	magnitud		Y= Ma
			star-	per	е		cat +2.5
		altitude	sky per	seco	Hipparch	X=1/sin	log (Star-
star	altitude	in rad	second	nd	US	alt	Sky)
Beta Gem	36,2	0,63	3408,71	3,87	1,22	1,69	10,0
Alpha Gerr	37,3	0,65	3141,08	3,57	2,02	1,65	10,70
lota Gem	33	0,58	545,36	4,27	3,79	1,84	10,63
Gamma Le	50,5	0,88	2504,41	2,33	2,23	1,30	10,73
Eta Leo	46,3	0,81	864,75	2,41	3,52	1,38	10,80
Alpha Leo	42,2	0,74	2828,13	2,75	1,41	1,49	10,04
Theta Leo	51,2	0,89	998,25	2,29	3,33	1,28	10,83
Alpha Cmi	17	0,30	2260,63	8,70	0,40	3,42	8,79
Beta Cmi	17,6	0,31	499,36	8,37	2,89	3,31	9,64
Delta Uma	85	1,48	975,33	1,42	3,30	1,00	10,7
Alpha Uma	76,6	1,34	1989,88	1,45	1,82	1,03	10,0

Results

Extinction coefficient k= between 0,2 and 0,6 per airmass

■ Photometric scale factor C= 11,1 ±0,2 magnitude

Results

The photometric scale factor C gives the correction factor to make the camera a real measuring device
 The formula to make a pixel count P into a magnitude:

M=C-2,5*log(P/1168) (1 pixel= 1168 square second)

Results and Limitations

		Sky	Sky		
	Km from	brightness	brightness	Artificial sky	artificial/natura
Location	Utrecht	Zenit magn	cd/m2	brightness	I brightness
Utrecht	4	10000	0,0048964	0,004696435	23,482175
Rijnouwen	5,		132398	0,003039813	15,199065
Odijk			9442	0,000744235	3,721175
Werkhoven			7415	0,000541515	2,707575
Cothen			<mark>/3039</mark>	0,000103893	0,519465

ESA

Results and Limitations

		altitude in			sky per
star	altitude	rad	time	sky	second
Eta Aur	31,6	0,551524	8	5,54	0,6925
lota Aur	24,6	0,429351	8	8,64	1,08
Beta Tau	25,5	0,445059	8	8,78	1,0975
Alpha Uma	80,2	1,3997541	8	0,76	0,095
Beta Uma	85,6	1,4940018	8	0,9	0,1125
Gamma Uma	81,8	1,4276793	8	0,86	0,1075
Delta Uma	78,1	1,3631021	8	0,64	0,08
Epsilon Uma	73	1,2740904	8	0,4	0,05
Alpha Vir	20,4	0,3560472	8	6,11	0,76375

Results not reliable with dark(er) skies

Future

Try to find collaborators

- Present results in Paris
- ◆ Write an article about the results in Dutch

Try to get a camera with longer exposure time

- Take this winter measurements in different towns in Holland
- Take measurements in one sport uring a night
 ??